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4.1 Introduction

In this chapter, we study the classes of π-institutions that result when com-
bining monotonicity properties of the Leibniz operator with injectivity, re-
flectivity or complete reflectivity. As such, all those classes correspond, in the
categorical framework, to the class of weakly algebraizable sentential logics
[62], which is obtained by combining protoalgebraicity [28] (see, also, [26])
with truth equationality [77] (see, also, Section 6.4 of [86]). It should also
be mentioned that algebraizable logics, as introduced in [35] and general-
ized in [43, 53, 54], form subclasses of weakly algebraizable ones obtained by
strengthening protoalgebraicity to equivalentiality [19, 23, 24]. The analogs
of equivalentiality for π-institutions and the corresponding subclasses of al-
gebraizable π-institutions will be considered in Chapters 5 and 5.

In Section 4.2, we study the hierarchy that results when combining preal-
gebraicity, i.e., monotonicity of the Leibniz operator on theory systems (Sec-
tion 3.3) with each of the various flavors of injectivity (Section 3.6), reflectiv-
ity (Section 3.7) or complete reflectivity (Section 3.8). Since there are four
different flavors of injectivity, three of reflectivity and three of complete reflec-
tivity, we get, a priori, ten classes of weakly prealgebraizable π-institutions.
The qualifier “weakly” suggests the use of monotonicity rather than equiv-
alentiality, and the prefix “pre” in prealgebraizable that prealgebraicity, i.e.,
system monotonicity, rather than protoalgebraicity, i.e., family monotonicity,
is used in the definition of these ten classes. Since prealgebraicity is common
to all ten, the differentiating factor is the type of injectivity, reflectivity or
c-reflectivity being imposed. Accordingly, the following ten classes are ob-
tained, all named “weakly X prealgebraizable”, or “WX Prealgebraizable”
for short, where the string X stands for one of the following:

• SI for system injective, LI for left injective, FI for family injective, RI
for right injective; or

• SR for system reflective, LR for left reflective, FR for family reflective;
or

• SC for system c-reflective, LC for left c-reflective, FC for family c-
reflective.

A fundamental result is that, under prealgebraicity, all three system proper-
ties (SI, SR and SC) coincide. Thus, WSI, WSR and WSC prealgebraizability
are identical properties. We call π-institutions belonging to this class WS pre-
algebraizable. It is shown that WS prealgebraizability transfers. Moreover,
WS prealgebraizable π-institutions I = ⟨F,C⟩ are characterized by the prop-
erty that ΩA on I-filter systems is an order embedding, for every F-algebraic
system A. As prealgebraicity identifies also family reflectivity with family c-
reflectivity, the classes of WFR prealgebraizable and WFC prealgebraizable
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π-institutions coincide. Finally, both WFR and WRI prealgebraizability turn
out to be equivalent, as they are both equivalent to WFI prealgebraizability
plus systemicity. Hence, at the top of the weak prealgebraizability hierarchy,
only two of the four classes are potentially different. We refer to them as
WFR and WFI prealgebraizability. Both properties transfer. Moreover, both
have characterizations in terms of the Leibniz operator viewed as a mapping
between ordered sets. Namely, I = ⟨F,C⟩ is WFR prealgebraizable iff ΩA is
an order isomorphism and it is WFI prealgebraizable iff ΩA is a bijection on
I-filter families, which restricts to an order embedding on I-filter systems,
for every F-algebraic system A.

As no further identifications seem possible, one obtains the hierarchy

WFR Prealg

✠�
� ❙

❙
❙
❙
❙✇

WLC Prealg

WFI Prealg

WLR Prealg
❄

✴✓
✓
✓
✓
✓

❅
❅❘

WLI Prealg

WS Prealg
❄

Some specialized results reduce the hierarchy further under additional
provisos. First, under systemicity, the entire hierarchy collapses to a single
class. Second, it is shown that, under stability, the two family properties
coincide, as do all four remaining properties. Thus, under stability, the
hierarchy reduces to only two distinct classes.

The section focuses, next, to the three left properties. More precisely, it
is shown that all three of WLI, WLR and WLC prealgebraizability versions
transfer and that each is characterized via theorems perceiving the Leibniz
operator as a mapping from filter families to congruence systems over arbi-
trary algebraic systems. Briefly, given a π-institution I = ⟨F,C⟩, it turns
out that I is WLI (WLR, WLC, respectively) prealgebraizable iff, for ev-
ery F-algebraic system A, ΩA ∶ FiFamI(A) → ConSys(A) is a left injective
(left order reflecting, left completely order reflecting, respectively) surjection,
which restricts to an order embedding on filter systems.

In Section 4.3, we study those classes that are formed by combining pro-
toalgebraicity (family monotonicity) with each of the ten versions of injec-
tivity, reflectivity or complete reflectivity properties. So, once more, a pri-
ori, before any detailed study, one obtains ten potentially different classes
of weakly algebraizable π-institutions. However, since protoalgebraicity is
a stronger condition than prealgebraicity, one obtains immediately at least
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those identifications that apply to the weak prealgebraizability hierarchy. So,
e.g., we get that WFI, WRI, WFR and WFC algebraizable π-institutions co-
incide. We term the corresponding property WF algebraizability. It turns
out to be equivalent to the conjunction of WS prealgebraizability and sys-
temicity. WF algebraizability transfers and, moreover, it can be character-
ized by ΩA being an order isomorphism on every algebraic system A. It
follows that this class of π-institutions is actually identical to the class of
WFR prealgebraizable ones, i.e., those belonging to the top class in the weak
prealgebraizability hierarchy. What is a massive collapse, however, results
from showing that the lowest class in the weak algebraizability hierarchy,
WSI algebraizability, can be characterized as the conjunction of stability
with ΩA ∶ FiSysI(A) → ConSysI∗(A) being an order isomorphism. This
allows showing that all classes of WS, WLI, WLR, WLC and WFI algebraiz-
able π-institutions are identical. We term the corresponding property WS
algebraizability. It is shown that WS algebraizability also transfers.

Having reduced the weak algebraizability hierarchy down to two classes,
we conclude Section 4.3 (and Chapter 4) by merging it with the weak preal-
gebraizability hierarchy to obtain the following refinement of the classes that
correspond, in the categorical framework, to the class of weakly algebraizable
deductive systems.

WF Alg

❂✚✚
✚✚ ❏

❏
❏
❏
❏
❏
❏❫

WS Alg

WLC Prealg
❄

WFI Prealg

✢✡
✡
✡
✡
✡
✡
✡

WLR Prealg
❄

❩❩❩❩⑦
WLI Prealg

WS Prealg
❄

4.2 Weak PreAlgebraizability

We now shift attention to classes of π-institutions that are defined as a result
of interactions between the various kinds of injectivity, reflectivity and com-
plete reflectivity, on the one hand, and prealgebraicity and protoalgebraicity,
on the other.
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Recall that the hierarchy that was established in the preceding chapter
as regards the various versions of injectivity, reflectivity and complete reflec-
tivity has the following form:

Family c-Reflective

✠�
�
� ❅

❅
❅❘

Left c-Reflective Family Reflective

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

System c-Reflective Left Reflective Right Injective

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

Family Injective
�

System Reflective Left Injective

❅
❅
❅❘ ✠�

�
�

System Injective

Thus, a priori, based on the preceding hierarchy, and combining with
prealgebraicity, we obtain a mimicking hierarchy of ten classes which are
defined, and whose hierarchy is shown, below.

Definition 245 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system injective prealgebraizable or WSI Prealge-
braizable, for short, if it is system injective and prealgebraic.

• I is weakly left injective prealgebraizable or WLI Prealgebra-
izable, for short, if it is left injective and prealgebraic.

• I is weakly family injective prealgebraizable or WFI Prealge-
braizable, for short, if it is family injective and prealgebraic.

• I is weakly right injective prealgebraizable or WRI Prealge-
braizable, for short, if it is right injective and prealgebraic.

