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10.1 Natural Transformations and Parame-

ters

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Consider a set

I♭ ∶ (SEN♭)ω → SEN♭

of natural transformations in N ♭. Of course, by definition, each σ♭ ∈ I♭ ⊆ N ♭

is finitary, but the arities in the collection may be unbounded, whence the
notation becomes handy.

Recall that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)ω ,

I♭Σ(φ⃗) = {σ♭Σ(φ0, . . . , φk−1) ∶ σ♭ ∶ (SEN♭)k → SEN♭ ∈ I♭}.
Moreover, we may view the first n of the arguments in the input sequence

as distinguished and the remaining as parameters or parametric argu-
ments. In that case, for all Σ ∈ ∣Sign♭∣ and all φ⃗ = ⟨φ0, . . . , φn−1⟩ ∈ SEN♭(Σ),
we define

I♭Σ[φ⃗] = {I♭Σ,Σ′[φ⃗]}Σ′∈∣Sign♭∣,
where, for all Σ′ ∈ ∣Sign♭∣,

I♭Σ,Σ′[φ⃗] =⋃{I♭Σ′(SEN♭(f)(φ⃗), χ⃗) ∶ f ∈ Sign♭(Σ,Σ′), χ⃗ ∈ SEN♭(Σ′)}.
The following diagram illustrates where the various sentences and compo-

nents sit as we move from inputs to outputs in this construct.

SEN♭(Σ) SEN♭(f)✲ SEN♭(Σ′)
φ⃗ ✲ SEN♭(f)(φ⃗), χ⃗

I♭Σ′(SEN♭(f)(φ⃗), χ⃗)
❄

Suppose that in I♭ we take n = 2, i.e., we consider only the first two arguments
as distinguished and the remaining as parameters. Then, we define for σ ∶(SEN♭)k → SEN♭ ∈ N ♭, the natural transformation σ ∶ (SEN♭)k → SEN♭, by
setting, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), χ⃗ ∈ SEN♭(Σ),

σΣ(φ,ψ, χ⃗) = σΣ(ψ,φ, χ⃗).
Further, we set

I♭ = {σ ∶ σ ∈ I♭}
and

↔

I♭ = I♭ ∪ I♭.

It is not difficult to see that, given I♭ ⊆ N ♭, the collections I♭ and
↔

I♭ both
consist of natural transformations in N ♭.
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Lemma 681 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let I♭ ∶(SEN♭)ω → SEN♭ be a collection of natural transformations in N ♭. Then

I♭,
↔

I♭ ⊆ N ♭.

Proof: The inclusion I♭ ⊆ N ♭ follows from Proposition 11. Then the second

inclusion follows directly from the definition of
↔

I♭. ∎

Finally, recall that, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, a
collection I♭ ⊆ N ♭, with two distinguished arguments, and T ∈ SenFam(F),
we define I♭(T ) = {I♭Σ(T )}Σ∈∣Sign♭∣, by setting, for all Σ ∈ ∣Sign♭∣ and all

φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ I♭Σ(T ) iff I♭Σ[φ,ψ] ≤ T.

It was shown in Lemma 93 that I♭(T ) is a relation system on F, i.e., invariant
under signature morphisms.

In what follows we explore some properties that collections of natural
transformations may or may not satisfy in π-institutions based on the alge-
braic systems on which they are defined.

10.2 Reflexivity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-
tution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transformations
in N ♭, with two distinguished arguments. Taking into account Proposition
103, we say that I♭ is reflexive in I if, for all Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈
SEN♭(Σ),

I♭Σ(φ,φ, χ⃗) ⊆ ThmΣ(I) ∶= CΣ(∅).
Example 682 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0};
• N ♭ is the trivial category of natural transformations consisting only of

the projections.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{0}} and I ′ = ⟨F,C ′⟩
be the π-institution determined by C′Σ = {∅,{0}}.

Consider the set I♭ = {p2,0}, with p2,0 ∶ (SEN♭)2 → SEN♭ be the 2-argument
projection function projecting onto the first argument.

In this case, it is easy to verify that I♭ is reflexive in I but I♭ is not
reflexive in I ′.
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As was the case with the various properties of the Leibniz operator that
gave rise to the various classes of the semantic hierarchy of π-institutions,
the surjectivity of the morphism components in interpreted algebraic systems
affords transferring the properties that give rise to the syntactic hierarchy
studied in the present chapter from the theory families of a π-institution to
the filter families over arbitrary algebraic systems. The key in proving these
tranfer properties is Lemma 95, which will be used repeatedly in the proofs
throughout the chapter.

The first of this type of transfer properties is the transfer property for re-
flexivity. In formulating the property it is convenient to adopt the following
terminology. We consider, as is usual in this context, a base algebraic system
F = ⟨Sign♭,SEN♭,N ♭⟩ and a set I♭ ∶ (SEN♭)ω → SEN♭ of natural transforma-
tions in N ♭. Given a π-institution I = ⟨F,C⟩, based on F, and an F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, we say that I is reflexive
in A if the collection I ∶ SENω → SEN of natural transformations in N , that
are images of those in I♭, is reflexive in the π-institution ⟨A,CI,A⟩, CI,A
being the closure (operator) system whose closed set families are the I-filter
families on A.

We use similar terminology for all other properties that we study in this
chapter, pertaining to subsets I♭ of N ♭. In particular, such terminology will
be used in all transfer results for these properties.

Proposition 683 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ ⊆ N ♭

a collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ and I = ⟨F,C⟩ a
π-institution based on F. I♭ is reflexive in I if and only if, for every algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I is reflexive in A.

Proof: First, note that if reflexivity of I in A is assumed, for all A, then it
holds, in particular, for A = F = ⟨F, ⟨I, ι⟩⟩. Moreover ⟨F,CI,F⟩ = I . Thus,
we conclude that I♭ is reflexive in I .

Suppose, conversely, that I♭ is reflexive in I . By the surjectivity of ⟨F,α⟩,
it suffices to show that, for all σ ∶ (SEN♭)k → SEN♭ ∈ I♭, all Σ ∈ ∣Sign♭∣, all
φ ∈ SEN♭(Σ) and all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′),

σF (Σ′)(SEN(F (f))(αΣ(φ)),SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ CI,AF (Σ′)(∅).
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To this end, let σ ∶ (SEN♭)k → SEN♭ ∈ I♭, Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ) and
Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) χ⃗ ∈ SEN♭(Σ′). Since CI,A(∅) is, by definition,
an I-filter family on A, by Lemma 51, α−1(CI,A(∅)) ∈ ThFam(I). Hence,
since I♭ is reflexive in I , we get

σ♭Σ′(SEN♭(f)(φ),SEN♭(f)(φ), χ⃗) ∈ α−1Σ′ (CI,AF (Σ′)(∅)).
This is equivalent to

αΣ′(σ♭Σ′(SEN♭(f)(φ),SEN♭(f)(φ), χ⃗)) ∈ CI,A
F (Σ′)
(∅),

which is, in turn, equivalent to

σF (Σ′)(αΣ′(SEN♭(f)(φ)), αΣ′(SEN♭(f)(φ)), αΣ′(χ⃗)) ∈ CI,AF (Σ′)(∅).
Finally, by the naturality of α, we get the conclusion. Therefore, I is indeed
reflexive in A. ∎

10.3 Symmetry

We look now at various versions of the symmetry property, taking into ac-
count both the duality between local versus global membership and the differ-
ence between considering all theory families versus restricting only to theory
systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family symmetry in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ),
implies that I♭Σ(ψ,φ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the local system symmetry in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ),
implies that I♭Σ(ψ,φ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family symmetry in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T implies I♭Σ[ψ,φ] ≤ T ;

• I♭ has the global system symmetry in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T implies I♭Σ[ψ,φ] ≤ T .

The following proposition establishes a hierarchy of symmetry properties.

Proposition 684 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.
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(a) If I♭ has the local family symmetry, then it has the local system sym-
metry in I;

(b) If I♭ has the local system symmetry, then it has the global family sym-
metry in I;

(c) I♭ has the global family symmetry if and only if it has the global system
symmetry in I.

Proof: Parts (a) and one of the implications in Part (c) follow directly from
the fact that every theory system of I is also a theory family of I .

For Part (b), suppose that I♭ has the local system symmetry in I . Let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T . Then by
Lemma 93, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

I♭Σ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ≤ T.
This implies, by Lemma 99, that, for all ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆←ÐT Σ′ .

Since I♭ has the local system symmetry and, by Proposition 42,
←Ð
T ∈ ThSys(I),

we get that I♭Σ′(SEN♭(f)(ψ),SEN♭(f)(φ), ξ⃗) ⊆ ←ÐT Σ′ ⊆ TΣ′ . Since this holds

for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and ξ⃗ ∈ SEN♭(Σ′), we conclude that
I♭Σ[ψ,φ] ≤ T . Therefore I♭ has the global family symmetry in I .

Suppose, finally, that I♭ has the global system symmetry in I and let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T .

By Lemma 99, we get that I♭Σ[φ,ψ] ≤ ←ÐT . Since I♭ has the global system

symmetry and, by Proposition 42,
←Ð
T ∈ ThSys(I), we get that I♭Σ[ψ,φ] ≤ ←ÐT .

Using again Lemma 99, we conclude that I♭Σ[ψ,φ] ≤ T . Therefore, I♭ has the
global family symmetry in I . ∎

Proposition 684 has established the following hierarchy of symmetry prop-
erties:

Local Family Symmetry

Local System Symmetry
❄

Global Symmetry
❄

We look, next, at some natural sufficient conditions under which some of
these three symmetry properties coincide.
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Proposition 685 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the local family and the local system symmetry
coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system symmetry and the global symmetry coincide.

Proof: If I is systemic, then all theory families are theory systems and,
hence, the local family and local system symmetries coincide.

Suppose, next that I♭ is parameter free and has the global system sym-
metry in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
I♭Σ(φ,ψ) ⊆ TΣ. Then, by Proposition 99, I♭[φ,ψ] ≤ T . Thus, by the global
system property, I♭Σ[ψ,φ] ≤ T , which implies that I♭Σ(ψ,φ) ⊆ TΣ. Therefore,
I♭ has the local system symmetry in I . ∎

So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local Symmetry Local Family Symmetry

Global Symmetry
❄

Local System/Global Symmetry
❄

Finally, for a systemic π-institution with a parameter-free set of natural
transformations all four symmetry properties collapse to a single one.

We provide some examples to show that the implications of Proposition
684 are not equivalences in general, i.e., in the 3-class hierarchy all inclusions
of classes of π-institutions with a set of natural transformations satisfying
the corresponding symmetry properties are proper inclusions.

We first present an example to show that there exists a π-institution I ,
with a set of natural transformations that have the local system symmetry
but not the local family symmetry in I .

Example 686 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;
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• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) = { 1, if (x, y) = (0,1)
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system symmetry in I, but
it does not have the local family symmetry in I.

For the local system symmetry note that, if T = SEN♭, then the defining
implication is trivially true, whereas, if T = Thm(I), then, since, for all
φ,ψ ∈ SEN♭(Σ), σ♭Σ(φ,ψ) ≠ 2, the defining implication is vacuously true. So
I♭ has the local system symmetry in I.

On the other hand, for T = {{1,2}} ∈ ThFam(I), we have σ♭Σ(0,1) = 1 ∈
TΣ, but σ♭Σ(1,0) = 0 ∉ TΣ. Therefore, the implication defining local family
symmetry fails for T = {{1,2}}. So I♭ is not locally family symmetric in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that have the global family symmetry but not
the local system symmetry in I .

Example 687 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1} and SEN♭(f) ∶{0,1}→ {0,1} given by 0↦ 1 and 1↦ 1;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(x, y, z) = { 0, if (x, z) = (1,0)
1, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. Note
that both theory families, Thm(I) and SEN♭, are also theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family symmetry in I,
but it does not have the local system symmetry in I.

For the global family symmetry note that, if T = SEN♭, then the defining
implication is trivially true, whereas, if T = Thm(I), then, since, for all
φ,ψ ∈ SEN♭(Σ),

σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ),0) = σ♭Σ(1,1,0) = 0,

the defining implication is vacuously true. So I♭ has the global family sym-
metry in I.

On the other hand, we have σ♭Σ(0,1, ξ) = 1, for all ξ ∈ SEN♭(Σ), but
σ♭Σ(1,0,0) = 0 ∉ {1}. Therefore, the implication defining local system symme-
try fails for Thm(I). So I♭ is not locally system symmetric in I.

To close the study of symmetry properties, we prove that all three sym-
metry properties transfer from π-institutions to their models.

Proposition 688 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has a
symmetry property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding symmetry
property in A.
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Proof: If I has a symmetry property in A, for all A, then it has the same
symmetry in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that I♭ has the
corresponding symmetry in I .

Suppose, conversely, that I♭ has a symmetry in I . We look at each of the
three properties in turn.

(a) Suppose I♭ has the local family symmetry in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ). Since this is equivalent to αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ),
we get that I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ). But, by
hypothesis, I♭ has the local family symmetry in I and, by Lemma 51,
α−1(T ) ∈ ThFam(I). Therefore, we get that I♭Σ(ψ,φ, ξ⃗) ⊆ α−1Σ (TF (Σ)).
This now gives αΣ(I♭Σ(ψ,φ, ξ⃗)) ⊆ TF (Σ), or, equivalently,

IF (Σ)(αΣ(ψ), αΣ(φ), αΣ(ξ⃗)) ⊆ TF (Σ).
We conclude that I has the local family symmetry in A.

(b) The case of the local system symmetry can be proven similarly, taking
into account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose that I♭ has the global (family) symmetry in I and let A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
Then, we have, by Lemma 95, I♭Σ[φ,ψ] ≤ α−1(T ). Now, since, by
hypothesis, I♭ has the global family symmetry in I and, by Lemma 51,
α−1(T ) ∈ ThFam(I), we get that I♭Σ[ψ,φ] ≤ α−1(T ), or, equivalently,
by Lemma 95, IF (Σ)[αΣ(ψ), αΣ(φ)] ≤ T . Thus, I has the global family
symmetry in A.

∎

10.4 Transitivity

We study next various versions of the transitivity property, taking into ac-
count, again, both the duality between local versus global membership and
the difference between considering all theory families versus restricting only
to theory systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:
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• I♭ has the local family transitivity in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ and I♭Σ(ψ,χ, ξ⃗) ⊆
TΣ, for all ξ⃗ ∈ SEN♭(Σ), imply that I♭Σ(φ,χ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the local system transitivity in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ and I♭Σ(ψ,χ, ξ⃗) ⊆
TΣ, for all ξ⃗ ∈ SEN♭(Σ), imply that I♭Σ(φ,χ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family transitivity in I if, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T and I♭Σ[ψ,χ] ≤ T
imply I♭Σ[φ,χ] ≤ T ;

• I♭ has the global system transitivity in I if, for all T ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T and I♭Σ[ψ,χ] ≤ T
imply I♭Σ[φ,χ] ≤ T .

The following proposition establishes the hierarchy of transitivity prop-
erties.

Proposition 689 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I♭ has the local family transitivity, then it has the local system tran-
sitivity in I;

(b) If I♭ has the local system transitivity, then it has the global family tran-
sitivity in I;

(c) I♭ has the global family transitivity if and only if it has the global system
transitivity in I.

Proof: The statement in Part (a) as well as one of the two implications of
Part (c) follow from the fact that every theory system is also a theory family
of I .

For Part (b), suppose that I♭ has the local system transitivity and let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T
and I♭Σ[ψ,χ] ≤ T . By Lemma 93, we get that, for all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′),
I♭Σ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ≤ T, I♭Σ′[SEN♭(f)(ψ),SEN♭(f)(χ)] ≤ T.

So, by Proposition 99, we get, for all ξ⃗ ∈ SEN♭(Σ′),
I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆←ÐT Σ′ ,

I♭Σ′(SEN♭(f)(ψ),SEN♭(f)(χ), ξ⃗) ⊆←ÐT Σ′ .
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By local system transitivity, we obtain I♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗) ⊆
←Ð
T Σ′ , Since this holds for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈
SEN♭(Σ′), we conclude that I♭Σ′[φ,χ] ≤ T , Therefore, I♭ has the global family
transitivity in I .

Finally, suppose that I♭ has the global system transitivity in I and let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T
and I♭Σ[ψ,χ] ≤ T . By Proposition 99, we get I♭Σ[φ,ψ] ≤←ÐT and I♭Σ[ψ,χ] ≤←ÐT .

