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2.1 Introduction

In Section 2.2, we introduce the basic algebraic machinery that underlies all
structures considered in the monograph. We start with sentence functors,
which are arbitrary Set-valued functors on a category of signatures. Sen-
tence families are families of sets over sentence functors. They are called
systems in case they are invariant under signature morphisms. Associated

<«
with a sentence family T is the largest sentence system 7' included in 7" and

the smallest sentence system T which includes T. We also introduce and
discuss morphisms between sentence functors and, in particular, distinguish
the key class of surjective morphisms. By analogy to sentence families, one
may also consider relation families over sentence functors, i.e., families of
relations on sentences. Relation families satisfying the requisite properties
constitute equivalence families. A fundamental notion, pervasive throughout
our treatise, is that of compatibility of an equivalence family with a given
sentence family. The importance of compatibility was exemplified in [35]
(see, e.g., Section 1.4 of [35], where the notion is defined). Whereas sentence
functors capture the underlying carriers of all algebraic and logical structures
we consider, the earnest algebraic treatment begins when they get endowed
with categories of natural transformations which correspond to clones of al-
gebraic operations [31, 44]. These enriched structures are termed algebraic
systems. Appropriate mappings, preserving the relevant features, are also
called morphisms (of algebraic systems). In most contexts, it is required
that all algebraic systems under consideration are over the same algebraic
signature. This is ensured by adopting a base algebraic system F, which fixes
the signature, and, then, considering only algebraic systems whose sentences
and clones of operations are, in a certain sense, interpretations of the ba-
sic one. These play an important role and are termed interpreted algebraic
systems or F-algebraic systems.

In Section 2.3, we introduce and study congruence systems. These are
equivalence systems on an underlying algebraic system that satisfy a suit-
ably adapted version of the congruence (sometimes also called compatibility
or replacement) property. They play in this context the role that congruences
play in universal algebra [22, 13, 21, 30, 84]. The collection of congruence
systems on a given algebraic system forms a complete lattice. Of utmost im-
portance is the process of constructing the quotient of an algebraic system by
a congruence system and of the accompanying canonical quotient morphism.
Equally important, in fact indispensable for the development of the theory,
is the fact that the collection of congruence systems on a given algebraic
system A that are compatible with a given sentence family 7" of A form a
complete lattice. This fact allows considering the largest congruence system
on A compatible with 7', which is denoted by Q4(7T") and termed the Leibniz
congruence system of T on A [35]. A property that is worth mentioning,
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since it plays a critical role in establishing pieces of the various hierarchies
considered in subsequent chapters, is that the Leibniz congruence system of
a sentence family 7T is always included in that of the largest sentence system

contained in 7', i.e., QA(T) < QA(?).

In Section 2.4, we look at a special class of congruence systems whose
definition presupposes fixed in the background a class K of algebraic systems.
Given an arbitrary algebraic system, a congruence system on it is said to be
a K-congruence system or a congruence system relative to K if the quotient
algebraic system it induces belongs to the class K (see, e.g., Chapter Q of
[64]). Two important concepts in this context are closure of a class under
morphic images and closure under subdirect intersections. If the class K
is closed under morphic images, then, for every algebraic system in K, the
absolute and relative concepts of congruence system coincide. On the other
hand, if K happens to be closed under subdirect intersections and contains a
trivial algebraic system, then the collection of all K-congruence systems on
any algebraic system forms a complete lattice. In this case, it makes sense
to consider, given a relation system X on an algebraic system A, the least
K-congruence system on A including X, also known as the K- congruence
system generated by X, and denoted by ©%A(X). In the main result of the
section, it is shown that this congruence system coincides with the equational
closure of X relative to the class K.

In Section 2.5, we introduce semantic and syntactic varieties of algebraic
systems. These play the role that varieties play in universal algebra (see,
e.g., [21, 30, 84]). All algebraic systems are understood to be over a fixed
signature specified by a base algebraic system F. To define the two types
of varieties, we look at equations, consisting of pairs of sentences, and at
natural equations, which are pairs of natural transformations. Given a class
K of algebraic systems, the semantic variety generated by K is the class of
all algebraic systems satisfying all equations valid in all members of K. The
syntactic variety generated by K is defined analogously with reference to
natural equations. It turns out that the semantic variety generated by K is
subsumed by the corresponding syntactic one. A technical definition, that
of a transformational algebraic system, is introduced as a way to establish a
sufficient condition for semantic and syntactic varieties to coincide.

In Section 2.6, we switch from purely algebraic to logical considerations.
We define systems of closure operators on algebraic systems, which give rise
to m-institutions [33] (see, also, [25, 41]). Those constitute the basic un-
derlying logical structures on which all subsequent studies will be founded.
Many well-known fundamental logical concepts are adapted to this frame-
work, among them, theorem systems, theory families and inconsistent, almost
inconsistent and trivial w-institutions (see, e.g., [64, 86| for the counterparts
in abstract algebraic logic). Concerning theory families, it is worth mention-
ing that in case T is a theory family of a given m-institution, the construction



70 CHAPTER 2. ALGEBRA AND LOGIC Voutsadakis

<«
of T gives rise to a theory system, and not merely a sentence system, but this

is not the case for T Therefore, T does constitute the largest theory system
included in T, but to construct the smallest theory system including 7', one

has to apply the closure operator and obtain C (?) Comparing closure sys-
tems over the same underlying algebraic system, the notions of extension and
weakening are introduced, as well as that of the closure system obtained as
the intersection of a family of closure systems. Given a closure system C' and
one of its theory systems 7', we also consider the extension C”T of C' that is
induced by adopting the given theory system as a system of axioms. Finally,
we look at logical morphisms between m-institutions. These are morphisms
that preserve the logical structure, i.e., map closures into closures in a for-
mal sense, or, what turns out to be equivalent, morphisms whose inverses
preserve theory families.

In Section 2.7, after having discussed the algebraic and logical prerequi-
sites, we turn into developing the first rudiments of their interaction. We
look at matrix families which serve both to define closure systems, and,
hence, also, m-institutions, but also as algebraically based models of given
m-institutions. They are pairs consisting of an underlying algebraic system
together with a sentence family over it and correspond to the ordinary logical
matrices of abstract algebraic logic [64, 86]. For a given m-institution Z, its
matrix family models are termed Z-matrix families and the corresponding
sentence families are called Z-filter families. Some characterizations of these
families are provided along with the observation that the collection of all
Z-filter families on a given algebraic system forms a complete lattice. A dis-
cussion follows on when and under which conditions morphisms between the
underlying algebraic systems preserve, under taking direct or inverse images,
ZI-filter families. In closing the Section, we look at quotients of matrix fami-
lies under the Leibniz congruence systems of their filter families. These are
referred to as Leibniz reductions (see, e.g., Section 4.3 of [86]). We say that a
matrix family is Leibniz reduced when the Leibniz congruence system of its
filter family is the identity. Leibniz reductions give rise to the fundamental
collection of Leibniz reduced Z-matrix families and the accompanying collec-
tion of their algebraic system reducts. Two more related subcollections are
obtained if one restricts attention to Z-filter systems and Z-matrix systems,
i.e., those that consist of filter families that are invariant under the action of
signature morphisms.

In Section 2.8, continuing the study of filter families and matrix fam-
ilies, we introduce axiomatic extensions, or axiomatic strengthenings, and
the closely related concept of filter extension (see Section 0.8 of [64] and Sec-
tions 1.3 and 1.4 of [86]). We provide characterizations and study interactions
with morphisms, looking, in particular, into some preservation properties.

In Section 2.9, a generalization of matrix families and filter families is
introduced. Namely, we consider structures consisting of an underlying al-
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gebraic system together with a collection of sentence families over it. These
are called generalized matrix families or gmatrix families, for short. They
play the role that generalized matrices play in the traditional treatment [52]
(see, also, Chapter 5 of [86]). As was the case with matrix families, gmatrix
families serve a dual purpose. They may be used to define closure systems,
but they also serve as models of m-institutions. In the latter case, if a gmatrix
family is a model of a given w-institution Z, we say that it is an Z-gmatrix
family. By analogy with Z-matrix families, one may consider reductions of
gmatrix families. The Tarski congruence system of a gmatrix family is the
largest congruence system on its underlying algebraic system which is com-
patible with all filter families of the gmatrix family [52]. Equivalently, it
may be characterized as the intersection of all Leibniz congruence systems
of its constituent filter families. The process of taking the quotient of a
gmatrix family by its Tarski congruence system is called Tarski reduction.
We say that a gmatrix family is Tarski reduced if its Tarski congruence sys-
tem in the identity. The construction gives rise to the class of all Tarski
reduced Z-gmatrix families and the class of the corresponding algebraic sys-
tem reducts. Both are of critical importance in the study of algebraization of
m-institutional logics. Very intimately related to Tarski congruence systems
is the notion of Suszko congruence systems [67] (see, also, Section 1.5 of [64]
and Section 5.3 of [86]). Here, one considers the filter family subcollection 77
of a filter family collection 7 by keeping only those filter families containing
a fixed filter family T € 7. The Suszko congruence system of T relative to
T is the Tarski congruence system of 77. Conversely, assuming that 7 has
a smallest filter family 7', the Tarski congruence system of T coincides with
the Susko congruence system of T in 7. As before, one may consider Suszko
reductions and Suszko reduced Z-matrix families, where the reductions are
taken relative to the collection of all Z-filter families. Even though, given
a m-institution Z, this process results in the new class of Suszko reduced
Z-matrix families, the class of corresponding algebraic system reducts turns
out to be identical with that obtained from the process of Tarski reduction.

In Section 2.10, we continue the study of classes of algebraic systems
associated with a given w-institution Z. In Section 2.7, we introduced the
class of all algebraic system reducts of all Leibniz reduced Z-matrix families.
This class is known as the class of Z*-algebraic systems. In Section 2.9, we
looked at the class of all algebraic system reducts of all Tarski reduced Z-
gmatrix families. These are known as Z-algebraic systems. The two classes
correspond, respectively, to the classes Alg"S and AlgS in the case of a
sentential logic S [52]. On top of these two classes of algebraic systems, two
more classes considered in relation to a w-institution Z are the semantic and
syntactic varieties generated by the underlying algebraic system of the Tarski
reduction of the Z-gmatrix system consisting of the collection of all theory
families of Z. The first is termed the semantic and the second the syntactic
variety of Z. It turns out that, in general, the class of Z*-algebraic systems
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forms the smallest class, followed by the class of Z-algebraic systems, followed
by the semantic variety of Z, while the syntactic variety of Z constitutes the
largest of these four classes. An interesting result is that any of these four
classes generates the same syntactic variety, namely, the syntactic variety of
Z. The section concludes with the observation that the class of all Z-algebraic
systems is closed under subdirect intersections and contains a trivial algebraic
system. Consequently, one is justified in considering congruence systems
generated by any relation system on any given algebraic system relative to
this class.

In Section 2.11, we switch from the study of congruence systems associ-
ated with a given m-institution and of their quotients to the study of equiv-
alence families and systems resulting by considering mutual membership or
non-membership in theory families. The reader is warned that the terminol-
ogy here deviates from the standard one for sentential logics (Section 2.4 of
[52] and Section 1.3 of [86]). This is done in an attempt to streamline the the-
ory of these equivalence families with the theory based on the Leibniz, Tarski
and Suszko congruence systems. The most basic equivalence family is the
Frege equivalence family of a given theory family, which identifies sentences if
they are both inside or both outside the given theory family. Sometimes, this
is expressed by saying that the sentences are equivalent modulo the theory
family. The Frege relation system is the largest equivalence system included
in the Frege equivalence family. There is a close connection between Leibniz
congruence systems and Frege relation families/systems. The Leibniz con-
gruence system of a given theory family is the largest congruence system con-
tained in the Frege equivalence family or system associated with the theory
family. In a way analogous to the passage from Leibniz congruence systems
of single theory families to the Tarski congruence systems of collections of
theory families, one transitions from Frege equivalence families to Carnap
equivalence families. These express equivalence of sentences modulo collec-
tions of theory families. The Carnap equivalence family turns out to be the
intersection of the Frege equivalence families of all theory families in the col-
lection. Here, again, the Carnap equivalence system is the largest equivalence
system included in the Carnap equivalence family. Further, extending the
relation between Leibniz congruence systems and Frege equivalence families,
the Tarski congruence system of a collection is the largest congruence system
included in either the Carnap equivalence family or the Carnap equivalence
system of the same collection. The same paradigm gives rise to Lindenbaum
equivalence families/systems, which formalize the equivalence of sentences
modulo a theory family, relative to a given collection of theory families. This
is identical to the intersection of all Frege equivalence families/systems of
those theory families in the collection including the given one. Similar rela-
tions as before hold in this case as well, with the role of Leibniz and Tarski
congruence systems played by Suszko congruence systems. A small table
at the end of the section summarizes the three congruence systems and the
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three corresponding pairs of equivalence families/systems that are consid-
ered in this context. Hopefully, the analogies outlined between congruence
systems and equivalence families/systems provide some justification for in-
troducing distinct names for the Carnap equivalences and the Lindenbaum
equivalences, which are all referred to as Frege equivalences in the literature.

In Section 2.12, we look at subsystems of algebraic systems and induced
m-subsinstitutions. Given an algebraic system, a universe is a sentence sub-
functor over the same category of signatures that is also closed under the
algebraic operations. In a natural way, a universe gives rise to an alge-
braic subsystem. With each subsystem, there is associated a natural injec-
tion morphism. Given a sentence family of an algebraic system, by closing
successively under the action of signature morphisms and under the action
of natural transformations, one obtains the universe of the algebraic sys-
tem generated by the given sentence family. If the given algebraic system
happens to be the underlying system of a w-institution, which is a case of
central interest, then, by restricting the action of the closure system of the
m-institution on sentences of the universe, we obtain a mw-subinstitution. Its
theory families turn out to be exactly the restrictions of the theory families
of the original 7-institution on the universe. The section concludes by estab-
lishing some connections between the Leibniz congruences of theory families
of the original m-institution and those of the induced theory families of the
subinstitution. These relations extend in a natural way to filter families of
the two institutions.

Up to Section 2.12, only cursory attention is paid to natural transforma-
tions. They are used in establishing syntactic varieties of algebraic systems
via natural equations, but they are not thoroughly studied as “syntactic”
objects of interest in their own right. This deficiency is rectified by devoting
Sections 2.13-2.15 to their study and to particular aspects of their properties
and behavior that are of interest for subsequent considerations.

In Section 2.13, we consider the role played by collections of natural
transformations. In general, in the context of collections of natural transfor-
mations, a number of arguments is fixed and they are considered as primary
or distinguished arguments. The remaining positions play an auxiliary role
and are perceived as parametric (see, e.g., Section 1.2 of [64] and Section
6.2 of [86]). In accordance with this paradigm, if E is a collection of natural
transformations, of which £ positions are considered distinguished, then, for
any k-tuple of sentences gb over a signature 3, Ez[gb] denotes the sentence
family consisting of all sentences of the form 52/(SEN (f)($),%), for e € E,
f X = X a signature morphism and Y an arbitrary tuple of sentences over
7. In this way a tuple, or a collection of tuples, of sentences gives rise to

a sentence family. Dually, given a sentence family 7', one may consider the
family of all k-tuples ¢, such that ex, (SEN(f)(), ) € Ty, for all e, f and
x. This gives rise to a k-ary relation system, depending on both E and T,
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denoted E(T'). E, viewed as an operator from sentence families to relation
systems, is monotone and commutes with inverse surjective morphisms. For
the purposes of relating logical with algebraic systems, critical is the role

<«
played by E as a potential means of defining Leibniz congruence systems

of theory families. Along those lines, it is shown that, if k£ = 2 and (E(T)
defines a reflexive relation system, then this includes the Leibniz congruence

system of T'. Consequently, if <E(T) is itself a congruence system compatible
with 7', then it necessarily coincides with the Leibniz congruence system of
T (see, e.g., Theorem 1.6 of [35]).

In Section 2.14, taking a cue from the definition of the operator £ in
Section 2.13, we investigate membership relations of k-tuples of sentences in
theory families of a 7-institution induced by a fixed set E of natural transfor-
mations, taken to possess k distinguished arguments. Four modes are consid-
ered, namely, E-local, E-global, left E-local and left E-global membership.
It is shown that E-global and left E-global memberships are equivalent, that
they imply left F-local membership, which, in turn, implies F-local member-
ship. Both implications are shown to be strict in general. If a membership
property holds for all k-tuples of sentences (for the same E), then that prop-
erty is attributed to the set E itself. It turns out that, in that case, all
three resulting modes of membership of E in a theory family 7" are actually
equivalent properties.

