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12.1 Translations

In this section we discuss translations, interpretations and equivalence that
will be used later in the context of algebraizable π-institutions. In the context
of algebraizability, the algebraic counterparts of π-institutions may consist
of algebraic closure families that lack the property of structurality, i.e., they
are not closure systems, as introduced previously. Since these closure families
are not structural in general, the corresponding algebraic structures do not
constitute π-institutions. To accommodate these, we deal with more general
structures that include all π-institutions, but also pairs of algebraic systems
and closure families that are non-structural. We call these π-structures.

Definition 888 A π-structure K = ⟨K,D⟩ is a pair consisting of:

• an algebraic system K = ⟨Sign,SEN,N⟩;
• a ∣Sign∣-indexed family D = {DΣ}Σ∈∣Sign∣ of closure operators DΣ ∶
PSEN(Σ)→ PSEN(Σ), Σ ∈ ∣Sign∣.

Such a family D is called a closure family on K.

Let K = ⟨Sign,SEN,N⟩ and K′ = ⟨Sign′,SEN′,N ′⟩ be two algebraic
systems. A translation α ∶ K→K′ is a collection

α = {αΣ}Σ∈∣Sign∣,
where, for all Σ ∈ ∣Sign∣,

αΣ ∶ SEN(Σ)→ SenFam(K′)
assigns to each Σ-sentence φ of K a sentence family

αΣ[φ] = {αΣ,Σ′[φ]}Σ′∈∣Sign′∣.

For Σ ∈ ∣Sign∣, Φ ⊆ SEN(Σ), we set

αΣ[Φ] =⋃{αΣ[φ] ∶ φ ∈ Φ},
where the union is, as usual, taken signature-wise and, hence, αΣ[Φ] ∈

SenFam(K′). More generally, for T ∈ SenFam(K), we set

α[T ] =⋃{αΣ[TΣ] ∶ Σ ∈ ∣Sign∣}.
Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and

K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K,K′, respectively. An
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interpretation α ∶ K → K′ is a translation α ∶ K → K′, such that, for all
Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ DΣ(Φ) iff αΣ[φ] ≤D′(αΣ[Φ]).
If such an interpretation exists, then K is said to be interpretable in K′.

Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and
K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respectively. Let,
also,

α ∶ K → K′ and β ∶ K′ → K

be interpretations from K to K′ and from K′ to K, respectively. α and β are
said to be inverses of each other and the pair (α,β) ∶ K ⇄ K′ is referred to
as a conjugate pair if:

• for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
D(φ) =D(β[αΣ[φ]]);

• for all Σ′ ∈ ∣Sign′∣ and all ψ ∈ SEN′(Σ′),
D′(ψ) =D′(α[βΣ′[ψ]]).

The π-structures K and K′ are called equivalent if there exists a conjugate

pair K
(α,β)
⇄ K′.

Lemma 889 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and α ∶ K→K′, β ∶ K′ →K translations. The following are equivalent:

(i) α ∶ K → K′ is an interpretation and, for all Σ′ ∈ ∣Sign′∣, ψ ∈ SEN′(Σ′),
D′(ψ) = D′(α[βΣ′[ψ]]);

(ii) β ∶ K′ → K is an interpretation and, for all Σ ∈ ∣Sign∣, φ ∈ SEN(Σ),
D(φ) = D(β[αΣ[φ]]).

Proof: By symmetry, it suffices to show (i)⇒(ii).
Suppose, first, that Σ′ ∈ ∣Sign′∣ and Ψ ∪ {ψ} ⊆ SEN′(Σ′). Then, we have

ψ ∈ D′Σ′(Ψ) iff D′(ψ) ≤D′(Ψ)
iff D′(α[βΣ′[ψ]]) ≤D′(α[βΣ′[Ψ]])
iff α[βΣ′[ψ]] ≤D′(α[βΣ′[Ψ]])
iff βΣ′[ψ] ≤ D(βΣ′[Ψ]).

So β ∶ K′ → K is an interpretation.
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Assume, next, that Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then, by the hypothesis
applied to αΣ[φ] ∈ SenFam(K′), we have

D′(α[β[αΣ[φ]]]) =D′(αΣ[φ]).
Hence, we get that

αΣ[φ] ≤D′(α[β[αΣ[φ]]]) and α[β[αΣ[φ]]] ≤D′(αΣ[φ]).
Therefore, by the fact that α is an interpretation,

φ ∈ DΣ(β[αΣ[φ]]) and β[αΣ[φ]] ≤ D(φ).
So we conclude that D(φ) = D(β[αΣ[φ]]). ∎

Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and
α ∶ K→K′ a translation. Define the residual α∗ of the translation α,

α∗ ∶ SenFam(K′)→ SenFam(K)
by letting, for all T ′ ∈ SenFam(K′),

α∗(T ′) = {α∗Σ(T ′)}Σ∈∣Sign∣
be given, for all Σ ∈ ∣Sign∣, by

α∗Σ(T ′) = {φ ∈ SEN(Σ) ∶ αΣ[φ] ≤ T ′}.
The following proposition shows that, when applied to interpretations

between π-structures the star operator restricts to mappings from theory
families to theory families.

Proposition 890 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be al-
gebraic systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′,
respectively, and α ∶ K → K′ an interpretation. Then, for all T ′ ∈ ThFam(K′),
α∗(T ′) ∈ ThFam(K).
Proof: Suppose T ′ ∈ ThFam(K′) and let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such
that φ ∈DΣ(α∗Σ(T ′)). Then, since α ∶ K → K′ is an interpretation, we have

αΣ[φ] ≤D′(α[α∗Σ(T ′)]) ≤D′(T ′) = T ′.
Hence φ ∈ α∗Σ(T ′). Since Σ ∈ ∣Sign∣ was arbitrary, we conclude that α∗Σ(T ′) ∈
ThFam(K). ∎

In addition, we show that, when (α,β) ∶ K ⇄ K′ form a conjugate pair,
then β∗ ∶ ThFam(K) → ThFam(K′) and α∗ ∶ ThFam(K′) → ThFam(K) are
inverse mappings.
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Lemma 891 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and (α,β) ∶ K ⇄ K′ a conjugate pair. Then, for all T ∈ ThFam(K),

α∗(β∗(T )) = T.
Proof: Suppose (α,β) ∶ K ⇄ K′ is a conjugate pair, T ∈ ThFam(K) and let
Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then we have

φ ∈ α∗Σ(β∗(T )) iff αΣ[φ] ≤ β∗(T )
iff β[αΣ[φ]] ≤ T
iff D(β[αΣ[φ]]) ≤ T
iff DΣ(φ) ≤ TΣ
iff φ ∈ TΣ.

Thus, we conclude that α∗(β∗(T )) = T . ∎

Based on Lemma 891, we can show that β∗ ∶ ThFam(K) → ThFam(K′)
and α∗ ∶ ThFam(K′)→ ThFam(K) are bijections.

Lemma 892 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, re-
spectively, and (α,β) ∶ K ⇄ K′ a conjugate pair. Then α∗ ∶ ThFam(K′) →
ThFam(K) is a bijection.

Proof: Let (α,β) ∶ K ⇄ K′ be a conjugate pair. First, by Proposition 890,
α∗ ∶ ThFam(K′) → ThFam(K) is well-defined. To see that it is surjective,
let T ∈ ThFam(K). Then, by Proposition 890, β∗(T ) ∈ ThFam(K′) and, by
Lemma 891, α∗(β∗(T )) = T . Thus, α∗ is indeed surjective. For injectivity,
assume S′, T ′ ∈ ThFam(K′), such that α∗(S′) = α∗(T ′). Then, by surjec-
tivity, there exist S,T ∈ ThFam(K), such that β∗(S) = S′ and β∗(T ) = T ′.
Therefore, we get

S = α∗(β∗(S)) = α∗(S′) = α∗(T ′) = α∗(β∗(T )) = T.
But then we get S′ = β∗(S) = β∗(T ) = T ′. we conclude that α∗ is also
injective and, hence, it is a bijection. ∎

In the main theorem of this section, it is shown that if K and K′ are equiva-
lent π-structures via a conjugate pair (α,β) ∶ K ⇄ K′, then β∗ ∶ ThFam(K)→
ThFam(K′) and α∗ ∶ ThFam(K′)→ ThFam(K) form a pair of mutually in-
verse order isomorphisms between the complete lattices of the corresponding
theory families.

Recall that, given a π-institution I , we denote by

ThFam(I) = ⟨ThFam(I),≤⟩
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the complete lattice of theory families of I ordered by signature-wise in-
clusion. We extend the notation to the collections of theory families of π-
structures. Thus, given a π-structure K = ⟨K,D⟩, we define

ThFam(K) = ⟨ThFam(K),≤⟩.
Theorem 893 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and (α,β) ∶ K ⇄ K′ a conjugate pair. Then

β∗ ∶ ThFam(K)→ ThFam(K′) and α∗ ∶ ThFam(K′)→ ThFam(K)
are mutually inverse order isomorphisms.

Proof: We know, by Lemma 892, that β∗ and α∗ are mutually inverse
bijections. Moreover, by definition, they are both order preserving. Thus,
each is also order-reflecting, since, e.g., for all S′, T ′ ∈ ThFam(K′),

α∗(S′) ≤ α∗(T ′) implies β∗(α∗(S′)) ≤ β∗(α∗(T ′))
implies S′ ≤ T ′,

the latter implication following by Lemma 891. ∎

Conversely, it is true that given mutually inverse order isomorphisms
between the complete lattices of two π-structures, one may define a conjugate
pair between the two that establishes this order-isomorphism via the process
that was described above. We provide, next, more details on this inverse
process.

Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems,
K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respectively, and

h ∶ ThFam(K′)→ ThFam(K)
an order isomorphism between the corresponding complete lattices of theory
families.

Define
Ð→
h = {Ð→h Σ}Σ∈∣Sign∣ by letting, for all Σ ∈ ∣Sign∣,

Ð→
h Σ ∶ SEN(Σ) → SenFam(K′)

be given, for all φ ∈ SEN(Σ), by

Ð→
h Σ[φ] = h−1(D(φ)).

Further, define
←Ð
h = {←Ðh Σ′}Σ′∈∣Sign′∣ by letting, for all Σ′ ∈ ∣Sign′∣,

←Ð
h Σ′ ∶ SEN′(Σ′)→ SenFam(K)
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be given, for all ψ ∈ SEN′(Σ′), by

←Ð
h Σ′[ψ] = h(D′(ψ)).

We show that, the two translations
Ð→
h ∶ K→K′ and

←Ð
h ∶ K′ →K, defined

above, constitute interpretations between the corresponding π-structures.

Lemma 894 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and h ∶ ThFam(K′) → ThFam(K) an order isomorphism. Then
←Ð
h ∶ K′ → K is an interpretation.

