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9.1 Introduction

At the apex of the Leibniz hierarchy of sentential logics one finds the class
of algebraizable logics [35, 43] (see, also, Chapter 4 of [64] and Sections 3.2
and 6.5 of [86]). The concept was first introduced by Blok and Pigozzi in [35]
for finitary logics. It was later generalized to arbitrary sentential logics by
Herrmann [43]. Roughly speaking, a sentential logic is algebraizable when
there exist a class K of algebras, termed the equivalent algebraic semantics,
and two translations δ ≈ ε from formulas to equations, called defining equa-
tions, and ∆ from equations to formulas, called equivalence formulas, which
are interpretations, i.e., preserve and reflect the logical and the equational
closures and vice-versa and, in addition, are inverses of one another in a spe-
cific sense. For a detailed study of this framework, apart from the original
monograph by Blok and Pigozzi [35] and Herrmann’s Dissertation [43], one
may consult Chapter 4 of [64] and Sections 3.2 and 6.5 of [86]. Partly due to
the historical progression, but also due to the intrinsic importance and ubiq-
uity of finitarity, its key role in studies of classical logical systems and a host
of advantageous properties associated with it, the finitary aspects of alge-
braizability have been extensively studied and tight relations between them
have been established. A very illuminative and beautifully written summary
of these results, as pertaining to algebraizability, appears in Section 3.4 of
[86], which constitutes the inspiration and starting point of the investigations
presented here.

We first give a quick overview of the aforementioned work pertaining
to algebraizable sentential logics. We fix an algebraizable sentential logic
S = ⟨L,⊢S⟩, with equivalent algebraic semantics the generalized quasivariety
K, as witnessed by a set δ ≈ ε of defining equations and a set ∆ of equivalence
formulas. Lemma 3.36 of [86] asserts that, in case S is finitary and has a finite
set of equivalence formulas, then every set of equivalence formulas contains
a finite subset that also serves as a set of equivalence formulas. Dually, if the
equational logic SK = ⟨L,⊧K⟩ induced by the class K is finitary, i.e., if the class
K happens to be a quasivariety, and S has a finite set of defining equations,
then every set of defining equations has a finite subset that also serves in the
same capacity. Besides these conditional “finitarization” results, Theorem
3.37 of [86] details some important relationships between the following four
conditions: S finitary; SK finitary; δ ≈ ε finite; and ∆ finite. On the one
hand, if S is finitary, δ ≈ ε may be taken finite, and, dually, if SK is finitary,
then ∆ may be taken to be finite. Moreover, if S is finitary and has a finite
set ∆ of equivalence formulas, then SK is finitary also, and, dually, if SK is
finitary and S has a finite set δ ≈ ε of defining equations, then S is finitary
also. These implications lead to Corollary 3.38 of [86], which asserts the
following three conditional equivalences:

1. If δ ≈ ε and ∆ are both finite, then S is finitary iff SK is finitary.



Voutsadakis CHAPTER 9. SEMANTIC HIERARCHY VII 655

2. If S is finitary, then SK is finitary iff ∆ may be taken finite.

3. If SK is finitary, then S is finitary iff δ ≈ ε may be taken finite.

These lead to the hierarchy depicted in the diagram shown in Figure 3, p.
137 of [86] and duplicated below.

S ,SK finitary
E,∆ finite

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

SK finitary E,∆ finite
❄

S finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

∆ finite
❄

E finite
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

S algebraizable
via K,∆,E

After outlining the results that lead to the depicted hierarchy, Font gath-
ers pointers to three examples of sentential logics that serve to separate the
various classes in the hierarchy. Example 3.41 of [86] revisits  Lukasiewicz’s
infinite valued logic  L∞, which is not finitary, has a non-finitary equivalent
algebraic semantics, but is algebraized via finite sets of defining equations
and equivalence formulas. As a result, it serves to separate classes related
by the vertical arrows in the diagram. In Example 3.42 of [86], the so-called
Logic of Last Judgement LJ , introduced by Herrmann [53], is presented.
This is a finitary logic, algebraized by a non-finitary equational consequence,
via a single defining equation, but a necessarily infinite set of equivalence for-
mulas. So LJ serves in separating the logics related by the southeast arrows
in the diagram. Additional examples that can serve the same purpose were
presented by Dellunde [48] and by Lewin, Mikenberg and Schwartze [55].
Finally, in Example 3.43 of [86], Font presents a logic due to Raftery [82].
Raftery’s work was motivated by a question posed by Czelakowski in Note
4.5.2 (4) of [64], which was also implicit in Problem 3.18 of [43]. Raftery’s
logic is not finitary, but is algebraizable, with a finitary equivalent algebraic
semantics which is actually a variety, via an infinite set of defining equations
and a singleton set of equivalence formulas. It serves in separating the classes
of sentential logics connected via the southwest arrows of the diagram. In
Section 9.5, we revisit  Lukasiewicz’s logic and the logics of Dellunde and
Raftery in much more detail.

Our own goal in this chapter is to provide analogs of the classes in the
finitarity hierarchy of algebraizable sentential logics for logics formalized as
π-institutions. The finitarity conditions pertaining to π-institutions remain
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roughly unchanged. However, keeping in the spirit of dealing with semanti-
cally defined classes (i.e., relying on properties of the Leibniz operator) in this
part of the monograph, the finitarity conditions regarding δ ≈ ε and ∆ are
modified. They are recast as continuity properties of the Leibniz operator and
of its inverse. Subject to these modifications, the results obtained for seman-
tically defined finitarity properties pertaining to weakly family algebraizable
π-institutions reflect those outlined above for algebraizable sentential logics.

In Section 9.2, we introduce the concept of a π-structure, which abstracts
that of a π-institution by eliminating the requirement of structurality. That
is, a π-structure I consists of an algebraic system together with a collection
of closure operators, one on each of its sentence components, which are not
required to satisfy structurality. The finitary companion of a π-structure
I is the π-structure obtained by considering the closure family induced by
all finite consequences of I . As a consequence, it constitutes the largest
finitary π-structure included in I . In addition, it can be shown that it is
structural when the given π-structure satisfies structurality, i.e., when it is
a π-institution. Finitary companions may also be characterized via their
theory families. Namely, a sentence family of a π-institution I is a theory
family of its finitary companion if and only if it is the union of a directed
collection of locally finitely generated theory families of I .

In Section 9.3, we focus on some of the fundamental properties that de-
termine the classes in the semantic Leibniz hierarchy and investigate whether
they are transferred from a π-institution to its finitary companion and vice-
versa, and, if yes, under which conditions. In this vein, protoalgebraicity is
shown to hold for a π-institution I if its finitary companion is protoalge-
braic. A similar property holds for family reflectivity. As a consequence, a
π-institution is weakly family algebraizable if its finitary companion has the
same property. In the opposite direction, for properties of I to be inherited
by its finitary companion, additional provisos are needed. We say that the
Leibniz operator of a π-institution is continuous if, for every directed col-
lection {T i}i∈I of theory families, such that ⋃i∈I T i is also a theory family,
Ω(⋃i∈I T i) = ⋃i∈I Ω(T i). Continuity of the Leibniz operator is a stronger
property than, i.e., implies, protoalgebraicity. It turns out that it is also
sufficient for the finitary companion of I to be protoalgebraic, subject to
the category of signatures being finite. Along dual lines, we say that the
inverse Leibniz operator of a weakly family algebraizable π-institution I is
continuous if, for all directed collections {θi}i∈I of congruence systems in
ConSys∗(I), such that ⋃i∈I θi is also a congruence system in ConSys∗(I),
Ω−1(⋃i∈I θi) = ⋃i∈I Ω−1(θi). This condition, when supplementing continuity
of the Leibniz operator, ensures that weak family algberaizability of a π-
institution I , with a finite category of signatures, is inherited by its finitary
companion.

Section 9.4 is the main section of the chapter. Here, we establish the
semantic finitarity hierarchy of weakly family algebraizable π-institutions,



Voutsadakis CHAPTER 9. SEMANTIC HIERARCHY VII 657

which parallels the hierarchy of sentential logics studied in Section 3.4 of [86]
and summarized both in Subsection 1.3.8 and at the beginning of this Intro-
duction. Throughout, the object of study is a weakly family algebraizable
π-institution I . Moreover, we denote by K ∶= AlgSys(I) and by QK the equa-
tional π-structure induced by the class K. Note that I being weakly family
algebraizable ensures that the Leibniz operator Ω ∶ ThFam(I)→ ConSys∗(I)
is an isomorphism, whence the inverse Ω−1 is well-defined. It is shown, first,
that the finitarity of I ensures the continuity of the inverse Leibniz operator
on ConSys∗(I) and that, dually, the finitarity of QK guarantees that the
Leibniz operator itself is continuous on ThFam(I). Further, if to the finitar-
ity of I is added the continuity of the Leibniz operator, then the finitarity
of QK follows. Dually, if to the finitarity of QK is added the continuity of
the inverse Leibniz operator, then I is also finitary. These results are sum-
marized in three statements, which parallel those governing sentential logics,
stated in Corollary 3.38 of [86]. Namely, under continuity of both the Leibniz
operator and its inverse, finitarity of I is equivalent to finitarity of QK. Un-
der finitarity of I , finitarity of QK is equivalent to continuity of the Leibniz
operator and, dually, under finitarity of QK, finitarity of I is tantamount to
continuity of the inverse Leibniz operator.