Hence, by global system transitivity, I♭Σ[φ,χ] ≤ ←ÐT . Now, using Proposition
99 again, we conclude that I♭Σ[φ,χ] ≤ T . Therefore, I♭ has the global family
transitivity in I . ∎

Proposition 689 has established the following hierarchy of transitivity
properties:

Local Family Transitivity

Local System Transitivity
❄

Global Transitivity
❄

We also have the following result regarding natural sufficient conditions
under which some of these three transitivity properties coincide.

Proposition 690 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the local family and the local system transitivity
coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system transitivity and the global transitivity properties coincide.

Proof: If I is systemic, then all theory families are theory systems and the
local family and local system transitivity properties collapse.

Suppose that I♭ is parameter-free and that I♭ has the global (family)
transitivity in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such
that I♭Σ(φ,ψ) ⊆ TΣ and I♭Σ(ψ,χ) ⊆ TΣ. By Proposition 99, I♭Σ[φ,ψ] ≤ T and
I♭Σ[ψ,χ] ≤ T . Thus, by the global family transitivity property, I♭Σ[φ,χ] ≤ T ,
which implies that I♭Σ(φ,χ) ⊆ TΣ. We conclude that I♭ has the local system
transitivity in I . ∎
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So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local Transitivity Local Family Transitivity

Global Transitivity
❄

Local System/Global Transitivity
❄

Finally, for a systemic π-institution with a parameter-free set of natural
transformations all four transitivity properties collapse to a single one.

We provide some examples to show that the implications of Proposition
689 are not equivalences in general, i.e., in the 3-class transitivity hierarchy
all inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding transitivity properties are proper inclusions.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the local system transitivity
but not the local family transitivity in I .

Example 691 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) = { 1, if (x, y) = (0,1) or (1,2)
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system transitivity in I,
but it does not have the local family transitivity in I.

For the local system transitivity note that, if T = SEN♭, then the defining
implication is trivially true, whereas, if T = Thm(I), then, since, for all
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φ,ψ ∈ SEN♭(Σ), σ♭Σ(φ,ψ) ≠ 2, the defining implication is vacuously true. So
I♭ has the local system transitivity in I.

On the other hand, for T = {{1,2}} ∈ ThFam(I), we have σ♭Σ(0,1) =
σ♭Σ(1,2) = 1 ∈ TΣ, but σ♭Σ(0,2) = 0 ∉ TΣ. Therefore, the implication defining
local family transitivity fails for T = {{1,2}}. So I♭ is not locally family
transitive in I.

We now present an example to show that there is π-institution I , with a
set of natural transformations that has the global family transitivity but not
the local system transitivity in I .

Example 692 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 2, 1↦ 2 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}3 → {0,1,2} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if x = y = 0 or x = y = 1
2, if {x, y} = {0,1} or x = y = z = 2
z, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that all four theory families, Thm(I), T = {{0,2}}, T ′ = {{1,2}} and
SEN♭, are also theory systems.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family transitivity in I,
but it does not have the local system transitivity in I.

For the global family transitivity note that, because, for all φ,ψ ∈ SEN♭(Σ),
σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ),0) = 0 and σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ),1) =
1, the implication of the defining condition is vacuously true for Thm(I), T
and T ′ and trivially true for SEN♭. Therefore, we get that I♭ has the global
family transitivity in I.

On the other hand, we have σ♭Σ(0,1, ξ) = σ♭Σ(1,0, ξ) = 2, for all ξ ∈
SEN♭(Σ), but σ♭Σ(0,0,0) = 0 ∉ {2}. Therefore, the implication defining lo-
cal system transitivity fails for Thm(I). So I♭ does not have the local system
transitivity in I.

We close the study of transitivity by providing, again, a transfer property
for transitivity.

Proposition 693 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a transitivity property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding transitivity
property in A.

Proof: If I has a transitivity property in A, for all A, then it has the same
transitivity in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that I♭ has
the corresponding transitivity in I .

Suppose, conversely, that I♭ has a transitivity property in I . We look at
each of the three properties in turn.

(a) Suppose I♭ has the local family transitivity in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that, for all ξ⃗ ∈ SEN♭(Σ),

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ),
IF (Σ)(αΣ(ψ), αΣ(χ), αΣ(ξ⃗)) ⊆ TF (Σ).
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These are equivalent, respectively, to

αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ), αΣ(I♭Σ(ψ,χ, ξ⃗)) ⊆ TF (Σ),
i.e., to I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)) and I♭Σ(ψ,χ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all
χ⃗ ∈ SEN♭(Σ). But, by hypothesis, I♭ has the local family transitivity
in I and, by Lemma 51, α−1(T ) ∈ ThFam(I). Therefore, we get that
I♭Σ(φ,χ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all χ⃗ ∈ SEN♭(Σ). Thus, αΣ(I♭Σ(φ,χ, ξ⃗)) ⊆
TF (Σ) and, hence, IF (Σ)(αΣ(φ), αΣ(χ), αΣ(ξ⃗)) ⊆ TF (Σ). This, combined
with the surjectivity of ⟨F,α⟩, proves that I has the local family tran-
sitivity in A.

(b) The case of the local system transitivity may be proven similarly, taking
into account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose that I♭ has the global (family) transitivity in I and let A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T and IF (Σ)[αΣ(ψ), αΣ(χ)] ≤ T.
Then, we have, by Lemma 95, I♭Σ[φ,ψ] ≤ α−1(T ) and I♭Σ[ψ,χ] ≤ α−1(T ).
Since, by hypothesis, I♭ has the global family transitivity in I and, by
Lemma 51, α−1(T ) ∈ ThFam(I), we get that I♭Σ[φ,χ] ≤ α−1(T ), or,
equivalently, using again Lemma 95, IF (Σ)[αΣ(φ), αΣ(χ)] ≤ T . Thus, I
has the global family transitivity in A.

∎

10.5 Equivalence

We look now at sets of natural transformations I♭, with two distinguished
arguments, that define (modulo theory families) equivalence relation families
on the underlying algebraic system of a π-institution I . We assume that I♭

has the reflexivity property and study combinations of possible symmetry and
transitivity properties that the set of connectives may or may not possess.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transfor-
mations in N ♭, with two distinguished arguments. Let X,Y ∈ {LF,LS,GB},
where LF stands for “Local Family”, LS stands for “Local System” and GB
stands for “GloBal”. We say that I♭ has the XY -equivalence property in
I if it has

(a) reflexivity in I ;

(b) X symmetry in I and
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(c) Y transitivity in I .

Recall the following hierarchies of symmetry and transitivity properties
that we established previously:

Local Family Symmetry Local Family Transitivity

Local System Symmetry
❄

Local System Transitivity
❄

Global Symmetry
❄

Global Transitivity
❄

From these, we can infer the following hierarchy of equivalence properties:

Corollary 694 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. The nine equivalence
properties constitute the hierarchy depicted in the accompanying diagram.

Proof: The statement is a direct consequence of Propositions 684 and 689.
∎

LFLF Equivalence

✠�
�
� ❅

❅
❅❘

LFLS Equivalence LSLF Equivalence

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

LFGB Equivalence LSLS Equivalence GBLF Equivalence

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

LSGB Equivalence GBLS Equivalence

❅
❅
❅❘ ✠�

�
�

GBGB Equivalence

Based on the analysis performed on symmetry and transitivity, we have
the following result regarding natural sufficient conditions under which some
of the nine equivalence properties above coincide. We let LC stand for “Lo-
Cal” to summarize the case when the local family and the local system version
of a property coincide.
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Corollary 695 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the equivalence hierarchy collapses to the one
depicted below;

LCLC Equivalence

✠�
�
�
� ❅

❅
❅
❅❘

LCGB Equivalence GBLC Equivalence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Equivalence

(b) If I♭ has only two arguments (i.e., is parameter free), then the equiv-
alence hierarchy collapses to the one depicted below, where the local
system versions coincide with (and, hence, are incorporated into) the
global versions.

LFLF Equivalence

✠�
�
�
� ❅

❅
❅
❅❘

LFGB Equivalence GBLF Equivalence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Equivalence

Proof: The statement follows directly from Propositions 685 and 690. ∎

For a systemic π-institution with a parameter-free set of natural transfor-
mations, there is only one equivalence property, since all versions of symmetry
and all versions of transitivity collapse to a single property.

We provide some examples to show that the implications of Proposition
694 are not equivalences in general, i.e., that the nine classes of the equiva-
lence hierarchy are all distinct.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LSLF equivalence, but not
the LFGB equivalence in I .

Example 696 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:
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• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ 0 1 2
0 2 1 1
1 0 2 0
2 0 1 2

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that there are four theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LSLF equivalence in I, but it
does not have the LFGB equivalence in I.

Note, first, that reflexivity is obvious, since, by definition σ♭Σ(x,x) = 2 ∈
ThmΣ(I), for all x ∈ SEN♭(Σ). Local system symmetry is also obvious, since
the only theory systems in I are Thm(I) and SEN♭. Local family transitivity
is a little more challenging to verify, but it suffices to observe that the pairs
that are related modulo T = {{0,2}} are as shown on the left below and the
pairs that are related modulo T ′ = {{1,2}} are as on the right below. We
conclude that I♭ has the LSLF equivalence in I.

On the other hand, for T = {{0,2}} ∈ ThFam(I), we have σ♭Σ(1,0) = 0 ∈
TΣ, but σ♭Σ(0,1) = 1 ∉ TΣ. Therefore, the implication defining local family
symmetry fails for T = {{0,2}}. So I♭ is not locally family symmetric, and,
hence, a fortiori, does not have the LFGB equivalence property in I.
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We now present an example to show that there is π-institution I with a
set of natural transformations that has the GBLF equivalence but not the
LSGB equivalence in I .

Example 697 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
I has two theory families, Thm(I) and SEN♭, both of which are also theory
systems. So it is a systemic π-institution.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the GBLF equivalence in I, but it
does not have the LSGB equivalence in I.

First, note that σ♭Σ(φ,φ,ψ) = 2 ∈ ThmΣ(I), for all φ,ψ ∈ SEN♭(Σ). Thus,
I♭ is reflexive in I. For global symmetry, the case of T = SEN♭ is trivial,
whereas, for T = Thm(I), observe that, for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is
it the case that σ♭Σ[φ,ψ] ≤ T . Thus, the defining condition holds trivially for
Thm(I). So I♭ has the global symmetry in I. For local family transitivity,
the case of T = SEN♭ is also trivial and for T = Thm(I), the only pair⟨φ,ψ⟩ ∈ SEN♭(Σ), with φ ≠ ψ, for which σ♭Σ(φ,ψ, ξ) ⊆ ThmΣ(I), for all
ξ ∈ SEN♭(Σ), is the pair (φ,ψ) = (0,1). So the defining condition holds for
Thm(I) also. Thus I♭ has the local family transitivity. We conclude that I♭

has the GBLF equivalence in I.
On the other hand, we have σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈

SEN♭(Σ), but σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I). So the implication defining lo-
cal system symmetry fails for Thm(I). Therefore, I♭ does not have the local
system symmetry in I.

Next, we present an example to show that there is π-institution I with
a set of natural transformations that has the LFLS equivalence but not the
GBLF equivalence in I .

Example 698 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by the following table:

σ♭Σ 0 1 2
0 2 2 0
1 2 2 1
2 0 1 2

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that I has three theory families, but only Thm(I) and SEN♭ are theory
systems. So I is not systemic.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LFLS equivalence in I, but it
does not have the GBLF equivalence in I.

First, since σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ SEN♭(Σ), I♭ is re-
flexive in I. Next, observe from the table that, for all φ,ψ ∈ SEN♭(Σ),
σ♭Σ(φ,ψ) = σ♭Σ(ψ,φ). Therefore, a fortiori, for all T ∈ ThFam(I), and all
φ,ψ ∈ SEN♭(Σ), if σ♭Σ(φ,ψ) ∈ TΣ, then σ♭Σ(ψ,φ) ∈ TΣ, showing that I♭ has
the local family symmetry in I. For the local system transitivity, the defining
implication is trivial in the case of SEN♭, whereas in the case of Thm(I),
it is straightforward to check based on the table defining σ♭Σ. Thus, I♭ has
indeed the LFLS equivalence in I.

On the other hand, consider the theory family T = {{1,2}}. We have
σ♭Σ(0,1) = 2 and σ♭Σ(1,2) = 1, i.e., σ♭Σ(0,1), σ♭Σ(1,2) ∈ TΣ, whereas σ♭Σ(0,2) =
0 ∉ TΣ. Therefore, I♭ does not have the local family transitivity and, hence, a
fortiori, does not satisfy the GBLF equivalence property in I.

Finally, we present an example to show that there is π-institution I with
a set of natural transformations that has the LFGB equivalence but not the
GBLS equivalence in I .

Example 699 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5} and
SEN♭(f) ∶ {0,1,2,3,4,5} → {0,1,2,3,4,5} given by 0↦ 3, 1↦ 4, 2↦ 5,
3↦ 3, 4↦ 4 and 5↦ 5;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2,3,4,5}3 → {0,1,2,3,4,5} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3, if x = y or {x, y} = {0,1} or {x, y} = {1,2}
or z = 3 or z = 4 or z = 5

0, otherwise
.
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Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{3,4,5},{0,1,2,3,4,5}}.
I has two theory families, Thm(I) and SEN♭, both of which are also theory
systems. So it is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LFGB equivalence in I, but it
does not have the GBLS equivalence in I.

First, note that σ♭Σ(φ,φ,ψ) = 3 ∈ ThmΣ(I), for all φ,ψ ∈ SEN♭(Σ). Thus,
I♭ is reflexive in I. For local family symmetry, the case of T = SEN♭ is trivial,
whereas, for T = Thm(I), observe that, if φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, are
such that σ♭Σ(φ,ψ, ξ) ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), then {x, y} = {0,1} or{x, y} = {1,2}. Thus, I♭ is local family symmetric. For global transitivity,
the case of T = SEN♭ is also trivial and for T = Thm(I), there is no pair⟨φ,ψ⟩ ∈ SEN♭(Σ), with φ ≠ ψ, for which σ♭Σ[φ,ψ] ⊆ Thm(I). So the defining
condition holds trivially for Thm(I) also. Thus I♭ has the global transitivity.
We conclude that I♭ has the LFGB equivalence in I.

On the other hand, we have σ♭Σ(0,1, ξ) = 3 ∈ ThmΣ(I) and σ♭Σ(1,2, ξ) =
3 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), but σ♭Σ(0,2,0) = 0 ∉ ThmΣ(I). So the
implication defining local system transitivity fails for Thm(I). Therefore, I♭

does not have the local system transitivity in I.

We close the study of equivalence by providing, again, a transfer property.

Corollary 700 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭

has a transitivity property in I if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding transitiv-
ity property in A.

Proof: This follows directly from Propositions 688 and 693. ∎
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10.6 Antisymmetry

We look next at the antisymmetry property.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local antisymmetry in I if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ ThmΣ(I) and I♭Σ(ψ,φ, ξ⃗) ⊆ ThmΣ(I), for

all ξ⃗ ∈ SEN♭(Σ), imply φ = ψ;

• I♭ has the global antisymmetry in I if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ Thm(I) and I♭Σ[ψ,φ] ≤ Thm(I) imply
φ = ψ.

The antisymmetry properties stratify in the following hierarchy.

Proposition 701 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments. If I♭ has the local
antisymmetry in I, then it has the global antisymmetry in I.

Proof: Suppose that I♭ has the local antisymmetry and let Σ ∈ ∣Sign♭∣,
φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ Thm(I) and I♭Σ[ψ,φ] ≤ Thm(I). Then

we get, in particular, that, for all ξ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ ThmΣ(I) and
I♭Σ(ψ,φ, ξ) ⊆ ThmΣ(I). Thus, by local antisymmetry, we obtain φ = ψ. We
conclude that I♭ has the global antisymmetry in I . ∎

Proposition 701 has established the following hierarchy of antisymmetry
properties:

Local Antisymmetry

Global Antisymmetry
❄

We look, next, at a natural sufficient condition under which the antisym-
metry properties coincide.

Proposition 702 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of
natural transformations in N ♭, with two distinguished arguments. If I♭ has
only two arguments (i.e., is parameter free), then the local antisymmetry and
the global antisymmetry properties coincide.
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Proof: Suppose that I♭ is parameter free and has the global antisymmetry
in I . Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that I♭Σ(φ,ψ) ⊆ ThmΣ(I) and
I♭Σ(ψ,φ) ⊆ ThmΣ(I). Then, by Proposition 99, I♭Σ[φ,ψ] ≤ Thm(I) and
I♭Σ[ψ,φ] ≤ Thm(I). Thus, by global antisymmetry, φ = ψ. Therefore, I♭ has
the local antisymmetry in I . ∎

So in the case of a parameter-free set of natural transformations we have
a single antisymmetry property.

