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2.1 Introduction

In Section 2.2, we introduce the basic algebraic machinery that underlies all
structures considered in the monograph. We start with sentence functors,
which are arbitrary Set-valued functors on a category of signatures. Sen-
tence families are families of sets over sentence functors. They are called
systems in case they are invariant under signature morphisms. Associated

with a sentence family T is the largest sentence system
←Ð
T included in T and

the smallest sentence system
Ð→
T which includes T . We also introduce and

discuss morphisms between sentence functors and, in particular, distinguish
the key class of surjective morphisms. By analogy to sentence families, one
may also consider relation families over sentence functors, i.e., families of
relations on sentences. Relation families satisfying the requisite properties
constitute equivalence families. A fundamental notion, pervasive throughout
our treatise, is that of compatibility of an equivalence family with a given
sentence family. The importance of compatibility was exemplified in [35]
(see, e.g., Section 1.4 of [35], where the notion is defined). Whereas sentence
functors capture the underlying carriers of all algebraic and logical structures
we consider, the earnest algebraic treatment begins when they get endowed
with categories of natural transformations which correspond to clones of al-
gebraic operations [31, 44]. These enriched structures are termed algebraic
systems. Appropriate mappings, preserving the relevant features, are also
called morphisms (of algebraic systems). In most contexts, it is required
that all algebraic systems under consideration are over the same algebraic
signature. This is ensured by adopting a base algebraic system F, which fixes
the signature, and, then, considering only algebraic systems whose sentences
and clones of operations are, in a certain sense, interpretations of the ba-
sic one. These play an important role and are termed interpreted algebraic
systems or F-algebraic systems.

In Section 2.3, we introduce and study congruence systems. These are
equivalence systems on an underlying algebraic system that satisfy a suit-
ably adapted version of the congruence (sometimes also called compatibility
or replacement) property. They play in this context the role that congruences
play in universal algebra [22, 13, 21, 30, 84]. The collection of congruence
systems on a given algebraic system forms a complete lattice. Of utmost im-
portance is the process of constructing the quotient of an algebraic system by
a congruence system and of the accompanying canonical quotient morphism.
Equally important, in fact indispensable for the development of the theory,
is the fact that the collection of congruence systems on a given algebraic
system A that are compatible with a given sentence family T of A form a
complete lattice. This fact allows considering the largest congruence system
on A compatible with T , which is denoted by ΩA(T ) and termed the Leibniz
congruence system of T on A [35]. A property that is worth mentioning,
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since it plays a critical role in establishing pieces of the various hierarchies
considered in subsequent chapters, is that the Leibniz congruence system of
a sentence family T is always included in that of the largest sentence system

contained in T , i.e., ΩA(T ) ≤ ΩA(←ÐT ).
In Section 2.4, we look at a special class of congruence systems whose

definition presupposes fixed in the background a class K of algebraic systems.
Given an arbitrary algebraic system, a congruence system on it is said to be
a K-congruence system or a congruence system relative to K if the quotient
algebraic system it induces belongs to the class K (see, e.g., Chapter Q of
[64]). Two important concepts in this context are closure of a class under
morphic images and closure under subdirect intersections. If the class K

is closed under morphic images, then, for every algebraic system in K, the
absolute and relative concepts of congruence system coincide. On the other
hand, if K happens to be closed under subdirect intersections and contains a
trivial algebraic system, then the collection of all K-congruence systems on
any algebraic system forms a complete lattice. In this case, it makes sense
to consider, given a relation system X on an algebraic system A, the least
K-congruence system on A including X , also known as the K- congruence
system generated by X , and denoted by ΘK,A(X). In the main result of the
section, it is shown that this congruence system coincides with the equational
closure of X relative to the class K.

In Section 2.5, we introduce semantic and syntactic varieties of algebraic
systems. These play the role that varieties play in universal algebra (see,
e.g., [21, 30, 84]). All algebraic systems are understood to be over a fixed
signature specified by a base algebraic system F. To define the two types
of varieties, we look at equations, consisting of pairs of sentences, and at
natural equations, which are pairs of natural transformations. Given a class
K of algebraic systems, the semantic variety generated by K is the class of
all algebraic systems satisfying all equations valid in all members of K. The
syntactic variety generated by K is defined analogously with reference to
natural equations. It turns out that the semantic variety generated by K is
subsumed by the corresponding syntactic one. A technical definition, that
of a transformational algebraic system, is introduced as a way to establish a
sufficient condition for semantic and syntactic varieties to coincide.

In Section 2.6, we switch from purely algebraic to logical considerations.
We define systems of closure operators on algebraic systems, which give rise
to π-institutions [33] (see, also, [25, 41]). Those constitute the basic un-
derlying logical structures on which all subsequent studies will be founded.
Many well-known fundamental logical concepts are adapted to this frame-
work, among them, theorem systems, theory families and inconsistent, almost
inconsistent and trivial π-institutions (see, e.g., [64, 86] for the counterparts
in abstract algebraic logic). Concerning theory families, it is worth mention-
ing that in case T is a theory family of a given π-institution, the construction
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of
←Ð
T gives rise to a theory system, and not merely a sentence system, but this

is not the case for
Ð→
T . Therefore,

←Ð
T does constitute the largest theory system

included in T , but to construct the smallest theory system including T , one

has to apply the closure operator and obtain C(Ð→T ). Comparing closure sys-
tems over the same underlying algebraic system, the notions of extension and
weakening are introduced, as well as that of the closure system obtained as
the intersection of a family of closure systems. Given a closure system C and
one of its theory systems T , we also consider the extension CT of C that is
induced by adopting the given theory system as a system of axioms. Finally,
we look at logical morphisms between π-institutions. These are morphisms
that preserve the logical structure, i.e., map closures into closures in a for-
mal sense, or, what turns out to be equivalent, morphisms whose inverses
preserve theory families.

In Section 2.7, after having discussed the algebraic and logical prerequi-
sites, we turn into developing the first rudiments of their interaction. We
look at matrix families which serve both to define closure systems, and,
hence, also, π-institutions, but also as algebraically based models of given
π-institutions. They are pairs consisting of an underlying algebraic system
together with a sentence family over it and correspond to the ordinary logical
matrices of abstract algebraic logic [64, 86]. For a given π-institution I , its
matrix family models are termed I-matrix families and the corresponding
sentence families are called I-filter families. Some characterizations of these
families are provided along with the observation that the collection of all
I-filter families on a given algebraic system forms a complete lattice. A dis-
cussion follows on when and under which conditions morphisms between the
underlying algebraic systems preserve, under taking direct or inverse images,
I-filter families. In closing the Section, we look at quotients of matrix fami-
lies under the Leibniz congruence systems of their filter families. These are
referred to as Leibniz reductions (see, e.g., Section 4.3 of [86]). We say that a
matrix family is Leibniz reduced when the Leibniz congruence system of its
filter family is the identity. Leibniz reductions give rise to the fundamental
collection of Leibniz reduced I-matrix families and the accompanying collec-
tion of their algebraic system reducts. Two more related subcollections are
obtained if one restricts attention to I-filter systems and I-matrix systems,
i.e., those that consist of filter families that are invariant under the action of
signature morphisms.

In Section 2.8, continuing the study of filter families and matrix fam-
ilies, we introduce axiomatic extensions, or axiomatic strengthenings, and
the closely related concept of filter extension (see Section 0.8 of [64] and Sec-
tions 1.3 and 1.4 of [86]). We provide characterizations and study interactions
with morphisms, looking, in particular, into some preservation properties.

In Section 2.9, a generalization of matrix families and filter families is
introduced. Namely, we consider structures consisting of an underlying al-
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gebraic system together with a collection of sentence families over it. These
are called generalized matrix families or gmatrix families, for short. They
play the role that generalized matrices play in the traditional treatment [52]
(see, also, Chapter 5 of [86]). As was the case with matrix families, gmatrix
families serve a dual purpose. They may be used to define closure systems,
but they also serve as models of π-institutions. In the latter case, if a gmatrix
family is a model of a given π-institution I , we say that it is an I-gmatrix
family. By analogy with I-matrix families, one may consider reductions of
gmatrix families. The Tarski congruence system of a gmatrix family is the
largest congruence system on its underlying algebraic system which is com-
patible with all filter families of the gmatrix family [52]. Equivalently, it
may be characterized as the intersection of all Leibniz congruence systems
of its constituent filter families. The process of taking the quotient of a
gmatrix family by its Tarski congruence system is called Tarski reduction.
We say that a gmatrix family is Tarski reduced if its Tarski congruence sys-
tem in the identity. The construction gives rise to the class of all Tarski
reduced I-gmatrix families and the class of the corresponding algebraic sys-
tem reducts. Both are of critical importance in the study of algebraization of
π-institutional logics. Very intimately related to Tarski congruence systems
is the notion of Suszko congruence systems [67] (see, also, Section 1.5 of [64]
and Section 5.3 of [86]). Here, one considers the filter family subcollection T T

of a filter family collection T by keeping only those filter families containing
a fixed filter family T ∈ T . The Suszko congruence system of T relative to
T is the Tarski congruence system of T T . Conversely, assuming that T has
a smallest filter family T , the Tarski congruence system of T coincides with
the Susko congruence system of T in T . As before, one may consider Suszko
reductions and Suszko reduced I-matrix families, where the reductions are
taken relative to the collection of all I-filter families. Even though, given
a π-institution I , this process results in the new class of Suszko reduced
I-matrix families, the class of corresponding algebraic system reducts turns
out to be identical with that obtained from the process of Tarski reduction.

In Section 2.10, we continue the study of classes of algebraic systems
associated with a given π-institution I . In Section 2.7, we introduced the
class of all algebraic system reducts of all Leibniz reduced I-matrix families.
This class is known as the class of I∗-algebraic systems. In Section 2.9, we
looked at the class of all algebraic system reducts of all Tarski reduced I-
gmatrix families. These are known as I-algebraic systems. The two classes
correspond, respectively, to the classes Alg∗S and AlgS in the case of a
sentential logic S [52]. On top of these two classes of algebraic systems, two
more classes considered in relation to a π-institution I are the semantic and
syntactic varieties generated by the underlying algebraic system of the Tarski
reduction of the I-gmatrix system consisting of the collection of all theory
families of I . The first is termed the semantic and the second the syntactic
variety of I . It turns out that, in general, the class of I∗-algebraic systems
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forms the smallest class, followed by the class of I-algebraic systems, followed
by the semantic variety of I , while the syntactic variety of I constitutes the
largest of these four classes. An interesting result is that any of these four
classes generates the same syntactic variety, namely, the syntactic variety of
I . The section concludes with the observation that the class of all I-algebraic
systems is closed under subdirect intersections and contains a trivial algebraic
system. Consequently, one is justified in considering congruence systems
generated by any relation system on any given algebraic system relative to
this class.

In Section 2.11, we switch from the study of congruence systems associ-
ated with a given π-institution and of their quotients to the study of equiv-
alence families and systems resulting by considering mutual membership or
non-membership in theory families. The reader is warned that the terminol-
ogy here deviates from the standard one for sentential logics (Section 2.4 of
[52] and Section 1.3 of [86]). This is done in an attempt to streamline the the-
ory of these equivalence families with the theory based on the Leibniz, Tarski
and Suszko congruence systems. The most basic equivalence family is the
Frege equivalence family of a given theory family, which identifies sentences if
they are both inside or both outside the given theory family. Sometimes, this
is expressed by saying that the sentences are equivalent modulo the theory
family. The Frege relation system is the largest equivalence system included
in the Frege equivalence family. There is a close connection between Leibniz
congruence systems and Frege relation families/systems. The Leibniz con-
gruence system of a given theory family is the largest congruence system con-
tained in the Frege equivalence family or system associated with the theory
family. In a way analogous to the passage from Leibniz congruence systems
of single theory families to the Tarski congruence systems of collections of
theory families, one transitions from Frege equivalence families to Carnap
equivalence families. These express equivalence of sentences modulo collec-
tions of theory families. The Carnap equivalence family turns out to be the
intersection of the Frege equivalence families of all theory families in the col-
lection. Here, again, the Carnap equivalence system is the largest equivalence
system included in the Carnap equivalence family. Further, extending the
relation between Leibniz congruence systems and Frege equivalence families,
the Tarski congruence system of a collection is the largest congruence system
included in either the Carnap equivalence family or the Carnap equivalence
system of the same collection. The same paradigm gives rise to Lindenbaum
equivalence families/systems, which formalize the equivalence of sentences
modulo a theory family, relative to a given collection of theory families. This
is identical to the intersection of all Frege equivalence families/systems of
those theory families in the collection including the given one. Similar rela-
tions as before hold in this case as well, with the role of Leibniz and Tarski
congruence systems played by Suszko congruence systems. A small table
at the end of the section summarizes the three congruence systems and the
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three corresponding pairs of equivalence families/systems that are consid-
ered in this context. Hopefully, the analogies outlined between congruence
systems and equivalence families/systems provide some justification for in-
troducing distinct names for the Carnap equivalences and the Lindenbaum
equivalences, which are all referred to as Frege equivalences in the literature.

In Section 2.12, we look at subsystems of algebraic systems and induced
π-subsinstitutions. Given an algebraic system, a universe is a sentence sub-
functor over the same category of signatures that is also closed under the
algebraic operations. In a natural way, a universe gives rise to an alge-
braic subsystem. With each subsystem, there is associated a natural injec-
tion morphism. Given a sentence family of an algebraic system, by closing
successively under the action of signature morphisms and under the action
of natural transformations, one obtains the universe of the algebraic sys-
tem generated by the given sentence family. If the given algebraic system
happens to be the underlying system of a π-institution, which is a case of
central interest, then, by restricting the action of the closure system of the
π-institution on sentences of the universe, we obtain a π-subinstitution. Its
theory families turn out to be exactly the restrictions of the theory families
of the original π-institution on the universe. The section concludes by estab-
lishing some connections between the Leibniz congruences of theory families
of the original π-institution and those of the induced theory families of the
subinstitution. These relations extend in a natural way to filter families of
the two institutions.

Up to Section 2.12, only cursory attention is paid to natural transforma-
tions. They are used in establishing syntactic varieties of algebraic systems
via natural equations, but they are not thoroughly studied as “syntactic”
objects of interest in their own right. This deficiency is rectified by devoting
Sections 2.13-2.15 to their study and to particular aspects of their properties
and behavior that are of interest for subsequent considerations.

In Section 2.13, we consider the role played by collections of natural
transformations. In general, in the context of collections of natural transfor-
mations, a number of arguments is fixed and they are considered as primary
or distinguished arguments. The remaining positions play an auxiliary role
and are perceived as parametric (see, e.g., Section 1.2 of [64] and Section
6.2 of [86]). In accordance with this paradigm, if E is a collection of natural
transformations, of which k positions are considered distinguished, then, for
any k-tuple of sentences φ⃗ over a signature Σ, EΣ[φ⃗] denotes the sentence
family consisting of all sentences of the form εΣ′(SEN(f)(φ⃗), χ⃗), for ε ∈ E,
f ∶ Σ → Σ′ a signature morphism and χ⃗ an arbitrary tuple of sentences over
Σ′. In this way a tuple, or a collection of tuples, of sentences gives rise to
a sentence family. Dually, given a sentence family T , one may consider the
family of all k-tuples φ⃗, such that εΣ′(SEN(f)(φ⃗), χ⃗) ∈ TΣ′ , for all ε, f and
χ⃗. This gives rise to a k-ary relation system, depending on both E and T ,
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denoted
←Ð
E (T ). ←ÐE , viewed as an operator from sentence families to relation

systems, is monotone and commutes with inverse surjective morphisms. For
the purposes of relating logical with algebraic systems, critical is the role

played by
←Ð
E as a potential means of defining Leibniz congruence systems

of theory families. Along those lines, it is shown that, if k = 2 and
←Ð
E (T )

defines a reflexive relation system, then this includes the Leibniz congruence

system of T . Consequently, if
←Ð
E (T ) is itself a congruence system compatible

with T , then it necessarily coincides with the Leibniz congruence system of
T (see, e.g., Theorem 1.6 of [35]).

In Section 2.14, taking a cue from the definition of the operator
←Ð
E in

Section 2.13, we investigate membership relations of k-tuples of sentences in
theory families of a π-institution induced by a fixed set E of natural transfor-
mations, taken to possess k distinguished arguments. Four modes are consid-
ered, namely, E-local, E-global, left E-local and left E-global membership.
It is shown that E-global and left E-global memberships are equivalent, that
they imply left E-local membership, which, in turn, implies E-local member-
ship. Both implications are shown to be strict in general. If a membership
property holds for all k-tuples of sentences (for the same E), then that prop-
erty is attributed to the set E itself. It turns out that, in that case, all
three resulting modes of membership of E in a theory family T are actually
equivalent properties.

Section 2.15 is the last of the three sections that are devoted exclusively
to the analysis of syntactic definability properties via sets of natural trans-
formations. In this section, we consider two possible ways which may be
used to obtain, starting from a parametric collection S of natural transfor-
mations, a related one that is parameter-free. The first is effectuated by
replacing all parametric arguments by k-ary terms, where k is the number of
distinguished arguments of S. This process gives rise to a new collection Ṡ of
natural transformations with k arguments altogether and, therefore, without
parameters. The second process is more abstract. It is defined via the use of,
so called, anti-monotone global properties of natural transformations. These
are properties that satisfy a technical anti-monotonicity condition. Given
such a property P , by slightly abusing notation, we also denote by P the
collection of all natural transformations (possibly with parameters) satisfy-
ing P . Then P̂ denotes the subcollection of P of parameter-free natural
transformations satisfying P . In the main result of Section 2.15, it is shown
that, given such a property P , both constructors Ṗ and P̂ result in identical
de-parameterizations of the collection P .

The last three sections of Chapter 2 deal with more specialized topics.
Section 2.16 addresses the special case of π-institutions whose closure systems
are finitary. Most applied logical systems encountered in the literature fall
under this case. Section 2.17 deals with equational π-institutions. These
are π-institutions whose sets of sentences are pairs of sentences drawn from
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a base algebraic system and whose closure operators reflect the equational
consequence determined by a class of algebraic systems. Finally, Section
2.18 adapts some of the rudiments pertaining to varieties, quasivarieties and
generalized quasivarieties of universal algebra and their generation to the
context of algebraic systems.

In Section 2.16, we study finitarity (see, e.g., Section 0.1 of [64] and Sec-
tion 1.4 of [86]). This is the property of a closure system (or π-institution)
that holds when every sentence which is a consequence of a set of sentences is
also a consequence of some finite subset of that set. Some characterizations
of finitarity are provided based on the properties of local continuity and con-
tinuity of a π-institution which, in turn, are defined using local directedness
and directedness of collections of theory families. The last part of the section
provides a step-wise, inductive construction of the filter family of a finitary
π-institution on an arbitrary algebraic system generated by a give sentence
family of the algebraic system.

In Section 2.17, we introduce equational consequences based on fixed
classes of algebraic systems and show that all their theory families happen
to be theory systems and that, moreover, they coincide with the congruence
systems relative to the class of algebraic systems inducing the equational
consequence. Then, as in Section 2.16, we present a step-wise construction
of the equational consequence generated by a given family of equations, con-
sidered as axioms. We show that, if this defining family of equations is taken
to be the family of equations that holds in a class K of algebraic systems,
then the equational consequence they generate, according to this step-wise
process, coincides with the equational consequence induced by the class K.

The final section, Section 2.18, translates some of the classical results
of universal algebra pertaining to varieties, quasivarieties and generalized
quasivarieties [21, 30, 84] (see, also, Chapter Q of [64]) to the context of
classes of algebraic systems. We revisit equations and, in addition, consider
quasiequations and generalized quasiequations, referred to as guasiequations.
Satisfaction of an equation, quasiequation or guasiequation by a given alge-
braic system is defined. These relations give rise to Galois connections (see,
e.g., Chapter 11 of [36]). The closed sets on the algebraic side form, respec-
tively, equational, quasiequational and guasiequational classes of algebraic
systems. Equivalently, these are the classes of algebraic systems defined by
equations, quasiequations and guasiequations. When they are thought of as
classes generated by given collections of algebraic systems, they are termed
varieties, quasivarieties and guasivarieties, respectively. The second part of
Section 2.18 is dedicated to proving Birkhoff [4] and Mal’cev [18] style char-
acterization theorems of these classes using closures under class operators
(see, also, [21, 30, 84]). The four operators considered are taking certifica-
tions, directed certifications, subdirect intersections and morphic images. It
is shown that a given class of algebraic systems is a variety if it is closed under
subdirect intersections and morphic images, it is a quasivariety if it is closed
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under directed certifications and subdirect intersections and it is a guasivari-
ety if it is closed under certifications and subdirect intersections. In the last
part of the section, we translate the conditions of closure under subdirect
intersections and morphic images into properties of the subcollection of the
collection of all congruence systems on the base algebraic system relative to
the class under consideration. On the other hand, certifications and directed
certifications are abstraction conditions (akin to closure under isomorphisms)
and do not seem to have such intrinsic equivalent formalizations.

Chapter 2, in a nutshell, includes the majority of the very basic concepts
and results that constitute the prerequisites for following the developments
recounted in subsequent chapters of the monograph.

2.2 Algebraic Systems

A sentence functor SEN ∶ Sign → Set is a Set-valued functor, with the
property that, for every Σ ∈ ∣Sign∣, SEN(Σ) ≠ ∅. We say that a sentence
functor SEN ∶ Sign → Set is trivial if ∣SEN(Σ)∣ = 1, for all Σ ∈ ∣Sign∣.

A sentence family of SEN is a collection T = {TΣ}Σ∈∣Sign∣, such that
TΣ ⊆ SEN(Σ), for all Σ ∈ ∣Sign∣. The collection of all sentence families
of SEN is denoted by SenFam(SEN). Sentence families can be ordered by
signature-wise inclusion. More precisely, given T,T ′ ∈ SenFam(SEN), we
define

T ≤ T ′ iff TΣ ⊆ T ′Σ, for all Σ ∈ ∣Sign∣.
Under this ordering sentence families form a complete lattice which is de-

noted by SenFam(SEN) = ⟨SenFam(SEN),≤⟩.
A sentence family T of SEN is called a sentence system if it is in-

variant under signature morphisms, i.e., if, for all Σ,Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′), we have

SEN(f)(TΣ) ⊆ TΣ′ .
The collection of all sentence systems of SEN is denoted by SenSys(SEN).
It forms a complete sublattice of the lattice of sentence families under ≤,
denoted by SenSys(SEN) = ⟨SenSys(SEN),≤⟩.

Let SEN ∶ Sign → Set be a sentence functor and T ∈ SenFam(SEN). We
define, based on T , two important sentence families of SEN:

•
←Ð
T = {←ÐT Σ}Σ∈∣Sign∣ is defined by setting, for all Σ ∈ ∣Sign∣,
←Ð
T Σ = {φ ∈ SEN(Σ) ∶ for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ TΣ′}.
Sometimes, we abbreviate this using the notation

←Ð
T Σ = {φ ∈ SEN(Σ) ∶ (∀f)(SEN(f)(φ) ∈ TΣ′)}
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•
Ð→
T = {Ð→T Σ}Σ∈∣Sign∣ is defined by setting, for all Σ ∈ ∣Sign∣,

Ð→
T Σ = {SEN(f)(φ) ∶ Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ′,Σ), φ ∈ TΣ′}

First, it is clear that both operators on sentence families are monotone.

Lemma 1 Let SEN ∶ Sign → Set be a sentence functor and consider T,T ′ ∈
SenFam(SEN). If T ≤ T ′, then

←Ð
T ≤
←Ð
T ′ and

Ð→
T ≤
Ð→
T ′.

Proof: Both implications are quite obvious. For the second, e.g., consider

Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈
Ð→
T Σ. Thus, there exists Σ0 ∈ ∣Sign∣,

φ0 ∈ TΣ0
and f0 ∈ Sign(Σ0,Σ) such that φ = SEN(f0)(φ0).

Σ0

f0 ✲ Σ

T ′Σ0
⊇ TΣ0

∋ φ0
✲ φ

Since TΣ0
⊆ T ′Σ0

, φ0 ∈ T ′Σ0
and we conclude that φ ∈

Ð→
T ′Σ. ∎

The importance of
←Ð
T and

Ð→
T stems, in part, from their relationship with

T , which is described in the following proposition, but also from the critical
role they play in the theory presented here.

Proposition 2 Let Sign be a category, SEN ∶ Sign → Set a sentence func-
tor and suppose that T ∈ SenFam(SEN).

(a)
←Ð
T is the largest sentence system of SEN included in T ;

(b)
Ð→
T is the smallest sentence system of SEN that contains T .

Proof:

(a) It is obvious that
←Ð
T ≤ T . We must show that

←Ð
T is a sentence system

and that it is the largest one included in T .

To show that it is a sentence system, consider Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′) and φ ∈

←Ð
T Σ. We must show that SEN(f)(φ) ∈ ←ÐT Σ′ . To

this end, let Σ′′ ∈ ∣Sign∣ and g ∈ Sign(Σ′,Σ′′).
Σ

f ✲ Σ′
g ✲ Σ′′

Then we have

SEN(g)(SEN(f)(φ)) = SEN(gf)(φ) φ∈←ÐT Σ

∈ TΣ′′ .
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Since this holds for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′), we conclude

that SEN(f)(φ) ∈←ÐT Σ′ .

To show that
←Ð
T is the largest sentence system in T , consider T ′ ∈

SenSys(SEN), such that T ′ ≤ T and let Σ ∈ ∣Sign∣ and φ ∈ T ′Σ. Since
T ′ is a sentence system, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we
get SEN(f)(φ) ∈ T ′Σ′ . Now since T ′ ≤ T , we get that, for all Σ′ ∈ ∣Sign∣
and all f ∈ Sign(Σ,Σ′), SEN(f)(φ) ∈ TΣ′ . But this shows that φ ∈

←Ð
T Σ.

Thus, T ′ ≤
←Ð
T and

←Ð
T is the largest sentence system included in T .

(b) It is obvious that T ≤
Ð→
T . We must show that

Ð→
T is a sentence system

and that it is the smallest one containing T .

To show that
Ð→
T is a sentence system, consider Σ ∈ ∣Sign∣ and φ ∈

SEN(Σ), such that φ ∈
Ð→
T Σ. Let Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′).

We must show that SEN(f)(φ) ∈ Ð→T Σ′ . Since φ ∈
Ð→
T Σ, there exists

Σ0 ∈ ∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that SEN(f0)(φ0) = φ.

Σ0

f0 ✲ Σ
f ✲ Σ′

Thus, we get

SEN(f)(φ) = SEN(f)(SEN(f0)(φ0)) = SEN(ff0)(φ0) ∈Ð→T Σ′ .

Finally, we must show that
Ð→
T is the smallest sentence system that

contains T . To this end, suppose that T ′ ∈ SenSys(SEN), such that

T ≤ T ′. Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈
Ð→
T Σ. Then,

there exist Σ0 ∈ ∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that φ =

SEN(f0)(φ0). Now, since T ≤ T ′, we get φ0 ∈ T ′Σ0
. Moreover, since

T ′ is a sentence system, we get SEN(f0)(φ0) ∈ T ′Σ. But this means

φ = SEN(f0)(φ0) ∈ T ′Σ. This proves that
Ð→
T ≤ T ′ and, hence,

Ð→
T is the

least sentence system that contains T .
∎

It is also of interest to observe that the back arrow operator commutes
with intersections:

Lemma 3 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and consider T ⊆ SenFam(SEN). Then

←ÐÐÐ
⋂
T ∈T

T = ⋂
T ∈T

←Ð
T .
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Proof: First, by Lemma 1, we have, for all T ∈ T ,
←ÐÐÐÐ
⋂T ∈T T ≤

←Ð
T . Therefore,

we conclude that
←ÐÐÐÐ
⋂T ∈T T ≤ ⋂T ∈T

←Ð
T .

On the other hand, we have, by Proposition 2,
←Ð
T ≤ T , for all T ∈ T .

Therefore ⋂T ∈T
←Ð
T ≤ ⋂T ∈T T . Now, since ⋂T ∈T

←Ð
T is a sentence system (Propo-

sition 2) included in ⋂T ∈T T , it must lie below the largest such, which, by

Proposition 2, is
←ÐÐÐÐ
⋂T ∈T T . Thus, we have ⋂T ∈T

←Ð
T ≤
←ÐÐÐÐ
⋂T ∈T T . ∎

On the other hand, the back arrow does not commute, in general, with
unions. We first prove a lemma showing the there is an inclusion relation
governing the interaction between the back arrow and unions and, then,
provide an example to show that this inclusion may be proper.

Lemma 4 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and consider T ⊆ SenFam(SEN). Then

⋃
T ∈T

←Ð
T ≤
←ÐÐÐ
⋃
T ∈T

T .

Proof: Since, for all T ∈ T , T ≤ ⋃T ∈T T , we get, by Lemma 1,
←Ð
T ≤
←ÐÐÐÐ
⋃T ∈T T .

Since this holds for all T ∈ T , we conclude that ⋃T ∈T
←Ð
T ≤
←ÐÐÐÐ
⋃T ∈T T . ∎

That the inclusion of Lemma 4 is, in general, a proper inclusion is show-
cased by the following example.

Example 5 Let Sign be the category with a single object Σ and a single
(non-identity) arrow f ∶ Σ → Σ, such that f ○ f = iΣ.

Let SEN ∶ Sign→ Set be the functor defined by setting SEN(Σ) = {0,1,2}
and SEN(f)(0) = 1, SEN(f)(1) = 0 and SEN(f)(2) = 2. Consider the col-

lection {T,T ′} ⊆ SenFam(SEN), with TΣ = {0,2} and T ′Σ = {1,2}. Then we

have
←Ð
T Σ = {2} = ←ÐT Σ′ and, therefore

←Ð
T Σ ∪

←Ð
T ′Σ = {2} ∪ {2} = {2}.
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On the other hand,

←ÐÐÐ
T ∪ T ′Σ =

←ÐÐÐÐÐÐ{{0,1,2}}Σ = {0,1,2}.
Thus, we get ⋃T ∈T

←Ð
T ≨
←ÐÐÐÐ
⋃T ∈T T .

Let Sign, Sign′ be categories and SEN ∶ Sign→ Set and SEN′ ∶ Sign′ →
Set be two sentence functors. A morphism (of sentence functors) ⟨F,α⟩ ∶
SEN → SEN′ consists of:

• A functor F ∶ Sign → Sign′;

• A natural transformation α ∶ SEN → SEN′ ○ F .

We will make heavy use of the following particular types of morphisms:

• A morphism ⟨F,α⟩ ∶ SEN → SEN′ is special if F ∶ Sign → Sign′ is
surjective on objects and full.

• A morphism ⟨F,α⟩ ∶ SEN → SEN′ is surjective if it is special and
αΣ ∶ SEN(Σ)→ SEN′(F (Σ)) is surjective, for all Σ ∈ ∣Sign∣.

Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶ Sign′ → Set
be two sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ be a morphism. Given
a sentence family T ∈ SenFam(SEN′), define the sentence family α−1(T ) ={α−1(T )Σ}Σ∈∣Sign∣ ∈ SenFam(SEN) by setting, for all Σ ∈ ∣Sign∣,

α−1(T )Σ = α−1Σ (TF (Σ)).
In the next lemma, we prove some useful properties concerning this op-

erator.

Lemma 6 Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶
Sign′ → Set be two sentence functors, ⟨F,α⟩ ∶ SEN → SEN′ be a morphism
and T ∈ SenFam(SEN′).

(a) If T ∈ SenSys(SEN′), then α−1(T ) ∈ SenSys(SEN), with equivalence
holding if ⟨F,α⟩ ∶ SEN→ SEN′ is surjective;

(b) α−1(←ÐT ) ≤←ÐÐÐÐα−1(T ), with equality holding if ⟨F,α⟩ is special;

(c)
ÐÐÐÐ→
α−1(T ) ≤ α−1(Ð→T ), with equality holding if ⟨F,α⟩ is surjective.

Proof:
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(a) Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ α−1Σ (TF (Σ)). Then, for all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we have

αΣ′(SEN(f)(φ)) = SEN′(F (f))(αΣ(φ))
(α natural transformation)

∈ SEN′(F (f))(TF (Σ)) (φ ∈ α−1Σ (TF (Σ)))
⊆ TF (Σ′) (T ∈ SenSys(SEN′)).

This shows that SEN(f)(φ) ∈ α−1Σ′ (TF (Σ′)). We now conclude that
α−1(T ) ∈ SenSys(SEN).
Suppose, next, that ⟨F,α⟩ ∶ SEN → SEN′ is surjective and α−1(T ) ∈
SenSys(SEN). Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that αΣ(φ) ∈ TF (Σ).
Note that this implies that φ ∈ α−1(TF (Σ)). So, by hypothesis, for all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ α−1Σ′ (TF (Σ′)).
Therefore,

SEN′(F (f))(αΣ(φ)) = αΣ′(SEN(f)(φ))
∈ αΣ′(α−1Σ′ (TF (Σ′)))
⊆ TF (Σ′).

Since ⟨F,α⟩ is surjective, we conclude that, for all Σ,Σ′ ∈ ∣Sign′∣ and
all f ∈ Sign′(Σ,Σ′),

SEN′(f)(TΣ) ⊆ TΣ′ .
Therefore, T ∈ SenSys(SEN′).

(b) Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ α−1Σ (←ÐT F (Σ)). Then we

get that αΣ(φ) ∈ ←ÐT F (Σ). Thus, by definition of
←Ð
T , for all Σ′ ∈ ∣Sign′∣

and all f ∈ Sign′(F (Σ),Σ′),
SEN′(f)(αΣ(φ)) ∈ TΣ′ .

This implies, in particular, that, for all Σ′′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′′),
SEN′(F (f))(αΣ(φ)) ∈ TF (Σ′′). So we get αΣ′′(SEN(f)(φ)) ∈ TF (Σ′′),
i.e., SEN(f)(φ) ∈ α−1Σ′′(TF (Σ′′)). Since Σ′′ and f were arbitrary, we

finally obtain φ ∈
←ÐÐÐÐÐÐ
α−1Σ (TF (Σ)).

It is straightforward to see that, if ⟨F,α⟩ is special, then the above chain
of implications is reversible and, by following it, we get the reverse
inclusion.
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(c) Let Σ ∈ ∣Sign∣, Then we have

αΣ(ÐÐÐÐÐÐ→α−1Σ (TF (Σ)))
= αΣ({SEN(f0)(φ0) ∶ f0 ∈ Sign(Σ0,Σ), φ0 ∈ α−1Σ0

(TF (Σ0))})
= {αΣ(SEN(f0)(φ0)) ∶ f0 ∈ Sign(Σ0,Σ), φ0 ∈ α−1Σ0

(TF (Σ0))}
= {SEN′(F (f0))(αΣ0

(φ0)) ∶ f0 ∈ Sign(Σ0,Σ), φ0 ∈ α−1Σ0
(TF (Σ0))}

⊆ {SEN′(f ′0)(φ′0) ∶ f ′0 ∈ Sign′(Σ′0, F (Σ)), φ′0 ∈ TΣ′0}
=
Ð→
T F (Σ).

Again, it is easy to see that the only inclusion becomes an equality in
case ⟨F,α⟩ is a surjective morphism.

∎

Let Sign be a category and SEN ∶ Sign → Set be a sentence functor. A
relation family on SEN is a collection R = {RΣ}Σ∈∣Sign∣, such that RΣ ⊆
SEN(Σ)2, for all Σ ∈ ∣Sign∣. A relation family is a relation system if
it is invariant under Sign-morphisms, i.e., if for all Σ,Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′),

SEN(f)(RΣ) ⊆ RΣ′ .

The collection of all relation families on SEN is denoted by RelFam(SEN)
and, similarly, the collection of all relation systems by RelSys(SEN). A
relation family/system on SEN is an equivalence family/system on SEN
if, for all Σ ∈ ∣Sign∣, RΣ is an equivalence relation on SEN(Σ). As with
relation families/systems, we denote the collection of all equivalence families
on SEN by EqvFam(SEN) and the collection of all equivalence systems on
SEN by EqvSys(SEN).

Given a sentence family T ∈ SenFam(SEN), we say that the equivalence
family R on SEN is compatible with T , if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈
SEN(Σ), ⟨φ,ψ⟩ ∈ RΣ and φ ∈ TΣ imply ψ ∈ TΣ.

Lemma 7 Let Sign be a category, SEN ∶ Sign → Set a sentence functor,
T ∈ SenFam(SEN) and θ a relation system on SEN. If θ is compatible with

T , then it is also compatible with
←Ð
T .

Proof: Suppose that θ is compatible with T . Let Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ and φ ∈

←Ð
T Σ. Let Σ′ ∈ ∣Sign∣ and f ∈

Sign(Σ,Σ′). Since θ is a relation system, we get ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈
θΣ′ . Since φ ∈

←Ð
T Σ, SEN(f)(φ) ∈ TΣ′ . Thus, by compatibility, we get

SEN(f)(ψ) ∈ TΣ′ . Since Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′) were arbitrary,

we conclude that ψ ∈
←Ð
T Σ, showing that θ is also compatible with

←Ð
T . ∎

Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶ Sign′ → Set
be sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ be a morphism. Define the
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kernel system of ⟨F,α⟩, denoted Ker(⟨F,α⟩) = {KerΣ(⟨F,α⟩)}Σ∈∣Sign∣, by
letting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩) iff αΣ(φ) = αΣ(ψ).
The kernel system Ker(⟨F,α⟩) is sometimes denoted more compactly by

θ⟨F,α⟩ = {θ⟨F,α⟩Σ }Σ∈∣Sign∣.
Lemma 8 Let Sign, Sign′ be categories, SEN ∶ Sign→ Set, SEN′ ∶ Sign′ →
Set be sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ a morphism. Then
Ker(⟨F,α⟩) is an equivalence system on SEN.

Proof: It is obvious from the definition that Ker(⟨F,α⟩) is an equiva-
lence family of SEN. The system property follows from the fact that α
is a natural transformation. Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩). Then, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

αΣ′(SEN(f)(φ)) = SEN′(F (f))(αΣ(φ)) (naturality of α)
= SEN′(F (f))(αΣ(ψ)) (⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩))
= αΣ′(SEN(f)(ψ)) (naturality of α).

Therefore, we get that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ KerΣ′(⟨F,α⟩), showing
that Ker(⟨F,α⟩) is an equivalence system. ∎

Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶ Sign′ →
Set be sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ be a morphism, with
F an isomorphism. Given a sentence family T ∈ SenFam(SEN), define the
sentence family α(T ) = {α(T )F (Σ)}Σ∈∣Sign∣ ∈ SenFam(SEN′) by setting, for all
Σ ∈ ∣Sign∣,

α(T )F (Σ) = αΣ(TΣ).
In the next lemma, we prove some useful properties concerning this op-

erator.

Lemma 9 Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶
Sign′ → Set be sentence functors, ⟨F,α⟩ ∶ SEN → SEN′ a surjective mor-
phism, with F an isomorphism, and T ∈ SenFam(SEN), such that the kernel
Ker(⟨F,α⟩) of ⟨F,α⟩ is compatible with T .

(a) α(T ) ∈ SenSys(SEN′) iff T ∈ SenSys(SEN);
(b) α(←ÐT ) =←ÐÐÐα(T );
(c)
ÐÐÐ→
α(T ) = α(Ð→T ).

Proof:
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(a) Exploiting the surjectivity of ⟨F,α⟩, α(T ) ∈ SenSys(SEN′) holds if and
only if, for all Σ ∈ ∣Sign∣, all φ ∈ SEN(Σ), all Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′),

SEN′(F (f))(αΣ(φ)) ∈ αΣ′(TΣ′).
By the naturality of α, the latter is equivalent to

αΣ′(SEN(f)(φ)) ∈ αΣ′(TΣ′).
Finally, by compatibility of Ker(⟨F,α⟩) with T , this is equivalent to
SEN(f)(φ) ∈ TΣ′ . But this holds for all Σ ∈ ∣Sign∣, all φ ∈ SEN(Σ), all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′) if and only if T ∈ SenSys(SEN).

(b) Again we exploit the surjectivity of ⟨F,α⟩. We have, for all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ), αΣ(φ) ∈ ←ÐÐÐÐαΣ(TΣ) iff, for all Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′), SEN′(F (f))(αΣ(φ)) ∈ αΣ′(TΣ′) iff, by the naturality
of α, αΣ′(SEN(f)(φ)) ∈ αΣ′(TΣ′) iff, by the compatibility of Ker(⟨F,α⟩)
with T , SEN(f)(φ) ∈ TΣ′ iff, by the definition of

←Ð
T , φ ∈

←Ð
T Σ iff, by the

compatibility of Ker(⟨F,α⟩) with
←Ð
T , which follows from Lemmas 7 and

8, αΣ(φ) ∈ αΣ(←ÐT Σ). Thus, we conclude that α(←ÐT ) = ←ÐÐÐα(T ).
(c) Suppose, first, that αΣ(φ) ∈ÐÐÐÐ→αΣ(TΣ). Then, there exist, by surjectivity,

Σ0 ∈ ∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that

αΣ(φ) = SEN′(F (f0))(αΣ0
(φ0))

= αΣ(SEN(f0)(φ0))
∈ αΣ(Ð→T Σ).

