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5.1 Introduction

Protoalgebraic sentential logics were introduced by Czelakowski in [26, 29]
and studied by Blok and Pigozzi [28]. Perhaps the best known among several
existing characterizations of protoalgebraicity is the property of monotonic-
ity of the Leibniz operator on the filters of a logic over arbitrary algebras (of
the same algebraic type). Equivalential logics were introduced by Prucnal
and Wroński [19] and studied by Czelakowski [22, 24]. A Leibniz characteri-
zation asserts that a sentential logic is equivalential iff, for every algebra, the
Leibniz operator on its filters is monotone and commutes with inverse endo-
morphisms. More details may be found in Section 3.4 of [69], Sections 6.1-6.3
of [86] and Chapters 1-3 of [64]. In addition, whereas protoalgebraicity, in
conjunction with injectivity of the Leibniz operator, is used to define weakly
algebraizable logics [62], the stronger condition of equivalentiality, coupled
with injectivity of the Leibniz operator, is used to define algebraizable logics
[35, 54]. Section 3.4 of [69], Sections 6.4 and 6.5 of [86] and Chapter 4 of [64]
provide detailed information about these classes of sentential logics.

In Section 3.3, we studied classes of π-institutions defined using mono-
tonicity properties of the Leibniz operator. In Chapter 4, we used mono-
tonicity to define the weak algebraizability hierarchy of π-institutions. The
present chapter introduces analogs of the property of equivalentiality for π-
institutions, strengthening monotonicity. Further, by replacing monotonicity
by equivalentiality, one obtains from the weak algebraizability hierarchy the
hierarchy of algebraizable π-institutions.

Strengthening protoalgebraicity to equivalentiality involves adding, on
top of monotonicity properties, some property that emulates (or forms an
analog of) the property of commutativity of the Leibniz operator with inverse
endomorphisms. This desideratum informs the structure of the current chap-
ter. In Sections 5.2 and 5.3, properties that can be used as analogs of com-
mutativity with inverse endomorphisms in the framework of π-institutions
are discussed and some of their interrelationships are explored. These are
combined with monotonicity in Section 5.4 to define equivalentiality. Fi-
nally, in Sections 5.5 and 5.6, we obtain the (pre)algebraizability hierarchy
of π-institutions, based on the weak (pre)algebraizability hierarchy, studied
in Chapter 4. More details, by section, follow.

In Section 5.2, we study extensionality. Recall that, given an algebraic
system F and a sentence family X of F, one may determine the subsystem⟨X⟩ of F generated by X . Moreover, given a π-institution I = ⟨F,C⟩ and a
subsystem F′ of F, F′ determines a π-subinstitution I ′ = ⟨F′,C ′⟩ of I which
is obtained by restricting the action of C on F′. For details on these con-
structions, see Section 2.12. A π-institution I = ⟨F,C⟩ is said to be family
extensional if, roughly speaking, the action of the Leibniz operator on theory
families of subinstitutions can be obtained as the restriction of the Leibniz
operator of I on the universe corresponding to the subinstitution. More
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precisely, I is family extensional if, for every sentence family X of F and
every theory family T of I , Ω⟨X⟩(T ∩ ⟨X⟩) = Ω(T ) ∩ ⟨X⟩2. System exten-
sionality is defined similarly, except that T is allowed to range over theory
systems only, instead of over arbitrary theory families. By definition, family
extensionality implies system extensionality. Further, system extensional-
ity, combined with stability, implies family extensionality. The significance
of extensionality stems, in part, from allowing important properties of a
π-institution to be inherited by its subinstitutions. Indicative of this phe-
nomenon are the facts that, under system extensionality, stability in inherited
and, under family (system, respectively) extensionality, prealgebraicity (pro-
toalgebraicity, respectively) is also inherited. Both versions of extensionality
transfer. A seemingly weaker version of extensionality is 2-extensionality.
Roughly speaking, 2-extensionality is extensionality restricted to universes
generated by two sentences over the same signature. More precisely, a π-
institution I = ⟨F,C⟩ is family 2-extensional if, for every signature Σ, all
Σ-sentences φ,ψ and every theory family T , ⟨φ,ψ⟩ ∈ ΩΣ(T ) if and only if

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). If T is quantified over theory systems, system

2-extensionality is obtained instead. Despite its apparent weakness in com-
parison to extensionality, it turns out that a π-institution is family/system
extensional if and only if it is family/system 2-extensional, respectively. Ex-
tensionality is one manifestation of the property that is used as an analog
of commutativity with inverse endomorphisms, employed in the sentential
framework to define equivalentiality. An alternative formalization, closer in
spirit to commutativity, is introduced in Section 5.3.

In Section 5.3, we study Leibniz commutativity or, simply, commutativ-
ity, a property closer in spirit to the original property used in the sentential
context to characterize equivalentiality. Let F be an algebraic system and
X a sentence family of F. Recall the subsystem ⟨X⟩ of F generated by X .
A morphism of the form ⟨I,α⟩ ∶ ⟨X⟩ → F, where I is the identity functor
on signatures, is called an extension. Recall also that, if F happens to be
the base algebraic system of a π-institution I = ⟨F,C⟩, then X induces a
π-subinstitution I ⟨X⟩ = ⟨⟨X⟩,C⟨X⟩⟩ of I based on ⟨X⟩, whose closure system
is essentially C restricted on ⟨X⟩ and whose theory families are obtained by
the theory families of I via restriction on ⟨X⟩. In this enriched context, an
extension ⟨I,α⟩ ∶ ⟨X⟩ → F is called logical, denoted by ⟨I,α⟩ ∶ I ⟨X⟩ → I ,
if it preserves the closure structure in the sense that, for all signatures Σ
and all Φ ⊆ ⟨X⟩Σ, αΣ(C⟨X⟩Σ (Φ)) ⊆ CΣ(αΣ(Φ)). This condition is tantamount
to preservation of theory families under α−1, i.e., to α−1(T ) being a theory
family of I ⟨X⟩, for every theory family T of I . Logical extensions lay the
groundwork for building the notion of (Leibniz) commutativity. We say that
a π-institution I = ⟨F,C⟩ is family commuting if, for all sentence families X
of F, all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all theory families T ′ of I ⟨X⟩,
α(Ω⟨X⟩(T ′)) ≤ Ω(C(α(T ′))). System commutativity applies the same condi-
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tion on theory systems only. A similar, but not identical in general, property
is inverse (Leibniz) commutativity. I = ⟨F,C⟩ is family inverse commut-
ing if, for every sentence family X , all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I
and all theory families T of I , α−1(Ω(T )) = Ω⟨X⟩(α−1(T )). System inverse
commutativity results by quantifying T over theory systems instead. It is el-
ementary to check, based on the definition of I ⟨X⟩, that injection morphisms⟨I, j⟩ ∶ I ⟨X⟩ → I qualify as logical extensions. This permits establishing that
family (system, repectively) inverse commutativity implies family (system,
respectively) extensionality. Also, since theory systems form a subclass of
theory families, it is obvious that family inverse commutativity is stronger
than the system version. In addition, it is shown that the system version,
coupled with stability, implies the family version. The last results of Section
5.3 are critical for our further investigations.

Since commutativity and inverse commutativity are used mainly in con-
junction with monotonicity properties to obtain equivalentiality, it is impor-
tant that, under system (family) monotonicity (i.e., pre- and protoalgebraic-
ity, respectively), system (family, respectively) commutativity and system
(family, respectively) inverse commutativity coincide. Further, in a result
that allows us to switch between commutativity properties and the exten-
sionality properties of Section 5.2, and which strengthens a previously men-
tioned implication, it is shown that system (family) inverse commutativity
is equivalent to system (family, respectively) extensionality. Based on these
equivalences and a transfer theorem from Section 5.2, it is also shown that
both versions of inverse commutativity transfer. Summarizing, the corre-
sponding (system or family) versions of extensionality and 2-extensionality
and of inverse commutativity are equivalent without proviso. On the other
hand, for these three to be equivalent to the corresponding commutativity
version, a sufficient condition is that the corresponding version of monotonic-
ity holds.

In Section 5.4, we define versions of equivalentiality, resulting by com-
bining monotonicity and extensionality properties. Since both come in two
flavors, we get, a priori, four potentially different equivalentiality classes. A
π-institution I = ⟨F,C⟩ is (family) equivalential if it is protoalgebraic and
family extensional. Weakening protoalgebraicity to prealgebraicity we get
family preequivalentiality. On the other hand, weakening family to system
extensionality, we get system equivalentiality. Finally, if both properties are
weakened in tandem, we get (system) preequivalentiality. Equivalentiality, as
opposed to preequivalentiality, incorporates protoalgebraicity, which implies
stability. But, under stability, the two versions of extensionality coincide.
This reasoning shows that family and system equivalentiality are identical
properties. So when referring to this property, we use the term equivalential-
ity, without qualification. It turns out to be equivalent to preequivalentiality
plus stability. All three distinct versions transfer. We also obtain characteri-
zations of both equivalentiality and preequivalentiality in terms of the Leibniz
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operator seeing as a mapping between lattices of filter families (systems) and
congruence systems over arbitrary algebraic systems.

In Section 5.5, we explore the hierarchy of prealgebraizable π-institutions.
Prealgebraizability results from weak prealgebraizability when prealgebraic-
ity is strengthened to either family or system preequivalentiality, i.e., when
either family or system extensionality is added into the mix. Accordingly, two
parallel hierarchies mimicking that of weakly prealgebraizable π-institutions,
detailed in Chapter 4, are formed depending on the version of preequivalen-
tiality used. If family preequivalentiality is postulated, we get the five classes
of XF prealgebraizable π-institutions, whereas, if (system) preequivalential-
ity is dictated, we get five corresponding X prealgebraizability classes, where
X is a string reflecting which injectivity, reflectivity or complete reflectivity
condition is coupled with preequivalentiality, i.e., X can be one of:

• LC for left complete reflectivity;

• LR for left reflectivity;

• FI for family injectivity;

• LI for left injectivity; and

• S for system (injectivity, reflectivity and complete reflectivity all being
equivalent under preequivalentiality).