In Section 9.5, we take a brief detour to present in detail three examples
of sentential logics, which serve to separate the classes in the finitarity hier-
archy of algebraizable sentential logics, presented in Section 3.4 of [86]. Even
though our focus here is not on sentential logics, we showed in Section 1.1
how a sentential logic gives rise to a π-institution in a rather straightforward
way. Accordingly, the purpose of presenting these three sentential logics is
to construct, based on them, corresponding π-institutions that will serve to
separate the classes in the finitarity hierarchy of weakly family algebraizable
π-institutions, studied in Section 9.4. The constructions of the π-institutions,
based on the sentential logics introduced here, and the separation properties
they help establish will be described in some detail in Section 9.6.

The first example is  Lukasiewicz’s infinite valued logic (see, e.g., Example
3.41 of [86]). It is a logic over a language with three binary connectives ∧,
∨, → and one unary connective ¬. It is semantically defined via a logical
matrix. It is shown that it is not finitary, but that it is algebraizable via a
singleton set of defining equations E(x) = {x ≈ ⊺}, where ⊺ ∶= x → x, and the
doubleton set of equivalence formulas ∆(x, y) = {x → y, y → x}. This logic
serves to separate the classes of sentential logics related by vertical arrows
in the finitarity hierarchy of algebraizable sentential logics, depicted in the
preceding diagram. The second example is a logic introduced by Dellunde in
[48]. It is a logic defined over a language with one binary connective ↔ and
one unary connective ◻. It is defined via a Hilbert calculus and, as a result,
it is finitary. It is shown that it is regularly algebraizable via the infinite
set of equivalence formulas ∆(x, y) = {◻nx ↔ ◻ny ∶ n ∈ ω}. According to
the general theory, regular algebraizability implies that the set of defining
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equations is the singleton E(x) = {x ≈ ⊺}, where ⊺ ∶= x ↔ x defines the
unique element in the filter of any reduced matrix of the logic. What is key
for our purposes is that there does not exist a finite subset ∆0 ⊆ ∆ that
also serves as a set of equivalence formulas for this logic. Consequently, this
example serves in separating those classes in the hierarchy of sentential logics
connected via southeast arrows in the diagram. The last example presented
in Section 9.5 is a logic introduced by Raftery [82]. It is a logic defined
over a language with one binary connective ↔ and three unary connectives
π1, π2 and ◊. It is semantically defined as a weakening of another logic,
which, in turn, is defined using a logical matrix. The weakening, roughly
speaking, is obtained by considering an entire variety of algebras to which
the underlying algebra of this logical matrix belongs. Raftery shows that
neither logic is finitary and that, in addition, the weaker logic, corresponding
to the variety, is algebraizable via an infinite set of defining equations and
a singleton set of equivalence formulas. As a result, Raftery’s logic serves
as an example separating the classes related by the southwest arrows in the
finitarity hierarchy depicted in the preceding diagram.

In Section 9.6, we use the framework outlined in Section 1.1 to formalize
the three sentential logics of Section 9.5 as π-institutions. The resulting
examples enable us to separate the classes in the semantic finitarity hierarchy
of weakly family algebraizable π-institutions, studied in Section 9.4, in a way
that parallels the separation of the classes in the hierarchy of algebraizable
sentential logics.

9.2 The Finitary Companion

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A π-structure I = ⟨F,D⟩,
based on F, is like a π-institution except that D is a closure family on F
instead of a closure system, i.e., the only requirement is that

DΣ ∶ PSEN♭(Σ)→ PSEN♭(Σ)
be a closure operator on SEN♭(Σ), for all Σ ∈ ∣Sign♭∣. On the other hand,
D is not required to be structural. A heavier use of π-structures will be
encountered in Chapter 12, where the concept will be defined anew and
more details given. D is called the closure family of the π-structure I .
Note that π-structures generalize π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,D⟩ be a
π-structure based on F. Define the family

Df = {Df
Σ}Σ∈∣Sign♭∣

by letting, for all Σ ∈ ∣Sign♭∣,
Df

Σ ∶ PSEN♭(Σ)→ PSEN♭(Σ)
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be given, for all Φ ⊆ SEN♭(Σ), by

D
f
Σ(Φ) =⋃{DΣ(Φ′) ∶ Φ′ ⊆f Φ},

where ⊆f denotes the finite subset relation.

It is not hard to show that Df is a finitary closure family on F and that,
moreover, it is a closure system (i.e., structural) in case D itself happens to
be structural.

Lemma 651 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,D⟩ a π-structure based on F. Then Df is a finitary closure family on
F. Further, if D is structural, i.e., if I is a π-institution, then Df is also
structural.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Φ. Then φ ∈
DΣ(φ) ⊆Df

Σ(Φ). Thus, Df is inflationary.

Let Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ), such that Φ ⊆ Ψ. If φ ∈ Df
Σ(Φ),

then there exists Φ′ ⊆f Φ, such that φ ∈ DΣ(Φ′). But Φ′ ⊆f Φ ⊆ Ψ, whence,

φ ∈Df
Σ(Ψ). Thus, Df

Σ(Φ) ⊆Df
Σ(Ψ) and Df is also monotone.

Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Df
Σ(Df

Σ(Φ)). Then,

there exists Φ′ ⊆f D
f
Σ(Φ), such that φ ∈ DΣ(Φ′). Since Φ′ ⊆ Df

Σ(Φ), for all
φ′ ∈ Φ′, there exists Φ′φ

′ ⊆f Φ, such that φ′ ∈DΣ(Φ′φ′). Hence, we get

φ ∈DΣ(Φ′) ⊆DΣ( ⋃
φ′∈Φ′

Φ′φ
′).

Since ⋃φ′∈Φ′ Φ′φ
′ ⊆f Φ, we get, by definition, φ ∈ Df

Σ(Φ). Thus, Df is also
idempotent.

Finally, to show finitarity, let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that
φ ∈ Df

Σ(Φ). Thus, there exists Φ′ ⊆f Φ, such that φ ∈ DΣ(Φ′). Then, by

definition, φ ∈ Df
Σ(Φ′). Thus, Df

Σ(Φ) = ⋃Φ′⊆fΦD
f
Σ(Φ′) and, hence, Df is a

finitary closure family on F.

To prove the last statement concerning structurality, assume that D is
structural. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), Φ ∪ {φ} ⊆ SEN♭(Σ), such
that φ ∈ Df

Σ(Φ). Then, there exists Φ′ ⊆f Φ, such that φ ∈DΣ(Φ′). Since D is
assumed structural, we get SEN♭(f)(φ) ∈ DΣ′(SEN♭(f)(Φ′)). But Φ′ being
a finite subset of Φ, SEN♭(f)(Φ′) is a finite subset of SEN♭(f)(Φ), whence,
SEN♭(f)(φ) ∈ Df

Σ′(SEN♭(f)(Φ)). This shows that Df is also structural. ∎

The following proposition provides a characterization of Df .

Proposition 652 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,D⟩ a π-structure based on F. Then Df is the largest finitary closure
family on F lying below D in the ≤ ordering.
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Proof: By Lemma 651, Df is a finitary closure family. By its definition
and the monotonicity of D, it is clear that Df ≤ D. To complete the proof,
suppose D′ is a finitary closure family on F, such that D′ ≤ D. Let Σ ∈∣Sign♭∣, Φ∪{φ} ⊆ SEN♭(Σ), such that φ ∈D′Σ(Φ). Since, by hypothesis, D′ is
finitary, there exists Φ′ ⊆f Φ, such that φ ∈ D′Σ(Φ′). Since, also by hypothesis,
D′ ≤ D, we get φ ∈DΣ(Φ′). Thus, since Φ′ ⊆f Φ, we get, by definition of Df ,

φ ∈ Df
Σ(Φ). Thus, D′ ≤ Df and, therefore, Df is the largest finitary closure

family below D. ∎

Corollary 653 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then Cf is the largest finitary closure
system on F lying below C in the ≤ ordering.