Suppose, conversely, that αΣ(φ) ∈ αΣ(Ð→T Σ). Then, there exist Σ0 ∈∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that

αΣ(φ) = αΣ(SEN(f0)(φ0))
= SEN′(F (f0))(αΣ0

(φ0))
∈
ÐÐÐÐ→
αΣ(TΣ).

∎

By analogy to the case of sentence families, we may also define the inverse
of a relation family under a morphism of sentence functors. Let Sign, Sign′

be categories, SEN ∶ Sign→ Set and SEN′ ∶ Sign′ → Set be sentence functors
and ⟨F,α⟩ ∶ SEN → SEN′ a morphism. Let, also, R = {RΣ}Σ∈∣Sign′∣ be a rela-
tion family on SEN′. Define the relation family α−1(R) = {α−1(R)Σ}Σ∈∣Sign∣
on SEN by setting, for all Σ ∈ ∣Sign∣,

α−1(R)Σ = α−1Σ (RF (Σ)).
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Proposition 10 Let Sign, Sign′ be categories, SEN ∶ Sign → Set and
SEN′ ∶ Sign′ → Set be sentence functors, ⟨F,α⟩ ∶ SEN → SEN′ a morphism
and R a relation family on SEN′.

(a) If R is a relation system, then α−1(R) is also a relation system;

(b) If R is an equivalence family, then α−1 is also an equivalence family.

Proof:

(a) Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ α−1Σ (RF (Σ)). Then,
we have ⟨αΣ(φ), αΣ(ψ)⟩ ∈ RF (Σ). Since R is a relation system, for all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we get

⟨SEN′(F (f))(αΣ(φ)),SEN′(F (f))(αΣ(ψ))⟩ ∈ RF (Σ′).

Thus, by the naturality of α,

⟨αΣ′(SEN(f)(φ)), αΣ′(SEN(f)(ψ))⟩ ∈ RF (Σ′).

Now we get ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ α−1Σ′ (RF (Σ′)). This proves that
α−1(R) is a relation system on SEN.

(b) Let Σ ∈ ∣Sign∣ and φ,χ,ψ ∈ SEN(Σ) be arbitrary. Then we have:

Reflexivity By the reflexivity of R, ⟨αΣ(φ), αΣ(φ)⟩ ∈ RF (Σ). Therefore, ⟨φ,φ⟩ ∈
α−1Σ (RF (Σ)).

Symmetry If ⟨φ,ψ⟩ ∈ α−1Σ (RF (Σ)), then ⟨αΣ(φ), αΣ(ψ)⟩ ∈ RF (Σ), whence, by
the symmetry of R, ⟨αΣ(ψ), αΣ(φ)⟩ ∈ RF (Σ), showing that ⟨ψ,φ⟩ ∈
α−1Σ (RF (Σ)).

Transitivity If ⟨φ,χ⟩, ⟨χ,ψ⟩ ∈ α−1Σ (RF (Σ)), then, we get

⟨αΣ(φ), αΣ(χ)⟩, ⟨αΣ(χ), αΣ(ψ)⟩ ∈ RF (Σ),

whence, by the transitivity of R, we get ⟨αΣ(φ), αΣ(ψ)⟩ ∈ RF (Σ),
showing that ⟨φ,ψ⟩ ∈ α−1Σ (RF (Σ)). ∎

Let Sign be a category and SEN ∶ Sign → Set a sentence functor. The
clone of all natural transformations on SEN is the category Cln(SEN)
with collection of objects {SENα ∶ α an ordinal} and collection of morphisms
τ ∶ SENα → SENβ β-sequences of natural transformations τ i ∶ SENα → SEN,
i < β. Composition of ⟨τ i ∶ i < β⟩ ∶ SENα → SENβ with ⟨σj ∶ j < γ⟩ ∶ SENβ →
SENγ

SENα ⟨τ i ∶ i < β⟩ ✲ SENβ ⟨σj ∶ j < γ⟩ ✲ SENγ

is defined by

⟨σj ∶ j < γ⟩ ○ ⟨τ i ∶ i < β⟩ = ⟨σj(⟨τ i ∶ i < β) ∶ j < γ⟩.
A clone (or a category) of natural transformations on SEN is a

subcategory N of the category Cln(SEN), such that:
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• Its objects are those in {SENk ∶ k < ω};
• Its morphisms include all projection natural transformations

pk,i ∶ SENk → SEN, i < k, k < ω,

with p
k,i
Σ ∶ SEN(Σ)k → SEN(Σ) given by

p
k,i
Σ (φ⃗) = φi, for all φ⃗ ∈ SEN(Σ)k,

and are such that, for every family {τ i ∶ SENk → SEN ∶ i < ℓ} of natural
transformations in N , ⟨τ i ∶ i < ℓ⟩ ∶ SENk → SENℓ is also in N .

This definition has two important consequences that we now make ex-
plicit. Let Sign be a category, SEN ∶ Sign → Set a sentence functor and
k ∈ ω. Consider a function

π ∶ {0,1, . . . , k − 1}→ {0,1, . . . , k − 1}.
Given Σ ∈ ∣Sign∣ and φ⃗ = ⟨φ0, φ1, . . . , φk−1⟩ ∈ SEN(Σ)k, we define

φ⃗π = ⟨φπ(0), φπ(1), . . . , φπ(k−1)⟩.
Now, consider, in addition, a clone N of natural transformations on SEN and
σ ∶ SENk → SEN in N . Define the natural transformation

σπ ∶ SENk → SEN

by setting, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ),
σπΣ(φ⃗) = σΣ(φ⃗π).

That this is a natural transformation is easy to see: For all Σ,Σ′ ∈ ∣Sign∣, all
f ∈ Sign(Σ,Σ′) and all φ⃗ ∈ SEN(Σ), we have

SEN(Σ)k σπΣ ✲ SEN(Σ)

SEN(Σ′)k
SEN(f)k

❄

σπΣ′
✲ SEN(Σ′)

SEN(f)
❄

SEN(f)(σπΣ(φ⃗)) = SEN(f)(σΣ(φ⃗π))
= σΣ′(SEN(f)k(φ⃗π))
= σΣ′(SEN(f)k(φ⃗)π)
= σπΣ′(SEN(f)k(φ⃗)).
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Proposition 11 Let Sign be a category, SEN ∶ Sign → Set a sentence func-
tor and N a clone of natural transformations on SEN. If σ ∶ SENk → SEN is
in N , then, for all functions π ∶ {0, . . . , k − 1} → {0, . . . , k − 1}, σπ ∶ SENk →
SEN is also in N .

Proof: The key is to observe that

σπ = σ ○ ⟨pk,π(0), . . . , pk,π(k−1)⟩.
Since all projections are in N and N is closed under formation of tuples, we
get that ⟨pk,π(0), . . . , pk,π(k−1)⟩ ∶ SENk → SENk is in N . Therefore, since N is
a category and, by hypothesis, σ is in N , we get that σπ is also in N . ∎

The following is a very useful consequence that allows simplifying quan-
tifications.

Corollary 12 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and N a clone of natural transformations on SEN. The statement

For all σ ∶ SENk → SEN in N , all i < k and all Σ ∈ ∣Sign∣, φ, χ⃗ ∈ SEN(Σ),
Property(σΣ(χ0, . . . , χi−1, φ,χi+1, . . . , χk−1))

is equivalent to the simpler statement

For all σ ∶ SENk → SEN in N and all Σ ∈ ∣Sign∣, φ, χ⃗ ∈ SEN(Σ),
Property(σΣ(φ, χ⃗)).

Proof: The left-to-right implication is trivial. The right-to-left implication
follows from Proposition 11, since σπi ∶ SENk → SEN, with πi being the
permutation

( 0 1 ⋯ i − 1 i i + 1 ⋯ k − 1
1 2 ⋯ i 0 i + 1 ⋯ k − 1

) ,
is also in N , for every i < k. ∎

An algebraic system is a triple A = ⟨Sign,SEN,N⟩, where:

• Sign is an arbitrary category;

• SEN ∶ Sign → Set is a sentence functor;

• N is a clone on SEN.

An algebraic system A = ⟨Sign,SEN,N⟩ is said to be trivial if its underlying
sentence functor SEN ∶ Sign → Set is trivial, i.e., if all its sets of sentences
are singletons.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. An N ♭-algebraic
system A = ⟨Sign,SEN,N⟩ is an algebraic system, such that there exists
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a surjective functor Ξ ∶ N ♭ → N that preserves all projection natural trans-
formations, i.e., such that, for all k < ω and all i < k, if pk,i

♭ ∶ (SEN♭)k →
SEN♭ denotes the i-th projection natural transformation on (SEN♭)k, then
Ξ(pk,i♭) ∶ SENk → SEN is the i-th projection pk,i on SENk.

This condition implies that Ξ also preserves the arities of all natural
transformations involved. Given σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, the image
Ξ(σ♭) ∶ SENk → SEN in N will be denoted by σ, keeping the same low-
ercase Greek letter, but adjusting superscripts, subscripts, primes, etc., as
demanded by context. Occasionally, to simplify notation, we might drop su-
perscripts, subscripts, etc., overloading the notation of the lowercase Greek
letter, allowing the context to make the interpretation of each occurrence
clear (and hoping that, because of this, confusion can be avoided).

In the context where N ♭-algebraic systems are under consideration, the
algebraic system F will be referred to as the base algebraic system, since
the clones on all other systems under consideration are images of the clone
of F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems. A morphism (of
N ♭-algebraic systems) ⟨F,α⟩ ∶ A → A′ is a morphism of sentence functors⟨F,α⟩ ∶ SEN → SEN′, such that, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all
Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ) (meaning φ⃗ ∈ SEN(Σ)k),

SEN(Σ)k σΣ ✲ SEN(Σ)

SEN′(F (Σ))k
αkΣ

❄

σ′
F (Σ)

✲ SEN′(F (Σ))
αΣ

❄

αΣ(σΣ(φ⃗)) = σ′F (Σ)(αΣ(φ⃗)).
We call this the morphism property.

Concerning algebraic systems, we will have occasion to make use of the
following useful construction and properties.

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and⟨F,α⟩ ∶ A → A′ an algebraic system morphism, with F ∶ Sign → Sign′

an isomorphism. We define the algebraic system α(A) = ⟨Sign′,SEN′α,N ′α⟩
as follows:

• For all Σ ∈ ∣Sign∣,
SEN′α(F (Σ)) = αΣ(SEN(Σ));
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For all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN′α(F (f)) ∶ SEN′α(F (Σ))→ SEN′α(F (Σ′))

is given by setting, for all φ ∈ SEN′α(F (Σ)),
SEN′α(F (f))(φ) = SEN′(F (f))(φ).

• For every σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, we let σ′α ∶ (SEN′α)k → SEN′α

be the restriction of σ′ ∶ SEN′k → SEN′ to SEN′α.

Composition works as expected, i.e., for all τ ♭ ∶ (SEN♭)k → (SEN♭)ℓ and
all σ♭ ∶ (SEN♭)ℓ → (SEN♭)m in N ♭,

σ′α ○ τ ′α = (σ′ ○ τ ′)α.
It is not difficult to see that α(A), thus defined, is an N ♭-algebraic system.

Lemma 13 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,
SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨F,α⟩ ∶A→
A′ an algebraic system morphism, with F ∶ Sign → Sign′ an isomorphism.
Then α(A) = ⟨Sign′,SEN′α,N ′α⟩ is an N ♭-algebraic system.

Proof: The critical step is to show that SEN′α ∶ Sign′ → Set is a well-defined
functor and that N ′α consists in fact of natural transformations on SEN′α.

For the first, let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ ∈ SEN(Σ). Then
we have

SEN′α(F (f))(αΣ(φ)) = SEN′(F (f))(αΣ(φ))
= αΣ′(SEN(f)(φ))
∈ SEN′α(F (Σ′)).

So SEN′α is a well-defined functor.
Similarly, for σ♭ ∈ N ♭, Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ⃗ ∈ SEN(Σ),

SEN′α(F (Σ))k σ′α
F (Σ)✲ SEN′α(F (Σ))

SEN′α(F (Σ′))k
SEN′α(F (f))k

❄

σ′α
F (Σ′)

✲ SEN′α(F (Σ′))
SEN′α(F (f))
❄

SEN′α(F (f))(σ′α
F (Σ)
(αΣ(φ⃗))) = SEN′α(F (f))(σ′

F (Σ)
(αΣ(φ⃗)))

= SEN′α(F (f))(αΣ(σΣ(φ⃗)))
= SEN′(F (f))(αΣ(σΣ(φ⃗)))
= αΣ′(SEN(f)(σΣ(φ⃗)))
= αΣ′(σΣ′(SEN(f)(φ⃗)))
= σ′

F (Σ′)
(αΣ′(SEN(f)(φ⃗)))

= σ′α
F (Σ′)
(SEN′(F (f))(αΣ(φ⃗)))

= σ′α
F (Σ′)
(SEN′α(F (f))(αΣ(φ⃗))).



90 CHAPTER 2. ALGEBRA AND LOGIC Voutsadakis

Thus, σ′α ∶ (SEN′α)k → (SEN′α) is a well-defined natural transformation on
SEN′α. ∎

We call α(A) the image algebraic system of A under ⟨F,α⟩.
It is not difficult to see that, additionally, one may construct a surjective

morphism from A to α(A). In fact, we define ⟨F,α′⟩ ∶A → α(A) by letting
α′ ∶ SEN → SEN′α ○ F be given, for all Σ ∈ ∣Sign∣, by

α′Σ(φ) = αΣ(φ), for all φ ∈ SEN(Σ).
Lemma 14 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,
SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨F,α⟩ ∶A→
A′ an algebraic system morphism, with F ∶ Sign → Sign′ an isomorphism.
Then ⟨F,α′⟩ ∶A→ α(A) is a surjective algebraic system morphism.

Proof: The fact that α′ ∶ SEN → SEN′α○F is a natural transformation follows
from the corresponding property of α. Moreover, the fact that ⟨F,α′⟩ has the
morphism property also follows from the corresponding property of ⟨F,α⟩.
Finally, surjectivity of α′Σ ∶ SEN(Σ) → SEN′α(F (Σ)), for all Σ ∈ ∣Sign∣,
follows by the definition of SEN′α. ∎

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. An F-
algebraic system (or an interpreted algebraic system) A = ⟨A, ⟨F,α⟩⟩
consists of:

• An N ♭-algebraic system A = ⟨Sign,SEN,N⟩;
• A surjective algebraic system morphism ⟨F,α⟩ ∶ F→A.

We denote the class of all F-algebraic systems by AlgSys(F).
Given two F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩, a

morphism (of F-algebraic systems) ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ consists of:

• A morphism of N ♭-algebraic systems ⟨G,γ⟩ ∶ F→ F;

• A morphism of N ♭-algebraic systems ⟨H,δ⟩ ∶A→A′

such that the following diagram commutes

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

We call a morphism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ special if ⟨G,γ⟩ ∶ F → F is
special and we call it surjective if ⟨G,γ⟩ ∶ F → F is surjective.

We show that these properties propagate to ⟨H,δ⟩ ∶A→A′.



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 91

Lemma 15 Consider a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩. Let
A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩ be F-algebraic systems and ⟨⟨G,γ⟩,⟨H,δ⟩⟩ ∶ A→ A′ a morphism.

(a) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′ is special, then ⟨H,δ⟩ ∶A→A′ is special;

(b) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ is surjective, then ⟨H,δ⟩ ∶ A→ A′ is surjec-
tive.

Proof:

(a) Suppose ⟨G,γ⟩ is special. We show, first, that H is surjective on objects
and, then, that it is full. Surjectivity on objects is easy. Since F ′ and
G are surjective on objects, H ○F = F ′ ○G is also surjective on objects.
This implies that H is surjective on objects.

For fullness, recall that it suffices to show that, for all Y,Y ′ ∈ ∣Sign∣,
H ∶ Sign(Y,Y ′)→ Sign′(H(Y ),H(Y ′))

is surjective. So let k ∈ Sign′(H(Y ),H(Y ′)). Then, by the surjectivity
of F , there exist X,X ′ ∈ ∣Sign♭∣, such that F (X) = Y and F (X ′) = Y ′.
Thus, we get

k ∈ Sign′(H(F (X)),H(F (X ′))) = Sign′(F ′(G(X)), F ′(G(X ′))).
Since G and F ′ are full, there exists f ∈ Sign♭(X,X ′), such that
F ′(G(f)) = k. So we have that H(F (f)) = k and F (f) ∈ Sign(F (X),
F (X ′)) = Sign(Y,Y ′). Therefore H is full.

(b) By Part (a), it suffices to show that, for all Y ∈ ∣Sign∣, δY ∶ SEN(Y )→
SEN′(H(Y )) is surjective. Let χ ∈ SEN′(H(Y )). Since F is sur-
jective, there exists X ∈ ∣Sign♭∣, such that F (X) = Y . So we get
χ ∈ SEN′(H(F (X))) = SEN′(F ′(G(X))). Since both γX ∶ SEN♭(X) →
SEN♭(G(X)) and α′

G(X)
∶ SEN♭(G(X))→ SEN′(F ′(G(X))) are surjec-

tive, we get that α′
G(X)
○γX ∶ SEN♭(X)→ SEN′(F ′(G(X))) is surjective.

Thus, there exists φ ∈ SEN♭(X), such that

χ = α′G(X)(γX(φ)) = δF (X)(αX(φ)) = δY (αX(φ)).
So δY ∶ SEN(Y )→ SEN′(H(Y )) is also surjective.

∎

In the future, we will restrict attention mostly to F-algebraic system
morphisms ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′, with

⟨G,γ⟩ = ⟨I, ι⟩ ∶ F → F,
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where ⟨I, ι⟩ ∶ F → F denotes the identity morphism on F. Since this morphism
is surjective, by Lemma 15, this property will automatically hold for ⟨H,δ⟩ ∶
A→A′ as well. In this case, we also use the simplified notation ⟨H,δ⟩ ∶ A→
A′

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F ′, α′⟩
❘

A ⟨H,δ⟩ ✲ A′

and even though we might say a “surjective” morphism ⟨H,δ⟩ ∶ A → A′ for
emphasis, it is understood that this will always be the case, even without
this specification.

2.3 Congruence Systems

Let A = ⟨Sign,SEN,N⟩ be an algebraic system. A relation family on
A is a relation family on SEN, i.e., a collection R = {RΣ}Σ∈∣Sign∣, such that
RΣ ⊆ SEN(Σ)2, for all Σ ∈ ∣Sign∣. A relation family on A is a relation
system if it is a relation system on SEN, i.e., if it is invariant under Sign-
morphisms; that is, if for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(RΣ) ⊆ RΣ′ .

A relation family/system on A is an equivalence family/system on
A if it is an equivalence family/system on SEN, i.e., for all Σ ∈ ∣Sign∣, RΣ is
an equivalence relation on SEN(Σ). Finally, an equivalence system is called
a congruence system on A if, for all σ ∶ SENk → SEN in N , all Σ ∈ ∣Sign∣
and all φ⃗, ψ⃗ ∈ SEN(Σ),

⟨φi, ψi⟩ ∈ RΣ, i < k, implies ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ RΣ.

We call this the congruence property.
The collection of all congruence systems on the algebraic system A will be

denoted by ConSys(A). Ordered under signature-wise inclusion ≤, it forms
a complete lattice, which is denoted by ConSys(A) = ⟨ConSys(A),≤⟩.

The least congruence system on A is the identity congruence system,
which denoted by ∆A = {∆A

Σ}Σ∈∣Sign∣, where, for all Σ ∈ ∣Sign∣,
∆A

Σ = {⟨φ,φ⟩ ∶ φ ∈ SEN(Σ)}.
The largest congruence system is the nabla congruence system, denoted
∇A or SEN2, and defined by ∇A = {∇A

Σ}Σ∈∣Sign∣, such that, for all Σ ∈ ∣Sign∣,
∇A

Σ = {⟨φ,ψ⟩ ∶ φ,ψ ∈ SEN(Σ)} = SEN(Σ)2.
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The infimum of a family {θi ∶ i ∈ I} ⊆ ConSys(A) is given by signature-
wise intersection ⋂i∈I θi, while the supremum is the congruence system gen-
erated by the signature-wise union of the θi, ⋁i∈I θi = {Θ(⋃i∈I θiΣ)}Σ∈∣Sign∣,
where Θ(⋃i∈I θiΣ) denotes the congruence on SEN(Σ) (viewed as an ordinary
algebra with operations σΣ ∶ SEN(Σ)k → SEN(Σ), for σ ∶ SENk → SEN in N)
generated by ⋃i∈I θi.

Proposition 16 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-algebraic systems and ⟨F,α⟩ ∶
A → A′ a morphism of N ♭-algebraic systems. If θ ∈ ConSys(A′), then
α−1(θ) ∈ ConSys(A).
Proof: By Proposition 10 it suffices to show that, if θ has the congruence
property, then α−1(θ) also has the congruence property. To see this, consider
σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, Σ ∈ ∣Sign∣ and φ⃗, ψ⃗ ∈ SEN(Σ), such that ⟨φi, ψi⟩ ∈
α−1Σ (θF (Σ)), for all i < k. Then we get ⟨αΣ(φi), αΣ(ψi)⟩ ∈ θF (Σ), for all i < k.
Thus, by the congruence property of θ,

⟨σ′F (Σ)(αΣ(φ⃗)), σ′F (Σ)(αΣ(ψ⃗))⟩ ∈ θF (Σ).
By the morphism property, we get

⟨αΣ(σΣ(φ⃗)), αΣ(σΣ(ψ⃗))⟩ ∈ θF (Σ).
Hence ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ α−1Σ (θF (Σ)), showing that α−1(θ) also satisfies the
congruence property. ∎

As a special case of Proposition 16, we obtain that kernels of morphisms
are congruence systems.

Corollary 17 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-algebraic systems and ⟨F,α⟩ ∶
A→A′ a morphism of N ♭-algebraic systems. Then Ker(⟨F,α⟩) ∈ ConSys(A).
Proof: This follows by Proposition 16 by taking θ = ∆A

′
. Then, obviously,

α−1(θ) = Ker(⟨F,α⟩). ∎

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and θ ∈ ConSys(A). The
quotient Aθ (or A/θ) of A by θ is the algebraic system Aθ = ⟨Sign,SENθ,

N θ⟩, defined as follows:

• For all Σ ∈ ∣Sign∣,
SENθ(Σ) = SEN(Σ)/θΣ = {φ/θΣ ∶ φ ∈ SEN(Σ)}.

For all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),
SENθ(f)(φ/θΣ) = SEN(f)(φ)/θΣ′ .
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• N θ is the category of natural transformations on SENθ of the form
σθ ∶ (SENθ)k → SENθ, where σ ∶ SENk → SEN is in N , defined, for all
Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ), by

σθΣ(φ⃗/θΣ) = σΣ(φ⃗)/θΣ.
The fact that θ is an equivalence system makes the functor SENθ well-defined
at both the object and the morphism level. Moreover, the fact that θ is a
congruence system makes the definition of each natural transformation in N θ

sound. Finally, the identities, projections and the composition in N θ are the
images of the corresponding operations and of the composition in N under
⋅↦ ⋅θ: For all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), φ⃗ ∈ SEN(Σ),

• iθΣ(φ/θΣ) = φ/θΣ = iΣ(φ)/θΣ;

• p
k,iθ

Σ (φ⃗/θΣ) = φi/θΣ = pk,iΣ (φ⃗)/θΣ;

• τ θΣ(σ0θ

Σ (φ⃗/θΣ), . . . , σk−1θΣ (φ⃗/θΣ)) = τ θΣ(σ0
Σ(φ⃗)/θΣ, . . . , σk−1Σ (φ⃗)/θΣ)

= τΣ(σ0
Σ(φ⃗), . . . , σk−1Σ (φ⃗))/θΣ.

We denote by ⟨I, πθ⟩ ∶ A → Aθ the quotient morphism, defined, for all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

πθΣ(φ) = φ/θΣ.
To see that it is well-defined, we must show that πθ ∶ SEN → SENθ is a
natural transformation and that it satisfies the morphism property. In fact,
for all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),

SEN(Σ) πθΣ ✲ SENθ(Σ)

SEN(Σ′)
SEN(f)

❄

πθΣ′
✲ SENθ(Σ′)

SENθ(f)
❄

πθΣ′(SEN(f)(φ)) = SEN(f)(φ)/θΣ′
= SENθ(f)(φ/θΣ)
= SENθ(f)(πθΣ(φ)).

And for all σ ∶ SENk → SEN in N , all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ),
SEN(Σ)k πθ

k

Σ ✲ SENθ(Σ)k

SEN(Σ)
σΣ

❄

πθΣ

✲ SENθ(Σ)
σθΣ

❄
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πθΣ(σΣ(φ⃗)) = σΣ(φ⃗)/θΣ = σθΣ(φ⃗/θΣ) = σθΣ(πθΣ(φ⃗)).
Note that this construction allows us to discuss also quotients of F-

algebraic systems. More precisely, consider a base algebraic system F =⟨Sign♭,SEN♭,N ♭⟩. Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and let
θ ∈ ConSys(A) ∶= ConSys(A). The quotient F-algebraic system of A by
θ is defined as Aθ = ⟨Aθ, ⟨F,πθ ○ α⟩⟩.

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F,πθ ○ α⟩
❘

A ⟨I, πθ⟩ ✲ Aθ

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and let T ∈ SenFam(A).
We say that a congruence system θ on A is compatible with T if it is
compatible with T as an equivalence system on SEN, i.e., if, for all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ imply ψ ∈ TΣ.

Note that, for every T ∈ SenFam(A), ∆A is compatible with T . We denote
the collection of all congruence systems on A that are compatible with T by
ConSysA(T ).
Proposition 18 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ∈
SenFam(A). The collection ConSysA(T ), of all congruence systems on A
that are compatible with T , forms a complete lattice

ConSysA(T ) = ⟨ConSysA(T ),≤⟩
under signature-wise inclusion.

Proof: First, the collection ConSysA(T ) is closed under arbitrary inter-
sections: Let θi, i ∈ I, be in ConSysA(T ). Suppose that Σ ∈ ∣Sign∣ and
φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ⋂i∈I θiΣ and φ ∈ TΣ. Then ⟨φ,ψ⟩ ∈ θiΣ, for all
i ∈ I. Since θi is compatible with T , we get ψ ∈ TΣ. This shows that ⋂i∈I θi

is compatible with T .
It suffices, therefore, to show that ConSysA(T ) has a greatest element.

The signature-wise union of every directed subset of ConSysA(T ) is an upper
bound for the subset in ConSys(A). Moreover, it is in ConSysA(T ) since
every member of the subset is. So, by Zorn’s Lemma, ConSysA(T ) has a
maximal element.

Suppose, for the sake of obtaining a contradiction, that θ ≠ θ′ are two
such maximal elements. Recall that their join θ ∨ θ′ is given by θ ∨ θ′ =
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{θΣ ∨ θ′Σ}Σ∈∣Sign∣, where

θΣ ∨ θ′Σ =
∞

⋃
k=0

θΣ ○ θ′Σ ○ ⋯ ○ θΣ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k factors

.

Thus, their join θ∨θ′ as congruence systems on A is also compatible with T .
This, however, contradicts the maximality of θ and θ′, since, clearly, θ < θ∨θ′

and θ′ < θ ∨ θ′. Therefore, the unique maximal element of ConSysA(T ) is a
largest element. ∎

The largest congruence system on an algebraic system A compatible with
T ∈ SenFam(A) is called the Leibniz congruence system of T on A and
is denoted by ΩA(T ).

The following theorem provides an explicit characterization of the Leibniz
congruence system of a sentence family T on an algebraic system A.

Theorem 19 Suppose that A = ⟨Sign,SEN,N⟩ is an algebraic system and
T ∈ SenFam(A). Then, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),
⟨φ,ψ⟩ ∈ ΩA

Σ (T ) iff for all σ ∶ SENk → SEN in N , all Σ′ ∈ ∣Sign∣,
all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′), we have
σΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ .

Proof: Let R = {RΣ}Σ∈∣Sign∣ be the relation system on A defined by the given
condition, i.e., for all Σ ∈ ∣Sign∣,

RΣ = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶
for all σ ∶ SENk → SEN in N , all Σ′ ∈ ∣Sign∣,
all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),
σΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′}.

First, we show that ΩA(T ) ≤ R. Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ ΩA
Σ (T ). Since ΩA(T ) is a congruence system, we get that, for all

Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ ΩA
Σ′(T ).

Now, since ΩA(T ) is a congruence system, we get that, for all σ ∶ SENk →
SEN and all χ⃗ ∈ SEN(Σ′),

⟨σΣ′(SEN(f)(φ), χ⃗), σΣ′(SEN(f)(ψ), χ⃗)⟩ ∈ ΩA
Σ′(T ).

Finally, since ΩA(T ) is compatible with T , we get that

σΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ .
But the last condition, being universally quantified on Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′), σ in N and χ⃗ ∈ SEN(Σ′), yields ⟨φ,ψ⟩ ∈ RΣ. Therefore, we
get that ΩA(T ) ≤ R.
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Finally, we show that R ≤ ΩA(T ). For this inclusion, it suffices to show
that R is a congruence system on A that is compatible with T . Then the
conclusion would follow from the fact that ΩA(T ) is, by definition, the largest
congruence system on A that is compatible with T .

It is clear from its definition that R is an equivalence family on A.
To see that it is an equivalence system, let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ),

such that ⟨φ,ψ⟩ ∈ RΣ. Consider Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′). Then,
for all σ ∶ SENk → SEN in N , all Σ′′ ∈ ∣Sign∣, all g ∈ Sign(Σ′,Σ′′) and all
χ⃗ ∈ SEN(Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

we have

σΣ′′(SEN(g)(SEN(f)(φ)), χ⃗) ∈ TΣ′′
iff σΣ′′(SEN(gf)(φ), χ⃗) ∈ TΣ′′
iff σΣ′′(SEN(gf)(ψ), χ⃗) ∈ TΣ′′ (since ⟨φ,ψ⟩ ∈ RΣ)
iff σΣ′′(SEN(g)(SEN(f)(ψ)), χ⃗) ∈ TΣ′′ .

Thus, we conclude that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ RΣ′ , showing that R is
an equivalence system.

Next, to see that R is a congruence system, consider σ ∶ SENk → SEN
in N , Σ ∈ ∣Sign∣, and φ⃗, ψ⃗ ∈ SEN(Σ), such that ⟨φi, ψi⟩ ∈ RΣ, i < k. Let
τ ∶ SENℓ → SEN be in N , Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′).
Then, we have

τΣ′(SEN(f)(σΣ(φ⃗)), χ⃗) ∈ TΣ′
iff τΣ′(σΣ′(SEN(f)(φ⃗)), χ⃗) ∈ TΣ′
iff τΣ′(σΣ′(SEN(f)(ψ⃗)), χ⃗) ∈ TΣ′

(τ ○ ⟨σ ○ ⟨pk+ℓ−1,0, . . . , pk+ℓ−1,k⟩, pk+ℓ−1,k+1, . . . , pk+ℓ−1,k+ℓ−2⟩ in N

together with Corollary 12, applied k times)

iff τΣ′(SEN(f)(σΣ(ψ⃗)), χ⃗) ∈ TΣ′ .
This shows that ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ RΣ, whence R is a congruence system.

Finally, upon setting in the defining condition σ = p1,0 ∶ SEN → SEN in
N , Σ′ = Σ, f = iΣ, the identity Sign-morphism, we get that for all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ), with ⟨φ,ψ⟩ ∈ RΣ

φ ∈ TΣ iff ψ ∈ TΣ.

Thus, R is compatible with T . ∎

The characterization of the Leibniz congruence system, presented in The-
orem 19, provides a justification for an alternative name that is sometimes
attributed to the Leibniz congruence system of a sentence family T on an
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algebraic system A. Given Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), we say that φ and
ψ are indiscernible modulo T if

⟨φ,ψ⟩ ∈ ΩA
Σ (T ).

Therefore ΩA(T ) is also referred to as the indiscernibility relation on A
modulo T .

We can now prove a proposition asserting that the Leibniz congruence

system of a sentence family T is included in that of the sentence system
←Ð
T .

Proposition 20 Suppose that A = ⟨Sign,SEN,N⟩ is an algebraic system
and T ∈ SenFam(A). Then

ΩA(T ) ≤ ΩA(←ÐT ).
Proof: To prove this inclusion, it suffices to show that ΩA(T ) is compatible

with
←Ð
T . We can invoke Lemma 7, but we also give a direct proof due to the

heavy significance of this result. Let Σ ∈ ∣Sign∣, and φ,ψ ∈ SEN(Σ), such

that ⟨φ,ψ⟩ ∈ ΩA
Σ (T ) and φ ∈

←Ð
T Σ. Since ΩA(T ) is a congruence system and

by the definition of
←Ð
T , we get that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ ΩA
Σ′(T ) and SEN(f)(φ) ∈ TΣ′ .

Thus, by the compatibility of ΩA(T ) with T , we obtain SEN(f)(ψ) ∈ TΣ′ .
Since this holds for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we get ψ ∈

←Ð
T Σ.

Thus, ΩA(T ) is compatible with
←Ð
T , showing that ΩA(T ) ≤ ΩA(←ÐT ). ∎

We exhibit, next, an algebraic system A = ⟨Sign,SEN,N⟩ together with

a sentence family T ∈ SenFam(A), such that ΩA(T ) ≨ ΩA(←ÐT ).
Example 21 Define A = ⟨Sign,SEN,N⟩ as follows:

• Sign is a category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′.

• SEN ∶ Sign → Set is defined by setting SEN(Σ) = {0,1}, SEN(Σ′) ={a, b}, SEN(f)(0) = a and SEN(f)(1) = b.
• The clone N of natural transformations is trivial, i.e., consists of the

projection natural transformations only.

Finally, let T = {TΣ, TΣ′} be specified by setting TΣ = {1} and TΣ′ = ∅. Then

it is not difficult to see that
←Ð
T Σ = ∅ =

←Ð
T Σ′ and, therefore, that

ΩA
Σ (←ÐT ) = ∇A

Σ and ΩA
Σ′(←ÐT ) = ∇A

Σ′ ,

whereas
ΩA

Σ (T ) =∆A
Σ and ΩA

Σ′(T ) = ∇A
Σ′ .

Hence, we have ΩA(T ) ≨ ΩA(←ÐT ).
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Proposition 20 and Example 21 have important consequences. We give
a brief account here, as is proper after proving these facts, but postpone
further treatment for subsequent chapters.

1. Note that, given an algebraic system A, for any sentence family T of

A, both T,
←Ð
T are sentence families of A, such that, in general,

←Ð
T ≤ T and ΩA(T ) ≤ ΩA(←ÐT ).

But it is an accepted wisdom in abstract algebraic logic that a logic
is amenable to a meaningful algebraic treatment and, thus, deserves a
place in the algebraic (Leibniz) hierarchy, if it is at least protoalgebraic
or truth-equational, meaning that the Leibniz operator on its collection
of theories is at least monotone of completely order reflecting. The

displayed relations between T and
←Ð
T , therefore, force us to define a

new class of π-institutional logics, fulfilling a minimum, in some sense,
condition for amenability to algebraic treatment and techniques, which
we shall call stable, if their Leibniz operator satisfies, for all theory
families T of the π-institution,

Ω(T ) = Ω(←ÐT ).
The term “stable” is adopted to insinuate contrast to inverting or

changing the order, since, given that
←Ð
T ≤ T and that Ω(T ) ≤ Ω(←ÐT ),

for all theory families T , an inversion in the order would occur in case

Ω(T ) ≠ Ω(←ÐT ) for some theory family T .

2. Now note the remarkable fact that, for a stable π-institution, the range
of the Leibniz operator is entirely covered by its values on theory sys-
tems of the π-institution, since, given a theory family T , one can work
with its Leibniz congruence system by working with the congruence

system Ω(←ÐT ) of the theory system
←Ð
T .

These two remarkable facts form an enticement, a preview and a justification
for some of the upcoming definitions and concepts regarding classes of π-
institutions, forming the semantic Leibniz hierarchy, in subsequent chapters.
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In the next example it is shown that the Leibniz congruence system of
a sentence family T of an algebraic system A does not stand in a definite

relationship with that of the sentence system
Ð→
T .

Example 22 We exhibit, first, an algebraic system A = ⟨Sign,SEN,N⟩ to-

gether with a sentence family T ∈ SenFam(A), such that ΩA(Ð→T ) ≨ ΩA(T ).
We use the same algebraic system and the same sentence family as in

Example 21. Define A = ⟨Sign,SEN,N⟩ as follows:

• Sign is a category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′.

• SEN ∶ Sign → Set is defined by setting SEN(Σ) = {0,1}, SEN(Σ′) ={a, b}, SEN(f)(0) = a and SEN(f)(1) = b.
• The clone N of natural transformations is trivial, i.e., consists of the

projection natural transformations only.

Finally, let T = {TΣ, TΣ′} be specified by setting TΣ = {1} and TΣ′ = ∅.

Note that
Ð→
T Σ = {1} and

Ð→
T Σ′ = {b}. So in this case we have

ΩA
Σ (Ð→T ) =∆A

Σ and ΩA
Σ′(Ð→T ) =∆A

Σ′ ,

whereas, as pointed out in Example 21,

ΩA
Σ (T ) =∆A

Σ and ΩA
Σ′(T ) = ∇A

Σ′ .

So we see that ΩA(Ð→T ) ≨ ΩA(T ).
Finally, we construct an algebraic system A = ⟨Sign,SEN,N⟩ together

with a sentence family T ∈ SenFam(T ), such that ΩA(T ) ≨ ΩA(Ð→T ).
The algebraic system is the same algebraic system A = ⟨Sign,SEN,N⟩,

defined above. But now the sentence family T = {TΣ, TΣ′} is defined by

TΣ = {0,1} and TΣ′ = {b}.
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It is clear that
Ð→
T Σ = {0,1} and

Ð→
T Σ′ = {a, b}. Thus, we have

ΩA(T ) =∆A
Σ and ΩA

Σ′(T ) =∆A
Σ′ ,

whereas

ΩA
Σ (Ð→T ) = ∇A

Σ and ΩA
Σ′(Ð→T ) = ∇A

Σ′ .

Thus we see that, in this case, ΩA(T ) ≨ ΩA(Ð→T ).
It turns out that the Leibniz congruence system of the intersection of two

sentence families of an algebraic system is at least as large as the intersection
of the corresponding Leibniz congruence systems.

Lemma 23 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and let T ⊆
SenFam(A). Then

⋂
T ∈T

ΩA(T ) ≤ ΩA(⋂
T ∈T

T ).
Proof: The Leibniz congruence system of ⋂T ∈T T is, by definition, the largest
congruence system on A that is compatible with ⋂T ∈T T ∈ SenFam(A). So
to prove the conclusion it suffices to show that ⋂T ∈T ΩA(T ) is a congruence
system on A that is compatible with ⋂T ∈T T . That it is a congruence system
follows from the fact that ConSys(A) has the structure of a complete lattice
with signature-wise intersection as its infimum. For compatibility, Let Σ ∈∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ⋂T ∈T ΩA

Σ (T ) and φ ∈ ⋂T ∈T TΣ.
These two imply the following relations:

⟨φ,ψ⟩ ∈ ΩA
Σ (T ), φ ∈ TΣ, for all T ∈ T .

Now, using the compatibility property of ΩA(T ), T ∈ T , we get ψ ∈ TΣ, for
all T ∈ T . So ψ ∈ ⋂T ∈T TΣ and, therefore, ⋂T ∈T ΩA(T ) is compatible with

⋂T ∈T T . ∎

An important property of the Leibniz operator is that it commutes with
inverse surjective morphisms of N ♭-algebraic systems.
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Proposition 24 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-algebraic systems, ⟨F,α⟩ ∶
A→A′ an algebraic system morphism and T ∈ SenFam(A′). We have:

(a) α−1(ΩA′(T )) ≤ ΩA(α−1(T ));
(b) If ⟨F,α⟩ is surjective, α−1(ΩA′(T )) = ΩA(α−1(T )).