Proof: Suppose h ∶ ThFam(K′)→ ThFam(K) is an order isomorphism and
let Σ′ ∈ ∣Sign′∣ and Ψ ∪ {ψ} ⊆ SEN′(Σ′). Then we have

ψ ∈D′Σ′(Ψ) iff D′(ψ) ≤D′(Ψ)
iff h(D′(ψ)) ≤ h(D′(Ψ))
iff h(D′(ψ)) ≤ h(⋁{D′(χ) ∶ χ ∈ Ψ})
iff h(D′(ψ)) ≤ ⋁{h(D′(χ)) ∶ χ ∈ Ψ}
iff
←Ð
h Σ′[ψ] ≤ ⋁{←Ðh Σ′[χ] ∶ χ ∈ Ψ}

iff
←Ð
h Σ′[ψ] ≤D(←Ðh Σ′[Ψ]).

Thus,
←Ð
h ∶ K′ → K is indeed an interpretation. ∎

We now know (by symmetry, based on Lemma 894) that
Ð→
h ∶ K → K′ and

←Ð
h ∶ K′ → K are interpretations. It is, in fact, the case that (Ð→h ,←Ðh ) ∶ K ⇄ K′

form a conjugate pair, as is shown next.

Lemma 895 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and h ∶ ThFam(K′) → ThFam(K) an order isomorphism. Then

(Ð→h ,←Ðh ) ∶ K ⇄ K′ is a conjugate pair.

Proof: By Lemma 889, it suffices to show that
←Ð
h ∶ K′ → K is an interpreta-

tion and that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), D(φ) = D(←Ðh [Ð→h Σ[φ]]).
The former has been shown in Lemma 894. So it suffices to show the latter.
To this end, let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then we have

D(←Ðh [Ð→h Σ[φ]]) = D(←Ðh [h−1(D(φ))])
= D(⋃{←Ðh [χ] ∶ χ ∈ h−1(D(φ))})
= ⋁{h(D′(χ)) ∶ χ ∈ h−1(D(φ))}
= h(⋁{D′(χ) ∶ χ ∈ h−1(D(φ))})
= h(h−1(D(φ)))
= D(φ).
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We conclude that (Ð→h ,←Ðh ) ∶ K ⇄ K′ is a conjugate pair. ∎

Based on Lemma 895, we can now formulate one of the main theorems of
this section to the effect that every order isomorphism between the complete
lattices of theory families of two π-structures gives rise to a conjugate pair
of interpretations that induce the isomorphism via the star construction.

Theorem 896 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and h ∶ ThFam(K′) → ThFam(K) an order isomorphism. Then

(Ð→h ,←Ðh ) ∶ K ⇄ K′ is a conjugate pair, such that
Ð→
h
∗

= h and
←Ð
h
∗

= h−1.

Proof: By Lemma 895, we know that (Ð→h ,←Ðh ) ∶ K ⇄ K′ form a conjugate

pair. We show that
Ð→
h
∗

= h. The equality
←Ð
h
∗

= h−1 may be proved similarly.
To this end, let T ′ ∈ ThFam(K′). Then we have

Ð→
h
∗

Σ(T ′) = {φ ∈ SEN(Σ) ∶Ð→h Σ[φ] ≤ T ′}
= {φ ∈ SEN(Σ) ∶ h−1(D(φ)) ≤ T ′}
= DΣ({φ ∈ SEN(Σ) ∶ h−1(D(φ)) ≤ T ′})
= DΣ({φ ∈ SEN(Σ) ∶D(φ) ≤ h(T ′)})
= DΣ({φ ∈ SEN(Σ) ∶ φ ∈ hΣ(T ′)})
= DΣ(hΣ(T ′))
= hΣ(T ′).

Similarly,
←Ð
h
∗

= h−1. ∎

12.2 Transformations

Let K = ⟨Sign,SEN,N⟩ be an algebraic system and k ≥ 1 be an integer.
Then a power algebraic system

Kk = ⟨Sign,SENk,Nk⟩
is the algebraic system whose sentence functor SENk ∶ Sign → Set is the
k-th direct power of SEN and whose category Nk of natural transformations
consists of k-tuples of natural transformations having the same arity in N .

Let k, ℓ ≥ 1 be integers. A translation α ∶ Kk → Kℓ is called a transfor-
mation if there exists a set

τ ∶ SENω → SENℓ,

in N , with k distinguished arguments, such that, for all Σ ∈ ∣Sign∣ and all
φ⃗ ∈ SEN(Σ)k,

αΣ[φ⃗] = τΣ[φ⃗].
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Moreover a translation α ∶ Kk →Kℓ is called a natural transformation
if it is a parameter-free transformation, i.e., if there exists τ ∶ SENk → SENℓ

in N , such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k,
αΣ[φ⃗] = τΣ[φ⃗].

Based on the results obtained in Section 12.1, we may formulate some
propositions concerning interpretability and equivalence based on transfor-
mations.

Proposition 897 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Fk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is interpretable in K′ via
a transformation if and only if there exists a set τ ∶ SENω → SENℓ, with
k distinguished arguments, such that, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ⃗} ⊆
SEN(Σ)k,

φ⃗ ∈DΣ(Φ) iff τΣ[φ⃗] ≤D′(τΣ[Φ]).
If K is interpretable in K′ as above, then it is equivalent to K′ via a conjugate
pair (τ, I) ∶ K ⇄ K′ of transformations if and only if, for all Σ ∈ ∣Sign∣, all
φ⃗ ∈ SEN(Σ)k and all Ψ ∪ {ψ⃗} ⊆ SEN(Σ)ℓ,

• ψ⃗ ∈D′Σ(Ψ) iff IΣ[ψ⃗] ≤ D(IΣ[Ψ]);
• D′(ψ⃗) = D′(τ[IΣ[ψ⃗]]);
• D(φ⃗) = D(I[τΣ[φ⃗]]).

Proof: This is a restatement of the definition of interpretability under the
additional hypothesis that the corresponding interpretations are transforma-
tions. ∎

Proposition 898 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Kk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is equivalent to K′ via a
conjugate pair (τ, I) ∶ K ⇄ K′ of transformations if and only if one of the
following equivalent conditions hold:

(a) τ ∶ K → K′ is an interpretation and, for all Σ ∈ ∣Sign∣ and all ψ⃗ ∈
SEN(Σ)ℓ, D′(ψ⃗) =D′(τ[IΣ[ψ⃗]]);

(b) I ∶ K′ → K is an interpretation and, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈
SEN(Σ)k, D(φ⃗) = D(I[τΣ[φ⃗]]).

Proof: Directly by Lemma 889. ∎

Taking the point of view of order isomorphisms between lattices of theory
families, we would like to have a concept ensuring that such an isomorphism
is induced not merely by a conjugate pair of translations, as is asserted by
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Theorem 896, but, more emphatically, by a conjugate pair of transformations.
We focus on this task next.

Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K = ⟨Kk,D⟩, K′ =⟨Kℓ,D′⟩ be two π-structures based on Kk, Kℓ, respectively. An order isomor-
phism h ∶ ThFam(K′) → ThFam(K) is called transformational if there
exist sets

• τ ∶ SENω → SENℓ in N , with k distinguished arguments;

• I ∶ SENω → SENk in N , with ℓ distinguished arguments,

such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k and all ψ⃗ ∈ SEN(Σ)ℓ,
Ð→
h Σ[φ⃗] =D′(τΣ[φ⃗]) and

←Ð
h Σ[ψ⃗] =D(IΣ[ψ⃗]).

These conditions are, by definition, equivalent, respectively, to the conditions

h−1(D(φ⃗)) =D′(τΣ[φ⃗]) and h(D′(ψ⃗)) = D(IΣ[ψ⃗]).
In this case, we say that h is induced by (τ, I) ∶ K ⇄ K′. (Note that, since
we will be able to show that (τ, I) is a conjugate pair of transformations,
this notation makes sense.)

In fact, the defining conditions yield some crucial relations between theory
families, as in shown in the following lemma.

Lemma 899 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then, for all
Σ ∈ ∣Sign∣, all Φ ⊆ SEN(Σ)k and all Ψ ⊆ SEN(Σ)ℓ,

h−1(D(Φ)) =D′(τΣ[Φ]) and h(D′(Ψ)) =D(IΣ[Ψ]).
Proof: By symmetry, it suffices to show the first equation. We have, for all
Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ)k,

h−1(D(Φ)) = h−1(⋁φ∈ΦD(φ)) (join in ThFam(K))
= ⋁φ∈Φ h−1(D(φ)) (h−1 order isomorphism)

= ⋁φ∈ΦD′(τΣ[φ]) (h−1(D(φ)) =Ð→h Σ[φ])
= D′(⋃φ∈Φ τΣ[φ]) (join in ThFam(K′))
= D′(τΣ[Φ]). (by definition)

The second equation now follows by symmetry. ∎

Now we are in a position to show that a transformational order isomor-
phism between the lattices of theory families of two π-structures is induced
by a conjugate pair of transformations between the two π-structures and, as
a consequence, gives rise to an equivalence (τ, I) ∶ K ⇄ K′ via a conjugate
pair of transformations.
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Theorem 900 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then (τ, I) ∶
K ⇄ K′ is a conjugate pair of transformations.

Proof: We use Proposition 898. Let Σ ∈ ∣Sign∣, Φ ∪ {φ⃗} ⊆ SEN(Σ)k and
ψ⃗ ∈ SEN(Σ)ℓ. We then have:

φ⃗ ∈ DΣ(Φ) iff DΣ(φ⃗) ≤DΣ(Φ)
iff h−1(D(φ⃗)) ≤ h−1(D(Φ)) (h order isomorphism)

iff D′(τΣ[φ⃗]) ≤ D′(τΣ[Φ]) (Lemma 899)

iff τΣ[φ⃗] ≤D′(τΣ[Φ]).
Thus, τ ∶ K → K′ is an interpretation. Moreover, we have:

D′(ψ⃗) = h−1(h(D′(ψ⃗))) (h order isomorphism)

= h−1(D(IΣ[ψ⃗])) (h transformational)

= D′(τ[IΣ[ψ⃗]]). (Lemma 899)

We conclude by Proposition 898, that (τ, I) ∶ K ⇄ K′ is a conjugate pair of
transformations. ∎

As a consequence, we have the following

Theorem 901 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then the
π-structures K and K′ are equivalent via the conjugate pair (τ, I) ∶ K ⇄ K′ of
transformations.

Proof: This follows directly by Theorem 900. ∎

Similarly, for interpretability and equivalence based on natural transfor-
mations, we have the following corresponding propositions.

