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18.1 Protoalgebraic m-Institutions

18.1.1 The Correspondence Theorem

Let F = (Sign’,SEN’, N*) be an algebraic system and Z = (F,C) a 7-
institution based on F.

Recall that 7 is protoalgebraic if the Leibniz operator is monotone on
theory families, i.e., if, for all T, 7" € ThFam(Z),

T<T" implies QT)<QT").

Recall, also, that, by Theorem 175, every protoalgebraic m-institution is sta-
ble and that, moreover, by Theorem 179, 7 is protoalgebraic if and only if,
for all F-algebraic systems A = (A, (F,«)) and all T, T’ € FiFam” (A),

T<T implies QAT)<QAT).

The m-institution Z has the compatibility property if, for every F-
algebraic system A = (A, (F,a)), all T,T" € FiFam” (A), with T < T”, and all
0 € ConSys(A),

0 compatible with T implies 6 compatible with 7".

The w-institution Z = (F,C) has the filter correspondence property
if, for all F-algebraic systems A = (A, (F,«)), B = (B, (G, 5)), and surjective
morphism (H,v): A - B, with H : Sign — Sign’ an isomorphism,

F
<W wm
A (7] B

and all T € FiFam”(A) and 7" € FiFam” (B),
VAT V) =T vy (T,

where F(T') = CTB(~(T)) is the least Z-filter family on B that includes (7).

Our goal is to show that both the compatibility property and the filter
correspondence property characterize protoalgebraic w-institutions. We start
with a lemma to the effect that, for every Z-filter family T of A, if the kernel
of (H,~) happens to be compatible with T', then 7(7") is already an Z-filter
family of B and, therefore, 7(T") = v(T').

Lemma 1333 Let F = (Sign’, SEN’, N*) be an algebraic system, T = (F,C)
a m-institution based on F, A = (A,(F,a)), B =(B,(G,)) F-algebraic sys-
tems, and (H,~): A — B a surjective morphism, with H : Sign — Sign’ an
isomorphism. If T € FiFam®(A), such that Ker({(H,~)) is compatible with
T, then3(T) =~(T).
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Proof: By definition, v(7") < 7(7T") always holds. To show the reverse in-
equality, it suffices to show that (7"), under the hypothesis of the com-
patibility of Ker({H,v)) with T, is an Z-filter family of B. So assume
Y € |Sign’|, ® U {¢} c SEN’(X), such that ¢ € Cx(®), and let ¥’ € |Sign’,
f e Sign’(%, %), such that

B/ (SEN"(f)(®)) € V(e (Tresr)).
This gives
vr(en (as (SEN'(£)(2))) € vrey (Tre)-
By the postulated compatibility of Ker({H,~)) with T, we obtain
ass (SEN'(f)(®)) € Tiesy.
Since ¢ € Cs(®) and T € FiFam?(A), we get that
sy (SEN(f)(¢)) € Tr(syy.
Thus, yee (as (SEN'(£)(8))) € ve (Tr(sr)), and, therefore,
Bsr (SEN"(£)(9)) € vy (Tresry)-

This shows that v(7') € FiFam®(B) and, hence, 7(T) = v(T). [

Next, we give an equivalent formulation of the Filter Correspondence
Property.

Proposition 1334 Let F = (Sign’, SEN’, N*) be an algebraic system and
T = (F,C) arm-institution based on F. T has the filter correspondence property

uf
for all Z-matriz families A = (A", T"), A" = (A", T") and strict surjec-

tive matriz morphism (H,~) : A" — A", with H : Sign’ - Sign” an
isomorphism,

F

(F% waq

Al A//
(H,~)

T =yYy(T)), forall T"<T eFiFam®(A).

Proof: Suppose, first, that Z has the Filter Correspondence Property and
consider Z-matrix families 20 = (A", T"), A" = (A", T"), a strict surjective
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matrix morphism (H,~): ' - A", with H : Sign’ - Sign” an isomorphism,
and 7" < T € FiFam” (A"). Then we have

VIT)) € EE) VT ((T) <F(T))
Tv~=1(T") (Filter Correspondence)
TvT' ((H,~) strict)
T. (T"<T by hypothesis)

[IVAN

Thus, the displayed property holds. Assume, conversely, that the displayed
property holds. We must show that Z has the Filter Correspondence Prop-
erty. So suppose that A= (A’ (F’,a')), A" = (A" (F" «")) are F-algebraic
systems, (H,v): A’ - A" a surjective morphism, with H : Sign’ - Sign” an
isomorphism, and let 77 ¢ FiFam®(A’") and T" € FiFam®(A”). Our goal is to
show that

YA VT =TV TH(T).

Notice that (H,v): (A, v 1 (T")) - (A", T") is a strict surjective morphism,
with H an isomorphism, and v~1(T") < T"v~~1(T"). Thus, we fit the setup
of the hypothesis, which allows us to conclude that

Y (T vAyTH(T))) =T vy ().

So, it suffices, in turn, to show that F(17)vT" = ~(T"v~~1(T")) and, since,
Ker((H,~)) is compatible with 7" (having v='(~(7")) = T’, by hypothesis),
it suffices, by Lemma 1333, to show that

ATV T" = AT vy (T7)).

The left to right inclusion is obvious, since y(T7),T" < ~v(T" v v~ 1(T")).
Conversely, note that, taking into account the hypothesis, 77, v1(T") <
Y (y(T") v T"). Therefore, T v ~y~1(T") < v Y(y(T") v T") and, therefore,
Y(T'vA=H(T")) <y(T")vT" and, hence, the right to left inclusion also holds.
Thus, the Filter Correspondence Property holds. ]

Now we proceed with the formulation and proof of the main theorem.

Theorem 1335 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. The following statements are equivalent:

(i) I is protoalgebraic;
(ii) I has the compatibility property;

(iii) T has the filter correspondence property.