Proof:

(a) Since ΩA(α−1(T )) is the largest congruence system that is compati-
ble with α−1(T ), it suffices to show that α−1(ΩA′(T )) is a congruence
system on A that is compatible with α−1(T ). The fact that it is a
congruence system on A is guaranteed by Proposition 16. So it suffices
to show its compatibility with α−1(T ). Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ α−1Σ (ΩA′

F (Σ)
(T )) and φ ∈ α−1Σ (TF (Σ)). Now we get

⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA′

F (Σ)
(T ) and αΣ(φ) ∈ TF (Σ). By compatibility of

ΩA′(T ) with T , we get αΣ(ψ) ∈ TF (Σ). Therefore ψ ∈ α−1Σ (TF (Σ)),
which proves compatibility of α−1(ΩA′(T )) with α−1(T ).

(b) By Part (a), it suffices to prove, under the hypothesis that ⟨F,α⟩ ∶
A → A′ is surjective, the inclusion ΩA(α−1(T )) ≤ α−1(ΩA′(T )). Let
Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩA

Σ (α−1(T )). Then,
by Theorem 19, we get that, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all
Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),

σΣ′(SEN(f)(φ), χ⃗) ∈ α−1Σ′ (TF (Σ′))
iff σΣ′(SEN(f)(ψ), χ⃗) ∈ α−1Σ′ (TF (Σ′)).

Equivalently,

αΣ′(σΣ′(SEN(f)(φ), χ⃗)) ∈ TF (Σ′)
iff αΣ′(σΣ′(SEN(f)(ψ), χ⃗)) ∈ TF (Σ′).

Equivalently, by the morphism property,

σ′
F (Σ′)
(αΣ′(SEN(f)(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σ′
F (Σ′)
(αΣ′(SEN(f)(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′).

Equivalently, by the naturality of α,

σ′
F (Σ′)
(SEN′(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σ′
F (Σ′)
(SEN′(F (f))(αΣ(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′).

Equivalently, by Theorem 19 and the surjectivity of ⟨F,α⟩, we get that

⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA′

F (Σ)(T ),
which finishes the proof.

∎
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2.4 Relative Congruence Systems

We look at a variety of results related to congruence systems in this section.
First, we give a condition that ensures that, given a morphism ⟨H,γ⟩ ∶ A →
A′ of N ♭-algebraic systems, with an isomorphic functor component, and an
equivalence family θ on A, we have γ−1(γ(θ)) = θ.
Lemma 25 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems, ⟨F,α⟩ ∶ A → A′ a
morphism, with F an isomorphism, and θ ∈ EqvFam(A). Then

Ker(⟨F,α⟩) ≤ θ iff α−1(α(θ)) = θ.
Proof: Suppose, first, that Ker(⟨F,α⟩) ≤ θ and let Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ α−1Σ (αΣ(θΣ)). Then, by definition, we get

⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(θΣ).
Thus, there exist φ′, ψ′ ∈ SEN(Σ), such that

⟨φ′, ψ′⟩ ∈ θΣ and ⟨αΣ(φ), αΣ(ψ)⟩ = ⟨αΣ(φ′), αΣ(ψ′)⟩.
Thus, we get

⟨φ′, ψ′⟩ ∈ θΣ and ⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ KerΣ(⟨F,α⟩).
Since Ker(⟨F,α⟩) ≤ θ and θ is an equivalence family, we get that ⟨φ,ψ⟩ ∈ θΣ.
Thus, we conclude that α−1(α(θ)) ≤ θ. Since the reverse inclusion always
holds, α−1(α(θ)) = θ.

Assume, conversely, that α−1(α(θ)) = θ and let Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩). Then, by definition, αΣ(φ) =
αΣ(ψ). Therefore, since θ is an equivalence family, we get

⟨αΣ(φ), αΣ(ψ)⟩ = ⟨αΣ(φ), αΣ(φ)⟩ ∈ αΣ(θ).
Now we get ⟨φ,ψ⟩ ∈ α−1Σ (αΣ(θΣ)) and, by hypothesis, ⟨φ,ψ⟩ ∈ θΣ. We con-
clude that Ker(⟨F,α⟩) ≤ θ. ∎

Next we show that, given algebraic systems A and A′, a surjective mor-
phism ⟨F,α⟩ ∶ A → A′, with an isomorphic functor component, and a con-
gruence system θ on A, its image under ⟨F,α⟩ is a congruence system on A′,
provided that θ contains the kernel system of ⟨F,α⟩.
Lemma 26 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems, ⟨F,α⟩ ∶ A → A′ a
surjective morphism, with F an isomorphism, and θ ∈ ConSys(A), such that
Ker(⟨F,α⟩) ≤ θ. Then α(θ) ∈ ConSys(A′).
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Proof: We first show that α(θ) is an equivalence family on A′. To this end,
let Σ ∈ ∣Sign∣ and φ,ψ,ψ′, χ ∈ SEN(Σ).

• By hypothesis, θ ∈ ConSys(A). Hence, ⟨φ,φ⟩ ∈ θΣ. Thus, ⟨αΣ(φ),
αΣ(φ)⟩ ∈ αΣ(θΣ). Since ⟨F,α⟩ is surjective, α(θ) is reflexive.

• Suppose ⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(θΣ). Then ⟨φ,ψ⟩ ∈ α−1Σ (αΣ(θΣ)). By
Lemma 25, ⟨φ,ψ⟩ ∈ θΣ. Since θ ∈ ConSys(A), ⟨ψ,φ⟩ ∈ θΣ. Hence,⟨αΣ(ψ), αΣ(φ)⟩ ∈ αΣ(θΣ). Thus, by the surjectivity of ⟨F,α⟩, α(θ) is
also symmetric.

• Finally, suppose that ⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(θΣ) and ⟨αΣ(ψ′), αΣ(χ)⟩ ∈
αΣ(θΣ), with αΣ(ψ) = αΣ(ψ′). Then, by Lemma 25, ⟨φ,ψ⟩ ∈ θΣ
and ⟨ψ′, χ⟩ ∈ θΣ. Moreover, by hypothesis, ⟨ψ,ψ′⟩ ∈ KerΣ(⟨F,α⟩) ⊆
θΣ. Since θ ∈ ConSys(A), we get ⟨φ,χ⟩ ∈ θΣ and, therefore, ⟨αΣ(φ),
αΣ(χ)⟩ ∈ αΣ(θΣ). Taking into account the surjectivity of ⟨F,α⟩, we
conclude that α(θ) is also transitive.

We showed that α(θ) ∈ EqvFam(A′).
Next, we show that α(θ) is also a system. To this end, suppose Σ,Σ′ ∈∣Sign∣, f ∈ Sign(Σ,Σ′) and φ,ψ ∈ SEN(Σ), such that ⟨αΣ(φ), αΣ(ψ)⟩ ∈

αΣ(θΣ). Then, by Lemma 25, ⟨φ,ψ⟩ ∈ θΣ. Since θ ∈ ConSys(A), we get⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ θΣ′ . Thus,

⟨SEN′(F (f))(αΣ(φ)),SEN′(F (f))(αΣ(ψ))⟩
= ⟨αΣ′(SEN(f)(φ)), αΣ′(SEN(f)(ψ))⟩ ∈ αΣ′(θΣ′).

Since ⟨F,α⟩ is surjective, we get that α(θ) is invariant under Sign′-mor-
phisms. Now we have that α(θ) ∈ EqvSys(A′).

Finally, it remains to see that it is also a congruence system. To this
end, let σ♭ be a natural transformation in N ♭, Σ ∈ ∣Sign∣, φ⃗, ψ⃗ ∈ SEN(Σ),
such that ⟨αΣ(φi), αΣ(ψi)⟩ ∈ αΣ(θΣ), for all i < k. We get, by Lemma 25,⟨φi, ψi⟩ ∈ θΣ, whence, since θ ∈ ConSys(A), ⟨σA

Σ (φ⃗), σA
Σ (ψ⃗)⟩ ∈ θΣ. Now,

applying the morphism property, we get

⟨σA′

F (Σ)(αΣ(φ⃗)), σA′

F (Σ)(αΣ(ψ⃗))⟩ = ⟨αΣ(σA
Σ (φ⃗)), αΣ(σA

Σ (ψ⃗))⟩ ∈ αΣ(θΣ).
Again, taking into account the surjectivity of ⟨F,α⟩, we get that α(θ) has
the congruence property. We conclude that α(θ) ∈ ConSys(A′). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, K be a class of F-
algebraic systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. A congruence
system θ on A is called a K-congruence system, or a congruence system
relative to K, if the quotient algebraic system A/θ is a member of the class
K, i.e., A/θ = Aθ ∈ K. Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we denote
by ConSysK(A) the collection of all K-congruence systems on A:

ConSysK(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ K}.
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Let K be a class of F-algebraic systems. We write H(K) for the class of
all F-algebraic systems B, such that, there exists A ∈ K and a (surjective)
F-algebraic system morphism ⟨H,γ⟩ ∶ A→ B:

H(K) = {B ∈ AlgSys(F) ∶ (∃A ∈ K)(∃ ⟨H,γ⟩ ∶ A→ B)}.
We show that, if K is a class that is closed under the operator H, then

the K-congruence systems on any F-algebraic system in K coincide with the
ordinary congruence systems on A.

Proposition 27 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems, such that H(K) ⊆ K. Then, for every F-algebraic
system A ∈ K, ConSysK(A) = ConSys(A).
Proof: Clearly, ConSysK(A) ⊆ ConSys(A). Suppose θ ∈ ConSys(A). Con-
sider the quotient morphism

⟨I, πθ⟩ ∶ A→ A/θ.
Since A ∈ K, A/θ ∈H(K) ⊆ K. Thus, by definition, θ ∈ ConSysK(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨A, ⟨F,α⟩⟩ and
Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, be F-algebraic systems and, for all i ∈ I,

⟨H i, γi⟩ ∶ A→ Ai

a surjective morphism. We say that {⟨H i, γi⟩ ∶ A→ Ai ∶ i ∈ I} is a subdirect
intersection if

⋂
i∈I

Ker(⟨H i, γi⟩) = ∆A.

Given a class K of F-algebraic systems, we write
⊲

IΠ(K) to denote the class
of all F-algebraic systems A, for which there exists a subdirect intersection{⟨H i, γi⟩ ∶ A→ Ai ∶ i ∈ I}, with Ai ∈ K, for all i ∈ I.

We show that if a class K is closed under subdirect intersections, then the
collection of all K-congruence systems on any F-algebraic system A is closed
under intersections. If, in addition, K contains a trivial F-algebraic system,
then ConSysK(A) becomes a closure family on A2, for every F-algebraic
system A.

Proposition 28 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be

a class of F-algebraic systems, such that
⊲

IΠ(K) ⊆ K.

(a) For every F-algebraic system A, ConSysK(A) is closed under signature-
wise intersections;

(b) If, in addition, K contains a trivial F-algebraic system, then, for every
F-algebraic system A, ConSysK(A) is a closure family on A2.
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Proof: Let A be an F-algebraic system and {θi ∶ i ∈ I} ⊆ ConSysK(A). Then
A/θi ∈ K, for all i ∈ I. Consider the canonical morphisms

⟨I, πi⟩ ∶ A/⋂
i∈I

θi → A/θi, i ∈ I.

Clearly, we have

⋂
i∈I

Ker(⟨I, πi⟩) = ⋂
i∈I

(θi/⋂
i∈I

θi) = ⋂
i∈I

θi/⋂
i∈I

θi =∆A/⋂i∈I θ
i

.

Thus, {⟨I, πi⟩ ∶ A/⋂i∈I θi → A/θi ∶ i ∈ I} is a subdirect intersection. Since

A/θi ∈ K, for all i ∈ I, we get A/⋂i∈I θi ∈ ⊲

IΠ(K) ⊆ K. Therefore, ⋂i∈I θi ∈
ConSysK(A).

Suppose, in addition, that K contains a trivial F-algebraic system. Then
∇A ∈ ConSysK(A), whence ConSysK(A) is a closure family on A2. ∎

By Proposition 28, for a class K of F-algebraic systems closed under
⊲

IΠ
and containing a trivial F-algebraic system, it makes sense to define, for
every F-algebraic system A and all X ∈ SenFam(A2),

ΘK,A(X) = ⋂{θ ∈ ConSysK(A) ∶ X ≤ θ}.
When A coincides with the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶

F→ F is the identity morphism, we write simply ΘK.
We now provide a different characterization of the operator ΘK,A.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a class of

F-algebraic systems. Define the operator DK ∶ P(SEN♭)2 → P(SEN♭)2, by
letting, for all X ≤ (SEN♭)2, all Σ ∈ ∣Sign♭∣ and all ⟨φ,ψ⟩ ∈ SEN♭(Σ)2,

⟨φ,ψ⟩ ∈ DK
Σ(X) iff for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

α(X) ≤ ∆A implies αΣ(φ) = αΣ(ψ).
We show that DK is a closure family on (SEN♭)2.

Proposition 29 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems. DK is a closure family on (SEN♭)2.

Proof: We must show that DK is inflationary, monotone and idempotent.
Let X ≤ (SEN♭)2, Σ ∈ ∣Sign♭∣ and ⟨φ,ψ⟩ ∈ XΣ. Then, for all A ∈ K, if

α(X) ≤ ∆A, we clearly have α(φ) = α(ψ). Hence, ⟨φ,ψ⟩ ∈ DK
Σ(X) and DK is

inflationary.
Suppose X ≤ Y ≤ (SEN♭)2, Σ ∈ ∣Sign♭∣ and ⟨φ,ψ⟩ ∈ SEN♭(Σ)2, such that⟨φ,ψ⟩ ∈ DK

Σ(X). Let A ∈ K, such that α(Y ) ≤ ∆A. Then, we get α(X) ≤
α(Y ) ≤ ∆A, whence, by hypothesis, α(φ) = α(ψ). Therefore, ⟨φ,ψ⟩ ∈DK

Σ(Y )
and DK is also monotone.
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Finally, suppose X ≤ (SEN♭)2, Σ ∈ ∣Sign♭∣ and ⟨φ,ψ⟩ ∈ SEN♭(Σ), such
that ⟨φ,ψ⟩ ∈ DK

Σ(DK(X)). Let A ∈ K, such that α(X) ≤ ∆A. Then, by
definition, α(DK(X)) ≤ ∆A, whence, by hypothesis, αΣ(φ) = αΣ(ψ). Thus,⟨φ,ψ⟩ ∈ DK

Σ(X) and DK is also idempotent.
We conclude that DK is a closure family on (SEN♭)2. ∎

We show, next, that, for all X ≤ (SEN♭)2, the sentence family DK(X) is
a congruence system on the algebraic system F and that, moreover, it is a
congruence system relative to the class K.

Proposition 30 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems. For all X ≤ (SEN♭)2, DK(X) ∈ ConSys(F).
Proof: We first show that, for all Σ ∈ ∣Sign♭∣, DK

Σ(X) is an equivalence
family.

• Let φ ∈ SEN♭(Σ). Since, for all A = ⟨A, ⟨F,α⟩⟩ ∈ K, αΣ(φ) = αΣ(φ), we
get that ⟨φ,φ⟩ ∈DK

Σ(X), whence DK
Σ(X) is reflexive.

• Suppose ⟨φ,ψ⟩ ∈ DK
Σ(X) and let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that α(X) ≤

∆A. Then, by hypothesis, αΣ(φ) = αΣ(ψ), giving αΣ(ψ) = αΣ(φ).
Hence, ⟨ψ,φ⟩ ∈DK

Σ(X), showing that DK
Σ(X) is also symmetric.

• Finally, suppose ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ DK
Σ(X). Let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such

that α(X) ≤ ∆A. By hypothesis, αΣ(φ) = αΣ(ψ) and αΣ(ψ) = αΣ(χ).
Therefore, αΣ(φ) = αΣ(χ), showing that ⟨φ,χ⟩ ∈ DK

Σ(X). Hence,
DK

Σ(X) is also transitive.

We show, next, thatDK(X) is an equivalence system, i.e., invariant under sig-
nature morphisms. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ,ψ ∈ SEN♭(Σ),
such that ⟨φ,ψ⟩ ∈ DK

Σ(X). Let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that α(X) ≤ ∆A.
Then, by hypothesis, αΣ(φ) = αΣ(ψ). Thus, we get

αΣ′(SEN♭(f)(φ)) = SEN(F (f))(αΣ(φ))
= SEN(F (f))(αΣ(ψ))
= αΣ′(SEN♭(f)(ψ)).

Hence, ⟨SEN♭(f)(φ),SEN♭(f)(ψ)⟩ ∈DK
Σ′(X).

Finally, to see that it also satisfies the congruence property, let σ♭ ∶(SEN♭)k → SEN♭ be in N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that⟨φi, ψi⟩ ∈DK
Σ(X), for all i < k. Let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that α(X) ≤∆A.

then, by hypothesis, αΣ(φi) = αΣ(ψi), for all i < k. Therefore,

αΣ(σ♭Σ(φ⃗)) = σA
F (Σ)
(αΣ(φ⃗))

= σA
F (Σ)
(αΣ(ψ⃗))

= αΣ(σ♭Σ(ψ⃗)).
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We conclude that ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ DK
Σ(X) and, therefore, DK(X) is indeed

a congruence system on F. ∎

Furthermore, if K happens to contain a trivial F-algebraic system and
be closed under subdirect intersections, we can show that DK(X) is a K-
congruence system on F.

Proposition 31 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems, containing a trivial F-algebraic system and

closed under
⊲

IΠ. For all X ≤ (SEN♭)2, DK(X) ∈ ConSysK(F).
Proof: By Proposition 30, we know that DK(X) is a congruence system on
F. Therefore, it suffices to show that it is a congruence system relative to
K. For this, let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that X ≤ Ker(⟨F,α⟩). Define the
morphism ⟨F,αK⟩ ∶ F/DK(X)→ A

by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ)/DK
Σ(X),

αK
Σ(φ/DK

Σ(X)) = αΣ(φ).
This morphism is well defined, since, if A ∈ K, with X ≤ Ker(⟨F,α⟩), then,
for all Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈DK
Σ(X) implies αΣ(φ) = αΣ(ψ).

Now consider the collection

⟨F,αK⟩ ∶ F/DK(X)→ A, A = ⟨A, ⟨F,α⟩⟩ ∈ K, X ≤ Ker(⟨F,α⟩).
We have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ/DK
Σ(X), ψ/DK

Σ(X)⟩ ∈ ⋂⟨F,αK⟩KerΣ(⟨F,αK⟩)
iff αK

Σ(φ/DK
Σ(X)) = αK

Σ(ψ/DK
Σ(X)), for all ⟨F,αK⟩

iff αΣ(φ) = αΣ(ψ) for all ⟨F,αK⟩
iff ⟨φ,ψ⟩ ∈DK

Σ(X).
Therefore, the displayed collection above constitutes a subdirect intersection
and, since A ∈ K, for all ⟨F,αK⟩, and K is closed under subdirect intersections,
we get that F/DK(X) ∈ K, and, therefore, DK(X) ∈ ConSysK(F). ∎

We are now in a position to show the promised alternative characteriza-
tion of the operator ΘK. It turns out that it coincides with DK.

Theorem 32 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class
of F-algebraic systems, containing a trivial F-algebraic system and closed
under subdirect intersections. For all X ≤ (SEN♭)2, ΘK(X) =DK(X).
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Proof: Let X ≤ (SEN♭)2. By Proposition 31, DK(X) ∈ ConSysK(X) and,
by Proposition 29, X ≤DK(X). Therefore, by the minimality of ΘK(X), we
get that ΘK(X) ≤ DK(X). To show the reverse inclusion, let Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ DK

Σ(X). Consider F/ΘK(X) ∈ K. Since

πΘK(X)(X) ≤ ∆F/Θ
K(X), we get, by hypothesis, π

ΘK(X)
Σ (φ) = πΘK(X)

Σ (ψ), i.e.,⟨φ,ψ⟩ ∈ ΘK
Σ(X). We conclude that DK(X) ≤ ΘK(X). ∎

We look, next, at how the operator ΘK interacts with morphisms.

Proposition 33 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be
a class of F-algebraic systems, containing a trivial F-algebraic system and

such that
⊲

IΠ(K) ⊆ K. Let also A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic
systems and ⟨H,γ⟩ ∶ A → B a surjective morphism.

(a) If θ ∈ ConSysK(B), then γ−1(θ) ∈ ConSysK(A);
(b) If H is an isomorphism, Ker(⟨H,γ⟩) ≤ θ and θ ∈ ConSysK(A), then

γ(θ) ∈ ConSysK(B).
Proof:

(a) By Proposition 16, γ−1(θ) ∈ ConSys(A). Consider the morphism

⟨H,γ∗⟩ ∶ A/γ−1(θ)→ B/θ,
defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

γ∗Σ(φ/γ−1Σ (θH(Σ))) = γΣ(φ)/θH(Σ).
This is well-defined, since, if ⟨φ,ψ⟩ ∈ γ−1Σ (θH(Σ)), then ⟨γΣ(φ), γΣ(ψ)⟩ ∈
θH(Σ). Moreover,

Ker(⟨H,γ∗⟩) = γ∗−1(∆B/θ) =∆A/γ
−1(θ).

Thus, {⟨H,γ∗⟩ ∶ A/γ−1(θ)→ B/θ} is a subdirect intersection and, since,

by hypothesis, B/θ ∈ K, A/γ−1(θ) ∈ ⊲

IΠ(K) ⊆ K. Therefore, γ−1(θ) ∈
ConSysK(A).

(b) By Lemma 26, γ(θ) ∈ ConSys(B). Moreover, it is not difficult to see
that ⟨H,γ∗⟩ ∶ A/θ → B/γ(θ),
defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

γ∗Σ(φ/θΣ) = γΣ(φ)/γΣ(θΣ)
is an isomorphism of F-algebraic systems, since, by Lemma 25, for all
Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ θΣ iff ⟨γΣ(φ), γΣ(ψ)⟩ ∈ γΣ(θΣ).
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Therefore, {⟨H,γ⟩−1 ∶ B/γ(θ)→ A/θ} is a subdirect intersection. Since

A/θ ∈ K, it follows that B/γ(θ) ∈ ⊲

IΠ(K) ⊆ K. Therefore, γ(θ) ∈
ConSysK(B).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, τ ♭ ∶ (SEN♭)ω →(SEN♭)2 be a collection of natural transformations in N ♭ and A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩ an F-algebraic system. If τ ♭ is perceived as having a
single distinguished argument, with the remaining arguments as parameters,
we define, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), the sentence family

τAΣ [φ] = {τAΣ,Σ′[φ]}Σ′∈∣Sign∣,
by setting, for all Σ′ ∈ ∣Sign∣,

τAΣ,Σ′[φ] = ⋃{τAΣ′(SEN(f)(φ), χ⃗) ∶ f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′)}.
Given Φ ⊆ SEN(Σ), we set

τAΣ [Φ] = ⋃{τAΣ [φ] ∶ φ ∈ Φ}
and, given a sentence family X ∈ SenFam(A), we set

τA[X] = ⋃{τAΣ [XΣ] ∶ Σ ∈ ∣Sign∣}.
We will revisit these and similar definitions in more depth in Section 2.13. For
now, we only use them to establish a result that involves the relative congru-
ence system operator ΘK, introduced in this section, and direct images under
morphisms of F-algebraic systems with isomorphic functor components.

Proposition 34 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ and K be a class of F-algebraic systems,

containing a trivial F-algebraic system and such that
⊲

IΠ(K) ⊆ K. Let also
A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic systems and ⟨H,γ⟩ ∶ A → B a
surjective morphism, with H an isomorphism. Then, for all X ∈ SenFam(A),

ΘK,B(γ(ΘK,A(τA[X]))) = ΘK,B(τB[γ(X)]).
Proof: Taking into account the surjectivity of ⟨H,γ⟩, we have τB[γ(X)] =
γ(τA[X]) ≤ γ(ΘK,A(τA[X])). Hence

ΘK,B(τB[γ(X)]) ≤ ΘK,B(γ(ΘK,A(τA[X]))).
On the other hand, γ−1(ΘK,B(τB[γ(X)])) is, by Proposition 33, a K-con-
gruence system on A, and, moreover, it contains τA[X], since

γ(τA[X]) = τB[γ(X)] ≤ ΘK,B(τB[γ(X)]).
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Hence, ΘK,A(τA[X]) ≤ γ−1(ΘK,B(τB[γ(X)])), i.e.,

γ(ΘK,A(τA[X])) ≤ ΘK,B(τB[γ(X)]).
This yields ΘK,B(γ(ΘK,A(τA[X]))) ≤ ΘK,B(τB[γ(X)]). ∎

We conclude the section by showing that the relative congruence system
generated by a family of pairs may be expressed as the join in the complete
lattice of relative congruence systems of those relative congruence systems
generated by the single pairs of elements in the generating family.

Proposition 35 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be
a class of F-algebraic systems, containing a trivial F-algebraic system and

such that
⊲

IΠ(K) ⊆ K. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all
X ∈ SenFam(A2),

ΘK,A(X) = ⋁{ΘK,A(φ,ψ) ∶ ⟨φ,ψ⟩ ∈XΣ,Σ ∈ ∣Sign∣}.
Proof: Set

θ ∶= ⋁{ΘK,A(φ,ψ) ∶ ⟨φ,ψ⟩ ∈XΣ,Σ ∈ ∣Sign∣}.
For all Σ ∈ ∣Sign∣ and all ⟨φ,ψ⟩ ∈ XΣ, we have ⟨φ,ψ⟩ ∈ ΘK,A

Σ (X). So
ΘK,A(φ,ψ) ≤ ΘK,A(X) and, therefore, θ ≤ ΘK,A(X). Conversely, for all
Σ ∈ ∣Sign∣ and all ⟨φ,ψ⟩ ∈ XΣ, we have ⟨φ,ψ⟩ ∈ ΘK,A

Σ (φ,ψ) ⊆ θΣ. Hence,
X ≤ θ, which implies that ΘK,A(X) ≤ θ. ∎

2.5 Varieties of F-Algebraic Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.
An natural F-equation (sometimes, referred to, simply, as natural

equation, F-equation or just equation, if the meaning is made clear from
context) is a pair ⟨σ♭, τ ♭⟩, where σ♭, τ ♭ ∶ (SEN♭)k → SEN♭ are natural trans-
formations in N ♭. The F-equation ⟨σ♭, τ ♭⟩ will be denoted also by σ♭ ≈ τ ♭.
Sometimes notation such as τ ♭ ∶= τ 0 ♭ ≈ τ 1 ♭ may also become handy. We
denote by NEq(F) the collection of all natural F-equations.

Let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system.
Then, given Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ), we write A ⊧Σ σ♭ ≈ τ ♭[φ⃗] and say
that φ⃗ Σ-satisfies σ♭ ≈ τ ♭ in A if

αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗)).
The following is a useful lemma concerning satisfiability of an equation.

Lemma 36 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, σ♭ ≈ τ ♭ a
natural F-equation and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. The following
statements are equivalent:
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(a) A ⊧Σ σ♭ ≈ τ ♭[φ⃗];
(b) σA

F (Σ)
(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗));

(c) For all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′),
αΣ′(σ♭Σ′(SEN♭(f)(φ⃗))) = αΣ′(τ ♭Σ′(SEN♭(f)(φ⃗))).

Proof:

(a)⇔(b) By the homomorphism property,

αΣ(σ♭Σ(φ⃗)) = σAF (Σ)(αΣ(φ⃗)) and αΣ(τ ♭Σ(φ⃗)) = τAF (Σ)(αΣ(φ⃗)).
So we get

A ⊧Σ σ♭ ≈ τ ♭[φ⃗] iff αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗))
iff σA

F (Σ)
(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗)).

(c)⇒(a) This implication is trivial by taking Σ′ = Σ and f = iΣ.

(b)⇒(c) We have

σA
F (Σ)
(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗))

implies αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗))
implies, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN(F (f))(αΣ(σ♭Σ(φ⃗))) = SEN(F (f))(αΣ(τ ♭Σ(φ⃗)))
implies, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(σ♭Σ(φ⃗))) = αΣ′(SEN♭(f)(τ ♭Σ(φ⃗)))
implies, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(σ♭Σ′(SEN♭(f)(φ⃗))) = αΣ′(τ ♭Σ′(SEN♭(f)(φ⃗))).
∎

Given a natural F-equation σ♭ ≈ τ ♭ and an F-algebraic system A =⟨A, ⟨F,α⟩⟩ we write
A ⊧ σ♭ ≈ τ ♭

and say that A satisfies σ♭ ≈ τ ♭ or that σ♭ ≈ τ ♭ is satisfied in A or is valid
in A, if, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), A ⊧Σ σ♭ ≈ τ ♭[φ⃗].

Let K be a class of F-algebraic systems and E♭ a set of natural F-
equations. We write K ⊧ E♭ for

A ⊧ σ♭ ≈ τ ♭, for all A ∈ K and all σ♭ ≈ τ ♭ ∈ E♭.

Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we define the kernel Ker(A)
of A to be the kernel of the morphism ⟨F,α⟩ ∶ F →A, i.e., we let

Ker(A) ∶= Ker(⟨F,α⟩).
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Moreover, given a class K of F-algebraic systems, we let

Ker(K) = ⋂
A∈K

Ker(A).
Now we are in a position to define two kinds of classes of F-algebraic systems
generated by a given class K of F-algebraic systems. In other words, we
introduce two class operators on classes of F-algebraic systems.

Definition 37 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K

be a class of F-algebraic systems.

• The semantic variety VSem(K) generated by K is defined by

VSem(K) = {A ∈ AlgSys(F) ∶ Ker(K) ≤ Ker(A)};
• The syntactic variety VSyn(K) generated by K is defined by

VSyn(K) = {A ∈ AlgSys(F) ∶ (∀σ♭ ≈ τ ♭)(K ⊧ σ♭ ≈ τ ♭ ⇒ A ⊧ σ♭ ≈ τ ♭)}.
It is relatively easy to see that both VSem and VSyn are closure operators

on the class of F-algebraic systems.

Proposition 38 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Then
VSem and VSyn are closure operators on AlgSys(F).
Proof: We work, first, with VSem.

• If A ∈ K, then, by definition, we have Ker(K) ≤ Ker(A). Thus, A ∈
VSem(K). So K ⊆ VSem(K).

• Suppose K ⊆ L and A ∈ VSem(K). Then we have

Ker(L) ≤ Ker(K) ≤ Ker(A).
So A ∈ VSem(L). Hence, if K ⊆ L then VSem(K) ⊆ VSem(L).

• Finally, suppose A ∈ VSem(VSem(K)). Then Ker(VSem(K)) ≤ Ker(A).
But, note that, for all B ∈ VSem(K), we have Ker(K) ≤ Ker(B), whence
Ker(K) ≤ Ker(VSem(K)). Combining the two inclusions, we get

Ker(K) ≤ Ker(VSem(K)) ≤ Ker(A).
Thus, A ∈ VSem(K). We conclude that VSem(VSem(K)) ⊆ VSem(K).
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We work, next, with VSyn. Consider the two mappings

NEq ∶ P(AlgSys(F)) → P(NEq(F)),
NMod ∶ P(NEq(F))→ P(AlgSys(F)),

defined by

NEq(K) = {σ♭ ≈ τ ♭ ∈ NEq(F) ∶ K ⊧ σ♭ ≈ τ ♭}, K ⊆ AlgSys(F);
NMod(E) = {A ∈ AlgSys(F) ∶ A ⊧ E}, E ⊆ NEq(F).

It is not difficult to see that NEq and NMod form a Galois connection. Thus,
VSyn = NMod ○NEq is a closure operator on AlgSys(F). ∎

We prove that the semantic variety is always included in the syntactic
variety generated by the same class of F-algebraic systems.

Theorem 39 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a
class of F-algebraic systems. Then

VSem(K) ⊆ VSyn(K).
Proof: Suppose that A ∈ VSem(K). Let σ♭ ≈ τ ♭ be a natural F-equation, such
that K ⊧ σ♭ ≈ τ ♭. We must show that A ⊧ σ♭ ≈ τ ♭. To this end, let Σ ∈ ∣Sign♭∣
and φ⃗ ∈ SEN♭(Σ). Since K ⊧ σ♭ ≈ τ ♭, we have, for all K = ⟨K, ⟨K,κ⟩⟩ ∈ K,

κΣ(σ♭Σ(φ⃗)) = κΣ(τ ♭Σ(φ⃗)).
This means that ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ KerΣ(K). Since this holds for all K ∈ K,

we conclude that ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ KerΣ(K). But, by hypothesis, Ker(K) ≤
Ker(A). Therefore, we get ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ KerΣ(A). This means that

αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗)).
Since Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ) were arbitrary, we get that A ⊧ σ♭ ≈ τ ♭.
Now we conclude that A ∈ VSyn(K). Thus, VSem(K) ⊆ VSyn(K). ∎

Now we look at some sufficient conditions that ensure that these two
variety operators generate the same class of F-algebraic systems. However,
the terminology, methodology and work presented in the rest of the section
have proven very useful in many contexts and can be used to reconcile results
that hold in more restricted contexts with partial analogs that hold in this
very abstract setting.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and consider a
cardinal κ (which will usually be taken to be either finite or ω). A source
signature κ-variable pair (ssvκ for short) ⟨V, v⃗⟩ consists of a signature
V ∈ ∣Sign♭∣ and a vector v⃗ ∈ SEN♭(V )κ, satisfying the following conditions:
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1. For all Σ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ)κ, there exists f⟨Σ,φ⃗⟩ ∈ Sign♭(V,Σ), such
that

SEN♭(f⟨Σ,φ⃗⟩)(v⃗) = φ⃗;

2. For all Σ,Σ′ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ)κ and f ∈ Sign♭(Σ,Σ′),
V

✠�
�
�
�f⟨Σ,φ⃗⟩

❅
❅
❅
❅

f⟨Σ′,SEN♭(f)(φ⃗)⟩

❘

Σ
f

✲ Σ′

f ○ f⟨Σ,φ⃗⟩ = f⟨Σ′,SEN♭(f)(φ⃗)⟩.

An algebraic system F is called κ-term if it has an ssvκ. The morphisms
f⟨Σ,φ⃗⟩ ∶ V → Σ are referred to as the ssvκ maps.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. We say that F
has κ-variables if, for all Σ ∈ ∣Sign♭∣, there exists v⃗Σ ∈ SEN♭(Σ)κ, such that⟨Σ, v⃗Σ⟩ is an ssvκ, with ssvκ maps f⟨Σ,Σ′,φ⃗⟩ ∶ Σ → Σ′, for all Σ,Σ′ ∈ ∣Sign♭∣
and φ⃗ ∈ SEN♭(Σ′)κ. The algebraic system F is called κ-formulaic if it has
κ-variables.

It follows, according to the preceding definitions, that F is κ-formulaic,
with Σ-κ-variables v⃗Σ and ssvκ maps f⟨Σ,Σ′,φ⃗⟩ if:

• For all Σ,Σ′ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ′)κ,
f⟨Σ,Σ′,φ⃗⟩(v⃗Σ) = φ⃗;

• For all Σ,Σ′,Σ′′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ′,Σ′′) and all φ⃗ ∈ SEN♭(Σ′)κ,
Σ

✠�
�
�
�f⟨Σ,Σ′,φ⃗⟩

❅
❅
❅
❅

f⟨Σ,Σ′′,SEN♭(f)(φ⃗)⟩

❘

Σ′
f

✲ Σ′′

f ○ f⟨Σ,Σ′,φ⃗⟩ = f⟨Σ,Σ′′,SEN♭(f)(φ⃗)⟩.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a κ-formulaic algebraic system, with κ-
variables v⃗Σ, Σ ∈ ∣Sign♭∣. F will be called κ-transformational (modulo
the given κ-variables) if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), there
exists σ⟨Σ,φ⟩ ∶ (SEN♭)κ → SEN♭, such that:

• σ⟨Σ,φ⟩ depends on only finitely may variables;
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• φ = σ⟨Σ,φ⟩Σ (v⃗Σ).
We have the following relation now that serves, so to speak, in bridging

the gap between the semantical and syntactical definitions of varieties of
algebraic systems.

Lemma 40 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a transformational algebraic sys-
tem and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Then, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ KerΣ(A) iff A ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩.

Proof: Suppose, first, that A ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. This means that, for all
Σ′ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ′),

αΣ′(σ⟨Σ,φ⟩Σ′ (φ⃗)) = αΣ′(σ⟨Σ,ψ⟩Σ′ (φ⃗)).
Taking Σ′ = Σ and φ⃗ = v⃗Σ, we get αΣ(σ⟨Σ,φ⟩Σ (v⃗Σ)) = αΣ(σ⟨Σ,ψ⟩Σ (v⃗Σ)), or, what
amounts to the same, αΣ(φ) = αΣ(ψ). Hence, ⟨φ,ψ⟩ ∈ KerΣ(A).

Suppose, conversely, that ⟨φ,ψ⟩ ∈ KerΣ(A). This means that αΣ(φ) =
αΣ(ψ). Since F is assumed to be transformational, there exist σ⟨Σ,φ⟩ and

σ⟨Σ,ψ⟩ in N ♭, such that σ
⟨Σ,φ⟩
Σ (v⃗Σ) = φ and σ

⟨Σ,ψ⟩
Σ (v⃗Σ) = ψ. Thus, we get

αΣ(σ⟨Σ,φ⟩Σ (v⃗Σ)) = αΣ(σ⟨Σ,ψ⟩Σ (v⃗Σ)).
Now, by formulaicity, for all Σ′ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ′), we get an ssvκ

map f⟨Σ,Σ′,φ⃗⟩ ∶ Σ → Σ′, for which we have

SEN(F (f⟨Σ,Σ′,φ⃗⟩))(αΣ(σ⟨Σ,φ⟩Σ (v⃗Σ))) = SEN(F (f⟨Σ,Σ′,φ⃗⟩))(αΣ(σ⟨Σ,ψ⟩Σ (v⃗Σ))).
Hence, since α is a natural transformation,

αΣ′(SEN♭(f⟨Σ,Σ′,φ⃗⟩)(σ⟨Σ,φ⟩Σ (v⃗Σ))) = αΣ′(SEN♭(f⟨Σ,Σ′,φ⃗⟩)(σ⟨Σ,ψ⟩Σ (v⃗Σ))).
And since σ⟨Σ,φ⟩, σ⟨Σ,ψ⟩ are also natural transformations, we get

αΣ′(σ⟨Σ,φ⟩Σ′ (SEN♭(f⟨Σ,Σ′,φ⃗⟩)(v⃗Σ))) = αΣ′(σ⟨Σ,ψ⟩Σ′ (SEN♭(f⟨Σ,Σ′,φ⃗⟩)(v⃗Σ))).
Finally, by the κ-variable property, we get

αΣ′(σ⟨Σ,φ⟩Σ′ (φ⃗)) = αΣ′(σ⟨Σ,ψ⟩Σ′ (φ⃗)).
Since Σ′ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ′) were arbitrary, we conclude that A ⊧
σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. ∎

Now we are in a position to prove that, for algebraic systems over transfor-
mational base algebraic systems, the semantic and syntactic variety operators
coincide.
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Theorem 41 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a transformational algebraic sys-
tem and K a class of F-algebraic systems. Then

VSem(K) = VSyn(K).
Proof: By Theorem 39, VSem(K) ⊆ VSyn(K) always holds. For the reverse
inclusion, suppose that A ∈ VSyn(K). We must show that A ∈ VSem(K), i.e.,
that Ker(K) ≤ Ker(A). To this end, let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that ⟨φ,ψ⟩ ∈ KerΣ(K). Then, by Lemma 40, K ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. Since
A ∈ VSyn(K), we get that A ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. Using Lemma 40 again, we infer
that ⟨φ,ψ⟩ ∈ KerΣ(A). Thus, Ker(K) ≤ Ker(A). Hence, A ∈ VSem(K). ∎

2.6 π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A closure (operator)
system on F is a collection C = {CΣ}Σ∈∣Sign♭∣, such that

CΣ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ))
is a closure operator on SEN♭(Σ), for all Σ ∈ ∣Sign♭∣, and, moreover, for all
Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), and all Φ ⊆ SEN♭(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN♭(f)(Φ)).
This condition is often referred to as structurality.

A π-institution is a pair I = ⟨F,C⟩, where F = ⟨Sign♭,SEN♭,N ♭⟩ is
an algebraic system and C is a closure system on F. We say that the π-
institution I is based on the algebraic system F. The following assumption
is adopted throughout our treatise, unless explicitly stated otherwise:

Global Assumption: If, for some Σ ∈ ∣Sign♭∣, CΣ(∅) ≠ ∅,

then, for all Σ ∈ ∣Sign♭∣, CΣ(∅) ≠ ∅.
(2.1)

The set of Σ-theorems, denoted ThmΣ(I), is defined by

ThmΣ(I) = CΣ(∅).
We then set Thm(I) = {ThmΣ(I)}Σ∈∣Sign∣. We denote by ∅ the ∣Sign♭∣-
indexed collection ∅ = {∅}Σ∈∣Sign♭∣. The Global Assumption (2.1), adopted
above, says that, if a π-institution has Σ-theorems, for some signature Σ,
then it has Σ-theorems, for every signature Σ.

