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14.1 Rough/Narrow Truth Equationality

In this section, we study rough/narrow truth equationality, the syntactic
analog of rough c-reflectivity, which, recalling Corollary 482, coincides with
narrow c-reflectivty. It has the same relation to truth equationality as rough
c-reflectivity has to c-reflectivity. In other words, it mimics truth equation-
ality, but it is applied only to theory families of a π-institution all of whose
components are nonempty.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is roughly or narrowly (family)
truth equational if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with
a single distinguished argument, such that, for all T ∈ ThFam(I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ).

Recall that, by Proposition 369, for every T ∈ ThFam(I), Ω(T̃ ) = Ω(T ).
Thus, Ω(T ) is compatible with T̃ and, hence, the preceding definition makes
sense. The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of
witnessing equations (of/for the rough/narrow truth equationality of I).

Paralleling Proposition 816, we get the following alternative characteri-
zation.

Proposition 1096 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
roughly truth equational, with witnessing equations τ ♭, if and only if, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ T̃Σ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose I is roughly truth equational and let T ∈ ThFam(I), Σ ∈∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ T̃Σ iff φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) (Proposition 369 and compatibility)

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ) (rough truth equationality)

iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T ) (by definition)
iff τ ♭Σ[φ] ≤ Ω(T ).

Suppose, conversely, that the given condition holds. Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff φ ∈ T̃Σ (Proposition 369 and compatibility)
iff τ ♭Σ[φ] ≤ Ω(T ) (by hypothesis)
iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T )

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ). (definition)
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Therefore, I is roughly truth equational. ∎

It is not difficult to see that an alternative way to express rough truth
equationality is to assert the same condition that defines truth equationality,
excluding, however, those theory families with at least one empty component.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall from Chapter 6 that we denote by ThFam (I)
the collection of all theory families T of I , such that TΣ ≠ ∅, for all Σ ∈ ∣Sign♭∣:

ThFam (I) = {T ∈ ThFam(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}.
Recall, also, that, if I has theorems, then ThFam (I) = ThFam(I). In
particular, this is the case if I happens to be truth equational.

Proposition 1097 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
roughly truth equational, with witnessing equations τ ♭, if and only if, for all
T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then T̃ = T , whence, by
Proposition 1096, φ ∈ TΣ if and only if τ ♭Σ[φ] ≤ Ω(T ).

Suppose, conversely, that the displayed condition holds. Consider T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, since, by definition of
T̃ , we have T̃ ∈ ThFam (I), we get, by hypothesis, φ ∈ T̃Σ if and only if
τ ♭Σ[φ] ≤ Ω(T̃ ), whence, using Proposition 369, we conclude that φ ∈ T̃Σ if and
only if τ ♭Σ[φ] ≤ Ω(T ). Therefore, I is roughly truth equational. ∎

As a corollary, we obtain the following key relationship between rough
truth equationality and truth equationality.

Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Roughly Truth

Equational

Corollary 1098 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is truth equational if and only if it is
roughly truth equational and has theorems.
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Proof: Suppose, first, that I is roughly truth equational, with witnessing
equations τ ♭, and that it has theorems. Availability of theorems implies that
ThFam (I) = ThFam(I). Thus, by Proposition 1097, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if τ ♭Σ[φ] ≤ Ω(T ). Thus,
I is truth equational, with the same witnessing equations τ ♭.

Assume, conversely, that I is truth equational, with witnessing equations
τ ♭. Then, for all T ∈ ThFam(I), and, hence, a fortiori, for all T ∈ ThFam (I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if τ ♭Σ[φ] ≤ Ω(T ).
Hence, again by Proposition 1097, I is roughly truth equational. Finally, by
Theorem 829, I is family c-reflective and, by Proposition 243, it is family
reflective and, hence, family injective. Thus, it must have theorems. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 838, of truth equationality in terms of the solubility of the Suszko
core for rough truth equationality.

Rough truth equationality allows the following expression for all theory
families with nonempty components, forming an analog of Proposition 828.

Proposition 1099 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is roughly truth equational, with witnessing equations τ ♭;

(ii) For all T ∈ ThFam(I), τ ♭(Ω(T )) = T̃ ;

(iii) For all T ∈ ThFam (I), τ ♭(Ω(T )) = T .

Proof:

(i)⇒(ii) Suppose I is roughly truth equational, with witnessing equations τ ♭,
and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)

iff φ ∈ T̃Σ. (rough truth equationality)

(ii)⇒(iii) Suppose Condition (ii) holds. Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Since T ∈ ThFam (I), T = T̃ , whence, by hypothesis,
T = τ ♭(Ω(T )).

(iii)⇒(i) If, conversely, for all T ∈ ThFam (I), T = τ ♭(Ω(T )), then, by Propo-
sition 1097, I is roughly truth equational, with witnessing equations
τ ♭.

∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
roughly family c-reflective if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T̃ ≤ T̃ ′.
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We are now able to show that rough truth equationality implies rough
family c-reflectivity. This is an analog of Theorem 829.

Theorem 1100 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly truth equational, then it is
roughly family c-reflective.

Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we have

⋂T ∈T T̃ = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1099)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

= T̃ ′. (Proposition 1099)

Thus, I is roughly family c-reflective. ∎

In the context of rough truth equationality, the notion paralleling the
Suszko core is the rough Suszko core, a modification of the original which is
defined, naturally enough and as, perhaps, was to be expected, by circum-
venting theory families with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough Suszko core SI of I is the collection

SI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[T̃ ] ≤ Ω̃I(T̃ ))}.
As before, an alternative characterization avoids ̃ at the expense of restrict-
ing quantification over ThFam (I).
Proposition 1101 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then

SI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(σ♭[T ] ≤ Ω̃I(T ))}.
Proof: Inside this proof we set

MI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(σ♭[T ] ≤ Ω̃I(T ))}.
Our goal is to show that SI = MI . Suppose, first, that σ♭ ∈ SI and let
T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Since
T ∈ ThFam (I), we get T̃ = T . Hence, by hypothesis, φ ∈ T̃Σ. Thus, since
σ♭ ∈ SI , we get

σ♭Σ[φ] ≤ Ω̃I(T̃ ) = Ω̃I(T ).
This proves that σ♭ ∈ MI . Assume, conversely, that σ♭ ∈ MI and let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ T̃Σ. Since T̃ ∈
ThFam (I) and σ♭ ∈ MI , we get σ♭Σ[φ] ≤ Ω̃I(T̃ ), whence, σ♭ ∈ SI . This
proves that SI =MI . ∎

From the definition, it is not difficult to see that any theory family T with
all its components nonempty is always included in SI (Ω(T )). This forms
an analog in the rough context of Proposition 832.
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Proposition 1102 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam (I),

T ≤ SI (Ω(T )).
Proof: Suppose T ∈ ThFam (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ,
and σ♭ ∈ SI . Then, by Proposition 1101, σ♭Σ[φ] ≤ Ω̃I(T ) ≤ Ω(T ). Hence,

S
I 
Σ [φ] ≤ Ω(T ). By definition, then, φ ∈ SI Σ (Ω(T )). Since Σ and φ ∈ TΣ were

arbitrary, we conclude that T ≤ SI (Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThFam (I), we say that the rough Suszko core of I is soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough Suszko core SI of I is said to be soluble
if, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

SI Σ [φ] ≤ Ω(T ) implies φ ∈ TΣ.

An alternative way to express solubility is to again expand the view to
all theory families at the balancing expense of adding rough equivalence
representatives.

Lemma 1103 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. SI is soluble if and only if, for all T ∈
ThFam(I),

T̃ = SI (Ω(T )).
Proof: SI is soluble if and only if, by definition and Proposition 1102, for
all T ∈ ThFam (I), T = SI (Ω(T )), if and only if, for all T ∈ ThFam(I),
T̃ = SI (Ω(T̃ )), if and only if, by Proposition 369, for all T ∈ ThFam(I),
T̃ = SI (Ω(T )). ∎

As was the case with truth equationality (see Lemma 835), it turns out
that, if a given π-institution is roughly truth equational, then any collection
of witnessing equations must be included in the rough Suszko core of I .
Differently put, in case of rough truth equationality, the rough Suszko core
is a candidate for the largest set of witnessing equations.

Lemma 1104 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly truth equational, with
witnessing equations τ ♭, then τ ♭ ⊆ SI .

Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Then, for
all T ≤ T ′ ∈ ThFam(I), we have T ′ ∈ ThFam (I) and φ ∈ T ′Σ. Thus, by rough
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truth equationality, and Proposition 1097, τ ♭Σ[φ] ≤ Ω(T ′). Since T ′, with the
postulated properties was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ′) ∶ T ≤ T ′} = Ω̃I(T ).
We conclude, using Proposition 1101, that τ ♭ ⊆ SI . ∎

We are now ready to prove the equivalence between rough truth equa-
tionality and the solubility of the rough Suszko core. In the next theorem,
we show that truth equationality implies the solubility of the rough Suszko
core. This forms a rough analog of Theorem 836.

Theorem 1105 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly truth equational, then SI 

is soluble.

Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that SI Σ [φ] ≤ Ω(T ).
Then, by rough truth equationality and Lemma 1104, τ ♭Σ[φ] ≤ Ω(T ). Again,
using rough truth equationality and Proposition 1097, we conclude that φ ∈
TΣ. This shows that SI is soluble. ∎

Conversely, in a rough analog of Theorem 837, we show that the solubility
of the rough Suszko core of a π-institution implies rough truth equationality.

Theorem 1106 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI is soluble, then I is roughly truth
equational, with witnessing equations SI .

Proof: Assume SI is soluble and let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). By Proposition 1097, it suffices to show that

φ ∈ TΣ iff SI Σ [φ] ≤ Ω(T ).
If φ ∈ TΣ, then, by Proposition 1102, φ ∈ SI Σ (Ω(T )), i.e., SI Σ [φ] ≤ Ω(T ). On
the other hand, the reverse inclusion is guaranteed by the solubility of SI .
Thus, I is roughly truth equational, with witnessing equations SI . ∎

Theorems 1105 and 1106 provide the first characterization of rough truth
equationality in terms of the solubility of the rough Suszko core. This par-
allels Theorem 838, which asserted a similar characterization for truth equa-
tionality in terms of the solubility of the Suszko core of a π-institution.

I Roughly Truth Equational ←→ SI Soluble

Theorem 1107 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational if and only
if SI is soluble.



990 CHAPTER 14. SYNTACTIC HIERARCHY IV Voutsadakis

Proof: The “if” is by Theorem 1106. The “only if” by Theorem 1105. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough Suszko core SI of I roughly
defines theory families if, for al T ∈ ThFam (I),

T = SI (Ω(T )).
Another characterization of rough truth equationality, along the lines of

Theorem 840, asserts that it is equivalent to the rough definability of the
theory families by the rough Suszko core.

I Roughly Truth Equational
←→ SI Roughly Defines Theory Families

Theorem 1108 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational if and only
if SI roughly defines theory families in I.

Proof: Suppose I is roughly truth equational. By Theorem 1107, SI is
soluble. Hence, by definition, for all T ∈ ThFam (I), SI (Ω(T )) ≤ T . Since,
by Proposition 1102, the reverse always holds, we get, for all T ∈ ThFam (I),
T = SI (Ω(T )). Thus, SI roughly defines theory families in I . Conversely,
if, for all T ∈ ThFam (I), T = SI (Ω(T )), then SI is soluble and, therefore,
by Theorem 1107, I is roughly truth equational. ∎

We embark, next, in the process of establishing a connection between
rough truth equationality and rough family c-reflectivity by means of the
Suszko operator. We start by showing that, in every π-institution I , T ≤
SI (Ω(T )) actually holds for every theory family of I and not only for those
theory families in ThFam (I).
Lemma 1109 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ),

φ ∈ TΣ implies S
I 
Σ [φ] ≤ Ω(T ).

Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ TΣ implies φ ∈ T̃Σ (T ≤ T̃ )

implies S
I 
Σ [φ] ≤ Ω̃I(T̃ ) (definition of SI )

implies S
I 
Σ [φ] ≤ Ω(T̃ ) (Ω̃I ≤ Ω)

iff S
I 
Σ [φ] ≤ Ω(T ). (Proposition 369)

This establishes the displayed implication. ∎

In the sequel, in dealing with intersections of Leibniz congruence systems,
as, e.g., when computing a Suszko congruence system, we shall have the need
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to switch between arbitrary collections of theory families and collections of
theory families having all components nonempty. In all those situations, the
following straightforward technical lemma is quite useful.