Proposition 902 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Kk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is interpretable in K′ via a
natural transformation if and only if there exists a set τ ∶ SENk → SENℓ in
N , such that, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ⃗} ⊆ SEN(Σ)k,

φ⃗ ∈DΣ(Φ) iff τΣ[φ⃗] ≤D′(τΣ[Φ]).
If K is interpretable in K′ as above, then it is equivalent to K′ via a conjugate
pair (τ, I) ∶ K ⇄ K′ of natural transformations if and only if, for all Σ ∈∣Sign∣, all φ⃗ ∈ SEN(Σ)k and all Ψ ∪ {ψ⃗} ⊆ SEN(Σ)ℓ,

• ψ⃗ ∈D′Σ(Ψ) iff IΣ[ψ⃗] ≤ D(IΣ[Ψ]);
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• D′(ψ⃗) =D′(τ[IΣ[ψ⃗]]);
• D(φ⃗) =D(I[τΣ[φ⃗]]).

Proof: This is a restatement of the definition of interpretability under the ad-
ditional hypothesis that the corresponding interpretations are natural trans-
formations. ∎

Proposition 903 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Kk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is equivalent to K′ via a
conjugate pair (τ, I) ∶ K ⇄ K′ of natural transformations if and only if one
of the following equivalent conditions hold:

(a) τ ∶ K → K′ is an interpretation and, for all Σ ∈ ∣Sign∣ and all ψ⃗ ∈
SEN(Σ)ℓ, D′(ψ⃗) = D′(τ[IΣ[ψ⃗]]);

(b) I ∶ K′ → K is an interpretation and, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈
SEN(Σ)k, D(φ⃗) =D(I[τΣ[φ⃗]]).

Proof: Directly by Lemma 889. ∎

In terms of order isomorphisms between lattices of theory families, we
have analogs of preceding results that allow us to work with isomorphisms
that are induced by conjugate pairs of natural transformations.

Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K = ⟨Kk,D⟩, K′ =⟨Kℓ,D′⟩ be two π-structures based on Kk, Kℓ, respectively. An order iso-
morphism h ∶ ThFam(K′) → ThFam(K) is called natural if there exist
sets

• τ ∶ SENk → SENℓ in N ;

• I ∶ SENℓ → SENk in N ,

such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k and ψ⃗ ∈ SEN(Σ)ℓ,
Ð→
h Σ[φ⃗] =D′(τΣ[φ⃗]) and

←Ð
h Σ[ψ⃗] =D(IΣ[ψ⃗]).

In this case, we say that h is induced by the pair of natural transformations(τ, I) ∶ K ⇄ K′.
Similarly, with the case of a transformational isomorphism, we can show

that a natural order isomorphism between the lattices of theory families of
two π-structures is induced by a conjugate pair of natural transformations
between the two π-structures.

Theorem 904 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
natural order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then (τ, I) ∶ K ⇄ K′

is a conjugate pair of natural transformations.
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Proof: This follows from Theorem 900. ∎

As a consequence, we have the following analog of Theorem 901.

Theorem 905 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
natural order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then the π-structures
K and K′ are equivalent via the conjugate pair (τ, I) ∶ K ⇄ K′ of natural
transformations.

Proof: This follows directly by Theorem 904. ∎

We now revert to the case of a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩
and a π-institution I = ⟨F,C⟩ based on F. Our focus, in this standard con-
text, will be on F itself, on the one hand, and on F2, on the other. In the con-
text of F2, given Σ ∈ ∣Sign♭∣, we sometimes denote a pair ⟨φ,ψ⟩ ∈ SEN♭(Σ)2
in the equational form

φ ≈ ψ.

Given a π-structure Q = ⟨F2,D⟩, we say that Q is equational if the
following five axioms hold:

(R) φ ≈ φ ∈DΣ(∅), for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ);
(S) ψ ≈ φ ∈DΣ(φ ≈ ψ), for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ);
(T) φ ≈ χ ∈ DΣ(φ ≈ ψ,ψ ≈ χ), for all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ);
(C) σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ DΣ({φi ≈ ψi ∶ i < k}), for all σ♭ ∈ N ♭, all Σ ∈ ∣Sign♭∣

and all φi, ψi ∈ SEN♭(Σ), i < k;

(I) SEN♭(f)(φ) ≈ SEN♭(f)(ψ) ∈ DΣ′(φ ≈ ψ), for all Σ,Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′) and all φ,ψ ∈ SEN♭(Σ).

Note that according to the relevant definitions introduced in Chapter 2, the
meaning of (I) is that the Σ′-component of the least theory family including
φ ≈ ψ in its Σ-component includes SEN♭(f)(φ) ≈ SEN♭(f)(ψ).

These properties are termed reflexivity, symmetry, transitivity, com-
patibility and invariance, respectively. The first three ensure that, for
all E ∈ SenFam(F2), D(E) is an equivalence family. The fourth one ensures
that D(E) is a congruence family and the last that it is a congruence system,
i.e., invariant under the action of signature morphisms. In fact, the following
characterization theorem holds, showing that a π-structure is equational if
and only if it is structural and all its closure families are congruence systems
on F if and only if it is the equational π-structure relative to a class K of
F-algebraic systems according to the definition given in Section 2.17.

Theorem 906 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Q =⟨F2,D⟩ a π-structure. The following statements are equivalent:
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(i) Q is equational;

(ii) For all θ ∈ SenFam(Q), D(θ) ∈ ConSys(F);
(iii) For some class K of F-algebraic systems, D =DK.

Proof:

(i)⇒(ii) Suppose Q is equational and let θ ∈ SenFam(Q). We must show that
D(θ) = {DΣ(θ)}Σ∈∣Sign♭∣ is a congruence system on F. To this end,

let Σ ∈ ∣Sign♭∣, φ,ψ,χ ∈ SEN♭(Σ). Since Q is equational, we have
φ ≈ φ ∈DΣ(∅) ⊆DΣ(θ). So DΣ(θ) is reflexive. Suppose, next, that φ ≈
ψ ∈ DΣ(θ). Since Q is equational, we get ψ ≈ φ ∈ DΣ(φ ≈ ψ) ⊆ DΣ(θ).
Hence, DΣ(θ) is also symmetric. Further, if φ ≈ ψ,ψ ≈ χ ∈ DΣ(θ),
then, since Q is equational, we get φ ≈ χ ∈ DΣ(φ ≈ ψ,ψ ≈ χ) ⊆ DΣ(θ).
Thus, DΣ(θ) is also transitive and, hence, an equivalence relation on
SEN♭(Σ).
Suppose, now, that σ♭ ∈ N ♭, φi, ψi ∈ SEN♭(Σ), for i < k, such that φi ≈
ψi ∈ DΣ(θ), for all i < k. Since Q is equational, we get σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈
DΣ({φi ≈ ψi ∶ i < k}) ⊆ DΣ(θ). Hence, DΣ(θ) is a congruence family on
F. Finally, if Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ,ψ ∈ SEN♭(Σ), such
that φ ≈ ψ ∈ DΣ(θ), then, again based on the fact that Q is equational,
we obtain SEN♭(f)(φ) ≈ SEN♭(f)(ψ) ∈ DΣ′(φ ≈ ψ) ⊆ DΣ′(θ), whence
D(θ) is a congruence system on F, as was to be shown.

(ii)⇒(iii) Suppose D satisfies (ii). We construct a class K of F-algebraic systems
as follows. For θ ∈ SenFam(Q), define

F θ = ⟨Fθ, ⟨I, πθ⟩⟩ ∶= ⟨F/D(θ), ⟨I, πD(θ)⟩⟩
and set

K = {F θ ∶ θ ∈ SenFam(Q)}.
Note that the definition of F θ makes sense, since, by hypothesis, D(θ) ∈
ConSys(F), for all θ ∈ SenFam(Q). Our task now is to show that
D = DK. To this end, let Σ ∈ ∣Sign♭∣, θ ∪ {φ ≈ ψ} ⊆ SEN♭(Σ)2.
Suppose, first, that φ ≈ ψ ∈ DΣ(θ) and let θ′ ∈ SenFam(Q), such that

πθ
′

Σ(θ) ⊆ ∆
F/D(θ′)
Σ . This is equivalent to θΣ ⊆DΣ(θ′Σ). Hence, we obtain

φ ≈ ψ ∈ DΣ(θ) ⊆ DΣ(θ′). Thus, πθ
′

Σ (φ) = πθ′Σ (ψ). We conclude that
φ ≈ ψ ∈DK

Σ(θ). Hence, D ≤DK.

Assume, conversely, that φ ≈ ψ ∉ DΣ(θ). Then, clearly, for F θ ∈ K, we

get πθΣ(DΣ(θ)) ⊆ ∆
F/D(θ)
Σ , but πθΣ(φ) ≠ πθΣ(ψ). Hence, φ ≈ ψ ∉ DK

Σ(θ).
Therefore, DK ≤ D and, hence, D =DK.
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(iii)⇒(i) This implication was shown in Proposition 115, which was proven by
appealing to the implication (iii)⇒(ii), which was, in turn, the content
of Proposition 30.

∎

We have the following useful technical lemma, where, for Σ ∈ ∣Sign♭∣ and
φ⃗, ψ⃗ ∈ SEN♭(Σ), we use the abbreviation

φ⃗ ≈ ψ⃗ = {φi ≈ ψi ∶ i < k}.
Lemma 907 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Q =⟨F2,D⟩ an equational π-structure. Then, for all δ♭, ǫ♭ ∶ (SEN♭)ω → SEN♭ in
N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

δ♭Σ(ψ⃗) ≈ ǫ♭Σ(ψ⃗) ∈ DΣ(φ⃗ ≈ ψ⃗, δ♭Σ(φ⃗) ≈ ǫ♭Σ(φ⃗)).
Proof: We have, for all δ♭, ǫ♭ ∶ (SEN♭)ω → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all
φ⃗, ψ⃗ ∈ SEN♭(Σ),

δ♭Σ(ψ⃗) ≈ ǫ♭Σ(ψ⃗) ∈ DΣ(δ♭Σ(ψ⃗) ≈ δ♭Σ(φ⃗), δ♭Σ(φ⃗) ≈ ǫ♭Σ(φ⃗), ǫ♭Σ(φ⃗) ≈ ǫ♭Σ(ψ⃗))
(by transitivity)

⊆ DΣ(φ⃗ ≈ ψ⃗, δ♭Σ(φ⃗) ≈ ǫ♭Σ(φ⃗)).
(by symmetry and compatibility)

This proves the lemma. ∎

Lemma 907 has the following corollary:

Corollary 908 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Q =⟨F2,D⟩ an equational π-structure. Then, for all τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in
N ♭, with k distinguished arguments, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

τ ♭Σ[ψ⃗] ≤ D(φ⃗ ≈ ψ⃗, τ ♭Σ[φ⃗]).
Proof: This follows from Lemma 907, using the reflexivity and the invariance
of the closure family D. ∎

We next show that, if a π-institution I , based on an algebraic system F,
happens to be equivalent to an equational π-structure Q, based on F2, via
a conjugate pair (τ, I) ∶ I ⇄ Q of transformations, then I is syntactically
protoalgebraic with set of witnessing transformations I.