Systemicity leads to a total collapse of the ten classes into a single class.
Stability results to FIF and FI prealgebraizable π-institutions being iden-
tified and to a collapse of all remaining eight classes into a single class.
Thus, it yields a 2-class hierarchy. After showing that all ten prealgebraiz-
ability properties transfer, the section is dedicated to obtaining character-
ization theorems for each of the classes in terms of the Leibniz operator
on arbitrary algebraic systems perceived as a mapping between ordered
sets. The ten characterizations can be divided into five pairs, each pair
addressing XF and X prealgebraizability for the same X in {LC, LR, FI,
LI, S}. Making a somewhat arbitrary choice here, we look at the cases of
LR and S to provide a flavor of these results. The interested reader is,
of course, referred to the main text for further details on all ten proper-
ties. A π-institution I = ⟨F,C⟩ is LRF prealgebraizable if and only if, for
every F-algebraic system A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a left or-
der reflecting surjection commuting with inverse logical extensions, which
restricts to an order embedding on filter systems. A subtle, but impor-
tant, change occurs in most pairs in passing from the XF to the X sibling.
I = ⟨F,C⟩ is LR prealgebraizable if and only if, for every F-algebraic system
A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left order reflecting surjection, which
restricts to an order embedding commuting with inverse logical extensions
on filter systems. Along similar lines, we get that I is SF prealgebraizable iff,
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for every F-algebraic system A, ΩA ∶ FiFamI(A) → ConSysI∗(A) commutes
with inverse logical extensions and restricts to an order embedding on filter
systems, whereas I is S prealgebraizable if and only if, for every F-algebraic
system A, ΩA ∶ FiSysI(A)→ ConSysI∗(A) is an order embedding commuting
with inverse logical extensions.

In Section 5.6, we examine algebraizability. This hierarchy results from
weak algebraizability when protoalgebraicity is replaced by equivalentiality.
Equivalently, it ensues from prealgebraizability when, instead of imposing
family or system preequivalentiality, we insist on the stronger condition of
equivalentiality. Exactly due to this strengthening, only two classes may be
distinguished here, family algebraizability, combining equivalentiality with
family injectivity, and (system) algebraizability, coupling equivalentiality
with system injectivity. The family version is equivalent to the system ver-
sion augmented by systemicity. Both flavors transfer. Finally, a π-institution
I = ⟨F,C⟩ is family algebraizable if and only if, for every F-algebraic system
A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is an order isomorphism commuting with
inverse logical extensions, whereas it is system algebraizable if and only if it is
stable and, for every F-algebraic system A, ΩA ∶ FiSysI(A) → ConSysI∗(A)
is an order isomorphism commuting with inverse logical extensions.

5.2 Extensionality

The first two important ingredients in classifying π-institutions according to
their algebraic character were:

• the monotonicity properties of the Leibniz operator, which gave rise to
the classes of prealgebraic and protoalgebraic π-institutions, as well as
the various classes defined using versions of complete monotonicity;

• the various properties involving injectivity and reflectivity, varying from
the weakest, system injectivity, to the strongest, family complete re-
flectivity.

Two additional important properties are the extensionality of the Leibniz
operator and the commutativity of the Leibniz operator, which we now intro-
duce and study. The variants studied here will give rise to classes in the equiv-
alential hierarchy of π-institutions and, based on these, in the semantic hier-
archy of algebraizable π-institutions (as opposed to weak (pre)algebraizability,
studied in Chapter 4).

We first define two versions of the extensionality property and two corre-
sponding versions of 2-extensionality, which is an apparently relaxed version
of extensionality, but will be shown to be equivalent to extensionality.

Recall from Section 2.12 that, given an algebraic system F = ⟨Sign♭,
SEN♭,N ♭⟩ and a sentence family X ∈ SenFam(F), we denote by ⟨X⟩ =
{⟨X⟩Σ}Σ∈∣Sign♭∣ the universe of F generated by X , i.e., ⟨X⟩ = ν(Ð→X).
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Definition 304 (Extensionality) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F.

• I is called family extensional if, for all X ∈ SenFam(I) and all
T ∈ ThFam(I),

Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩);
• I is called system extensional if, for all X ∈ SenFam(I) and all
T ∈ ThSys(I),

Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).
Taking into account Proposition 89, one obtains the following equivalent

formulations.

Lemma 305 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) extensional if and
only if, for all X ∈ SenFam(I) and all T ∈ ThFam(I) (T ∈ ThSys(I), respec-
tively),

Ω⟨X⟩(T ∩ ⟨X⟩) ≤ Ω(T ) ∩ ⟨X⟩2.
Proof: Since, by Proposition 89, for all X ∈ SenFam(I) and T ∈ ThFam(I),
the inclusion

Ω(T ) ∩ ⟨X⟩2 ≤ Ω⟨X⟩(T ∩ ⟨X⟩)
always holds, we get the statement using the definition. ∎

Here is a simple example of a family extensional π-institution.

Example 306 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1} and
SEN♭(f)(0) = 1, SEN♭(f)(1) = 1;

• N ♭ is the trivial category of natural transformations, consisting of the
projections only.

Let I = ⟨F,C⟩ be the π-institution, defined by setting CΣ = {{1},{0,1}}.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F
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Note that the only universes are Thm(I) = {{1}} and SEN♭. For the second
one, Ω(T )∩⟨X⟩2 = Ω⟨X⟩(T ∩⟨X⟩) holds trivially for all T ∈ ThFam(I), since
both sides boil down to Ω(T ). For the first, we have

ΩThm(I)(Thm(I) ∩Thm(I)) = Thm(I)2 = Ω(Thm(I)) ∩Thm(I)2;
ΩThm(I)(SEN♭ ∩Thm(I)) = Thm(I)2 = Ω(SEN♭) ∩Thm(I)2.

So I is family extensional, that is, for all X ∈ SenFam(I) and all T ∈
ThFam(I), Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).

We present, now, two examples of π-institutions that are not system
extensional.

Example 307 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and
SEN♭(f)(x) = 2, for all x ∈ {0,1,2};

• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

Let I = ⟨F,C⟩ be the π-institution defined by setting CΣ = {{1,2},{0,1,2}}.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

012 ..................✲ ∇F

12 ...................✲ ∆F
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For the universe X = {{1,2}} and the theory system T = {{1,2}}, we get

Ω(T ) ∩X2 = {{1},{2}} ≨ {{1,2}} = ΩX(T ∩X).
Therefore, I is not system extensional.

And here is a second example of a non-system extensional π-institution.

Example 308 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1};
• N ♭ is the category of natural transformations generated by the two bi-

nary natural transformations ∧ ∶ (SEN♭)2 → SEN♭ and ∨ ∶ (SEN♭)2 →
SEN♭ defined by the following tables:

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
The lattice of theory families and the corresponding Leibniz congruence
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systems are shown in the diagram.

0ab1 ...............................................✲ ∇F

�
�
� ❅

❅
❅

ab1 0b,1a 0a,1b

�
�
� ❅

❅
❅

..................................q......
......

......
......

......
....✶

❅
❅
❅

......
......

......
......

......
....✶

�
�
�

a1 b1 ∆F

❅
❅
❅ �

�
�

......
......

......
......

......
....✶

1

For the universe X = {{0, a,1}} and the theory system T = {{a, b,1}}, we get

Ω(T ) ∩X2 = {{0},{a},{1}} ≨ {{0},{a,1}} = ΩX(T ∩X).
Therefore, I is not system extensional and, a fortiori, not family extensional
either.

The following clarifies the relation between family and system extension-
ality.

Proposition 309 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family extensional, then it is system extensional.

(b) If I is system extensional and stable, then it is family extensional.

Proof:

(a) Since all theory systems are also theory families, it follows that every
family extensional π-institution is also system extensional.
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(b) Suppose that I is system extensional and stable. Let X ∈ SenFam(I)
and T ∈ ThFam(I). Then we have

Ω⟨X⟩(T ∩ ⟨X⟩) ≤ Ω⟨X⟩(←ÐÐÐÐT ∩ ⟨X⟩) (by Proposition 20)

= Ω⟨X⟩(←ÐT ∩ ⟨X⟩) (by Lemma 3)

= Ω(←ÐT ) ∩ ⟨X⟩2 (by system extensionality)
= Ω(T ) ∩ ⟨X⟩2. (by stability)

By Lemma 305, I is family extensional.
∎

According to Proposition 309 we have the following extensionality hi-
erarchy:

Family Extensional

System Extensional
❄

The reverse, however, does not hold in general, as the following example,
exhibiting a π-institution which is system but not family extensional, shows.

Example 310 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 1 and SEN♭(f)(2) = 1;

• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2
0 1 1 2
1 1 1 1
2 2 1 2

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {∅,{2},{0,1,2}}.
I has three theory families, ∅, T = {{2}} and SEN♭, but only ∅ and

SEN♭ are theory systems. The lattice of theory families and the corresponding



346 CHAPTER 5. SEMANTIC HIERARCHY III Voutsadakis

Leibniz congruence systems are shown in the diagram.

012 ............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

2 .....................❥
∅ ∆F

Moreover, F has five universes {{0}}, {{1}}, {{0,1}}, {{1,2}} and {{0,1,2}}.
Since the only theory systems of I are ∅ and SEN♭, it is trivial to check that
I is system extensional.

