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1.1 Introduction

The field of algebraic logic assumed its modern systematic form, known as
abstract algebraic logic, with the appearance of the pioneering “Memoirs”
monograph of Blok and Pigozzi [35]. In this celebrated monograph one can
find clearly discernible the seeds and the foundations of almost all subse-
quent developments in the field and, consequently, also, the foundations on
which most parts of the work and of the developments detailed in the present
monograph are based.

Related to the term “abstract algebraic logic”, another of the pioneers
of the field, Josep Maria Font, in a more recent textbook, titled “Abstract
Algebraic Logic An Introductory Textbook” [86], advocates that the name
should continue to be simply algebraic logic and that, as is the case with most
other fields of Mathematics, Logic and Science, the abstraction, to which the
term “abstract” refers, is part of the natural evolution of the same field, and
should not be construed as constituting a special subfield justifying a special
naming or rebranding.

In a similar sense, one may share the same belief for categorical abstract
algebraic logic, which is also another natural evolution of algebraic logic and,
therefore, according to this point of view, should also be referred to, simply,
as algebraic logic. It may, in fact, be preferable to refer to the underlying
formalizations of the logical systems treated in each particular context than to
rebrand the entire field. So instead of referring to “abstract algebraic logic”,
we may say “algebraic logic as applied to sentential logics” (or “to deductive
systems”) and, similarly, “algebraic logic as applied to logics formalized as
institutions or π-institutions”, instead of using “categorical abstract algebraic
logic” for the latter. For now, however, the traditional names have stuck and
have been used widely, with well-discernible meanings, and we use them
freely, as is also done in [86].

In “traditional” algebraic logic, which may be viewed to have started with
the work of Tarski [5], the underlying formalism consists of sentential logics
or deductive systems. These are pairs S = ⟨L,⊢S⟩, where L is an algebraic
language (a set of operation symbols with specified finite arities) and ⊢S is a
consequence relation on the absolutely free algebra FmL(V ) generated by a
countable set V of variables. That is, ⊢S ⊆ P(FmL(V )) × FmL(V ), satisfies
the following, for all Γ ∪∆ ∪ {ϕ} ⊆ FmL(V ),

Inflation: Γ ⊢S ϕ, for all ϕ ∈ Γ;

Monotonicity: Γ ⊢S ϕ and Γ ⊆ ∆ imply ∆ ⊢S ϕ;

Idempotency: Γ ⊢S ϕ and ∆ ⊢S γ, for all γ ∈ Γ, imply, ∆ ⊢S ϕ;

Structurality: Γ ⊢S ϕ implies σ(Γ) ⊢S σ(ϕ), for all endomorphisms σ ∶ FmL(V ) →
FmL(V ).
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Equivalently, S may be expressed in terms of a structural closure operator
CS , i.e., a function CS ∶ P(FmL(V ))→ P(FmL(V )), satisfying, for all Γ∪∆ ⊆
FmL(V ):

Inflation: Γ ⊆ CS(Γ);

Monotonicity: CS(Γ) ⊆ CS(∆), for all Γ ⊆ ∆;

Idempotency: CS(CS(Γ)) ⊆ CS(Γ);

Structurality: σ(CS(Γ)) ⊆ CS(σ(Γ)), for all endomorphisms σ ∶ FmL(V )→ FmL(V ).

The equivalence is established by setting, on the one hand, for all Γ ⊆
FmL(V ),

CS(Γ) = {ϕ ∈ FmL(V ) ∶ Γ ⊢S ϕ},

and, on the other, for all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢S ϕ iff φ ∈ CS(Γ).

The reliance on sentential logics as the underlying formalism of the theory
persists when passing to abstract algebraic logic. The reader is referred to the
aforementioned [35, 86], as well as to the standard reference [64] by Janusz
Czelakowski, another pioneer in the field, all clearly showcasing the primary
role of this framework in all related developments and investigations.

By contrast, in this monograph the underlying logical formalism consists
of π-institutions [33]. This formalism encompasses systems with varying sig-
natures and quantifiers in a more direct way than allowed by the formalism
of sentential logics (see Appendix C of [35], as well as the work on cylin-
dric [15, 27] and polyadic algebras [9] and related work at the institutional
level [100, 101, 102, 103] based and/or closely related to these). The struc-
ture of a π-institution forms a modification of the structure of an institution
[25, 41], which was introduced in computer science to formalize logical sys-
tems for specification and programming, based on semantics. Diaconescu’s
monograph [79] offers a comprehensive advanced study of institutions and
presents a multitude of model theoretic results that can be abstracted from
first-order, and other specific logical systems, to the institutional level. On
the other hand, in π-institutions, the framework is stripped of the semantic,
or model theoretic, aspects and the focus is on the syntax, thus recovering the
essential features of the sentential logic framework, without, however, shed-
ding the versatility afforded, and the advantage gained, by incorporating in
the object language multiple signatures and signature-changing morphisms.
In fact, this inclusion is what gives the area its distinctive and unique char-
acter inside (abstract) algebraic logic. This is apparent in all aspects of our
studies.

To make clearer the exact relationship between sentential logics and π-
institutions, and showcase the fact that the former constitute very narrow
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special cases of the latter, let us recall the definition of a π-institution. A
π-institution, as originally defined in [33], is a triple I = ⟨Sign,SEN,C⟩,
where

• Sign is an arbitrary category, whose objects are called signatures and
its morphisms signature morphisms;

• SEN ∶ Sign → Set is a functor giving, for each signature Σ ∈ ∣Sign∣, the
set SEN(Σ) of Σ-sentences;

• For every Σ ∈ ∣Sign∣, CΣ ∶ P(SEN(Σ)) → P(SEN(Σ)) is a closure
operator, such that the collection C = {CΣ}Σ∈∣Sign∣ satisfies the property
of structurality, i.e., for all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all
Φ ⊆ SEN(Σ),

SEN(f)(CΣ(Φ)) ⊆ CΣ′(SEN(f)(Φ)).

In the modified (enriched) form that is used in the present monograph, and
which was (essentially) introduced in [106], there is an additional component
N , which represents a category of natural transformations on the sentence
functor SEN. Roughly speaking, this category corresponds to clones of alge-
braic operations on {SEN(Σ) ∶ Σ ∈ ∣Sign∣}, under the assumption that all op-
erations are defined uniformly and naturally over all SEN(Σ), for Σ ∈ ∣Sign∣.
This accords in style with the algebraic theories of Lawvere [10], which are
closely related to the Eilenberg-Moore [11] and the Kleisli [12] constructions.
For more details on these, one may consult the classic texts by Mac Lane [16],
Pareigis [14], Borceux [45] and Barr and Wells [57]. Thus, we are studying
logical systems formalized as quadruples I = ⟨Sign,SEN,N,C⟩, which are
further recast as pairs

I = ⟨F,C⟩,

where

• F = ⟨Sign,SEN,N⟩ expresses the algebraic structure, corresponding to
the absolutely free algebra in the case of deductive systems, and

• C = {CΣ}Σ∈∣Sign∣ is a family of closure operators, satisfying structurality,
which is referred to as a closure system, and corresponds to the closure
CS in the case of sentential logics.

Suppose now that S = ⟨L,CS⟩ is a sentential logic. The standard rendering
of it as a π-institution

IS = ⟨FL,CS⟩,

with FL = ⟨SignL,SENL,NL⟩, is given by defining the four components as
follows:

• SignL is a trivial category, with object, say, V ;
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• SENL ∶ SignL → Set is given by SENL(V ) = FmL(V );

• NL is the clone of all L-operations on FmL(V );

• CSV = CS ∶ P(FmL(V )) → P(FmL(V )).

It is worth noting that FL only depends on L and V , as was to be expected
(since it was deemed to correspond to the algebraic structure), and the de-
ductive apparatus is reflected entirely in the definition of CS . Moreover, the
formalism on the logical side does not incorporate substitutions in the object
language, even though, since CSV = CS and the latter is structural, we have,
for every endomorphism σ ∶ FmL(V ) → FmL(V ),

σ(CSV (Φ)) ⊆ C
S
V (σ(Φ)),

for all Φ ⊆ FmL(V ). On the algebraic side, on the other hand, e.g., when
congruences are to be determined, the inclusion of the clone NL, reflecting
the algebraic L-structure, forces congruences at the institutional level to
exactly correspond to the familiar L-congruences on the formula algebra in
the universal algebraic sense.

The reasons why one might want to develop a theory of algebraization
for logical systems formalized as institutions or π-institutions parallel the
motivations provided by Blok and Pigozzi [35] for developing a theory of
algebraizability for sentential logics.

One of the main motivations is providing a classification of logical sys-
tems based on the strength of the ties of their deductive apparatuses with
those corresponding to algebraic deductive systems, i.e., deductive systems
whose closure systems are induced by algebraic structures. Preferably, when
the definitions applicable in the context of logical systems formalized as π-
institutions specialize in the way outlined above to π-institutions associated
with deductive systems, one would be able to recover the well-known alge-
braic (or Leibniz) hierarchy of abstract algebraic logic [64, 86]. The finitary
and finitely algebraizable sentential logics of [35] form a special class in this
hierarchy. In [86], this property is termed Blok-Pigozzi algebraizability (see
Definition 3.39 of [86]).

Another desideratum is that the definitions should be as general as pos-
sible so that, given virtually any π-institution, one would be able, at least in
principle, to classify it in one or more of the classes of the hierarchy, based
on the strength of its algebraic properties.

Further, an additional reassurance would be provided if the definitions
supplied turned out to be robust in the sense that one would be able to
obtain, at least for several, if not for most, of them, different characterizations
depending on the various viewpoints taken. This was clearly and successfully
undertaken in [35] for the class of algebraizable deductive systems. In fact,
Blok and Pigozzi obtained several different characterizations whose variety
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and strength played a major role in convincing other researchers that their
definitions were chosen wisely and, as a result, in establishing firmly the
new trends in the field and, thus, contributing, in large part, to virtually
all subsequent developments. It is hoped that pursuits along the same lines
here will prove, at least moderately, successful with respect to similar criteria.
In particular, it is hoped that the characterizations of many of the classes
presented in this monograph in a variety of ways will prove to many of the
readers and to, present and future, researchers in the field satisfactory and
motivating, as was the case with the work of Blok and Pigozzi [35].

One last motivation, equally important, however, in significance, comes
by taking an adversarial point of view. As Blok and Pigozzi realized when
studying sentential logics, and is certainly true also for logics formalized as π-
institutions, since they encompass sentential logics, is the fact that many log-
ical systems of historical and/or practical significance failed to be amenable
to classical methods of algebraization, such as, e.g., the Lindenbaum-Tarski
process. Naturally one is inclined to ask whether those systems can be alge-
braized in some alternative way, using different techniques, or whether the
failure in their algebraization is due to intrinsic reasons. That is, one would
like to investigate whether those systems have some innate characteristics,
e.g., pertaining to their structural properties, that many, if not all, of them
share and that decide their algebraizability status. This is reminiscent of
the extensive and intensive research in computational complexity theory in
separating various complexity classes [94, 92, 95, 93, 96, 91], where com-
mon features and rigorous criteria are sought for classification of problems
in hierarchies of complexity classes. As is the case there, such an analysis
and rigorous classification presupposes the existence of a formal definition
of algebraizability (and of other related properties) so as to delineate formal
boundaries and establish criteria that could potentially be used to falsify
claims of algebraizability for some logical systems. Such criteria would point
to shortcomings and defects of some logical systems as related to qualitative
requirements that a logic should satisfy in order to qualify for membership
in a corresponding class. It is believed that the definitions adopted here are
helpful in establishing such criteria and in setting up boundaries. The ex-
amples that are scattered throughout seem to support this assertion, but, of
course, the jury is out as far as gathering further evidence in support of, or
in criticism and opposition to, this claim.

The notion of algebraizability adopted in this monograph is inspired by
the one established for deductive systems by Blok and Pigozzi in [35]. Apart
from the technical complications inherent in passing from the sentential to
the institutional framework, one substantial difference is that we distinguish
between a treatment based on the Leibniz operator, referred to as semantic,
as contrasted to the one based on interpretations from logic to algebra and
vice-versa, which is termed syntactic, since it is based on natural transfor-
mations corresponding to term operations on the free algebra of terms. In
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the sentential logic framework, such a distinction is only apparent, since, as
it turns out, the two approaches are equivalent and, hence, interchangeable.
On the other hand, in π-institutions, the added flexibility afforded in the
relation between morphisms (which are treated in the object language in the
category of signatures) and clone operations (also part of the framework, but
added a posteriori to enhance the algebraic character of the intended studies)
means that the syntactic concepts dominate (i.e., are, in general, stronger)
than their corresponding semantic counterparts.

The role that theories play in sentential logics is subsumed here by the-
ory families, which consist of deductively closed sets of sentences, one for
each signature. They form a complete lattice ThFam(I) = ⟨ThFam(I),≤⟩,
when ordered by signature-wise inclusion ≤. To each theory family is associ-
ated a congruence system, a collection of equivalence relations on formulas,
one for each signature, that satisfy both the congruence property (or sub-
stitution property) and invariance under signature morphisms. These also
form a complete lattice under signature-wise inclusions, which is denoted by
ConSys(I) = ⟨ConSys(I),≤⟩. The congruence system selected is the largest
one compatible with the given theory family and is termed, by analogy with
the sentential logic framework, the Leibniz congruence system associated
with the theory family.

Starting from semantics, we say that a π-institution is algebraizable if
it satisfies two conditions that impose very intimate ties between the lattice
of theory families of the π-institution and that of the congruence systems
determined by a class of algebraic systems. The first condition is that the
Leibniz operator is monotone on theory families. The second is that it is
order-reflecting.

On the syntactic side, a π-institution is algebraizable if, on the one
hand, the Leibniz congruence systems are definable via a collection of natural
transformations in two arguments and, on the other, if the theory families
are definable via a collection of natural transformations in a single argument.
In general, parametric arguments are allowed and, by restricting those, we
obtain potentially narrower classes.

One of the main theorems established by Blok and Pigozzi in [35] is the
characterization of algebraizable sentential logics via the existence of an iso-
morphism between the theory lattice of the deductive system and the equa-
tional theory lattice associated to a class of algebras, which also commutes
with substitutions. A characterization along similar lines is established here
for logical systems formalized as π-institutions (see, e.g., Section 4.3 or Sec-
tion 12.3, even though other related forms appear in other places in the mono-
graph, as will be discussed in the overview). In the literature several forms
of this theorem and a host of generalizations of increasing power (or gener-
ality) have been discussed. A sample list includes [73, 35, 40, 99, 75, 81, 88].
The majority of these deal with deductive equivalence of logical systems, and
related lattice-theoretic algebraic structures. They encompass the character-



18 CHAPTER 1. INTRODUCTION Voutsadakis

ization of algebraizability mentioned above and deal with the case in which
mutual interpretations between logical structures induce isomorphisms be-
tween lattices of theories and vice versa, under some constraints and special
hypotheses, depending on the context under consideration.

Another major characterization theorem provided in [35] for the notion
of algebraizability asserts that, roughly speaking, in the context of sentential
logics, the aforementioned analogs of the semantic and of the syntactic no-
tions are equivalent. That is, the algebraization attained via the definability
of theories and congruences via sets of equations and formulas, respectively,
coincides with that ensured by the Leibniz operator being monotone and
order reflecting on the lattice of the theories of the logic. This characteriza-
tion, when abstracted to logics formalized as π-institutions, continues to hold
under special provisos, namely, under the hypotheses that the π-institution
under consideration has a rich enough supply of natural transformations or,
more formally, as will be studied in detail in the monograph, that it has a
Leibniz binary reflexive core and an adequate Suszko core.

In [35] as well as in many other works in the field, a considerable amount
of emphasis has been placed on, and a substantial amount of effort expended
in, studying specific logical systems of historical and/or practical interest
from the point of view of algebraizability. This was only natural, given, on
the one hand, the desire to showcase the applicability of the theory on logics
of particular interest in traditional studies, and, on the other, the urge to in-
vestigate the power of falsifiability that the theory provides for those concrete
logical systems that had resisted previous attempts at algebraization.

Our point of view, however, is slightly different and, as a consequence, we
do not deal with or present such examples. Firstly, the majority of logical
systems of historical and/or practical interest have already been dealt with
in existing literature. Secondly, since our treatment abstracts and subsumes
that of sentential logics and, considerably generalizes it, as was shown above,
our goal is not to look at the more concrete, already encompassed by the
study of the algebraization of deductive systems, but, rather, to look into
the more abstract and discern what can be carried over to that level and
how its validity and its applicability compares when applied to new systems
and new examples which do not fit exactly, or do not conform at all to, the
sentential logic framework. However, these aims and the mode of treatment
they motivate should in no way be construed as underestimating the signif-
icance, or underplaying the beauty and elegance, of the studies concerned
with the concrete and the more specific. After all, it is on those studies
that the abstract is based, to those studies’ insights, ideas and methodology
that an enormous scientific debt is due, and from those studies’ successes,
and widespread recognition and appreciation, that a relative confidence is
drawn regarding the potential usefulness and applicability of the more gen-
eral framework presented, and elaborated on, in this monograph.
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1.2 Fin de siècle: The Golden Age

We give an account of some of the major developments in abstract algebraic
logic that occurred mostly, but not exclusively, around the last two decades
of the 20th century. This period may be thought of as constituting the golden
age of algebraic logic, in the sense that, during this time, there is clearly dis-
cernible a passage from an ad-hoc, case-by-case algebraic treatment of logical
systems to a well-organized field, with a powerful arsenal of universally ap-
plicable concepts, methods and techniques, culminating to the classification
of logics in an algebraic hierarchy, known as the Leibniz hierarchy. Needless
to say, the foundations for this success were laid much earlier. Likewise, the
development continued, and many important results around, and comple-
menting, the main theory were obtained later, into the new millennium, and
the area continues to be active. In order to avoid, in our short exposition,
reinventing the wheel, we base this account on preexisting sources. We draw
the material primarily from the, perhaps best-known, survey of the field by
Font, Jansana and Pigozzi [69] and, when needed and/or convenient, the two
existing specialized books on the subject by Czelakowski [64] and by Font
[86].