A natural theorem of I is a natural transformation

⊺♭ ∶ (SEN♭)k → SEN♭
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in N ♭, for some k ≥ 0, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,
⊺♭Σ(φ⃗) ∈ ThmΣ(I).

That is, a natural theorem of I is a natural transformation in N ♭ all of whose
values are theorems. We denote by NThm(I) the collection of all natural
theorems of a π-institution I .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution, based on F, and Σ ∈ ∣Sign♭∣. A subset TΣ ⊆ SEN♭(Σ) is called a
Σ-theory if

CΣ(TΣ) = TΣ.
We use ThΣ(I) to denote the collection of all Σ-theories of the π-institution
I . A theory family of I is a sentence family T = {TΣ}Σ∈∣Sign♭∣ of F, such

that TΣ ∈ ThΣ(I), for all Σ ∈ ∣Sign♭∣. The collection of all theory families of
I will be denoted by ThFam(I). Ordered by signature-wise inclusion ≤, it
forms a complete lattice, denoted ThFam(I) = ⟨ThFam(I),≤⟩.

A theory family of I is called a theory system of I if it is a sentence
system, i.e., if it is invariant under signature morphisms. We denote by
ThSys(I), the collection of all theory systems of I . This collection forms
a complete sublattice ThSys(I) = ⟨ThSys(I),≤⟩ of the complete lattice
ThFam(I).

Note that the minimum element of both ThFam(I) and ThSys(I) is
Thm(I), the theorem system of I , and the maximum element is

SEN♭ = {SEN♭(Σ)}Σ∈∣Sign♭∣.
Thus, SEN♭ is used to denote both the sentence functor of the base algebraic
system F of the π-institution I = ⟨F,C⟩ and the maximum theory family
(system) SEN♭ = {SEN♭(Σ)}Σ∈∣Sign♭∣ of I . This overloading will not, hopefully,
cause any confusion, since the context can be used to clarify the meaning.

Proposition 42 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =
⟨F,C⟩ be a π-institution and T ∈ ThFam(I). Then

←Ð
T is the largest the-

ory system of I included in T .

Proof: Since, by Proposition 2,
←Ð
T is the largest sentence system included in

T , it suffices to show that
←Ð
T is a theory system. To this end, let Σ ∈ ∣Sign♭∣

and φ ∈ SEN♭(Σ), such that φ ∈ CΣ(←ÐT Σ). We must show that φ ∈
←Ð
T Σ. So let

Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then we have

SEN♭(f)(φ) ∈ SEN(f)(CΣ(←ÐT Σ)) (hypothesis)

⊆ CΣ′(SEN(f)(←ÐT Σ)) (structurality)

⊆ CΣ′(TΣ′) (definition of
←Ð
T )

= TΣ′ (T ∈ ThFam(I)).
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We now conclude, by the definition of
←Ð
T , that φ ∈

←Ð
T Σ. ∎

On the negative side, it is not true, in general, that, given a theory family

T of a π-institution I , the least sentence system
Ð→
T , containing T , is a theory

system. We show that this is the case via an example.

Example 43 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ consists of two signatures Σ and Σ′ and the only (non-identity)
morphism is f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign → Set is defined by setting

SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ consists of only the projection natural transformations.

Consider the closure system C on F defined by setting

CΣ = {∅,{0},{1},{0,1}} and CΣ′ = {∅,{a, b}}
and let I = ⟨F,C⟩ be the associated π-institution.

Finally, take T = {TΣ, TΣ′} ∈ ThFam(I) to be the theory family specified
by

TΣ = {1} and TΣ′ = ∅.

Then we have Ð→
T Σ = {1} and

Ð→
T Σ′ = {b}.

Since clearly

CΣ′(Ð→T Σ′) = CΣ′({b}) = {a, b} ≠ Ð→T Σ′ ,

it follows that
Ð→
T is not a theory system of I.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define two operators

C ∶ SenFam(F) → ThFam(I);
Ð→
C ∶ SenFam(F) → ThSys(I);

as follows. Consider a sentence family T ∈ SenFam(F).
• C(T ) = {C(T )Σ}Σ∈∣Sign♭∣ is defined by setting, for all Σ ∈ ∣Sign♭∣,

C(T )Σ = CΣ(TΣ);
•
Ð→
C (T ) = {Ð→C (T )Σ}Σ∈∣Sign♭∣ is defined by setting, for all Σ ∈ ∣Sign♭∣,

Ð→
C (T )Σ = CΣ(Ð→T Σ).

It is clear that C(T ) is the smallest theory family of I containing T . We

show in the next proposition that
Ð→
C (T ) is the smallest theory system of I

that contains the sentence family T . Note that this implies, in particular,

that
Ð→
C (T ) is the smallest theory system of I that contains a given theory

family T of I . Note, also, that
Ð→
C (T ) = C(Ð→T ) should not be confused with

ÐÐÐ→
C(T ), which, as shown in Example 43, may not be a theory family of I .

Proposition 44 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =
⟨F,C⟩ a π-institution, based on F, and T ∈ SenFam(F). Then

Ð→
C (T ) is

the smallest theory system of I that includes T .

Proof: It is clear by the definition that
Ð→
C (T ) = C(Ð→T ) ∈ ThFam(I). We

show that it is a theory system. To this end, let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),
such that φ ∈ CΣ(Ð→T Σ). Consider Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then we
have

SEN♭(f)(φ) ∈ SEN♭(f)(CΣ(Ð→T Σ)) (definition of
Ð→
C (T ))

⊆ CΣ′(SEN♭(f)(Ð→T Σ)) (structurality)

⊆ CΣ′(Ð→T Σ′) (definition of
Ð→
T )

=
Ð→
C (T )Σ′ (definition of

Ð→
C (T )).

It remains to show that C(Ð→T ) is the smallest theory system containing T .
To this end, let T ′ ∈ ThSys(I), such that T ≤ T ′. Since, by Proposition

2,
Ð→
T is the least sentence system containing T , we get

Ð→
T ≤ T ′. Therefore,

since C(Ð→T ) is the least theory family containing
Ð→
T , C(Ð→T ) ≤ T ′. Thus, we

conclude that
Ð→
C (T ) = C(Ð→T ) ≤ T ′ and

Ð→
C (T ) is the least theory system of I

that includes T . ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. We say that I is:
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• inconsistent if ThFam(I) = {SEN♭}, i.e., if, for all Σ ∈ ∣Sign♭∣,
CΣ(∅) = SEN♭(Σ);

• almost inconsistent if

ThFam(I) = {T ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ = ∅ or TΣ = SEN♭(Σ))};
• trivial if it is either inconsistent or almost inconsistent.

Lemma 45 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩
be a π-institution based on F. I is trivial if and only if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ), ψ ∈ CΣ(φ).
Proof: Suppose, first, that I is trivial and let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN(Σ).
Since φ ∈ CΣ(φ), we have CΣ(φ) ≠ ∅, which implies that CΣ(φ) = SEN♭(Σ).
Therefore, ψ ∈ CΣ(φ).

Suppose, conversely, that the given condition holds. Let T ∈ ThFam(I)
and Σ ∈ ∣Sign♭∣, such that TΣ ≠ ∅. Then, there exists φ ∈ SEN♭(Σ), such that
φ ∈ TΣ. But then, by hypothesis, for all ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(φ) ⊆ CΣ(TΣ) = TΣ.
Therefore, we get that, for all Σ ∈ ∣Sign♭∣, TΣ = ∅ or TΣ = SEN♭(Σ), showing
that T is almost inconsistent. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. We can order π-
institutions based on F by comparing their closure systems. Let I = ⟨F,C⟩
and I ′ = ⟨F,C ′⟩ two π-institutions based on F. We say that I ′ is an exten-
sion of I and that I is weaker than I ′, written I ≤ I ′ (or C ≤ C ′) if, for
all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),

CΣ(Φ) ⊆ C ′Σ(Φ).
Given a collection I i = ⟨F,C i⟩, i ∈ I, of π-institutions based on the same
algebraic system F, the intersection ⋂i∈I I i = ⟨F,⋂i∈I C i⟩ is defined by
setting, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),

(⋂
i∈I

C i)Σ(Φ) = ⋂
i∈I

C i
Σ(Φ).

It can be shown that ⋂i∈I C i is a closure system on F and that it forms the
meet with respect to the ≤ order of the closure systems C i, i ∈ I, on F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution. Given a theory system T ∈ ThSys(I), we define the family
CT = {CT

Σ}Σ∈∣Sign♭∣ of operators CT
Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)) by setting,

for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),
CT

Σ(Φ) = CΣ(TΣ ∪Φ).
We show that CT is a closure system on F.
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Proposition 46 Let I = ⟨F,C⟩ be a π-institution and T ∈ ThSys(I). Then
CT is a closure system on F.

Proof: We must first show that CT
Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)) is a

closure operator. That it is inflationary and monotone follows directly from
the corresponding properties of CΣ. To see that it is idempotent, let Φ ⊆
SEN♭(Σ). Then

CT
Σ(CT

Σ(Φ)) = CΣ(TΣ ∪CΣ(TΣ ∪Φ)) (by definition)
= CΣ(CΣ(TΣ ∪Φ)) (since TΣ ⊆ CΣ(TΣ ∪Φ))
= CΣ(TΣ ∪Φ) (idempotency of C)
= CT

Σ(Φ) (by definition).

Finally, we must show that CT is structural. To this end, let Σ,Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and Φ ⊆ SEN♭(Σ). We have

SEN♭(f)(CT
Σ(Φ)) = SEN♭(f)(CΣ(TΣ ∪Φ)) (by definition)

⊆ CΣ′(SEN♭(f)(TΣ) ∪ SEN♭(f)(Φ))
(by the structurality of C)

⊆ CΣ′(TΣ′ ∪ SEN♭(f)(Φ)) (T ∈ ThSys(I))
= CT

Σ′(SEN♭(f)(Φ)) (by definition).

We conclude that CT = {CT
Σ}Σ∈∣Sign♭∣ is a closure system on F. ∎

Since CT is a closure system on F, we get, by definition, that the structure⟨F,CT ⟩ is a π-institution. We use the notation IT = ⟨F,CT ⟩ to denote this
π-institution.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be
a π-institution based on F. An I-logical morphism (or simply logical
morphism if I is clear from context) is a morphism ⟨F,α⟩ ∶ F → F, such
that, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),

αΣ(CΣ(Φ)) ⊆ CF (Σ)(αΣ(Φ)).
More generally, let F = ⟨Sign,SEN,N⟩ and F′ = ⟨Sign′,SEN′,N ′⟩ be

two algebraic systems and I = ⟨F,C⟩ and I ′ = ⟨F′,C ′⟩ be π-institutions
based on F and F′, respectively. A logical morphism ⟨F,α⟩ ∶ I → I ′ is an
algebraic system morphism ⟨F,α⟩ ∶ F → F′, such that, for all Σ ∈ ∣Sign∣ and
all Φ ⊆ SEN(Σ),

αΣ(CΣ(Φ)) ⊆ CF (Σ)(αΣ(Φ)).
The following lemma characterizes logical morphisms:

Lemma 47 Let F = ⟨Sign,SEN,N⟩, F′ = ⟨Sign′,SEN′,N ′⟩ be two algebraic
systems and I = ⟨F,C⟩, I ′ = ⟨F′,C ′⟩ be π-institutions, based on F, F′, re-
spectively. Suppose ⟨F,α⟩ ∶ F → F is an algebraic system morphism. Then
the following conditions are equivalent:
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(a) ⟨F,α⟩ ∶ I → I ′ is a logical morphism;

(b) For all Σ ∈ ∣Sign∣ and all Ψ ⊆ SEN′(F (Σ)),
CΣ(α−1Σ (Ψ)) ≤ α−1Σ (C ′F (Σ)(Ψ));

(c) For all T ′ ∈ ThFam(I ′), α−1(T ′) ∈ ThFam(I).
Proof:

(a)⇒(b) Let Σ ∈ ∣Sign∣ and Ψ ⊆ SEN′(F (Σ)). Then, we have

αΣ(CΣ(α−1Σ (Ψ))) ⊆ CF (Σ)(αΣ(α−1Σ (Ψ))) (hypothesis)
⊆ CF (Σ)(Ψ). (set theory)

We conclude that CΣ(α−1Σ (Ψ)) ⊆ α−1Σ (CF (Σ)(Ψ)).
(b)⇒(c) Suppose that T ′ ∈ ThFam(I ′). Then we have

C(α−1(T ′)) ≤ α−1(C ′(T ′)) (hypothesis)
= α−1(T ′). (T ′ ∈ ThFam(I ′))

Therefore, α−1(T ′) ∈ ThFam(I).
(c)⇒(a) Let Σ ∈ ∣Sign∣ and Φ ⊆ SEN(Σ). Then, we have, for all T ∈ ThFam(I ′),

αΣ(Φ) ⊆ TF (Σ) iff Φ ⊆ α−1Σ (TF (Σ)) (set theory)
implies CΣ(Φ) ⊆ α−1Σ (TF (Σ)) (hypothesis)

iff αΣ(CΣ(Φ)) ⊆ TF (Σ). (set theory)

Since T ∈ ThFam(I ′) was arbitrary, we get that

αΣ(CΣ(Φ)) ⊆ C ′F (Σ)(αΣ(Φ)).
So ⟨F,α⟩ is a logical morphism.

∎

In the special case of I-logical morphisms, we obtain the following

Corollary 48 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I =⟨F,C⟩ a π-institution, based on F, and ⟨F,α⟩ ∶ F → F an algebraic system
morphism. Then ⟨F,α⟩ is an I-logical morphism if and only if, for all T ∈
ThFam(I), α−1(T ) ∈ ThFam(I).
Proof: Directly from Lemma 47. ∎
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2.7 Matrix Families and Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. An F-matrix fam-
ily is a pair A = ⟨A, T ⟩, where A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system
and T ∈ SenFam(A). The collection of all F-matrix families is denoted by
MatFam(F). An F-matrix system is an F-matrix family A = ⟨A, T ⟩, such
that T ∈ SenSys(A). The collection of all F-matrix systems is denoted by
MatSys(F).

An F-matrix family A = ⟨A, T ⟩ defines a closure system CA = {CA
Σ}Σ∈∣Sign♭∣

on F by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CA

Σ(Φ) if and only if, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) imlpies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).

Let, now, M be a class of F-matrix families. We denote by

CM = {CM
Σ }Σ∈∣Sign♭∣

the closure system on F that is the signature-wise intersection of the closure
systems CA, A ∈M, i.e.,

CM = ⋂
A∈M

CA.

We use the notation IM = ⟨F,CM⟩ to denote the associated π-institution
based on F.

We give a characterization of the closure system CM on F generated by a
class M of matrix families which shows how that closure system is constructed
using the generating matrix families.

Proposition 49 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
class of F-matrix families. Then CM is the least closure system on F con-
taining the family

T = {α−1(T ) ∶ A = ⟨⟨A, ⟨F,α⟩⟩, T ⟩ ∈M}.
Proof: First we show that T ⊆ CM. To this end, let A = ⟨⟨A, ⟨F,α⟩⟩, T ⟩ ∈M.
We must show that α−1(T ) ∈ CM. Suppose Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such
that φ ∈ CM

Σ (α−1Σ (TF (Σ))). Then, by the definition of CM and the fact that
A ∈M, we get

αΣ(α−1Σ (TF (Σ))) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
Note, however, that the antecedent of the displayed implication always holds.
So the consequent αΣ(φ) ∈ TF (Σ) holds. Hence, φ ∈ α−1Σ (TF (Σ)). Therefore,
CM(α−1(T )) ≤ α−1(T ), showing that α−1(T ) ∈ CM.

Next, we show that, if C is a closure system on F, such that T ⊆ C,
then CM ⊆ C. Equivalently, it suffices to show that C ≤ CM. To this end,
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let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ). Since C is a
closure system on F, we get, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
SEN♭(f)(φ) ∈ CΣ′(SEN♭(f)(Φ)). Thus, since T ⊆ C, we get, for all ⟨A, T ⟩ ∈
M, with A = ⟨A, ⟨F,α⟩⟩,

SEN♭(f)(Φ) ⊆ α−1Σ′ (TF (Σ′)) implies SEN♭(f)(φ) ∈ α−1Σ′ (TF (Σ′)),
i.e., for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).
Hence, for all A = ⟨A, T ⟩ ∈ M, φ ∈ CA

Σ(Φ). We conclude that φ ∈ CM
Σ (Φ).

Therefore, C ≤ CM, as was to be shown. ∎

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩
be a π-institution based on F. Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system,
with A = ⟨Sign,SEN,N⟩. A sentence family T ∈ SenFam(A) is called an
I-filter family and the F-matrix family A = ⟨A, T ⟩ an I-matrix family if

C ≤ CA.

If T happens to be a sentence system, then we refer to T as an I-filter
system and to A = ⟨A, T ⟩ as an I-matrix system.

We have the following simpler characterization of I-filter families, which
follows from the structurality of the closure system of a π-institution.

Lemma 50 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a
π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system, with A =⟨Sign,SEN,N⟩, and T ∈ SenFam(A). T is an I-filter family if and only if,
for every Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ),

αΣ(Φ) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
Proof: Suppose, first, that T is an I-filter family and let Σ ∈ ∣Sign♭∣, Φ∪{φ} ⊆
SEN♭(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). Since T is an I-filter
family, C ≤ C⟨A,T ⟩. Therefore, by taking in the definition of C⟨A,C⟩, Σ′ = Σ
and f ∶ Σ → Σ to be the identity morphism, we get that αΣ(φ) ∈ TF (Σ).

Suppose, conversely, that the given condition holds and let Σ ∈ ∣Sign♭∣,
Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ). Consider Σ′ ∈ ∣Sign♭∣, f ∈
Sign♭(Σ,Σ′), such that αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′). Note, that, by struc-
turality, SEN♭(f)(φ) ∈ CΣ′(SEN♭(f)(Φ)). Therefore, by the assumption and
the hypothesis, αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′). We conclude that T is an I-filter
family. ∎

The next lemma shows that the inverse image under an interpretation of
an I-filter family or system is a theory family or system, respectively, of I .
Moreover this property also characterizes I-filter families/systems.
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Lemma 51 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be
a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system.

(a) T ∈ FiFamI(A) if and only if α−1(T ) ∈ ThFam(I);
(b) T ∈ FiSysI(A) if and only if α−1(T ) ∈ ThSys(I).

Proof:

(a) Suppose, first, that T ∈ FiFamI(A). We must show that α−1(T ) ∈
ThFam(I). To this end, suppose Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such
that φ ∈ CΣ(α−1Σ (TF (Σ)). Since T ∈ FiFamI(A), we have, by definition,

αΣ(α−1Σ (TF (Σ))) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
But the hypothesis of this implication holds, whence the conclusion is
also true and we get αΣ(φ) ∈ TF (Σ) or, equivalently, φ ∈ α−1Σ (TF (Σ)).
Thus α−1(T ) ∈ ThFam(I).
Suppose, conversely, that α−1(T ) ∈ ThFam(I). To show that T ∈
FiFamI(A), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈
CΣ(Φ), and assume that αΣ(Φ) ⊆ TF (Σ). Then, we have Φ ⊆ α−1Σ (TF (Σ)).
Since φ ∈ CΣ(Φ) and α−1(T ) ∈ ThFam(I), we get that φ ∈ α−1Σ (TF (Σ))
or, equivalently, αΣ(φ) ∈ TF (Σ). This proves, by Lemma 50, that

T ∈ FiFamI(A).
(b) This follows from Part (a) and from Part (a) of Lemma 6.

∎

We denote by FiFamI(A) and by MatFam(I), respectively, the collection
of all I-filter families on A and the collection of all I-matrix families. Note
that FiFamI(A) is a complete lattice FiFamI(A) = ⟨FiFamI(A),≤⟩, with
the order ≤ inherited by the corresponding order on sentence families.

Similarly, we denote by FiSysI(A) and by MatSys(I), respectively, the
collection of all I-filter systems on A and the collection of all I-matrix sys-
tems. Note that FiSysI(A) forms a complete lattice

FiSysI(A) = ⟨FiSysI(A),≤⟩,
which is a complete sublattice of the complete lattice FiFamI(A).

Moreover, given a F-matrix family A = ⟨A, T ⟩, we say that T ′ is a sen-
tence family of A, written T ′ ∈ SenFam(A), if T ≤ T ′. Similarly, given
an I-matrix family A = ⟨A, T ⟩, we say that T ′ ∈ FiFamI(A) is an I-filter
family of A, written T ′ ∈ FiFamI(A), if T ≤ T ′.

Since FiFamI(A) and FiSysI(A) are both complete lattices, it makes
sense to define associated closure operators on SenFam(A).
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• Denote by CI,A ∶ SenFam(I) → FiFamI(A) the operator that maps
a given sentence family T of A to the least I-filter family of A that
includes T ;

• Denote by
Ð→
C
I,A

∶ SenFam(A) → FiSysI(A) the operator that maps a
given sentence family T of A to the least I-theory system of A that
includes T .

We look now at some relations between the pairs of operators CI,A, C

on the one hand, and
Ð→
C
I,A

,
Ð→
C on the other, established via the inverse

interpretation α−1 of the F-algebraic system A = ⟨A, ⟨F,α⟩⟩.
Proposition 52 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic
system. Then, for all T ∈ SenFam(A), we have:

(a) C(α−1(T )) ≤ α−1(CI,A(T ));
(b)
Ð→
C (α−1(T )) ≤ α−1(Ð→C I,A(T )).

Proof:

(a) Suppose T ∈ SenFam(A). We have T ≤ CI,A(T ), whence α−1(T ) ≤
α−1(CI,A(T )). By Lemma 51, α−1(CI,A(T )) is a theory family of I
and it includes α−1(T ). Therefore, by the definition of C, C(α−1(T )) ≤
α−1(CI,A(T )).

(b) We have T ≤
Ð→
C
I,A(T ). Therefore, since, by Proposition 2,

Ð→
T is the

least sentence system containing T , we get
Ð→
T ≤
Ð→
C
I,A(T ). Now, taking

into account Lemma 6, we get
ÐÐÐÐ→
α−1(T ) = α−1(Ð→T ) ≤ α−1(Ð→C I,A(T )). By

Lemma 51, α−1(Ð→C I,A(T )) is a theory system of I including
ÐÐÐÐ→
α−1(T ) and,

therefore, C(ÐÐÐÐ→α−1(T )) ≤ α−1(Ð→C I,A(T )), i.e.,
Ð→
C (α−1(T )) ≤ α−1(Ð→C I,A(T )).

∎

We now exhibit a relation between the closure operators CI,A and
Ð→
C
I,A

and the arrow operators, as applied to I-filter families on an F-algebraic
system A.

Proposition 53 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system,
with A = ⟨Sign,SEN,N⟩. Consider T ∈ SenFam(A). Then, we have:

(a) If T ∈ FiFamI(A), then
←Ð
T ∈ FiSysI(A) and it is the largest I-filter

system on A included in T ;
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(b)
Ð→
C
I,A(T ) =Ð→C I,A(Ð→T ).

Proof:

(a) By Proposition 2, we know that
←Ð
T is a sentence system of A and that

it is the largest one included in T . It suffices, thus, to show that
←Ð
T is

an I-filter system. To this end, let Σ ∈ ∣Sign♭∣ and Φ∪ {φ} ⊆ SEN♭(Σ),
such that

φ ∈ CΣ(Φ) and αΣ(Φ) ⊆←ÐT F (Σ).

Then, by definition of
←Ð
T , we get that, for all Σ′ ∈ ∣Sign♭∣ and all

f ∈ Sign♭(Σ,Σ′), SEN(F (f))(αΣ(Φ)) ⊆ TF (Σ′). Since α is a natu-

ral transformation, αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′). Since T ∈ FiFamI(A)
and φ ∈ CΣ(Φ), we get that αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′). Therefore,
SEN(F (f))(αΣ(φ)) ∈ TF (Σ′). Now, noting that this holds for all f ∈

Sign♭(Σ,Σ′) and that F is surjective, we conclude that αΣ(φ) ∈←ÐT F (Σ).

Therefore, we get that
←Ð
T ∈ FiSysI(A).

(b) The inclusion from left to right is clear, since T ≤
Ð→
T . On the other

hand, since, by Proposition 2,
Ð→
T is the least sentence system including

T , we have that every I-filter system including T , also includes
Ð→
T .

Therefore,

Ð→
C
I,A(T ) = ⋂{T ′ ∈ FiSysI(A) ∶ T ≤ T ′}

= ⋂{T ′ ∈ FiSysI(A) ∶Ð→T ≤ T ′}
=
Ð→
C
I,A(Ð→T ).

∎

We extend the definition of logical morphism to morphisms between F-
algebraic systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. An I-logical morphism is a morphism

⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′,

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

such that ⟨G,γ⟩ ∶ F → F is an I-logical morphism ⟨G,γ⟩ ∶ I → I .
Next, we prove a result relating I-filter families/systems on algebraic

systems related by morphisms. This result generalizes Lemma 51.
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Proposition 54 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Consider two F-algebraic systems A =⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩ and a logical morphism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶
A→ A′.

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

(a) If T ∈ FiFamI(A′), then δ−1(T ) ∈ FiFamI(A);
(b) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ is surjective and δ−1(T ) ∈ FiFamI(A), then

T ∈ FiFamI(A′);
(c) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ is surjective, with G,H isomorphisms and

T ∈ FiFamI(A) is such that δ−1(δ(T )) = T , then δ(T ) ∈ ThFamI(A′).
Proof:

(a) Let T ∈ FiFamI(A′). Then, by Lemma 51, α′−1(T ) ∈ ThFam(I). Thus,
by Corollary 48, γ−1(α′−1(T )) ∈ ThFam(I). Therefore, by the com-
mutativity of the rectangle, α−1(δ−1(T )) ∈ ThFam(I). So, again by
Lemma 51, we get that δ−1(T ) ∈ FiFamI(A).

(b) Because of the surjectivity of ⟨G,γ⟩ and Lemma 50, it suffices to show
that, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ),
we have

α′G(Σ)(γΣ(Φ)) ⊆ TF ′(G(Σ)) implies α′G(Σ)(γΣ(φ)) ∈ TF ′(G(Σ)).
We have the following:

α′
G(Σ)
(γΣ(Φ)) ⊆ TF ′(G(Σ))

⇒ δF (Σ)(αΣ(Φ)) ⊆ TH(F (Σ))
⇒ αΣ(Φ) ⊆ δ−1F (Σ)(TH(F (Σ)))
⇒ αΣ(φ) ∈ δ−1F (Σ)(TH(F (Σ)))
⇒ δF (Σ)(αΣ(φ)) ∈ TH(F (Σ′))
⇒ α′

G(Σ)
(γΣ(φ)) ∈ TF ′(G(Σ)).

(c) As in Part (b) because of the surjectivity of ⟨G,γ⟩ and Lemma 50, it
suffices to show that for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ), such
that φ ∈ CΣ(Φ), we have

α′G(Σ)(γΣ(Φ)) ⊆ δF (Σ)(TF (Σ)) implies α′G(Σ)(γΣ(φ)) ∈ δF (Σ)(TF (Σ)).
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We have
α′
G(Σ)
(γΣ(Φ)) ⊆ δF (Σ)(TF (Σ))

⇒ δF (Σ)(αΣ(Φ)) ⊆ δF (Σ)(TF (Σ))
⇒ αΣ(Φ) ⊆ δ−1F (Σ)(δF (Σ)(TF (Σ))) = TF (Σ)
⇒ αΣ(φ) ∈ δ−1F (Σ)(δF (Σ)(TF (Σ)))
⇒ δF (Σ)(αΣ(φ)) ∈ δF (Σ)(TF (Σ))
⇒ α′

G(Σ)
(γΣ(φ)) ∈ δF (Σ)(TF (Σ)).

∎

This proposition has the following significant consequences.

Corollary 55 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ and A′ =⟨A′, ⟨F ′, α′⟩⟩ be two F-algebraic systems and ⟨H,δ⟩ ∶ A → A′ a (surjective)
morphism (making the following diagram commute):

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F ′, α′⟩
❘

A ⟨H,δ⟩ ✲ A′

Consider T ∈ SenFam(A′).
(a) T ∈ FiFamI(A′) iff δ−1(T ) ∈ FiFamI(A);
(b) T ∈ FiSysI(A′) iff δ−1(T ) ∈ FiSysI(A).

Proof: Follows immediately from Proposition 54 upon considering the com-
mutative square,

F
⟨I, ι⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

where ⟨I, ι⟩ ∶ F→ F is the identity morphism. ∎

Corollary 56 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ and A′ =
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⟨A′, ⟨F ′, α′⟩⟩ be two F-algebraic systems and ⟨H,δ⟩ ∶ A → A′ a morphism,
with H an isomorphism:

F

✠�
�
�⟨F,α⟩ ❅

❅
❅

⟨F ′, α′⟩
❘

A ⟨H,δ⟩ ✲ A′

Suppose T ∈ SenFam(A) and Ker(⟨H,δ⟩) is compatible with T .

(a) T ∈ FiFamI(A) iff δ(T ) ∈ FiFamI(A′);
(b) T ∈ FiSysI(A) iff δ(T ) ∈ FiSysI(A′).

Proof: First we show that δ−1(δ(T )) = T : The right to left inclusion is
obvious. For the left to right inclusion, consider Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ),
such that φ ∈ δ−1Σ (δΣ(TΣ)). Then, we have δΣ(φ) ∈ δΣ(TΣ). Thus, there exists
ψ ∈ TΣ, such that δΣ(φ) = δΣ(ψ). By hypothesis, Ker(⟨H,δ⟩) is compatible
with T . Therefore, φ ∈ TΣ. Thus, we get δ−1(δ(T )) ≤ T .

Now the conclusion follows from Proposition 54, since δ−1(δ(T )) = T . ∎

Corollary 57 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ be an F-
algebraic system and θ ∈ ConSys(A). Consider T ∈ SenFam(Aθ).

(a) T ∈ FiFamI(Aθ) iff πθ
−1(T ) ∈ FiFamI(A);

(b) T ∈ FiSysI(Aθ) iff πθ
−1(T ) ∈ FiSysI(A).

On the other hand, if T ∈ SenFam(A) and θ is compatible with T , then we
have:

(c) T ∈ FiFamI(A) iff πθ(T ) ∈ FiFamI(Aθ);
(d) T ∈ FiSysI(A) iff πθ(T ) ∈ FiSysI(Aθ).

Proof: Parts (a) and (b) follow immediately from Corollary 55 upon con-
sidering the commutative diagram

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F,πθ ○ α⟩
❘

A ⟨I, πθ⟩ ✲ Aθ
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Parts (c) and (d) follow from Corollary 56 upon noticing that I ∶ Sign → Sign
is an isomorphism and that, by hypothesis, Ker(⟨I, πθ⟩) = θ is compatible
with T . ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be
a π-institution based on F. Consider two I-matrix families A = ⟨A, T ⟩
and A′ = ⟨A′, T ′⟩, where A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩. A mor-
phism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′, is called a matrix family morphism⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′ if, for all Σ ∈ ∣Sign∣,

δΣ(TΣ) ⊆ T ′H(Σ).
This matrix family morphism is said to be strict if, for all Σ ∈ ∣Sign∣,

δΣ(TΣ) ⊆ T ′H(Σ) and δΣ(SEN(Σ)/TΣ) ⊆ SEN′(H(Σ))/T ′H(Σ).
These conditions can be equivalently expressed by saying that, for all Σ ∈∣Sign∣,

δ−1Σ (T ′H(Σ)) = TΣ.
They are also equivalent to the statement that, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

φ ∈ TΣ if and only if δΣ(φ) ∈ T ′H(Σ).
We have the following result relating strict morphisms between matrix

families with strict morphisms between matrix families based on F .

Lemma 58 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be
a π-institution, based on F, A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩ be two
F-algebraic systems and A = ⟨A, T ⟩ and A′ = ⟨A′, T ′⟩ two I-matrix families.
A matrix morphism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

is strict if and only if ⟨G,γ⟩ ∶ ⟨F , α−1(T )⟩ → ⟨F , α′−1(T ′)⟩ is strict.

Proof: The statement follows by noticing that

δ−1(T ′) = T iff α−1(δ−1(T ′)) = α−1(T ) (by the surjectivity of ⟨F,α⟩)
iff γ−1(α′−1(T ′)) = α−1(T )

(by the commutativity of the square).
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Therefore ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′ is strict if and only if ⟨G,γ⟩ ∶ ⟨F , α−1(T )⟩ →⟨F , α′−1(T ′)⟩ is strict. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Given an F-matrix family A = ⟨A, T ⟩, the Leibniz
reduction of A, denoted A∗, is defined as

A∗ = ⟨A∗, T ∗⟩ = ⟨AΩA(T ), T /ΩA(T )⟩,
where AΩA(T ) is the quotient F-algebraic system of A by the congruence
system ΩA(T ) and T /ΩA(T ) = {TΣ/ΩAΣ(T )}Σ∈∣Sign∣, with

TΣ/ΩAΣ(T ) = {φ/ΩAΣ(T ) ∶ φ ∈ TΣ}.
An I-matrix family A = ⟨A, T ⟩ is Leibniz reduced if

ΩA(T ) = ∆A.

An F-algebraic system A is Leibniz reduced if it is the algebraic system
reduct of a Leibniz reduced I-matrix family.

We denote:

• the class of all Leibniz reduced I-matrix families by MatFam∗(I);
• the class of all Leibniz reduced I-matrix systems by MatSys∗(I);
• the class of all reduced F-algebraic systems by AlgSys∗(I);
• the class of all system reduced F-algebraic systems by AlgSys●(I);

i.e., we have:

MatFam∗(I) = {⟨A, T ⟩ ∶ T ∈ FiFamI(A) and ΩA(T ) = ∆A};
MatSys∗(I) = {⟨A, T ⟩ ∶ T ∈ FiSysI(A) and ΩA(T ) =∆A};
AlgSys∗(I) = {A ∶ (∃T ∈ FiFamI(A))(ΩA(T ) = ∆A)};
AlgSys●(I) = {A ∶ (∃T ∈ FiSysI(A))(ΩA(T ) =∆A)}.

2.8 Axiomatic and Filter Extensions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
an F-matrix family A = ⟨A, T ⟩, we set

FiFamI(A) = {T ′ ∈ FiFamI(A) ∶ T ≤ T ′}.
FiFamI(A) is a complete sublattice of FiFamI(A) and we have T ∈ FiFamI(A)
if and only if T ∈ FiFamI(A). We call A′ = ⟨A, T ′⟩ a filter extension of
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A if T ′ ∈ FiFamI(A). Sometimes, by slightly abusing notation, we write
A′ ∈ FiFamI(A) in this case.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩, I ′ =⟨F,C ′⟩ be two π-institutions based on F. I ′ is an axiomatic extension (or
axiomatic strengthening) of I if there exists X ∈ SenSys(F), such that,
for all Φ ∈ SenFam(F),

C ′(Φ) = C(X ∪Φ).
If this is the case, X is said to be a system of axioms witnessing the
extension.

We provide now a characterization of axiomatic extensions.

Lemma 59 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩,
I ′ = ⟨F,C ′⟩ be two π-institutions based on F. I ′ is an axiomatic extension
of I if and only if, for all Φ ∈ SenFam(F),

C ′(Φ) = C(Thm(I ′) ∪Φ).
Proof: Assume, first, that I ′ is an axiomatic extension of I , with witnessing
system of axioms X . Then, we have Thm(I ′) = C ′(∅) = C(X ∪ ∅) = C(X).
Therefore, for all Φ ∈ SenFam(F),

C ′(Φ) = C(X ∪Φ) = C(C(X) ∪Φ) = C(Thm(I ′) ∪Φ).
Assume conversely, that, for all Φ ∈ SenFam(F), C ′(Φ) = C(Thm(I ′) ∪ Φ).
Then X = Thm(I ′) is a system of axioms witnessing the fact that I ′ is an
axiomatic extension of I . ∎

We also have the following characterization in terms of I- and I ′-filter
families and corresponding theory families.

Proposition 60 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩, I ′ = ⟨F,C ′⟩ be two π-institutions based on F. The following state-
ments are equivalent:

(i) I ′ is an axiomatic extension of I;

(ii) For all A ∈MatFam(I ′), FiFamI(A) = FiFamI
′(A);

(iii) For all T ′ ∈ ThFam(I ′) and T ′ ≤ T ∈ SenFam(F),
T ∈ ThFam(I) if and only if T ∈ ThFam(I ′).

Proof:
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(i)⇒(ii) Suppose that I ′ is an axiomatic extension of I and let A = ⟨A, T ′⟩ ∈
MatFam(I ′). Since C ≤ C ′, we have FiFamI

′(A) ⊆ FiFamI(A). So
suppose that T ′′ ∈ FiFamI(A), i.e., T ′ ≤ T ′′ ∈ FiFamI(A). Let Σ ∈∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ C ′Σ(Φ) and αΣ(Φ) ⊆ T ′′F (Σ).
Since φ ∈ C ′Σ(Φ), by Lemma 59, φ ∈ CΣ(ThmΣ(I ′) ∪Φ). Now observe

that αΣ(ThmΣ(I ′)) ⊆ T ′F (Σ) ⊆ T ′′F (Σ), since T ′ ∈ FiFamI
′(A). Thus, we

get
αΣ(ThmΣ(I ′) ∪Φ)) ⊆ T ′′F (Σ).

Hence, since T ′′ ∈ FiFamI(A), we get that αΣ(φ) ∈ T ′′F (Σ). So T ′′ ∈

FiFamI
′(A). And, since T ′ ≤ T ′′, T ′′ ∈ FiFamI

′(A).
(ii)⇒(iii) Let A = ⟨F , T ′⟩ ∈ MatFam(I ′). Then, by hypothesis, for all T ′ ≤ T ,

we have ⟨F , T ⟩ ∈ MatFamI(A) iff ⟨F , T ⟩ ∈ MatFamI
′(A), i.e., T ∈

ThFam(I) iff T ∈ ThFam(I ′).
(iii)⇒(i) First, note that (iii) implies that ThFam(I ′) ⊆ ThFam(I) and, there-

fore, C ≤ C ′. We use this to show that, for all X ∈ SenFam(F),
C ′(X) = C(Thm(I ′) ∪X).

From left to right, note that Thm(I ′) ⊆ C(Thm(I ′)) ⊆ C(Thm(I ′) ∪
X). So, by hypothesis, C(Thm(I ′) ∪X) ∈ ThFam(I ′). Thus, we get

C ′(X) ⊆ C ′(C(Thm(I ′) ∪X)) = C(Thm(I ′) ∪X).
On the other hand, C(Thm(I ′) ∪X) ⊆ C ′(Thm(I ′) ∪X) = C ′(X).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and A =⟨A, T ⟩ ∈MatFam(I). Define, for all Φ ∈ SenFam(A),

CI,A(Φ) = CI,A(T ∪Φ).
CI,A(Φ) is the I-filter family of A generated by Φ.

We have, for all Φ ∈ SenFam(A), T ≤ CI,A(Φ). In the special case where
A = F and A = F = ⟨F , T ⟩ ∈MatFam(I), we get, for all Φ ∈ SenFam(F),

CF(Φ) = C(T ∪Φ).
The following proposition gives many properties governing filter family

generation and the interaction with surjective morphisms between I-matrix
families.

Proposition 61 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, T ⟩, A′ = ⟨A′, T ′⟩ be F-matrix
families, ⟨H,γ⟩ ∶ A → A′ a surjective morphism and X ∈ FiFamI(A), Y,Y ′ ∈
FiFamI(A′).
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(a) γ−1(Y ) ∈ FiFamI(A);
(b) If H is an isomorphism, CI,A

′(γ(X)) ∈ FiFamI(A′);
(c) If H is an isomorphism, CI,A

′(γ(γ−1(Y ))) = γ(γ−1(Y )) = Y ;

(d) If H is an isomorphism, γ−1(CI,A′(γ(X))) = γ−1(γ(X)) = X if and
only if γ−1(T ′) ≤X and Ker(⟨H,γ⟩) is compatible with X;

(e) γ−1(Y ∩ Y ′) = γ−1(Y ) ∩ γ−1(Y ′);
(f) If H is an isomorphism, for all Φ ∈ SenFam(A), CI,A′(γ(CI,A(Φ))) =

CI,A
′(γ(Φ)).

Proof:

(a) We know, by Corollary 55, that γ−1(Y ) ∈ FiFamI(A). In addition,
T ≤ γ−1(T ′) ≤ γ−1(Y ). So we get γ−1(Y ) ∈ FiFamI(A).

