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17.1 Finitary Companions Revisited

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall from Chapter 9 the construction of the finitary
companion If = ⟨F,Cf ⟩ of I . It is defined, by setting, for all Σin∣Sign♭∣ and
all Φ ⊆ SEN♭(Σ),

C
f
Σ(Φ) =⋃{CΣ(Φ′) ∶ Φ′ ⊆f Φ},

where ⊆f denotes the finite subset relation. It was shown in Corollary 653
that If is the largest finitary π-institution based on F that lies below I is
the ≤ ordering. Furthermore, even though it is obvious, based on If ≤ I ,
that ThFam(I) ⊆ ThFam(If), Proposition 655 provided a characterization
of those sentence families of F that are theory families of If . More concretely,
it asserted that T ∈ ThFam(If) if and only if it is the union of a directed
locally finitely generated collection of theory families of I .

Turning now to the Leibniz hierarchy, some of the semantic aspects of
which, in relation to finitarity, were studied in some detail in Chapter 9,
it was proven in Lemma 656 that protoalgebraicity is inherited by I from
If , i.e., if If is protoalgebraic, then so is I itself. This is a rather simple
consequence of the fact that ThFam(I) ⊆ ThFam(If).

Recall from Chapter 11 the definition of the reflexive core RI of a π-
institution I . It consists of all natural transformations ρ♭ in N ♭, with two
distinguished arguments, having the property that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

ρ♭Σ[φ,φ] ≤ Thm(I).
It is not very difficult to show that the reflexive core of the finitary companion
If of a π-institution I is included in that of I .

Lemma 1304 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

RI
f

⊆ RI .

Proof: Suppose ρ♭ ∈ RIf and consider Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). We
have

ρ♭Σ[φ,φ] ≤ Thm(If) (ρ♭ ∈ RIf )
≤ Thm(I). (Thm(I) ∈ ThFam(If))

Thus, by definition, ρ♭ ∈ RI . It follows that RI
f ⊆ RI . ∎

Recall that the reflexive core RI is said to be Leibniz if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).
From the fact that RI

f ⊆ RI it follows at once that, if If is protoalgebraic
and RI

f
is Leibniz in If , then RI is Leibniz in I .
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Proposition 1305 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If If is protoalgebraic and RI

f
is

Leibniz in If , then so is RI in I.

Proof: Suppose that If is protoalgebraic and RI
f

is Leibniz in If . Let
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). We then have

⟨φ,ψ⟩ ∈ ΩΣ(Cf(RIfΣ [φ,ψ])) (RI
f

Leibniz in If)
⊆ ΩΣ(Cf(RIΣ[φ,ψ])) (Lemma 1304 and hypothesis)
⊆ ΩΣ(C(RIΣ[φ,ψ])). (Corollary 653 and hypothesis)

Therefore, RI is Leibniz in I . ∎

We can now show that syntactic protoalgebraicity is inherited by a π-
institution I from its finitary companion If . This forms an analog in the
syntactic context of Lemma 656.

Theorem 1306 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is syntactically protoalgebraic, then
so is I.

Proof: Suppose If is syntactically protoalgebraic. By Theorem 805, it is
protoalgebraic and its reflexive core RI

f
is Leibniz in If . Therefore, by

Lemma 656, I is protoalgebraic and, by Proposition 1305, RI is Leibniz in
I . Therefore, again by Theorem 805, I is syntactically protoalgebraic. ∎

Recalling Theorem 799, which characterizes syntactic protoalgebraicity
in terms of the global family modus ponens property of the reflexive core, we
derive the following

Corollary 1307 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI
f

has the global family MP in If ,
then RI has the global family MP in I.

Proof: If RI
f

has the global family MP in If , then, by Theorem 799, If is
syntactically protoalgebraic. Thus, by Theorem 1306, I is syntactically pro-
toalgebraic, whence, again by Theorem 799, applied in the opposite direction,
RI has the global family MP in I . ∎

Alternatively, instead of deriving the implication in Corollary 1307 by
applying Theorem 1306, we may prove it first and then use Theorem 799 to
establish that syntactic protoalgebraicity of If implies the syntactic protoal-
gebraicity of I . We outline this reasoning also, at the expense of having to
repeat Corollary 1307 and Theorem 1306.

Lemma 1308 (Corollary 1307) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F. If RI

f
has the global family

MP in If , then RI has the global family MP in I.