Algebraic logic has its origins in the work of George Boole [1, 2], who
formalized the “laws of thought” in an algebraic way. The intuition govern-
ing this process was made mathematically precise by Tarski [5, 6, 8]. Tarski
used the key idea of Lindenbaum of identifying formulas of a logical language
with the terms of the absolutely free algebra formed using the logical connec-
tives as operation symbols [3] to give a precise connection between classical
propositional calculus and Boolean algebras. This formed the paradigmatic
example from which significant inspiration was drawn and on which subse-
quent developments were based. Furthermore, it served as a kind of testbed
for comparing, trying, modifying and calibrating new ideas, methods and
techniques. The way Boolean algebras arose as the algebraic counterparts
of classical propositional calculus has become known as the Lindenbaum-
Tarski method. It has subsequently been used to “algebraize” a variety of
propositional systems.

A conceptual shift occurred around 1950 when Rasiowa and Sikorski
[7, 20] (see, also, the historical surveys [59, 74]), among others, realized that
the Lindenbaum-Tarski method could be applied not only to isolated log-
ics but, rather, to classes of logical systems with an implication connective
satisfying certain properties. In passing from a “per logic” or “a la carte”
treatment to one addressing classes specified by some abstract properties,
one discerns clearly for the first time the seeds of what, later, became known
as “abstract algebraic logic”. Papers that may be thought of as protoab-
stract, in the sense that they advance further the main ideas of Rasiowa and
Sikorski towards the modern truly abstract era, were the one by Prucnal
and Wronski [19] introducing equivalential logics, the ones by Czelakowski
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introducing protoalgebraic logics [26, 29] and further studying equivalential
logics [23, 24] and the one by Blok and Pigozzi [28] studying protoalgebraic
logics.

The seismic shift, one might say, in firmly founding and establishing the
modern era came in the 1980s with the work of Blok and Pigozzi, which
led eventually to the publication of their famous, seminal “Memoirs” mono-
graph [35]. In a way analogous to the preceding three passages, from clas-
sical logic and Boolean algebra to the Lindenbaum-Tarski method, from the
Lindenbaum-Tarski method to dealing with implicative logics and from im-
plicative logics to abstract properties of deduction, Blok and Pigozzi were
able to distil the essential spirit of the association between logic and alge-
bra and, thus, extract and formalize the concept of an algebraizable logic
in modern abstract terms and provide landmark characterizations. On the
way, they established a very general process of algebraization, applicable to
arbitrary logical systems, which has been, since, further refined and used
to create the Leibniz hierarchy, often considered the pinnacle - certainly a
milestone and a gem - of algebraic logic in general.

Before returning to provide a more detailed account, we take a small break
to recount those features of the theory that distinguish the abstract approach
from the more traditional treatments and give it its special character. First,
as alluded to previously, instead of applying the Lindenbaum-Tarski process
in an ad-hoc way, on a case-by-case basis, or, as in Rasiowa’s work, to a class
of logics sharing a specific connective satisfying certain properties, it applies
the abstract process to arbitrary sentential logics and, according to the out-
come, classifies them into classes reflecting the closeness of the ties between
them and the corresponding algebraic counterparts. In establishing this as-
sociation and performing the resulting classification, it opens, in parallel, two
distinct but closely interrelated directions. On the one hand, it motivates the
study of classes of algebras arising as algebraic counterparts of either single
or groups of logical systems. On the other, it allows investigating the exact
correspondence between metalogical properties of the logical systems at hand
and algebraic properties of the classes of their algebraic counterparts.

By now a plethora of works falling distinctly in each of these three direc-
tions exist and many will appear as references in the more detailed account
that will follow. But to give some indication and pointers, we mention a few
of the earliest ones that may be viewed as ground breaking. Concerning the
process of algebraization itself and the classification, one should mention Blok
and Pigozzi’s [28, 35], Czelakowski’s [23, 24], Herrmann’s [43, 53, 54] and Font
and Jansana’s [52]. Concerning the study of classes of algebraic counterparts
arising from the abstract algebraization process, one should mention [38, 39]
dealing with the conjunction-disjunction fragment of classical propositional
calculus, as well as Jansana’s study of selfextensional logics in [71, 76], with
clear precedents in Font and Jansana’s [52]. Finally, paradigmatic examples
of the study of metalogical and corresponding algebraic properties constitute
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several works addressing forms of the deduction-detachment theorem, e.g.,
Czelakowski’s [26, 29] and Blok and Pigozzi’s [32, 37, 63], the work of Blok
and Hoogland on the Beth poperty [72], as well as the work of Czelakowski
and Pigozzi concerning interpolation and amalgamation properties [58].

1.3 Outline of Contents by Chapter

We give an outline of the contents of the monograph focusing on the main
points of each chapter and describing them by section, using some formal
notation, but without providing formal definitions, which will be presented
in the main body of the text. This section is very closely related to other
sections. First, in Section 1.4, we give a very concise summary, only men-
tioning the main overarching topics discussed in each chapter. Second, at the
beginning of each chapter, a similar overview is provided focusing only on
the specific chapter, with the exception that, in those introductions, being
closer to the formal treatment, an even more informal narrative is adopted
and a concerted effort is made to keep notation at a minimum.

1.3.1 Chapter 2

Chapter 2 presents the basic elements of the theory of algebraic systems,
of π-institutions and of the interaction between logical and algebraic struc-
tures. These constitute the foundations and form the backbone of our theory
throughout the monograph.

Section 2.1 gives an informal introduction to the chapter, akin to the
introduction presented here, only containing a little less of formal notation
and being more on the narrative, informal, side.

Section 2.2 is the first main section of the chapter. Here, we start by
introducing the notion of a sentence functor SEN ∶ Sign → Set, which is
simply a set-valued functor on an arbitrary category of signatures. It for-
malizes the carriers on which both algebras and logical systems are based,
akin to the underlying universe of a universal algebra. Then we consider
sentence families of sentence functors, which are families T = {TΣ}Σ∈∣Sign∣ of
subsets of sentences, one for each signature. These formalize distinguished
sets of sentences when one considers logical structures, much like the distin-
guished sets in logical matrices. A sentence system is a sentence family T

which is invariant under the action of signature morphisms. Two canonical
ways of obtaining from a given sentence family T a sentence system consist

of taking the largest sentence system
←Ð
T included in the family T and taking

the smallest sentence system
Ð→
T that includes the sentence family T . Sen-

tence functors are related via sentence morphisms, which are pairs ⟨F,α⟩, F
being a functor between the categories of signatures and α a natural trans-
formation mapping sentences to sentences, taking into account the effect of
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F . Special morphisms are those with surjective and full signature compo-
nents and surjective ones are special ones whose sentence components are
also surjective.

We then turn to relation families R = {RΣ}Σ∈∣Sign∣ over sentence functors.
Those assume the place of binary relations. Of the highest interest and im-
portance are equivalence families and equivalence systems, i.e., equivalence
families invariant under the action of signature morphisms. They induce
partitions on the components of sentence functors. Equivalence families and
systems have important interactions and connections with both sentence fam-
ilies and with morphisms. The notion that relates an equivalence family with
a sentence family is that of compatibility. An equivalence family R is com-
patible with a sentence family T if each component of the sentence family is
a union of blocks of the equivalence family on the same component. The con-
nection between equivalence systems and morphisms goes through the notion
of kernels. Namely, the kernel Ker(⟨F,α⟩) of a morphism ⟨F,α⟩ between two
sentence functors forms an equivalence system on the domain.

If a set is equipped with operations, we get an algebraic structure. On
this algebraic structure, one may reason in an algebraic way about any of the
operations that are in its clone, i.e., that can be generated by applying the
fundamental operations and the projections and composing them in arbitrary
ways. In an analogous fashion, if a sentence functor SEN ∶ Sign → Set is
equipped with a category of natural transformations N , which corresponds
to the clone of algebraic operations on an algebra, one obtains an algebraic
system A = ⟨Sign,SEN,N⟩. As algebras play a fundamental role in both log-
ical and algebraic aspects of the traditional theory, so do algebraic systems in
the theory developed in the monograph. The role of free algebra is played in
this context by that of a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩. More-
over, the notion of morphism extends from the context of sentence functors
to the context of algebraic systems. The additional stipulation is that they
also preserve the algebraic structure that turns the sentence functor into
an algebraic system, i.e., that they satisfy the well-known replacement or
congruence condition.

In traditional treatments, in specific contexts, all algebras are considered
to be over the same algebraic signature, which is fully captured by the abso-
lutely free algebra over that signature. In the present context, this similarity
is captured by fixing a base algebraic system F, as above, and considering
only F-algebraic systems, which are algebraic systems that, roughly speak-
ing, have similar clones of operations with F and whose sentences are all
images of sentences of F under a fixed algebraic system morphism ⟨F,α⟩.
Formally, these are expressed as pairs A = ⟨A, ⟨F,α⟩⟩, where ⟨F,α⟩ ∶ F → A
is a surjective algebraic system morphism. The notion of morphism extends
further to morphisms between F-algebraic systems.

In Section 2.3, the limelight falls on congruence systems, which play in
this context the same role that congruences play in the context of univer-
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sal algebras. The least congruence system on an algebraic system A is the
identity congruence system ∆A and the largest one is the full relation sys-
tem, written ∇A. These form the min and max elements, respectively, of
the complete lattice of congruence systems ConSys(A) on A. The kernel
Ker(⟨F,α⟩) of a morphism ⟨F,α⟩ ∶ A → B between two algebraic systems
forms a congruence system on A. Moreover, congruence systems allow the
definition of quotient algebraic systems. And, for every algebraic system A
and every one of its quotient systems Aθ ∶= A/θ , there is a canonical mor-
phism ⟨I, πθ⟩ ∶ A → Aθ onto the quotient algebraic system, whose kernel is
exactly the congruence system θ that gave rise to the quotient. All these
properties reflect well known properties from the context of congruences and
quotients of universal algebras.

Congruence systems inherit from equivalence families the relation of com-
patibility with given sentence families. The critical property to be established
is that for a given sentence family T on an algebraic system A, there exists
a largest congruence system on A that is compatible with T . This is called
the Leibniz congruence system of T on A, is denoted by ΩA(T ) and plays
the role that Leibniz congruences play in the context of traditional abstract
algebraic logic. As such, its role in characterizing many of the classes in
the algebraic hierarchy studied in the monograph is ubiquitous and, as a
consequence, the whole hierarchy is known as the Leibniz hierarchy. After
introducing the Leibniz operator on an algebraic system, we establish two
important results concerning it. The first, inspired by a result from the
traditional treatment, provides a characterization of the Leibniz operator in
terms of the category of natural transformations (i.e., clone operations) of
the algebraic system and the sentence family. Roughly speaking it asserts
that a pair of sentences are Leibniz related if and only if they are indistin-
guishable modulo T with respect to the available algebraic apparatus. The
second addresses specifically the categorical framework and asserts that the
Leibniz congruence system of a sentence family T is dominated by the Leib-

niz congruence system of the largest sentence system
←Ð
T contained in the

sentence family, i.e., that ΩA(T ) ≤ ΩA(
←Ð
T ). The value of this observation

in establishing refinements of the traditional hierarchy, as reflected in the
present context, is critical and hard to overestimate. Also of importance
is the fact that the surjective morphisms between algebraic systems, which
form the focus of our work, respect Leibniz congruence systems, in the sense
that, if ⟨F,α⟩ ∶ A → B is a surjective morphism and T is a sentence family
on B, then ΩA(α−1(T )) = α−1(ΩB(T )). Finally, it is worth noting that, in
general, the intersection of the Leibniz congruence systems of a collection of
sentence families is contained in the Leibniz congruence of the intersection
of those sentence families. Significantly, though, the reverse inclusion holds
universally on sentence families if and only if the Leibniz operator is mono-
tone on sentence families, a property that does not always hold. In fact, the
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latter property is used in a critical way, when restricted to special kinds of
sentence families, to determine some of the most important classes of logical
systems located close to the bottom of the algebraic hierarchy. In addition,
it is of great historical significance in many of the most important classical
developments in the field.

In Section 2.4, we focus on congruence systems relative to given classes
of algebraic systems. Given a class K of algebraic systems, all over the same
base algebraic system, that is, possessing, in some sense, the same algebraic
signature, a congruence system θ on an algebraic system A, not necessarily
belonging to K, is called a congruence system relative to K or a K-congruence
system if the quotient Aθ belongs to the class K. Naturally, if A ∈ K and
the class K happens to be closed under morphic images, then congruence
systems relative to K coincide with arbitrary congruence systems. The section
introduces another important notion in this context. That of an algebraic
system A being a subdirect intersection of a collection of algebraic systems.
This means that there exists surjective morphisms ⟨H i, γi⟩ ∶A→Ai from the
algebraic system to each of the algebraic systems in the given collection and,
moreover, the intersection of the kernels of those morphisms is the identity
congruence on A. Closure of a class of algebraic systems under subdirect
intersections ensures that the collection of congruence systems relative to
the class is closed under intersections. Additionally, if the class K contains
a trivial algebraic system, then the nabla congruence system happens to be
a relative congruence system. Therefore, possession of a trivial algebraic
system together with closure under subdirect intersections ensures that the
collection of all congruence systems relative to the class forms a complete
lattice under signature-wise inclusion.

Suppose that the class K contains a trivial algebraic system and is closed
under subdirect intersections so that it makes sense to associate with a given
relation family X on its base algebraic system the least congruence system
ΘK(X) relative to K containing X . An alternative, equally natural, way
to associate a congruence system with X is to consider the closure DK(X)
under equational consequence relative to the algebraic systems in the class
K. It is proven in this section that the two closures give rise to the same
congruence system on the base algebraic system F.

In Section 2.5, we study varieties of algebraic systems. There are two
possibilities in adopting a choice for the entities that would play the role of
equations in this context. The first is to view pairs of sentences as equations.
The second is to adopt pairs of natural transformations in the clone as equa-
tions. The ones of the latter type are called natural equations to differentiate
them from those of the former kind which are simply referred to as equations.
We define formally the notion of satisfiability of a given equation and of a
given natural equation in an algebraic system and that of validity of a natu-
ral equation in an algebraic system. Depending on whether we use equations
or natural equations to determine a class of algebraic systems through satis-
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fiability, we obtain two different kinds of varieties. Varieties determined by
families of equations are called semantic varieties. Those determined by col-
lections of natural equations are called syntactic varieties. It turns out that,
in general, every syntactic variety is also a semantic variety. The opposite
implication does not hold in general. The section concludes by presenting a
sufficient condition on the structure of a base algebraic system that ensures
that the classes of semantic and syntactic varieties over it coincide.

Much of the work in the first sections of Chapter 1 focuses on the al-
gebraic framework that underlies both the logical and the algebraic aspects
of the theory in the monograph. In Section 2.6, we turn to the study of
π-institutions, the underlying structure of the logical aspects of our theory.
The entire monograph assumes that all logical systems are formalized as π-
institutions and its main goal is to study the process of their algebraization
and to detail the various classes in the hierarchy that is formed by examining
their algebraic character. It is needless, thus, to point out the importance of
Section 2.6, as it presents the foundational aspects of the logical side of the
theory.

We start, here, by defining the notion of π-institution. It is a pair I =
⟨F,C⟩ consisting of a base algebraic system F and a closure system C on
the sentence functor of F. It generalizes the Tarskian concept of a deductive
system in that it allows multiple signatures and accommodates morphisms
between signatures. To take into account the logical structure imposed on
top of the underlying algebraic structure in this context, sentence families
and systems are subsumed by theory families and theory systems. These are
sentence families (systems, respectively) each of whose components is closed
under logical deduction. The least among these is called the theorem system
of I . It turns out that, due to the property of structurality, which is key in

the study of π-institutions, given a theory family T ,
←Ð
T is also closed under

deduction, whence it forms that largest theory system included in T . On

the other hand,
Ð→
T fails to be closed under deduction in general. That is

the reason why the smallest theory system including T is not simply
Ð→
T but,

rather, C(
Ð→
T ).

An important derived concept is that of the π-institution that has as
its theory families those theory families of I = ⟨F,C⟩ which include a given
theory system T of I . This is denoted by IT = ⟨F,CT ⟩. The construction
results in a π-institution whose theorem system is identical with the theory
system T of I .

As is the case in most mathematical contexts, objects are accompanied by
morphisms between them that preserve the structure of interest in each par-
ticular context. Morphisms between π-institutions are algebraic morphisms
between the underlying algebraic systems that, in addition, preserve the log-
ical structure in the sense that the forward image of the logical closure of
a set of sentences is included in the closure of the image of the same set of
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sentences. Among the most useful characterizations is that a given algebraic
morphism is logical if and only if preimages of theory families of the tar-
get institution under the morphism constitute theory families of the domain
π-institution.

