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16.1 Introduction

In this chapter our goal is to develop a hierarchy analogous to the one devel-
oped in Chapter 8, but on the syntactic side. The key on the semantic side,
developed in Chapter 8, was the property of regularity of a m-institution. The
family version of the property asserts that, given a m-institution Z = (F,C'),
based on an algebraic system F = (Sign’, SEN’, N*), T is family regular if,
for all T € ThFam(Z), all ¥ € |Sign’| and all ¢, € SEN*(2),

¢a w € TE lmphes <¢> ,lvb) € QZ (T)

By combining this property with pre- or proto-algebraicity, on the one hand,
and with the existence of theorems, on the other, which subsumes complete
reflectivity, one obtains various classes in the regular (weak) (pre)algebra-
izability hierarchy, which were studied in some detail in Chapter 8.

In this chapter, as our interest shifts to the syntactic side, the role played
by of pre- and proto-algebraicity is assumed by syntactic pre- and proto-
algebraicity, respectively, and the existence of theorems is replaced by the
existence of natural theorems. By adding these features to regularity, one ob-
tains the classes of the syntactically regularly (weakly) (pre)algebraizable -
institutions, which dominate, in general, the corresponding semantic classes.
Roughly speaking, the hierarchy that we are aiming for here has the gen-
eral shape depicted in the accompanying diagram. Of course various classes
are present at each level, since the properties shown have various flavors, or
versions, that may be used at each of the combinations depicted.

Synt Reg Algble

/N

Synt Reg Equiv Synt Reg Weak Algble

SO\ N

Synt Equiv Synt Reg Proto Synt Assrt
Synt Proto Regular Nat Thms

16.2 Regularity of Transformations

To prepare us for the main developments, we start by looking closely at the
various versions of the regularity property of a family of natural transforma-
tions in a given 7-institution.



Voutsadakis CHAPTER 16. SYNTACTIC HIERARCHY VI 1073

Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) a n-
institution based on F. Moreover, let I' : (SEN")* - SEN’ be a collection
of natural transformations in N°, having two distinguished arguments. We
define the following properties:

e [’ has the family regularity in Z, or is family regular in Z, if, for
all T e ThFam(Z) and all ¥ € [Sign’|, ¢, ¢ SEN*(X),

¢, eTs implies [4[¢, 0] <T;

e [’ has the left regularity in Z, or is left regular in Z, if, for all
T € ThFam(Z) and all ¥ € [Sign’|, ¢,¢ € SEN’(X),

¢pe Ty implies I4[¢, 0] < T

e [’ has the right regularity in Z, or is right regular in Z, if, for all
T € ThFam(Z) and all ¥ € [Sign’|, ¢,¢ € SEN’(X),

¢ eTs implies I4[¢,4]< T;

e [’ has the system regularity in Z, or is system regular in Z, if,
for all T € ThSys(Z) and all ¥ ¢ |Sign’|, ¢, € SEN*(2),

¢, €Ty implies Iy[¢, 9] <T.

Recalling that, by Proposition 99, for all 7' € ThFam(Z), all ¥ ¢ [Sign’|
and all ¢, € SEN"(X), we have

¢ 0]<T iff Ih[¢,0]<T,

it is easy to see that the four properties defined above collapse in pairs and,
therefore, there are only two distinct ones. This is detailed in the following:

Proposition 1246 Let F = (Sign’, SEN’, N*) be an algebraic system, I =
(F,C) a m-institution based on F and I' : (SEN")* — SEN’ a collection of
natural transformations in N°, with two distinguished arguments.

(a) 1" is family reqular in T if and only if it is right reqular in Z;
(b) I is system regular in I if and only if it is left reqular in T.

Proof: By Proposition 99, for all 7 € ThFam(Z), all ¥ € |Sign’| and all
¢,v € SEN’(X), we have

Lp]<T i I4[p]<T.
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Thus, taking into account the definitions of family and right regularity, the
equivalence of Part (a) becomes clear. We turn now to Part (b).
Assume, first, that " is left regular in Z and let T'e ThSys(Z), ¥ € [Sign’|

and ¢, € SEN*(X), such that ¢,7) € Tx. Since T' € ThSys(Z), T - T,
whence, by hypothesis, ¢, € (fg. Thus, by left regularity, I%[¢,¢] < T.
This shows that I® has the system regularity in Z.

Suppose, conversely, that I’ is system regular in Z and let 7" € ThFam(Z),
S ¢ |Sign’| and ¢, € SEN*(2), such that ¢,¢ € T's. Since T € ThSys(Z),
we get, by system regularity, I%[¢, 1] < T. Therefore, by Proposition 99,
IL[¢,9] < T, showing that I’ has the left regularity in Z. |

Based on Proposition 1246, we use the term family regular to refer to
family /right regularity and the term system regular for system/left reg-
ularity. As far as the relation between these two distinct properties, it is
straightforward to see that, as is typical with almost all properties studied
in the monograph, system regularity is weaker than family regularity.

Proposition 1247 Let F = (Sign’, SEN’, N*) be an algebraic system, T =
(F,C) a m-institution based on F and I' : (SEN")* - SEN’ a collection of
natural transformations in N°, having two distinguished arguments. If I® is
family reqular in Z, then it is system reqular in I.

Proof: This is clear from the definitions, since the condition defining system
regularity is a specialization of that defining family regularity, where T is
allowed to range over theory systems only. ]

Thus, the following hierarchy of regularity properties emerges.

I’ Family /Right Regular

I’ System/Left Regular

It is also easy to see that, in case Z is systemic, the two properties of
being family and system regular are identified.

Proposition 1248 Let F = (Sign’, SEN’, N*) be an algebraic system, T =
(F,C) a m-institution based on F and I’ : (SEN")* — SEN’ a collection of
natural transformations in N*. If T is systemic, then I" is system reqular if
and only if it is family regular in T.

Proof: If 7 is systemic, then ThFam(Z) = ThSys(Z), whence the two con-
ditions defining family and system regularity are identical. [ ]

And it is not difficult to show that this hierarchy does not collapse, in
general.
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Example 1249 Let F = (Sign’, SEN’, N*) be the algebraic system defined
as follows:

e Sign' is the category with the single object ¥ and a single (non-identity)
morphism f:X — X, such that fo f=f;

e SEN’: Sign’ - Set is defined by SEN'(Z) = {0,1} and SEN’(f)(0) =0,
SEN(f)(1) = 0;

e N’ is the clone of natural transformations generated by the binary nat-
ural transformation o* : (SEN")2 — SEN’, specified by

o%(z,y) =0, for all z,y e SEN'(X).

0 >0

SEN(Z) SEN(Z)

Define the m-institution T = (F,C') by stipulating that

Cx, = {Qv {1}7 {Ov 1}}

T has three theory families @, {{1}} and SEN’, but only two theory sys-
tems, @ and SEN®. Consider I' = {o*}. Since, the only theory systems are @
and SEN’, I is trivially system regular. On the other hand, for T = {{1}},
we get, 1 €Ty, but 11[1,1] = {{0}} £ {{1}}, whence I" is not family regular
in L.

We close the section by showing that the two versions of regularity transfer
from the family I* to I4, for all F-algebraic systems .A.

Proposition 1250 Let F = (Sign’, SEN’, N*) be an algebraic system, T =
(F,C) a m-institution based on F and I' : (SEN")* - SEN’ a collection of
natural transformations in N°, with two distinguished arguments.

(a) I is family regular in T if and only if, for every F-algebraic system
A= (A (F,a)), I is family regular in (A, CTA);

(b) I' is system regqular in I if and only if, for every F-algebraic system
A= (A (F,a)), I* is system regular in (A, CTA).
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Proof:

(a) The “if” follows easily by considering the F-algebraic system F =
(F,(I,.)) and recalling from Lemma 51 that FiFam”(F) = ThFam(Z).

Assume, conversely, that I’ is family regular in Z and let A = (A, (F, «))
be an F-algebraic system, T € FiFam®(A), ¥ ¢ |Sign’| and ¢,
SEN'(X), such that as(¢),as(¥) € Trx). Then, ¢,¢ € ag'(Tre))-
By Lemma 51, a7'(T") € ThFam(Z), whence, by the postulated family
regularity of I’ in Z, we get that I%[¢,¢] < a~!(T"). Thus, by Lemma
95, we get ]?(E)[Oéz;(qb),az(w)] < T. Taking into account the surjec-
tivity of (F,a), we conclude that, for all T' € FiFam?(A), all ¥ € |Sign|
and all ¢, € SEN(), if ¢,¢ € T%, then I [¢, 9] < T. Therefore, I4 is

family regular in (A, CTA).

(b) This follows along very similar lines.