Section 2.15 is the last of the three sections that are devoted exclusively
to the analysis of syntactic definability properties via sets of natural trans-
formations. In this section, we consider two possible ways which may be
used to obtain, starting from a parametric collection S of natural transfor-
mations, a related one that is parameter-free. The first is effectuated by
replacing all parametric arguments by k-ary terms, where k is the number of
distinguished arguments of S. This process gives rise to a new collection S of
natural transformations with k£ arguments altogether and, therefore, without
parameters. The second process is more abstract. It is defined via the use of,
so called, anti-monotone global properties of natural transformations. These
are properties that satisfy a technical anti-monotonicity condition. Given
such a property P, by slightly abusing notation, we also denote by P the
collection of all natural transformations (possibly with parameters) satisfy-
ing P. Then P denotes the subcollection of P of parameter-free natural
transformations satisfying P. In the main result of Section 2.15, it is shown
that, given such a property P, both constructors P and P result in identical
de-parameterizations of the collection P.

The last three sections of Chapter 2 deal with more specialized topics.
Section 2.16 addresses the special case of w-institutions whose closure systems
are finitary. Most applied logical systems encountered in the literature fall
under this case. Section 2.17 deals with equational m-institutions. These
are m-institutions whose sets of sentences are pairs of sentences drawn from
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a base algebraic system and whose closure operators reflect the equational
consequence determined by a class of algebraic systems. Finally, Section
2.18 adapts some of the rudiments pertaining to varieties, quasivarieties and
generalized quasivarieties of universal algebra and their generation to the
context of algebraic systems.

In Section 2.16, we study finitarity (see, e.g., Section 0.1 of [64] and Sec-
tion 1.4 of [86]). This is the property of a closure system (or m-institution)
that holds when every sentence which is a consequence of a set of sentences is
also a consequence of some finite subset of that set. Some characterizations
of finitarity are provided based on the properties of local continuity and con-
tinuity of a m-institution which, in turn, are defined using local directedness
and directedness of collections of theory families. The last part of the section
provides a step-wise, inductive construction of the filter family of a finitary
m-institution on an arbitrary algebraic system generated by a give sentence
family of the algebraic system.

In Section 2.17, we introduce equational consequences based on fixed
classes of algebraic systems and show that all their theory families happen
to be theory systems and that, moreover, they coincide with the congruence
systems relative to the class of algebraic systems inducing the equational
consequence. Then, as in Section 2.16, we present a step-wise construction
of the equational consequence generated by a given family of equations, con-
sidered as axioms. We show that, if this defining family of equations is taken
to be the family of equations that holds in a class K of algebraic systems,
then the equational consequence they generate, according to this step-wise
process, coincides with the equational consequence induced by the class K.

The final section, Section 2.18, translates some of the classical results
of universal algebra pertaining to varieties, quasivarieties and generalized
quasivarieties [21, 30, 84| (see, also, Chapter Q of [64]) to the context of
classes of algebraic systems. We revisit equations and, in addition, consider
quasiequations and generalized quasiequations, referred to as guasiequations.
Satisfaction of an equation, quasiequation or guasiequation by a given alge-
braic system is defined. These relations give rise to Galois connections (see,
e.g., Chapter 11 of [36]). The closed sets on the algebraic side form, respec-
tively, equational, quasiequational and guasiequational classes of algebraic
systems. Equivalently, these are the classes of algebraic systems defined by
equations, quasiequations and guasiequations. When they are thought of as
classes generated by given collections of algebraic systems, they are termed
varieties, quasivarieties and guasivarieties, respectively. The second part of
Section 2.18 is dedicated to proving Birkhoff [4] and Mal’cev [18] style char-
acterization theorems of these classes using closures under class operators
(see, also, [21, 30, 84]). The four operators considered are taking certifica-
tions, directed certifications, subdirect intersections and morphic images. It
is shown that a given class of algebraic systems is a variety if it is closed under
subdirect intersections and morphic images, it is a quasivariety if it is closed
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under directed certifications and subdirect intersections and it is a guasivari-
ety if it is closed under certifications and subdirect intersections. In the last
part of the section, we translate the conditions of closure under subdirect
intersections and morphic images into properties of the subcollection of the
collection of all congruence systems on the base algebraic system relative to
the class under consideration. On the other hand, certifications and directed
certifications are abstraction conditions (akin to closure under isomorphisms)
and do not seem to have such intrinsic equivalent formalizations.

Chapter 2, in a nutshell, includes the majority of the very basic concepts
and results that constitute the prerequisites for following the developments
recounted in subsequent chapters of the monograph.

2.2 Algebraic Systems

A sentence functor SEN : Sign — Set is a Set-valued functor, with the
property that, for every X € |Sign|, SEN(X) # @. We say that a sentence
functor SEN : Sign — Set is trivial if [SEN(X)| =1, for all ¥ € |Sign].

A sentence family of SEN is a collection T = {T%}s¢/sign/, such that
Ty, ¢ SEN(X), for all ¥ € |Sign|. The collection of all sentence families
of SEN is denoted by SenFam(SEN). Sentence families can be ordered by
signature-wise inclusion. More precisely, given T,7" € SenFam(SEN), we
define

T<Tiff Ty cTy, for all ¥ e|Sign|.

Under this ordering sentence families form a complete lattice which is de-
noted by SenFam(SEN) = (SenFam(SEN), <).

A sentence family T" of SEN is called a sentence system if it is in-
variant under signature morphisms, i.e., if, for all ¥, 3’ € |Sign| and all
f € Sign(X,%’), we have

SEN(f)(T%) € Ty,

The collection of all sentence systems of SEN is denoted by SenSys(SEN).
It forms a complete sublattice of the lattice of sentence families under <,
denoted by SenSys(SEN) = (SenSys(SEN), <).

Let SEN : Sign — Set be a sentence functor and 7" € SenFam(SEN). We
define, based on T, two important sentence families of SEN:

o T = {(fg}ze‘Sigm is defined by setting, for all 3 € |[Sign],

Ty = {¢eSEN(E):for all ¥’ ¢ |Sign| and all f € Sign(Z,¥),
SEN(f)(¢) € Ty}

Sometimes, we abbreviate this using the notation

Ty = {¢ € SEN(Z) : (V) (SEN(f)() € T}



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 7

o T = {?g}zqs@ﬂ is defined by setting, for all ¥ € |Sign]|,
TE = {SEN(f)(¢) OIS |Sign|a f € Sign(zla Z)a ¢ € TE’}
First, it is clear that both operators on sentence families are monotone.

Lemma 1 Let SEN : Sign — Set be a sentence functor and consider T, T" €
SenFam(SEN). If T <T', then T <T" and T <T".

Proof: Both implications are quite obvious. For the second, e.g., consider

Y. € |Sign|, ¢ € SEN(X), such that ¢ € ?Z. Thus, there exists Y, € |Sign]|,
¢0 € TZO and fo € Sigl’l(ZQ, Z) such that ¢ = SEN(fQ)(Qb())

fo

2o by

15, 2 Txy > o —— ¢

Since Ty, € Ty, , ¢o € Ty, and we conclude that ¢ € Y—J’E. [

The importance of T and T stems, in part, from their relationship with
T, which is described in the following proposition, but also from the critical
role they play in the theory presented here.

Proposition 2 Let Sign be a category, SEN : Sign — Set a sentence func-
tor and suppose that T € SenFam(SEN).

(a) T is the largest sentence system of SEN included in T';
(b) T is the smallest sentence system of SEN that contains T

Proof:

<~ <~
(a) It is obvious that 7" <T. We must show that 7" is a sentence system
and that it is the largest one included in 7.

To show that it is a sentence system, consider ;%' € |Sign|, f ¢

Sign(X,Y/) and ¢ € ?2. We must show that SEN(f)(¢) € (fgf. To
this end, let X" € |[Sign| and g € Sign(X', X").

f

5 s 9

2//

Then we have

SEN(g)(SEN(/)(6)) = SEN(9f)(6) " T
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Since this holds for all ¥ € |Sign| and all g € Sign(%’, %), we conclude
that SEN(f)(¢) € Tsy.

To show that T is the largest sentence system in 7', consider T” €
SenSys(SEN), such that 7”7 < T" and let ¥ € |Sign| and ¢ € T%,. Since
T’ is a sentence system, for all 3/ € |Sign| and all f € Sign(X,3), we
get SEN(f)(¢) € T%,. Now since 7" < T, we get that, for all ¥’ € |Sign|

and all f e Sign(X, %), SEN(f)(¢) € Tx,. But this shows that ¢ € ?2-
Thus, 77 < T and T is the largest sentence system included in 7'.

— —
(b) It is obvious that 7' < 7. We must show that 7' is a sentence system
and that it is the smallest one containing 7.

To show that T is a sentence system, consider ¥ € |Sign| and ¢ €
SEN(X), such that ¢ « ?2. Let ¥’ € |Sign| and f € Sign(X,>).
We must show that SEN(f)(¢) « 72. Since ¢ ¢ ?Z, there exists
Yo € |Sign|, fo € Sign(Xy, ) and ¢g € T, such that SEN(fy)(do) = ¢.

o Jo 5 f 5

Thus, we get

SEN(f)(¢) = SEN()(SEN(fo)(¢0)) = SEN(f fo)(é0) € T .

Finally, we must show that T is the smallest sentence system that
contains 7. To this end, suppose that T’ € SenSys(SEN), such that
T < T'. Let ¥ ¢ |Sign| and ¢ € SEN(X), such that ¢ € Ts. Then,
there exist Xy € [Sign|, fo € Sign(Xy,>) and ¢g € T%,, such that ¢ =
SEN(fo)(¢0). Now, since T' < T, we get ¢g € Ty, . Moreover, since
T" is a sentence system, we get SEN(fy)(¢o) € T3,. But this means

¢ = SEN(fo)(¢0) € T%. This proves that T<T and, hence, T is the
least sentence system that contains 7.
[

It is also of interest to observe that the back arrow operator commutes
with intersections:

Lemma 3 Let Sign be a category, SEN : Sign — Set a sentence functor
and consider T ¢ SenFam(SEN). Then

< <«—
NT=NT.
TeT TeT
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<«

Proof: First, by Lemma 1, we have, for all T' € T, Nper T < T'. Therefore,
we conclude that Nyper T < Nrer T
On the other hand, we have, by Prop081t10n 2, T <T, foral T eT.

Therefore Nrer T <Nrer 1. Now, since Nrer T is a sentence system (Propo-
sition 2) included in Nz T, it must lie below the largest such, which, by

Proposition 2, is Nrer 1. Thus, we have Nper T < Nper T [ ]

On the other hand, the back arrow does not commute, in general, with
unions. We first prove a lemma showing the there is an inclusion relation
governing the interaction between the back arrow and unions and, then,
provide an example to show that this inclusion may be proper.

Lemma 4 Let Sign be a category, SEN : Sign — Set a sentence functor
and consider T ¢ SenFam(SEN). Then

el S —
Ur<yr.
TeT TeT

Proof: Since, for all T € T, T < Ugper T, we get, by Lemma 1, T < Urer T
Since this holds for all T € T, we conclude that Urer T < U7er T (]

That the inclusion of Lemma 4 is, in general, a proper inclusion is show-
cased by the following example.

Example 5 Let Sign be the category with a single object ¥ and a single
(non-identity) arrow f: 3% — X, such that fo f =iyx.

Let SEN : Sign — Set be the functor defined by setting SEN(X) ={0,1,2}
and SEN(f)(0) =1, SEN(f)(1) = 0 and SEN(f)(2) = 2. Consider the col-

NIV

SEN(Z) SEN(Z)

lection {T,T"} ¢ SenFam(SEN), with T%, = {0,2} and TY, = {1,2}. Then we
have Ty, = {2} = Ty and, therefore

Ty uT's = {2} u{2) = {2).
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On the other hand,

TuT's={{0,1,2}} ={0,1,2}.
«~— —
Thus, we get Uper T' $ Urper T

Let Sign, Sign’ be categories and SEN : Sign - Set and SEN’ : Sign’ —
Set be two sentence functors. A morphism (of sentence functors) (F,«) :
SEN — SEN’ consists of:

e A functor F :Sign — Sign’;

e A natural transformation o : SEN - SEN'o F'.

We will make heavy use of the following particular types of morphisms:

e A morphism (F,«a) : SEN - SEN’ is special if F' : Sign — Sign’ is
surjective on objects and full.

e A morphism (F,a) : SEN - SEN' is surjective if it is special and
ayx : SEN(X) - SEN'(F(X)) is surjective, for all X € |Sign]|.

Let Sign, Sign’ be categories, SEN : Sign — Set and SEN’ : Sign’ — Set
be two sentence functors and (F,a) : SEN - SEN’ be a morphism. Given

a sentence family 7' € SenFam(SEN'), define the sentence family a='(T") =
{a™(T) s} nejsign| € SenFam(SEN) by setting, for all 3 € [Sign|,

Oé_l (T)Z = ail (TF(E) ) .

In the next lemma, we prove some useful properties concerning this op-
erator.

Lemma 6 Let Sign, Sign’ be categories, SEN : Sign — Set and SEN' :
Sign’ — Set be two sentence functors, (F,a) : SEN — SEN' be a morphism
and T € SenFam(SEN").

(a) If T € SenSys(SEN"), then o '(T') € SenSys(SEN), with equivalence
holding if (F,«): SEN - SEN' is surjective;

(b) afl((l_ﬂ) <a~Y(T), with equality holding if (F,«) is special;
(¢c) aY(T) < a‘l(?), with equality holding if (F,«) is surjective.

Proof:
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(a)

Let X € [Sign| and ¢ € SEN(X), such that ¢ € ag'(Tr(s)). Then, for all
Y" € |Sign| and all f € Sign(X,Y’), we have

as (SEN(f)(¢)) = SEN'(F(f))(ax(¢))

(v natural transformation)

SEN'(F(f)(Tre)) (¢ € ag (Tres)))
TF(Z’) (T € SGHSYS(SEN/))

N m

This shows that SEN(f)(¢) € as(Tpi)). We now conclude that
a~1(T) € SenSys(SEN).

Suppose, next, that (F,a) : SEN - SEN' is surjective and o (T €
SenSys(SEN). Let ¥ € |Sign| and ¢ € SEN(X), such that ax(¢) € Tr(s).
Note that this implies that ¢ € a™}(Tr(x)). So, by hypothesis, for all
Y €|Sign| and all f € Sign(3,¥%),

SEN(f)(6) € 05} (Tis):

Therefore,

SEN'(F(f))(ax(¢)) asy(SEN(f)(0))
asy (o5 (Tr(sry))

TF(Z’)-

N - m 1

Since (F,a) is surjective, we conclude that, for all ,3’ € |[Sign’| and
all f e Sign'(3,%),
SEN'(f)(T%) € Ts.

Therefore, T € SenSys(SEN").

Let X € |Sign| and ¢ € SEN(X), such that ¢ € Oéil(?p(z)). Then we

get that ax(¢) € (TF(E)- Thus, by definition of ?, for all 3/ € |Sign’|
and all f € Sign'(F(X),Y),

SEN'(f)(ax(¢)) € T

This implies, in particular, that, for all 3" € |Sign|, f € Sign(X%,%"),

SEN'(F(f))(as(¢)) € Treny. So we get asy(SEN(f)(¢)) € Tpery,
i.e., SEN(f)(¢) € asy(Trry). Since X" and f were arbitrary, we

finally obtain ¢ € ag'(Tr(x)).

It is straightforward to see that, if (F, «r) is special, then the above chain
of implications is reversible and, by following it, we get the reverse
inclusion.
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(c) Let X € |Sign|, Then we have

as(ax (Tr(x)))

= ax({SEN(fo)(40) : fo € Sign(Xo,X), do € a5 (Tr(s0)) })

= {as(SEN(fo)(¢0)) : fo € Sign(Xo, ), do € a5l (Tr(zy)) }

= {SEN'(F(fo))(ax,(d0)) : fo € Sign(Xo, X), ¢o € a5} (Tr(sy)) }
< {_§EN'(f6)(¢6) : fg € Sign'(%), (%)), ¢p € Tyy }

= TF(E)-

Again, it is easy to see that the only inclusion becomes an equality in

case (F,a) is a surjective morphism.
]
Let Sign be a category and SEN : Sign — Set be a sentence functor. A
relation family on SEN is a collection R = {Rs }s¢sign|, such that Ry ¢
SEN(X)2, for all ¥ € |Sign|. A relation family is a relation system if
it is invariant under Sign-morphisms, i.e., if for all X% € [Sign| and all

f e Sign(X%,3),
SEN(f)(Rs) € Ry,

The collection of all relation families on SEN is denoted by RelFam(SEN)
and, similarly, the collection of all relation systems by RelSys(SEN). A
relation family/system on SEN is an equivalence family /system on SEN
if, for all ¥ € |Sign|, Ry is an equivalence relation on SEN(X). As with
relation families/systems, we denote the collection of all equivalence families
on SEN by EqvFam(SEN) and the collection of all equivalence systems on
SEN by EqvSys(SEN).