We provide an example to show that the implication of Proposition 701
is not an equivalence in general. That is, we provide an example of a π-
institution I with a set I♭ of natural transformations, with two distinguished
arguments, that has the global antisymmetry but not the local antisymmetry
in I .

Example 703 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1} and SEN♭(f) ∶{0,1}→ {0,1} given by 0↦ 1 and 1↦ 1;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(x, y, z) = { 0, if (x, y, z) = (1,1,0)
1, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. Note that
there are two theory families, Thm(I) and SEN♭, both of which are theory
systems.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global antisymmetry in I, but it
does not have the local antisymmetry in I.

To see that I♭ has the global antisymmetry in I, it suffices to notice that,
for no φ,ψ ∈ SEN♭(Σ) is it the case that I♭Σ[φ,ψ] ≤ Thm(Σ). Therefore, the
defining condition holds vacuously, for all φ,ψ ∈ SEN♭(Σ).

On the other hand, for 0 ≠ 1, we have σ♭Σ(0,1, ξ) = σ♭Σ(1,0, ξ) = 1 ∈
ThmΣ(I), for all ξ ∈ {0,1}. So I♭ is not locally antisymmetric in I.

To close the study of antisymmetry properties, we show that they do not
transfer from π-institutions to their models. This is to be expected, since the
inverse image α−1(T ) of the minimum I filter family of a π-institution I on
an algebraic system A may not coincide with the theorem system of I .

Example 704 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by σ♭Σ(x, y) = 0, for all x, y ∈ SEN♭(Σ).

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-

guished arguments. We show that I♭ has the local antisymmetry in I, but that
there exists an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
such that I does not have the local antisymmetry in A.

Let A = ⟨Sign,SEN,N⟩ be the algebraic system determined as follows:
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• Sign is the trivial category with a single object A;

• SEN ∶ Sign → Set is specified by SEN(A) = {a, b};
• N is the category of natural transformations generated by the single

binary natural transformation σ ∶ SEN2 → SEN defined by letting: σA ∶{a, b}2 → {a, b} be given by σA(x, y) = a, for all x, y ∈ SEN(A).
A is an N ♭-algebraic system, as can be seen by sending σ♭ ↦ σ and extending
to categories by composition.

Now let ⟨F,α⟩ ∶ F→A be the morphism defined as follows:

• F ∶ Sign♭ → Sign is the obvious functor between trivial categories;

• α ∶ SEN♭ → SEN ○ F is defined by setting αΣ(0) = a, αΣ(1) = a and
αΣ(2) = b.

Our goal is to show that I♭ has the local antisymmetry in I but that I does
not have the local antisymmetry in A. We have, for all φ,ψ ∈ SEN(Σ),
σ♭Σ(φ,ψ) ∉ ThmΣ(I) and σ♭Σ(ψ,φ) ∉ ThmΣ(I), whence the defining condition
of local antisymmetry for I♭ is vacuously true. So I♭ is locally antisymmetric
in I.

On the other hand, note that the least I-filter system on A is SEN. More-
over, we have σA(a, b) = σA(b, a) = a ∈ SEN(A), with a ≠ b. Thus I = {σ}
does not have local antisymmetry in A.

10.7 Order

We look next at sets of natural transformations I♭, with two distinguished
arguments, that define (modulo theory families) partial order families on the
underlying algebraic system of a π-institution I . We assume that I♭ has the
reflexivity property and study combinations of possible antisymmetry and
transitivity properties that the set of connectives may or may not possess.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. Let X ∈ {LC,GB},
where LC and GB stand for “LoCal” and “GloBal”, respectively, and let
Y ∈ {LF,LS,GB}, where LF stands for “Local Family” and LS for “Local
System”. We say that I♭ has the XY poset property in I if it has

(a) reflexivity in I ;

(b) X antisymmetry in I and

(c) Y transitivity in I .

Recall, again, the following hierarchies of antisymmetry and of transitivity
properties:

Local Antisymmetry Local Family Transitivity

Global Antisymmetry
❄

Local System Transitivity
❄

Global Transitivity
❄

From these, we can infer the following hierarchy of equivalence properties:

Corollary 705 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. The six poset properties
of I♭ satisfy the hierarchy depicted in the accompanying diagram.

Proof: The statement is a direct consequence of Propositions 701 and 689.
∎

LCLF Poset

✠�
�
� ❅

❅
❅❘

GBLF Poset LCLS Poset

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

GBLS Poset LCGB Poset

❅
❅
❅❘ ✠�

�
�

GBGB Poset

Based on the analyses performed on antisymmetry and transitivity, we
have the following result regarding natural sufficient conditions under which
some of these poset properties coincide.
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Corollary 706 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the equivalence hierarchy collapses to the one
depicted on the left of the accompanying diagram;

(b) If I♭ has only two arguments (i.e., is parameter free), then the equiva-
lence hierarchy collapses to the one depicted on the right of the diagram,
where, since there is only one antisymmetry property, the qualifications
refer to the type of transitivity that holds.

Proof: The statement follows directly from Propositions 690 and 702. ∎

LCLC Poset LF Poset

✠�
�
� ❅

❅
❅❘

GBLC Poset LCGB Poset

❅
❅
❅❘ ✠�

�
�

GBGB Poset LS/GB Poset
❄

For a systemic π-institution with a parameter-free set of natural transfor-
mations, there is only one poset property, since the two versions of antisym-
metry and all three versions of transitivity collapse, respectively, to a single
property.

We provide some examples to show that the implications of Corollary 705
are not equivalences, i.e., the six classes of the poset hierarchy are all distinct
in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the GBLF poset property, but
not the LCGB poset property in I .

Example 707 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
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σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or (x, y) = (0,1) or (x, y) = (1,0)
or z = 2 or z = 3

0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the GBLF poset property in I, but
it does not have the LCGB poset property in I.

Note, first, that reflexivity is obvious, since, by definition, for all φ ∈
SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ). For global an-
tisymmetry, note that if, for some φ,ψ ∈ SEN♭(Σ), σ♭Σ[φ,ψ] ≤ Thm(I) and
σ♭Σ[ψ,φ] ≤ Thm(I), then we must have φ = ψ. Finally, for local family transi-
tivity, the defining equation holds trivially for T = SEN♭, whereas, if for some
φ,ψ,χ ∈ SEN♭(Σ), with φ ≠ χ, σ♭Σ(φ,ψ, ξ) ∈ {2,3} and σ♭Σ(ψ,χ, ξ) ∈ {2,3},
for all ξ ∈ SEN♭(Σ), we must have φ = ψ or ψ = χ, whence the condition is
satisfied in this case as well. Thus, I♭ is also locally family transitive in I
and, therefore, has the GBLF poset property in I.

On the other hand, since σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I) and σ♭Σ(1,0, ξ) =
2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), I♭ does not have the local antisymmetry
property. A fortiori, I♭ does not have the LCGB poset property in I.

Next, we present an example to show that there is a π-institution I with
a set of natural transformations that has the LCLS poset property but not
the GBLF poset property in I .

Example 708 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:
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• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if (x, y) = (0,1) or (x, y) = (1,2)
1, if (x, y) = (1,0) or (x, y) = (0,2)
2, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
I has four theory families, but only Thm(I) and SEN♭ are theory systems.
So I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LCLS poset property but it does
not have the GBLF poset property in I.

First, note that σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ SEN♭(Σ). Thus, I♭ is
reflexive in I. For the local antisymmetry, note that for no φ,ψ ∈ SEN♭(Σ),
with φ ≠ ψ is it the case that both σ♭Σ(φ,ψ) = σ♭Σ(ψ,φ) = 2. Finally, for the
local system transitivity, the defining condition is trivially satisfied for SEN♭,
whereas the pairs related modulo Thm(I) are as in the following diagram, an
examination of which verifies transitivity. Therefore I♭ is also locally system
transitive in I and, hence has the LCLS poset property in I.

On the other hand, for T = {{0,2}} ∈ ThFam(I), we have σ♭Σ(0,1) =
σ♭Σ(1,2) = 0 ∈ TΣ, whereas σ♭Σ(0,2) = 1 ∉ TΣ. So the implication defining local
family transitivity fails for T . Therefore, I♭ does not have the local family
transitivity and, a fortiori, does not have the GBLF poset property in I.
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Finally, we look at an example that shows that there is π-institution I
with a set of natural transformations that has the LCGB poset property but
not the GBLS poset property in I .

Example 709 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5} and
SEN♭(f) ∶ {0,1,2,3,4,5} → {0,1,2,3,4,5} given by 0↦ 3, 1↦ 4, 2↦ 5,
3↦ 3, 4↦ 4 and 5↦ 5;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2,3,4,5}3 → {0,1,2,3,4,5} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3, if x = y or (x, y) = (0,1) or (x, y) = (1,2)
or z = 3 or z = 4 or z = 5

0, otherwise
.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{3,4,5},{0,1,2,3,4,5}}.
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I has two theory families, Thm(I) and SEN♭, both of which are also theory
systems. So it is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LCGB poset property in I, but
not the GBLS poset property in I.

First, note that, for all φ ∈ SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 3 ∈ ThmΣ(I), for
all ξ ∈ SEN♭(Σ). Thus, I♭ is reflexive in I. For local antisymmetry, it
suffices to observe that, for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is it the case
that σ♭Σ(φ,ψ, ξ) ∈ ThmΣ(I) and σ♭Σ(ψ,φ, ξ) ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ).
For global transitivity, the defining condition holds trivially for T = SEN♭,
whereas for T = Thm(I), it suffices to note that, for no φ,ψ ∈ SEN♭(Σ), with
φ ≠ ψ, is it the case that σ♭Σ[φ,ψ] ≤ Thm(I). We conclude that I♭ has the
LCGB poset property in I.

On the other hand, we have σ♭Σ(0,1, ξ) = 3 ∈ ThmΣ(I) and σ♭Σ(1,2, ξ) =
3 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), but σ♭Σ(0,2,0) = 0 ∉ ThmΣ(I). So the
implication defining local system transitivity fails for Thm(I). Therefore, I♭

does not have the local system transitivity in I and, hence, a fortiori, it does
not have the GBLS poset property in I.

Because of the non-transference of antisymmetry, which was shown in
Example 704, it is to be expected that none of the poset properties transfers
from a π-institution to its models. We provide an example that showcases
a π-institution I , with a set I♭ of natural transformations having two dis-
tinguished arguments, that has the LCLF poset property, but one of whose
models does not have the GBGB poset property.

Example 710 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 1, if x = y
0, if x ≠ y .

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two dis-

tinguished arguments. We show that I♭ has the LCLF poset property in
I, but that there exists an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A =⟨Sign,SEN,N⟩, such that I does not have the GBGB poset property in A.

Let A = ⟨Sign,SEN,N⟩ be the algebraic system determined as follows:
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• Sign is the trivial category with a single object A;

• SEN ∶ Sign → Set is specified by SEN(A) = {a, b};
• N is the category of natural transformations generated by the single

binary natural transformation σ ∶ SEN2 → SEN defined by letting: σA ∶{a, b}2 → {a, b} be given, for all x, y ∈ SEN(A), by

σA(x, y) = a.
A is an N ♭-algebraic system, as can be seen by sending σ♭ ↦ σ and extending
to categories by composition.

Now let ⟨F,α⟩ ∶ F→A be the morphism defined as follows:

• F ∶ Sign♭ → Sign is the obvious functor between trivial categories;

• α ∶ SEN♭ → SEN ○ F is defined by setting αΣ(0) = a, αΣ(1) = a and
αΣ(2) = b.

We show that I♭ has the LCLF poset property in I but that I does not have
the GBGB poset property in A.
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First, since σ♭Σ(φ,φ) = 1 ∈ ThmΣ(I), we have that I♭ is reflexive in I.
Second, if σ♭Σ(φ,ψ) = 1 = σ♭Σ(ψ,φ), then φ = ψ. So I♭ has the local an-
tisymmetry in I. Finally, local family transitivity is obvious, since for no
φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ is it the case that σ♭Σ(φ,ψ) = 1. We conclude that
I♭ has the LCLF poset property in I.

On the other hand, note that the least I-filter system on A is SEN and
since σA(a, b) = σA(b, a) = a ∈ SEN(A), with a ≠ b, I = {σ} does not have the
global antisymmetry in A. So, a fortiori, it does not have the GBGB poset
property in A.

10.8 Compatibility

We look next at various versions of the compatibility property, taking again
into account both the duality between local versus global membership and
the difference between considering all theory families versus restricting only
to theory systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family compatibility in I if, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈
SEN♭(Σ), implies

I♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ⊆ TΣ′ ,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗, ξ⃗ ∈ SEN♭(Σ′);

• I♭ has the local system compatibility in I if, for all T ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈
SEN♭(Σ), implies

I♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ⊆ TΣ′ ,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗, ξ⃗ ∈ SEN♭(Σ′);

• I♭ has the global family compatibility in I if, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ[φ,ψ] ≤ T implies

I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′);
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• I♭ has the global system compatibility in I if, for all T ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ[φ,ψ] ≤ T implies

I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′).

The following proposition establishes a hierarchy of compatibility prop-
erties.

Proposition 711 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I♭ has the local family compatibility, then it has the local system
compatibility in I;

(b) If I♭ has the local system compatibility, then it has the global family
compatibility in I;

(c) I♭ has the global family compatibility in I if and only if it has the global
system compatibility in I.

Proof: Part (a) and one of the implications in Part (c) follow directly from
the fact that every theory system of I is also a theory family of I .

For Part (b), suppose that I♭ has the local system compatibility in I . Let

T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
↔

I♭Σ[φ,ψ] ≤ T . Then
by Lemma 93, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

↔

I♭Σ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ≤ T.
This implies, by Lemma 99, that, for all ξ⃗ ∈ SEN♭(Σ′),

↔

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆←ÐT Σ′ .

Since I♭ has the local system compatibility and, by Proposition 42,
←Ð
T ∈

ThSys(I), we get that, for all σ♭ ∈ N ♭, all Σ′′ ∈ ∣Sign♭∣, all g ∈ Sign♭(Σ′,Σ′′)
Σ

f ✲ Σ′
g ✲ Σ′′

and all χ⃗ ∈ SEN♭(Σ′) and ξ⃗ ∈ SEN♭(Σ′′),
I♭Σ′′(σ♭Σ′′(SEN♭(gf)(φ),SEN♭(g)(χ⃗)),

σ♭Σ′′(SEN♭(gf)(ψ),SEN♭(g)(χ⃗)), ξ⃗) ⊆ TΣ′′ ,
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or, equivalently,

I♭Σ′′(SEN♭(g)(σ♭Σ′(SEN♭(f)(φ), χ⃗)),
SEN♭(g)(σ♭Σ′(SEN♭(f)(ψ), χ⃗)), ξ⃗) ⊆ TΣ′′ .

Since this holds for all Σ′′ ∈ ∣Sign♭∣, g ∈ Sign♭(Σ′,Σ′′) and ξ⃗ ∈ SEN♭(Σ′′), we
conclude that I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T . Therefore
I♭ has the global family compatibility in I .

Suppose, finally, that I♭ has the global system compatibility in I and let

T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that
↔

I♭Σ[φ,ψ] ≤ T .

By Lemma 99, we get that
↔

I♭Σ[φ,ψ] ≤ ←ÐT . Since I♭ has the global sys-

tem compatibility and, by Proposition 42,
←Ð
T ∈ ThSys(I), we get that,

for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′),
I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ ←ÐT . Using again Lemma 99,
we conclude that I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T . There-
fore, I♭ has the global family compatibility in I . ∎

Proposition 711 has established the following hierarchy of compatibility
properties:

Local Family Compatibility

Local System Compatibility
❄

Global Compatibility
❄

We look, next, at some natural sufficient conditions under which some of
these three compatibility properties coincide.

Proposition 712 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the local family and the local system compatibility
coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system compatibility and the global compatibility coincide.

Proof: If I is systemic, then all theory families are theory systems and,
hence, the local family and local system compatibility properties coincide.

Suppose, next that I♭ is parameter free and has the global system com-
patibility in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
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↔

I♭Σ(φ,ψ) ⊆ TΣ. Then, by Proposition 99,
↔

I♭Σ[φ,ψ] ≤ T . Thus, by the global
system compatibility, for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and
all χ⃗ ∈ SEN♭(Σ′), I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T , which
implies that, for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
χ⃗ ∈ SEN♭(Σ′), I♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)) ⊆ TΣ′ . There-
fore, I♭ has the local system compatibility in I . ∎

So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local Compatibility Local Family Compatibility

Global Compatibility
❄

Local System/Global Compatibility
❄

Of course, for a systemic π-institution with a parameter-free set of natural
transformations all four compatibility properties coincide.