Proof:



Voutsadakis CHAPTER 18. SELECTED CLASSES 1139

(i)=(ii)

(i) = (iii)

Suppose Z is protoalgebraic and let A4 = (A, (F,«)) be an F-algebraic
system, T, T" € FiFam?” (A), with T < T, and # € ConSys(A), such that
0 is compatible with 7". Then we have

0 Q(T) (by the compatibility of § with T")

Q(T"). (by protoalgebraicity)

IN N

We conclude that 6 is also compatible with 7”7 and, hence, Z has the
compatibility property.

Suppose that Z has the compatibility property and let A = (A, (F, «))
be an F-algebraic system and 7T, 7" € ThFam®(A), such that T < T".
Then Q(T') € ConSys(A) and, by the definition of a Leibniz congruence
system, it is compatible with 7. Now it follows by the compatibility
property, that Q(7') is also compatible with 7". Hence Q(T") < Q(T").
We conclude that Z is protoalgebraic.

Suppose that Z has the compatibility property and consider F-algebraic
systems A = (A, (F,«)), B= (B, (G, )), a commutative triangle
F

<fV wm
A (H > B

with H : Sign — Sign’ an isomorphism, and T € FiFam®(A), T’ €
FiFam®(B). Note that it is always the case that

Y

Tvy ™ (T <y FT)vT).

Thus, it suffices to show that, under the hypothesis of compatibility,
the reverse inclusion also holds.

Consider, temporarily, X € FiFam®(A), such that y~1(7") < X. Since
Ker((H,~)) is compatible with 4~1(7"), by the postulated compati-

bility property, it is also compatible with X. Thus, by Lemma 1333,
F(X) =v(X). Moreover, we have 7" < y(X) =7(X).

Now set X =T v~~1(T") and reason as follows:
FIATVT) € IEX)VT) (T <X)

7HEX)) (T <7(X)

7 (X)) ((X) = (X))

X. (Ker({(H,v)) compatible with X)

[IVAN

So we get v 1 (F(T)vT") =T v~ (T") and T has the correspondence
property.
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(iii)=-(ii) Suppose that Z has the correspondence property and let A = (A, (F, v))
be an F-algebraic system, 7,7 € FiFam”(A), with 7 < 77, and 0 ¢
ConSys(A), such that 6 is compatible with 7. We look at the commu-

tative diagram
F
< F/’y We o )
A A?
(Z,7%)

(n0)(xd(T") v 7(T)) (T <T")

—_

and calculate

(7)1 (= (T"))

T v (7)1 (7?(T)) (correspondence property)
T'vT (0 compatible with T")
. (T'<T")

(VAN

Thus, 6 is also compatible with 7" and Z has the compatibility propert%

As a consequence we obtain the Correspondence Theorem, which asserts
that, under the same hypothesis, (H,7) induces an order isomorphism be-
tween the principal filter of the lattice FiFam?®(A) generated by 4~1(7") and
the principal filter of the lattice FiFam®(B) generated by 7.

Theorem 1336 (Correspondence Theorem) Let F = (Sign’, SEN’, N'*)
be an algebraic system and T = (F,C) a protoalgebraic m-institution based
on F. Let, also, A= (A,(F,a)), B=(B,(G,p)) be F-algebraic systems and
(H,~v) : A - B a surjective morphism, with H : Sign — Sign’ an isomor-
phism, and T’ € FiFam®(B). Then, Y = 4 1(Y), T" < Y € FiFam®(B),
defines an order isomorphism FiFam”(B)T = FiFam®(A)"™" (1",

Proof: ~7! : FiFam®(B)T" - FiFam®(A)"" () is well defined by Corol-
lary 55 and it is clearly monotone. Furthermore, 7 : FiFam®(A4)"" (") -
FiFam®(B)T" is also well-defined and monotone. So it suffices to show that,
for all 7’ <Y € FiFam®(B), 7(71(Y)) = Y and that, for all 7 1(7") < X €
FiFam®(A), v1(7(X)) = X.

First, for T7 <Y € FiFam®(B), since (H,~) is surjective, v(y1(Y)) =Y
and, therefore, 7(y1(Y)) = Y, since Y € FiFam®(B). For the other equation,
if v~1(T") < X e FiFam®(A), we have,

TIEX)) = EX) VT (NI <X =T <7(X))
= X v~y HT") (correspondence property)
- X (T < X)

So 41 : FiFam” (B)7" = FiFam” (A) (™), n
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18.1.2 The Homomorphism Theorem

We show that, in the case of protoalgebraic w-institutions Z, every surjective
morphism of Z-matrix families gives rise to a corresponding surjective mor-
phism between their reductions. This establishes a “reduction” functor and,
moreover, gives rise to a version of the Homomorphism Theorem of Universal
Algebra.

Recall that, given a base algebraic system F = (Sign’, SEN’, N*) and an
F-matrix family 2 = (A, T'), we denote by 2* the reduction of 2, i.e.,

A = (A/QNT), T/QNT)).
Moreover, extending this notation, given X € [Sign| and ¢ € SEN(X), we set
0" = J(T) € SEN(%).

Theorem 1337 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a protoalgebraic w-institution based on ¥. Further, let A= (A, (F,«a)),
A = (A’ (F', ), with A = (Sign,SEN, N), A’ = (Sign’, SEN’, N’), be F-al-
gebraic systems, A = (A, T) and A" = (A", T") be Z-matriz families and (H,~) :
A - A" a surjective morphism. Then, there exists a surjective morphism
(H,~*):A* - "™ given, for all X2 € |Sign| and all ¢ € SEN(X), by

15(07) = 7=(0)".

