
Chapter 3

The Semantic Leibniz
Hierarchy: Bottom Half

205



206 CHAPTER 3. SEMANTIC HIERARCHY I Voutsadakis

3.1 Introduction

In this chapter we give the main definitions and some key properties of the
main classes of the semantic Leibniz hierarchy. The term Leibniz hierarchy
refers to the classification of logical systems according to the strength of their
relation to classes of algebraic systems. The term semantic refers to the
definition of those classes by means of the Leibniz operator as applied to the
theory families/systems of the corresponding π-institution or, via available
so called transfer theorems, to the filter families/systems of their Leibniz
reduced matrix systems.

As we will see later, there is also a syntactic Leibniz hierarchy whose
classes do not coincide with those of the semantic hierarchy in general. How-
ever, we will show that under certain conditions, there is a correspondence
between the classes in the two hierarchies.

A very rough idea of the main classes of the semantic Leibniz hierarchy,
with the inclusion relations between them, is given in the following diagram.
The hierarchy parallels that of sentential logics, established in the classical
theory (see, e.g., Figure 9 on Page 316 of [86]). However, as we will see in this
and subsequent chapters, in the case of logics formalized as π-institutions,
various refinements of these classes are possible. One of the main goals of
the monograph is to study those refinements and their interrelations. In the
diagram we also give an idea of how this hierarchy is extended with other
classes that are “attached” via dotted links to the main classes. Some of
these extensions will also be studied later.
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In Section 3.2, we introduce three fundamental classes of π-institutions,
namely systemic, stable and loyal π-institutions. Systemicity and stability
play a very important role throughout the monograph and facilitate dis-
cussions about the refinements of the various classes alluded to previously.
Loyalty does not play a comparable role, but it constitutes at the same time a
relaxation of order preservation and of order reflectivity and, as such, defines
an important class close to the bottom of the hierarchy.

A π-institution is called systemic if all of its theory families are theory
systems, i.e., invariant under the action of signature morphisms. In the con-
text of π-institutions, the importance of systemicity was brought to the fore
in the study of protoalgebraicity [105, 104]. Generally speaking, however,
preservation of relations or, more concretely, of distinguished sets, is an im-
portant property in the model theory of first-order logics (see, e.g., page 71
of [17], page 5 of [43] or page 8 of [66]) and, hence, also in the theory of
logical matrices serving as models of sentential logics (see, e.g., page 31 of
[64] or page 200 of [86]). Systemicity is characterized by asserting that the
closure family generated by any sentence of the given π-institution includes
all translates of that sentence via signature morphisms. Systemicity also
affords the chance to introduce the first of a host of so-called transfer theo-
rems. This term refers to a property holding on the lattice of theory families
of a π-institution transferring to the lattice of its filter families on arbitrary
algebraic systems. This paradigm follows an oft-encountered situation in the
theory of sentential logics (see, e.g., Section 3.6 of [86]). In this specific in-
stance, it is shown that a π-institution I = ⟨F,C⟩ is systemic if and only if
every filter family on every F-algebraic system is actually a filter system.

Recall from Chapter 2 that, given a π-institution I and a theory family

T of I ,
←Ð
T is the largest theory system of I included in T . In Section 2.3 it

was shown (Proposition 20) that the Leibniz congruence system associated

with T is included in the one associated with
←Ð
T . We call the π-institution I

stable if, for all theory families T of I , these two Leibniz congruence systems

coincide. Since systemicity directly yields that, for all T ,
←Ð
T = T , it clearly

implies stability. Moreover, this implication is proper. As was the case with
systemicity, stability also transfers.

The last concept introduced in Section 3.2 is that of loyalty. There are
four possible flavors, analogs of which also arise and are pursued for many
other properties considered in the monograph. The general idea of the prop-
erty is, perhaps, best conveyed by family loyalty. The property holds for
a π-institution I if, for no pair T and T ′ of theory families of I is it the
case that T < T ′ and Ω(T ) > Ω(T ′), i.e., I is family loyal if proper inclu-
sion between theory families is never reversed when passing to corresponding
Leibniz congruence systems. As in most other properties that we study, the
other three versions are obtained from the family version as follows:

• left loyalty by replacing on the theory family side T and T ′ by their
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arrow counterparts
←Ð
T ,
←Ð
T ′, respectively;

• right loyalty by replacing on the congruence system side T and T ′ by
←Ð
T

and
←Ð
T ′, respectively, i.e., by considering the inequality Ω(←ÐT ) > Ω(←ÐT ′)

in place of Ω(T ) > Ω(T ′);
• system loyalty by applying the defining condition only on the collection

of theory systems of I , instead of considering arbitrary pairs of theory
families.

It turns out that family loyalty implies stability. Moreover, family loyalty
is the strongest of the four properties, followed by left loyalty, which, in
turn, implies system loyalty, which is equivalent to right loyalty. Both im-
plications are proper. Another feature of family loyalty is that, apart from
trivial π-institutions, all family loyal ones must possess theorems. In closing
the section, it is shown that all flavors of loyalty also transfer from theory
families/systems to filter families/systems over arbitrary algebraic systems.

In Section 3.3, we introduce versions of the monotonicity property. This
property is very important historically, since one of the first major classes
of sentential logics to be studied in detail in the context of abstract alge-
braic logic was that of protoalgebraic logics [28] (see, also, Chapter 1 of [64]
and Section 6.2 of [86]). They are characterized by the monotonicity of the
Leibniz operator on their theory lattices. In the context of π-institutions,
family monotonicity asserts that, for every pair T , T ′ of theory families, if T
is included in T ′, then the Leibniz congruence system of T is also dominated
by that of T ′. Left monotonicity results by replacing, on the theory fam-

ily side (hypothesis), T and T ′ by
←Ð
T and

←Ð
T ′, respectively. Similarly, right

monotonicity ensues when the same is done on the congruence system side
(conclusion). Finally, system monotonicity is monotonicity restricted to the
collection of theory systems. It is shown that family and left monotonic-
ity coincide, as do right and system monotonicity. In agreement with the
terminology inherited by the sentential framework, we call a π-institution
satisfying family monotonicity protoalgebraic, whereas one satisfying sys-
tem monotonicity is termed prealgebraic [105, 104]. Since prealgebraicity
is defined by the same monotonicity condition as protoalgebraicity, but re-
stricted to theory systems, protoalgebraic π-institutions form a subclass of
the class of prealgebraic ones. Moreover, it turns out that a π-institution is
protoalgebraic if and only if it is prealgebraic and stable. Protoalgebraicity
actually implies family loyalty, a condition stronger than stability, and sim-
ilarly, prealgebraicity implies system loyalty. Finally, it is shown that both
monotonicity properties transfer.

In Sections 3.4 and 3.5, we undertake the study of properties that may
be referred to, collectively, as complete monotonicity properties. The reason
for studying these properties can be traced back to the work of Raftery
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[77] in an indirect way, but they are also loosely related, especially in the
study of finitary deductive systems, to the property of continuity, whose
importance was already apparent in [35]. Raftery used a property termed
complete order reflectivity to characterize truth equationality of sentential
logics. The property asserts that, given a sentential logic S , for all collections
T ∪ {T ′} of theories of S , ⋂T ∈T Ω(T ) ⊆ Ω(T ′) implies ⋂T ⊆ T ′. Noting that
in both the lattice of theories and the lattice of congruences on the formula
algebra intersection coincides with meet, this property may be rewritten as

⋀T ∈T Ω(T ) ≤ Ω(T ′) implies ⋀T ≤ T ′. Since, however, join and union of both
theories and congruences differ, depending on whether one adopts a set-
theoretic or a lattice-theoretic point of view, the dual property of complete
order reflectivity may take one of two possible forms. The first asserts that,
for all T ∪ {T ′}, T ′ ⊆ ⋃T implies Ω(T ′) ⊆ ⋃T ∈T Ω(T ). The second stipulates
that, for all T ∪ {T ′}, T ′ ≤ ⋁T implies Ω(T ′) ≤ ⋁T ∈T Ω(T ). The translation
of complete order reflectivity in the categorical context was first introduced
in [107]. Various flavors of it are studied in detail in Section 3.8. In Sections
3.4 and 3.5, we study the properties corresponding to the two aforementioned
duals.

In Section 3.4, we look at the various flavors of complete ⋃-monotonicity.
Again, the simplest one is family complete ⋃-monotonicity. A π-institution
is family completely ⋃-monotone if, for all collections T ∪{T ′} of theory fam-
ilies, T ′ ≤ ⋃T ∈T T implies Ω(T ′) ≤ ⋃T ∈T Ω(T ). Left complete ⋃-monotonicity
results by replacing all theory families appearing in the hypothesis by their
arrow counterparts. Similarly, right complete ⋃-monotonicity arises by per-
forming the same replacement in the conclusion. Finally, system complete

⋃-monotonicity is the property resulting by applying the same condition
defining the family version to collections of theory systems only. We use the
abbreviation c∪-monotonicity to refer to complete ⋃-monotonicity. More-
over, when we drop the ⋃ (or ∪) from the notation, it is to this version of
complete monotonicity that we refer to. Family or left c∪-monotonicity are
strong enough to imply stability. Moreover, family c∪-monotonicity is equiv-
alent to possessing both left and right c∪-monotonicity. Either left or right
c∪-monotonicity on its own implies system c∪-monotonicity. For these four
properties, it is also the case that they transfer from theory families/systems
to filter families/systems on arbitrary algebraic systems. In closing, it is es-
tablished that left c∪-monotonicity implies protoalgebraicity, whereas system
c∪-monotonicity is sufficient for prealgebraicity.

In Section 3.5, we undertake a similar study of the complete monotonic-
ity properties involving the join instead of the union operation. We say
that a π-institution I = ⟨F,C⟩ is family completely ⋁-monotone, abbrevi-
ated family c∨-monotone, if, for every collection T ∪ {T ′} of theory families,
T ′ ≤ ⋁I T implies Ω(T ′) ≤ ⋁F

T ∈T Ω(T ), where ⋁I denotes the join in the
complete lattice of theory families of I and ⋁F the join in the complete
lattice of congruence systems on F. As in Section 3.4, left c∨-monotonicity
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results by replacing in the hypothesis every theory family by its arrow coun-
terpart, right c∨-monotonicity by doing the same in the conclusion and sys-
tem c∨-monotonicity by restricting the defining implication to all collections
of theory systems, instead of insisting that it hold for arbitrary collections
of theory families. Working with join instead of union leaves most of our
conclusions intact. It is still the case that family c∨-monotonicity and left
c∨-monotonicity are each sufficient for stability. Family c∨ monotonicity is
equivalent to the combination of left and right c∨-monotonicities and each
of the latter implies system c∨-monotonicity. And it is still the case that
left c∨-monotonicity implies protoalgebraicity and system c∨-monotonicity
implies prealgebraicity. There are, however, some differences between c∨-
monotonicity properties and their counterparts using union. One example
is that c∨-monotonicity properties, unlike c∪-monotonicity properties, do not
transfer in general. This is due to the fact that, unlike union, the join opera-
tion does not commute with inverse surjective morphisms between algebraic
systems. Another difference, which may also be viewed as a partial justifi-
cation for considering both properties, is that the corresponding classes in
the two hierarchies are incomparable. For instance, there exists a family
c∪-monotone π-institution which is not family c∨-monotone and vice-versa.

In Section 3.6 we switch from the study of monotonicity properties to the
study of injectivity properties. The importance of injectivity in the context
of sentential logics was already apparent in the work of Blok and Pigozzi
[35], but it was brought more in focus following its generalizations, first by
Herrmann [43] and, ultimately, with the work of Czelakowski and Jansana
[62] on weakly algebraizable logics. A π-institution is family injective if, for
all theory families T and T ′, Ω(T ) = Ω(T ′) implies T = T ′, i.e., when the
Leibniz operator on theory families is injective. Left injectivity is obtained

by replacing T and T ′ on the theory family side (conclusion) by
←Ð
T and

←Ð
T ′,

respectively, while right injectivity by doing the same on the congruence
system side (hypothesis). Finally, system injectivity imposes injectivity of
the Leibniz operator on theory systems only. Here, right injectivity turns
out to be the most potent of the four properties and it implies systemicity.
Then comes family injectivity, followed by left injectivity, which, in turn,
implies system injectivity. Right injectivity is equivalent to system injectivity
coupled with systemicity, whereas, if system injectivity is combined with
stability, they imply left injectivity. All injectivity properties transfer.

In the last two sections of the chapter, Sections 3.7 and 3.8, we study
reflectivity properties, which are dual to the monotonicity properties delved
into in Sections 3.3, 3.4 and 3.5.

In Section 3.7, we study the various flavors of reflectivity. In the context
of algebraizable sentential logics the importance of this property was at least
implicit, if not apparent, in the work of Blok and Pigozzi [35]. And, as was
the case with injectivity, it kept its central role in the generalizations to infini-
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tary algebraizable [43] and weakly algebraizable logics [62]. A π-institution
I is family reflective if, for all theory families T and T ′, Ω(T ) ≤ Ω(T ′) im-
plies T ≤ T ′, i.e., if the Leibniz operator is order reflecting on the theory
families of I . Left reflectivity replaces T and T ′ on the theory family side
(conclusion) by their arrow counterparts, while right reflectivity applies the
same replacement on the congruence system side (hypothesis). Finally, sys-
tem reflectivity imposes order reflectivity of the Leibniz operator on theory
systems only. Each of family and right reflectivity implies systemicity. This
allows proving that these two versions of reflectivity are actually equivalent.
They imply left reflectivity, which dominates system reflectivity. System
reflectivity together with stability imply left reflectivity. System reflectiv-
ity, coupled with systemicity, is equivalent to family reflectivity. All these
properties transfer. Section 3.7 ends by establishing some relations between
reflectivity and properties introduced in preceding sections. More precisely,
it is shown that family, left and system reflectivity imply, respectively, right,
left and system injectivity. Additionally, family, left and system reflectivity
imply, respectively, family, left and system loyalty.