16.3 Syntactic Regular PreAlgebraicity

In the next result, we connect the property of regularity of a collection of nat-
ural transformations with the property of regularity of a w-institution Z, stud-
ied in Chapter 8. More specifically, we show that, in case the m-institution
under consideration is syntactically pre- (proto-)algebraic with I* a collection
of witnessing transformations, then family (system) regularity of I° is equiv-
alent to Z being family (system) regular. Since the combination of syntactic
pre- and proto-algebraicity with regularity turns out to be an important prop-
erty in its own right, we give it a name, partly inspired by the results that
follow. Recall that there are two kinds of syntactic monotonicity, namely
syntactic prealgebraicity and syntactic protoalgebraicity, and two kinds of
regularity properties of collections of natural transformations, namely family
regularity and system regularity. Thus, by combining syntactic monotonicity
properties with regularity properties, we obtain, a priori, four versions.

Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) a n-
institution based on F.

e 7 is said to be syntactically family regularly protoalgebraic if it
is syntactically protoalgebraic, with a witnessing collection I° of trans-
formations, which is family regular in Z;

e 7 is said to be syntactically system regularly protoalgebraic
if it is syntactically protoalgebraic, with a witnessing collection I° of
transformations, which is system regular in Z;



Voutsadakis CHAPTER 16. SYNTACTIC HIERARCHY VI 1077

e 7 is said to be syntactically family regularly prealgebraic if it is
syntactically prealgebraic, with a witnessing collection I* of transfor-
mations, which is family regular in Z;

e 7 is said to be syntactically system regularly prealgebraic if it
is syntactically prealgebraic, with a witnessing collection I® of trans-
formations, which is system regular in Z.

The definitions are partially justified by the following propositions that
relate them to the semantical notions of family, right, left and system regu-
larity.

Proposition 1251 Let F = (Sign’, SEN’, N*) be an algebraic system and
Z =(F,C) a syntactically protoalgebraic m-institution based on F, with wit-
nessing transformations I* : (SEN")« - SEN’.

(a) T is family reqular if and only if I' is family reqular in I;
(b) T is left reqular if and only if 1" is system regular in Z.

Proof: Let Z be a syntactically protoalgebraic m-institution, with witnessing
transformations I°.

(a) This part is easy to see, since, by syntactic protoalgebraicity, for all
T e ThFam(Z), all ¥ € |Sign’| and all ¢,¢) € SEN*(X),

(p,0) € Qs (T) iff Ih[o, 0] <T.

(b) Suppose, first, that Z is left regular and let T' € ThSys(Z), ¥ € [Sign’|
and ¢,1) € SEN*(X), such that ¢, € Tx. Since T € ThSys(Z), ¢, €

?Z. By the left regularity of Z, we get (¢,1) € Qx(T), whence, by
syntactic protoalgebraicity, I4[¢, 1] <T. This shows that I® is system
regular in Z.

Assume, conversely, that I is system regular in Z and let 7' € ThFam(Z),
Y € |Sign’| and ¢, € SEN’(X), such that ¢, € ?Z. Then, since
T ¢ ThSys(Z), by the system regularity of I', I%[¢,¢] < T < T,
whence, by syntactic protoalgebraicity, (¢, 1) € Qs (T"). Therefore, 7 is

left regular.
[ ]

Proposition 1252 Let F = (Sign’, SEN’, N*) be an algebraic system and
Z = (F,C) a syntactically prealgebraic m-institution based on ¥, with wit-
nessing transformations I’ : (SEN")* - SEN’.

(a) I is right reqular if and only if I® is family reqular in Z;
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(b) T is system regular if and only if I' is system regular in T.

Proof: Let Z be a syntactically prealgebraic m-institution, with witnessing
transformations I°.

(a)

Suppose, first, that 7 is right regular and let 7' e ThFam(Z), X € [Sign’|
and ¢, € SEN’(X), such that ¢, € Ts. By the right regularity of Z, we

get (o, 1)) € QZ((T), whence, since T e ThSys(Z), we get, by syntactic

prealgebraicity, I4[¢, ] < T < T. This shows that I’ is family regular
in Z.

Assume, conversely, that I* is family regular in Z and let T' € ThFam(Z),
¥ € |Sign’| and ¢,1) € SEN*(X), such that ¢,1) € Tx. Then, by the
family regularity of I*, I3[¢,v] < T. Hence, by Proposition 99, we
get IL[¢, 1] < T. Since T ¢ ThSys(Z), by syntactic prealgebraicity,
(p,1) € Qg((f) Therefore, 7 is right regular.

This part is straightforward, since, by syntactic prealgebraicity, for all
T € ThSys(Z), all ¥ € |Sign’| and all ¢, € SEN*(X), (¢,) € Qs (T) if
and only if I%[¢,¢] < T.

Propositions 1251 and 1252 may be viewed as partial justifications for the
definitions of syntactic regular pre- and proto-algebraicity Moreover, recall-
ing the following hierarchies of syntactic pre- and protoalgebraicity, of the
regularity properties of I’ and of semantic regularity,

Family Regular

Synt ProtoAlgic I’ Family Reg Right Regular

Synt PreAlgic I System Reg Left Regular

System Regular

the following hierarchy of syntactic classes of regularly pre- and protoalge-
braic 7-institutions emerges.
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Synt Fam Reg ProtoAlgic

S
/

Synt Fam Reg PreAlgic ~ Synt Sys Reg ProtoAlgic

/
S

Synt Sys Reg PreAlgic

Furthermore, these four classes relate with their immediate subordinate
properties on the syntactic side, as shown in the following diagram

Synt Fam Reg ProtoAlgic

\
/

Synt Sys Reg ProtoAlgic Synt Fam Reg PreAlgic

/
8

nt Sys )

Synt ProtoAlgic Reg PreAlgic I

Fam Reg

\
)

Synt PreAlgic I’ Sys Reg

and with the four semantic regularity classes, as revealed by Propositions
1251 and 1252, as shown in the following diagram.

Synt Fam Reg ProtoAlgic

|

Synt Sys Synt Fam
Reg ProtoAlgic Reg PreAlgic

"
/

Fam Reg

Synt Sys Reg PreAlgic Right Reg

Left Reg

Sys Reg
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Theorem 584, which provided a characterization of both family and of
system regularity in terms of the Suszko operator and of a system version of
the Suszko operator, respectively, gives rise to the following characterizations
of family and system regularity of witnessing collections of natural transfor-
mations for the proto- and pre-algebraicity, respectively, of a m-institution.

Corollary 1253 Let F = (Sign’,SEN’. N*) be an algebraic system, I =
(F,C) a m-institution based on F and I' : (SEN")* — SEN’ a collection
of natural transformations in N°, with two distinguished arguments.

(a) If T is syntactically protoalgebraic, with witnessing transformations I°,
then I' is family regular in T if and only if, for all ¥ € |Sign’| and all
¢, € SEN'(2),

(6,0) € QE(C(¢,9));

(ba) If T is syntactically prealgebraic, with witnessing transformations I°,
then I' is system reqular in T if and only if, for all ¥ € |Sign’| and all
¢,1 € SEN'(E),

(6, 0) € OE(C (6,)).

Proof: Part (a) follows by combining Part (a) of Proposition 1251 with the
characterization of family regularity given in Theorem 584. Similarly, Part
(b) follows by combing Part (b) of Proposition 1252 with the characterization
of system regularity given in Theorem 584. [ ]

The next results form transfer theorems, asserting that all four types
of syntactic regularity, studied here, transfer from a 7w-institution to all its
generalized matrix families/systems. We start with the two types obtained
by strengthening syntactic protoalgebraicity.

Theorem 1254 Let F = (Sign’,SEN’, N*) be an algebraic system and T =

(F,C) a m-institution based on F. T is syntactically family (system, respec-

tively) regularly protoalgebraic, with witnessing transformations I* : (SEN")« —
SEN', if and only if, for every F-algebraic system A = (A, (F,a)), with

A = (Sign, SEN,N), all T € FiFam’(A) (and all T' € FiSys*(A), respec-

tively), all ¥ € |Sign| and all ¢,1) € SEN(X),

o (¢, ) e (T iff I [, 00] < T
o ¢, €Ty implies I{ [, 0] < T (¢,9 € T, implies I[P, ] < T', respec-
tively).

Proof: 7 is syntactically regularly protoalgebraic if and only if, by definition,
it is syntactically protoalgebraic, with witnessing transformations I°, which
are family regular, if and only if, by Theorem 810 and Proposition 1250, for
every F-algebraic system A, (A,CTA4) is syntactically protoalgebraic, with
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witnessing transformations 4, which are family regular in (A, CT4), if and
only if, for every F-algebraic system A, the two conditions asserted in the
statement hold.

The case of system regularity may be treated similarly. [

We close with the two types that only require syntactic prealgebraicity.

Theorem 1255 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. T is syntactically family (system, respec-
tively) regularly prealgebraic with witnessing transformations I’ : (SEN")» —
SEN’, if and only if, for every F-algebraic system A = (A, (F,a)), with
A = (Sign, SEN, N), all T € FiFam® (A) and T' € FiSys*(A), all ¥ € |Sign|
and all ¢,1) € SEN(X),

o (¢,0) e QR(T") iff I, ] < T,

o ¢, €T implies IA[), ] < T (¢,9 € T implies I ¢, 4] <T', respec-
tively).