Given a sentence family T' € SenFam(SEN), we say that the equivalence
family R on SEN is compatible with T, if, for all X € |Sign| and all ¢, €
SEN(X),

(p,0) e Ry and ¢eTy imply 1) eTy.

Lemma 7 Let Sign be a category, SEN : Sign — Set a sentence functor,
T € SenFam(SEN) and 0 a relation system on SEN. If 0 is compatible with

T, then it is also compatible with T.

Proof: Suppose that 6 is compatible with T. Let X € |Sign| and ¢, €
SEN(X), such that (¢,¢) € 0y and ¢ € Ty. Let Y ¢ |Sign| and f €
Sign(X, ). Since 0 is a relation system, we get (SEN(f)(¢), SEN(f)(v)) €
fsy. Since ¢ € ?2, SEN(f)(¢) € Tsy. Thus, by compatibility, we get
SEN(f)(¢)) € Tss. Since X' € |Sign| and f € Sign(X,X’) were arbitrary,

we conclude that v € (fg, showing that 6 is also compatible with T. ]

Let Sign, Sign’ be categories, SEN : Sign — Set and SEN’ : Sign’ — Set
be sentence functors and (F,a) : SEN — SEN’ be a morphism. Define the
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kernel system of (F,a), denoted Ker((F,a)) = {Kery,((F,)) }se/sign|, by
letting, for all 3 € |[Sign| and all ¢, ¢ € SEN(X),

(0,9) e Kers((F,a)) iff  an(¢) = ax(y).

The kernel system Ker((F,«)) is sometimes denoted more compactly by
9(F7C“> = {9§F7a>}2€|Sign|.

Lemma 8 Let Sign, Sign’ be categories, SEN : Sign - Set, SEN’ : Sign’ —
Set be sentence functors and (F,a) : SEN — SEN' a morphism. Then
Ker({F, ) is an equivalence system on SEN.

Proof: It is obvious from the definition that Ker({F,a)) is an equiva-
lence family of SEN. The system property follows from the fact that «
is a natural transformation. Let ¥ € |Sign| and ¢,¢ € SEN(X), such that
(p,1) € Kersy((F, ). Then, for all 3’ € |Sign| and all f € Sign(%, %),

asy (SEN(f)(¢))

SEN'(F(f))(ax(¢)) (naturality of «)

= SEN'(F(f))(as(¥))  ({¢,¢) € Kers((F,a)))
= ax(SEN(f)(v)) (naturality of o).

Therefore, we get that (SEN(f)(¢),SEN(f)(v)) € Kersy({F,a)), showing
that Ker((F,«)) is an equivalence system. [ ]

Let Sign, Sign’ be categories, SEN : Sign - Set and SEN’ : Sign’ —
Set be sentence functors and (F,«) : SEN - SEN’ be a morphism, with
F' an isomorphism. Given a sentence family 7' € SenFam(SEN), define the
sentence family a(T") = {a(T") p(z) } sejsign| € SenFam(SEN’) by setting, for all
Y € |Sign),

OZ(T)F(E) = CEE(TE).

In the next lemma, we prove some useful properties concerning this op-
erator.

Lemma 9 Let Sign, Sign’ be categories, SEN : Sign — Set and SEN' :
Sign’ — Set be sentence functors, (F,a) : SEN - SEN' a surjective mor-

phism, with F' an isomorphism, and T € SenFam(SEN), such that the kernel
Ker((F,«a)) of (F,a) is compatible with T .

(a) a(T) € SenSys(SEN") iff T € SenSys(SEN);
() a(T) = a(T);
() a(T) = a(T).

Proof:
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(a)

Exploiting the surjectivity of (F,a), a(T) € SenSys(SEN") holds if and
only if, for all X € |Sign|, all ¢ € SEN(X), all 3 € |Sign| and all
[ eSign(%,¥),

SEN'(F(f))(es(9)) € as (Tt).

By the naturality of «, the latter is equivalent to

axy (SEN(f)(¢)) € as(Tx).

Finally, by compatibility of Ker({F,«)) with T, this is equivalent to
SEN(f)(¢) € Tsy. But this holds for all ¥ € [Sign|, all ¢ € SEN(X), all
Y € |Sign| and all f e Sign(3,%’) if and only if 7" € SenSys(SEN).

Again we exploit the surjectivity of (F,«). We have, for all 3 € |Sign|
and all ¢ € SEN(X), ax(¢) € ax(Ty) iff, for all 3’ € |Sign| and all
f e Sign(3,%), SEN(F(f))(ax(¢)) € as/(Ts) iff, by the naturality
of a, as/(SEN(f)(9)) € as/(Tx) iff, by the compatibility of Ker({F, a))
with T, SEN(f)(¢) € Tsy iff, by the definition of T, ¢ € T's, iff, by the
compatibility of Ker({F, «)) with ?, which follows from Lemmas 7 and

«—

8, ax() € az(?z). Thus, we conclude that a((f) =a(T).

—
Suppose, first, that ax(¢) € ax(T%). Then, there exist, by surjectivity,
Y €|Sign|, fo € Sign(Xo,X) and ¢g € Tx,, such that

as(¢) = SEN'(F(fo))(as,(¢0))
= ax(SEN(f0)(¢0))

—
€ Oéz(Tz).

Suppose, conversely, that as(¢) € Oéz;(?g). Then, there exist X, €
|Sign|, fo € Sign(3y,X) and ¢g € Ty, such that

as(¢) = an(SEN(fo)(¢o))
SEN'(F(fo)) (e (¢0))

OKE(TE).

m

By analogy to the case of sentence families, we may also define the inverse
of a relation family under a morphism of sentence functors. Let Sign, Sign’
be categories, SEN : Sign — Set and SEN': Sign’ — Set be sentence functors
and (F,a) : SEN — SEN’ a morphism. Let, also, R = { Ry }s[sign’| be a rela-
tion family on SEN’". Define the relation family a~!(R) = {a"'(R)x }s¢sign|
on SEN by setting, for all ¥ € |Sign|,

Oé_l (R)E = Oéil(RF(E))
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Proposition 10 Let Sign, Sign' be categories, SEN : Sign — Set and
SEN': Sign" — Set be sentence functors, (F,a): SEN - SEN" a morphism
and R a relation family on SEN'.

(a) If R is a relation system, then a~*(R) is also a relation system;

(b) If R is an equivalence family, then ' is also an equivalence family.
Proof:

(a) Let X € |Sign|, ¢,1 € SEN(X), such that (¢,v) € ag'(Rp(s)). Then,
we have (ax(¢),ax(v)) € Rp(xs). Since R is a relation system, for all
Y € |Sign| and all f € Sign(X,>'), we get

(SEN'(F(f))(ax(9)),SEN'(F(f))(ax(¥))) € Rp¢s).
Thus, by the naturality of «,

{as (SEN(£)(¢)), s (SEN(f)(¥))) € Rp(sr).

Now we get (SEN(f)(¢),SEN(f)()) € a5y (Rp(sry). This proves that
a~'(R) is a relation system on SEN.

(b) Let X € |Sign| and ¢, x,1 € SEN(X) be arbitrary. Then we have:

Reflexivity By the reflexivity of R, (as(¢),as(¢)) € Rp(s). Therefore, (¢, ¢) €
oz (Re(s))-
Symmetry If (¢,7) € ag'(Rp(s)), then (ax (), ax (1)) € Rps), whence, by
the symmetry of R, (ax(v), ax(¢)) € Rp(x), showing that (¢, ¢) €
Oéil(RF(g)).
Transitivity If (¢, x), (x,%) € o5 (Rp(s)), then, we get

(ax(9), as(x)), (as(x), ax(¥)) € Rrcx),

whence, by the transitivity of R, we get (ax(¢),an(¥)) € Rp(s),

showing that (¢,1) € ag' (Rp(s))- .

Let Sign be a category and SEN : Sign — Set a sentence functor. The

clone of all natural transformations on SEN is the category Cln(SEN)

with collection of objects {SEN®: & an ordinal} and collection of morphisms

7 : SEN® - SEN? f-sequences of natural transformations 7¢ : SEN® — SEN,

i < 8. Composition of (77 :i < ) : SEN® - SEN” with (07 : j <~):SEN’ -
SEN”

(t7:1<p)

(07:j<7)

SEN® SEN”

is defined by
(075 <Ay o (50 < B) = T((r' i < §) 1 <),

A clone (or a category) of natural transformations on SEN is a
subcategory N of the category Cln(SEN), such that:

SEN”
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e Its objects are those in {SEN*: k < w};
e [ts morphisms include all projection natural transformations
PP SEN* - SEN,i < k., k < w,
with p&' : SEN(X) - SEN(X) given by
p’;’(gfg) = ¢;, for all ¢ e SEN(X)*,

and are such that, for every family {7 : SEN* - SEN : 4 < £} of natural
transformations in N, (7¢:i < £) : SEN* - SEN’ is also in V.

This definition has two important consequences that we now make ex-
plicit. Let Sign be a category, SEN : Sign - Set a sentence functor and
k € w. Consider a function

7:{0,1,.... k=1 > {0,1,... k- 1}.

Given ¥ € |Sign| and & = (¢, d1,.. ., dp-1) € SEN(D)F, we define

—

" = (Dr(0), Pr(1)s - - - » Pr(h-1))-

Now, consider, in addition, a clone N of natural transformations on SEN and
o :SEN* - SEN in N. Define the natural transformation

o™ : SEN* - SEN
by setting, for all ¥ € |Sign| and all ¢ € SEN(X),
0%() = ox (7).

That this is a natural transformation is easy to see: For all 3,3 € |Sign|, all
f eSign(X,Y’) and all ¢ € SEN(X), we have

SEN(D)* — 22, SEN(X)

SEN(f)* SEN(f)
SEN(X")* - SEN(X)
SEN(f)(0%(4)) = SEN(f)(o%(¢7))
= o (SEN(f)*(¢7))
= o (SEN(f)*(¢)")

= of,(SEN(f)*(9)).
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Proposition 11 Let Sign be a category, SEN : Sign — Set a sentence func-
tor and N a clone of natural transformations on SEN. If o : SEN* - SEN is
in N, then, for all functions ©:{0,...,k-1} - {0,...,k -1}, 0™ : SEN* -
SEN is also in N.

Proof: The key is to observe that

k,m(0) ) k‘,T((k)—l)>.

0" =0o(p D

Since all projections are in N and N is closed under formation of tuples, we
get that (phm(© . pkm(k-1): SEN* - SEN* is in N. Therefore, since N is
a category and, by hypothesis, ¢ is in N, we get that ¢™ is also in N. [

The following is a very useful consequence that allows simplifying quan-
tifications.

Corollary 12 Let Sign be a category, SEN : Sign — Set a sentence functor
and N a clone of natural transformations on SEN. The statement

For all o : SEN* - SEN in N, alli <k and all ¥ € Sign|, ¢, ¥ € SEN(X),
Property(ag (X07 <o Xi-1s ¢7 Xi+ly- - 7Xk71))

1s equivalent to the simpler statement

For all o : SEN* - SEN in N and all ¥ € |Sign|, ¢, € SEN(X),
Property(ox(¢, X))-

Proof: The left-to-right implication is trivial. The right-to-left implication
follows from Proposition 11, since o™ : SEN* — SEN, with 7; being the

permutation
01 -« -1 4 4+1 - k-1
12 - 4 0 2+1 - k-1’
is also in NV, for every 7 < k. [
An algebraic system is a triple A = (Sign, SEN, N}, where:
e Sign is an arbitrary category;
e SEN : Sign — Set is a sentence functor;

e NV is a clone on SEN.

An algebraic system A = (Sign, SEN, N) is said to be trivial if its underlying
sentence functor SEN : Sign — Set is trivial, i.e., if all its sets of sentences
are singletons.

Let F = (Sign’,SEN’, N*) be an algebraic system. An N'‘-algebraic
system A = (Sign,SEN, N) is an algebraic system, such that there exists
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a surjective functor =Z: N* - N that preserves all projection natural trans-
formations, i.e., such that, for all k < w and all i < k, if p&¢ : (SEN*)* —
SEN’ denotes the i-th projection natural transformation on (SEN’)*, then
Z(pk") : SEN* - SEN is the i-th projection p*i on SENF.

This condition implies that = also preserves the arities of all natural
transformations involved. Given ¢* : (SEN’)* — SEN' in N°*, the image
Z(c’) : SEN* - SEN in N will be denoted by o, keeping the same low-
ercase Greek letter, but adjusting superscripts, subscripts, primes, etc., as
demanded by context. Occasionally, to simplify notation, we might drop su-
perscripts, subscripts, etc., overloading the notation of the lowercase Greek
letter, allowing the context to make the interpretation of each occurrence
clear (and hoping that, because of this, confusion can be avoided).

In the context where N’-algebraic systems are under consideration, the
algebraic system F will be referred to as the base algebraic system, since
the clones on all other systems under consideration are images of the clone
of F.

Let F = (Sign’,SEN’, N*) be a base algebraic system and A = (Sign,
SEN, N), A’ = (Sign’, SEN’, N’) be N’-algebraic systems. A morphism (of
N'-algebraic systems) (F,«) : A - A’ is a morphism of sentence functors
(F,a) : SEN — SEN’, such that, for all ¢’ : (SEN")* - SEN’ in N, all
5 € |Sign| and all ¢ € SEN(X) (meaning ¢ € SEN()F),

Ox

SEN(%)* SEN(X)
ok, as
SEN'(F(X))" — SEN'(F (%))
Tp(x)

a5(05(9)) = Ty (a(9))-

We call this the morphism property.

Concerning algebraic systems, we will have occasion to make use of the
following useful construction and properties.

Let again F = (Sign’,SEN’, N*) be a base algebraic system and A =
(Sign,SEN, N) and A’ = (Sign’,SEN’, N’) be N‘-algebraic systems and
(F,a) : A > A’ an algebraic system morphism, with F : Sign — Sign’
an isomorphism. We define the algebraic system a(A) = (Sign’, SEN'®, N'/e)
as follows:

e For all ¥ € [Sign]|,

SEN"*(F(X)) = ax(SEN(X));
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For all 3,% € |Sign| and all f € Sign(3,Y),
SEN“(F(f)) : SEN'*(F(X)) - SEN“(F (X))
is given by setting, for all ¢ € SEN"“(F (X)),
SEN™(F'(f))(¢) = SEN'(F(f))(¢).
e For every ¢’ : (SEN")F » SEN" in N*, we let o’ : (SEN"*)F — SEN"®
be the restriction of o’ : SEN"* - SEN’ to SEN"®.

Composition works as expected, i.e., for all 7 : (SEN")* - (SEN’)¢ and
all o : (SEN")¢ — (SEN*)™ in N?,
o o1’ =(c"o1")

It is not difficult to see that a(A), thus defined, is an N*-algebraic system.
Lemma 13 LetF = (Sign’, SEN", N*) be a base algebraic system, A = (Sign,
SEN, N) and A’ = (Sign’, SEN', N’} be N*-algebraic systems and (F,a): A —
A’ an algebraic system morphism, with F : Sign — Sign’ an isomorphism.
Then a(A) = (Sign’, SEN'*, N'®) is an N’-algebraic system.

Proof: The critical step is to show that SEN'* : Sign’ — Set is a well-defined
functor and that N’ consists in fact of natural transformations on SEN"®.
For the first, let 3,3 € |Sign|, f € Sign(X,Y’) and ¢ € SEN(X). Then

we have
SEN(F(f)(as(9)) = SEN'(F(f))(ax())

asy (SEN(f)(¢))
SEN™(F(X')).

So SEN'® is a well-defined functor. )
Similarly, for o* € N*, 3,3 € |Sign|, f € Sign(X,Y’) and ¢ € SEN(X),

SEN™(F())* 7re) SEN™(F(%))
SEN"(F(f))* SEN"(F(f))
SEN"*(F(X'))¥ ——— SEN"*(F(Y"))
F(¥)

SEN(F(/) (07 (05(6))) = SEN“(F(/))(0pesy (0(6)))
= SEN(F(f))(as(05(3)))
= SEN'(F(f))(as(05(4))
= aw(SEN()(0(4)))
- aw (0w (SEN(f)()))
= Ty (05(SEN()(6))).
= 0 (SEN'(F(f))(0(5)))
= 08 (SEN“(F(f))(ax(6))).
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Thus, o/ : (SEN'*)F - (SEN'®) is a well-defined natural transformation on
SEN'®. ]

We call a(A) the image algebraic system of A under (F,«).

