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18.1 Protoalgebraic π-Institutions

18.1.1 The Correspondence Theorem

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

Recall that I is protoalgebraic if the Leibniz operator is monotone on
theory families, i.e., if, for all T,T ′ ∈ ThFam(I),

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).
Recall, also, that, by Theorem 175, every protoalgebraic π-institution is sta-
ble and that, moreover, by Theorem 179, I is protoalgebraic if and only if,
for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′).
The π-institution I has the compatibility property if, for every F-

algebraic system A = ⟨A, ⟨F,α⟩⟩, all T,T ′ ∈ FiFamI(A), with T ≤ T ′, and all
θ ∈ ConSys(A),

θ compatible with T implies θ compatible with T ′.

The π-institution I = ⟨F,C⟩ has the filter correspondence property
if, for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, and surjective
morphism ⟨H,γ⟩ ∶ A→ B, with H ∶ Sign → Sign′ an isomorphism,

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

and all T ∈ FiFamI(A) and T ′ ∈ FiFamI(B),
γ−1(γ̂(T ) ∨ T ′) = T ∨ γ−1(T ′),

where γ̂(T ) = CI,B(γ(T )) is the least I-filter family on B that includes γ(T ).
Our goal is to show that both the compatibility property and the filter

correspondence property characterize protoalgebraic π-institutions. We start
with a lemma to the effect that, for every I-filter family T of A, if the kernel
of ⟨H,γ⟩ happens to be compatible with T , then γ(T ) is already an I-filter
family of B and, therefore, γ̂(T ) = γ(T ).
Lemma 1333 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems, and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H ∶ Sign → Sign′ an
isomorphism. If T ∈ FiFamI(A), such that Ker(⟨H,γ⟩) is compatible with
T , then γ̂(T ) = γ(T ).
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Proof: By definition, γ(T ) ≤ γ̂(T ) always holds. To show the reverse in-
equality, it suffices to show that γ(T ), under the hypothesis of the com-
patibility of Ker(⟨H,γ⟩) with T , is an I-filter family of B. So assume
Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ), and let Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′), such that

βΣ′(SEN♭(f)(Φ)) ⊆ γF (Σ′)(TF (Σ′)).
This gives

γF (Σ′)(αΣ′(SEN♭(f)(Φ))) ⊆ γF (Σ′)(TF (Σ′)).
By the postulated compatibility of Ker(⟨H,γ⟩) with T , we obtain

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′).
Since φ ∈ CΣ(Φ) and T ∈ FiFamI(A), we get that

αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).
Thus, γF (Σ′)(αΣ′(SEN♭(f)(φ))) ∈ γF (Σ′)(TF (Σ′)), and, therefore,

βΣ′(SEN♭(f)(φ)) ∈ γF (Σ′)(TF (Σ′)).
This shows that γ(T ) ∈ FiFamI(B) and, hence, γ̂(T ) = γ(T ). ∎

Next, we give an equivalent formulation of the Filter Correspondence
Property.

Proposition 1334 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I has the filter correspondence property
iff

for all I-matrix families A = ⟨A′, T ′⟩, A′′ = ⟨A′′, T ′′⟩ and strict surjec-
tive matrix morphism ⟨H,γ⟩ ∶ A′ → A′′, with H ∶ Sign′ → Sign′′ an
isomorphism,

F

❂✚
✚
✚
✚
✚⟨F ′, α′⟩ ❩

❩
❩
❩
❩

⟨F ′′, α′′⟩
⑦

A′ ⟨H,γ⟩ ✲ A′′

T = γ−1(γ(T )), for all T ′ ≤ T ∈ FiFamI(A′).
Proof: Suppose, first, that I has the Filter Correspondence Property and
consider I-matrix families A = ⟨A′, T ′⟩, A′′ = ⟨A′′, T ′′⟩, a strict surjective
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matrix morphism ⟨H,γ⟩ ∶ A′ → A′′, with H ∶ Sign′ → Sign′′ an isomorphism,
and T ′ ≤ T ∈ FiFamI(A′). Then we have

γ−1(γ(T )) ≤ γ−1(γ̂(T ) ∨ T ′′) (γ(T ) ≤ γ̂(T ))
= T ∨ γ−1(T ′′) (Filter Correspondence)
= T ∨ T ′ (⟨H,γ⟩ strict)
= T. (T ′ ≤ T by hypothesis)

Thus, the displayed property holds. Assume, conversely, that the displayed
property holds. We must show that I has the Filter Correspondence Prop-
erty. So suppose that A = ⟨A′, ⟨F ′, α′⟩⟩, A′′ = ⟨A′′, ⟨F ′′, α′′⟩⟩ are F-algebraic
systems, ⟨H,γ⟩ ∶ A′ → A′′ a surjective morphism, with H ∶ Sign′ → Sign′′ an
isomorphism, and let T ′ ∈ FiFamI(A′) and T ′′ ∈ FiFamI(A′′). Our goal is to
show that