Proof: Similar to the proof of Theorem 1254. [

16.4 Syntactic Regular (Pre-)Equivalentiality

Syntactic regular pre- and proto-algebraicity were defined by combining syn-
tactic pre- and proto-algebraicity, respectively, with versions of regularity. If
we upgrade syntactic pre- and proto-algebraicity to syntactic preequivalen-
tiality and equivalentiality, respectively, then we obtain, analogously, versions
of syntactic regular preequivalentiality and syntactic regular equivalentiality,
respectively.

Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) a n-
institution based on F.

e 7 is said to be syntactically family regularly equivalential if it is
syntactically equivalential, with a witnessing collection I’ of transfor-
mations, which is family regular in Z;

e 7 is said to be syntactically system regularly equivalential if it
is syntactically equivalential, with a witnessing collection I* of trans-
formations, which is system regular in Z;

e 7 is said to be syntactically family regularly preequivalential
if it is syntactically preequivalential, with a witnessing collection I’ of
transformations, which is family regular in Z;

e 7 is said to be syntactically system regularly preequivalential
if it is syntactically preequivalential, with a witnessing collection I® of
transformations, which is system regular in Z.
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Analogs of Propositions 1251 and 1252 may be proven. They follow the
same lines of proof, the only difference being that the witnessing collections
of transformations we are dealing with in this case, as opposed to the cases
of syntactic pre- and proto-algebraicity, are parameter free.

Corollary 1256 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a syntactically equivalential w-institution based on ¥, with witnessing
transformations I’ : (SEN")2 - SEN’.

(a) T is family reqular if and only if 1" is family reqular in I;
(b) T is left reqular if and only if I' is system regular in T.

Proof: By Proposition 1251, taking into account the fact that syntactic
equivalentiality is equivalent to syntactic protoalgebraicity via a parameter
free collection of transformations. ]

Corollary 1257 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a syntactically preequivalential T-institution based on ¥, with witness-
ing transformations I’ : (SEN")2 - SEN’.

(a) T is right reqular if and only if I° is family reqular in Z;
(b) T is system regular if and only if I' is system reqular in I.

Proof: By Proposition 1252, taking into account the fact that syntactic
preequivalentiality is equivalent to syntactic prealgebraicity via a parameter
free collection of transformations. [ ]

Recalling the following hierarchies of syntactic (pre)equivalentiality, of
the regularity properties of I’ and of semantic regularity,

Family Regular

Synt Equiv I’ Family Reg Right Regular

Synt PreEquiv I’ System Reg Left Regular

System Regular

the following hierarchy of syntactic classes of regularly (pre)equivalential 7-
institutions arises.
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Synt Fam Reg Equiv

N

Synt Fam Reg PreEquiv Synt Sys Reg Equiv

N

Synt Sys Reg PreEquiv

Furthermore, these four classes relate to their immediate subordinate
properties on the syntactic side, as shown in the following diagram

Synt Fam Reg Equiv

-

Synt Sys Reg Equiv Synt Fam Reg PreEquiv

\nt Sys

Synt Equiv

/Pre uiv

Synt PreEquiv I’ Sys Reg

\/

» Fam Reg

/

Moreover, from the fact that syntactic equivalentiality is equivalent to
syntactic protoalgebraicity, with a parameter free witnessing collection of
transformations, and, similarly for preequivalentiality and prealgebraicity,
we get, immediately from the definitions. the following hierarchy of classes
of m-institutions involving syntactic regular pre- and proto-algebraicity and
syntactic regular (pre)equivalentiality.
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Synt Fam Reg Equiv

Synt FA/Synt FaNnt Sys
Reg PreEquiv Reg ProtoAlgic Reg Equiv
Synt F nt Sys nt Sys

Reg PreAlgic Reg PreEquiv Reg ProtoAlgic

Synt Sys Reg PreAlgic

An analog to Corollary 1253 adjusts its contents to address the special
case in which the collection I’ witnessing syntactic pre- or proto-algebraicity
is parameter free, thus giving rise, instead, to syntactic preequivalentiality
or equivalentiality, respectively.

Corollary 1258 Let F = (Sign’,SEN’, N*) be an algebraic system, I =
(F,C) a m-institution based on F and I' : (SEN")2 - SEN’ a collection
of natural transformations in N* (with both arguments distinguished).

(a) If T is syntactically equivalential, with witnessing transformations I°,
then I' is family regular in T if and only if, for all ¥ € |Sign’| and all
¢,1 € SEN'(X),

(6,9) e GE(C(8,));

(b) If T is syntactically preequivalential, with witnessing transformations
I', then I' is system regular in T if and only if, for all ¥ € |Sign’| and
all ¢,1p € SEN"(X),

(6, 0) € OE(C (6,)).

Proof: Each part is a consequence of the corresponding part of Corollary
1253 and the fact that I* is assumed to be parameter free. [ ]

Finally, the transfer theorems for syntactic regular pre- and proto-alge-
braicity, Theorems 1254 and 1255, may also be easily adapted to provide
analogous transfer theorems for syntactic regular equivalentiality and pree-
quivalentiality, respectively.

Corollary 1259 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. T is syntactically family (system, respec-
tively) reqularly equivalential, with witnessing transformations I* : (SEN")2 —
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SEN’, if and only if, for every F-algebraic system A = (A, (F,a)), with
A = (Sign, SEN,N), all T € FiFam”(A) (and all T' € FiSys*(A), respec-
tively), all ¥ € |Sign| and all ¢, € SEN(X),

o (¢,0) e QE(T) iff I, ] < T;

o ¢, €T implies I [p, 0] < T (¢,9 € T, implies I3[ p,10] <T', respec-
tively).

Proof: Directly from Theorem 1254. [ ]

We close with the two types that only require syntactic preequivalential-
ity.

Corollary 1260 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on ¥. T is syntactically family (system, re-
spectively) regularly pre-equivalential with witnessing transformations I° :
(SEN")2 — SEN', if and only if, for every F-algebraic system A = (A, (F,a)),
with A = (Sign, SEN,N), all T € FiFam®(A) and T’ € FiSys*(A), all
Y € |Sign| and all ¢, € SEN(X),

o (¢,0) e Q2(T") iff I, ] < T,

o ¢, €T implies I&[p, ] <T (p,0 € T implies IgH[p, 4] <T', respec-
tively).

Proof: Follows from Theorem 1255. ]

16.5 Syntactic Assertionality

In this section, we study some of the consequences of adding to the various
versions of semantic regularity, studied in detail in Section 8.2, the property
of having natural theorems.

Recall, first, from Section 8.2, that there are four distinct types of seman-
tic regularity, namely, family, right, left and system, which form the hierarchy
depicted in the left diagram (obtained in Section 8.2).

Family Regular Family/Right Assertional

|

Right Regular

l

Left Regular Left Assertional

|

System Regular System Assertional
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If to the various regularity conditions, one adds the existence of theorems,
then one obtains the semantic assertionality classes, which were studied in
detail in Section 8.3, where it was shown that they form the hierarchy de-
picted in the diagram on the right.

Additionally, it was shown in Section 8.3 that these three assertionality
classes dominate, respectively, the three corresponding complete reflectivity
classes. This is shown in the third diagram, reproduced here from Section
8.3.

Family Assertional

/N

Family c-Reflective  Left Assertional

NN

Left c-Reflective  System Assertional

NS

System c-Reflective

In this section, we study the classes arising by adding to the various flavors
of semantic regularity the property of possessing natural theorems. Since
the property of possessing natural theorems is strictly stronger that having
theorems, there are, in accordance with the results recalled from Section
8.3 above, only three potentially different classes of m-institutions arising.
These, of course, dominate the corresponding assertionality classes. The
m-institution members of these classes are termed syntactically assertional.
A strong motivation for introducing these three classes lies in the fact that
lifting the possession of theorems to that of the existence of natural theorems,
in tandem with semantic regularity, is enough to allow passing from the
semantic classes of completely reflective m-institutions to the corresponding
syntactic classes of truth equational 7-institutions.

Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) a n-
institution based on F.

e 7 is syntactically family assertional if it is family regular and has
natural theorems;

e 7 is syntactically left assertional if it is left regular and has natural
theorems;

e 7 is syntactically right assertional if it is right regular and has
natural theorems;
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e 7 is syntactically system assertional if it is system regular and has
natural theorems.

First, it is easy to see that syntactic family and syntactic right assertion-
ality coincide.

Proposition 1261 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F. T is syntactically family assertional if
and only if it is syntactically right assertional.

Proof: 7 is syntactically family assertional iff, by definition, it is family
assertional and has natural theorems iff, by Proposition 591, it is right as-
sertional and has natural theorems iff, by definition, it is syntactically right
assertional. [

Given Proposition 1261, asserting that syntactic family and syntactic
right assertionality coincide, we may establish the hierarchy of syntactic as-
sertionality classes.

Proposition 1262 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) If T is syntactically family/right assertional, then it is syntactically left
assertional;

(b) If T is syntactically left assertional, then it is syntactically system as-
sertional.