We provide some examples to show that the implications of Proposition
711 are not equivalences in general, i.e., in the 3-class hierarchy all inclusions
of classes of π-institutions with a set of natural transformations satisfying
the corresponding compatibility properties are proper inclusions.

We first present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the local system compatibility
but not the local family compatibility in I .

Example 713 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by two binary
natural transformations:

– σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be
given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = 2 or y = 2
1, if {x, y} = {0,1}
0, otherwise

– λ♭ ∶ (SEN♭)2 → SEN♭ defined by letting λ♭Σ ∶ {0,1,2}2 → {0,1,2} be
given by

λ♭Σ(x, y) = { 2, if x = 2 or y = 2
0, otherwise
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Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system compatibility in I,
but it does not have the local family compatibility in I.

For the local system compatibility note that, if T = SEN♭, then the defin-
ing implication is trivially true. If, on the other hand, T = Thm(I), then
σ♭Σ(φ,ψ) = 2 if and only if φ = 2 or ψ = 2. But then we get, for all
χ ∈ SEN♭(Σ),

σ♭Σ(σ♭Σ(φ,χ), σ♭Σ(ψ,χ)) = 2,
σ♭Σ(λ♭Σ(φ,χ), λ♭Σ(ψ,χ)) = 2.

So I♭ has the local system compatibility in I.
To see that I♭ does not have the local family compatibility in I, consider

the theory family T = {{1,2}}. We have σ♭Σ(0,1) = σ♭Σ(1,0) = 1 ∈ TΣ, but

σ♭Σ(λ♭Σ(1,0), λ♭Σ(0,0)) = σ♭Σ(0,0) = 0 ∉ TΣ.

Therefore, the implication defining local family compatibility fails for T ={{1,2}}. So I♭ does not have locally family compatibility in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that has the global (family) compatibility but
not the local system compatibility in I .

Example 714 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b, c} and SEN♭(f) ∶ {0,1}→ {a, b, c} given by 0↦ b, 1↦ c;
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• N ♭ is the category of natural transformations generated by one ternary
natural transformation σ♭ ∶ (SEN♭)3 → SEN♭, defined as follows:

– σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(x, y, z) = 0, for all x, y, z ∈ {0,1};
– σ♭Σ′ ∶ {a, b, c}3 → {a, b, c} be given by

σ♭Σ′(x, y, z) = { a, if a ∈ {x, y, z}
b, otherise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{1},{0,1}}, CΣ′ = {{c},{b, c},{a, b, c}}.
Thm(I) has six theory families all of which, except {{0,1},{c}}, are theory
systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family compatibility in I,
but it does not have the local system compatibility in I.

For the global compatibility note that, if, for some x, y ∈ SEN♭(Σ), we
have σ♭Σ[x, y] ≤ T , then T = SEN♭. Similarly, if, for some x, y ∈ SEN♭(Σ′),
σ♭Σ′[x, y] ≤ T , then TΣ′ = {a, b, c}. In both cases, the conclusion of the defining
implication is trivially true. So I♭ has the global compatibility in I.

On the other hand, consider the theory system T = {{0,1},{b, c}}. Let
φ = 0 and ψ = 1. Then, we have, for all z ∈ {0,1},

σ♭Σ(0,1, z) = σ♭Σ(1,0, z) = 0 ∈ TΣ.

On the contrary,

σ♭Σ′(σ♭Σ′(SEN♭(f)(0), c, c), σ♭Σ′(SEN♭(f)(1), c, c), a) = a ∉ TΣ′ .
Therefore, the implication defining local system compatibility fails for T . So
I♭ does not have the local system compatibility in I.
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We close by proving that all three compatibility properties transfer from
π-institutions to their models.

Proposition 715 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has a
compatibility property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding compatibility
property in A.

Proof: If I has a compatibility property in A, for all A, then it has the same
compatibility property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude
that I♭ has the corresponding compatibility in I .

Suppose, conversely, that I♭ has a compatibility property in I . We look
at each of the three properties in turn.

(a) Suppose I♭ has the local family compatibility in I and let A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, let T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

↔

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ). Since this is equivalent to αΣ(↔I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ),
we get that

↔

I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ). But, by
hypothesis, I♭ has the local family compatibility in I and, by Lemma
51, α−1(T ) ∈ ThFam(I). Therefore, we get that, for all λ♭ ∈ N ♭, all
Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗, ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(λ♭Σ′(SEN♭(f)(φ), χ⃗), λ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ⊆ α−1Σ′ (TF (Σ′)).
This now gives

αΣ′(I♭Σ′(λ♭Σ′(SEN♭(f)(φ), χ⃗), λ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗)) ⊆ TF (Σ′),
or, equivalently,

IF (Σ′)(λF (Σ′)(SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)),
λF (Σ′)(SEN(F (f))(αΣ(ψ)), αΣ′(χ⃗)), αΣ′(ξ⃗)) ⊆ TF (Σ′).

Taking into account the surjectivity of ⟨F,α⟩, we conclude that I has
the local family compatibility in A.

(b) The case of the local system compatibility can be proven similarly,
taking into account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).
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(c) Suppose that I♭ has the global (family) compatibility in I and let A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

↔

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
Then, we have, by Lemma 95,

↔

I♭Σ[φ,ψ] ≤ α−1(T ). Now, since, by
hypothesis, I♭ has the global family compatibility in I and, by Lemma
51, α−1(T ) ∈ ThFam(I), we get that, for all λ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

I♭Σ′[λ♭Σ′(SEN♭(f)(φ), χ⃗), λ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ α−1(T ),
or, equivalently, by Lemma 95,

IF (Σ′)[αΣ′(λ♭Σ′(SEN♭(f)(φ), χ⃗)), αΣ′(λ♭Σ′(SEN♭(f)(ψ), χ⃗))] ≤ T.
But this amounts to

IF (Σ′)[λF (Σ′)(SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)),
λF (Σ′)(SEN(F (f))(αΣ(ψ)), αΣ′(χ⃗))] ≤ T.

Thus, I has the global family compatibility in A.
∎

10.9 Congruence

In this section we focus on the three uniform equivalence properties, i.e.,
on LFLF equivalence, LSLS equivalence and GBGB equivalence, and we add
to those versions of the compatibility property to obtain several versions of
the congruence property.

To fix some terminology, we say that a set I♭ of natural transformations
in a π-institution I has:

• the local family equivalence in I if it has the LFLF equivalence in
I ;

• the local system equivalence in I if it has the LSLS equivalence in
I ;

• the global equivalence in I if it has the GBGB equivalence in I .

By previous work, we know that these three uniform equivalence properties
are stratified in the linear hierarchy shown on the left below.
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Local Family Equivalence Local Family Compatibility

Local System Equivalence
❄

Local System Compatibility
❄

Global Equivalence
❄

Global Compatibility
❄

Moreover, by our study of the compatibility properties, we know that they
also fall into a similar linear hierarchy, as shown on the right of the diagram.

By combining equivalence with compatibility properties, we obtain nine
congruence properties as follows. Let X,Y ∈ {LF,LS,GB}, where, as before,
LF stands for “Local Family”, LS stands for “Local System” and GB stands
for “GloBal”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transfor-
mations in N ♭, with two distinguished arguments. We say that I♭ has the
XY-congruence in I if it has

• the X (uniform) equivalence in I ;

• the Y compatibility in I .

Based on the hierarchies of the equivalence and compatibility properties,
we obtain the following hierarchical structure for the various flavors of the
congruence property.

Corollary 716 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. The nine congruence
properties form the hierarchy shown on the accompanying diagram.

Proof: This follows directly from Corollary 694 and Proposition 711. ∎
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LFLF Congruence

✠�
�
� ❅

❅
❅❘

LSLF Congruence LFLS Congruence

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

GBLF Congruence LSLS Congruence LFGB Congruence

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

GBLS Congruence LSGB Congruence

❅
❅
❅❘ ✠�

�
�

GBGB Congruence

Based on the analysis performed on symmetry and transitivity, we have
the following result regarding natural sufficient conditions under which some
of the nine congruence properties above coincide.

Corollary 717 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the congruence hierarchy collapses to the one
depicted below, where LC (for LoCal) is used to incorporate the LF and
LS properties, which coincide;

LCLC Congruence

✠�
�
�
� ❅

❅
❅
❅❘

LCGB Congruence GBLC Congruence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Congruence

(b) If I♭ has only two arguments (i.e., is parameter free), then the con-
gruence hierarchy collapses to the one depicted below, where the Local
System versions coincide with (and, thus, are incorporated into) the
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GloBal versions.

LFLF Congruence

✠�
�
�
� ❅

❅
❅
❅❘

LFGB Congruence GBLF Congruence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Congruence

Proof: The statement follows from Corollary 695 and Proposition 712. ∎

For a systemic π-institution with a parameter-free set of natural trans-
formations, there is only one congruence property, since all versions of equiv-
alence and all versions of compatibility collapse to a single property.

Instead of studying this entire hierarchy in detail, we refocus, once again,
to the uniformly defined classes. So we define LF congruence, LS congru-
ence and GB congruence to mean, respectively, LFLF congruence, LSLS
congruence and GBGB congruence. These are the three diagonal classes in
the original diagram that form, according to Corollary 716, the subhierarchy
depicted below.

LF Congruence

LS Congruence
❄

GB Congruence
❄

And, of course, according to Corollary 717, this reduces to the hierarchy
depicted on the left below for a systemic π-institution and to the one depicted
on the right below for a parameter free set of natural transformations.

LF/LS Congruence LF Congruence

GB Congruence
❄

LS/GB Congruence
❄

We provide examples to show that the three uniform classes of the con-
gruence hierarchy are distinct in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS congruence, but not
the LF congruence property in I .
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Example 718 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a single bi-
nary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if (x, y) = (1,2)
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system congruence in I,
but it does not have the local family congruence in I.

First note that σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ {0,1,2}, whence I♭ is
reflexive in I. Next note that the condition defining local system symmetry
holds trivially for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) ∈ ThmΣ(I), for
some φ ≠ ψ, then {φ,ψ} = {0,1}, whence σ♭Σ(ψ,φ) ∈ ThmΣ(I). So I♭ is
locally system symmetric in I. For local system transitivity, the defining
condition holds, again, trivially for SEN♭, whereas for Thm(I), it holds due
to the fact that σ♭Σ(φ,ψ) ∈ ThmΣ(I) for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, other
than (φ,ψ) = (0,1) or (1,0). Thus, I♭ is also locally system transitive in
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I. Finally, note that the condition defining local system compatibility is also
trivial for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) = 2 and σ♭Σ(ψ,φ) = 2, with
φ ≠ ψ, then {φ,ψ} = {0,1} and, in that case,

σ♭Σ(σ♭Σ(SEN♭(h)(φ), χ), σ♭Σ(SEN♭(h)(ψ), χ)) = 2

and

σ♭Σ(σ♭Σ(χ,SEN♭(h)(φ)), σ♭Σ(χ,SEN♭(h)(ψ))) = 2,

for all h ∈ Sign♭(Σ,Σ) and all χ ∈ {0,1,2}. Thus, I♭ has the local system
compatibility in I and, therefore, has the local system congruence in I.

On the other hand, note that σ♭Σ(1,2) = 1 ∈ {1,2}, but σ♭Σ(2,1) = 0 ∉ {1,2}.
Thus, the local family symmetry condition fails for T = {{1,2}} ∈ ThFam(I).
Hence, I♭ is not locally family symmetric in I and, therefore, a fortiori, it
fails to satisfy the local family congruence in I.

Finally, we present an example to show that there is a π-institution I
with a set of natural transformations that has the GB congruence but not
the LS congruence in I .

Example 719 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the GB congruence in I, but it does
not have the LS congruence in I.
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Note, first, that reflexivity is obvious, since, by definition, for all φ ∈
SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ). For global sym-
metry, note that if, for some φ,ψ ∈ SEN♭(Σ), σ♭Σ[φ,ψ] ≤ Thm(I), then we
must have φ = ψ, whence σ♭Σ[ψ,φ] ≤ Thm(I) holds. For global transiti-
vity, note again that for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is it the case that
σ♭Σ[φ,ψ] ≤ Thm(I), whence the condition is satisfied in this case as well. Fi-
nally, the same observation leads to the conclusion that I♭ satisfies the global
compatibility property in I. We conclude that I♭ has the GB congruence in
I.

On the other hand, since σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ),
but σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I), I♭ does not have the local system symmetry.
A fortiori, I♭ does not have the LS congruence in I.

And here is a transfer property for the congruence properties that we
have focused on in this section.

Corollary 720 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭

has a congruence property in I if and only if, for every F-algebraic sys-
tem A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding con-
grunece property in A.

Proof: This follows directly from Corollary 700 and Proposition 715. ∎

10.10 Modus Ponens

We turn now to the study of various versions of the modus ponens prop-
erty, taking again into account both the duality between local versus global
membership and the difference between considering all theory families versus
restricting only to theory systems.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family modus ponens (local family MP) in I if,
for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ imply ψ ∈ TΣ;

• I♭ has the local system modus ponens (local system MP) in I
if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ imply ψ ∈ TΣ;

• I♭ has the global family modus ponens (global family MP) in I
if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T imply ψ ∈ TΣ;

• I♭ has the global system modus ponens (global system MP) in
I if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T imply ψ ∈ TΣ.

The following proposition establishes the hierarchy of modus ponens rules.

Proposition 721 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the local family MP, then it has both the global family MP in
I and the local system MP in I;

(b) If I♭ has the global family MP, then it has the global system MP in I;

(c) If I♭ has the local system MP, then it has the global system MP in I.

Proof:

(a) Suppose that I♭ has the local family MP in I . Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T .
Then, we have, in particular, that, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ.
But then, since φ ∈ TΣ and, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ, we
get by the local family MP that ψ ∈ TΣ. We conclude that I♭ has the
global family MP in I .

If I♭ has the local family MP in I , then it has a fortiori the local system
MP in I due to the fact that every theory system of I is also a theory
family.
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(b) This follows, similarly to the second part of (a), from the fact that
every theory system of I is also a theory family.

(c) We repeat the argument used in the proof of the first part of (a) ex-
cept reasoning exclusively in terms of theory systems rather than using
arbitrary theory families. ∎

Proposition 721 has established the following hierarchy of modus ponens
properties, where the southwest arrows are based on the family-system du-
ality whereas the southeast arrows on the local-global duality.

Local Family MP

✠�
�
� ❅

❅
❅❘

Local System MP Global Family MP

❅
❅
❅❘ ✠�

�
�

Global System MP

We also note the following regarding natural sufficient conditions under
which some of these four classes coincide.

Proposition 722 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the local (global) family and the local (global)
system MP coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system MP and the global system MP coincide;

(c) If I is systemic and I♭ is parameter-free, then the local family MP and
the global family MP also coincide.

Proof:

(a) If I is systemic, then all theory families are theory systems and the
family and system properties collapse.

(b) Suppose that I♭ is parameter-free and that I♭ has the global system
MP in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that
I♭Σ(φ,ψ) ⊆ TΣ. Since T is a theory system, we have, for all Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ)) = SEN♭(f)(I♭Σ(φ,ψ)) ⊆ TΣ′ .
Equivalently, I♭Σ[φ,ψ] ≤ T . Thus, by the global system MP, we get that
ψ ∈ TΣ. Thus, I♭ has the local system MP.
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(c) This follows from Parts (a) and (b).
∎

So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local MP Local Family MP

Global MP
❄

Global Family MP
❄

System MP
❄

Finally, for a systemic π-institution with a parameter-free set of natural
transformations all four MP properties collapse to a single one.

We provide some examples to show that the implications of Proposition
721 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding modus ponens properties are proper inclusions.

We first present an example to show that there is π-institution I with a
set of natural transformations that have the global family MP but not the
local system MP in I .

Example 723 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1} and SEN♭(f) ∶{0,1}→ {0,1} given by 0↦ 1 and 1↦ 1;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(a, b, c) = { 0, if (a, b, c) = (1,1,0)
1, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-

guished arguments.
Clearly, both Thm(I) and SEN, which are the only theory families, are

also theory systems. We show that I♭ has the global family MP in I, but it
does not have the local system MP in I.
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For the global family MP notice that we only need to check the case with
T = Thm(I), φ = 1 and ψ = 0. Since σ♭Σ(SEN♭(f)(1),SEN♭(f)(0),0) =
σ♭Σ(1,1,0) = 0, we have that I♭Σ[φ,ψ] ≰ T , whence the condition is vacuously
satisfied. Therefore, we get that I♭ has the global family MP in I.