γ−1(γ̂(T ′) ∨ T ′′) = T ′ ∨ γ−1(T ′′).
Notice that ⟨H,γ⟩ ∶ ⟨A′, γ−1(T ′′)⟩→ ⟨A′′, T ′′⟩ is a strict surjective morphism,
with H an isomorphism, and γ−1(T ′′) ≤ T ′ ∨ γ−1(T ′′). Thus, we fit the setup
of the hypothesis, which allows us to conclude that

γ−1(γ(T ′ ∨ γ−1(T ′′))) = T ′ ∨ γ−1(T ′′).
So, it suffices, in turn, to show that γ̂(T ′)∨T ′′ = γ(T ′ ∨ γ−1(T ′′)) and, since,
Ker(⟨H,γ⟩) is compatible with T ′ (having γ−1(γ(T ′)) = T ′, by hypothesis),
it suffices, by Lemma 1333, to show that

γ(T ′) ∨ T ′′ = γ(T ′ ∨ γ−1(T ′′)).
The left to right inclusion is obvious, since γ(T ′), T ′′ ≤ γ(T ′ ∨ γ−1(T ′′)).
Conversely, note that, taking into account the hypothesis, T ′, γ−1(T ′′) ≤
γ−1(γ(T ′) ∨ T ′′). Therefore, T ′ ∨ γ−1(T ′′) ≤ γ−1(γ(T ′) ∨ T ′′) and, therefore,
γ(T ′∨γ−1(T ′′)) ≤ γ(T ′)∨T ′′ and, hence, the right to left inclusion also holds.
Thus, the Filter Correspondence Property holds. ∎

Now we proceed with the formulation and proof of the main theorem.

Theorem 1335 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is protoalgebraic;

(ii) I has the compatibility property;

(iii) I has the filter correspondence property.

Proof:
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(i)⇒(ii) Suppose I is protoalgebraic and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic
system, T,T ′ ∈ FiFamI(A), with T ≤ T ′, and θ ∈ ConSys(A), such that
θ is compatible with T . Then we have

θ ≤ Ω(T ) (by the compatibility of θ with T )
≤ Ω(T ′). (by protoalgebraicity)

We conclude that θ is also compatible with T ′ and, hence, I has the
compatibility property.

(ii)⇒(i) Suppose that I has the compatibility property and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system and T,T ′ ∈ ThFamI(A), such that T ≤ T ′.
Then Ω(T ) ∈ ConSys(A) and, by the definition of a Leibniz congruence
system, it is compatible with T . Now it follows by the compatibility
property, that Ω(T ) is also compatible with T ′. Hence Ω(T ) ≤ Ω(T ′).
We conclude that I is protoalgebraic.

(ii)⇒(iii) Suppose that I has the compatibility property and consider F-algebraic
systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, a commutative triangle

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

with H ∶ Sign → Sign′ an isomorphism, and T ∈ FiFamI(A), T ′ ∈
FiFamI(B). Note that it is always the case that

T ∨ γ−1(T ′) ≤ γ−1(γ̂(T ) ∨ T ′).
Thus, it suffices to show that, under the hypothesis of compatibility,
the reverse inclusion also holds.

Consider, temporarily, X ∈ FiFamI(A), such that γ−1(T ′) ≤ X . Since
Ker(⟨H,γ⟩) is compatible with γ−1(T ′), by the postulated compati-
bility property, it is also compatible with X . Thus, by Lemma 1333,
γ̂(X) = γ(X). Moreover, we have T ′ ≤ γ(X) = γ̂(X).
Now set X = T ∨ γ−1(T ′) and reason as follows:

γ−1(γ̂(T ) ∨ T ′) ≤ γ−1(γ̂(X) ∨ T ′) (T ≤ X)
= γ−1(γ̂(X)) (T ′ ≤ γ̂(X))
= γ−1(γ(X)) (γ̂(X) = γ(X))
= X. (Ker(⟨H,γ⟩) compatible with X)

So we get γ−1(γ̂(T ) ∨ T ′) = T ∨ γ−1(T ′) and I has the correspondence
property.
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(iii)⇒(ii) Suppose that I has the correspondence property and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system, T,T ′ ∈ FiFamI(A), with T ≤ T ′, and θ ∈
ConSys(A), such that θ is compatible with T . We look at the commu-
tative diagram

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F,πθα⟩
⑦

A ⟨I, πθ⟩ ✲ Aθ

and calculate

(πθ)−1(π̂θ(T ′)) = (πθ)−1(π̂θ(T ′) ∨ π̂θ(T )) (T ≤ T ′)
= T ′ ∨ (πθ)−1(π̂θ(T )) (correspondence property)
≤ T ′ ∨ T (θ compatible with T )
= T ′. (T ≤ T ′)

Thus, θ is also compatible with T ′ and I has the compatibility property.
∎

As a consequence we obtain the Correspondence Theorem, which asserts
that, under the same hypothesis, ⟨H,γ⟩ induces an order isomorphism be-
tween the principal filter of the lattice FiFamI(A) generated by γ−1(T ′) and
the principal filter of the lattice FiFamI(B) generated by T ′.