Proof: First, we show that, for all ¥ € [Sign|, 75 : SEN*(X) - SEN"(H (X))
is well-defined. Indeed, suppose X € |Sign| and ¢,¢ € SEN(X), such that
o* = ¢, ie., (¢,¢) € QF(T). Then, since T < v~ 1(T"), we get, by pro-
toalgebraicity, (¢,v) € Q&(y~1(7")), whence, by Proposition 24, (¢,1) €
yil(Qfl'(Z)(T’)), and, hence, (vs(¢),72(¥)) € Q“If‘l'(z)(T’), or, equivalently,
Ys(¢)* =1=(¥)*.

Next we see that v* : SEN* - SEN"* o H is a natural transformation. To
this end, let X, %' € |Sign|, f € Sign(X%,Y’) and ¢ € SEN(X). Then we have

s

SEN*(%) SEN"™(H (X))
SEN*(f) SEN"(H(f))
SEN*(Y) — SEN""(H(X'))
SEN"(H(f))(7:(¢*)) = SEN"(H(f))(7s(6)*)
= SEN'(H(f))(v=(¢))*

= Y (SEN(f)(¢))*
= 75 (SEN(f)(¢)*)

= 1%(SENT(f)(¢7)).
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Surjectivity of (H,~*) : A* - A’ follows from the fact that (H,~v): A — A’ is
surjective. So it suffices to show that (F',wa’) = (H,v*) o (F, 7, «) and that
(H,~*) : 20 - A" is a matrix family morphism. The first equation follows
from the fact that the upper triangle of the diagram commutes by hypothesis
and the rectangle commutes by the definition of (H,~*).

F
(Fa) Ww
A (i7.7) &
(I,7) (I,7)
* <H’ ,}/*> A/*

To finish the proof, we calculate, for all ¥ € |Sign| and all ¢ € SEN(X),
¢* € T /UA(T) if and only if, by compatibility, ¢ € Ty, implies, by hypothesis,
Q€ yil(TI’{(E)) if and only if y5(¢) € TI’{(E) if and only if, by compatibility,
vs(P)* € TI’{(E)/Qg@)(T’) if and only if, by the definition of 7*, 75 (¢*) €
Ty s/ Uiy (T7) it and only if ¢* € (43) " (T 5y [ty (7)) u

We also have the following construction.

Corollary 1338 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a protoalgebraic m-institution based on F. Let, also A = (A, (F,a)),
A = (A (F",a')), with A = (Sign, SEN, N), A’ = (Sign’,SEN’, N}, be F-
algebraic systems, A = (A, T) an Z-matriz family and A" = (A", T") a reduced
Z-matriz family and (H,v) : 20 - A" a surjective morphism.

O 1 B
() (H,v*)
91/

There exists a unique surjective morphism (H,~v*) : * — A" that makes the
triangle commute.

Proof: By Theorem 1337, there exists a surjective matrix morphism (H,~v*) :
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2A* — A’ such that the following rectangle commutes:

(I, 7)

20 2%

(H,7) (H,~v*)

Q[/ Q[/*
(I, )
But, by hypothesis, 2’ is reduced, whence " =21 and (I,7) = ([,¢) : A" —
20"* is the identity morphism. We now obtain the triangle depicted in the
diagram of the statement. [

Let us denote by MatFam(Z) the category of Z-matrix families with
surjective matrix morphisms between them and, similarly, MatFam™(Z) the
category of reduced Z-matrix families with surjective matrix morphisms be-
tween them. Then, based on Theorem 1337, we obtain the following functor.

Theorem 1339 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. Then

*: MatFam(Z) - MatFam™(Z7)

is a functor. The subcategory MatFam™(Z) is a reflective subcategory of
MatFam(Z) with * a reflector from MatFam(Z) to MatFam™(Z).

Proof: Given A € MatFam(Z), it is easy to see that ([,¢*) : 2* - A* is
the identity matrix morphism. For the composition property, assume %A,
A/ A" ¢ MathFam(Z), and (G,5) : A - A, (H,7) : A" - A” be matrix
morphisms. Then, we have, for all ¥ € |Sign| and all ¢ € SEN(X),

(Ve © Be)*(¢*) Ya) (Be(@))*
’Yé(g) (52 (¢) *)
'75(2) (ﬁé (Cb* ) )

Thus, ((H,7) o (G,B))* = (H,7)* o (G,B)*. Therefore, * : MatFam(Z) —
MatFam*(Z) is a functor.

As far a s reflectivity is concerned, for every 24 € MatFam*(Z), we con-
sider the natural quotient morphism (I,7) : 2 - A*. Given reduced B ¢
MatFam®(Z) and a surjective morphism (H,~) : 2l - B, the surjective mor-
phism (H,~v*): 20* - B of Corollary 1338 is the unique surjective morphism
such that the following diagram commutes.

91*
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Thus, MatFam®(Z) is a reflective subcategory of MatFam(Z) with * a
reflector from MatFam(Z) to MatFam™ (7). |

Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) be a n-
institution based on F. Given an Z-matrix family 2 = (A4, T"), we denote by

FiFam?” (20) the principal filter of the complete lattice FiFam?(A) generated
by the Z-filter family 7"

FiFam® () = {T" ¢ FiFam®(A) : T < T"}.

Recall that this set is also denoted by FiFam”(.A)7, without explicit reference
to the matrix family 2 = (A, T).
The Correspondence Theorem allows us to prove the following.

Theorem 1340 Let F = (Sign’,SEN’, N*) be an algebraic system and T =
(F,C) be a protoalgebraic m-institution based on ¥. For every Z-matriz family
A=(AT), with A= (A,(F,a)),

FiFam?(2) = FiFam?® ().

Proof: By The Correspondence Theorem 1336, with B = A/QA(T), (H,~) =
(I,m)y: A—> A/QAT) and T" = T[QA(T), we get

FiFam” (A/QA(T))T/** (™ x FiFam? (A)™ " (T/94(T),

But this amounts to FiFam® (*) = FiFam(2). |

Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) a 7-
institution based on F. Consider F-matrix families 2 = (A4,T) and B =
(B,T") and a surjective matrix morphism (H,~) : 2 - B. By definition,
we have T < 4~ 1(T"). We call v71(T") the filter kernel of (H,v). By the
inclusion relation above, we can see that, if B € MatFam(Z), then v 1(7") €
FiFam? ().