Proof: If 7 is syntactically family assertional, then it is, by definition, fam-
ily assertional and has natural theorems, whence, by Proposition 592, it is
left assertional and has natural theorems, i.e., it is syntactically left asser-
tional. Similarly, if Z is syntactically left assertional, then it is, by definition,
left assertional and has natural theorems, whence, by Proposition 592, it is
system assertional and has natural theorems, i.e., it is syntactically system
assertional. [

Proposition 1262 establishes the following hierarchy of syntactic asser-
tionality classes, paralleling the corresponding semantic hierarchy estab-
lished in Section 8.3.

Syntactically Family/Right Assertional

Syntactically Left Assertional

Syntactically System Assertional
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It is not difficult to see that the bottom classes of the hierarchy collapse,
if restricted to stable m-institutions, and that the entire hierarchy collapses
when considering only systemic m-institutions.

Proposition 1263 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) If T is stable and syntactically system assertional, then it is syntacti-
cally left assertional;

(b) If T is systemic and syntactically system assertional, then it is syntac-
tically family assertional.

Proof: The first statement follows directly from Proposition 579, whereas
the second implication is a consequence of Proposition 580. [

We formalize, next, a result, which is straightforward, establishing the
close interrelationships between the syntactic and semantic assertionality
classes.

Proposition 1264 Let F = (Sign’, SEN’, N*) be an algebraic system and
I =(F,C) a m-institution based on ¥. T is syntactically family (respectively
left, system) assertional if and only if it is family (respectively left, system)
assertional and has natural theorems.

Proof: These equivalences follow by the definitions involved, since existence
of natural theorems implies having theorems, as was shown in Lemma 1188.
[ ]

Thus, Proposition 1264 establishes the following relationships between
the semantic assertionality and the corresponding syntactic assertionality
classes.

Synt Family Assrt

N\

Synt Left As Family Assrt

N T

Synt System Assrt Left Assrt

N

System Assrt

wn
=
-+

N4

It is not difficult to show, by providing an example, that the syntactic
classes are properly included in the semantic ones. More precisely, we pro-
vide an example of a 7w-institution which is family assertional but fails to
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be syntactically system assertional. Thus, it belongs to all three semantic
assertionality classes but in none of the three syntactic assertionality steps
of the hierarchy.

Example 1265 Let F = (Sign’, SEN’, N*) be the algebraic system deter-
mined as follows:

e Sign’ is the trivial category with a single object 3;
e SEN’: Sign’ — Set is specified by SEN"(Z) = {0,1};

e N’ is the trivial category of natural transformations.

®

0

SEN(Z)

Let T = (F,C') be the m-institution determined by Csx = {{1},{0,1}}.
T has two theory families, Thm(Z) and SEN’, which are also theory sys-
tems. Moreover, Q(Thm(Z)) = AF and Q(SEN’) = VF,

Clearly, T is family regular, i.e., for all T € ThFam(Z), and all x,y € {0,1},
if v,y € T, then (x,y) € Qx(T). Further, obviously, T has theorems. F'-
nally, since there are no nontrivial natural transformations in N*, I does
not have natural theorems. Therefore, T is family assertional but it fails to
be syntactically system assertional.

A corollary of the connections established in Proposition 1264 and the
characterizations of semantic assertionality classes, given in Proposition 588,
provides similar characterizations of the three syntactic assertionality classes.

Corollary 1266 Let F = (Sign’,SEN’, N*) be an algebraic system, T =
(F,C) am-institution having natural theorems and 7 : SEN® - SEN’ a natural
theorem.
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(a) T is syntactically family assertional if and only if, for allT € ThFam(Z),

T=7/T);

(b) T is syntactically left assertional if and only if, for all T € ThFam(Z),
T =7/UT);

(¢) T is syntactically system assertional if and only if, for all T € ThSys(Z),
T=7/UT).

Proof: By combining Propositions 1264 and 588. ]

We conclude the section by establishing the relationships between the
three syntactic assertionality classes and the three truth equationality classes,
introduced and studied in detail in Chapter 11.

Theorem 1267 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F.

(a) If T is syntactically family assertional, with a natural theorem T :
SEN’ — SEN’, then it is family truth equational, with witnessing equa-
tion L~ T;

(b) If T is syntactically left assertional, with a natural theorem T : SEN® —
SEN’, then it is left truth equational, with witnessing equation v~ T;

(c) If T is syntactically system assertional, with a natural theorem T :
SEN’ - SEN', then it is system truth equational, with witnessing equa-
tion L~ T.

Proof: We prove Part (a). The other parts can be proven similarly. Suppose
that 7 is syntactically family assertional, with 7 : SEN’ - SEN’ a natural
theorem. Let 7 e ThFam(Z), ¥ € [Sign’| and ¢ € SEN’(X). To show that Z
is family truth equational, with witnessing equation ¢ ~ 7, we must establish
the equivalence

peTs it (Lr7)s[0] <QUT).

Suppose, first, that ¢ € Tx. Since 7 is a natural theorem, we also have
Ts(¢) € Ty. Thus, by family regularity (part of syntactic family assertion-
ality), (¢, 7s(¢)) € Qs(T). But Q(T) is a congruence system on F, whence,
for all ¥ ¢ |Sign’| and all f € Sign’(%,%’),

(SEN'(f)(), s (SEN'(f)(9))) € Qs (1),

Le., (taT)s[0] <QUT).

Assume, conversely, that (¢ ~ 7)s[¢] < Q(T). In particular, (¢, 7(¢)) €
Qs (T). However, since 7 is a natural theorem, 75 (¢) € T%. Therefore, by the
compatibility of Q(T") with T, we get that ¢ € Tx. [ ]
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Theorem 1267 establishes the following mixed hierarchy of syntactic as-
sertionality and truth equationality classes.

Synt Family Assrt

Synt Left Assrt Family TEq
Synt System Assrt Left TEq
System TEq

It is not difficult to see that the syntactic assertionality classes are prop-
erly included in the corresponding truth equationality classes. This is accom-
plished by exhibiting a m-institution which is family truth equational but fails
to be syntactically system assertional.

Example 1268 Let F = (Sign’, SEN’, N*) be the algebraic system defined
as follows:

e Sign’ is the trivial category with object ¥;
e SEN’: Sign’ — Set is defined by SEN"(XZ) = {0,1,2};

e N’ is the clone generated by the unary natural transformations o® :
SEN’ - SEN', specified by

03(0)=0, ox(1)=1, 0o3(2)=0,
and 7° : SEN" - SEN’, given by
%(0)=2, mw(1)=1, 7(2)=2.
Define the m-institution Z = (F,C') by stipulating that

Cy ={{1,2},{0,1,2}}.

T is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.
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SEN(Z)

It is not difficult to check that T is family truth equational, with witnessing
equation v~ 7",

On the other hand, T is not system reqular, since, for T = {{1,2}}, we
have 1,2 € T, but (1,2) ¢ AE = Q5 (T).

Thus, I belongs to all three truth equationality classes, but does not satisfy
any of the three reqularity conditions and, hence, belongs to none of the three
syntactic assertionality classes.

Finally, if we add the corresponding semantic classes of those depicted in
the preceding diagram, we get a bigger view of the hierarchy consisting of as-

sertionality (semantic and syntactic) and of complete reflectivity (semantic)
and truth equationality (syntactic) classes.

Synt Family Assrt

Synt Left Asst

Family Assrt Synt System Assrt Family TEq

Left Assrt Left TEq

System Assrt Family c-Ref System TEq

Left c-Ref

System c-Ref
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Finally, based on previously established results, we can easily show that
the three types of syntactic assertionality transfer from a w-institution to all
its generalized matrix families. This constitutes an analog of Theorem 599
in the syntactic context.

Theorem 1269 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. T is syntactically family (respectively,
left, system) assertional if and only if, for every F-algebraic system A =
(A, (F,a)), (A, CTA) is syntactically family (respectively, left, system) as-
sertional.

Proof: This follows by putting together Theorem 585, asserting that regu-
larity transfers, and Theorem 1197, asserting that the existence of natural
theorems transfers. [

16.6 Syntactic RW Prealgebraizability

In this section, we deal with three versions of syntactic regular weak preal-
gebraizability. These arise by combining syntactic prealgebraicity with each
of the three versions of syntactic assertionality.

Definition 1270 Let F = (Sign’, SEN’, N*) be an algebraic system and I =
(F,C) a m-institution based on F.

e 7 is syntactically regularly weakly family prealgebraizable, or
syntactically RWF prealgebraizable for short, if it is syntacti-
cally prealgebraic and syntactically family assertional;

e 7 issyntactically regularly weakly left prealgebraizable, or syn-
tactically RWL prealgebraizable for short, if it is syntactically
prealgebraic and syntactically left assertional;

e 7 is syntactically regularly weakly system prealgebraizable, or
syntactically RWS prealgebraizable for short, if it is syntactically
prealgebraic and syntactically system assertional.

Based on the syntactic assertionality hierarchy established in Proposition
1262, we have the following

Proposition 1271 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a w-institution based on F.