Definition 246 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system reflective prealgebraizable or WSR Preal-
gebraizable, for short, if it is system reflective and prealgebraic.
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• I is weakly left reflective prealgebraizable or WLR Prealge-
braizable, for short, if it is left reflective and prealgebraic.

• I is weakly family reflective prealgebraizable or WFR Preal-
gebraizable, for short, if it is family reflective and prealgebraic.

Definition 247 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system completely reflective prealgebraizable or
WSC Prealgebraizable, for short, if it is system completely reflective
and prealgebraic.

• I is weakly left completely reflective prealgebraizable or WLC
Prealgebraizable, for short, if it is left completely reflective and pre-
algebraic.

• I is weakly family completely reflective prealgebraizable or
WFC Prealgebraizable, for short, if it is family completely reflective
and prealgebraic.

WFC-Prealgebraizable

✠�
�
� ❅

❅
❅❘

WLC-Prealgebraizable WFR-Prealgebraizable

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

WSC-Prealgebraizable WLR-Prealgebraizable WRI-Prealgebraizable

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�
WFI-Prealgebraizable

�

WSR-Prealgebraizable WLI-Prealgebraizable

❅
❅
❅❘ ✠�

�
�

WSI-Prealgebraizable

A few words in the nomenclature used in this diagram are in order.

• W stands for “weakly” which refers to the fact that these classes are
defined using forms of monotonicity of the Leibniz operator without
any stipulation as to commutativity of the Leibniz operator with inverse
special endomorphisms (to be studied later in the chapter). If one adds
that condition (using essentially (pre)equivalentiality instead of pre- or
protoalgebraicity), then the letter is dropped.
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• The letters S for “system”, L for “left”, R for “right” and F for “family”
have obvious meanings referring to which of the four versions (family,
left, right or system) of injectivity (I), reflectivity (R) or complete re-
flectivity (C) conditions are used in the definition.

• Finally, the term “prealgebraizable” is associated with application of
monotonicity to theory systems only (as in “prealgebraic”), as opposed
to the term “algebraizable”, which stipulates monotonicity for all the-
ory families.

We start by proving that under prealgebraicity, system injectivity, sys-
tem reflectivity and system complete reflectivity turn out to be equivalent
properties.

Theorem 248 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is prealgebraic, then the following
statements are equivalent:

(a) I is system injective;

(b) I is system reflective;

(c) I is system completely reflective.

Proof:

(a)⇒(b) Suppose that I is system injective. Let T,T ′ ∈ ThSys(I), such that
Ω(T ) ≤ Ω(T ′). Then we get Ω(T ) = Ω(T ) ∩ Ω(T ′). Moreover, by
Lemma 23, Ω(T ) ∩ Ω(T ′) ≤ Ω(T ∩ T ′). On the other hand, by preal-
gebraicity, we have Ω(T ∩ T ′) ≤ Ω(T ) and Ω(T ∩ T ′) ≤ Ω(T ′), whence
Ω(T ∩ T ′) ≤ Ω(T ) ∩Ω(T ′). We conclude that

Ω(T ) = Ω(T ) ∩Ω(T ′) = Ω(T ∩ T ′).
Now we use system injectivity to get T = T ∩T ′. Therefore, T ≤ T ′. So
I is also system reflective.

(b)⇒(c) Suppose, next, that I is system reflective. Let T ∪ {T ′} ⊆ ThSys(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Since I is prealgebraic, i.e., Ω is mono-
tone on theory systems, we have, for all T ∈ T , Ω(⋂T ) ≤ Ω(T ). There-
fore, we get

Ω(⋂
T ∈T

T ) ≤ ⋂
T ∈T

Ω(T ) ≤ Ω(T ′).
Since, by hypothesis, I is system reflective, we get ⋂T ∈T T ≤ T ′. Thus,
I is system completely reflective.

(c)⇒(a) Suppose, finally, that I is system completely reflective. By Proposition
243, it is system reflective, and, then, by Proposition 228, it is system
injective.
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∎

Theorem 248 shows that three of the classes in the previous diagram
coincide.

Corollary 249 The classes of WSI prealgebraizable, WSR prealgebraizable,
and WSC prealgebraizable π-institutions coincide.

Taking advantage of Corollary 249 we define:

Definition 250 (WS Prealgebraizable) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F. I is called
weakly system prealgebraizable (or WS prealgebraizable for short) if
it is prealgebraic and system injective, i.e., if the Leibniz operator is monotone
and injective on theory systems: For all T,T ′ ∈ ThSys(I),

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);
Ω(T ) = Ω(T ′) implies T = T ′.

We present two examples of WS prealgebraizable π-institutions. They
are crafted to provide a sneak preview of the state of affairs in the case of
systemic and non-systemic π-institutions with regards to weak prealgebraiz-
ability. The reader will notice that, in both examples, there is an order
isomorphism between the lattice of theory systems of the π-institution and
that of the associated Leibniz congruence systems. On the other hand, for
this isomorphism to extend to an isomorphism between the lattice of all the-
ory families and the corresponding Leibniz congruence systems, the condition
of systemicity on the π-institution under consideration seems to be required
(and is, as we shall see later).

Example 251 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b = SEN♭(f)(1);

• N ♭ is the trivial clone.

Specify the π-institution I = ⟨F,C⟩ by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Notice that every theory family is a theory system, whence I is systemic.

The following diagrams show the lattices of theory families and of the
corresponding Leibniz congruence systems:
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{{0,1},{a, b}}
�
�
� ❅

❅
❅{{0,1},{b}} {{1},{a, b}}

❅
❅
❅ �

�
�

{{1},{b}}

∇F

�
�
� ❅

❅
❅{{0,1}},{{a},{b}} {{0},{1}},{{a, b}}

❅
❅
❅ �

�
�

∆F

Note that the π-institution I is WS prealgebraizable and that the two lattices
are clearly isomorphic.

Example 252 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is specified by setting SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b}, SEN♭(f)(0) = a and SEN♭(f)(1) = b;
• N ♭ is the trivial clone.

Specify the π-institution I = ⟨F,C⟩ by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
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Notice that the theory family T = {{0,1},{b}} is not a theory system, whence
I is not systemic. In fact, ←Ð ∶ ThFam(I) → ThSys(I) is given by the
following table: {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The next table gives the theory families and the associated Leibniz congruence
systems:

T Ω(T ){{1},{b}} {{0},{1}},{{a},{b}}{{0,1},{b}} {{0},{1}},{{a},{b}}{{1},{a, b}} {{0},{1}},{{a, b}}{{0,1},{a, b}} {{0,1}},{{a, b}}
So, even though the lattices of theory families and of the corresponding Leibniz
congruence systems are not isomorphic,

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

the lattices of theory systems and of the corresponding Leibniz congruence
systems are indeed isomorphic:

{{0,1},{a, b}} .............................✲ ∇F

{{1},{a, b}} ..............✲ {{0},{1}},{{a, b}}

{{1},{b}} .................................✲ ∆F

This π-institution is also WS prealgebraizable.

We present next examples to show that the class of weakly system prealge-
braizable π-institutions is properly included in both the class of prealgebraic
and that of system completely reflective π-institutions.
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Example 253 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone of natural transformations on SEN♭ generated by the

the two unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭, given by
the following table:

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 0 0
1 1 2
2 0 2

Define the π-institution I = ⟨F,C⟩, by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The lattice of the theory systems of I and that of the associated Leibniz
congruence systems are shown in the following diagrams

{{0,1,2}} ...............................................✲ ∇F

�
�
� ❅

❅
❅{{1,2}} {{0,2}} .................✲ {{0,2},{1}}...............................................③

❅
❅
❅ �

�
�

{{2}} ...................................................✲ ∆F

It is clear that the Leibniz operator is monotone. On the other hand, the
Leibniz operator is not injective on theory systems. Therefore, we conclude
that I is prealgebraic but that it fails to be WS prealgebraizable.
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Example 254 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a and SEN♭(f)(2) = b;

• N ♭ is the trivial clone.

We consider the π-institution I = ⟨F,C⟩ defined by

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{b},{a, b}}.
This π-institution has six theory families, but only four theory systems. The
lattice of theory systems and the associated congruence systems are shown
below.