Theorem 909 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and Q = ⟨F2,D⟩ an equational π-structure. If I is
equivalent to Q via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of transformations, then
I is syntactically protoalgebraic with witnessing transformations I♭.
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Proof: By definition, it suffices to show that I♭ ∶ SENω → SEN, with two
distinguished arguments, is reflexive, globally family transitive and has the
global family compatibility and the global family modus ponens in I . To
this end, let Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ). Then we have, in turn:

• By reflexivity of Q, φ ≈ φ ∈ DΣ(∅). Hence, by interpretability, we get
I♭Σ[φ,φ] ≤ C(∅). Therefore, I♭ is reflexive in I ;

• By transitivity of Q, φ ≈ χ ∈DΣ(φ ≈ ψ,ψ ≈ χ). Hence, by interpretabil-
ity, we get I♭Σ[φ,χ] ≤ C(I♭Σ[φ,ψ], I♭Σ[ψ,χ]). Therefore, I♭ is globally
family transitive in I ;

• By the reflexivity and compatibility ofQ, we have, for all σ♭ ∶ (SEN♭)k →
SEN♭ in N and all χ⃗ ∈ SEN♭(Σ), that σ♭Σ(φ, χ⃗) ≈ σ♭Σ(ψ, χ⃗) ∈ DΣ(φ ≈ ψ).
Hence, by interpretability,

I♭Σ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ C(I♭Σ[φ,ψ]).
Therefore, I♭ has the global family compatibility in I ;

• Finally, for global family MP, we have

C(ψ) = C(I♭[τ ♭Σ[ψ]]) (by equivalence)
≤ C(I♭Σ[φ,ψ], I♭[τ ♭Σ[φ]])

(by Lemma 907 and interpretability)
= C(I♭Σ[φ,ψ], φ). (by equivalence)

Thus, for all T ∈ ThFam(I), if φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T , then ψ ∈ TΣ,
i.e., I♭ has the global family modus ponens in I .

We conclude that I is syntactically protoalgebraic with witnessing transfor-
mations I♭. ∎

As a consequence of Theorem 909, we obtain

Corollary 910 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and Q = ⟨F2,D⟩ an equational π-structure. If I
is equivalent to Q via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of natural transfor-
mations, then I is syntactically equivalential with witnessing transformations
I♭.

Proof: By Theorem 909, I is syntactically protoalgebraic with witnessing
transformations I♭. Since I♭ ∶ (SEN♭)2 → SEN♭ is parameter free, we conclude
that I is syntactically equivalential with witnessing transformations I♭. ∎

Using Theorem 909, we can also show that, if a π-institution I , based on
an algebraic system F, happens to be equivalent to an equational π-structure
Q, based on F2, via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of transformations, then
I is family truth equational, with witnessing equations τ ♭.
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Theorem 911 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and Q = ⟨F2,D⟩ an equational π-structure. If I is
equivalent to Q via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of transformations, then
I is family truth equational, with witnessing equations τ ♭.

Proof: By definition, it suffices to show that, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
We, indeed, have, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff I♭[τΣ[φ]] ≤ T ((τ ♭, I♭) ∶ I ⇄ Q an equivalence)
iff τ ♭Σ[φ] ≤ Ω(T ). (by Theorem 909 and Corollary 791)

Therefore, I is family truth equational, with witnessing equations τ ♭. ∎

We close the section by showing that equivalence between a given π-
institution and an equational π-structure established via conjugate pairs of
transformations is essentially unique in the sense that both the closure family
on F2 must be unique and the closures of the translations used must be
identical. More precisely, we have the following

Theorem 912 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Suppose that Q1 = ⟨F2,D1⟩ and Q2 =⟨F2,D2⟩ are equational π-structures that are equivalent to I via the conjugate
pairs ⟨τ 1, I1⟩ ∶ I ⇄ Q1 and ⟨τ 2, I2⟩ ∶ I ⇄ Q2, respectively, of transformations.
Then, we have:

(a) D1 = D2 (=∶ D) and, hence, Q1 = Q2 (=∶ Q);
(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), C(I1Σ[φ,ψ]) = C(I2Σ[φ,ψ]);
(c) For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), D(τ 1Σ[φ]) = D(τ 2Σ[φ]).

Proof: By Theorem 909, we know that both I1 and I2 are witnessing the syn-
tactic protoalgebraicity of I . Thus, by Corollary 791, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

I1Σ[φ,ψ] ≤ T iff ⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I2Σ[φ,ψ] ≤ T.
We conclude that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), C(I1Σ[φ,ψ]) =
C(I2Σ[φ,ψ]), which proves Part (b).

For Part (a), suppose that Σ ∈ ∣Sign♭∣ and E∪{φ ≈ ψ} ⊆ SEN♭(Σ)2. Then,
we have

φ ≈ ψ ∈D1
Σ(E) iff I1Σ[φ,ψ] ≤ C(I1Σ[E]) (interpretability)

iff C(I1Σ[φ,ψ]) ≤ C(I1Σ[E])
iff C(I2Σ[φ,ψ]) ≤ C(I2Σ[E]) (Part (b))
iff I2Σ[φ,ψ] ≤ C(I2Σ[E])
iff φ ≈ ψ ∈ D2

Σ(E). (interpretability)
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Therefore, we get that D1 = D2. This justifies using D ∶= D1 = D2 and since
the π-structures Q1 and Q2, which are both based on F2, have the same
closure families, we obtain Q ∶= Q1 = Q2.

Finally, for Part (c), suppose that Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then,
we have

D(τ 1Σ[φ]) ≤ D(τ 2Σ[φ]) iff τ 1Σ[φ] ≤ D(τ 2Σ[φ])
iff I2[τ 1Σ[φ]] ≤ C(I2[τ 2Σ[φ]]) (interpretability)
iff I2[τ 1Σ[φ]] ≤ C(φ) (equivalence)
iff I1[τ 1Σ[φ]] ≤ C(φ) (Part (b))
iff φ ∈ CΣ(φ). (equivalence)

By symmetry, we have, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), D(τ 1Σ[φ]) =
D(τ 2Σ[φ]). This proves Part (c) and concludes the proof of the theorem. ∎

12.3 Syntactic Weak Family Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. We say that:

• I is RISI-(syntactically) fortified if RI is Leibniz and SI is ade-
quate;

• I is RIṠI-(syntactically) fortified if RI is Leibniz and ṠI is ade-
quate;

• I is R̈ISI-(syntactically) fortified if R̈I is Leibniz and SI is ade-
quate;

• I is R̈IṠI-(syntactically) fortified if R̈I is Leibniz and ṠI is ade-
quate.

Recall that, by Proposition 997, if ṠI is adequate, then SI is adequate.
Moreover, since, by Proposition 952, R̈I ⊆ RI , it follows that, under the
assumption of prealgebraicity, if R̈I is Leibniz, then RI is Leibniz. Thus, we
have the following syntactic fortification hierarchy (in which the dotted
arrows hold under prealgebraicity):

R̈I ṠI-Fortified

✠�
�
�
�

..........❘
R̈ISI-Fortified RIṠI-Fortified

..........❘ ✠�
�
�
�

RISI-Fortified
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I is syntactically weakly family algebraizable (abbreviated to syn-
tactically WF algebraizable) if:

• I is RISI-fortified;

• I is protoalgebraic;

• I is family injective.

By Theorem 288, under protoalgebraicity, the properties of family in-
jectivity, family reflectivity and family c-reflectivity coincide. This enables
us to formulate the following alternative characterization of syntactic WF
algebraizability.

Theorem 913 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if it is syntactically protoalgebraic and family truth equational.

Proof: Assume that I is syntactically WF algebraizable. Then, on the one
hand, it is protoalgebraic and has a Leibniz reflexive core. Thus, by Theorem
805, it is syntactically protoalgebraic. On the other, it is, by Theorem 288,
family c-reflective and has an adequate Suszko core. Therefore, by Theorem
847, it is family truth equational.

Assume, conversely, that I is syntactically protoalgebraic and family
truth equational. Then, by Theorem 805, it is protoalgebraic and has a
Leibniz reflexive core, and, by Theorem 847, it is family c-reflective and has
an adequate Suszko core. Therefore, I is syntactically WF algebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic WF algebraizability classes of π-insti-
tutions.

Theorem 914 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if I is WF algebraizable and RISI-fortified.

Proof: I is syntactically WF algebraizable if and only if, by definition, it is
RISI-fortified, protoalgebraic and family injective, i.e., iff it is, by definition,
RISI-fortified and WF algebraizable. ∎

Previous results, put together, also allow us to provide an alternative
characterization of syntactic weak family algebraizability in terms of isomor-
phisms between complete lattices of theory families.

Theorem 915 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if it is RISI-fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism.
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Proof: We have that I is syntacticaly WF algebraizable if and only if, by
Theorem 914, it is RISI-fortified and WF algebraizable, if and only if, by
Theorem 296, it it RISI-fortified and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism. ∎

Next, we show that syntactic WF algebraizability may also be charac-
terized by the existence of an equivalence between the π-institution and its
algebraic π-structure counterpart via a pair of conjugate transformations.

We embark on the path by defining first the algebraic π-structure QI∗

associated with a given π-institution I . We recall some concepts that we
have already introduced previously which culminate in the definition of QI∗.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall the definition of the class AlgSys∗(I) of all
reduced F-algebraic systems:

AlgSys∗(I) = {A ∶ (∃T ∈ FiFamI(A))(ΩA(T ) =∆A)}.
Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we define the class of I∗-con-
gruence systems on A by

ConSysI∗(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ AlgSys∗(I)}.
It turns out that congruence systems in ConSysI∗(A) have a straightforward
characterization.

Proposition 916 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩,
ConSysI∗(A) = {θ ∈ ConSys(A) ∶ (∃T ∈ FiFamI(A))(ΩA(T ) = θ)}.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a
π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system.

Suppose, first, that θ ∈ ConSysI∗(A). By definition, A/θ ∈ AlgSys∗(I).
Thus, there exists T ′ ∈ FiFamI(A/θ), such that

ΩA/θ(T ′) =∆A/θ.

By applying the inverse of the quotient morphism ⟨I, πθ⟩ ∶ A→ A/θ, we get

(πθ)−1(ΩA/θ(T ′)) = (πθ)−1(∆A/θ).
Since ⟨I, πθ⟩ is surjective, we get by Proposition 24 and by Corollary 55, that(πθ)−1(T ′) ∈ FiFamI(A) and

ΩA((πθ)−1(T ′)) = θ.
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Therefore, there exists T ∈ FiFamI(A), such that ΩA(T ) = θ.
Suppose, conversely, that θ ∈ ConSys(A), with ΩA(T ) = θ, for some T ∈

FiFamI(A). Then, we have ΩA/θ(T /θ) = ∆A/θ and, therefore, by definition,
A/θ ∈ AlgSys∗(I), implying that θ ∈ ConSysI∗(A). ∎

In general, given a π-institution I = ⟨F,C⟩ and an F-algebraic system A,
the family ConSysI∗(A) of I∗-congruence systems on A need not be closed
under signature-wise intersections, i.e., may not form a closure family on A2.
However, we can show that, if I is protoalgebraic, this is always the case.