For the universe X = {{0,1}} and the theory family T = {{2}}, we get

Ω(T ) ∩X2 = {{0},{1}} ≨ {{0,1}} = ΩX(T ∩X).
Therefore, I is not family extensional.

Moreover, as the following example shows, the converse of Part (b) of
Proposition 309 does not hold in general, i.e., stability is not necessary for
family extensionality.

Example 311 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
I has three theory families, Thm(I), T = {{1,2}} and SEN♭, but only

Thm(I) and SEN♭ are theory systems.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

{0,1,2} .....................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

It is not difficult to check that I is family extensional, that is, for all X ∈
SenFam(I) and all T ∈ ThFam(I),

Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).
In fact, F has five universes {{0}}, {{2}}, {{0,1}}, {{0,2}} and {{0,1,2}},
only two of which are proper and non-singletons. I has three theory families,
two of which are different from SEN♭. Thus, there are only four cases to
check, shown below, adopting, for brevity, an obvious shorthand notation.

Ω(2) ∩ (01)2 = {{0,1}} = Ω01(2 ∩ 01),
Ω(12) ∩ (01)2 = {{0},{1}} = Ω01(12 ∩ 01),
Ω(2) ∩ (02)2 = {{0},{2}} = Ω02(2 ∩ 02),
Ω(12) ∩ (02)2 = {{0},{2}} = Ω02(12 ∩ 02).

Clearly, since for T ∈ ThFam(I)/ThSys(I),
Ω(T ) =∆F ≠ {{0,1},{2}} = Ω(Thm(I)) = Ω(←ÐT ),

I is not stable.
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A related result is that, under system extensionality, stability is inherited
by π-subinstitutions of a given π-institution.

Proposition 312 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a system extensional π-institution based on F and F′ = ⟨Sign♭,SEN′ ♭,
N ′ ♭⟩ ≤ F an algebraic subsystem of F. If I is stable, then I ′ = ⟨F′,C ′⟩ is also
stable.

Proof: Suppose that I is system extensional and stable. Let T ∈ ThFam(I).
Then we have

ΩF′(←ÐÐÐÐÐÐT ∩ SEN′ ♭) = ΩF′(←ÐT ∩ SEN′ ♭) (by Lemma 3)

= ΩF(←ÐT ) ∩ (SEN′ ♭)2 (by system extensionality)
= ΩF(T ) ∩ (SEN′ ♭)2 (by stability)
≤ ΩF′(T ∩ SEN′ ♭). (by Proposition 89)

Since, by Proposition 20, the reverse inclusion always holds, we conclude that
I ′ is also stable. ∎

A similar preservation result, under extensionality, may also be proven
with regards to pre- and protoalgebraicity. More precisely, we show that
if a π-institution is family extensional and protoalgebraic, then all its π-
subinstitutions are also protoalgebraic. Analogously, if a π-institution is
system extensional and prealgebraic, then prealgebraicity is inherited by all
its π-subinstitutions.

Proposition 313 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family extensional and protoalgebraic, then, for all F′ = ⟨Sign♭,
SEN′ ♭,N ′ ♭⟩ ≤ F, I ′ = ⟨F′,C ′⟩ is also protoalgebraic;

(b) If I is system extensional and prealgebraic, then, for all F′ = ⟨Sign♭,
SEN′ ♭,N ′ ♭⟩ ≤ F, I ′ = ⟨F′,C ′⟩ is also prealgebraic.

Proof: We only prove Part (a). Part (b) may be proven similarly. Suppose
that I is family extensional and protoalgebraic and let F′ ≤ F. If T,T ′ ∈
ThFam(I), such that T ≤ T ′, then, by protoalgebraicity, ΩF(T ) ≤ ΩF(T ′).
Thus, ΩF(T ) ∩ (SEN′ ♭)2 ≤ ΩF(T ′) ∩ (SEN′ ♭)2. Therefore, by family exten-
sionality, ΩF′(T ∩SEN′ ♭) ≤ ΩF′(T ′ ∩SEN′ ♭). By Proposition 87, we conclude
that I ′ is also protoalgebraic. ∎

There are transfer theorems that hold for both system and family exten-
sionality.
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Theorem 314 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family (system) extensional if and
only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all Y ∈ SenFam(A) and
all T ∈ FiFamI(A) (T ∈ FiSysI(A), respectively)

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
Proof: We present the proof for theory families. The case of theory systems
is similar.

The “if” direction follows by taking A = F = ⟨F, ⟨I, ι⟩⟩ and observing
that, in that case, the displayed condition reduces to the definition of family
extensionality.

For the “only if”, assume that I is family extensional and let A = ⟨A,⟨F,α⟩⟩ be an F-algebraic system, Y ∈ SenFam(A), T ∈ FiFamI(A), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

⟨αΣ(φ), αΣ(ψ)⟩ ∈ Ω
⟨Y ⟩

F (Σ)
(T ∩ ⟨Y ⟩).

Then we have

⟨φ,ψ⟩ ∈ α−1Σ (Ω⟨Y ⟩F (Σ)
(T ∩ ⟨Y ⟩)) (set theory)

= Ω
α−1(⟨Y ⟩)
Σ (α−1(T ) ∩ α−1(⟨Y ⟩)) (Corollary 92)

= ΩΣ(α−1(T )) ∩α−1Σ (⟨Y ⟩F (Σ))2 (hypothesis)
= α−1Σ (ΩAF (Σ)(T )) ∩α−1Σ (⟨Y ⟩F (Σ))2 (Proposition 24)

= α−1Σ (ΩAF (Σ)(T ) ∩ ⟨Y ⟩2F (Σ)). (set theory)

Therefore ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA
F (Σ)
(T )∩⟨Y ⟩2

F (Σ)
. Since, by Proposition 89, the

opposite inclusion always holds, we get, taking into account the surjectivity
of ⟨F,α⟩, that

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
The conclusion now follows. ∎

We define, next, the second property, a seemingly relaxed version of ex-
tensionality that we call 2-extensionality.

Definition 315 (2-Extensionality) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F.

• I is called family 2-extensional if, for all T ∈ ThFam(I), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩);

• I is called system 2-extensional if, for all T ∈ ThSys(I), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩).
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Taking into account Proposition 89, one obtains the following equivalent
formulations.

Lemma 316 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) 2-extensional if and
only if, for all T ∈ ThFam(I) (T ∈ ThSys(I), respectively), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩) implies ⟨φ,ψ⟩ ∈ ΩΣ(T ).

Proof: By Proposition 89, for all T ∈ ThFam(I), the inclusion

Ω(T ) ∩ ⟨φ,ψ⟩2 ≤ Ω⟨φ,ψ⟩(T ∩ ⟨φ,ψ⟩)
always holds. Since φ,ψ ∈ ⟨φ,ψ⟩Σ, if ⟨φ,ψ⟩ ∈ ΩΣ(T ), then ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩⟨φ,ψ⟩).

Thus, 2-extensionality is, by definition, equivalent to

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩) implies ⟨φ,ψ⟩ ∈ ΩΣ(T ).

∎

It turns out that the corresponding versions of extensionality and 2-
extensionality are equivalent. That extensionality implies 2-extensionality
is fairly straightforward.

Proposition 317 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family (system) extensional, then
it is family (system, respectively) 2-extensional.

Proof: We present the proof for theory families. The case of theory systems
is similar. Suppose I is family extensional and let T ∈ ThFam(I), Σ ∈
∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). Then, by

family extensionality, we get that ⟨φ,ψ⟩ ∈ ΩΣ(T )∩⟨φ,ψ⟩2Σ, which implies that⟨φ,ψ⟩ ∈ ΩΣ(T ). Thus, by Lemma 316, I is family 2-extensional. ∎

The full equivalence is given in the following

Theorem 318 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) extensional if and
only if it is family (system, respectively) 2-extensional.

Proof: Again we prove only the equivalence of the family versions of the
two properties, since the system versions can be proven similarly.

The “only if” was the content of Proposition 317. For the “if”, suppose
that I is family 2-extensional and let X ∈ SenFam(I), T ∈ ThFam(I), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∉ ΩΣ(T ) ∩ ⟨X⟩2Σ.

If ⟨φ,ψ⟩ ∉ ⟨X⟩2Σ, then, a fortiori, ⟨φ,ψ⟩ ∉ Ω
⟨X⟩
Σ (T ∩ ⟨X⟩), and we are done.
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If, on the other hand, ⟨φ,ψ⟩ ∈ ⟨X⟩2Σ, then, we have ⟨φ,ψ⟩ ∉ ΩΣ(T ). Thus,

by hypothesis, ⟨φ,ψ⟩ ∉ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). So, by Theorem 19, there exist

σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ ⟨φ,ψ⟩Σ′ , such that (without
loss of generality)

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ ∩ ⟨φ,ψ⟩Σ′
but σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∉ TΣ′ ∩ ⟨φ,ψ⟩Σ′ .

Since φ,ψ ∈ ⟨X⟩Σ and χ⃗ ∈ ⟨φ,ψ⟩Σ′ , we get that

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ ∩ ⟨X⟩Σ′
but σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∉ TΣ′ ∩ ⟨X⟩Σ′ .

Thus, again by Theorem 19, we get ⟨φ,ψ⟩ ∉ Ω
⟨X⟩
Σ (T ∩ ⟨X⟩). Hence, Ω⟨X⟩(T ∩⟨X⟩) ≤ Ω(T ) ∩ ⟨X⟩2. We now conclude, using Lemma 305, that I is family

extensional. ∎

5.3 Leibniz Commutativity

Another important property is that of commutativity with a special type of
logical morphism, which we now introduce and study.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and X ∈ SenFam(F).
An algebraic system morphism of the form ⟨I,α⟩ ∶ ⟨X⟩ → F, where I ∶
Sign♭ → Sign♭ is the identity functor, will be called an extension.