On the other hand, we have σ♭Σ(1,0,0) = σ♭Σ(1,0,1) = 1 ∈ ThmΣ(I) and
1 ∈ ThmΣ(I), but 0 ∉ ThmΣ(I), which shows that I♭ does not have the local
system MP in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that have the local system MP but not
the global family MP in I .

Example 724 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all a, b ∈ SEN♭(Σ), by

σ♭Σ(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if (a, b) = (2,0)
0, if (a, b) = (2,1)
2, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}.
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I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and SEN♭,
but only two theory systems Thm(I) and SEN♭. We show that I♭ has the
local system MP in I, but it does not have the global family MP in I.

For the local system MP notice that we only need to check the case for
Thm(I), φ = 2 and ψ = 0 or ψ = 1. Since σ♭Σ(2,0) = 1 ∉ ThmΣ(I) and
σ♭Σ(2,1) = 0 ∉ ThmΣ(I), we conclude that I♭ has the local system MP in I.

On the other hand, for the theory family T and for φ = 0 and ψ = 1, we
get that φ = 0 ∈ TΣ and σ♭Σ(φ,ψ) = σ♭Σ(0,1) = 2 and

σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ)) = σ♭Σ(1,0) = 2,

whence σ♭Σ[0,1] ≤ T . But clearly 1 ∉ TΣ. Therefore I♭ does not have the global
family MP in I.

We prove next a transfer property for modus ponens.

Proposition 725 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a modus ponens property in I if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding modus
ponens property in A.

Proof: If I has a modus ponens property in A, for all A, then it has the
same modus ponens in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that
I♭ has the corresponding modus ponens in I .

Suppose, conversely, that I♭ has a modus ponens in I . We look at each
of the four properties in turn.

(a) Suppose I♭ has the local family MP in I and let A = ⟨A, ⟨F,α⟩⟩, with
A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(φ) ∈ TF (Σ) and

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(χ⃗)) ⊆ TF (Σ),
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for all χ⃗ ∈ SEN♭(Σ). Since the latter is equivalent to αΣ(I♭Σ(φ,ψ, χ⃗)) ⊆
TF (Σ), we get that φ ∈ α−1Σ (TF (Σ)) and I♭Σ(φ,ψ, χ⃗) ⊆ α−1Σ (TF (Σ)), for
all χ⃗ ∈ SEN♭(Σ). But, by hypothesis, I♭ has the local family MP in
I and, by Lemma 51, α−1(T ) ∈ ThFam(I). Therefore, we get that
ψ ∈ α−1Σ (TF (Σ)), or, equivalently, αΣ(ψ) ∈ TF (Σ). This proves that I has
the local family MP in A.

(b) The case of the local system MP can be proven similarly, taking into
account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose that I♭ has the global family MP in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

αΣ(φ) and IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
Then, we have φ ∈ α−1Σ (TF (Σ)) and, by Lemma 95, I♭Σ[φ,ψ] ≤ α−1(T ).
Now, since, by hypothesis, I♭ has the global family MP in I and, by
Lemma 51, α−1(T ) ∈ ThFam(I), we get that ψ ∈ α−1Σ (TF (Σ)), or, equiv-
alently, αΣ(ψ) ∈ TF (Σ). Thus, I has the global family MP in A.

(d) Similar to (c).
∎

10.11 Syntactic Protoalgebraicity

In this section we focus on the three uniform congruence properties,
i.e., on LF congruence, LS congruence and GB congruence, and we add to
those versions of the modus ponens property to obtain several versions of the
syntactic protoalgebraicity property.

By previous work, we know that the three uniform congruence properties
are stratified in the linear hierarchy shown on the left below.

Local Family Congruence Local Family MP

✠�
�
� ❅

❅
❅❘

Local System Congruence
❄

Local System MP Global Family MP

❅
❅
❅❘ ✠�

�
�

Global Congruence
❄

Global System MP

Moreover, by our study of the modus ponens, we know that they fall into
the hierarchy shown on the right of the diagram.

By combining equivalence with compatibility properties, we obtain twelve
syntactic protoalgebraicity properties as follows. Let X ∈ {LF,LS,GB} and
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Y ∈ {LF,LS,GF,GS}, where, as before, LF stands for “Local Family”, LS
stands for “Local System”, GF stands for “Global Family”, GS stands for
“Global System” and GB stands for “GloBal”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that I♭ has the XY
syntactic protoalgebraicity in I (XY SPA in I) if it has

• the X congruence in I ;

• the Y modus ponens in I .

Based on the hierarchies of the congruence and MP properties, we obtain
the following hierarchical structure for the various flavors of the syntactic
protoalgebraicity property.

Corollary 726 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The twelve syntactic
protoalgebraicity properties form the hierarchy shown on the accompanying
diagram.

Proof: This follows directly from Corollary 716 and Proposition 721. ∎

LFLF SPA

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥
LFLS SPA LSLF SPA

❄
LFGF SPA

❙
❙
❙
❙
❙
❙
❙
❙
❙✇

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥

✴✓
✓
✓
✓
✓
✓
✓
✓
✓

LSLS SPA
❄

GBLF SPA
❄

LSGF SPA
❄

❙
❙
❙
❙
❙
❙
❙
❙
❙✇

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥

✴✓
✓
✓
✓
✓
✓
✓
✓
✓

GBLS SPA
❄

LFGS SPA GBGF SPA
❄

❙
❙
❙
❙
❙
❙
❙
❙
❙✇ ✴✓

✓
✓
✓
✓
✓
✓
✓
✓

LSGS SPA
❄

GBGS SPA
❄

Based on the analysis performed on congruence and modus ponens, we
have the following result regarding natural sufficient conditions under which
some of the twelve syntactic protoalgebraicity properties above coincide.
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Corollary 727 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the syntactic protoalgebraicity hierarchy collapses
to the one depicted below;

LCLC SPA

✠�
�
�
� ❅

❅
❅
❅❘

LCGB SPA GBLC SPA

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB SPA

(b) If I♭ has only two arguments (i.e., is parameter free), then the syn-
tactic protoalgebraicity hierarchy collapses to the one depicted below,
where the Local System versions of congruence coincide with (and are
incorporated into) the global versions and the Local and Global System
versions of MP also coincide and are denoted by SYS.

LFLF SPA
◗
◗
◗
◗
◗s

GBLF SPA
❄

LFGF SPA
◗
◗
◗
◗
◗s

◗
◗
◗
◗
◗s

GBGF SPA
❄

LFSYS SPA
◗
◗
◗
◗
◗s

GBSYS SPA
❄

Proof: The statement follows from Corollary 717 and Proposition 722. ∎

For a systemic π-institution with a parameter-free set of natural trans-
formations, there is only one syntactic protoalgebraicity property, since all
versions of congruence and all versions of modus ponens collapse to a single
property.

Instead of studying this entire hierarchy in detail, we refocus, once again,
on the uniformly defined classes. So we define LF SPA, LS SPA, GF SPA
and GS SPA to mean, respectively, LFLF syntactic, LSLS syntactic, GFGF
syntactic and GSGS syntactic protoalgebraicity. These classes form,
according to the diagram above, based on Corollary 726, the sub hierarchy
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depicted below.

LF SPA

✠��
� ❅❅❅❘

LS SPA GF SPA

❅❅❅❘ ✠��
�

GS SPA

Moreover, according to Corollary 727, this reduces to the hierarchy depicted
on the left below for a systemic π-institution and to the one depicted on the
right below for a parameter free set of natural transformations.

LC SPA LF SPA

GB SPA
❄

GF SPA
❄

SYS SPA
❄

We provide examples to show that the four uniform classes of the syntactic
protoalgebraicity hierarchy are distinct in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS syntactic protoalge-
braicity, but not the GF syntactic protoalgebraicity in I .

Example 728 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a single bi-
nary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {1,2}
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
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Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system syntactic protoalge-
braicity in I, but it does not have the global family syntactic protoalgebraicity
in I.

First note that σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ {0,1,2}, whence I♭ is
reflexive in I.

Next, note that the condition defining local system symmetry holds triv-
ially for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) ∈ ThmΣ(I), for some φ ≠ ψ,
then {φ,ψ} = {0,1}, whence σ♭Σ(ψ,φ) ∈ ThmΣ(I). So I♭ is local system
symmetric in I.

For local system transitivity, the defining condition holds, again, triv-
ially for SEN♭, whereas for Thm(I), it holds due to the fact that σ♭Σ(φ,ψ) ∈
ThmΣ(I) for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, other than (φ,ψ) = (0,1) or(1,0). Thus, I♭ is also local system transitive in I.

Next, note that the condition defining local system compatibility is also
trivial for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) = 2 and σ♭Σ(ψ,φ) = 2, with
φ ≠ ψ, then {φ,ψ} = {0,1} and, in that case,

σ♭Σ(σ♭Σ(SEN♭(h)(φ), χ), σ♭Σ(SEN♭(h)(ψ), χ)) = 2

and

σ♭Σ(σ♭Σ(χ,SEN♭(h)(φ)), σ♭Σ(χ,SEN♭(h)(ψ))) = 2,

for all h ∈ Sign♭(Σ,Σ) and all χ ∈ {0,1,2}. Thus, I♭ has the local system
compatibility in I and, therefore, has the local system congruence in I.

To finish up, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such
that σ♭Σ(φ,ψ) ∈ ThmΣ(I) are (0,1) and (1,0) and for neither of these is
φ ∈ ThmΣ(I), I♭ has the local system modus ponens in I and, therefore, it
has the local system syntactic protoalgebraicity in I as well.

On the other hand, 1 ∈ {1,2} and σ♭Σ[1,0] ≤ {{1,2}}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the global family modus ponens in I and, hence,
a fortiori, it does not have the global family syntactic protoalgebraicity in I.
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Next, we present an example to show that there is π-institution I with
a set of natural transformations that has the GF syntactic protoalgebraicity
but not the LS syntactic protoalgebraicity in I .

Example 729 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family syntactic protoalge-
braicity in I, but it does not have the local system syntactic protoalgebraicity
in I.

Note, first, that reflexivity is obvious, since, by definition, for all φ ∈
SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ). For global sym-
metry, note that if, for some φ,ψ ∈ SEN♭(Σ), σ♭Σ[φ,ψ] ≤ Thm(I), then we
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must have φ = ψ, whence σ♭Σ[ψ,φ] ≤ Thm(I) holds. For global transiti-
vity, note again that for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is it the case that
σ♭Σ[φ,ψ] ≤ Thm(I), whence the condition is satisfied in this case as well. Fi-
nally, the same observation leads to the conclusion that I♭ satisfies both the
global compatibility property in I and the global modus ponens. We conclude
that I♭ has the global family syntactic protoalgebtaicity in I.

On the other hand, since σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ),
but σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I), I♭ does not have the local system symmetry.
A fortiori, I♭ does not have the local system congruence and, hence, does not
have the local system syntactic protoalgebraicity in I either.

And here is a transfer property for the syntactic protoalgebraicity prop-
erties that we have focused on in this section.

Corollary 730 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a (uniform) syntactic protoalgebraicity property in I if and only if, for ev-
ery algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the
corresponding syntactic protoalgebraicity property in A.

Proof: This follows directly from Corollary 720 and Proposition 1440. ∎

10.12 Invertibility

We study, next, various versions of the invertibility property, once again
based on the local versus global and the theory family versus theory system
dualities.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that:

• I♭ has the local family invertibility in I if there exists a set τ ∶
SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ(τΣ(φ), ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
• I♭ has the local system invertibility in I if there exists a set τ ∶

SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ(τΣ(φ), ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
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• I♭ has the global family invertibility in I if there exists a set τ ∶
SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ[τΣ(φ)] ≤ T ;

• I♭ has the global system invertibility in I if there exists a set
τ ∶ SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ[τΣ(φ)] ≤ T.
We look at the hierarchy of invertibility properties.

Proposition 731 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the local (global) family invertibility, then it has the local
(global) system invertibility in I.

(b) If I♭ has the local system invertibility, then it has the global system
invertibility in I.

Proof: Since every theory system of I is a theory family, if I♭ has the local
(global) family invertibility in I , then it has, a fortiori, the local (global)
system invertibility in I , with the same witnessing set τ of natural transfor-
mations in N ♭.

Suppose, next, that I♭ has the local system invertibility in I , with wit-
nessing set of natural transformations τ , and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣
and φ ∈ SEN♭(Σ).

• If φ ∈ TΣ, then, since T ∈ ThSys(I), for all Σ′ ∈ ∣Sign♭∣ and all f ∈
Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ TΣ′ . Thus, by the local family invertibility,

I♭Σ′(τΣ′(SEN♭(f)(φ)), ξ⃗) ⊆ TΣ′ , for all ξ⃗ ∈ SEN♭(Σ′).
This is equivalent to I♭Σ′(SEN♭(f)(τΣ(φ)), ξ⃗) ⊆ TΣ′ . Since Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and ξ⃗ ∈ SEN♭(Σ′) were arbitrary, we conclude that
I♭Σ[τΣ(φ)] ≤ T .

• Suppose, conversely, that I♭Σ[τΣ(φ)] ≤ T . This implies I♭Σ(τΣ(φ), ξ⃗) ⊆
TΣ, for all ξ ∈ SEN♭(Σ). Thus, by the local family invertibility, φ ∈ TΣ.
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We conclude that φ ∈ TΣ if and only if I♭Σ[τΣ(φ)] ≤ T , whence I♭ has the
global system invertibility in I . ∎

Proposition 731 has established the following hierarchy of invertibility
properties:

Local Family Invertible

Local System Invertible
❄

Global Family Invertible
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

Global System Invertible

The following holds regarding natural sufficient conditions under which
some of these properties coincide.

Proposition 732 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the local (global) family invertibility and the local
(global) system invertibility properties coincide;

(b) If I♭ is parameter-free, then the local system invertibility and the global
system invertibility properties coincide.

Proof: If I is systemic, then the local (global) system invertibility property
coincides with the local (global) family invertibility property because of the
fact that every theory family in I is also a theory system.

Suppose, next, that I♭ is parameter-free and that I♭ has the global sys-
tem invertibility with witnessing set of natural transformations τ ∶ SEN♭ →(SEN♭)2. Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).

• If φ ∈ TΣ, then, by the global system invertibility, I♭Σ[τΣ(φ)] ≤ T . In
particular, I♭Σ(τΣ(φ)) ⊆ TΣ.

• If, conversely, I♭Σ(τΣ(φ)) ⊆ TΣ, then, since T ∈ ThSys(I), we get that,
for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), I♭Σ′(SEN♭(f)(τΣ(φ))) ⊆ TΣ′ .
Hence, I♭Σ[τΣ(φ)] ≤ T . Using the global system invertibility, we now
conclude that φ ∈ TΣ.

Thus, the global system invertibility implies the local system invertibility
property and, therefore that, provided I♭ is parameter-free, the local and
global system invertibility properties coincide. ∎

So, in the case of a systemic π-institution I , the hierarchy of invertibility
properties reduces to the one depicted on the left below, whereas in the case
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of a parameter-free set of natural transformations I♭, we get the hierarchy
depicted on the right.

Local Invertible
Local Family

Invertible
Global Family

Invertible
❅
❅
❅❘ ✠�

�
�

Global Invertible
❄

System Invertible

Finally, for a systemic π-institution and a parameter-free set of natural trans-
formations, all four invertibility properties coincide.

We provide some examples to show that the implications of Proposition
731 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding invertibility properties are proper inclusions.

We first present an example to show that there is π-institution I with a
set of natural transformations that has the local family invertibility but not
the global family invertibility in I .

Example 733 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with two objects Σ and Σ′ and a single (non-
identity) morphism f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) ={a, b, c} and SEN♭(f) ∶ {0,1,2} → {a, b, c} given by 0 ↦ a, 1 ↦ a and
2↦ c;

• N ♭ is the trivial category of natural transformations consisting of the
projections only.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{c},{b, c},{a, b, c}}.
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Consider the set I♭ = {p2,0}, with p2,0 ∶ (SEN♭)2 → SEN♭ being the pro-
jection binary natural transformation (onto the first coordinate), viewed as
having two distinguished arguments.

I has nine theory families, but only five of those are theory systems.
So it is not a systemic π-institution. We show that I♭ has the local family
invertibility in I, but it does not have the global family invertibility in I.

For the local family invertibility, let τ ≡ {ι ≈ ι}, where ι ∶ SEN♭ → SEN♭

is the identity (or unary first coordinate projection) natural transformation.
Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

↔

I♭Σ(ιΣ(φ), ιΣ(φ)) ∈ TΣ iff φ ∈ TΣ.

Thus, I♭ has the local family invertibility in I.
On the other hand, for T = {{1,2},{b, c}} ∈ ThFam(I), we have 1 ∈ TΣ,

but

p
2,0
Σ′ (SEN♭(f)(1),SEN♭(f)(1)) = p2,0Σ′ (a, a) = a ∉ TΣ′ .