Given 2= (A, T) and X € SenFam(.A), such that T < X, we define

A/X = (A, X) = (AJQAX), X/QA(X)).

We call 2(/X the quotient of 2 by X. We note that, if A € MatFam(Z),
then
X e FiFam®(A) iff 2A/X e MatFam*(ZT).

The following is an analog in the context of Z-matrix families of the
Homomorphism Theorem of Universal Algebra.

Theorem 1341 (Homomorphism Theorem) Let F = (Sign’, SEN’, N'*)
be an algebraic system and T = (F,C) be a protoalgebraic w-institution based
on F. Let also A =(A,T), A" = (A, T") e MatFam(Z) and (H,v):2A > A" a
surjective morphism.
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(i) There exists a strict surjective morphism (H,~") : A[~v~1(T") — A" with
isomorphic components;

(i) If X € FiFam®(A) and X < v 1(T"), then, there exists a surjective
morphism (H,~vX): A/ X — A such that

o (L) o
(I, 7%) (I,m)
A/ X (H%) A

Proof:

(i) First, note that v=1(T") < v~ 1(T"), whence, (H,v) : (4,71 (T")) - A’
is also a surjective matrix morphism. Thus, taking into account that
T <~ Y(T"), we get, by Theorem 1337, a surjective matrix morphism
(H,~*) : Ay 1(T") - A", such that the following diagram commutes.

(H,v)

(A, 1(T")) A
(I,7) (I,7)
™Ay~ (T") RS A

It remains to show that, for every X € |Signl|,
74 : SENY T)(2) 5 SEN"*(H (X))

is a bijection and that (H,~*) is strict. To see that 73, is a bijection,
let ¢,1 € SEN(X), such that

1:(6/R(HT)) = (/AL (H(T))).

Then, by the commutativity of the rectangle,
72(¢)/Q§/(2)(T/) = VE(@D)/Qﬁ,(z)(T/)

This gives that (¢,v) € 751(Qﬁ'(2)(T’)). Thus, (¢,v) € Q&(v1(T"))
and, hence,

o/ (v H(T")) = ¢/ (v H(T)).
Therefore, 75, : SENVﬁl(T,)(Z) - SEN""(H(X)) is a bijection, for all
Y. € |Sign)|.
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To prove strictness, assume Y € |Sign| and ¢ € SEN(X), such that
BI04 (T") € 35 (Thsy 0y (7). Then 13(6/K(1(T"))) e
TI/{(E)/le(E)(T,)‘ Hence, by the definition of v*, we get y=(¢)* €
TI;(Z)/Q;‘I'(Z)(T’). By compatibility, we obtain vs(¢) € Tiy(syy» whence
¢ € yil(TI’{(Z)). This, finally, yields

S/ (v HT")) €95 (T )1 (v H(T)),
proving strictness.

(ii) This part is proven by the following diagram chase:

o (H,7) o
(I,7%) (I,7)
A/ X Ay (T ——— A

{I,7) (H,7')

where (I,7): A/X — 2A/y71(T") is the canonical projection morphism,
defined because of the hypothesis X < 4~1(T”) and protoalgebraicity,

and
(Hy') Ay (T") > A

is the morphism obtained in Part (i).

18.2 Pointed Classes of Algebraic Systems

Proposition 1342 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a protoalgebraic w-institution based on ¥, having theorems. Then
the following conditions are equivalent:

(i) T is family reqular;
(i) For all T € ThFam(ZT), all ¥ € [Sign’| and all ¢ € Tx;, Tx = ¢/Qs(T);

(i) For all T € ThFam(Z), all ¥ ¢ |Sign’| and all t € Thmy(Z), Ty, =
t/QE(T);

() For all T € ThFam(ZT), all ¥ € |Sign’| and some ¢ € Ts, Ts = ¢/Qs(T);

(v) For all T € ThFam(ZT), all ¥ ¢ |Sign’| and some t € Thmy(T), Tx =
t/Qs(T).

Proof:
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(1)=(ii) Suppose Z is family regular and let 7' € ThFam(Z), ¥ € |Sign’| and
¢ € Ts. Then, we have, for all 1 e SEN*(X),

Yely Ut ¢,eTy (peTx)
iff  C(o,0)<T (definition of C'(¢,7))
implies Qx(C(¢,v)) <Qx(T") (Z protoalgebraic)
implies (¢, 1) € Qs (T) (Z family regular)
it Yed/Qs(T). (definition of ¢/Q2s(T))

On the other hand, if ¥ € ¢/Qs(T'), then, since ¢ € Tx, by the compat-
ibility of Q(T") with T, ¢ € Tx,. Thus, we conclude that Ty, = ¢/Qx(T).

(ii)=(iii) Suppose (ii) holds and let 7' e ThFam(Z), ¥ € |Sign’| and ¢ € Thmy(7).
Then, since Thm(Z) < T, we get that ¢t € T, and, hence, by hypothesis,
Ty =t/Qs(T).

(iii)=(iv) Assume (iii) holds and let T'e ThFam(Z) and ¥ € |Sign’|. Since Z has
theorems, there exists t € Thmy(Z). Then, ¢ € Ty, and, by hypothesis,
Ty =t/Qx(T).

(iv)=(v) Assume (iv) holds and let T ¢ ThFam(Z) and ¥ € |Sign’|. Then, by
hypothesis, there exists ¢ € Ty, such that T = ¢/Qx(T). Moreover,
7 has theorems, whence, there exists t € Thmy(Z). Then, we have t €
Ty = ¢/Qx(T), whence (¢,t) € Qx(T) and, therefore, T = ¢/Qx(T') =
t/Qs(T).