It is not difficult to see that, additionally, one may construct a surjective
morphism from A to a(A). In fact, we define (F,a’) : A - a(A) by letting
a’: SEN - SEN' o F' be given, for all ¥ € |[Sign|, by

a5 (¢) = ax(@), for all ¢ e SEN(X).
Lemma 14 LetF = (Sign’, SEN’, N*) be a base algebraic system, A = (Sign,
SEN, N) and A’ = (Sign’, SEN', N') be N*-algebraic systems and (F,a) : A —
A’ an algebraic system morphism, with F : Sign — Sign’ an isomorphism.

Then (F.a'): A - «a(A) is a surjective algebraic system morphism.

Proof: The fact that o’ : SEN — SEN'*o F is a natural transformation follows
from the corresponding property of a. Moreover, the fact that (F,a’) has the
morphism property also follows from the corresponding property of (F,«).
Finally, surjectivity of o, : SEN(X) - SEN*(F (X)), for all ¥ € |Sign]|,
follows by the definition of SEN'®. n

Let again F = (Sign’,SEN’, N*) be a base algebraic system. An F-
algebraic system (or an interpreted algebraic system) A= (A, (F, «a))
consists of:

e An N’-algebraic system A = (Sign, SEN, N);
e A surjective algebraic system morphism (F,a): F — A.

We denote the class of all F-algebraic systems by AlgSys(F).
Given two F-algebraic systems A = (A, (F,«a)) and A" = (A, ([, a')), a
morphism (of F-algebraic systems) ((G,~),(H,d)): A — A’ consists of:

e A morphism of N*-algebraic systems (G,v): F - F;
e A morphism of N*-algebraic systems (H,d): A - A’
such that the following diagram commutes

. (G,7)

(F, ) (F" o)

A A’
(H,9)
We call a morphism ((G,~),(H,9)) : A - A’ special if (G,v):F - F is
special and we call it surjective if (G,~v): F — F is surjective.
We show that these properties propagate to (H,d): A - A’.
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Lemma 15 Consider a base algebraic system F = (Sign’, SEN’ N*). Let
A= (A (F,«a)) and A = (A’ (F'",a')) be F-algebraic systems and ((G,~),
(H,6)): A—> A" a morphism.

(a) If ({(G,7),(H,6)) : A—> A’ is special, then (H,0): A - A’ is special;

(b) If ({(G,~),(H,d)) : A—> A" is surjective, then (H,5): A - A’ is surjec-

tive.

Proof:

(a)

Suppose (G, ) is special. We show, first, that H is surjective on objects
and, then, that it is full. Surjectivity on objects is easy. Since F’ and
G are surjective on objects, H o F' = F"o (G is also surjective on objects.
This implies that H is surjective on objects.

For fullness, recall that it suffices to show that, for all YY" € |Sign|,
H : Sign(Y,Y") > Sign'(H(Y), H(Y"))

is surjective. So let k € Sign'(H(Y), H(Y")). Then, by the surjectivity
of F, there exist X, X’ ¢ |Sign’|, such that F(X) =Y and F(X') =Y".
Thus, we get

k e Sign'(H (F(X)), H(F(X"))) = Sign'(F(G(X)), F'(G(X"))).

Since G and F’ are full, there exists f e Sign’(X,X’), such that
F'(G(f)) = k. So we have that H(F(f)) =k and F(f) € Sign(F(X),
F(X")) =Sign(Y,Y"). Therefore H is full.

By Part (a), it suffices to show that, for all Y € [Sign|, dy : SEN(Y') —»
SEN'(H(Y)) is surjective. Let y € SEN'(H(Y)). Since F is sur-
jective, there exists X e [Sign’|, such that F(X) = Y. So we get
x € SEN'(H(F(X))) = SEN'(F"(G(X))). Since both vx : SEN*(X) -
SEN'(G(X)) and afyxy SEN"(G(X)) - SEN'(F'(G(X))) are surjec-
tive, we get that ag yyovx : SEN"(X) - SEN'(F'(G(X))) is surjective.

Thus, there exists ¢ € SEN’(X), such that

X = Agx) (1x(9)) = 0rx) (ax (¢)) = oy (ax (@)

So dy : SEN(Y) - SEN'(H (Y)) is also surjective.
[

In the future, we will restrict attention mostly to F-algebraic system
morphisms ((G,v),(H,0)): A - A’, with

(G,v)=([,1):F > F,
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where (I,1) : F - F denotes the identity morphism on F. Since this morphism
is surjective, by Lemma 15, this property will automatically hold for (H,d) :
A — A’ as well. In this case, we also use the simplified notation (H,0) : A —

Al
F
<F,OK/ \F\V’ Oé’>
A (H.3) A’

and even though we might say a “surjective” morphism (H,d) : A - A’ for
emphasis, it is understood that this will always be the case, even without
this specification.

2.3 Congruence Systems

Let A = (Sign,SEN, N) be an algebraic system. A relation family on
A is a relation family on SEN, i.e., a collection R = {Rx}s¢sign|, such that
Ry, € SEN(X)2, for all ¥ € |Sign|. A relation family on A is a relation
system if it is a relation system on SEN; i.e., if it is invariant under Sign-
morphisms; that is, if for all X, %’ € |Sign| and all f € Sign(X%,Y),

SEN(f)(Rs) € Ry

A relation family/system on A is an equivalence family/system on
A if it is an equivalence family /system on SEN; i.e., for all X € |[Sign|, Ry is
an equivalence relation on SEN(X). Finally, an equivalence system is called
a congruence system on A if, for all o: SEN* - SEN in N, all ¥ ¢ |Sign|
and all ¢, ¢ € SEN(),

(¢, 15) € Ry, i < k, implies (05(),05(1))) € Rs:.

We call this the congruence property.

The collection of all congruence systems on the algebraic system A will be
denoted by ConSys(A). Ordered under signature-wise inclusion <, it forms
a complete lattice, which is denoted by ConSys(A) = (ConSys(A), <).

The least congruence system on A is the identity congruence system,
which denoted by A4 = {A%}ygign|, Where, for all ¥ € |Sign|,

Ag = {{¢,0): 6 € SEN(X)}.

The largest congruence system is the nabla congruence system, denoted
VA or SEN?, and defined by VA = {VA }ysign|, Such that, for all ¥ € [Sign|,

V& = {(¢,¥): 6,¥ e SEN(X)} = SEN(X)2.
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The infimum of a family {67 :i € I'} € ConSys(A) is given by signature-
wise intersection ;e 6%, while the supremum is the congruence system gen-
erated by the signature-wise union of the 6%, V;e; ' = {©(Ujes 0%) } wesign|s
where ©(U;s 0%) denotes the congruence on SEN(X) (viewed as an ordinary
algebra with operations oy : SEN(X)¥ - SEN(X), for 0 : SEN* - SEN in N)
generated by U,cs 0.

Proposition 16 Let F = (Sign’, SEN’, N*) be a base algebraic system, A =
(Sign, SEN, N), A’ = (Sign’, SEN', N’} two N’-algebraic systems and (F,q) :
A - A’ a morphism of N’-algebraic systems. If 6 € ConSys(A’), then
a~1(f) € ConSys(A).

Proof: By Proposition 10 it suffices to show that, if # has the congruence
property, then a=1(#) also has the congruence property. To see this, consider
o’ : (SEN*)k - SEN® in N*, X ¢ [Sign| and ¢, 1) € SEN(X), such that (¢;, ;) €
ast(0p(sy), for all i < k. Then we get (as(¢;), ax () € Op(s), for all i < k.
Thus, by the congruence property of 6,

<‘7;r(z) (042(5))7 ‘7;:(2) (042(1;)» € HF(E)-

By the morphism property, we get
(as(05(8)), ax(os(¥))) € Opcs).

Hence (0%(¢), 05 (1)) € o5 (0p(s)), showing that o 1(f) also satisfies the
congruence property. ]

As a special case of Proposition 16, we obtain that kernels of morphisms
are congruence systems.

Corollary 17 Let F = (Sign’,SEN’, N*) be a base algebraic system, A =
(Sign, SEN, N), A’ = (Sign’, SEN', N’} two N’-algebraic systems and (F,q) :
A — A’ a morphism of N*-algebraic systems. Then Ker({F,a)) € ConSys(A).

Proof: This follows by Proposition 16 by taking § = A4". Then, obviously,
a~1(0) = Ker((F,a)). [

Let A = (Sign,SEN, N) be an algebraic system and # € ConSys(A). The
quotient A? (or A/§) of A by @ is the algebraic system A? = (Sign, SEN?,
N%), defined as follows:

e For all ¥ ¢ [Sign|,
SEN?(Z) = SEN(X)/fs = {¢/fs, : ¢ € SEN(D)}.
For all &2, % € |Sign|, all f € Sign(2,%') and all ¢ € SEN(),
SEN’(£)(/6s) = SEN(£)()/0s.
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e N? is the category of natural transformations on SEN? of the form
o? : (SEN?)k - SENO, where ¢ : SEN* » SEN is in N, defined, for all
Y €|Sign| and all ¢ € SEN(X), by

o?(/0s) = o5(8)/bs.

The fact that @ is an equivalence system makes the functor SEN? well-defined
at both the object and the morphism level. Moreover, the fact that 6 is a
congruence system makes the definition of each natural transformation in N?
sound. Finally, the identities, projections and the composition in N are the
images of the corresponding operations and of the composition in N under

-+ 9: For all ¥ € |Sign| and all ¢ € SEN(X), ¢ € SEN(X),

o i§,(¢/0x) = ¢/0s = is(0)/0s;

i 7 i 7
o P (/0s) = ¢i/0s = P& () /0
b 7—29)(0-%0(@;/92)7 s ’0.153719(5/92)) = 7—29)(0’%(&)/927 s 70571(5)/92)
=15(0%(9), ..., 0% () /0s.
We denote by (I,7%) : A - A% the quotient morphism, defined, for all
Y €|Sign| and all ¢ € SEN(X), by
5 (0) = ¢/

To see that it is well-defined, we must show that 7 : SEN —» SEN? is a
natural transformation and that it satisfies the morphism property. In fact,
for all 3, %" € |Sign|, f € Sign(X%,Y’) and all ¢ € SEN(X),

7T0
SEN(X) > SEN?(%)

SEN(/) SEN’(f)
SEN(X') - SEN?(%)
T
% (SEN(f)(¢)) = SEN(f)(¢)/0x
= SEN’(f)(¢/6s)
= SEN’(f)(n4(¢)).
And for all o : SEN¥ - SEN in N, all X ¢ [Sign| and all ¢ € SEN(Z),
gk

SEN(E)F — 2, SEN‘(%)*

oy O'%

SEN(Y) SEN’(X)

)
s,
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4 (0(9)) = 05(0)/bs = 0%(6/6) = o%(7%(9))-

Note that this construction allows us to discuss also quotients of F-
algebraic systems. More precisely, consider a base algebraic system F =
(Sign’,SEN’, N*). Let A = (A,(F,a)) be an F-algebraic system and let
0 € ConSys(A) := ConSys(A). The quotient F-algebraic system of A by
0 is defined as A? = (A? (F, 7% 0 a)).

<F,a/
AT

Let A = (Sign, SEN, N) be an algebraic system and let 7" € SenFam(A).
We say that a congruence system 6 on A is compatible with T if it is

compatible with T" as an equivalence system on SEN| i.e., if, for all ¥ € |Sign|
and all ¢, € SEN(X),

F

(F, 7% 0 )
) A

I,xf

(p,0)ely and ¢eTsx imply ¢ eTy.

Note that, for every T € SenFam(A), A4 is compatible with 7. We denote
the collection of all congruence systems on A that are compatible with 7" by
ConSys™(T).

Proposition 18 Let A = (Sign,SEN, N) be an algebraic system and T €
SenFam(A). The collection ConSys™(T), of all congruence systems on A
that are compatible with T', forms a complete lattice

ConSys™(T) = (ConSys*(T), <)
under signature-wise inclusion.

Proof: First, the collection ConSys®(7T') is closed under arbitrary inter-
sections: Let @, i ¢ I, be in ConSys®(T"). Suppose that ¥ ¢ |Sign| and
¢, € SEN(X), such that (¢, 1)) € Nyes 0% and ¢ € Ts. Then (¢, 1) € 0%, for all
i€ 1. Since 6 is compatible with T, we get v € T%. This shows that ;¢ 6"
is compatible with T

It suffices, therefore, to show that ConSys®(7') has a greatest element.
The signature-wise union of every directed subset of ConSys®(T') is an upper
bound for the subset in ConSys(A). Moreover, it is in ConSys™(T) since
every member of the subset is. So, by Zorn’s Lemma, ConSys®(7T) has a
maximal element.

Suppose, for the sake of obtaining a contradiction, that 6 # 6 are two
such maximal elements. Recall that their join 6 v 6’ is given by 6 v #' =
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/
{92 \ ez}Ee\Sign\a where

Oy v 05 =|JbOs 0050 00s.
k=0

k factors

Thus, their join 6 v’ as congruence systems on A is also compatible with 7.
This, however, contradicts the maximality of 6 and ', since, clearly, 6 < 6v 6’
and 0 < 6 v @'. Therefore, the unique maximal element of ConSys*(7) is a
largest element. [ ]

The largest congruence system on an algebraic system A compatible with
T e SenFam(A) is called the Leibniz congruence system of 7" on A and
is denoted by QA(T).

The following theorem provides an explicit characterization of the Leibniz
congruence system of a sentence family 7" on an algebraic system A.

Theorem 19 Suppose that A = (Sign, SEN, N) is an algebraic system and
T € SenFam(A). Then, for all ¥ € |Sign| and all ¢,7 € SEN(X),

(p,1) € QA(T) iff for all o : SEN* —» SEN in N, all ' € |Sign|,
all f e Sign(X,Y) and all Y € SEN(X'), we have
O’ZI(SEN(][‘)(QS),)%) € TE’ Zﬁ O'E/(SEN(f)('QD),)z) € TZI.

Proof: Let R = { Ry }sqjsign| be the relation system on A defined by the given
condition, i.e., for all ¥ € |Sign|,

Ry = {{¢,4) ¢ SEN(E)?
for all o : SEN* - SEN in N, all ¥ € |Sign|,
all feSign(X,>) and all y e SEN(X),
O'EI(SEN(f)(QS), )2) € TE’ lﬁ‘ UZI(SEN(‘f)('@D), )2) € TE’}

First, we show that QA4(T) < R. Let X € |Sign|, ¢,1 € SEN(X), such that
(¢,9) € QR(T). Since QA(T) is a congruence system, we get that, for all
Y’ e [Sign| and all f € Sign(X,%’), (SEN(f)(¢),SEN(f)(v)) € Qa(T).
Now, since QA(T) is a congruence system, we get that, for all o : SEN* —
SEN and all y e SEN(X'),

(o2 (SEN(f)(9),X), o5 (SEN(f) (%), X)) € Q%(T).

Finally, since Q4(T) is compatible with 7', we get that

os (SEN(f)(¢),X) € Txr  iff  os (SEN(f)(¥),X) € T

But the last condition, being universally quantified on Y’ € |Sign|, f ¢
Sign(X,Y), o in N and x € SEN(X'), yields (¢,v¢) € Rg. Therefore, we
get that QA(T) < R.
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Finally, we show that R < QA(T). For this inclusion, it suffices to show
that R is a congruence system on A that is compatible with 7". Then the
conclusion would follow from the fact that Q4(T) is, by definition, the largest
congruence system on A that is compatible with 7.

It is clear from its definition that R is an equivalence family on A.

To see that it is an equivalence system, let ¥ € |Sign| and ¢, € SEN(X),
such that (¢,v) € Ry. Consider ¥’ € |Sign| and f € Sign(X,%’). Then,
for all o : SEN* — SEN in N, all ¥ ¢ |Sign|, all ¢ € Sign(¥’,~") and all
X € SEN(X"),

ZII

we have

o5 (SEN(g)(SEN(f)(9)),X) € Txr
iff osv(SEN(gf)(¢),X) € Txn
iff osr(SEN(gf)(¢),X) € Twr  (since (¢,1) € Ry)
iff 0w (SEN(g)(SEN(f)(¥)),X) € Tsn.

Thus, we conclude that (SEN(f)(¢),SEN(f)(¢)) € Ry, showing that R is
an equivalence system.