In Section 2.7, we turn to those structures that are intermediate between
logic and algebra and facilitate the interplay and the establishment of mean-
ingful ties between the two domains. These are matrix families, which corre-
spond to the ordinary logical matrices in the traditional treatment. Roughly
speaking a matrix family A = ⟨A, T ⟩ consists of an algebraic system A to-
gether with a sentence family T of the algebraic system. If the sentence
family is a system, i.e., invariant under signature morphisms, then the ma-
trix family is called a matrix system. Their role is twofold. On the one hand,
a given collection of matrix families M, over a base algebraic system F, may
be used to define a closure system CM, and hence a π-institution structure
IM = ⟨F,CM⟩, on F. On the other, given a π-institution structure I on F,
we may define the class MatFam(I) of all matrix families whose sentence
families are closed under the deductive apparatus of the π-institution. Such
sentence families are termed I-filter families and, if they happen to be sys-
tems, then they are called I-filter systems. The collection FiFamI(A) of
all filter families over the same underlying algebraic system A, ordered by
component-wise inclusion, forms a complete lattice and the collection of all
filter systems on that same algebraic system forms a complete sublattice of
the complete lattice of all filter families.

Among the main results presented in this section are the ones relating
morphisms between algebraic systems with preservation of filter families.
More precisely, the inverse image of a filter family is a filter family. The
situation is more complicated when it comes to direct images. First of all,
it only makes sense to define the direct image of a filter family in case the
signature functor is an isomorphism. Second, it turns out that, in that case,
for the image to also be a filter family on the target algebraic system, we
must require additional restrictions. A sufficient condition is that the kernel
system of the algebraic morphism be compatible with the filter family in the
domain.

This result has particular consequences for the most important type of
morphisms considered in the monograph, the canonical quotient morphisms
associated with congruence systems on an algebraic system. It asserts that,
given a filter family T on the quotient Aθ, the inverse image πθ

−1(T ) under
the quotient morphism ⟨I, πθ⟩ ∶ A → Aθ is a filter family on A and that,
moreover, if the congruence system θ is compatible with a filter family T on
A, then the quotient T /θ is a filter family on Aθ.

We consider, by particularizing even further, the Leibniz quotient mor-
phisms, which are those morphisms defined using the Leibniz congruence
system that is compatible with a given filter family on the domain. Since,
by definition, the Leibniz congruence system ΩA(T ) associated with a given
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sentence family T is compatible with that sentence family, it follows that a
filter family T on A gives rise, by passing to the Leibniz quotient A/ΩA(T ),
to a filter family in the quotient. The corresponding matrix family A/θ =
⟨A/ΩA(T ), T /ΩA(T )⟩ is called a (Leibniz) reduced matrix family.

The section closes by defining two classes of matrix families and two
classes of algebraic systems that play a key role when investigating the alge-
braic nature of a given π-institution I . The first is the class MatFam∗(I) of
all Leibniz reduced matrix families associated with the given π-institution.
The second is the class MatSys∗(I) of all Leibniz reduced matrix systems.
Finally, on the algebraic side, by considering all algebraic system reducts of
the reduced matrix families, we get the class AlgSys∗(I) of all family reduced
algebraic systems and, by considering all algebraic system reducts of the re-
duced matrix systems, we get the class AlgSys●(I) of all system reduced
algebraic systems.

Section 2.8 studies the two related concepts of axiomatic extensions and
of filter extensions. An axiomatic extension I ′ of a given π-institution I is a
π-institution over the same base algebraic system whose closure system is ob-
tained by that of I by adding more axioms. More precisely, the consequences
C ′(X) of a family of sentences X under I ′ are the consequences under I of
the same family of sentences, augmented by some fixed family of sentences
T , i.e., C ′(X) = C(X ∪T ). The sentences in T are viewed as axioms in I ′. A
filter extension arises in a similar way. The difference is that one considers
filter families over arbitrary algebraic systems and not just theory families
over the base algebraic system.

One of the first results in this section provides a characterization of ax-
iomatic extensions. It asserts that axiomatic extensions are characterized by
preservation of all those theories that include the theorem system of the ex-
tension. An alternative, lifting the condition to arbitrary algebraic systems,
asserts that being an axiomatic extension is tantamount to the preservation
of filterhood over all algebraic systems, for all those filters that include the
least filter over the extension.

The last part of the section deals with filter generation over a given matrix
family modulo a given π-institution I . It defines the concept and formalizes,
in a rather technical proposition, how generation of filters and surjective
matrix family morphisms interact.

Section 2.9 turns the focus back to those structures that, like matrix
families, play a critical role as intermediate structures in connecting the log-
ical with the algebraic aspects of the theory. Generalized matrix families
correspond to the generalized matrices of classical algebraic logic and, like
generalized matrices, play a critical role in identifying classes of algebraic sys-
tems that may be naturally associated with given π-institutions (or classes
of π-institutions). The way this association is established sheds light on the
strength of ties between the two and on the nature of their interaction, e.g.,
by revealing which properties may be expected to be shared by the two or
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transferred from one to the other.
A generalized matrix family A = ⟨A,T ⟩ consists of an underlying alge-

braic system A and a collection of sentence families T of the algebraic system.
Such structures may also be used in two ways. They may serve in defining
a closure system on a base algebraic system and, therefore, a π-institution
structure. On the other hand, given a π-institution I , we may associate with
it the collection GMatFam(I) of those generalized matrices all of whose sen-
tence families are filter families of the π-institution. With any generalized
matrix family A = ⟨A,T ⟩, one may associate its Tarski congruence system
Ω̃(A) or Ω̃A(T ), an abstraction of the Tarski congruence systems associated
with generalized matrices in classical abstract algebraic logic. Tarski congru-
ence systems constitute the largest congruence systems on the base algebraic
system compatible with all sentence families of the generalized matrix family.
Taking the quotient A/Ω̃(A) of the generalized matrix family by its Tarski
congruence system gives a new generalized matrix family A∗, which is called
the Tarski reduction of A. A Tarski reduced matrix family is one that is
isomorphic to its reduction, i.e., one whose Tarski congruence system is the
identity congruence system on the underlying algebraic system.

There is a close connection between Tarski congruence systems and Leib-
niz congruence systems. Each generalized matrix system A = ⟨A,T ⟩ may be
viewed as a bundle of matrix families {⟨A, T ⟩ ∶ T ∈ T }, i.e., of those matrix
families whose sentence families belong to the collection of sentence families
of the generalized matrix family. In that case, the Tarksi congruence system
of the generalized matrix family is the intersection (in the component-wise
sense) of the Leibniz congruence systems of all matrix families in the corre-
sponding bundle, i.e., Ω̃A(T ) = ⋂T ∈T ΩA(T ).

In a similar way to Tarski congruence systems, one may also consider
Suszko congruence systems Ω̃A,T (T ) associated with ordinary matrix fam-
ilies A = ⟨A, T ⟩, and these are also introduced in Section 2.9. Suszko con-
gruence systems of matrix families are defined only in a relative way, by
viewing the matrix family A = ⟨A, T ⟩ as being part of a bundle expressed
as a generalized matrix family A = ⟨A,T ⟩. Then the Suszko congruence
system of the matrix family is identical to the Tarski congruence system
Ω̃A(T T ) of the bundle ⟨A,T T ⟩ consisting of only those sentence families that
include (in the component-wise ordering) the sentence family T of the ma-
trix family. Of course, expressed in terms of Lebniz congruence systems,
the Suszko congruence system is the intersection of the Leibniz congruence
systems of all matrix families determined by the sentence families in the
given bundle that include that of the matrix family under consideration, i.e.,
Ω̃A,T (T ) = ⋂T≤T ′∈T ΩA(T ′). As was the case with Tarski congruence sys-
tems, we may consider the Suszko reduction ASu of a given matrix family A,
obtained by dividing out by the Suszko congruence system Ω̃A,T (T ). And,
likewise, we call a matrix family Suszko reduced, when its Suszko congruence
system is the identity congruence system on the underlying algebraic system.
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Part of the significance of the Tarski and of the Suszko operators in alge-
braic logic is that they form one of the main mechanisms of selecting the “nat-
ural” class of algebraic systems to be associated with a given π-institution.
Briefly and sketchily, starting from a π-institution I , we obtain the collection
GMatFam(I) of all generalized matrix families A = ⟨A,T ⟩ whose sentence
families T ∈ T are filter families of the π-institution. We then compute
the Tarski reductions A∗ by dividing out by the corresponding Tarski con-
gruences Ω̃A(T ). This process gives rise to the class GMatFam∗(I) of all
Tarski reduced generalized matrix families and to the class AlgSys(I) of all
their underlying algebraic systems. This class subsumes, in the π-institution
framework, the class of algebras which has long been viewed, in the tradi-
tional framework, as the most appropriate one to be associated with a given
logic and, hence, as constituting the “natural” choice for the algebraic coun-
terpart of the sentential logic. As it turns out, using a similar path, but
relying on the Suszko operator, rather than on the Tarski operator, gives rise
to exactly the same class of algebraic systems. Tracing the analogous pro-
cess, one starts from a given π-institution I and considers all matrix families
A = ⟨A, T ⟩, viewed as part of the bundle A = ⟨A,FiFamI(A)⟩ of all matrix
families associated with the π-institution. Then, one considers the Suszko
reductions ASu by dividing out by the corresponding Suszko congruence sys-
tems Ω̃I,A(T ). The class of Suszko reduced matrix families obtained in this
way is denoted by MatFamSu(I). It can then be shown that the class of all
algebraic reducts of the matrix families in MatFamSu(I) coincides with the
class AlgSys(I).

In Sections 2.7 and 2.9, using the classes of Leibniz reduced matrix fam-
ilies and of Tarski reduced generalized matrix families associated with a
given π-institution I , we are able to define the two classes AlgSys∗(I) and
AlgSys(I) of algebraic systems associated with the π-institution. In Section
2.10, we take up the study of two additional classes of algebraic systems that
may be perceived as counterparts of a given π-institution and compare them
with those already defined.

Both new classes are based on a single algebraic system, namely the
algebraic system F/Ω̃(I) resulting by considering the quotient of the base
algebraic system F by the Tarski congruence of the collection of all theory
families of I . Using this quotient algebraic system, the two classes are formed
as the two kinds of varieties that may be generated by it. The first type, called
the semantic variety, denoted by VSem(I) = VSem(F/Ω̃(I)), is the class of
all algebraic systems that satisfy all equations that are satisfied by F/Ω̃(I),
i.e., all equations included in Ω̃(I). The second type, called the syntactic
variety, denoted by VSyn(I) = VSyn(F/Ω̃(I)), is the class of all algebraic
systems that satisfy all natural equations that are satisfied by F/Ω̃(I).

Some results relating the four classes are presented. There is a linear hier-
archy of inclusions that is not very difficult to establish. The class AlgSys∗(I)
is the smallest class, followed by AlgSys(I), which is, in turn, included in
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VSem(I), whereas VSyn(I) is the largest of the four classes considered. It
turns out that all four classes generate the same syntactic variety of alge-
braic systems, which is identical to VSyn(I), since it constitutes already a
syntactic variety by definition. The section concludes with an important re-
sult showing that the class AlgSys(I) - perhaps the most important class
associated with I - is closed under subdirect intersections and contains a
trivial algebraic system. The usefulness of this fact is that it enables con-
sideration, on any given algebraic system, of the least congruence system
relative to AlgSys(I) generated by a prespecified relation family.

In Section 2.11, we study equivalence families and systems that are in-
duced by sentence families or collections of sentence families of an algebraic
system. The most fundamental among these is the Frege equivalence family
λA(T ) associated with a sentence family T of an algebraic system A. It
identifies two sentences if they are both inside or both outside the sentence
family. Its companion Frege equivalence system ΛA(T ) is the largest equiv-
alence system included in λA(T ). The two Frege equivalences are intimately
connected with the Leibniz congruence system ΩA(T ), the latter being the
largest congruence system contained in either of λA(T ) or ΛA(T ).

In a way analogous to the extensions of the Leibniz congruence system
that give rise to the Tarski and Suszko congruence systems, the Frege rela-
tions give rise to two more equivalences with similar roles. Given a collection
T of sentence families of A, the Carnap equivalence family λ̃A(T ) identifies
two sentences if they are equivalent modulo T (in the Frege sense) for all
T ∈ T , i.e., λ̃A(T ) = ⋂T ∈T λA(T ). The Carnap equivalence system Λ̃A(T ) is
the largest equivalence system included in λ̃A(T ). The relation connecting
Leibniz congruence systems with the Frege equivalences persists here as well,
but with the Suszko congruence system in place of the Leibniz one. That
is, the Suszko congruence system Ω̃A(T ) is the largest congruence system
contained in either of λ̃A(T ) or Λ̃A(T ).

Finally, reminiscent of the passage from the Tarski to the Suszko congru-
ence system, given a collection of sentence families T and T ∈ T , the Lin-
denbaum equivalence family λ̃A,T (T ) is the relation family identifying two
sentences if they are equivalent modulo every T ′ ∈ T , such that T ≤ T ′. The
Lindenbaum equivalence system Λ̃A,T (T ) is the largest equivalence system
contained in λ̃A,T (T ), and the Suszko congruence system Ω̃A,T (T ) turns out
to be the largest congruence system included in either of λ̃A,T (T ) or Λ̃A,T (T ).

The Carnap operators, viewed as operators on collections of sentence
families on the same algebraic system, are monotone. The same applies to
the Lindenbaum operators, viewed as operators on sentence families relative
to the same collection of sentence families. However, the Frege operators do
not satisfy a monotonicity property.

In Section 2.12, we are discussing algebraic subsystems and π-subinsti-
tutions. The starting point is the observation that an algebraic system A =
⟨Sign,SEN,N⟩ may contain a universe, i.e., a functor SEN′ ∶ Sign → Set,
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such that SEN′ ≤ SEN and closed under the action of natural transformations
in N . Then, it is clear that this universe may be used to define an algebraic
subsystem A′ of A and, as it turns out, there exists a canonical injection
morphism ⟨I, j⟩ ∶ A′ → A. Apart from detecting the existence of universes,
there is a natural way to generate a universe starting from a given sentence
family T of A. This consists of passing, first, to the least sentence system
Ð→
T containing T and, then, closing

Ð→
T under the clone operations in N . This

two-step process gives rise to a universe νA(
Ð→
T ). In case the algebraic system

A supports a π-institution I = ⟨A,C⟩, then one obtains, for each algebraic
subsystem A′ of A, a π-subsinstitution I ′ = ⟨A′,C ′⟩ by restricting the action
of C on elements of A′. It can be shown that the theory families of I ′

are exactly the restrictions of those of I on the universe giving rise to A′.
The section ends with some results relating Leibniz congruence systems of
theory families of I with those of the corresponding theory families of I ′.
A similar result also holds for Leibniz congruence systems of corresponding
filter families of the two π-institutions.

Sections 2.13-2.15 deal with aspects of the “syntactic” apparatus of an
algebraic system, i.e., with properties of the natural transformations viewed
as term functions. Section 2.13 introduces the framework and studies some
connections with the definability of the Leibniz congruence systems. Section
2.14 explores various modes of definability and details their relative power.
Section 2.15 studies the effect of parameters and shows that two different
possible ways of obtain a parameterless collection of natural transformations
out of a given parametric one are essentially equivalent. We provide, next,
some more details by section.

Section 2.13 introduces the concepts of distinguished arguments and of
parametric arguments of a collection E of natural transformations. This
is a conceptual distinction which becomes important in practice when one
differentiates the role they each play when the collection of natural transfor-
mations is used to transform sentences, i.e., to produce new sets of sentences
from tuples of given ones. The new family of sentences produced from a tu-
ple of sentences φ⃗ (possibly with the aid of parameters) is denoted by EΣ[φ⃗],
where Σ is the signature of φ⃗. Another mode of transformation uses a dual or
inverse construction. Namely, given a sentence family T , we consider the set
←Ð
E (T ) consisting of all tuples φ⃗, such that EΣ[φ⃗] ≤ T . These tuples all share
the same length, which equals the number of distinguished arguments of the
transformations in E. The construction has some important properties, e.g.,
←Ð
E , viewed as an operator on sentence families is monotone and, moreover,
commutes with inverse surjective morphisms. But, perhaps, its most impor-
tant property is that, if E has two distinguished arguments and T is such

that
←Ð
E (T ) is reflexive, then

←Ð
E (T ) includes the Leibniz congruence system

ΩA(T ) of T . Consequently, if
←Ð
E (T ) is itself a congruence system compatible

with T , then it coincides with ΩA(T ). Thus, in this case, we may say that,
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in a specific sense, the Leibniz operator of T is definable using the natural
transformations in E. We view this as a syntactic definability condition,
which plays an important role in establishing the algebraic classification of
π-institutions “by syntactic means” in subsequent chapters.

In Section 2.14 we continue the study of natural transformations as means
of transforming tuples of sentences to sentences. We look as four possible
ways of relating, via a fixed collection E of natural transformations with k

distinguished arguments, a k-tuple of sentences φ⃗ to a sentence family T .
The simplest, E-local membership, asserts that EΣ(φ⃗, χ⃗) ⊆ TΣ, for all values
χ⃗ of the parametric arguments. The second, E-global membership, asserts
that EΣ′(SEN(f)(φ⃗), χ⃗) ⊆ TΣ′ holds for all signatures Σ′, all morphisms
f ∶ Σ → Σ′ and all appropriate values of the parameters χ⃗. The remaining two,
left E-local membership and left E-global membership mimic the preceding

ones except that they use membership in
←Ð
T instead of membership in T .

Closer scrutiny of the four modes reveals that the two global memberships
are equivalent, followed in strength by left local membership, which, in turn,
implies local membership. When a membership property holds for all φ⃗,
then we attribute it to the collection E itself. In this sense, it turns out that
global, local, left global and left local memberships of E in T all coincide.