1120 CHAPTER 17. SYNTACTIC HIERARCHY VII Voutsadakis

Proof: Suppose RI
f

has the global family MP in If . Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

φ ∈ TΣ and RIΣ[φ,ψ] ≤ T.
By Lemma 1304, we get

φ ∈ TΣ and RI
f

Σ [φ,ψ] ≤ T.
But ThFam(I) ⊆ ThFam(If) and RI

f
is assumed to have the global family

MP in If . Thus, ψ ∈ TΣ. This proves that RI has the global family MP in
I . ∎

Corollary 1309 (Theorem 1306) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. If If is syntactically
protoalgebraic, then so is I.

Proof: Suppose If is syntactically protoalgebraic. Then, by Theorem 799,
RI

f
has the global family MP in If . Thus, by Lemma 1308, RI has the

global family MP in I . Hence, again by applying Theorem 799, only now in
the reverse direction, I is syntactically protoalgebraic. ∎

A similar work can be undertaken concerning truth equationality, based
on an analog of Lemma 657, but referring to family c-reflectivity, which can
be proved in a similar fashion as Lemma 657. We now provide the details.

It is straightforward to see, first of all, that family complete reflectivity
is also inherited by I itself by its finitary companion.

Lemma 1310 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is family c-reflective, then so is I.

Proof: If If is family c-reflective, then, for all T ∪ {T ′} ⊆ ThFam(If),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

In particular, the condition holds if quantification is restricted over the col-
lection ThFam(I) ⊆ ThFam(If). Therefore, I is family c-reflective. ∎

It is not very hard either to see that the the Suszko core of the finitary
companion If of a π-institution I is contained in the Suszko core of I itself,
just as was the case with the reflexive core. Recall that the Suszko core SI

of a π-institution I consists of those natural transformations σ♭ in N ♭, with
a single distinguished argument, such that, for all T ∈ ThFam(I),

σ♭[T ] ≤ Ω̃I(T ).
This means, of course, that, for all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣, φ ∈
SEN♭(Σ),

φ ∈ TΣ implies σ♭Σ[φ] ≤ Ω̃I(T ).



Voutsadakis CHAPTER 17. SYNTACTIC HIERARCHY VII 1121

Lemma 1311 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

SI
f

⊆ SI .

Proof: Suppose that σ♭ ∈ SIf and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Then, since σ♭ ∈ SIf and T ∈ ThFam(I) ⊆
ThFam(If), we get σ♭Σ[φ] ≤ Ω̃I

f (T ) ≤ Ω̃I(T ), where the second inclusion
follows from the fact that ThFam(I) ⊆ ThFam(If). Therefore, we conclude
that σ♭ ∈ SI . Hence, SI

f ⊆ SI . ∎

With this result available, we can see that, if If is family c-reflective and
its Suszko core is adequate, then the Suszko core of I is also adequate. Recall
that adequacy of the Suszko core SI means that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) =⋂{Ω(T ) ∶ T ∈ ThFam(I) and SIΣ[φ] ≤ Ω(T )}.
Recall also, that the right-to-left inclusion always holds. So the definition is
tantamount to the assertion that the left-to-right inclusion also holds.

Proposition 1312 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If If is family c-reflective and SI

f
is

adequate in If , then so is SI in I.

Proof: Suppose If is family c-reflective and that SI
f

is adequate. Then,
by Theorem 847, If is truth equational, whence, by Theorem 840, for all
T ∈ ThFam(If),

φ ∈ TΣ iff SI
f

Σ [φ] ≤ Ω(T ).
Consider Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). We have

Ω̃I(C(φ)) = ⋂{Ω(T ) ∶ T ∈ ThFam(I) and φ ∈ TΣ}
(Definition of Ω̃I)

= ⋂{Ω(T ) ∶ T ∈ ThFam(I) and SI
f

Σ [φ] ≤ Ω(T )}
(ThFam(I) ⊆ ThFam(If) and displayed equivalence)

≤ ⋂{Ω(T ) ∶ T ∈ ThFam(I) and SIΣ[φ] ≤ Ω(T )}.
(Lemma 1311)

Thus, by definition, SI is also adequate in I . ∎

We can now show that truth equationality is inherited by a π-institution
I from its finitary companion If . This forms an analog of Lemma 1306.

Theorem 1313 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is truth equational, then so is I.
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Proof: Suppose If is truth equational. By Theorem 847, it is family c-
reflective and its Suszko core SI

f
is adequate in If . Therefore, by Lemma

1310, I is family c-reflective and, by Proposition 1312, SI is adequate in I .
Therefore, again by Theorem 847, I is truth equational. ∎

Theorem 840 characterized truth equationality in terms of the solubility
property of the Suszko core. In fact, the solubility of the Suszko core is
the condition asserting that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

SIΣ[φ] ≤ Ω(T ) implies φ ∈ TΣ.