(v)=(i) Assume that (v) holds and let T' ¢ ThFam(Z), ¥ € |Sign’| and ¢,v €
Tx. By hypothesis, for some ¢t € Thmy(Z), Tx = t/Qs(T). Hence,
¢, €t/Qs(T), ie., (¢,t) € Qu(T) and (t,v) € Qs (T). By transitivity,
(p,1) € Qs (T). Therefore, Z is family regular. .

We show now that a protoalgebraic family assertional m-institution Z is
weakly family algebraizable.

Theorem 1343 Let F = (Sign’,SEN’, N*) be an algebraic system and I =
(F,C) a protoalgebraic m-institution based on ¥. If T is family assertional,
then it is weakly family algebraizable.

Proof: By Definition 613, protoalgebraicity and family assertionality are
equivalent to regular weak family algebraizability. By Proposition 620, this
entails weak family algebraizability.

More directly, assume Z is family assertional. Since it is protoalgebraic,
by hypothesis, it suffices to show that Z is family injective. To this end, let
T,T" € ThFam(Z), such that Q(T") = Q(7”). Then, we have, for all ¥ ¢ |Sign’|
and all t € Thmyg(Z),

Ty = t/Qs(T) = t/Qx(T") = TL.
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Therefore T" = T'". Hence 7 is family injective and, therefore, it is weakly
family algebraizable. [

Let F = (Sign’, SEN’, N*) be an algebraic system, with T° : (SEN")k —
SEN’ in N*, and K a class of F-algebraic systems. We say that K is T*-
pointed if, for all A = (A, (F,a)) € K, with A = (Sign, SEN, N}, all ¥ € |Sign|
and all ¢, € SEN(T), ) )

T£(9) = TE(¢).
K is called pointed if it is T’-pointed with respect to some T® in N°®.

If a class K is pointed, then, for every A e K, we write T4 = {T8 }s¢/sign|;
where T4 := Té((ﬁ), for some ¢ € SEN(X), this value being independent of
the choice of ¢ € SEN(X).

We focus now on protoalgebraic, family regular m-institutions that have
natural theorems. Recall that this means that there exists a natural trans-
formation T" in N*, such that T® is evaluated to a theorem in every signature
and at all tuples of sentences. Of course, by definition, all m-institutions
that fit this description are regularly weakly family algebraizable. We show
that for such w-institutions, the class AlgSys®(Z) of their reduced algebraic
systems is a pointed class of F-algebraic systems, where any natural theorem
may serve as the “point”.

Proposition 1344 Let F = (Sign’,SEN’, N*) be an algebraic system and
T = (F,C) a protoalgebraic family reqular mw-institution based on ¥, having
natural theorems. Then, the class AlgSys*(Z) is a pointed class of F-algebraic
systems.

Proof: Suppose Z is protoalgebraic and family regular, with a natural
theorem T' : (SEN')* - SEN' i.e., such that, for all ¥ ¢ |Sign’| and all
¢ € SEN*(X), T8(4) € Thmy(Z). By family regularity, we have, for all
Y € |Sign'| and all ¢,1 € SEN*(X), (T%(¢), T4 (1)) € Qs (Thm(Z)). Now, let
A € AlgSys*(Z). Thus, there exists T € FiFam”(A), such that QA(T) = A4,
Therefore, for all ¥ € |Sign’| and all $,1 € SEN"(X), we get, by what
was shown above and protoalgebraicity, and taking into account Lemma 51,
(T5(8), T4 (%)) € Qu(a~(T)), whence, by Proposition 24, (T4(4), Th(¢)) €
ag(Q“If}(E)(T)). Thus,

(s (T5(0)), as(T5(¢))) € i) (T) = Ay,

i.e., since T! is a natural transformation, T“P‘}(E)(ag(@) = T“;}(E)(Oég(lz)). Tak-
ing into account the surjectivity of (F,«a), we conclude that AlgSys*(Z) is
a pointed class of F-algebraic systems, with any natural theorem serving as
the “point” natural transformation. [ ]

Let F = (Sign’, SEN’, N*) be an algebraic system, with T : (SEN")¥ —
SEN’ in N* and K a Tt-pointed class of F-algebraic systems. We say that K
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is relatively point regular if, for every 6,6’ € ConSys"(F),
T°/0=T"/¢" implies =6
It is not difficult to show that the defining property transfers from K-

congruence systems on F to K-congruence systems on every F-algebraic sys-
tem, under the proviso that K be an abstract class.

Lemma 1345 Let F = (Sign’,SEN’, N*) be an algebraic system, with T' :
(SEN’)* - SEN’ a natural transformation in N*, and K a Tt -pointed abstract

class of F-algebraic systems. If K is relatively point reqular, then, for every
F-algebraic system A and all 6,6’ € ConSys*(A),

1410 = 14)0"  implies 0 =10

Proof: Suppose A is an F-algebraic system, 6,6’ € ConSys"(A), such that
TA/O = TAJ". Then, for all ¥ € |Sign’| and ¢ € SEN’(2),

(9. T5) e a5 (Op)) i (as(9),as(Ts)) € Ors)

iff <a2(¢)> Tﬁ(g)) € QF(E)

iff (as(e), T“P‘}(E)) € Oy

iff <a2(¢)>a2(sz)> € 9}:(2)

iff (¢, T3) € 05! ()
Thus, T'/a~1(0) = T*/a~(#"). Since K is abstract and A/6,A/0" € K, we get
that F/a~1(0), F/a"1(#") € K. It follows that a~'(#),a 1 (#") e ConSys"(F).
Since K is relatively point regular, by definition, a~1(0) = a~(#"). Therefore,
by surjectivity of (F,«), 6 =0'. [ ]

Moreover, we can show that, for a protoalgebraic family regular 7-insti-
tution Z, having natural theorems, the associated class AlgSys™(Z) of its
reduced algebraic systems is a relatively point regular class.