In Section 3.8, we study versions of complete reflectivity. As was men-
tioned previously, in the context of sentential logics, the property was intro-
duced by Raftery in [77], where it was used to characterize truth equationality
of sentential logics. A logic is truth equational if the filters of its Leibniz re-
duced matrix models are equationally definable. This is equivalent to the
assertion that the filters of arbitrary matrix models are definable using equa-
tions via the corresponding Leibniz congruences. Raftery showed that truth
equationality is equivalent to the complete order reflectivity of the Leibniz
operator on the theories of the logic, i.e., the property that, for every col-
lection T ∪ {T ′} of theories, ⋂T ∈T Ω(T ) ⊆ Ω(T ′) implies ⋂T ⊆ T ′ (see, e.g.,
pages 371-382 of [86]; in particular, Theorem 6.101). Given a π-institution
I , family complete reflectivity asserts that, for every collection T ∪ {T ′} of
theory families of I , ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ≤ T ′. Left complete
reflectivity is obtained by replacing on the theory family side (conclusion)
each theory appearing by its arrow version. Similarly, right complete reflec-
tivity results by performing the same replacement on the congruence system
side (hypothesis). System complete reflectivity is the restriction of the con-
dition defining family complete reflectivity on collections of theory systems.
We abbreviate complete reflectivity by c-reflectivity. On their own, family
and right c-reflectivity each implies systemicity, and this allows showing that
they are equivalent properties. They imply left c-reflectivity, which, in turn,
implies system c-reflectivity. System c-reflectivity, coupled with stability im-
plies left c-reflectivity. Moreover, together with systemicity, it turns out to be
equivalent to family c-reflectivity. All three different properties transfer and
it is fairly obvious that they generalize the corresponding reflectivity prop-
erties, since the latter are special cases of the former in which the collection
T is a singleton.
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The properties of systemicity, stability, loyalty, monotonicity, c∪-mono-
tonicity, c∨-monotonicity, injectivity, reflectivity and c-reflectivity constitute
the building blocks of the hierarchies of π-institutions that will be presented
and studied in subsequent chapters of the monograph.

3.2 Systemicity, Stability and Loyalty

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Recall that, by Propo-

sition 42, for every theory family T ∈ ThFam(I), ←ÐT is the largest theory sys-

tem included in T . Moreover, recall that, by Proposition 20, Ω(T ) ≤ Ω(←ÐT ).
Definition 148 (Systemicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F. I is called systemic if
ThFam(I) = ThSys(I), or, equivalently, if, for all T ∈ ThFam(I),

←Ð
T = T.

Another interesting characterization is the following. Recall that, given
an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, a π-institution I = ⟨F,C⟩, based
on F, and a sentence family X ∈ SenFam(F), we denote by

C(X) = {CΣ(X)}Σ∈∣Sign♭∣
the least theory family of I including X . Moreover if Φ∪{φ} ⊆ SEN♭(Σ), we
use C(Φ) and C(φ) ∶= C({φ}) to denote C(X), where X = {XΣ′}Σ′∈∣Sign♭∣ is

such that, for all Σ′ ∈ ∣Sign♭∣, XΣ′ = { Φ, if Σ′ = Σ
∅, if Σ′ ≠ Σ

.

Proposition 149 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is systemic if and only if, for all Σ,Σ′ ∈∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all φ ∈ SEN♭(Σ),
SEN♭(f)(φ) ∈ CΣ′(φ).

Proof: Suppose, first, that I is systemic. Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Since, by hypothesis, for all T ∈ ThFam(I), such that φ ∈ TΣ, we have, for
all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ TΣ′ , we conclude that
for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ CΣ′(φ).

Assume, conversely, that the displayed condition in the statement holds
and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ TΣ.
Consider Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then, by hypothesis,

SEN♭(f)(φ) ∈ CΣ′(φ)
= ⋂{T ′Σ′ ∶ T ′ ∈ ThFam(I), φ ∈ T ′Σ}
⊆ TΣ′ .
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Thus, T ∈ ThSys(I) and I is systemic. ∎

The following is one of many typical transfer theorems that we will en-
counter for various properties regarding π-institutions.

Theorem 150 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is systemic if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, FiFamI(A) = FiSysI(A).
Proof: The right to left implication follows by considering the F-algebraic
system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is the identity morphism, and
taking into account the fact that, by Lemma 51, FiFamI(F) = ThFam(I)
and FiSysI(F) = ThSys(I).

For the left to right implication, suppose that I is systemic and assume
that A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system and T ∈ FiFamI(A). Then, by
Lemma 51, α−1(T ) ∈ ThFam(I). Thus, by hypothesis, α−1(T ) ∈ ThSys(I).
Hence, using again Lemma 51, T ∈ FiSysI(A). Therefore FiFamI(A) =
FiSysI(A). ∎

Now we introduce another important class of π-institutions in the seman-
tic Leibniz hierarchy.

Definition 151 (Stability) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic sys-
tem and I = ⟨F,C⟩ a π-institution based on F. I is called stable if, for all
T ∈ ThFam(I),

Ω(←ÐT ) = Ω(T ).
Since, by Proposition 20, it always holds that Ω(T ) ≤ Ω(←ÐT ), we have

that

I is stable if and only if, for all T ∈ ThFam(I), Ω(←ÐT ) ≤ Ω(T ).
The following obvious relation holds between these two classes.

Proposition 152 Let I = ⟨F,C⟩ be a π-institution. If I is systemic, then it
is stable.

Proof: If I is systemic, then, for all T ∈ ThFam(I), ←ÐT = T , whence Ω(←ÐT ) =
Ω(T ). Thus, I is stable. ∎

We denote this relation by the following diagram, where the arrow repre-
sents inclusion.

Systemic

Stable
❄

We show that this is a proper inclusion, i.e., there are stable π-institutions
that are not systemic.
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Example 153 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is a category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone (consisting only of the projection natural trans-
formations).

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
There is a single theory family which is not a theory system, namely

T = {{0,1},{b}}. So I is not systemic. On the other hand, we have Ω(←ÐT ) =
Ω({{1},{b}}) = ∆F = Ω(T ). Therefore, I is stable.

The stability property transfers from the theory families of a π-institution
I = ⟨F,C⟩ to all I-filter families on all F-algebraic systems.

Theorem 154 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is stable if and only if, for every

F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A), ΩA(←ÐT ) = ΩA(T ).
Proof: The “if” part is trivial, since stability is defined by the given condition
on all theory families of the π-institution, which, by Lemma 51, are exactly
the I-filter families on F = ⟨F, ⟨I, ι⟩⟩.

For the “only if” assume that I is stable and let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system and T ∈ FiFamI(A). Then we have:

α−1(ΩA(←ÐT )) = Ω(α−1(←ÐT )) (by Proposition 24)

= Ω(←ÐÐÐÐα−1(T )) (by Lemma 6)
= Ω(α−1(T ))

(by Lemma 51, Proposition 42 and stability)
= α−1(ΩA(T )) (by Proposition 24).
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By surjectivity of ⟨F,α⟩, we get that ΩA(←ÐT ) = ΩA(T ). ∎

Next, we introduce various versions of the loyalty property and the cor-
responding classes in the loyalty hierarchy of π-institutions.

Definition 155 (Loyalty) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic sys-
tem and I = ⟨F,C⟩ a π-institution based on F.

• I is called family loyal if, for all T,T ′ ∈ ThFam(I),
T /< T ′ or Ω(T ) /> Ω(T ′).

• I is called left loyal if, for all T,T ′ ∈ ThFam(I),
←Ð
T /< ←ÐT ′ or Ω(T ) /> Ω(T ′).

• I is called right loyal if, for all T,T ′ ∈ ThFam(I),
T /< T ′ or Ω(←ÐT ) /> Ω(←ÐT ′).

• I is called system loyal if, for all T,T ′ ∈ ThSys(I),
T /< T ′ or Ω(T ) /> Ω(T ′).

We establish relationships between these properties that lead to a loyalty
hierarchy of π-institutions.

We show, first, that family loyalty implies stability.

Lemma 156 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family loyal, then it is stable.

Proof: Suppose I is family loyal and let T ∈ ThFam(I). We must show

that Ω(←ÐT ) = Ω(T ). If
←Ð
T = T , then the conclusion is obvious. So suppose

←Ð
T ≠ T . Then, by Proposition 42, we have

←Ð
T < T . Using family loyalty, we

get Ω(←ÐT ) /> Ω(T ). Hence, by Proposition 20, we have Ω(←ÐT ) = Ω(T ). We

conclude that, for all T ∈ ThFam(I), Ω(←ÐT ) = Ω(T ), whence I is stable. ∎

There are π-institutions that are stable but not family loyal. The follow-
ing example shows that family loyal π-institutions form a proper subclass of
the class of stable π-institutions.

Example 157 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category, with object Σ;
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• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1};
• N ♭ is the trivial clone (consisting only of the projections).

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {∅,{1},{1,0}}.
The lattice of theory families (which are all systems) and the corresponding
Leibniz congruence systems are given in the diagram.

{0,1}.........❥
∇F

{1}

..
..
..
..
..
..
..
..
.
✣

.........❥
∆F

∅

Since all theory families are theory systems, I is clearly stable. On the other
hand, letting T = {∅} and T ′ = {{1}}, we have T < T ′ and Ω(T ) > Ω(T ′).
Therefore, I is not family loyal.

Now we can establish the following relationships between the four loyalty
properties.

Proposition 158 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family loyal then it is left loyal;

(b) If I is left loyal, then it is system loyal;

(c) I is system loyal if and only if it is right loyal;

(b) I is family loyal if and only if it is system loyal and stable.
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Proof:

(a) Suppose I is family loyal. Let T,T ′ ∈ ThFam(I), such that
←Ð
T <

←Ð
T ′.

Then, by family loyalty Ω(←ÐT ) /> Ω(←ÐT ′). But, by Lemma 156, I is
stable. So we get Ω(T ) /> Ω(T ′). We conclude that I is left loyal.

(b) Suppose that I is left loyal and let T,T ′ ∈ ThSys(I), such that Ω(T ) >
Ω(T ′). Then, by left loyalty,

←Ð
T /< ←ÐT ′. But, since T,T ′ are theory

systems,
←Ð
T = T and

←Ð
T ′ = T ′. Hence T /< T ′. Therefore I is system

loyal.

(c) Suppose, now, that I is right loyal and let T,T ′ ∈ ThSys(I), such that

T < T ′. Then, by right loyalty, Ω(←ÐT ) /> Ω(←ÐT ′). Thus, since T,T ′ are
theory systems, Ω(T ) /> Ω(T ′). We conclude that I is system loyal.

Suppose, conversely, that I is system loyal and let T,T ′ ∈ ThFam(I),
such that T < T ′. Then, by Lemma 1,

←Ð
T ≤

←Ð
T ′. If

←Ð
T =

←Ð
T ′, then

Ω(←ÐT ) /> Ω(←ÐT ′). On the other hand, if
←Ð
T <
←Ð
T ′, then, by system loyalty,

Ω(←ÐT ) /> Ω(←ÐT ′). We conclude that I is right loyal.

(d) Suppose, first, that I is family loyal. Then, by Lemma 156, it is stable
and it is, a fortiori, system loyal.

Suppose, conversely, that I is system loyal and stable. Let T,T ′ ∈
ThFam(I), such that Ω(T ) > Ω(T ′). By stability, Ω(←ÐT ) > Ω(←ÐT ′).
Therefore, by system loyalty,

←Ð
T /< ←ÐT ′. Since Ω(←ÐT ) ≠ Ω(←ÐT ′), we also

have,
←Ð
T ≰
←Ð
T ′. Therefore, by Lemma 1, T /< T ′. We conclude that I is

family loyal.
∎

By Proposition 158, the following loyalty hierarchy arises.

Family Loyal
..........❘

Left Loyal
❄

Stable

System/Right Loyal
❄

Example 157 brings to the fore another interesting point, namely, that
family loyal π-institutions must have theorems, unless they are trivial.

Proposition 159 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) If I is trivial, then it is family loyal.

(b) If I is family loyal and non-trivial, then it has theorems.

Proof:

(a) If I is trivial, then the only Leibniz congruence system is ∇F. So I is
family loyal.

(b) Suppose I is family loyal and non-trivial. By non-triviality, it has a
theory family T , such that, for some Σ ∈ ∣Sign♭∣, TΣ ≠ ∅ and TΣ ≠
SEN(Σ). Therefore, we have ∅ < T . So, by loyalty, Ω(∅) /> Ω(T ). But
Ω(∅) = ∇F. So ∇F /> Ω(T ). This shows that Ω(T ) = ∇F, which is a
contradiction, since ∇F cannot be compatible with any theory family
T , with a component TΣ ≠ ∅,SEN(Σ).

∎

We also have the following straightforward relationship.

Proposition 160 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is systemic and system loyal, then it
is family loyal.

Proof: If I is systemic, then ThFam(I) = ThSys(I) and, as a result, for all

T ∈ ThFam(I), ←ÐT = T . Thus, under this hypothesis, all loyalty properties
coincide. ∎

The next example serves many purposes:

• It shows a π-institution that is left loyal, but not family loyal.

• It shows a π-institution that is system loyal, but not stable, and, hence,
by Proposition 158, not family loyal.

• It shows an example of a nontrivial π-institution without theorems that
is system loyal, but not family loyal, illustrating Proposition 159.

Example 161 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and two non-identity mor-
phisms f, g ∶ Σ → Σ, such that f ○ f = f , g ○ g = g, g ○ f = g and
f ○ g = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(f)(0) =
SEN♭(f)(1) = 0, SEN♭(g)(0) = SEN♭(g)(1) = 1;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {∅,{0},{1},{0,1}}.
The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T

∅ ∅{0} ∅{1} ∅{0,1} {0,1}
The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1}
�
�
� ❅

❅
❅

.....................③ ∇F

{0} {1}
...

...
...

...
...

...
...❃

..........................③❅
❅
❅ �

�
�

.......❥
∆F

∅

Note that, since
←ÐÐÐ{{0}} = {∅} and these theory families map to different con-

gruence systems, I is not stable. I is not family loyal, since {∅} < {{0}} and

Ω({∅}) = ∇F > ∆F = Ω({{0}}). However, I is left loyal, since, if
←Ð
T <

←Ð
T ′,

then T ′ = {{0,1}} and, therefore, since Ω(T ′) = ∇F, Ω(T ) /> Ω(T ′).
Now we provide a variety of additional examples, all showcasing π-insti-

tutions that are left loyal (and, hence, also system loyal), but fail to be family
loyal.

Example 162 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

Taking into account the fact that {{1,2}} is a theory family that is not a
theory system, it is easy to see that this π-institution is left loyal (and, hence,
system loyal), but fails to be family loyal.