Proposition 917 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, ConSysI∗(A) is closed under arbitrary intersections
and, therefore, forms a closure family on A2.

Proof: First, note that ConSysI∗(A) has a top element ∇A. To see this,
observe that A/∇A is a trivial algebraic system, which is always a member
of AlgSys∗(I).

It suffices now to show that ConSysI∗(A) is closed under arbitrary inter-
sections. To this end, suppose θi ∈ ConSysI∗(A), for i ∈ I. By Proposition
916, for all i ∈ I, there exists T i ∈ FiFamI(A), such that ΩA(T i) = θi. But,
by Lemma 23 and protoalgebraicity, we get that

ΩA(⋂
i∈I

T i) =⋂
i∈I

ΩA(T i) =⋂
i∈I

θi.

Now, again by Proposition 916, we conclude that ⋂i∈I θi ∈ ConSysI∗(A). ∎

Applying Proposition 917 to the algebraic system F = ⟨F, ⟨I, ι⟩⟩, where⟨I, ι⟩ ∶ F→ F is the identity morphism, we get the following

Corollary 918 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, ConSysI∗(F) is
closed under arbitrary intersections and, therefore, forms a closure family
on F2.

Proof: This is a special case of Proposition 917. ∎

Let I = ⟨F,C⟩ be a protoalgebraic π-institution. We define, in accordance
with Corollary 918, the algebraic π-structure QI∗ associated with I to
be the π-structure

QI∗ = ⟨F2,DI∗⟩,
where DI∗ is the closure (operator) family corresponding to the closure family
ConSysI∗(F).

Our first result in connecting syntactic WF algebraizability with the as-
sociated algebraic π-structure shows that, if a π-institution is syntactically
WF algebraizable, then it is equivalent to its associated algebraic π-structure
via a conjugate pair of transformations.
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Theorem 919 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically WF algebraizable π-institution based on F. Then I is

equivalent to QI∗ via a conjugate pair (τ ♭, ↔I♭) ∶ I ⇄ QI∗ of transformations.
More precisely:

• I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, is a set
of witnessing transformations of the syntactic protoalgebraicity of I;

• τ ♭ ∶ (SEN♭)ω → (SEN♭)2, with a single distinguished argument, is a set
of witnessing equations for the family truth equationality of I.

Proof: Suppose that I is syntactically WF algebraizable. Then, by defini-
tion, I is syntactically protoalgebraic and family truth equational. There-
fore, there exist a set I♭ ∶ (SEN♭)ω → SEN♭ of natural transformations in N ♭,
with two distinguished arguments, witnessing the syntactic protoalgebraicity
of I , and a set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natural transformations in N ♭,
with a single distinguished argument, witnessing family truth equationality.
To verify the conclusion, observe, first, that τ ♭Σ ∶ SEN♭(Σ) → SenFam(F2),
defined, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), as the sentence family

τ ♭Σ[φ] and
↔

I♭Σ ∶ SEN♭(Σ)2 → SenFam(F), defined, for all Σ ∈ ∣Sign♭∣ and all

φ,ψ ∈ SEN♭(Σ), as the sentence family
↔

I♭Σ[φ,ψ] are as required. Therefore,
by Proposition 898, it suffices to show that:

(a) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CΣ(Φ) iff τ ♭Σ[φ] ≤DI∗(τ ♭Σ[Φ]);

(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
DI∗(φ ≈ ψ) = DI∗(τ ♭[↔I♭Σ[φ,ψ]]).

For (a), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Note that, for all T ∈
ThFam(I), we have, by family truth equationality,

Φ ⊆ TΣ iff τ ♭Σ[Φ] ≤ Ω(T );
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).

Therefore, φ ∈ CΣ(Φ) if and only if, for all T ∈ ThFam(I), Φ ⊆ TΣ implies φ ∈
TΣ, if and only if, for all T ∈ ThFam(I), τ ♭Σ[Φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ),
if and only if, by Proposition 916, τ ♭Σ[φ] ≤DI∗(τ ♭Σ[Φ]).

For (b), let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have, for all T ∈
ThFam(I),

φ ≈ ψ ∈ ΩΣ(T ) iff
↔

I♭Σ[φ,ψ] ≤ T (Corollary 791)

iff τ ♭[↔I♭Σ[φ,ψ]] ≤ Ω(T ). (truth equationality)
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Using again Proposition 916, we conclude that

DI∗(φ ≈ ψ) =DI∗(τ ♭[↔I♭Σ[φ,ψ]]).
Therefore I is equivalent to QI∗ via (τ ♭, ↔I♭) ∶ I ⇄ QI∗. ∎

Putting together Theorems 909, 911 and 919, we get the following fun-
damental result to the effect that syntactic WF algebraizability boils down
to the equivalence of a π-institution with its associated algebraic π-structure
via a conjugate pair of transformations.

Theorem 920 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if
and only if it is equivalent to QI∗ via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QI∗ of
transformations.

Proof: If I is equivalent to QI∗ via a conjugate pair of transformations,
then, by Theorem 909, it is syntactically protoalgebraic and, by Theorem
911, it is family truth equational. Therefore, by definition, it is syntactically
WF algebraizable.

If, conversely, I is syntactically WF algebraizable, then, by Theorem 919,
it is equivalent to QI∗ via a conjugate pair of transformations. ∎

We close the section by slightly generalizing the preceding characteriza-
tion. Namely, we show that existence of an equivalence with an algebraic
π-structure induced by conjugate transformations is sufficient to yield syn-
tactic WF algebraizability.

Theorem 921 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if it is equivalent to an algebraic π-structure via a conjugate pair of
transformations.

Proof: If I is syntactically WF algebraizable, then the conclusion follows
from Theorem 920. Conversely, if I is equivalent to an algebraic π-structure
via a conjugate pair of transformations, then it is syntactically protoalgebraic
by Theorem 909 and family truth equational by Theorem 911, whence it is
syntactically WF algebraizable. ∎

Taking into account Theorem 901, we have the following alternative char-
acterization of syntactically WF algebraizable π-institutions:

Theorem 922 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if
and only if there is a transformational order isomorphism h ∶ ThFam(I) →
ThFam(Q), where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 921 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 921. ∎
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12.4 Syntactic Weak Algebraizability

Syntactic WF algebraizability determines one of the highest levels of the
main algebraic hierarchy of π-institutions. Since every syntactically WF al-
gebraizable π-institution is, in particular, family reflective, it follows that
every syntactically WF algebraizable π-institution is systemic. To avoid sys-
temicity, one has to weaken the hypothesis of family reflectivity. In this
section we follow this line of thought by keeping the assumption of syntactic
protoalgebraicity, but insisting only that the π-institution is system truth
equational, rather than family truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that:

• I is RILI-(syntactically) fortified if RI is Leibniz and LI is left
adequate;

• I is RIL̇I-(syntactically) fortified if RI is Leibniz and L̇I is left
adequate;

• I is R̈ILI-(syntactically) fortified if R̈I is Leibniz and LI is left
adequate;

• I is R̈IL̇I-(syntactically) fortified if R̈I is Leibniz and L̇I is left
adequate.

Similarly with the Suszko core, it can be seen that, if L̇I is left adequate,
then LI is left adequate. Moreover, since, by Proposition 952, R̈I ⊆ RI , it
follows that, under the assumption of prealgebraicity, if R̈I is Leibniz, then
RI is Leibniz. Thus, we have the following syntactic left fortification
hierarchy (in which the dotted arrows hold under prealgebraicity):

R̈IL̇I-Fortified

✠�
�
�
�

..........❘
R̈ILI-Fortified RIL̇I-Fortified

..........❘ ✠�
�
�
�

RILI-Fortified

I is syntactically weakly algebraizable (abbreviated to syntacti-
cally W algebraizable) if:

• I is RILI-fortified;

• I is protoalgebraic;
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• I is system injective.

By Corollary 300, under protoalgebraicity, the six properties of system
injectivity, left injectivity, system reflectivity, left reflectivity, system com-
plete reflectivity and left complete reflectivity coincide. This enables us to
formulate the following alternative characterization of syntactic weak alge-
braizability.

Theorem 923 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is syntactically protoalgebraic and system (or, equivalently, left)
truth equational.

Proof: Assume that I is syntactically weakly algebraizable. Then, on the
one hand, it is protoalgebraic and has a Leibniz reflexive core. Thus, by The-
orem 805, it is syntactically protoalgebraic. On the other, it is, by Theorem
300, left c-reflective and has a left adequate left Suszko core. Therefore, by
Theorem ??, it is left truth equational.

Assume, conversely, that I is syntactically protoalgebraic and left truth
equational. Then, by Theorem 805, it is protoalgebraic and has a Leibniz
reflexive core, and, by Theorem 870, it is left c-reflective and has a left
adequate left Suszko core. Therefore, by definition, I is syntactically weakly
algebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic weak algebraizability classes of π-insti-
tutions.

Theorem 924 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if I is weakly algebraizable and RILI-fortified.

Proof: I is syntactically weakly algebraizable if and only if, by definition,
it is RILI-fortified, protoalgebraic and system injective, i.e., iff it is, by
definition, RILI-fortified and weakly algebraizable. ∎

Previous results, put together, also allow us to provide an alternative
characterization of syntactic weak algebraizability in terms of isomorphisms
between complete lattices of theory systems.

Theorem 925 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable
if and only if it is RILI-fortified, stable and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism.



888 CHAPTER 12. SYNTACTIC HIERARCHY II Voutsadakis

Proof: We have that I is syntactically weakly algebraizable if and only if,
by Theorem 924, it is RILI-fortified and weakly algebraizable, if and only
if, by Theorem 298, it it RILI-fortified, stable and, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism. ∎

Next, we show that syntactic weak algebraizability may also be character-
ized by stability in conjunction with the existence of an equivalence between
the systemic skeleton of a π-institution and its algebraic π-structure counter-
part via a pair of conjugate transformations. To start, we define the systemic
skeleton of a given π-institution.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that ThSys(I) forms a complete lattice
ThSys(I) = ⟨ThSys(I),≤⟩ under signature wise inclusion. Therefore, we
are justified in defining the π-structure

KI = ⟨F,KI⟩
of I by stipulating that KI ∶ PSEN → PSEN is the closure family on F

corresponding to the closed set family ThSys(I). We call KI the systemic
skeleton of I .

We give an example to show that, in general, KI is not a π-institution,
since KI ∶ PSEN → PSEN may not satisfy structurality.