(a) If T is syntactically reqularly weakly family prealgebraizable, then it is
syntactically reqularly weakly left prealgebraizable;



1094 CHAPTER 16. SYNTACTIC HIERARCHY VI Voutsadakis

(b) If T is syntactically reqularly weakly left prealgebraizable, then it is syn-
tactically reqularly weakly system prealgebraizable.

Proof: Straightforward by combining Definition 1270 and Proposition 1262.
|

Proposition 1271 establishes the syntactic regular weak prealgebraizabil-

ity hierarchy depicted in the following diagram.

Syntactic Regular Weak Family Prealgebraizable

Syntactic Regular Weak Left Prealgebraizable

Syntactic Regular Weak System Prealgebraizable

Being very close to the apex of the Leibniz hierarchy, just below the other
classes that are studied in detail in the remaining sections of the present
chapter, it compares favorably (meaning is stronger) to many of the other
classes, semantic and syntactic introduced so far.

First, we look at the extant relationships between syntactic regular weak
prealgebraizability classes and the four syntactic regular prealgebraicity clas-
ses of Section 16.3. It turns out that syntactic regular weak family prealge-
braizability implies syntactic family regular protoalgebraicity and that syn-
tactically regular weak system prealgebraizability implies syntactic system
regular prealgebraicity. The only implication one can draw from the middle
class of syntactically regular weak left prealgebraizability is the trivial one
of being syntactically prealgebraic and left regular, which, strictly speaking,
lies outside the syntactic hierarchy of Section 16.3.

Proposition 1272 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) IfT is syntactically RWF prealgebraizable, then it is syntactically family
reqularly protoalgebraic;

(b) IfT is syntactically RWS prealgebraizable, then it is syntactically system
reqularly prealgebraic.

Proof:

(a) Suppose that Z is syntactically RWF prealgebraizable. Note that, by
definition, 7 is syntactically family assertional, i.e., it is family regular
and has natural theorems. Thus, by Theorem 1267, it is family truth
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equational. Thus, by Theorem 829, it is family c-reflective, whence,
by Proposition 237, it is systemic. Thus, since, by definition, it is
syntactically prealgebraic, it must be syntactically protoalgebraic. This
proves that it is syntactically family regularly protoalgebraic.

(b) By definition Z is syntactically system assertional, whence it is system
regular. And it is syntactically prealgebraic, also by definition. Thus,
it is syntactically system regularly prealgebraic.

Thus, according to Proposition 1272, we get the mixed hierarchy depicted
in the diagram.

Synt RWF PreAlgble

/

Synt Fam Reg ProtoAlgic ~ Synt RWL PreAlgble

N\

Synt RWS PreAlgble

e

Synt Sys Reg PreAlgic

N\

Synt PreAlgic
+Left Regular

/

As far as relationships between the syntactic regular weak prealgebraiz-
ability hierarchy and the syntactic assertionality hierarchy are concerned, we
have, directly by definition, the following inclusions.

Proposition 1273 Let F = (Sign’, SEN’, N*) be an algebraic system and
I =(F,C) a m-institution based on ¥. If T is syntactically reqularly weakly
family (left, system, respectively) prealgebraizable, then it is syntactically fam-
ily (left, system, respectively) assertional.

Proof: Directly from Definition 1270. [ ]
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Synt RWF PreAlgble

N

Synt RWL PreAlgble Synt Family Assrt

N

Synt RWS PreAlgble Synt Left Assrt

N 7

Synt System Assrt

Finally we look at closer relationships with other classes that are placed
relatively high in the Leibniz hierarchy. Still staying with syntactically de-
fined classes, we have the following relationships between the classes in the
syntactic regular weak prealgebraizability hierarchy and the classes in the
syntactic weak prealgebraizability hierarchy, which were defined in Chapter
12.

Proposition 1274 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) If T is syntactically reqularly weakly family prealgebraizable, then it is
syntactically weakly family algebraizable;

(b) If T is syntactically reqularly weakly left prealgebraizable, then it is syn-
tactically weakly left c-reflective prealgebraizable;

(c) If T is syntactically reqularly weakly system prealgebraizable, then it is
syntactically weakly system prealgebraizable.

Proof: We only prove Part (a). Parts (b) and (c) can be proven similarly
and are easier. Suppose Z is syntactically regularly weakly family prealge-
braizable. Then, it is, by definition syntactically family assertional. Thus, by
Theorem 1267, it is family truth equational and, therefore, systemic. Thus,
on the one hand, 7 is syntactically prealgebraic, and, hence, by systemicity,
syntactically protoalgebraic, and, on the other, it is family truth equational.
Therefore, it is syntactically weakly family algebraizable. [ ]

Proposition 1274, establishes the following hierarchy of syntactically reg-
ularly weakly prealgebraizable and syntactically weakly prealgebraizable -
institutions.
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Synt RWF PreAlgble

e

Synt WE Algble Synt RWL PreAlgble

OO TN

Synt WLC PreAlgble Synt RWS PreAlgble

/

Synt WS PreAlgble

/N

Finally, we reach across to bridge the gap between syntactically and se-
mantically defined prealgebraizability classes. We establish relationaships
that govern the syntactic regular weak prealgebraizability classes and the
regular weak prealgebraizability classes that were defined in Chapter 8.

Proposition 1275 Let F = (Sign’,SEN’, N*) be an algebraic system and
=(F,C) a m-institution based on F.

(a) If T is syntactically reqularly weakly family prealgebraizable, then it is
reqularly weakly family algebraizable;

(b) If T is syntactically reqularly weakly left prealgebraizable, then it is reg-
ularly weakly left prealgebraizable;

(c) If T is syntactically reqularly weakly system prealgebraizable, then it is
reqularly weakly system prealgebraizable.

Proof: This follows from the facts that, on the one hand, syntactic prealge-
braicity implies prealgebraicity and, on the other hand, syntactic family (left,
system, respectively) assertionality implies family (left, system, respectively)
assertionality. n

Proposition 1275 gives rise to the following mixed, semantic and syntactic,
hierarchy of regularly weakly prealgebraizable m-institutions.
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Synt RWF PreAlgble

S
/

RWEF Algble Synt RWL PreAlgble
RWL PreAlgble Synt RWS PreAlgble

/

e

RWS PreAlgble

Based on existing results, we can show that all three kinds of syntactic reg-
ular weak prealgebraizability transfer from theory families/systems to filter
families/systems over arbritrary F-algebraic systems. This is the syntactic
analog of Theorem 609, which asserted that regular weak prealgebraizability
properties transfer from a m-institution to all its generalized matrix families.

Theorem 1276 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. T is syntactically reqularly weakly fam-
ily (left, system, respectively) prealgebraizable if and only if, for every F-
algebraic system A = (A, (F,«a)), the Z-gmatriz family (A, CTA) is syntacti-
cally reqularly weakly family (left, system, respectively) prealgebraizable.

Proof: By Theorem 789, syntactic prealgebraicity transfers. By Theorem
585, the three regularity properties transfer. Finally, by Theorem 1197, the
property of possessing natural theorems also transfers. Thus, the properties
of being syntactically regularly weakly family, left and system prealgebraiz-
able all transfer from Z to (A, CTA), for all F-algebraic systems A. n

Finally, we adapt previously obtained results characterizing regular weak
prealgebraizability to obtain similar characterizations of syntactic regular
weak prealgebraizability in terms of mappings between posets of filter fam-
ilies/systems (including theory families/systems) and congruence systems.
Essentially, to the characterizations obtained in Theorems 610, 611 and 612,
we add the conditions of having enough natural transformations so that syn-
tactic prealgebraicity is ensured and also the existence of natural theorems
so that truth equationality is obtained, rather than having only complete
reflectivity.

Theorem 1277 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly weakly family prealgebraizable;
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(i1) 2 : ThFam(Z) - ConSys*(Z) is an order isomorphism, T has a Leibniz
reflexive core and a natural theorem T : SEN’ — SEN’, such that, for
all T e ThFam(Z), T = 7/UT);

(i1i) For every F-algebraic system A, the clauses of Part (ii) hold for the
n-institution (A.CT-A).

Proof: By Theorem 1299, 7 is syntactically regularly weakly family preal-
gebraizable if and only if, for every F-algebraic system A, the m-institution
(A, CTA) is also syntactically regularly weakly family prealgebraizable. Thus,
to prove the statement, it suffices to consider the equivalence (i)<>(ii).

Suppose, first, that Z is syntactically regularly weakly family prealge-
braizable. Then it is, by definition, syntactically prealgebraic. Moreover,
it is, by definition, syntactically family assertional. Thus, it has a natural
theorem 7 and it is, by Theorem 1267, family truth equational. Thus, by
Theorem 829, it is family c-reflective and, hence, by Proposition 237, sys-
temic. This implies that it is syntactically protoalgebraic and family truth
equational. Using Theorem 610, we conclude that €2 is an order isomorphism.
By Theorem 788, it has a Leibniz reflexive core and, by Corollary 1266, for
all T'e ThFam(Z), T = 7/Q(T).