Proposition 1346 Let F = (Sign’, SEN’, N*) be an algebraic system and
Z = (F,C) a protoalgebraic family regular m-institution based on F, having
natural theorems. Then, the class AlgSys™(Z) is a relatively point reqular
class of F-algebraic systems.

Proof: We know, by Proposition 1344, that AlgSys*(Z) is pointed, with any
natural theorem T’ serving as a “point”. Consider 6,60’ € ConSys*(Z), such
that T°/0 = T°/0". Since 6,0" € ConSys*(Z), there exist T, 7" € ThFam(Z),
such that 6 = Q(T') and 6’ = Q(T"). But then, since Z is protoalgebraic and
family regular, with theorems, we get, by Proposition 1342,
0 QT)

= Q(1°/UT)) (Proposition 1342)

= Q(1'/0)

= Q(7%/0") (hypothesis)

= Q1°/Q(T"))

= Q(T") (Proposition 1342)

= 0.



1150 CHAPTER 18. SELECTED CLASSES Voutsadakis

Hence AlgSys™(Z) is indeed relatively point regular. ]

Let F = (Sign’, SEN’, N*) be an algebraic system, with T : (SEN")¥ —
SEN’ in N*, and K a T’-pointed class of F-algebraic systems. Define on F
the family CKT = {C’g’T}ZqSign»‘, by letting, for all ¥ € |Sign’|,

C8T:P(SEN'(Z)) » P(SEN'(T)),
be given, for all ® u {¢} ¢ SEN’(X), by
peCy (D) iff ¢nTheCK(O~TY),

ie., ¢ € O (®) if and only if, for all A= (A, (F,a)) €K, all 3 € |Sign’| and
all feSign’(Z,%),

asy (SEN'(£)(®)) ¢ {Tﬁ(z')} implies  ax (SEN'(f)(¢)) = T}?(z')-

In the next proposition, it is shown that C%7 is a closure system on F.
In this way the pointed class K of F-algebraic systems defines a bona fide
m-institution based on F.

Proposition 1347 Let F = (Sign’, SEN’, N%) be an algebraic system, with
Tb: (SEN")k - SEN in N*, and K a T*-pointed class of F-algebraic systems.
CKT is a closure system on F.

Proof: Let ¥ € |Sign’|. It is obvious from the definition that
CYTP(SEN' (X)) - P(SEN' (L))

is inflationary and monotone. To show that it is also idempotent, let Pu{¢} c
SEN’(X), such that ¢ € C’;’T(C;’T(CI))). Thus, we have, by definition, for all
AcK, all ¥’ € |Sign’| and all f € Sign"(Z, %),

sy (SEN"(f)(C5 (D)) € {THwn}  implies  asy (SEN'(f)(9)) = T
But, also by definition, we have, for all ¥’ € |Sign’| and all f € Sign’ (%, ¥/),
s (SEN'(£)(®)) € {Thwy}  implies  as (SEN'(£)(CE(2))) € {TA) )
Therefore, we get that, for all ¥’ € |[Sign’| and all f € Sign’ (%, %),

0w (SEN(F)(B)) € {TA g} implies 0 (SEN'()(9)) = TAw).

showing that ¢ € C5'(®).

It remains, finally, to show that CKT is structural. Let X, € |Signl’|,
f € Sign’(%,%) and ® u {¢} ¢ SEN*(X), such that ¢ e C£7(®). Consider
A € K, such that, for all £ € |Sign’| and all g € Sign’ (%', £"),

f

> s 9

Z//
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s (SEN' (9)(SEN'()(®))) € {T ). This gives ass (SEN'(¢f)(®)) €
{T?(Z,,)}, whence, by hypothesis, as(SEN’(gf)(¢)) = T?‘(zn)- Thus, for all
X" ¢ |Sign’| and all g € Sign’ (¥, "), ax:(SEN’(9) (SEN'(£)(6))) = T -
We conclude that SEN"(f)(ng) € C;;T(SEN"(f)(@)) and, therefore, CKT is

also structural. ]

Based on Proposition 1347, it makes sense, given an algebraic system
F = (Sign’, SEN’, N*), with T : (SEN")¥ - SEN’ in N*, and K a T’-pointed
class of F-algebraic systems, to define the assertional w-institution of K
as the pair
IK,T — (F, CK,T>'

We have seen in Proposition 1346 that, if Z = (F,C') is a protoalge-
braic and family regular 7-institution, having natural theorems, then its class
AlgSys™(Z) of reduced F-algebraic systems is a relatively point regular class.
We show next, in a form of converse, that if K is a relatively point regular
guasivariety of F-algebraic systems, then the assertional m-institution Z%T,
associated with K, is a protoalgebraic family regular w-institution that has
natural theorems.

First, we establish possession of natural theorems, under the assumption
that K is pointed.

Proposition 1348 Let F = (Sign’, SEN’, N*) be an algebraic system, with
Tb 2 (SEN")k - SEN’ in N*, and K a pointed class of F-algebraic systems.
Then TKT has natural theorems.

Proof: Let K be a pointed class of F-algebraic systems. Since K is pointed,
there exists T": (SEN’)* - SEN’ in N*, such that, for all ¥ € [Sign’| and all
¢ € SEN’(X), all ¥’ € |Sign’| and all f ¢ Sign’ (%, %),

A (s (SEN'(£)())) = TAwn.

This implies that OAEI(TE,(SENI)(_]C)((E))) = T“lfl(z,) and, hence, we obtain
sy (SEN'(£)(T5%(4))) = Tf}(z')' Thus, by definition, T4(4) € C%(2) and,

therefore, T® is a natural theorem. [ |

Next, we turn to proving family regularity, again under the assumption
of pointedness.

Proposition 1349 Let F = (Sign’, SEN’, N*) be an algebraic system, with
Tt : (SEN")k - SEN’ in N*, and K a pointed class of F-algebraic systems.
Then I%7 is a family reqular w-institution.