Proof: By Proposition 652, Cf is the largest finitary closure family lying
below C. But, by Lemma 651, it is a closure system on F. Hence, it is the
largest finitary closure system lying below C. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,D⟩ be a π-
structure based on F. We call Df the finitary companion of D. Moreover,
we set If = ⟨F,Df ⟩ and call it the finitary companion of I . Of course,
these terms apply, in particular, to the case of π-institutions.

We would like to provide an alternative characterization of the finitary
companion that is also very useful in various applications of the notion. With
an eye towards this goal, we make the following definitions.

Definition 654 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and T ∪ {T} ⊆ ThFam(I).

• T is called locally finitely generated if, for all Σ ∈ ∣Sign♭∣, there
exists ΦΣ ⊆f TΣ, such that TΣ = CΣ(ΦΣ).

• T is locally finitely generated if all its theory families are locally
finitely generated.

The following proposition provides a characterization of those sentence
families of a π-institution I that are theory families of its finitary companion.

Proposition 655 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and T ∈ SenFam(F). Then T ∈ ThFam(If)
if and only if, there exists a directed locally finitely generated collection {T i ∶
i ∈ I} ⊆ ThFam(I), such that

T =⋃
i∈I

T i.
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Proof: Let {T i ∶ i ∈ I} ⊆ ThFam(I) be a directed locally finitely generated
collection. Since it is locally finitely generated, we have, by definition, T i ∈
ThFam(If), for all i ∈ I. But, by Lemma 651, If is finitary. Thus, by
Proposition 112, it is continuous. Hence ⋃i∈I T i ∈ ThFam(If).

Suppose, conversely, that T ∈ ThFam(If). Set

T = {C(X) ∶X ≤lf T},
where ≤lf denotes the locally finite subfamily relation. It is clear, by its
definition, that T is locally finitely generated. Suppose C(X),C(Y ) ∈ T .
Then C(X ∪ Y ) ∈ T and, moreover, C(X),C(Y ) ≤ C(X ∪ Y ). Hence, T
is also directed. Finally, it is not difficult to see that T = ⋃T . Thus, the
declared characterization holds. ∎

9.3 π-Institutions & Companions: Hierarchy

In this section, we study how some of the properties that have been used to
build hierarchies of π-institutions are inherited by the finitary companion of
a π-institution from the π-institution itself and vice-versa. In some instances
the inheritance is immediate, but, in others, additional conditions need to
be imposed. We focus on the property of weak family algebraizability. That
is the reason of selecting the few properties studied here versus some of the
remaining properties introduced previously.

First, we show that protoalgebraicity is passed up to I from its finitary
companion If .

Lemma 656 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If = ⟨F,Cf ⟩ is protoalgebraic, then
so is I.

Proof: Suppose If is protoalgebraic. Then, by definition, the Leibniz op-
erator Ω ∶ ThFam(If) → ConSys∗(If) is monotone. Since Cf ≤ C, we have
ThFam(I) ⊆ ThFam(If). Therefore, the Leibniz operator Ω ∶ ThFam(I) →
ConSys∗(I) is also monotone. We conclude that I is protoalgebraic. ∎

Similarly, if If is family reflective, then so is I .

Lemma 657 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If = ⟨F,Cf ⟩ is family reflective, then
so is I.

Proof: Suppose If is family reflective. Then, by definition, the Leibniz
operator Ω ∶ ThFam(If) → ConSys∗(If) is order reflecting. Since Cf ≤ C,
we have ThFam(I) ⊆ ThFam(If). Therefore, a fortiori, the Leibniz operator
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Ω ∶ ThFam(I) → ConSys∗(I) is also order reflecting. We conclude that I is
family reflective. ∎

Combining Lemmas 656 and 657, we get that weak family algebraizability
for a π-institution is obtained, provided that its finitary companion has the
same property.

Proposition 658 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If If = ⟨F,Cf ⟩ is weakly family
algebraizable, then so is I.

Proof: Suppose If is weakly family algebraizable. Then it is protoalgebraic
and family reflective. Thus, by Lemmas 656 and 657, respectively, I is also
protoalgebraic and family reflective. Hence, by definition, I is weakly family
algebraizable. ∎

Now we turn to the question of the same properties passing down to
If from I . In this direction, additional conditions are needed to ensure
inheritance.

Given a directed family {T i ∶ i ∈ I} ⊆ ThFam(I) it is not, in general, the
case that ⋃i∈I T i is a theory family of I . However, as we saw in Proposition
112, this is always the case when I is a finitary π-institution.

Motivated by this consideration, we define the following property of the
Leibniz operator:

Definition 659 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Leibniz operator

Ω ∶ ThFam(I)→ ConSys∗(I)
is continuous if, for every directed family {T i ∶ i ∈ I} ⊆ ThFam(I), such
that ⋃i∈I T i ∈ ThFam(I),

Ω(⋃
i∈I

T i) =⋃
i∈I

Ω(T i).
It is easy to see that continuity implies protoalgebraicity.

Lemma 660 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If Ω ∶ ThFam(I)→ ConSys∗(I) is contin-
uous, then I is protoalgebraic.

Proof: Suppose Ω is continuous and let T,T ′ ∈ ThFam(I), such that T ≤ T ′.
Then T ′ = T ∪ T ′ and we get

Ω(T ) ∪Ω(T ′) = Ω(T ∪ T ′) = Ω(T ′).
Hence, Ω(T ) ≤ Ω(T ′) and I is protoalgebraic. ∎
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We saw in Lemma 656 that protoalgebraicity of the finitary companion
If of a π-institution I ensures that I is also protoalgebraic. We now see that
working over finite signature categories and imposing the stronger property
of continuity of the Leibniz operator on I ensure that If is protoalgebraic.

Lemma 661 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭

finite, and I = ⟨F,C⟩ a π-institution based on F. If Ω ∶ ThFam(I) →
ConSys∗(I) is continuous, then If is protoalgebraic.

Proof: Suppose that Ω is continuous on ThFam(I). Then, by Lemma 660, I
is protoalgebraic. To show that If is protoalgebraic, let T,T ′ ∈ ThFam(If),
such that T ≤ T ′. By Proposition 655, there exist directed locally finitely
generated collections {T i ∶ i ∈ I} ⊆ ThFam(I) and {T ′j ∶ j ∈ J} ⊆ ThFam(I),
such that

T =⋃
i∈I

T i and T ′ = ⋃
j∈J

T ′j.

Since, by hypothesis, T ≤ T ′, we get, for all i ∈ I, T i ≤ ⋃j∈J T ′j. Since Sign♭

is finite, T i is locally finitely generated and {T ′j ∶ j ∈ J} is directed, there
exists ji ∈ J , such that T i ≤ T ′ji, for all i ∈ I. Now we get

Ω(T ) = Ω(⋃i∈I T i) (T = ⋃i∈I T i)
= ⋃i∈I Ω(T i) (Ω continuous)
≤ ⋃i∈I Ω(T ′ji) (T i ≤ T ′ji and protoalgebraicity)
≤ ⋃j∈J Ω(T ′j) (Set Theory)
= Ω(⋃j∈J T ′j) (Ω continuous)
= Ω(T ′). (T ′ = ⋃j∈J T ′j)

Thus, If is protoalgebraic. ∎

Lemma 661 allows us to prove the following result, giving sufficient con-
ditions for weak family algebraizability to be inherited by the finitary com-
panion If from a π-institution I .

Definition 662 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a weakly family algebraizable π-institution based on F. The inverse
Ω−1 ∶ ConSys∗(I) → ThFam(I) of the Leibniz operator is continuous if,
for every directed family {θi ∶ i ∈ I} ⊆ ConSys∗(I), such that ⋃i∈I θi ∈
ConSys∗(I),

Ω−1(⋃
i∈I

θi) =⋃
i∈I

Ω−1(θi).
Theorem 663 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭

finite, and I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F.
If

ThFam(I) Ω✲✛
Ω−1

ConSys∗(I)
are continuous, then If is also weakly family algebraizable.
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Proof: By Lemma 661, If is protoalgebraic. Thus, it suffices to show that If

is also family injective. To this end, let T,T ′ ∈ ThFam(If), such that Ω(T ) =
Ω(T ′). By Proposition 655, there exist directed locally finitely generated
collections {T i ∶ i ∈ I} ⊆ ThFam(I) and {T ′j ∶ j ∈ J} ⊆ ThFam(I), such that

T =⋃
i∈I

T i and T ′ = ⋃
j∈J

T ′j.