Lemma 1110 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, X ∈ SenFam(F) and θ ∈ SenFam(F2).

(a) {Ω(T ) ∶X ≤ T ∈ ThFam(I)} = {Ω(T ) ∶X ≤ T ∈ ThFam (I)};
(b) {Ω(T ) ∶ X ≤ T ∈ ThFam(I) and θ ≤ Ω(T )} = {Ω(T ) ∶ X ≤ T ∈

ThFam (I) and θ ≤ Ω(T )}.
Proof:

(a) Since ThFam (I) ⊆ ThFam(I), it is clear that

{Ω(T ) ∶ X ≤ T ∈ ThFam (I)} ⊆ {Ω(T ) ∶X ≤ T ∈ ThFam(I)}.
To prove the reverse inclusion, let T ∈ ThFam(I), such that X ≤ T .
Consider T̃ ∈ ThFam (I). We get X ≤ T ≤ T̃ and, moreover, by
Proposition 369, Ω(T̃ ) = Ω(T ). This proves that {Ω(T ) ∶ X ≤ T ∈
ThFam(I)} ⊆ {Ω(T ) ∶ X ≤ T ∈ ThFam (I)}.

(b) As in Part (a), the right-to-left inclusion is obvious. For the reverse,
consider T ∈ ThFam(I), such that X ≤ T and θ ≤ Ω(T ). Then, again,
T̃ ∈ ThFam (I), such that both X ≤ T ≤ T̃ and θ ≤ Ω(T ) = Ω(T̃ ). This
shows that the left-to-right inclusion also holds.

∎

As a corollary, we obtain, for instance, an alternative expression for the
Suszko congruence system associated with a given theory family of a π-
institution I .

Corollary 1111 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I),
Ω̃I(T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam (I)}.

Proof: Immediate by the definition of Ω̃I and Lemma 1110. ∎

Based on Lemma 1109, we may show that, for every theory family T ,
T ≤ SI (Ω̃I(T )).
Proposition 1112 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

φ ∈ TΣ implies S
I 
Σ [φ] ≤ Ω̃I(T ).
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Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ TΣ implies φ ∈ T ′Σ, for all T ≤ T ′ ∈ ThFam(I)
implies SI Σ [φ] ≤ Ω(T ′), for all T ≤ T ′ ∈ ThFam(I)

(by Lemma 1109)

iff S
I 
Σ [φ] ≤ Ω̃I(T ). (definition of Ω̃I)

∎

In analogy with the case of rough truth equationality, we may intro-
duce the notion of adequacy of the rough Suszko core, which will help in
characterizing the relationship between rough truth equationality and rough
c-reflectivity. The following proposition, a rough analog of Proposition 841,
partially justifies the notion of adequacy that will follow.

Proposition 1113 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω(T )} ≤ Ω̃I(C(φ)).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I),

φ ∈ TΣ implies S
I 
Σ [φ] ≤ Ω̃I(T ) (Proposition 1112)

implies S
I 
Σ [φ] ≤ Ω(T ). (Ω̃I ≤ Ω)

Hence,

⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω(T )} ≤ ⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω̃I(T )}
≤ ⋂{Ω(T ) ∶ φ ∈ TΣ}
= Ω̃I(C(φ)).

This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1113 holds, then we
say that the rough Suszko core of I is adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough Suszko core SI of I is
adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) ≤⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω(T )}.
We can show right away that solubility of the rough Suszko core implies

adequacy.

Corollary 1114 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI is soluble, then it is adequate.
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Proof: Suppose SI is soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then

Ω̃I(C(φ)) = ⋂{Ω(T ) ∶ T ∈ ThFam(I) and φ ∈ TΣ}
(definition of Ω̃I)

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈ TΣ}
(Lemma 1110)

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and S
I 
Σ [φ] ≤ Ω(T )}

(solubility of SI )

= ⋂{Ω(T ) ∶ T ∈ ThFam(I) and S
I 
Σ [φ] ≤ Ω(T )}.

(Lemma 1110)

Thus, SI is adequate. ∎

We prove, next, the converse of Corollary 1114, under the additional
assumption that the π-institution I under consideration is roughly family
c-reflective. This constitutes an analog of Proposition 846.

Proposition 1115 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a roughly family c-reflective π-institution based on F. If SI is
adequate, then it is soluble.

Proof: Suppose I is roughly family c-reflective and SI is adequate. Let
T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that SI Σ [φ] ≤ Ω(T ). By

the adequacy of SI , we get that Ω̃I(C(φ)) ≤ Ω(T ). By Lemma 1110,

⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈ TΣ} ≤ Ω(T ).
By rough family c-reflectivity, ⋂{T ∈ ThFam (I) and φ ∈ TΣ} ≤ T . Hence,
φ ∈ TΣ. We conclude that SI is soluble. ∎

We are now in a position to prove the main characterization theorem
relating rough truth equationality with rough family c-reflectivity, an analog
of Theorem 847, which characterized truth equationality in terms of family
c-reflectivity and the adequacy of the Suszko core.

Rough Truth Equationality = SI Soluble
= SI Roughly Defines Theory Families
= Rough Family c-Reflectivity

+ SI Adequate

Theorem 1116 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational if and only
if it is roughly family c-reflective and has an adequate rough Suszko core.
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Proof: Suppose, first, that I is roughly truth equational. By Theorem 1100,
it is roughly family c-reflective. By Theorem 1105, its rough Suszko core is
soluble. Thus, by Corollary 1114, its rough Suszko core is also adequate.

Assume, conversely, that I is roughly family c-reflective and has an ade-
quate rough Suszko core. Then, by Proposition 1115, its rough Suszko core
is also soluble. Hence, by Theorem 1107, I is roughly truth equational. ∎

Even though Theorem 847 formed the inspiration for the formulation of
Theorem 1116, we show that it can be obtained as a corollary of the latter.
This also exhibits the close connection between the two results which should
have been anticipated, given the fact that the work done here is intended to
mimic the former, while circumventing potential obstacles due to the absence
of theorems.

Corollary 1117 (Theorem 847) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is truth equational
if and only if it is family c-reflective and has an adequate Suszko core.

Proof: I is truth equational if and only if, by Corollary 1098, it is roughly
truth equational and has theorems if and only if, by Theorem 1116, it is
roughly family c-reflective, has theorems and has an adequate rough Suszko
core if and only if, by Theorem 468 and the definitions of the Suszko core,
the rough Suszko core and their adequacy properties, I is family c-reflective
and its Suszko core is adequate. ∎

We close the section by looking at a couple of results that may be per-
ceived either as alternative characterizations of rough truth equationality,
involving arbitrary F-algebraic systems, or as transfer theorems.

Theorem 1118 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational, with witness-
ing equations τ ♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

φ ∈ T̃Σ iff τAΣ [φ] ≤ ΩA(T ).
Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is roughly
truth equational.

Suppose, conversely, that I is roughly truth equational and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). Then we have

αΣ(φ) ∈ T̃F (Σ) iff φ ∈ α−1Σ (T̃F (Σ))
iff φ ∈ ̃α−1Σ (TF (Σ)) (Theorem 377)
iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)
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Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

In analogy with the notation ThFam (I), we introduce the following for
filter families over arbitrary F-algebraic systems all of whose components are
nonempty.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-
algebraic system. Define FiFamI (A) to be the collection of all I-filter fam-
ilies T on A, such that TΣ ≠ ∅, for all Σ ∈ ∣Sign∣:

FiFamI (A) = {T ∈ FiFamI(A) ∶ (∀Σ ∈ ∣Sign∣)(TΣ ≠ ∅)}.
We now get immediately the following corollary.

Corollary 1119 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational, with witness-
ing equations τ ♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI (A), all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T ).
Proof: Suppose that I is roughly truth equational. Then, if A is an F-
algebraic system and T ∈ FiFamI (A), we get

T = T̃ (T ∈ FiFamI (A))
= τA(ΩA(T )). (Theorem 1118)

Suppose, conversely, that the displayed condition holds. Then, if A is an
F-algebraic system and T ∈ FiFamI(A), we get, taking into account that
T̃ ∈ FiFamI (A),

T̃ = τA(ΩA(T̃ )) (hypothesis)
= τA(ΩA(T )). (Proposition 369)

This establishes the claimed equivalence. ∎

14.2 Rough Left Truth Equationality

We now turn to rough left truth equationality. As the terminology suggests:

• It is in the same relation to rough left c-reflectivity as rough truth
equationality is to rough c-reflectivity;

• It is in the same relation to rough truth equationality as left truth
equationality is to truth equationality.
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Roughly speaking (in both senses), rough left truth equationality is defined
analogously to left truth equationality, but it is applied to rough representa-
tives of theory families so as to avoid theory families with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is roughly left truth equational
if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished

argument, such that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

φ ∈
←̃Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ).

The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of wit-
nessing equations (of/for the rough left truth equationality of I).

The following relationship between rough left truth equationality and
left truth equationality, an analog of the relationship between rough truth
equationality and truth equationality, presented in Corollary 1098, holds.

Left Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Roughly Left

Truth Equational

Proposition 1120 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is left truth equational if and only
if it is roughly left truth equational and has theorems.

Proof: Suppose, first, that I is roughly left truth equational, with witnessing
equations τ ♭, and that it has theorems. Availability of theorems implies that
ThFam (I) = ThFam(I). Thus, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and

all φ ∈ SEN♭(Σ), φ ∈ ←ÐT Σ if and only if φ ∈
←̃Ð
T Σ if and only if τ ♭Σ[φ] ≤ Ω(T ).

Thus, I is left truth equational, with the same witnessing equations τ ♭.
Assume, conversely, that I is left truth equational, with witnessing equa-

tions τ ♭. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ). This clearly implies that I has theorems, since,

otherwise, given that Ω(∅) = ∇F = Ω(SEN♭), we would get SEN♭ =
←ÐÐÐ
SEN♭ =

←Ð
∅ = ∅, a contradiction. Moreover, due to the availability of theorems, we

get, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ ←̃ÐT Σ if

and only if φ ∈
←Ð
T Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Thus, I is roughly left truth

equational. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 860, of left truth equationality in terms of the left solubility of the
left Suszko core for rough left truth equationality.
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Rough left truth equationality allows an expression for
←̃Ð
T , for all theory

families T , in terms of the Leibniz congruence system of T . The following
proposition forms an analog of Proposition 1099.

Proposition 1121 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is roughly left truth equational, with

witnessing equations τ ♭, if and only if, for all T ∈ ThFam(I), ←̃ÐT = τ ♭(Ω(T )).
Proof: I is roughly left truth equational, with witnessing equations τ ♭, if

and only if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ ←̃ÐT Σ

iff τ ♭Σ[φ] ≤ Ω(T ), if and only if, for all T ∈ ThFam(I), ←̃ÐT = τ ♭(Ω(T )). ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
roughly left c-reflective if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←̃Ð
T ≤
←̃Ð
T ′.

We are now able to show that rough left truth equationality implies rough
left c-reflectivity. This is an analog of Theorem 1100.

Theorem 1122 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left truth equational, then
it is roughly left c-reflective.

Proof: Suppose I is roughly left truth equational, with witnessing equations
τ ♭. Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we have

⋂T ∈T
←̃Ð
T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1121)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

=
←̃Ð
T ′. (Proposition 1121)

Thus, I is roughly left c-reflective. ∎

In the context of rough left truth equationality, the notion paralleling the
left Suszko core is the rough left Suszko core, a modification of the original,
which is defined below.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough left Suszko core L̃I of I is the collection

L̃I = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))
(σ♭Σ[φ] ≤ ⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ})}.

From the definition, it is not difficult to see that, for any theory family

T ,
←̃Ð
T is always included in L̃I(Ω(T )). This forms an analog in the rough

left context of Proposition 1102.
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Proposition 1123 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I),

←̃Ð
T ≤ L̃I(Ω(T )).

Proof: Suppose T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈
←̃Ð
T Σ,

and σ♭ ∈ L̃I . Then, by the definition of L̃I , σ♭Σ[φ] ≤ Ω(T ). Hence, L̃IΣ[φ] ≤
Ω(T ). Thus, by definition of L̃I(Ω(T )), φ ∈ L̃IΣ(Ω(T )). Since Σ and φ ∈

←̃Ð
T Σ

were arbitrary, we conclude that
←̃Ð
T ≤ L̃I(Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThFam(I), we say that the rough left Suszko core of I is left soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough left Suszko core L̃I of I is said to be left
soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

L̃IΣ[φ] ≤ Ω(T ) implies φ ∈
←̃Ð
T Σ.