Example 163 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that {{1,2}} is the only theory family that is not a theory system.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

{0,1,2} ...............................................................✲ ∇F

✚✚✚✚✚ ❩❩❩❩❩ ✚✚✚✚✚ ❩❩❩❩❩{1,2} {0,2} .....✲ {0,2},{1} {0,1},{2}...............................................③

❩❩❩❩❩ ✚✚✚✚✚ ❩❩❩❩❩ ✚✚✚✚✚

.......
.......

.......
.......

.......
.......

.....✿

{2} ∆F

Again it is not difficult to see that I is left and right loyal, but fails to be
family loyal.

Example 164 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and two non-identity mor-
phisms f, g ∶ Σ → Σ, such that f ○ f = f , g ○ g = g, g ○ f = g and
f ○ g = f ;
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• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2 and SEN♭(g)(0) = 1, SEN♭(g)(1) =
1, SEN♭(g)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:

T
←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} .................................✲ ∇F

�
�
� ❅

❅
❅{1,2} {0,2} {0,1},{2}

❅
❅
❅

..................................q
�
�
�

..............s....
....

....
....

....
.✯

{2} ∆F

Again it is easy to check, keeping in mind that {{2}} and {{0,1,2}} are the
only theory systems, that I is left loyal (and, hence, system loyal), but not
family loyal.

Finally, an example of a system loyal π-institution that is not left loyal.
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Example 165 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2,3} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2 and SEN♭(f)(3) = 3;

• N ♭ is the clone generated by the following two unary natural transfor-
mations σ♭, τ ♭ ∶ SEN♭ → SEN♭:

x σ♭Σ(x) τ ♭Σ(x)
0 0 0
1 1 1
2 0 3
3 3 3

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
The following table gives the theory families and the theory systems of the

π-institution I:

T
←Ð
T{3} {3}{2,3} {2,3}{1,2,3} {2,3}{0,1,2,3} {0,1,2,3}

The lattice of theory families and the corresponding Leibniz congruence sys-
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tems are shown in the diagram.

{0,1,2,3} .....................✲ ∇F

{1,2,3}
.....................❘

{{0,1},{2},{3}}
{2,3}...........

.......
...✿

...
...

...
...

...
...

...❃

{3} ∆F

I has three theory systems, Thm(I) = {{3}}, T = {{2,3}} and SEN ={{0,1,2,3}}. An inspection of the diagram shows that I is system loyal.
On the other hand, setting T ′ = {{1,2,3}}, we get that

←Ð
T ′ =
←ÐÐÐÐÐÐ{{1,2,3}} = {{2,3}} > {{3}} = ←ÐÐÐ{{3}} =←ÐÐÐÐÐThm(I),

whereas
Ω(T ′) = ∆F < {{0,1},{2},{3}} = Ω(Thm(I)).

Therefore, I is not left loyal.

For all loyalty properties, we have transfer theorems, detailed in the var-
ious parts of the following result.

Theorem 166 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) I is family loyal if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A),
T /< T ′ or ΩA(T ) /> ΩA(T ′);

(b) I is left loyal if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T,T ′ ∈ FiFamI(A),

←Ð
T /<←ÐT ′ or ΩA(T ) /> ΩA(T ′);

(c) I is system loyal if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A),
T /< T ′ or ΩA(T ) /> ΩA(T ′).
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Proof:

(a) For the “if”, suppose that the loyalty condition holds for the I-filter
families of every F-algebraic system. Then it holds, in particular, for
the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is the iden-
tity morphism. The fact that, by Lemma 51, FiFamI(F) = ThFam(I),
concludes the proof.

Suppose, conversely, that I is family loyal. Let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system and T,T ′ ∈ FiFamI(A), such that T < T ′. We must
show that ΩA(T ) /> ΩA(T ′). Since T < T ′, we must have α−1(T ) ≤
α−1(T ′). However, by surjectivity of ⟨F,α⟩, if α−1(T ) = α−1(T ′), we
get T = T ′. Thus, we must have α−1(T ) < α−1(T ′). By Lemma 51,
α−1(T ), α−1(T ′) ∈ ThFam(I). Thus, by loyalty, we get Ω(α−1(T )) />
Ω(α−1(T ′)). Thus, by Proposition 24,

α−1(ΩA(T )) /> α−1(ΩA(T ′)).
The following claim now completes the proof:

Claim: α−1(ΩA(T )) /> α−1(ΩA(T ′)) implies ΩA(T ) /> ΩA(T ′).
We work by contraposition. Assume ΩA(T ) > ΩA(T ′). Then, clearly,
α−1(ΩA(T )) ≥ α−1(ΩA(T ′)). Moreover, by surjectivity, α−1(ΩA(T )) ≠
α−1(ΩA(T ′)). Thus, we conclude that α−1(ΩA(T )) > α−1(ΩA(T ′)).

(b) If the left loyalty condition holds for the I-filter families of every F-
algebraic system, it holds, in particular, for the F-algebraic system F .
Since, by Lemma 51, FiFamI(F) = ThFam(I), I is left loyal.

Suppose, conversely, that I is left loyal. Let A = ⟨A, ⟨F,α⟩⟩ be an F-

algebraic system and T,T ′ ∈ FiFamI(A), such that
←Ð
T <
←Ð
T ′. We must

show that ΩA(T ) /> ΩA(T ′). Since
←Ð
T <

←Ð
T ′, we must have α−1(←ÐT ) ≤

α−1(←ÐT ′). However, by surjectivity of ⟨F,α⟩, if α−1(←ÐT ) = α−1(←ÐT ′), we

get
←Ð
T =

←Ð
T ′. Thus, we must have α−1(←ÐT ) < α−1(←ÐT ′). By Lemma 51,

α−1(T ), α−1(T ′) ∈ ThFam(I). By Lemma 6,
←ÐÐÐÐ
α−1(T ) < ←ÐÐÐÐα−1(T ′). Thus,

by left loyalty, we get Ω(α−1(T )) /> Ω(α−1(T ′)). Thus, by Proposition
24, α−1(ΩA(T )) /> α−1(ΩA(T ′)). The claim used in Part (a) is used
once more to complete the proof of Part (b).

(c) The proof follows along the lines of that of Part (a).
∎

As a concluding remark, we rephrase the definitions of family and of
system loyalty in terms of mappings between partially ordered sets.

Given two posets P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, we call a mapping f ∶ P → Q

loyal if, for all p1, p2 ∈ P ,

p1 < p2 implies f(p1) ⊁ f(p2).
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Then we have the following easy consequence (or, rather, reformulation)
of the definition, combined with Theorem 166.

For a π-institution I = ⟨F,C⟩ and an F-algebraic system A, we define

ConSysI∗(A) ∶= ConSysAlgSys∗(I)(A);
ConSysI(A) ∶= ConSysAlgSys(I)(A).

Moreover, we set

ConSys∗(I) ∶= ConSysI∗(F) = ConSysAlgSys∗(I)(F);
ConSys(I) ∶= ConSysI(F) = ConSysAlgSys(I)(F).

Proposition 167 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family loyal;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is loyal;

(c) ΩA ∶ FiFamI(A)→ ConSysI∗(A) is loyal, for every F-algebraic system
A.

Similarly, we get

Proposition 168 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system loyal;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is loyal;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is loyal, for every F-algebraic system
A.

3.3 Monotonicity

In this section we define and study classes of π-institutions that are defined
using monotonicity properties of the Leibniz operator.

Definition 169 (Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called family monotone if, for all T,T ′ ∈ ThFam(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).
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• I is called left monotone if, for all T,T ′ ∈ ThFam(I),
←Ð
T ≤
←Ð
T ′ implies Ω(T ) ≤ Ω(T ′).

• I is called right monotone if, for all T,T ′ ∈ ThFam(I),
T ≤ T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′).

• I is called system monotone if, for all T,T ′ ∈ ThSys(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).

First, we show a very useful lemma to the effect that family monotonicity
implies stability.

Lemma 170 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family monotone, then I is stable.

Proof: Let T ∈ ThFam(I). Then we have, by Proposition 42, that T,
←Ð
T ∈

ThFam(I), such that
←Ð
T ≤ T . Therefore, by family monotonicity, Ω(←ÐT ) ≤

Ω(T ). However, by Proposition 20, Ω(T ) ≤ Ω(←ÐT ). Therefore, we get that

Ω(←ÐT ) = Ω(T ). So I is stable. ∎

Using Lemma 170, we can now show that family and left monotonicity
are equivalent properties.

Proposition 171 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family monotone if and only if it is
left monotone.

Proof: Suppose, first, that I is left monotone. Let T,T ′ ∈ ThFam(I),
such that T ≤ T ′. Then, by Lemma 1,

←Ð
T ≤

←Ð
T ′. Therefore, by hypothesis,

Ω(T ) ≤ Ω(T ′). Hence I is family monotone.
Suppose, conversely, that I is family monotone. Let T,T ′ ∈ ThFam(I),

such that
←Ð
T ≤
←Ð
T ′. Then, by hypothesis, Ω(←ÐT ) ≤ Ω(←ÐT ′). But, by Lemma 170,

I is stable, whence Ω(←ÐT ) = Ω(T ) and Ω(←ÐT ′) = Ω(T ′). Thus, we conclude
that Ω(T ) ≤ Ω(T ′). Therefore, I is left monotone. ∎

An interesting observation is that system monotonicity may also be de-
fined by using arbitrary theory families, but modifying the application of
monotonicy to that of “arrow monotonicity”. Formally speaking, given a
π-institution I = ⟨F,C⟩, we say that I is arrow monotone if, for all
T,T ′ ∈ ThFam(I),

←Ð
T ≤
←Ð
T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′).
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Lemma 172 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system monotone if and only if it
is arrow monotone.

Proof: Suppose, first, that I is system monotone and let T,T ′ ∈ ThFam(I),
such that

←Ð
T ≤

←Ð
T ′. Since, by Proposition 42,

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), we get, by

system monotonicity, that Ω(←ÐT ) ≤ Ω(←ÐT ′). Thus, I is arrow monotone.
Suppose, conversely, that I is arrow monotone and let T,T ′ ∈ ThSys(I),

such that T ≤ T ′. Then, again by Proposition 42, we get that
←Ð
T = T ≤ T ′ =

←Ð
T ′.

Therefore, by arrow monotonicity, Ω(T ) = Ω(←ÐT ) ≤ Ω(←ÐT ′) = Ω(T ′). So I is
system monotone. ∎

Next, we show that the two properties of right monotonicity and system
monotonicity also coincide.

Proposition 173 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system monotone if and only if it is
right monotone.

Proof: Suppose, first, that I is right monotone and let T,T ′ ∈ ThSys(I),
such that T ≤ T ′. Then, by right monotonicity, Ω(←ÐT ) ≤ Ω(←ÐT ′). But, since

T,T ′ are theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′. Hence, Ω(T ) ≤ Ω(T ′).

Therefore, I is system monotone.
Suppose, conversely, that I is system monotone and let T,T ′ ∈ ThFam(I),

such that T ≤ T ′. Then by Lemma 1,
←Ð
T ≤
←Ð
T ′. Since

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), we can

apply system monotonicity to get Ω(←ÐT ) ≤ Ω(←ÐT ′). Thus, I is right monotone.
∎

Because of Propositions 171 and 173, we make the following definitions:

Definition 174 (Pre- and Protoalgebraicity) Let F = ⟨Sign♭,SEN♭, N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is called protoalgebraic if it is family monotone;

• I is called prealgebraic if it is system monotone.

We show now that stability is exactly the separating property between
prealgebraicity and protoalgebraicity.

Theorem 175 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if it is
prealgebraic and stable.
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Proof: Suppose, first, that I is protoalgebraic. Then it is clearly prealgebraic
and, by Lemma 170, it is stable.

Suppose, conversely, that I is stable and prealgebraic and consider T,T ′ ∈
ThFam(I), such that T ≤ T ′. Then, using stability, Proposition 42 and
prealgebraicity, we get

Ω(T ) = Ω(←ÐT ) (stability)

≤ Ω(←ÐT ′) (Proposition 42 and prealgebraicity)
= Ω(T ′) (stability).

So Ω is monotone on theory families and I is protoalgebraic. ∎

In terms of monotonicity, we have established the following monoto-
nicity hierarchy:

Protoalgebraic
................⑦

Prealgebraic
❄

Stable

Now we give examples of π-institutions to show that the two inclusions
depicted in this diagram are proper. Moreover, we show that there are π-
institutions that are neither prealgebraic nor stable. In other words, we show
the following

• There exist π-institutions that are neither prealgebraic nor stable.

• There exist π-institutions that are prealgebraic but not stable and,
hence, not protoalgebraic.

• There exist π-institutions that are stable but not prealgebraic and,
hence, not protoalgebraic.

Example 176 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a and SEN♭(f)(2) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{b},{a, b}}.
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It is easy to see that I is not stable: Consider the theory family T =
{{1,2},{b}}. Then we have

←Ð
T = {{2},{b}} and

Ω(←ÐT ) = {{{0,1},{2}},{{a},{b}}} ≠ ∆F = Ω(T ).
As a consequence, we get that I is not protoalgebraic.

We now show that it is not prealgebraic either. We use the two theory
systems

T = {{2},{a, b}} ≤ {{1,2},{a, b}} = T ′.
We have

ΩΣ(T ) = {{0,1},{2}}, ΩΣ′(T ) = {{a, b}};
ΩΣ(T ′) = {{0},{1,2}}, ΩΣ′(T ′) = {{a, b}}.

Since T ≤ T ′ but Ω(T ) ≰ Ω(T ′), we conclude that I is not prealgebraic.

Example 177 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

First, observe that the only two theory systems are T = {{2}} and T ′ ={{0,1,2}}. Further, we have ΩΣ(T ) = {{0,1},{2}} and ΩΣ(T ′) = {{0,1,2}}.
So I is prealgebraic.
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On the other hand, for T ′′ = {{1,2}} ∈ ThFam(I), we have
←Ð
T ′′ = {{2}}.

Moreover ΩΣ(T ′′) = {{0},{1},{2}} ≨ {{0,1},{2}} = ΩΣ(←ÐT ′′). Therefore, we
conclude that I is not stable. As a consequence, it is not protoalgebraic either.

Example 178 Take any non-protoalgebraic deductive system S = ⟨L,⊢S⟩ or,
in closure system notation, S = ⟨L,CS⟩. Consider the discrete π-institution
IS = ⟨FL,CS⟩ corresponding to the deductive system S (see Section 1.1 for
details). This π-institution is not protoalgebraic (since the deductive system
is not), but it is certainly stable (since its only signature morphism is the
identity). Therefore, we conclude that it is not prealgebraic either.