In Section 2.15, starting from a given collection S of natural transforma-
tions, possibly including parametric arguments, we study ways of obtaining
a collection that is parameter-free. Here, two of the most natural, for our
purposes, ways of doing this turn out to be equivalent, and, hence, release us
from the obligation to distinguish between which one is applied in any specific
context. Let us assume that S is taken to have k distinguished arguments.
Then one way of obtaining from S a parameter-free collection is to replace
all parametric arguments with k-ary natural transformations. This results
in a collection Ṡ of k-ary, i.e., parameter-free, natural transformations. The
second method builds on the notion of an anti-monotone property of natu-
ral transformations. These are properties P that a natural transformation
either does or does not satisfy and for which an anti-monotonicity property
holds, namely, if for all tuples of sentences φ⃗, the family of transforms of φ⃗
under σ is included in the family of transforms of φ⃗ under τ , then τ satisfying
P implies that σ also satisfies P . If P also denotes the class of all natural
transformations satisfying property P , then we let P̂ be the subclass of P
consisting of the parameter-free members of P . The section concludes with
the assertion that, for anti-monotone properties P , both constructions Ṗ and
P̂ give the same class of parameter-free natural transformations associated
with P .

In Section 2.16, we study finitarity. This property holds for a π-institution
I if every sentence φ that is derivable from a set Φ of sentences can be
derived from some finite subset Φ′ of Φ. Finitarity holds for the overwhelming
majority of the logics considered in the literature. So it has played a central
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role in algebraic logic, even though much of the more abstract body of the
theory is formalized and developed in a way that encompasses arbitrary, that
is, not necessarily finitary, logical systems. A characterization of finitarity
using the property of continuity is provided. We say that a collection of
theory families is directed if every finite subcollection is included in some
theory family in the collection. A π-institution is continuous if the union of
a directed collection of theory families is also a theory family. Finitarity and
continuity, as it turns out, are equivalent properties.

In the second part of the section, given a finitary π-institution I , we
provide a construction of the filter family CI,A(X) generated by a sentence
family X of A. Taking advantage of the finitarity of I , the filter family may
be obtained by an incremental process, each step of which adds in the filter
family sentences of A which are derivable, in a certain sense, by finite subsets
of sentences that have already been included in the filter family at previous
stages of the construction. In this way, the family ΞI,A(X) is obtained as
the union of the families obtained at all stages and it can be shown that
CI,A(X) = ΞI,A(X).

In the last two sections, Sections 2.17 and 2.18, we study equational
consequences and provide analogs of some well-known fundamental results
of universal algebra for classes of algebraic systems.

In Section 2.17, we look at closure families on pairs of sentences, i.e.,
equations, over a base algebraic system F that are induced by classes of
F-algebraic systems. Given a class K of F-algebraic systems, we say that
an equation φ ≈ ψ is a consequence of a set E of equations relative to K if
every algebraic system in K satisfying E also satisfies φ ≈ ψ. The resulting
consequence family is denoted by DK. It is not necessarily a closure system
since it may fail to be structural. It is shown, however, that its theory families
are exactly the congruence systems on F relative to the class K.

The second part of the section deals with a process of generating the clo-
sure of a family of equations E relative to an equational axiomatic system Q

in an incremental way. Roughly speaking, it formalizes the process of closing
under reflexivity, symmetry and transitivity, as well as under replacement
and the action of signature morphisms. The family of equations obtained
under this step-wise process from axioms Q and hypotheses E is denoted
by ΞQ(E). In the final result of the section, it is shown that the operator
ΞQ coincides with DK when Q is taken to be the collection of all equations
satisfied by all algebraic systems in K.

Section 2.18, the closing section of the chapter, is inspired by univer-
sal algebra. It provides characterizations, in the spirit of Birkhoff’s variety
and Mal’cev’s quasivariety theorems, of classes of algebraic systems defined
by equations, quasiequations and generalized quasiequations, also referred
to as guasiequations. The section begins by formally defining equations,
quasiequations and guasiequations in the context of π-institutions. The re-
lation of satisfaction of a syntactic entity of either of the above types in an
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algebraic system is also formally defined. In the usual way, these satisfaction
relations establish Galois connections. The closed sets on the syntactic side
form equational, quasiequational and guasiequational theories, whereas, on
the semantic side, one obtains equational, quasiequational and guasiequa-
tional classes of algebraic systems, respectively. These are, respectively, the
classes closed under the semantic variety VSem, semantic quasivariety QSem

and semantic guasivariety GSem operators.

To formulate characterizations of these classes, we introduce and study
four operators on classes of algebraic systems. Let K be a class of algebraic
systems. First, we say that an algebraic system A is K-certified if, for each
signature Σ, there exists an algebraic system AΣ in the class K that satisfies
exactly the same equations of signature Σ as A. The class K is said to be
abstract or closed under K-certifications if every K-certified algebraic system
is in K. The operator C is a closure operator and, if A ∈ C(K), then A satisfies
all guasiequations satisfied by K. Moreover, if K is guasiequational, then it is
an abstract class. Next, we say that an algebraic system A is directedly K-
certified if, for each signature Σ, there exists a collection of algebraic systems{AΣ,i ∶ i ∈ I} in the class K that satisfy two conditions: On the one hand, the
collection of all finite sets of equations satisfied by some AΣ,i, i ∈ I, is directed
and, on the other, the union of all those sets is exactly the set of equations
of signature Σ satisfied by A. The class K is said to be directedly abstract or
closed under directed K-certifications if every directedly K-certified algebraic
system is in K. The operator C∗ is a closure operator. It is shown that,
if A is directedly K-certified, then it satisfies all quasiequations satisfied by
K and, furthermore, that directed abstraction is a necessary condition for a
class of algebraic systems to be a quasiequational class.

The third operator on classes of algebraic systems is that of taking sub-

direct intersections
⊲

IΠ. Subdirect intersections are collections of morphisms⟨H i, γi⟩ ∶ A → Ai, i ∈ I, with the same domain, the intersection of whose
kernels is the identity system on A. In that case, we also say that A is a
subdirect intersection of the Ai’s. This also turns out to be a closure operator

on classes of algebraic systems and, in fact, closure under
⊲

IΠ is necessary for
a class to be guasiequational. The last operator considered is that of taking
morphic images, denoted by H. It also forms a closure operator on classes
of algebraic systems and closure under H is necessary for a class to be an
equational class.

The four operators serve in formulating the Birkhoff-style characteriza-
tions referred to previously for equational, quasiequational and guasiequa-
tional classes. Guasiequational classes are characterized as those that are ab-
stract and closed under subdirect intersections. Quasiequational classes are
those that are directedly abstract and closed under subdirect intersections.
Finally, equational classes are characterized as those that are closed under
subdirect intersections and morphic images. The section concludes with some
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additional characterizations of these three classes involving the structure of
the subcollection ConSysK(F) of the complete lattice ConSys(F). All of
those additional results are based on the main characterizations described
above.

1.3.2 Chapter 3

In Chapter 3 we start in earnest the study of the Leibniz hierarchy of π-
institutions. Chapters 3-9 deal with the semantic Leibniz hierarchy. Here
the classes are defined using properties of the Leibniz operator on theory
families/systems of a π-institution. Chapters 11-??, on the other hand, deal
with the syntactic Leibniz hierarchy in which classes are defined using col-
lections of natural transformations satisfying specific definability properties.
We shall see that “corresponding” classes in the two hierarchies may not
coincide, but, nevertheless, the two hierarchies are closely connected - in
fact may be seen as forming parts of a single hierarchy - and they are both
modeled on the Leibniz hierarchy of sentential logics.

In Section 3.2, we study three properties. The first two are fundamen-
tal because they introduce concepts and terminology that play a critical
role throughout the monograph. The third is used to establish classes of
π-institutions at the very bottom of the hierarchy which abstract all other
classes considered later in this and in subsequent chapters.

The first property if systemicity. A π-institution I is called systemic if
every theory family of I is actually a theory system, i.e., if ThFam(I) =
ThSys(I). Recalling from Chapter 2 that, given a theory family T of I ,

←Ð
T

is the largest theory system included in T , I is systemic if and only if, for

every theory family T ,
←Ð
T = T . Yet another characterization asserts that,

for every Σ-sentence φ of I , the least theory family C(φ) of I generated by
φ contains all translates of φ under arbitrary signature morphisms. One of
the reasons why systemicity plays such a critical role is that, for a systemic
π-institution, it suffices to restrict attention to theory systems, i.e., one may
take invariance under signature morphisms for granted.

The second property is stability. It may be thought of as the counterpart
of systemicity when focus shifts from theory families to corresponding Leibniz
congruence systems. A π-institution I is stable if, for all theory families T ,

Ω(←ÐT ) = Ω(T ). Of course, every systemic π-institution is stable, and this
implication is proper. Both systemicity and stability transfer. This means
that a π-institution I = ⟨F,C⟩ is systemic if and only if, for every F-algebraic
system A, every I-filter family of A is a filter system. Similarly, I is stable
if and only if, for every F-algebraic system A and every I-filter family T

of A, ΩA(←ÐT ) = ΩA(T ). These two transfer results are only the first of a
host of, so-called, transfer theorems that are proved in the sequel for the
majority of properties used to define classes in the Leibniz hierarchy. Having
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established the pattern and exhibited the main idea, we only mention such
results briefly from now on, postponing the details for the main account in
the relevant sections of the text.

The third property we study in Section 3.2 is loyalty. Unlike systemicity
and stability, loyalty comes, as is typical for many subsequently introduced
properties, in multiple flavors. To establish the pattern that will be followed
in the presentation throughout, we introduce, first, the four versions, termed
family, left, right and system. They may or may not be all different. So we
study their properties, show which ones, if any, coincide, establish general
implications between those that are not equivalent, and show, via examples,
that these implications are proper, i.e., that no further collapsing of the
subhierarchy based on these properties is possible.

A π-institution I is family loyal if, for all theory families T , T ′ of I ,
T /< T ′ or Ω(T ) /> Ω(T ′), or, equivalently, if it is not the case that T < T ′

and Ω(T ) > Ω(T ′). If Ω, viewed as an operator mapping theory families to
congruence systems, is either order preserving or order reflecting, then it is
necessarily family loyal. So this property abstracts both monotonicity and
reflectivity of Ω. Since both monotonicity and reflectivity play important
roles in specifying classes in the Leibniz hierarchy, this observation provides
partial justification for considering loyalty as a common abstraction. Here, as
in all subsequently defined properties, once the family version is introduced,
the other three versions follow by applying similar modifications. To obtain
the left version one replaces, on the theory family side, all theory families
by their arrow versions. So I is left loyal if, for all theory families T , T ′,
←Ð
T /< ←ÐT ′ or Ω(T ) /> Ω(T ′). To obtain the right version, a similar replacement
is applied on the congruence system side. Thus, I is right loyal if, for all

theory families T , T ′, T /< T ′ or Ω(←ÐT ) /> Ω(←ÐT ′). Finally, the system version
is obtained by imposing the same condition as in the family version, but
restricting its application to theory systems, instead of insisting that it hold
for all theory families. Accordingly, I is system loyal if, for all theory systems
T , T ′ of I , T /< T ′ or Ω(T ) /> Ω(T ′).

Family loyalty properly implies stability. Moreover, family loyalty implies
left loyalty, which, in turn, implies system and right loyalty, the latter two
being equivalent properties. System loyalty, together with systemicity, imply
family loyalty. That is, as is the case with virtually all properties introduced
in the monograph, imposing systemicity has the effect of collapsing the entire
four-class subhierarchy into a single class. This observation can be applied
to obtain a backbone - or a bird’s eye view - of the Leibniz hierarchy without
worrying about the refinements and subdivisions due to the different flavors
of each property. Section 3.2 concludes by showing that all three distinct
versions of loyalty transfer, i.e., that a given π-institution has a certain loyalty
property if the corresponding defining condition holds for all pairs of filter
families (or systems) on arbitrary F-algebraic systems.
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In Section 3.3, we study monotonicity properties. A π-institution I is
family monotone if, for all theory families T , T ′, T ≤ T ′ implies Ω(T ) ≤ Ω(T ′),
i.e., if the Leibniz operator on theory families is order preserving. In accor-
dance with the general framework outlined above for loyalty, I is left mono-

tone if, for all T , T ′,
←Ð
T ≤

←Ð
T ′ implies Ω(T ) ≤ Ω(T ′), right monotone if, for

all T , T ′, T ≤ T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′) and system monotone if the same
condition defining family monotonicity is restricted to theory systems, i.e.,
if the Leibniz operator on theory systems is order preserving. It is shown
that family monotonicity implies stability. Most importantly, family and left
monotonicity coincide as do system and right monotonicity. Following ter-
minology inherited from sentential logics, we term π-institutions that satisfy
family monotonicity protoalgebraic and those that satisfy the system version
prealgebraic. Protoalgebraicity is equivalent to prealgebraicity plus stability.
In particular, every protoalgebraic π-institution is prealgebraic, and this in-
clusion is proper. Both monotonicity properties transfer. Finally, pursuing
connections with classes introduced in Section 3.2, we show that protoalge-
braicity implies family loyalty, whereas prealgebraicity is sufficient for system
loyalty.

In Sections 3.4 and 3.5, we study versions of a property called complete
monotonicity. This is a property dual to complete order reflectivity, a prop-
erty that characterizes truth equationality in the sentential framework. Given
a sentential logic S , complete order reflectivity stipulates that, for every col-
lection T ∪{T ′} of theories of S , if ⋂T ∈T Ω(T ) ⊆ Ω(T ′), then ⋂T ⊆ T ′. Since,
in both the lattice of theories and that of congruences, meet and intersec-
tion coincide, but, on both theories and congruences, join is not the same as
union, one may obtain two “dual” versions of complete order reflectivity. The
first, following a set-theoretic approach, says that, for all T ∪ {T ′}, T ′ ⊆ ⋃T
implies Ω(T ′) ⊆ ⋃T ∈T Ω(T ). The second, taking a lattice-theoretic point of
view, asserts that, for all T ∪ {T ′}, T ′ ≤ ⋁T implies Ω(T ′) ≤ ⋁T ∈T Ω(T ),
where the join in the hypothesis is taken in the complete lattice of theories of
S and the one in the conclusion in the complete lattice of congruences on the
formula algebra. In Section 3.4 we study an analog of the former property
and in Section 3.5 an analog of the latter in the context of logics formalized
as π-institutions. A few more details follow in the next two paragraphs.

In Section 3.4, we look at complete ⋃-monotonicity, which is abbrevi-
ated as c∪-monotonicity or, simply, c-monotonicity. A π-institution is family
c∪-monotone if, for every collection T ∪ {T ′} of theory families, T ′ ≤ ⋃T
implies Ω(T ′) ≤ ⋃T ∈T Ω(T ). Left and right c∪-monotonicities are obtained
by replacing in the hypothesis and in the conclusion, respectively, every the-
ory family occurring by its arrow version. Finally, system c∪-monotonicity is
defined by the same condition as the family version, but applied exclusively
to collections of theory systems. Family c∪-monotonicity implies stability,
as does left c∪-monotonicity. Moreover, the family version is equivalent to
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the conjunction of the left and right versions and either of the latter implies
system c∪-monotonicity. All four c∪-monotonicity properties transfer. And,
whereas the left version is sufficient for protoalgebraicity, the system version
implies only prealgebraicity.

In Section 3.5, we continue the study of complete monotonicity but switch
from complete ⋃-monotonicity to complete ⋁-monotonicity, which is abbre-
viated as c∨-monotonicity. A π-institution I = ⟨F,C⟩ is family c∨-monotone
if, for every collection T ∪ {T ′} of theory families, T ′ ≤ ⋁I T implies Ω(T ′) ≤
⋁F
T ∈T Ω(T ), where ⋁I denotes the join in the complete lattice of theory fami-

lies of I and ⋁F the join in the complete lattice of congruence systems on F.
Again, following the general pattern, I is left c∨-monotone if, for all T ∪{T ′},
←Ð
T ′ ≤ ⋁IT ∈T

←Ð
T implies Ω(T ′) ≤ ⋁F

T ∈T Ω(T ) and is right c∨-monotone if, for all

T ∪ {T ′}, T ′ ≤ ⋁I T implies Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). Finally, I is system c∨-

monotone if, for every collection T ∪ {T ′} of theory systems of I , T ′ ≤ ⋁I T
implies Ω(T ′) ≤ ⋁F

T ∈T Ω(T ). Again, either family or left c∨-monotonicity im-
plies stability. The family version is equivalent to the conjunction of the left
and right versions and either of those two implies system c∨-monotonicity.
Left c∨-monotonicity implies protoalgebraicity and system c∨-monotonicity
implies prealgebraicity.

Contrary to what the similarities of results pertaining to c∨-monotonicity
with those of Section 3.4 on c∪-monotonicity may suggest, there are also sig-
nificant differences between the two complete monotonicity properties. One
instance concerns transfer theorems. Unlike c∪-monotonicity, c∨-monotonicity
properties do not transfer in general. This is due to the fact that, unlike
unions, joins do not commute with inverse surjective morphisms between
algebraic systems. A second difference, which affords, perhaps, partial justi-
fication for introducing and discussing both types of properties in some detail,
is that corresponding classes of π-institutions are incomparable. E.g., there
exists a family c∨-monotone π-institution which is not family c∪-monotone
and vice-versa.

In Section 3.6, we study injectivity. A π-institution I is family injective
if, for all theory families T , T ′, Ω(T ) = Ω(T ′) implies T = T ′, i.e., if the
Leibniz operator is injective on theory families. It is left injective if, for all

T , T ′, Ω(T ) = Ω(T ′) implies
←Ð
T =

←Ð
T ′ and right injective if, for all T , T ′,

Ω(←ÐT ) = Ω(←ÐT ′) implies T = T ′. Finally, it is system injective if the Leibniz
operator is injective on theory systems. Right injectivity is the strongest
of the four injectivity properties and it implies systemicity. It is followed
by family injectivity, then left injectivity, which implies system injectivity.
System injectivity together with systemicity is equivalent to right injectivity,
whereas, together with stability, which is weaker than systemicity, it implies
left injectivity. All four injectivity properties transfer.