As was the case with rough truth equationality (see Lemma 1104), it turns
out that, if a given π-institution is roughly left truth equational, then any
collection of witnessing equations must be included in the rough left Suszko
core of I . In other words, in case of rough left truth equationality, the rough
left Suszko core forms a candidate for the largest collection of witnessing
equations.

Lemma 1124 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left truth equational, with
witnessing equations τ ♭, then τ ♭ ⊆ L̃I .

Proof: Suppose I is roughly left truth equational, with witnessing equations

τ ♭. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈
←̃Ð
T Σ. Then,

by rough left truth equationality, τ ♭Σ[φ] ≤ Ω(T ). Since T was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ}.
Hence, since Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ) were arbitrary, we conclude that
τ ♭ ⊆ L̃I . ∎

We are now ready to prove the equivalence between rough left truth
equationality and the left solubility of the rough left Suszko core. In the
next theorem, we show that rough left truth equationality implies the left
solubility of the rough left Suszko core. This forms an analog of Theorem
1105.
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Theorem 1125 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left truth equational, then
L̃I is left soluble.

Proof: Suppose I is roughly left truth equational, with witnessing equations
τ ♭. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that L̃IΣ[φ] ≤ Ω(T ).
Then, by rough left truth equationality and Lemma 1124, τ ♭Σ[φ] ≤ Ω(T ).
Again, using rough left truth equationality, we conclude that φ ∈

←̃Ð
T Σ. This

shows that L̃I is left soluble. ∎

Conversely, in an analog of Theorem 1106, we show that the left solubil-
ity of the rough left Suszko core of a π-institution implies rough left truth
equationality.

Theorem 1126 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If L̃I is left soluble, then I is roughly left
truth equational, with witnessing equations L̃I .

Proof: Assume L̃I is left soluble and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). We must show that

φ ∈
←̃Ð
T Σ iff L̃IΣ[φ] ≤ Ω(T ).

If φ ∈
←̃Ð
T Σ, then, by Proposition ??, φ ∈ L̃IΣ(Ω(T )), i.e., L̃IΣ[φ] ≤ Ω(T ).

On the other hand, the reverse inclusion is guaranteed by the postulated
left solubility of L̃I . Thus, I is indeed roughly left truth equational, with
witnessing equations L̃I . ∎

Theorems 1125 and 1126 provide the first characterization of rough left
truth equationality in terms of the left solubility of the rough left Suszko
core. This parallels Theorem 1107, which asserted a similar characterization
for rough truth equationality in terms of the solubility of the rough Suszko
core of a π-institution.

I Roughly Left Truth Equational ←→ L̃I Left Soluble

Theorem 1127 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational if and
only if L̃I is left soluble.

Proof: The “if” is by Theorem 1126. The “only if” by Theorem 1125. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough left Suszko core L̃I of I
roughly defines theory families up to arrow if, for al T ∈ ThFam(I),

←̃Ð
T = L̃I(Ω(T )).
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Another characterization of rough left truth equationality, along the lines
of Theorem 1108, asserts that it is equivalent to the rough definability up to
arrow of the theory families by the rough left Suszko core.

I Roughly Left Truth Equational

←→ L̃I Roughly Defines Theory Families Up to Arrow

Theorem 1128 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational if and
only if L̃I roughly defines theory families in I up to arrow.

Proof: Suppose I is roughly left truth equational. By Theorem 1125, L̃I

is left soluble. Hence, by definition, for all T ∈ ThFam(I), L̃I(Ω(T )) ≤ ←̃ÐT .
Since, by Proposition 1123, the reverse always holds, we get, for all T ∈

ThFam(I), ←̃ÐT = L̃I(Ω(T )). Thus, L̃I roughly defines theory families in I up

to arrow. Conversely, if, for all T ∈ ThFam(I), ←̃ÐT = L̃I(Ω(T )), then L̃I is left
soluble and, therefore, by Theorem 1126, I is roughly left truth equational.
∎

We establish, next, a connection between rough left truth equationality
and rough left c-reflectivity by means of the rough left Suszko core. To help
us is this task, in analogy with the case of rough truth equationality, we
introduce the notion of left adequacy of the rough left Suszko core. The
following proposition, a “left” analog of Proposition 1113, motivates and,
in a sense, justifies, the notion of left adequacy that will follow. Its role
parallels that of Proposition 1113 in motivating the definition of adequacy of
the rough Suszko core.

Proposition 1129 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )} ≤⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ}.
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I),

φ ∈
←̃Ð
T Σ implies L̃IΣ[φ] ≤ Ω(T ). (Definition of L̃I)

Hence,

⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )} ≤ ⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ}.
This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1129 holds, then we
say that the rough left Suszko core of I is left adequate.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough left Suszko core L̃I of I is
left adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ} ≤⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )}.
We can show, in analogy with Corollary 1114, that the left solubility of

the rough left Suszko core implies left adequacy.

Corollary 1130 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If L̃I is left soluble, then it is left adequate.

Proof: Suppose L̃I is left soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then,

by left solubility and Proposition 1123, for all T ∈ ThFam(I), φ ∈ ←̃ÐT Σ if and
only if L̃IΣ[φ] ≤ Ω(T ). Therefore,

⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ} = ⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )}.
Thus, L̃I is left adequate. ∎

We prove, next, the converse of Corollary 1130, under the additional
assumption that the π-institution I under consideration is roughly left c-
reflective. This constitutes an analog of Proposition 1115.

Proposition 1131 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a roughly left c-reflective π-institution based on F. If L̃I is left
adequate, then it is left soluble.

Proof: Suppose I is roughly left c-reflective and L̃I is left adequate. Let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that L̃IΣ[φ] ≤ Ω(T ). By

the postulated left adequacy of L̃I , we get that ⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ} ≤ Ω(T ).
By rough left truth equationality, ⋂{←̃ÐT ∶ φ ∈

←̃Ð
T Σ} ≤ ←̃ÐT . Therefore, φ ∈

←̃Ð
T Σ.

We conclude that L̃I is left soluble. ∎

We are now in a position to prove the main characterization theorem
relating rough left truth equationality with rough left c-reflectivity, an analog
of Theorem 1116, which characterized rough truth equationality in terms of
rough family c-reflectivity and the adequacy of the rough Suszko core.

Rough Left Truth Equationality = L̃I Left Soluble

= L̃I Roughly Defines Theory
Families Up to Arrow

= Rough Left c-Reflectivity

+ L̃I Left Adequate
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Theorem 1132 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational if and
only if it is roughly left c-reflective and has a left adequate rough left Suszko
core.

Proof: Suppose, first, that I is roughly left truth equational. By Theorem
1122, it is roughly left c-reflective. By Theorem 1125, its rough left Suszko
core is left soluble. Thus, by Corollary 1130, its rough left Suszko core is also
left adequate.

Assume, conversely, that I is roughly left c-reflective and has a left ad-
equate rough left Suszko core. Then, by Proposition 1131, its rough left
Suszko core is also left soluble. Hence, by Theorem 1126, I is roughly left
truth equational. ∎

Based on Proposition 1120 and Theorem 468, it is not difficult to show, in
an analog of Corollary 1117, that the characterization theorem, Theorem 870,
of left truth equationality in terms of left c-reflectivity and the left adequacy
of the left Suszko core, can be inferred from Theorem 1132.

Corollary 1133 (Theorem 870) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is left truth
equational if and only if it is left c-reflective and has a left adequate left
Suszko core.

Proof: I is left truth equational if and only if, by Proposition 1120, it is
roughly left truth equational and has theorems, if and only if, by Theorem
1132, it is roughly left c-reflective, with a left adequate rough left Suszko core
and has theorems, if and only if, by Theorem 468 and the definitions of left
Suszko core and rough left Suszko core, it is left c-reflective and has a left
adequate left Suszko core. ∎

We close the section by looking at a result, an analog of Theorem 1118,
which may be perceived either as an alternative characterization of rough left
truth equationality, involving arbitrary F-algebraic systems, or as a transfer
theorem.

Theorem 1134 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational, with
witnessing equations τ ♭, if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

φ ∈
←̃Ð
T Σ iff τAΣ [φ] ≤ ΩA(T ).

Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is roughly
left truth equational.
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Suppose, conversely, that I is roughly left truth equational and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). Then we have

αΣ(φ) ∈ ←̃ÐT F (Σ) iff φ ∈ α−1Σ (←̃ÐT F (Σ))
iff φ ∈

̃
α−1Σ (←ÐT F (Σ)) (Theorem 377)

iff φ ∈
̃←ÐÐÐÐÐÐ

α−1Σ (TF (Σ)) (Lemma 6)
iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

14.3 Narrow Left Truth Equationality

We now turn to narrow left truth equationality. As the terminology suggests:

• It is in the same relation to narrow left c-reflectivity as rough left truth
equationality is to rough left c-reflectivity;

• It is in the same relation to rough/narrow truth equationality as left
truth equationality is to truth equationality.

In a nutshell, narrow left truth equationality is defined analogously to left
truth equationality, but care is taken to bypass theory families with empty
components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is narrowly left truth equational
if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished

argument, such that, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ).

The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of wit-
nessing equations (of/for the narrow left truth equationality of I).

An alternative characterization quantifies the relevant condition over all
theory families, but it does so at the expense of using the rough operator on
one side (and implicitly also on the other).

Lemma 1135 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈
←Ð
T̃ Σ iff τ ♭Σ[φ] ≤ Ω(T ).
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Proof: Suppose, first, that I is narrowly left truth equational, with wit-
nessing equations τ ♭, and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then, since T̃ ∈ ThFam (I), we get, by hypothesis, φ ∈

←Ð
T̃ Σ if and only

if τ ♭Σ[φ] ≤ Ω(T̃ ). Therefore, by Proposition 369, φ ∈
←Ð
T̃ Σ if and only if

τ ♭Σ[φ] ≤ Ω(T ).
Suppose, conversely, that the displayed equivalence holds and let T ∈

ThFam (I). Then T̃ = T . Thus, by hypothesis, for all Σ ∈ ∣Sign♭∣ and all

φ ∈ SEN♭(Σ), φ ∈ ←ÐT Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Therefore, I is narrowly
left truth equational. ∎

The following relationship between rough left truth equationality and left
truth equationality, an analog of the relationship between rough truth equa-
tionality and truth equationality, presented in Corollary 1098, holds. Note
that narrow left truth equationality is in the same relationship to left truth
equationality as rough left truth equationality is to left truth equationality,
as detailed in Proposition 1120.

Left Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Narrowly Left

Truth Equational

Proposition 1136 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is left truth equational if and only
if it is narrowly left truth equational and has theorems.

Proof: Suppose, first, that I is narrowly left truth equational, with witness-
ing equations τ ♭, and that it has theorems. Availability of theorems implies
that ThFam (I) = ThFam(I). Thus, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ), φ ∈ ←ÐT Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Thus, I is left
truth equational, with the same witnessing equations τ ♭.

Assume, conversely, that I is left truth equational, with witnessing equa-
tions τ ♭. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ). This clearly implies that I has theorems, since,

otherwise, given that Ω(∅) = ∇F = Ω(SEN♭), we would get SEN♭ =
←ÐÐÐ
SEN♭ =

←Ð
∅ = ∅, a contradiction. Moreover, since ThFam (I) ⊆ ThFam(I), left truth
equationality implies trivially narrow left truth equationality. ∎

Our next goal is to prove an analog of the characterizations, Theorem
860 and Proposition 1121, of left truth equationality and rough left truth
equationality, respectively, for narrow left truth equationality.
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Narrow left truth equationality allows an expression for
←Ð
T , for all theory

families T without empty components, or alternatively, for
←Ð
T̃ , for all theory

families T , in terms of the Leibniz congruence system of T . The following
proposition forms an analog of Proposition 1121.