Further, given a π-institution I = ⟨F,C⟩ based on F, an extension ⟨I,α⟩ ∶⟨X⟩ → F is said to be logical if it is a logical morphism ⟨I,α⟩ ∶ I ⟨X⟩ → I ,
where I ⟨X⟩ = ⟨⟨X⟩,C⟨X⟩⟩ is the π-subinstitution of I induced by ⟨X⟩. In
other words ⟨I,α⟩ ∶ ⟨X⟩ → F is a logical extension if, for all Σ ∈ ∣Sign♭∣ and
all Φ ⊆ ⟨X⟩Σ,

αΣ(C⟨X⟩Σ (Φ)) ⊆ CΣ(αΣ(Φ)).
This is abbreviated to α(C⟨X⟩(Φ)) ≤ C(α(Φ)).

Using Lemma 47, we get the following characterization:

Corollary 319 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, X ∈ SenFam(F) and ⟨I,α⟩ ∶ ⟨X⟩ → F an exten-
sion. ⟨I,α⟩ ∶ I ⟨X⟩ → I is a logical extension if and only if

α−1(T ) ∈ ThFam(I ⟨X⟩), for all T ∈ ThFam(I).
Proof: Immediate by Lemma 47. ∎

We now define the two notions of Leibniz commutativity that we wish to
study.
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Definition 320 (Leibniz Commutativity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called family (Leibniz) commuting if the Leibniz operator
on theory families commutes with logical extensions, i.e., if, for every
X ∈ SenFam(I), all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ′ ∈
ThFam(I ⟨X⟩),

α(Ω⟨X⟩(T ′)) ≤ Ω(C(α(T ′)));
• I is called system (Leibniz) commuting if the Leibniz operator

on theory systems commutes with logical extensions, i.e., if, for every
X ∈ SenFam(I), all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ′ ∈
ThSys(I ⟨X⟩),

α(Ω⟨X⟩(T ′)) ≤ Ω(C(α(T ′))).
We now give a useful characterization of those two properties, in the

case of protoalgebraic and of prealgebraic π-institutions, respectively. To do
this, however, we need some preliminary work. First, we note that injection
morphisms are logical extensions.

Lemma 321 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all X ∈ SenFam(I), ⟨I, j⟩ ∶ I ⟨X⟩ → I
is a logical extension, where ⟨I, j⟩ ∶ ⟨X⟩→ F is the injection morphism.

Proof: Let T ∈ ThFam(I). Then, we have

j−1(T ) = T ∩ ⟨X⟩ ∈ ThFam(I ⟨X⟩),
where the membership follows by Proposition 87. Therefore, by Corollary
319, ⟨I, j⟩ is a logical extension. ∎

Next we define two alternative versions of Leibniz commutativity, which
we term inverse Leibniz commutativity.

Definition 322 (Inverse (Leibniz) Commutativity) Let F = ⟨Sign♭,SEN♭,
N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is family inverse (Leibniz) commuting if, for all X ∈ SenFam(I),
all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThFam(I),

α−1(Ω(T )) = Ω⟨X⟩(α−1(T )); .
• I is system inverse (Leibniz) commuting if, for all X ∈ SenFam(I),

all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThSys(I),
α−1(Ω(T )) = Ω⟨X⟩(α−1(T )).
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We now show that inverse commutativity implies extensionality. Natu-
rally enough, we have two versions of this implication.

Proposition 323 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family (system) inverse commuting,
then it is family (system, respectively) extensional.

Proof: We show the family version. The system version is similar.
Assume that I is family inverse commuting and let X ∈ SenFam(I),

T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

⟨φ,ψ⟩ ∈ Ω
⟨X⟩
Σ (T ∩ ⟨X⟩).

Considering the injection morphism ⟨I, j⟩ ∶ I ⟨X⟩ → I , which is a logical exten-

sion by Lemma 321, the hypothesis can be rewritten as ⟨φ,ψ⟩ ∈ Ω
⟨X⟩
Σ (j−1(T )).

Thus, by inverse family commutativity, ⟨φ,ψ⟩ ∈ j−1Σ (ΩΣ(T )). But this is
equivalent to ⟨φ,ψ⟩ ∈ ΩΣ(T )∩ ⟨X⟩2Σ. We conclude, using Lemma 305, that I
is family extensional. ∎

It is clear that family inverse commutativity implies system inverse com-
mutativity. We show, next, that under stability, the system and the family
versions of inverse commutativity coincide.

Proposition 324 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family inverse commuting, then it is system inverse commuting;

(b) If I is system inverse commuting and stable, then it is also family
inverse commuting.

Proof: Family inverse commutativity always implies system inverse com-
mutativity. Conversely, assume that I is stable and system inverse com-
muting and let X ∈ SenFam(I), ⟨I,α⟩ ∶ I ⟨X⟩ → I a logical extension and
T ∈ ThFam(I). Then we have

α−1(Ω(T )) = α−1(Ω(←ÐT )) (stability)

= Ω⟨X⟩(α−1(←ÐT )) (system inverse commutativity)

= Ω⟨X⟩(←ÐÐÐÐα−1(T )) (Lemma 6)
= Ω⟨X⟩(α−1(T )). (Propositions 323 and 312)

Thus, I is family inverse commuting. ∎

Finally, the promised characterization that relates family (system) com-
mutativity with family (system) inverse commutativity under the hypothesis
of proto(pre)algebraicity. We present the two results separately for the sake
of clarity.
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Theorem 325 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a protoalgebraic π-institution based on F. I is family commuting
if and only if it is family inverse commuting.

Proof: Note, first, that, for all X ∈ SenFam(I), all logical extensions ⟨F,α⟩ ∶
I ⟨X⟩ → I and all T ∈ ThFam(I), α−1(Ω(T )) is a congruence system on ⟨X⟩
that is compatible with α−1(T ). Thus, by the maximality property of the
Leibniz congruence system, we have, regardless of commutativity, that, for
all X ∈ SenFam(I), all ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThFam(I),

α−1(Ω(T )) ≤ Ω⟨X⟩(α−1(T )).
Therefore, it suffices to show that I is family commuting if and only if, for
all X ∈ SenFam(I), all ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThFam(I),

Ω⟨X⟩(α−1(T )) ≤ α−1(Ω(T )).
For the “only if” direction, assume that I is family commuting and let
X ∈ SenFam(I), ⟨I,α⟩ ∶ I ⟨X⟩ → I , T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈
SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ Ω

⟨X⟩
Σ (α−1(T )). Then we have

⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(Ω⟨X⟩Σ (α−1(T )))
⊆ ΩΣ(C(α(α−1(T )))) (commutativity)
⊆ ΩΣ(C(T )) (protoalgebraicity)
= ΩΣ(T ).

We conclude that ⟨φ,ψ⟩ ∈ α−1Σ (ΩΣ(T )). Therefore, I is family inverse com-
muting.

For the “if” direction, assume I is family inverse commuting and let
X ∈ SenFam(I), ⟨I,α⟩ ∶ I ⟨X⟩ → I and T ′ ∈ ThFam(I ⟨X⟩). Then we have

α(Ω⟨X⟩(T ′)) ≤ α(Ω⟨X⟩(α−1(C(α(T ′)))))
(Propositions 323 and 313)

= α(α−1(Ω(C(α(T ′)))))
(inverse commutativity)

≤ Ω(C(α(T ′))). (set theory)

Thus, I is family commuting. ∎

Similarly, we may obtain the following analog for the system versions of
the corresponding properties.

Theorem 326 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a prealgebraic π-institution based on F. I is system commuting if
and only if it is system inverse commuting.
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Proof: Along the lines of the proof of Theorem 325. ∎

In Proposition 323 we saw that inverse commutativity implies extension-
ality. We now show that extensionality is in fact equivalent to inverse com-
mutativity.

Theorem 327 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) inverse commuting
if and only if it is family (system, respectively) extensional.

Proof: By Proposition 323, family inverse commutativity implies family
extensionality.

Suppose, conversely, that I is family extensional and let X ∈ SenFam(I),⟨I,α⟩ ∶ I ⟨X⟩ → I be a logical extension and T ∈ ThFam(I). We exploit the
epi-mono factorization of ⟨I,α⟩ provided in Proposition 81:

⟨X⟩ ⟨I,α⟩ ✲ F
❩
❩
❩
❩
❩⟨I,α′⟩ ⑦ ✚

✚
✚
✚
✚

⟨I, j⟩
❃

α(⟨X⟩)
We have

Ω⟨X⟩(α−1(T )) = Ω⟨X⟩(α′−1(j−1(T ))) (⟨I,α⟩ = ⟨I, j⟩ ○ ⟨I,α′⟩)
= Ω⟨X⟩(α′−1(T ∩ SEN♭α)) (definition of ⟨I, j⟩)
= α′−1(Ωα(⟨X⟩)(T ∩ SEN♭α)) (Proposition 24)
= α′−1(Ω(T ) ∩ (SEN♭α)2) (extensionality)
= α′−1(j−1(Ω(T ))) (definition of ⟨I, j⟩)
= α−1(Ω(T )). (⟨I,α⟩ = ⟨I, j⟩ ○ ⟨I,α′⟩)

Therefore, I is family inverse commuting.

The system version can be proven analogously. ∎

Finally, we have the following transfer theorem for inverse commutativity.

Theorem 328 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family (system) inverse commuting
if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the π-institution⟨A,CI,A⟩ is family (system, respectively) inverse commuting.