In Section 3.7, we turn to reflectivity properties. A π-institution I is
family reflective if, for all theory families T , T ′ of I , Ω(T ) ≤ Ω(T ′) implies
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T ≤ T ′, i.e., if the Leibniz operator on theory families is order reflecting. If,

for all T , T ′, Ω(T ) ≤ Ω(T ′) implies
←Ð
T ≤
←Ð
T ′, then I is left reflective, whereas,

if, for all T , T ′, Ω(←ÐT ) ≤ Ω(←ÐT ′) implies T ≤ T ′, I is right reflective. System
reflectivity stipulates the order reflectivity of the Leibniz operator on the-
ory systems. It turns out that family or right reflectivity imply systemicity.
This allows showing that the two are actually equivalent properties. They
imply left reflectivity, which, in turn, implies system reflectivity. System re-
flectivity, coupled with stability, implies left reflectivity, whereas, together
with systemicity, it becomes equivalent to family reflectivity. All four ver-
sions transfer. Section 3.7 ends by relating reflectivity with the injectivity
properties, introduced in Section 3.6, and with the loyalty properties, intro-
duced in Section 3.2. More precisely, it is shown that family/right, left and
system reflectivity imply, respectively, right, left and system injectivity and
that family/right, left and system reflectivity imply, respectively, family, left
and system loyalty.

Section 3.8, the last section of Chapter 3, introduces complete reflectiv-
ity properties, abbreviated to c-reflectivity. These form a generalization of
the reflectivity properties of Section 3.7. Complete reflectivity originates in
the work of Raftery, where it is used to characterize truth equationality in
the context of sentential logics. A π-institution is family c-reflective if, for
every collection T ∪ {T ′} of theory families of I , ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies

⋂T ≤ T ′. It is left c-reflective if, for all T ∪{T ′}, ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies

⋂T ∈T
←Ð
T ≤

←Ð
T ′ and right c-reflective if, for all T ∪ {T ′}, ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′)

implies ⋂T ∈T T ≤ T ′. System c-reflectivity is defined using the same condi-
tion as family c-reflectivity restricted to collections of theory systems. As
was the case with reflectivity, either family or right c-reflectivity implies sys-
temicity and this enables showing that the family and right versions are
equivalent. They imply left c-reflectivity, which, in turn, implies the system
version. System c-reflectivity and systemicity are jointly equivalent to family
c-reflectivity, whereas system c-reflectivity, augmented with stability, implies
left c-reflectivity. All complete reflectivity properties transfer and, as is ap-
parent from the relevant definitions, each version of c-reflectivity implies the
corresponding reflectivity version.

1.3.3 Chapter 4

In Chapter 4, we visit weak prealgebraizability and weak algebraizability
properties of π-institutions. These create a subhierarchy of π-institutions
whose members roughly correspond to the weakly algebraizable logics in the
sentential logic framework. Weak prealgebraizability classes arise when cou-
pling family monotonicity with either of injectivity, reflectivity or complete
reflectivity properties. Analogously, weak algebraizability results by combin-
ing system monotonicity with injectivity, reflectivity or complete reflectivity.
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Before describing the versions of weak prealgebraizability and algebraizabil-
ity in more detail, we mention, firstly, that the term “weak” refers to the use
of monotonicity, as opposed to the stronger notion of equivalentiality, in the
definitions, and remind, secondly, the reader of the hierarchy, established in
Chapter 3, of the various flavors of injectivity, reflectivity and c-reflectivity
properties, which assumed the form depicted in the diagram.

Family c-Reflective

✠�
�
� ❅

❅
❅❘

Left c-Reflective Family Reflective

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

System c-Reflective Left Reflective Right Injective

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

Family Injective
�

System Reflective Left Injective

❅
❅
❅❘ ✠�

�
�

System Injective

In Section 4.2, we define the classes of weakly prealgebraizable π-institu-
tions. Each class results by imposing prealgebraicity (system monotonicity)
and one of the ten flavors of injectivity, reflectivity and complete reflectiv-
ity shown in the preceding hierarchy. Since prealgebraicity is shared by all
classes, the deciding factor in the subhierarchy is the type of injectivity, re-
flectivity or c-reflectivity imposed. Thus, a priori, one obtains ten potentially
distinct classes whose hierarchy reflects that shown in the preceding diagram.
We name the corresponding property “weak X prealgebraizability”, or “WX
prealgebraizability” for short, where the string X stands for one of SI, LI,
FI, RI for system, left, family, right injectivity, respectively, SR, LR, FR for
system, left, family reflectivity, respectively, or SC, LC, FC for system, left,
family c-reflectivity, respectively.

In our first result, we show that prealgebraicity is sufficient to identify
all system versions, which forces the collapsing of the classes of WSI, WSR
and WSC prealgebraizable π-institutions. We call the corresponding prop-
erty WS prealgebraizability. In what sets a pattern for subsequent work
in this chapter, it is shown that WS prealgebraizability transfers and, fur-
ther, a characterization is obtained via properties of the Leibniz operator ΩA,
viewed as a mapping between ordered sets, for arbitrary F-algebraic systems
A. More precisely, it is shown that a π-institution I = ⟨F,C⟩ is WS prealge-
braizable iff, for every F-algebraic system A, ΩA ∶ FiSysI(A)→ ConSysI∗(A)
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is an order embedding. Next, it is shown that, in view of prealgebraicity, fam-
ily reflectivity implies family c-reflectivity and this leads to the identification
of WFR prealgebraizability and WFC prealgebraizability. Moreover, under
protoalgebraicity, family injectivity implies family reflectivity. This enables
showing that both WFR and WRI prealgebraizability are characterized as
the conjunction of WFI prealgebraizability and systemicity and, hence, are
identical properties. Both WFR and WFI prealgebraizability transfer. More-
over, the WFI version is characterized by the property that, for all A, ΩA

is a bijection on filter families, restricting to an order embedding on filter
systems, whereas the WFR version is characterized by the condition that,
for all A, ΩA is an order isomorphism.

At this point, the hierarchy has been reduced to six classes, since, as it
turned out, all three system classes are identical and the three family plus
the WRI prealgebraizability collapse down to two classes. The only classes
not put under the microscope yet are those defined using the left versions
of injectivity, reflectivity and c-reflectivity. We return to them after a short
break that gives a glimpse of further possible reductions under special cir-
cumstances. Namely, it is proven that, under systemicity, the entire hierarchy
collapses to a single class and that, under stability, it collapses down to two
classes, as the only properties that can be distinguished are the family (but
including also WRI prealgebraizability) from the remaining versions.

Returning to the left properties, Section 4.2 concludes by showing that
all three transfer and by providing characterizations along the lines outlined
previously, using ΩA. More precisely, it is shown that I = ⟨F,C⟩ is WLC
(WLR, WLI, respectively) prealgebraizable iff, for every F-algebraic system
A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left completely order reflecting (left
order reflecting, left injective, respectively) surjection, restricting to an order
embedding on theory systems.

In Section 4.3, we study versions of weak algebraizability. These combine
protoalgebraicity (family monotonicity) with the various versions of injectiv-
ity, reflectivity and complete reflectivity. Since protoalgebraicity dominates
prealgebraicity, it is clear that one obtains at least as many identifications
between the ten apparent weak algebraizability properties as those estab-
lished between corresponding weak prealgebraizability properties in Section
4.2. However, the situation under closer scrutiny turns out to be much
more radical. Since protoalgebraicity is strong enough to yield stability,
the emerging landscape was anticipated by the previously mentioned col-
lapse of the weak prealgebraizability hierarchy down to two classes in the
presence of stability. Similarly, under protoalgebraicity and, hence, sta-
bility, all three weak family algebraizability properties together with WRI
algebraizability collapse to a single property, termed WF algebraizability.
Further, all remaining six left and system versions also collapse to a sin-
gle property we call WS algebraizability. Both of these properties transfer.
Also, for both one may obtain Leibniz operator type characterizations. More
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specifically, I = ⟨F,C⟩ is WS algebraizable iff it is stable and, for all A,
ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism, whereas it is WF
algebraizable iff, for all A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is an order iso-
morphism.

Observing that the characterization of WF algebraizability is identical
with that obtained for WF prealgebraizability, we conclude that the top
classes in the weak prealgebraizability and weak algebraizability subhierar-
chies actually coincide. Thus, by fusing these two subhierarchies, one obtains
a total of seven potentially distinct classes, which form the combined hierar-
chy depicted in the diagram.

WF-Algebraizable

✙✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅❘

WS-Algebraizable

WLC-Prealgebraizable
❄

WFI-Prealgebraizable

✠�
�
�
�
�
�

WLR-Prealgebraizable
❄

❍❍❍❍❍❍❥
WLI-Prealgebraizable

WS-Prealgebraizable
❄

1.3.4 Chapter 5

In Chapter 5, we deal with classes of π-institutions that result from weakly
prealgebraizable and weakly algebraizable π-institutions when the proper-
ties of prealgebraicity (system monotonicity) and protoalgebraicity (family
monotonicity) are strengthened to preequivalentiality and equivalentiality,
respectively. The strengthening, i.e., the passage from proto- (or pre-) al-
gebraicity to (pre)equivalentiality, involves adding the condition of either
family or system extensionality. Depending on which of these two proper-
ties is imposed, one obtains two parallel hierarchies, one on top of the other,
both of which reflect the structure of the weak (pre)algebraizability hierarchy,
described in Chapter 4.

In Section 5.2, we introduce and study extensionality. The definition re-
quires the notion of subsystem of an algebraic system F generated by a given
sentence family X , which is denoted by ⟨X⟩ and was introduced in Section
2.12. A π-institution I = ⟨F,C⟩ is called family extensional if, for all sentence
families X of F and all theory families T of I , Ω(T )∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).
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It is called system extensional if the same condition holds, but T is quantified
over all theory systems of I , instead of ranging over arbitrary theory families.
Since system extensionality specializes family extensionality, every family ex-
tensional π-institution is also system extensional. It is, moreover, the case
that system extensionality, coupled with stability, implies family extension-
ality. Extensionality is very useful because, when satisfied, it causes certain
properties that hold in a π-institution to be inherited by all its subinstitu-
tions. For instance, under system extensionality, stability propagates from a
π-institution I to all its subinstitutions I ′ ≤ I . Additionally, system or fam-
ily extensionality causes prealgebraicity or protoalgebraicity, respectively, to
be inherited by all subinstitutions of a given π-institution. Both versions of
extensionality transfer. The section closes by looking at 2-extensionality, an
apparently weaker condition than extensionality, which, however, turns out to
be equivalent to it. A π-institution I = ⟨F,C⟩ is family 2-extensional if, for all
Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and every theory family T of I , ⟨φ,ψ⟩ ∈ ΩΣ(T )
if and only if ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). System 2-extensionality is defined

by the same condition in which T is quantified over theory systems. A π-
institution is family/system extensional if and only if it is family/system
2-extensional, respectively.

In Section 5.3, we study Leibniz commutativity. The notion relies on the
concepts of extension and logical extension. Given an algebraic system F
and a sentence family X of F, an extension is an algebraic system morphism
of the form ⟨I,α⟩ ∶ ⟨X⟩ → F, where ⟨X⟩ is the algebraic subsystem of F
generated by X and I is the identity functor on signatures. Given a π-
institution I = ⟨F,C⟩, an extension ⟨I,α⟩ ∶ ⟨X⟩→ F is called logical, denoted

⟨I,α⟩ ∶ I ⟨X⟩ → I , if, for every signature Σ and all Φ ⊆ ⟨X⟩Σ, αΣ(C⟨X⟩Σ (Φ)) ⊆
CΣ(αΣ(Φ)), where C⟨X⟩ is the restriction of C on ⟨X⟩, discussed in detail in
Section 2.12. A characterization of this notion asserts that ⟨I,α⟩ is logical if
and only if α−1 preserves theory families, i.e., if α−1(T ) ∈ ThFam(I ⟨X⟩), for
every T ∈ ThFam(I).

Logical extensions form the background for introducing the property of
Leibniz commutativity, or, simply, commutativity. A π-institution I = ⟨F,C⟩
is called family commuting if the Leibniz operator on theory families com-
mutes with logical extensions, i.e., if, for every sentence family X of F, every
logical extension ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ′ ∈ ThFam(I ⟨X⟩), α(Ω⟨X⟩(T ′)) ≤
Ω(C(α(T ′))). Applying the same condition, where T ′ ranges over all theory
systems of I ⟨X⟩, defines system commutativity. A closely related concept
is that of inverse Leibniz commutativity, or, simply, inverse commutativ-
ity. A π-institution I is family inverse commuting if, for every sentence
family X , every logical extension ⟨I,α⟩ ∶ I ⟨X⟩ → I , and all T ∈ ThFam(I),
α−1(Ω(T )) = Ω⟨X⟩(α−1(T )). The same condition, imposed on theory sys-
tems only, defines system inverse commutativity. The fact that injection
morphisms ⟨I, j⟩ ∶ I ⟨X⟩ → I of subinstitutions into their parent institutions
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are logical extensions allows us to show that family/system inverse commu-
tativity implies family/system extensionality, respectively. It is clear that
the family version implies the system version and, as it turns out, the system
version augmented by stability implies the family version. What is important
for our purposes, and the reason why both direct and inverse commutativity
properties are studied, is that under pre/proto-algebraicity, respectively, sys-
tem/family commutativity is equivalent to system/family inverse commuta-
tivity. Moreover, in a result strengthening the relationship mentioned above,
it is proven that family/system inverse commutativity and family/system
extensionality, respectively, are actually equivalent properties. This section
concludes by showing that both versions of inverse commutativity transfer.

In Section 5.4, we introduce equivalentiality. This is the section we have
been preparing for by studying extensionality and commutativity in Sections
5.2 and 5.3, respectively. Equivalentiality is the result of coupling mono-
tonicity with extensionality. Since each of those two properties comes in two
flavors, there are, a priori, four possible versions of equivalentiality. Family
equivalentiality combines protoalgebraicity with family extensionality. Sys-
tem equivalentiality keeps protoalgebraicity but uses system extensionality.
Family and system preequivalentiality are defined analogously, but here one
uses prealgebraicity instead of protoalgebraicity. Since protoalgebraicity is
strong enough to imply stability, it turns out that family and system equiv-
alentiality coincide. This property is referred to simply as equivalentiality.
Thus, we get three properties in this hierarchy, namely, in decreasing order of
potency, equivalentiality, family preequivalentiality and system preequivalen-
tiality. Moreover, equivalentiality is equivalent to system preequivalentiality
plus stability. All three properties transfer. There also exist characterizations
of equivalentiality and preequivalentiality by conditions imposed on the Leib-
niz operator on filter families/systems, respectively, on arbitrary F-algebraic
systems. Finally, as is clear by the corresponding definitions, equivalentiality
dominates protoalgebraicity and preequivalentiality dominates prealgebraic-
ity.

In Section 5.5, by replacing prealgebraicity by preequivalentiality, we ob-
tain from the weak prealgebraizability hierarchy of Section 4.2 two parallel
prealgebraizability hierarchies. The term “prealgebraizability” in both refers
to the fact that preequivalentiality, as opposed to equivalentiality, is applied.
In one of the two hierarchies, “family prealgebraizability” refers to the ap-
plication of family preequivalentiality, whereas in “prealgebraizability”, it is
understood that (system) preequivalentiality is applied. The five classes in
the first hierarchy are termed XF prealgebraizable and in the second X preal-
gebraizable, where X is one of the following strings, suggesting the imposition
of an additional property on the Leibniz operator.

• LC for left completely reflective;

• LR for left reflective;
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• FI for family injective;

• LI for left injective; and

• S for system (system completely reflective, system reflective or system
injective, which are all equivalent in view of prealgebraicity).

It is shown that systemicity causes the total collapse of the hierarchy into
a single class, whereas stability collapses the two family injectivity classes,
FI and FIF prealgebraizability, and, also, all eight remaining classes and,
therefore, leads to a 2-class hierarchy. Moreover, it is proven that all ten
properties transfer. The remainder of this section is devoted to providing
characterizations of each of the ten classes using order theoretic properties
of the Leibniz operator viewed as a mapping from lattices of filters sys-
tems/families to lattices of congruence systems over arbitrary F-algebraic
systems. We focus only on a couple of pairs to give a flavor of the type
of results obtained, and refer the reader to the main text for a full ac-
count. A π-institution I = ⟨F,C⟩ is FIF prealgebraizable if and only if,
for all F-algebraic systems A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a bijec-
tion commuting with inverse logical extensions, which restricts to an order
embedding on filter systems. A similar characterization is obtained for FI
prealgebraizability, but with a subtle important change: I is FI prealgebraiz-
able if and only if, for all A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a bijection,
which restricts to an order embedding commuting with inverse logical mor-
phisms on filter systems. Analogously, for the left reflectivity classes, we get,
on the one hand, that I is LRF prealgebraizable if and only if, for all A,
ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left order reflecting surjection commut-
ing with inverse logical extensions, which restricts to an order embedding on
filter systems, and, on the other, noting again the same subtle change, I is LR
prealgebraizable if and only if, for all A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is
a left order reflecting surjection, which restricts to an order embedding com-
muting with inverse logical extensions on filter systems. Characterizations
of the remaining six classes follow a similar pattern.

In Section 5.6, we switch from prealgebraizability to algebraizability.
Dropping “pre” signifies using equivalentiality instead of the weaker pree-
quivalentiality property. Equivalentiality encompasses protoalgebraicity and,
under protoalgebraicity, only two classes of the ten potentially different ones
are actually distinct. Accordingly, we get family algebraizability, or, simply,
F algebraizability, when family injectivity is added, and system algebraiz-
ability, or, simply, algebraizability, when system injectivity is added. Family
algebraizability is equivalent to algebraizability plus systemicity. Both prop-
erties transfer. Finally, I = ⟨F,C⟩ is algebraizable if and only if it is stable
and, for every F-algebraic system A, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an
order isomorphism commuting with inverse logical extensions, whereas I is
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family algebraizable if and only if, for all A, ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism commuting with inverse logical extensions.