The monotonicity property transfers from the theory families/systems of
a π-institution I = ⟨F,C⟩ to all I-filter families/systems on an arbitrary
F-algebraic system.

Theorem 179 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is prealgebraic if and only if, for every F-algebraic system A = ⟨A,⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A),
T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);

(b) I is protoalgebraic if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A),
T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′).

Proof:

(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that ThSys(I) = FiSysI(F), by Lemma 51.

For the “only if”, suppose that I is prealgebraic and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system and T,T ′ ∈ FiSysI(A), such that T ≤ T ′.
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Then, clearly, α−1(T ) ≤ α−1(T ′). Since, by Lemma 51, we have α−1(T ),
α−1(T ′) ∈ ThSys(I), we get, by applying prealgebraicity, Ω(α−1(T )) ≤
Ω(α−1(T ′)). But, then, by Proposition 24, we get that α−1(ΩA(T )) ≤
α−1(ΩA(T ′)). Finally, surjectivity yields that ΩA(T ) ≤ ΩA(T ′).

(b) The “if” is obtained by considering the F-algebraic system F = ⟨F,⟨I, ι⟩⟩ and taking into account that ThFam(I) = FiFamI(F), by Lemma
51.

For the “only if”, assume I is protoalgebraic and let A = ⟨A, ⟨F,α⟩⟩ be
an F-algebraic system and T,T ′ ∈ FiFamI(A), such that T ≤ T ′. Then,
clearly, α−1(T ) ≤ α−1(T ′). Since, by Lemma 51, α−1(T ), α−1(T ′) ∈
ThFam(I), we get, by protoalgebraicity, Ω(α−1(T )) ≤ Ω(α−1(T ′)). By
Proposition 24, α−1(ΩA(T )) ≤ α−1(ΩA(T ′)) and, hence, using surjec-
tivity of ⟨F,α⟩, ΩA(T ) ≤ ΩA(T ′).

∎

As we did for loyalty, we may recast the two monotonicity classes in
terms of the monotonicity of mappings from posets of theory or filter fami-
lies/systems into posets of congruence systems.

Given two posets P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, we call a mapping f ∶ P → Q

monotone or order preserving if, for all p1, p2 ∈ P ,

p1 ≤ p2 implies f(p1) ≼ f(p2).
Proposition 180 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is protoalgebraic;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is monotone;

(c) ΩA ∶ FiFamI(A) → ConSysI∗(A) is monotone, for every F-algebraic
system A.

Similarly, for prealgebraicity, we get

Proposition 181 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is prealgebraic;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is monotone;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is monotone, for every F-algebraic
system A.
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Now we turn into exploring some of the relationships that hold between
protoalgebraicity and prealgebraicity, on the one hand, and the various loy-
alty properties, on the other. Namely, we show that protoalgebraicity implies
family loyalty and that prealgebraicity implies system loyalty. Note that,
since family loyalty implies stability, the first part of the following theorem
is a strengthening of Lemma 170.

Theorem 182 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is protoalgebraic, then it is family loyal;

(b) If I is prealgebraic, then it is system loyal.

Proof:

(a) Suppose I is protoalgebraic and let T,T ′ ∈ ThFam(I), such that T < T ′.
Then, we have T ≤ T ′, whence, by protoalgebraicity, Ω(T ) ≤ Ω(T ′).
But this implies that Ω(T ) /> Ω(T ′). We conclude that I is family
loyal.

(b) Suppose that I is prealgebraic and let T,T ′ ∈ ThSys(I), such that
T < T ′. Then, by prealgebraicity, Ω(T ) ≤ Ω(T ′). This implies that
Ω(T ) /> Ω(T ′). We conclude that I is system loyal.

∎

We have now established the following hierarchies:

Protoalgebraic

✠�
�
� ❅

❅
❅❘

Prealgebraic Family Loyal

✠�
�
� ❅

❅
❅❘

Left Loyal Stable

✠�
�
�

System Loyal
❄

Finally, we provide an example to show that the loyalty classes are proper
subclasses of the classes defined using monotonicity.

Example 183 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be defined as follows:

• Sign♭ is a trivial one object category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1,2};
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• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{{0,1,2}}.
The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅{0,2} {1,2} {{0,2},{1}} {{0,1},{2}} {{0},{1,2}}

❅
❅
❅ �

�
�

{2}
First, note that, since the category Sign♭ is trivial, I is systemic, i.e., every
theory family is also a theory system.

By considering, for instance, T = {{2}} and T ′ = {{0,2}}, we see that
T ≤ T ′, but Ω(T ) /≤ Ω(T ′). Thus, I is not prealgebraic.

On the other hand, it is clear that there do not exist T,T ′ ∈ ThFam(I),
such that T < T ′ and Ω(T ) > Ω(T ′). Hence I is family loyal.

3.4 Complete ⋃-Monotonicity

We now define classes of π-institutions that are based on various versions of
a property called complete monotonicity. These properties are strengthened
versions of the monotonicity properties and the purpose for introducing them
is that they are, in some sense, the dual properties of complete order reflec-
tivity, which strengthens order reflectivity, which, in turn, is, in this same
sense, the property dual to monotonicity. This property is somehow related
to a property known as continuity in the context of sentential logics.
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In the case of sentential logics, the property of complete reflectivity asserts
that, given a sentential logic S and a collection of theories T ∪ {T ′} of S ,

⋂
T ∈T

Ω(T ) ⊆ Ω(T ′) implies ⋂T ⊆ T.

Note that meet and intersection coincide both in the lattice of theories of
S and in the lattice of congruences on the formula algebra. Since, however,
join and union differ, depending on the point of view, either lattice- or set-
theoretic, one may perceive two different properties as dual properties of
complete reflectivity. One, which we refer to as complete ∪-monotonicity,
asserts that, for every collection T ∪ {T ′} of theories,

T ′ ⊆⋃T implies Ω(T ′) ⊆ ⋃
T ∈T

Ω(T ).
The other, which may be termed complete ∨-monotonicity, asserts that, for
every collection T ∪ {T ′} of theories,

T ′ ⊆⋁T implies Ω(T ′) ⊆ ⋁
T ∈T

Ω(T ).
In this section, we deal with an analog of the first property for π-institutions.
In the next section, we look at the second property.

Definition 184 (Complete ⋃-Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is family completely ⋃-monotone or, simply, family com-
pletely monotone if, for all T ∪ {T ′} ⊆ ThFam(I),

T ′ ≤ ⋃
T ∈T

T implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).
• I is left completely ⋃-monotone or, simply, left completely

monotone if, for all T ∪ {T ′} ⊆ ThFam(I),
←Ð
T ′ ≤ ⋃

T ∈T

←Ð
T implies Ω(T ′) ≤ ⋃

T ∈T

Ω(T ).
• I is right completely ⋃-monotone or, simply, right completely

monotone if, for all T ∪ {T ′} ⊆ ThFam(I),
T ′ ≤ ⋃

T ∈T

T implies Ω(←ÐT ′) ≤ ⋃
T ∈T

Ω(←ÐT ).
• I is system completely ⋃-monotone or, simply, system com-

pletely monotone if, for all T ∪ {T ′} ⊆ ThSys(I),
T ′ ≤ ⋃

T ∈T

T implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).
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Sometimes we will use the abbreviated form c∪-monotonicity or c-
monotonicity to refer to complete ⋃-monotonicity.

We have seen in Lemma 170 that family monotonicity (protoalgebraicity)
implies stability. Since family complete monotonicity is a stronger property
than family monotonicity, we get Part (a) of the following:

Lemma 185 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family completely monotone, then it is stable.

(b) If I is left completely monotone, it is stable.

Proof:

(a) If I is family completely monotone, then it is, a fortiori, family mono-
tone. Thus, the result follows from Lemma 170.

(b) Suppose that I is left c-monotone and let T ∈ ThFam(I). By Propo-

sition 42,
←Ð←Ð
T =
←Ð
T . Applying left c-monotonicity, we get that Ω(←ÐT ) =

Ω(T ). Hence I is stable.
∎

Family completely monotone π-institutions are both left and right com-
pletely monotone. And, conversely, if a π-institution is both left and right
c-monotone, then it is family c-monotone.

Proposition 186 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely monotone if and
only if it is both left and right completely monotone.

Proof: Suppose, first, that I is family completely monotone.

• Let T ∪ {T ′} ⊆ ThFam(I), such that
←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Applying family

c-monotonicity, we get Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). However, by Lemma 185,
I is stable. Hence we get Ω(T ′) ≤ ⋃T ∈T Ω(T ). We conclude that I is
left completely monotone.

• Next, let T ∪{T ′} ⊆ ThFam(I), such that T ′ ≤ ⋃T ∈T T . Applying family
c-monotonicity, we get Ω(T ′) ≤ ⋃T ∈T Ω(T ). Once more, by Lemma 185,

I is stable. Hence we get Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). We conclude that I is
right completely monotone.

Suppose, conversely, that I is both left and right completely monotone and let
T ∪{T ′} ⊆ ThFam(I), such that T ′ ≤ ⋃T ∈T T . Then, by right c-monotonicity,

we get that Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). But since I is left completely monotone,
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by Lemma 185, it is stable, whence we get Ω(T ′) ≤ ⋃T ∈T Ω(T ). Therefore, I
is family completely monotone. ∎

If a π-institution I is left or right completely monotone, then it is also
system completely monotone.

Proposition 187 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c-monotone, then it is system c-monotone;

(b) If I is right c-monotone, then it is system c-monotone.

Proof:

(a) Suppose I is left c-monotone and let T ∪ {T ′} ⊆ ThSys(I), such that
T ′ ≤ ⋃T ∈T T . Since T ∪ {T ′} is a collection of theory systems, we get
←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Hence, applying left c-monotonicity, we get Ω(T ′) ≤

⋃T ∈T Ω(T ). Thus, I is system c-monotone.

(b) Suppose I is right c-monotone and let T ∪ {T ′} ⊆ ThSys(I), such

that T ′ ≤ ⋃T ∈T T . Applying right c-monotonicity, we get Ω(←ÐT ′) ≤
⋃T ∈T Ω(←ÐT ). Since T ∪ {T ′} is a collection of theory systems, we now
get Ω(T ′) ≤ ⋃T ∈T Ω(T ). Thus, I is system c-monotone.

∎

In terms of complete monotonicity, we have established the following
hierarchy:

Family c-Monotone

✠�
�
� ❅

❅
❅❘

Left c-Monotone Right c-Monotone

✠..
..

..
.. ❅

❅
❅❘ ✠�

�
�

Stable System c-Monotone

Now we give examples of π-institution to show that the inclusions depicted
in this diagram are proper. We first give an example of a π-institution that
is left c-monotone but not right c-monotone. This shows that:

• The class of family c-monotone π-institutions is properly contained in
the class of all left c-monotone π-institutions;

• The class of all system c-monotone π-institutions properly includes the
class of all right c-monotone π-institutions.
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Example 188 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and six non-identity mor-
phisms f, g, g′, h, h′, t ∶ Σ → Σ, in which composition is defined by the
following table, whose entry in row k and column ℓ is the result of the
composition ℓ ○ k:

○ f g g′ h h′ t

f f h′ h g′ g t

g g′ g g′ t t t

g′ g t t g′ g t

h h′ t t h h′ t

h′ h h′ h t t t

t t t t t t t

• SEN♭ ∶ Sign♭ → Set is given, on objects, by SEN♭(Σ) = {0,1,2} and,
on morphisms, by the following table, whose entries in column k give
the values of the function SEN♭(k) ∶ SEN♭(Σ)→ SEN♭(Σ):

x f g g′ h h′ t

0 1 2 2 0 1 2
1 0 1 0 2 2 2
2 2 2 2 2 2 2

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ........................................✲ ∇F

�
�
�
� ❅

❅
❅
❅{0,2} {1,2}

❅
❅
❅
❅

.......................................q
�
�
�
�

................s{2} ............................................✲ ∆F

I has only two theory systems, Thm(I) = {{2}}, and SEN = {{0,1,2}}.
To show that I is left completely monotone, assume that, for some T ∪

{T ′} ⊆ ThFam(I), ←ÐT ′ ≤ ⋃T ∈T

←Ð
T .

• If ⋃T ∈T

←Ð
T = {{0,1,2}}, then {{0,1,2}} ∈ T and, hence,

Ω(T ′) ≤ ∇F = Ω({{0,1,2}}) ≤ ⋃
T ∈T

Ω(T );

• If ⋃T ∈T

←Ð
T = {{2}}, then T ′ ≠ {{0,1,2}}, whence

Ω(T ′) =∆F ≤ ⋃
T ∈T

Ω(T ).
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Thus, in any case, Ω(T ′) ≤ ⋃T ∈T Ω(T ) and I is left completely monotone.
On the other hand, we have

{{0,1,2}} ≤ {{0,2}} ∪ {{1,2}},
whereas

Ω(←ÐÐÐÐÐÐ{{0,1,2}}) = Ω({{0,1,2}}) = ∇F

≰ ∆F

= Ω({{2}}) ∪Ω({{2}})
= Ω(←ÐÐÐÐ{{0,2}}) ∪Ω(←ÐÐÐÐ{{1,2}}).

Therefore, I is not right completely monotone.

We now give an example of a right c-monotone π-institution that fails to
be left c-monotone. This will show that:

• The class of family c-monotone π-institutions is properly contained in
the class of right c-monotone π-institutions;

• The class of left c-monotone π-institutions is a proper subclass of the
class of system c-monotone π-institutions.

Example 189 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The structure of the lattice of theory families and the corresponding Leibniz
congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

Taking into account that
←ÐÐÐÐ{{1,2}} = {{2}}, we can see that I is right c-

monotone.
On the other hand, for T = {{1,2}} and T ′ = {{2}}, we have

←Ð
T ′ = {{2}} ≤

←Ð
T , but Ω(T ′) = {{{0,1},{2}}} /≤∆F = Ω(T ). Hence I is not left c-monotone.

As we saw in Theorem 179 for the various monotonicity properties, all
versions of complete monotonicity transfer from the theory families/systems
of a π-institution I = ⟨F,C⟩ to the I-filter families/systems on arbitrary
F-algebraic systems.