Example 926 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be defined as follows:

• Sign♭ is the category with objects Σ,Σ′ and, except the identities, a
morphism f ∶ Σ → Σ and two morphisms g, h ∶ Σ → Σ′, satisfying the
following composition rules:

f ○ f = f, gf = h, hf = h.

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) ={a, b, c} and

x ∈ SEN♭(Σ) SEN♭(f)(x) SEN♭(g)(x) SEN♭(h)(x)
0 0 a a

1 0 b a

2 2 c c

• Finally, N ♭ is the trivial category of natural transformations (consisting
of the projections only).
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Next define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{b, c},{a, b, c}}.
This π-institution has six theory families, having the lattice structure shown
on the left below. It has, however, only three theory systems, whose lattice
structure is given on the right.

SEN♭

�
�
� ❅

❅
❅

12 abc 012 bc
❍❍❍❍❍❍❍❍

2 abc 12 bc

❅
❅
❅ �

�
�

2 bc

SEN♭

2 abc

2 bc

The theory systems of I are the theory families of the systemic skeleton
KI = ⟨F,KI⟩. We can see that KI is not a π-institution by considering
Φ = {1} ⊆ SEN♭(Σ). We have

SEN♭(g)(KIΣ({1})) = SEN♭(g)(⋂{TΣ ∶ {{1},∅} ≤ T ∈ ThSys(I)})
= SEN♭(g)({0,1,2})
= {a, b, c}.

On the other hand,

KIΣ′(SEN♭(g)({1})) = KIΣ′({b})
= ⋂{TΣ′ ∶ {∅,{b}} ≤ T ∈ ThSys(I)}
= {b, c}.
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Therefore

SEN♭(g)(KIΣ({1})) ⊈KIΣ′(SEN♭(g)({1}))
showing that KI is not structural and, hence, KI = ⟨F,KI⟩ is a π-structure,
but not a π-institution.

We now resume our work on the characterization of syntactic weak al-
gebraizability. We will again make use of the algebraic π-structure QI∗ =⟨F2,DI∗⟩ associated with a protoalgebraic π-institution I . Recall that this
is the π-structure whose closure family is the one corresponding to the closure
set family ConSysI∗(F).

Our first result connecting syntactic weak algebraizability of a π-insti-
tution with the associated algebraic π-structure shows that, if a π-institution
is syntactically weakly algebraizable, then its systemic skeleton KI is equiva-
lent to its associated algebraic π-structure QI∗ via a conjugate pair of trans-
formations.

Theorem 927 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically weakly algebraizable π-institution based on F. Then

KI is equivalent to QI∗ via a conjugate pair (τ ♭, ↔I♭) ∶ KI ⇄ QI∗ of transfor-
mations. More precisely:

• I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, is a set
of witnessing transformations of the syntactic protoalgebraicity of I;

• τ ♭ ∶ (SEN♭)ω → (SEN♭)2, with a single distinguished argument, is a set
of witnessing equations for the left truth equationality of I.

Proof: Suppose that I is syntactically weakly algebraizable. Then, by defi-
nition, I is syntactically protoalgebraic and left truth equational. Therefore,
there exist a set I♭ ∶ (SEN♭)ω → SEN♭ of natural transformations in N ♭,
with two distinguished arguments, witnessing the syntactic protoalgebraic-
ity of I , and a set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natural transformations in
N ♭, with a single distinguished argument, witnessing left truth equationality.
To verify the conclusion, observe, first, that τ ♭Σ ∶ SEN♭(Σ) → SenFam(F2),
defined, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), as the sentence family

τ ♭Σ[φ] and
↔

I♭Σ ∶ SEN♭(Σ)2 → SenFam(F), defined, for all Σ ∈ ∣Sign♭∣ and all

φ,ψ ∈ SEN♭(Σ), as the sentence family
↔

I♭Σ[φ,ψ] are as required. Therefore,
by Proposition 898, it suffices to show that:

(a) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈KIΣ(Φ) iff τ ♭Σ[φ] ≤DI∗(τ ♭Σ[Φ]);



Voutsadakis CHAPTER 12. SYNTACTIC HIERARCHY II 891

(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
DI∗(φ ≈ ψ) =DI∗(τ ♭[↔I♭Σ[φ,ψ]]).

For (a), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Note that, for all T ∈
ThSys(I), we have

Φ ⊆ TΣ iff Φ ⊆
←Ð
T Σ (T ∈ ThSys(I))

iff τ ♭Σ[Φ] ≤ Ω(T ) (left truth equationality)

and, similarly,
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).

Therefore, φ ∈ KIΣ(Φ) if and only if, for all T ∈ ThSys(I), Φ ⊆ TΣ implies
φ ∈ TΣ, if and only if, for all T ∈ ThSys(I), τ ♭Σ[Φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤
Ω(T ), if and only if, by stability, for all T ∈ ThFam(I), τ ♭Σ[Φ] ≤ Ω(T ) implies
τ ♭Σ[φ] ≤ Ω(T ), if and only if, by Proposition 916, τ ♭Σ[φ] ≤ DI∗(τ ♭Σ[Φ]).

For (b), let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have, for all T ∈
ThSys(I),

φ ≈ ψ ∈ ΩΣ(T ) iff
↔

I♭Σ[φ,ψ] ≤ T (Corollary 791)

iff
↔

I♭Σ[φ,ψ] ≤←ÐT (T ∈ ThSys(I))
iff τ ♭[↔I♭Σ[φ,ψ]] ≤ Ω(T ). (left truth equationality)

Using again Proposition 916 and stability, we conclude that

DI∗(φ ≈ ψ) =DI∗(τ ♭[↔I♭Σ[φ,ψ]]).
Therefore KI is equivalent to QI∗ via (τ ♭, ↔I♭) ∶ KI ⇄ QI∗. ∎

Towards the converse, we show, first, that, if a π-institution I = ⟨F,C⟩ is
such that there exists an equivalence (τ ♭, I♭) ∶ KI ⇄ Q, via a conjugate pair of
transformations, between its systemic skeleton and an algebraic π-structure
Q, then I♭ defines Leibniz congruence systems of theory systems of I .

Recall that for a π-institution I = ⟨F,C⟩, based on an algebraic sys-
tem F = ⟨Sign♭,SEN♭,N ♭⟩, and a set I♭ ∶ (SEN♭)ω → SEN♭ of natural
transformations in N ♭, with two distinguished arguments, we define, for all
T ∈ SenFam(I), I♭(T ) = {I♭Σ(T )}Σ∈∣Sign♭∣ by setting, for all Σ ∈ ∣Sign♭∣,

I♭Σ(T ) = {⟨φ,ψ⟩ ∈ SEN♭(Σ)2 ∶ I♭Σ[φ,ψ] ≤ T}.
Proposition 928 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If KI = ⟨F,KI⟩ is equivalent to
an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄Q of transfor-
mations, then, for all T ∈ ThSys(I), Ω(T ) = I♭(T ).
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Proof: Let T ∈ ThSys(I). It suffices to show, by Corollary 98, that I♭(T ) is
a congruence system on F compatible with T . We know by Lemma 93 that
it is a relation system on F.

Suppose Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Since Q = ⟨F2,D⟩ is algebraic,
we have φ ≈ φ ∈ DΣ(∅). Therefore, by interpretability, I♭Σ[φ,φ] ≤ KI(∅) =
C(∅) ≤ T . Hence, ⟨φ,φ⟩ ∈ I♭Σ(T ) and I♭(T ) is reflexive.

Suppose, now, that Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Since Q is algebraic,
we have that ψ ≈ φ ∈ DΣ(φ ≈ ψ). Therefore, by interpretability, I♭Σ[ψ,φ] ≤
KI(I♭Σ[φ,ψ]). Since T ∈ ThSys(I), this implies that, if I♭Σ[φ,ψ] ≤ T , then
I♭Σ[ψ,φ] ≤ T . In other words ⟨φ,ψ⟩ ∈ I♭Σ(T ) implies ⟨ψ,φ⟩ ∈ I♭Σ(T ). Therefore,
I♭(T ) is also symmetric.

Suppose, next, that Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ). Since Q is al-
gebraic, we have that φ ≈ χ ∈ DΣ(φ ≈ ψ,ψ ≈ χ). Therefore, by inter-
pretability, I♭Σ[φ,χ] ≤ KI(I♭Σ[φ,ψ], I♭Σ[ψ,χ]). Since T ∈ ThSys(I), this
implies that, if I♭Σ[φ,ψ], I♭Σ[ψ,χ] ≤ T , then I♭Σ[φ,χ] ≤ T . In other words,⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ I♭Σ(T ) imply ⟨φ,χ⟩ ∈ I♭Σ(T ). Therefore, I♭(T ) is transitive.

We have now shown that I♭(T ) is an equivalence system on F. It remains
to show that it satisfies the congruence property and that it is compatible
with T .

Suppose that σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ). Since Q is alge-
braic, we have that σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ DΣ(φ⃗ ≈ ψ⃗) (recall that φ⃗ ≈ ψ⃗ means{φi ≈ ψi ∶ i < k}). Therefore, by interpretability,

I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤KI(⋃{I♭Σ[φi, ψi] ∶ i < k}).
Since T ∈ ThSys(I), this implies that, if, for all i < k, I♭Σ[φi, ψi] ≤ T , then

I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤ T . In other words ⟨φi, ψi⟩ ∈ I♭Σ(T ), for all i < k, imply

⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ I♭Σ(T ). Therefore, I♭(T ) satisfies the congruence property.
Finally, to see that I♭(T ) is compatible with T , suppose that Σ ∈ ∣Sign♭∣

and φ,ψ ∈ SEN♭(Σ). Since Q is algebraic and τ ♭ ∈ N ♭, we have, by Lemma
907,

τ ♭Σ[ψ] ≤D(τ ♭Σ[φ], φ ≈ ψ).
By interpretability, this yields

I♭[τ ♭Σ[ψ]] ≤KI(I♭[τ ♭Σ[φ]], I♭Σ[φ,ψ]).
Since (τ ♭, I♭) is a conjugate pair, the latter is equivalent to

ψ ∈KIΣ(φ, I♭Σ[φ,ψ]).
In other words, for all T ∈ ThSys(I),

φ ∈ TΣ and ⟨φ,ψ⟩ ∈ I♭Σ(T ) imply ψ ∈ TΣ.

Hence I♭(T ) is compatible with T . ∎
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Using Proposition 928, we can show that stability and the existence of
an equivalence between the systemic skeleton and an algebraic π-structure
ensure syntactic protoalgebraicity.

Theorem 929 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is stable and its systemic skeleton
KI = ⟨F,KI⟩ is equivalent to an algebraic π-structure Q via a conjugate pair(τ ♭, I♭) ∶ KI ⇄ Q of transformations, then I is syntactically protoalgebraic,
with witnessing transformations I♭.