Assume, conversely, that the postulated conditions hold. By Proposition
1275, 7 is regularly weakly family prealgebraizable. Hence it is protoalge-
braic, which, together with the postulated Leibniz property of the reflexive
core, gives, by Corollary 809, that it is syntactically protoalgebraic. Further,
by hypothesis and Corollary 1266, it is syntactically family assertional. Thus,
by definition, it is syntactically regularly weakly family prealgebraizable. m

Analogous characterization theorems may be provided for syntactical reg-
ular weak left and system prealgebraizability. The proofs are analogous and
are omitted.

Theorem 1278 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly weakly left prealgebraizable;

(11) Q : ThSys(Z) - ConSys*(Z) is an order embedding, T has a Leibniz

reflexive core and a natural theorem 7 : SEN" — SEN’, such that, for
<«

all T € ThFam(Z), T = 7/QUT);

(i1i) For every F-algebraic system A, the clauses of Part (ii) hold for the
m-institution (A.CTA),

Theorem 1279 Let F = (Sign’,SEN’, N*) be an algebraic system and I =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly weakly system prealgebraizable;
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(i) Q : ThSys(Z) - ConSys*(Z) is an order embedding, T has a Leibniz
reflexive core and a natural theorem T : SEN® — SEN’, such that, for
all T e ThSys(Z), T =71/UT);

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
m-institution (A.CTA4).

16.7 Syntactic RW Algebraizability

In this section, we deal with three versions of syntactic regular weak alge-
braizability. These arise by combining syntactic protoalgebraicity with each
of the three versions of syntactic assertionality.

Definition 1280 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F.

e 7 issyntactically regularly weakly family algebraizable, or syn-
tactically RWF algebraizable for short, if it is syntactically pro-
toalgebraic and syntactically family assertional;

e 7 is syntactically regularly weakly left algebraizable, or syn-
tactically RWL algebraizable for short, if it is syntactically pro-
toalgebraic and syntactically left assertional;

e 7 is syntactically regularly weakly system algebraizable, or
syntactically RWS algebraizable for short, if it is syntactically
protoalgebraic and syntactically system assertional.

One of the immediate consequences of family assertionality is that the
m-institution under consideration must be systemic and, therefore, that pre-
and protoalgebraicity coincide. This reasoning has been applied a few times
already in the preceding section. It shows that syntactic regular weak family
algebraizability coincides with syntactic weak family prealgebraizability.

Proposition 1281 Let F = (Sign’, SEN’, N*) be an algebraic system and
T = (F,C) a w-institution based on ¥. T is syntactically reqularly weakly
family algebraizable if and only if it s syntactically reqularly weakly family
prealgebraizable.

Proof: Suppose 7 is syntactically regularly weakly family prealgebraizable.
Then, by definition, it is family assertional. Thus, by Theorem 1267, it is
family truth equational. Hence, by Theorem 829, it is family completely re-
flective and, hence, by Proposition 237, it is systemic. Since, by definition,
it is syntactically prealgebraic, it is, by systemicity, syntactically protoalge-
braic. Therefore, being syntactically protoalgebraic and syntactically family
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assertional, it is syntactically regularly weakly family algebraizable. The
reverse implication is trivial. So, equivalence of the two conditions is estab-
lished. [ |

The second important observation that one can make is that syntactic
regular weak left and system algebraizability coincide. This is due to the
fact that protoalgebraicity implies stability.

Proposition 1282 Let F = (Sign’,SEN’, N*) be an algebraic system and
7 =(F,C) a m-institution based on F. T is syntactically reqularly weakly left
algebraizable if and only if it is syntactically reqularly weakly system alge-
braizable.

Proof: It is easy to see that the left version implies the system version. This
follows directly from the fact that syntactic left assertionality implies syntac-
tic system assertionality, established in Proposition 1262. For the converse,
assume that Z is syntactically regularly weakly system algebraizable. Then
it is, by definition, syntactically protoalgebraic. This implies, by Theorem
805, that it is protoalgebraic. Hence, by Theorem 175, it is stable. Now, also
by definition, Z is syntactically system assertional. Thus, by Proposition
1263, it is syntactically left assertional. Being syntactically protoalgebraic
and syntactically left assertional, Z is, by definition, syntactically regularly
weakly left algebraizable. [

Based on the syntactic assertionality hierarchy established in Proposition
1262, we have the following

Corollary 1283 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) am-institution based on F. IfT is syntactically reqularly weakly family
algebraizable, then it is syntactically reqularly weakly system algebraizable.

Proof: Straightforward by combining Definition 1280 and Proposition 1262.
[ ]

Proposition 1283 establishes the syntactic regular weak algebraizability
hierarchy depicted in the following diagram.

Syntactic Regular Weak Family Algebraizable

Syntactic Regular Weak System Algebraizable

It is easy to see how the two classes introduced in this section fit within a
mixed syntactic regular weak (pre)algebraizability hierarchy. Given Propo-
sition 1281, which showed that the top classes in each of the two hierarchies
coincide, the picture is completed by the following easy consequence of the
definitions involved.
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Proposition 1284 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on ¥F. If T is syntactically reqularly weakly
system algebraizable, then it is syntactically reqularly weakly left prealgebraiz-
able.

Proof: If 7 is syntactically regularly weakly system algebraizable, then,
by Proposition 1282, it is syntactically regularly weakly left algebraizable,
whence, since syntactic protoalgebraicity implies syntactic prealgebraicity,
we conclude that 7 is syntactically regularly weakly left algebraizable. ]

Thus, the following diagram presents the complete picture consisting of
the four syntactic regular weak (pre)algebraizability classes of m-institutions.
Compare this with the identical hierarchy revealed on the semantic side in
Section 8.5.

Syntactic RWF (Pre)Algebraizable

Syntactic RWS Algebraizable

Syntactic RWL Prealgebraizable

Syntactic RWS Prealgebraizable

To complete the puzzle of the relationships between syntactic regular
weak prealgebraizability and syntactic regular pre- and protoalgebraicity
classes, it suffices to observe that syntactic regular weak system algebraiz-
ability implies, rather trivially, syntactic system regular protoalgebraicity.

Proposition 1285 Let F = (Sign’, SEN’, N*) be an algebraic system and
I =(F,C) am-institution based on F. IfT is syntactically RWS algebraizable,
then it is syntactically system reqularly protoalgebraic.

Proof: Suppose that Z is syntactically RWS algebraizable. Note that, by
definition, Z is syntactically system assertional, and syntactically protoalge-
braic. Hence, it is syntactically system regularly protoalgebraic. ]

Thus, according to both Proposition 1272 and Proposition 1285, we get
the following hierarchy, which completes the diagram given in the preceding
section after Proposition 1272.
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Synt RWF Algble

N

Synt Fam Reg ProtoAlgic Synt RWS Algble

N

Synt Sys Reg ProtoAlgic Synt RWL PreAlgble

N

Synt RWS PreAlgble

e

Synt Sys Reg PreAlgic

L/

Synt PreAlgic
+Left Regular

y

As far as relationships between the syntactic regular weak prealgebraiz-
ability hierarchy and the syntactic assertionality hierarchy are concerned,
the picture is completed by realizing that syntactic regular weak system al-
gebraizability implies syntactic left assertionality.

Corollary 1286 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on ¥. If T is syntactically RWS algebraizable,
then it is syntactically left assertional.

Proof: The conclusion follows directly by Proposition 1282. [ ]

Thus, according to Corollary 1286, and the hierarchy obtained in the
preceding section, the interactions with syntactic assertionality properties
are as shown in the diagram.
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Synt RWF Algble

N

Synt RWS Algble Synt Family Assrt
Synt RWL PreAlgble Synt Left Assrt

/

Synt RWS PreAlgble

N

Synt System Assrt

Finally we look at completing the hierarchy diagrams examining the re-
lationships with other classes that are placed relatively high in the Leibniz
hierarchy. Staying with syntactically defined classes, we have the following
extra relationship between syntactically regularly weakly system algebraiz-
able m-institutions and syntactically weakly (system) algebraizable ones.

Proposition 1287 Let F = (Sign’, SEN’, N*) be an algebraic system and
I =(F,C) a m-institution based on ¥. If T is syntactically reqularly weakly
system algebraizable, then it is syntactically weakly (system) algebraizable.

Proof: Suppose Z is syntactically regularly weakly system algebraizable.
Then, it is, by definition syntactically protoalgebraic and system assertional.
Thus, by Theorem 1267, it is syntactically protoalgebraic and system truth
equational. Therefore, it is, by definition, syntactically weakly (system) al-
gebraizable. ]

Proposition 1287, in conjunction with Proposition 1274, completes the hi-
erarchy of syntactically regularly weakly (pre)algebraizable and syntactically
weakly (pre)algebraizable m-institutions, part of which was shown following
Proposition 1274.
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Synt RWF Algble

e

Synt WE Algble Synt RWS Algble

N

Synt W Algble Synt RWL PreAlgble

N

Synt WLC PreAlgble Synt RWS PreAlgble

e

Synt WS PreAlgble

/N
Y4 N7

Finally, we revisit the relationships between syntactically and semanti-
cally defined (pre)algebraizability classes. We show that syntactic regular
weak system algebraizability implies regular weak system algebraizability.
This completes the picture established in Proposition 1275.