Since the reverse implication always holds, the condition is equivalent to the
assertion that, for all T ∈ ThFam(I),

φ ∈ TΣ iff SIΣ[φ] ≤ Ω(T ).
Corollary 1314 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI

f
is soluble in If , then SI is soluble

in I.

Proof: If SI
f

is soluble in If , then, by Theorem 838, If is truth equa-
tional. Thus, by Theorem 1313, I is also truth equational, whence, again by
Theorem 838, applied in the opposite direction, SI is soluble in I . ∎

Once more, as was the case with syntactic protoalgebraicity, instead of
deriving the implication in Corollary 1314 by applying Theorem 1313, we may
prove it first and then use Theorem 838 to establish that truth equationality
of If implies truth equationality of I .

Lemma 1315 (Corollary 1314) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F. If SI

f
is soluble in If ,

then SI is soluble in I.

Proof: Suppose SI
f

is soluble in If . Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ), such that SIΣ[φ] ≤ Ω(T ). hence, by Lemma 1311, we get

SI
f

Σ [φ] ≤ Ω(T ). But ThFam(I) ⊆ ThFam(If) and SI
f

is assumed to be
soluble in If . Thus, φ ∈ TΣ. This proves that SI is soluble in I . ∎

Corollary 1316 (Theorem 1313) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. If If is truth equa-
tional, then so is I.

Proof: Suppose If is truth equational. Then, by Theorem 838, SI
f

is soluble
in If . Thus, by Lemma 1315, SI is soluble in I . Hence, again by applying
Theorem 838, only now in the reverse direction, I is truth equational. ∎

We conclude the section by synthesizing Theorems 1306 and 1313. Recall
that a π-institution I = ⟨F,C⟩ is syntactically weakly family algebraizable if
it is
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• protoalgebraic;

• family c-reflective;

• RISI-fortified, i.e., has a Leibniz reflexive core and an adequate Suszko
core.

By Theorem 913, I is syntactically weakly family algebraizable if and only if
it is syntactically protoalgebraic and family truth equational. Thus, we get

Theorem 1317 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is syntactically weakly family alge-
braizable, then so is I.

Proof: If If is syntactically weakly family algebraizable, then, by Theorem
913, it is syntactically protoalgebraic and family truth equational. Hence,
by Theorems 1306 and 1313, I possesses the same properties. Therefore,
applying again Theorem 913 in the reverse direction, we conclude that I is
also syntactically weakly family algebraizable. ∎

In Section 9.4, we saw that the continuity of the Leibniz operator is one of
the key properties when studying finitarity conditions. Lemma 660 showed
that, if Ω ∶ ThFam(I)→ ConSys∗(I) is continuous, then I is protoalgebraic.
That is asserting the continuity of the Leibniz operator strengthens protoal-
gebraicity. Additionally, it was proven in Lemma 661 that, if Sign♭ is finite,
then continuity of Ω also ensures that the finitary companion If of I is also
protoalgebraic.

We begin, here, our parallel treatment on the syntactic side by showing
that, maintaining the finiteness of Sign♭, the condition that I be syntac-
tically protoalgebraic, with a finite collection of parameter-free witnessing
transformations I♭ ∶ (SEN♭)2 → SEN♭, constitutes an additional strengthen-
ing on protoalgebraicity, on top of the continuity of Ω.

Proposition 1318 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a π-institution based on F. If I is syntactically
protoalgebraic, with a finite parameter-free collection I♭ ∶ (SEN♭)2 → SEN♭ of
witnessing transformations, then Ω ∶ ThFam(I)→ ConSys∗(I) is continuous.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ finite,
and I = ⟨F,C⟩ a syntactically protoalgebraic π-institution based on F, with
a finite parameter-free collection I♭ ∶ (SEN♭)2 → SEN♭ of witnessing trans-
formations. Suppose {T i ∶ i ∈ I} is a directed collection of theory families of
I , such that ⋃i∈I T i ∈ ThFam(I). Then, we have, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(⋃i∈I T i) iff I♭Σ[φ,ψ] ≤ ⋃i∈I T i
iff I♭Σ[φ,ψ] ≤ T i, some i ∈ I,
iff ⟨φ,ψ⟩ ∈ ΩΣ(T i), some i ∈ I,
iff ⟨φ,ψ⟩ ∈ ⋃i∈I ΩΣ(T i).
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Note that the second equivalence employs both the fact that Sign♭ is fi-
nite and the fact that I♭ is finite and parameter-free. Thus, Ω(⋃i∈I T i) =
⋃i∈I Ω(T i) and, hence, Ω is indeed continuous. ∎

We next see that this stronger condition than the continuity of the Leib-
niz operator suffices to ensure that If is also syntactically protoalgebraic,
with the same collection of witnessing transformations. Thus, the following
proposition may be viewed as a syntactic analog of Lemma 661.