Proposition 1137 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then the following statements are
equivalent:

(i) I is narrowly left truth equational, with witnessing equations τ ♭;

(ii) For all T ∈ ThFam (I), ←ÐT = τ ♭(Ω(T ));
(iii) For all T ∈ ThFam(I), ←ÐT̃ = τ ♭(Ω(T )).
Proof: Suppose, first, that I is narrowly left truth equational, with witnes-
sing equations τ ♭, and let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)

iff φ ∈
←Ð
T Σ. (hypothesis)

Suppose, next, that Condition (ii) holds and let T ∈ ThFam(I). Then T̃ ∈

ThFam (I), whence, by hypothesis,
←Ð
T̃ = τ ♭(Ω(T̃ )) = τ ♭(Ω(T )), where the

last equality holds by Proposition 369. Finally, suppose that Condition (iii)
holds and let T ∈ ThFam (I). Then T̃ = T , whence, we get, by hypothesis,
←Ð
T = τ ♭(Ω(T )), showing that I is narrowly left truth equational. ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
narrowly left c-reflective if, for all T ∪ {T ′} ⊆ ThFam (I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′.

We are now able to show that narrow left truth equationality implies
narrow left c-reflectivity. This is an analog of Theorem 1122.

Theorem 1138 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly left truth equational, then
it is narrowly left c-reflective.

Proof: Suppose I is narrowly left truth equational, with witnessing equa-
tions τ ♭. Let T ∪ {T ′} ⊆ ThFam (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then
we have

⋂T ∈T
←Ð
T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1137)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

=
←Ð
T ′. (Proposition 1137)
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Thus, I is narrowly left c-reflective. ∎

In the context of narrow left truth equationality, the notion paralleling
the left Suszko core is the narrow left Suszko core, a modification of the
original, which is defined below.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow left Suszko core LI of I is the
collection

LI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(σ♭[←ÐT ] ≤ Ω̃I(T ))}.

From the definition, it is not difficult to see that, for any theory family

T , with all components nonempty,
←Ð
T is always included in LI (Ω(T )). This

forms an analog in the narrow left context of Propositions 1102 and 1123.

Proposition 1139 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam (I),

←Ð
T ≤ LI (Ω(T )).

Proof: Suppose T ∈ ThFam (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈
←Ð
T Σ, and σ♭ ∈ LI . Then, by the definition of LI , σ♭Σ[φ] ≤ Ω̃I(T ) ≤ Ω(T ).
Hence, LI Σ [φ] ≤ Ω(T ). Thus, by definition of LI (Ω(T )), φ ∈ LI Σ (Ω(T )).
Since Σ and φ ∈

←Ð
T Σ were arbitrary, we conclude that

←Ð
T ≤ LI (Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThFam (I), we say that the narrow left Suszko core of I is left soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow left Suszko core LI of I is said to be
left soluble if, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

LI Σ [φ] ≤ Ω(T ) implies φ ∈
←Ð
T Σ.

As was the case with rough left truth equationality (see Lemma 1124), it
turns out that, if a given π-institution is narrowly left truth equational, then
any collection of witnessing equations must be included in the narrow left
Suszko core of I ; differently put, in case of narrow left truth equationality,
the narrow left Suszko core forms a candidate for the largest collection of
witnessing equations.

Lemma 1140 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly left truth equational, with
witnessing equations τ ♭, then τ ♭ ⊆ LI .
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Proof: Suppose I is narrowly left truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that

φ ∈
←Ð
T Σ. Then, for all T ≤ T ′ ∈ ThFam(I), φ ∈ ←ÐT ′Σ, whence, by narrow left

truth equationality, τ ♭Σ[φ] ≤ Ω(T ′). Since T ′, with the postulated properties
was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam(I)} = Ω̃I(T ).
Hence, τ ♭[←ÐT ] ≤ Ω̃I(T ). Since T ∈ ThFam (I) was arbitrary, we conclude
that τ ♭ ⊆ LI . ∎

We are now ready to prove the equivalence between narrow left truth
equationality and the left solubility of the narrow left Suszko core. In the
next theorem, we show that narrow left truth equationality implies the left
solubility of the narrow left Suszko core. This forms an analog of Theorem
1125.

Theorem 1141 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly left truth equational, then
LI is left soluble.

Proof: Suppose I is narrowly left truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that
L
I 
Σ [φ] ≤ Ω(T ). Then, by narrow left truth equationality and Lemma 1140,

τ ♭Σ[φ] ≤ Ω(T ). Again, using narow left truth equationality, we conclude that

φ ∈
←Ð
T Σ. This shows that LI is left soluble. ∎

Conversely, in an analog of Theorem 1126, we show that the left solubility
of the narrow left Suszko core of a π-institution implies narrow left truth
equationality.

Theorem 1142 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If LI is left soluble, then I is narrowly
left truth equational, with witnessing equations LI .

Proof: Assume LI is left soluble and let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). We must show that

φ ∈
←Ð
T Σ iff L

I 
Σ [φ] ≤ Ω(T ).

If φ ∈
←Ð
T Σ, then, by Proposition 1139, φ ∈ LI Σ (Ω(T )), i.e., LI Σ [φ] ≤ Ω(T ).

On the other hand, the reverse inclusion is guaranteed by the postulated
left solubility of LI . Thus, I is indeed narrowly left truth equational, with
witnessing equations LI . ∎

Theorems 1141 and 1142 provide the first characterization of narrow left
truth equationality in terms of the left solubility of the narrow left Suszko
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core. This parallels Theorem 1127, which asserted a similar characterization
for rough left truth equationality in terms of the left solubility of the rough
left Suszko core of a π-institution.

I Narrowly Left Truth Equational ←→ LI Left Soluble

Theorem 1143 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if LI is left soluble.

Proof: The “if” is by Theorem 1142. The “only if” by Theorem 1141. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow left Suszko core LI of I
narrowly defines theory families up to arrow if, for al T ∈ ThFam (I),

←Ð
T = LI (Ω(T )).

Another characterization of narrow left truth equationality, along the
lines of Theorem 1128, asserts that it is equivalent to the narrow definability
up to arrow of the theory families by the narrow left Suszko core.

I Narrowly Left Truth Equational
←→ LI Narrowly Defines Theory

Families Up to Arrow

Theorem 1144 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if LI narrowly defines theory families in I up to arrow.

Proof: Suppose I is narrowly left truth equational. By Theorem 1141, LI 

is left soluble. Hence, by definition, for all T ∈ ThFam (I), LI (Ω(T )) ≤←ÐT .
Since, by Proposition 1139, the reverse always holds, we get, for all T ∈
ThFam (I), ←ÐT = LI (Ω(T )). Thus, LI narrowly defines theory families in

I up to arrow. Conversely, if, for all T ∈ ThFam (I), ←ÐT = LI (Ω(T )), then
LI is left soluble and, therefore, by Theorem 1142, I is narrowly left truth
equational. ∎

We would like, next to establish a connection between narrow left truth
equationality and narrow left c-reflectivity by means of the narrow left Suszko
core. To accomplish this, we introduce an apparently modified version of the
Suszko operator, which, however, is identical to the Suszko operator itself.
This modified version is convenient for the purpose of handling proofs in a
more straightforward and efficient way.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define the narrow Suszko operator Ω̃I by
setting, for all T ∈ ThFam(I),

Ω̃I (T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam (I)}.
By Corollary 1111, we have, for all T ∈ ThFam(I), Ω̃I (T ) = Ω̃I(T ). So
this is indeed an apparent and not a substantial change and one can think,
without any loss, of Ω̃I as the Suszko operator.

In analogy with the case of rough truth equationality and rough left truth
equationality, we may introduce the notion of left adequacy of the narrow
left Suszko core, which will help in characterizing the relationship between
narrow left truth equationality and narrow left c-reflectivity. The following
proposition, a “left” analog of Proposition 1113 and an analog of Proposition
1129, justifies the notion of left adequacy that will follow.

Proposition 1145 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )} ≤ Ω̃I (C(Ð→φ )).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam (I),

φ ∈
←Ð
T Σ implies L

I 
Σ [φ] ≤ Ω̃I(T ) (Definition of LI )

implies L
I 
Σ [φ] ≤ Ω(T ). (Ω̃I ≤ Ω)

Hence,

⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )}
= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and L

I 
Σ [φ] ≤ Ω(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThFam (I) and L
I 
Σ [φ] ≤ Ω̃I(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈
←Ð
T Σ}

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and
Ð→
φ ≤ T}

= Ω̃I (C(Ð→φ )).
This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1145 holds, then we
say that the narrow left Suszko core of I is left adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow left Suszko core LI of I is
left adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I (C(Ð→φ )) ≤⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )}.
We can show, in analogy with Corollary 1130, that the left solubility of

the narrow left Suszko core implies left adequacy.
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Corollary 1146 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If LI is left soluble, then it is left ade-
quate.

Proof: Suppose LI is left soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then

Ω̃I (C(Ð→φ )) = ⋂{Ω(T ) ∶ T ∈ ThFam (I) and
Ð→
φ ≤ T}

(definition of Ω̃I )

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈
←Ð
T Σ}

(Definition of
Ð→
φ and

←Ð
T )

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and L
I 
Σ [φ] ≤ Ω(T )}

(Left solubility of LI )

= ⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )}. (Lemma 1110)

Thus, LI is left adequate. ∎

In order to prove a partial converse of Corollary 1146, we will employ the
following characterization of narrow left c-reflectivity.

Lemma 1147 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left c-reflective if and only
if, for all T ∈ ThFam(I) and all T ′ ∈ ThFam (I),

Ω̃I (T ) ≤ Ω(T ′) implies
←Ð
T ≤
←Ð
T ′.

Proof: Suppose, first, that I is narrowly left c-reflective and let T ∈ ThFam(I)
and T ′ ∈ ThFam (I), such that Ω̃I (T ) ≤ Ω(T ′). Then, by definition,

⋂{Ω(T ′′) ∶ T ≤ T ′′ ∈ ThFam (I)} ≤ Ω(T ′).
Hence, by narrow left c-reflectivity, ⋂{←ÐT ′′ ∶ T ≤ T ′′ ∈ ThFam (I)} ≤ ←ÐT ′.
However, T ≤ T ′′ implies that

←Ð
T ≤
←Ð
T ′′. Hence, we obtain

←Ð
T ≤
←Ð
T ′.

Suppose, conversely, that the displayed condition in the statement holds
and let T ∪ {T ′} ⊆ ThFam (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, since
T ⊆ ThFam (I), we get that

⋂{Ω(T ′′) ∶⋂T ≤ T ′′ ∈ ThFam (I)} ≤ Ω(T ′).
By definition, then, Ω̃I (⋂T ) ≤ Ω(T ′), whence, by hypothesis,

←ÐÐ
⋂T ≤

←Ð
T ′.

Therefore, ⋂T ∈T
←Ð
T ≤
←Ð
T ′. This shows that I is narrowly left c-reflective. ∎

We prove, next, the converse of Corollary 1146, under the additional
assumption that the π-institution I under consideration is narrowly left c-
reflective. This constitutes an analog of Proposition 1131.
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Proposition 1148 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a narrowly left c-reflective π-institution based on F. If LI is left
adequate, then it is left soluble.

Proof: Suppose I is narrowly left c-reflective and LI is left adequate. Let
T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that LI Σ [φ] ≤ Ω(T ).
By the postulated left adequacy of LI , we get that Ω̃I (C(Ð→φ )) ≤ Ω(T ).
By narrow left truth equationality and Lemma 1147,

←ÐÐÐ
C(Ð→φ ) ≤ ←ÐT . Therefore,

φ ∈
←Ð
T Σ. We conclude that LI is left soluble. ∎

We are now in a position to prove the main characterization theorem
relating narrow left truth equationality with narrow left c-reflectivity, an
analog of Theorem 1132, which characterized rough left truth equationality
in terms of rough left c-reflectivity and the adequacy of the rough left Suszko
core.

Narrow Left Truth Equationality = LI Left Soluble
= LI Narrowly Defines Theory

Families Up to Arrow
= Narrow Left c-Reflectivity

+ LI Left Adequate

Theorem 1149 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if it is narrowly left c-reflective and has a left adequate narrow left Suszko
core.

Proof: Suppose, first, that I is narrowly left truth equational. By Theorem
1138, it is narrowly left c-reflective. By Theorem 1141, its narrow left Suszko
core is left soluble. Thus, by Corollary 1146, its narrow left Suszko core is
also left adequate.