(b) It is obvious that CI,A
′(γ(X)) ∈ FiFamI(A′). Moreover, by definition,

T ′ ≤ CI,A′(γ(X)). So, we get CI,A
′(γ(X)) ∈ FiFamI(A′).

(c) We have

CI,A
′(γ(γ−1(Y ))) = CI,A

′(Y ) (⟨H,γ⟩ surjective)

= Y. (Y ∈ FiFamI(A′))
(d) Assume, first, that γ−1(CI,A′(γ(X))) = γ−1(γ(X)) = X . Then, by

surjectivity of ⟨H,γ⟩, CI,A′(γ(X)) = γ(X). This implies that T ′ ≤
γ(X), whence γ−1(T ′) ≤X . To show compatibility, suppose Σ ∈ ∣Sign∣,
φ,ψ ∈ SEN(Σ), such that γΣ(φ) = γΣ(ψ) and φ ∈XΣ. Then, we have

ψ ∈ γ−1Σ (γΣ(φ)) ⊆ γ−1Σ (γΣ(XΣ)) = XΣ.

So Ker(⟨H,γ⟩) is compatible with X .

Assume, conversely, that γ−1(T ′) ≤X and that Ker(⟨H,γ⟩) is compat-
ible with X . Then, by compatibility, γ−1(γ(X)) = X ∈ FiFamI(A).
Thus, by Corollary 55, γ(X) ∈ FiFamI(A′). But we also have T ′ ≤
γ(X), whence γ(X) ∈ FiFamI(A′). Now we get γ−1(CI,A′(γ(X))) =
γ−1(γ(X)) = X .

(e) This follows from set theory.

(f) Let Φ ∈ SenFam(A). Clearly, CI,A
′(γ(Φ)) ≤ CI,A′(γ(CI,A(Φ))), since

CI,A
′(γ(CI,A(Φ))) is an I-filter family of A′ including γ(Φ).
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To show the reverse inclusion, assume Y ∈ FiFamI(A′), such that
γ(Φ) ≤ Y . Then Φ ≤ γ−1(Y ). Thus, CI,A(Φ) ≤ CI,A(γ−1(Y )) = γ−1(Y ),
the equality following by Part (a). Hence, we get

CI,A
′(γ(CI,A(Φ))) ≤ CI,A′(γ(γ−1(Y ))) = CI,A′(Y ) = Y.

Since CI,A
′(γ(CI,A(Φ))) ≤ Y holds, for all Y ∈ FiFamI(A′), such that

γ(Φ) ≤ Y , we get, in particular, CI,A
′(γ(CI,A(Φ))) ≤ CI,A′(γ(Φ)).

∎

2.9 Generalized Matrix Families and Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A generalized F-matrix
family, or F-gmatrix family for short, is a pair A = ⟨A,T ⟩, where A =⟨A, ⟨F,α⟩⟩ is an F-algebraic system and T ⊆ SenFam(A) is a collection of
sentence families of A.

An F-gmatrix family A = ⟨A,T ⟩ is said to be an F-gmatrix system if
T ⊆ SenSys(A).

Given an F-gmatrix family A = ⟨A,T ⟩, the Tarski congruence system
of A (or of T on A), denoted Ω̃(A) or Ω̃A(T ), is the largest congruence
system on A that is compatible with all sentence families in T .

Lemma 62 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then, for all
F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and all T ⊆ SenFam(A),

Ω̃A(T ) = ⋂
T ∈T

ΩA(T ).
Proof: Note that, by definition, Ω̃A(T ) is compatible with every T ∈ T .
Therefore, since ΩA(T ) is the largest congruence system on A compatible
with T , we get that

Ω̃A(T ) ≤ ΩA(T ), for all T ∈ T .

Thus, Ω̃A(T ) ≤ ⋂T ∈T ΩA(T ).
For the reverse inclusion, note that ⋂T ∈T ΩA(T ) is a congruence system

on A that is compatible with every T ∈ T . Therefore, since Ω̃A(T ) is the
largest such congruence system, we get that ⋂T ∈T ΩA(T ) ≤ Ω̃A(T ). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. An F-gmatrix family A = ⟨A,T ⟩ is called a general-
ized I-matrix family, or I-gmatrix family for short, if T ⊆ FiFamI(A).

We have a special notation for the Tarski congruence systems, when ap-
plied and/or relativized to the collection of all I-filter families:

Ω̃A(I) ∶= Ω̃A(FiFamI(A)).
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Recall that F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F→ F is the identity morphism. We
set

Ω̃(I) ∶= Ω̃F(I) = Ω̃F(ThFam(I)).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-

institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Given
an F-gmatrix family A = ⟨A,T ⟩, the Tarski reduction of A, denoted A∗, is
defined as

A
∗ = ⟨A∗,T ∗⟩ = ⟨AΩ̃A(T ),T /Ω̃A(T )⟩,

where AΩ̃A(T ) is the quotient F-algebraic system of A by the Tarski congru-
ence system Ω̃A(T ) and

T /Ω̃A(T ) = {T /Ω̃A(T ) ∶ T ∈ T },
with T /Ω̃A(T ) = {TΣ/Ω̃AΣ(T )}Σ∈∣Sign∣ such that, for all Σ ∈ ∣Sign∣,

TΣ/Ω̃AΣ(T ) = {φ/Ω̃AΣ(T ) ∶ φ ∈ TΣ}.
An F-gmatrix family A = ⟨A,T ⟩ is Tarski reduced if Ω̃A(T ) = ∆A. An
F-algebraic system A is Tarski reduced if it is the algebraic system reduct
of a Tarski reduced F-gmatrix family.

We denote:

• the class of all Tarski reduced I-gmatrix families by GMatFam∗(I);
• the corresponding class of all Tarski reduced F-algebraic systems by

AlgSys(I),
i.e., we have:

GMatFam∗(I) = {⟨A,T ⟩ ∶ T ⊆ FiFamI(A) and Ω̃A(T ) = ∆A};
AlgSys(I) = {A ∶ (∃T ⊆ FiFamI(A))(Ω̃A(T ) = ∆A)}.

Consider again an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, an F-algebraic
system A and T ⊆ SenFam(A). The Suszko congruence system of T ∈ T
(relative to T ), denoted by Ω̃A,T (T ), is the largest congruence system on
A that is compatible with all T ′ ∈ T , such that T ≤ T ′.

Lemma 63 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then, for all
F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, all T ⊆ SenFam(A) and all T ∈ T ,

Ω̃A,T (T ) = ⋂
T≤T ′∈T

ΩA(T ′).
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Proof: The proof is similar to that of Lemma 62. ∎

We note also the following relation between the Suszko congruence system
of T relative to T and the Tarski congruence system of T T = {T ′ ∈ T ∶ T ≤ T ′}:

Ω̃A,T (T ) = Ω̃A(T T ).
We also have some special notations reserved for the Suszko congruence

systems, when applied and/or relativized to ThFam(I) and to all I-filter
families.

Ω̃I(T ) ∶= Ω̃F ,ThFam(I)(T ), for all T ∈ ThFam(I);
Ω̃I,A(T ) ∶= Ω̃A,FiFam

I(A)(T ), for all T ∈ FiFamI(A).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-

institution based on F. Given an I-matrix family A = ⟨A, T ⟩, the Suszko
reduction of A, denoted ASu, is defined as

ASu = ⟨ASu, T Su⟩ = ⟨AΩ̃I,A(T ), T /Ω̃I,A(T )⟩,
where AΩ̃I,A(T ) is the quotient F-algebraic system of A by the Suszko con-
gruence system Ω̃I,A(T ) and T /Ω̃I,A(T ) = {TΣ/Ω̃I,AΣ (T )}Σ∈∣Sign∣, with

TΣ/Ω̃I,AΣ (T ) = {φ/Ω̃I,AΣ (T ) ∶ φ ∈ TΣ}.
An I-matrix family A = ⟨A, T ⟩ is Suszko reduced if Ω̃I,A(T ) = ∆A. An
F-algebraic system A is Suszko reduced if it is the algebraic system reduct
of a Suszko reduced I-matrix family.

It turns out that, relative to a given π-institution I = ⟨F,C⟩, the classes
of Tarski reduced F-algebraic systems and of Suszko reduced F-algebraic
systems coincide.

Proposition 64 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. A is Suszko reduced if and only if A ∈ AlgSys(I).
Proof: Suppose, first, that A is a Suszko reduced F-algebraic system. Then,
there exists T ∈ FiFamI(A), such that Ω̃I,A(T ) =∆A. But then we have

Ω̃A(FiFamI(A)) ⊆ Ω̃I,A(T ) =∆A.

Hence ⟨A,FiFamI(A)⟩ ∈ GMatFam∗(I) and, consequently, A ∈ AlgSys(I).
Suppose, conversely, that A ∈ AlgSys(I). Thus, by definition, there exists

T ⊆ FiFamI(A), such that Ω̃A(T ) =∆A. Now we get

Ω̃I,A(⋂T ) = Ω̃A({T ∈ FiFamI(A) ∶ ⋂T ≤ T})
≤ Ω̃A(T ) =∆A.
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Since ⋂T ∈ FiFamI(A), we get that ⟨A,⋂T ⟩ ∈ MatFamSu(I) and, conse-
quently, A is Suszko reduced. ∎

We let MatFamSu(I) be the class of all Suszko reduced I-matrix families,
i.e., we have

MatFamSu(I) = {⟨A, T ⟩ ∶ T ∈ FiFamI(A) and Ω̃I,A(T ) =∆A},
whereas, because of Proposition 64, there is no reason for introducing fresh
notation for the class of all Suszko reduced F-algebraic systems, that class
being AlgSys(I).

2.10 The Algebraic Systems of a π-Institution

We have introduced in Sections 2.7 and 2.9 two of the most important classes
of F-algebraic systems associated to a π-institution I = ⟨F,C⟩, namely, the
classes AlgSys∗(I) and AlgSys(I). In this section, we introduce two more
classes and consider some of the relationships that hold between them.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The semantic variety of I is the semantic variety
generated by the algebraic system F/Ω̃(I), i.e., the class

VSem(I) ∶= VSem(F/Ω̃(I))
= {A ∈ AlgSys(F) ∶ Ω̃(I) ≤ Ker(A)}.

The syntactic variety of I is the syntactic variety generated by F/Ω̃(I),
i.e., the class defined by

VSyn(I) ∶= VSyn(F/Ω̃(I))
= {A ∈ AlgSys(F) ∶ (∀σ♭ ≈ τ ♭ ∈ NEq(F))

(F/Ω̃(I) ⊧ σ♭ ≈ τ ♭ ⇒ A ⊧ σ♭ ≈ τ ♭)}.
We can say a few things about the relationships governing the four classes

of F-algebraic systems associated with a given π-institution I = ⟨F,C⟩.
Proposition 65 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then we have

AlgSys∗(I) ⊆ AlgSys(I) ⊆ VSem(I) ⊆ VSyn(I).
Proof: Suppose, first, that A ∈ AlgSys∗(I). Then there exists an I-filter
family T ∈ FiFamI(A), such that ΩA(T ) =∆A. Hence, we get

Ω̃A(FiFamI(A)) ≤ ΩA(T ) =∆A.

It follows that A ∈ AlgSys(I).
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Suppose, next, that A ∈ AlgSys(I). Thus, there exists T ⊆ FiFamI(A),
such that Ω̃A(T ) = ∆A. This implies that Ω̃A(FiFamI(A)) ≤ Ω̃A(T ) = ∆A,
i.e., that Ω̃A(FiFamI(A)) =∆A. Applying the inverse of the surjective mor-
phism ⟨F,α⟩, we get α−1(Ω̃A(FiFamI(A)) = α−1(∆A) = Ker(A). Therefore,
we obtain

Ω̃(I) = ⋂T ∈ThFam(I)Ω(T ) (by Lemma 62)
≤ ⋂T ∈FiFamI(A)Ω(α−1(T )) (by Lemma 51)

= ⋂T ∈FiFamI(A) α−1(ΩA(T )) (by Proposition 24)

= α−1(⋂T ∈FiFamI(A)ΩA(T )) (set theory))

= α−1(Ω̃A(FiFamI(A))) (by Lemma 62)
= Ker(A). (as shown above)

Hence A ∈ VSem(I).
The last inclusion follows from Theorem 39. ∎

Finally, it can be shown that all four classes generate the same syntactic
variety. We first prove a technical lemma that simplifies some algebraic
computations.

Lemma 66 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system, θ ∈ ConSys(A)
and σ♭ ≈ τ ♭ an F-equation. Then

A/θ ⊧ σ♭ ≈ τ ♭ iff for all Σ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ),
⟨αΣ(σ♭Σ(φ⃗)), αΣ(τ ♭Σ(φ⃗))⟩ ∈ θF (Σ).

Proof: We have, by definition, A/θ ⊧ σ♭ ≈ τ ♭ iff, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

αθΣ(σ♭Σ(φ⃗)) = αθΣ(τ ♭Σ(φ⃗))
iff, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

αΣ(σ♭Σ(φ⃗))/θF (Σ) = αΣ(τ ♭Σ(φ⃗))/θF (Σ)
iff, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

⟨αΣ(σ♭Σ(φ⃗)), αΣ(τ ♭Σ(φ⃗))⟩ ∈ θF (Σ).
∎

Theorem 67 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

VSyn(AlgSys∗(I)) = VSyn(AlgSys(I)) = VSyn(VSem(I)) = VSyn(I).
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Proof: By Propositions 65 and 38, we have

VSyn(AlgSys∗(I)) ⊆ VSyn(AlgSys(I)) ⊆ VSyn(VSem(I)) ⊆ VSyn(I).
To conclude the proof we need to show that

VSyn(I) ⊆ VSyn(AlgSys∗(I)).
To this end, suppose A ∈ VSyn(I), i.e., that, for every natural F-equation
σ♭ ≈ τ ♭,

F/Ω̃(I) ⊧ σ♭ ≈ τ ♭ implies A ⊧ σ♭ ≈ τ ♭.

To show that A ∈ VSyn(AlgSys∗(I)), suppose that σ♭ ≈ τ ♭ is an F-equation,
such that AlgSys∗(I) ⊧ σ♭ ≈ τ ♭. In particular, for all T ∈ ThFam(I), we have
that F/Ω(T ) ⊧ σ♭ ≈ τ ♭. This means, by Lemma 66, that, for all Σ ∈ ∣Sign♭∣
and all φ⃗ ∈ SEN♭(Σ), ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ ΩΣ(T ). Since this holds for all T ∈
ThFam(I), we get that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ ⋂
T ∈ThFam(I)

ΩΣ(T ) = Ω̃Σ(I).
Thus, again by Lemma 66, F/Ω̃(I) ⊧ σ♭ ≈ τ ♭. Therefore, by hypothesis,
A ⊧ σ♭ ≈ τ ♭. We conclude that A ∈ VSyn(AlgSys∗(I)) and, hence, VSyn(I) ⊆
VSyn(AlgSys∗(I)). ∎

We close this section by showing that, given a π-institution I , the class
of Tarski reduced algebraic systems AlgSys(I) is closed under the operator
⊲

IΠ and contains a trivial F-algebraic system and, therefore, by Proposition
28, it makes sense, for every F-algebraic system A, to consider the relative
congruence system ΘAlgSys(I),A(X) on A generated by a relation family X ∈
RelFam(A).
Proposition 68 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The class of F-algebraic systems AlgSys(I)
is closed under subdirect intersections and contains a trivial F-algebraic sys-
tem.

Proof: It is clear that AlgSys(I) contains a trivial F-algebraic system A,
since ∆A = ∇A is the only congruence system on A. So it suffices to show
that AlgSys(I) is closed under subdirect intersections. To this end, let

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

be a subdirect intersection, with Ai ∈ AlgSys(I), for all i ∈ I. Thus, by
definition, we have, on the one hand, that

⋂
i∈I

Ker(⟨H i, γi⟩) =∆A,



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 143

and on the other, that, for all i ∈ I, there exists T i ⊆ FiFamI(Ai), such that

Ω̃A
i(T i) =∆A

i

.

Now we obtain

Ω̃A(FiFamI(A)) ≤ Ω̃A(⋃i∈I(γi)−1(FiFamI(Ai)))
= ⋂i∈I Ω̃A((γi)−1(FiFamI(Ai)))
= ⋂i∈I(γi)−1(Ω̃Ai(FiFamI(Ai)))
≤ ⋂i∈I(γi)−1(Ω̃Ai(T i))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A.

Therefore, A ∈ AlgSys(I), showing that
⊲

IΠ(AlgSys(I)) ⊆ AlgSys(I). ∎

Based on Proposition 68 and Proposition 28, we define, for every F-
algebraic system A, and all X ∈ RelFam(A),

ΘI,A(X) ∶= ΘAlgSys(I),A(X).

2.11 Frege Relations

Let SEN ∶ Sign → Set be a sentence functor and T ∈ SenFam(SEN). We
define:

• The Frege relation system Λ(T ) = {ΛΣ(T )}Σ∈∣Sign∣ of T on SEN by
setting, for all Σ ∈ ∣Sign∣,

ΛΣ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
SEN♭(f)(φ) ∈ TΣ′ ⇔ SEN♭(f)(ψ) ∈ TΣ′};

• The Frege relation family λ(T ) = {λΣ(T )}Σ∈∣Sign∣ of T on SEN by
setting, for all Σ ∈ ∣Sign∣,

λΣ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ (φ ∈ TΣ ⇔ ψ ∈ TΣ)}.
It turns out that the Frege relation system of T on SEN is an equivalence

system, the Frege relation family of T on SEN is an equivalence family and
that the former is the largest equivalence system included in the latter.

Proposition 69 Let SEN ∶ Sign → Set be a sentence functor and T ∈
SenFam(SEN).
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(a) Λ(T ) is an equivalence system on SEN;

(b) λ(T ) is an equivalence family on SEN;

(c) Λ(T ) is the largest equivalence system included in λ(T ).
Proof:

(a) That Λ(T ) is an equivalence family, i.e., that, for all Σ ∈ ∣Sign∣, ΛΣ(T )
is an equivalence relation, is straightforward. To see that it is a sys-
tem, i.e., invariant under signature morphisms, let Σ ∈ ∣Sign∣, φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΛΣ(T ), and Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′).
Then, we have, for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

SEN(gf)(φ) ∈ TΣ′′ iff SEN(gf)(ψ) ∈ TΣ′′ , whence, we derive that , for
all g ∈ Sign(Σ′,Σ′′),

SEN(g)(SEN(f)(φ)) ∈ TΣ′′ iff SEN(g)(SEN(f)(ψ)) ∈ TΣ′′ .
This shows that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ TΣ′ . Thus, Λ(T ) is an
equivalence system.

(b) This part is straightforward.

(c) It is clear that Λ(T ) ≤ λ(T ), simply by considering, in the definition of
Λ(T ), the particular case where Σ′ = Σ and f = iΣ ∶ Σ → Σ is the identity
signature morphism. Suppose, next, that θ is an equivalence system,
such that θ ≤ λ(T ). We must show that θ ≤ Λ(T ). To this end, let Σ ∈∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ. Since θ is a system, we get,
for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈
θΣ′ . Hence, since θ ≤ λ(T ), we conclude that SEN(f)(φ) ∈ TΣ′ iff
SEN(f)(ψ) ∈ TΣ′ . Therefore, by definition, ⟨φ,ψ⟩ ∈ ΛΣ(T ). Thus,
θ ≤ Λ(T ) and Λ(T ) is indeed the largest equivalence system included
in λ(T ).

∎

There is also a close relationship between the two Frege equivalence fam-
ilies and the Leibniz congruence system of a sentence family. In case SEN is
the underlying sentence functor of an algebraic system A = ⟨Sign,SEN,N⟩,
we sometimes write ΛA(T ) and λA(T ) for the relation families Λ(T ) and
λ(T ), respectively.

Proposition 70 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ∈
SenFam(A).

(a) ΩA(T ) is the largest congruence system contained in λA(T );
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(b) ΩA(T ) is the largest congruence system contained in ΛA(T ).
Proof:

(a) By definition ΩA(T ) is a congruence system on A. So we must show
that ΩA(T ) ≤ λA(T ) and that, moreover, it is the largest congruence
system that satisfies this inclusion property.

To see that ΩA(T ) ≤ λA(T ), let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such
that ⟨φ,ψ⟩ ∈ ΩA

Σ (T ). Then, by compatibility of ΩA(T ) with T , we get
that, φ ∈ TΣ iff ψ ∈ TΣ. So, by definition ⟨φ,ψ⟩ ∈ λAΣ (T ).
Finally, suppose, that θ ∈ ConSys(A), such that θ ≤ λA(T ). We must
show that θ ≤ ΩA(T ). Since, by definition ΩA(T ) is the largest congru-
ence system compatible with T , it suffices to show that θ is compatible
with T . To this end, let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ. Since θ ≤ λA(T ), we get that ⟨φ,ψ⟩ ∈ λAΣ (T )
and φ ∈ TΣ. By the definition of λA(T ), we conclude that ψ ∈ TΣ.
Therefore, θ is compatible with T and, hence, θ ≤ ΩA(T ).

(b) Since ΩA(T ) is, in particular, an equivalence system, we get, by Part (a)
and Part (c) of Proposition 69, that ΩA(T ) ≤ ΛA(T ). It is the largest
congruence system satisfying this property, since ΛA(T ) ≤ λA(T ) and,
by Part (a), it is the largest congruence system in λA(T ).

∎

Let SEN ∶ Sign → Set be a sentence functor and T ⊆ SenFam(SEN) a
collection of sentence families of SEN. The following relation systems are also
known by the name of Frege in the literature, but we use the name “Carnap”
instead to differentiate the two. In the present context, they have the same
relation with Frege relation systems as Tarski congruence systems have with
Leibniz congruence systems. We define:

• The Carnap relation system Λ̃(T ) = {Λ̃Σ(T )}Σ∈∣Sign∣ of T on SEN,
by

Λ̃(T ) = ⋂
T ∈T

Λ(T ),
where the intersection is taken signature-wise;

• The Carnap relation family λ̃(T ) = {λ̃Σ(T )}Σ∈∣Sign∣ of T on SEN,
by

λ̃(T ) = ⋂
T ∈T

λ(T ),
where the intersection is taken signature-wise.

That is, we have, for all Σ ∈ ∣Sign∣,
Λ̃Σ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all T ∈ T ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ TΣ′ ⇔ SEN(f)(ψ) ∈ TΣ′}
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and, similarly,

λ̃Σ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all T ∈ T ,
φ ∈ TΣ ⇔ ψ ∈ TΣ}

We have analogs of Propositions 69 and 1420 for the case of Λ̃ and λ̃.
The analog of Proposition 69 asserts that Λ̃(T ) is an equivalence system on
SEN, λ̃(T ) is an equivalence family on SEN and that Λ̃(T ) is the largest
equivalence system included in λ̃(T ).
Corollary 71 Let SEN ∶ Sign → Set be a sentence functor and consider
T ⊆ SenFam(SEN).

(a) Λ̃(T ) is an equivalence system on SEN;

(b) λ̃(T ) is an equivalence family on SEN;

(c) Λ̃(T ) is the largest equivalence system on SEN included in λ̃(T ).
Proof:

(a) Since the intersection of equivalence relations is an equivalence relation,
we get, by definition, that Λ̃(T ) is an equivalence family. Moreover,
since the intersection of relation systems is a relation system, we get,
by Proposition 69, that Λ̃(T ) is an equivalence system.

(b) As in Part (a), Part (b) follows from the fact that λ(T ) is an equivalence
family, for all T ∈ T .

(c) By Proposition 69, we get Λ̃(T ) = ⋂T ∈T Λ(T ) ≤ ⋂T ∈T λ(T ) = λ̃(T ). Let,
now, θ be an equivalence system on SEN, such that θ ≤ λ̃(T ). We must
show that θ ≤ Λ̃(T ). By hypothesis, θ ≤ λ(T ), for all T ∈ T . Therefore,
by Proposition 69, θ ≤ Λ(T ), for all T ∈ T . Hence, θ ≤ ⋂T ∈T Λ(T ) =
Λ̃(T ). Thus, Λ̃(T ) is indeed the largest equivalence system included
in λ̃(T ).

∎

Once more, if SEN happens to be the underlying sentence functor of an
algebraic system A = ⟨Sign,SEN,N⟩, we sometimes write Λ̃A(T ) and λ̃A(T )
for Λ̃(T ) and λ̃(T ), respectively.

The analog of Proposition 1420 asserts that both Λ̃A(T ) and λ̃A(T ) are
in the same relation with Ω̃A(T ) as ΛA(T ) and λA(T ) are with ΩA(T ), i.e.,
that the Tarski congruence system of a collection of sentence families is the
largest congruence system included in either the Carnap equivalence system
or the Carnap equivalence family of the collection.

Proposition 72 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ⊆
SenFam(A).
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(a) Ω̃A(T ) is the largest congruence system on A included in λ̃A(T );
(b) Ω̃A(T ) is the largest congruence system on A included in Λ̃A(T ).

Proof:

(a) To see that Ω̃A(T ) ≤ λ̃A(T ), let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ Ω̃A
Σ (T ). Since Ω̃A(T ) is compatible with every T ∈ T , we get

that, for all T ∈ T , φ ∈ TΣ if and only if ψ ∈ TΣ. Thus, ⟨φ,ψ⟩ ∈ λ̃AΣ (T ).
Suppose, next, that θ is a congruence system on A, such that θ ≤
λ̃A(T ). We must show that θ ≤ Ω̃A(T ). For this it suffices to show that
θ is compatible with every T ∈ T . Let T ∈ T , Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ. By hypothesis, ⟨φ,ψ⟩ ∈ λ̃AΣ (T ). By
definition, ⟨φ,ψ⟩ ∈ λAΣ (T ). Therefore, since φ ∈ TΣ we get ψ ∈ TΣ and,
hence, θ is compatible with T .

(b) Since Ω̃A(T ) is an equivalence system and, by Part (a), Ω̃A(T ) ≤
λ̃A(T ), we get, by Corollary 71, Ω̃A(T ) ≤ Λ̃A(T ). Moreover, since, by
Corollary 71, Λ̃A(T ) ≤ λ̃A(T ) and, by Part (a), Ω̃A(T ) is the largest
congruence system in λ̃A(T ), it must also be the largest one in Λ̃A(T ).

∎

Finally, consider a sentence functor SEN ∶ Sign → Set, a collection T
of sentence families of SEN and a sentence family X ∈ T . The following is
sometimes also termed Frege relation family, but, once more, to differentiate
it from the preceding notions, we use the term “Lindenbaum” instead. we
define:

• The Lindenbaum relation system Λ̃T (X) = {Λ̃TΣ(X)}Σ∈∣Sign∣ of X

relative to T by instantiating the definition of Λ̃, given above, to the
collection T X of sentence families in T that include X , i.e.,

Λ̃T (X) ∶= Λ̃(T X) = ⋂{Λ(T ) ∶ T ∈ T ,X ≤ T}.
• The Lindenbaum relation family λ̃T (X) = {λ̃TΣ(X)}Σ∈∣Sign∣ of X

relative to T by instantiating the definition of λ̃ to the collection T X

of sentence families in T that include X , i.e.,

λ̃T (X) ∶= λ̃(T X) = ⋂{λ(T ) ∶ T ∈ T ,X ≤ T}.
Using Corollary 71, we get immediately

Corollary 73 Let SEN ∶ Sign → Set be a sentence functor, T ⊆ SenFam(SEN)
and X ∈ T .

(a) Λ̃T (X) is an equivalence system on SEN;
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(b) λ̃T (X) is an equivalence family on SEN;

(c) Λ̃T (X) is the largest equivalence system on SEN included in λ̃T (X).
Proof: Directly by Corollary 71. ∎

When SEN happens to be the underlying sentence functor of an algebraic
system A = ⟨Sign,SEN,N⟩, we sometimes write Λ̃A,T (X) and λ̃A,T (X) for
the equivalence system Λ̃T (X) and the equivalence family λ̃T (X), respec-
tively. Proposition 72 allows us to derive a relation between the Lindenbaum
equivalence system Λ̃A,T (X) or the Lindenbaum equivalence family λ̃A,T (X)
of a sentence family X relative to the collection T of sentence families and
the Suszko congruence system Ω̃A,T (X) of the family relative to the same
collection.

Corollary 74 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, consider T ⊆
SenFam(A) and X ∈ T .

(a) Ω̃A,T (X) is the largest congruence system on A included in λ̃T (X);
(b) Ω̃A,T (X) is the largest congruence system on A included in Λ̃T (X).

Proof: We apply Proposition 72 to the collection T X . We get that Ω̃A(T X)
is the largest congruence system on A that is included in either λ̃(T X) or
Λ̃(T X). The former is, by definition, equal to Ω̃A,T (X) and the latter ones
to λ̃A,T (X) and Λ̃A,T (X), respectively. So we get the conclusion. ∎

Consider now a π-institution I = ⟨F,C⟩, with F = ⟨Sign♭,SEN♭,N ♭⟩, and
let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. The most common application
of the Carnap operator will be to the collection FiFamI(A) of all I-filter
families and that of the Lindenbaum operator to an I-filter family T of A
relative to FiFamI(A). So we set the following notation:

Λ̃A(I) ∶= Λ̃A(FiFamI(A)) and λ̃A(I) ∶= λ̃A(FiFamI(A)).
Moreover, given T ∈ FiFamI(A), we set

Λ̃I,A(T ) ∶= Λ̃A,FiFam
I(A)(T ) and λ̃I,A(T ) ∶= λ̃A,FiFamI(A)(T ).

When those notions specialize to the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩, the
superscript referring to the algebraic system is often omitted. Thus, we have

Λ̃(I) = Λ̃F(I) and λ̃(I) = λ̃F(I)
and, for T ∈ ThFam(I),

Λ̃I(T ) = Λ̃I,F(T ) and λ̃I(T ) = λ̃I,F(T ).
We have the following characterizations of Lindenbaum equivalence sys-

tems and Lindenbaum equivalence families. We use those to derive charac-
terizations of other relation families/systems as corollaries.
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Theorem 75 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). Then, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

(a) ⟨φ,ψ⟩ ∈ Λ̃I,AΣ (T ) if and only if, for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
C
I,A
Σ′ (TΣ′ ,SEN(f)(φ)) = CI,AΣ′ (TΣ′ ,SEN(f)(ψ));

(b) ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ) if and only if CI,AΣ (TΣ, φ) = CI,AΣ (TΣ, ψ).
In particular, if T ∈ FiSysI(A), then Λ̃I,A(T ) = λ̃I,A(T ).
Proof:

(a) We have, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ Λ̃I,AΣ (T ) iff,
for all T ≤ T ′ ∈ FiFamI(A), all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ T ′Σ′ iff SEN(f)(ψ) ∈ T ′Σ′
iff, for all T ′ ∈ FiFamI(A), all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

TΣ ∪ {SEN(f)(φ)} ⊆ T ′Σ′ iff TΣ ∪ {SEN(f)(ψ)} ⊆ T ′Σ′
iff, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

C
I,A
Σ′ (TΣ,SEN(f)(φ)) = CI,AΣ′ (TΣ,SEN(f)(ψ)).

(b) We have, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ) iff,
for all T ≤ T ′ ∈ FiFamI(A), φ ∈ T ′Σ⇔ ψ ∈ T ′Σ iff, for all T ′ ∈ FiFamI(A),
TΣ ∪ {φ} ⊆ T ′Σ⇔ TΣ ∪ {ψ} ⊆ T ′Σ iff C

I,A
Σ (TΣ, φ) = CI,AΣ (TΣ, ψ).

The last statement follows from Parts (a) and (b) and the structurality prop-
erty of CI,A. ∎

Specializing to the least I-filter family on A, which happens to be a theory
system, we get

Corollary 76 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Then
Λ̃A(I) = λ̃A(I) and, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ λ̃AΣ(I) iff C
I,A
Σ (φ) = CI,AΣ (ψ).

Proof: Directly by Theorem 75, by taking T = CI,A(∅). ∎

Specializing to theory families, we get the following
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Theorem 77 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and T ∈ ThFam(I). Then, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

(a) ⟨φ,ψ⟩ ∈ Λ̃IΣ(T ) if and only if, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
CΣ′(TΣ′ ,SEN♭(f)(φ)) = CΣ′(TΣ′ ,SEN♭(f)(ψ));

(b) ⟨φ,ψ⟩ ∈ λ̃IΣ(T ) if and only if CΣ(TΣ, φ) = CΣ(TΣ, ψ).
In particular, if T ∈ ThSys(I), then Λ̃I(T ) = λ̃I(T ).
Proof: We apply Theorem 75 to the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. ∎

As a corollary, we also get

Corollary 78 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then Λ̃(I) = λ̃(I) and, for all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ λ̃Σ(I) iff CΣ(φ) = CΣ(ψ).

Proof: Apply Theorem 77 to T = Thm(I), which happens to be a theory
system. ∎

We record, finally, a couple of relatively straightforward monotonicity
properties of the Carnap and Lindenbaum operators. The following theorem
refers to collections of filter families and individual filter families and the
subsequent corollary specializes this to theory families.

Theorem 79 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩,
I ′ = ⟨F,C ′⟩ π-institutions based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and T,T ′ ∈ FiFamI(A).

(a) If I ≤ I ′, then Λ̃A(I) ≤ Λ̃A(I ′) and λ̃A(I) ≤ λ̃A(I ′);
(b) If T ≤ T ′, then Λ̃A,I(T ) ≤ Λ̃A,I(T ′) and λ̃A,I(T ) ≤ λ̃A,I(T ′).

Proof:

(a) Since I ≤ I ′, we have FiFamI
′(A) ⊆ FiFamI(A). Hence,

Λ̃A(I) = ⋂{ΛA(X) ∶ X ∈ FiFamI(A)}
≤ ⋂{ΛA(X) ∶ X ∈ FiFamI

′(A)}
= Λ̃A(I ′).

An almost identical reasoning yields the second inclusion.
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(b) Since T ≤ T ′, we get

FiFamI(A)T ′ ⊆ FiFamI(A)T ,
whence we have

Λ̃I,A(T ) = ⋂{ΛA(X) ∶ T ≤ X ∈ FiFamI(A)}
≤ ⋂{ΛA(X) ∶ T ′ ≤X ∈ FiFamI(A)}
= Λ̃I,A(T ′)

and, similarly, λ̃I,A(T ) ≤ λ̃I,A(T ′).
∎

Corollary 80 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩,
I ′ = ⟨F,C ′⟩ π-institutions, based on F, and T,T ′ ∈ ThFam(I).

(a) If I ≤ I ′, then Λ̃(I) ≤ Λ̃(I ′) and λ̃(I) ≤ λ̃(I ′);
(b) If T ≤ T ′, then Λ̃I(T ) ≤ Λ̃I(T ′) and λ̃I(T ) ≤ λ̃I(T ′).

Proof: Apply Theorem 79 to A = F = ⟨F, ⟨I, ι⟩⟩. ∎

In closing, we provide the following table summarizing the correspon-
dences between notions giving rise to congruence systems and notions giving
rise to equivalence families and systems:

T ∈ SenFam(A) T ⊆ SenFam(A) T ∈ T ⊆ SenFam(A)
Congrunece Leibniz Tarski Suszko

Systems ΩA(T ) Ω̃A(T ) Ω̃A,T (T )
Equivalence Fa- Frege Carnap Lindenbaum

milies/Systems ΛA(T ), λA(T ) Λ̃A(T ), λ̃A(T ) Λ̃A,T (T ), λ̃A,T (T )
2.12 Subsystems and π-Subinstitutions

In this section, we look at N ♭-algebraic subsystems. Let F = ⟨Sign♭,SEN♭,
N ♭⟩ be a base algebraic system and let A = ⟨Sign,SEN,N⟩ be an N ♭-
algebraic system. A universe U of A is a sentence system of A that is closed
under the operations in N , i.e., such that, for all σ♭ in N ♭, all Σ ∈ ∣Sign∣ and
all φ⃗ ∈ UΣ,

σΣ(φ⃗) ∈ UΣ.

We denote by Unv(A) the collection of all universes of A.
Given a universe U ∈ Unv(A), we may define a functor SEN′ ∶ Sign →

Set, as follows:

• For all Σ ∈ ∣Sign∣, SEN′(Σ) = UΣ;
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• For all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN′(Σ),
SEN′(f)(φ) = SEN(f)(φ).

Moreover, given a natural transformation σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, we
may define the natural transformation σ′ ∶ SEN′k → SEN′ by setting, for all
Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN′(Σ),

σ′Σ(φ⃗) = σΣ(φ⃗).
In other words σ′ = σ ↾U= σ ↾SEN′ .

We denote by N ′ the category of natural transformations on SEN′ consist-
ing of the restrictions σ′ = σ ↾SEN′ , with the composition operation inherited
by that of N , i.e., such that

σ′ ○ τ ′ = σ ↾SEN′ ○ τ ↾SEN′= (σ ○ τ) ↾SEN′= (σ ○ τ)′.
Finally, we set A′ = ⟨Sign,SEN′,N ′⟩ and call A′ the algebraic subsys-

tem of A on the universe U or on the functor SEN′. We write A′ ≤ A to
signify that A′ is an algebraic subsystem of A.

Note that the pair ⟨I, j⟩ ∶ A′ →A, where I ∶ Sign→ Sign and j ∶ SEN′ →
SEN, defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN′(Σ), by

jΣ(φ) = φ,
becomes a morphism of N ♭-algebraic systems, called the injection mor-
phism of A′ into A.

Now we relate injection morphisms with the construction of the image
algebraic system outlined in Lemma 13.

Proposition 81 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems and ⟨F,α⟩ ∶
A → A′ an algebraic system morphism, with F ∶ Sign → Sign′ an isomor-
phism. Then, we have ⟨F,α⟩ = ⟨I, j⟩ ○ ⟨F,α′⟩,

α(A)

✚
✚
✚
✚
✚⟨F,α′⟩ ❃ ❩

❩
❩
❩
❩

⟨I, j⟩
⑦

A ⟨F,α⟩ ✲ A′

where ⟨F,α′⟩ ∶ A → α(A) is the surjective morphism defined in Lemma 14
and ⟨I, j⟩ ∶ α(A)→A′ is the injection morphism.
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Proof: We have, using the definitions, that, for all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

jF (Σ)(α′Σ(φ)) = jF (Σ)(αΣ(φ)) = αΣ(φ).
This proves the commutativity of the triangle. ∎

We call the decomposition of ⟨F,α⟩ ∶ A → A′ established in Proposition
81, the (natural) epi-mono factorization of ⟨F,α⟩.

Of particular interest are the subuniverses of an algebraic system that are
generated by a given sentence family X of the algebraic system. We detail
this construction here and introduce some relevant notation.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and let A = ⟨Sign,
SEN,N⟩ be an N ♭-algebraic system. Consider a sentence family

X ∈ SenFam(A).
Of course, it is very likely that X is neither a system (i.e., invariant under
signature morphisms) nor closed under the operations in N . But we have
pertinent constructions that can be employed to obtain a closure of X with
respect to those operations.

Recall, first, that, by Proposition 2,
Ð→
X is the least sentence system of A

containing X .
Second, define νA(X) = {νAΣ (X)}Σ∈∣Sign∣, by letting, for all Σ ∈ ∣Sign∣,

νAΣ (X) be given by

νAΣ (X) = {σA
Σ (φ⃗) ∶ σ ∈ N, φ⃗ ∈XΣ}.

We can show that νA(X) is the least sentence family of A containing
X and closed under the operations in N and that, moreover, it happens to
be a sentence system in case X is a sentence system. As a consequence, we

obtain that νA(Ð→X) is the least universe of A including X . These results are
detailed in the following proposition and theorem.

Proposition 82 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and X ∈
SenFam(A).

(a) νA(X) is the least sentence family of A including X and closed under
the operations in N ;

(b) If X ∈ SenSys(A), the νA(X) is also a sentence system.

Proof: Note, first, that, since the identity ι ∶ SEN → SEN is a natural
transformation in N , we have, by definition, that X ≤ νA(X). Suppose,
next, that σ ∶ SENk → SEN is in N , Σ ∈ ∣Sign∣ and φ⃗ ∈ νAΣ (X). Thus, for all
i < k, there exists τ i ∶ SENni → SEN and χ⃗i ∈XΣ, such that

φi = τ iΣ(χ⃗i).
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Let n = n0 + n1 + ⋯ + nk−1 and χ⃗ = ⟨χ⃗0, χ⃗1, . . . , χ⃗k−1⟩ be the vector of length
n resulting from the concatenation of the elements of the χ⃗i’s. Then we get
that

σΣ(φ⃗) = σΣ(τ 0Σ(χ⃗0), . . . , τk−1Σ (χ⃗k−1))
= [σ ○ ⟨τ 0 ○ ⟨pn,0, . . . , pn,n0−1⟩, τ 1 ○ ⟨pn,n0, . . . , pn,n0+n1−1⟩, . . . ,

τk−1 ○ ⟨pn,n0+⋯+nk−1 , . . . , pn,n0+⋯+nk−1⟩⟩](χ⃗).
Since the natural transformation above is in N and χ⃗ ∈ XΣ, we conclude that
σΣ(φ⃗) ∈ νAΣ (X), whence νA(Σ) is closed under the operations in N .