1.3.5 Chapter 6

The motivating force behind the considerations in this chapter is the obser-
vation that, since for a π-institution I = ⟨F,C⟩, with F = ⟨Sign♭,SEN♭,N ♭⟩,
Ω(∅) = ∇F = Ω(SEN♭), no π-institution without theorems can satisfy any of
the injectivity, reflectivity of complete reflectivity properties introduced in
Chapter 3. The question naturally arises whether, in that case, the existence
of theory families with empty components is the only reason causing the lack
of these properties or whether the π-institution in question would still not
satisfy them even if theory families with empty components were in some way
“discarded” or “bypassed”. We choose two ways in which this circumvention
may be accomplished, and study the various flavors of injectivity, reflectivity
and complete reflectivity properties that result.

In Section 6.2, we introduce and study the relation of rough equivalence
between theory families of a π-institution. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F. Given a theory
family T of I , we define the rough companion (rough associate or rough
representative) T̃ of T as the theory family resulting from T by replacing all
empty Σ-components of T by the corresponding set SEN♭(Σ) of Σ-sentences.
We say that two theory families T and T ′ are roughly equivalent, written
T ∼ T ′, if T̃ = T̃ ′. The rough equivalence class of T is denoted by [̃T ] and
T̃hFam(I) denotes the collection of all rough equivalence classes. When one
considers the restriction of rough equivalence on theory systems, the corre-
sponding rough equivalence class is denoted by ⌊̃T ⌋ and the collection of all
these classes by T̃hSys(I). Reasoning with rough equivalence classes is one
way of bypassing theory families with empty components. An alternative
way is to ignore those theory families that have at least one empty compo-
nent. This is accomplished by considering the collections ThFam (I) and
ThSys (I) of all theory families and theory systems, respectively, none of
whose components is empty.

The usefulness of rough equivalence in considering properties of the Leib-
niz operator stems from the fact that, for every theory family T , Ω(T ) =
Ω(T̃ ). As a consequence, the Leibniz operator is constant on each rough
equivalence class. It is fairly obvious that the rough companion T̃ of a the-
ory family T is the maximum element in the class [̃T ]. However, even if T
happens to be a theory system, T̃ may not be one. On the other hand, it
can be shown that, even in that case, ⌊̃T ⌋ has a maximum element, which, of
course, does not coincide with T̃ . An unfortunate fact, when considering the
operators ←Ð and ̃ in the same context is that, even if two theory families T

and T ′ are roughly equivalent, the same may not hold for
←Ð
T and

←Ð
T ′. On the

positive side, if A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system and T is an I-filter
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family of A, we do have α−1(T̃ ) = α̃−1(T ). This implies that the action of α−1

preserves rough equivalence, i.e., if T and T ′ are I-filter families of A, with
T ∼ T ′, then α−1(T ) ∼ α−1(T ′), the latter being roughly equivalent theory
families of I .

In Section 6.3, we look at some notions combining systemicity with rough
equivalence. They form a hierarchy weakening systemicity in the absence of
theorems. In the presence of theorems, however, all concepts considered
coincide. We say that a π-institution I is roughly systemic if, for every

theory family T ,
←Ð
T is roughly equivalent to T , i.e.,

←Ð
T ∼ T . We say I is

narrowly systemic if, for every theory family T in ThFam (I) (i.e., with

all components nonempty),
←Ð
T = T . Finally, we say that I is exclusively

systemic if, for all T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I), ←ÐT = T .

Systemicity is the strongest of these four conditions, followed by rough and
narrow systemicity, which are incomparable in strength, and each of these two
implies exclusive systemicity. Moreover, as mentioned previously, exclusive
systemicity in the presence of theorems implies systemicity and, therefore, in
that case, the entire hierarchy collapses to a single class.

In Section 6.4, we formalize and study various versions of rough injec-
tivity, resulting by combining injectivity of the Leibniz operator with rough
equivalence. The easiest to grasp is rough family injectivity. A π-institution
I is roughly family injective if, for all theory families T , T ′, Ω(T ) = Ω(T ′)
implies T ∼ T ′. Rough left injectivity results by replacing in the conclusion

of the implication defining rough family injectivity T and T ′ by
←Ð
T and

←Ð
T ′,

respectively. Rough right injectivity arises by a similar replacement in the
hypothesis. Finally, rough system injectivity imposes the same condition as
the family version, but restricts its application to theory systems. Rough
right injectivity implies rough systemicity, but the converse fails in general.
The rough injectivity hierarchy turns out to be more complex than the in-
jectivity hierarchy studied in Section 3.6. There, it was shown that right
injectivity implies family injectivity, which implies left injectivity, which, in
turn, implies system injectivity, giving rise to a linear injectivity hierarchy.
On the other hand, in the rough case, it is shown that rough right injectivity
implies rough family injectivity, which implies the system version, and, in
addition, rough left injectivity also implies the system version. Moreover,
rough right injectivity is equivalent to rough system injectivity plus rough
systemicity. Rough system injectivity, supplemented with stability, implies
rough left injectivity. Each of the four rough injectivity properties, together
with the availability of theorems, is equivalent to the corresponding injec-
tivity property. The section concludes by establishing that all four rough
injectivity properties transfer and by providing characterizations of rough
family and rough system injectivity via the Leibniz operator Ω, viewed as a
mapping from T̃hFam(I) and T̃hSys(I), respectively, to ConSys∗(I).

In Section 6.5, we switch to a different version of injectivity properties, the
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overarching motivation still remaining that of bypassing theory families with
empty components. Narrow family injectivity is defined by imposing the in-
jectivity of the Leibniz operator on ThFam (I), i.e., by stipulating that, for
all T,T ′ ∈ ThFam (I), Ω(T ) = Ω(T ′) implies T = T ′. Narrow left injectivity

replaces T,T ′ in the conclusion by
←Ð
T ,
←Ð
T ′, respectively, whereas narrow right

injectivity applies the same replacement in the hypothesis. Finally, narrow
system injectivity enforces the same condition as that of narrow family in-
jectivity, but restricts its scope on theory systems in ThSys (I). Narrow
right injectivity implies exclusive systemicity, but does not imply any of the
stronger versions of rough or narrow systemicity. With narrow injectivity,
we recover the linearity of the injectivity hierarchy that was lost in passing
to rough injectivity. That is, narrow right injectivity implies narrow fam-
ily injectivity, which implies narrow left injectivity, which, in turn, implies
the system version. Moreover, narrow system injectivity, supplemented by
narrow systemicity, implies narrow right injectivity. It turns out that nar-
row family injectivity is equivalent to rough family injectivity. On the other
hand, the two left injectivity properties, narrow left and rough left injectivity,
ar incomparable, i.e., none implies the other. Some order is regained when
looking at the right versions, where rough right injectivity implies narrow
right injectivity. This order is maintained at the system level in which rough
system injectivity also implies narrow system injectivity. As was the case
with rough injectivity, each narrow injectivity property, supplemented with
the existence of theorems, is equivalent to the corresponding injectivity prop-
erty. Moreover, all four narrow injectivity properties transfer. Finally, the
family and system versions have characterizations in terms of the injectivity
of Ω, viewed as a mapping from ThFam (I) and ThSys (I), respectively, to
ConSys∗(I).

In Sections 6.4 and 6.5, we looked at the rough and narrow injectivity
hierarchies. Following this paradigm, in Sections 6.6 and 6.7, we introduce
and study the rough and narrow reflectivity properties and, then, in Sections
6.8 and 6.9, the rough and narrow complete reflectivity properties.

In Section 6.6, we turn to rough reflectivity. Once more, the family
version is the easiest to describe. A π-institution is called roughly family
reflective if, for all theory families T , T ′, Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′.
Rough left reflectivity results by replacing T , T ′ in the conclusion by

←Ð
T ,

←Ð
T ′, respectively. Rough right reflectivity applies the same change in the
hypothesis. Finally, rough system reflectivity imposes the same implication
as the family version, but only on theory systems. Rough right reflectivity
implies rough systemicity. It also implies rough family reflectivity, which
implies rough system reflectivity. Rough left reflectivity also implies the
system version. Rough right reflectivity is actually equivalent to the system
version plus rough systemicity. On the other hand, rough system reflectivity
and stability imply rough left reflectivity. It is straightforward to see, based
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on the relevant defining conditions, that each of the four rough reflectivity
versions implies the corresponding rough injectivity version. Furthermore,
each rough reflectivity version, supplemented by the existence of theorems, is
equivalent to the corresponding reflectivity property. The section concludes
with a proof that all four rough reflectivity properties transfer and with
characterizations of rough family and rough system reflectivity in terms of
the Leibniz operator, viewed as a mapping from T̃hFam(I) and T̃hSys(I),
respectively, to ConSys∗(I).

In Section 6.7, we look at narrow reflectivity properties. These constitute
alternatives to rough reflectivity when dealing with reflectivity properties
while attempting to bypass theory families with empty components. A π-
institution is narrowly family reflective if, for all theory families T , T ′ in
ThFam (I), Ω(T ) ≤ Ω(T ′) implies T ≤ T ′. As before, narrow left reflec-

tivity results by replacing T , T ′ in the conclusion by
←Ð
T ,
←Ð
T ′, respectively,

and narrow right reflectivity by performing the same replacement in the hy-
pothesis instead. Finally, narrow system reflectivity stipulates that, for all
T,T ′ ∈ ThSys (I), Ω(T ) ≤ Ω(T ′) implies T ≤ T ′. Narrow family reflectivity
implies exclusive systemicity. As was the case with narrow injectivity prop-
erties, narrow reflectivity properties also align into a linear hierarchy. The
strongest is narrow right reflectivity, followed by narrow family reflectivity,
then by the left version and, at the tail, by narrow system reflectivity. The
weakest one, narrow system reflectivity, supplemented by narrow systemicity,
implies narrow right reflectivity. The relationships between corresponding
rough and narrow versions of reflectivity follow those established in Section
6.5 between corresponding rough and narrow injectivity properties. First,
rough family and narrow family reflectivity are equivalent. On the opposite
end, the left versions turn out to be incomparable. Somewhere in between,
for both the right and system versions, it turns out that the rough property
implies the narrow one. Not surprisingly, each narrow reflectivity property
implies the corresponding narrow injectivity property. Moreover, a given
narrow reflectivity property is equivalent to the corresponding reflectivity
property in the presence of theorems. All four narrow reflectivity properties
transfer. Finally, characterizations are provided of narrow family and narrow
system reflectivity in terms of the Leibniz operator seen as a mapping from
ThFam (I) and ThSys (I), respectively, to ConSys∗(I).

In Section 6.8, we turn to complete reflectivity (c-reflectivity) properties
starting with rough complete reflectivity. A π-institution I is roughly family
c-reflective if, for every collection T ∪ {T ′} of theory families, ⋂T ∈T Ω(T ) ≤
Ω(T ′) implies ⋂T ∈T T̃ ≤ T̃ ′. The left version results by replacing each theory
family by its arrow counterpart in the conclusion, whereas the right one by
applying the same change in the hypothesis instead. Finally, the system ver-
sion stipulates that the same condition as that defining the family version
applies, but T ∪ {T ′} is allowed to range over collections of theory systems
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instead of arbitrary theory families. Paralleling the rough reflectivity hi-
erarchy, rough right c-reflectivity implies rough family c-reflectivity, which
implies rough system c-reflectivity, while the left version also implies the sys-
tem version. In fact, rough right c-reflectivity is equivalent to rough system
c-reflectivity plus rough systemicity, whereas rough system c-reflectivity, to-
gether with stability, imply rough left c-reflectivity. It is clear that each rough
c-reflectivity property generalizes the corresponding rough reflectivity prop-
erty. It is also not difficult to show that each rough c-reflectivity property,
in the presence of theorems, coincides with the corresponding c-reflectivity
property. All four rough c-reflectivity properties transfer and, as before,
characterizations may be formulated of the family and system versions in
terms of the Leibniz operator, perceived as a mapping from T̃hFam(I) and
T̃hSys(I), respectively, to ConSys∗(I).

Section 6.9 deals with narrow complete reflectivity. A π-institution I is
narrowly family c-reflective if, for every collection T ∪ {T ′} ⊆ ThFam (I),
⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ≤ T ′. Once more, the left version arises by
replacing all theory families in the conclusion by their arrow counterparts
and, similarly, the right version by performing the same change in the hy-
pothesis. Narrow system c-reflectivity imposes the same condition as the
family version, but restricted to collections T ∪ {T ′} ⊆ ThSys (I). As with
narrow reflectivity, the narrow c-reflectivity hierarchy is linear. The right
version is the strongest, followed by the family, then the left and, finally, the
system version. In addition, narrow system c-reflectivity, together with nar-
row systemicity, implies the right version. Comparisons between the rough
c-reflectivity and the narrow c-reflectivity classes also follow the pattern re-
vealed for corresponding reflectivity properties. In accordance, rough family
and narrow family c-reflectivity are equivalent, rough left and narrow left
c-reflectivity are incomparable, whereas the rough right and rough system
versions imply, respectively, the narrow right and narrow system versions.
As with their rough counterparts in Section 6.8, all four narrow c-reflectivity
properties coincide with the corresponding c-reflectivity properties in the
presence of theorems. Furthermore, all four narrow c-reflectivity proper-
ties transfer. The family and system versions have characterizations via the
Leibniz operator seen as a mapping from ThFam (I) and ThSys (I), re-
spectively, to ConSys∗(I), analogous to the ones obtained for both narrow
injectivity and narrow reflectivity.

The last section of the chapter, Section 6.10, contains some characteriza-
tions of the property of a π-institution possessing theorems. This is closely
connected to the overarching ideas governing the properties investigated in
Sections 6.2-6.9, which aimed at rectifying the “pathologies” introduced by
the absence of theorems. The availability of theorems is characterized by
the injectivity of the Frege equivalence family operator, as well as by both
the injectivity and the complete reflectivity of the Lindenbaum equivalence
family operator, both applied to the collection of theory families of the π-
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institution. These operators were introduced in Section 2.11. Possession
of theorems transfers to the collections of all I-filter families over arbitrary
F-algebraic systems.

1.3.6 Chapter 7

In Chapter 7, we further pursue our endeavor of making properties in the
lower bottom of the algebraic hierarchy suitable for the study of π-institutions
that do not have theorems. Similarly to Chapter 6, we employ rough equiva-
lence and narrowness to achieve this goal, but, unlike in Chapter 6, the focus
here is on monotonicity and complete monotonicity properties, rather than
on injectivity, reflectivity and complete reflectivity properties.

In Section 7.2, we define a stability hierarchy, which serves, in the sequel,
to formalize properties of some of the classes in the monotonicity and com-
plete monotonicity hierarchies. Recall that a π-institution I is stable if, for

all theory families T ∈ ThFam(I), Ω(←ÐT ) = Ω(T ). Weakening this notion, we
call I narrowly stable if the same equation holds, provided T ∈ ThFam (I),
i.e., the scope is restricted to theory families all of whose components are
nonempty. A further weakening insists that the same equation hold for all

T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I), i.e., it further restricts the scope

of the quantification to theory families all of whose components are nonempty
and whose arrow counterparts also have all components nonempty. Clearly,
stability implies narrow stability, which, in turn, implies the last property,
which is termed exclusive stability. It is shown that both implications are
strict.

In Section 7.3, we study the rough monotonicity hierarchy. Recall that,
given a π-institution I and a theory family T of I , T̃ denotes the rough com-
panion of the theory family T , which is the theory family resulting from T

by replacing all empty Σ-components of T by SEN♭(Σ). Two theory families
T and T ′ are roughly equivalent if they have the same rough companion.
This is equivalent to saying that if T and T ′ differ at some signature Σ,
they one has an empty Σ-component, whereas the other has SEN♭(Σ) as
its Σ-component. A π-institution I is roughly family monotone if, for all
theory families T,T ′ ∈ ThFam(I), T̃ ≤ T̃ ′ implies Ω(T ) ≤ Ω(T ′). Rough

left monotonicity results by replacing T , T ′ in the hypothesis by
←Ð
T ,
←Ð
T ′, re-

spectively, and rough right monotonicity by applying the same replacement
in the conclusion. Rough system monotonicity stipulates that the original
implication hold, for all T,T ′ ∈ ThSys(I). It turns out that rough left mono-
tonicity implies both rough family and rough right monotonicity and that
each of the latter two implies the system version. Additionally, the strongest
version, rough left monotonicity, is equivalent to the weakest, system, ver-
sion, together with stability. Recall from Section 3.3 that family and left
monotonicity are equivalent and this property was termed protoalgebraicity.
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Recall also, from the same section, that system and right monotonicity are
equivalent and this property was called prealgebraicity. Protoalgebraicity
implies rough left monotonicity, whereas prealgebraicity implies rough right
monotonicity. Tighter connections can be established under some fairly gen-
eral hypotheses. For non almost inconsistent π-institutions, protoalgebraicity
is equivalent to rough family or rough left monotonicity, coupled with the
availability of theorems. Similarly, for π-institutions having a theory fam-

ily T ≠ SEN♭, with
←Ð
T ≠ ∅, prealgebraicity is equivalent to rough right or

rough system monotonicity, supplemented with the availability of theorems.
All four rough monotonicity properties transfer. E.g., I is roughly family
monotone if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all I-filter families T,T ′ ∈ FiFamI(A), T̃ ≤ T̃ ′ implies ΩA(T ) ≤ ΩA(T ′).
Both rough family and rough system monotonicity can be characterized us-
ing properties of the Leibniz operator viewed as a mapping from T̃hFam(I)
and T̃hSys(I), respectively, to ConSys∗(I).