Proof: This follows by combining Theorem 327 with Theorem 314. ∎
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5.4 Equivalential π-Institutions

By combining prealgebraicity or protoalgebraicity, on the one hand, with
system or family extensionality, on the other, we obtain another hierarchy,
the hierarchy of equivalential π-institutions. The terminology is built by
abiding to the following guidelines:

• The qualification “system” or “family” refers to the version of exten-
sionality employed;

• “preequivalential” or “equivalential” is used depending on whether pre-
algebraicity or protoalgebraicity is assumed.

According to this nomenclature, we may define four classes of π-institu-
tions as follows:

Definition 329 ((Pre)Equivalentiality) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is (family) equivalential if it is protoalgebraic and family exten-
sional;

• I is system equivalential if it is protoalgebraic and system exten-
sional;

• I is family preequivalential if it is prealgebraic and family exten-
sional;

• I is (system) preequivalential if it is prealgebraic and system
extensional.

A priori, these four classes form the hierarchy depicted in the diagram.

(Family)

Equivalential

✠�
�
� ❅

❅
❅❘

System

Equivalential

Family

Preequivalential
❅
❅
❅❘ ✠�

�
�

(System)

Preequivalential

However, it is easy to show that family and system equivalentiality are
equivalent properties.
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Proposition 330 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family equivalential if and only if
it is system equivalential.

Proof: First, if I is family equivalential, then it is also system equivalential,
since family extensionality implies system extensionality.

Suppose, conversely, that I is system equivalential. Then, by Theorem
175, it is stable and, by definition, it is system extensional, whence, by
Proposition 309, it is also family extensional. Since it is protoalgebraic and
family extensional, it is family equivalential. ∎

Taking into account Proposition 330, we call I equivalential if it is
protoalgebraic and (family or system) extensional.

Using this terminology, the hierarchy depicted in the preceding diagram
reduces to the following linear equivalentiality hierarchy:

Equivalential

Family Preequivalential
❄

(System) Preequivalential
❄

It is easy to see that the separating property of the top level from the
bottom level in the hierarchy is exactly stability.

Proposition 331 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is equivalential if and only if it is system
preequivalential and stable.

Proof: If I is equivalential, then it is trivially system preequivalential. More-
over, it is protoalgebraic and, therefore, by Theorem 175, it is stable.

Suppose, conversely, that I is system prequivalential and stable. Then,
by definition, it is system extensional, prealgebraic and stable. Thus, again
by Theorem 175, it is system extensional and protoalgebraic and, hence, by
Proposition 330, equivalential. ∎

Examples are in order to show that the inclusions between the three
classes of the equivalentiality hierarchy are proper.

We revisit, first, a familiar example of a π-institution that turns out to
be family preequivalential but not equivalential.

Example 332 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The theory family {{1,2}} is not a theory system.
The structure of the lattice of theory families and the corresponding Leib-

niz congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

It is clear from the diagram that I is prealgebraic but not protoalgebraic.
So to see that it is family preequivalential but not equivalential, it suffices to
show that I is family extensional. We can easily see that F has two nontrivial
proper universes and three theory families:

Universes F01 = {{0,1}} F02 = {{0,2}}
Theory Families Thm(I) T = {{1,2}} SEN♭

For verification we perform the following calculations, since the case of SEN♭

is trivial:

ΩF01(Thm(I) ∩F01) = F2
01 = Ω(Thm(I)) ∩F2

01;
ΩF02(Thm(I) ∩F02) = ∆F02 = Ω(Thm(I)) ∩F2

02;
ΩF01(T ∩F01) = ∆F01 = Ω(T ) ∩F2

01;
ΩF02(T ∩F02) = ∆F02 = Ω(T ) ∩F2

02.
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We conclude that I is indeed family extensional. Thus, I is an example of a
family preequivalential π-institution, which is not equivalential.

Next we give an example of a π-institution that is system preequivalential
but not family preequivalential.

Example 333 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 1 and SEN♭(f)(2) = 1;

• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2
0 1 1 2
1 1 1 1
2 2 1 2

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {∅,{2},{0,1,2}}.
I has three theory families, ∅, T = {{2}} and SEN♭, but only ∅ and

SEN♭ are theory systems. The lattice of theory families and the corresponding
Leibniz congruence systems are shown in the diagram.

012 ............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

2 .....................❥
∅ ∆F
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From the diagram and the fact that T ∉ ThSys(I) it follows that I is preal-
gebraic.

F has five universes {{0}}, {{1}}, {{0,1}}, {{1,2}} and {{0,1,2}}.
Since the only theory systems of I are ∅ and SEN♭, it is trivial to check that
I is system extensional. Hence, being prealgebraic and system extensional, I
is preequivalential.

For the universe X = {{0,1}} and the theory family T = {{2}}, we get

Ω(T ) ∩X2 = {{0},{1}} ≨ {{0,1}} = ΩX(T ∩X).
This shows that I is not family extensional and, hence, I is not family pree-
quivalential.

Theorems 179 and 314 allow us to formulate transfer results for (pre)equi-
valential π-institutions.

Theorem 334 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is equivalential if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter families
and, for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
Proof: This follows from Theorems 179 and 314. ∎

Similarly, we have the following versions for the preequivalentiality prop-
erties:

Theorem 335 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family (system) preequivalential if
and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone
on I-filter systems and, for all Y ∈ SenFam(A) and all T ∈ FiFamI(A)
(T ∈ FiSysI(A), respectively),

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
Proof: This follows from Theorems 179 and 314. ∎

The definitions of equivalentiality and of system preequivalentiality may
be recast in terms of properties of mappings between the lattice of theory
families/systems and congruence systems. We have the following

Theorem 336 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is equivalential if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩:

• The mapping Ω ∶ FiFamI(A)→ ConSysI(A) is monotone;
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• The following diagram commutes, for every Y ∈ SenFam(A).
FiFamI(A) Ω ✲ ConSysI(A)

FiFamI
α−1(⟨Y ⟩)(⟨Y ⟩)

− ∩ ⟨Y ⟩
❄

Ω⟨Y ⟩
✲ ConSysI

α−1(⟨Y ⟩)(⟨Y ⟩)
− ∩ ⟨Y ⟩2
❄

Proof: The “only if” follows from Theorem 334. The “if” follows by consid-
ering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. ∎

The version for system preequivalentiality has the following form.

Theorem 337 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is preequivalential if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩:

• The mapping Ω ∶ FiSysI(A)→ ConSysI(A) is monotone;

• The following diagram commutes, for every Y ∈ SenFam(A).
FiSysI(A) Ω ✲ ConSysI(A)

FiSysI
α
−1(⟨Y ⟩)(⟨Y ⟩)

− ∩ ⟨Y ⟩
❄

Ω⟨Y ⟩
✲ ConSysI

α
−1(⟨Y ⟩)(⟨Y ⟩)
− ∩ ⟨Y ⟩2
❄

Proof: Along the lines of Theorem 336, using Theorem 335. ∎

We now state formally some straightforward relationships between the
classes in the equivalential hierarchy and those in the monotonicity hierarchy.

Proposition 338 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) If I is equivalential, then it is protoalgebraic;

(b) If I is system preequivalential, then it is prealgebraic.

Proof: Both statements follow directly from the definitions of equivalential-
ity and system preequivalentiality. ∎
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Proposition 338 establishes the following hierarchy:

Equivalential

✠�
�
� ❅

❅
❅❘

Protoalgebraic
Family

Preequivalential
❅
❅
❅
❅
❅
❅
❅
❅❘

❅
❅
❅❘

Preequivalential

✠�
�
�

Prealgebraic

The next example shows that the two inclusions from the classes in the
equivalential hierarchy to the monotonicity hierarchy are proper inclusions.
More precisely, a π-institution is constructed that is protoalgebraic but fails
to be (system) preequivalential.

Example 339 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1};
• N ♭ is the category of natural transformations generated by the two bi-

nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{0, a, b,1}}.
I has four theory families, all of which are also theory systems.

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.
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0ab1

�
�
� ❅

❅
❅

a1 b1

❅
❅
❅ �

�
�

1

∇F

�
�
� ❅

❅
❅{0b, a1} {0a, b1}

❅
❅
❅ �

�
�

∆F

From the diagram, we can see that Ω ∶ ThFam(I) → ConSys∗(I) is an
order isomorphism, whence, I is, in particular, protoalgebraic.

On the other hand, for the universe X = {{0, a,1}} and the theory system
T = {{1}}, we get

Ω(T ) ∩X2 = {{0},{a},{1}} ≨ {{0, a},{1}} = ΩX(T ∩X).
Thus, I is not system extensional and, therefore, it fails to be (system) pree-
quivalential.

In our future work we will deal mostly with equivalential and system
preequivalential π-institutions, referring to them as equivalential and pree-
quivalential, respectively (as has already been suggested). So we focus mostly
on the following part of the hierarchy:

Equivalential

✠�
�
� ❅

❅
❅❘

Protoalgebraic Preequivalential

❅
❅
❅❘ ✠�

�
�

Prealgebraic

Whenever the need to refer to family preequivalential π-institutions arises,
the “family” qualification shall not be omitted to avoid confusion.
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5.5 PreAlgebraizability

We study now the hierarchy that results by taking the various classes of
weakly prealgebraizable π-institutions and adding to them family or system
extensionality. Equivalently, we may replace prealgebraicity by either family
or system preequivalentiality. Since, for every weak prealgebraizability class,
we have two strengthening (or replacement) options, we get a sort of a double
(or parallel) hierarchy whose classes are defined formally as follows and which
is depicted in the accompanying diagram.