Proposition 1319 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a π-institution based on F. If I is syntactically
protoalgebraic, with a finite and parameter-free collection I♭ of witnessing
transformations, then If is also syntactically protoalgebraic, with the same
collection of witnessing transformations.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ fi-
nite, and I = ⟨F,C⟩ a syntactically protoalgebraic π-institution, with a
finite and parameter-free collection I♭ of witnessing transformations. Let
T ∈ ThFam(If). Then, by Proposition 655, there exists a directed locally
finitely generated collection {T i ∶ i ∈ I} ⊆ ThFam(I), such that T = ⋃i∈I T i.
Now we have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ ΩΣ(⋃i∈I T i)
iff ⟨φ,ψ⟩ ∈ ⋃i∈I ΩΣ(T i) (Proposition 1318)
iff ⟨φ,ψ⟩ ∈ ΩΣ(T i), some i ∈ I,

iff
↔

I♭Σ[φ,ψ] ≤ T i, some i ∈ I,

iff
↔

I♭Σ[φ,ψ] ≤ ⋃i∈I T i
iff

↔

I♭Σ[φ,ψ] ≤ T.
Again, note that the one-before-the-last equivalence employs both the fact
that Sign♭ is finite and the fact that I♭ is finite and parameter-free. There-
fore, by Corollary 791, If is also syntactically protoalgebraic, with the same
collection I♭ of witnessing transformations. ∎

Suppose, now, that Sign♭ is finite and I is weakly family algebraizable,
so that Ω−1 ∶ ConSys∗(I)→ ThFam(I) be defined. An analog of Proposition
1318 asserts that, if I is truth equational, with a finite and parameter-free
witnessing family τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then the inverse Leibniz
operator Ω−1 is continuous. Thus, under these hypotheses, the truth equa-
tionality of I via a finite, parameter-free collection of witnessing equations
is stronger than the continuity of Ω−1.

Proposition 1320 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a weakly family algebraizable π-institution based
on F. If I is truth equational, with a finite parameter-free collection τ ♭ ∶
SEN♭ → (SEN♭)2 of witnessing equations, then Ω−1 ∶ ConSys∗(I)→ ThFam(I)
is continuous.
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Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ finite,
and I = ⟨F,C⟩ a weakly family algebraizable π-institution, which is, in ad-
dition, truth equational, with a finite parameter-free collection τ ♭ ∶ SEN♭ →(SEN♭)2 of witnessing equations. Let {θi ∶ i ∈ I} be a directed collection of
I∗-congruence systems, such that ⋃i∈I θi ∈ ConSys∗(I). Now we get, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ Ω−1Σ (⋃i∈I θi) iff τ ♭Σ[φ] ≤ ⋃i∈I θi
iff τ ♭Σ[φ] ≤ θi, some i ∈ I,
iff φ ∈ Ω−1Σ (θi), some i ∈ I,
iff φ ∈ ⋃i∈I Ω−1Σ (θi).

Thus, Ω−1 is indeed continuous. ∎

Recall from Theorem 663 that given a weakly family algebraizable π-
institution I = ⟨F,C⟩, based on an algebraic system F over a finite cate-
gory of signatures, the continuity of both Ω ∶ ThFam(I) → ConSys∗(I) and
Ω−1 ∶ ConSys∗(I)→ ThFam(I) are sufficient to ensure that If is also weakly
family algebraizable. In Propositions 1318 and 1320, by comparison, it was
shown that the continuities of Ω and Ω−1 are strengthened by assuming, re-
spectively, that I is syntactically protoalgebraic, with a finite, parameter-free
witnessing family of transformations, and that I is family truth equational,
with a finite, parameter-free witnessing family of equations. We show, next,
in an analog of Theorem 663, that imposing these two stronger conditions
on I suffices to ensure that syntactic strong algebraizability transfers from I
to its finitary companion If .