In Section 7.4, we switch from rough monotonicity to narrow monotonic-
ity properties. These constitute an alternative approach to bypassing theory
families and theory systems with one or more empty components. We say
that a π-institution I is narrowly family monotone if, for all theory families
T , T ′, with all components nonempty, T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). The left

version results by replacing T , T ′ by
←Ð
T ,
←Ð
T ′, respectively, in the hypothesis and

the right version by performing the same replacement in the conclusion in-
stead. Narrow system monotonicity stipulates that, for all T,T ′ ∈ ThSys (I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Narrow left monotonicity implies narrow fam-
ily monotonicity, which implies narrow system monotonicity, while the latter
is also a consequence of narrow right monotonicity. Narrow left monotonicity
is strong enough to yield exclusive stability, which, however, is the weakest of
the three stability versions studied in Section 7.2. Under narrow systemicity,
introduced in Section 6.3, the narrow monotonicity hierarchy collapses to a
single class. Protoalgebraicity implies narrow left monotonicity and prealge-
braicity implies the right version. In this case as well, tighter connections are
possible under additional, fairly general, hypotheses, as was the case with
rough monotonicity properties. Namely, under the hypothesis that I is not
almost inconsistent, protoalgebraicity is equivalent to narrow left or narrow
family monotonicity, coupled with the existence of theorems. And, provided
that I possess a theory system T ≠ ∅,SEN♭, prealgebraicity is equivalent to
narrow right or narrow system monotonicity, together with the availability
of theorems. Of central interest here is whether and how the rough mono-
tonicity properties are related to the narrow monotonicity properties. In
comparing the two hierarchies, we discover that the two family versions are
equivalent, whereas each of the three remaining rough monotonicity proper-
ties implies the corresponding narrow monotonicity property. All four narrow
monotonicity properties transfer. Finally, characterizations of the family and
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the system versions may be formulated in terms of the Leibniz operator seen
as a mapping from ThFam (I) and ThSys (I), respectively, to ConSys∗(I).

In Section 7.5, we return to roughness, but study complete monotonic-
ity (c-monotonicity) instead of monotonicity properties. Rough family c-
monotonicity stipulates that, for all collections T ∪ {T ′} ⊆ ThFam(I), T̃ ′ ≤
⋃T ∈T T̃ implies Ω(T ′) ≤ ⋃T ∈T Ω(T ). Rough left c-monotonicity and rough
right c-monotonicity result by replacing in the hypothesis and in the conclu-
sion, respectively, all theory families by their arrow versions. Rough system
c-monotonicity imposes the same condition as does the family version, but
restricts its applicability on collections T ∪{T ′} consisting of theory systems.
Here, it turns out that each of the left, family and right versions implies
the system version. Moreover, rough left c-monotonicity is equivalent to
the conjunction of rough system c-monotonicity and stability. It is also the
case that, under stability, the rough family and rough right c-monotonicity
properties coincide and that, under rough systemicity, the entire rough c-
monotonicity hierarchy collapses to a single class. From the definitions, it
is obvious that each of the four rough c-monotonicity properties implies the
corresponding rough monotonicity version. It is also the case that each c-
monotonicity property implies its rough c-monotonicity counterpart. Once
more, for non almost inconsistent π-institutions, family (left c-monotonicity,
respectively) is equivalent to the conjunction of rough family (rough left, re-
spectively) c-monotonicity and the existence of theorems. Furthermore, if I
possesses a theory family T ≠ SEN♭, such that

←Ð
T ≠ ∅, then system (right, re-

spectively) c-monotonicity is equivalent to rough system (right, respectively)
c-monotonicity plus the existence of theorems. All four rough c-monotonicity
properties transfer and one may, in this case also, recast the family and sys-
tem versions in terms of properties of the Leibniz operator seen as a mapping
from T̃hFam(I) and T̃hSys(I), respectively, to ConSys∗(I).

In Section 7.6, we switch from rough versions of c-monotonicity to narrow
versions of the same property. A π-institution I is called narrowly family
c-monotone if, for all collections T ∪ {T ′} ⊆ ThFam (I), T ′ ≤ ⋃T ∈T T im-
plies Ω(T ′) ≤ ⋃T ∈T Ω(T ). In the left version, all theory families are replaced
in the hypothesis by their arrow counterparts and, in the right version, the
same change is applied in the conclusion. The system version stipulates
that the implication above hold for all collections T ∪ {T ′} ⊆ ThSys (I).
Each of the left, family and right versions implies the system version. More-
over, each of the four c-monotonicity versions implies the corresponding nar-
row c-monotonicity version. As was the case in relating rough and narrow
monotonicity classes in Section 7.4, rough family c-monotonicity is equiva-
lent to narrow family c-monotonicity, whereas each of the other three rough
c-monotonicity properties implies the corresponding narrow c-monotonicity
version. From the definitions, it is clear that a narrow c-monotonicity prop-
erty implies its narrow monotonicity counterpart, the latter being a special-
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ization of the former. All four narrow c-monotonicity properties transfer.
In closing, both the family and the system versions have characterizations
in terms of properties of the Leibniz operator perceived as a mapping from
ThFam (I) and ThSys (I), respectively, into ConSys∗(I).

1.3.7 Chapter 8

In Chapter 8, we undertake the study of regularity. Roughly speaking, it
is the property stipulating that, whenever two sentences belong to a theory
family of a given π-institution, they must be identified modulo the Leib-
niz congruence system relative to that theory family. When, in addition to
regularity, availability of theorems is also postulated, the property of asser-
tionality is obtained. Assertionality strengthens complete reflectivity and, as
a result, it can be used to strengthen (weak) (pre)algebraizability properties.
These strengthenings and their associated hierarchies are under the micro-
scope in Sections 8.4-8.7. The classes of π-institutions obtained here are
among the most powerful classes in the semantic hierarchy of π-institutions,
i.e., satisfy the strongest properties and are included in most of the other
classes in the hierarchy.

In Section 8.2, we introduce regularity. As was the case with other
properties in preceding chapters, regularity comes in four different versions.
Once more, we begin from the easiest to describe, the family version. A
π-institution I is family regular if, for all theory families T , all signatures Σ
and all Σ-sentences φ an ψ, if φ,ψ ∈ TΣ, then ⟨φ,ψ⟩ ∈ ΩΣ(T ). Left regularity

results by replacing T in the hypothesis by
←Ð
T , right regularity by performing

the same replacement in the conclusion instead, whereas system regularity
stipulates that the implication hold for all theory systems T . Family regular-
ity is the strongest of the four properties, followed by right regularity, which
implies left regularity, which, in turn, implies the system version. Thus,
regularity properties are stratified into a linear hierarchy. System regularity
plus stability imply left regularity, and right regularity plus stability yield
family regularity. It follows that, under stability, the four-class hierarchy is
reduced to two classes. On the other hand, system regularity plus systemic-
ity clearly yield family regularity, whence, systemicity leads to a collapse
of the regularity hierarchy into a single class. The family, left and system
versions have elegant characterizations in terms of the Suszko operator and
one of its variants. E.g., a π-institution I is family regular if and only if, for
every signature Σ and all Σ-sentences φ and ψ, ⟨φ,ψ⟩ ∈ Ω̃IΣ(C(φ,ψ)), where
C(φ,ψ) is the least theory family of I containing φ and ψ. All four regularity
properties transfer. For instance, with regards to the right version, I is right
regular if and only if, for every F-algebraic system A, all I-filter families T
of A, all signatures Σ in A and all Σ-sentences φ and ψ, φ,ψ ∈ TΣ implies

⟨φ,ψ⟩ ∈ ΩAΣ(←ÐT ). The other three transfer results are formalized similarly.
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Finally, the family and system versions may be characterized by the prop-
erty that the filter family (system, respectively) in any reduced matrix family
(system, respectively) is at most a singleton, in the sense that it consists of
components with at most one element each.

In Section 8.3, we study assertionality. This is the property resulting from
regularity by adding the requirement that theorems exist. Accordingly, four
versions of assertionality are a priori obtained, depending on which of the
four versions of regularity is postulated. They are termed family, right, left
and system assertionality and, based on the hierarchy of regularity properties
of Section 8.2, these also form a linear hierarchy, with the family version at
the top, followed by the right, then the left and, finally, the system version
at the bottom of the hierarchy. Assertionality is characterized by asserting,
roughly speaking, that each theory family is fully determined by its Leibniz
congruence system as the equivalence class of any theorem. Even though,
a priori, there are four assertionality versions, there is a reduction holding
without proviso. More precisely, it can be shown that right assertionality
implies systemicity and this entails that right and family assertionality are
equivalent. This property implies left assertionality, which, in turn, implies
the system version. Moreover, the latter supplied with systemicity, implies
family assertionality. By the definitions, it is clear that each assertional-
ity version implies the corresponding regularity version. What is, however,
more interesting, albeit not much more challenging to demonstrate, is that
each assertionality property implies the corresponding complete reflectivity
(c-reflectivity) property (see Section 3.8). So the assertionality properties
may be viewed as further strengthening the hierarchy of reflectivity and c-
reflectivity properties, studied in Sections 3.7 and 3.8. All three different as-
sertionality properties transfer. Again, indicative of the flavor, a π-institution
I = ⟨F,C⟩ is, e.g., left assertional if and only if, for every F-algebraic system
A, the π-institution ⟨A,CI,A⟩ is left assertional, meaning that, on the one
hand, the least I-filter family of A has all components nonempty and, on the
other, that, for all I-filter families T of A, all signatures Σ and all Σ-sentences
φ and ψ, such that φ,ψ ∈ TΣ, one has ⟨φ,ψ⟩ ∈ ΩAΣ(T ). The section concludes
with characterizations of the family and system versions, analogous to the
ones provided in the conclusion of Section 8.2 for regularity. Namely, it is
shown that I is family (system) assertional if and only if the filter family
(system, respectively) of every reduced matrix family (system, respectively)
is a singleton (i.e., consists of singleton components).

In Sections 8.4-8.7, we take advantage of the role of assertionality in
strengthening of c-reflectivity to obtain strengthened versions of weak (pre)-
algebraizability and (pre)algebraizability properties. The first two are ob-
tained by combining assertionality properties with pre- or protoalgebraicity,
whereas the latter are obtained by using (pre)equivalentiality instead.

In Section 8.4, we look at regular weak prealgebraizability properties.
These result from adding to prealgebraicity (i.e., system monotonicity) a
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version of assertionality. Since there are three distinct versions of asser-
tionality, one obtains three distinct corresponding versions of regular weak
prealgebraizability. A π-institution I is regularly weakly family (RWF) pre-
algebraizable if it is prealgebraic and family assertional. It is regularly weakly
left (RWL) prealgebraizable if it is prealgebraic and left assertional and it
is regularly weakly system (RWS) prealgebraizable if it is prealgebraic and
system assertional. Since the distinguishing feature between these three
properties is the type of assertionality imposed, the assertionality hierar-
chy immediately yields that RWF prealgebraizability implies RWL prealge-
braizability, which, in turn, implies RWS prealgebraizability. Equally clear
from the definitions is the fact that RWF/L/S prealgebraizability implies,
respectively, family/left/system assertionality. Additionally, the fact that
each assertionality property implies its c-reflectivity counterpart entails that
RWF/L/S prealgebraizability implies, respectively, WF/L/SC prealgebraiz-
ability (see Section 4.2). All three versions of regular weak prealgebraiz-
ability transfer. The section concludes with characterizations of the three
versions based on the Leibniz operator viewed as a mapping between or-
dered sets of filter families/systems and congruence systems. To provide a
flavor, we look at RWF prealgebraizability. The characterization states that
I is RWF prealgebraizable if and only if, for every F-algebraic system A,
ΩA ∶ FiFamI(A) → ConSysI∗(A) is an order isomorphism, such that, for all
T ∈ FiFamI(A), T /ΩA(T ) is a singleton.

In Section 8.5, we study regular weak algebraizability. The properties
here are obtained from the regular weak prealgebraizability properties of
Section 8.4 by upgrading prealgebraicity to protoalgebraicity. Accordingly,
a π-institution I is regularly weakly family (RWF) algebraizable if it is pro-
toalgebraic and family assertional, it is regularly weakly left (RWL) alge-
braizable if it is protoalgebraic and left assertional and it is regularly weakly
system (RWS) algebraizable if it is protoalgebraic and system assertional.
Notice that, since these properties constitute enhancements of the properties
of Section 8.4, the right version has been absorbed within the family ver-
sion. Here, however, protoalgebraicity, which, unlike prealgebraicity, implies
stability, forces, in addition, the identification of the left and the system
versions. Thus, there are only two distinct regular weak algebraizability
properties, regular weak family (equivalently, right) algebraizability being
the strongest and regular weak system (equivalently, left) algebraizability
the weakest of the two. In comparing this two-step hierarchy with that of
regular weak prealgebraizability properties, we discover that the two family
versions coincide, whereas regular weak system algebraizability implies reg-
ular weak left prealgebraizability. As a consequence, the combined regular
weak (pre)algebraizability hierarchy consists of four classes that are linearly
ordered. Moreover, essentially due to the fact that assertionality properties
imply c-reflectivity properties, each of the two regular weak algebraizability
classes are included in the corresponding weak algebraizability classes. Both
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regular weak algebraizability properties transfer. Finally, both have charac-
terizations in terms of the Leibniz operator seen as a mapping between or-
dered sets. E.g., I is RWS algebraizable if and only if, for every F-algebraic
system A, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphim, such
that, for all T ∈ FiSysI(A), T /ΩA(T ) is a singleton.

In Section 8.6, we introduce regular prealgebraizability properties. These
are obtained by combining assertionality properties with preequivalentiality.
Recalling that preequivalentiality is obtained by adding system extensionality
to prealgebraicity, an alternative point of view is that regular prealgebraiz-
ability is obtained from regular weak prealgebraizability, studied in Section
8.4, by adding system extensionality. A π-institution I is regularly family
(RF) prealgebraizable if it is preequivalential and family assertional, it is reg-
ularly left (RL) prealgebraizable if it is preequivalential and left assertional
and it is regularly system (RS) prealgebraizable if it is preequivalential and
system assertional. Based on the linear hierarchy of assertionality properties,
we obtain a linear hierarchy of regular prealgebraizability properties, with RF
prealgebraizability at the apex, followed by RL prealgebraizability, while RS
prealgebraizability is at the bottom. Since preequivalentiality strengthens
prealgebraicity, RF/L/S prealgebraizability implies, respectively, RWF/L/S
prealgebraizability. Moreover, since each version of assertionality implies the
corresponding c-reflectivity version, RF/L/S prealgebraizability implies, re-
spectively, family/ left c-reflective/ system prealgebraizability (see Section
5.5). All three versions transfer. Finally, characterization theorems may be
formulated for each of the three properties in terms of the Leibniz operator
viewed as a mapping between ordered sets. To provide, once more, a pre-
view, we mention the form this characterization takes in the case of regular
left prealgebraizability. A π-institution I is regularly left prealgebraizable if
and only if, for every F-algebraic system, A, ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding, commuting with inverse logical extensions, such that,

for all T ∈ FiFamI(A), ←ÐT /ΩA(T ) is a singleton.

In Section 8.7, the last section of Chapter 8, we turn to the study of
regular algebraizability properties, which combine equivalentiality with as-
sertionality. Equivalentiality forms a common strengthening of both protoal-
gebraicity and preequivalentiality. Even though one obtains, a priori, three
versions of regular algebraizability, only two are distinct. We say that I
is regularly family (RF) algebraizable if it is equivalential and family as-
sertional, regularly left (RL) algebraizable if it is equivalential and left as-
sertional, and regularly system (RS) algebraizable if it is equivalential and
system assertional. Regular left and regular system algebraizability coin-
cide and, as a result, the regular algebraizability hierarchy consists of the
class of RF algebraizable π-institutions and its proper subclass of RS al-
gebraizable π-institutions. In comparing regular algebraizability with regu-
lar prealgebraizability properties, we discover that the two family versions
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are equivalent and that regular system algebraizability implies regular left
prealgebraizability. Further, in comparing regular algebraizability with reg-
ular weak algebraizability properties, we obtain, based on equivalentiality’s
dominant position over protoalgebraicity, that RF/S algebraizability implies,
respectively, RWF/S algebraizability. In the ultimate comparison between
subhierarchies, based on the fact that assertionality implies c-reflectivity, we
obtain that RF/S algebraizability implies, respectively, F/S algebraizabil-
ity. The section closes with the same type of theorems as previous sections.
Namely, it is shown that both versions of regular algebraizability transfer
from a π-institution to the filter families/systems over arbitrary F-algebraic
systems and characterizations of both versions are obtained in terms of the
Leibniz operator perceived as a mapping between ordered sets. The family
version, e.g., asserts that I is regularly family algebraizable if and only if,
for every F-algebraic system A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is an order
isomorphism commuting with inverse logical extensions, such that, for all
T ∈ FiFamI(A), T /ΩA(T ) is a singleton.

1.3.8 Chapter 9

In Chapter 9, we undertake the study of finitarity properties of weakly family
algebraizable π-institutions. Here we draw inspiration by the analysis of
corresponding properties of algebraizable sentential logics.