To show minimality, suppose that Y ∈ SenFam(A), such that X ≤ Y and
Y is closed under the operations in N . Consider Σ ∈ ∣Sign∣ and φ ∈ νAΣ (X).
By definition, there exists σ in N and φ⃗ ∈ XΣ, such that φ = σΣ(φ⃗). But, then,
since φ⃗ ∈ XΣ ⊆ YΣ and Y is closed under the operations in N , we get that
φ = σΣ(φ⃗) ∈ YΣ. Since this holds for all Σ ∈ ∣Sign∣, we get that νA(X) ≤ Y
and, hence, νA(X) is the least sentence family of A including X and closed
under the operations in N .

Finally, let X ∈ SenSys(A). Suppose Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and
φ ∈ νAΣ (X). Then, there exists σ in N and φ⃗ ∈ XΣ, such that φ = σΣ(φ⃗). We
now get

SEN(f)(φ) = SEN(f)(σΣ(φ⃗))
= σΣ′(SEN(f)(φ⃗)) (σ in N)
∈ νAΣ′(X). (σ in N , φ ∈ XΣ, X ∈ SenSys(A))

Therefore νA(X) ∈ SenSys(A). ∎

Theorem 83 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and consider

X ∈ SenFam(A). Then νA(Ð→X) is the least universe of A including X.

Proof: By Proposition 2,
Ð→
X ∈ SenSys(A). Therefore, by Proposition 82,

νA(Ð→X) ∈ Unv(A). Suppose, that U ∈ Unv(A), such that X ≤ U . Since U is a

universe, it is a sentence system. Thus, by Proposition 2,
Ð→
X ≤ U . Moreover,

since U is a universe, it is closed under the operations in N , whence, by

Proposition 82, νA(Ð→X) ≤ U . We conclude that νA(Ð→X) is the least universe
of A containing X . ∎

Based on Theorem 83, given X ∈ SenFam(A), we call νA(Ð→X) the uni-
verse of A generated by X and sometimes denote it by

⟨X⟩ = {⟨X⟩Σ}Σ∈∣Sign∣.
We adopt many simplifying notations such as writing ⟨Φ⟩, Φ ⊆ SEN(Σ), for

the universe ⟨T ⟩, generated by T ∈ SenFam(A), with

TΣ′ = { Φ, if Σ′ = Σ
∅, if Σ′ ≠ Σ
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and ⟨φ,ψ⟩ for ⟨{φ,ψ}⟩, φ,ψ ∈ SEN(Σ), if such overloading is unlikely to result
into major mayhem.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Consider an F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩ and let A′ = ⟨Sign,SEN′,
N ′⟩ be an algebraic subsystem of A. Define α−1(SEN′) = {α−1Σ (SEN′)}Σ∈∣Sign♭∣
by letting α−1Σ (SEN′) be given, for all Σ ∈ ∣Sign♭∣, by

α−1Σ (SEN′) = α−1Σ (SEN′(F (Σ))).
Lemma 84 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system. If A′ = ⟨Sign,
SEN′,N ′⟩ ≤A is an algebraic subsystem of A, then α−1(SEN′) is a universe
of F.

Proof: Since SEN′ is a sentence system of A, by Lemma 6, we get that
α−1(SEN′) is a sentence system of F. So it suffices to show that α−1(SEN′)
is closed under the operations in N ♭. To this end, let σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣
and φ⃗ ∈ α−1(SEN′(F (Σ)). Then we have

αΣ(σ♭Σ(φ⃗)) = σA
F (Σ)
(αΣ(φ⃗))

∈ SEN′(F (Σ)),
since αΣ(φ⃗) ∈ SEN′(F (Σ)), by hypothesis, and SEN′(F (Σ)) is a universe of
A. Thus α−1(SEN′) is indeed a universe of F. ∎

We define the triple α−1(A′) = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ as the algebraic sub-
system of F determined by the universe α−1(SEN′) of F.

Let, again, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩
an F-algebraic system, with A = ⟨Sign,SEN,N⟩, and A′ = ⟨Sign,SEN′,N ′⟩
be an algebraic subsystem of A. We define the pair ⟨F,α′⟩ ∶ α−1(A′) → A′

by letting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ α−1Σ (SEN′(F (Σ)),
α′Σ(φ) = αΣ(φ).

Then ⟨F,α′⟩ turns out to be a surjective morphism from α−1(A′) to A′.

Lemma 85 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system. If A′ = ⟨Sign,
SEN′,N ′⟩ ≤A is an algebraic subsystem of A, then ⟨F,α′⟩ ∶ α−1(A′)→A′ is
a surjective morphism.

Proof: Since F ∶ Sign♭ → Sign is surjective and full, by hypothesis, it suffices
to show that, for all Σ ∈ ∣Sign♭∣, α′Σ ∶ α−1(SEN′(F (Σ))) → SEN′(F (Σ)) is
also surjective. But this follows by the definition of α−1(SEN′) and the
surjectivity of ⟨F,α⟩ ∶ F→A. ∎
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Lemma 85 shows that A′ = ⟨A′, ⟨F,α′⟩⟩ may be viewed as an α−1(A′)-
algebraic system.

Consider now an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-insti-
tution I = ⟨F,C⟩ based on F. Given an algebraic subsystem F′ = ⟨Sign♭,
SEN′ ♭,N ′ ♭⟩ of F, we define the π-subinstitution induced by, or associ-
ated with F′, to be the pair I ′ = ⟨F′,C ′⟩, where C ′ ∶ PSEN′ ♭ → PSEN′ ♭ is
defined, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN′ ♭(Σ), by

C ′Σ(Φ) = CΣ(Φ) ∩ SEN′ ♭(Σ).
Proposition 86 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ an al-
gebraic subsystem of F. Then I ′ = ⟨F′,C ′⟩ is a π-institution.

Proof: We must show that C ′ ∶ PSEN′ ♭ → PSEN′ ♭ is a closure system on F′.
The inflation property is clear, since, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN′ ♭(Σ),

Φ ⊆ CΣ(Φ) ∩ SEN′ ♭(Σ) = C ′Σ(Φ).
Monotonicity is also clear, since, for all Σ ∈ ∣Sign♭∣ and all Φ,Ψ ⊆ SEN′ ♭(Σ),
such that Φ ⊆ Ψ,

C ′Σ(Φ) = CΣ(Φ) ∩ SEN′ ♭(Σ) ⊆ CΣ(Ψ) ∩ SEN′ ♭(Σ) = C ′Σ(Ψ).
For idempotency, let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN′ ♭(Σ), such that φ ∈
C ′Σ(C ′Σ(Φ)). Then we have

φ ∈ CΣ(CΣ(Φ) ∩ SEN′ ♭(Σ)) ∩ SEN′ ♭(Σ)
⊆ CΣ(CΣ(Φ)) ∩ SEN′ ♭(Σ)
= CΣ(Φ) ∩ SEN′ ♭(Σ)
= C ′Σ(Φ).

It now only remains to show that C ′ is also structural. Let Σ,Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and Φ ⊆ SEN′ ♭(Σ). Then, we have

SEN′ ♭(f)(C ′Σ(Φ)) = SEN′ ♭(f)(CΣ(Φ) ∩ SEN′ ♭(Σ))
⊆ SEN♭(f)(CΣ(Φ)) ∩ SEN′ ♭(Σ′)
⊆ CΣ′(SEN♭(f)(Φ)) ∩ SEN′ ♭(Σ′)
= CΣ′(SEN′ ♭(f)(Φ)) ∩ SEN′ ♭(Σ′)
= C ′Σ′(SEN′ ♭(f)(Φ)).

We conclude that C ′ is a closure system on F′ and, therefore, I ′ is a π-
institution. ∎

We also give a characterization of the theory families and the theory
systems of the induced subinstitution in terms of those of its parent.
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Proposition 87 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ an al-
gebraic subsystem of F. Then

ThFam(I ′) = {T ∩ SEN′ ♭ ∶ T ∈ ThFam(I)}
and ThSys(I ′) = {T ∩ SEN′ ♭ ∶ T ∈ ThSys(I)}.

Proof: We show the first equality. The second may be proved similarly.
Suppose, first, that T ′ ∈ ThFam(I ′). Then we have C ′(T ′) = T ′. By

definition, C ′(T ′) = C(T ′) ∩ SEN′ ♭. Thus, we get T ′ = C(T ′) ∩ SEN′ ♭. Since
C(T ′) ∈ ThFam(I), we get that ThFam(I ′) ⊆ {T ∩ SEN′ ♭ ∶ T ∈ ThFam(I)}.

Suppose, conversely, that T ∈ ThFam(I). Then, we have

C ′(T ∩ SEN′ ♭) = C(T ∩ SEN′ ♭) ∩ SEN′ ♭

⊆ C(T ) ∩ SEN′ ♭

= T ∩ SEN′ ♭.

So T ∩ SEN′ ♭ ∈ ThFam(I ′) and we conclude that

{T ∩ SEN′ ♭ ∶ T ∈ ThFam(I)} ⊆ ThFam(I ′).
Equality now follows. ∎

Proposition 87 implies that the property of all theory families being theory
systems (which shall be used in the next chapter as the defining property of a
systemic π-institution) is inherited by all π-subinstitutions of a π-institution:

Corollary 88 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution, based on F, and F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ an algebraic
subsystem of F. If I is such that ThFam(I) = ThSys(I), then I ′ = ⟨F′,C ′⟩
satisfies the same property.

Proof: If T ′ ∈ ThFam(I ′), then, by Proposition 87, there exists a theory
family T ∈ ThFam(I), such that T ′ = T ∩SEN′ ♭. By hypothesis, we have T ∈
ThSys(I), whence T ′ = T ∩ SEN′ ♭ ∈ ThSys(I ′). It follows that ThFam(I ′) =
ThSys(I ′). ∎

We now look at a relationship between Leibniz congruence systems of
theory families in institutions and of Leibniz congruence systems of corre-
sponding theory families in subinstitutions associated with given universes.

Proposition 89 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution, based on F, and I ′ = ⟨F′,C ′⟩ a π-subinstitution of
I, associated with F′ = ⟨Sign,SEN′ ♭,N ′ ♭⟩ ≤ F. Then, for all T ∈ ThFam(I),

ΩF(T ) ∩ (SEN′ ♭)2 ≤ ΩF′(T ∩ SEN′ ♭).
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Proof: By the maximality property of ΩF′(T ∩ SEN′ ♭), it suffices to show
that ΩF(T )∩ (SEN′ ♭)2 is a congruence system on F′ that is compatible with
the theory family T ∩ SEN′ ♭.

The reflexivity, symmetry, transitivity and congruence properties of

ΩF(T ) ∩ (SEN′ ♭)2
are inherited by those of ΩF(T ). Moreover, we have, for all Σ,Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′),

SEN′ ♭(f)(ΩF
Σ(T ) ∩ SEN′ ♭(Σ)2) ⊆ SEN♭(f)(ΩF

Σ(T )) ∩ SEN′ ♭(Σ′)2
⊆ ΩF

Σ′(T ) ∩ SEN′ ♭(Σ′)2.
So ΩF(T ) ∩ (SEN′ ♭)2 is indeed a congruence system on F′. Finally, assume
that Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN′ ♭(Σ), such that

⟨φ,ψ⟩ ∈ ΩF
Σ(T ) ∩ SEN′ ♭(Σ)2 and φ ∈ TΣ ∩ SEN′ ♭(Σ).

Then, by the compatibility of ΩF(T ) with T , we get that ψ ∈ TΣ∩SEN′ ♭(Σ).
We conclude that ΩF(T )∩(SEN′ ♭)2 is indeed compatible with T ∩SEN′ ♭ and,
therefore, ΩF(T ) ∩ (SEN′ ♭)2 ≤ ΩF′(T ∩ SEN′ ♭). ∎

In particular, we have the following, where, recall that ⟨φ,ψ⟩ denotes the
universe of F generated by {φ,ψ} ⊆ SEN♭(Σ).
Corollary 90 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) implies ⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩).

Proof: This follows directly by Proposition 89 by considering the universe⟨φ,ψ⟩ of F generated by the sentence family T , with TΣ = {φ,ψ} and TΣ′ = ∅,
for all Σ′ ≠ Σ. ∎

We turn now to the examination of the relation between π-institutions
and their models, on the one hand, and π-subinstitutions and their models,
on the other.

We show first that, for every π-institution I , every I-filter family on an
F-algebraic system A gives rise naturally to an I ′-filter family on an F′-
algebraic subsystem of A.

Proposition 91 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and T ∈ FiFamI(A). Let, also A′ = ⟨Sign′,SEN′,N ′⟩ ≤ A be an
algebraic subsystem of A. Then T ∩ SEN′ ∈ FiFamI

′(⟨A′, ⟨F,α′⟩⟩), where
I ′ = ⟨α−1(A′),C ′⟩ is the π-subinstitution of I induced by α−1(A′).
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Proof: By Lemma 84, α−1(A′) is an algebraic subsystem of F. Therefore,
the pair I ′ = ⟨α−1(A′),C ′⟩ is a well defined π-subinstitution of I . So it
suffices to show, by Lemma 51, that α−1(T ∩ SEN′) ∈ ThFam(I ′). But this
is easy, since we have

α−1(T ∩ SEN′) = α−1(T ) ∩α−1(SEN′) ∈ ThFam(I ′),
membership following by Lemma 51 and Proposition 87. ∎

As a corollary, we obtain the fact that inverse images of Leibniz congru-
ence systems of filter families on algebraic subsystems equal Leibniz congru-
ence systems of the corresponding theory families of π-subinstitutions.

Corollary 92 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). Let, also A′ = ⟨Sign′,SEN′,N ′⟩ ≤ A be an algebraic subsystem
of A. Then

α−1(ΩA′(T ∩ SEN′)) = Ωα−1(A′)(α−1(T ) ∩ α−1(SEN′)).
Proof: This follows by Proposition 91 and Proposition 24. ∎

2.13 Syntax

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and consider a set E ⊆
N of natural transformations in N . All natural transformations in E are,
therefore, finitary. Since, however, there may be an infinite number of them,
they may be collectively of unbounded arity. As a consequence, we write, for
all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)ω,

EΣ(φ⃗) = {σΣ(φ0, . . . , φk−1) ∶ σ ∈ E}
to denote the values of E on the tuple φ⃗, where, for each σ ∈ E k-ary, only

the first k components of φ⃗ are actually used.
In certain contexts, we will view the first k positions of each natural

transformation in E as distinguished, while treating all remaining positions
as parametric. In that case we have to exercise meticulous care when we
employ the following notation. Given Σ ∈ ∣Sign∣ and φ⃗ ∈ SEN(Σ)k, we write

EΣ[φ⃗] = {EΣ,Σ′[φ⃗]}Σ′∈∣Sign∣,
where, for all Σ′ ∈ ∣Sign∣, we define

EΣ,Σ′[φ⃗] = {σΣ′(SEN(f)(φ⃗), χ⃗) ∶ σ ∈ E,f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN♭(Σ′)}.
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Let, again, A = ⟨Sign,SEN,N⟩ be an algebraic system and E ⊆ N . For
T ∈ SenFam(A), we set

←Ð
E (T ) = {←ÐEΣ(T )}Σ∈∣Sign∣,

where, for all Σ ∈ ∣Sign∣,
←Ð
EΣ(T ) = {φ⃗ ∈ SEN(Σ) ∶ EΣ[φ⃗] ≤ T}.

We show that
←Ð
E (T ) is a relation system on A.

Lemma 93 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, E ⊆ N and

T ∈ SenFam(A). Then
←Ð
E (T ) is a relation system on A.

Proof: Let Σ ∈ ∣Sign∣ and φ⃗ ∈ SEN(Σ), such that φ⃗ ∈
←Ð
EΣ(T ). Our goal is to

show that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN(f)(φ⃗) ∈←ÐEΣ′(T ).

So we fix Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′). By hypothesis, we have that,
EΣ[φ⃗] ≤ T . Thus, for all Σ′′ ∈ ∣Sign∣, g ∈ Sign(Σ′,Σ′′) and χ⃗ ∈ SEN(Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

EΣ′′(SEN(gf)(φ⃗), χ⃗) ⊆ TΣ′′ ,
or, equivalently,

EΣ′′(SEN(g)(SEN(f)(φ⃗)), χ⃗) ⊆ TΣ′′ .
By definition, this means that EΣ′[SEN(f)(φ⃗)] ≤ T , i.e., that SEN(f)(φ⃗) ∈
←Ð
EΣ′(T ). Therefore

←Ð
E (T ) is a relation system. ∎

We show, next, that
←Ð
E is a monotone operator on SenFam(A).

Lemma 94 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and E ⊆ N .
Then, for all T,T ′ ∈ SenFam(A),

T ≤ T ′ implies
←Ð
E (T ) ≤←ÐE (T ′).

Proof: Suppose that T,T ′ ∈ SenFam(I), with T ≤ T ′. Then, for all Σ ∈∣Sign∣ and all φ⃗ ∈ SEN(Σ), we have

φ⃗ ∈
←Ð
EΣ(T ) iff EΣ[φ⃗] ≤ T

implies EΣ[φ⃗] ≤ T ′
iff φ⃗ ∈

←Ð
EΣ(T ′).

So
←Ð
E (T ) ≤←ÐE (T ′). ∎

A very useful property of the
←Ð
E operator on sentence families is that it

commutes with inverse surjective morphisms.
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Lemma 95 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨F,α⟩ ∶ A→A′

be a surjective morphism. Then, for all E ⊆ N ♭, we have

α−1(←ÐÐEA′(T )) =←ÐEA(α−1(T )), for all T ∈ SenFam(A′).
Proof: Let Σ ∈ ∣Sign∣ and φ⃗ ∈ SEN(Σ). Then we have φ⃗ ∈ α−1Σ (←ÐÐÐEA′

F (Σ)
(T )) iff

αΣ(φ⃗) ∈←ÐÐÐEA′

F (Σ)
(T ) iff EA′

F (Σ)
[αΣ(φ⃗)] ≤ T iff, by surjectivity, for all Σ′ ∈ ∣Sign∣,

f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),
EA′

F (Σ′)(SEN′(F (f))(αΣ(φ⃗)), αΣ′(χ⃗)) ⊆ TF (Σ′)
iff for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),

EA′

F (Σ′)(αΣ′(SEN(f)(φ⃗)), αΣ′(χ⃗)) ⊆ TF (Σ′)
iff for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),

αΣ′(EA
Σ′(SEN(f)(φ⃗), χ⃗)) ⊆ TF (Σ′)

iff for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),
EA

Σ′(SEN(f)(φ⃗), χ⃗) ⊆ α−1Σ′ (TF (Σ′))
iff EA

Σ [φ⃗] ≤ α−1(T ) iff φ⃗ ∈
←Ð
EA

Σ (α−1(T )). ∎

On the other hand, there is also a relationship between the operator
←Ð
E

and images under morphisms.

Lemma 96 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems, ⟨F,α⟩ ∶ A→
A′ be a morphism and E ⊆ N . Then, for all Σ ∈ ∣Sign∣, all φ⃗ ∈ SEN(Σ) and
all Σ′ ∈ ∣Sign∣, we have

αΣ′(EΣ,Σ′[φ⃗]) ⊆ E′F (Σ),F (Σ′)[αΣ(φ⃗)],
with equality holding in case ⟨F,α⟩ is surjective.

Proof: Let ε ∈ E and f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′). Then, we have

αΣ′(εΣ′(SEN(f)(φ⃗), χ⃗))
= ε′

F (Σ′)
(αΣ′(SEN(f)(φ⃗)), αΣ′(χ⃗))

= ε′
F (Σ′)
(SEN′(F (f))(αΣ(φ⃗)), αΣ′(χ⃗))

∈ E′
F (Σ),F (Σ′)

[αΣ(φ⃗)].
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If ⟨F,α⟩ is surjective, then every element in E′
F (Σ),F (Σ′)

[αΣ(φ⃗)] is of the

form ε′
F (Σ′)
(SEN′(F (f))(αΣ(φ⃗)), αΣ′(χ⃗)), for some ε ∈ E, Σ′ ∈ ∣Sign∣, f ∈

Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′). Thus, by following the preceding equalities
bottom-up, we get the reverse inclusion. ∎

Finally, we prove a close relationship between
←Ð
EA, where E is a collec-

tion of natural transformations, with two distinguished arguments, and the
Leibniz operator on the algebraic system A.

Proposition 97 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, E ⊆ N ,

with two distinguished arguments, and T ∈ SenFam(A). If
←Ð
E (T ) is a reflex-

ive relation system on A, then

ΩA(T ) ≤←ÐE (T ).
Proof: Suppose that Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈
ΩA

Σ (T ). Since ΩA(T ) is a congruence system, we have, for all σ ∈ E ⊆ N and
all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′),

⟨σΣ′(SEN(f)(φ),SEN(f)(ψ), χ⃗),
σΣ′(SEN(f)(φ),SEN(f)(φ), χ⃗)⟩ ∈ ΩA

Σ′(T ).
By the assumption of reflexivity, we get that, for all σ ∈ E, all Σ′ ∈ ∣Sign∣,
f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′), σΣ′(SEN(f)(φ),SEN(f)(φ), χ⃗) ∈ TΣ′ .
Therefore, by the compatibility of ΩA(T ) with T , we conclude that, for all
σ ∈ E, all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),

σΣ′(SEN(f)(φ),SEN(f)(ψ), χ⃗) ∈ TΣ′ .
This means that EΣ[φ,ψ] ≤ T , or equivalently, ⟨φ,ψ⟩ ∈ ←ÐEΣ(T ). Therefore,

ΩA(T ) ≤←ÐE (T ). ∎

Proposition 97 allows us to conclude that in cases where
←Ð
E (T ) is actually

a congruence system compatible with the sentence family T , it coincides with
the Leibniz congruence system of T on A.

Corollary 98 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, E ⊆ N , with

two distinguished arguments, and T ∈ SenFam(A). If
←Ð
E (T ) is a congruence

system on A compatible with T , then

←Ð
E (T ) = ΩA(T ).

Proof: Since, by hypothesis,
←Ð
E (T ) is a congruence system on A, it is re-

flexive. So, by Proposition 97, we have ΩA(T ) ≤ ←ÐE (T ). On the other hand,
since it is a congruence system on A compatible with T and, by definition,

ΩA(T ) is the largest such, we get that
←Ð
E (T ) ≤ ΩA(T ). We conclude that

←Ð
E (T ) = ΩA(T ). ∎
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2.14 Global versus Local Membership

We turn now to exploring some syntactic conditions with respect to mor-
phisms, parameters and theory families in a π-institution. We consider the
following setting: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭ a
collection of natural transformations in N ♭, with k distinguished arguments,
and I = ⟨F,C⟩ a π-institution based on F.

Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ)k.
• We say φ⃗ is E-locally in T if, for all χ⃗ ∈ SEN♭(Σ),

EΣ(φ⃗, χ⃗) ⊆ TΣ.
• We say that φ⃗ is E-globally in T if

EΣ[φ⃗] ≤ T.
• We say φ⃗ is left E-locally in T if it is E-locally in

←Ð
T .

• Similarly, φ⃗ is left E-globally in T if it is E-globally in
←Ð
T .

We show next that these properties satisfy the following diagram, where
arrows are implications pointing from the stronger to the weaker property.
After the lemma proving this result, we construct some examples showing
that all implications are proper (i.e., none of them are equivalences in general
for arbitrary π-institutions).

Left E-Global ✛ ✲ E-Global

Left E-Local
❄

E-Local
❄

Proposition 99 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭,
with k distinguished variables, I = ⟨F,C⟩ a π-institution based on F, T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ)k.

(a) φ⃗ is left E-globally in T if and only if it is E-globally in T .

(b) If φ⃗ is E-globally in T , then it is left E-locally in T . The implication
becomes an equivalence if all arguments in E are distinguished (i.e.,
there are no parameters).
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(c) If φ⃗ is left E-locally in T , then it is E-locally in T . The implication
becomes an equivalence if T ∈ ThSys(I).

Proof:

(a) If φ⃗ is left E-globally in T , then EΣ[φ⃗] ≤ ←ÐT . But, by Proposition 2,
←Ð
T ≤ T , whence EΣ[φ⃗] ≤ T . Thus, φ⃗ is E-globally in T .

Suppose, conversely, that φ⃗ is E-globally in T . Then, for all Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ TΣ′ .
As a special case, we get that, for all Σ′,Σ′′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
g ∈ Sign♭(Σ′,Σ′′) and all χ⃗ ∈ SEN♭(Σ′),

Σ
f ✲ Σ′

g ✲ Σ′′

φ⃗ ✲ SEN♭(f)(φ⃗) ✲ SEN♭(g ○ f)(φ⃗)
χ⃗ ✲ SEN♭(g)(χ⃗)

EΣ′′(SEN♭(g ○ f)(φ⃗),SEN♭(g)(χ⃗)) ⊆ TΣ′′ .
So SEN♭(g)(EΣ′(SEN♭(f)(φ⃗), χ⃗)) ⊆ TΣ′′ . Since this holds for all Σ′′ ∈
∣Sign♭∣ and all g ∈ Sign♭(Σ′,Σ′′), we get EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ ←ÐT Σ′ .
Since this holds for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), we get

EΣ[φ⃗] ≤←ÐT . We now conclude that φ⃗ is left E-globally in T .

(b) Suppose φ⃗ is E-globally in T . Then, for all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ TΣ′ .
Thus, in particular, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
χ⃗ ∈ SEN♭(Σ), EΣ′(SEN♭(f)(φ⃗),SEN♭(f)(χ⃗)) ⊆ TΣ′ . Therefore,

SEN♭(f)(EΣ(φ⃗, χ⃗)) ⊆ TΣ′ ,
which shows that EΣ(φ⃗, χ⃗) ⊆←ÐT Σ. So φ⃗ is left E-locally in T .

Finally, assume all arguments in E are distinguished. Then, if φ⃗ is left

E-locally in T , we have EΣ(φ⃗) ⊆ ←ÐT Σ, whence, for all Σ′ ∈ ∣Sign♭∣ and
all f ∈ Sign♭(Σ,Σ′),

EΣ′(SEN♭(f)(φ⃗)) = SEN♭(f)(EΣ(φ⃗)) ⊆ TΣ′ .
Hence EΣ[φ⃗] ≤ T and φ⃗ is E-globally in T .
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(c) The implication holds, exactly as the left to right implication in Part

(a), because
←Ð
T ≤ T , for all T ∈ ThFam(I). The equivalence statement

holds because, by Proposition 2,
←Ð
T = T , whenever T ∈ ThSys(I). ∎

We provide examples to show that the implications in Proposition 99 are
proper in general, i.e., they are not equivalences for arbitrary π-institutions,
arbitrary sets of natural transformations E and arbitrary theory families T .

Example 100 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single non-identity
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is determined by SEN♭(Σ) = {0}, SEN♭(Σ′) = {a, b}
and SEN♭(f) ∶ SEN♭(Σ)→ SEN♭(Σ′), given by SEN♭(f)(0) = b;

• N ♭ is the category of natural transformations generated by the binary
transformation σ♭ ∶ (SEN♭)2 → SEN♭, determined by the following ta-
bles:

σ♭Σ
0 0

σ♭Σ′ a b

a b b

b a b

Consider the closure system C on F defined by setting

CΣ = {{0}} and CΣ′ = {{b},{a, b}}
and let I = ⟨F,C⟩ be the associated π-institution.

Finally, take T = {TΣ, TΣ′} ∈ ThFam(I) to be the theory family specified
by

TΣ = {0} and TΣ′ = {b}
and consider E = {σ♭} ⊆ N ♭, with one distinguished argument. Notice that
←Ð
T = T .

We now have σ♭Σ(0,0) ∈ TΣ = ←ÐT Σ. Thus, 0 is E-left locally in T . On
the other hand σ♭Σ′(SEN♭(f)(0), a) = σ♭Σ′(b, a) = a ∉ TΣ′. Therefore 0 is not
E-globally in T .
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Example 101 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single non-identity
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is determined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b} and SEN♭(f) ∶ SEN♭(Σ) → SEN♭(Σ′), given by SEN♭(f)(0) = a
and SEN♭(f)(1) = b;

• N ♭ is the category of natural transformations generated by the binary
transformation σ♭ ∶ (SEN♭)2 → SEN♭, determined by the following ta-
bles:

σ♭Σ 0 1
0 1 1
1 0 1

σ♭Σ′ a b

a b b

b a b

Consider the closure system C on F defined by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}
and let I = ⟨F,C⟩ be the associated π-institution.

Finally, take T = {TΣ, TΣ′} ∈ ThFam(I) to be the theory family specified
by

TΣ = {0,1} and TΣ′ = {b}
and consider E = {σ♭} ⊆ N ♭, with one distinguished argument. Notice that

we have
←Ð
T = {{1},{b}}.

Since σ♭Σ(1,0) = 0 and σ♭Σ(1,1) = 1 are both in TΣ, we conclude that 1 is

E-locally in T . On the other hand, σ♭Σ(1,0) = 0 ∉
←Ð
T Σ. Thus 1 is not left

E-locally in T .

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭ a set
of natural transformations, I = ⟨F,C⟩ a π-institution based on F and T ∈
ThFam(I). Quantifying over all signatures and all sentences, we get the
following definitions:
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• We say E is locally in T if, for all Σ ∈ ∣Sign♭∣ and all φ⃗, χ⃗ ∈ SEN♭(Σ),
EΣ(φ⃗, χ⃗) ⊆ TΣ.

• We say E is left locally in T if, for all Σ ∈ ∣Sign♭∣ and all φ⃗, χ⃗ ∈
SEN♭(Σ),

EΣ(φ⃗, χ⃗) ⊆←ÐT Σ.

• We say E is globally in T if, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),
EΣ[φ⃗] ≤ T.

Of course, we have, taking into account Proposition 99:

Corollary 102 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭,
with k distinguished arguments, I = ⟨F,C⟩ a π-institution, based on F, and
T ∈ ThFam(I).

(a) If E is globally in T , then it is left locally in T ;

(b) If E is left locally in T , then it is locally in T .

Proof: Directly by Proposition 99. ∎

But Corollary 102 gives only half the true story. It turns out all three
universal properties are equivalent.

Proposition 103 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭,
with k distinguished arguments, I = ⟨F,C⟩ a π-institution, based on F, and
T ∈ ThFam(I). E is globally in T if and only if it is locally in T .

Proof: By Corollary 102, it suffices to show that, if E is locally in T , then
it is also globally in T . To this end, suppose E is locally in T , i.e., that for
all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

EΣ(φ⃗, ψ⃗) ⊆ TΣ.
Thus, in particular, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), all φ⃗ ∈
SEN♭(Σ) and all χ⃗ ∈ SEN♭(Σ′),

Σ
f ✲ Σ′

φ⃗ ✲ SEN♭(f)(φ⃗)
χ⃗

EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ TΣ′ .
But this is equivalent to EΣ[φ⃗] ≤ T , for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ).
Thus, E is globally in T . ∎
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2.15 Global Properties and Parameters

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Every σ♭ ∈ N ♭ has finite
arity, but, when the exact arity is unimportant, we will write

σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ.
As already mentioned at the beginning of Section 2.13, this is also convenient
in case we are dealing with a set S♭ ⊆ N ♭. In that case the set of arities of
the natural transformations in S♭ may be unbounded and we write

S♭ ∶ (SEN♭)ω → (SEN♭)ℓ,
even though, again, the arity of each member of S♭ is finite. Finally, we

denote
pk ∶= ⟨pk,0, pk,1, . . . , pk,k−1⟩ ∶ (SEN♭)k → (SEN♭)k

the identity natural transformation, being a tuple of the appropriate k-ary
projections.

For all σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished arguments,
we denote by

σ̇♭ ∶ (SEN♭)k → (SEN♭)ℓ
the collection of k-ary natural transformations in N ♭, defined by

σ̇♭ = {σ♭ ○ ⟨pk, τ ♭⟩ ∶ τ ♭ ∶ (SEN♭)k → (SEN♭)ω ∈ N ♭}.
More generally, given a collection S♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k

distinguished arguments, we denote by

Ṡ♭ ∶ (SEN♭)k → (SEN♭)ℓ
the collection of all k-ary natural transformations in N ♭ defined by

Ṡ♭ = ⋃{σ̇♭ ∶ σ♭ ∈ S♭}.
Concerning these definitions, we adopt the following conventions:

1. If σ♭ ∶ (SEN♭)k → (SEN♭)ℓ is k-ary, with k distinguished arguments,
i.e., is thought of as parameter free, then σ̇♭ = {σ♭}. In this case, we
identify the singleton σ̇♭ with σ♭, the unique element that it contains.
Similarly, for a parameterless collection S♭ ∶ (SEN♭)k → (SEN♭)ℓ in N ♭,
we identify Ṡ♭ with S♭.

2. If σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ has 2 distinguished arguments, we write
σ̈♭ ∶ (SEN♭)2 → (SEN♭)ℓ for the collection σ̇♭ to emphasize the binary
character of σ̈♭. More generally, S̈♭ ∶ (SEN♭)2 → (SEN♭)ℓ stands for
the collection Ṡ♭, when S♭ ∶ (SEN♭)ω → (SEN♭)ℓ has 2 distinguished
arguments.
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We have the following relation concerning global membership based on a
set of natural transformations and membership based on the corresponding
parameter free counterpart.

Lemma 104 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider
a collection S♭ ∶ (SEN♭)ω → (SEN♭)ℓ of natural transformations in N ♭, with
k distinguished arguments. Then, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,

Ṡ♭Σ[φ⃗] ≤ S♭Σ[φ⃗].
Proof: Let Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ)k. Then, for all Σ′ ∈ ∣Sign♭∣, we have

Ṡ♭Σ,Σ′[φ⃗] = ⋃
f∈Sign♭(Σ,Σ′)

{σ♭Σ′(SEN♭(f)(φ⃗), τ ♭Σ′(SEN♭(f)(φ⃗))) ∶
σ♭ ∈ S♭, τ ♭ ∈ N ♭} (by definition)

⊆ ⋃
f∈Sign♭(Σ,Σ′)

{σ♭Σ′(SEN♭(f)(φ⃗), χ⃗) ∶ σ♭ ∈ S♭, χ⃗ ∈ SEN♭(Σ′)}
(set theoretic)

= S♭Σ,Σ′[φ⃗]. (by definition)

Since Σ′ ∈ ∣Sign♭∣ was arbitrary, we conclude that Ṡ♭Σ[φ⃗] ≤ S♭Σ[φ⃗]. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, S♭ ∶ (SEN♭)ω → (SEN♭)ℓ
a collection of natural transformations in N ♭, with k distinguished arguments,

and T ∈ SenFam(Fℓ). Recall that by
←Ð
S♭(T ) is denoted the k-ary relation sys-

tem
←Ð
S♭(T ) = {←ÐS♭Σ(T )}Σ∈∣Sign♭∣ on F, given, for all Σ ∈ ∣Sign♭∣, by

←Ð
S♭Σ(T ) = {φ⃗ ∈ SEN♭(Σ)k ∶ S♭Σ[φ⃗] ≤ T}.

Then we obtain

Corollary 105 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and con-
sider a collection S♭ ∶ (SEN♭)ω → (SEN♭)ℓ of natural transformations in N ♭,
with k distinguished arguments. Then, for all T ∈ SenFam(Fℓ),

←Ð
S♭(T ) ≤←ÐṠ♭(T ).

Proof: We have, for all Σ ∈ ∣Sign♭∣,
←Ð
S♭Σ(T ) = {φ⃗ ∈ SEN♭(Σ)k ∶ S♭Σ[φ⃗] ≤ T} (definition)

⊆ {φ⃗ ∈ SEN♭(Σ)k ∶ Ṡ♭Σ[φ⃗] ≤ T} (Lemma 104)

=
←Ð
Ṡ♭Σ(T ). (definition)

We conclude that
←Ð
S♭(T ) ≤ ←ÐṠ♭(T ). ∎
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We now turn to collections of natural transformations satisfying certain
properties globally.

For fixed k, we assume P is a (antimonotone) global property of
natural transformations σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished
arguments. That is:

(a) For σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished arguments, σ♭

either does or does not satisfy P ;

(b) For every σ♭, τ ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished argu-
ments, if, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k, σ♭Σ[φ⃗] ≤ τ ♭Σ[φ⃗], then,
if τ ♭ satisfies P , then σ♭ also satisfies P .

For instance, given T ∈ SenFam(Fℓ),
P T(σ) ∶ for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,

σΣ[φ⃗] ≤ T
is a global property of natural transformations in N ♭, with k distinguished
arguments.

Given such a global property P , we denote by P ♭ ⊆ N ♭ the collection of all
σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished arguments, that satisfy
property P :

P ♭ = {σ♭ ∈ N ♭ ∶ P (σ♭)}.
We call P ♭ the P -core of N ♭.

As an example, for the property P T introduced above, based on a fixed
sentence family T ∈ SenFam(Fℓ), we have

P T ♭ = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ⃗ ∈ SEN♭(Σ)k)(σ♭Σ[φ⃗] ≤ T )}.
Along the same lines, given a global property P of natural transformations

in N ♭, with k distinguished arguments, we may consider the restriction P̂ of
P to the collection of parameter free k-ary natural transformations in N ♭:

P̂ ∶ σ ∶ (SEN♭)k → (SEN♭)ℓ ∈ N ♭ and P (σ).
Then we define

P̂ ♭ = {σ♭ ∈ N ♭ ∶ P̂ (σ♭)}.
We call P̂ ♭ the k-ary P -core of N ♭ or the parameter free P -core of N ♭.

The following inclusion is straightforward:

Lemma 106 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider
a global property P of natural transformations σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in
N ♭, with k distinguished arguments. Then

P̂ ♭ ⊆ P ♭.
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Proof: Straightforward by the definition of P̂ , since any parameter free k-
ary natural transformation is a natural transformation with k distinguished
arguments and no parameters. ∎

Let P be a global property of natural transformations in N ♭, with k

distinguished arguments. We have now defined two sets of k-ary natural
transformations in N ♭ associated with P :

• The first set is Ṗ ♭, obtained by P ♭ by applying the dot operator;

• The second is the set P̂ ♭ obtained by restricting the property P on the
subfamily of parameter free k-ary natural transformations in N ♭.

In the main theorem of the section we show that, for any global property P
of natural transformations in N ♭, with k distinguished arguments, these two
sets are identical, i.e., P̂ ♭ = Ṗ ♭.

Theorem 107 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and con-
sider a global property P of natural transformations σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ
in N ♭, with k distinguished arguments. Then

P̂ ♭ = Ṗ ♭.

Proof: Suppose, first, that σ♭ ∈ P̂ ♭. Then, by definition, σ♭ ∶ (SEN♭)k →(SEN♭)ℓ is parameter free and satisfies P . Thus, we have σ♭ ∈ P ♭ and σ♭ =
σ̇♭ ∈ Ṗ ♭. Therefore, P̂ ♭ ⊆ Ṗ ♭.

Suppose, conversely, that ρ♭ ∈ Ṗ ♭. Then, by definition, there exists
σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ, with k distinguished arguments, in P ♭ and τ ♭ ∶(SEN♭)k → (SEN♭)ω in N ♭, such that

ρ♭ = σ♭ ○ ⟨pk, τ ♭⟩ ∶ (SEN♭)k → (SEN♭)ℓ.
Noting that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), ρ♭Σ[φ⃗] ≤ σ♭Σ[φ⃗], and
taking into account that P is global and that σ♭ ∈ P ♭, we obtain that ρ♭ ∈ P ♭.
But ρ♭ ∶ (SEN♭)k → (SEN♭)ℓ is also parameter free. Therefore ρ♭ ∈ P̂ ♭. We
conclude that Ṗ ♭ ⊆ P̂ ♭. ∎

2.16 Finitarity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

I is finitary if, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ), if φ ∈ CΣ(Φ),
then, there exists finite Ψ ⊆ Φ, such that φ ∈ CΣ(Ψ).