Next, to see that R is a congruence system, consider ¢ : SEN* —» SEN
in N, ¥ € [Sign|, and ¢,¢) € SEN(X), such that (¢;,1;) € Ry, i < k. Let
7 : SEN* > SEN be in N, ¥’ € |Sign|, f € Sign(%,¥’) and y € SEN(X).
Then, we have

7s(SEN(f)(0(9)). X) € T
iff TgI(UgI(SEN(f)(QE)),)Z) € TZ}’
iff 7o (0w (SEN(f)(¥)), X) € Ty

(7- o (O’ o <pk+£71,07 P

together with Corollary 12, applied k times)
iff 72/ (SEN(f)(05(¢)),X) € Ts.

k+£—1,k> pk+£—1,k+1 pk+f—1,k+£—2> in N
Y )

P

This shows that (os (), 0% (1)) € Ry, whence R is a congruence system.

Finally, upon setting in the defining condition ¢ = p*? : SEN - SEN in
N, ¥ =%, f =iy, the identity Sign-morphism, we get that for all ¥ € [Sign|
and all ¢,1 € SEN(X), with (¢,v) € Ry

¢ET2 iff wETE.

Thus, R is compatible with T'. [ |

The characterization of the Leibniz congruence system, presented in The-
orem 19, provides a justification for an alternative name that is sometimes
attributed to the Leibniz congruence system of a sentence family 7" on an
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algebraic system A. Given X € [Sign| and ¢, € SEN(X), we say that ¢ and
¥ are indiscernible modulo 7' if

(6,9) € QX(T).

Therefore QA(T) is also referred to as the indiscernibility relation on A
modulo 7.

We can now prove a proposition asserting that the Leibniz congruence

<«

system of a sentence family 7T is included in that of the sentence system 7.

Proposition 20 Suppose that A = (Sign,SEN, N) is an algebraic system
and T € SenFam(A). Then

OA(T) < OA(T).

Proof: To prove this inclusion, it suffices to show that QA(T') is compatible

with T. We can invoke Lemma 7, but we also give a direct proof due to the
heavy significance of this result. Let ¥ € [Sign|, and ¢,¢ € SEN(X), such

that (¢,1) € Q2(T) and ¢ € Ts. Since QA(T) is a congruence system and
by the definition of <7_7, we get that, for all ¥/ € |Sign| and all f € Sign(X%, %),
(SEN(/)(¢),SEN(f)(¢)) € @3(T) and SEN(f)(¢) € Ty
Thus, by the compatibility of QA(T) with T, we obtain SEN(f)(¢)) € Ts.
Since this holds for all 3’ € [Sign| and all f € Sign(3,%’), we get 1 € ?2.
Thus, Q4(T) is compatible with (7:, showing that QA(T) < QA(?). u
We exhibit, next, an algebraic system A = (Sign, SEN, N) together with
a sentence family 7" € SenFam(A), such that QA(T") $ QA(T").
Example 21 Define A = (Sign, SEN, N) as follows:
e Sign is a category with two objects X, %" and a single (non-identity)
morphism f: 3 - X/,
e SEN : Sign — Set is defined by setting SEN(X) = {0,1}, SEN(X') =
{a,b}, SEN(/)(0) =a and SEN(f)(1) =
e The clone N of natural transformations is trivial, i.e., consists of the

projection natural transformations only.

Finally, let T = {Tx,Ts } be speczﬁed by setting Ts, = {1} and Tsy = @. Then
it is not difficult to see that Tz =g= Tgf and, therefore, that

QQ(T)=V§‘ and Q%(T):V%,

whereas
QQ(T) = Ag a/nd Q%/(T) = V%

Hence, we have QA(T) s QA((YT).
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f
TZ
T T
0 a
SEN(Z) SEN(Z')

Proposition 20 and Example 21 have important consequences. We give
a brief account here, as is proper after proving these facts, but postpone
further treatment for subsequent chapters.

1. Note that, given an algebraic system A, for any sentence family T of
<«
A, both T, T are sentence families of A, such that, in general,

T<T and QAT)<QAT).

But it is an accepted wisdom in abstract algebraic logic that a logic
is amenable to a meaningful algebraic treatment and, thus, deserves a
place in the algebraic (Leibniz) hierarchy, if it is at least protoalgebraic
or truth-equational, meaning that the Leibniz operator on its collection
of theories is at least monotone of completely order reflecting. The
displayed relations between T and (f, therefore, force us to define a
new class of w-institutional logics, fulfilling a minimum, in some sense,
condition for amenability to algebraic treatment and techniques, which
we shall call stable, if their Leibniz operator satisfies, for all theory
families T" of the m-institution,

UT) =T).

The term “stable” is adopted to insinuate contrast to inverting or

changing the order, since, given that T < T and that QT) < Q(?),
for all theory families T, an inversion in the order would occur in case

UT) + Q(?) for some theory family 7.

2. Now note the remarkable fact that, for a stable m-institution, the range
of the Leibniz operator is entirely covered by its values on theory sys-
tems of the m-institution, since, given a theory family 7', one can work
with its Lelbnlz congruence system by working with the congruence

system Q(T ) of the theory system T.
These two remarkable facts form an enticement, a preview and a justification

for some of the upcoming definitions and concepts regarding classes of -
institutions, forming the semantic Leibniz hierarchy, in subsequent chapters.
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In the next example it is shown that the Leibniz congruence system of
a sentence family T of an algebraic system A does not stand in a definite

[
relationship with that of the sentence system 7.

Example 22 We ezhibit, first, an algebraic system A = (Sign,SEN, N) to-

gether with a sentence family T € SenFam(A), such that QA(?) s QA(T).
We use the same algebraic system and the same sentence family as in

Ezample 21. Define A = (Sign,SEN, N) as follows:

e Sign is a category with two objects 3,5 and a single (non-identity)
morphism f: 3 - /.

e SEN : Sign — Set is defined by setting SEN(X) = {0,1}, SEN(X') =
{a,b}, SEN(£)(0) = a and SEN(f)(1) = b.

e The clone N of natural transformations is trivial, i.e., consists of the
projection natural transformations only.

Finally, let T = {T%, Tsy} be specified by setting Tx, = {1} and Tsy = @.

f
TZ
T T
0 a
SEN(2) SEN(Z')

Note that T, = {1} and Ty = {b}. So in this case we have
QA(T)=A2 and QA(T)=A3,
whereas, as pointed out in Fxample 21,
QQ(T) = Ag a/nd Q%I(T) = V%

So we see that QA(?) $QA(T).
Finally, we construct an algebraic system A = (Sign,SEN, N) together

with a sentence family T € SenFam(T"), such that QA(T) £ QA(?)).
The algebraic system is the same algebraic system A = (Sign,SEN, N),
defined above. But now the sentence family T = {Tx,Ts} is defined by

TZ = {0, 1} and TZ’ = {b}
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f
Ts I Ty
1 ‘@
0 a
SEN(2) SEN(Z')

It is clear that T's; = {0,1} and Ty = {a,b}. Thus, we have
QMT) =A% and Q&(T) =A%,

whereas . R
QA(T)=va and QA(T)=VA.

Thus we see that, in this case, QA(T) $ QA(?).

It turns out that the Leibniz congruence system of the intersection of two
sentence families of an algebraic system is at least as large as the intersection
of the corresponding Leibniz congruence systems.

Lemma 23 Let A = (Sign,SEN, N) be an algebraic system and let T ¢

SenFam(A). Then
N QM) < QAN D).
TeT TeT

Proof: The Leibniz congruence system of N7 T is, by definition, the largest
congruence system on A that is compatible with Nper T € SenFam(A). So
to prove the conclusion it suffices to show that Ny Q4(T) is a congruence
system on A that is compatible with Nr.7 7. That it is a congruence system
follows from the fact that ConSys(A) has the structure of a complete lattice
with signature-wise intersection as its infimum. For compatibility, Let X €
Sign|, ¢,1 € SEN(X), such that (¢,¢) € Nrer Q2(T) and ¢ € Nper T
These two imply the following relations:

(6,0) e O(T), ¢eTy, foral TeT.

Now, using the compatibility property of QA(T), T € T, we get 1) € T, for
all T € T. So ¥ € Nreyr T and, therefore, Nrer QA(T) is compatible with
nTeT T. u

An important property of the Leibniz operator is that it commutes with
inverse surjective morphisms of N'*-algebraic systems.
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Proposition 24 Let F = (Sign’, SEN’, N*) be a base algebraic system, A =
(Sign, SEN, N), A’ = (Sign’,SEN’, N’} two N'-algebraic systems, (F,a) :
A - A’ an algebraic system morphism and T € SenFam(A’). We have:

(a) a7H(QN(T)) < QA (a™(T));

(b) If (F,a) is surjective, a ' (QA(T)) = QA (a~(T)).
Proof:

(a) Since Q4(a~1(T)) is the largest congruence system that is compati-
ble with a~1(T), it suffices to show that a~1(QA'(T)) is a congruence
system on A that is compatible with a~*(7"). The fact that it is a
congruence system on A is guaranteed by Proposition 16. So it suffices
to show its compatibility with a~'(T"). Let X € |Sign|, ¢,¢ € SEN(X),
such that (9,9) € ag' () (1)) and ¢ € a5!(Tp(s)). Now we get
(ax(9),ax(v)) € Q?EE)(T) and ax(¢) € Tr). By compatibility of
QA(T) with T, we get ax(¢) € Trs). Therefore ¢ € as!(Trs)),
which proves compatibility of a=1(QA(T)) with a~(T).

(b) By Part (a), it suffices to prove, under the hypothesis that (F, «) :
A — A’ is surjective, the inclusion QA(a (7)) < o 1(QA(T)). Let
¥ € |Sign|, ¢,¢ € SEN(X), such that (¢,¢) € Q&(a~*(T)). Then,
by Theorem 19, we get that, for all ¢® : (SEN’)* - SEN® in N°*, all
Y e |Sign|, all f e Sign(3,%’) and all y e SEN(X),

o (SEN(f)(¢), X) € o5 (Tr(sry)
ifft  ow (SEN(f)(),X) € asy (Tr(sr))-

Equivalently,

asy (o5 (SEN(f)(8),X)) € Tr(sy)
iff s (o (SEN(f)(¢),X)) € Tr(sr-

Equivalently, by the morphism property,

U}(Z,)(agf(SEN(f)(qb)), asy (X)) € Tr(sr)
iff o (s (SEN(f)(¥)), s (X)) € Tresy-

Equivalently, by the naturality of «,

U}r(zf)(SEN,(F(f))(QZ(¢))a asr (X)) € Tresy)
iff 00 (SEN(F(f))(as(¥)), asr (X)) € Trsr).

Equivalently, by Theorem 19 and the surjectivity of (F,a), we get that

(as(),as(¥)) € Q}?Ez)(T%
which finishes the proof.
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2.4 Relative Congruence Systems

We look at a variety of results related to congruence systems in this section.
First, we give a condition that ensures that, given a morphism (H,v): A —
A’ of N'-algebraic systems, with an isomorphic functor component, and an
equivalence family 6 on A, we have y~1(~(0)) = 6.

Lemma 25 Let F = (Sign’, SEN’, N*) be an algebraic system, A = (Sign,
SEN, N), A’ = (Sign’, SEN', N} be N*-algebraic systems, (F,a): A - A’ a
morphism, with F an isomorphism, and 6 € EqvFam(A). Then

Ker((F,a)) <0 iff a*(a(0))=0.

Proof: Suppose, first, that Ker((F,«a)) < 6 and let ¥ € [Sign| and ¢,1) €
SEN(X), such that (¢,v) € a5 (ax(6x)). Then, by definition, we get

(as(0), as (1)) € ax(fs).
Thus, there exist ¢’,1¢" € SEN(X), such that

(¢, ¢') ey and (ax(9),ax(¥)) = (ax(d),as(")).

Thus, we get

(QS,’Q/),) € 92 and <¢a ¢’>? (7/’,?//) € KerE(<Fﬁ Oé))

Since Ker({F,a)) <0 and 6 is an equivalence family, we get that (¢, 1)) € fy.
Thus, we conclude that a=1(a(f)) < 6. Since the reverse inclusion always
holds, a~(«a(8)) = 6.

Assume, conversely, that a~!(a(f)) = 0 and let ¥ € |Sign| and ¢, €
SEN(X), such that (¢,v) € Kers({(F,«)). Then, by definition, ax(¢p) =
ax(1). Therefore, since # is an equivalence family, we get

{as(9),as(v)) = (as(d), ax(d)) € as ().

Now we get (¢,v) € a5'(ax(0s)) and, by hypothesis, (¢,1)) € fs. We con-
clude that Ker({F,a)) < 4. [ |

Next we show that, given algebraic systems A and A’, a surjective mor-
phism (F ) : A - A/, with an isomorphic functor component, and a con-
gruence system 6 on A, its image under (F, ) is a congruence system on A/,
provided that 6 contains the kernel system of (F, «).

Lemma 26 Let F = (Sign’, SEN’, N*) be an algebraic system, A = (Sign,
SEN, N), A’ = (Sign’,SEN', N’} be N’-algebraic systems, (F,a): A > A’ a
surjective morphism, with F' an isomorphism, and 0 € ConSys(A), such that
Ker({F,a)) <0. Then a(f) € ConSys(A’).
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Proof: We first show that «(#) is an equivalence family on A’. To this end,
let ¥ € |Sign| and ¢,v,v’, x € SEN(X).

e By hypothesis, # € ConSys(A). Hence, (¢,¢) € Ox. Thus, (ax(¢),
ax(9)) € ax(bs). Since (F,«) is surjective, a(0) is reflexive.

e Suppose (ax(¢),as(¥)) € ax(fs). Then (p,7) € ag'(an(fx)). By
Lemma 25, (¢,1) € fx. Since 6 € ConSys(A), (¢, ¢) € 0x. Hence,
(as (), as(@)) € ag(fs). Thus, by the surjectivity of (F, ), «(6) is
also symmetric.

e Finally, suppose that (ax(¢),ax(?)) € ax(fs) and (ax(¢'), as(x)) €
ax(fy), with ax(v) = ag(¥’). Then, by Lemma 25, (¢,v) € s
and (¢',x) € 0. Moreover, by hypothesis, (1,9} € Kerg({F,a)) ¢
Os.. Since 0 € ConSys(A), we get (¢, x) € Oy and, therefore, (ax(¢),
ax(x)) € as(fx). Taking into account the surjectivity of (F,«), we
conclude that «(#) is also transitive.

We showed that «(f0) € EqvFam(A’).

Next, we show that «(6) is also a system. To this end, suppose ¥,/ €
|Sign|, f € Sign(X,%’) and ¢,1 € SEN(X), such that (ax(¢),as()) €
ax(fs). Then, by Lemma 25, (¢,1) € fx. Since 0 € ConSys(A), we get
(SEN(f)(¢), SEN(f)(¢)) € 5. Thus,

(SEN'(F'(f))(as(9)), SEN'(F(f))(ax(¥)))
= (o (SEN(£)(9)), ax (SEN(f)(¢))) € o (6s).

Since (F,a) is surjective, we get that a(#) is invariant under Sign’-mor-
phisms. Now we have that a(0) € EqvSys(A’).

Finally, it remains to see that it is also a congruence system. To this
end, let o’ be a natural transformation in N* ¥ € |Sign|, b, € SEN(2),
such that (ax(¢;),as(¥;)) € ag(fs), for all : < k. We get, by Lemma 25,
(¢i,1;) € Bs, whence, since § € ConSys(A), (08(¢),02(¢¥)) € fs. Now,
applying the morphism property, we get

(085 (as(0)), 0y (ax(¥))) = (ax(08(9)), axn (o (¥))) € ax(bs).

Again, taking into account the surjectivity of (F,«), we get that a(f) has
the congruence property. We conclude that «/(#) € ConSys(A’). [

Let F = (Sign’, SEN’, N*) be a base algebraic system, K be a class of F-
algebraic systems and A = (A, (F,a)) an F-algebraic system. A congruence
system # on A is called a K-congruence system, or a congruence system
relative to K, if the quotient algebraic system A/6 is a member of the class
K, i.e., A/0 = A% € K. Given an F-algebraic system A = (A, (F, «)), we denote
by ConSysK(A) the collection of all K-congruence systems on A:

ConSys¥(A) = {# € ConSys(A) : A/6 e K}.
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Let K be a class of F-algebraic systems. We write H(K) for the class of
all F-algebraic systems B, such that, there exists A € K and a (surjective)
F-algebraic system morphism (H,v): A - B:

H(K) = {B e AlgSys(F) : (3A € K)(3 (H,~) : A - B)}.

We show that, if K is a class that is closed under the operator H, then
the K-congruence systems on any F-algebraic system in K coincide with the
ordinary congruence systems on 4.