Proposition 1288 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a w-institution based on ¥. If T is syntactically reqularly weakly
system algebraizable, then it is reqularly weakly system algebraizable.

Proof: This follows from the facts that, on the one hand, by Theorem
805, syntactic protoalgebraicity implies protoalgebraicity and, on the other
hand, by Proposition 1264, syntactic system assertionality implies system
assertionality. [

Propositions 1275 and 1288 give rise to the following mixed, semantic
and syntactic, hierarchy of regularly weakly (pre)algebraizable m-institutions,
which completes the hierarchy shown after Proposition 1275.
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Synt RWF Algble

e

/

RWEF Algble Synt RWS Algble
RWS Algble Synt RWL PreAlgble
RWL PreAlgble Synt RWS PreAlgble

/

e

RWS PreAlgble

As was the case with the three syntactic regular weak prealgebraizability
classes, we may show that syntactic regular weak system algebraizability
also transfers from theory families/systems to filter families/systems over
arbritrary F-algebraic systems. This completes Transfer Theorem 1276.

Theorem 1289 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. T is syntactically reqularly weakly system
algebraizable if and only if, for every F-algebraic system A= (A,(F,a)), the
Z-gmatriz family (A, CTA) is syntactically reqularly weakly system algebraiz-
able.

Proof: By Theorem 810, syntactic protoalgebraicity transfers. By Theorem
585, system regularity transfers. Finally, by Theorem 1197, the property of
possessing natural theorems also transfers. Thus, syntactic regular weak sys-
tem algebraizability transfers from Z to (A, CTA), for all F-algebraic systems
A. This establishes the theorem. [ ]

Finally, we adapt previously obtained results characterizing syntactic reg-
ular weak prealgebraizability to obtain a similar characterization of syntactic
regular weak system algebraizability in terms of mappings between posets of
filter families/ systems (including theory families/systems) and congruence
systems. This completes Theorem 1277.

Theorem 1290 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly weakly system algebraizable;
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(i1) I is stable, Q2 : ThSys(Z) - ConSys*(Z) is an order isomorphism, T
has a Leibniz reflexive core and a natural theorem 7 : SEN’ - SEN',
such that, for all T € ThSys(Z), T =71/UT);

(i1i) For every F-algebraic system A, the clauses of Part (ii) hold for the
m-institution (A.CTA).

Proof: By Theorem 1289, 7 is syntactically regularly weakly system alge-
braizable if and only if, for every F-algebraic system A, the rw-institution
(A, CTAY is also syntactically regularly weakly system algebraizable. Thus,
to prove the statement, it suffices to consider the equivalence (i)<>(ii).

Suppose, first, that Z is syntactically regularly weakly system algebraiz-
able. Then, it is, in particular, by Proposition 1288, regularly weakly system
algebraizable, and, by definition, syntactically protoalgebraic and syntacti-
cally system assertional. By Theorem 624, 7 is stable, {2 : ThSys(Z) —
ConSys*(Z) is an order isomorphism and, for all T' € ThSys(Z), T' = 7/Q(T),
where 7 is a natural theorem, whose existence is guaranteed by syntactic
assertionality. Finally, syntactic protoalgebraicity implies, by Theorem 805,
that Z has a Leibniz reflexive core.

Assume, conversely, that the postulated conditions hold. By Theorem
624, 7 is regularly weakly system algebraizable. Hence it is protoalgebraic,
which, together with the postulated Leibniz property of the reflexive core,
gives, by Theorem 805, that it is syntactically protoalgebraic. Further, since
it is regularly weakly system algebraizable, it is, in particular, system regular
and, by hypothesis, has natural theorems. Thus, it is syntactically system
assertional. Hence, being syntactically protoalgebraic and syntactically sys-
tem assertional, it is, by definition, syntactically regularly weakly system
algebraizable. [

16.8 Syntactic Regular (Pre)Algebraizability

In this section, we deal with the four versions of syntactic regular (pre)al-
gebraizability, corresponding to the four versions of syntactic regular weak
(pre)algebraizability that were studied in the preceding two sections. These
arise by combining syntactic (pre)equivalentiality with each of the three ver-
sions of syntactic assertionality. They give rise to a four-element linear hier-
archy that parallels that of syntactically regularly weakly (pre)algebraizable
m-institutions and lies directly above it. The four classes, introduced and
studied in the present section, lie at the very apex of the Leibniz hierarchies
that were studied in detail in the monograph, and which form the backbone
of the field of categorical abstract algebraic logic.

A priori, one may define six different classes of syntactically regularly
(pre)algebraizable m-institutions. Three of these classes use syntactic pree-
quivalentiality.
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Definition 1291 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F.

e 7 is syntactically regularly family prealgebraizable, or syntac-
tically RF prealgebraizable for short, if it is syntactically pree-
quivalential and syntactically family assertional;

e 7 is syntactically regularly left prealgebraizable, or syntacti-
cally RL prealgebraizable for short, if it is syntactically preequiv-
alential and syntactically left assertional;

e 7 is syntactically regularly system prealgebraizable, or syntac-
tically RS prealgebraizable for short, if it is syntactically pree-
quivalential and syntactically system assertional.

Three more classes use syntactic equivalentiality.

Definition 1292 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F.

e 7 is syntactically regularly family algebraizable, or syntacti-
cally RF algebraizable for short, if it is syntactically equivalential
and syntactically family assertional;

e 7 is syntactically regularly left algebraizable, or syntactically
RL algebraizable for short, if it is syntactically equivalential and
syntactically left assertional;

e 7 is syntactically regularly system algebraizable, or syntacti-
cally RS algebraizable for short, if it is syntactically equivalential
and syntactically system assertional.

We can show that similar relationships to those holding between the syn-
tactic regular weak (pre)algebraizability classes are valid in this case also,
leading to the collapsing of the six-class hierarchy (which, a priori, would
look as in the accompanying figure)
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to only four classes forming a linear hierarchy.

The top classes of syntactically regularly family prealgebraizable and al-
gebraizable 7w-institutions coincide. Moreover, in the algebraizability case,
syntactic regular left algebraizability turns out to be identical with syntactic
regular system algebraizability. These relationships are presented formally
in the following proposition.

Proposition 1293 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) T is syntactically regularly family prealgebraizable if and only if it is
syntactically reqularly family algebraizable;

(b) T is syntactically reqularly left algebraizable if and only if it is syntac-
tically reqularly system algebraizable.

Proof:

(a) Of course the right-to-left implication is trivial, since, by definition
(see Section 13.2 and 13.3), syntactic equivalentiality implies syntactic
preequivalentiality. On the other hand, by Theorem 1267, syntactic
family assertionality implies family truth equationality, which, in turn,
implies, by Theorem 829, family c-reflectivity and, hence, by Lemma
233, systemicity. Thus, under the given hypothesis, syntactic preequiv-
alentiality coincides with syntactic equivalentiality.

(b) Again, since it is obvious that syntactical regular left algebraizability
implies syntactical system algebraizability, in view of the fact (Proposi-
tion 1262) that syntactical left assertionality implies syntactical system
assertionality, one must focus on the reverse implication. However, syn-
tactic system algebraizability entails syntactic protoalgebraicity, which
implies, by Theorem 792, protoalgebraicity, which, in turn, by Lemma
170, implies stability. And under stability, by Proposition 1263, syn-
tactic left assertionality and syntactic system assertionality coincide.-

Now the following implications are straightforward and establish the hi-
erarchy obtained from the preceding diagram, if one takes into account the
pairwise identification of classes proven in Proposition 1293.

Proposition 1294 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a w-institution based on F.

(a) If T is syntactically regularly family (pre)algebraizable, then it is syn-
tactically reqularly system (left) algebraizable;

(b) If T is syntactically reqularly system (left) algebraizable, then it is syn-
tactically reqularly left prealgebraizable;
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(c) IfT is syntactically regularly left prealgebraizable, then it is syntactically
reqularly system prealgebraizable.

Proof: Part (a) relies on the fact that, by Proposition 1262, syntactic family
assertionality is stronger than syntactic system assertionality. Part (b) relies
on the fact that syntactic equivalentiality implies syntactic preequivalential-
ity. Finally, Part (c) is a direct consequence of syntactic system assertionality
being dominated by syntactic left assertionality (Proposition 1262). ]

Proposition 1294, which takes into account the identifications of Propo-
sition 1293, establishes the syntactic regular (pre)algebraizability hierarchy
depicted in the following diagram.

Syntactic Regular Family Algebraizable

Syntactic Regular System Algebraizable

Syntactic Regular Left Prealgebraizable

Syntactic Regular System Prealgebraizable

We look, next, at the relationships between syntactic regular (pre)alge-
braizability classes and the four syntactic regular (pre)equivalentiality classes
of Section 16.4. Syntactic regular family algebraizability implies syntactic
family regular equivalentiality, syntactic regular system algebraizability im-
plies syntactic system regular equivalentiality and syntactic regular system
prealgebraizability implies syntactic system regular preequivalentiality. How-
ever, from syntactic regular left prealgebraizability we can only make the
trivial deduction of syntactic preequivalentiality and left regularity. Strictly
speaking, the combination of these two properties does not form a class in
the syntactic hierarchy of Section 16.4.