Equivalently, I is finitary if, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),
CΣ(Φ) = ⋃{CΣ(Ψ) ∶ Ψ ⊆ω Φ},
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where Ψ ⊆ω Φ denotes the finite subset relation.
Yet another well-known equivalent characterization of finitarity asserts

that I is finitary if and only if, for all Σ ∈ ∣Sign♭∣ and every upward directed
collection {T iΣ ∶ i ∈ I} of Σ-theories, i.e., a collection, such that:

• CΣ(T iΣ) = T iΣ, for all i ∈ I;

• for every i, j ∈ I, there exists k ∈ I, such that T iΣ, T
j
Σ ⊆ T

k
Σ,

the union ⋃i∈I T iΣ is also a Σ-theory.
We formulate next some versions of these properties with reference to

theory families.
Let Sign be a category and SEN ∶ Sign → Set a functor. A sentence

family X ∈ SenFam(SEN) is called locally finite if, for all Σ ∈ ∣Sign∣, XΣ

is finite. In this case we write ∣X ∣ <l ω. Given sentence families X,Y ∈
SenFam(SEN), we use the notation X ≤lf Y to suggest that X is a locally
finite subfamily of Y .

We say that a collection {X i ∶ i ∈ I} ⊆ SenFam(SEN) is:

• locally directed if, for all Σ ∈ ∣Sign∣ and all finite J ⊆ I, there exists
k ∈ I, such that Xj

Σ ≤X
k
Σ, for all j ∈ J ;

• directed if, for all finite J ⊆ I, there exists k ∈ I, such that Xj ≤ Xk,
for all j ∈ J .

Directedness is a stronger property than local directedness.

Lemma 108 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and {T i ∶ i ∈ I} ⊆ SenFam(SEN). If {T i} is directed, then it is locally directed.

Proof: Suppose {T i} is directed. Let Σ ∈ ∣Sign∣ and i, j ∈ I. Since {T i} is
directed, there exists a k ∈ I, such that T i, T j ≤ T k. In particular, T iΣ, T

j
Σ ⊆ T

k
Σ.

Therefore, {T i} is also locally directed. ∎

The opposite implication patently fails, i.e., in general, local directedness
does not imply directedness.

Example 109 Let Sign be the discrete category with objects Σ and Σ′. Let
SEN♭ ∶ Sign→ Set be defined by SEN♭(Σ) = {0,1} and SEN♭(Σ′) = {a, b}.

Consider the sentence families T = {{1},{a, b}} and T ′ = {{0,1},{b}}
and the collection T = {T,T ′}.

T is locally directed, since TΣ ⊆ T ′Σ and T ′Σ′ ⊆ TΣ′.
On the other hand, T is not directed since there does not exist X ∈ T ,

such that T,T ′ ≤X.

Given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution I =⟨F,C⟩, based on F, we say that I is:
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• locally continuous if, for every locally directed family {T i ∶ i ∈ I} ⊆
ThFam(I),

⋃
i∈I

T i ∈ ThFam(I);
• continuous if, for every directed family {T i ∶ i ∈ I} ⊆ ThFam(I),

⋃
i∈I

T i ∈ ThFam(I).
Since, by Lemma 108, directedness implies local directedness, we get the

following straightforward relationship between local continuity and continu-
ity.

Corollary 110 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is locally continuous, then it is con-
tinuous.

Proof: Assume I is locally continuous and let T ⊆ ThFam(I) be directed.
By Lemma 108, T is locally directed. Thus, by local continuity, ⋃T ∈
ThFam(I). Hence, I is continuous. ∎

However, more is true. In fact, continuity turns out to be equivalent to
the seemingly stronger notion of local continuity.

Theorem 111 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is locally continuous if and only if it is
continuous.

Proof: The “only if” is by Corollary 110. Suppose, conversely, that I is
continuous. Let {T i ∶ i ∈ I} ⊆ ThFam(I) be locally directed. We construct
the collection

T = {T ′ ∈ ThFam(I) ∶ (∀Σ ∈ ∣Sign♭∣)(∃i ∈ I)(T ′Σ = T iΣ)}.
First, note that T is directed. In fact, let T,T ′ ∈ T and Σ ∈ ∣Sign♭∣. By

the definition of T , there exist i(Σ), j(Σ) ∈ I, such that TΣ = T
i(Σ)
Σ and

T ′Σ = T
j(Σ)
Σ . Since {T i ∶ i ∈ I} is locally directed, there exists k(Σ) ∈ I,

such that T
i(Σ)
Σ , T

j(Σ)
Σ ⊆ T k(Σ)Σ . Consider T ′′ = {T ′′Σ}Σ∈∣Sign♭∣, where, for all

Σ ∈ ∣Sign♭∣,
T ′′Σ = T

k(Σ)
Σ .

Then T ′′ ∈ T and, moreover, T,T ′ ≤ T ′′. Thus, T is indeed directed. Second,
notice that ⋃T = ⋃i∈I T i. Thus, taking into account the continuity of I , we
get

⋃
i∈I

T i = ⋃T ∈ ThFam(I).
Therefore, I is locally continuous. ∎

Now we get the following characterizations of finitarity.
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Proposition 112 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then the following conditions are
equivalent:

(i) I is finitary;

(ii) For every X ∈ SenFam(F),
C(X) = ⋃{C(Y ) ∶ Y ≤lf X};

(iii) I is locally continuous.

(iv) I is continuous.

Proof:

(i)⇒(ii) Suppose I is finitary and let X ∈ SenFam(F). Clearly, by the mono-
tonicity of C, ⋃{C(Y ) ∶ Y ≤lf X} ≤ C(X). To prove the converse, let
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ CΣ(XΣ). By finitarity, there
exists YΣ ⊆f XΣ, such that φ ∈ CΣ(YΣ). Now set Y = {YΣ′}Σ′∈∣Sign♭∣,
where, for all Σ′ ∈ ∣Sign♭∣,

YΣ′ = { YΣ, if Σ′ = Σ
∅, if Σ′ ≠ Σ

Clearly, Y ≤lf X and, moreover, φ ∈ CΣ(Y ). Thus, we get C(X) ≤
⋃{C(Y ) ∶ Y ≤lf X}.

(ii)⇒(iii) Suppose that, for every X ∈ SenFam(F), C(X) = ⋃{C(Y ) ∶ Y ≤lf X}
and let {T i ∶ i ∈ I} ⊆ ThFam(I) be locally directed. Consider Σ ∈∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ CΣ(⋃i∈I T iΣ). By hypothesis,
there exists locally finite Y ≤ ⋃i∈I T i, such that φ ∈ CΣ(YΣ). Since{T i ∶ i ∈ I} is locally directed, there exists i ∈ I, such YΣ ⊆ T iΣ. Now
we get φ ∈ CΣ(T iΣ) = T iΣ ⊆ ⋃i∈I T iΣ. We conclude that ⋃i∈I T i is a theory
family and, therefore, I is locally continuous.

(iii)⇒(i) Assume that I is locally continuous and let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆
SEN♭(Σ), such that φ ∈ CΣ(Φ). We define a collection of theory families
of I as follows: For every finite subset Ψ ⊆f Φ, let TΨ = {TΨ

Σ′}Σ′∈∣Sign♭∣
be given, for all Σ′ ∈ ∣Sign♭∣, by setting

TΨ
Σ′ = { CΣ(Ψ), if Σ′ = Σ

CΣ′(∅), if Σ′ ≠ Σ

Clearly, {TΨ ∶ Ψ ⊆f Φ} is a locally directed. Therefore, by hypothesis

C(⋃{TΨ ∶ Ψ ⊆f Φ}) = ⋃{TΨ ∶ Ψ ⊆f Φ}.
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Now we get
φ ∈ CΣ(Φ) = CΣ( ⋃

Ψ⊆fΦ

TΨ
Σ ) = ⋃

Ψ⊆fΦ

TΨ
Σ ,

whence φ ∈ TΨ
Σ = CΣ(Ψ), for some Ψ ⊆f Φ. We conclude that I is

finitary.

(iii)⇔(iv) This is the content of Theorem 111.
∎

We now prove a lemma concerning I-filter generation to the effect that,
for a finitary π-institution, the I-filter generated by a certain sentence family
can be built inductively by “closing under consequences” in a structured way.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a finitary
π-institution based on F. Then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all X ∈ SenFam(A), we define

ΞI,A,n(X) = {ΞI,A,nΣ (X)}Σ∈∣Sign∣, n < ω,

by induction on n, as follows:

• If n = 0, ΞI,A,0(X) =X ;

• Assume ΞI,A,i(X) has been defined, for all i < n. We define

ΞI,A,n(X) = {ΞI,A,nΣ (X)}Σ∈∣Sign∣,
by setting, for all Σ′ ∈ ∣Sign∣,

ΞI,A,nΣ′ (X) = {αΣ(φ) ∶ Σ ∈ ∣Sign♭∣, such that F (Σ) = Σ′,
and Φ ∪ {φ} ⊆ω SEN♭(Σ), such that

φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ ΞI,A,n−1Σ′ (X)}.
We may write the latter set more concisely as

ΞI,A,nΣ′ (X) = ⋃
Σ∶F (Σ)=Σ′

{αΣ(φ) ∶ φ ∈ CΣ(Φ), αΣ(Φ) ⊆ ΞI,A,n−1Σ′ (X)}.
We prove some basic properties of this set.

Lemma 113 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a
finitary π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
X ∈ SenFam(A).

(a) For all n < ω, ΞI,A,n(X) ≤ ΞI,A,n+1(X);
(b) ⋃n<ω ΞI,A,n(X) ∈ FiFamI(A);
(c) ⋃n<ω ΞI,A,n(X) ≤ CI,A(X).
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Proof:

(a) Let Σ′ ∈ ∣Sign∣, φ′ ∈ SEN(Σ), such that φ′ ∈ ΞI,A,nΣ′ (X). By surjectivity
of ⟨F,α⟩, there exists Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that F (Σ) = Σ′

and αΣ(φ) = φ′. But φ ∈ CΣ(φ) and αΣ(φ) = φ′ ∈ ΞI,A,nΣ′ (X) imply that

φ′ ∈ αΣ(φ) ∈ ΞI,A,n+1Σ′ (X). So, we get ΞI,A,n(X) ≤ ΞI,A,n+1(X).
(b) Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ω SEN♭(Σ), such that φ ∈ CΣ(Φ) and assume

that αΣ(Φ) ⊆ ⋃n<ω ΞI,A,n
F (Σ)
(X). Then, since Φ ⊆ω SEN♭(Σ), there exists

n < ω, such that αΣ(Φ) ⊆ ΞI,A,n
F (Σ)
(X). Since φ ∈ CΣ(Φ), we get, by the

definition of ΞI,A,n+1(X),
αΣ(φ) ∈ ΞI,A,n+1

F (Σ)
(X) ⊆ ⋃

n<ω

ΞI,A,n
F (Σ′)
(X).

We conclude that ⋃n<ω ΞI,A,n(X) ∈ FiFamI(A).
(c) We prove this by induction on n < ω.

For n = 0, ΞI,A,0(X) = X ≤ CI,A(X).
Suppose that ΞI,A,i(X) ≤ CI,A(X), for all i < n.

Let Σ′ ∈ ∣Sign∣, φ′ ∈ ΞI,A,nΣ′ (X). Thus, there exists Σ ∈ ∣Sign♭∣, such that
F (Σ) = Σ′, and Φ ∪ {φ} ⊆ω SEN♭(Σ), such that φ ∈ CΣ(Φ), αΣ(Φ) ⊆
ΞI,A,n−1Σ′ (X) and αΣ(φ) = φ′. By the induction hypothesis, αΣ(Φ) ⊆
C
I,A
Σ′ (X). Hence, since φ ∈ CΣ(Φ) and CI,A(X) ∈ FiFamI(A), it follows

that φ′ = αΣ(φ) ∈ CI,AΣ′ (X). We conclude that ΞI,A,nΣ′ (X) ⊆ CI,AΣ′ (X).
It now follows that ⋃n<ω ΞI,A,n(X) ≤ CI,A(X).

∎

We set

ΞI,A(X) ∶= ⋃
n<ω

ΞI,A,n(X).

Proposition 114 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a finitary π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system and X ∈ SenFam(A). Then

CI,A(X) = ΞI,A(X).
Proof: Since by Lemma 113, ΞI,A(X) ∈ FiFamI(A) and X ≤ ΞI,A(X),
we get, by the minimality of CI,A(X), that CI,A(X) ≤ ΞI,A(X). On the
other hand, by Lemma 113, ΞI,A(X) ≤ CI,A(X). Thus, we conclude that
CI,A(X) = ΞI,A(X). ∎
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2.17 Equational π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be a class of F-
algebraic systems. Denote by Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣ the family of F-

equations, i.e., for all Σ ∈ ∣Sign♭∣,
EqΣ(F) = SEN♭(Σ)2.

The equational consequence relative to K or K-equational conse-
quence is the closure family DK ∶ PEq(F) → PEq(F), defined by letting,
for all Σ ∈ ∣Sign♭∣,

DK
Σ ∶ P(EqΣ(F)) → P(EqΣ(F))

be given, for all E ∪ {φ ≈ ψ} ⊆ EqΣ(F), by

φ ≈ ψ ∈ DK
Σ(E) iff for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

αΣ(E) ⊆ ∆A
F (Σ)

implies αΣ(φ) = αΣ(ψ).
This closure operator appeared, for the first time, in Section 2.4 as a means
to characterize the relative congruence system generated by a family of equa-
tions, with respect to the class K of F-algebraic systems. In Proposition 29,
it was shown that, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a
class K of F-algebraic systems, DK ∶ PEq(F)→ PEq(F) is a (not necessarily
structural) closure family on Eq(F).

Moreover, it turns out that the closure family DK satisfies the properties
of reflexivity, symmetry, transitivity, congruence and invariance, detailed in
the following

Proposition 115 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let
K be a class of F-algebraic systems. For all Σ ∈ ∣Sign♭∣, all φ,ψ,χ ∈ SEN♭(Σ),
all σ♭ in N ♭, all φ⃗, ψ⃗ ∈ SEN♭(Σ), all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

(Reflexivity) φ ≈ φ ∈DK
Σ(∅);

(Symmetry) ψ ≈ φ ∈DK
Σ(φ ≈ ψ);

(Transitivity) φ ≈ χ ∈ DK
Σ(φ ≈ ψ,ψ ≈ χ);

(Congruence) σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈DK
Σ({φi ≈ ψi ∶ i ∈ I});

(Invariance) SEN♭(f)(φ) ≈ SEN♭(f)(ψ) ∈DK
Σ′(φ ≈ ψ).

Proof: All properties follow directly by applying Proposition 30. ∎

Corollary 116 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. Then ThFam(DK) = ThSys(DK) = ConSysK(F).
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Proof: The first equality is a direct consequence of Invariance, given in
Proposition 115, while the second follows directly from Theorem 32. ∎

Assume, next, that Q = {QΣ}Σ∈∣Sign♭∣ ≤ Eq(F) is an F-equation system,
i.e., a family of F-equations that is invariant under signature morphisms in
the sense that, for all Σ,Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(QΣ) ⊆ QΣ′ .

Let, also E = {EΣ}Σ∈∣Sign♭∣ ≤ Eq(F) be an F-equation family (not necessarily

invariant under signature morphisms). We define, for all Σ ∈ ∣Sign♭∣ and all
n < ω,

ΞQ,n
Σ (E) ∶ P(EqΣ(F))→ P(EqΣ(F)),

by induction on n < ω, as follows:

• ΞQ,0
Σ (E) = {φ ≈ φ ∶ φ ∈ SEN♭(Σ)} ∪QΣ ∪EΣ;

• Assuming that ΞQ,n
Σ (E) has been defined, for all Σ ∈ ∣Sign♭∣, we set

ΞQ,n+1
Σ (E) = {ψ ≈ φ ∶ φ ≈ ψ ∈ ΞQ,n

Σ (E)}
∪{φ ≈ χ ∶ φ ≈ ψ,ψ ≈ χ ∈ ΞQ,n

Σ (E)}
∪{σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∶ φi ≈ ψi ∈ ΞQ,n

Σ (E), i < k}
∪{SEN♭(f)(φ ≈ ψ) ∶ φ ≈ ψ ∈ ΞQ,n

Σ′ (E),
Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ′,Σ)}.

Now, set, for all Σ ∈ ∣Sign♭∣,
ΞQ
Σ(E) = ⋃

n<ω

ΞQ,n
Σ (E)

and, finally,
ΞQ(E) = {ΞQ

Σ(E)}Σ∈∣Sign♭∣.
We show that ΞQ ∶ P(Eq(F)) → P(Eq(F)) is a closure family on Eq(F)

that satisfies Reflexivity, Symmetry, Transitivity, Congruence and Invariance.

Proposition 117 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
Q ≤ Eq(F) an F-equation system. Then ΞQ ∶ PEq(F)→ PEq(F) is a closure
family on Eq(F), that satisfies Reflexivity, Symmetry, Transitivity, Congru-
ence and Invariance.

Proof: We start by showing that ΞQ is a closure family.

• Let Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ E. Then, by
definition, φ ≈ ψ ∈ ΞQ,0

Σ (E) ⊆ ΞQ
Σ(E). So ΞQ is inflationary.
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• Let Σ ∈ ∣Sign♭∣ and E ∪F ∪{φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ ΞQ
Σ(E)

and E ⊆ F . Then, for some n < ω, φ ≈ ψ ∈ ΞQ,n
Σ (E). We show by

induction on n < ω that, for all n < ω,

φ ≈ ψ ∈ ΞQ,n
Σ (E) implies φ ≈ ψ ∈ ΞQ,n

Σ (F ).
– For n = 0, we have φ = ψ or φ ≈ ψ ∈ QΣ or φ ≈ ψ ∈ E. In the first

two cases, φ ≈ ψ ∈ ΞQ,0
Σ (F ) by definition, and, in the last case,

φ ≈ ψ ∈ ΞQ,0
Σ (F ), since E ⊆ F , by hypothesis.

– Assume, next, that the statement holds for n > 0. Let Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ ≈ ψ ∈ ΞQ,n+1

Σ (E).
If ψ ≈ φ ∈ ΞQ,n

Σ (E), then, by the induction hypothesis, ψ ≈ φ ∈
ΞQ,n
Σ (F ), whence, by definition, φ ≈ ψ ∈ ΞQ,n+1

Σ (F ).
If φ ≈ χ,χ ≈ ψ ∈ ΞQ,n

Σ (E), then, by the induction hypothesis,

φ ≈ χ,χ ≈ ψ ∈ ΞQ,n
Σ (F ), whence, by definition, φ ≈ ψ ∈ ΞQ,n+1

Σ (F ).
If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), with φi ≈ ψi ∈ ΞQ,n

Σ (E), i < k,

then, by the induction hypothesis, φi ≈ ψi ∈ ΞQ,n
Σ (F ), whence, by

definition, σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ ΞQ,n+1
Σ (F ).

Finally, if φ ≈ ψ is of form SEN♭(f)(φ′ ≈ ψ′), with φ′ ≈ ψ′ ∈
ΞQ,n
Σ′ (E), then, by the induction hypothesis, φ′ ≈ ψ′ ∈ ΞQ,n

Σ′ (F ),
and, therefore, by definition, SEN♭(f)(φ′ ≈ ψ′) ∈ ΞQ,n+1

Σ (F ).
Thus, if φ ≈ ψ ∈ ΞQ

Σ(E), then φ ≈ ψ ∈ ΞQ
Σ(F ) and ΞQ is monotone.

• Let Σ ∈ ∣Sign♭∣ and E∪{φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ ΞQ
Σ(ΞQ

Σ(E)).
Then, for some n < ω, φ ≈ ψ ∈ ΞQ,n

Σ (ΞQ
Σ(E)). We show by induction on

n < ω that, for all n < ω,

φ ≈ ψ ∈ ΞQ,n
Σ (ΞQ

Σ(E)) implies φ ≈ ψ ∈ ΞQ
Σ(E).

– For n = 0, φ = ψ or φ ≈ ψ ∈ QΣ or φ ≈ ψ ∈ ΞQ
Σ(E). In the first two

cases φ ≈ ψ ∈ ΞQ,0
Σ (E) ⊆ ΞQ

Σ(E), by definition, and in the last the
implication is trivial.

– Suppose that the statement holds for n > 0 and let Σ ∈ ∣Sign♭∣,
φ ≈ ψ ∈ ΞQ,n+1

Σ (ΞQ
Σ(E)).

If ψ ≈ φ ∈ ΞQ,n
Σ (ΞQ

Σ(E)), then, by the induction hypothesis, ψ ≈
φ ∈ ΞQ

Σ(E), i.e., ψ ≈ φ ∈ ΞQ,m
Σ (E), for some m < ω. Thus, by

definition, φ ≈ ψ ∈ ΞQ,m+1
Σ (E) ⊆ ΞQ

Σ(E).
If φ ≈ χ,χ ≈ ψ ∈ ΞQ,n

Σ (ΞQ
Σ(E)), then, by the induction hypothesis,

φ ≈ χ,χ ≈ ψ ∈ ΞQ
Σ(E), i.e., for some m < ω, φ ≈ χ,χ ≈ ψ ∈ ΞQ,m

Σ (E).
Thus, by definition, φ ≈ ψ ∈ ΞQ,m+1

Σ (E) ⊆ ΞQ
Σ(E).
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If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), with φi ≈ ψi ∈ ΞQ,n
Σ (ΞQ

Σ(E)),
i < k, then, by the induction hypothesis, φi ≈ ψi ∈ ΞQ

Σ(E), for all

i < k. Thus, there exists m < ω, such that φi ≈ ψi ∈ ΞQ,m
Σ (E),

for all i < k, and, consequently, by definition, σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈
ΞQ,m+1
Σ (E) ⊆ ΞQ

Σ(E).
Finally, suppose that φ ≈ ψ is of the form SEN♭(f)(φ′ ≈ ψ′), where
φ′ ≈ ψ′ ∈ ΞQ,n

Σ′ (E). Then, by the induction hypothesis, φ′ ≈ ψ′ ∈
ΞQ
Σ′(E), whence, there exists m < ω, such that φ′ ≈ ψ′ ∈ ΞQ,m

Σ′ (E).
But, then, by definition, SEN♭(f)(φ′ ≈ ψ′) ∈ ΞQ,m+1

Σ (E) ⊆ ΞQ
Σ(E).

So ΞQ is a closure family. Finally, we show that it satisfies the five extra
rules.

• For Reflexivity, let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, by definition,
φ ≈ φ ∈ ΞQ,0

Σ (∅) ⊆ ΞQ
Σ(∅), whence ΞQ is Reflexive.

• For Symmetry, let E ≤ Eq(F), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
φ ≈ ψ ∈ ΞQ

Σ(E). Then, there exists n < ω, such that φ ≈ ψ ∈ ΞQ,n
Σ (E).

By definition, ψ ≈ φ ∈ ΞQ,n+1
Σ (E) ⊆ ΞQ

Σ(E). We conclude that ψ ≈ φ ∈
ΞQ
Σ(φ ≈ ψ) and, hence ΞQ is Symmetric.

• For Transitivity, let E ≤ Eq(F), Σ ∈ ∣Sign♭∣, φ,ψ,χ ∈ SEN♭(Σ), such
that φ ≈ ψ,ψ ≈ χ ∈ ΞQ

Σ(E). Then, there exists n < ω, such that φ ≈
ψ,ψ ≈ χ ∈ ΞQ,n

Σ (E). By definition, φ ≈ χ ∈ ΞQ,n+1
Σ (E) ⊆ ΞQ

Σ(E). So ΞQ

is Transitive.

• For Congruence, let E ≤ Eq(F), σ♭ ∶ (SEN♭)k → SEN♭ inN ♭, Σ ∈ ∣Sign♭∣,
φi, ψi ∈ SEN♭(Σ), i < k, such that φi ≈ ψi ∈ ΞQ

Σ(E). Then, there exists

n < ω, such that φi ≈ ψi ∈ ΞQ,n
Σ (E), for all i < k, whence, by definition,

σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ ΞQ,n+1
Σ (E) ⊆ ΞQ

Σ(E). Thus ΞQ satisfies Congruence.

• Finally, for Invariance, let E ≤ Eq(F), Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign(Σ,Σ′),
φ,ψ ∈ SEN♭(Σ), such that φ ≈ ψ ∈ ΞQ

Σ(E). Then, there exists n < ω,

such that φ ≈ ψ ∈ ΞQ,n
Σ (E), and, hence, by definition,

SEN♭(f)(φ ≈ ψ) ∈ ΞQ,n+1
Σ′ (E) ⊆ ΞQ

Σ′(E).
We conclude that ΞQ satisfies Invariance as well.

This shows that ΞQ ∶ PEq(F) → PEq(F) is a closure family that satisfies
Reflexivity, Symmetry, Transitivity, Congruence and Invariance. ∎

We show that, given a semantic variety, i.e., a class K of F-algebraic
systems, such that VSem(K) = K, we have DK = ΞKer(K).

We prove first a lemma.
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Lemma 118 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a se-
mantic variety of F-algebraic systems, i.e., a class of F-algebraic systems,
such that VSem(K) = K. Then, for all E ⊆ Eq(F), ΞKer(K)(E) ∈ ConSysK(F).
Proof: By Proposition 117, ΞKer(K)(E) is a congruence system on F. More-
over, by definition, Ker(K) ≤ ΞKer(K)(E). But, note that

Ker(F/ΞKer(K)(E)) = ΞKer(K)(E).
Thus, we have Ker(K) ≤ Ker(F/ΞKer(K)(E)). Thus, by definition and the
hypothesis,

F/ΞKer(K)(E) ∈ VSem(K) = K.
We conclude that ΞKer(K)(E) ∈ ConSysK(F). ∎

Theorem 119 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems, such that VSem(K) = K. Then DK = ΞQ, where
Q = Ker(K).
Proof: Assume, first, that Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that
φ ≈ ψ ∈ DK

Σ(E). Thus, by definition, for all A ∈ K,

E ⊆ KerΣ(A) implies ⟨φ,ψ⟩ ∈ KerΣ(A).
In particular, by Lemma 118,

E ⊆ KerΣ(F/ΞQ(E)) implies ⟨φ,ψ⟩ ∈ KerΣ(F/ΞQ(E)).
Equivalently, we have E ⊆ ΞQ

Σ(E) implies φ ≈ ψ ∈ ΞQ
Σ(E). Since the first

inclusion holds by the definition of ΞQ, we have φ ≈ ψ ∈ ΞQ
Σ(E). We conclude

that DK ≤ ΞQ.

Assume, conversely, that Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that
φ ≈ ψ ∈ ΞQ

Σ(E). Then, by definition, there exists an n < ω, such that φ ≈ ψ ∈
ΞQ,n
Σ (E). We show, by induction on n < ω, that, for all n < ω,

φ ≈ ψ ∈ ΞQ,n
Σ (E) implies φ ≈ ψ ∈DK

Σ(E).
• If n = 0, then φ = ψ or φ ≈ ψ ∈ KerΣ(K) or φ ≈ ψ ∈ E.

In the first case, the conclusion follows by Proposition 115, and in the
last, by Proposition 29.

In the second case, we have, for all A ∈ K, Ker(K) ≤ Ker(A), whence
φ ≈ ψ ∈ KerΣ(A). So φ ≈ ψ ∈DK

Σ(∅) ⊆DK
Σ(E).
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• Assume, now, that the conclusion holds for n > 0. Let Σ ∈ ∣Sign♭∣,
E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ ΞQ,n+1

Σ (E).
If ψ ≈ φ ∈ ΞQ,n

Σ (E), then, by the induction hypothesis, ψ ≈ φ ∈ DK
Σ(E),

whence, by Proposition 115, φ ≈ ψ ∈DK
Σ(E).

If φ ≈ χ,χ ≈ ψ ∈ ΞQ,n
Σ (E), then , by the induction hypothesis, φ ≈ χ,χ ≈

ψ ∈DK
Σ(E). So, by Proposition 115, we have φ ≈ ψ ∈DK

Σ(E).
If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), for some σ♭ in N ♭ and φi ≈ ψi ∈
ΞQ,n
Σ (E), i < k, then, by the induction hypothesis, φi ≈ ψi ∈ DK

Σ(E),
for all i < k, whence, once more by Proposition 115, σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈
DK

Σ(E).
Finally, if φ ≈ ψ is of the form SEN♭(f)(φ′ ≈ ψ′), for some Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ′,Σ) and φ′ ≈ ψ′ ∈ ΞQ,n

Σ′ (E), then, by the induction hypoth-
esis, φ′ ≈ ψ′ ∈ DK

Σ′(E), whence, by Proposition 115, SEN♭(f)(φ′ ≈ ψ′) ∈
DK

Σ(E).
Thus, we get ΞQ ≤DK and, therefore, DK = ΞQ. ∎

2.18 Categorical Universal Algebra

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. We define F-equations,
F-quasiequations and F-guasiequations (standing for generalized F-quasi-
equations). Recall that F-equations have already been introduced in Section
2.17, but the definition is repeated here for the sake of completeness.

• The family Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣ of F-equations is defined by

setting, for all Σ ∈ ∣Sign♭∣,
EqΣ(F) = SEN♭(Σ)2 = {φ ≈ ψ ∶ φ,ψ ∈ SEN♭(Σ)};

• The family QEq(F) = {QEqΣ(F)}Σ∈∣Sign♭∣ of F-quasiequations is de-

fined by setting, for all Σ ∈ ∣Sign♭∣,
QEqΣ(F) = {⟨{φi ≈ ψi ∶ i < k}, φ ≈ ψ⟩ ∶ k ∈ ω, φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ)};

• The family GEq(F) = {GEqΣ(F)}Σ∈∣Sign♭∣ of F-guasiequations is de-

fined by setting, for all Σ ∈ ∣Sign♭∣,
GEqΣ(F) = {⟨{φi ≈ ψi ∶ i ∈ I}, φ ≈ ψ⟩ ∶ φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ)}.

Sometimes we write ⟨φ,ψ⟩ in place of φ ≈ ψ. Moreover, we use the notation

φ⃗ ≈ ψ⃗ ∶= {φi ≈ ψi ∶ i ∈ I}.
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Thus, the F-guasiequation ⟨{φi ≈ ψi ∶ i ∈ I}, φ ≈ ψ⟩ may be written more
compactly ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ and, sometimes, also φ⃗ ≈ ψ⃗ → φ ≈ ψ. Note that

Eq(F) ≤ QEq(F) ≤ GEq(F).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣, ⟨φ⃗ ≈ ψ⃗, φ ≈
ψ⟩ ∈ GEqΣ(F) and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. We say that A
satisfies ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ or that the guasiequation ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ is true in,
or is satisfied in, or holds in A, written

A ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩,
if

αΣ(φi) = αΣ(ψi), i ∈ I, imply αΣ(φ) = αΣ(ψ).
Since F-quasiequations and F-equations are special cases of F-guasiequations,
the definition covers them as well. Thus, we have

• A satisfies the F-quasiequation ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ if αΣ(φi) = αΣ(ψi), for
all i < k, imply αΣ(φ) = αΣ(ψ);

• A satisfies the F-equation φ ≈ ψ if αΣ(φ) = αΣ(ψ).
Now we define the following families:

• The family Eq(A) = {EqΣ(A)}Σ∈∣Sign♭∣ of F-equations satisfied by A is

defined by setting, for all Σ ∈ ∣Sign♭∣,
EqΣ(A) = {e ∈ EqΣ(F) ∶ A ⊧Σ e};

• The family QEq(A) = {QEqΣ(A)}Σ∈∣Sign♭∣ of F-quasiequations satisfied

by A is defined by setting, for all Σ ∈ ∣Sign♭∣,
QEqΣ(A) = {q ∈ QEqΣ(F) ∶ A ⊧Σ q};

• The family GEq(A) = {GEqΣ(A)}Σ∈∣Sign♭∣ of F-guasiequations satisfied

by A is defined by setting, for all Σ ∈ ∣Sign♭∣,
GEqΣ(A) = {g ∈ GEqΣ(F) ∶ A ⊧Σ g}.

Finally, given a class K of F-algebraic systems, we define:

• Eq(K) = ⋂{Eq(A) ∶ A ∈ K};
• QEq(K) = ⋂{QEq(A) ∶ A ∈ K};
• GEq(K) = ⋂{GEq(A) ∶ A ∈ K}.
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Note, again, that

Eq(A) ≤ QEq(A) ≤ GEq(A) and Eq(K) ≤ QEq(K) ≤ GEq(K).
Given a class G ≤ GEq(F) of F-guasiequations (which includes the case of
quasiequations or equations), we define AlgSys(G) or, sometimes, Mod(G),
to be the collection of all F-algebraic systems that satisfy all the F-guasi-
equations in G:

AlgSys(G) = {A ∈ AlgSys(F) ∶ A ⊧ G}.
As is well-known, based on an underlying Galois connection, we get the
following, for all G,G′ ≤ GEq(F) and all K,K′ ⊆ AlgSys(F),

• If K ⊆ K′, then GEq(K′) ≤ GEq(K);
• If G ≤ G′, then AlgSys(G′) ⊆ AlgSys(G);
• K ⊆ AlgSys(GEq(K)) and GEq(K) = GEq(AlgSys(GEq(K)));
• G ⊆ GEq(AlgSys(G)) and AlgSys(G) = AlgSys(GEq(AlgSys(G))).

Similar relations hold with the GEq operator replaced by either the Eq or
the QEq operator. We may apply some of these either without providing
explicit justification or, simply, by saying “by the Galois connection”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic systems.

• K is called an equational class if there exists E ≤ Eq(F), such that
K = AlgSys(E);

• K is called a quasiequational class if there exists Q ≤ QEq(F), such
that K = AlgSys(Q);

• K is called a guasiequational class if there exists G ≤ GEq(F), such
that K = AlgSys(G).

Clearly, by definition, if K is an equational class, then it is a quasiequational
class and, if it is a quasiequational class, then it is a guasiequational class.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic systems. We define:

• The semantic variety generated by K

VSem(K) = {A ∈ AlgSys(F) ∶ Eq(K) ≤ Eq(A)};
• The semantic quasivariety generated by K

QSem(K) = {A ∈ AlgSys(F) ∶ QEq(K) ≤ QEq(A)};
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• The semantic guasivariety generated by K

GSem(K) = {A ∈ AlgSys(F) ∶ GEq(K) ≤ GEq(A)}.
We have the following straightforward relationships between these classes.

Lemma 120 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class
of F-algebraic systems. Then

K ⊆ GSem(K) ⊆ QSem(K) ⊆ VSem(K).
Proof: The essential observation we use, which has been discussed before,
is that

Eq(K) ≤ QEq(K) ≤ GEq(K).
Thus, we get

{A ∈ AlgSys(F) ∶ (∀g ∈ GEq(K))(A ⊧ g)}
⊆ {A ∈ AlgSys(F) ∶ (∀q ∈ QEq(K))(A ⊧ q)}
⊆ {A ∈ AlgSys(F) ∶ (∀e ∈ Eq(K))(A ⊧ e)}.

In other words, K ⊆ GSem(K) ⊆ QSem(K) ⊆ VSem(K). ∎

Given a class K of F-algebraic systems

• K is a semantic variety if VSem(K) = K;

• K is a semantic quasivariety if QSem(K) = K;

• K is a semantic guasivariety if GSem(K) = K.

We have the following result identifying equational classes with semantic
varieties, quasiequational classes with semantic quasivarieties and guasiequa-
tional classes with semantic guasivarieties.

Proposition 121 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a class of F-algebraic systems.

(a) K is an equational class iff it is a semantic variety;

(b) K is a quasiequational class iff it is a semantic quasivariety;

(c) K is a guasiequational class iff it is a semantic guasivariety.

Proof:
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(a) Suppose, first, that K is an equational class. Then, there exists E ≤
Eq(F), such that K = AlgSys(E). Let A ∈ AlgSys(F), such that
Eq(K) ≤ Eq(A). Then we have

A ∈ AlgSys(Eq(A))
⊆ AlgSys(Eq(K))
= AlgSys(Eq(AlgSys(E)))
= AlgSys(E) = K.

Therefore, K is a semantic variety.

Suppose, conversely, that K is a semantic variety. Set E = Eq(K). Then
K ⊆ AlgSys(Eq(K)) = AlgSys(E). On the other hand, if A ∈ AlgSys(E),
then

Eq(K) = Eq(AlgSys(Eq(K))) = Eq(AlgSys(E)) ≤ Eq(A),
whence, by hypothesis, A ∈ K. Therefore, K = AlgSys(E) and K is an
equational class.

(b) Suppose, first, that K is a quasiequational class. Then, there exists
Q ≤ QEq(F), such that K = AlgSys(Q). Let A ∈ AlgSys(F), such that
QEq(K) ≤ QEq(A). Then we have

A ∈ AlgSys(QEq(A))
⊆ AlgSys(QEq(K))
= AlgSys(QEq(AlgSys(Q)))
= AlgSys(Q) = K.

Therefore, K is a semantic quasivariety.

Suppose, conversely, that K is a semantic quasivariety. SetQ = QEq(K).
Then K ⊆ AlgSys(QEq(K)) = AlgSys(Q). On the other hand, if A ∈
AlgSys(Q), then

QEq(K) = QEq(AlgSys(QEq(K))) = QEq(AlgSys(Q)) ≤ QEq(A),
whence, by hypothesis, A ∈ K. Therefore, K = AlgSys(Q) and K is a
quasiequational class.

(c) Very similar to Part (b).
∎

We define or revisit, next, some operators on classes of F-algebraic sys-
tems that will serve to provide different characterizations to the equational,
quasi-equational and guasiequational classes of F-algebraic systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of F-algebraic
systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.
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• Given Σ ∈ ∣Sign♭∣, we say that A is Σ-K-certified if there exists AΣ ∈ K,
such that EqΣ(A) = EqΣ(AΣ). In this case AΣ is called the Σ-K-
certificate of A.

• We say that A is K-certified if it is Σ-K-certified, for all Σ ∈ ∣Sign♭∣.
This, of course, means that

(∀Σ ∈ ∣Sign♭∣)(∃AΣ ∈ K)(EqΣ(A) = EqΣ(AΣ)).
We write C(K) for the class of all F-algebraic systems that are K-certified.
We say that K is an abstract class whenever every K-certified F-algebraic
system belongs to K, i.e., when C(K) = K.

It is not difficult to show that C is a closure operator on classes of F-
algebraic systems.

Proposition 122 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then
the operator C on classes of F-algebraic systems is a closure operator.

Proof: Suppose K is a class of F-algebraic systems.

• Let A ∈ K. Then, since for all Σ ∈ ∣Sign♭∣, AΣ = A ∈ K is a Σ-K-
certificate for A, we get that A ∈ C(K). Thus, K ⊆ C(K) and C is
inflationary.

• If K ⊆ K′ and A ∈ C(K), then, by definition, for every Σ ∈ ∣Sign♭∣,
there exists a Σ-K-certificate AΣ. Since K ⊆ K′, AΣ ∈ K′ is also a Σ-K′-
certificate. Thus, A ∈ C(K′) and C is also monotone.

• Finally, suppose that A ∈ C(C(K)). Then, there exists, for all Σ ∈∣Sign♭∣, a Σ-C(K)-certificate AΣ for A. Therefore, for all Σ ∈ ∣Sign♭∣
and all Σ′ ∈ ∣Sign♭∣, there exists a Σ′-K-certificate A⟨Σ,Σ

′⟩ for AΣ. But,
then, for every Σ ∈ ∣Sign♭∣,

EqΣ(A) = EqΣ(AΣ) = EqΣ(A⟨Σ,Σ⟩).
Thus, for every Σ ∈ ∣Sign♭∣, there exists a Σ-K-certificate A⟨Σ,Σ⟩ for A,
i.e., A ∈ C(K) and C is also idempotent.

Thus C is a closure operator on classes of F-algebraic systems. ∎

The importance of abstract classes of F-algebraic systems here, and the
reason why they will be our exclusive focus in this section, rests on the fol-
lowing observation to the effect that the validity of a guasiequation transfers
from K-certificates of an F-algebraic system to the F-algebraic system itself.

Lemma 123 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of
F-algebraic systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If A ∈ C(K),
then GEq(K) ≤ GEq(A).
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Proof: Suppose A ∈ C(K), Σ ∈ ∣Sign♭∣ and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K), such
that φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Let AΣ ∈ K be a Σ-K-certificate for A. Then, by
definition φ⃗ ≈ ψ⃗ ⊆ EqΣ(AΣ). Since AΣ ∈ K and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K), we
get φ ≈ ψ ∈ EqΣ(AΣ) = EqΣ(A). Therefore, ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(A). We
conclude that GEq(K) ≤ GEq(A). ∎

Using Lemma 123, we get the following corollary to the effect that all
semantically defined classes of algebraic systems are abstract.

Corollary 124 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. If K is a guasiequational class (and, hence,
a fortiori, if it is a quasiequational class or an equational class), then it is
abstract.

Proof: Suppose K is a guasiequational class defined by the family of F-
guasiequations G ≤ GEq(F) and let A ∈ C(K). Then, by Lemma 123,
GEq(K) ≤ GEq(A), whence

A ∈ AlgSys(GEq(A))
⊆ AlgSys(GEq(K))
= AlgSys(GEq(AlgSys(G)))
= AlgSys(G)
= K.