Proposition 27 Let F = (Sign’,SEN’, N*) be an algebraic system and K a
class of F-algebraic systems, such that H(K) € K. Then, for every F-algebraic
system A € K, ConSys<(A) = ConSys(A).

Proof: Clearly, ConSys<(A) ¢ ConSys(A). Suppose 6 € ConSys(.A). Con-
sider the quotient morphism

(I,7%): A— AJ0.

Since A €K, A/0 e H(K) c K. Thus, by definition, § € ConSys¥(A). [

Let F = (Sign’, SEN’, N*) be a base algebraic system, A = (A, (F,a)) and
Al = (AP (F? o)), i€ I, be F-algebraic systems and, for all i € I,

(H'7"): A A

a surjective morphism. We say that {(H? ~%) : A - Ai:ie [} is a subdirect
intersection if

MKer((H,7)) = A%,

1el
Given a class K of F-algebraic systems, we write Iﬁ(K) to denote the class
of all F-algebraic systems A, for which there exists a subdirect intersection
{{H',~"): A—> A :iel}, with A" €K, for all i € I.

We show that if a class K is closed under subdirect intersections, then the
collection of all K-congruence systems on any F-algebraic system A is closed
under intersections. If, in addition, K contains a trivial F-algebraic system,
then ConSys“(A) becomes a closure family on A2, for every F-algebraic
system A.

Proposition 28 Let F = (Sign’, SEN’, N*) be an algebraic system and K be
<
a class of F-algebraic systems, such that TI(K) c K.

(a) For every F-algebraic system A, ConSys"(A) is closed under signature-
wise intersections;

(b) If, in addition, K contains a trivial F-algebraic system, then, for every
F-algebraic system A, ConSys¥(A) is a closure family on A=2.
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Proof: Let A be an F-algebraic system and {6 :i € I} ¢ ConSys¥(A). Then
A/07 € K, for all i € I. Consider the canonical morphisms

(I, : A/(0" > AJ0", iel.

iel

Clearly, we have

NKer((I,7)) = (#/(6) = (/6 = AA et 7"

1el iel iel iel iel
Thus, {(I,7%) : A/ Nier0° — A0 : i € I} is a subdirect intersection. Since
AJ0t € K, for all ¢ € I, we get A/ M0 € M(K) ¢ K. Therefore, N6 €

ConSys<(A).
Suppose, in addition, that K contains a trivial F-algebraic system. Then
VA € ConSys®(A), whence ConSys¥(A) is a closure family on A2 |

<

By Proposition 28, for a class K of F-algebraic systems closed under 111

and containing a trivial F-algebraic system, it makes sense to define, for
every F-algebraic system A and all X € SenFam(.A4?),

OXA(X) =(N{# € ConSys*(A) : X < 6}.

When A coincides with the F-algebraic system F = (F,(1,¢)), where (I,¢) :
F — F is the identity morphism, we write simply OK.

We now provide a different characterization of the operator ©K-A,

Let F = (Sign’, SEN’, N*) be a base algebraic system and K a class of
F-algebraic systems. Define the operator DK : P(SEN")2 - P(SEN’)2, by
letting, for all X < (SEN")2, all ¥ ¢ [Sign’| and all (¢, 1) € SEN*(2)2,

(¢,1) e DE(X) iff for all A= (A, (F,a))eK,
a(X) < A4 implies ax(¢) = as ().

We show that DX is a closure family on (SEN")2.

Proposition 29 Let F = (Sign’, SEN’, N*) be a base algebraic system and
K a class of F-algebraic systems. DX is a closure family on (SEN’)2.

Proof: We must show that DX is inflationary, monotone and idempotent.
Let X < (SEN")2, ¥ ¢ |Sign’| and (¢,1) € Xy. Then, for all A ¢ K, if
a(X) < AA) we clearly have a(¢) = a(v)). Hence, (¢,1) € DK(X) and DX is
inflationary.
Suppose X <Y < (SEN')2, ¥ ¢ |Sign’| and (¢,1) € SEN’(X)2, such that
(¢,1) € DE(X). Let A € K, such that a(Y) < A4, Then, we get a(X) <
a(Y') < A4, whence, by hypothesis, a(¢) = a(¢). Therefore, (¢,1) € DE(Y)

and DK is also monotone.
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Finally, suppose X < (SEN’)2, ¥ ¢ |Sign’| and (¢,7) € SEN’(X), such
that (¢,1) € DE(DX(X)). Let A € K, such that a(X) < A4, Then, by
definition, a(D¥(X)) < A4, whence, by hypothesis, ax(¢) = ax(v). Thus,
(¢,1) e DE(X) and DX is also idempotent.

We conclude that DK is a closure family on (SEN")2. ]

We show, next, that, for all X < (SEN")2, the sentence family DX(X) is
a congruence system on the algebraic system F and that, moreover, it is a
congruence system relative to the class K.

Proposition 30 Let F = (Sign’, SEN’, N*) be a base algebraic system and
K a class of F-algebraic systems. For all X < (SEN")2, DK(X) e ConSys(F).

Proof: We first show that, for all & € [Sign’|, DX(X) is an equivalence
family.

e Let ¢ e SEN'(X). Since, for all A= (A, (F,a))eK, az(d) = ax(¢), we
get that (¢, ¢) € DX(X), whence D¥(X) is reflexive.

e Suppose (¢,1) € D¥(X) and let A= (A, (F,a)) €K, such that a(X) <
A4, Then, by hypothesis, ax(5) = an(i), giving ax(i)) = as(d).
Hence, (¢, ¢) € DE(X), showing that DE(X) is also symmetric.

e Finally, suppose (¢,v), (¢, x) € DX(X). Let A= (A, (F,a)) € K, such
that a(X) < A4. By hypothesis, as(¢) = ax(1)) and ax(v) = as(x).
Therefore, ax(¢) = as(x), showing that (¢, x) € DX(X). Hence,
D(X) is also transitive.

We show, next, that DX(X) is an equivalence system, i.e., invariant under sig-
nature morphisms. Let 3, %/ € |Sign’|, f € Sign’(Z,Y’) and ¢, € SEN*(2),
such that (¢,1) € DE(X). Let A = (A,(F,a)) € K, such that a(X) < A4
Then, by hypothesis, as(¢) = as(1). Thus, we get

aw (SEN'(f)(9)) = SEN(F(f))(ax(9))
SEN(F(f))(ax(4))
asy (SEN'(£) ().

Hence, (SEN'(f)(¢), SEN"(f)()) € D§,(X).

Finally, to see that it also satisfies the congruence property, let o’ :
(SEN’)* — SEN' be in N*, ¥ ¢ |Sign’| and ¢,¢ € SEN'(Z), such that
(¢i, ;) € DE(X), for all i < k. Let A = (A, (F,a)) € K, such that a(X) < A4
then, by hypothesis, ax(¢;) = as(1;), for all i < k. Therefore,

0s(05(@) = ofs)(as(@)
= Uﬁ(z) (O‘§(¢))
= Oéz(gbz(@b))-
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We conclude that (0% (¢), 0k () € DE(X) and, therefore, DK(X) is indeed
a congruence system on F. ]

Furthermore, if K happens to contain a trivial F-algebraic system and
be closed under subdirect intersections, we can show that DX(X) is a K-
congruence system on F.

Proposition 31 Let F = (Sign’, SEN’, N*) be a base algebraic system and
K a class of F-algebraic systems, containing a trivial F-algebraic system and
<

closed under . For all X < (SEN")2, DK(X) e ConSys*(F).

Proof: By Proposition 30, we know that DX(X) is a congruence system on
F. Therefore, it suffices to show that it is a congruence system relative to
K. For this, let A = (A, (F,«)) € K, such that X < Ker({(F,«)). Define the
morphism

(F,aX): FID"(X) - A
by setting, for all © € |Sign’| and all ¢ € SEN’(X)/DX(X),

afi(¢/DE(X)) = as(9).

This morphism is well defined, since, if A € K, with X < Ker({(F,«)), then,
for all ¥ € [Sign’|, ¢, € SEN*(X),

(p,) e DX(X) implies ax(¢) = ax(v).
Now consider the collection
(F,a®): FIDX(X) = A, A=(A, (F,a))eK, X <Ker({(F,a)).
We have, for all ¥ € [Sign’| and all ¢, € SEN*(),

{6/ DE(X), ¥/ DE(X)) € N axy Kers ((F, X))
iff of(¢/DE(X)) =ak(v/DE(X)), for all (F,aK)
iff as(¢) =ax(y) for all (F,aX)
i (6,0) € DY),

Therefore, the displayed collection above constitutes a subdirect intersection
and, since A € K, for all (F,aKX), and K is closed under subdirect intersections,
we get that F/DK(X) € K, and, therefore, DK(X) € ConSys"(F). [

We are now in a position to show the promised alternative characteriza-
tion of the operator ©X. It turns out that it coincides with DX.

Theorem 32 Let F = (Sign’, SEN’, N*) be an algebraic system and K a class
of F-algebraic systems, containing a trivial F-algebraic system and closed
under subdirect intersections. For all X < (SEN’)2, ©K(X) = DK(X).
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Proof: Let X < (SEN’)2. By Proposition 31, DK(X) e ConSys"(X) and,
by Proposition 29, X < DX(X). Therefore, by the minimality of ©K(X), we
get that ©K(X) < DX(X). To show the reverse inclusion, let ¥ € |Sign’| and
¢,1 € SEN’(X), such that (¢,v) € DK(X). Consider F/OK(X) € K. Since

O (X)(X) < AF/O"(X) we get, by hypothesis, WSK(X)@) = WSK(X)(w), ie.,
(¢,1) € OK(X). We conclude that DX(X) < OK(X). n

We look, next, at how the operator ©X interacts with morphisms.

Proposition 33 Let F = (Sign’, SEN’, N*) be an algebraic system and K be
a class of F-algebraic systems, containing a trivial F-algebraic system and

such that ]ﬁ(K) c K. Let also A= (A,(F,a)), B=(B,(G,3)) be F-algebraic
systems and (H,~) : A - B a surjective morphism.

(a) If @ € ConSys*(B), then v-1() € ConSys*(A);

(b) If H is an isomorphism, Ker((H,~)) < 6 and 6 € ConSys¥(A), then
v(6) € ConSys*(B).

Proof:
(a) By Proposition 16, v=1(#) € ConSys(.A). Consider the morphism
(H, ") Aly(0) > B,
defined, for all ¥ € [Sign| and all ¢ € SEN(X), by
15(0/15 (Ony)) = 72(0)/Ons).-

This is well-defined, since, if (¢, %) € 75 (Ou(x)), then (vs(¢), 7s(v)) €
Or(x). Moreover,

Ker((H,77)) =77 (4507 = A%,

Thus, {{(H,v*): A/y~1(0) - B/0} is a subdirect intersection and, since,
by hypothesis, B/ € K, A/y71(0) € TI(K) c K. Therefore, v1(6) «
ConSys<(A).

(b) By Lemma 26, v(6) € ConSys(B). Moreover, it is not difficult to see
that

(H,7"): A/0 - B[~(0),
defined, for all ¥ € [Sign| and all ¢ € SEN(X), by
15(¢/05) = 72(6)/7:(6s)

is an isomorphism of F-algebraic systems, since, by Lemma 25, for all
Y €|Sign| and all ¢, € SEN(X),

(p,0) el iff (v2(9),12(¥)) e y=(fx).
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Therefore, {(H,~v)™":B/v(0) - A/f} is a subdirect intersection. Since

A/ € K, it follows that B/v(0) e ]ﬁ(K) c K. Therefore, () ¢

ConSys"(B).
u

Let F = (Sign’,SEN’, N*) be a base algebraic system, 7% : (SEN")* —
(SEN")2 be a collection of natural transformations in N* and A = (A, (F, a)),
with A = (Sign, SEN, N} an F-algebraic system. If 7° is perceived as having a
single distinguished argument, with the remaining arguments as parameters,
we define, for all X € |Sign| and all ¢ € SEN(X), the sentence family

%[¢] = {82 (0]} vsien),

by setting, for all 3/ € [Sign|,

e [6] = U{r (SEN(f)(9),X) : f € Sign(Z, %), X € SEN(X)}.

Given ® < SEN(X), we set
i [@] = U{r[¢] - o € @}
and, given a sentence family X € SenFam(A), we set
TA[X]= U{r[Xs] : T e |Signl}.

We will revisit these and similar definitions in more depth in Section 2.13. For
now, we only use them to establish a result that involves the relative congru-
ence system operator ©K, introduced in this section, and direct images under
morphisms of F-algebraic systems with isomorphic functor components.

Proposition 34 Let F = (Sign’, SEN’, N*) be an algebraic system, with
70 ¢ (SEN")* — (SEN")2 in N* and K be a class of F-algebraic systems,

containing a trivial F-algebraic system and such that Iﬁ(K) c K. Let also
A=(A(F,a)), B=(B,(G,05)) be F-algebraic systems and (H,7v): A— B a
surjective morphism, with H an isomorphism. Then, for all X € SenFam(.A),

OB (y(0"A(r4[X]))) = O F(r8[v(X)]).

Proof: Taking into account the surjectivity of (H,~), we have 78[v(X)] =
Y(TA[X]) < v (OKA(T4[X])). Hence

6K B(r5[1(X)]) < OFB(1(OXA(rAX]))).

On the other hand, y1(©XB(rB[~(X)])) is, by Proposition 33, a K-con-
gruence system on A, and, moreover, it contains 74[ X], since

Y(rAXT) = TPy (X)] < OB (B[ (X))).
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Hence, OXA(TA[X]) < v 1 (OKB(TB[v(X)])), i.e.,
1(OA(TA[X])) < ©F(rP[1(X)]).
This yields @XB(y(OKXA(TA[X]))) < OKB(rB[v(X)]). [

We conclude the section by showing that the relative congruence system
generated by a family of pairs may be expressed as the join in the complete
lattice of relative congruence systems of those relative congruence systems
generated by the single pairs of elements in the generating family.

Proposition 35 Let F = (Sign’, SEN’, N*) be an algebraic system and K be
a class of F-algebraic systems, containing a trivial F-algebraic system and

such that ]ﬁ(K) c K. For every F-algebraic system A = (A, (F,a)) and all
X e SenFam(.A?),

O A(X) = \V{04(¢,¥) : (¢,9) € X5, X € |Signl}.

Proof: Set
0= \/{04(6, ) : (¢,9) € X5, €[Sign]}.

For all ¥ € |Sign| and all (¢,9) € X5, we have (¢,¢) € @'g’A(X). So
OKA(p, 1)) < OKXA(X) and, therefore, § < OKA(X). Conversely, for all
Y ¢ [Sign| and all (¢,1)) € X5, we have (¢,9) € O5™(4,1) € fx. Hence,
X <0, which implies that OKA(X) < 6. [

2.5 Varieties of F-Algebraic Systems

Let F = (Sign’, SEN’, N*) be a base algebraic system.

An natural F-equation (sometimes, referred to, simply, as natural
equation, F-equation or just equation, if the meaning is made clear from
context) is a pair (o*,7"), where o*, 7" : (SEN*)¥ - SEN’ are natural trans-
formations in N*. The F-equation (o*,7°) will be denoted also by o® ~ 7°.
Sometimes notation such as 7% := 79 ~ 71 may also become handy. We
denote by NEq(F') the collection of all natural F-equations.

Let A= (A, (F,a)), with A = (Sign,SEN, N), be an F-algebraic system.
Then, given X € |Sign’| and ¢ € SEN’(X), we write A £y 0® ~ 7[$] and say
that ¢ Y-satisfies o’ ~ 77 in A if

ax(o%(4)) = as((9)).
The following is a useful lemma concerning satisfiability of an equation.

Lemma 36 Let F = (Sign’,SEN’, N*) be an algebraic system, o ~ 70 a
natural F-equation and A = (A, (F,«a)) an F-algebraic system. The following
statements are equivalent:
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—

(a) Aes o~ 7[¢];
(b) oy (as()) = T 5y (ax(9));
(c) For all X' € |Sign’|, all f € Sign’ (%, %),
s (0% (SEN"(£)(6))) = as (73, (SEN'(£)(9))).