Now we work as follows:

T = ⋃i∈I T i

= ⋃i∈I Ω−1(Ω(T i))
= Ω−1(⋃i∈I Ω(T i))

(⋃i∈I Ω(T i) ∈ ConSys∗(I) and Ω−1 continuous)
= Ω−1(Ω(⋃i∈I T i))

(⋃i∈I T i ∈ ThFam(I) and Ω continuous)
= Ω−1(Ω(⋃j∈J T ′j)) (Ω(T ) = Ω(T ′))
= Ω−1(⋃j∈J Ω(T ′j))

(⋃j∈J T ′j ∈ ThFam(I) and Ω continuous)
= ⋃j∈J Ω−1(Ω(T ′j))

(⋃j∈J Ω(T ′j) ∈ ConSys∗(I) and Ω−1 continuous)
= ⋃j∈J T ′j

= T ′.

Hence, If is family injective and, thus, weakly family algebraizable. ∎

9.4 Finitarity and Continuity

In this section, we establish some results pertaining to the finitarity of weakly
family algebraizable π-institutions. We stay with semantic notions, using the
Leibniz operator, and aim at establishing relations between various aspects
of finitarity.

We begin by showing that the finitarity of a weakly family algebraizable
π-institution I entails the continuity of the inverse Leibniz operator on the
I∗-congruence systems on F .

Proposition 664 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a weakly family algebraizable π-institution based on F. If I is finitary,
then Ω−1 ∶ ConSys∗(I)→ ThFam(I) is continuous.

Proof: Suppose that {θi ∶ i ∈ I} ⊆ ConSys∗(I) is directed, such that ⋃i∈I θi ∈
ConSys∗(I). Since {θi ∶ i ∈ I} ⊆ ConSys∗(I), there exist T i ∈ ThFam(I),
such that θi = Ω(T i), for all i ∈ I. Note that, since, by Theorem 296, Ω is an
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order isomorphism, {T i ∶ i ∈ I} is also directed. Moreover, since I is finitary,
we have, by Proposition 112, ⋁i∈I T i = ⋃i∈I T i. Hence, we get

⋃i∈I θi = ⋁i∈I θi (⋃i∈I θi ∈ ConSys∗(I))
= ⋁i∈I Ω(T i) (θi = Ω(T i))
= Ω(⋁i∈I T i) (Ω order isomorphism)
= Ω(⋃i∈I T i). (I finitary)

From this, we get
Ω−1(⋃

i∈I

θi) =⋃
i∈I

T i =⋃
i∈I

Ω−1(θi).
Hence Ω−1 is indeed continuous. ∎

Next, we show that the finitarity of the π-structure QK = ⟨F,DK⟩, where
K = AlgSys(I), for a weakly family algebraizable π-institution I , entails the
continuity of the Leibniz operator on the collection of theory families of I .

Proposition 665 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F. If QK

is finitary, for K = AlgSys(I), then Ω ∶ ThFam(I)→ ConSys∗(I) is continu-
ous.

Proof: Suppose that {T i ∶ i ∈ I} ⊆ ThFam(I) is directed, such that ⋃i∈I T i ∈
ThFam(I). Since {T i ∶ i ∈ I} ⊆ ThFam(I), Ω(T i) ∈ ThFam(QK), where
K = AlgSys(I). Moreover, since, by Theorem 296, Ω is an order isomorphism,{Ω(T i) ∶ i ∈ I} is also directed. Hence, since QK is finitary, by Proposition
112, we have ⋁i∈I Ω(T i) = ⋃i∈I Ω(T i). Hence, we get

Ω(⋃i∈I T i) = Ω(⋁i∈I T i) (⋃i∈I T i ∈ ThFam(I))
= ⋁i∈I Ω(T i) (Ω order isomorphism)
= ⋃i∈I Ω(T i). (QK finitary)

Hence, Ω is continuous. ∎

We saw in Proposition 664 that finitarity of a weakly family algebraizable
π-institution I entails the continuity of the inverse Leibniz operator. If, to
the finitarity of I , we add continuity of the Leibniz operator Ω, then finitarity
of QK is ensured, where K = AlgSys(I).
Proposition 666 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F. If I is
finitary, and Ω ∶ ThFam(I) → ConSys∗(I) is continuous, then QK, where
K = AlgSys(I), is also finitary.

Proof: Assume that I is a finitary, weakly family algebraizable π-institution
and that Ω is continuous. Let {θi ∶ i ∈ I} ⊆ ConSys∗(I) be a directed family
of congruence systems. Then, there exist {T i ∶ i ∈ I} ⊆ ThFam(I), such that



666 CHAPTER 9. SEMANTIC HIERARCHY VII Voutsadakis

Ω(T i) = θi, for all i ∈ I. Moreover, since {θi ∶ i ∈ I} is directed and Ω is,
by Theorem 296, an order isomorphism, {T i ∶ i ∈ I} is also directed. Hence,
since I is finitary, by Proposition 112, ⋁i∈I T i = ⋃i∈I T i. Now we have

⋁i∈I θi = ⋁i∈I Ω(T i) (Ω(T i) = θi)
= Ω(⋁i∈I T i) (Ω order isomorphism)
= Ω(⋃i∈I T i) (I finitary)
= ⋃i∈I Ω(T i) (Ω continuous)
= ⋃i∈I θi. (Ω(T i) = θi)

Thus, ConSys∗(I) is closed under directed unions and, therefore, by Propo-
sition 112, QK is finitary. ∎

Dually, we have seen in Proposition 665 that if QK is finitary, where
K = AlgSys(I), then Ω is continuous. If, to the finitarity of QK, we add the
continuity of Ω−1, then, finitarity of I is ensured.

Proposition 667 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F. If QK

is finitary, where K = AlgSys∗(I), and Ω−1 ∶ ConSys∗(I) → ThFam(I) is
continuous, then I is also finitary.

Proof: Assume that I is a weakly family algebraizable π-institution, such
that QK, K = AlgSys(I), is finitary, and that Ω−1 is continuous. Let {T i ∶ i ∈
I} ⊆ ThFam(I) be a directed collection of theory families. Then, since, by
Theorem 296, Ω is an order isomorphism, {Ω(T i) ∶ i ∈ I} is a directed family
of congruence systems. Since QK is finitary, by Proposition 112, ⋁i∈I Ω(T i) =
⋃i∈I Ω(T i). Now we have

⋁i∈I T i = Ω−1(Ω(⋁i∈I T i)) (Ω isomorphism)
= Ω−1(⋁i∈I Ω(T i)) (Ω order isomorphism)
= Ω−1(⋃i∈I Ω(T i)) (QK finitary)
= ⋃i∈I Ω−1(Ω(T i)) (Ω−1 continuous)
= ⋃i∈I T i. (Ω isomorphism)

Thus, ThFam(I) is closed under directed unions and, hence, by Proposition
112, I is finitary. ∎

Gathering together all conclusions drawn during the studies undertaken
in this section, we get the following

Corollary 668 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a weakly family algebraizable π-institution based on F and set K = AlgSys(I).

(a) If both Ω and Ω−1 are continuous, then I is finitary if and only if QK

is finitary.
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(b) If I is finitary, then QK is finitary if and only if Ω ∶ ThFam(I) →
ConSys∗(I) is continuous.

(c) If QK is finitary, then I is finitary if and only if Ω−1 ∶ ConSys∗(I) →
ThFam(I) is continuous.

In each of (a)-(c), if the two equivalent conditions hold, then all four finitarity
conditions hold.

Proof:

(a) Suppose Ω and Ω−1 are continuous. Then, if I is finitary, QK is fini-
tary, by Proposition 666, and if QK is finitary, then I is finitary, by
Proposition 667.

(b) Suppose that I is finitary. Then, by Proposition 664, Ω−1 is continuous.
If QK is finitary, then Ω is continuous, by Proposition 665. On the other
hand, if Ω is continuous, then QK is finitary, by Proposition 666.

(c) Suppose that QK is finitary. Then, by Proposition 665, Ω is continuous.
If I is finitary, then Ω−1 is continuous, by Proposition 664. On the other
hand, if Ω−1 is continuous, then I is finitary, by Proposition 667.

We turn to the last statement. For Part (a), assume that I and QK are
finitary. Then, we get, by Propositions 664 and 665, that Ω and Ω−1 are
continuous. For Part (b), if I is finitary, QK is finitary and Ω ∶ ThFam(I)→
ConSys∗(I) is continuous, then, by Proposition 664, Ω−1 is continuous. A
similar reasoning applies to Part (c). ∎

We summarize our conclusions in the accompanying diagram. At the
bottom is situated the underlying assumption (holding at all levels) that I
is weakly family algebraizable. The top consists of the situation in which
all four finitarity conditions hold, i.e., both I and QK, for K = AlgSys(I),
are finitary and both Ω and Ω−1 are continuous. The intermediate classes
constitute the various different intermediate possibilities that were detailed
previously.