Therefore I♭ does not have the global family invertibility in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the global family invertibility
but not the local system invertibility in I .

Example 734 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 1 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}3 → {0,1,2} be given, for all x, y, z ∈ SEN♭(Σ), by

σ♭Σ(x, y, z) = { 1, if (x, y, z) = (1,1,2)
2, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{2},{0,1,2}}. Con-
sider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.

I has two theory families Thm(I), SEN♭ both of which are also theory
systems. So I is systemic. We show that I♭ has the global family invertibility
in I, but it does not have the local system invertibility in I.
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For the global family invertibility, consider τ = {ι ≈ ι}, where ι ∶ SEN♭ →
SEN♭ is the identity natural transformation. The case of SEN♭ is trivial,
whereas for Thm(I), we have, for all Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),

φ = 2 iff
↔

I♭Σ[φ,φ] ≤ {{2}},
which holds, for all φ ∈ {0,1,2}, as can be checked on a case-by-case basis.

On the other hand, for the local system invertibility, note that 0 ∉ {2},
but σ♭Σ(τΣ(0), ψ) = 2 ∈ {2}, for every set of unary natural transformations
τ ∶ SEN♭ → (SEN♭)2 in N ♭. We conclude that I♭ does not have the local
system invertibility in I.

Finally, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the local system invertibility
but not the local family invertibility in I .

Example 735 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if (x, y) = (2,2)
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
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Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.

I has three theory families, but only Thm(I), SEN♭ are theory systems.
So I is not systemic. We show that I♭ has the local system invertibility in I,
but it does not have the local family invertibility in I.

For the local system invertibility, consider τ = {ι ≈ ι}, where ι ∶ SEN♭ →
SEN♭ is the identity natural transformation. The case of SEN♭ is trivial,
whereas for Thm(I), we have to verify that, for all Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ),

φ = 2 iff
↔

I♭Σ(φ,φ) ⊆ {{2}}.
But this obviously holds, by the definition of I♭.

On the other hand, for the local family invertibility, note that 1 ∈ {1,2},
but

σ♭Σ(τΣ(1)) = 0 ∉ {1,2},
for every set of unary natural transformations τ ∶ SEN♭ → (SEN♭)2 in N ♭.
We conclude that I♭ does not have the local family invertibility in I.

We now prove a transfer property for invertibility.

Proposition 736 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
an invertibility property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding invertibility
property in A.

Proof: If I has an invertibility property in A, for all A, then it has the same
invertibility property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that
I♭ has the corresponding invertibility property in I .

Suppose, conversely, that I♭ has an invertibility property in I , with wit-
nessing set of natural transformations τ ∶ SEN♭ → (SEN♭)2 in N ♭. We look
at each of the four properties in turn.
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(a) Suppose I♭ has the global family invertibility in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). We then have

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff

↔

I♭Σ[τΣ(φ)] ≤ α−1(T )
iff

↔

IF (Σ)[αΣ(τΣ(φ))] ≤ T
iff

↔

IF (Σ)[τF (Σ)(αΣ(φ))] ≤ T.
Taking into account the surjetivity of ⟨F,α⟩, we conclude that I has
the global family invertibility in A.

(b) The global system invertibility follows analogously, taking into account
the fact that if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose I♭ has the local family invertibility in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff

↔

I♭Σ(τΣ(φ), ξ⃗) ⊆ α−1Σ (TF (Σ)),
for all ξ⃗ ∈ SEN♭(Σ),

iff αΣ(↔I♭Σ(τΣ(φ), ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ),

iff
↔

IF (Σ)(τF (Σ)(αΣ(φ)), αΣ(ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ),

Taking into account the surjectivity of ⟨F,α⟩, we conclude that I has
the local family invertibility in A.

(d) The local system invertibility follows along the same lines, taking again
into account the fact that if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

∎

10.13 Syntactic Algebraizability

In this section we focus on the four uniform syntactic protoalgebraicity
properties, i.e., on LF SPA, LS SPA and GF SPA and GS SPA, and we
add to those versions of the invertibility property to obtain several versions
of the syntactic algebraizability property.

By previous work, we know that the four uniform SPA properties consti-
tute the hierarchy shown on the left below.
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LF SPA LF Invertibility

✠�
�
� ❅

❅
❅❘

LS SPA GF SPA LS Invertibility
❄

GF Invertibility

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

GS SPA GS Invertibility

Moreover, by our study of invertibility, we know that the various versions of
invertibility fall into the hierarchy shown on the right of the diagram.

By combining syntactic protoalgebraicity with invertibility properties, we
obtain sixteen syntactic algebraizability properties as follows. Let X,Y ∈{LF,LS,GF,GS}, where LF stands for “Local Family”, LS stands for “Local
System”, GF stands for “Global Family” and GS stands for “Global System”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that I♭ has the XY
syntactic algebraizability in I (XY SA in I) if it has

• the X syntactic protoalgebraicity in I ;

• the Y invertibility in I .

Based on the hierarchies of the syntactic protoalgebraicity and invertibil-
ity properties, we obtain the following hierarchical structure for the various
flavors of the syntactic algebraizability property.

Corollary 737 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The sixteen syntactic
algebraizability properties form the hierarchy shown on the accompanying di-
agram.

Proof: This follows directly from Corollary 726 and Proposition 731. ∎
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LFLF SA

❂✚✚✚✚✚ ❩❩❩❩❩⑦
LSLF SA LFLS SA

❄
GFLF SA LFGF SA

❩❩❩❩❩⑦❂✚✚✚✚✚ ❩❩❩❩❩⑦❂✚✚✚✚✚❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟

❂✚✚✚✚✚ ❩❩❩❩❩⑦
LSLS SA

❄
GSLF SA GFLS SA

❄
LFGS SA LSGF SA GFGF SA

❩❩❩❩❩⑦

❍❍❍❍❍❍❍❍❥❂✚✚✚✚✚

❂✚✚✚✚✚❍❍❍❍❍❍❍❍❥

❩❩❩❩❩⑦✙✟✟✟✟✟✟✟✟ ❩❩❩❩❩⑦✙✟✟✟✟✟✟✟✟

❂✚✚✚✚✚

GSLS SA
❄

LSGS SA GFGS SA GSGF SA
❍❍❍❍❍❍❍❍❥

❩❩❩❩❩⑦ ❂✚✚✚✚✚

✙✟✟✟✟✟✟✟✟

GSGS SA

Based on the analysis performed on SPA and Invertibility, we have the fol-
lowing result regarding sufficient conditions under which some of the sixteen
syntactic algebraizability properties coincide.

Corollary 738 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the syntactic algebraizability hierarchy collapses
to the one depicted below;

LCLC SA

✠�
�
�
� ❅

❅
❅
❅❘

LCGB SA GBLC SA

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB SA

(b) If I♭ has only two arguments (i.e., is parameter free), then the syntactic
algebraizability hierarchy collapses to the one depicted below, where the
system versions of both the SPA and the invertibility properties are
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grouped together under the label SYS.

LFLF SA LFGF SA
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

GFLF SA
❄

LFSYS SA GFGF SA
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

SYSLF SA
❄

GFSYS SA SYSGF SA
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

SYSSYS SA
❄

Proof: The statement follows from Corollary 727 and Proposition 732. ∎

For a systemic π-institution with a parameter-free set of natural trans-
formations, there is only one syntactic protoalgebraicity property, since all
versions of syntactic protoalgebraicity and all versions of invertibility collapse
to a single property.

Instead of studying this entire hierarchy in detail, we refocus, once again,
on the uniformly defined classes. So we define LF SA, LS SA, GF SA
and GS SA to mean, respectively, LFLF syntactic, LSLS syntactic, GFGF
syntactic and GSGS syntactic algebraizability. These classes form the
subhierarchy depicted below.

LF SA

LS SA
❄

GF SA

❅
❅❘ ✠�

�

GS SA

Moreover, according to Corollary 738, this reduces to the hierarchy depicted
on the left below for a systemic π-institution and to the one depicted on the
right below for a parameter free set of natural transformations.

LC SA LF SA GF SA

❅
❅
❅❘ ✠�

�
�

GB SA
❄

SYS SA

We provide examples to show that the inclusions between the four uniform
classes of the syntactic algebraizability hierarchy are proper in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS syntactic algebraizabil-
ity, but not the LF syntactic algebraizability in I .
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Example 739 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by
letting λ♭Σ ∶ {0,1,2} → {0,1,2} be given by λ♭Σ(x) = 2, for all
x ∈ {0,1,2};

– a binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by
letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {1,2}
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems. So I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system syntactic algebraiz-
ability in I, but it does not have the local family syntactic algebraizability in
I.

First, we look at local system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
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of SEN♭(Σ) are related in local system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the local system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1)),(σ♭Σ(0, φ), σ♭Σ(1, φ)) and (λ♭Σ(0), λ♭Σ(1)) are related via I♭ modulo Thm(I).
Thus, I♭ has the local system congruence in I.

Next, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ(φ,ψ) ∈
ThmΣ(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭
has the local system modus ponens in I.

Finally, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural transformations
in N ♭, given by τ = {ι ≈ λ♭}, where ι ∶ SEN♭ → SEN♭ is the identity natural
transformation. Since, for every φ ∈ SEN♭(Σ), we have

φ ∈ ThmΣ(I) iff
↔

IΣ(φ,λ♭Σ(φ)) ⊆ ThmΣ(I),
we also get that I♭ has the local system invertibility in I and, therefore, we
conclude that I♭ has the local system algebraizability in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ(1,0) = 2 ∈ {1,2}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the local family modus ponens in I and, hence,
a fortiori, it does not have the local family syntactic algebraizability in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that has the GS syntactic algebraizability but
not the GF syntactic algebraizability in I .

Example 740 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by
letting λ♭Σ ∶ {0,1,2} → {0,1,2} be given by λ♭Σ(x) = 2, for all
x ∈ {0,1,2};
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– a single binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ de-
fined by letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if (x, y) = (0,2) or (x, y) = (2,0)
0, if (x, y) = (1,2) or (x, y) = (2,1) .

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and SEN♭, but
only two theory systems Thm(I) and SEN♭. In particular, I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ having both arguments distinguished.
We show that I♭ has the global system syntactic algebraizability in I, but it
does not have the global family syntactic algebraizability in I.

First, we look at global system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
of SEN♭(Σ) are related in global system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the global system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1)),(σ♭Σ(0, φ), σ♭Σ(1, φ)) and (λ♭Σ(0), λ♭Σ(1)) are related via I♭ modulo Thm(I).
Thus, I♭ has the global system congruence in I.
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Next, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ[φ,ψ] ≤
Thm(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭ has
the global system modus ponens in I.

Finally, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural transformations
in N ♭, given by τ = {ι ≈ λ♭}, where ι ∶ SEN♭ → SEN♭ is the identity natural
transformation. Since, for every φ ∈ SEN♭(Σ), we have

φ ∈ ThmΣ(I) iff
↔

IΣ[φ,λ♭Σ(φ)] ≤ Thm(I),
we also get that I♭ has the global system invertibility in I and, therefore, we
conclude that I♭ has the global system algebraizability in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ[1,0] ≤ {{1,2}}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the global family modus ponens in I and, hence,
a fortiori, it does not have the global family syntactic algebraizability in I.

Note that the preceding example also shows that there is π-institution I
with a set of natural transformations that has the GS syntactic algebraiz-
ability but not the LF syntactic algebraizability in I . We present also an
additional example depicting a π-institution I with a set of natural trans-
formations I♭, with two distinguished arguments, that has the GS syntactic
algebraizability but not the LS syntactic algebraizability in I .

Example 741 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by let-
ting λ♭Σ ∶ {0,1,2,3} → {0,1,2,3} be given by 0 ↦ 2, 1 ↦ 3, 2 ↦ 2
and 3↦ 3;

– a ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by
letting σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
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Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two dis-
tinguished arguments. We show that I♭ has the global (family or system)
syntactic algebraizability in I, but it does not have the local (family or sys-
tem) syntactic algebraizability in I.

Concerning global equivalence, the defining conditions for reflexivity, sym-
metry and transitivity of I♭ in I are all trivially satisfied for SEN♭. For the
theory system Thm(I), it suffices to observe that the relation of global equiv-
alence modulo Thm(I) is the identity relation. Therefore, I♭ has the global
system equivalence in I. Because of that, the global compatibility and the
global modus ponens are trivially satisfied.

Finally, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural transformations
in N ♭, given by τ = {ι ≈ λ♭}, where ι ∶ SEN♭ → SEN♭ is the identity natural
transformation. Since, for every φ ∈ SEN♭(Σ), we have

φ ∈ ThmΣ(I) iff
↔

IΣ[φ,λ♭Σ(φ)] ≤ Thm(I),
we also get that I♭ has the global system invertibility in I and, therefore, we
conclude that I♭ has the global system algebraizability in I.

On the other hand, σ♭Σ(0,1, ξ) ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), but
σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I), whence I♭ does not have the local symmetry in
I and, therefore, a fortiori, fails to satisfy the local syntactic algebraizability
in I.

We close with a transfer property for the syntactic algebraizability prop-
erties that we have focused on in this section.

Corollary 742 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a (uniform) syntactic algebraizability property in I if and only if, for ev-
ery F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the
corresponding syntactic algebraizability property in A.
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Proof: This follows directly from Corollary 730 and Proposition 736. ∎

10.14 Regularity

We turn now to the study of various versions of the regularity property,
based on the local versus global and the theory family versus theory system
dualities.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family regularity in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ imply I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
• I♭ has the local system regularity in I if, for all T ∈ ThSys(I), all

Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ,ψ ∈ TΣ imply I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family regularity in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ imply I♭Σ[φ,ψ] ≤ T ;

• I♭ has the global system regularity in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ imply I♭Σ[φ,ψ] ≤ T.
We give now the hierarchy of regularity properties.

Proposition 743 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the global family regularity, then it has the local family regu-
larity in I;

(b) If I♭ has the local family regularity, then it has the local system regularity
in I;

(c) I♭ has the global system regularity if and only if it has the local system
regularity in I.
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Proof:

(a) Suppose that I♭ has the global family regularity in I . Consider T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Then,
we have, by hypothesis, I♭Σ[φ,ψ] ≤ T . But this implies that I♭Σ(φ,ψ, ξ⃗) ⊆
TΣ, for all ξ⃗ ∈ SEN♭(Σ). Thus, I♭ has the local family regularity in I .

(b) The conclusion follows directly from the fact that every theory system
is a theory family of I .

(c) For the “only if” direction, we repeat the argument used in the proof of
Part (a) except reasoning exclusively in terms of theory systems rather
than using arbitrary theory families.

Suppose, conversely, that I♭ has the local system regularity in I . Let
T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ.
Since T ∈ ThSys(I), for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(φ),SEN♭(f)(ψ) ∈ TΣ′ .
Thus, by the local system regularity, for all ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆ TΣ′ .
Since this holds for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈
SEN♭(Σ′), we get that I♭Σ[φ,ψ] ≤ T , Therefore, I♭ has the global system
regularity in I .

∎

Proposition 743 has established the following hierarchy of regularity prop-
erties:

Global Family Regular

Local Family Regular
❄

System Regular
❄

We also note the following regarding natural sufficient conditions under
which some of these properties coincide.

Proposition 744 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments. If I is systemic,
then all three regularity properties coincide.
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Proof: If I is systemic, then the (global) system regularity property coin-
cides with the family regularity property and this causes the collapsing of
the hierarchy. ∎

So in the case of a systemic π-institution I , there is only one possible
regularity property.

We provide some examples to show that the implications of Proposition
743 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding regularity properties are proper inclusions.

We first present an example to show that there is π-institution I with a
set of natural transformations that has the local family regularity but not
the global family regularity in I .

Example 745 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = 2 or y = 2
1, if (x, y) = (1,1)
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-

guished arguments.
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I has three theory families, but only Thm(I) and SEN are theory systems.
We show that I♭ has the local family regularity in I, but it does not have the
global family regularity in I.

For the local family regularity note, first, that σ♭Σ(2,2) = 2, which takes
care of Thm(I) and that the case of SEN♭ is trivial. So we only need to
check the case with T = {{1,2}}. Since σ♭Σ(2,2) = σ♭Σ(1,2) = σ♭Σ(2,1) = 2 and
σ♭Σ(1,1) = 1, the defining condition for local family regularity is also satisfied
for T = {{1,2}}. Therefore, I♭ has the local family regularity in I.