{{0,1,2},{a, b}} ........................................✲ ∇F

�
�
� ❅

❅
❅{{1,2},{a, b}} ........✲ {{0},{1,2}},{{a, b}} {{0,1},{2}}{{a, b}}

.......
.......

.......
.......

.......
.......

.....✿

{{2},{a, b}}
{{0,1},{2}}{{a},{b}}

{{2},{b}} .......
.......

.......
......✿

It is clear from these that the Leibniz operator is completely order reflect-
ing on the theory systems of I, but it is not monotonic. It follows that I is
system c-reflective but not prealgebraic. Therefore, it is system c-reflective,
but fails to be weakly system prealgebraizable.
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The defining properties of weak system prealgebraizability transfer from
theory systems to filter systems over arbitrary algebraic systems. This result
follows naturally from corresponding constituent pieces that have already
been put in place when studying monotonicity and injectivity.

Theorem 255 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WS prealgebraizable if and only if,
for every F-algebraic system A, the Leibniz operator on A is monotone and
injective on the I-filter systems of A, i.e., for all T,T ′ ∈ FiSysI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
ΩA(T ) = ΩA(T ′) implies T = T ′.

Proof: Suppose, first, that the displayed implications hold for every F-
algebraic system A and all I-filter systems T,T ′ on A. By taking A = F =⟨F, ⟨I, ι⟩⟩ and keeping in mind Lemma 51, we conclude that the Leibniz
operator is monotone and injective on all theory systems of I . Thus, by
definition, I is WS prealgebraizable.

Suppose, conversely, that I is WS prealgebraizable. Then, by definition,
it is prealgebraic and system injective. Thus, by Theorems 179 and 214,
for every F-algebraic system A, the Leibniz operator ΩA is monotone and
injective on the I-filter systems of A. ∎

We finally establish the result that we alluded to before presenting Ex-
amples 251 and 252. Namely, we show that WS prealgebraizability can be
equivalently characterized by the fact that the Leibniz operator ΩA over an
arbitrary F-algebraic system A establishes an order embedding from the lat-
tice of filter systems on A into the poset of all relative congruence systems
on A with respect to the class AlgSys∗(I).

Consider an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution
I = ⟨F,C⟩ based on F. Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and let
T ∈ FiFamI(A). Then, observe that the I-matrix family ⟨AΩA(T ), T /ΩA(T )⟩
is Leibniz reduced. Hence, the F-algebraic system AΩA(T ) is in AlgSys∗(I).
Equivalently, we have that ΩA(T ) ∈ ConSysI∗(A). Thus, the Leibniz opera-
tor is always a well defined function

ΩA ∶ FiFamI(A)→ ConSysI∗(A).
In particular, it restricts to a well-defined function

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Additionally, by definition of AlgSys●(I), this may be perceived also as a
function

ΩA ∶ FiSysI(A)→ ConSysI●(A),
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where, we set

ConSysI●(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ AlgSys●(I)}.
We keep these remarks in mind in the formulation of several of the following
results.

Theorem 256 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WS prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding.

Proof: Suppose, first, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA

is an order embedding. In particular, because of Lemma 51,

Ω ∶ ThSys(I)→ ConSys∗(I)
is an order embedding. This implies that the Leibniz operator is monotone
and injective on theory systems. Thus I is WS prealgebraizable.

Suppose, conversely, that I is WS prealgebraizable. Let A be an F-
algebraic system. Consider the mapping

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
By Theorem 255, this mapping is monotone and injective. To show that it
is an order embedding, we must show that it is also order reflecting. By
Theorem 225, it suffices to show that I is system reflective. But this was
accomplished in Theorem 248. ∎

Corollary 257 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WS prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI●(A)
is an order isomorphism.

At this point in our studies we have the following hierarchy, which results
from the preceding one by the identification established in Corollary 249.
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WFC-Prealgebraizable

✠�
�
�
� ❅

❅
❅
❅❘

WLC-Prealgebraizable WFR-Prealgebraizable

❅
❅
❅
❅❘ ✠�

�
�
� ❅

❅
❅
❅❘

WLR-Prealgebraizable WRI-Prealgebraizable

❅
❅
❅
❅❘ ✠��

WFI-Prealgebraizable
��

WLI-Prealgebraizable

WS-Prealgebraizable

❄

We continue our study by showing that all three upper diagonal classes,
namely those of WFC, WFR and WRI prealgebraizable π-institutions also
coincide. To accomplish this for WFC and WFR prealgebraizability, we prove
a partial analog of Theorem 248 that under prealgebraicity, family reflectivity
and family complete reflectivity turn out to be equivalent properties. The
crucial observation is that, as shown in Lemma 218, family reflectivity implies
systemicity.

Theorem 258 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is prealgebraic and family reflective,
then it is family completely reflective.

Proof: Since I is family reflective, by Lemma 218, it is systemic. Since
it is prealgebraic and system reflective, by Theorem 248, it is also system
completely reflective. Hence, by systemicity, it is also family completely
reflective. ∎

Theorem 258 shows that two of the top classes in the previous diagram
coincide.

Corollary 259 The classes of WFR prealgebraizable and WFC prealgebraiz-
able π-institutions coincide.

Next we show that the classes of WFR and WRI prealgebraizable π-
institutions coincide. We do this indirectly by providing identical character-
izations of both classes involving WFI prealgebraizability and systemicity.
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First, we need a result which will also prove useful later in our investi-
gations. Namely, we look at an interesting and useful connection between
family injectivity and family reflectivity, by means of protoalgebraicity, that
forms a partial analog of Theorem 248, which related system injectivity with
system reflectivity in the presence of prealgebraicity.

Proposition 260 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. If I is protoalgebraic and fam-
ily injective, then it is family reflective.

Proof: Suppose that I is protoalgebraic and family injective. Let T,T ′ ∈
ThFam(I), such that Ω(T ) ≤ Ω(T ′). Then we get Ω(T ) = Ω(T ) ∩ Ω(T ′).
Moreover, by Lemma 23, Ω(T ) ∩Ω(T ′) ≤ Ω(T ∩ T ′). On the other hand, by
protoalgebraicity, we have Ω(T ∩T ′) ≤ Ω(T ) and Ω(T ∩T ′) ≤ Ω(T ′), whence
Ω(T ∩ T ′) ≤ Ω(T ) ∩Ω(T ′). We conclude that

Ω(T ) = Ω(T ) ∩Ω(T ′) = Ω(T ∩ T ′).
Now we use family injectivity to get T = T ∩ T ′. Therefore, T ≤ T ′. So I is
also family reflective. ∎

Now we characterize WFR prealgebraizability.

Theorem 261 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then I is WFR prealgebraizable if and
only if it is WFI prealgebraizable and systemic.

Proof: Suppose, first, that I is WFR prealgebraizable. Then it is, by defi-
nition, prealgebraic, it is, by Lemma 218, systemic and, by Proposition 228,
it is family injective. Thus, it is WFI prealgebraizable and systemic.

Suppose, conversely, that I is WFI prealgebraizable and systemic. Then,
it is, by definition, prealgebraic and family injective, which, by systemicity,
imply that it is protoalgebraic and family injective. Thus, by Proposition
260, it is protoalgebraic and family reflective. Hence, it is, a fortiori, WFR
prealgebraizable. ∎

But it is easy to show also that WRI prealgebraizability has exactly the
same characterization as WFR prealgebraizability.

Theorem 262 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then I is WRI prealgebraizable if and
only if it is WFI prealgebraizable and systemic.

Proof: This follows directly from Proposition 209. ∎

Corollary 263 The classes of WFR prealgebraizable and WRI prealgebraiz-
able π-institutions coincide.
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Proof: The conclusion follows from Theorems 261 and 262. ∎

Corollaries 259 and 263 show that, among the top four classes of the hi-
erarchy in the preceding diagram, only two may be (and are, as we show
in the following example) different. We keep the names WFR prealgebraiz-
able and WFI prealgebraizable for the π-institutions in each of these classes.
Thus, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution
I = ⟨F,C⟩ based on F:

• I is WFR prealgebraizable if it prealgebraic and family reflective (or,
equivalently, family c-reflective or right injective), i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′, for all T,T ′ ∈ ThFam(I);

• I is WFI prealgebraizable if it is prealgebraic and family injective, i.e.,
if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) = Ω(T ′) implies T = T ′, for all T,T ′ ∈ ThFam(I).