Assume, conversely, that I is narrowly left c-reflective and has a left
adequate narrow left Suszko core. Then, by Proposition 1148, its narrow left
Suszko core is also left soluble. Hence, by Theorem 1142, I is narrowly left
truth equational. ∎

Based on Proposition 1136 and Theorem 468, it is not difficult to show, in
an analog of Corollary 1133, that the characterization theorem, Theorem 870,
of left truth equationality in terms of left c-reflectivity and the left adequacy
of the left Suszko core, can be inferred from Theorem 1149.

Corollary 1150 (Theorem 870) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is left truth
equational if and only if it is left c-reflective and has a left adequate left
Suszko core.
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Proof: I is left truth equational if and only if, by Proposition 1136, it is
narrowly left truth equational and has theorems, if and only if, by Theorem
1149, it is narrowly left c-reflective, with a left adequate narrow left Suszko
core and has theorems, if and only if, by Theorem 468 and the definitions of
left Suszko core and narrow left Suszko core, it is left c-reflective and has a
left adequate left Suszko core. ∎

We close the section by looking at a result, an analog of Theorem 1134,
which may be perceived either as an alternative characterization of narrow
left truth equationality, involving arbitrary F-algebraic systems, or as a trans-
fer theorem.

Theorem 1151 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational, with
witnessing equations τ ♭, if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI (A), all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

φ ∈
←Ð
T Σ iff τAΣ [φ] ≤ ΩA(T ).

Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is narrowly
left truth equational.

Suppose, conversely, that I is narrowly left truth equational and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiFamI (A), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). Then we have

αΣ(φ) ∈←ÐT F (Σ) iff φ ∈ α−1Σ (←ÐT F (Σ))
iff φ ∈

←ÐÐÐÐÐÐ
α−1Σ (TF (Σ)) (Lemma 6)

iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

14.4 Rough System Truth Equationality

We now turn to rough system truth equationality. As the terminology sug-
gests:

• It is in the same relation to rough system c-reflectivity as rough left
truth equationality is to rough left c-reflectivity;

• It is in the same relation to rough left truth equationality as system
truth equationality is to left truth equationality.
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Roughly speaking, rough system truth equationality is defined analogously
to system truth equationality, but it is applied to rough representatives of
theory systems so as to avoid theory systems with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is roughly system truth equational
if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished ar-

gument, such that, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ T̃Σ iff τ ♭Σ[φ] ≤ Ω(T ).

The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of wit-
nessing equations (of/for the rough system truth equationality of I).

The following relationship between rough system truth equationality and
system truth equationality, an analog of the relationship between rough truth
equationality and truth equationality, presented in Corollary 1098, holds.

System Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Roughly System
Truth Equational

Proposition 1152 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is system truth equational if and
only if it is roughly system truth equational and has theorems.

Proof: Suppose, first, that I is roughly system truth equational, with wit-
nessing equations τ ♭, and that it has theorems. Availability of theorems im-
plies that ThSys (I) = ThSys(I). Thus, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if φ ∈ T̃Σ if and only if τ ♭Σ[φ] ≤ Ω(T ).
Thus, I is system truth equational, with the same witnessing equations τ ♭.

Assume, conversely, that I is system truth equational, with witnessing
equations τ ♭. Then, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ). This clearly implies that I has theorems. Moreover,
due to the availability of theorems, we get, for all T ∈ ThSys(I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ T̃Σ if and only if φ ∈ TΣ if and only if
τ ♭Σ[φ] ≤ Ω(T ). Thus, I is roughly system truth equational. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 1127, of rough left truth equationality in terms of the left solubility
of the rough left Suszko core for rough system truth equationality.

Rough system truth equationality allows an expression for T̃ , for all the-
ory systems T , in terms of the Leibniz congruence system of T . The following
proposition forms an analog of Proposition 1121.
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Proposition 1153 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is roughly system truth equa-
tional, with witnessing equations τ ♭, if and only if, for all T ∈ ThSys(I),
T̃ = τ ♭(Ω(T )).
Proof: I is roughly system truth equational, with witnessing equations τ ♭, if
and only if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ T̃Σ
iff τ ♭Σ[φ] ≤ Ω(T ), if and only if, for all T ∈ ThSys(I), T̃ = τ ♭(Ω(T )). ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
roughly system c-reflective if, for all T ∪ {T ′} ⊆ ThSys(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T̃ ≤ T̃ ′.

We are now able to show that rough system truth equationality implies
rough system c-reflectivity. This is an analog of Theorem 1122.

Theorem 1154 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system truth equational,
then it is roughly system c-reflective.

Proof: Suppose I is roughly system truth equational, with witnessing equa-
tions τ ♭. Let T ∪ {T ′} ⊆ ThSys(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we
have

⋂T ∈T T̃ = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1153)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

= T̃ ′. (Proposition 1153)

Thus, I is roughly system c-reflective. ∎

In the context of rough system truth equationality, the notion paralleling
the rough left Suszko core is the rough system core, a modification of the
system core, which is defined below.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough system core Z̃I of I is the collection

Z̃I = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))
(σ♭Σ[φ] ≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ})}.

From the definition, it is not difficult to see that, for any theory system
T , T̃ is always included in Z̃I(Ω(T )). This forms an analog in the rough left
context of Proposition 1123.

Proposition 1155 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThSys(I),

T̃ ≤ Z̃I(Ω(T )).
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Proof: Suppose T ∈ ThSys(I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ T̃Σ,
and σ♭ ∈ Z̃I . Then, by the definition of Z̃I , σ♭Σ[φ] ≤ Ω(T ). Hence, Z̃IΣ[φ] ≤
Ω(T ). Thus, by definition of Z̃I(Ω(T )), φ ∈ Z̃IΣ(Ω(T )). Since Σ and φ ∈ T̃Σ
were arbitrary, we conclude that T̃ ≤ Z̃I(Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThSys(I), we say that the rough system core of I is soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough system core Z̃I of I is said to be soluble
if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Z̃IΣ[φ] ≤ Ω(T ) implies φ ∈ T̃Σ.

As was the case with rough left truth equationality (see Lemma 1124), if
a given π-institution is roughly system truth equational, then any collection
of witnessing equations must be included in the rough system core of I . In
other words, in case of rough system truth equationality, the rough system
core forms a candidate for the largest collection of witnessing equations.

Lemma 1156 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system truth equational,
with witnessing equations τ ♭, then τ ♭ ⊆ Z̃I.

Proof: Suppose I is roughly system truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ T̃Σ.
Then, by rough system truth equationality, τ ♭Σ[φ] ≤ Ω(T ). Since T was
arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}.
Hence, since Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ) were arbitrary, we conclude that
τ ♭ ⊆ Z̃I . ∎

We are now ready to prove the equivalence between rough system truth
equationality and the solubility of the rough system core. In the next theo-
rem, we show that rough system truth equationality implies the solubility of
the rough system core. This forms an analog of Theorem 1125.

Theorem 1157 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system truth equational,
then Z̃I is soluble.

Proof: Suppose I is roughly system truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that
Z̃IΣ[φ] ≤ Ω(T ). Then, by rough system truth equationality and Lemma 1156,
τ ♭Σ[φ] ≤ Ω(T ). Again, using rough system truth equationality, we conclude

that φ ∈ T̃Σ. This shows that Z̃I is soluble. ∎
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Conversely, in an analog of Theorem 1126, we show that the solubility
of the rough system core of a π-institution implies rough system truth equa-
tionality.

Theorem 1158 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If Z̃I is soluble, then I is roughly system
truth equational, with witnessing equations Z̃I.

Proof: Assume Z̃I is soluble and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). We must show that

φ ∈ T̃Σ iff Z̃IΣ[φ] ≤ Ω(T ).
If φ ∈ T̃Σ, then, by Proposition 1155, φ ∈ Z̃IΣ(Ω(T )), i.e., Z̃IΣ[φ] ≤ Ω(T ).
On the other hand, the reverse inclusion is guaranteed by the postulated
solubility of Z̃I . Thus, I is indeed roughly system truth equational, with
witnessing equations Z̃I . ∎

Theorems 1157 and 1158 provide the first characterization of rough sys-
tem truth equationality in terms of the solubility of the rough system core.
This parallels Theorem 1127, which asserted a similar characterization for
rough left truth equationality in terms of the left solubility of the rough left
Suszko core of a π-institution.

I Roughly System Truth Equational ←→ Z̃I Soluble

Theorem 1159 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational if and
only if Z̃I is left soluble.

Proof: The “if” is by Theorem 1158. The “only if” by Theorem 1157. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough system core Z̃I of I roughly
defines theory systems if, for al T ∈ ThSys(I),

T̃ = Z̃I(Ω(T )).
Another characterization of rough system truth equationality, along the

lines of Theorem 1128, asserts that it is equivalent to the rough definability
of the theory systems by the rough system core.

I Roughly System Truth Equational

←→ Z̃I Roughly Defines Theory Systems

Theorem 1160 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational if and
only if Z̃I roughly defines theory systems in I.
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Proof: Suppose I is roughly system truth equational. By Theorem 1157,
Z̃I is soluble. Hence, by definition, for all T ∈ ThSys(I), Z̃I(Ω(T )) ≤ T̃ .
Since, by Proposition 1155, the reverse inclusion always holds, we get, for all
T ∈ ThSys(I), T̃ = Z̃I(Ω(T )). Thus, Z̃I roughly defines theory systems in
I . Conversely, if, for all T ∈ ThSys(I), T̃ = Z̃I(Ω(T )), then Z̃I is soluble
and, therefore, by Theorem 1158, I is roughly system truth equational. ∎

We establish, next, a connection between rough system truth equation-
ality and rough system c-reflectivity by means of the rough system core. In
analogy with the case of rough left truth equationality, we introduce, first,
the notion of adequacy of the rough system core. The following proposition,
a system analog of Proposition 1129, motivates the notion of adequacy that
will follow.

Proposition 1161 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThSys(I),
φ ∈ T̃Σ implies Z̃IΣ[φ] ≤ Ω(T ). (Definition of Z̃I)

Hence,

⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}.

This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1161 holds, then we
say that the rough system core of I is adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough system core Z̃I of I is ade-
quate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}.

We can show, in analogy with Corollary 1130, that the solubility of the
rough system core implies its adequacy.

Corollary 1162 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If Z̃I is soluble, then it is adequate.
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Proof: Suppose Z̃I is soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then, by
solubility and Proposition 1155, for all T ∈ ThSys(I), φ ∈ T̃Σ if and only if
Z̃IΣ[φ] ≤ Ω(T ). Therefore,

⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}
= ⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}.

Thus, Z̃I is adequate. ∎

We prove, next, the converse of Corollary 1162, under the additional
assumption that the π-institution I under consideration is roughly system
c-reflective. This constitutes an analog of Proposition 1131.

Proposition 1163 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a roughly system c-reflective π-institution based on F. If Z̃I is
adequate, then it is soluble.

Proof: Suppose I is roughly system c-reflective and Z̃I is adequate. Let
T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that Z̃IΣ[φ] ≤ Ω(T ). By the

postulated adequacy of Z̃I , we get that ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ} ≤
Ω(T ). By rough system truth equationality, ⋂{T̃ ∶ T ∈ ThSys(I) and φ ∈
T̃Σ} ≤ T̃ . Therefore, φ ∈ T̃Σ. We conclude that Z̃I is soluble. ∎

We are now in a position to prove the main characterization theorem
relating rough system truth equationality with rough system c-reflectivity, an
analog of Theorem 1132, which characterized rough left truth equationality
in terms of rough left c-reflectivity and the left adequacy of the rough left
Suszko core.

Rough System Truth Equationality

= Z̃I Soluble

= Z̃I Roughly Defines Theory Systems

= Rough System c-Reflectivity + Z̃I Adequate

Theorem 1164 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational if
and only if it is roughly system c-reflective and has an adequate rough system
core.

Proof: Suppose, first, that I is roughly system truth equational. By The-
orem 1154, it is roughly system c-reflective. By Theorem 1157, its rough
system core is soluble. Thus, by Corollary 1162, its rough system core is also
adequate.

Assume, conversely, that I is roughly system c-reflective and has an ade-
quate rough system core. Then, by Proposition 1163, its rough system core is
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also soluble. Hence, by Theorem 1158, I is roughly system truth equational.
∎

Based on Proposition 1152 and Theorem 468, it is not difficult to show,
in an analog of Corollary 1133, that the characterization theorem, Theorem
887, of system truth equationality in terms of system c-reflectivity and the
adequacy of the system core, can be inferred from Theorem 1164.

Corollary 1165 (Theorem 887) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is system truth
equational if and only if it is system c-reflective and has an adequate system
core.