Proof:
(a)<(b) By the homomorphism property,
an(0%(9)) = 0wy (an(9))  and  axn((8)) = Ty, (axn(9)).
So we get

Aes o' w7 [0] it as(oh(9)) = an(m4(d)
iff O’ﬁ(z)(ag((ﬁ)) = 7';;‘(2) (a2(¢))

(c)=>(a) This implication is trivial by taking >’ =% and f =iyx.
(b)=(c) We have

U?(z)(az((g)) = Tffl(z)(aﬁ(&)) B
implies  ax(03(¢)) = as(7s(¢))
implies, for all ¥’ € [Sign’| and all f € Sign’ (2, %),
SEN(F(f))(as(0%(9))) = SEN(F(f))(as(rs(9)))
implies, for all ¥’ € [Sign’| and all f € Sign’ (2, %),
as(SEN'(f)(04(0))) = as/(SEN(f)(74(6)))
implies, for all ¥’ € |Sign’| and all f € Sign’(%, %),
s (0%, (SEN'(£)(9))) = s (78, (SEN"(£)(9)))-
|
Given a natural F-equation ¢ » 7° and an F-algebraic system A =
(A, (F,«)) we write
Ao’ ~ 7"
and say that A satisfies o* ~ 7* or that o’ ~ 7" is satisfied in A or is valid
in A, if, for all ¥ € [Sign’| and all ¢ € SEN*(X), A ks o’ ~ 7°[0].
Let K be a class of F-algebraic systems and E® a set of natural F-
equations. We write K £ E* for

Ao’ ~ b forall AeK and all o’ ~ 7% € E.

Given an F-algebraic system A = (A, (F, a)), we define the kernel Ker(.A)
of A to be the kernel of the morphism (F, ) : F - A, ie., we let

Ker(A) := Ker({F,a)).
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Moreover, given a class K of F-algebraic systems, we let

Ker(K) = ﬂ(Ker(A).

Now we are in a position to define two kinds of classes of F-algebraic systems
generated by a given class K of F-algebraic systems. In other words, we
introduce two class operators on classes of F-algebraic systems.

Definition 37 Let F = (Sign’, SEN’, N*) be a base algebraic system and K
be a class of F-algebraic systems.

e The semantic variety V°™(K) generated by K is defined by

VSem(K) — {A € AlgSys(F) :Kel"(K) < Ker(A)}%

e The syntactic variety V>"(K) generated by K is defined by

V¥(K) = {A e AlgSys(F) : (Vo' ") (Ke o' v 7" = Ako’~7")}.

It is relatively easy to see that both V5™ and V" are closure operators
on the class of F-algebraic systems.

Proposition 38 Let F = (Sign’, SEN", N*) be a base algebraic system. Then
Veem and V" are closure operators on AlgSys(F).

Proof: We work, first, with Vsem,

o If A € K, then, by definition, we have Ker(K) < Ker(.A). Thus, A €
Vsem(K). So K ¢ VSem(K).

e Suppose K c L and A € V3m(K). Then we have
Ker(L) < Ker(K) < Ker(A).
So A e V3em(L). Hence, if K € L then V5 (K) c VS (L).
e Finally, suppose A € V3em(V5em(K)). Then Ker(V3Sem(K)) < Ker(A).
But, note that, for all B e V™ (K), we have Ker(K) < Ker(B), whence
Ker(K) < Ker(V3em(K)). Combining the two inclusions, we get

Ker(K) < Ker(V>m(K)) < Ker(A).

Thus, A € V5m(K). We conclude that VSem(Vsem(K)) c V3em(K).
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We work, next, with VY. Consider the two mappings

NEq: P(AlgSys(F)) - P(NEq(F)),
NMod : P(NEq(F)) — P(AlgSys(F)),

defined by

NEq(K) = {o’"~7"eNEq(F):Keot~71t}, Kc AlgSys(F);
NMod(E) = {AeAlgSys(F): A E}, FEcNEq(F).

It is not difficult to see that NEq and NMod form a Galois connection. Thus,
V9" = NMod o NEq is a closure operator on AlgSys(F). |

We prove that the semantic variety is always included in the syntactic
variety generated by the same class of F-algebraic systems.

Theorem 39 Let F = (Sign’, SEN", N*) be a base algebraic system and K a
class of F-algebraic systems. Then

Voem(K) ¢ V9 (K).

Proof: Suppose that A € V3em(K). Let o’ ~ 7* be a natural F-equation, such
that K& o ~ 7°. We must show that A& o’ ~ 7. To this end, let ¥ € |Sign’|
and ¢ € SEN'(X). Since K & o* ~ ¢, we have, for all K = (K, (K, «)) € K,

r2(0%(9)) = s (75(9))-

This means that (o%(4),74(¢)) € Kerg(K). Since this holds for all K € K,
we conclude that (0%(¢), 7% (¢)) € Kers(K). But, by hypothesis, Ker(K) <
Ker(A). Therefore, we get (o%(), 74(¢)) € Kers(A). This means that

as(0%(4)) = ax(15(9))-

Since ¥ € |Sign’| and ¢ € SEN’(X) were arbitrary, we get that A = o ~ 77,
Now we conclude that A € V¥"(K). Thus, V3em(K) c V5 (K). [

Now we look at some sufficient conditions that ensure that these two
variety operators generate the same class of F-algebraic systems. However,
the terminology, methodology and work presented in the rest of the section
have proven very useful in many contexts and can be used to reconcile results
that hold in more restricted contexts with partial analogs that hold in this
very abstract setting.

Let F = (Sign’,SEN’, N*) be a base algebraic system and consider a
cardinal s (which will usually be taken to be either finite or w). A source
signature s-variable pair (ssv” for short) (V,7) consists of a signature
V € |Sign’| and a vector © € SEN*(V)*, satisfying the following conditions:
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1. For all © € [Sign’|, ¢ e SEN*(2)*, there exists [ € Sign’(V,%), such
that .
SENb(f(z,J)))(@) = ¢;

2. For all ©, % € |Sign’|, ¢ ¢ SEN’(X)* and f € Sign’(%,%),

y
f m% Y',SENWW»
5 5

f

folfisa = fizsev @y

An algebraic system F is called x-term if it has an ssv®. The morphisms
f(z,q;) :V = X are referred to as the ssv® maps.

Let F = (Sign’, SEN’, N*) be a base algebraic system. We say that F
has k-variables if, for all ¥ € |Sign’|, there exists = € SEN’(X)*, such that
(3,0%) is an ssv®, with ssv® maps fiyy g 5 - ¥/, for all 3,5 € |Sign’|
and ¢ € SEN*(2/)*. The algebraic system F is called x-formulaic if it has
k-variables.

It follows, according to the preceding definitions, that F is s-formulaic,
with X-k-variables 0> and ssv® maps fy s g if:

e For all ¥, € [Sign’|, ¢ € SEN" (/)"
Fosr g (@) = &;

e For all ©,%, %" €|Sign’], all f € Sign*(>,%") and all ¢ € SEN*(2)*,

by
f(nzy X@,WSEW(D(&))
Z/ E//
f

fofissa = fizsrsov (@)

Let F = (Sign’,SEN’, N*) be a x-formulaic algebraic system, with &-
variables %, ¥ € |Sign’|. F will be called x-transformational (modulo
the given k-variables) if, for all ¥ € |Sign’| and all ¢ € SEN’(X), there
exists 0{29) : (SEN")* - SEN’, such that:

e o(¥9) depends on only finitely may variables;
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2,6 /-
o ¢=ol7(T%).

We have the following relation now that serves, so to speak, in bridging
the gap between the semantical and syntactical definitions of varieties of
algebraic systems.

Lemma 40 Let F = (Sign’, SEN", N*) be a transformational algebraic sys-
tem and A = (A, (F,a)) an F-algebraic system. Then, for all ¥ € |Sign’| and
all ¢, € SEN"(X),

(¢, 0) eKerg(A) iff Ak o™ x o),

Proof: Suppose, first, that A o059~ g{5%) This means that, for all
>’ € |Sign’| and all ¢ € SEN’(X),

as (05 (8)) = am (c57(4)).

Taking ¥’ = % and ¢ = 7%, we get ag(ag’(b)(ﬁz)) = OAE(O';Z’w>(17Z)), or, what
amounts to the same, ax(¢) = ax(v). Hence, (¢, 1) € Kers(A).

Suppose, conversely, that (¢,¢) € Kery(A). This means that ax(¢) =
ax(v). Since F is assumed to be transformational, there exist o{*%) and
o®¥) in N*, such that Jg’@(@z) = ¢ and Jg’w)(ﬁz) =1). Thus, we get

2,4) IRV PN
as (o5 (1)) = an (0§ (7).

Now, by formulaicity, for all ¥’ € [Sign’| and all ¢ € SEN’(3'), we get an ssv*
map f<272,7(5> : 3 = Y/, for which we have

3, N 3, -
SEN(F(fz.50)) (s (08 (8%))) = SEN(F (15,50, )) (as (o (8%))).
Hence, since « is a natural transformation,
ax (SEN'(fis..4) (07 (79))) = asy (SEN'(fi5, 5 3)) (03 (89))).
And since o3¢, g(Z¥) are also natural transformations, we get

s (08 (SENY(f550,3) (0%))) = s (05 (SEN"(f 5. 5.5 (89)).

Finally, by the k-variable property, we get

as (05 (8)) = am (c57(4)).

Since Y’ € |Sign’| and ¢ € SEN’(X') were arbitrary, we conclude that A =

Now we are in a position to prove that, for algebraic systems over transfor-
mational base algebraic systems, the semantic and syntactic variety operators
coincide.
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Theorem 41 Let F = (Sign’, SEN’, N*) be a transformational algebraic sys-
tem and K a class of F-algebraic systems. Then

V> (K) = V"(K).

Proof: By Theorem 39, V3em(K) c V" (K) always holds. For the reverse
inclusion, suppose that A € V5Y"(K). We must show that A € V3em(K), i.e.,
that Ker(K) < Ker(A). To this end, let ¥ € |Sign’| and ¢,1 € SEN*(%),
such that (¢,1) € Kers(K). Then, by Lemma 40, K & ¢(*¢) ~ g{>¥). Since
A e V3 (K), we get that A E 09 ~ o(>¥), Using Lemma 40 again, we infer
that (¢,1) € Kerg(A). Thus, Ker(K) < Ker(A). Hence, A € V5m(K). ]

2.6 mw-Institutions

Let F = (Sign’, SEN’, N*) be an algebraic system. A closure (operator)
system on F is a collection C = {Cs }ygign|; Such that

Cs : P(SEN’(X)) - P(SEN’(X))

is a closure operator on SEN’(X), for all ¥ € |Sign’|, and, moreover, for all
%, ¢ |Sign’|, all f e Sign’(X,%’), and all ® c SEN*(X),

SEN’(f)(Cx(®)) € Cx(SEN"(f)(@)).

This condition is often referred to as structurality.

A 7-institution is a pair Z = (F,C), where F = (Sign’, SEN’, N*) is
an algebraic system and C' is a closure system on F. We say that the n-
institution Z is based on the algebraic system F. The following assumption
is adopted throughout our treatise, unless explicitly stated otherwise:

Global Assumption: If, for some ¥ ¢ |Sign’|, Cx(2) # @,

then, for all ¥ € [Sign’|, Cx(2)  @. (2.1)

The set of ¥-theorems, denoted Thmy(Z), is defined by
Thmg(l—) = Cg(@).

We then set Thm(Z) = {Thms(Z)}sesign. We denote by @ the [Sign’|-
indexed collection & = {@}ygignt|- The Global Assumption (2.1), adopted
above, says that, if a w-institution has Y¥-theorems, for some signature 3,
then it has Y-theorems, for every signature .

A natural theorem of 7 is a natural transformation

7' : (SEN")* - SEN*
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in N*, for some k > 0, such that, for all & € |Sign’| and all ¢ € SEN*(Z)*,
T4(¢) € Thmy(Z).

That is, a natural theorem of 7 is a natural transformation in N* all of whose
values are theorems. We denote by NThm(Z) the collection of all natural
theorems of a m-institution Z.

Let F = (Sign’,SEN’, N*) be an algebraic system, Z = (F,C) be a n-
institution, based on F, and ¥ € [Sign’|. A subset Ty ¢ SEN*() is called a
Y-theory if

Cs(Tx) = Tk.
We use Thy(Z) to denote the collection of all ¥-theories of the m-institution
Z. A theory family of 7 is a sentence family 7' = {Tx }ygign of F, such

that Tx € Thy(Z), for all ¥ € |Sign’|. The collection of all theory families of
Z will be denoted by ThFam(Z). Ordered by signature-wise inclusion <, it
forms a complete lattice, denoted ThFam(Z) = (ThFam(Z), <).

A theory family of Z is called a theory system of 7 if it is a sentence
system, i.e., if it is invariant under signature morphisms. We denote by
ThSys(Z), the collection of all theory systems of Z. This collection forms
a complete sublattice ThSys(Z) = (ThSys(Z),<) of the complete lattice
ThFam(7).

Note that the minimum element of both ThFam(Z) and ThSys(Z) is
Thm(Z), the theorem system of Z, and the maximum element is

SENb = {SENb (Z) }Ze|Sign"| :

Thus, SEN’ is used to denote both the sentence functor of the base algebraic
system F of the 7m-institution Z = (F,C) and the maximum theory family
(system) SEN’ = {SENb(E)}ze\SignH of Z. This overloading will not, hopefully,
cause any confusion, since the context can be used to clarify the meaning.

Proposition 42 Let F = (Sign’,SEN', N*) be an algebraic system, T =
(F,C) be a m-institution and T € ThFam(Z). Then T is the largest the-
ory system of I included in T.

<«

Proof: Since, by Proposition 2, T is the largest sentence system included in
<«

T, it suffices to show that T is a theory system. To this end, let ¥ € |Signl’|

and ¢ € SEN’(X), such that ¢ € CZ((TZ). We must show that ¢ € (fg. So let
> ¢ |Sign’| and f € Sign’(3,%’). Then we have

SEN(f)(Cs(Tx))  (hypothesis)
Cy(SEN(f)(Ts)) (structurality)
Cs/(Tsr) (definition of ?)

TE’ (T € ThFam(Z))

SEN'(f)(¢)

N m

I N
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We now conclude, by the definition of <7_7, that ¢ € ?2. [

On the negative side, it is not true, in general, that, given a theory family
[

T of a m-institution Z, the least sentence system 7', containing 7', is a theory
system. We show that this is the case via an example.

Example 43 Let F = (Sign’, SEN’, N*) be the algebraic system defined as
follows:

e Sign’ consists of two signatures ¥ and X' and the only (non-identity)
morphism is f: 3 — X';

e SEN’: Sign — Set is defined by setting
SEN"(2) = {0,1}, SEN’(Y') = {a,b}
and SEN"(£)(0) = a, SEN"(f)(1) = b;

e N’ consists of only the projection natural transformations.

f
TZ
@, ™ p
Q" [ —— a
SEN(Z) SEN(Z')

Consider the closure system C' on F defined by setting

Cy = {2, {0}, {1},{0,1}} and Cy = {2, {a,b}}

and let T = (F,C') be the associated T-institution.
Finally, take T = {T%,Tsy} € ThFam(Z) to be the theory family specified

by
Ty ={1} and Tw =@.

Then we have N N
ng{l} and sz:{b}.

Since clearly
Co(Tsr) = O ({0}) = {a,b} # T's,

it follows that T is not a theory system of T.
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Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) a n-
institution based on F. We define two operators
C': SenFam(F) - ThFam(Z);
C - SenFam(F) — ThSys(Z);

as follows. Consider a sentence family 7" e SenFam(F').
o C(T) ={C(T)s}sesign| 15 defined by setting, for all ¥ e |Sign’],
C(T)s = Cx(Ix);

o Z(T) = {E’)(T)g}mSign»‘ is defined by setting, for all ¥ € |Sign’|,
C(T)y =Cx(Ty).

It is clear that C(T") is the smallest theory family of Z containing 7. We

show in the next proposition that E’)(T ) is the smallest theory system of Z
that contains the sentence family 7. Note that this implies, in particular,

that 6’)(T) is the smallest theory system of Z that contains a given theory
— —
family T" of Z. Note, also, that C'(T") = C'(T") should not be confused with

C(T), which, as shown in Example 43, may not be a theory family of Z.

Proposition 44 Let F = (Sign’,SEN’,N*) be an algebraic system, T =
(F,C) a m-institution, based on F, and T € SenFam(F). Then C(T) is
the smallest theory system of I that includes T.

Proof: It is clear by the definition that 6')(T) = C(?) € ThFam(Z). We
show that it is a theory system. To this end, let ¥ € |Sign’| and ¢ € SEN*(X),

such that ¢ € C’g(?g). Consider ¥’ ¢ |Sign’| and f € Sign’(2,%’). Then we
have

SEN'(f)(Cx(Ts)) (definition of C (7))
C’gr(SENb(f)(?g)) (structurality)

c ng(?gy) (definition of ?)

= C(T)w (definition of C(T)).