Proof: Suppose that I is stable and its systemic skeleton KI = ⟨F,KI⟩ is
equivalent to an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄Q
of transformations. Then, we have, for all T ∈ ThFam(I),

Ω(T ) = Ω(←ÐT ) (by stability)

= I♭(←ÐT ) (by Proposition 928)
= I♭(T ). (by Proposition 99)

Therefore, I is syntactically protoalgebraic with witnessing transformations
I♭. ∎

Finally, before the main theorem, we show that stability and the exis-
tence of a transformational equivalence between the systemic skeleton and
an algebraic π-structure ensure left truth equationality.

Theorem 930 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is stable and its systemic skeleton
KI = ⟨F,KI⟩ is equivalent to an algebraic π-structure Q via a conjugate pair(τ ♭, I♭) ∶ KI ⇄ Q of transformations, then I is left truth equational, with
witnessing equations τ ♭.

Proof: We have, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈
←Ð
T Σ iff I♭[τ ♭Σ[φ]] ≤←ÐT ((τ ♭, I♭) an equivalence)

iff I♭[τ ♭Σ[φ]] ≤ T (by Proposition 99)
iff τ ♭Σ[φ] ≤ Ω(T ). (by Theorem 929)

Therefore, I is left truth equational, with witnessing equations τ ♭. ∎

Putting together Theorems 929, 930 and 927, we get the following fun-
damental result to the effect that syntactic weak algebraizability boils down
to stability, together with the equivalence of the systemic skeleton of a π-
institution with its associated algebraic π-structure via a conjugate pair of
transformations.
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Theorem 931 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is stable and its systemic skeleton KI is equivalent to QI∗ via
a conjugate pair (τ ♭, I♭) ∶ KI ⇄ QI∗ of transformations.

Proof: Suppose, first, that I is stable and that KI is equivalent to QI∗ via a
conjugate pair of transformations. Then, by Theorem 929, it is syntactically
protoalgebraic and, by Theorem 930, it is left truth equational. Therefore,
by definition, it is syntactically weakly algebraizable.

If, conversely, I is syntactically weakly algebraizable, then, on the one
hand, it is protoalgebraic and, therefore, stable, and, on the other, by The-
orem 927, it is equivalent to QI∗ via a conjugate pair of transformations.
∎

Generalizing again, we show that stability together with the existence
of an equivalence of the systemic skeleton with an algebraic π-structure,
induced by conjugate transformations, is sufficient to yield syntactic weak
algebraizability.

Theorem 932 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is stable and its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair of transformations.

Proof: If I is syntactically weakly algebraizable, then the conclusion follows
from Theorem 931. Conversely, if KI is equivalent to an algebraic π-structure
via a conjugate pair of transformations, then I is syntactically protoalgebraic
by Theorem 929 and left truth equational by Theorem 930, whence it is
syntactically weakly algebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following alternative characterization of syntactically weakly
algebraizable π-institutions:

Theorem 933 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is stable and there exists a transformational order isomorphism
h ∶ ThFam(KI)→ ThFam(Q), where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 932 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 932. ∎

Let us give, in closing the section, the picture of the weak algebraiz-
ability hierarchy that we have established, consisting of both semantic and
syntactic classes of π-institutions.
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12.5 Syntactic WS PreAlgebraizability

Syntactic WS prealgebraizability, requires, like syntactic WF algebraizability,
the monotonicity of the Leibniz operator on theory systems and the injectiv-
ity of the Leibniz operator on theory systems but, unlike WF algebraizability,
it requires these two properties only on theory systems and not on the entire
complete lattice of theory families. As a consequence of this weakened re-
quirement, syntactic WS prealgebraizability implies neither systemicity (as
does syntactic WF algebraizability) nor the even weaker condition of stabil-
ity (as do both kinds of syntactic algebraizability). Thus, as other conditions
that were under our scrutiny previously, it allows us to consider for member-
ship π-institutions that are not necessarily stable.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that:

• I is RIZI-(syntactically) fortified if RI is Leibniz and ZI is ade-
quate;

• I is RIŻI-(syntactically) fortified if RI is Leibniz and ŻI is ade-
quate;

• I is R̈IZI-(syntactically) fortified if R̈I is Leibniz and ZI is ade-
quate;

• I is R̈IŻI-(syntactically) fortified if R̈I is Leibniz and ŻI is ade-
quate.

Similarly with the Suszko core, it can be seen that, if ŻI is adequate, then ZI

is adequate. Moreover, since, by Proposition 952, R̈I ⊆ RI , it follows that,
under the assumption of prealgebraicity, if R̈I is Leibniz, then RI is Leibniz.
Thus, we have the following syntactic system fortification hierarchy (in
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which the dotted arrows hold under prealgebraicity):

R̈IŻI-Fortified

✠�
�
�
�

..........❘
R̈IZI-Fortified RIŻI-Fortified

..........❘ ✠�
�
�
�

RIZI-Fortified

I is syntactically weakly system prealgebraizable (abbreviated to
syntactically WS prealgebraizable) if:

• I is RIZI-fortified;

• I is prealgebraic;

• I is system injective.

By Theorem 248, under prealgebraicity, the properties of system injectiv-
ity, system reflectivity and system complete reflectivity coincide. As a result,
we have the following alternative characterization of syntactic weak system
prealgebraizability.

Theorem 934 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system preal-
gebraizable if and only if it is syntactically prealgebraic and system truth
equational.

Proof: Assume that I is syntactically weakly system prealgebraizable. Then,
on the one hand, it is prealgebraic and has a Leibniz reflexive core. Thus, by
Theorem 788, it is syntactically prealgebraic. On the other, it is, by Theo-
rem 248, system c-reflective and has an adequate system core. Therefore, by
Theorem 887, it is system truth equational.

Assume, conversely, that I is syntactically prealgebraic and system truth
equational. Then, by Theorem 788, it is prealgebraic and has a Leibniz
reflexive core, and, by Theorem 887, it is system c-reflective and has an
adequate system core. Therefore, by definition, I is syntactically weakly
system prealgebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic weak system prealgebraizability classes
of π-institutions.



Voutsadakis CHAPTER 12. SYNTACTIC HIERARCHY II 897

Theorem 935 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system prealge-
braizable if and only if I is weakly system prealgebraizable and RIZI-fortified.

Proof: I is syntactically weakly system prealgebraizable if and only if, by
definition, it is RIZI-fortified, prealgebraic and system injective, i.e., iff it
is, by definition, RIZI-fortified and weakly system prealgebraizable. ∎

Previous results, put together, also allow us to provide an alternative
characterization of syntactic weak system prealgebraizability in terms of mor-
phisms between complete lattices of theory systems.

Theorem 936 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system prealge-
braizable if and only if it is RIZI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding.

Proof: We have that I is syntactically weakly system prealgebraizable if
and only if, by Theorem 935, it is RIZI-fortified and weakly system prealge-
braizable, if and only if, by Theorem 256, it it RIZI-fortified and, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding ∎

Next, we show that syntactic weak system prealgebraizability may also
be characterized by the existence of an equivalence between the systemic
skeleton of a π-institution and an algebraic π-structure associated with the
π-institution (different, in general, than QI∗) via a pair of conjugate trans-
formations.

We embark on the path by defining first the algebraic π-structure QI●

associated with a given π-institution I .
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-

institution based on F. Recall the definition of the class AlgSys●(I) of all
F-algebraic systems reduced with respect to I-filter systems:

AlgSys●(I) = {A ∶ (∃T ∈ FiSysI(A))(ΩA(T ) =∆A)}.
Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we define the class of I●-
congruence systems on A by

ConSysI●(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ AlgSys●(I)}.
It turns out that congruence systems in ConSysI●(A) have a straightforward
characterization.
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Proposition 937 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ConSysI●(A) = {θ ∈ ConSys(A) ∶ (∃T ∈ FiSysI(A))(ΩA(T ) = θ)}.
Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a
π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system.

Suppose, first, that θ ∈ ConSysI●(A). By definition, A/θ ∈ AlgSys●(I).
Thus, there exists T ′ ∈ FiSysI(A/θ), such that

ΩA/θ(T ′) =∆A/θ.

By applying the inverse of the quotient morphism ⟨I, πθ⟩ ∶ A→ A/θ, we get

(πθ)−1(ΩA/θ(T ′)) = (πθ)−1(∆A/θ).
Since ⟨I, πθ⟩ is surjective, we get by Proposition 24 and Corollary 55, that(πθ)−1(T ′) ∈ FiSysI(A) and

ΩA((πθ)−1(T ′)) = θ.
Therefore, there exists T ∈ FiSysI(A), such that ΩA(T ) = θ.

Suppose, conversely, that θ ∈ ConSys(A), with ΩA(T ) = θ, for some T ∈
FiSysI(A). Then, we have ΩA/θ(T /θ) = ∆A/θ and, therefore, by definition,
A/θ ∈ AlgSys●(I), implying that θ ∈ ConSysI●(A). ∎

In general, given a π-institution I = ⟨F,C⟩ and an F-algebraic system A,
the family ConSysI●(A) of systemic I-congruence systems on A need not be
closed under signature-wise intersections, i.e., may not form a closure family
on A2. However, we can show that, if I is prealgebraic, this is always the
case.

Proposition 938 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a prealgebraic π-institution based on F. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, ConSysI●(A) is closed under arbitrary intersections
and, therefore, forms a closure family on A2.

Proof: First, note that ConSysI●(A) has a top element ∇A. To see this,
observe that A/∇A is a trivial algebraic system, which is always a member
of AlgSys●(I).

It suffices now to show that ConSysI●(A) is closed under arbitrary inter-
sections. To this end, suppose θi ∈ ConSysI●(A), for i ∈ I. By Proposition
937, for all i ∈ I, there exists T i ∈ FiSysI(A/θi), such that ΩA(T i) = θi. But,
by Lemma 23 and prealgebraicity, we get that

ΩA(⋂
i∈I

T i) =⋂
i∈I

ΩA(T i) =⋂
i∈I

θi.
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Now, again by Proposition 937, we conclude that ⋂i∈I θi ∈ ConSysI●(A). ∎

Applying Proposition 938 to the algebraic system F = ⟨F, ⟨I, ι⟩⟩, where⟨I, ι⟩ ∶ F→ F is the identity morphism, we get the following

Corollary 939 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, ConSysI●(F) is
closed under arbitrary intersections and, therefore, forms a closure family
on F2.

Proof: This is a special case of Proposition 938. ∎

Let I = ⟨F,C⟩ be a prealgebraic π-institution. We define, in accordance
with Corollary 939, the systemic algebraic π-structure QI● associated
with I to be the π-structure QI● = ⟨F2,DI●⟩, where DI● is the closure
(operator) family corresponding to the closure family ConSysI●(F).