Proof: I is system truth equational if and only if, by Proposition 1152, it is
roughly system truth equational and has theorems, if and only if, by Theorem
1164, it is roughly system c-reflective, with an adequate rough system core
and has theorems, if and only if, by Theorem 468 and the definitions of system
core and rough system core, it is system c-reflective and has an adequate
system core. ∎

We close the section by looking at a result, an analog of Theorem 1134,
which may be perceived either as an alternative characterization of rough
system truth equationality, involving arbitrary F-algebraic systems, or as a
transfer theorem.

Theorem 1166 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational,
with witnessing equations τ ♭, if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiSysI(A), all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

φ ∈ T̃Σ iff τAΣ [φ] ≤ ΩA(T ).
Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is roughly
system truth equational.

Suppose, conversely, that I is roughly system truth equational and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiSysI(A), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Then we have

αΣ(φ) ∈ T̃F (Σ) iff φ ∈ α−1Σ (T̃F (Σ))
iff φ ∈ ̃α−1Σ (TF (Σ)) (Theorem 377)
iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎
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14.5 Narrow System Truth Equationality

Finally, we discuss narrow system truth equationality, the weakest of all
rough/narrow truth equationality conditions. As the terminology suggests:

• It is in the same relation to narrow system c-reflectivity as rough system
truth equationality is to rough system c-reflectivity;

• It is in the same relation to narrow truth equationality and narrow
left truth equationality as rough system truth equationality is to rough
truth equationality and rough left truth equationality, respectively.

In a nutshell, narrow system truth equationality is defined analogously to
system truth equationality, but care is taken to bypass theory systems with
empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is narrowly system truth equa-
tional if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distin-
guished argument, such that, for all T ∈ ThSys(I), such that T̃ ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ).

Once more, since, by Proposition 369, for every T ∈ ThFam(I), Ω(T̃ ) =
Ω(T ), Ω(T ) is compatible with T̃ and, hence, the preceding definition makes
sense. The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of
witnessing equations (of/for the narrow system truth equationality of I).

As in Proposition 1096, we get the following alternative characterization.

Proposition 1167 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
narrowly system truth equational, with witnessing equations τ ♭, if and only
if, for all T ∈ ThSys(I), such that T̃ ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ T̃Σ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose that I is narrowly truth equational and let T ∈ ThSys(I),
such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ T̃Σ iff φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) (Proposition 369 and compatibility)

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ) (by hypothesis)

iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T ) (by definition)
iff τ ♭Σ[φ] ≤ Ω(T ).
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Suppose, conversely, that the displayed condition holds. Let T ∈ ThSys(I),
such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff φ ∈ T̃Σ (Proposition 369 and compatibility)
iff τ ♭Σ[φ] ≤ Ω(T ) (by hypothesis)
iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T )

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤ ∆F/Ω(T ). (definition)

Therefore, I is narrowly system truth equational. ∎

It is not difficult to see that an alternative way to express narrow system
truth equationality is to assert the same condition that defines system truth
equationality, excluding, however, those theory systems with at least one
empty component.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall from Chapter 6 that we denote by ThSys (I)
the collection of all theory systems T of I , such that TΣ ≠ ∅, for all Σ ∈ ∣Sign♭∣:

ThSys (I) = {T ∈ ThSys(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}.
Recall, also, that, if I has theorems, then ThSys (I) = ThSys(I). In partic-
ular, this is case if I happens to be system truth equational.

Proposition 1168 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
narrowly system truth equational, with witnessing equations τ ♭, if and only
if, for all T ∈ ThSys (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose I is narrowly system truth equational, with witnessing
equations τ ♭. Let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then
T̃ = T ∈ ThSys(I), whence, taking into account Proposition 1167, φ ∈ TΣ if
and only if τ ♭Σ[φ] ≤ Ω(T ).

Suppose, conversely, that the displayed condition holds. Consider T ∈
ThSys(I), such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then,
since, by definition of T̃ , we have T̃ ∈ ThSys (I), we get, by hypothesis, φ ∈
T̃Σ if and only if τ ♭Σ[φ] ≤ Ω(T̃ ), whence, using Proposition 369, we conclude

that φ ∈ T̃Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Therefore, I is narrowly system
truth equational. ∎

As a corollary, we obtain the following key relationship between narrow
system truth equationality and system truth equationality, paralleling the
one established between system truth equationality and rough system truth
equationality in Corollary 1152.
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Corollary 1169 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system truth equational if and only if
it is narrowly system truth equational with theorems.

Proof: Suppose, first, that I is narrowly system truth equational, with
witnessing equations τ ♭, and that it has theorems. Availability of theorems
implies that ThSys (I) = ThSys(I). Thus, by Proposition 1168, for all
T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if
τ ♭Σ[φ] ≤ Ω(T ). Thus, I is system truth equational, with the same witnessing
equations τ ♭.

Assume, conversely, that I is system truth equational, with witnessing
equations τ ♭. Then, for all T ∈ ThSys(I), and, hence, a fortiori, for all
T ∈ ThSys (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only
if τ ♭Σ[φ] ≤ Ω(T ). Hence, again by Proposition 1168, I is narrowly system
truth equational. Finally, by Theorem 872, I is system c-reflective and, by
Proposition 243, it is system reflective and, therefore, system injective. Thus,
it must have theorems. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 1159, of rough system truth equationality in terms of the solubility
of the rough system core for the case of narrow system truth equationality.

Narrow system truth equationality allows the following expression for all
theory systems with nonempty components, forming an analog of Proposition
1153.

Proposition 1170 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is narrowly system truth equational, with witnessing equations τ ♭;

(ii) For all T ∈ ThSys(I), such that T̃ ∈ ThSys(I), T̃ = τ ♭(Ω(T ));
(iii) For all T ∈ ThSys (I), T = τ ♭(Ω(T )).
Proof: Suppose I is narrowly system truth equational, with witnessing equa-
tions τ ♭, and let T ∈ ThSys(I), such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Then

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)

iff φ ∈ T̃Σ. (hypothesis and Proposition 1167)
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This proves Condition (ii). If Condition (ii) holds and T ∈ ThSys (I), then
T̃ = T ∈ ThSys(I), whence, by hypothesis, T = T̃ = τ ♭(Ω(T )). Thus, Condi-
tion (iii) holds. Finally, assume Condition (iii) holds. Then, by Proposition
??, I is narrowly system truth equational, with witnessing equations τ ♭. ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
narrowly system c-reflective if, for all T ∪ {T ′} ⊆ ThSys (I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

We are now able to show that narrow system truth equationality implies
narrow system c-reflectivity. This is an analog of Theorem 1154.

Theorem 1171 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system truth equational,
then it is narrowly system c-reflective.

Proof: Suppose I is narrowly system truth equational, with witnessing equa-
tions τ ♭. Let T ∪ {T ′} ⊆ ThSys (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we
have

⋂T ∈T T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1170)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)
= T ′. (Proposition 1170)

Thus, I is narrowly system c-reflective. ∎

In the context of narrow system truth equationality, the notion paralleling
the rough system core, introduced in Section 14.3, is the narrow system core,
a modification of the original definition of the system core from Chapter 11,
which is defined by circumventing theory systems with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow system core ZI of I is the collection

ZI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys(I))(T̃ ∈ ThSys(I)⇒ σ♭[T̃ ] ≤ Ω̂I(T̃ ))}.
As before, an alternative characterization avoids ̃ at the expense of restrict-
ing quantification over ThSys (I).
Proposition 1172 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then

ZI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys (I))(σ♭[T ] ≤ Ω̂I(T ))}.
Proof: Inside this proof we set

MI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys (I))(σ♭[T ] ≤ Ω̂I(T ))}.
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Our goal is to show that ZI = MI . Suppose, first, that σ♭ ∈ ZI and
let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Since
T ∈ ThSys (I), we get T̃ = T . Thus, on the one hand, T̃ ∈ ThSys(I) and, on
the other, by hypothesis, φ ∈ T̃Σ. Thus, since σ♭ ∈ ZI , we get

σ♭Σ[φ] ≤ Ω̂I(T̃ ) = Ω̂I(T ).
This proves that σ♭ ∈ MI . Assume, conversely, that σ♭ ∈ MI and let
T ∈ ThSys(I), such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such
that φ ∈ T̃Σ. Since T̃ ∈ ThSys (I) and σ♭ ∈ MI , we get σ♭Σ[φ] ≤ Ω̂I(T̃ ),
whence, σ♭ ∈ ZI . This proves that ZI =MI . ∎

From the definition, it is not difficult to see that any theory system T

with all its components nonempty is always included in ZI (Ω(T )). This
forms an analog in the rough system context of Proposition 1155.

Proposition 1173 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThSys (I),

T ≤ ZI (Ω(T )).
Proof: Suppose T ∈ ThSys (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ,
and σ♭ ∈ ZI . Then, by Proposition ??, σ♭Σ[φ] ≤ Ω̂I(T ) ≤ Ω(T ). Hence,

ZI Σ [φ] ≤ Ω(T ). By definition, then, φ ∈ ZI Σ (Ω(T )). Since Σ and φ ∈ TΣ
were arbitrary, we conclude that T ≤ ZI (Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThSys (I), we say that the narrow system core ZI of I is soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow system core ZI of I is said to be
soluble if, for all T ∈ ThSys (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

ZI Σ [φ] ≤ Ω(T ) implies φ ∈ TΣ.

An alternative way to express solubility is to again expand the view to
all theory systems, with nonempty components, at the balancing expense
of adding rough equivalence representatives. We obtain, thus, an analog of
Lemma 1103.

Lemma 1174 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. ZI is soluble if and only if, for all T ∈
ThSys(I), such that T̃ ∈ ThSys(I),

T̃ = ZI (Ω(T )).
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Proof: ZI is soluble if and only if, by definition and Proposition 1173,
for all T ∈ ThSys (I), T = ZI (Ω(T )). It is easy to see that this holds if
and only if, for all T ∈ ThSys(I), such that T̃ ∈ ThSys(I), T̃ = ZI (Ω(T̃ )).
And this is equivalent, by Proposition 369, to the statement that, for all
T ∈ ThSys(I), such that T̃ ∈ ThSys(I), T̃ = ZI (Ω(T )). ∎

As was the case with rough system truth equationality (see Lemma 1156),
it turns out that, if a given π-institution is narrowly system truth equational,
then any collection of witnessing equations must be included in the narrow
system core of I . That is, in case of narrow system truth equationality, the
narrow system core is a candidate for the largest set of witnessing equations.

Lemma 1175 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system truth equational,
with witnessing equations τ ♭, then τ ♭ ⊆ ZI .

Proof: Suppose I is narrowly system truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ.
Then, for all T ≤ T ′ ∈ ThSys(I), we have T ′ ∈ ThSys (I) and φ ∈ T ′Σ. Thus,
by narrow system truth equationality and Proposition 1168, τ ♭Σ[φ] ≤ Ω(T ′).
Since T ′, with the postulated properties was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys(I)} = Ω̂I(T ).
We conclude, using Proposition 1172, that τ ♭ ⊆ ZI . ∎

We are now ready to prove the equivalence between narrow system truth
equationality and the solubility of the narrow system core, an analog of
Theorem 1159. First, we show that narrow system truth equationality implies
the solubility of the narrow system core. This forms an analog of Theorem
1157.

Theorem 1176 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system truth equational,
then ZI is soluble.

Proof: Suppose I is narrowly system truth equational, with witnessing
equations τ ♭. Let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that
ZI Σ [φ] ≤ Ω(T ). Then, by narrow system truth equationality and Lemma
1175, τ ♭Σ[φ] ≤ Ω(T ). Again, using narrow system truth equationality and
Proposition 1168, we conclude that φ ∈ TΣ. This shows that ZI is soluble.
∎

Conversely, the solubility of the narrow system core of a π-institution
implies narrow system truth equationality.
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Theorem 1177 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ZI is soluble, then I is narrowly system
truth equational, with witnessing equations ZI .

Proof: Assume ZI is soluble and let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). By Proposition 1168, it suffices to show that

φ ∈ TΣ iff Z
I 
Σ [φ] ≤ Ω(T ).