According to the theory of algebraization of sentential logics, a, not nec-
essarily finitary, algebraizable sentential logic S is algebraized via an equiv-
alence that relates its consequence relation with the equational consequence
of a generalized quasivariety K. The relation of equivalence is established via
a possibly infinite set of defining equations E(x) in a single variable x, which
serve to translate formulas into equations, and a possibly infinite set ∆(x, y)
of equivalence formulas in two variables x and y, which serve to translate
equations into formulas. Besides constituting interpretations between the
two consequences, they should be mutually inverse in a specific sense. In ex-
amining the relationships between the various finitarity conditions that may
hold, namely, S finitary, SK (the equational deductive system induced by K)
finitary, E(x) finite and ∆(x, y) finite, one may show that they are related
by the implications depicted in the following diagram (see p. 137 in Section
3.4 of [86]).
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S ,SK finitary
E,∆ finite

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

SK finitary E,∆ finite
❄

S finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

∆ finite
❄

E finite
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

S algebraizable
via K,∆,E

In the framework of sentential logics, roughly speaking, syntactic and
semantic properties, i.e., those imposing the existence of transformations,
such as E(x) and ∆(x, y), satisfying certain properties, and those defined by
order-theoretic properties of the Leibniz operator go hand-in-hand, in a tight
correspondence. This is not the case in the framework of logics formalized
as π-institutions. So in this chapter, the goal is to translate the sentential
finitarity conditions to corresponding semantic properties and to establish an
analogous hierarchy for weakly family algebraizable π-institutions. We also
use examples from the sentential framework, recasting them as π-institutions,
to obtain logical systems that serve to separate the classes of π-institutions
specified by these finitarity properties.

In Section 9.2, the concept of π-structure is introduced, which abstracts
that of a π-institution by removing the requirement of structurality. For
π-structures, and, hence, also for π-institutions, the finitary companion is
constructed, which is the π-structure over the same base algebraic system
that has the largest finitary closure family included in the closure family of
the given π-structure. Locally finitely generated theory families are defined
and they are used to characterize those sentence families of a π-structure that
are theory families of its finitary companion. These turn out to be exactly
those sentence families that are unions of directed collections of locally finitely
generated theory families of the given π-structure.

In Section 9.3, we investigate under which provisos, if any, the properties
that define weak family algebraizability, i.e., protoalgebraicity and family re-
flectivity, are inherited by the finitay companion from the original π-structure
and vice-versa. It is shown, first, that protoalgebraicity and family reflectiv-
ity are propagated from the finitary companion up to the parent π-structure
unconditionally. On the other hand, the reverse inheritance requires addi-
tional conditions. To this end, the concept of continuity of the Leibniz and
of the inverse Leibniz operator are introduced. The latter, of course, makes
sense only if the π-institution under consideration is such that its Leibniz
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operator is an isomorphism, e.g., when it is weakly family algebraizable,
which is precisely the case we focus on. If the Leibniz operator is continu-
ous, it is easy to see that the π-institution is protoalgebraic. So continuity of
the Leibniz operator actually strengthens protoalgebraicity. If, in addition to
continuity, finiteness of the signature category is postulated, then the finitary
companion is also protoalgebraic. Finally, it is shown that, if a π-institution,
with a finite category of signatures, is weakly family algebraizable and both
its Leibniz and inverse Leibniz operators are continuous, then its finitary
companion is also weakly family algebraizable.

In Section 9.4, we undertake a detailed study of the interrelationships
of the four finitarity properties pertaining to weakly family algebraizable π-
institutions. These are the finitarity of the π-institution itself, the finitarity
of its equational counterpart, the continuity of the Leibniz operator and the
continuity of the inverse Leibniz operator, which is well-defined precisely be-
cause the π-institution is assumed to be weakly family algebraizable. These
four properties are appropriate abstractions in the semantical institutional
context of the properties of an algebraizable sentential logic being finitary,
of its equivalent algebraic semantics being a quasivariety, of the set of equiv-
alence formulas being finite and of the set of defining equations being finite,
respectively. The close analogy is reflected in the fact that the results and
hierarchy obtained here parallel the ones that hold for the corresponding
properties in the sentential context. Our results come, as do their sentential
counterparts, in dual pairs. In the first, it is shown that, for a weakly fam-
ily algebraizable π-institution I , the finitarity of I implies the continuity of
its inverse Leibniz operator and, dually, the finitarity of the equational π-
structure QK induced by K ∶= AlgSys(I) implies the continuity of the Leibniz
operator itself. Next, it is shown that, under weak family algebraizability,
the finitarity of I and the continuity of the Leibniz operator imply that the
equational counterpart is also finitary. Dually, the finitarity of the equa-
tional counterpart and the continuity of the inverse Leibniz operator imply
that I itself is finitary. These implications lead to the following conditional
equivalences, all applying to weakly family algebraizable π-institutions. For
continuous Leibniz and inverse Leibniz operators, a π-institution is finitary
if and only if its algebraic counterpart is finitary. For a finitary π-institution,
its counterpart is finitary if and only if its Leibniz operator is continuous.
Finally, if the algebraic counterpart of a π-institution is finitary, then the
π-institution itself is finitary if and only if its inverse Leibniz operator is
continuous. These outcomes lead to a finitarity hierarchy for weakly fam-
ily algebraizable π-institutions paralleling the hierarchy depicted above for
sentential logics.
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I ,QK finitary
Ω,Ω−1 continuous

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

QK finitary
Ω and Ω−1

continuous

❄

I finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

Ω continuous
❄

Ω−1 continuous
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

I weakly family
algebraizable

What remains to be done is separate the classes of π-institutions consti-
tuting the finitarity hierarchy. For this task, given the analogies established
with the sentential framework, we seek inspiration from the realm of senten-
tial logics.

In Section 9.5, we revisit three sentential logics that serve in separating
the classes that form the finitarity hierarchy in the sentential framework.
The classes related by the vertical arrows are separated by  Lukasiewicz’s
infinite valued logic. This is a non-finitary, semantically defined sentential
logic. It is algebraizable with a non-finitary equivalent algebraic semantics.
On the other hand, both sets of defining equations and equivalence formulas
are finite. The classes connected by the southeast arrows are separated using
a finitary logic introduced by Dellunde and defined via a Hilbert calculus.
It is regularly algebraizable via a singleton set of defining equations but a
necessarily infinite set of equivalence formulas. Finally, the classes related by
the southwest arrows of the diagram are separated using a non-finitary logic
semantically defined by Raftery. This logic has a finitary equivalent algebraic
semantics (actually a variety) and is algebraized via a finite set of equivalence
formulas but a necessarily infinite set of defining equations. Even though we
could certainly rely on well-written accounts from the literature to simply
refer to these logics, we chose to recount all details, based on those original
references. The Introduction to Chapter 9 and the main body contain more
information, as well as appropriate references.

In Section 9.6, the three sentential logics of Section 9.5 are recast as π-
institutions, according to the general procedure outlined in Section 1.1. The
resulting π-institutions serve, in turn, in separating the corresponding classes
appearing in the finitarity hierarchy of weakly family algebraizable π-insti-
tutions. Further evidencing the analogies described between the two finitarity
hierarchies, the π-institution encapsulating  Lukasiewicz’s logic separates the
classes of π-institutions connected via vertical arrows, the one incorporating
Dellunde’s logic separates classes along the southeast arrows, while the one
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arising from Raftery’s logic separates classes related by the southwest arrows
in the institutional finitarity hierarchy.

1.4 A Very Concise Summary of Contents

In Chapter 2, we introduce the basic definitions and fundamental results of
algebra and logic and some indispensable notions and results pertaining to
their interaction. These form the necessary background and the prerequisites
for the general theory of algebraization of logics formalized as π-institutions
that is presented in the monograph.

In Chapter 3, we introduce fundamental classes of the semantic Leibniz hi-
erarchy. The term semantic alludes to the fact that they are defined purely by
properties of the Leibniz operator on the complete lattices of the theory fam-
ilies or theory systems of π-institutions. Very central to our studies through-
out, partly because they equip us with indispensable terminology regarding
crucial properties, are the classes of systemic and stable π-institutions. At
the bottom center of the hierarchy lie the loyalty properties. These simul-
taneously abstract monotonicity properties, on the one side, and reflectivity
properties, on the other side. On the monotonicity side, we study monotonic-
ity and two kinds of complete monotonicity, complete ⋃-monotonicity, using
the union operation, and complete ⋁-monotonicity, using the join operation.
In crossing over to the reflectivity side, we pass through, and study, injectiv-
ity properties. On the other side, we look, first, at reflectivity and, finally,
at complete reflectivity properties. In Chapter 3, we not only define various
flavors of each of these properties and compare their various strengths, but
we also investigate the relations across those different kinds of properties. On
the way, we also present many concrete examples, some of which are reused
throughout the monograph to illustrate concepts, but, also - and mainly - to
separate classes in the various hierarchies.

In Chapter 4, we study weak prealgebraizability and weak algebraizabil-
ity properties. Weak prealgebraizability arises by combining prealgebraicity
(system monotonicity) with one of the ten possible versions of injectivity,
reflectivity or complete reflectivity. On the other hand, weal algebraizability
results when combining protoalgebraiciy (family monotonicity) with one of
those ten versions. Taking into account the combined hierarchy of injectiv-
ity, reflectivity and complete reflectivity properties, established in Chapter
3, we obtain a hierarchy of ten potentially different classes of weak prealge-
braizability and a similar one consisting of ten potentially different classes of
weak algebraizability. However, it is shown that the weak prealgebraizability
hierarchy collapses down to six classes, whereas the one of weak algebraiz-
ability down to only two. Moreover, the top classes in the two hierarchies are
identical. Therefore, when the two hierarchies are merged, a combined hier-
archy consisting of seven distinct classes is obtained. The chapter includes,
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inter alia, characterizations of these seven classes using the Leibniz opera-
tor perceived as a mapping from the lattice of filter families to the poset of
congruence systems over arbitrary algebraic systems.

In Chapter 5, we study the hierarchies of prealgebraizable and of alge-
braizable π-institutions. We look, first, at the property of extensionality
and the seemingly weaker property of 2-extensionality and show that they
are equivalent. Roughly speaking, extensionality relates Leibniz congruence
systems of theories of an institution with those of corresponding theories of
subinstitutions. Then, we look at the closely related properties of (Leibniz)
commutativity and inverse (Leibniz) commutativity. These two properties
are equivalent under monotonicity and, moreover, inverse commutativity is
equivalent to extensionality. By combining monotonicity with extensionality
properties, we build the hierarchy of equivalential π-institutions. Depending
on which of the available versions of monotonicity or extensionality are im-
posed, three versions of equivalentiality arise, namely, equivalentiality, family
preequivalentiality and (system) preequivalentiality in decreasing strength.
By combining versions of preequivalentiality with injectivity, reflectivity or
complete reflectivity properties, the ten classes of the prealgebraizability hier-
archy are obtained. Similarly, by combining equivalentiality with injectivity
properties (which are, in the presence of equivalentiality, equivalent to cor-
responding reflectivity or complete reflectivity properties), we get the two
classes of algebraizable π-institutions.

In Chapter 6, we look at classes of the Leibniz hierarchy lying below
the classes of injective, reflective and completely reflective π-institutions,
which were introduced in Chapter 3. The motivating observation is that,
if a π-institution satisfies injectivity or, a fortiori, reflectivity or complete
reflectivity, then it must possess theorems. Thus, π-institutions without the-
orems are automatically excluded from consideration in contexts where these
properties are postulated or studied. To bypass this hurdle, we define and
study weakened versions of injectivity, reflectivity and complete reflectivity
that can accommodate absence of theorems, but are equivalent to injectivity,
reflectivity and complete reflectivity, respectively, in the presence of theo-
rems. For each of those three properties, we study the rough versions and
the narrow versions and carefully compare them to the original versions, as
well as to each other, to obtain the hierarchies of injectivity, rough injectiv-
ity, narrow injectivity, reflectivity, rough reflectivity and narrow reflectivity,
and c-reflectivity, rough c-reflectivity and narrow c-reflectivity classes of π-
institutions. Roughly speaking, roughness identifies two theory families if
their Σ-components are either equal or one is ∅ and the other is SEN♭(Σ).
Those turn out to have identical Leibniz congruence systems. On the other
hand, narrowness excludes from consideration altogether theory families with
at least one empty component.

In Chapter 7, we continue the study of properties of π-institutions ob-
tained by combining properties lying at the bottom of the Leibniz hierar-
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chy with rough equivalence, on the one hand, and with narrowness, on the
other. As opposed to Chapter 6, which considered properties lying below in-
jectivity, reflectivity and complete reflectivity, this chapter undertakes the
study of properties lying below monotonicity and complete monotonicity
(c-monotonicity) properties. In a nutshell, roughly monotone and roughly
c-monotone π-institutions form super classes, respectively, of the classes of
monotone and c-monotone π-institutions. Additionally, narrowly monotone
and narrow c-monotone π-institutions encompass respectively, roughly mono-
tone and roughly c-monotone ones. By studying all four versions of each of
these properties, we obtain a mixed hierarchy of rough and narrow mono-
tonicity and rough and narrow c-monotonicity properties.

In Chapter 8, we study properties obtained by combining pre- or protoal-
gebraicity or (pre)equivalentiality, on the one hand, with assertionality, on
the other. The latter, a property that strengthen complete reflectivity as-
serts, roughly speaking, that a π-institution has theorems and, in addition,
each of its theory families is determined by its associated Leibniz congruence
system as the equivalence class of a theorem. The chapter starts with the
study of regularity, a property similar to assertionality, except that it does not
require existence of theorems. It holds when any two sentences belonging to
a theory family are identified modulo the Leibniz congruence system relative
to that theory family. Assertionality properties are formalized next. The hi-
erarchy they form and its interrelationships with the classes of the regularity
hierarchy are explored in detail. Prealgebraicity, coupled with asserrtional-
ity, gives rise to regular weak prealgebraizability, strengthening the classes
of weak prealgebraizability properties. Protoalgebraicity, together with as-
sertionality, leads to regular weak algebraizability properties. This hierarchy
strengthens both regular weak prealgebraizability and weak algebraizability
properties. Preequivalentiality and assertionality give rise to regular preal-
gebraizability, which strengthens both regular weak prealgebraizability and
prealgebraizability. The chapter concludes with the study of regular alge-
braizability, which combines equivalentiality with assertionality. The classes
of this hierarchy form subclasses of both those consisting of regularly preal-
gebraizable and those consisting of algebraizable π-institutions.

Chapter 9 starts with the introduction of the finitary companion of a π-
institution. It is the largest finitary π-institution below the given one in the
≤ ordering of π-institutions based on the same algebraic system. The focus
is on those properties defining weak family algebraizability, namely protoal-
gebraicity and family reflectivity. We investigate under which conditions,
if any, those properties are passed from a π-institution to its finitary com-
panion and vice-versa. In the second part, the focus shifts to the study of
finitarity properties of weakly family algebraizable π-institutions. This class
of π-institutions is chosen because, on its members, the Leibniz operator is
an isomorphism and, hence, it makes sense to consider the inverse Leibniz
operator. The four finitarity properties under investigation are the finitarity
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of the π-institution itself, the finitarity of its algebraic counterpart and the
continuity of the Leibniz operator and of the inverse Leibniz operator. The
implications holding between these properties give rise to the finitarity hier-
archy of weakly family algebraizable π-institutions. The chapter also revisits
some examples of sentential logics and formalizes them as π-institutions. The
latter are then used to separate the various classes in the finitarity hierarchy.
The three examples are  Lukasiewicz’s infinite valued logic, Dellunde’s logic
and a logic due to Raftery.

1.5 Further Reading

This is the first attempt to systematize the body of knowledge gathered over
the years concerning the algebraization of logics formalized as π-institutions.
However, for the readers interested in learning much more about the origins,
history, concepts, results and developments in algebraic logic as applied to
deductive systems, i.e., “abstract algebraic logic”, there are a few excellent
sources available that have served well over the years in educating the second
and third generations of “abstract algebraic logicians”.

Starting tangentially to the subject, but of interest, since they provide a
comprehensive study of logical calculi and of institutions, respectively, the
latter being the precursors of π-institutions used here, are the monographs
by Wójcicki [34] and Diaconescu [79].

Two of the first sources that played a critical role in establishing and
solidifying the discipline in its present form were the seminal “Memoirs”
monograph of Blok and Pigozzi [35], in which algebraizable logics were in-
troduced, and the pioneering monograph of Font and Jansana [52], in which
generalized matrices were studied in a systematic way and the notion of
Tarski congruence and accompanying reduced class of generalized matrices
and underlying class of algebras were defined and studied in detail.

More at the textbook, rather than at the research, level, are the books
of Czelakowski [64] and the more recent textbook by Font [86]. These are
the only two books, to my knowledge, that are focused on systematically
treating and presenting the most important results in the abstract setting. It
goes, of course, without saying, that they both contain a plethora of concrete
examples that have been studied in the literature, showcasing various aspects
of the general theory and exemplifying the wide reach of its applicability.

Apart from research monographs and books, a few surveys have also
appeared that provide overviews of, and/or details on, significant parts of
the theory. Among them are [40], [68], [69, 80] and [90].

Finally, there have been a few, as far as I am aware, Ph.D. Dissertations
which have dealt, either in their introductions or in their main corpus, with
expositions and/or overviews of significant parts of the theory. Among them,
some that have helped my own understanding and enhanced and/or diver-
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sified my point of view of various aspects of the theory are, in chronological
order, those of Herrmann [43], Elgueta [47], Rebagliato [49], Dellunde [51],
Gyuris [60], Martins [70], Russo [78], Albuquerque [85] and Moraschini [87].

The algebraization of logics formalized as π-institutions may be said to
have started with the Ph.D. Dissertation by the author [97] (see, also, [98]),
under the influence of preceding unpublished work by Zinovy Diskin [46]
(see, also, [51]), which had been communicated to Professor Don Pigozzi, the
author’s Ph.D. Dissertation advisor, and used with Zinovy’s kind permission
and encouragement.