Proposition 1321 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically protoalgebraic π-institution, with
a finite parameter-free collection I♭ ∶ (SEN♭)2 → SEN♭ of witnessing trans-
formations. If I is family truth equational, with a finite and parameter-free
collection τ ♭ of witnessing equations, then If is also family truth equational,
with the same collection of witnessing equations.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ finite,
and I = ⟨F,C⟩ a weakly family algebraizable π-institution, which is family
truth equational, with a finite and parameter-free collection I♭ of witnessing
equations. Let T ∈ ThFam(If). Then, by Proposition 655, there exists a
directed locally finitely generated collection {T i ∶ i ∈ I} ⊆ ThFam(I), such
that T = ⋃i∈I T i. Now we have, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff φ ∈ ⋃i∈I T iΣ
iff φ ∈ T iΣ, some i ∈ I,
iff τ ♭Σ[φ] ≤ Ω(T i), some i ∈ I,
iff τ ♭Σ[φ] ≤ ⋃i∈I Ω(T i)
iff τ ♭Σ[φ] ≤ Ω(⋃i∈I T i) (Proposition 1318)
iff τ ♭Σ[φ] ≤ Ω(T ).
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Again, note that the fourth equivalence employs both the fact that Sign♭

is finite and the fact that τ ♭ is finite and parameter-free. We conclude that
If is also family truth equational, with the same collection τ ♭ of witnessing
equations. ∎

Putting together Propositions we finally obtain the promised analog of
Theorem 663.

Theorem 1322 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QK consisting of finite and
parameter-free collections of transformations. Then If is also syntactically
strongly family algebraizable, via the same conjugate pair of transformations.

Proof: We simply put together Propositions 1319 and 1321. ∎

17.2 Natural Finitarity

This section deals with concepts analogous to those studied in Section 9.4,
but in the syntactic, rather than in the semantic, context. In the seman-
tic context, the four key ingredients of our study were the finitarity of the
π-institutions involved as well as the continuity of the Leibniz operator and
its inverse. Recall that for the inverse to be defined in the context under
consideration, the general underlying hypothesis that the π-institution I be
weakly family algebraizable was adhered to. In the present, syntactic, con-
text, we assume that I is syntactically strongly family algebraizable, that
is, syntactically family algebraizable via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QK,
where both τ ♭ ∶ SEN♭ → (SEN♭)2 and I♭ ∶ (SEN♭)2 → SEN♭ are parameter-
free witnessing collections of equations and of transformations, respectively.
The four notions involved are the properties of I and QK being naturally
finitary, a strengthening of finitarity, and those of τ ♭ and I♭ being finite, also
strengthening the continuity of the Leibniz operator and its inverse operator.
But let us embark on the developments so as to clarify these introductory
remarks and to make the concepts and the details involved precise.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that I is finitary if, for all Σ ∈ ∣Sign♭∣ and
all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ), there exists Φ′ ⊆f Φ, such
that φ ∈ CΣ(Φ′). Equivalently, I is finitary if, for all Σ ∈ ∣Sign♭∣ and all
Φ ⊆ SEN♭(Σ),

CΣ(Φ) =⋃{CΣ(Φ′) ∶ Φ′ ⊆f Φ}.
We say that I is naturally finitary if it is finitary and, in addition, the
following condition holds:
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(NATFIN) If, for some collections µ, ν ∶ (SEN♭)ω → SEN♭ of natural transforma-
tions in N ♭, such that ∣µ∣ <∞, it holds that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(νΣ[φ⃗]),
then, there exists a finite subset ν′ ⊆ ν, such that, for all Σ ∈ ∣Sign♭∣
and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(ν′Σ[φ⃗]).
It is not difficult to see that, if I is naturally finitary, the implication

resulting from (NATFIN) by replacing the two inclusions by equalities of
closure families also holds.

Lemma 1323 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is naturally finitary, then, for all
µ, ν ∶ (SEN♭)ω → SEN♭ in N ♭, with ∣µ∣ <∞, such that, for all Σ ∈ ∣Sign♭∣ and
all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) = C(νΣ[φ⃗]), there exists a finite ν′ ⊆ ν, such that,
for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) = C(ν′Σ[φ⃗]).
Proof: Suppose I is naturally finitary and let µ, ν ∶ (SEN♭)ω → SEN♭ in N ♭,
with ∣µ∣ <∞, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) =
C(νΣ[φ⃗]). Then, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), µΣ[φ⃗] ≤ C(νΣ[φ⃗]).
Thus, by natural finitarity, there exists a finite subset ν′ ⊆ ν, such that, for
all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), µΣ[φ⃗] ≤ C(ν′Σ[φ⃗]). But, then, we obtain,

for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),
C(νΣ[φ⃗]) = C(µΣ[φ⃗]) ≤ C(ν′Σ[φ⃗]) ≤ C(νΣ[φ⃗]).