Proposition 1295 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) If T is syntactically RF algebraizable, then it is syntactically family
reqularly equivalential;

(b) If T is syntactically RS algebraizable, then it is syntactically system
reqularly equivalential;
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(c) If T is syntactically RS prealgebraizable, then it is syntactically system
reqularly preequivalential.

Proof: For Part (a) observe that, by definition, Z is syntactically equiv-
alential and syntactically family assertional, which implies that it is family
regular. Thus, it is syntactically family regularly equivalential. Similarly,
for Part (b), Z is, by definition, syntactically equivalential and syntactically
system assertional, which implies system regularity. Thus, it is syntactically
system regularly equivalential. Finally, in Part (c), Z is, by definition, syn-
tactically preequivalential and syntactically system assertional, whence, once
more, it is also syntactically system regular. Hence, it is syntactically system
regularly preequivalential. [

Thus, according to Proposition 1295, we get the mixed hierarchy depicted
in the diagram.

Synt RF Algble

SN

Synt Fam Reg Equiv Synt RS Algble

oo

Synt Sys Reg Synt RL PreAlgble

kyn? PreEquiv \

+Left Regular Synt RS PreAlgble

e

Synt Sys Reg PreEquiv

/

/AN

We do not dwell on relationships between the syntactic regular (pre)al-
gebraizability classes and the syntactic assertionlity classes, since those are
direct consequences of the relationships, already established in the preceding
section, between syntactic regular weak (pre)algebraizability classes and the
syntactic assertionality classes, once the following, also easily obtainable,
relations between syntactic regular (pre)algebraizability classes and syntactic
regular weak (pre)algebraizability classes are established.

Proposition 1296 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a w-institution based on F.

(a) If T is syntactically regularly family (system, respectively) algebraizable,
then it is syntactically regularly weakly family (system, respectively)
algebraizable;
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(b) If T is syntactically regularly left (system, respectively) prealgebraiz-
able, then it is syntactically reqularly weakly left (system, respectively)
prealgebraizable.

Proof: Directly from the definitions involved. ]

Thus, we get a comprehensive picture of the syntactic regular prealge-
braizability hierarchy, including both weak and “strong” (meaning non-weak)
classes.

Synt RWS PreAlgble

Finally we look at the relationships with other classes that are placed
just below syntactically regularly (pre)algebraizable m-institutions, namely,
the classes in the syntactic (pre)algebraizablity hierarchy and those in the
(semantic) regular (pre)algebraizability hierarchy. The former hierarchy was
studied in detail in Chapter 12, whereas the latter was studied in Chapter 8.
Starting with the relationships between the syntactic regular (pre)algebra-
izability and the syntactic (pre)algebraizability classes, we get the following

Proposition 1297 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) IfT is syntactically reqularly family (system, respectively) algebraizable,
then it is syntactically family (system, respectively) algebraizable;

(b) IfT is syntactically reqularly left (system, respectively) prealgebraizable,
then it is syntactically left (system, respectively) prealgebraizable.

Proof: Part (a) follows from the fact that syntactic family and system asser-
tionality imply, respectively, family and system truth equationality. Part (b),
similarly, follows from the fact that syntactic left and system assertionality
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imply, respectively, left and system truth equationality. All the aforemen-
tioned implications, forming the key to the inclusions in the statement, are
the subject of Theorem 1267. [

Proposition 1297, establishes the following mixed hierarchy of syntacti-
cally regularly (pre)algebraizable and syntactically (pre)algebraizable m-insti-
tutions.

Synt RF Algble
Synt F Algble Synt RS Algble
Synt S Algble Synt RL

Synt S PreAlgble

We close with the relationships between syntactically and semantically
defined regular (pre)algebraizability classes.

Proposition 1298 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F.

(a) IfT is syntactically reqularly family (system, respectively) algebraizable,
then it is reqularly family (system, respectively) algebraizable;

(b) If T is syntactically regqularly left (system, respectively) prealgebraizable,
then it is reqularly left (system, respectively) prealgebraizable.

Proof: This follows from the facts that, on the one hand, syntactic pre- and
protoalgebraicity imply respectively pre- and protoalgebraicity, and, on the
other hand, syntactic family (left, system, respectively) assertionality implies
family (left, system, respectively) assertionality. The former implications are
established in Theorems 771 and 792. The latter are by Proposition 1264.
[ ]

Proposition 1298 gives rise to the following mixed, semantic and syntactic,
hierarchy of regularly (pre)algebraizable m-institutions.
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As was the case with syntactic regular weak (pre)algebraizability, all
four flavors of syntactic regular (pre)algebraizability transfer from theory
families/systems to filter families/systems over arbritrary F-algebraic sys-
tems. This is a “strong” analog of Theorems 1276 and 1289, which asserted
that syntactic regular weak (pre)algebraizability properties transfer from a
m-institution to all its generalized matrix families.

Theorem 1299 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F.

(a) T is syntactically reqularly family (system, respectively) algebraizable if
and only if, for every F-algebraic system A = (A, (F,«a)), the Z-gmatriz
family (A, CTAY is syntactically regqularly family (system, respectively)
algebraizable;

(b) T is syntactically reqularly left (system, respectively) prealgebraizable if
and only if, for every F-algebraic system A = (A, (F,«a)), the Z-gmatriz
family (A, CT-AY is syntactically reqularly left (system, respectively) pre-
algebraizable.

Proof: By Theorems 955 and 972, syntactic preequivalentiality and syntac-
tic equivalentiality transfer. By Theorem 585, the three regularity properties
transfer. Finally, by Theorem 1197, the property of possessing natural the-
orems also transfers. Thus, all four syntactic regular (pre)algebraizability
properties transfer from Z to (A, CTA), for all F-algebraic systems A. [ ]

Finally, we obtain characterizations of syntactically regular (pre)alge-
braizability in terms of mappings between posets of filter families/ systems
(including theory families/systems) and congruence systems.
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Theorem 1300 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly family algebraizable;

(i1) 2 : ThFam(Z) - ConSys*(Z) is an order isomorphism commauting with
inverse logical extensions, T has a Leibniz binary reflexive core and a
natural theorem 7 : SEN’ - SEN’, such that, for all T € ThFam(Z),
T=1/UT);

(i1i) For every F-algebraic system A, the clauses of Part (ii) hold for the
m-institution (A.CTA).

Proof: By Theorem 1299, 7 is syntactically regularly family algebraizable if
and only if, for every F-algebraic system A, the m-institution (A, CT4) is also
syntactically regularly family algebraizable. Thus, to prove the statement, it
suffices to consider the equivalence (i)<>(ii).

Suppose, first, that Z is syntactically regularly family algebraizable. Then
it is, by definition, syntactically equivalential and syntactically family asser-
tional. Thus, it has a natural theorem 7, it is family regular and it is, by
Theorem 1267, family truth equational. Using Corollary 649, we conclude
that 2 is an order isomorphism commuting with inverse logical extensions,
by Theorem 983, that it has a Leibniz binary reflexive core and, by Corollary
1266, that, for all T'e ThFam(Z), T = 7/Q(T).

Assume, conversely, that the postulated conditions hold. By Corollary
649, 7 is regularly family algebraizable. Hence it is equivalential, whence,
together with the postulated Leibniz property of the binary reflexive core, we
obtain, by Corollary 983, that it is syntactically equivalential. Further, by
hypothesis and Corollary 1266, it is syntactically family assertional. Thus,
by definition, it is syntactically regularly family algebraizable. [

Theorem 1301 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly system algebraizable;

(11) T is stable, Q2 : ThSys(Z) - ConSys™(Z) is an order isomorphism com-
muting with inverse logical extensions, T has a Leibniz binary reflex-

we core and a natural theorem T : SEN* — SEN’, such that, for all
T e ThSys(Z), T =7/UT);

(i1i) For every F-algebraic system A, the clauses of Part (ii) hold for the
m-institution (A.CTA),
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Proof: Similar to that of Theorem 1300. [}

Analogous characterization theorems may be provided for the syntactic
regular prealgebraizability properties. The proofs are also similar and are,
therefore, omitted.

Theorem 1302 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly left prealgebraizable;

(i1) Q : ThSys(Z) — ConSys™(Z) is an order embedding commuting with
inverse logical extensions, T has a Leibniz binary reflexive core and a
natural theorem 7 : SEN’ - SEN’, such that, for all T € ThFam(Z),

T =7/T);

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
m-institution (A.CTA).

Theorem 1303 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) T is syntactically reqularly system prealgebraizable;

(i) Q : ThSys(Z) - ConSys™(Z) is an order embedding commuting with
inverse logical extensions, T has a Leibniz binary reflexive core and a
natural theorem 1 : SEN’ — SEN’, such that, for all T € ThSys(Z),
T=1/UT);

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
m-institution (A.CT-A).