SEN'(f)(¢)

m

N

It remains to show that C' (?) is the smallest theory system containing 7.
To this end, let 7" € ThSys(Z), such that 7' < T". Since, by Proposition

2, T is the least sentence system containing 7T', we get T < T". Therefore,
since C' (?) is the least theory family containing ?, C (?) <T'. Thus, we
conclude that 6')(T) = C’(?) <T" and Z(T) is the least theory system of 7
that includes 7. ]

Let F = (Sign’,SEN’, N*) be an algebraic system and Z = (F,C) be a
m-institution based on F. We say that 7 is:
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e inconsistent if ThFam(Z) = {SEN'}, i.e., if, for all ¥ € |Sign’,
Cx(2) = SEN"(2);

e almost inconsistent if

ThFam(Z) = {T: (VX € |Sign’|)(T% = @ or Ty = SEN*(2))};
e trivial if it is either inconsistent or almost inconsistent.

Lemma 45 Let F = (Sign’, SEN’, N*) be an algebraic system and T = (F,C)
be a T-institution based on F. T is trivial if and only if, for all ¥ € |Sign’|

and all ¢, € SEN’(X), ¢ € Cx(9).

Proof: Suppose, first, that 7 is trivial and let ¥ € [Sign’| and ¢, 1) € SEN(X).
Since ¢ € Cx(¢), we have Cx(¢) # @, which implies that Cg(¢) = SEN’(X).
Therefore, 1 € Cx(¢).

Suppose, conversely, that the given condition holds. Let 7" e ThFam(Z)
and ¥ € |Sign’|, such that 7% # @. Then, there exists ¢ € SEN’(X), such that
¢ € Ts,. But then, by hypothesis, for all ¢ e SEN"(X),

Y eCs(9) € Os(Tx) = Tx.

Therefore, we get that, for all ¥ € [Sign’|, Tx = @ or Ty = SEN’(X), showing
that 7" is almost inconsistent. ]

Let F = (Sign",SENb,N") be an algebraic system. We can order -
institutions based on F by comparing their closure systems. Let Z = (F,C')
and Z' = (F,C") two m-institutions based on F. We say that Z’ is an exten-
sion of Z and that Z is weaker than Z’, written Z <Z’ (or C' < C") if, for
all ¥ € |Sign’| and all ® ¢ SEN"(X),

Cx(®) € C5(®).

Given a collection Z? = (F,C%), i € I, of m-institutions based on the same
algebraic system F, the intersection N;;Z" = (F,N;; C?) is defined by
setting, for all ¥ € |Sign’| and all ® ¢ SEN"(X),

(Q C)s(®) = ﬁIC’E(@).
It can be shown that N;;; C* is a closure system on F and that it forms the
meet with respect to the < order of the closure systems C? i€ I, on F.

Let F = (Sign’,SEN’, N*) be an algebraic system and Z = (F,C) be a
m-institution. Given a theory system T € ThSys(Z), we define the family
CT = {C] }sesignt| Of operators CY, : P(SEN’(X)) - P(SEN"(X)) by setting,
for all ¥ € [Sign’| and all ® ¢ SEN’(X),

Cg(q)) = Cz(TE U (b)

We show that CT is a closure system on F.
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Proposition 46 Let Z = (F,C') be a w-institution and T € ThSys(Z). Then
CT is a closure system on F.

Proof: We must first show that CL : P(SEN’(XZ)) - P(SEN’ (X)) is a
closure operator. That it is inflationary and monotone follows directly from
the corresponding properties of Csx. To see that it is idempotent, let ® ¢
SEN’(X). Then

CL(CL(®)) = Cx(TxuCx(Tsu®)) (by definition)
= CE(CE(TZ u (I))) (SiIlCG Tx ¢ Cz(TE U (b))
= Cy(Txu®) (idempotency of C')
= CL(®) (by definition).

Finally, we must show that C7 is structural. To this end, let ¥, %’ € [Sign’|,
f e Sign’(%,%) and ® ¢ SEN’(X). We have

SEN’(£)(CL(®)) SEN'(f)(Cx (T u®)) (by definition)
Csx (SEN'(f)(Tx) U SEN"(f)(®))

(by the structurality of C)
Cu(Ts USEN'(f)(@)) (T € Thys(Z))

CL(SEN’(f)(®)) (by definition).

n

I 1n

We conclude that C7' = {C{ } v gignt| s a closure system on F. n

Since CT is a closure system on F, we get, by definition, that the structure
(F,CT) is a m-institution. We use the notation Z7 = (F,C7) to denote this
m-institution.

Let F = (Sign’,SEN’, N*) be an algebraic system and Z = (F,C) be
a m-institution based on F. An Z-logical morphism (or simply logical
morphism if 7 is clear from context) is a morphism (F,«a) : F - F, such
that, for all ¥ € |Sign’| and all ¢ SEN"(X),

ax(Cs(?)) € Crs)(as(®)).

More generally, let F = (Sign,SEN, N) and F’ = (Sign’,SEN’, N’) be
two algebraic systems and Z = (F,C) and I’ = (F/,C") be m-institutions
based on F and F'| respectively. A logical morphism (F,«a):Z — 7' is an
algebraic system morphism (F, ) : F — F’, such that, for all X € |Sign| and
all @ ¢ SEN(X),

Oéz)(Cg((I))) c CF(Z)(O@((I))).

The following lemma characterizes logical morphisms:

Lemma 47 Let F = (Sign, SEN, N), F’ = (Sign’, SEN', N’} be two algebraic
systems and I = (F,C), Z' = (F',C") be w-institutions, based on ¥, ', re-
spectively. Suppose (F,a) : F - F is an algebraic system morphism. Then
the following conditions are equivalent:
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(a) (F,a):Z - T is a logical morphism;
(b) For all 3 €|Sign| and all ¥ ¢ SEN'(F (X)),
Cx(ag' (V) < a5 (Cres) (9));
(¢) For all T" e ThFam(Z'), a~(71") e ThFam(Z).
Proof:
(a)=>(b) Let ¥ €|Sign| and ¥ ¢ SEN'(F(X)). Then, we have

as(C(as! (1)) € Crey(as(az (1)) (hypothesis)

Crz)(¥). (set theory)

N 1N

We conclude that Cyx(az!(¥)) € ag'(Cry ().
(b)=(c) Suppose that T’ € ThFam(Z’). Then we have

Cla(T")) a~ Y (C"(T")) (hypothesis)

a~(T"). (T" e ThFam(Z'))

IREVAN

Therefore, a=1(T") € ThFam(Z).
(c)=(a) Let ¥ €|Sign| and ® ¢ SEN(X). Then, we have, for all '€ ThFam(Z"),
as(P) € Tres) ifft ~ ®cag'(Tr)) (set theory)
implies Cx(®) € o' (Tpsy) (hypothesis)
iff  an(Cx(®P)) CTre). (set theory)
Since T' € ThFam(Z’) was arbitrary, we get that
as(Cx(®)) € Cp sy (an(®)).

So (F, ) is a logical morphism.

In the special case of Z-logical morphisms, we obtain the following
Corollary 48 Let F = (Sign’,SEN’, N*) be a base algebraic system, I =
(F,C) a m-institution, based on F, and (F,«a) : F > F an algebraic system
morphism. Then (F,«) is an Z-logical morphism if and only if, for all T €
ThFam(Z), a~(T') € ThFam(Z).

Proof: Directly from Lemma 47. [
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2.7 Matrix Families and Systems

Let F = (Sign’,SEN’, N*) be an algebraic system. An F-matrix fam-
ily is a pair 2 = (A,T), where A = (A, (F,a)) is an F-algebraic system
and T € SenFam(.A). The collection of all F-matrix families is denoted by
MatFam(F). An F-matrix system is an F-matrix family 2 = (4, 7'), such
that T" € SenSys(A). The collection of all F-matrix systems is denoted by
MatSys(F).

An F-matrix family 2 = (A, T) defines a closure system C? = {C3 }5,.igigm'|
on F by setting, for all ¥ € |Sign’| and all ® U {¢} € SEN*(2),

¢ € C2(®) if and only if, for all X’ € |Sign’| and all f € Sign’(%,¥),
asy (SEN’(f)(®)) € Tr(sry imlpies as/ (SEN'()(#)) € Trs).-

Let, now, M be a class of F-matrix families. We denote by

cM = {Cgl}ze\Sign"\

the closure system on F that is the signature-wise intersection of the closure
systems C%, 2 e M, i.e.,
cM=Nc*
AeM

We use the notation ZM = (F,CM) to denote the associated m-institution
based on F.

We give a characterization of the closure system CM on F generated by a
class M of matrix families which shows how that closure system is constructed
using the generating matrix families.

Proposition 49 Let F = (Sign’, SEN’, N*) be an algebraic system and M a
class of F-matriz families. Then CM is the least closure system on F con-
taining the family

T={a(T):A={((A,(F,a)),T) e M}.

Proof: First we show that 7 < CM. To this end, let 2 = ((A, (F,«a)),T) € M.
We must show that a=1(T") e CM. Suppose X € |Sign’| and ¢ € SEN’(X), such
that ¢ € CM(a5!'(Tr(s))). Then, by the definition of CM and the fact that
AeM, we get

042(0451 (TF(Z))) c TF(Z) implies Oég(é) € TF(E)-

Note, however, that the antecedent of the displayed implication always holds.
So the consequent ax(¢) € Tr(xy holds. Hence, ¢ € a5!(Tp(s)). Therefore,
CM(a™(T)) < a~Y(T), showing that a~1(T") € CM.

Next, we show that, if C is a closure system on F, such that 7 ¢ C,
then CM ¢ C. Equivalently, it suffices to show that C' < CM. To this end,
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let 3 € [Sign’| and ® u {¢} € SEN’(X), such that ¢ € Cx(®). Since C is a
closure system on F, we get, for all ¥ € [Sign’| and all f € Sign’(X,%),
SEN’(f)(¢) € Cx/(SEN’(f)(®)). Thus, since T ¢ C, we get, for all (A, T) €
M, with A = (A, (F,«)),

SEN’(f)(®) € a5y (Trsry)  implies  SEN"(f)(6) € asi(Tresy),
i.e., for all ¥ € |Sign’| and all f € Sign’(%, %),
CYE'(SENb(f)(q))) c TF(E’) 1mphes Oéz/(SENb(f)(Qb)) € TF(EI).

Hence, for all 2 = (A4,T) € M, ¢ € CZ(P). We conclude that ¢ € C¥(P).
Therefore, C' < CM, as was to be shown. [ ]

Let again F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C)
be a 7-institution based on F. Let A= (A, (F,«)) be an F-algebraic system,
with A = (Sign,SEN, N). A sentence family 7' € SenFam(.A) is called an
Z-filter family and the F-matrix family 2 = (A, 7T") an Z-matrix family if

C<C*.

If T happens to be a sentence system, then we refer to T" as an Z-filter
system and to 2 = (A,T) as an Z-matrix system.

We have the following simpler characterization of Z-filter families, which
follows from the structurality of the closure system of a m-institution.

Lemma 50 Let F = (Sign’, SEN", N*) be an algebraic system, T = (F,C) a
m-institution based on F, A = (A, (F,«)) an F-algebraic system, with A =
(Sign,SEN, N), and T € SenFam(A). T is an Z-filter family if and only if,
for every ¥ € |Sign’| and all  u {¢} < SEN*(X), such that ¢ € Cx(P),

as(®) cTry implies ax(¢) € Tres).

Proof: Suppose, first, that 7' is an Z-filter family and let X € |Sign’|, du{¢} ¢
SEN’(X), such that ¢ € Cx(®) and ax(®) € Tr(x). Since T is an Z-filter
family, C' < CAT), Therefore, by taking in the definition of CtAC) 3/ = %
and f:¥ — ¥ to be the identity morphism, we get that ax(¢) € Tr(x).
Suppose, conversely, that the given condition holds and let ¥ ¢ [Sign’,
d u {¢p} ¢ SEN’(X), such that ¢ € Cx(®). Consider ¥’ € |Sign’|, f €
Sign’(%,Y’), such that asy(SEN’(f)(®)) € Tr(sy. Note, that, by struc-
turality, SEN’(f)(¢) € Cx/(SEN’(f)(®)). Therefore, by the assumption and
the hypothesis, as/(SEN"(f)(¢)) € Trsry. We conclude that T is an Z-filter
family. [

The next lemma shows that the inverse image under an interpretation of
an Z-filter family or system is a theory family or system, respectively, of Z.
Moreover this property also characterizes Z-filter families/systems.
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Lemma 51 Let F = (Sign’, SEN", N*) be an algebraic system, T = (F,C) be
a m-institution, based on F, and A= (A, (F,«a)) be an F-algebraic system.

(a) T € FiFam®(A) if and only if a=*(T) € ThFam(ZT);
(b) T e FiSys™(A) if and only if a~*(T) € ThSys(T).
Proof:

(a) Suppose, first, that 7' e FiFam®(A). We must show that o 1(T) €
ThFam(Z). To this end, suppose ¥ € [Sign’| and ¢ € SEN’(X), such
that ¢ € Cx (a5 (Trx)). Since T € FiFam”(A), we have, by definition,

Ozz(ail (TF(E))) c TF(E) implies Ozg(gb) € TF(g).

But the hypothesis of this implication holds, whence the conclusion is
also true and we get ax(¢) € Trx) or, equivalently, ¢ € o5 (Tr(x)).
Thus a~(T") € ThFam(Z).

Suppose, conversely, that a=!(7") € ThFam(Z). To show that T e
FiFam”(A), let ¥ € |Sign’| and ® u {¢} ¢ SEN’(X), such that ¢ €
Cs(®), and assume that ax(P) € Tp(s). Then, we have ® € o5 (Tr(x)).
Since ¢ € Cx(®) and a~'(T) € ThFam(Z), we get that ¢ € ag'(Tp(s))
or, equivalently, ax(¢) € Tpy). This proves, by Lemma 50, that
T e FiFam® (A).

(b) This follows from Part (a) and from Part (a) of Lemma 6.
|

We denote by FiFam?®(A) and by MatFam(Z), respectively, the collection
of all Z-filter families on A and the collection of all Z-matrix families. Note
that FiFam®(A) is a complete lattice FiFam?®(A) = (FiFam®(A), <), with
the order < inherited by the corresponding order on sentence families.

Similarly, we denote by FiSys®(A) and by MatSys(Z), respectively, the
collection of all Z-filter systems on A and the collection of all Z-matrix sys-
tems. Note that FiSys”(A) forms a complete lattice

FiSys”(A) = (FiSys’(A), <),

which is a complete sublattice of the complete lattice FiFam?® (A).
Moreover, given a F-matrix family 2 = (A, T), we say that 7" is a sen-
tence family of 2, written 7" € SenFam(2l), if 7' < T’. Similarly, given
an Z-matrix family 2 = (A, T), we say that T’ € FiFam”(A) is an Z-filter
family of 2, written 7" € FiFam® (), if T < T".
Since FiFam”(A) and FiSys”(A) are both complete lattices, it makes
sense to define associated closure operators on SenFam(.A).
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e Denote by CZA : SenFam(Z) — FiFam?(A) the operator that maps
a given sentence family T of A to the least Z-filter family of A that
includes T7;

T,A

e Denote by €' : SenFam(A) — FiSys”(A) the operator that maps a
given sentence family 7" of A to the least Z-theory system of A that
includes 7.

We look now at some relations between the pairs of operators CZA, C

_>I7A = . . .
on the one hand, and C' |, C' on the other, established via the inverse
interpretation ot of the F-algebraic system A = (A, (F, «)).

Proposition 52 Let F = (Sign’,SEN’, N*) be an algebraic system, I =
(F,C) be a m-institution, based on F, and A = (A,(F,a)) be an F-algebraic
system. Then, for all T € SenFam(A), we have:

(a) C(a)(T)) < 0" (CTAT));
() Cla(T) < (C 7 (T)).
Proof:

(a) Suppose T € SenFam(A). We have T' < CTA(T), whence a(T) <
a1 (CTA(T)). By Lemma 51, o= (CTA(T)) is a theory family of Z
and it includes a1 (7). Therefore, by the definition of C', C'(a (7)) <
a” !l (CHA(TY).

—I,A —
(b) We have T'< €' (T). Therefore, since, by Proposition 2, T' is the
- LA
least sentence system containing 7', we get 7' < C'  (T'). Now, taking
_— — —7,A

into account Lemma 6, we get a}(T) = aY(T) <a'(C (T)). By
—T,A —

Lemma 51, «71(C' (7)) is a theory system of Z including a=*(7") and,
—_ —I,A — —T,A

therefore, C(a~Y(T)) <a }(C  (T))