I ,QK finitary
Ω,Ω−1 continuous

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

QK finitary
Ω and Ω−1

continuous

❄

I finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

Ω continuous
❄

Ω−1 continuous
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

I weakly family
algebraizable
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This diagram is a modified version of the one shown in Figure 3 of Section 3.4
of [86]. Instead of dealing with sentential logics, it concerns the more general
case of π-institutions and, instead of being expressed in terms of syntactic
constructs (which in the case of sentential logics turn out to be equivalent),
it relies entirely on corresponding properties of the Leibniz operator and its
inverse. These analogies and similarities will be exploited in the remainder
of the chapter to obtain examples that separate the various classes involved
in this hierarchy by adapting appropriate examples that serve an analogous
purpose in the framework of sentential logics.

9.5 The Case of Sentential Logics

In the Introduction and, briefly, in concluding Section 9.4, we pointed out
that the semantic finitarity hierarchy of π-institutions reflects the finitarity
hierarchy presented in Section 3.4 of [86], which is duplicated below.

S ,SK finitary
E,∆ finite

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

SK finitary E,∆ finite
❄

S finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

∆ finite
❄

E finite
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

S algebraizable
via K,∆,E

In [86], Font presents examples of sentential logics to separate the classes in
this hierarchy. In this section, we revisit some of them in detail and, then,
rely on them in Section 9.6 to separate the classes of π-institutions shown
in the hierarchy of Section 9.4. We provide, now, a brief overview of the
examples chosen and what each accomplishes, before describing them in full
detail.

The first example we present is  Lukasiewicz’s infinite valued logic  L∞.
This logic is introduced in Example 1.12 of Section 1.2 of [86]. In Example
1.15, in the same section, in conjunction with Exercise 1.26 of [86], it is shown
that it is not finitary. On the other hand, in Example 3.41 of Section 3.4
of [86], it is shown that it is finitely algebraizable, with defining equations
E(x) = {x ≈ ⊺} and equivalence formulas ∆(x, y) = {x → y, y → x}, both
finite. Thus,  L∞ serves in showing that the three vertical arrows in the
preceding diagram represent proper inclusions. As Font points out in [86],
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more information about  L∞ and similar logics may be found in specialized
references, such as [61, 65, 56] and Chapters 1, 2 and 6 of [83].

The second example that Font presents in Section 3.4 of [86] is Her-
rmann’s Last Judgement Logic LJ [53]. This is a finitary logic which is
syntactically defined and which is algebraizable with a single defining equa-
tion E(x) = {¬x ≈ ¬(x → x)} and an infinite set of equivalence formulas
∆(x, y) = {◻n(x → y) ≈ ◻n(y → x) ∶ n ≥ 0}. So this logic serves to separate
all classes related by southeast arrows in the diagram. The same separations
may be attained by a logic introduced by Dellunde in [48]. Dellunde’s logic
is actually the logic we opt to present as our second example. Here, we shall
name it Dellunde’s Logic D.

The last example, presented in Section 3.4 of [86] is a logic introduced
by Raftery in [82]. This is a semantically defined logic which is not finitary
but is algebraizable via a finitary equational consequence, with an infinite set
of defining equations and a single equivalence formula. So this logic, which
we shall refer to as Raftery’s Logic R, shows that all southwest arrows in
the diagram represent proper inclusions. This will be the third, and last
example, presented in detail in this section.

9.5.1  Lukasiewicz’s Infinite Valued Logic

We begin with  Lukasiewicz’s infinite valued logic  L∞. Define an algebra
A = ⟨A,∧,∨,→,¬⟩ as follows:

• The universe A is the unit interval A = [0,1].
• The operations are defined, for all a, b ∈ A, by:

– a ∧ b = min {a, b};
– a ∨ b = max{a, b};
– a→ b =min {1,1 − a + b} = { 1, if a ≤ b

1 − a + b, if a > b
;

– ¬a = 1 − a.

 Lukasiewicz’s infinite valued logic  L∞ = ⟨L,⊢∞⟩ is the sentential logic
over the language L = {∧,∨,→,¬} defined, for all Γ ∪ {ϕ} ⊆ FmL(V ), by

Γ ⊢∞ ϕ iff for every homomorphism h ∶ FmL(V )→A,
h(Γ) ⊆ {1} implies h(ϕ) = 1.

Over the same language L, we define the derived binary connective ⊕ by
setting

x⊕ y ∶= ¬x → y.

This operation satisfies some key properties.
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Lemma 669 For all a, b ∈ A,

a⊕ b = { 1, if a + b ≥ 1,
a + b, if a + b < 1

.

Proof: Let a, b ∈ A. We perform a straightforward calculation using the
definitions of the operations in A.

a⊕ b = ¬a → b = (1 − a)→ b

= { 1, if 1 − a ≤ b
1 − (1 − a) + b, if 1 − a > b

} = { 1, if a + b ≥ 1
a + b, if a + b < 1

.

∎

Lemma 669 helps us establish the following

Lemma 670 For all a ∈ A and all n ≥ 2,

a⊕⋯⊕ a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

= { 1, if a ≥ 1
n

na, if a < 1
n

.

Proof: We use induction on n. Lemma 669 guarantees that the formula
holds for n = 2. Assume that the formula holds for some n ≥ 2. Then, we get

a⊕⋯⊕ a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1

= (a⊕⋯⊕ a)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

⊕a = { 1⊕ a, if a ≥ 1
n(na)⊕ a, if a < 1
n

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if a ≥ 1

n

1, if (n + 1)a ≥ 1(n + 1)a, if (n + 1)a < 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= { 1, if a ≥ 1

n+1(n + 1)a, if a < 1
n+1

.

∎

We now show that  L∞ is not finitary.

Theorem 671  Lukasiewicz’s infinite valued logic  L∞ is not finitary.

Proof: We set

Φ = {(x⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y ∶ n ≥ 2} ∪ {¬x → y}.

We show that Φ ⊢∞ y, but Φ0 /⊢∞ y, for any finite Φ0 ⊆ Φ.
Suppose h ∶ FmL(V )→A is such that

h(¬y → x) = 1 and h((x ⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y) = 1, for all n ≥ 2.

By definition, these imply that h(x) + h(y) ≥ 1 and h(x⊕⋯⊕ x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

) ≤ h(y), for

all n ≥ 2.



Voutsadakis CHAPTER 9. SEMANTIC HIERARCHY VII 671

• If h(x) = 0, then, by the first inequality, h(y) = 1.

• If h(x) ≠ 0, then h(x) ≥ 1
n
, for some n > 0. In this case, h(x⊕⋯⊕ x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

) =
1, whence, by the second inequality, h(y) = 1.

Since, in either case, h(y) = 1, we get that Φ ⊢∞ y.
To refute finitarity, assume, towards obtaining a contradiction, that, for

some finite Φ0 ⊆ Φ, Φ0 ⊢∞ y. Then, there exists k ≥ 2, such that

{(x⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y ∶ 2 ≤ n ≤ k} ∪ {¬x→ y} ⊢∞ y.

Consider a homomorphism h ∶ FmL(V )→A, such that

h(x) = 1

k + 1
and h(y) = k

k + 1
.

Then, we have

h(¬x → y) = (1 − h(x))→ y = k
k+1 →

k
k+1 = 1;

h((x ⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y) = h((x ⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

)→ h(y) n<k+1= n
k+1 →

k
k+1

n≤k= 1.

On the other hand, h(y) = k
k+1 ≠ 1. Therefore, Φ0 /⊢∞ y, contrary to hypoth-

esis. We conclude that  L∞ is not a finitary sentential logic. ∎

Our final result pertaining to this logic is that it is algebraizable, via
the class {A}, with defining equation E(x) = {x ≈ ⊺}, where ⊺ ∶= x → x

(interpreted as 1), and equivalence formulas ∆(x, y) = {x → y, y → x}. In
the proof, we will rely on the general theory of algebraizable logics (see, e.g.,
Sections 3.2 and 6.5 of [86] or Section 4.5 of [64]).

Theorem 672  Lukasiewicz’s infinite value logic  L∞ is algebraizable via the
class {A}, with defining equations E(x) = {x ≈ ⊺} and equivalence formulas
∆(x, y) = {x→ y, y → x}.
Proof: According to the general theory of algebraizability, it suffices to show
that, for all Γ ∪ {ϕ,ψ} ⊆ FmL(V ),

Γ ⊢∞ ϕ iff {γ ≈ ⊺ ∶ γ ∈ Γ} ⊧A ϕ ≈ ⊺,
ϕ ≈ ψ â⊧A {ϕ→ ψ ≈ ⊺, ψ → ϕ ≈ ⊺}.