We recall, also, the defining of the systemic skeleton of I , i.e., of the
π-structure

KI = ⟨F,KI⟩
of I , where KI ∶ PSEN → PSEN is the closure family on F corresponding to
the closet set family ThSys(I).

Now we have the components needed to resume work on the characteriza-
tion of syntactic weak system prealgebraizability. Our first result connecting
syntactic weak system prealgebraizability of a π-institution with the asso-
ciated systemic algebraic π-structure shows that, if a π-institution is syn-
tactically weakly system prealgebraizable, then its systemic skeleton KI is
equivalent to its associated systemic algebraic π-structure QI● via a conju-
gate pair of transformations.

Theorem 940 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically weakly system prealgebraizable π-institution based on

F. Then KI is equivalent to QI● via a conjugate pair (τ ♭, ↔I♭) ∶ KI ⇄ QI● of
transformations. More precisely:

• I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, is a set
of witnessing transformations of the syntactic prealgebraicity of I;

• τ ♭ ∶ (SEN♭)ω → (SEN♭)2, with a single distinguished argument, is a set
of witnessing equations for the system truth equationality of I.

Proof: Suppose that I is syntactically weakly system prealgebraizable.
Then, by definition, I is syntactically prealgebraic and system truth equa-
tional. Therefore, there exist a set I♭ ∶ (SEN♭)ω → SEN♭ of natural trans-
formations in N ♭, with two distinguished arguments, witnessing the syn-
tactic prealgebraicity of I , and a set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natu-
ral transformations in N ♭, with a single distinguished argument, witness-
ing system truth equationality. To verify the conclusion, observe, first, that
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τ ♭Σ ∶ SEN♭(Σ)→ SenFam(F2), defined, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
as the sentence family τ ♭Σ[φ], and

↔

I♭Σ ∶ SEN♭(Σ)2 → SenFam(F), defined, for

all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), as the sentence family
↔

I♭Σ[φ,ψ], are
as required. Therefore, by Proposition 898, it suffices to show that:

(a) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈KIΣ(Φ) iff τ ♭Σ[φ] ≤ DI●(τ ♭Σ[Φ]);

(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
DI●(φ ≈ ψ) = DI●(τ ♭[↔I♭Σ[φ,ψ]]).

For (a), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Note that, for all T ∈
ThSys(I), we have, by system truth equationality,

Φ ⊆ TΣ iff τ ♭Σ[Φ] ≤ Ω(T )
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).

Therefore, φ ∈KIΣ(Φ) if and only if, for all T ∈ ThSys(I), Φ ⊆ TΣ implies φ ∈
TΣ, if and only if, for all T ∈ ThSys(I), τ ♭Σ[Φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ),
if and only if, by Proposition 937, τ ♭Σ[φ] ≤DI●(τ ♭Σ[Φ]).

For (b), let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have, for all T ∈
ThSys(I),

φ ≈ ψ ∈ ΩΣ(T ) iff
↔

I♭Σ[φ,ψ] ≤ T (Corollary 770)

iff τ ♭[↔I♭Σ[φ,ψ]] ≤ Ω(T ).
(system truth equationality)

Using again Proposition 937, we conclude that

DI●(φ ≈ ψ) = DI●(τ ♭[↔I♭Σ[φ,ψ]]).
Therefore KI is equivalent to QI● via (τ ♭, ↔I♭) ∶ KI ⇄ QI●. ∎

We show, next that the existence of an equivalence between the systemic
skeleton of a given π-institution and an algebraic π-structure ensures syntac-
tic prealgebraicity.

Theorem 941 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If the systemic skeleton KI = ⟨F,KI⟩ of I
is equivalent to an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄
Q of transformations, then I is syntactically prealgebraic, with witnessing
transformations I♭.
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Proof: Suppose that KI = ⟨F,KI⟩ is equivalent to an algebraic π-structure
Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄ Q of transformations. Then, we have,
by Proposition 928, that, for all T ∈ ThSys(I), Ω(T ) = I♭(T ). Therefore, I
is syntactically prealgebraic with witnessing transformations I♭. ∎

Finally, as a last step before the main theorem, we show that the existence
of a transformational equivalence between the systemic skeleton of a given
π-institution and an algebraic π-structure ensures system truth equationality.

Theorem 942 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If the systemic skeleton KI = ⟨F,KI⟩ of
I is equivalent to an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶
KI ⇄Q of transformations, then I is system truth equational, with witnessing
equations τ ♭.

Proof: We have, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ TΣ iff I♭[τ ♭Σ[φ]] ≤ T ((τ ♭, I♭) an equivalence)

iff τ ♭Σ[φ] ≤ Ω(T ). (by Theorem 941)

Therefore, I is system truth equational, with witnessing equations τ ♭. ∎

Putting together Theorems 941, 942 and 940, we get the following fun-
damental result to the effect that syntactic weak system prealgebraizability
boils down to the existence of an equivalence of the systemic skeleton of a π-
institution with its associated systemic algebraic π-structure via a conjugate
pair of transformations.

Theorem 943 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system prealge-
braizable if and only if its systemic skeleton KI is equivalent to QI● via a
conjugate pair (τ ♭, I♭) ∶ KI ⇄QI● of transformations.

Proof: Suppose, first, that KI is equivalent to QI● via a conjugate pair of
transformations. Then, by Theorem 941, it is syntactically prealgebraic and,
by Theorem 942, it is system truth equational. Therefore, by definition, it is
syntactically weakly system prealgebraizable. If, conversely, I is syntactically
weakly system prealgebraizable, then, by Theorem 940, it is equivalent to QI●

via a conjugate pair of transformations. ∎

It turns out that the existence of an equivalence of the systemic skele-
ton with an algebraic π-structure, induced by conjugate transformations, is
sufficient to yield syntactic weak system prealgebraizability.

Theorem 944 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system preal-
gebraizable if and only if its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair of transformations.
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Proof: If I is syntactically weakly system prealgebraizable, then the conclu-
sion follows from Theorem 943. Conversely, if KI is equivalent to an algebraic
π-structure via a conjugate pair of transformations, then I is syntactically
prealgebraic by Theorem 941 and system truth equational by Theorem 942,
whence it is syntactically weakly system prealgebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices, we
have the following alternative characterization of syntactically weakly system
prealgebraizable π-institutions:

Theorem 945 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system preal-
gebraizable if and only if there exists a transformational order isomorphism
h ∶ ThFam(KI)→ ThFam(Q), where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 944 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 944. ∎

12.6 Syntactic WLC PreAlgebraizability

Between syntactic WS prealgebraizability and syntactic weak algebraizability
we find the class of syntactic weakly left c-reflective prealgebraizability. This
strengthens WS prealgebraizability by replacing system c-reflectivity by the
stronger condition of left c-reflectivity. Alternatively, it weakens syntactic
weak algebraizability by replacing ptotoalgebraicity by prealgebraicity.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is syntactically weakly left c-reflectively pre-
algebraizable (abbreviated to syntactically WLC prealgebraizable) if:

• I is RILI-fortified;

• I is prealgebraic;

• I is left c-reflective.

We have the following alternative characterization of syntactic WLC pre-
algebraizability.

Theorem 946 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if it is syntactically prealgebraic and left truth equational.

Proof: Assume that I is syntactically WLC prealgebraizable. Then, on
the one hand, it is prealgebraic and has a Leibniz reflexive core. Thus, by
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Theorem 788, it is syntactically prealgebraic. On the other, it is left c-
reflective and has a left adequate left Suszko core. Therefore, by Theorem
870, it is left truth equational.

Assume, conversely, that I is syntactically prealgebraic and left truth
equational. Then, by Theorem 788, it is prealgebraic and has a Leibniz
reflexive core, and, by Theorem 870, it is left c-reflective and has a left
adequate left Suszko core. Therefore, by definition, I is syntactically WLC
prealgebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic WLC prealgebraizability classes of π-
institutions.

Theorem 947 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if I is WLC prealgebraizable and RILI-fortified.

Proof: I is syntactically WLC prealgebraizable if and only if, by defini-
tion, it is RILI-fortified, prealgebraic and left c-reflective, i.e., iff it is, by
definition, RILI-fortified and WLC prealgebraizable. ∎

For an alternative characterization of syntactic WLC prealgebraizabil-
ity, we take advantage of the corresponding characterization of WLC pre-
algebraizability in terms of morphisms between complete lattices of theory
systems.

Theorem 948 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable
if and only if it is RILI-fortified and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: We have that I is syntactically WLC prealgebraizable if and only if,
by Theorem 947, it is RILI-fortified and WLC prealgebraizable, if and only
if, by Theorem 276, it it RILI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

Recall that syntactic weak system prealgebraizability was characterized
by the existence of an equivalence between the systemic skeleton KI of a
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π-institution I and the systemic algebraic π-structure QI● associated with
the π-institution, via a pair of conjugate transformations. To adapt this
characterization to capture syntactic WLC prealgebraizability, we need to
postulate alongside this equivalence the property of left truth equationality
of the π-institution.

Theorem 949 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if it is left truth equational and its systemic skeleton KI is equivalent
to QI● via a conjugate pair (τ ♭, I♭) ∶ KI ⇄QI● of transformations.

Proof: Suppose, first, that I is left truth equational and KI is equiva-
lent to QI● via a conjugate pair of transformations. Then, I is left truth
equational and, by Theorem 941, it is syntactically prealgebraic. Therefore,
by definition, it is syntactically WLC prealgebraizable. If, conversely, I is
syntactically WLC prealgebraizable, then, by Theorem 946, it is left truth
equational and it is weakly system prealgebraizable. Thus, by Theorem 940,
it is equivalent to QI● via a conjugate pair of transformations. ∎

Because of Theorem 944, left truth equationality and the existence of an
equivalence of the systemic skeleton with an algebraic π-structure, induced
by conjugate transformations, is sufficient to yield syntactic WLC prealge-
braizability.

Theorem 950 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if it is left truth equational and its systemic skeleton is equivalent
to an algebraic π-structure via a conjugate pair of transformations.

Proof: If I is syntactically WLC prealgebraizable, then the conclusion fol-
lows from Theorem 949. Conversely, if KI is equivalent to an algebraic
π-structure via a conjugate pair of transformations, then I is syntactically
prealgebraic by Theorem 941. Since, by hypothesis, it is also left truth equa-
tional, it is syntactically WLC prealgebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following alternative characterization of syntactically WLC pre-
algebraizable π-institutions:

Theorem 951 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable
if and only if it is left truth equational and there exists a transformational
order isomorphism h ∶ ThFam(KI) → ThFam(Q), where Q is an algebraic
π-structure.
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Proof: The “only if” follows by Theorem 950 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 950. ∎

Let us give, in closing the section, the picture of the weak prealgebraiz-
ability hierarchy that we have established, consisting of both semantic and
syntactic classes of π-institutions.
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