Proof: Let K be a pointed class of F-algebraic systems. We know, by
Proposition 1348, that ZK-T has a natural theorem T, where T’ is a point
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in K. We show that ZKT is family regular. To this end, let ¥ € |Sign’| and
$,1 € SEN’(X). Then, for all ¥’ € |Sign’| and f € Sign’(XZ,¥’), we have

SEN'(f)(¢) » T3, SEN"(f)(¢) » T8 € O (¢ » Th;, ¢ m T3;).
This implies that, for all o* in N* and all y € SEN"(X),
7%, (SEN'(£)(6),X) » 0% (SEN"(f)(¥),X) € O (¢ » T3, 00 » T5,).
Now we get

0%, (SEN'(£)(6),X) » T4 € CK. (¢~ T, 00 5 TY)
iff o3, (SEN'(f)(¥),X) » T3y € CR (9 » Th 00 » TY).

Hence, by definition,

o, (SEN'(f)(9), ¥) € C5" (6, )

Therefore, by Theorem 19, (¢, 1) € Qs (C(4,v)). [

Before establishing protoalgebraicity, we need a couple of lemmas. We
show, first, that, if K is a pointed class, then all theory families of ZKT are
fully determined by the corresponding Leibniz class of the point.

Lemma 1350 Let F = (Sign’, SEN’, N*) be an algebraic system, with a nat-
wral transformation T° : (SEN")k - SEN’ in N*, and K a pointed class of
F-algebraic systems. Then, for all T € ThFam(Z%7),

T=1"/QT).

Proof: Let K be a pointed class of F-algebraic systems, T € ThFam(Z%T),
Y € |Sign’| and ¢ € SEN’(X).

e Suppose ¢ € T/ (7). This means that (¢, T%) € Qs(T"). But, by def-
inition, T4 € Thmy(Z¥T) ¢ Ty, whence, by the compatibility property
of Q(T) with T, we get that ¢ € Tx,.

e Suppose ¢ € Ts. Then ¢ ~ T4 € CX(T ~ 7*). This implies that, for all
o’ in N*, all ¥/ € |Sign’], all f € Sign’(X,%’), and all y € SEN’(X/),

%, (SEN"(f)(¢),X) » T, € CK.(T ~ T%)
iff  ob (SEN"()(T%), %) ~ Ty € OK(T ~ T*).

This is, by definition, equivalent to the statement that, for all o* in N°*,
all ¥’ € [Sign’|, all f € Sign’(X,%’), and all Yy € SEN’(¥/),

0% (SEN'(£)(9), %) € O, (T) iff - o, (SEN"(f)(T%),X) € C5; " ().
We conclude that (¢, %) € Qx(T), i.e., that ¢ € T%/Qs(T).
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Thus, we get that T'=T1"/Q(T). [ ]

Next, we show that, if K is a relatively point regular guasivariety, then,
for every theory family of Z% T, the quotient of F by the Leibniz congruence
system of 7', belongs to K and, therefore, for every theory family T of Z%T,
the Leibniz congruence system Q(7) is a K-congruence system on F.

Lemma 1351 Let F = (Sign’, SEN", N*) be an algebraic system, with a nat-
wral transformation T° : (SEN")k — SEN’ in N*, and K a relatively point

reqular guasivariety of F-algebraic systems. Then, for all T € ThFam(Z%T),
FIUT) eK.

Proof: Suppose that K is a relatively point regular guasivariety of F-algebraic
systems and let ¥ € [Sign’|, ¢;,¢; € SEN*(X), i € I, ¢,1) € SEN’(X), such that

({pi~iriel}, ¢~ ) e GEqy(K).

This is equivalent to the statement (¢,v) € O ({(¢s, 1) : i € I}). Since
OKF({{ps,1h;) = i € I}) e ConSys"(F) and K is relatively point regular,
OKF ({{¢i,1;) i € I}) is completely determined by its T’-equivalence class.
So it suffices to consider guasiequations of the form

({din 75 i€ I}, ¢~ TY) € GEqg(K).

Now, let '€ ThFam(ZXT), such that (¢;, T%) € Qx(T'), for all i € I. Then,
taking into account Lemma 1350, ¢; € T%/Qx(T') = T, for all i € I. Therefore,
by definition, ¢; » T4 € C¥(T ~ T°), for all i € I. Since, by hypothesis, ({¢; ~
Thiiel}, ¢~ Th) € GEqy(K), we get ¢~ Th e CK(T ~ 1), ie., g € O%(T).
Since T € ThFam(Z¥7), ¢ € Ts = T4/ (T). Therefore, (¢, T%) € Qs (T). We
conclude that F/Q(T) satisfies all guasiequations of K and, hence, since K is
a guasivariety, F/Q(T") e K. [

Finally, we establish protoalgebraicity of Z% T, under the hypotheses that
K is a relatively point regular guasivariety of F-algebraic systems.

Proposition 1352 Let F = (Sign’, SEN’, N*) be an algebraic system, with
' : (SEN")* - SEN’ in N, and K a relatively point reqular guasivariety of
F-algebraic systems. Then I is a protoalgebraic mw-institution.

Proof: Let K be a relatively point regular guasivariety of F-algebraic sys-
tems. We know, by Proposition 1348, that ZK-7 has a natural theorem T,
where T® is a point in K, and, by Proposition 1349, that ZK-7 is a family
regular m-institution.

Now we show that ZK:T is protoalgebraic. Suppose that T, 7" € ThFam(Z),
such that 7' < T". Then, by Lemma 1350, we get T*/Q(T") < T*/Q(T"). Since,
by Lemma 1351, Q(7") and Q(7") are K-congruence systems on F and K is
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relatively point regular, they are completely determined (generated) by their
T'-classes and, hence, we get Q(T') < Q(T"). Thus, ZKT is protoalgebraic. m

We show, next, that, for a protoalgebraic family regular 7-institution Z,
having natural theorems, the assertional w-institution of its class AlgSys*(Z)
of reduced F-algebraic systems coincides with Z.