Theorem 190 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family c-monotone if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), T ′ ≤ ⋃T ∈T T implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

(b) I is left c-monotone if and only if, for every F-algebraic system A =
⟨A, ⟨F,α⟩⟩ and all T ∪{T ′} ⊆ FiFamI(A), ←ÐT ′ ≤ ⋃T ∈T

←Ð
T implies ΩA(T ′) ≤

⋃T ∈T ΩA(T ).
(c) I is right c-monotone if and only if, for every F-algebraic system A =
⟨A, ⟨F,α⟩⟩ and all T ∪{T ′} ⊆ FiFamI(A), T ′ ≤ ⋃T ∈T T implies ΩA(←ÐT ′) ≤
⋃T ∈T ΩA(←ÐT ).

(d) I is system c-monotone if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiSysI(A), T ′ ≤ ⋃T ∈T T implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).
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Proof: We shall prove Parts (b) and (c). Parts (a) and (d) follow along the
same lines and are slightly easier.

(b) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that ThFam(I) = FiFamI(F), by Lemma 51.

For the “only if”, suppose that I is left c-monotone and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A), such

that
←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Apply the inverse morphism ⟨F,α⟩ to get α−1(←ÐT ′) ≤

α−1(⋃T ∈T

←Ð
T ), or, equivalently, α−1(←ÐT ′) ≤ ⋃T ∈T α

−1(←ÐT ). Now apply

Lemma 6 to get
←ÐÐÐÐ
α−1(T ′) ≤ ⋃T ∈T

←ÐÐÐÐ
α−1(T ). But, by Lemma 51, {α−1(T ) ∶

T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I). Therefore, applying left c-mono-
tonicity, we get Ω(α−1(T ′)) ≤ ⋃T ∈T Ω(α−1(T )). Hence, by Proposition
24, α−1(ΩA(T ′)) ≤ ⋃T ∈T α

−1(ΩA(T )), i.e.,

α−1(ΩA(T ′)) ≤ α−1(⋃
T ∈T

ΩA(T )).
Finally, taking into account the surjectivity of ⟨F,α⟩, we conclude that
ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

(c) The “if” is obtained by considering the F-algebraic system F = ⟨F, ⟨I,
ι⟩⟩ and taking into account that ThFam(I) = FiFamI(F), by Lemma
51.

For the “only if”, suppose that I is right c-monotone and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A), such
that T ′ ≤ ⋃T ∈T T . Apply the inverse morphism ⟨F,α⟩ to get α−1(T ′) ≤
α−1(⋃T ∈T T ), or, equivalently, α−1(T ′) ≤ ⋃T ∈T α

−1(T ). By Lemma
51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I). Therefore, apply-

ing right c-monotonicity, we get Ω(←ÐÐÐÐα−1(T ′)) ≤ ⋃T ∈T Ω(←ÐÐÐÐα−1(T )). By

Lemma 6, Ω(α−1(←ÐT ′)) ≤ ⋃T ∈T Ω(α−1(←ÐT )). Hence, by Proposition 24,

α−1(ΩA(←ÐT ′)) ≤ ⋃T ∈T α
−1(ΩA(←ÐT )). This is equivalent to α−1(ΩA(←ÐT ′)) ≤

α−1(⋃T ∈T ΩA(←ÐT )). Finally, taking into account the surjectivity of

⟨F,α⟩, we conclude that ΩA(←ÐT ′) ≤ ⋃T ∈T ΩA(←ÐT ).
∎

Next we look at the relationships that hold between protoalgebraicity
and prealgebraicity, on the one hand, and the various c-monotonicity prop-
erties, on the other. More precisely, we show that left complete monotonic-
ity implies protoalgebraicity and that system complete monotonicity implies
prealgebraicity.

Theorem 191 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c-monotone, then it is protoalgebraic;
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(b) If I is system c-monotone, then it is prealgebraic.

Proof:

(a) Suppose I is left c-monotone and let T,T ′ ∈ ThFam(I), such that T ≤
T ′. Then, by Lemma 1, we get

←Ð
T ≤
←Ð
T ′. Thus, by left c-monotonicity,

Ω(T ) ≤ Ω(T ′). Hence I is protoalgebraic.

(b) Suppose that I is system c-monotone and let T,T ′ ∈ ThSys(I), such
that T ≤ T ′. Then we get right away from system c-monotonicity that
Ω(T ) ≤ Ω(T ′) and, therefore, I is prealgebraic.

∎

We have now established the following hierarchy of monotonicity and
complete monotonicity properties:

Family c-Monotone

✠�
�
� ❅

❅
❅❘

Left c-Monotone Right c-Monotone

✠�
�
� ❅

❅
❅❘ ✠�

�
�

Protoalgebraic System c-Monotone

❅
❅
❅❘ ✠�

�
�

Prealgebraic

Finally, we provide an example to show that the c-monotonicity classes
are proper subclasses of the monotonicity classes. Namely, we construct a
protoalgebraic π-institution that fails to be system c-monotone.

Example 192 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformation σ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 1
1 2
2 0
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
It is easy to see that the lattices of theory families and corresponding Leibniz
congruence systems are as given in the diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

From the diagram one can verify immediately that I is protoalgebraic, On
the other hand, we have {{0,1,2}} ≤ {{0,2}} ∪ {{1,2}}, but, obviously,
Ω({{0,1,2}}) /≤ Ω({{0,2}}) ∪ Ω({{1,2}}). Taking into account that I is
systemic, we conclude that I fails to be system c-monotone.

3.5 Complete ⋁-Monotonicity

We now define classes of π-institutions that are based on the corresponding
versions of the property of complete monotonicity using the join operation.
These properties are also strengthened versions of the monotonicity proper-
ties.

To define these complete monotonicity properties, let us introduce the
following notation. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system
and I = ⟨F,C⟩ a π-institution based on F. Denote by ⋁I T = ⋁IT ∈T T the join
of a collection T of theory families of I in the complete lattice ThFam(I)
of theory families of I . Analogously, denote by ⋁F Θ = ⋁F

θ∈Θ θ the join of a
collection Θ of congruence systems on F in the complete lattice ConSys(F)
of congruence systems on F.
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Definition 193 (Complete ⋁-Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is family completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThFam(I),
T ′ ≤

I

⋁
T ∈T

T implies Ω(T ′) ≤ F

⋁
T ∈T

Ω(T ).

• I is left completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThFam(I),
←Ð
T ′ ≤

I

⋁
T ∈T

←Ð
T implies Ω(T ′) ≤ F

⋁
T ∈T

Ω(T ).

• I is right completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThFam(I),
T ′ ≤

I

⋁
T ∈T

T implies Ω(←ÐT ′) ≤ F

⋁
T ∈T

Ω(←ÐT ).

• I is system completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThSys(I),
T ′ ≤

I

⋁
T ∈T

T implies Ω(T ′) ≤ F

⋁
T ∈T

Ω(T ).

Sometimes we will use the abbreviated form c∨-monotonicity to refer
to complete ⋁-monotonicity.

We have seen in Lemma 170 that family monotonicity (protoalgebraicity)
implies stability. Since family complete monotonicity is a stronger property
than family monotonicity, we get Part (a) of the following:

Lemma 194 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family completely ⋁-monotone, then it is stable.

(b) If I is left completely ⋁-monotone, it is stable.

Proof:

(a) If I is family completely ⋁-monotone, then it is, a fortiori, family
monotone. Thus, the result follows from Lemma 170.

(b) Suppose that I is left c∨-monotone and let T ∈ ThFam(I). By Propo-

sition 42,
←Ð←Ð
T =
←Ð
T . Applying left c∨-monotonicity, we get that Ω(←ÐT ) =

Ω(T ). Hence I is stable.
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∎

Family completely ⋁-monotone π-institutions are both left and right com-
pletely ⋁-monotone. And, conversely, if a π-institution is both left and right
c∨-monotone, then it is family c∨-monotone. This parallels Proposition 186,
which concerned the case of c∪-monotonicity properties.

Proposition 195 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely ⋁-monotone if and
only if it is both left and right completely ⋁-monotone.

Proof: Suppose, first, that I is family completely ⋁-monotone.

• Let T ∪ {T ′} ⊆ ThFam(I), such that
←Ð
T ′ ≤ ⋁IT ∈T

←Ð
T . Applying family

c∨-monotonicity, we get Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). However, by Lemma 185,

I is stable. Hence we get Ω(T ′) ≤ ⋁F
T ∈T Ω(T ). We conclude that I is

left completely ⋁-monotone.

• Next, let T ∪{T ′} ⊆ ThFam(I), such that T ′ ≤ ⋁IT ∈T T . Applying family
c∨-monotonicity, we get Ω(T ′) ≤ ⋁F

T ∈T Ω(T ). Once more, by Lemma

185, I is stable. Hence we get Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). We conclude that

I is right completely ⋁-monotone.

Suppose, conversely, that I is both left and right completely ⋁-monotone
and let T ∪ {T ′} ⊆ ThFam(I), such that T ′ ≤ ⋁IT ∈T T . Then, by right c∨-

monotonicity, we get that Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). But since I is left completely

⋁-monotone, by Lemma 185, it is stable, whence we get Ω(T ′) ≤ ⋁F
T ∈T Ω(T ).

Therefore, I is family completely ⋁-monotone. ∎

If a π-institution I is left or right completely ⋁-monotone, then it is also
system completely ⋁-monotone. This is an analog of Proposition 187, which
addressed the case of c∪-monotonicity.

Proposition 196 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c∨-monotone, then it is system c∨-monotone;

(b) If I is right c∨-monotone, then it is system c∨-monotone.

Proof:

(a) Suppose I is left c∨-monotone and let T ∪ {T ′} ⊆ ThSys(I), such that
T ′ ≤ ⋁IT ∈T T . Since T ∪ {T ′} is a collection of theory systems, we get
←Ð
T ′ ≤ ⋁IT ∈T

←Ð
T . Hence, applying left c∨-monotonicity, we get Ω(T ′) ≤

⋁F
T ∈T Ω(T ). Thus, I is system c∨-monotone.
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(b) Suppose I is right c∨-monotone and let T ∪ {T ′} ⊆ ThSys(I), such

that T ′ ≤ ⋁IT ∈T T . Applying right c∨-monotonicity, we get Ω(←ÐT ′) ≤
⋁F
T ∈T Ω(←ÐT ). Since T ∪ {T ′} is a collection of theory systems, we now

get Ω(T ′) ≤ ⋁F
T ∈T Ω(T ). Thus, I is system c∨-monotone.

∎

In terms of complete ⋁-monotonicity, we have established the following
hierarchy, which exactly mirrors the hierarchy of c∪-monotonicity classes:

Family c∨-Monotone

✠�
�
� ❅

❅
❅❘

Left c∨-Monotone Right c∨-Monotone

✠..
..

..
.. ❅

❅
❅❘ ✠�

�
�

Stable System c∨-Monotone

Now we give examples of π-institutions to show that the inclusions de-
picted in this diagram are proper. We first give an example of a π-institution
that is left c∨-monotone but not right c∨-monotone. This shows that:

• The class of family c∨-monotone π-institutions is properly contained in
the class of all left c∨-monotone π-institutions;

• The class of all system c∨-monotone π-institutions properly includes
the class of all right c∨-monotone π-institutions.

Example 197 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and six non-identity mor-
phisms f, g, g′, h, h′, t ∶ Σ → Σ, in which composition is defined by the
following table, whose entry in row k and column ℓ is the result of the
composition ℓ ○ k:

○ f g g′ h h′ t

f f h′ h g′ g t

g g′ g g′ t t t

g′ g t t g′ g t

h h′ t t h h′ t

h′ h h′ h t t t

t t t t t t t

• SEN♭ ∶ Sign♭ → Set is given, on objects, by SEN♭(Σ) = {0,1,2} and,
on morphisms, by the following table, whose entries in column k give
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the values of the function SEN♭(k) ∶ SEN♭(Σ)→ SEN♭(Σ):
x f g g′ h h′ t

0 1 2 2 0 1 2
1 0 1 0 2 2 2
2 2 2 2 2 2 2

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}
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The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ........................................✲ ∇F

�
�
�
� ❅

❅
❅
❅{0,2} {1,2}

❅
❅
❅
❅

.......................................q
�
�
�
�

................s{2} ............................................✲ ∆F

I has only two theory systems, Thm(I) = {{2}}, and SEN = {{0,1,2}}.
To show that I is left completely monotone, assume that, for some T ∪

{T ′} ⊆ ThFam(I), ←ÐT ′ ≤ ⋁IT ∈T ←ÐT .

• If ⋁IT ∈T
←Ð
T = {{0,1,2}}, then {{0,1,2}} ∈ T and, hence,

Ω(T ′) ≤ ∇F = Ω({{0,1,2}}) ≤ F

⋁
T ∈T

Ω(T );

• If ⋁IT ∈T
←Ð
T = {{2}}, then T ′ ≠ {{0,1,2}}, whence

Ω(T ′) =∆F ≤
F

⋁
T ∈T

Ω(T ).

Thus, in any case, Ω(T ′) ≤ ⋁F
T ∈T Ω(T ) and I is left completely ⋁-monotone.

On the other hand, we have

{{0,1,2}} ≤ {{0,2}} ∨I {{1,2}},
whereas

Ω(←ÐÐÐÐÐÐ{{0,1,2}}) = Ω({{0,1,2}}) = ∇F

≰ ∆F

= Ω({{2}}) ∨F Ω({{2}})
= Ω(←ÐÐÐÐ{{0,2}}) ∨F Ω(←ÐÐÐÐ{{1,2}}).

Therefore, I is not right completely ⋁-monotone.

We now give an example of a right c∨-monotone π-institution that fails
to be left c∨-monotone. This will show that:

• The class of family c∨-monotone π-institutions is properly contained in
the class of right c∨-monotone π-institutions;
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• The class of left c∨-monotone π-institutions is a proper subclass of the
class of system c∨-monotone π-institutions.

Example 198 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The structure of the lattice of theory families and the corresponding Leibniz
congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

Taking into account that
←ÐÐÐÐ{{1,2}} = {{2}}, we can see that I is right c∨-

monotone.
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On the other hand, for T = {{1,2}} and T ′ = {{2}}, we have
←Ð
T ′ =

{{2}} ≤ ←ÐT , but Ω(T ′) = {{{0,1},{2}}} /≤ ∆F = Ω(T ). Hence I is not left
c∨-monotone.