If φ ∈ TΣ, then, by Proposition 1173, φ ∈ ZI Σ (Ω(T )), i.e., ZI Σ [φ] ≤ Ω(T ).
On the other hand, the reverse inclusion is guaranteed by the postulated
solubility of ZI . Thus, I is indeed narrowly system truth equational, with
witnessing equations ZI . ∎

Theorems 1176 and 1177 provide the first characterization of narrow sys-
tem truth equationality in terms of the solubility of the narrow system core.
This parallels Theorem 1159, which asserted a similar characterization for
rough system truth equationality in terms of the solubility of the rough sys-
tem core of a π-institution.

I Narrowly System Truth Equational ←→ ZI Soluble

Theorem 1178 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational if
and only if ZI is soluble.

Proof: The “if” is by Theorem 1177. The “only if” by Theorem 1176. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow system core ZI of I nar-
rowly defines theory systems if, for al T ∈ ThSys (I),

T = ZI (Ω(T )).
Another characterization of narrow system truth equationality, along the

lines of Theorem 1160, asserts that it is equivalent to the narrow definability
of the theory systems by the narrow system core.

I Narrowly System Truth Equational
←→ ZI Narrowly Defines Theory Systems

Theorem 1179 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational if
and only if ZI narrowly defines theory systems in I.
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Proof: Suppose I is narrowly system truth equational. By Theorem 1176,
ZI is soluble. Hence, by definition, for all T ∈ ThSys (I), ZI (Ω(T )) ≤ T .
Since, by Proposition 1173, the reverse inclusion always holds, we get, for
all T ∈ ThSys (I), T = ZI (Ω(T )). Thus, ZI narrowly defines theory
systems in I . Conversely, if, for all T ∈ ThSys (I), T = ZI (Ω(T )), then
ZI is soluble and, therefore, by Theorem 1178, I is narrowly system truth
equational. ∎

We establish, next, a connection between narrow system truth equation-
ality and narrow system c-reflectivity by means of a variant of the systemic
Suszko operator. This variant of the systemic Suszko operator, denoted Ω̂I ,
is not necessarily identical to the systemic Suszko operator Ω̂I itself, unlike
the version of the Suszko operator Ω̃I , defined in the preceding section,
which was introduced only for convenience, but was actually shown to be
equivalent to the original version Ω̃I .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define the narrow systemic Suszko operator
Ω̃I by setting, for all T ∈ ThSys(I),

Ω̂I (T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys (I)}.
Note that Lemma 1110 and, hence, a hypothetical analog of Corollary 1111,
are not applicable in the case of theory systems, since, given T ∈ ThSys(I), it
may not be the case that T̃ ∈ ThSys(I). On the other hand, as the following
lemma shows, for all T ∈ ThSys (I), Ω̂I (T ) = Ω̂I(T ). So, for the case of
theory systems, all of whose components are nonempty, the two operators do
coincide.

Lemma 1180 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThSys (I),
Ω̂I(T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys (I)}.

Proof: Since {T ′ ∈ ThSys (I) ∶ T ≤ T ′} ⊆ {T ′ ∈ ThSys(I) ∶ T ≤ T ′}, we get

Ω̂I(T ) ≤⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys (I)}.
But, if T ∈ ThSys (I), then, for all T ′ ∈ ThSys(I), such that T ≤ T ′, we have
T ′ ∈ ThSys (I). Thus, in this particular case, the two collections above are
identical and, therefore, equality holds between the two sides in the displayed
formula, which proves the lemma. ∎

In analogy with the case of rough system truth equationality, we may
introduce the notion of adequacy of the narrow system core, which will help
in characterizing the relationship between narrow system truth equational-
ity and narrow system c-reflectivity. The following proposition, a “narrow”
analog of Proposition 1161, justifies the notion of adequacy that will follow.
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Proposition 1181 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ T ∈ ThSys (I) and ZI Σ [φ] ≤ Ω(T )} ≤ Ω̂I (C(Ð→φ )).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThSys (I),

φ ∈ TΣ implies Z
I 
Σ [φ] ≤ Ω̂I(T ) (Definition of ZI )

implies ZI Σ [φ] ≤ Ω(T ). (T ∈ ThSys (I))
Hence,

⋂{Ω(T ) ∶ T ∈ ThSys (I) and Z
I 
Σ [φ] ≤ Ω(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThSys (I) and Z
I 
Σ [φ] ≤ Ω̂I(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThSys (I) and φ ∈ TΣ}
= ⋂{Ω(T ) ∶ T ∈ ThSys (I) and

Ð→
φ ≤ T}

= Ω̃I (C(Ð→φ )).
This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1181 holds, then we
say that the narrow system core of I is adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow system core ZI of I is
adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̂I (C(Ð→φ )) ≤⋂{Ω(T ) ∶ T ∈ ThSys (I) and Z
I 
Σ [φ] ≤ Ω(T )}.

We can show, in analogy with Corollary 1162, that the solubility of the
narrow system core implies its adequacy.

Corollary 1182 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ZI is soluble, then it is adequate.

Proof: Suppose ZI is soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then

Ω̂I (C(Ð→φ )) = ⋂{Ω(T ) ∶ T ∈ ThSys (I) and
Ð→
φ ≤ T}

(definition of Ω̂I )

= ⋂{Ω(T ) ∶ T ∈ ThSys (I) and φ ∈ TΣ}
(T ∈ ThSys(I))

= ⋂{Ω(T ) ∶ T ∈ ThSys (I) and ZI Σ [φ] ≤ Ω(T )}.
(Solubility of ZI )

Thus, ZI is adequate. ∎

In order to prove a partial converse of Corollary 1182, we will employ the
following characterization of narrow system c-reflectivity.
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Lemma 1183 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system c-reflective if and
only if, for all T ∈ ThSys(I) and all T ′ ∈ ThSys (I),

Ω̂I (T ) ≤ Ω(T ′) implies T ≤ T ′.

Proof: Suppose, first, that I is narrowly system c-reflective and let T ∈
ThSys(I) and T ′ ∈ ThSys (I), such that Ω̂I (T ) ≤ Ω(T ′). Then, by defini-
tion,

⋂{Ω(T ′′) ∶ T ≤ T ′′ ∈ ThSys (I)} ≤ Ω(T ′).
By narrow system c-reflectivity, ⋂{T ′′ ∶ T ≤ T ′′ ∈ ThSys (I)} ≤ T ′. Thus,
T ≤ T ′.

Suppose, conversely, that the displayed condition in the statement holds
and let T ∪ {T ′} ⊆ ThSys (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, since
T ⊆ ThSys (I), we get that

⋂{Ω(T ) ∶⋂T ≤ T ′′ ∈ ThSys (I)} ≤ Ω(T ′).
By definition, then, Ω̂I (⋂T ) ≤ Ω(T ′), whence, by hypothesis, ⋂T ≤ T ′.
This shows that I is narrowly system c-reflective. ∎

We prove, next, a partial converse of Corollary 1182, under the additional
assumption that the π-institution I under consideration is narrowly system
c-reflective. This constitutes an analog of Proposition 1163.

Proposition 1184 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a narrowly system c-reflective π-institution based on F. If ZI is
adequate, then it is soluble.

Proof: Suppose I is narrowly system c-reflective and ZI is adequate. Let
T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that ZI Σ [φ] ≤ Ω(T ). By

the postulated adequacy of ZI , we get that Ω̂I (C(Ð→φ )) ≤ Ω(T ). By narrow

system truth equationality and Lemma 1183, C(Ð→φ ) ≤ T . Therefore, φ ∈ TΣ.
We conclude that ZI is soluble. ∎

We are now in a position to prove the main characterization theorem re-
lating narrow system truth equationality with narrow system c-reflectivity,
an analog of Theorem 1164, which characterized rough system truth equa-
tionality in terms of rough system c-reflectivity and the adequacy of the
rough system core.

Narrow System Truth Equationality
= ZI Soluble
= ZI Narrowly Defines Theory Systems
= Narrow System c-Reflectivity
+ ZI Adequate
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Theorem 1185 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational if
and only if it is narrowly system c-reflective and has an adequate narrow
system core.

Proof: Suppose, first, that I is narrowly system truth equational. By The-
orem 1171, it is narrowly system c-reflective. By Theorem 1176, its narrow
system core is soluble. Thus, by Corollary 1182, its narrow system core is
also adequate.

Assume, conversely, that I is narrowly system c-reflective and has an
adequate narrow system core. Then, by Proposition 1184, its narrow sys-
tem core is soluble. Hence, by Theorem 1177, I is narrowly system truth
equational. ∎

Based on Proposition 1152 and Theorem 468, it is not difficult to show,
in an analog of Corollary 1165, that the characterization theorem, Theorem
887, of system truth equationality in terms of system c-reflectivity and the
adequacy of the system core, can be inferred from Theorem 1185.

Corollary 1186 (Theorem 887) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is system truth
equational if and only if it is system c-reflective and has an adequate system
core.

Proof: I is system truth equational if and only if, by Proposition 1152, it is
narrowly system truth equational and has theorems, if and only if, by Theo-
rem 1185, it is narrowly system c-reflective, with an adequate narrow system
core and has theorems, if and only if, by Theorem 468 and the definitions
of system core and narrow system core, it is system c-reflective and has an
adequate system core. ∎

Finally, we prove an analog of Theorem 1166, which may be perceived
either as an alternative characterization of narrow system truth equationality,
involving arbitrary F-algebraic systems, or as a transfer theorem.

Theorem 1187 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational,
with witnessing equations τ ♭, if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiSysI (A), all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T ).
Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is narrowly
system truth equational.
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Suppose, conversely, that I is narrowly system truth equational and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiSysI (A), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Then we have

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff τ ♭Σ[φ] ≤ Ω(α−1(T ))

(Lemma 6 and hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

14.6 Availability of Natural Theorems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that, by convention, if I has theorems, then,
for every Σ ∈ ∣Sign♭∣, I has a Σ-theorem, i.e., there exists φ ∈ SEN♭(Σ), such
that φ ∈ CΣ(∅).

On the other hand, recall from Section 2.6 that we say that a π-institution
I has natural theorems if there exists a ϑ♭ ∶ (SEN♭)k → SEN♭ in N ♭, such
that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,

ϑ♭Σ(φ⃗) ∈ CΣ(∅).
Furthermore, recall that we denote by NThm(I) the collection of natural
theorems of I .

It is straightforward that having natural theorems is a stronger property
than having theorems.

Lemma 1188 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I has natural theorems, then it has
theorems.

Proof: Suppose ϑ♭ ∶ (SEN♭)k → SEN♭ in N ♭ is a natural theorem. Let
Σ ∈ ∣Sign♭∣. By convention SEN♭(Σ) ≠ ∅. Let φ⃗ ∈ SEN♭(Σ). Then, we get
ϑ♭Σ(φ⃗) ∈ ThmΣ(I). This shows that I has theorems. ∎

On the other hand, it is easy to find examples of π-institutions with theo-
rems that do not possess natural theorems. For example, every π-institution
with at least one non-trivial set of sentences SEN♭(Σ), containing both a Σ-
theorem and a Σ-non theorem, and with a trivial category of natural trans-
formations, cannot have natural theorems. This follows from the fact that,
under these circumstances, no projection natural transformation can be a
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natural theorem and projection natural transformations are the only ones
available because of the triviality of N ♭.

Another useful observation is that every π-institution with natural theo-
rems has at least one at-most-unary natural theorem.

Lemma 1189 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I has natural theorems, then it has at
least one at-most-unary natural theorem.

Proof: Suppose I has natural theorems and let ϑ♭ ∶ (SEN♭)k → SEN♭ be
a natural theorem in N ♭. If k = 0 or 1, then there is nothing to prove. If
k > 1, then we define ϑ′ ♭ ∶ SEN♭ → SEN♭ by setting, for all Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ),

ϑ′ ♭Σ(φ) = ϑ♭Σ(φ,φ, . . . , φ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

).

Since ϑ′ ♭ = ϑ ○ ⟨p1,0, p1,0, . . . , p1,0⟩ and ϑ♭ is in N ♭, we get that ϑ′ ♭ is in N ♭

also. Moreover, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
ϑ′ ♭Σ(φ) = ϑ♭Σ(φ, . . . , φ) ∈ ThmΣ(I).

Hence ϑ′ ♭ is a unary natural theorem. ∎

We have the following characterization of natural theorems involving the
local Frege operator.