Theorem 1353 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a family reqular protoalgebraic m-institution based on F, having a nat-

ural theorem T. Then
IAIgSys*(I),T =T

Proof: Set, for brevity in the course of this proof, K := AlgSys™(Z). Let
¥ €|Sign’| and ® u {¢} < SEN’(X). Then

e CeT(P) iff ¢nTL eCK(DTL)
iff for all T'e ThFam(Z), Y’ € |Sign’|, f € Sign’(%, %),
SEN"(f)(®) » Tk, € Qi (T)
implies SEN’(f)(¢) ~ T4, € Qs (T)
iff for all T'e ThFam(Z),Y’ € |Sign'|, f € Sign’(%,Y’),
SEN’(f)(®) € Txs implies SEN"(f)(¢) € T

We conclude that CKT = C' and, therefore, ZA185ys"(2).T = T, n

Moreover, starting with a relatively point regular guasivariety of F-alge-
braic systems, the class of all reduced F-algebraic systems of its assertional
m-institution coincides with the original class.

Theorem 1354 Let F = (Sign’, SEN", N*) be an algebraic system, with T*:
(SEN")t — SEN’ in N*, and K a relatively point regular guasivariety of F-
algebraic systems. Then

AlgSys*(Z¥T) = K.

Proof: Let K be a relatively point regular guasivariety of F-algebraic sys-
tems. Assume that A € K and consider {T4} := {T8}ve(sign € SenFam(A).
Then, for all ¥ ¢ |Sign’|, all ® U {¢} ¢ SEN’(X), such that ¢ € Cx"(®) and
as(®) € {T7 5} we get, by the definition of C*7, ax;(¢) = 77y, Therefore,
{74} € ThFam(ZX'T). Moreover, for all 3 € |Sign| and all ¢ € SEN(X),

(6, TR) e QA({TA}) iff ¢=T¢ (Lemma 1350)
iff (¢, T8) € AL

Thus, TA/QA({TA}) = TA/AA. Therefore, by relative point regularity, we
obtain QA({T4}) = AA. This yields A € AlgSys™(ZK.T).



Voutsadakis CHAPTER 18. SELECTED CLASSES 1155

Assume, conversely, that A € AlgSys*(Z% 7). Then, by definition, there
exists T € FiFam” (A), such that QA(T) = A4, Suppose that ¥ € |Sign’],
d U {¢} c SEN’(X), such that

(B T%, ¢~ TE) € GEqy(K)

and ax(P) ¢ {T“If}(z)}. Then, since T € FiFam®™  (A), as(®) © Tr(s)-

Hence, ® ¢ ag'(Tr(x)). Since T € ThFam®" (A), by Lemma 51, a~(T) €
ThFam(ZX%T), whence, by Lemma 1350, a~'(T") = 7"/Q(a~'(T)). Thus, we
get ® ¢ 173 /Qs(a”!(T)). Hence, ® ~ T4 € Qx(a'(T)). By Lemma 1351,
Q(aY(T)) € ConSys"(F), whence, since (® » Th, ¢ ~ T%) € GEqx(K),
¢ ~ Ty € Qu(a”!(T)). By Proposition 24, ¢ ~ T4 € ail(Qﬁ(E)(T)), ie.,
as(¢) ~ Tﬁ(z) € Q“Ifl(z)(T) = Aﬁ(z). Thus, ax(¢) = Tﬁ(z). We conclude
that (@ ~ T%,¢ ~ T%) € GEqy(A). Since A satisfies all guasiequations in
GEq(K) and K is, by hypothesis, a guasivariety, we get that A € K. There-
fore, AlgSys*(Z¥T) = K. [

Now we can formulate the main theorems of the section.

Theorem 1355 Let F = (Sign’,SEN’, N*) be an algebraic system and I =
(F,C) a m-institution based on F. T is protoalgebraic family reqular, with
natural theorems, if and only if it is the assertional w-institution of a relatively
point reqular quasivariety of F-algebraic systems.

More precisely, T is protoalgebraic family reqular, with natural theorems,
if and only if AlgSys™(Z) is a relatively point regular guasivariety and I =
TASYS" (DT where TY 4s any natural theorem.

Proof: Suppose Z is protoalgebraic family regular, with natural theorems.
Then, by Proposition 1346, AlgSys™(Z) is a relatively point regular class of
F-algebraic systems and, by protoalgebraicity, Proposition 68 and Theorem
77, it is a guasivariety. Moreover, by Theorem 1353, T = ZA18Sys" (D).,
Assume, conversely, that ZK'7 is the assertional w-institution of a relatively
point regular guasivariety K of F-algebraic systems. Then, by Proposition
1349, it is family regular, by Proposition 1352, it is protoalgebraic and, by
Proposition 1348, it has natural theorems. [ |

Theorem 1356 Let F = (Sign’,SEN’, N*) be an algebraic system, with
T : (SEN")* - SEN’ in N*. Then, there exists a one to one correspondence
between relatively point reqular guasivarieties, with point T°, and family reg-
ular protoalgebraic mw-institutions, with a natural theorem T°.

Every relatively point reqular guasivariety with point T® determines a
unique family regular protoalgebraic m-institution with natural theorems, its
assertional mT-institution.
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FEvery family reqular protoalgebraic m-institution with natural theorems is
the assertional w-institution of a unique relatively point reqular guasivariety,
the guasivariety AlgSys™(Z) of all its reduced F-algebraic systems.

For each family regular protoalgebraic mw-institution, with a natural theo-
rem T°, we have T = TM8YS" DT and, conversely, for every relatively point
reqular guasivariety K, with point T°, we have K = AlgSys™(ZK:T).

Proof: This is a recap of Theorems 1353 and 1354. ]