We provide an example to show that these two classes of π-institutions are
indeed different, i.e., we exhibit a WFI prealgebraizable π-institution which
is not WFR prealgebraizable.

Example 264 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The table giving the action of ←Ð on theory families is shown below. It is

clear that I is not systemic.

TΣ {2} {1,2} {0,1,2}
←Ð
T Σ {2} {2} {0,1,2}

The following diagram gives the lattice of theory families and the correspond-
ing Leibniz congruence systems.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

We can see that I is prealgebraic and family injective. Since it is not sys-
temic, by Theorem 261, it follows that it is not family reflective, a fact that
can also be directly verified by the diagram. We conclude that I is a WFI
prealgebraizable π-institution, which is not WFR prealgebraizable.

We now provide a theorem to the effect that both classes are character-
ized by theorems asserting that their properties transfer from theory sys-
tems/families to filter systems/families on arbitrary algebraic systems.

Theorem 265 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WFI prealgebraizable if and only
if, for every F-algebraic system A, the Leibniz operator on A is monotone
on I-filter systems and injective on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) = ΩA(T ′) implies T = T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WFI prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and family injective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 214, the Leibniz operator on the I-filter families
of A is injective. ∎
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Theorem 266 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WFR prealgebraizable if and only
if, for every F-algebraic system A, the Leibniz operator on A is monotone
on I-filter systems and order reflecting on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WFR prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and family reflective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 225, the Leibniz operator on the I-filter families
of A is injective. ∎

Next we give two important results, along the lines of the characterization
Theorem 256 for WS prealgebraizability, characterizing the classes of WFI
prealgebraizable and WFR prealgebraizable π-institutions.

Theorem 267 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WFI prealgebraizable if and only
if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a bijection which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: Suppose, first, that I is WFI prealgebraizable. Then, it is a fortiori
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that it extends to a bijection
from FiFamI(A) onto ConSysI∗(A). Since I is family injective, this map-
ping is injective. It is also surjective: Given θ ∈ ConSysI∗(A), we have by
definition, Aθ ∈ AlgSys∗(I). Thus, there exists T ∈ FiFamI(Aθ), such that
ΩA

θ(T ) =∆A
θ
. Now applying the inverse of the canonical quotient morphism⟨I, πθ⟩ ∶ A → Aθ, we get πθ

−1(ΩAθ(T )) = πθ−1(∆Aθ), whence, by Proposition
24, ΩA(πθ−1(T )) = θ. Since, by Corollary 55, πθ

−1(T ) ∈ FiFamI(A), we get
that the Leibniz operator is also surjective.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)
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is a bijection which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. Thus, in particular, it
is prealgebraic. The fact that Ω ∶ ThFam(I) → ConSys∗(I) is a bijection
ensures that the Leibniz operator on ThFam(I) is injective. Thus I is also
family injective and, therefore, it is WFI prealgebraizable. ∎

And now an analogous characterization for WFR prealgebraizability.

Theorem 268 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WFR prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Suppose, first, that I is WFR prealgebraizable. Then, it is a fortiori
WFI prealgebraizable. So by Theorem 267

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding which extends to a bijection

ΩA ∶ FiFamI(A)→ ConSysI∗(A).
But, by Theorem 261, I is systemic. Therefore, we get an order isomorphism

ΩA ∶ FiFamI(A)→ ConSysI∗(A).
Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism. In particular, Ω ∶ ThFam(I)→ ConSysI∗(F) is an
order isomorphism. This ensures that the Leibniz operator is monotone on
theory families, hence on theory systems, and, moreover, that it is reflective
on theory families. Thus, I is prealgebraic and family reflective, i.e., it is a
WFR prealgebraizable π-institution. ∎

We take a break again to draw the hierarchy incorporating the informa-
tion that we have currently available.
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WFR-Prealgebraizable

✠�
�
� ❙

❙
❙
❙
❙
❙✇

WLC-Prealgebraizable

WFI-Prealgebraizable

WLR-Prealgebraizable
❄

✴✓
✓
✓
✓
✓
✓

❅
❅
❅❘

WLI-Prealgebraizable

WS-Prealgebraizable
❄

Recall again the formal definitions of the three classes that have not yet
been at the focus of our investigations, namely those of WLC, WLR and
WLI prealgebraizable π-institutions:

• I is WLI Prealgebraizable if it is prealgebraic and left injective, i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) = Ω(T ′) implies

←Ð
T =
←Ð
T ′, for all T,T ′ ∈ ThFam(I);

• I is WLR Prealgebraizable if it is prealgebraic and left reflective, i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) ≤ Ω(T ′) implies

←Ð
T ≤
←Ð
T ′, for all T,T ′ ∈ ThFam(I);

• I is WLC Prealgebraizable if it is prealgebraic and left completely re-
flective, i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′, for all T ∪ {T ′} ⊆ ThFam(I).

We showed in Example 264 that the top right arrow in the preceding
diagram represents a proper inclusion. Moreover, we showed in Theorem
261 that the two classes are separated by systemicity. Now we study the
remaining five inclusions to reveal relationships between them and to verify
that they are also proper.

We look, first, at the top left arrow, i.e., at the inclusion of the class of
WFR prealgebraizable into that of WLC prealgebraizable π-institutions. We
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have the following extension of Theorem 261, which shows that systemicity
is actually the property that separates the top class from every other class
in this hierarchy.

Theorem 269 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WFR prealgebraizable if and only if
it is WLC, WLR, WFI, WLI or WS prealgebraizable and systemic.

Proof: Suppose that I is WFR prealgebraizable. We showed in Theorem 261
that it is systemic. Moreover, it belongs, a fortiori, to all other classes in the
hierarchy, since the conditions defining them are weaker than prealgebraicity
and family complete reflectivity (which was showed to be equivalent to family
reflectivity under prealgebraicity in Theorem 261).

Suppose, conversely, that I is WS prealgebraizable and systemic. This
implies, by definition, that it is prealgebraic and system completely reflective.
Thus, by systemicity, it is also family completely reflective. Therefore, since
it is prealgebraic and family completely reflective, it is, by definition, WFR
prealgebraizable. ∎

A more interesting, perhaps, view is the status of this hierarchy under
the milder assumption of stability. Even though systemicity leads to a total
collapse of the hierarchy into a single class, it turns out that stability allows
for a two-class hierarchy.

Proposition 270 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WFI prealgebraizable and stable,
then it is systemic.

Proof: Suppose that I is WFI prealgebraizable and stable and let T ∈
ThFam(I). Since I is stable, we have Ω(T ) = Ω(←ÐT ). Thus, using family

injectivity, we get T =
←Ð
T . It follows that T ∈ ThSys(I). We now conclude

that ThFam(I) = ThSys(I) and, therefore, I is systemic. ∎

Theorem 271 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WFR prealgebraizable if and only if
it is WFI prealgebraizable and stable.

Proof: If I is WFR prealgebraizable, then it is, a fortiori, WFI prealge-
braizable and, by Theorem 261, systemic and, therefore, stable. On the
other hand, if I is WFI prealgebraizable and stable, then, by Proposition
270, it is systemic and, hence, by Theorem 269, it is WFR prealgebraizable.
∎

Proposition 272 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WS prealgebraizable and stable,
then it is WLC prealgebraizable.
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Proof: Suppose that I is WS prealgebraizable and stable and consider T ∪{T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By stability, we get that

⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Since {←ÐT ∶ T ∈ T } ∪ {←ÐT ′} ⊆ ThSys(I), we get, by WS

prealgebraizability, that ⋂T ∈T
←Ð
T ≤
←Ð
T ′. This proves that I is left c-reflective

and, hence, that it is WLC prealgebraizable. ∎

Theorem 273 For stable π-institutions the weak prealgebraizability hierar-
chy collapses to the classes of weakly family prealgebraizable and weakly sys-
tem/left prealgebraizable classes that are related as follows

WF Prealgebraizable

WS Prealgebraizable
❄

Proof: This follows by Theorem 271 and Proposition 272. ∎

Now we look at an example to verify that WFR prealgebraizable π-
institutions form a proper subclass of WLC prealgberaizable π-institutions.