Definition 340 (Family PreAlgebraizability) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is left completely reflective family prealgebraizable, or LCF
prealgebraizable for short, if it is family preequivalential and left
completely reflective, i.e., if it is system monotone, family extensional
and left completely reflective;

• I is left reflective family prealgebraizable, or LRF prealge-
braizable for short, if it is family preequivalential and left reflective,
i.e., if it is system monotone, family extensional and left reflective;

• I is family injective family prealgebraizable, or FIF prealge-
braizable for short, if it is family preequivalential and family injective,
i.e., if it is system monotone, family extensional and family injective;

• I is left injective family prealgebraizable, or LIF prealgebraiz-
able for short, if it is family preequivalential and left injective, i.e., if
it is system monotone, family extensional and left injective;

• I is system family prealgebraizable, or SF prealgebraizable for
short, if it is family preequivalential and system injective, i.e., if it is
system monotone, family extensional and system injective.

Definition 341 (PreAlgebraizability) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is left completely reflective prealgebraizable, or LC prealge-
braizable for short, if it is preequivalential and left completely reflec-
tive, i.e., if it is system monotone, system extensional and left com-
pletely reflective;

• I is left reflective prealgebraizable, or LR prealgebraizable for
short, if it is preequivalential and left reflective, i.e., if it is system
monotone, system extensional and left reflective;
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• I is family injective prealgebraizable, or FI prealgebraizable for
short, if it is preequivalential and family injective, i.e., if it is system
monotone, system extensional and family injective;

• I is left injective prealgebraizable, or LI prealgebraizable for
short, if it is preequivalential and left injective, i.e., if it is system
monotone, system extensional and left injective;

• I is system prealgebraizable, or S prealgebraizable for short, if
it is preequivalential and system injective, i.e., if it is system monotone,
system extensional and system injective.

LCF PreAlg
❍❍❍❍❍❍❥

LC PreAlg
❄

LRF PreAlg FIF PreAlg
❍❍❍❍❍❍❥

❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟

LR PreAlg
❄

LIF PreAlg FI PreAlg
❄

❍❍❍❍❍❍❥✙✟✟✟✟✟✟

✙✟✟✟✟✟✟

SF PreAlg LI PreAlg
❄

✙✟✟✟✟✟✟

S PreAlg
❄

The nomenclature here uses the term “prealgebraizable” to suggest that we
are applying prealgebraicity. The first two qualifying capitals reflect the
kind of injectivity, reflectivity or c-reflectivity that is applied and, finally,
the addition or omission of “F” conveys whether family or system exten-
sionality is applied, i.e., (together with prealgebraicity) whether family or
system preequivalentiality is postulated. For instance, a π-institution is LRF
prealgebraizable if it is

• prealgebraic;

• left reflective;

• family extensional,

i.e., if it is family preequivalential and left reflective or, equivalently, if it is
weakly LR prealgebraizable and family extensional.

Directly from corresponding theorems pertaining to weakly prealgebraiz-
able π-institutions, we obtain the following results that clarify the status of
this hierarchy under systemicity, on the one hand, and under the weaker
condition of stability, on the other.
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Theorem 342 For systemic π-institutions, all ten classes shown in the hi-
erarchical diagram coincide.

Proof: First, if I is systemic, then it is, a fortiori, stable. Therefore, by
Proposition 309, the properties of family and system extensionality coincide.
Thus, the two parallel hierarchies of the diagram collapse into one. Finally, by
Theorem 269, all these five classes coincide. Therefore, restricted to systemic
π-institutions, the entire hierarchy of the diagram collapses into a single class.
∎

Theorem 343 For stable π-institutions, the ten-class prealgebraizability hi-
erarchy shown in the diagram collapses to only two different classes, as shown
in the diagram below

F Prealgebraizable

S Prealgebraizable
❄

where F Prealgebraizable encompasses the classes of FIF and FI Prealgebraiz-
able π-institutions and S Prealgebraizable encompasses the remaining eight
classes in the original hierarchy.

Proof: Indeed, by Proposition 309, the properties of family and system
extensionality coincide under stability. Therefore, the five pairs of parallel
classes of the original hierarchy coincide, giving a 5-class hierarchy. But,
according to Theorem 273, under stability, these five classes reduce to only
two, as shown in the diagram of the statement. ∎

A few examples are now in order to separate the various classes of this
prealgebraizability hierarchy. The first example serves in separating each pair
of the two parallel hierarchies shown in the diagram. Namely, a π-institution
is constructed which is LC prealgebraizable and FI prealgebraizable and,
hence, belongs to all five levels of the lower hierarchy, but fails to be SF
prealgebraizable and, as a consequence, belongs to none of the five upper
levels of the hierarchy.

Example 344 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2 and SEN♭(f)(3) = 3;
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• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 2 2
3 0 1 2 3

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{2,3},{1,2,3},{0,1,2,3}}.
I has three theory families, but only two theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

0123 ...........................✲ ∇F

123 01,23.....................❥....
....

....
....

....
.✯

23 ∆F

From the diagram, we can see that I is prealgebraic, i.e., that Ω is mono-
tone on ThSys(I), and, also, left c-reflective and family injective.

To see that I is system extensional, note that F has eleven universes,{{0}}, {{2}}, {{3}}, {{0,1}}, {{0,2}}, {{0,3}}, {{2,3}}, {{0,1,2}}, {{0,1,
3}}, {{0,2,3}} and {{0,1,2,3}}, seven of which are proper and non-singletons.
Moreover, I has two theory systems, only one of which is proper. Thus, we
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have seven cases to check, shown below adopting obvious shorthand notation:

Ω(23) ∩ {01}2 = {01} = Ω01(∅) = Ω01(23 ∩ 01);
Ω(23) ∩ {02}2 = {0,2} = Ω02(2) = Ω01(23 ∩ 02);
Ω(23) ∩ {03}2 = {0,3} = Ω03(3) = Ω01(23 ∩ 03);
Ω(23) ∩ {23}2 = {23} = Ω23(23) = Ω01(23 ∩ 23);
Ω(23) ∩ {012}2 = {01,2} = Ω012(2) = Ω01(23 ∩ 012);
Ω(23) ∩ {013}2 = {01,3} = Ω013(3) = Ω01(23 ∩ 013);
Ω(23) ∩ {023}2 = {0,23} = Ω023(23) = Ω01(23 ∩ 023).

On the other hand, for the universe X = {{0,2,3}} and the theory system
T = {{1,2,3}}, we get

Ω(T ) ∩X2 = {{0},{2},{3}} ≨ {{0},{2,3}} = ΩX(T ∩X).
Thus, I is not family extensional and, therefore, it fails to be SF prealge-
braizable.

We now present examples that separate each parallel step from the one
immediately below it. The first is an example of an LRF prealgebraizable
π-institution that fails to be LC prealgebraizable. This shows that LCF
prealgebraizable π-institutions form a proper subclass of the class of LRF
prealgebraizable ones and that the class of LC prealgebraizable π-institutions
is a proper subclass of the class of LR prealgebraizable π-institutions.

Example 345 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3,4,5}
and

SEN♭(f)(0) = SEN♭(f)(1) = SEN♭(f)(2) = 0,
SEN♭(f)(3) = SEN♭(f)(4) = SEN♭(f)(5) = 5;

• N ♭ is the category of natural transformations generated by the two
unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭, with

σ♭Σ, τ
♭
Σ ∶ SEN♭(Σ) → SEN♭(Σ)

defined by

– σ♭Σ(3) = 1 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,4,5};
– σ♭Σ(4) = 2 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,3,5}.
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{5},{3,4,5},{1,3,4,5},{2,3,4,5},{0,1,2,3,4,5}}.
I has five theory families but only three theory systems. The action of ←Ð

on theory families is given by the following table.

T
←Ð
T{5} {5}{3,4,5} {3,4,5}{1,3,4,5} {3,4,5}{2,3,4,5} {3,4,5}{0,1,2,3,4,5} {0,1,2,3,4,5}

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

012345 ∇F

�
�
� ❅

❅
❅

1345 2345

❅
❅
❅ �

�
�

345 {012,345}
�
�
� ❅

❅
❅

5
{02,1,
3,45} {012,

34,5} {01,2,
35,4}

From the diagram, it is clear that I is prealgebraic, i.e., that, for all
T,T ′ ∈ ThSys(I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Moreover, for all T,T ′ ∈
ThFam(I), if Ω(T ) ≤ Ω(T ′), then

←Ð
T ≤
←Ð
T ′, i.e., I is left reflective. On the
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other hand, setting, T 1 = {{1,3,4,5}}, T 2 = {{2,3,4,5}} and T ′ = {{5}}, we
get

Ω(T 1) ∩Ω(T 2) = {{02,1,3,45}} ∩ {{01,2,35,4}}
= ∆F

≤ {{012,34,5}} = Ω(T ′),
whereas

←Ð
T 1 ∩

←Ð
T 2 = {{3,4,5}} ∩ {{3,4,5}} = {{3,4,5}} ≰ {{5}} =←ÐT ′.

Hence, I is not left completely reflective. Hence to see that I is LRF preal-
gebraizable but not LC prealgebraizable, it suffices to show that it is family
extensional. The verification is routine, but rather tedious. Note that F has
eleven proper and non-trivial universes, namely {{0,1}}, {{0,2}}, {{0,5}},{{0,1,2}}, {{0,1,5}}, {{0,2,5}}, {{0,1,2,5}}, {{0,1,3,5}}, {{0,2,4,5}},{{0,1,2,3,5}} and {{0,1,2,4,5}}. Moreover, it has four proper theory fam-
ilies, T 1 = {{5}}, T 2 = {{3,4,5}}, T 3 = {{1,3,4,5}} and T 4 = {{2,3,4,5}}.
So, one has to check forty-four cases in total which are summarized in the
following table, where each entry in the column labeled by universe F′ and
the row labeled by theory family T shows the congruence system Ω(T )∩F′2 =
ΩF′(T ∩F′) in shorthand block notation.