Theorem 1190 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and ϑ♭ ∶ (SEN♭)k → SEN♭ a natural transforma-
tion in N ♭. Then the following conditions are equivalent:

(i) ϑ♭ ∶ (SEN♭)k → SEN♭ is a natural theorem;

(ii) For every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈ SEN♭(Σ),
φ ∈ TΣ iff ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(T );

(iii) For every Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈ SEN♭(Σ),
φ ∈ ThmΣ(I) iff ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(Thm(I)).

Proof:

(i)⇒(ii) Assume that ϑ♭ ∶ (SEN♭)k → SEN♭ is a natural theorem. Let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ, χ⃗ ∈ SEN♭(Σ).

– Suppose φ ∈ TΣ. Then, since ϑ♭Σ(χ⃗) ∈ ThmΣ(I) ⊆ TΣ, we get, by
definition of λ(T ), ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(T ).
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– On the other hand, assume ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(T ). Since ϑ♭Σ(χ⃗) ∈
ThmΣ(I) ⊆ TΣ, we get, by the definition of λ(T ), φ ∈ TΣ.

(ii)⇒(iii) Trivial.

(iii)⇒(i) Suppose that (iii) holds. Let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ) and χ⃗ ∈
SEN♭(Σ).

– If φ ∈ ThmΣ(I), then, by hypothesis, ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(Thm(I)),
whence, ϑ♭Σ(χ⃗) ∈ ThmΣ(I).

– If φ ∉ ThmΣ(I), then, by hypothesis, ⟨φ,ϑ♭Σ(χ⃗)⟩ ∉ λΣ(Thm(I)).
Thus, θ♭Σ(χ⃗) ∈ ThmΣ(I).

We conclude that, for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ), ϑ♭Σ(χ⃗) ∈
ThmΣ(I). Therefore, ϑ♭ is a natural theorem.

∎

We provide two additional equivalent conditions in the theorem following
the next lemma.

Lemma 1191 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and ϑ♭ ∶ (SEN♭)k → SEN♭ a natural transformation
in N ♭. If ϑ♭ is a natural theorem, then, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ), ϑΣ(χ⃗) ∈ CI,AΣ (∅), i.e., ϑ is a
natural theorem of ⟨A,CI,A⟩.
Proof: Since ϑ♭ is a natural theorem, for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

ϑF (Σ)(αΣ(χ⃗)) = αΣ(ϑ♭Σ(χ⃗)) ∈ αΣ(ThmΣ(I)) ⊆ CI,AF (Σ)(∅).
By the surjectivity of ⟨F,α⟩ the conclusion follows. ∎

Theorem 1192 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and ϑ♭ ∶ (SEN♭)k → SEN♭ a natural transforma-
tion in N ♭. Then the following conditions are equivalent:

(i) ϑ♭ ∶ (SEN♭)k → SEN♭ is a natural theorem;

(ii) For every F-algebraic system A, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

φ ∈ TΣ iff (∀χ⃗ ∈ SEN(Σ))(⟨φ,ϑΣ(χ⃗)⟩ ∈ λ̃I,AΣ (T ));
(iii) For every F-algebraic system A, all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ CI,AΣ (∅) iff (∀χ⃗ ∈ SEN(Σ))(⟨φ,ϑΣ(χ⃗)⟩ ∈ λ̃I,AΣ (CI,A(∅))).



1034 CHAPTER 14. SYNTACTIC HIERARCHY IV Voutsadakis

Proof:

(i)⇒(ii) Assume that ϑ♭ ∶ SEN♭ → SEN♭ is a natural theorem and let T ∈
FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). By Lemma 1191, for all
χ⃗ ∈ SEN(Σ), ϑ♭Σ(χ⃗) ∈ CI,AΣ (∅).

– If φ ∈ TΣ, then, clearly, for all χ⃗ ∈ SEN(Σ), and all T ≤ T ′ ∈
FiFamI(A), we have φ ∈ T ′Σ and ϑΣ(χ⃗) ∈ T ′Σ. Hence, ⟨φ,ϑΣ(χ⃗)⟩ ∈
λ̃I,AΣ (T ).

– If, for all χ⃗ ∈ SEN(Σ), ⟨φ,ϑΣ(χ⃗)⟩ ∈ λ̃I,AΣ (T ), then, in particular,
for all χ⃗ ∈ SEN(Σ), ⟨φ,ϑΣ(χ⃗)⟩ ∈ λAΣ(T ). Since ϑΣ(χ⃗) ∈ TΣ, we
conclude that φ ∈ TΣ.

(ii)⇒(iii) Trivial.

(iii)⇒(iv) Suppose that (iii) holds. Consider, first, the trivial algebraic sys-
tem A = ⟨A, ⟨F,α⟩⟩, with the single signature object ∗ and such that
SEN(∗) = {0}. Then, we have ⟨0, ϑΣ(0⃗)⟩ = ⟨0,0⟩ ∈ {⟨0,0⟩} = λ̃I,A∗ (∅).
If ∅ ∈ FiFamI(A), then this would imply, by hypothesis, that 0 ∈ ∅, a
contradiction. Thus, ∅ ∉ ThFamI(A). This shows that I has theorems.

Let, now, Σ ∈ ∣Sign♭∣ and χ⃗ ∈ SEN(Σ). Take a theorem t ∈ ThmΣ(I).
Then, by hypothesis, ⟨t, ϑ♭Σ(χ⃗)⟩ ∈ λ̃IΣ(Thm(I)) ⊆ λΣ(Thm(I)). Thus,
since t ∈ ThmΣ(I), we must have ϑ♭Σ(χ⃗) ∈ ThmΣ(I). But Σ ∈ ∣Sign♭∣
and χ⃗ ∈ SEN♭(Σ) were arbitrary, whence, we conclude that ϑ♭ is a
natural theorem. ∎

We saw that availability of natural theorems is a strictly stronger con-
dition that availability of theorems. We have the following theorem, which
follows from preceding results.

Theorem 1193 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an F-algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I has natural theorems, then there exists τ ∶ (SEN♭)k → (SEN♭)2 in
N ♭, such that, for all F-algebraic systems A, all T ∈ FiFamI(A), all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ TΣ iff, for all χ⃗ ∈ SEN(Σ), τΣ(φ, χ⃗) ⊆ λ̃I,AΣ (T );
(b) If the condition in the conclusion of (a) holds, then I has theorems.

Proof:

(a) Suppose I has natural theorems and let ϑ♭ ∶ (SEN♭)k → SEN♭ be a
natural theorem. Then, we define τ ♭ ∶ (SEN♭)k+1 → (SEN♭)2, by setting

τ ♭ ∶= {pk+1,0 ≈ ϑ♭ ○ ⟨pk+1,1, . . . , pk+1,k⟩}.
Then the conclusion follows from Theorem 1192.
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(b) Suppose that the conclusion of Part (a) holds. Consider the triv-
ial algebraic system A = ⟨A, ⟨F,α⟩⟩, with the single signature ob-
ject ∗ and such that SEN(∗) = {0}. If I does not have theorems,
then ∅ ∈ FiFamI(A). Since 0 ∉ ∅, we must have, by hypothesis,⟨0,0⟩ = ⟨0, ϑΣ(0⃗)⟩ ∉ λ̃I,A∗ (∅) = {⟨0,0⟩}, a contradiction. Therefore,
I has theorems.

∎

We may think of a π-institution that has theorems, but not natural theo-
rems, as having a syntactic deficiency, i.e., not having enough natural trans-
formations in its category of natural transformations to express theoremhood.
So in an analogous way with the one used to formulate similar properties
through the Leibniz property of the reflexive core and the adequacy of the
Suszko core, we make the following definition, taking cue from Theorem 1190.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The Frege core F I of I is defined by

F I = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(∀Σ ∈ ∣Sign♭∣)(∀χ⃗ ∈ SEN♭(Σ))
(TΣ ≈ σ♭Σ(χ⃗) ⊆ λ̃IΣ(T ))}.

It is not difficult to show that, in case I has theorems, F I = NThm(I).
Proposition 1194 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I has theorems, then F I = NThm(I).
Proof: Suppose that I has theorems.

Assume σ♭ ∈ F I and let Σ ∈ ∣Sign♭∣, χ⃗ ∈ SEN♭(Σ). Since I has theorems,
there exists t ∈ ThmΣ(I). Then, by hypothesis and the definition of F I ,

⟨t, σ♭Σ(χ⃗)⟩ ∈ λ̃IΣ(Thm(I)) ⊆ λΣ(Thm(I)).
Thus, since t ∈ ThmΣ(I), σ♭Σ(χ⃗) ∈ ThmΣ(I). Since Σ ∈ ∣Sign♭∣ and χ⃗ ∈
SEN♭(Σ) were arbitrary, σ♭ ∈ NThm(I). Therefore, we get that F I ⊆
NThm(I).

Suppose, conversely, that σ♭ ∈ NThm(I). Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣,
φ, χ⃗ ∈ SEN♭(Σ), such that φ ∈ TΣ and T ≤ T ′ ∈ ThFam(I). Then, we get
φ ∈ T ′Σ and σ♭Σ(χ⃗) ∈ T ′Σ, whence

φ ∈ T ′Σ iff σ♭Σ(χ⃗) ∈ T ′Σ.
That is, for all T ≤ T ′ ∈ ThFam(I), ⟨φ,σ♭Σ(χ⃗)⟩ ∈ λΣ(T ). Hence, ⟨φ,σ♭Σ(χ⃗)⟩ ∈
λ̃IΣ(T ). This shows that σ♭ ∈ F I , whence NThm(I) ⊆ F I . ∎

In the remainder of the section, we show that a property analogous to
adequacy, coupled with possession of theorems, guarantees the existence of
natural theorems. The following lemma partly justifies the definition of ad-
equacy.
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Proposition 1195 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))} ≤ λ̃I(C(φ)).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). By the definition of the Frege core,
for all T ∈ ThFam(I) and for all χ⃗ ∈ SEN♭(Σ),

φ ∈ TΣ implies φ ≈ F IΣ(χ⃗) ⊆ λ̃IΣ(T ) ⊆ λΣ(T ).
Therefore, we get

{T ∈ ThFam(I) ∶ φ ∈ TΣ}
⊆ {T ∈ ThFam(I) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}.

This, now, yields

⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))} ≤ λ̃I(C(φ)),
i.e., the displayed formula in the statement. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the Frege core F I is adequate if the
reverse inclusion of the one proved in Proposition 1195 holds, i.e., if, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

λ̃(C(φ)) ≤⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}.
Theorem 1196 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I has natural theorems if and only if it
has theorems and its Frege core is adequate.

Proof: If I has natural theorems, then, by Lemma 1188, it has theorems.
Moreover, by Proposition 1194, F I = NThm(I). Now consider τ ♭ ∈ NThm(I)
and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that, for all χ⃗ ∈
SEN♭(Σ), φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ). Since F I = NThm(I), we get F IΣ(χ⃗) ⊆
ThmΣ(I) ⊆ TΣ. Thus, φ ∈ TΣ. This shows that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

{T ∈ ThFam(I) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}
≤ {T ∈ ThFam(I) ∶ φ ∈ TΣ}.

This proves that F I is adequate.
Assume, conversely, that I has theorems and F I is adequate.
Note that, if Thm(I) = SEN♭, then p1,0 ∶ SEN♭ → SEN♭ is a natural

theorem. So we may assume that ∅ ≨ Thm(I) ≨ SEN♭. Let Σ ∈ ∣Sign♭∣,
t ∈ ThmΣ(I) and φ ∈ SEN♭(Σ)/ThmΣ(I). Then, we get

⟨φ, t⟩ ∈ λΣ(C(φ)) but ⟨φ, t⟩ ∉ λΣ(Thm(I)).
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Thus, if F I = ∅, then

Thm(I) ∈ {T ∈ ThFam(I) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}.
So ⟨φ, t⟩ ∉ ⋂{λΣ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}. Since ⟨φ, t⟩ ∈
⋂{λΣ(T ) ∶ φ ∈ TΣ}, we get that

λ̃(C(φ)) ≰⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))},
contrary to the postulated adequacy of F I . ∎

We close the section by showing that having natural theorems is a prop-
erty that transfers from a π-institution to all I-gmatrix families.

Theorem 1197 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I has natural theorems if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, the
I-gmatrix ⟨A,CI,A⟩ has natural theorems.

Proof: The “if” is clear by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account the fact that CI,F = C. The “only if” was proven in
Lemma 1191. ∎



1038 CHAPTER 14. SYNTACTIC HIERARCHY IV Voutsadakis