As we saw in Theorem 190, the various complete ⋃-monotonicity prop-
erties defined based on the union operation transfer from the theory fam-
ilies/systems of a π-institution I = ⟨F,C⟩ to the I-filter families/systems
on arbitrary F-algebraic systems. On the other hand, the ⋁-monotonicity
versions introduced in this section do not transfer in general. The prob-
lem appears to be that the commutativity of unions with inverse surjective
morphisms, i.e., ⋃T ∈T α

−1(T ) = α−1(⋃T ∈T T ), ceases to hold when unions are
replaced by joins. In that case, one has, in general, a proper inclusion in-
stead of an equality. To describe it, let us again introduce some notation. Let
F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-institution
based on F. Let, also A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. Denote by

⋁I,A T = ⋁I,AT ∈T T the join of a collection T of I-filter families of A in the
complete lattice FiFamI(A) of I-filter families of A. Analogously, denote
by ⋁AΘ = ⋁Aθ∈Θ θ the join of a collection Θ of congruence systems on A in
the complete lattice ConSys(A) of congruence systems on A. According to
this notation, we get, in general, that

I

⋁
T ∈T

α−1(T ) ≨ α−1 (I,A⋁
T ∈T

T) .
The following example showcases this proper inclusion.

Example 199 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2,3,4};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{4},{2,4},{3,4},{1,2,3,4},{0,1,2,3,4}}.
Next, consider the F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,

SEN,N⟩, defined as follows:

• The algebraic system A = ⟨Sign,SEN,N⟩ is specified by the following
data:

– Sign is the trivial category, with object Σ′;
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– SEN ∶ Sign→ Set is given by SEN(Σ′) = {a, b, c, d};
– N is the trivial clone.

• F ∶ Sign♭ → Sign is the trivial functor taking Σ to Σ′;

• α ∶ SEN♭ → SEN ○ F is determined by letting αΣ ∶ SEN♭(Σ) → SEN(Σ′)
be given by

x ∈ SEN♭(Σ) αΣ(x)
0 a

1 a

2 b

3 c

4 d

Based on Lemma 51, we get that

FiFamI(A) = {{{d}},{{b, d}},{{c, d}},{{a, b, c, d}}}.
Now we can easily verify that

α−1({{b, d}}) ∨I α−1({{c, d}}) = {{2,4}} ∨I {{3,4}} = {{1,2,3,4}},
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whereas

α−1({{b, d}} ∨I,A {{c, d}}) = α−1({{a, b, c, d}}) = {{0,1,2,3,4}}.
Thus, for T = {{{b, d}},{{c, d}}}, we get ⋁IT ∈T α−1(T ) ≨ α−1(⋁I,AT ∈T T ).

We may characterize family and system c∨-monotonicity in terms of the
complete order preservation of mappings from posets of theory families/ sys-
tems into posets of congruence systems. Given complete lattices P = ⟨P,≤⟩
and Q = ⟨Q,≼⟩, call a mapping f ∶ P → Q completely order preserving
if, for all {x} ∪ Y ⊆ P ,

x ≤
P

⋁
y∈Y

y implies f(x) ≼ Q

⋁
y∈Y

f(y).

Proposition 200 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family completely ⋁-monotone;

(b) Ω ∶ ThFam(I)→ ConSys(I) is completely order preserving.

Similarly, for system c-monotonicity, we have

Proposition 201 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system completely ⋁-monotone;

(b) Ω ∶ ThSys(I)→ ConSys(I) is completely order preserving.

Next we look at the relationships that hold between protoalgebraicity and
prealgebraicity, on the one hand, and the various c∨-monotonicity properties,
on the other. More precisely, we show that left complete ⋁-monotonicity
implies protoalgebraicity and that system complete ⋁-monotonicity implies
prealgebraicity. Once more, this theorem parallels Theorem 191, which dealt
with ⋃-monotonicity.

Theorem 202 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c∨-monotone, then it is protoalgebraic;

(b) If I is system c∨-monotone, then it is prealgebraic.

Proof:
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(a) Suppose I is left c∨-monotone and let T,T ′ ∈ ThFam(I), such that T ≤
T ′. Then, by Lemma 1, we get

←Ð
T ≤
←Ð
T ′. Thus, by left c∨-monotonicity,

Ω(T ) ≤ Ω(T ′). Hence I is protoalgebraic.

(b) Suppose that I is system c∨-monotone and let T,T ′ ∈ ThSys(I), such
that T ≤ T ′. Then we get right away from system c∨-monotonicity that
Ω(T ) ≤ Ω(T ′) and, therefore, I is prealgebraic.

∎

We have now established the following hierarchy of monotonicity and
complete ⋁-monotonicity properties, which also mirrors the combined
hierarchy of monotonicity and complete ⋃-monotonicity properties:

Family c∨-Monotone

✠�
�
� ❅

❅
❅❘

Left c∨-Monotone Right c∨-Monotone

✠�
�
� ❅

❅
❅❘ ✠�

�
�

Protoalgebraic System c∨-Monotone

❅
❅
❅❘ ✠�

�
�

Prealgebraic

We now provide an example to show that the c∨-monotonicity classes
are proper subclasses of the monotonicity classes. Namely, we construct a
protoalgebraic π-institution that fails to be system c∨-monotone.

Example 203 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformation σ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 1
1 2
2 0

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
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It is easy to see that the lattices of theory families and corresponding Leibniz
congruence systems are as given in the diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

From the diagram one can verify immediately that I is protoalgebraic, On
the other hand, we have {{0,1,2}} ≤ {{0,2}} ∨I {{1,2}}, but, obviously,
Ω({{0,1,2}}) /≤ Ω({{0,2}}) ∨F Ω({{1,2}}). Taking into account that I is
systemic, we conclude that I fails to be system c∨-monotone.

We conclude this section with two examples showing that the classes of
c∪-monotone and c∨-monotone π-institutions are incomparable. The first
example shows that there exists a c∪-monotone π-institution which is not
c∨-monotone.

Example 204 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5};
• N ♭ is the clone generated by the unary natural transformations ρ♭, σ♭, τ ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) ρ♭Σ(x) σ♭Σ(x) τ ♭Σ(x)
0 5 0 0
1 1 1 1
2 2 2 2
3 3 5 3
4 4 4 5
5 5 5 5
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{5},{3,5},{4,5},{1,2,3,4,5},{0,1,2,3,4,5}}.
The lattice of theory families and the corresponding Leibniz congruence sys-
tems (in block form) are given in the following diagram.

012345 ∇F

12345 0,12345

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

35 45 0,12,4,35 0,12,3,45

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

5 0,12,3,4,5

From the diagram one can verify that, for all T ∪ {T ′} ⊆ ThFam(I), T ′ ≤
⋃T ∈T T implies T ′ ≤ T , for some T ∈ T . Therefore, we get Ω(T ′) ≤ ⋃T ∈T Ω(T )
and, hence, I is c∪-monotone. On the other hand,

{{1,2, ,3,4,5}} ≤ {{3,5}} ∨I {{4,5}},
whereas

Ω({{1,2,3,4,5}}) = {{1,12345}}
≰ {{0,12,345}}
= {{0,12,4,35}} ∨F {{0,12,3,45}}
= Ω({{3,5}}) ∨F Ω({{4,5}}).

Thus, I is not c∨-monotone.

The second example exhibits a c∨-monotone π-institution which is not
c∪-monotone.
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Example 205 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformations σ♭, τ ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 2 0
1 1 2
2 2 2

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The lattice of theory families and the corresponding Leibniz congruence sys-
tems (in block form) are given in the following diagram.

012 ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

02 12 02,1 0,12

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

2 ∆F

Note that

{{0,1,2}} = {{0,2}} ∪ {{1,2}} = {{0,2}} ∨I {{1,2}}.
But, even though

Ω({{0,1,2}}) = ∇F

= {{02,1}} ∨F {{0,12}}
= Ω({{0,2}}) ∨F Ω({{1,2}}),
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we have
Ω({{0,1,2}}) = ∇F

≰ {{02,1}} ∪ {{0,12}}
= Ω({{0,2}}) ∪Ω({{1,2}}),

since ⟨0,1⟩ ∈ ∇F
Σ, whereas ⟨0,1⟩ ∉ {{02,1}} ∪ {{0,12}}. Thus, I is c∨-

monotone but not c∪-monotone.

3.6 Injectivity

In this section we study classes of π-institutions defined using injectivity
properties of the Leibniz operator.

Definition 206 (Injectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F.

• I is called family injective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies T = T ′.

• I is called left injective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies

←Ð
T =
←Ð
T ′.

• I is called right injective if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT ) = Ω(←ÐT ′) implies T = T ′.

• I is called system injective if, for all T,T ′ ∈ ThSys(I),
Ω(T ) = Ω(T ′) implies T = T ′.

First, we show that right injectivity is so strong that it implies systemicity
and, hence, a fortiori, stability.

Lemma 207 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is right injective, then it is systemic.

Proof: Suppose that I is right injective and let T ∈ ThFam(I). Then, we

have, by Proposition 42, that
←Ð←Ð
T =

←Ð
T . Therefore, we get Ω(←Ð←ÐT ) = Ω(←ÐT ).

Hence, by right injectivity, we get that
←Ð
T = T . Thus, T ∈ ThSys(I). This

proves that ThFam(I) = ThSys(I), whence I is systemic. ∎

Next we look into establishing the injectivity hierarchy of π-institutions.
The following relationships can be established between the four injectivity
classes.
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Proposition 208 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is right injective, then it is family injective;

(b) If I is family injective, then it is left injective;

(c) If I is left injective, then it is system injective.

Proof:

(a) Suppose that I is right injective and let T,T ′ ∈ ThFam(I), such that

Ω(T ) = Ω(T ′). By Lemma 207, I is systemic, whence
←Ð
T = T and

←Ð
T ′ = T ′. Thus, we get Ω(←ÐT ) = Ω(←ÐT ′). Now applying right injectivity,
we get T = T ′. This proves that I is family injective.

(b) Suppose that I is family injective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) = Ω(T ′). Then, by family injectivity, we get T = T ′, whence
←Ð
T =
←Ð
T ′. Therefore I is left injective.

(c) Suppose that I is left injective and let T,T ′ ∈ ThSys(I), such that

Ω(T ) = Ω(T ′). By left injectivity, we conclude that
←Ð
T =
←Ð
T ′. However,

since T,T ′ are theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′. Hence we

get T = T ′ and I is system injective.
∎

We have now established the following injectivity hierarchy of π-insti-
tutions.

Right Injective....................❥
Family Injective

❄
Systemic

Left Injective
❄

System Injective
❄

There are two additional properties that can be formulated concerning
the relationships between these classes. First, it turns out that the sepa-
rating property between system injectivity and right injectivity is exactly
systemicity.

Proposition 209 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is right injective if and only if it is
system injective and systemic.
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Proof: Suppose, first, that I is right injective. Then, by Lemma 207, it is
systemic and by Proposition 208 it is system injective.

Suppose conversely, that I is system injective and systemic and let T,T ′ ∈
ThFam(I), such that Ω(←ÐT ) = Ω(←ÐT ′). By system injectivity we get

←Ð
T =
←Ð
T ′.

Hence, by systemicity, T = T ′. Thus, I is right injective. ∎

Second, we show that system injectivity reinforced with stability implies
left injectivity.

Proposition 210 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is system injective and stable, then it
is left injective.

Proof: Suppose that I is system injective and stable and consider T,T ′ ∈
ThFam(I), such that Ω(T ) = Ω(T ′). Then, by stability Ω(←ÐT ) = Ω(←ÐT ′).
Hence, since

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), by system injectivity,

←Ð
T =

←Ð
T ′. This shows

that I is left injective. ∎

We now present three examples to show that all inclusions established
between injectivity classes and depicted in the diagram above are proper
inclusions. The first example will show that the class of right injective π-
institutions is a proper subclass of the class of family injective π-institutions.

Example 211 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

Since {{1,2}} is a theory family that is not a theory system, I is not systemic.
The lattice of theory families and that of the corresponding Leibniz con-

gruence systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

It is obvious from the diagram that I is family injective, since each of the
three theory families has a different Leibniz congruence system.

On the other hand, I is not right injective. This can be seen either by
applying Proposition 209 or directly. Take T = {{2}} and T ′ = {{1,2}}.
Then, we have

←Ð
T =

←Ð
T ′ = T , whence Ω(←ÐT ) = Ω(←ÐT ′), whereas, obviously,

T ≠ T ′.

The second example shows that the class of family injective π-institutions
is properly included in the class of left injective π-institutions.

Example 212 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The following table shows the action of ←Ð on theory families, where rows

correspond to TΣ and columns to TΣ′ and each entry is written as
←Ð
T Σ,
←Ð
T Σ′.

←Ð {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
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The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

Since the only two theory families that have the same Leibniz congruence
system are {{0,1},{b}} and {{1},{b}} and it holds that

←ÐÐÐÐÐÐÐ{{0,1},{b}} =←ÐÐÐÐÐÐ{{1},{b}} = {{1},{b}},
we conclude that I is left injective.

From the diagram, it is also clear that I is not family injective, since
the two theory families {{0,1},{b}} and {{1},{b}} have the same Leibniz
congruence system.

In conclusion we have shown that I is left injective but not family injec-
tive.

The next example shows that the class of left injective π-institutions is
properly included in the class of all system injective π-institutions.

Example 213 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the two object category with objects Σ,Σ′ and two (non-identity)
morphisms

Σ
f ✲✛
g

Σ′

such that g ○ f = iΣ and f ○ g = iΣ′;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) ={a, b, c} and

SEN♭(f)(0) = a, SEN♭(f)(1) = b, SEN♭(f)(2) = c;
SEN♭(g)(a) = 0, SEN♭(g)(b) = 1, SEN♭(g)(c) = 2;

• N ♭ is the clone on SEN♭ generated by the natural transformation σ♭ ∶
SEN♭ → SEN♭ specified by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 0
1 1
2 0

y ∈ SEN♭(Σ′) σ♭Σ′(y)
a a

b b

c a

Next, define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{c},{b, c},{a, b, c}}.
The table giving the action of ←Ð on theory families is shown below:

←Ð {c} {b, c} {a, b, c}{2} {2},{c} {2},{c} {2},{c}{1,2} {2},{c} {1,2},{b, c} {1,2},{b, c}{0,1,2} {2},{c} {1,2},{b, c} {0,1,2},{a, b, c}
The following table gives the Leibniz congruence systems associated with each
of the nine theory families of I, where we have denoted by θ the Leibniz
congruence system with θΣ = {{0,1},{2}} and θΣ′ = {{a, b},{c}}:

Ω({TΣ, TΣ′}) {c} {b, c} {a, b, c}{2} θ ∆F θ{1,2} ∆F ∆F ∆F

{0,1,2} θ ∆F ∇F
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Observe, first, that there are only three theory systems {{2},{c}}, {{1,2},{b, c}} and {{0,1,2},{a, b, c}}. To each of these corresponds a different Leib-
niz congruence system. It follows that I is system injective.