01 02 05 012 015 025 0125
5 01 02 0,5 012 01,5 02,5 012,5

345 01 02 0,5 012 01,5 02,5 012,5
1345 0,1 02 0,5 02,1 0,1,5 02,5 02,1,5
2345 01 0,2 0,5 01,2 01,5 0,2,5 01,2,5

0135 0245 01235 01245
5 01,3,5 02,4,5 012,3,5 012,4,5

345 01,35 02,45 012,35 012,45
1345 0,1,3,5 02,45 02,1,3,5 02,1,45
2345 01,35 0,2,4,5 01,2,35 01,2,4,5

The second example is an example of an LIF prealgebraizable π-institution
that fails to be LR prealgebraizable. This shows, on the one hand, that the
class of LRF prealgebraizable π-institutions is a proper subclass of the class
of LIF prealgebraizable π-institutions and, on the other, that the class of
LR prealgebraizable π-institutions is a proper subclass of the class of LI
prealgebraizable π-institutions.

Example 346 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 3 and SEN♭(f)(3) = 3;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by the following table:

x 0 1 2 3
σ♭Σ(x) 0 1 1 0

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
I has four theory families, but only three theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

0123 .............................✲ ∇F

123 01,23
.........................⑦

....
....

....
....

.✯

23 01,2,3

....
....

....
....

.✯

3 ∆F

From the diagram, we can see that I is prealgebraic, i.e., that Ω is mono-
tone on ThSys(I) and, also left injective. But I is not left reflective, since

Ω({1,2,3}) ≤ Ω({3}), whereas
←ÐÐÐÐ{1,2,3} = {2,3} ≰ {3} = ←Ð{3}. Therefore, to

see that I is LIF prealgebraizable but not LR prealgebraizable, it suffices to
show that it is family extensional.
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Note that F has three proper and non-singleton universes, {{0,1}}, {{0,3}}
and {{0,1,3}}. Moreover, I has three proper theory families. Thus, we only
have nine cases to check, shown in the following array, which in the row
labeled by theory family T and the column labeled by universe F′ shows the
congruence system Ω(T )∩F′2 = ΩF′(T ∩F′) in an obvious shorthand notation
in terms of blocks.

01 03 013
3 01 0,3 01,3

23 01 0,3 01,3
123 0,1 0,3 0,1,3

We conclude that I is LIF prealgebraizable but not LR prealgebraizable.

The third example is an example of an LIF prealgebraizable π-institution
that fails to be FI prealgebraizable. This shows that the class of FIF prealge-
braizable π-institutions is a proper subclass of the class of LIF prealgebraiz-
able π-institutions and that the class of FI prealgebraizable π-institutions is
a proper subclass of the class of LI prealgebraizable π-institutions.

Example 347 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and two (non-identity)
morphisms f, g ∶ Σ → Σ, such that f ○ f = f , f ○ g = g, g ○ f = f and
g ○ g = g;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and,
on morphisms SEN♭(f)(0) = 1, SEN♭(f)(1) = 1, SEN♭(f)(2) = 2 and
SEN♭(g)(0) = 2, SEN♭(g)(1) = 1 and SEN♭(g)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
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I has four theory families, but only three theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

012 ................................................✲ ∇F

�
�
� ❅

❅
❅

02 12 ............................✲ 0,12

❅
❅
❅

...............................................③
�
�
�

2 ..................................................✲ ∆F

From the diagram, we can see that I is prealgebraic and left injective.
But I is clearly not family injective, since the theory families {{2}} and{{0,2}} map to the same congruence system. Therefore, to see that I is
LIF prealgebraizable but not FI prealgebraizable, it suffices to show that it is
family extensional.

Note that F has only one proper and non-singleton universe, {{1,2}},
and three proper theory families {{2}}, {{0,2}} and {{1,2}}. Thus, we only
have three cases to check, shown below in a shorthand notation.

Ω(2) ∩ (12)2 = {1,2} = Ω12(2) = Ω12(2 ∩ 12);
Ω(02) ∩ (12)2 = {1,2} = Ω12(2) = Ω12(02 ∩ 12);
Ω(12) ∩ (12)2 = {12} = Ω12(12) = Ω12(12 ∩ 12).

We conclude that I is LIF prealgebraizable but not FI prealgebraizable.

The last example in this series is an example of an SF prealgebraizable
π-institution that fails to be LI prealgebraizable. This shows that LIF pre-
algebraizable π-institutions form a proper subclass of the class of SF preal-
gebraizable ones and that the class of LI prealgebraizable π-institutions is a
proper subclass of the class of S prealgebraizable ones.

Example 348 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 3 and SEN♭(f)(3) = 3;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by the following table:

x 0 1 2 3
σ♭Σ(x) 3 2 1 0
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Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
I has four theory families, but only three theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

0123 ...........................✲ ∇F

123 01,23.....................❥....
....

....
....

....
.✯

23 ∆F

....
....

....
....

....
.✯

3

From the diagram, we can see that I is prealgebraic, i.e., that Ω is mono-
tone on ThSys(I) and, also system injective, i.e., Ω is injective on theory
systems. But I is not left injective, since Ω({1,2,3}) = Ω({3}), whereas
←ÐÐÐÐ{1,2,3} = {2,3} ≠ {3} = ←Ð{3}. Therefore, to see that I is SF prealgebraizable
but not LI prealgebraizable, it suffices to show that it is family extensional.

Note that F has only one proper and non-singleton universe, {{0,3}}.
Moreover, I has three proper theory families. Thus, we have only three cases
to check, shown below in shorthand notation:

Ω(3) ∩ {03}2 = {0,3} = Ω03(3) = Ω03(3 ∩ 03);
Ω(23) ∩ {03}2 = {0,3} = Ω03(3) = Ω03(23 ∩ 03);
Ω(123) ∩ {03}2 = {0,3} = Ω03(3) = Ω03(123 ∩ 03).

We conclude that I is SF prealgebraizable but not LI prealgebraizable.
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We now turn to establishing transfer properties for the π-institutions be-
longing to the various classes of the preceding hierarchy. We do this by formu-
lating a comprehensive result encompassing the transference of all ten prop-
erties of the above hierarchy. It is hoped that, despite its all-encompassing
character, the formulation will be sufficiently clear.

Theorem 349 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I belongs to one of the ten prealgebraiz-
ability classes in the prealgebraizability hierarchy if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A, relative to I,
satisfies the properties defining the corresponding class.

For example, I is FIF prealgebraizable if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is monotone on I-filter
systems, injective on I-filter families and family extensional, i.e.,

• for all T,T ′ ∈ FiSysI(A), T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
• for all T,T ′ ∈ ThFamI(A), ΩA(T ) = ΩA(T ′) implies T = T ′;

• for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),
ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).

Proof: First, observe that the “if” is trivially satisfied, since, if the postu-
lated conditions hold for every F-algebraic system, then they hold, in partic-
ular, for F = ⟨F, ⟨I, ι⟩⟩ and this ensures that, by definition, I belongs to the
corresponding prealgebraizability class.

So we turn to the “only if”. First, in all cases I is prealgebraic, i.e., system
monotone, and this property transfers to all F-algebraic systems and I-filter
systems by Theorem 179. Then, depending on whether I belongs to one of
the classes in the upper or the lower hierarchy of the two parallel hierarchies,
it is family or system extensional, respectively. But, by Theorem 314, both
of these properties transfer. Finally, depending on the class I is postulated
to belong to, it satisfies one of the properties of system injectivity, family
injectivity, left injectivity, left reflectivity or left c-reflectivity. The first three
properties transfer by Theorem 214, the fourth transfers by Theorem 225 and
the last transfers by Theorem 240. Therefore, the conclusion holds for each
of the ten prealgebraizability classes in the prealgebraizability hierarchy. ∎

Finally, we turn to characterizations of the classes in the hierarchy in the
form of isomorphism theorems between lattices of theory families/systems
and lattices of congruence systems. We start, first with FIF prealgebraiz-
ability.
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Theorem 350 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is FIF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a bijection which commutes with inverse logical extensions and which re-
stricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 267, characterizing weak FI pre-
algebraizbility. We have that I is FIF prealgebraizable if and only if, by
definition, it is weakly FI prealgebraizable and family extensional if and
only if, by Theorem 267 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a bijection which com-
mutes with inverse logical extensions and which restricts to an order embed-
ding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

FI prealgebraizability is characterized in a similar way, the difference
being that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than being
valid for its operation on the entire collection of I-filter families.

Theorem 351 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is FI prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a bijection which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 350. ∎

We turn now to a similar characterization of SF prealgebraizability.

Theorem 352 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is SF prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A)
commutes with inverse logical extensions and restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
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Proof: The proof is based on Theorem 256, characterizing weak system
prealgebraizability. We have that I is SF prealgebraizable if and only if,
by definition, it is weakly system prealgebraizable and family extensional if
and only if, by Theorem 256 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) commutes with inverse
logical extensions and restricts to an order embedding ΩA ∶ FiSysI(A) →
ConSysI∗(A). ∎

S prealgebraizability is characterized in a similar way, the difference be-
ing that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than to
its operation on the entire collection of I-filter families.

Theorem 353 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is S prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding which commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 352. ∎

We continue with LCF prealgebraizability.

Theorem 354 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LCF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection, which commutes with inverse
logical extensions and which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 276, characterizing weak LC pre-
algebraizbility. We have that I is LCF prealgebraizable if and only if, by
definition, it is weakly LC prealgebraizable and family extensional, if and
only if, by Theorem 276 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a left completely or-
der reflecting surjection, which commutes with inverse logical extensions and
which restricts to an order embedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

LC prealgebraizability is characterized in a similar way, the difference
being that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than to
its operation on the entire collection of I-filter families.
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Theorem 355 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LC prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 354. ∎

A characterization of LRF prealgebraizability in the same spirit follows.