Thus, K is an abstract class. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of F-algebraic
systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

• Given Σ ∈ ∣Sign♭∣, we say that A is directedly Σ-K-certified if there
exists a collection of F-algebraic systems {AΣ,i ∶ i ∈ I} ⊆ K, such that:

– ⋃i∈I EqωΣ(AΣ,i) is directed, where, for all i ∈ I, EqωΣ(AΣ,i) denotes
the collection of all finite subsets of KerΣ(AΣ,i), and

– KerΣ(A) = ⋃i∈I KerΣ(AΣ,i).
We call {AΣ,i ∶ i ∈ I} the directed Σ-K-certificate of A.

• We say thatA is directedly K-certified if it is directedly Σ-K-certified,
for all Σ ∈ ∣Sign♭∣.

We write C∗(K) for the class of all F-algebraic systems that are directedly
K-certified. We say that K is a directedly abstract class whenever every
directedly K-certified F-algebraic system belongs to K, i.e., when C∗(K) = K.

We show that, like C, C∗ is a closure operator on classes of F-algebraic
systems.
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Proposition 125 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then
the operator C∗ on classes of F-algebraic systems is a closure operator.

Proof: Suppose K is a class of F-algebraic systems.

• Let A ∈ K. Then, since, for all Σ ∈ ∣Sign♭∣, {A} ⊆ K is a directed Σ-K-
certificate for A, we get that A ∈ C∗(K). Thus, K ⊆ C∗(K) and C∗ is
inflationary.

• If K ⊆ K′ and A ∈ C∗(K), then, by definition, for every Σ ∈ ∣Sign♭∣,
there exists a directed Σ-K-certificate {AΣ,i ∶ i ∈ IΣ} ⊆ K. Since K ⊆ K′,{AΣ,i ∶ i ∈ IΣ} ⊆ K′ is also a directed Σ-K′-certificate. Thus, A ∈ C∗(K′)
and C∗ is also monotone.

• Finally, suppose that A ∈ C∗(C∗(K)). Then, for all Σ ∈ ∣Sign♭∣, there
exists {AΣ,i ∶ i ∈ IΣ} ⊆ C∗(K), such that ⋃i∈IΣ EqωΣ(AΣ,i) is directed and
KerΣ(A) = ⋃i∈IΣ KerΣ(AΣ,i). Thus, for all Σ,Σ′ ∈ ∣Sign♭∣ and all i ∈ IΣ,

there exists {AΣ,i,Σ′,j ∶ j ∈ JΣ,i
Σ′ } ⊆ K, such that ⋃j∈JΣ,i

Σ′
EqωΣ′(AΣ,i,Σ′,j)

is directed and, moreover, KerΣ′(AΣ,i) = ⋃j∈JΣ,i

Σ′
KerΣ′(AΣ,i,Σ′,j). Now

notice that, for all Σ ∈ ∣Sign♭∣, the collection

{AΣ,i,Σ,j ∶ i ∈ IΣ, j ∈ J
Σ,i
Σ } ⊆ K

satisfies

KerΣ(A) = ⋃
i∈IΣ

KerΣ(AΣ,i) = ⋃
i∈IΣ

⋃
j∈JΣ,i

Σ

KerΣ(AΣ,i,Σ,j).

Thus, to see that A ∈ C∗(K), it suffices to show that the collection

⋃
i∈IΣ

⋃
j∈JΣ,i

Σ

EqωΣ(AΣ,i,Σ,j)

is directed. Consider X ∈ EqωΣ(AΣ,i,Σ,j) and X ′ ∈ EqωΣ(AΣ,i′,Σ,j′). Then,
as

EqΣ(AΣ,i) = ⋃j∈JΣ,i
Σ

EqΣ(AΣ,i,Σ,j),
EqΣ(AΣ,i′) = ⋃j∈JΣ,i′

Σ

EqΣ(AΣ,i′,Σ,j),
we get that X ∈ EqωΣ(AΣ,i) and X ′ ∈ EqωΣ(AΣ,i′). As ⋃i∈IΣ EqωΣ(AΣ,i) is
directed, there exists k ∈ IΣ and Y ∈ EqωΣ(AΣ,k), such that X,X ′ ⊆ Y .
Now, from EqΣ(AΣ,k) = ⋃j∈JΣ,k

Σ

EqωΣ(AΣ,k,Σ,j), the finiteness of Y and

the fact that the union is directed, there must exist ℓ ∈ JΣ,k
Σ , such that

Y ∈ EqωΣ(AΣ,k,Σ,ℓ). This establishes the directedness of the collection

⋃i∈IΣ⋃j∈JΣ,i
Σ

EqωΣ(AΣ,i,Σ,j).
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Thus C∗ is a closure operator on classes of F-algebraic systems. ∎

The importance of directedly abstract classes of F-algebraic systems stems
from the fact that the validity of a quasiequation transfers from directed K-
certificates of an F-algebraic system to the F-algebraic system itself.

Lemma 126 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of
F-algebraic systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If A ∈ C∗(K),
then QEq(K) ≤ QEq(A).
Proof: Suppose A ∈ C∗(K), Σ ∈ ∣Sign♭∣ and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ QEqΣ(K), such
that φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Let {AΣ,i ∶ i ∈ I} ⊆ K be a directed Σ-K-certificate
for A. Then, by definition φ⃗ ≈ ψ⃗ ⊆ ⋃i∈I EqωΣ(AΣ,i). Since φ⃗ ≈ ψ⃗ is finite and
the union is directed, there exists i ∈ I, such that φ⃗ ≈ ψ⃗ ⊆ EqΣ(AΣ,i). But
AΣ,i ∈ K and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ QEqΣ(K), whence

φ ≈ ψ ∈ EqΣ(AΣ,i) ⊆ ⋃
i∈I

EqΣ(AΣ,i) = EqΣ(A).
Therefore, ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ QEqΣ(A) and QEq(K) ≤ QEq(A). ∎

Using Lemma 126, we get that all semantic quasivarieties of algebraic
systems are directedly abstract.

Corollary 127 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. If K is a quasiequational class (and, hence, a
fortiori, if it is an equational class), then it is directedly abstract.

Proof: Suppose K is a quasiequational class defined by the family of F-
quasiequations Q ≤ QEq(F) and let A ∈ C∗(K). Then, by Lemma 126,
QEq(K) ≤ QEq(A), whence

A ∈ AlgSys(QEq(A))
⊆ AlgSys(QEq(K))
= AlgSys(QEq(AlgSys(Q)))
= AlgSys(Q)
= K.

Thus, K is a directedly abstract class. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩, Ai =⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, F-algebraic systems and ⟨H i, γi⟩ ∶ A→ Ai, i ∈ I, surjective
morphisms. Recall from Section 2.4 that we say that the collection

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

is a subdirect intersection if

⋂
i∈I

Ker(⟨H i, γi⟩) =∆A.
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Given a class K of F-algebraic systems, we write A ∈
⊲

IΠ(K) in case there
exists a subdirect intersection {⟨H i, γi⟩ ∶ A → Ai, i ∈ I}, with Ai ∈ K, for all

i ∈ I. If
⊲

IΠ(K) = K, we say that K is closed under subdirect intersections.

The following lemma provides an alternative characterization of the con-
cept of subdirect intersection.

Lemma 128 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨A,⟨F,α⟩⟩, Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, F-algebraic systems and {⟨H i, γi⟩ ∶ A →
Ai ∶ i ∈ I} a collection of morphisms. The collection {⟨H i, γi⟩ ∶ i ∈ I} is a
subdirect intersection if and only if Ker(⟨F,α⟩) = ⋂i∈I Ker(⟨F i, αi⟩).
Proof: Suppose, first, that {⟨H i, γi⟩ ∶ i ∈ I} is a subdirect intersection and
let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ). Then

⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩) iff αΣ(φ) = αΣ(ψ)
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈∆A

F (Σ)

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I KerΣ(⟨H i, γi⟩)
iff γi

F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ)), i ∈ I

iff αiΣ(φ) = αiΣ(ψ), i ∈ I
iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F i, αi⟩).

The reverse relies on the surjectivity of ⟨F,α⟩. Suppose Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ). Then we get

⟨αΣ(φ), αΣ(ψ)⟩ ∈∆A
F (Σ)

iff ⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩)
iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F i, αi⟩)
iff αiΣ(φ) = αiΣ(ψ), i ∈ I
iff γi

F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ)), i ∈ I

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I KerF (Σ)(⟨H i, γi⟩).
Thus, by the surjectivity of ⟨F,α⟩ we get that ∆A = ⋂i∈I Ker(⟨H i, γi⟩). ∎

It is not difficult to verify that the subdirect intersection operator is also
a closure operator on classes of F-algebraic systems.

Proposition 129 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

the operator
⊲

IΠ on classes of F-algebraic systems is a closure operator.

Proof: Suppose K is a class of F-algebraic systems.

• If A ∈ K, then {⟨I, ι⟩ ∶ A → A}, where ⟨I, ι⟩ ∶ A → A is the identity
morphism, is a subdirect intersection family. Thus, we get that A ∈
⊲

IΠ(K). Hence K ⊆
⊲

IΠ(K) and
⊲

IΠ is inflationary;
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• It is obvious that
⊲

IΠ is monotonic;

• Suppose that A ∈
⊲

IΠ( ⊲IΠ(K)). Then, there exists a subdirect intersec-

tion family {⟨H i, γi⟩ ∶ A → Ai, i ∈ I}, with Ai ∈
⊲

IΠ(K), for all i ∈ I.
Therefore, for each i ∈ I, there exists a sibdirect intersection family{⟨H ij, γij⟩ ∶ Ai → Aij , j ∈ Ji}, with Aij ∈ K, for all i ∈ I and all j ∈ Ji.
Consider {⟨H ij, γij⟩ ○ ⟨H i, γi⟩ ∶ A→ Aij, i ∈ I, j ∈ Ji}.
It is a subdirect intersection family, since

⋂i∈I,j∈Ji Ker(⟨H ij, γij⟩ ○ ⟨H i, γi⟩)
= ⋂i∈I,j∈Ji(γij ○ γi)−1(∆Aij)
= ⋂i∈I,j∈Ji(γi)−1((γij)−1(∆Aij))
= ⋂i∈I(γi)−1(⋂j∈Ji(γij)−1(∆Aij))
= ⋂i∈I(γi)−1(∆Ai)
=∆A.

Since Aij ∈ K, for all i ∈ I, j ∈ Ji, we get that
⊲

IΠ( ⊲IΠ(K)) ⊆ ⊲IΠ(K) and
⊲

IΠ
is idempotent.

Thus,
⊲

IΠ is a closure operator. ∎

A key property concerning subdirect intersections, which is very useful in
applying the concept, is given in the following

Lemma 130 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider
a class K ⊆ AlgSys(F). The class of morphisms

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩)→ B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,
where, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

βK
Σ(φ/ ⋂

B∈K

KerΣ(⟨G,β⟩)) = βΣ(φ),
forms a subdirect intersection.

Proof: It is not difficult to see that βK is well defined and forms a natural
transformation. Moreover, ⟨G,βK⟩ is an F-morphism. Letting Ker(K) =
⋂B∈K Ker(⟨G,β⟩), we have, by definition, the following commutative triangle.

F

❂✚
✚
✚
✚⟨I, πKer(K)⟩ ❩

❩
❩
❩

⟨G,β⟩
⑦

F/Ker(K) ⟨G,βK⟩ ✲ B
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To show that the displayed family forms a subdirect intersection, let Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then, we get

⟨φ/KerΣ(K), ψ/KerΣ(K)⟩ ∈ ⋂B∈K KerΣ(⟨G,βK⟩)
iff βK

Σ(φ/KerΣ(K)) = βK
Σ(ψ/KerΣ(K)), B ∈ K,

iff βΣ(φ) = βΣ(ψ), B ∈ K,
iff φ/KerΣ(K) = ψ/KerΣ(K).

Thus, ⋂B∈K Ker(⟨G,βK⟩) =∆F/Ker(K), showing that

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩)→ B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,
constitutes indeed a subdirect intersection. ∎

Finally, we show that every semantic guasivariety of F-algebraic systems
is closed under subdirect intersections.

Proposition 131 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆

AlgSys(F). If K = GSem(K), then
⊲

IΠ(K) ⊆ K.

Proof: Assume that K = GSem(K). Let X = GEq(K). Assume that A ∈
⊲

IΠ(K) and Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ, such that A ⊧Σ φ⃗ ≈ ψ⃗, i.e.,

φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Since A ∈
⊲

IΠ(K), there exists a subdirect intersection

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

such that Ai ∈ K, for all i ∈ I. Hence, we get φ⃗ ≈ ψ⃗ ⊆ EqΣ(Ai), i ∈ I.
Now, since Ai ∈ K and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ = GEqΣ(K), we conclude that
φ ≈ ψ ∈ EqΣ(Ai), for all i ∈ I. Therefore, φ ≈ ψ ∈ ⋂i∈I EqΣ(Ai) = EqΣ(A), the
latter by the definition of subdirect intersection and Lemma 128. Therefore,
A ⊧Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ. This shows that A ∈ AlgSys(X) = AlgSys(GEq(K)) =
GSem(K) = K. We conclude that

⊲

IΠ(K) ⊆ K, i.e., K is closed under subdirect
intersections. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩, B =⟨B, ⟨G,β⟩⟩ F-algebraic systems and ⟨H,γ⟩ ∶ A → B a surjective morphism.

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨G,β⟩
❘

A ⟨H,γ⟩ ✲ B

In this case we say B is a morphic image of A. Given a class K of F-algebraic
systems, we write B ∈H(K) in case there exists a surjective morphism ⟨H,γ⟩ ∶
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A → B, with A ∈ K. If H(K) = K, we say that K is closed under morphic
images.

It is straightforward to verify that H is a closure operator on classes of
F-algebraic systems.

Proposition 132 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then
the operator H on classes of F-algebraic systems is a closure operator.

Proof: Let K be a class of F-algebraic systems. If A ∈ K, then, using
again the identity ⟨I, ι⟩ ∶ A → A, we see that A ∈ H(K), and, hence, H is
inflationary. It is again obvious that it is monotonic. Finally, if A ∈H(H(K)),
then, there exists a surjective morphism ⟨G,β⟩ ∶ A′ → A, with A′ ∈ H(K),
whence, there also exists a surjective morphism ⟨H,γ⟩ ∶ A′′ → A′, with A′′ ∈ K.
Now the surjective morphism ⟨G,β⟩○ ⟨H,γ⟩ ∶ A′′ → A witnesses the fact that
A ∈H(K). Therefore, H(H(K)) ⊆ H(K), and H is idempotent. Thus, H is a
closure operator. ∎

We show, next, that, if a class K of F-algebraic systems is closed un-
der subdirect intersections and morphic images, then it is also closed under
directed K-certifications.

Proposition 133 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

be a class of F-algebraic systems. Then C∗(K) ⊆H( ⊲IΠ(K)).
Proof: Suppose A ∈ C∗(K). Then, by definition, for all Σ ∈ ∣Sign♭∣, there
exists a collection {AΣ,i ∶ i ∈ IΣ} ⊆ K, such that ⋃i∈IΣ EqωΣ(AΣ,i) is directed
and KerΣ(A) = ⋃i∈IΣ KerΣ(AΣ,i). Fix, for every Σ ∈ ∣Sign♭∣, an iΣ ∈ IΣ and
consider the family of morphisms

⟨HΣ,iΣ, γΣ,iΣ⟩ ∶ F/ ⋂
Σ∈∣Sign♭∣

Ker(AΣ,iΣ)→ AΣ,iΣ , Σ ∈ ∣Sign♭∣.
By Lemma 130, it constitutes a subdirect intersection, whence, since AΣ,iΣ ∈

K, for all Σ ∈ ∣Sign♭∣, we get F/⋂Σ∈∣Sign♭∣Ker(AΣ,iΣ) ∈ ⊲IΠ(K). Now it is not
difficult to see that there exists a morphism ⟨F,α∗⟩ ∶ F/⋂Σ∈∣Sign♭∣Ker(AΣ,iΣ)→
A, such that the following diagram commutes

F

❂✚
✚
✚
✚
✚
✚⟨I, π⟩ ❩

❩
❩
❩
❩
❩

⟨F,α⟩
⑦

F/ ⋂
Σ∈∣Sign♭∣

Ker(AΣ,iΣ) ⟨F,α∗⟩ ✲ A

The natural transformation α∗ is defined, for all Σ′ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ′), by

α∗Σ′(φ/ ⋂
Σ∈∣Sign♭∣

KerΣ′(AΣ,iΣ)) = αΣ′(φ).
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It is well-defined, since, for all Σ′ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ′), we have

⟨φ,ψ⟩ ∈ ⋂Σ∈∣Sign♭∣KerΣ′(AΣ,iΣ) implies ⟨φ,ψ⟩ ∈ KerΣ′(AΣ′,iΣ′)
implies ⟨φ,ψ⟩ ∈ ⋃i∈IΣ′ KerΣ′(AΣ′,i)
implies ⟨φ,ψ⟩ ∈ KerΣ′(A).

Taking into account the surjectivity of ⟨F,α⟩, we conclude that A ∈H( ⊲IΠ(K)).
Therefore, C∗(K) ⊆H( ⊲IΠ(K)). ∎

Finally, it is not difficult to see that semantic varieties are closed under
morphic images.

Proposition 134 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆
AlgSys(F). If K = VSem(K), then H(K) ⊆ K.

Proof: Assume that K = VSem(K). Let X = Eq(K). Assume that A =⟨A, ⟨F,α⟩⟩ ∈ H(K) and Σ ∈ ∣Sign♭∣, φ ≈ ψ ∈ XΣ. Since A ∈ H(K), there exists
B = ⟨B, ⟨G,β⟩⟩ ∈K and ⟨H,γ⟩ ∶ B → A:

F

✠�
�
�
�⟨G,β⟩ ❅

❅
❅
❅

⟨F,α⟩
❘

B ⟨H,γ⟩ ✲ A

Since B ∈ K and φ ≈ ψ ∈ XΣ = EqΣ(K), we conclude that φ ≈ ψ ∈ EqΣ(B).
Therefore, βΣ(φ) = βΣ(ψ). But this gives γG(Σ)(βΣ(φ)) = γG(Σ)(βΣ(ψ)) or,
equivalently, αΣ(φ) = αΣ(ψ). Therefore, A ⊧Σ φ ≈ ψ. This shows that A ∈
AlgSys(X) = AlgSys(Eq(K)) = VSem(K) = K. We conclude that H(K) ⊆ K,
i.e., K is closed under morphic images. ∎

We are now ready to provide alternative characterizations of equational,
quasiequational and guasiequational classes of F-algebraic systems. Namely,
we show that a class of F-algebraic systems is:

• a guasiequational class if and only if it is abstract and closed under
subdirect intersections;

• a quasiequational class if and only if it is directedly abstract and closed
under subdirect intersections;

• an equational class if and only if it is closed under subdirect intersec-
tions and morphic images.

Theorem 135 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a guasiequational class if and only if it is
abstract and closed under subdirect intersections.
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Proof: If K is a guasiequational class, then it is abstract by Corollary 124
and it is closed under subdirect intersections by Proposition 131.

Assume, conversely, that K is abstract and closed under subdirect inter-
sections and set G = GEq(K). Let A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(F), such that
G ≤ GEq(A). Let Σ ∈ ∣Sign♭∣, and φ ≈ ψ ∈ EqΣ(F), such that φ ≈ ψ ∉ EqΣ(A),
i.e., such that αΣ(φ) ≠ αΣ(ψ). Thus, by definition, the guasiequation

⟨EqΣ(A), φ ≈ ψ⟩ ∉ GEqΣ(A).
Therefore, since G ≤ GEq(A), ⟨EqΣ(A), φ ≈ ψ⟩ ∉ GEqΣ(K). Hence, for every
Σ ∈ ∣Sign♭∣ and all φ ≈ ψ ∉ EqΣ(A), there exists K⟨Σ,φ≈ψ⟩ ∈ K, such that
EqΣ(A) ⊆ EqΣ(K⟨Σ,φ≈ψ⟩), but φ ≈ ψ ∉ EqΣ(K⟨Σ,φ≈ψ⟩). We conclude that

EqΣ(A) = ⋂{EqΣ(K⟨Σ,φ≈ψ⟩) ∶ φ ≈ ψ ∉ EqΣ(A)}.
Let, for all Σ ∈ ∣Sign♭∣,

KΣ = {K⟨Σ,φ≈ψ⟩ ∶ φ ≈ ψ ∉ EqΣ(A)}.
• Since, by hypothesis, K is closed under subdirect intersections, and, by

Lemma 130, {⟨FK, αK⟩ ∶ F/Ker(KΣ)→ K,K ∈ KΣ}
is a subdirect intersection, we get that F/Ker(KΣ) ∈ K.

• Since, for all Σ ∈ ∣Sign♭∣,
KerΣ(A) = KerΣ(KΣ) = KerΣ(F/Ker(KΣ))

and F/Ker(KΣ) ∈ K, A ∈ C(K). Since K is abstract, we conclude that
A ∈ K.

Therefore, K is a guasiequational class of F-algebraic systems. ∎

Theorem 136 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a quasiequational class if and only if it is
directedly abstract and closed under subdirect intersections.

Proof: If K is a quasiequational class, then it is directedly abstract by
Corollary 127 and it is closed under subdirect intersections by Proposition
131.

Conversely, suppose that K ⊆ AlgSys(F), such that C∗(K) ⊆ K and
⊲

IΠ(K) ⊆ K. It suffices to show that K = AlgSys(QEq(K)). The left to
right inclusion always holds. For the converse, consider A = ⟨A, ⟨F,α⟩⟩ ∈
AlgSys(QEq(K)). For all Σ ∈ ∣Sign♭∣, all X ∈ EqωΣ(A) and all φ ≈ ψ ∉ EqΣ(A),
we consider the F-quasiequation

qΣ,X,φ≈ψ ∶=X → φ ≈ ψ.
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Since A ⊧Σ EqΣ(A) and A /⊧Σ φ ≈ ψ, we get that qΣ,X,φ≈ψ ∉ QEqΣ(A). Thus,
since A ∈ AlgSys(QEq(K)), we infer that qΣ,X,φ≈ψ ∉ QEqΣ(K). Therefore,
there exists AΣ,X,φ≈ψ ∈ K, such that AΣ,X,φ≈ψ /⊧Σ qΣ,X,φ≈ψ, i.e.,

AΣ,X,φ≈ψ ⊧Σ X and AΣ,X,φ≈ψ /⊧Σ φ ≈ ψ.
Let, for all X ∈ EqωΣ(A),

AΣ,X = {AΣ,X,φ≈ψ ∶ φ ≈ ψ ∉ EqΣ(A)}.
Define, for all X ∈ EqωΣ(A),

AΣ,X ∶= F/Ker(AΣ,X) = F/ ⋂
φ≈ψ∉EqΣ(A)

Ker(AΣ,X,φ≈ψ).

By Proposition 130, for all X ∈ EqωΣ(A), AΣ,X ∈
⊲

IΠ(K) = K. Consequently, it
suffices to show the following:

• ⋃X∈Eqω
Σ
(A)EqωΣ(AΣ,X) is directed;

• KerΣ(A) = ⋃X∈Eqω
Σ
(A)KerΣ(AΣ,X).

Suppose, first, that E ∈ EqωΣ(AΣ,X) and E′ ∈ EqωΣ(AΣ,X′), for some X,X ′ ∈
EqωΣ(A). Then, by construction of AΣ,X and AΣ,X′ , we get that E,E′ ∈
EqωΣ(A). Therefore, E∪E′ ∈ EqωΣ(AΣ,E∪E′) and, hence, ⋃X∈Eqω

Σ
(A)EqωΣ(AΣ,X)

is indeed directed.
Finally, note that, by construction, for all Σ ∈ ∣Sign♭∣,

KerΣ(A) = ⋃
X∈Eqω

Σ
(A)

KerΣ(AΣ,X).
Indeed, for all φ ≈ ψ ∈ EqΣ(F),

• if φ ≈ ψ ∈ KerΣ(A), then, φ ≈ ψ ∈ KerΣ(AΣ,{φ≈ψ}), whence φ ≈ ψ ∈
⋃X∈Eqω

Σ
(A)KerΣ(AΣ,X).

• if φ ≈ ψ ∉ KerΣ(A), then, by construction, for all X ∈ EqωΣ(A), φ ≈ ψ ∉
KerΣ(AΣ,X). Therefore, φ ≈ ψ ∉ ⋃X∈Eqω

Σ
(A)KerΣ(AΣ,X).

Since, for all Σ ∈ ∣Sign♭∣ and all X ∈ EqωΣ(A), AΣ,X ∈ K, we get, by the
definition of C∗ and the two properties just proven, that A ∈ C∗(K) = K.
Thus, K is a quasiequational class of F-algebraic systems. ∎

Theorem 137 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is an equational class if and only if it is
closed under subdirect intersections and morphic images.
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Proof: If K is an equational class, then it is closed under subdirect intersec-
tions by Proposition 131 and under morphic images by Proposition 134.

Suppose, conversely, that K is a class of F-algebraic systems that is closed
under subdirect intersections and morphic images. Set E = Eq(K) and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, such that E ≤ Eq(A). Consider,
for all K = ⟨K, ⟨K,κ⟩⟩ ∈ K, the mapping

⟨K,πK⟩ ∶ F/Ker(K)→K

defined by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
F

✠�
�
�
�⟨I, πK⟩ ❅

❅
❅
❅

⟨K,κ⟩
❘

F/Ker(K) ⟨K,πK⟩ ✲ K

πKΣ(φ/KerΣ(K)) = κΣ(φ).
By Lemma 130, the collection

{⟨K,πK⟩ ∶ F/Ker(K)→ K,K = ⟨K, ⟨K,κ⟩⟩ ∈ K}
forms a subdirect intersection. Since all codomains are in K and K is closed
under subdirect intersections, we get F/Ker(K) ∈ K. Now consider the mor-
phism ⟨F,α∗⟩ ∶ F/Ker(K)→ A,

given, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), by

F

✠�
�
�
�⟨I, πK⟩ ❅

❅
❅
❅

⟨F,α⟩
❘

F/Ker(K) ⟨F,α∗⟩ ✲ A

α∗Σ(φ/KerΣ(K)) = αΣ(φ).
It is well defined, since, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), if ⟨φ,ψ⟩ ∈
KerΣ(K), then, by hypothesis, ⟨φ,ψ⟩ ∈ EqΣ(A) and, hence, αΣ(φ) = αΣ(ψ).
Moreover, since ⟨F,α⟩ is surjective, so is ⟨F,α∗⟩. Since F/Ker(K) ∈ K and K

is closed under morphic images, we conclude that A ∈ K. Therefore, K is an
equational class of F-algebraic systems. ∎

We prove, next, the following result to the effect that, for any guasiequa-
tional class K of F-algebraic systems, the theory families of the equational
structure QK = ⟨F,DK⟩ coincide with the K-congruence systems on F .
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Corollary 138 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. If K is a guasiequational class, then

ThFam(QK) = ConSysK(F).
Proof: We can rely on preceding results, but we also give a direct proof.

Since K is a guasiequational class, by Theorem 135, it is abstract and
closed under subdirect intersections. Since any guasiequational class also
contains a trivial F-algebraic system, we conclude, by Theorem 32, that
ThFam(QK) = ConSysK(F).

Next, we provide a direct proof of the same result. Suppose K is a
guasiequational class of F-algebraic systems.

Let θ ∈ ConSysK(F) and φ ≈ ψ ∈ DK
Σ(θΣ). Then ⟨θΣ, φ ≈ ψ⟩ ∈ GEqΣ(K).

Thus, since, by hypothesis, F/θ ∈ K, F/θ ⊧Σ ⟨θΣ, φ ≈ ψ⟩. But, obviously,
F/θ ⊧Σ θΣ. Therefore, we get F/θ ⊧Σ φ ≈ ψ, or, equivalently, ⟨φ,ψ⟩ ∈ θΣ. We
conclude that DK(θ) = θ and, hence, θ ∈ ThFam(QK).

Assume, conversely, that θ ∈ ThFam(QK) and consider Σ ∈ ∣Sign♭∣, φ⃗, ψ⃗,
φ,ψ ∈ SEN♭(Σ), such that ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K) and F/θ ⊧Σ φ⃗ ≈ ψ⃗.
Then, ⟨φi, ψi⟩ ∈ θΣ, for all i ∈ I. Since ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K) and
θ ∈ ThFam(QK), we get ⟨φ,ψ⟩ ∈ θΣ. Hence, F/θ ⊧Σ φ ≈ ψ. We conclude,
taking into account the fact that K is a guasiequational class, that F/θ ∈
AlgSys(GEq(K)) = K. Thus, θ ∈ ConSysK(F). ∎

We obtain, as a corollary, that, if the relative equational consequences of
two semantic guasivarieties are identical, then the two guasivarieties coincide.

Proposition 139 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

and K′ semantic guasivarieties of F-algebraic systems, such that DK = DK′.
Then K = K′.

Proof: Let A ∈ K and consider Σ ∈ ∣Sign♭∣, φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ), such that

K′ ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩.
This is equivalent to φ ≈ ψ ∈ DK′

Σ (φ⃗ ≈ ψ⃗). By hypothesis, we get φ ≈ ψ ∈
DK

Σ(φ⃗ ≈ ψ⃗), i.e., K ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩. Since A ∈ K, A ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩.
This shows that GEq(K′) ≤ GEq(A) and, hence A ∈ GSem(K′) = K′, the latter
equation by the assumption that K′ is a semantic guasivariety. We conclude
that K ⊆ K′. By symmetry, we get K = K′. ∎

These results allow us to obtain another round of different character-
izations of equational, quasiequational and guasiequational classes of F-
algebraic systems.

To provide the characterization of guasiequational classes, we need, first,
some technical lemmas.
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Lemma 140 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K an
abstract class of F-algebraic systems. K is closed under subdirect intersections
if and only if, for every F-algebraic system A, ConSysK(A) is closed under
intersection.

Proof: Let K be an abstract class of F-algebraic systems. Suppose, first,
that K is closed under subdirect intersections and let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system and {θi ∶ i ∈ I} ⊆ ConSysK(A). Then, by definition,
A/θi ∈ K, for all i ∈ I. Let, for all i ∈ I,

⟨I, ρi⟩ ∶ A/⋂
i∈I

θi → A/θi

be defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

F

✠�
�
�⟨F,π ○ α⟩ ❅

❅
❅

⟨F,πi ○ α⟩
❘

A/⋂
i∈I

θi ⟨I, ρi⟩ ✲ A/θi

ρiΣ(φ/⋂
i∈I

θiΣ) = φ/θiΣ.
Then, we have ⋂i∈I Ker(⟨I, ρi⟩) =∆A/⋂i∈I θ

i
. Hence, the family {⟨I, ρi⟩ ∶ i ∈ I}

forms a subdirect intersection. Thus, by hypothesis, since A/θi ∈ K, for all
i ∈ I, A/⋂i∈I θi ∈ K and, therefore, ⋂i∈I θi ∈ ConSysK(A). We conclude that
ConSysK(A) is closed under intersections.

Suppose, conversely, that, for every F-algebraic system A, ConSysK(A)
is closed under intersection and let

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

be a subdirect intersection, such that Ai ∈ K, for all i ∈ I. For every i ∈ I,
consider the morphism

⟨H i, δi⟩ ∶ A/Ker(⟨H i, γi⟩)→ Ai,

defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

F

✠�
�
�⟨F,πi ○ α⟩ ❅

❅
❅

⟨F i, αi⟩
❘

A/Ker(⟨H i, γi⟩) ⟨H i, δi⟩✲ Ai

δiΣ(φ/KerΣ(⟨H i, γi⟩)) = γiΣ(φ).
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It is clearly well-defined and, moreover, we have, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

φ ≈ ψ ∈ EqΣ(A/Ker(⟨H i, γi⟩)) iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ KerF (Σ)(⟨H i, γi⟩)
iff γi

F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ))

iff αiΣ(φ) = αiΣ(ψ)
iff φ ≈ ψ ∈ EqΣ(Ai).

Thus, Ai is a Σ-K-certificate for A/Ker(⟨H i, γi⟩), for all Σ ∈ ∣Sign♭∣. Since
K is abstract, we get that A/Ker(⟨H i, γi⟩) ∈ K and, hence, Ker(⟨H i, γi⟩) ∈
ConSysK(A). Thus, by hypothesis, ∆A = ⋂i∈I Ker(⟨H i, γi⟩) ∈ ConSysK(A),
showing that A ∈ K. We conclude that K is closed under subdirect intersec-
tions. ∎

Lemma 141 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, K be
an abstract class of F-algebraic systems, A an F-algebraic system and θ ∈
ConSys(A). Then θ ∈ ConSysK(A) if and only if Ker(⟨F,αθ⟩) ∈ ConSysK(F),

F
⟨F,α⟩ ✲ A

⟨I, πθ⟩✲ A/θ
where ⟨F,αθ⟩ = ⟨I, πθ⟩ ○ ⟨F,α⟩.
Proof: Consider the diagram,

F

✠�
�
�⟨I, π⟩ ❅

❅
❅

⟨F,αθ⟩
❘

F/Ker(⟨F,αθ⟩) ⟨F,ρ⟩ ✲ A/θ
where ⟨F,ρ⟩ ∶ F/Ker(⟨F,αθ⟩) → A/θ is defined, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ), by

ρΣ(φ/KerΣ(⟨F,αθ⟩)) = αΣ(φ)/θF (Σ).
This is well-defined, since, if ⟨φ,ψ⟩ ∈ KerΣ(⟨F,αθ⟩), then αθΣ(φ) = αθΣ(ψ), i.e.,
by definition, αΣ(φ)/θF (Σ) = αΣ(ψ)/θF (Σ). Moreover, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), we have

φ ≈ ψ ∈ EqΣ(F/Ker(⟨F,αθ⟩)) iff ⟨φ,ψ⟩ ∈ KerΣ(⟨I, π⟩)
iff ⟨φ,ψ⟩ ∈ KerΣ(⟨F,αθ⟩)
iff φ ≈ ψ ∈ EqΣ(A/θ).

Thus, Eq(F/Ker(⟨F,αθ⟩)) = Eq(A/θ). Since K is abstract, we conclude that
F/Ker(⟨F,αθ⟩) ∈ K if and only if A/θ ∈ K. Therefore, θ ∈ ConSysK(A) if and
only if Ker(⟨F,αθ⟩) ∈ ConSysK(F). ∎
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Lemma 142 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K an
abstract class of F-algebraic systems. ConSysK(F) is closed under intersec-
tion if and only if, for every F-algebraic system A, ConSysK(A) is closed
under intersection.

Proof: The “if” direction is obvious. For the only if, suppose ConSysK(F)
is closed under intersection and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system
and {θi ∶ i ∈ I} ⊆ ConSysK(A). Note that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⋂i∈I θi⟩) iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I θiF (Σ)
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ θiF (Σ), all i ∈ I,
iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F,αθi⟩).

Thus, Ker(⟨F,α⋂i∈I θi⟩) = ⋂i∈I Ker(⟨F,αθi⟩). Using Lemma 141, we now get

θi ∈ ConSysK(A), i ∈ I, iff Ker(⟨F,αθi⟩) ∈ ConSysK(F), i ∈ I,
implies ⋂i∈I Ker(⟨F,αθi⟩) ∈ ConSysK(F)

iff Ker(⟨F,α⋂i∈I θi⟩) ∈ ConSysK(F)
iff ⋂i∈I θi ∈ ConSysK(A).

Therefore, ConSysK(A) is closed under intersection. ∎

Now we formulate our first characterization theorem.

Theorem 143 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a guasiequational class if and only if it is
abstract and ConSysK(F) is closed under intersection.

Proof: We have K is a guasiequational class if and only if, by Theorem
135, it is abstract and closed under subdirect intersections, if and only if,
by Lemma 140, it is abstract and, for all A ∈ AlgSys(F), ConSysK(A) is
closed under intersection, if and only if, by Lemma 142, it is abstract and
ConSysK(F) is closed under intersection. ∎

A similar characterization can be obtained for quasiequational classes.

Theorem 144 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a quasiequational class if and only if it is
directedly abstract and ConSysK(F) is closed under intersection.

Proof: We have K is a quasiequational class if and only if, by Theorem
136, it is directedly abstract and closed under subdirect intersections, if and
only if, by Lemma 140 (taking into account that directed abstraction implies
abstraction), it is directedly abstract and, for all A ∈ AlgSys(F), ConSysK(A)
is closed under intersections, if and only if, by Lemma 142, it is directedly
abstract and ConSysK(F) is closed under intersection. ∎
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Finally, we work with equational classes. Again, to provide an analogous
characterization, we go through a couple of technical lemmas.

The first is an analog of Lemma 140, but instead of addressing subdirect
intersections and intersections of relative congruence systems, it addresses
morphic images and shows that closure of an abstract class under morphic
images amounts to the collection of all relative congruence systems on every
algebraic system being an up-set in the lattice of congruence systems.

Lemma 145 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K

an abstract class of F-algebraic systems. K is closed under morphic images
if and only if, for every F-algebraic system A, ConSysK(A) is an up-set in
ConSys(A).
Proof: Let K be an abstract class of F-algebraic systems.

Assume, first, that K is closed under morphic images and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system and θ, θ′ ∈ ConSys(A), such that θ ≤ θ′ and
θ ∈ ConSysK(A). We consider the morphism ⟨I, ρ⟩ ∶ A/θ → A/θ′, given,
for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

F

✠�
�
�⟨F,αθ⟩ ❅

❅
❅

⟨F,αθ′⟩
❘

A/θ ⟨I, ρ⟩ ✲ A/θ′
ρΣ(φ/θΣ) = φ/θ′Σ.

It is clearly, well-defined, since θ ≤ θ′. Since θ ∈ ConSysK(A), A/θ ∈ K,
whence, since K is closed under morphic images, A/θ′ ∈ K, giving θ′ ∈
ConSysK(A). Therefore, ConSysK(A) is an up-set in ConSys(A).

Suppose, conversely, that ConSysK(A) is an up-set in ConSys(A), for
every F-algebraic system A. Consider F-algebraic systems A = ⟨A, ⟨F,α⟩⟩,
A′ = ⟨A′, ⟨F ′, α′⟩⟩ and a surjective morphism ⟨H,γ⟩ ∶ A→ A′

F

✠�
�
�⟨F,α⟩ ❅

❅
❅

⟨F ′, α′⟩
❘

A ⟨H,γ⟩ ✲ A′

and assume that A ∈ K. Then, we have ∆A ∈ ConSysK(A) iff, by Lemma 141,
Ker(⟨F,α⟩) ∈ ConSysK(F) implies, by the hypothesis and the commutativity
of the triangle, Ker(⟨F ′, α′⟩) ∈ ConSysK(F) iff, again by Lemma 141, ∆A

′ ∈
ConSysK(A′) iff A′ ∈ K. Therefore, K is closed under morphic images. ∎

The second is an analog of Lemma 142, but instead of addressing closure
of the collections of relative congruence systems under intersection, it deals
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with their upward closure under the signature-wise ordering in the lattices
of congruence systems.

Lemma 146 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K an
abstract class of F-algebraic systems. ConSysK(F) is an upset in ConSys(F)
if and only if, for every F-algebraic system A, ConSysK(A) is an upset in
ConSys(A).
Proof: The “if” direction is obvious.

For the “only if” assume that ConSysK(F) is an up-set in ConSys(F)
and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and θ, θ′ ∈ ConSys(A), such
that θ ≤ θ′ and θ ∈ ConSysK(A). Then, taking into account the fact that
Ker(⟨F,αθ⟩) ≤ Ker(⟨F,αθ′⟩) and that ConSysK(F) is an upset and using
Lemma 141, we have

θ ∈ ConSysK(A) iff Ker(⟨F,αθ⟩) ∈ ConSysK(F)
implies Ker(⟨F,αθ′⟩) ∈ ConSysK(F)

iff θ′ ∈ ConSysK(A).
Therefore, ConSysK(A) is an up-set in ConSys(A). ∎

Now we get the following theorem characterizing equational classes of
F-algebraic systems.

Theorem 147 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is an equational class if and only if it is
abstract and ConSysK(F) is an upset in ConSys(F), closed under intersec-
tions.

Proof: We have K is an equational class if and only if, by Theorem 137,
it is closed under subdirect intersections and morphic images, if and only
if, by Proposition 133 and Lemmas 140 and 145, it is abstract and, for
all A ∈ AlgSys(F), ConSysK(A) is an upset in ConSys(A), closed under
intersections, if and only if, by Lemmas 142 and 146, it is abstract and
ConSysK(F) is an upset in ConSys(F), closed under intersections. ∎