On the other hand, for T = {{2},{b, c}} and T ′ = {{1,2},{b, c}}, we have

Ω(T ) = Ω(T ′) =∆F, but
←Ð
T = {{2},{c}} ≠ {{1,2},{b, c}} = ←ÐT ′. Therefore I is

not left injective.

The injectivity properties transfer from the theory families/systems of a
π-institution I = ⟨F,C⟩ to the collections of all I-filter families/systems on
arbitrary F-algebraic systems.

Theorem 214 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family injective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies T = T ′.

(b) I is left injective if and only if, for every F-algebraic system A = ⟨A, ⟨F,
α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies

←Ð
T =
←Ð
T ′.

(c) I is right injective if and only if, for every F-algebraic system A = ⟨A,
⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(←ÐT ) = ΩA(←ÐT ′) implies T = T ′.

(d) I is system injective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A), ΩA(T ) = ΩA(T ′) implies T = T ′.

Proof: We will prove Parts (a) and (b) to establish the method.

(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that ThFam(I) = FiFamI(F), by Lemma 51.

For the “only if”, suppose that I is family injective and let A = ⟨A, ⟨F,
α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that ΩA(T ) =
ΩA(T ′). Then α−1(ΩA(T )) = α−1(ΩA(T ′)). So, by Proposition 24,
Ω(α−1(T )) = Ω(α−1(T ′)). Since, by Lemma 51, we have that α−1(T ),
α−1(T ′) ∈ ThFam(I), we get, by applying family injectivity, α−1(T ) =
α−1(T ′). Finally, the surjectivity of ⟨F,α⟩ yields that T = T ′.

(b) The “if” follows as in Part (a).

For the “only if”, suppose that I is left injective and let A = ⟨A, ⟨F, α⟩⟩
be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that ΩA(T ) =
ΩA(T ′). Then α−1(ΩA(T )) = α−1(ΩA(T ′)). So, by Proposition 24,
Ω(α−1(T )) = Ω(α−1(T ′)). Since, by Lemma 51, we have that α−1(T ),
α−1(T ′) ∈ ThFam(I), we get, by applying left injectivity,

←ÐÐÐÐ
α−1(T ) =

←ÐÐÐÐ
α−1(T ′). Thus, by Lemma 6, α−1(←ÐT ) = α−1(←ÐT ′). Finally, the surjectiv-

ity of ⟨F,α⟩ yields that
←Ð
T =
←Ð
T ′.
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∎

Finally, we may recast the injectivity classes in terms of the injectivity
of mappings from posets of theory or filter families/systems into posets of
congruence systems.

Given two posets P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, we call a mapping f ∶ P → Q

injective if it is injective as a set map, i.e., if, for all p1, p2 ∈ P ,

f(p1) = f(p2) implies p1 = p2.

Proposition 215 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family injective;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is injective;

(c) ΩA ∶ FiFamI(A) → ConSysI∗(A) is injective, for every F-algebraic
system A.

Similarly, for system injectivity, we have

Proposition 216 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system injective;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is injective;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is injective, for every F-algebraic sys-
tem A.

3.7 Reflectivity

In this section we look at classes of π-institutions defined using the order
reflectivity of the Leibniz operator.

Definition 217 (Reflectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F.

• I is family reflective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′.

• I is left reflective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies

←Ð
T ≤
←Ð
T ′.
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• I is right reflective if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT ) ≤ Ω(←ÐT ′) implies T ≤ T ′.

• I is system reflective if, for all T,T ′ ∈ ThSys(I),
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′.

We first establish the fact that both family and right reflectivity imply
systemicity.

Lemma 218 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,
C⟩ a π-institution based on F.

(a) If I is family reflective, then it is systemic;

(b) If I is right reflective, then it is systemic.

Proof:

(a) Suppose I is family reflective and let T ∈ ThFam(I). Then, we have,

by Proposition 20, Ω(T ) ≤ Ω(←ÐT ). Applying family reflectivity, we get

T ≤
←Ð
T . Since, by Proposition 42, it always holds that

←Ð
T ≤ T , we

get
←Ð
T = T . This shows that ThFam(I) = ThSys(I) and, thus, I is

systemic.

(b) Suppose I is right reflective and let T ∈ ThFam(I). Then, we have,

by Proposition 42,
←Ð←Ð
T =

←Ð
T . Thus, we get Ω(←Ð←ÐT ) = Ω(←ÐT ) and, hence

Ω(←ÐT ) ≤ Ω(←Ð←ÐT ). Applying right reflectivity, we get T ≤
←Ð
T . Since, by

Proposition 42, it always holds that
←Ð
T ≤ T , we get

←Ð
T = T . This shows

that ThFam(I) = ThSys(I) and, thus, I is systemic.
∎

Lemma 218 enables us to prove that family reflectivity and right reflec-
tivity are actually equivalent properties.

Proposition 219 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family reflective if and only if it is
right reflective.

Proof: Suppose, first, that I is family reflective. Then, by Lemma 218, it is
systemic, and, by Proposition 152, it is stable. To see that it is right reflective,

let T,T ′ ∈ ThFam(I), such that Ω(←ÐT ) ≤ Ω(←ÐT ′). Then, by stability, Ω(T ) ≤
Ω(T ′). Hence, by family reflectivity, T ≤ T ′. Thus, I is right reflective.
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Suppose, conversely, that I is right reflective. Then, by Lemma 218, it is
systemic, and, by Proposition 152, it is stable. Let T,T ′ ∈ ThFam(I), such

that Ω(T ) ≤ Ω(T ′). Then by stability, we get Ω(←ÐT ) ≤ Ω(←ÐT ′). Now we use
right reflectivity to get T ≤ T ′. Thus, I is family reflective. ∎

Now we establish several relationships among the three reflectivity classes.
First, we show that, if a π-institution is family reflective, then it is left
reflective.

Proposition 220 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family reflective, then it is left
reflective.

Proof: Suppose I if family reflective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) ≤ Ω(T ′). By family reflectivity, T ≤ T ′. But, by Lemma 218, I is

systemic, whence we get
←Ð
T ≤
←Ð
T ′ and, hence, I is left reflective. ∎

Next, we show that left reflectivity implies system reflectivity and, more-
over system reflectivity supplied with stability implies left reflectivity.

Proposition 221 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left reflective, then it is system reflective;

(b) If I is system reflective and stable, then it is left reflective.

Proof:

(a) Suppose that I is left reflective and let T,T ′ ∈ ThSys(I), such that

Ω(T ) ≤ Ω(T ′). Then, by left reflectivity,
←Ð
T ≤

←Ð
T ′. But, as T,T ′ are

theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′, whence T ≤ T ′ and I is

system reflective.

(b) Suppose that I is system reflective and stable. Let T,T ′ ∈ ThFam(I),
such that Ω(T ) ≤ Ω(T ′). Then, by stability, Ω(←ÐT ) ≤ Ω(←ÐT ′). Since
←Ð
T ,
←Ð
T ′ ∈ ThSys(I), we apply system reflectivity to get

←Ð
T ≤
←Ð
T ′. Thus, I

is left reflective.
∎

Finally, we show that systemicity is exactly the separating property be-
tween family reflectivity and system reflectivity.

Proposition 222 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family reflective if and only if it is
system reflective and systemic.
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Proof: Suppose, first, that I is family reflective. Then, by Lemma 218, it
is systemic. Moreover, by hypothesis, for all T,T ′ ∈ ThSys(I), such that
Ω(T ) ≤ Ω(T ′), we get, T ≤ T ′. So I is also system reflective.

Suppose, conversely, that I is system reflective and systemic and let
T,T ′ ∈ ThFam(I), such that Ω(T ) ≤ Ω(T ′). By systemicity, T,T ′ ∈ ThSys(I),
whence, by hypothesis, we get T ≤ T ′. Thus, I is family reflective. ∎

We have now established the following reflectivity hierarchy:

Family/Right Reflective

Left Reflective
❄

System Reflective
❄

We present now some examples to show that the inclusions shown in the
diagram are indeed proper inclusions.

The first example showcases a π-institution which is left reflective, but
not systemic, and, hence, according to Proposition 220, not family reflective.

Example 223 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

Since {{1,2}} is a theory family that is not a theory system, I is not systemic.
The lattice of theory families and the corresponding Leibniz congruence

systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

By the diagram, keeping in mind that
←ÐÐÐÐ{{1,2}} = {{2}}, one can see that I

is left reflective. But, clearly, it is not family reflective, as Ω({{1,2}}) ≤
Ω({{2}}), whereas, obviously, {{1,2}} /≤ {{2}}.

The second example presents a π-institution which is system reflective,
but fails to be left reflective and, hence, by Proposition 221, is not stable.

Example 224 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1} and
SEN♭(f)(0) = 0, SEN♭(f)(a) = 1, SEN♭(f)(b) = 0 and SEN♭(f)(1) = 1;

• N ♭ is the category of natural transformations generated by the two bi-
nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧Σ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨Σ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1
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Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{1} {1}{a,1} {a,1}{b,1} {1}{a, b,1} {a,1}{0, a, b,1} {0, a, b,1}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

0ab1 ...........................✲ ∇F

ab1 0b, a1

�
�
� ❅

❅
❅

.....................❥......
......

......
......

......
....✶

a1 b1 .........✲ ∆F

❅
❅
❅ �

�
�

....
....

....
....

....
.✯

1

Since Ω(←ÐÐÐÐÐÐ{{a, b,1}}) = Ω({{a,1}}) = {{0, b},{a,1}} ≠ ∆F = Ω({{a, b,1}}), we
conclude that I is not stable.

Since {{1}}, {{a,1}} and SEN♭ are the only theory systems of I, it is
clear from the diagram above that I is system reflective. On the other hand,
we have

Ω({{a, b,1}}) =∆F = Ω({{b,1}}),



Voutsadakis CHAPTER 3. SEMANTIC HIERARCHY I 271

but ←ÐÐÐÐÐÐ{{a, b,1}} = {{a,1}} ≰ {{1}} =←ÐÐÐÐ{{b,1}},
whence, I is not left reflective.

We turn now to transfer theorems regarding the reflectivity properties
studied in this section.

Theorem 225 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family reflective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′.

(b) I is left reflective if and only if, for every F-algebraic system A =
⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamA(A), ΩA(T ) ≤ ΩA(T ′) implies

←Ð
T ≤

←Ð
T ′.

(c) I is system reflective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysA(A), ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′.

Proof: We prove Part (b).
The “if” is obtained by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩

and taking into account that FiFamI(F) = ThFam(I), by Lemma 51.
For the “only if” suppose that I is left reflective and let A = ⟨A, ⟨F,α⟩⟩ be

an F-algebraic system and T,T ′ ∈ FiFamI(A), such that ΩA(T ) ≤ ΩA(T ′).
Apply the inverse of ⟨F,α⟩ to get α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). Thus, by
Proposition 24, we get Ω(α−1(T )) ≤ Ω(α−1(T ′)). Take into account the fact
that, by Lemma 51, α−1(T ), α−1(T ′) ∈ ThFam(I) and apply left reflectivity

to get
←ÐÐÐÐ
α−1(T ) ≤ ←ÐÐÐÐα−1(T ′). Hence, by Lemma 6, we get α−1(←ÐT ) ≤ α−1(←ÐT ′).

Finally, by the surjectivity of ⟨F,α⟩, we conclude that
←Ð
T ≤
←Ð
T ′. ∎

Turning to characterizations in terms of mappings between posets, we
get the following characterizations of family and system reflectivity in terms
of the order reflectivity of mappings from posets of theory or filter fami-
lies/systems into posets of congruence systems. Given posets P = ⟨P,≤⟩ and
Q = ⟨Q,≼⟩, call a mapping f ∶ P → Q order reflecting if, for all p1, p2 ∈ P ,

f(p1) ≼ f(p2) implies p1 ≤ p2.

Proposition 226 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family reflective;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is order reflecting;
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(c) ΩA ∶ FiFamI(A) → ConSysI∗(A) is order reflecting, for every F-al-
gebraic system A.

Similarly, for system reflectivity, we have

Proposition 227 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system reflective;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is order reflecting;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is order reflecting, for every F-al-
gebraic system A.

We continue our studies of reflectivity properties by looking at the re-
lationships governing classes defined using reflectivity with corresponding
classes defined using injectivity. We have the following result:

Proposition 228 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family/right reflective, then it is right injective;

(b) If I is left reflective, then it is left injective;

(c) If I is system reflective, then it is system injective.

Proof:

(a) Suppose I is right reflective and let T,T ′ ∈ ThFam(I), such that

Ω(←ÐT ) = Ω(←ÐT ′). Then, a fortiori, Ω(←ÐT ) ≤ Ω(←ÐT ′) and Ω(←ÐT ′) ≤ Ω(←ÐT ).
Thus, by right reflectivity, T ≤ T ′ and T ′ ≤ T . It follows that T = T ′.
Therefore, I is right injective.

(b),(c) Very similar to Part (a).

∎

Proposition 228 has established the following combined hierarchy of in-
jectivity and reflectivity properties.
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Family Reflective

✠�
�
�
�
�
�
�
� ❅

❅
❅❘

Right Injective

✠�
�
�

Left Reflective Family Injective

✠�
�
� ❅

❅
❅❘ ✠�

�
�

System Reflective Left Injective

❅
❅
❅❘ ✠�

�
�

System Injective

Now we turn to an example that will show that all three fresh inclu-
sions depicted in the diagram, i.e., those established in Proposition 228, are
actually proper inclusions.

Example 229 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor determined by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the natural transformation σ♭ ∶ SEN♭ →

SEN♭, defined by the following table:

x ∈ SEN♭(Σ) σ♭Σ(x)
0 0
1 0
2 2
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The π-institution I = ⟨F,C⟩ is defined by setting

CΣ = {{2},{1,2},{0,1,2}}.
Note that I is systemic, since the category Sign♭ is trivial. The lattice of
theory families and that of the corresponding Leibniz congruence systems are
shown in the diagram.

{0,1,2} ..................✲ ∇F

{1,2} {{0,1},{2}}
................s...

...
...

...
...

.✸

{2} ∆F

Since all three theory families/systems have distinct Leibniz congruence sys-
tems, I is right injective.