We conclude that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) =
C(ν′Σ[φ⃗]). ∎

Starting to take advantage of natural finitarity, we show that it allows
to draw the conclusion that, in case of syntactic family algebraizability, the
existence of a finite witnessing family of transformations ensures that every
witnessing family possesses a finite witnessing subfamily. More precisely, we
have

Lemma 1324 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a naturally finitary π-institution based on F. Suppose I is syntacti-
cally family algebraizable, with equivalent guasivariety K. If I has a finite
witnessing family I♭ ∶ (SEN♭)2 → SEN♭ of transformations, then every wit-
nessing family J ♭ ∶ (SEN♭)2 → SEN♭ possesses a finite witnessing subfamily
J ′ ♭.

Proof: Suppose that I is naturally finitary and syntactically family alge-
braizable, with equivalent guasivariety K. Let I♭ ∶ (SEN♭)2 → SEN♭ be a
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finite set of witnessing transformations and J ♭ ∶ (SEN♭)2 → SEN♭ a family of
witnessing transformations. By Theorem 912, we get that, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

C(I♭Σ[φ,ψ]) = C(J ♭Σ[φ,ψ]).
Since I is naturally finitary and, by hypothesis, ∣I♭∣ <∞, we get, by Lemma
1323, that there exists finite J ′ ♭ ⊆ J ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

C(J ′ ♭Σ [φ,ψ]) = C(I♭Σ[φ,ψ]).
Thus, applying Proposition 903, we conclude that J ′ ♭ is also a witnessing
family of transformations. ∎

Dually, we may also prove a corresponding result concerning the witness-
ing equations for the truth equationality of I .

Lemma 1325 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically strongly family algebraizable π-institution based on F,
with equivalent guasivariety K. If QK is naturally finitary and I has a finite
witnessing family τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then every witnessing
family ρ♭ ∶ SEN♭ → (SEN♭)2 of equations possesses a finite witnessing sub-
family ρ′ ♭.

Proof: Follows along the lines of the proof of Lemma 1324. Suppose that
I is syntactically strongly family algebraizable, with equivalent guasivariety
K, such that QK is naturally finitary. Let τ ♭ ∶ SEN♭ → (SEN♭)2 be a finite
set of witnessing equations and ρ♭ ∶ SEN♭ → (SEN♭)2 a family of witnessing
equations. By Theorem 912, we get that, for all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

DK(τ ♭Σ[φ]) =DK(ρ♭Σ[φ]).
Since QK is naturally finitary and, by hypothesis, ∣τ ♭∣ <∞, we get, by Lemma
1323, that there exists finite ρ′ ♭ ⊆ ρ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

DK(ρ′ ♭Σ [φ]) =DK(τ ♭Σ[φ]).
Thus, applying Proposition 903, we conclude that ρ′ ♭ is also a witnessing
family of equations. ∎

We now establish a theorem to the effect that, under natural finitarity and
syntactic strong family algebraizability, every witnessing family of equations
contains a finite witnessing subfamily. This is the first main result in a series
of finitarity results that we aim to prove in the present section, with the
ultimate goal of obtaining a hierarchy on the syntactic side, analogous to
that obtained on the semantic side at the end of Section 9.4.
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Theorem 1326 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a naturally finitary, syntactically strongly family algebraizable π-ins-
titution, with equivalent guasivariety K. Then every witnessing collection
τ ♭ ∶ SEN♭ → (SEN♭)2 of equations contains a finite subcollection τ ′ ♭ ∶ SEN♭ →(SEN♭)2, which is also a witnessing collection.

Proof: Suppose I is naturally finitary and syntactically strongly family
algebraizable, with equivalent guasivariety K. Let τ ♭ ∶ SEN♭ → (SEN♭)2
be a collection of witnessing equations. Then, by definition, there exists a
collection I♭ ∶ (SEN♭)2 → SEN♭ in N ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

C(ιΣ[φ]) = C(φ) = C(I♭[τ ♭Σ[φ]]).
Since I is naturally finitary, there exist finite I ′ ♭ ⊆ I♭ and τ ′ ♭ ⊆ τ ♭, such that,
for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

C(φ) = C(I ′ ♭[τ ′ ♭Σ [φ]]).
Thus, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

C(φ) = C(I♭[τ ′ ♭Σ [φ]]).
Thus, since, by the properties of (τ ♭, I♭) ∶ I ⇄ QK, for all Σ ∈ ∣Sign♭∣ and all
E ∪ {φ ≈ ψ} ⊆ EqΣ(F),

φ ≈ ψ ∈ DK
Σ(E) iff I♭Σ[φ,ψ] ≤ C(I♭Σ[E]),

we get, by Proposition 903, that τ ′ ♭ is a witnessing family of equations. ∎

Dually, we may prove that, under syntactic strong family algebraizability
and natural finitarity of the algebraic counterpart QK, every witnessing family
of transformations contains a finite witnessing subfamily.