For the first, note that

Γ ⊢∞ ϕ iff (∀h ∶ FmL(V )→A)(h(Γ) ⊆ {1} implies h(ϕ) = 1)
iff (∀h ∶ FmL(V )→A)((∀γ ∈ Γ)(h(γ) = 1) implies h(ϕ) = 1)
iff {γ ≈ ⊺ ∶ γ ∈ Γ} ⊧A ϕ ≈ ⊺.
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Finally, noting that, for all h ∶ FmL(V ) → A, we have h(ϕ → ψ) = 1 iff
h(ϕ) ≤ h(ψ), we get

h(ϕ) = h(ψ) iff h(ϕ→ ψ) = h(ψ → ϕ) = 1,

whence ϕ ≈ ψ â⊧A {ϕ→ ψ ≈ ⊺, ψ → ϕ ≈ ⊺}. The conclusion now follows. ∎

9.5.2 Dellunde’s Logic

We switch to the second example of the section, a logic due to Dellunde [48].

Let L = {↔,◻} be the algebraic language consisting of a binary operation
↔ and a unary operation ◻. Dellunde’s logic D = ⟨L,⊢D⟩ is the logic over
the language L defined by the following Hilbert style calculus, where x, y and
x1, y1, x2, y2 denote distinct variables:

(1) ⊢D x↔ x;

(2) x,x↔ y ⊢D y;

(3) x, y ⊢D ◻nx↔ ◻ny, for all n ∈ ω;

(4) x1 ↔ y1, x2 ↔ y2 ⊢D ◻n(x1 ↔ x2)↔ ◻n(y1 ↔ y2), for all n ∈ ω.

Since D is defined via a Hilbert calculus, it is finitary. We further define

∆(x, y) = {◻nx↔ ◻ny ∶ n ∈ ω}.
Dellunde shows that D is 1-equivalential, which implies that it is regularly
algebraizable [53].

Theorem 673 Dellunde’s logic D = ⟨L,⊢D⟩ is regularly algebraizable.

Proof: It suffices to show that, for distinct variables x, y, x1, y1, x2, y2, the
following hold:

(R) ⊢D ∆(x,x);
(MP) x,∆(x, y) ⊢D y;

(RP) ∆(x, y) ⊢D ∆(◻x,◻y) and

∆(x1, y1),∆(x2, y2) ⊢D ∆(x1 ↔ x2, y1↔ y2);
(RG) x, y ⊢D ∆(x, y).
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By (1), we have ⊢D x ↔ x. By structurality, ⊢D ◻nx ↔ ◻nx, for all n ∈ ω.
That is, ⊢D ∆(x,x). So (R) holds.

Rule (2) assures that x,x ↔ y ⊢D y. Now, note that x ↔ y ∈ ∆(x, y)
and apply monotonicity of entailment to get x,∆(x, y) ⊢D y. That is, (MP)
holds.

The first rule in (RP) is a consequence of monotonicity, since

∆(◻x,◻y) = {◻n ◻ x↔ ◻n ◻ y ∶ n ∈ ω}
= {◻nx↔ ◻ny ∶ n ≥ 1}
⊆ {◻nx↔ ◻ny ∶ n ∈ ω}
= ∆(x, y).

For the second rule in (RP), note that (4) gives x1 ↔ y1, x2 ↔ y2 ⊢D ∆(x1 ↔
x2, y1 ↔ y2). On the other hand, x1 ↔ y1 ∈∆(x1, y1) and x2 ↔ y2 ∈ ∆(x2, y2).
Therefore, we conclude that ∆(x1, y1),∆(x2, y2) ⊢D ∆(x1 ↔ x2, y1 ↔ y2),
whence (RP) holds.

Finally, note that, by (3), (RG) holds.
We conclude that D is regularly algebraizable, with a singleton set of

defining equations E(x) = {x ≈ ⊺}, where ⊺ ∶= x ↔ x is a unary term inter-
preted as the unique element of the D-filter of any reduced D-matrix, and
set of equivalence formulas ∆(x, y). ∎

Finally, Dellunde shows that D is not finitely equivalential, i.e., that there
does not exist a finite subset ∆0 ⊆ ∆ that can also serve as a set of equivalence
formulas. In relation to this, see Lemma 3.36 in Section 3.4 of [86].

Theorem 674 Dellunde’s logic D = ⟨L,⊢D⟩ is not finitely equivalential, i.e.,
there exists no finite ∆0 ⊆ ∆ which is also a set of equivalence formulas for
D.

Proof: Assume, towards a contradiction, that there exists finite ∆0 ⊆ ∆,
which serves as a set of equivalence formulas for D. Then, there exists a
maximum m ∈ ω, such that ◻mx↔ ◻my ∈ ∆0. To obtain a contradiction, we
construct a D-matrix A = ⟨A, F ⟩ and choose elements c, d ∈ A, such that

∆A
0 (c, d) ⊆ F but ⟨c, d⟩ ∉ ΩA(F ).

As a preparatory step in defining the L-algebra A, we define on ω × ω the
following equivalence relation:

R = Idω×ω ∪ {⟨⟨i, j⟩, ⟨k, ℓ⟩⟩ ∶ i = k, i < j, k < ℓ}.
The algebra A = ⟨A,↔A,◻A⟩ is defined as follows:

• A = ω × ω;

• The operations are defined, for all i, j ∈ ω and all a, b ∈ ω × ω,
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– ◻A(⟨i, j⟩) = ⟨i + 1, j⟩;
– ↔A (a, b) = { ⟨1,0⟩, if ⟨a, b⟩ ∈ R⟨0,0⟩, if ⟨a, b⟩ ∉ R .

The filter F = {⟨1,0⟩} and the elements c, d ∈ A are chosen as c = ⟨0,m+1⟩ and
d = ⟨0,m + 2⟩, where, recall that, m = max{k ∶ ◻kx↔ ◻ky ∈∆0}. It suffices,
now, to show the following:

(a) A = ⟨A, F ⟩ is a D-matrix, i.e., F is closed under all D-rules;

(b) ∆A
0 (c, d) ⊆ F ;

(c) ⟨c, d⟩ ∉ ΩA(F ).
For (a), let h ∶ FmL(V )→A be arbitrary. Then:

• For all n ∈ ω, h(◻nx↔ ◻nx) = h(◻nx)↔A h(◻nx) = ⟨1,0⟩ ∈ F .

• Suppose h(x) = ⟨1,0⟩ and h(x ↔ y) = ⟨1,0⟩. So h(x) = ⟨1,0⟩ and
h(x) ↔A h(y) = ⟨1,0⟩. Since h(x) = ⟨1,0⟩ and 1 /< 0, we get h(x) =
h(y). So, h(y) = ⟨1,0⟩ ∈ F .

• If h(x) = h(y) = ⟨1,0⟩, then h(◻nx) = ◻An
h(x) = ◻An

h(y) = h(◻ny),
whence, h(◻nx↔ ◻ny) = h(◻nx)↔A h(◻ny) = ⟨1,0⟩ ∈ F .

• If h(x1 ↔ y1) = h(x2 ↔ y2) = ⟨1,0⟩, then, since R is an equivalence
relation, it follows from

h(x1) R h(y1)

h(x2)
R....

....

R h(y2)
R....

....

that ⟨h(x1), h(x2)⟩ ∈ R iff ⟨h(y1), h(y2)⟩ ∈ R, i.e., that

h(x1 ↔ x2) = h(y1 ↔ y2) = { ⟨1,0⟩, if ⟨h(x1), h(x2)⟩ ∈ R⟨0,0⟩, if ⟨h(x1), h(x2)⟩ ∉ R .

Then, we obtain, for all n ∈ ω, h(◻n(x1 ↔ x2)) = h(◻n(y1 ↔ y2)),
which yields that h(◻n(x1 ↔ x2)↔ ◻n(y1 ↔ y2)) = ⟨1,0⟩.

Thus, A is indeed a D-matrix.
For (b), suppose ◻kx↔ ◻ky ∈ ∆0, i.e., k ≤m. Then, we have

◻Ak
c↔A ◻Ak

d = ◻Ak⟨0,m + 1⟩↔A ◻Ak⟨0,m + 2⟩
= ⟨k,m + 1⟩↔A ⟨k,m + 2⟩
= ⟨1,0⟩.
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So, ∆A
0 (c, d) ⊆ F .

Finally, for (c), observe that

◻Am+1
c↔A ◻Am+1

d = ◻Am+1⟨0,m + 1⟩↔A ◻Am+1⟨0,m + 2⟩
= ⟨m + 1,m + 1⟩↔A ⟨m + 1,m + 2⟩
= ⟨0,0⟩ ∉ F.