Example 274 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
It has three theory families T ∶= Thm(I), T ′ and T ′′ ∶= SEN, with TΣ ={2}, T ′Σ = {1,2} and T ′′Σ = {0,1,2}, but only two theory systems T and T ′′,
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since
←Ð
T ′ = T . A look at the lattice of theory families and the corresponding

Leibniz congruence systems shows that it is prealgebraic and left completely
reflective.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

On the other hand, it is not family reflective, since Ω(T ′) ≤ Ω(T ), but T ′ ≰ T .
So I it is WLC prealgebraizable, but not WFR prealgebraizable.

For WLC prealgebraizable π-institutions we have the following transfer
theorem.

Theorem 275 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLC prealgebraizable if and only if,
for every F-algebraic system A, the Leibniz operator on A is monotone on
I-filter systems and left completely order reflecting on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′, for all T ∪ {T ′} ⊆ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WLC prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and left completely
reflective. Thus, by Theorem 179, the Leibniz operator on the I-filter systems
of A is monotone and, by Theorem 240, the Leibniz operator on the I-filter
families of A is left completely order reflecting. ∎

Moreover, we obtain the following characterization theorem:

Theorem 276 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLC prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
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Proof: Suppose, first, that I is WLC prealgebraizable. Then, it is a fortiori
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that it extends to a left com-
pletely order reflecting surjection from FiFamI(A) onto ConSysI∗(A). Since
I is left completely order reflective, by Theorem 275, this mapping is left
completely order reflecting. That it is also surjective may be seen by the
same argument used in the proof of Theorem 267.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)

is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. Thus, in particular, it
is prealgebraic. The fact that Ω ∶ ThFam(I) → ConSysI∗(F) is left com-
pletely order reflecting ensures that the Leibniz operator on ThFam(I) is
left completely order reflecting. Thus I is also completely order reflective
and, therefore, it is WLC prealgebraizable. ∎

We switch to the left vertical arrow in the diagram. We present an exam-
ple to verify that WLC prealgebraizable π-institutions form a proper subclass
of WLR prealgebraizable π-institutions.

Example 277 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3,4,5}
and

SEN♭(f)(0) = SEN♭(f)(1) = SEN♭(f)(2) = 0,
SEN♭(f)(3) = SEN♭(f)(4) = SEN♭(f)(5) = 5;

• N ♭ is the category of natural transformations generated by the two
unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭, with

σ♭Σ, τ
♭
Σ ∶ SEN♭(Σ)→ SEN♭(Σ)

defined by

– σ♭Σ(3) = 1 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,4,5};
– σ♭Σ(4) = 2 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,3,5}.
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{5},{3,4,5},{1,3,4,5},{2,3,4,5},{0,1,2,3,4,5}}.
I has five theory families but only three theory systems. The action of ←Ð

on theory families is given by the following table.

T
←Ð
T{5} {5}{3,4,5} {3,4,5}{1,3,4,5} {3,4,5}{2,3,4,5} {3,4,5}{0,1,2,3,4,5} {0,1,2,3,4,5}

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

012345 ∇F

�
�
� ❅

❅
❅

1345 2345

❅
❅
❅ �

�
�

345 {012,345}
�
�
� ❅

❅
❅

5
{02,1,
3,45} {012,

34,5} {01,2,
35,4}

From the diagram, it is clear that I is prealgebraic, i.e., that, for all
T,T ′ ∈ ThSys(I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Moreover, for all T,T ′ ∈
ThFam(I), if Ω(T ) ≤ Ω(T ′), then

←Ð
T ≤
←Ð
T ′, i.e., I is left reflective. Therefore,
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I if WLR prealgebraizable. On the other hand, setting, T 1 = {{1,3,4,5}},
T 2 = {{2,3,4,5}} and T ′ = {{5}}, we get

Ω(T 1) ∩Ω(T 2) = {{02,1,3,45}} ∩ {{01,2,35,4}}
= ∆F

≤ {{012,34,5}} = Ω(T ′),
whereas

←Ð
T 1 ∩

←Ð
T 2 = {{3,4,5}} ∩ {{3,4,5}} = {{3,4,5}} ≰ {{5}} =←ÐT ′.

Hence, I is not left completely reflective and, thus, a fortiori, it fails to be
WLC prealgebraizable.

For WLR prealgebraizable π-institutions we have the following transfer
theorem.

Theorem 278 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLR prealgebraizable if and only
if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A
is monotone on I-filter systems and left order reflecting on I-filter families,
i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) ≤ ΩA(T ′) implies

←Ð
T ≤
←Ð
T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WLR prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and left reflective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 225, the Leibniz operator on the I-filter families
of A is left order reflecting. ∎

Moreover, we obtain the following characterization theorem:

Theorem 279 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLR prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left order reflecting surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
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Proof: Suppose, first, that I is WLR prealgebraizable. Then, it is, a fortiori,
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that it extends to a left order
reflecting surjection from FiFamI(A) onto ConSysI∗(A). Since I is left
reflective, by Theorem 278, this mapping is left order reflecting. That it
is also surjective may be seen by the same argument used in the proof of
Theorem 267.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)

is a left order reflecting surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. So, it is prealgebraic. The
fact that Ω ∶ ThFam(I) → ConSys∗(I) is left order reflecting ensures that
the Leibniz operator on ThFam(I) is left order reflecting. Thus I is also left
reflective and, hence, WLR prealgebraizable. ∎

We switch to the bottom left arrow in the diagram. We present an exam-
ple to verify that WLR prealgebraizable π-institutions form a proper subclass
of WLI prealgebraizable π-institutions.

Example 280 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3}
and

SEN♭(f)(0) = SEN♭(f)(1) = 0,
SEN♭(f)(2) = SEN♭(f)(3) = 3;

• N ♭ is the category of natural transformations generated by the single
unary natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by σ♭Σ(0) =
σ♭Σ(1) = σ♭Σ(3) = 0 and σ♭Σ(2) = 1.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
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I has four theory families but only three theory systems. The action of
←Ð on theory families is given by the following table.

T
←Ð
T{3} {3}{2,3} {2,3}{1,2,3} {2,3}{0,1,2,3} {0,1,2,3}

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

{0,1,2,3} ....................................✲ ∇F

{1,2,3} {01,23}
..............................⑦

......
......

......
......

......
....✶

{2,3} {01,2,3}

......
......

......
......

......
....✶

{3} ∆F

From the diagram, it is clear that I is prealgebraic, i.e., that, for all
T,T ′ ∈ ThSys(I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Moreover, for all T,T ′ ∈
ThFam(I), the implication Ω(T ) = Ω(T ′) implies

←Ð
T =

←Ð
T ′ holds trivially,

since no two different theory families share a common Leibniz congruence
system. Hence, I is left injective. We conclude that I if WLI prealgebraiz-
able. On the other hand, setting, T = {{1,2,3}} and T ′ = {{3}}, we get

Ω(T ) =∆F ≤ {{01,2,3}} = Ω(T ′),
whereas ←Ð

T = {{2,3}} ≰ {{3}} =←ÐT ′.
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Hence, I is not left reflective and, therefore, a fortiori, it is not WLR preal-
gebraizable.

For WLI prealgebraizable π-institutions we have the following transfer
theorem.