On the other hand, we have 1 ∈ {1,2} but σ♭Σ(SEN♭(f)(1),SEN♭(f)(1)) =
σ♭Σ(0,0) = 0 ∉ {1,2}. Thus, 1 ∈ T , but σ♭Σ[1,1] ≰ T , which shows that I♭ does
not have the global family regularity in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the system regularity but not
the local family regularity in I .

Example 746 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all a, b ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if x = 2 or y = 2
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
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I has three theory families Thm(I), T = {{1,2}} and SEN♭, but only two
theory systems Thm(I) and SEN♭. We show that I♭ has the (local) system
regularity in I, but it does not have the local family regularity in I.

For the local system regularity note that σ♭Σ(2,2) = 2, which takes care of
Thm(I), and that the case of SEN♭ is trivial.

On the other hand, for the local family regularity, note that 1 ∈ TΣ = {1,2},
but σ♭Σ(1,1) = 0 ∉ TΣ. Therefore I♭ does not have the local family regularity
in I.

We now prove a transfer property for regularity.

Proposition 747 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two dis-
tinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has a reg-
ularity property in I if and only if, for every algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, I has the corresponding regularity property in A.

Proof: If I has a regularity property in A, for all A, then it has the same
regularity property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CF ⟩ = I , we conclude that I♭

has the corresponding regularity property in I .
Suppose, conversely, that I♭ has a regularity property in I . We look at

each of the three properties in turn.

(a) Suppose I♭ has the global family regularity in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(φ) ∈ TF (Σ) and αΣ(ψ) ∈
TF (Σ). Then φ ∈ α−1Σ (TF (Σ)) and ψ ∈ α−1Σ (TF (Σ)). Since, by Lemma
51, α−1(T ) ∈ ThFam(I), we get by global family regularity, I♭Σ[φ,ψ] ≤
α−1(T ). Thus, by Lemma 95, IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T . We conclude
that I has the global family regularity in A.

(b) Suppose I♭ has the local family regularity in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(φ) ∈ TF (Σ) and αΣ(ψ) ∈
TF (Σ). Then φ ∈ α−1(TF (Σ)) and ψ ∈ α−1Σ (TF (Σ)). Since α−1(T ) ∈
ThFam(I), we get by local family regularity, that

I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ).
Thus, αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ) or, equivalently,

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ), for all ξ⃗ ∈ SEN♭(Σ).
It follows, taking into account the surjectivity of ⟨F,α⟩, that I has the
local family regularity in A.

(c) The system regularity follows analogously, taking into account the fact
that if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I). ∎
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10.15 Syntactic Regularity

In this section we focus on the four uniform syntactic protoalgebraicity prop-
erties, LF SPA, LS SPA, GF SPA and GS SPA, and we add to those versions
of the regularity property to obtain several versions of the syntactic regularity
property.

By previous work, we know that the four uniform SPA properties consti-
tute the hierarchy shown on the left below.

LF SPA GF Regularity

✠�
�
� ❅

❅
❅❘

LS SPA GF SPA LF Regularity
❄

❅
❅
❅❘ ✠�

�
�

GS SPA SYS Regularity
❄

Moreover, by our study of regularity, we know that the various versions of
regularity fall into the linear hierarchy shown on the right of the diagram.

By combining syntactic protoalgebraicity with regularity properties, we
obtain twelve syntactic regularity properties as follows. Let X ∈ {LF,LS,
GF,GS} and Y ∈ {LF,GF,SYS}, where LF stands for “Local Family”, LS
stands for “Local System”, GF stands for “Global Family”, GS stands for
“Global System” and SYS stands for “SYStem”, abbreviating both the local
and the global system properties, in case they are identical.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that I♭ has the XY
syntactic regularity in I (XY SR in I) if it has

• the X syntactic protoalgebraicity in I ;

• the Y regularity in I .

Based on the hierarchies of the syntactic protoalgebraicity and regular-
ity properties, we obtain the following hierarchical structure for the various
flavors of the syntactic regularity property.

Corollary 748 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The twelve syntactic
regularity properties form the hierarchy shown on the accompanying diagram.

Proof: This follows directly from Corollary 726 and Proposition 743. ∎
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LFGF SR

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

LSGF SR LFLF SR
❄

GFGF SR

✰✑
✑
✑
✑
✑❙

❙
❙
❙
❙
❙
❙
❙✇

◗
◗
◗
◗
◗s

✴✓
✓
✓
✓
✓
✓
✓
✓

LSLF SR
❄

LFSYS SR
❄

GFLF SR
❄

✰✑
✑
✑
✑
✑❙

❙
❙
❙
❙
❙
❙
❙✇

◗
◗
◗
◗
◗s

✴✓
✓
✓
✓
✓
✓
✓
✓

LSSYS SR
❄

GSGF SR GFSYS SR
❄

❙
❙
❙
❙
❙
❙
❙
❙✇ ✴✓

✓
✓
✓
✓
✓
✓
✓

GSLF SR
❄

GSSYS SR
❄

Based on the analysis performed on SPA and regularity, we have the
following result regarding sufficient conditions under which some of the twelve
syntactic regularity properties coincide.

Corollary 749 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the syntactic regularity hierarchy collapses to the
one depicted below;

LC Regularity

GB Regularity
❄

(b) If I♭ has only two arguments (i.e., is parameter free), then the syn-
tactic regularity hierarchy collapses to the one depicted below, where
the System versions of both the SPA and the invertibility properties are
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grouped together under the label SYS.

LFGF SR

✠�
� ❅

❅❘

LFLF SR GFGF SR

✠�
� ❅

❅❘ ✠�
� ❅

❅❘

LFSYS SR GFLF SR SYSGF SR

❅
❅❘ ✠�

� ❅
❅❘ ✠�

�

GFSYS SR SYSLF SR

❅
❅❘ ✠�

�

SYSSYS SR

Proof: The statement follows from Corollary 727 and Proposition 743. ∎

For a systemic π-institution with a parameter-free set of natural transfor-
mations, there is only one syntactic regularity property, since all versions of
syntactic protoalgebraicity and all versions of regularity collapse to a single
property.

Instead of studying this entire hierarchy in detail, we concentrate again
on the uniformly defined classes. So we define LF SR, LS SR, GF SR and
GS SR to mean, respectively, LFLF syntactic, LSLS syntactic, GFGF
syntactic and GSGS syntactic regularity. These classes form, according to
Corollary 748, the sub hierarchy depicted below.

LF SR

LS SR
❄

GF SR

❅
❅❘ ✠�

�

GS SR

Moreover, according to Corollary 749, this reduces to the hierarchy depicted
on the left below for a systemic π-institution and to the one depicted on the
right below for a parameter free set of natural transformations.

LC SR LF SR GF SR

❅
❅
❅❘ ✠�

�
�

GB SR
❄

SYS SR

We provide examples to show that the inclusions between these four uni-
form classes of the syntactic regularity hierarchy are proper in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS syntactic regularity,
but not the LF syntactic regularity in I .
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Example 750 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting σ♭Σ ∶{0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {1,2}
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems. So I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system syntactic regularity
in I, but it does not have the local family syntactic regularity in I.

First, we look at local system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
of SEN♭(Σ) are related in local system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the local system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1)) and(σ♭Σ(0, φ), σ♭Σ(1, φ)) are related via I♭ modulo Thm(I). Thus, I♭ has the local
system congruence in I.
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Next, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ(φ,ψ) ∈
ThmΣ(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭
has the local system modus ponens in I.

Finally, for local system regularity, note that the defining condition is
trivially satisfied for SEN♭, whereas, for Thm(I), we clearly have that, if
φ,ψ ∈ ThmΣ(I), then φ = ψ = 2, whence σ♭Σ(φ,ψ) = 2 ∈ ThmΣ(I). Therefore
I♭ has the local system regularity in I and, therefore, we conclude that I♭ has
the local system syntactic regularity in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ(1,0) = 2 ∈ {1,2}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the local family modus ponens in I and, hence,
a fortiori, it does not have the local family syntactic regularity in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that has the GS syntactic regularity but not
the GF syntactic regularity in I .

Example 751 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a single bi-
nary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {0,2}
0, if {x, y} = {1,2}

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
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I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and SEN♭, but
only Thm(I) and SEN♭ are theory systems. In particular, I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ having both arguments distinguished.
We show that I♭ has the global system syntactic regularity in I, but it does
not have the global family syntactic regularity in I.

First, we look at global system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
of SEN♭(Σ) are related in global system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the global system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1))
and (σ♭Σ(0, φ), σ♭Σ(1, φ)) are related via I♭ modulo Thm(I). Thus, I♭ has the
global system congruence in I.

Now note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ[φ,ψ] ≤
Thm(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭ has
the global system modus ponens in I.

For the global system regularity, note that the defining condition is satis-
fied trivially for SEN♭, whereas for Thm(I), if φ,ψ ∈ ThmΣ(I), then φ,ψ = 2,
whence we get σ♭Σ[φ,φ] ≤ Thm(I). Therefore, we conclude that I♭ has the
global system syntactic regularity in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ[1,0] ≤ {{1,2}}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the global family modus ponens in I and, hence,
a fortiori, it does not have the global family syntactic regularity in I.
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Finally, we present an example of a π-institution I with a set of natu-
ral transformations I♭, with two distinguished arguments, that has the GS
syntactic regularity but not the LS syntactic regularity in I .

Example 752 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5} and
SEN♭(f) ∶ {0,1,2,3,4,5} → {0,1,2,3,4,5} given by 0↦ 0, 1↦ 1, 2↦ 4,
3↦ 5, 4↦ 4 and 5↦ 5;

• N ♭ is the category of natural transformations generated by a ternary
natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting σ♭Σ ∶{0,1,2,3,4,5}3 → {0,1,2,3,4,5} be given by

σ♭Σ(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4, if x = y or {x, y} = {4,5}
or ((x, y) = (1,4) and z = 0,1,4,5)
or ((x, y) = (1,5) and z = 0,1,4,5)

2, else if {x, y} ⊆ {2,3,4,5}
or (x, y) = (1,2) or (x, y) = (1,3)

0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{4,5},{2,3,4,5},{0,1,2,3,4,5}}.
Note that all three theory families, Thm(I), T = {{2,3,4,5}} and SEN♭, are
also theory systems. So I is a systemic π-institution.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two dis-
tinguished arguments. We show that I♭ has the global (family or system)
syntactic regularity in I, but it does not have the local (family or system)
syntactic regularity in I.

Concerning global equivalence, the defining conditions for reflexivity, sym-
metry and transitivity of I♭ in I are all trivially satisfied for SEN♭. For the
theory system Thm(I), it suffices to observe that the relation of global equiv-
alence modulo Thm(I) is the binary relation on SEN♭(Σ) depicted on the
left graph in the figure. Moreover, the relation of global equivalence modulo

T is the binary relation on SEN♭(Σ) depicted on the right graph in the figure.
Therefore, I♭ has the global system equivalence in I.

Looking at these two graphs and taking into account the definition of σ♭,
we can see that the defining conditions of the global compatibility and the
global modus ponens are also satisfied for all three theory systems.

For global regularity, note again that the defining condition is trivially sat-
isfied for SEN♭, that σ♭Σ[φ,ψ] ≤ Thm(I), if φ,ψ ∈ {4,5}, and that σ♭Σ[φ,ψ] ≤
T , if φ,ψ ∈ {2,3,4,5}. Thus, we conclude that I♭ has the global regularity in
I and, therefore, I♭ has the global system syntactic regularity in I.

On the other hand, σ♭Σ(1,2, ξ) = 2 ∈ TΣ, for all ξ ∈ SEN♭(Σ), whereas
σ♭Σ(2,1,0) = 0 ∉ TΣ, whence I♭ does not have the local system symmetry in I
and, therefore, a fortiori, fails to satisfy the local system syntactic regularity
in I.

We close with a transfer property for the (uniform) syntactic regularity
properties that we have studied in this section.

Corollary 753 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a (uniform) syntactic regularity property in I if and only if, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corre-
sponding syntactic regularity property in A.

Proof: This follows directly from Corollary 730 and Proposition 747. ∎
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10.16 Modus Fortis

We conclude with the study of versions of the modus fortis (also known as
the Wójcicki or the Rasiowa) property. In the next setion, we call Rasiowa
property the combination of syntactic protoalgebraicity with the modus for-
tis.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that:

• I♭ has the local family modus fortis (local family MF) in I if,
for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

ψ ∈ TΣ implies I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
• I♭ has the local system modus fortis (local system MF) in I if,

for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
ψ ∈ TΣ implies I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family modus fortis (global family MF) in I
if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

ψ ∈ TΣ implies I♭Σ[φ,ψ] ≤ T ;

• I♭ has the global system modus fortis (global system MF) in I
if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

ψ ∈ TΣ implies I♭Σ[φ,ψ] ≤ T.
We give now the hierarchy of modus fortis properties.

Proposition 754 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the global family MF, then it has the local family MF in I;

(b) If I♭ has the local family MF, then it has the local system MF in I;

(c) I♭ has the global system MF if and only if it has the local system MF
in I.

Proof:
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(a) Suppose that I♭ has the global family MF in I . Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ψ ∈ TΣ. Then, we have,
by hypothesis, I♭Σ[φ,ψ] ≤ T . This implies that I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all

ξ⃗ ∈ SEN♭(Σ). Thus, I♭ has the local family MF in I .

(b) The conclusion follows directly from the fact that every theory system
is a theory family of I .

(c) For the “only if” direction, we repeat the argument used in the proof of
Part (a) except reasoning exclusively in terms of theory systems rather
than using arbitrary theory families.

Suppose, conversely, that I♭ has the local system MF in I . Let T ∈
ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ψ ∈ TΣ. Since T ∈
ThSys(I), for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), SEN♭(f)(ψ) ∈
TΣ′ . Thus, by the local system MF, for all ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆ TΣ′ .
Since this holds, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈
SEN♭(Σ′), we get that I♭Σ[φ,ψ] ≤ T , Therefore, I♭ has the global system
MF in I .

∎

Proposition 754 has established the following hierarchy of Modus Fortis
properties:

Global Family MF

Local Family MF
❄

System MF
❄

We also note the following regarding natural sufficient conditions under
which some of these properties coincide.

Proposition 755 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments. If I is systemic,
then all three modus fortis properties coincide.

Proof: If I is systemic, then the (global) system MF coincides with the
family MF property and this causes the collapsing of the hierarchy. ∎

So in the case of a systemic π-institution I , there is only one possible
modus fortis property.
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We provide some examples to show that the implications of Proposition
754 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding modus fortis properties are proper inclusions.

We first present an example to show that there is π-institution I with
a set of natural transformations that has the local family MF but not the
global family MF in I .

Example 756 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = 2 or y = 2
1, if x ≠ 2 and y = 1
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-

guished arguments.
I has three theory families, but only Thm(I) and SEN♭ are theory sys-

tems. We show that I♭ has the local family modus fortis, but it does not have
the global family modus fortis in I.
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For the local family MF note, first, that, for all x ∈ SEN♭(Σ), σ♭Σ(x,2) = 2,
which takes care of Thm(I), and that the case of SEN♭ is trivial. So we
only need to check the case with T = {{1,2}}. Since, for all x ∈ SEN♭(Σ),
σ♭Σ(x,2) = 2 and, also, σ♭Σ(0,1) = σ♭Σ(1,1) = 1 and σ♭Σ(2,1) = 2, the defining
condition for local family MF is also satisfied for T = {{1,2}}. Therefore, I♭

has the local family MF in I.
On the other hand, we have 1 ∈ {1,2} but σ♭Σ(SEN♭(f)(0),SEN♭(f)(1)) =

σ♭Σ(0,0) = 0 ∉ {1,2}. Thus, 1 ∈ T , but σ♭Σ[0,1] ≰ T , which shows that I♭ does
not have the global family MF in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the system modus fortis but
not the local family modus fortis in I .

Example 757 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all a, b ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if x = 2 or y = 2
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
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I has three theory families Thm(I), T = {{1,2}} and SEN♭, but only two
theory systems Thm(I) and SEN♭. We show that I♭ has the (local) system
MF in I, but it does not have the local family MF in I.

For the local system MF note that, for all x ∈ SEN♭(Σ), σ♭Σ(x,2) = 2,
which takes care of Thm(I), and that the case of SEN♭ is trivial.

On the other hand, for the local family MF, note that 1 ∈ TΣ = {1,2}, but
σ♭Σ(0,1) = 0 ∉ TΣ. Therefore, I♭ does not have the local family MF in I.

We finally prove a transfer property for modus fortis.

Proposition 758 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has an
MF property in I if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, I has the corresponding MF property in A.

Proof: If I has an MF property in A, for all A, then it has the same
property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that I♭ has the
corresponding MF property in I .

Suppose, conversely, that I♭ has an MF property in I . We look at each
of the three properties in turn.