On the other hand, Ω({{1,2}}) ≤ Ω({{2}}), whereas, obviously, {{1,2}} /≤{{2}}, whence I is not system reflective.

We close this section on reflectivity by looking at the relationships be-
tween the various reflectivity classes and the classes in the loyalty hierarchy.

Proposition 230 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family reflective, then it is family loyal;

(b) If I is left reflective, then it is left loyal;

(c) If I is system reflective, then it is system loyal.

Proof:

(a) Suppose that I is family reflective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) > Ω(T ′). Then, a fortiori, Ω(T ) ≥ Ω(T ′). Therefore, by family
reflectivity, T ≥ T ′ and, hence T /< T ′. We conclude that I is family
loyal.

(b) Suppose that I is left reflective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) > Ω(T ′). Then, a fortiori, Ω(T ) ≥ Ω(T ′). Hence, by left re-

flectivity,
←Ð
T ≥

←Ð
T ′. But this implies that

←Ð
T /< ←ÐT ′. Therefore, I is left

loyal.

(c) Very similar to Parts (a) and (b).
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∎

Proposition 230 establishes the following combined hierarchy of reflectiv-
ity and loyalty classes of π-institutions.

Family/Right Reflective

✠�
�
� ❅

❅
❅❘

Family Loyal Left Reflective

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Left Loyal System Reflective

❅
❅
❅❘ ✠�

�
�

System/Right Loyal

We reinforce the picture by constructing a π-institution that is family
loyal but fails to be system reflective. This demonstrates that all three in-
clusions established in Proposition 230 are proper.

Example 231 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the trivial category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor determined by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone of natural transformations generated by the three unary

natural transformations ρ♭, σ♭, τ ♭ ∶ SEN♭ → SEN♭, defined by the follow-
ing table:

x ∈ SEN♭(Σ) ρ♭Σ(x) σ♭Σ(x) τ ♭Σ(x)
0 0 0 1
1 2 0 1
2 2 2 2
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The π-institution I = ⟨F,C⟩ is defined by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that, since Sign♭ is trivial, all theory families are theory systems.

The lattice of theory families and the corresponding Leibniz congruence
systems are given in the following diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

From the diagram it is clear that there are no theory families T,T ′, such
that T < T ′ and Ω(T ) > Ω(T ′). Thus, I is family loyal.

On the other hand, setting T = {{0,2}} and T ′ = {{1,2}}, we have Ω(T ) ≤
Ω(T ′), whereas, obviously, T /≤ T ′. Therefore I is not system reflective.

3.8 Complete Reflectivity

In this section we define the classes arising by imposing the various versions
of the property of complete order reflectivity.

Definition 232 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is family completely reflective if, for all T ∪{T ′} ⊆ ThFam(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

• I is left completely reflective if, for all T ∪ {T ′} ⊆ ThFam(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′.

• I is right completely reflective if, for all T ∪ {T ′} ⊆ ThFam(I),
⋂
T ∈T

Ω(←ÐT ) ≤ Ω(←ÐT ′) implies ⋂
T ∈T

T ≤ T ′.
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• I is system completely reflective if, for all T ∪ {T ′} ⊆ ThSys(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

For the sake of brevity, we sometimes shorten “complete reflectivity” to
c-reflectivity.

Lemma 218 allows us to obtain easily the fact that both family c-reflecti-
vity and right c-reflectivity imply systemicity.

Lemma 233 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family completely reflective, then it is systemic;

(b) If I is right completely reflective, then it is systemic.

Proof: Note that, if I is family completely reflective, then it is family re-
flective and that, if I is right completely reflective, then it is right reflective.
Therefore, the conclusion is obtained by applying Lemma 218. ∎

Now we show in an analog of Proposition 219 for complete reflectivity
that family complete reflectivity and right complete reflectivity are equivalent
properties.

Proposition 234 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely reflective if and
only if it is right completely reflective.

Proof: Suppose, first, that I is family completely reflective and let T ∪

{T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). By Lemma 233, I is
systemic, whence we get ⋂T ∈T Ω(T ) ≤ Ω(T ′). This allows us to apply family
c-reflectivity to obtain ⋂T ≤ T ′. Hence I is right completely reflective.

Suppose, conversely, that I is right completely reflective and let T ∪{T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By Lemma 233, I is systemic,

whence, we get ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Applying right c-reflectivity, we get
that ⋂T ≤ T ′. Therefore, I is family completely reflective. ∎

We now look at the relationships that govern the three complete reflec-
tivity classes, which also parallel the ones established in Propositions 220,
221 and 222 for the various classes defined using reflectivity.

We show, first, that family complete reflectivity implies left complete
reflectivity.

Proposition 235 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family completely reflective then it
is left completely reflective.
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Proof: Suppose that I is family completely reflective and let T ∪ {T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By family complete reflectivity,

we get ⋂T ∈T T ≤ T ′, whence, by Lemma 233, ⋂T ∈T

←Ð
T ≤

←Ð
T ′. Thus, I is left

completely reflective. ∎

Next, we show that left complete reflectivity implies system complete
reflectivity and, moreover, system complete reflectivity, combined with sta-
bility, implies left complete reflectivity.

Proposition 236 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left completely reflective, then it is system completely reflective;

(b) If I is system completely reflective and stable, then it is left completely
reflective.

Proof:

(a) Suppose that I is left c-reflective and let T ∪ {T ′} ⊆ ThSys(I), such

that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by left c-reflectivity, ⋂T ∈T

←Ð
T ≤

←Ð
T ′.

But, as T ∪ {T ′} consists of theory systems, we get ⋂T ≤ T ′. So I is
system c-reflective.

(b) Suppose that I is system c-reflective and stable. Let T ∪ {T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by stability, we get

⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Since {←ÐT ∶ T ∈ T } ∪ {←ÐT ′} ∈ ThSys(I), we apply

system c-reflectivity to get ⋂T ∈T

←Ð
T ≤
←Ð
T ′. Thus, I is left c-reflective.

∎

Finally, it is not difficult to see that family complete reflectivity is tanta-
mount to system complete reflectivity plus systemicity.

Proposition 237 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely reflective if and
only if it is system completely reflective and systemic.

Proof: Suppose, first, that I is family completely reflective. Then, by
Lemma 233, it is systemic. Moreover, by Propositions 235 and 236, it is
system completely reflective.

Suppose, conversely, that I is system completely reflective and systemic
and let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Since, by sys-
temicity, we get T ∪{T ′} ⊆ ThSys(I), we get, by system complete reflectivity,

⋂T ∈T T ≤ T ′. Thus, I is family completely reflective. ∎
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We have now established the following complete reflectivity hierar-
chy:

Family/Right c-Reflective

Left c-Reflective
❄

System c-Reflective
❄

We now provide two examples to show that the inclusions depicted in the
diagram between the three complete reflectivity classes introduced in this
section are proper. The first example presents a π-institution which is left
completely reflective, but not systemic, and, hence, according to Proposition
237, not family completely reflective.

Example 238 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}
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Since {{1,2}} is a theory family that is not a theory system, I is not systemic.

The lattice of theory families and that of the corresponding Leibniz con-
gruence systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

By the diagram, keeping in mind that
←ÐÐÐÐ{{1,2}} = {{2}}, one can see that I

is left c-reflective. But, clearly, it is not family c-reflective, as Ω({{1,2}}) ≤
Ω({{2}}), whereas, obviously, {{1,2}} /≤ {{2}}, giving, as we have already
seen in Example 223, that I is not even family reflective.

The second example presents a π-institution which is system c-reflective,
but fails to be left c-reflective and, hence, by Proposition 236, is not stable.

Example 239 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1} and
SEN♭(f)(0) = 0, SEN♭(f)(a) = 1, SEN♭(f)(b) = 0 and SEN♭(f)(1) = 1;

• N ♭ is the category of natural transformations generated by the two bi-
nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧Σ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨Σ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{1} {1}{a,1} {a,1}{b,1} {1}{a, b,1} {a,1}{0, a, b,1} {0, a, b,1}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

0ab1 ...........................✲ ∇F

ab1 0b, a1

�
�
� ❅

❅
❅

.....................❥.....
......

......
......

......
.....✶

a1 b1 .........✲ ∆F

❅
❅
❅ �

�
�

....
....

....
....

....
.✯

1

Since Ω(←ÐÐÐÐÐÐ{{a, b,1}}) = Ω({{a,1}}) = {{0, b},{a,1}} ≠ ∆F = Ω({{a, b,1}}), we
conclude that I is not stable.

Note that, since {{1}}, {{a,1}} and SEN♭ are the only theory systems of
I, the Leibniz operator Ω ∶ ThSys(I)→ ConSys∗(I) is an order isomorphism.
Hence, I is system completely reflective. On the other hand, we have

Ω({{a, b,1}}) = ∆F = Ω({{b,1}}),
but ←ÐÐÐÐÐÐ{{a, b,1}} = {{a,1}} ≰ {{1}} =←ÐÐÐÐ{{b,1}},
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whence, I is not left reflective and, a fortiori, it is not left completely reflec-
tive either.

We turn now to transfer theorems regarding the reflectivity properties
studied in this section.

Theorem 240 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family completely reflective if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), ⋂T ∈T ΩA(T ) ≤
ΩA(T ′) implies ⋂T ≤ T ′.

(b) I is left completely reflective if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamA(A), ⋂T ∈T ΩA(T ) ≤ ΩA(T ′)
implies ⋂T ∈T

←Ð
T ≤
←Ð
T ′.

(c) I is system completely reflective if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiSysA(A), ⋂T ∈T ΩA(T ) ≤
ΩA(T ′) implies ⋂T ∈T T ≤ T ′.

Proof: We prove Part (b).
The “if” is obtained by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩

and taking into account that FiFamI(F) = ThFam(I), by Lemma 51.
For the “only if” suppose that I is left c-reflective and let A = ⟨A, ⟨F,α⟩⟩

be an F-algebraic system and T ∪{T ′} ⊆ FiFamI(A), such that ⋂T ∈T ΩA(T ) ≤
ΩA(T ′). Apply the inverse of ⟨F,α⟩ to get α−1(⋂T ∈T ΩA(T )) ≤ α−1(ΩA(T ′)).
This yields that ⋂T ∈T α

−1(ΩA(T )) ≤ α−1(ΩA(T ′)). Thus, by Proposition
24, we get ⋂T ∈T Ω(α−1(T )) ≤ Ω(α−1(T ′)). Take into account the fact that,
by Lemma 51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I) and apply left

c-reflectivity to get ⋂T ∈T

←ÐÐÐÐ
α−1(T ) ≤ ←ÐÐÐÐα−1(T ′). Hence, by Lemma 6, we get

⋂T ∈T α
−1(←ÐT ) ≤ α−1(←ÐT ′). Hence, α−1(⋂T ∈T

←Ð
T ) ≤ α−1(←ÐT ′). Finally, by the

surjectivity of ⟨F,α⟩, we conclude that ⋂T ∈T

←Ð
T ≤
←Ð
T ′. ∎

Next, we obtain characterizations of family and system c-reflectivity in
terms of the complete order reflectivity of mappings from posets of theory
or filter families/systems into posets of congruence systems. Given complete
lattices P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, call a mapping f ∶ P → Q completely
order reflecting if, for all X ∪ {y} ⊆ P ,

Q

⋀
x∈X

f(x) ≼ f(y) implies
P

⋀
x∈X

x ≤ y.

Proposition 241 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:
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(a) I is family completely reflective;

(b) Ω ∶ ThFam(I)→ ConSys(I) is completely order reflecting;

(c) ΩA ∶ FiFamI(A)→ ConSys(A) is completely order reflecting, for every
F-algebraic system A.

Similarly, for system c-reflectivity, we have

Proposition 242 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system completely reflective;

(b) Ω ∶ ThSys(I)→ ConSys(I) is completely order reflecting;

(c) ΩA ∶ FiSysI(A) → ConSys(A) is completely order reflecting, for every
F-algebraic system A.

We look now at the relationships governing classes defined using complete
reflectivity with corresponding classes defined using reflectivity. We have
referred to this straightforward relationships already in the proof of Lemma
233.

Proposition 243 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family/right completely reflective, then it is family/right reflec-
tive;

(b) If I is left completely reflective, then it is left reflective;

(c) If I is system completely reflective, then it is system reflective.

Proof: All three parts are based on the observation that the reflectivity
conditions are specializations of the corresponding complete reflectivity con-
ditions to the special case of singleton collections of theory families/systems
on the left hand sides of the relevant inequalities. ∎

Proposition 243 has established the following combined hierarchy of in-
jectivity and reflectivity properties.
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Family/Right c-Reflective

✠�
�
� ❅

❅
❅❘

Left c-Reflective Family Reflective

✠�
�
� ❅

❅
❅❘ ✠�

�
�

System c-Reflective Left Reflective

❅
❅
❅❘ ✠�

�
�

System Reflective

Now we turn to an example that will show that all three inclusions estab-
lished in Proposition 243 and depicted in the diagram are proper. Namely,
we construct a family reflective π-institution that is not system completely
reflective.

Example 244 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2,3,4};
• N ♭ is the category of natural transformations generated by the two

unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭ defined by the fol-
lowing table:

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 2 0
1 2 0
2 2 0
3 1 2
4 2 0

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{4},{3,4},{1,3,4},{2,3,4},{0,1,2,3,4}}.
Clearly, since Sign♭ is trivial, I is systemic.

The lattice of theory families and the corresponding Leibniz congruence
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systems are shown in the diagram.

01234 ∇F

�
�
� ❅

❅
❅

✟✟✟✟✟✟✟✟

✁
✁
✁
✁
✁
✁
✁
✁

❍❍❍❍❍❍❍❍

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇

134 234 02,14,3 01,24,3

❅
❅
❅ �

�
�

34 012,34

4 0123,4

From the diagram, it is clear that, for all T,T ′ ∈ ThFam(I), Ω(T ) ≤
Ω(T ′) implies T ≤ T ′, i.e., I is family reflective. On the other hand, setting
T 1 = {{1,3,4}}, T 2 = {{2,3,4}} and T ′ = {{4}}, we get

Ω(T 1) ∩Ω(T 2) = {{02,14,3}} ∩ {{01,24,3}}
= ∆F

≤ {{0123,4}} = Ω(T ′),
whereas T 1 ∩ T 2 = {{3,4}} ≰ {{4}} = T ′. Hence, I is not system completely
reflective.
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