Theorem 281 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLI prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is
monotone on I-filter systems and left injective on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) = ΩA(T ′) implies

←Ð
T =
←Ð
T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WLI prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and left injective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 214, the Leibniz operator on the I-filter families
of A is left injective. ∎

For WLI prealgebraizable π-institutions, we obtain the following charac-
terization theorem:

Theorem 282 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLI prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left injective surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: Suppose, first, that I is WLI prealgebraizable. Then, it is, a fortiori,
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is a lattice embedding. So it suffices to show that it extends to a left injective
surjection from FiFamI(A) onto ConSysI∗(A). Since I is left injective, by
Theorem 281, this mapping is left injective. That it is also surjective may be
seen by the same argument used in the proof of Theorem 267.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)
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is a left injective surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. Thus, in particular, it
is prealgebraic. The fact that Ω ∶ ThFam(I) → ConSys∗(I) is left injective
ensures that the Leibniz operator on ThFam(I) is left injective. Thus I is
also left injective and, hence, WLI prealgebraizable. ∎

We turn next to the bottom right arrow in the diagram.
We know by Proposition 208 that WFI π-institutions form a subclass of

the class of WLI π-institutions. Moreover, we know by Theorem 269 that, if
I is WLI prealgebraizable and systemic, then it is WFI prealgebraizable. We
give now an example showing that the inclusion of the class of WFI prealge-
braizable π-institutions into the class of WLI prealgebraizable π-institutions
is proper.

Example 283 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The table yielding the action of ←Ð on theory families is shown below.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
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The accompanying diagram gives the structure of the lattice of theory families
and the corresponding Leibniz congruence systems.

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

From the diagram one can check that the Leibniz operator is monotone on
theory systems and left injective on theory families. Thus, the π-institution
is prealgebraic and left injective, i.e., WLI prealgebraizable.

On the other hand, letting T = {{1},{b}} and T ′ = {{0,1},{b}}, we have
Ω(T ) = Ω(T ′), but T ≠ T ′, whence I is not family injective and, therefore, it
is not WFI prealgebraizable.

We look now at the very bottom arrow of the diagram. By Theorem
273, if I is a WS prealgebraizble and stable π-institution, then it is WLI
prealgebraizable. We provide, next, an example to show that these two
classes are different, i.e., the class of WLI prealgebraizable π-institutions is
properly included in that of WS prealgebraizble π-institutions.

Example 284 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1} and
SEN♭(f)(0) = 0, SEN♭(f)(a) = 1, SEN♭(f)(b) = 0 and SEN♭(f)(1) = 1;

• N ♭ is the category of natural transformations generated by the two bi-
nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution, defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{1} {1}{a,1} {a,1}{b,1} {1}{a, b,1} {a,1}{0, a, b,1} {0, a, b,1}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

0ab1 ...........................✲ ∇F

ab1 0b, a1

�
�
� ❅

❅
❅

.....................❥......
......

......
......

......
....✶

a1 b1 .........✲ ∆F

❅
❅
❅ �

�
�

....
....

....
....

....
.✯

1

Since Ω(←ÐÐÐÐÐÐ{{a, b,1}}) = Ω({{a,1}}) = {{0, b},{a,1}} ≠ ∆F = Ω({{a, b,1}}), we
conclude that I is not stable.

Note that, since {{1}}, {{a,1}} and SEN♭ are the only theory systems
of I, the Leibniz operator Ω ∶ ThSys(I) → ConSys∗(I) is an order isomor-
phism. Hence, I is both prealgebraic and system injective, i.e., it is WS
prealgebraizable. On the other hand, we have

Ω({{a, b,1}}) = ∆F = Ω({{b,1}}),
but ←ÐÐÐÐÐÐ{{a, b,1}} = {{a,1}} ≠ {{1}} =←ÐÐÐÐ{{b,1}},
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whence, I is not left injective and, hence, it fails to be WLI prealgebraizable.

4.3 Weak Algebraizability

We now shift attention to classes of π-institutions that are defined as a re-
sult of interactions between the various kinds of injectivity, reflectivity and
complete reflectivity, on the one hand, and protoalgebraicity on the other. A
priori, based on the ordering of the various injectivity, reflectivity and com-
plete reflectivity properties, we have ten classes, which are defined below and
whose hierarchy is shown in the accompanying diagram.

Definition 285 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system injective algebraizable or WSI Algebraiz-
able, for short, if it is system injective and protoalgebraic.

• I is weakly left injective algebraizable or WLI Algebraizable,
for short, if it is left injective and protoalgebraic.

• I is weakly family injective algebraizable or WFI Algebraiz-
able, for short, if it is family injective and protoalgebraic.

• I is weakly right injective algebraizable or WRI Algebraizable,
for short, if it is right injective and protoalgebraic.

Definition 286 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system reflective algebraizable or WSR Algebraiz-
able, for short, if it is system reflective and protoalgebraic.

• I is weakly left reflective algebraizable or WLR Algebraizable,
for short, if it is left reflective and protoalgebraic.

• I is weakly family reflective algebraizable or WFR Algebraiz-
able, for short, if it is family reflective and protoalgebraic.

Definition 287 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system completely reflective algebraizable or WSC
Algebraizable, for short, if it is system completely reflective and pro-
toalgebraic.
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• I is weakly left completely reflective algebraizable or WLC
Algebraizable, for short, if it is left completely reflective and protoal-
gebraic.

• I is weakly family completely reflective algebraizable or WFC
Algebraizable, for short, if it is family completely reflective and pro-
toalgebraic.

WFC-Algebraizable

✠�
�
�
� ❅

❅
❅
❅❘

WLC-Algebraizable WFR-Algebraizable

✠�
�
�
� ❅

❅
❅
❅❘ ✠�

�
�
� ❅

❅
❅
❅❘

WSC-Algebraizable WLR-Algebraizable WRI-Algebraizable

❅
❅
❅
❅❘ ✠�

�
�
� ❅

❅
❅
❅❘ ✠��

WFI-Algebraizable
��

WSR-Algebraizable WLI-Algebraizable

❅
❅
❅
❅❘ ✠�

�
�
�

WSI-Algebraizable

In view of the remarks made about terminology at the beginning of Sec-
tion 4.2, the naming conventions here should be fairly obvious. The only
difference is that the term “prealgebraizable” has been replaced by the term
“algebraizable” to reflect the fact that the condition that the π-institution
be prealgebraic is being replaced in the definitions by that of being protoal-
gebraic.

Recall from Theorem 248 that, under prealgebraicity, the properties of
being system injective, system reflective and system completely reflective co-
incide. A similar result holds for the properties of family injectivity, right
injectivity, family reflectivity and family complete reflectivity under the as-
sumption of protoalgebraicity.

Theorem 288 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is protoalgebraic, then the following
statements are equivalent:

(a) I is family injective;

(b) I is family reflective;
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(c) I is family completely reflective;

(d) I is right injective.

Proof:

(a)⇒(b) Suppose that I is fanily injective. Let T,T ′ ∈ ThFam(I), such that
Ω(T ) ≤ Ω(T ′). Then we get Ω(T ) = Ω(T ) ∩ Ω(T ′). Moreover, by
Lemma 23, Ω(T )∩Ω(T ′) ≤ Ω(T ∩ T ′). On the other hand, by protoal-
gebraicity, we have Ω(T ∩ T ′) ≤ Ω(T ) and Ω(T ∩ T ′) ≤ Ω(T ′), whence
Ω(T ∩ T ′) ≤ Ω(T ) ∩Ω(T ′). We conclude that

Ω(T ) = Ω(T ) ∩Ω(T ′) = Ω(T ∩ T ′).
Now we use family injectivity to get T = T ∩ T ′. Therefore, T ≤ T ′. So
I is also family reflective.

(b)⇒(c) Suppose, next, that I is family reflective. Let T ∪ {T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Since I is protoalgebraic, i.e., Ω is
monotone on theory families, we have, for all T ∈ T , Ω(⋂T ) ≤ Ω(T ).
Therefore, we get

Ω(⋂
T ∈T

T ) ≤ ⋂
T ∈T

Ω(T ) ≤ Ω(T ′).
Since, by hypothesis, I is family reflective, we get ⋂T ∈T T ≤ T ′. Thus,
I is family completely reflective.