Theorem 1327 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically strongly family algebraizable π-institution, with equiva-
lent guasivariety K, such that QK is naturally finitary. Then every witnessing
collection I♭ ∶ (SEN♭)2 → SEN♭ of transformations contains a finite subcollec-
tion I ′ ♭ ∶ (SEN♭)2 → SEN♭, which is also a witnessing collection.

Proof: Suppose I is syntactically strongly family algebraizable, with equiv-
alent guasivariety K, such that QK is naturally finitary. Let I♭ ∶ (SEN♭)2 →
SEN♭ be a collection of witnessing transformations. Then, by definition, there
exists a collection τ ♭ ∶ SEN♭ → (SEN♭)2 in N ♭, such that, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

DK(⟨p2,0, p2,1⟩Σ[φ,ψ]) = DK(φ ≈ ψ) = DK(τ ♭[I♭Σ[φ,ψ]]).
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Since I is naturally finitary, there exist finite I ′ ♭ ⊆ I♭ and τ ′ ♭ ⊆ τ ♭, such that,
for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

DK(φ ≈ ψ) =DK(τ ′ ♭[I ′ ♭Σ [φ,ψ]]).
Thus, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

DK(φ ≈ ψ) =DK(τ ♭[I ′ ♭Σ [φ,ψ]]).
Thus, since, by the properties of (τ ♭, I♭) ∶ I ⇄ QK, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) iff τ ♭Σ[φ] ≤DK(τ ♭Σ[Φ]),
we get, by Proposition 903, that I ′ ♭ is also a witnessing family of transfor-
mations. ∎

The following proposition asserts that, under similar hypotheses, but
adding finiteness of the signature category, the finitarity of I and of the
witnessing collection I♭ imply the finitarity of the algebraic counterpart QK.

Proposition 1328 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a finitary, syntactically family algebraizable π-
institution, with equivalent guasivariety K. If I has a finite witnessing set
I♭ ∶ (SEN♭)2 → SEN♭ of transformations, then its algebraic counterpart QK is
also finitary.

Proof: Suppose I is a finitary π-institution based on an algebraic system F
over a finite category of signatures. Assume that I is syntactically family al-
gebraizable, with equivalent guasivariety K and that it has a finite witnessing
collection I♭ of transformations. Let Σ ∈ ∣Sign♭∣ and E ∪ {φ ≈ ψ} ⊆ EqΣ(F),
such that

φ ≈ ψ ∈ DK
Σ(E).

Since I♭ is a witnessing collection of transformations,

I♭Σ[φ,ψ] ≤ C(I♭Σ[E]).
Since Sign♭ is finite and I♭ is finite, we get, by the finitarity of I that there
exists finite E′ ⊆ E, such that I♭Σ[φ,ψ] ≤ C(I♭Σ[E′]). Thus, again by the fact
that I♭ is a set of witnessing transformations, we obtain φ ≈ ψ ∈ DK

Σ(E′).
Thus, QK is indeed finitary. ∎

A similar result can also be established when focus is shifted from fini-
tarity to natural finitarity.

Proposition 1329 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a naturally finitary, syntactically family al-
gebraizable π-institution, with equivalent guasivariety K. If I has a finite
witnessing set I♭ ∶ (SEN♭)2 → SEN♭ of transformations, then its algebraic
counterpart QK is also naturally finitary.
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Proof: Suppose I is a naturally finitary π-institution based on an algebraic
system F over a finite category of signatures. Assume that I is syntactically
family algebraizable, with equivalent guasivariety K and that it has a finite
witnessing collection I♭ of transformations. By Proposition 1328, we know
that QK is finitary. Let µ, ν ∶ (SEN♭)ω → (SEN♭)2 be collections of natural
transformations in N ♭, with ∣µ∣ < ∞, such that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ DK(νΣ[φ⃗]).
Since I♭ is a witnessing collection of transformations, we get, for all Σ ∈ ∣Sign♭∣
and all φ⃗ ∈ SEN♭(Σ),

I♭[µΣ[φ⃗]] ≤ C(I♭[νΣ[φ⃗]]).
But both µ and I♭ are finite and, also, Sign♭ is assumed to be finite. Hence,
since I is naturally finitary, there exists finite ν′ ⊆ ν, such that, for all
Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

I♭[µΣ[φ⃗]] ≤ C(I♭[ν′Σ[φ⃗]]).
Therefore, again by the fact that I♭ is a set of witnessing transformations,
we obtain, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ DK(ν′Σ[φ⃗]).
Thus, QK is indeed naturally finitary. ∎

We turn, next, to results dual to those established in Propositions 1328
and 1329. We start with a dual to Proposition 1328 to the effect that, if QK

is finitarty and I has a finite witnessing collection of equations, then I is
itself finitary.