Theorem 356 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LRF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left order reflecting surjection which commutes with inverse logical ex-
tensions and which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 279, characterizing weak LR pre-
algebraizability. We have that I is LRF prealgebraizable if and only if, by
definition, it is weakly LR prealgebraizable and family extensional, if and
only if, by Theorem 279 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a left order reflecting
surjection which commutes with inverse logical extensions and which restricts
to an order embedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

LR prealgebraizability is characterized in a similar way, the difference
being that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than to
its operation on the entire collection of I-filter families.

Theorem 357 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LR prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left order reflecting surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.



Voutsadakis CHAPTER 5. SEMANTIC HIERARCHY III 379

Proof: Similar to the proof of Theorem 356. ∎

Finally, along the same lines we obtain a characterization of LIF prealge-
braizability.

Theorem 358 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LIF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left injective surjection which commutes with inverse logical extensions
and which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 282, characterizing weak LI pre-
algebraizability. We have that I is LIF prealgebraizable if and only if, by
definition, it is weakly LI prealgebraizable and family extensional, if and
only if, by Theorem 282 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left injective surjection
which commutes with inverse logical extensions and which restricts to an
order embedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

And, of course, LI prealgebraizability is characterized in a similar way,
the difference being that commutativity with inverse logical extensions is
restricted to the application of the Leibniz operator on I-filter systems only,
rather than to its operation on the entire collection of I-filter families.

Theorem 359 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LI prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left injective surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 358. ∎
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5.6 Algebraizability

Since equivalentiality implies protoalgebraicity, the hierarchy of algebraiz-
able π-institutions, which results from the hierarchy of weakly algebraizable
π-institutions by replacing protoalgebraicity by equivalentiality, is simpler,
reflecting the simplicity of the weak algebraizability hierarchy.

Definition 360 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is family algebraizable, or F Algebraizable for short, if it is
equivalential and family injective, i.e., if it is protoalgebraic, family
extensional and family injective;

• I is (system) algebraizable if it is equivalential and system injective,
i.e., if it is protoalgebraic, family extensional and system injective.

These two classes form the following algebraizability hierarchy:

Family Algebraizable

(System) Algebraizable
❄

It is clear that these two classes are separated exactly by systemicity, as
is shown in the following proposition:

Proposition 361 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I
a π-institution based on F. I is family algebraizable if and only if it is
algebraizable and systemic.

Proof: We have that I is family algebraizable if and only if, by definition,
it is equivalential and family injective if and only if, by Theorem 291 it is
equivalential, systemic and system injective if and only if it is, by definition,
algebraizable and systemic. ∎

We next present an example to show that these two classes are differ-
ent. It consists of an algebraizable π-institution, which fails to be family
algebraizable.

Example 362 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The table yielding the action of ←Ð on theory families is shown below.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The accompanying diagram gives the structure of the lattice of theory families
and the corresponding Leibniz congruence systems.

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

From the diagram one can check that the Leibniz operator is monotone
on theory families and injective on theory systems. Thus, the π-institution is
protoalgebraic and system injective. Moreover, as is shown in the following
table, which summarizes the congruence systems of the form Ω(T ) ∩ ⟨X⟩2 =
Ω⟨X⟩(T ∩⟨X⟩) for the various combinations of nonempty universes and theory
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families, I is family extensional.

⟨X⟩/T 1 b 01 b 1 ab 01 ab
0 a 0 a 0 a 0 a 0 a

0 ab 0 a, b 0 a, b 0 ab 0 ab
1 b 1 b 1 b 1 b 1 b

1 ab 1 a, b 1 a, b 1 ab 1 ab
01 ab 0,1 a, b 0,1 a, b 0,1 ab 01 ab

Therefore, I is clearly equivalential and system injective, i.e., it is algebraiz-
able.

On the other hand, letting T = {{1},{b}} and T ′ = {{0,1},{b}}, we have
Ω(T ) = Ω(T ′), but T ≠ T ′, whence I is not family injective and, therefore, it
is not family algebraizable.

It is not difficult to show, based on preceding work, that both properties
transfer.

Theorem 363 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is algebraizable if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is monotone
on I-filter families, injective on I-filter systems and family extensional, i.e.,

• for all T,T ′ ∈ FiFamI(A), T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
• for all T,T ′ ∈ FiSysI(A), ΩA(T ) = ΩA(T ′) implies T = T ′;

• for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),
ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).

Proof: Suppose, first, that the three conditions hold. Consider the F-
algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is the identity mor-
phism. By hypothesis, Ω is monotone on theory families and family exten-
sional. Thus, I is equivalential. Also by hypothesis, Ω is injective on theory
systems. Therefore, by definition, I is algebraizable.

Assume, conversely, that I is algebraizable. Thus, it is equivalential and
system injective, i.e., its Leibniz operator is monotone on theory families, in-
jective on theory systems and family extensional. Now we use Theorems 179,
214 and 314, which guarantee that monotonicity, injectivity and extension-
ality, respectively, transfer, to conclude that, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator of A is monotone on I-filter families,
injective on I-filter systems and family extensional. ∎

And, similarly, for family algebraizability, we obtain
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Theorem 364 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family algebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is
monotone and injective on I-filter families and family extensional, i.e.,

• for all T,T ′ ∈ FiFamI(A), T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
• for all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies T = T ′;

• for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),
ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).

Proof: The proof is similar to that given for Theorem 363. It suffices to
observe that family injectivity, like system injectivity, also transfers from the
theory families of a π-institution I to all I-filter families on an arbitrary
F-algebraic system. ∎

We turn now to characterizations of the classes in the algebraizability
hierarchy in terms of order isomorphisms between lattices of filter fami-
lies/systems and lattices of congruence systems that satisfy additional prop-
erties. For algebraizability we have the following characterization.

Theorem 365 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is algebraizable if and only if I is stable
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism that commutes with inverse logical extensions.

Proof: Suppose, first, that I is algebraizable. Then it is weakly algebraizable
and family extensional. Thus, by Theorem 298, I is stable and, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is a lattice isomorphism. Commutativity with inverse logical extensions fol-
lows by family extensionality and Theorems 327 and 328.

Assume, conversely, that I is stable and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism
that commutes with inverse logical extensions. Then, again by Theorem
298, we get that I is weakly algebraizable and, by Theorems 328 and 327,
that I is family extensional. It follows, by definition, that I is algebraizable.
∎

For family algebraizability, we get an analogous characterization.
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Theorem 366 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family algebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism that commutes with inverse logical extensions.

Proof: The proof follows along lines similar to the proof of Theorem 365,
except references to Theorem 298, characterizing weak algebraizability, must
be replaced by referring instead to Theorem 296, which provides a corre-
sponding characterization for weak family algebraizability. ∎

Finally, we note that the two classes sit on top of the prealgebraizability
hierarchy that was studied in the preceding section. Namely, we have the
hierarchy pictured below:

Family Algebraizable

✙✟✟✟✟✟✟
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❯

Algebraizable

✙✟✟✟✟✟✟

LCF PreAlg
❍❍❍❍❍❍❥

LC PreAlg
❄

LRF PreAlg FIF PreAlg
❍❍❍❍❍❍❥

❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟

LR PreAlg
❄

LIF PreAlg FI PreAlg
❄

❍❍❍❍❍❍❥✙✟✟✟✟✟✟

✙✟✟✟✟✟✟

SF PreAlg LI PreAlg
❄

✙✟✟✟✟✟✟

S PreAlg
❄

To separate the classes of the algebraizability from those of the prealge-
braizability hierarchy, we provide an additional example. It is an example
of an LCF and FIF prealgebraizable π-institution which is not algebraizable
and, hence, a fortiori, not family algebraizable either.

Example 367 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The theory family {{1,2}} is not a theory system.
The structure of the lattice of theory families and the corresponding Leib-

niz congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

Since I is not protoalgebraic, it is clear that I is not algebraizable and, a
fortiori, it is not family algebraizable either. On the other hand, I is pre-
algebraic and both left c-reflective and family injective. So, to see that it is
both LCF and FIF prealgebraizable, it suffices to show that it is also fam-
ily extensional. This is done by computing, for all T ∈ ThFam(I) and all
X ∈ SenFam(I) the congruence systems Ω(T )∩ ⟨X⟩2 and Ω⟨X⟩(T ∩ ⟨X⟩) and
verifying that they are identical. This is detailed in the table below:

⟨X⟩/T 2 12 012
0 0 0 0
2 2 2 2
01 01 0,1 01
02 0,2 0,2 02
012 01,2 0,1,2 012

We conclude that I is family extensional and, therefore, it is, indeed, both
LCF and FIF prealgebraizable.
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The last example shows that the hierarchy depicted in the preceding
diagram consists of pairwise distinct classes of π-institutions.

5.7 The Semantic Systemic Hierarchy

It is worth stopping momentarily to take a look at the semantic hierarchy that
we have studied so far. It has been the case invariably that at each level stud-
ied, all classes were identical if restricted to systemic π-institutions. There-
fore, considering only systemic π-institutions, one can construct a “skeleton”
of the entire hierarchy that is depicted in the accompanying diagram:

Algebraizable

✠�
�
� ❅

❅
❅❘

Equivalential Weakly Algebraizable

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Protoalgebraic c-Reflective

❅
❅
❅❘ ✠�

�
�

Loyal

It is, therefore, clear that, when restricted to systemic π-institutions, one
recovers the fundamental classes and the shape of the well-known Leibniz
hierarchy of propositional logics. We view this as a favorable omen that adds
credibility to our institutional hierarchical investigations and the hierarchies
established through them.