(c)⇒(d) Suppose that I is family completely reflective. By Proposition 243, it
is family reflective, and, then, by Proposition 228, it is right injective.

(d)⇒(a) Suppose, finally, that I is right injective. Then, by Proposition 208, it
is family injective.

∎

Theorem 288 shows that four of the classes in the previous diagram co-
incide.

Corollary 289 The classes of WFI, WRI, WFR and WFC algebraizable
π-institutions coincide.

Given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution
I = ⟨F,C⟩ based on F, we use the term weakly family algebraizable
(ot WF algebraizable for short) for I if it is protoalgebraic and family
injective (or, equivalently, right injective or family reflective or family com-
pletely reflective), i.e., if the Leibniz operator is monotone and injective on
theory families: For all T,T ′ ∈ ThFam(I),

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);
Ω(T ) = Ω(T ′) implies T = T ′.
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We revisit a previously constructed example to give a WF algebraizable
π-institution. Note that the π-institution in question is systemic. As we will
see in Theorem 291, this is no coincidence!

Example 290 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b = SEN♭(f)(1);

• N ♭ is the trivial clone.

Specify the π-institution I = ⟨F,C⟩ by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Notice that every theory family is a theory system, whence I is systemic.

The following diagrams show the lattices of theory families and of the
corresponding Leibniz congruence systems:

{{0,1},{a, b}}
�
�
� ❅

❅
❅{{0,1},{b}} {{1},{a, b}}

❅
❅
❅ �

�
�

{{1},{b}}

∇F

�
�
� ❅

❅
❅{{0,1}},{{a},{b}} {{0},{1}},{{a, b}}

❅
❅
❅ �

�
�

∆F

I is protoalgebraic and family injective. Therefore, it is a WF algebraiz-
able π-institution.
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We show that a π-institution that is WF algebraizable is necessarily sys-
temic.

Theorem 291 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WF algebraizable, then it is sys-
temic.

Proof: Suppose that I is WF algebraizable. Let T ∈ ThFam(I). Then,

by Proposition 42, T,
←Ð
T ∈ ThFam(I), such that

←Ð
T ≤ T . Thus, by protoal-

gebraicity, we get Ω(←ÐT ) ≤ Ω(T ). But, by Proposition 20, it is always the

case that Ω(T ) ≤ Ω(←ÐT ). Therefore, we have Ω(←ÐT ) = Ω(T ). Thus, by family

injectivity, we conclude that
←Ð
T = T . Therefore T ∈ ThSys(I). We conclude

that ThFam(I) = ThSys(I) and, hence, I is systemic. ∎

An interesting consequence of Theorem 291 is an exact characterization
of those WS prealgebraizable π-institutions that are WF algebraizable.

Corollary 292 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then I is WF algebraizable if and only if
it is WS prealgebraizable and systemic.

Proof: Suppose I is WF algebraizable. Then, by Theorem 291, it is sys-
temic. Moreover, by definition, its Leibniz operator is monotone and injective
on theory families. Thus, it is also monotone and injective on theory systems.
So I is WS prealgebraizable.

Suppose conversely, that I is WS prealgebraizable and systemic. Then,
by definition, its Leibniz operator is monotone and injective on theory sys-
tems. But, by systemicity, the collection of theory systems coincides with
the collection of theory families. Therefore, the Leibniz operator is mono-
tone and injective on theory families. It follows, by definition, that I is WF
algebraizable. ∎

We pause to give an updated version of the hierarchical diagram regarding
weak algebraizability classes:
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WF-Algebraizable

WLC-Algebraizable

❄

✠�
�
� ❅

❅
❅❘

WSC-Algebraizable WLR-Algebraizable

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

WSR-Algebraizable WLI-Algebraizable

❅
❅
❅❘ ✠�

�
�

WSI-Algebraizable

We present examples to show that the class of weakly family algebraizable
π-institutions is properly included in both the class of protoalgebraic and that
of family completely reflective π-institutions.

Example 293 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone of natural transformations on SEN♭ generated by the

the two unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭ given by
the following table:

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 0 0
1 1 2
2 0 2

Define the π-institution I = ⟨F,C⟩, by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The lattice of theory families of I and the associated Leibniz congruence
systems are shown in the diagram.
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{{0,1,2}} ...............................................✲ ∇F

�
�
� ❅

❅
❅{{1,2}} {{0,2}} .................✲ {{0,2},{1}}...............................................③

❅
❅
❅ �

�
�

{{2}} ...................................................✲ ∆F

The Leibniz operator is monotone, but not injective on theory families. There-
fore, we conclude that I is protoalgebraic but that it fails to be WF algebraiz-
able.

Example 294 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1,2};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The lattice of theory families and the associated Leibniz congruence sys-
tems (in block form) are shown in the diagram.

{{0,1,2}}.....................③ ∇F

{{1,2}}
✱
✱
✱
✱ ❧

❧
❧
❧{{0,1},{2}} {{0},{1,2}}

{{2}}

..........................③

....
...✯

It is clear from these that the Leibniz operator is completely order reflect-
ing on the theory families of I, but it is not monotone. It follows that I
is family completely reflective but not protoalgebraic. Therefore, I is family
completely reflective, but fails to be WF algebraizable.

The properties defining weak family algebraizability transfer from theory
families to filter families over arbitrary algebraic systems.

Theorem 295 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WF algebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is
monotone and injective on I-filter families, i.e., for all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
ΩA(T ) = ΩA(T ′) implies T = T ′.

Proof: Suppose, first, that the displayed implications hold for every F-
algebraic system A and all I-filter families T,T ′ on A. By taking A = F =⟨F, ⟨I, ι⟩⟩ and keeping in mind Lemma 51, we conclude that the Leibniz
operator is monotone and injective on all theory families of I . Thus, by
definition, I is WF algebraizable.

Suppose, conversely, that I is WF algebraizable. Then, by Theorem 288,
it is protoalgebraic and family completely reflective. Thus, by Theorems
179 and 240, for every F-algebraic system A, the Leibniz operator ΩA is
monotone and completely order reflecting on the I-filter families of A. Thus,
by Propositions 243 and 228, the Leibniz operator is monotone and injective
on the I-filter families of A. ∎

We showed in Theorem 256 that WS prealgebraizability is equivalent to
the Leibniz operator ΩA over an arbitrary F-algebraic system A establishing
an order embedding from the lattice of I-filter systems on A into the poset
of all AlgSys∗(I)-congruence systems on A. We show, next, that WF alge-
braizability has a similar characterization. Namely, it can be characterized
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by the fact that the Leibniz operator ΩA over an arbitrary F-algebraic sys-
tem A establishes an order isomorphism from the lattice of I-filter families
of A into the lattice of all AlgSys∗(I)-congruence systems on A.

Recall the function

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
that we have introduced before Theorem 256, that restricts to a well-defined
function from FiSysI(A) into ConSysI∗(A).
Theorem 296 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WF algebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Suppose, first, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA

is an order isomorphism. Then, by Theorem 268, I is WFR prealgebraizable.
To show that it is WF algebraizable, it suffices, by Corollary 292, to show
that it is systemic. But, by Theorem 261, every WFR prealgebraizable π-
institution is systemic.

Suppose, conversely, that I is WF algebraizable. Then it is, a fortiori,
WFR prealgebraizable. Therefore, by Theorem 268, for every F-algebraic
system A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is an order isomorphism. ∎

We now have the following corollary to the effect that the classes of WF
algebraizable π-institutions and of WFR prealgebraizable π-institutions co-
incide.

Corollary 297 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WF algebraizable if and only if it is
WFR prealgebraizable.

Proof: By Theorems 268 and 296, membership in each of these two classes
is characterized by ΩA ∶ FiFamI(A) → ConSysI∗(A) being an order isomor-
phism, for every F-algebraic system A. ∎

In light of Corollary 297, we shall call both the class of WF algebraizable
π-institutions and the class of WFR prealgebraizable π-institutions by the
term weakly family algebraizable or WF algebraizable, for short.