Therefore, by Theorem 673 and the general theory of algebraizability, ⟨c, d⟩ ∉
ΩA(F ).

The conjunction of assertions (a), (b) and (c) shows that ∆0 is not a
set of equivalence formulas for D and, consequently, taking into account the
finitarity of D and Lemma 3.36 of Section 3.4 of [86], D does not possess a
finite set of equivalence formulas. ∎

9.5.3 Raftery’s Logic

Finally, we turn to a detailed description of Raftery’s logic [82].
The construction unfolds in several stages. It starts with the set

B = {0,1} ∪ ({0,1} × {0,1})ω
consisting of the bits 0 and 1 and of infinite sequences of pairs of bits. On
this set B, three unary operations π1, π2 and ◊ are defined by setting, for all
b ∈ {0,1} and all ⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩ ∈ ({0,1} × {0,1})ω,

π1(b) = b, π1(⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩) = b0;
π2(b) = b, π2(⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩) = b′0;

◊b = b, ◊(⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩) = ⟨⟨b1, b′1⟩, ⟨b2, b′2⟩, . . .⟩.
In the next stage, Raftery constructs the universe A of the algebra A that
forms the algebraic reduct of the logical matrix used to define Raftery’s logic.
This is accomplished by closing under the formation of ordered pairs.

B[1] = B;
B[n] = (⋃0<m<nB

[m]) × (⋃0<m<nB
[m]), n > 1;

and, finally,

A = ⋃
0<n∈ω

B[n].

First, observe that no element of B is an ordered pair and that every element
of A −B is an ordered pair.

To define the algebra A, the operations introduced previously on B are
extended on A. We set, for all ⟨a, a′⟩ ∈ A −B,

π1(⟨a, a′⟩) = a, π2(⟨a, a′⟩) = a′, ◊⟨a, a′⟩ = ⟨a, a′⟩.
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To complete the specification of A, we add a “pair forming” binary operation
↔, defined, for all a, a′ ∈ A, by

a↔ a′ = ⟨a, a′⟩.
So the algebra used to specify Raftery’s logic is A = ⟨A,↔, π1, π2,◊⟩. It is
easy to check that A satisfies the equations

π1(x↔ y) ≈ x,

π2(x↔ y) ≈ y,

◊(x↔ y) ≈ x↔ y.

We now define two logical systems semantically. The first is defined via a
logical matrix with underlying algebra A. We define the matrix A = ⟨A,D⟩,
where D is the set of so-called “diagonal elements” of A, i.e., the elements

• 0 and 1;

• ⟨⟨b0, b0⟩, ⟨b1, b1⟩, . . .⟩, for b0, b1, . . . ∈ {0,1};
• ⟨a, a⟩, for a ∈ A.

This matrix A specifies the logic SA = ⟨L,⊢A⟩ in the standard way, i.e., for
all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢A ϕ iff for every h ∶ FmL(V )→A,
h(Γ) ⊆D implies h(ϕ) ∈D.

The second logical system is defined using a variety V of L-algebras, for
L = {↔, π1, π2,◊}, namely the variety axiomatized by the three equations

π1(x↔ y) ≈ x,

π2(x↔ y) ≈ y,

◊(x↔ y) ≈ x↔ y.

We set δi(x) = π1(◊ix) and εi(x) = π2(◊ix) and define Raftery’s logic
R = ⟨L,⊢R⟩ by setting, for all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢R ϕ iff (δ ≈ ε)(Γ) ⊧V (δ ≈ ε)(φ),
i.e., Γ ⊢R ϕ iff, for every A ∈ V , all h ∶ FmL(V )→A and all j ∈ ω,

δAi (h(γ)) = εAi (h(γ)), for all i ∈ ω, γ ∈ Γ,
implies δAj (h(ϕ)) = εAj (h(ϕ)).

The first result relating the logics SA and R asserts that the latter is a
weakening of the former.

Lemma 675 Raftery’s logic R = ⟨L,⊢R⟩ is a weakening of SA = ⟨L,⊢A⟩.
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Proof: Since, as remarked previously, A satisfies the three equations axiom-
atizing the variety V , we get that A ∈ V . Consequently, it suffices to show
that for all a ∈ A,

a ∈D iff δAi (a) = ǫAi (a), for all i ∈ ω.

Suppose, first, that a ∈D.

• If a ∈ {0,1}, then δAi (a) = πA
1 (a)(◊Ai

a) = πA
1 (a) = a = πA

2 (a) =
πA
2 (a)(◊Ai

a) = εAi (a).
• If a = ⟨⟨b0, b0⟩, ⟨b1, b1⟩, . . .⟩, then

δAi (a) = πA
1 (◊Ai

a) = πA
1 (⟨⟨bi, bi⟩, ⟨bi+1, bi+1⟩, . . .⟩) = bi

= πA
2 (⟨⟨bi, bi⟩, ⟨bi+1, bi+1⟩, . . .⟩) = πA

2 (◊Ai
a) = εAi (a).

• If a = ⟨a′, a′⟩, with a′ ∈ A, then

δAi (⟨a′, a′⟩) = πA
1 (◊Ai⟨a′, a′⟩) = πA

1 (⟨a′, a′⟩) = a′
= πA

2 (⟨a′, a′⟩) = πA
2 (◊Ai⟨a′, a′⟩) = εAi (⟨a′, a′⟩).

Assume, conversely, that δAi (a) = εAi (a), for all i ∈ ω. This means πA
1 (◊Ai

a) =
πA
2 (◊Ai

a), for all i ∈ ω. if a = 0 or a = 1, there is nothing to prove. If
a = ⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩, then the i-th equation gives bi = b′i. So we conclude
that a ∈ D. Finally, if a = ⟨a′, a′′⟩, for some a′, a′′ ∈ A, then the equations
ensure that a′ = a′′ and, therefore, a = ⟨a′, a′′⟩ ∈ D. ∎

To verify that Raftery’s logic accomplishes its mission, one has to establish
that it is not finitary, but that it is algebraizable with the variety V as its
equivalent algebraic semantics. Then, by Theorem 3.37 and Corollary 3.38
of Section 3.4 of [86], it becomes clear that the algebraization of R is carried
out by a necessarily infinite set of defining equations and a set of equivalence
formulas that may be taken to be finite. We formalize the second statement
first.

Theorem 676 (Fact 9 of [82]) Raftery’s logic R = ⟨L,⊢R⟩ is algebraizable
with equivalent algebraic semantics V via the set of defining equations δ(x) ≈
ε(x) = {δi(x) ≈ εi(x) ∶ i ∈ ω} and the equivalence formula ∆(x, y) = {x↔ y}.
Proof: By the definition of ⊢R, for all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢R ϕ iff (δ ≈ ε)(Γ) ⊧V (δ ≈ ε)(ϕ).
Moreover, for all ϕ,ψ ∈ FmL(V ),

(δ ≈ ε)(ϕ↔ ψ) = π1(◊i(ϕ↔ ψ)) ≈ π2(◊i(ϕ↔ ψ)), i ∈ I
â⊧V π1(ϕ↔ ψ) ≈ π2(ϕ↔ ψ)

(since V ⊧ ◊(x↔ y) ≈ x↔ y)
â⊧V ϕ ≈ ψ

(since V ⊧ π1(x↔ y) ≈ x
and V ⊧ π2(x↔ y) ≈ y).
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By the general theory of algebraizable logics, these two conditions suffice to
guarantee the conclusion. ∎

And, finally, we show that R is not finitary.

Theorem 677 (Fact 10 of [82]) The logics SA = ⟨L,⊢A⟩ and R = ⟨L,⊢R⟩
are not finitary.

Proof: Note that the two conditions established in the proof of Theorem
676, which suffice to establish algebraizability, imply, by the general theory
of algebraizability (see, e.g., Exercise 39 of Section 3.2 of [86]), that

{δi(x)↔ εi(x) ∶ i ∈ ω} ⊢R x
also holds. In addition, since, by Lemma 675, R ≤ SA,

{δi(x)↔ εi(x) ∶ i ∈ ω} ⊢A x.
So to prove that SA and R are not finitary, it suffices to show that, for no
finite K ⊆ ω is it the case that {δk(x)↔ εk(x) ∶ k ∈K} ⊢A x.