Proposition 1330 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, with equivalent guasivariety K. If QK is finitary and I has a finite
witnessing set τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then I is also finitary.

Proof: Suppose I is a π-institution based on an algebraic system F over a
finite category of signatures. Assume that I is syntactically strongly family
algebraizable, with equivalent guasivariety K, such that QK is finitary, and
that it has a finite witnessing collection τ ♭ of equations. Let Σ ∈ ∣Sign♭∣ and
Φ ∪ {φ} ⊆ SEN♭(Σ), such that

φ ∈ CΣ(Φ).
Since τ ♭ is a witnessing collection of equations,

τ ♭Σ[φ] ≤DK(τ ♭Σ[Φ]).
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Since Sign♭ is finite and τ ♭ is finite, we get, by the finitarity of QK that there
exists finite Φ′ ⊆ Φ, such that τ ♭Σ[φ] ≤ DK(τ ♭Σ[Φ′]). Thus, again by the fact
that τ ♭ is a set of witnessing equations, we obtain φ ∈ CΣ(Φ′). Thus, I is
indeed finitary. ∎

A dual of Proposition 1329 addresses the case of natural finitarity.

Proposition 1331 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, with equivalent guasivariety K. If QK is naturally finitary and I
has a finite witnessing set τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then I is also
naturally finitary.

Proof: Suppose I is a π-institution based on an algebraic system F over a
finite category of signatures. Assume that I is syntactically strongly fam-
ily algebraizable, with equivalent guasivariety K, such that QK is naturally
finitary, and that it has a finite witnessing collection τ ♭ of equations. Let
µ, ν ∶ (SEN♭)ω → SEN♭ be collections of natural transformations in N ♭, with∣µ∣ <∞, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(νΣ[φ⃗]).
Since τ ♭ is a witnessing collection of equations, we get, for all Σ ∈ ∣Sign♭∣ and
all φ⃗ ∈ SEN♭(Σ),

τ ♭[µΣ[φ⃗]] ≤DK(τ ♭[νΣ[φ⃗]]).
But both µ and τ ♭ are finite and, also, Sign♭ is assumed to be finite. Hence,
since QK is naturally finitary, there exists finite ν′ ⊆ ν, such that, for all
Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

τ ♭[µΣ[φ⃗]] ≤DK(τ ♭[ν′Σ[φ⃗]]).
Therefore, again by the fact that τ ♭ is a set of witnessing equations, we
obtain, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(ν′Σ[φ⃗]).
Thus, I is naturally finitary. ∎

Finally, we present a syntactic analog of Corollary 668, which summarizes
the conclusions drawn from the study of the various finitarity properties, at
the center of the investigations carried out in the present chapter.

Corollary 1332 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, via the conjugate pair (τ ♭, I♭) ∶ I ⇄ QK.

(a) If both τ ♭ and I♭ are finite, then I is naturally finitary if and only if
QK is naturally finitary;
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(b) If I is naturally finitary, then QK is naturally finitary if and only if I♭

can be taken to be finite;

(c) If QK is naturally finitary, then I is naturally finitary if and only if τ ♭

can be taken to be finite.

In each case, if the equivalent alternatives hold, then all four “finitarity”
conditions hold.

Proof:

(a) Suppose both τ ♭ and I♭ are finite. If I is naturally finitary, then,
by Proposition 1329, QK is also naturally finitary. If, on the other
hand, QK is naturally finitary, then, by Proposition 1331, I is naturally
finitary.

(b) Assume that I is naturally finitary. If QK is naturally finitary, then,
by Theorem 1327, I♭ may be taken to be finite. If, on trhe other hand,
I♭ can be taken to be finite, then, by Proposition 1329, QK is naturally
finitary.

(c) Assume QK is naturally finitary. If I is naturally finitary, then, by
Theorem 1326, τ ♭ may be taken to be finite. If, on the other hand,
τ ♭ may be taken to be finite, then, by Proposition 1331, I is naturally
finitary. ∎

In summary, Corollary 1332 establishes the hierarchy depicted below,
which parallels in the syntactic context the hierarchy pictured at the end of
Chapter 9, concerning the semantic side.

I ,QK naturally finitary
τ ♭, I♭ finite

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

QK naturally
finitary

τ ♭, I♭ finite
❄

I naturally
finitary

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

I♭ finite
❄

τ ♭ finite
❄

◗
◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑
✑

I , with finite Sign♭,
syntactically strongly
family algebraizable
via (τ ♭, I♭) ∶ I ⇄ QK
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