We now work towards a sweeping contraction of the classes appearing in
the weak algebraizability hierarchy. To accomplish this, we provide, first, a
characterization of the class of WSI algebraizable π-institutions. Namely, we
show that a π-institution is WSI algebraizable if and only if it is stable and
ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism, for all F-algebraic
systems A.
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Theorem 298 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WSI algebraizable if and only if I is
stable and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Suppose, first, that I is WSI algebraizable. Then it is, by definition,
protoalgebraic and, hence, by Lemma 170, it is stable. Also, it is, a fortiori,
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that ΩA on I-filter systems
on A is surjective. To this end, consider θ ∈ ConSysI∗(A). Then Aθ ∈
AlgSys∗(I). Thus, there exists T ∈ FiFamI(Aθ), such that ΩA

θ(T ) = ∆A
θ
.

Applying the inverse of ⟨I, πθ⟩ ∶ A → Aθ, we get πθ
−1(ΩAθ(T )) = πθ−1(∆Aθ).

So, by Proposition 24, ΩA(πθ−1(T )) = θ. By stability and Theorem 154, we

get that ΩA(←ÐÐÐÐπθ
−1(T )) = θ. Hence, by Lemma 6, ΩA(πθ−1(←ÐT )) = θ. Now,

by Proposition 53 and Lemma 51, πθ
−1(←ÐT ) ∈ FiSysI(A). Therefore, ΩA ∶

FiSysI(A)→ ConSysI∗(A) is surjective, as was to be shown.

Suppose, conversely, that I is stable and for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism.
In particular, we have that Ω ∶ ThSys(I) → ConSys∗(I) is an order iso-
morphism. This yields immediately that the Leibniz operator is injective on
theory systems and, hence I is system injective. The isomorphism also yields
that the Leibniz operator is monotone on theory systems, i.e., that I is pre-
algebraic. So it suffices to show that it is monotone on all theory families. To

this end, let T,T ′ ∈ ThFam(I), such that T ≤ T ′. Then, by Lemma 1,
←Ð
T ≤
←Ð
T ′.

Thus, taking into account Proposition 42, by prealgebraicity, Ω(←ÐT ) ≤ Ω(←ÐT ′).
Now using the postulated stability of I , we get Ω(T ) ≤ Ω(T ′). Therefore, I
is protoalgebraic. ∎

Using this characterization of WSI algebraizable π-institutions, we now
show that the class of WSI algebraizable π-institutions and that of WLC
algebraizable π-institutions coincide. This causes a collapse of both squares
of the diagram describing the weak algebraizability hierarchy (i.e., of all six
bottom classes) into a single class.

Theorem 299 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WSI algebraizable, then it is WLC
algebraizable.
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Proof: Suppose I is WSI algebraizable. Then it is, by definition, protoal-
gebraic. Moreover, by Theorem 298, it is stable and, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism. To see that it is WLC algebraizable, it suffices to
show that it is left completely reflective. So consider T ∪ {T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By protoalgebraicity, we get ⋂T ∈T Ω(T ) =
Ω(⋂T ∈T T ). Thus, Ω(⋂T ∈T T ) ≤ Ω(T ′). By stability, Ω(←ÐÐÐÐ⋂T ∈T T) ≤ Ω(←ÐT ′). By

Proposition 42 and the hypothesis,
←ÐÐÐÐ
⋂T ∈T T ≤

←Ð
T ′. By Lemma 3, ⋂T ∈T

←Ð
T ≤
←Ð
T ′.

We conclude that the Leibniz operator is left completely order reflecting on
theory families and, therefore, I is WLC algebraizable. ∎

Corollary 300 The classes of WLC, WSC, WLR, WSR, WLI and WSI
algebraizable π-institutions coincide.

Proof: According to Theorem 299 and because of the hierarchy of the defin-
ing properties, we get the following diagram, where the arrows denote inclu-
sions.

WSC Alg ✲ WSR Alg

✟✟✟✟✟✯

�
�
�
�
�✒

❍❍❍❍❍❥
WLC Alg WSI Alg ✲ WLC Alg

❍❍❍❍❍❥ ✟✟✟✟✟✯

WLR Alg ✲ WLI Alg

The conclusion readily follows. ∎

Because of Corollary 300, we shall call a π-institution belonging to any
of these six classes weakly (system) algebraizable, or W algebraizable
(sometimes WS algebraizable) for short.

We revisit an example showing that the inclusion of the class of WF
algebraizable π-institutions into the class of WS algebraizable π-institutions
is proper.

Example 301 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The table yielding the action of ←Ð on theory families is shown below.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The accompanying diagram gives the structure of the lattice of theory families
and the corresponding Leibniz congruence systems.

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

From the diagram one can check that the Leibniz operator is monotone on
theory families and left injective on theory families (or injective on theory
systems). Thus, the π-institution is protoalgebraic and system injective, i.e.,
WS algebraizable. On the other hand, I is, obviously, not family injective
and, therefore, it is not WF algebraizable.

As with other classes in the hierarchy, we have a number of transfer
theorems for weakly algebraizable π-institutions. We choose here to formalize
the result by providing the two most powerful implications:

Theorem 302 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then the following statements are equiv-
alent:
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(a) I is weakly system algebraizable;

(b) For every F-algebraic system A, the Leibniz operator on A is monotone
and left completely order reflecting on I-filter families, i.e., for all T ∪{T,T ′} ⊆ FiFamI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
⋂T ∈T ΩA(T ) ≤ ΩA(T ′) implies ⋂T ∈T

←Ð
T ≤
←Ð
T ′.

(c) For every F-algebraic system A, the Leibniz operator on A is monotone
on I-filter families and injective on I-filter systems.

Proof:

(a)⇒(b) Suppose that I is weakly system algebraizable. Then, by Theorem
300, it is protoalgebraic and family completely reflective. Thus, by
Theorems 179 and 240, for every F-algebraic system A, the Leibniz
operator ΩA is monotone and left completely order reflecting on I-filter
families.

(b)⇒(c) Let A be an F-algebraic system. By hypothesis, the Leibniz operator
is monotone and left completely order reflecting on the I-filter families
of A. By Propositions 243 and 228, the Leibniz operator is monotone
on the I-filter families and injective on the I-filter systems of A.

(c)⇒(a) Suppose that, for every F-algebraic system A, the Leibniz operator is
monotone on the I-filter families and injective on the I-filter systems
of A. By taking A = F = ⟨F, ⟨I, ι⟩⟩ and keeping in mind Lemma 51, we
conclude that the Leibniz operator is monotone on all theory families
and injective on all theory systems of I . Thus, by definition, I is weakly
system algebraizable.

∎

We are left now with a weak algebraizability hierarchy consisting of only
two classes as shown on the left below. On the right is reprinted the weak
prealgebraizability hierarchy, as revealed in the previous section.

WF Algebraizable

WS Algebraizable
❄

WFR-Prealgebraizable

❂✚✚
✚ ❅

❅
❅❘WLC-Prealgebraizable

WFC-Prealgebraizable

WLR-Prealgebraizable

❄

✠�
�
�

❩❩❩⑦
WLI-Prealgebraizable

WS-Prealgebraizable

❄
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Recalling that, by Corollary 297, the classes of WF algebraizable π-insti-
tutions and WFR prealgebraizable π-institutions coincide and noting that
the class of weakly algebraizable π-institutions (coinciding with WLC alge-
braizable π-institutions) is included in the class of WLC prealgebraizable
π-institutions, we get the following complete picture of weak (pre)algebra-
izability.

WF-Algebraizable

✙✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅❘

WS-Algebraizable

WLC-Prealgebraizable
❄

WFI-Prealgebraizable

✠�
�
�
�
�
�

WLR-Prealgebraizable
❄

❍❍❍❍❍❍❥
WLI-Prealgebraizable

WS-Prealgebraizable
❄

We close with an example that shows that the class of weakly system
algebraizable π-institutions is properly contained in the class of WLC preal-
gebraizable π-institutions.

Example 303 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}
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The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

I is prealgebraic, but not protoalgebraic. Moreover, it is left completely re-
flective. Thus, it is WLC prealgebraizable but not WS algebraizable.