Let j ∈ ω −K and consider a = ⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩ ∈ B − {0,1}, such that
bk = b′k, for all k ∈K, but bj ≠ b′j . Now, we compute

δAi (a)↔A εAi (a) = πA
1 (◊Ai

a)↔A πA
2 (◊Ai

a) = bi↔A b′i,

whence, (δk ↔ εk)A(a) ∈ D, for all k ∈K, whereas, since (δj ↔ εj)A(a) ∉ D,
by what was proven in Lemma 675, a ∉D. This shows that {δk(x)↔ εk(x) ∶
k ∈K} /⊢A x. Hence SA and, a fortiori, R are not finitary. ∎

So, the logic R does indeed attain the goal of discovering a non-finitary
logic that is elementarily algebraizable (i.e., has a finitary equivalent algebraic
semantics).

9.6 Separating Classes of π-Institutions

Using the framework detailed in Section 1.1, we recast the three sentential
logics introduced in Section 9.5 as π-institutions and show that they provide
examples that serve to separate the classes of π-institutions appearing in the
steps of the finitarity hierarchy studied in Section 9.4.

In the first example, we recast  Lukasiewicz’s infinite valued logic as a
π-institution.

Example 678 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category with object Σ;
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• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = FmL(V ),
where L = {∧,∨,→,¬} is the language of  Lukasiewicz’s infinite valued
logic;

• N ♭ is the category of natural transformations generated by the binary
operations ∧,∨,→ ∶ (SEN♭)2 → SEN♭ and the unary operation ¬ ∶ SEN♭ →
SEN♭, defined as usual on the absolutely free algebra of formulas.

Now define the π-institution I = ⟨F,C⟩, where, for all Γ ∪ {ϕ} ⊆ SEN♭(Σ),
ϕ ∈ CΣ(Γ) iff Γ ⊢∞ ϕ.

By Theorem 671, I is not finitary. By Theorem 672 and the general theory
of algebraizable logics, for all T ∈ ThFam(I) and θ = ConSys∗(I),

ΩΣ(T ) = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ ϕ→ ψ,ψ → ϕ ∈ TΣ};

Ω−1Σ (θ) = {ϕ ∈ FmL(V ) ∶ ⟨ϕ,⊺⟩ ∈ θΣ}.
We show that the Leibniz operator Ω ∶ ThFam(I) → ConSys∗(I) and its
inverse Ω−1 ∶ ConSys∗(I) → ThFam(I) are continuous. Suppose {T i}i∈I ⊆
ThFam(I) is directed and that ⋃i∈I T i ∈ ThFam(I). Then we get, for all
ϕ,ψ ∈ FmL(V ),

⟨ϕ,ψ⟩ ∈ ΩΣ(⋃i∈I T i) iff ϕ→ ψ,ψ → ϕ ∈ ⋃i∈I T iΣ
iff ϕ→ ψ ∈ T iΣ, ψ → ϕ ∈ T jΣ, for some i, j ∈ I,
iff ϕ→ ψ,ψ → ϕ ∈ T kΣ, for some k ∈ I,
iff ⟨ϕ,ψ⟩ ∈ ΩΣ(T k), for some k ∈ I,
iff ⟨ϕ,ψ⟩ ∈ ⋃i∈I ΩΣ(T i).

The proof for Ω−1 is similar.
This π-institution serves to separate the classes connected by the three

vertical arrows in the diagram concluding Section 9.4.

The second example revisits Dellunde’s logic in a similar way.

Example 679 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = FmL(V ), where
L = {↔,◻} is the language of Dellunde’s logic;

• N ♭ is the category of natural transformations generated by the binary
operation ↔ ∶ (SEN♭)2 → SEN♭ and the unary operation ◻ ∶ SEN♭ →
SEN♭ defined as usual on the absolutely free algebra of formulas.
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Define the π-institution I = ⟨F,C⟩, by setting, for all Γ ∪ {ϕ} ⊆ FmL(V ),
ϕ ∈ CΣ(Γ) iff Γ ⊢D ϕ.

Since, as remarked in Section 9.5, Dellunde’s logic D is finitary, so is the
π-institution I. Moreover, by Theorem 673 and the general theory of alge-
braizable logics, for all T ∈ ThFam(I) and all θ ∈ ConSys∗(I), we have

ΩΣ(T ) = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ ◻nϕ↔ ◻nψ ∈ TΣ, for all n ∈ ω};

Ω−1Σ (θ) = {ϕ ∈ FmL(V ) ∶ ⟨ϕ,⊺⟩ ∈ θΣ}.
We show that Ω ∶ ThFam(I) → ConSys∗(I) is not continuous. Assume to
the contrary, and define, for all i ∈ ω, T i = {T iΣ}Σ∈∣Sign♭∣ by setting

T iΣ = CΣ({◻kx↔ ◻ky ∶ k ≤ i}).
Note the following:

(1) {T i}∞i=0 is directed;

(2) ⋃∞i=0 T i ∈ ThFam(I), since I is finitary;

(3) ⟨x, y⟩ ∈ ΩΣ(⋃∞i=0 T i), since ◻nx↔ ◻ny ∈ ⋃∞i=0 T iΣ, for all n ∈ ω.

By the hypothesized continuity of Ω, since ⟨x, y⟩ ∈ ⋃∞i=0 ΩΣ(T i), there exists
m ∈ ω, such that ⟨x, y⟩ ∈ ΩΣ(Tm). But this implies that, for all n >m,

◻nx↔ ◻ny ∈ CΣ({◻kx↔ ◻ky ∶ k ≤m}),
which contradicts what was shown in Theorem 674.

The π-institution I, constructed here, serves to separate the classes con-
nected by the southeast arrows in the finitarity hierarchy of π-institutions,
shown at the end of Section 9.4.

Finally, we formulate an example that employs Raftery’s logic R.

Example 680 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = FmL(V ),
where L = {↔, π1, π2,◊} is the language of Raftery’s logic;

• N ♭ is the category of natural transformations generated by the binary
operation ↔ ∶ (SEN♭)2 → SEN♭ and the unary operations π1, π2,◊ ∶
SEN♭ → SEN♭ defined as usual on the absolutely free algebra of formu-
las.
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Define the π-institution I = ⟨F,C⟩ by setting, for all Γ ∪ {ϕ} ⊆ FmL(V ),
ϕ ∈ CΣ(Γ) iff Γ ⊢R ϕ.

By Theorem 677, I is not finitary. By Theorem 676 and the general theory
of algberaizable logics, for all T ∈ ThFam(I) and all θ ∈ ConSys∗(I),

ΩΣ(T ) = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ ϕ↔ ψ ∈ TΣ};

Ω−1Σ (θ) = {ϕ ∈ FmL(V ) ∶ ⟨π1(◻iϕ), π2(◻iϕ)⟩ ∈ θΣ, for all i ∈ ω}.
We may now show that Ω ∶ ThFam(I) → ConSys∗(I) is continuous, but
Ω−1 ∶ ConSys∗(I)→ ThFam(I) is not continuous.

To show continuity of Ω, assume {T i}i∈I ⊆ ThFam(I) is directed, such
that ⋃i∈I T i ∈ ThFam(I). Let ⟨ϕ,ψ⟩ ∈ ΩΣ(⋃i∈I T i). This holds iff ϕ ↔
ψ ∈ ⋃i∈I T iΣ, i.e., iff, for some i ∈ I, ϕ ↔ ψ ∈ T i. This is equivalent to⟨ϕ,ψ⟩ ∈ ΩΣ(T i), for some i ∈ I, showing that Ω(⋃i∈I T i) = ⋃i∈I Ω(T i).

To show that Ω−1 is not continuous, let, for all i ∈ ω, θi = {θiΣ}Σ∈∣Sign♭∣ ∈
ConSys∗(I) be defined by

θiΣ = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ {δk(x) ≈ εk(x) ∶ k ≤ i} ⊧V ϕ ≈ ψ},

where, as before, for all i ∈ ω,

δi(x) = π1(◊ix) and εi(x) = π2(◊ix).
Note that

(1) {θi}∞i=0 is directed;

(2) ⋃∞i=0 θi ∈ ConSys∗(I), since ⊧V is finitary;

(3) x ∈ Ω−1Σ (⋃∞i=0 θi), since δ(x) ≈ ε(x) ⊆ ⋃∞i=0 θiΣ.

If Ω−1 were continuous, there would exist m ∈ ω, such that x ∈ Ω−1Σ (θm). But,
this would imply that

{δk(x) ≈ εk(x) ∶ k ≤m} ⊧V δ(x) ≈ ε(x),
which yields {δk(x)↔ εk(x) ∶ k ≤m} ⊢R x, contradicting Theorem 677.

The π-institution I, constructed in this example, separates the classes
of π-institutions related by the southwest arrows in the finitarity hierarchy
shown at the end of Section 9.4.



682 CHAPTER 9. SEMANTIC HIERARCHY VII Voutsadakis