(a) Suppose I♭ has the global family MF in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(ψ) ∈ TF (Σ). Then ψ ∈
α−1Σ (TF (Σ)). Since, by Lemma 51, α−1(T ) ∈ ThFam(I), we get by global
family MF, I♭Σ[φ,ψ] ≤ α−1(T ). Thus, by Lemma 95,

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
We conclude that I has the global family MF in A.

(b) Suppose I♭ has the local family MF in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(ψ) ∈ TF (Σ). Then
ψ ∈ α−1Σ (TF (Σ)). Since α−1(T ) ∈ ThFam(I), we get by local family
MF, that

I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ).
Thus, αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ) or, equivalently,

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ), for all ξ⃗ ∈ SEN♭(Σ).
It follows, taking into account the surjectivity of ⟨F,α⟩, that I has the
local family MF in A.

(c) The system MF follows analogously, taking into account the fact that
if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I). ∎
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10.17 The Rasiowa Property

In this section we focus again on the four uniform syntactic protoalgebraicity
properties, LF SPA, LS SPA, GF SPA and GS SPA, and we add to those
versions of the modus fortis property to obtain several versions of the Rasiowa
property.

By previous work, we know that the four uniform SPA properties consti-
tute the hierarchy shown on the left below.

LF SPA GF Modus Fortis

✠�
�
� ❅

❅
❅❘

LS SPA GF SPA LF Modus Fortis
❄

❅
❅
❅❘ ✠�

�
�

GS SPA SYS Modus Fortis
❄

Moreover, by our study of modus fortis, we know that the various versions
of modus fortis (MF) fall into the linear hierarchy shown on the right of the
diagram.

By combining syntactic protoalgebraicity with MF properties, we obtain
twelve Rasiowa properties as follows. Let X ∈ {LF,LS,GF,GS} and Y ∈{LF,GF,SYS}, where LF stands for “Local Family”, LS stands for “Local
System”, GF stands for “Global Family”, GS stands for “Global System”
and SYS stands for “SYStem”, abbreviating both the local and the global
system properties, when they are identical.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that I♭ has the XY
Rasiowa property in I (XY RW in I), or that I♭ is XY Rasiowan in
I , if it has

• the X syntactic protoalgebraicity in I ;

• the Y modus fortis in I .

Based on the hierarchies of the syntactic protoalgebraicity and MF prop-
erties, we obtain the following a priori hierarchical structure for the various
flavors of the Rasiowa property.

Corollary 759 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The twelve Rasiowa
properties form the hierarchy shown on the accompanying diagram.
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Proof: This follows directly from Corollary 726 and Proposition 754. ∎

LFGF RW

✙✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❥
LSGF RW LFLF RW

❄
GFGF RW

✙✟✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅
❅❘

❍❍❍❍❍❍❍❥

✠�
�
�
�
�
�
�

LSLF RW
❄

LFSYS RW
❄

GFLF RW
❄

✙✟✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅
❅❘

❍❍❍❍❍❍❍❥

✠�
�
�
�
�
�
�

LSSYS RW
❄

GSGF RW GFSYS RW
❄

❅
❅
❅
❅
❅
❅
❅❘ ✠�

�
�
�
�
�
�

GSLF RW
❄

GSSYS RW
❄

It turns out that all these classes collapse to a single class! Indeed, as
we show next, the only π-institutions, with a set of natural transformations
having two distinguished arguments, satisfying the global system syntactic
protoalgebraicity and the system modus fortis are the inconsistent ones. As
a consequence, they also satisfy the local family syntactic protoalgebraicity
and the global family modus fortis.

Proposition 760 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of
natural transformations in N ♭ having two distinguished arguments. If I♭ has
the GSSYS Rasiowa property in I, then I is inconsistent.

Proof: Let Σ ∈ ∣Sign♭∣. Since I♭ is reflexive, I♭Σ(φ,φ, ξ⃗) ⊆ ThmΣ(I), for

all φ, ξ⃗ ∈ SEN♭(Σ). Thus, ThmΣ(I) ≠ ∅. Fix t ∈ ThmΣ(I). Then, for all
φ ∈ SEN♭(Σ), we get, using the SYS Rasiowa property, I♭Σ[φ, t] ≤ Thm(I).
Then, by GS symmetry, I♭Σ[t, φ] ≤ Thm(I). Thus, by GS modus ponens, we
get φ ∈ ThmΣ(I). Since this holds for all φ ∈ SEN♭(Σ), we conclude that
Thm(I) = SEN♭ and, therefore, I is inconsistent. ∎

So the hierarchy of Corollary 759 consists actually of a single property,
which we call the Rasiowa property, and the only π-institutions satisfying
that property are the inconsistent ones.

The Rasiowa property also transfers.

Corollary 761 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
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distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭

has the Rasiowa property in I if and only if, for every algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the Rasiowa property in
A.

Proof: This follows directly from Corollary 730 and Proposition 758. ∎

10.18 Modus Fortis and Regularity

Recall the hierarchies of the regularity and modus fortis properties that we
have introduced previously. These are depicted again below.

GF Regularity GF MF

LF Regularity
❄

LF MF
❄

SYS Regularity
❄

SYS MF
❄

The various versions of these three properties are not independent. In
fact the modus fortis properties imply the corresponding regularity prop-
erties. We prove these straightforward dependencies in the following two
propositions.

Proposition 762 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the global family MF, then it has the global family regularity
in I;

(b) If I♭ has the local family MF, then it has the local family regularity in
I;

(c) If I♭ has the system MF, then it has the system regularity in I.

Proof: We only provide a proof for Part (a), since Parts (b) and (c) can be
proved in essentially the same way. So suppose that I♭ has the global family
modus fortis in I and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that φ,ψ ∈ TΣ. Since ψ ∈ TΣ and I♭ has the global family modus fortis
in I , we get that I♭Σ[φ,ψ] ≤ T . This show that I♭ has the global family
regularity in I . ∎
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Proposition 762 together with the previously established hierarchies of
regularity and modus fortis properties, establish the following combined hi-
erarchy of these properties.

GF MF

✠�
�
� ❅

❅
❅❘

LF MF GF Regular

✠�
�
� ❅

❅
❅❘ ✠�

�
�

SYS MF LF Regular

❅
❅
❅❘ ✠�

�
�

SYS Regular

Recall, now that, if I is systemic, all three versions of regularity and
modus fortis are identified. Therefore, in the case of a systemic π-institution
I with a set I♭ of natural transformations having two distinguished argu-
ments, the hierarchy above reduces to simply

Modus Fortis

Regular
❄

On the other hand, since the property of being parameter-free does not
affect either the regularity or the Modus Fortis hierarchies, it has no effect
on the mixed hierarchy either.

We present an example of a π-institution I , with a set I♭ of natural trans-
formations, having two distinguished variables, that has the global family
regularity property in I , but does not have the system modus fortis property
in I .

Example 763 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 1, if x = y
0, if x ≠ y .
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Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. Consider
the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.

I has two theory families Thm(I) and SEN♭, both of which are theory
systems. So it is a systemic π-institution. We show that I♭ has the global
family regularity in I, but it does not have the system modus fortis in I.

For the global family regularity, note that the condition is trivial when
T = SEN♭, whereas for T = Thm(I), if φ = ψ = 1 ∈ ThmΣ(I), we have
σ♭Σ(1,1) = 1, which gives σ♭Σ[1,1] ≤ Thm(I). Thus, I♭ is indeed global family
regular in I.

On the other hand, note that 1 ∈ ThmΣ(I), but σ♭Σ(0,1) = 0 ∉ ThmΣ(I).
Therefore, I♭ does not have the system MF in I.

10.19 Regularity and Invertibility

Recall the hierarchies that we have introduced previously based on invert-
ibility and regularity. These are depicted again below.

LF Invertibility GF Regularity

LS Invertibility
❄

GF Invertibility LF Regularity
❄

❅
❅
❅❘ ✠�

�
�

GS Invertibility SYS Regularity
❄

Connecting the regularity with the invertibility conditions requires ad-
ditional hypotheses. Namely, we will suppose that the π-institution under
consideration has natural theorems and satisfies some form of the modus
ponens property.

Proposition 764 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, having natural theorems, and I♭ ∶



Voutsadakis CHAPTER 10. ELEMENTS OF SYNTAX 781

(SEN♭)ω → SEN♭ a set of natural transformations in N ♭ having two dis-
tinguished arguments.

(a) If I♭ has the global family modus ponens and the global family regularity,
then it has the global family invertibility in I;

(b) If I♭ has the local family modus ponens and the local family regularity,
then it has the local family invertibility in I;

(c) If I♭ has the local system modus ponens and the system regularity, then
it has the local system invertibility in I;

(d) If I♭ has the global system modus ponens and the system regularity, then
it has the global system invertibility in I.

Proof: We only provide a proof for Part (a), since Parts (b)-(d) can be
proved in essentially the same way. Let ⊺♭ ∶ SEN♭ → SEN♭ be a natural
theorem and suppose that I♭ has the global family modus ponens and the
global family regularity in I . Consider the singleton τ ♭ ∶ SEN♭ → (SEN♭)2 of
natural transformations in N ♭, given by

τ ♭ = {⊺♭ ≈ ι},
where ι ∶ SEN♭ → SEN♭ is the identity natural transformation. Let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).

• If φ ∈ TΣ, then, since ⊺♭Σ(φ) ∈ ThmΣ(I) ⊆ TΣ, we get, by global family
regularity, I♭Σ[⊺♭Σ(φ), φ] ≤ T , i.e., I♭Σ[τ ♭Σ(φ)] ≤ T .

• Suppose, conversely, that I♭Σ[τ ♭Σ(φ)] ≤ T . Then I♭Σ[⊺♭Σ(φ), φ] ≤ T . Since
⊺♭Σ(φ) ∈ TΣ, we get, by global family modus ponens, φ ∈ TΣ.

We conclude that φ ∈ TΣ if and only if I♭Σ[τ ♭Σ(φ)] ≤ T . Thus, I♭ has the global
family invertibility in I , with witnessing set of natural transformations τ ♭.
∎

10.20 The Algebraic Hierarchy

Recall the three hierarchies that we have introduced previously based on
uniform combinations of the syntactic protoalgebraizability properties and
the invertibility, regularity and modus fortis properties. These formed the
hierarchies of syntactically algebraizable (SA), syntactically regular (SR) and
Rasiowa properties, respectively. The first two are depicted again below,
whereas the last consists of a single property, which, as we saw in Proposition
760, is characteristic of inconsistent π-institutions.
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LF SA LF SR

LS SA
❄

GF SA LS SR
❄

GF SR

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

GS SA GS SR

The various versions of these three properties are not independent. Since,
as was shown in Proposition 762, the modus fortis properties imply the corre-
sponding regularity properties and, as was shown in Proposition 764, regular-
ity properties, fortified with some form of the modus ponens, imply the cor-
responding invertibility properties, we obtain ensuing relationships between
the Rasiowa, syntactic regularity and syntactic algebraizability properties.

Corollary 765 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments. If I♭ has the
Rasiowa property, then it has all four syntactic regularity properties.

Proof: Directly from the definitions and Proposition 762. ∎

Corollary 766 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. If I♭ has a syntactic
regularity property, then it has the corresponding syntactic algebraizability
property in I.

Proof: We present in detail the reasoning for the global family versions.
Suppose that I♭ is a set of natural transformations, with two distinguished
arguments, having the global family syntactic regularity in I . Note that,
by global family syntactic protoalgebraicity, for all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ), I♭Σ[φ,φ] ≤ Thm(I). Thus, I has natural theorems. Moreover, by
the definition of global family syntactic regularity, I♭ has both the global
family modus ponens and the global family regularity in I . It follows now,
by Proposition 764, that I♭ has the global family invertibility in I . Thus, it
also has the global family syntactic algebraizability in I . ∎

Corollaries 765 and 766 together with the previously established hierar-
chies of syntactic algebraizability, syntactic regularity and Rasiowa proper-
ties, establish the following combined hierarchy of these properties.
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RW

✮✏✏✏✏✏✏✏✏✏✏
❏
❏
❏
❏
❏
❏
❏❫

LF SR
❩❩❩❩⑦

LF SA
❄

LS SR GF SR
❩❩❩❩⑦

❩❩❩❩⑦ ❂✚✚
✚✚

LS SA
❄

GS SR GF SA
❄

❩❩❩❩⑦ ❂✚✚
✚✚

GS SA
❄

Recall, now that, if I is systemic, then the two local versions and the two
global versions of syntactic algebraizability become identified and that the
same holds for syntactic regularity. Therefore, in the case of a systemic π-
institution I with a set I♭ of natural transformations having two distinguished
arguments, the hierarchy above reduces to the simpler hierarchy shown on
the left below.

RW RW

❂✚✚
✚✚ ❩❩❩❩⑦

LC SR
❄

LF SR GF SR
❩❩❩❩⑦

❩❩❩❩⑦ ❂✚✚
✚✚

GB SR
❄

LC SA LF SA
❄

SYS SR GF SA
❄

❩❩❩❩⑦

❩❩❩❩⑦ ❂✚✚
✚✚

GB SA
❄

SYS SA
❄

Furthermore, the property of being parameter-free has the effect of col-
lapsing the two versions of system syntactic algebraizability and the two
versions of system syntactic regularity properties. Thus, the hierarchy of the
three properties for parameter-free sets of natural transformations I♭ in I is
given by the diagram shown on the right above.

We present some examples to show that all inclusions in the diagram of
the hierarchy of Rasiowa, syntactic regularity and syntactic algebraizablity
properties are proper in general.

We first present an example of a π-institution I , with a set I♭ of natural
transformations, with two distinguished arguments, that has the local and
global family syntactic regularity properties in I , but does not have the
Rasiowa property in I .
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Example 767 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 1, if x = y
0, if x ≠ y .

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. I has
two theory families Thm(I) and SEN♭, both of which are theory systems. So
it is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
We show that I♭ has (all kinds of) the syntactic regularity in I, but it does
not have the Rasiowa property in I.

First, we look at the equivalence property. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that equivalence
modulo Thm(I) coincides with the identity relation on SEN♭(Σ). Therefore,
I♭ has the local system equivalence in I.

The fact that equivalence modulo Thm(I) is the identity relation immedi-
ately implies that I♭ also has the compatibility property and the modus ponens
in I.

Finally, for regularity, note that the defining condition is trivially satisfied
for SEN♭, whereas, for Thm(I), we clearly have that, if φ,ψ ∈ ThmΣ(I), then
φ = ψ = 1, whence σ♭Σ(φ,ψ) = 1 ∈ ThmΣ(I). Therefore I♭ has the regularity
property in I and, therefore, we conclude that I♭ has the syntactic regularity
in I.
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On the other hand, since I is not an inconsistent π-institution, I♭ does
not have the Rasiowa property in I.

Next, we look at an example of a π-institution I , with a set I♭ of natural
transformations, with two distinguished arguments, that has the local and
global family syntactic algebraizability properties in I , but does not possess
the global system syntactic regularity in I .

Example 768 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by let-
ting λ♭Σ ∶ {0,1,2}→ {0,1,2} be given, for all x ∈ SEN♭(Σ), by

λ♭Σ(x) = { 2, if x = 2
1, otherwise

;

– a binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by
letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all x, y ∈ SEN♭(Σ),
by

σ♭Σ(x, y) = { 2, if x = y
0, if x ≠ y .

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1,2},{0,1,2}}. I
has two theory families Thm(I) and SEN♭, both of which are theory systems.
So it is a systemic π-institution.
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Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
We show that I♭ has (all kinds of) the syntactic algebraizability in I, but it
does not have (any kind of) the syntactic regularity in I.

First, we look at the equivalence property. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that equivalence
modulo Thm(I) coincides with the identity relation on SEN♭(Σ). Therefore,
I♭ has the local system equivalence in I.

The fact that equivalence modulo Thm(I) is the identity relation immedi-
ately implies that I♭ also has the compatibility property and the modus ponens
in I.

Finally, for invertibility, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural
transformations in N ♭, defined by τ = {ι ≈ λ♭}. Note that the defining con-
dition is trivially satisfied for SEN♭, whereas, for Thm(I), we clearly have
that,

φ ∈ ThmΣ(I) iff σ♭Σ(φ,λ♭Σ(φ)) ∈ ThmΣ(I).
Therefore, I♭ has the invertibility and, hence, the syntactic algebraizability
property in I.

On the other hand, we have 1,2 ∈ ThmΣ(I), but σ♭Σ(1,2) = 0 ∉ ThmΣ(I).
Therefore, I♭ fails to have the regularity property and, hence, a fortiori, does
not have the syntactic regularity property in I.