Theorem 1336 (Correspondence Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a protoalgebraic π-institution based
on F. Let, also, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic systems and⟨H,γ⟩ ∶ A → B a surjective morphism, with H ∶ Sign → Sign′ an isomor-
phism, and T ′ ∈ FiFamI(B). Then, Y ↦ γ−1(Y ), T ′ ≤ Y ∈ FiFamI(B),
defines an order isomorphism FiFamI(B)T ′ ≅ FiFamI(A)γ−1(T ′).
Proof: γ−1 ∶ FiFamI(B)T ′ → FiFamI(A)γ−1(T ′) is well defined by Corol-
lary 55 and it is clearly monotone. Furthermore, γ̂ ∶ FiFamI(A)γ−1(T ′) →
FiFamI(B)T ′ is also well-defined and monotone. So it suffices to show that,
for all T ′ ≤ Y ∈ FiFamI(B), γ̂(γ−1(Y )) = Y and that, for all γ−1(T ′) ≤ X ∈
FiFamI(A), γ−1(γ̂(X)) =X .

First, for T ′ ≤ Y ∈ FiFamI(B), since ⟨H,γ⟩ is surjective, γ(γ−1(Y )) = Y
and, therefore, γ̂(γ−1(Y )) = Y , since Y ∈ FiFamI(B). For the other equation,
if γ−1(T ′) ≤X ∈ FiFamI(A), we have,

γ−1(γ̂(X)) = γ−1(γ̂(X) ∨ T ′) (γ−1(T ′) ≤X ⇒ T ′ ≤ γ̂(X))
= X ∨ γ−1(T ′) (correspondence property)
= X. (γ−1(T ′) ≤ X)

So γ−1 ∶ FiFamI(B)T ′ ≅ FiFamI(A)γ−1(T ′). ∎
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18.1.2 The Homomorphism Theorem

We show that, in the case of protoalgebraic π-institutions I , every surjective
morphism of I-matrix families gives rise to a corresponding surjective mor-
phism between their reductions. This establishes a “reduction” functor and,
moreover, gives rise to a version of the Homomorphism Theorem of Universal
Algebra.

Recall that, given a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and an
F-matrix family A = ⟨A, T ⟩, we denote by A∗ the reduction of A, i.e.,

A∗ = ⟨A/ΩA(T ), T /ΩA(T )⟩.
Moreover, extending this notation, given Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), we set

φ∗ = φ/ΩAΣ(T ) ∈ SEN∗(Σ).
Theorem 1337 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Further, let A = ⟨A, ⟨F,α⟩⟩,
A′ = ⟨A′, ⟨F ′, α′⟩⟩, with A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩, be F-al-
gebraic systems, A = ⟨A, T ⟩ and A′ = ⟨A′, T ′⟩ be I-matrix families and ⟨H,γ⟩ ∶
A → A′ a surjective morphism. Then, there exists a surjective morphism⟨H,γ∗⟩ ∶ A∗ → A′∗, given, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

γ∗Σ(φ∗) = γΣ(φ)∗.
Proof: First, we show that, for all Σ ∈ ∣Sign∣, γ∗Σ ∶ SEN∗(Σ) → SEN′∗(H(Σ))
is well-defined. Indeed, suppose Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that
φ∗ = ψ∗, i.e., ⟨φ,ψ⟩ ∈ ΩAΣ(T ). Then, since T ≤ γ−1(T ′), we get, by pro-
toalgebraicity, ⟨φ,ψ⟩ ∈ ΩAΣ(γ−1(T ′)), whence, by Proposition 24, ⟨φ,ψ⟩ ∈
γ−1Σ (ΩA′H(Σ)(T ′)), and, hence, ⟨γΣ(φ), γΣ(ψ)⟩ ∈ ΩA

′

H(Σ)
(T ′), or, equivalently,

γΣ(φ)∗ = γΣ(ψ)∗.
Next we see that γ∗ ∶ SEN∗ → SEN′∗ ○H is a natural transformation. To

this end, let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ ∈ SEN(Σ). Then we have

SEN∗(Σ) γ∗Σ ✲ SEN′∗(H(Σ))

SEN∗(Σ′)
SEN∗(f)

❄

γ∗Σ′
✲ SEN′∗(H(Σ′))

SEN′∗(H(f))
❄

SEN′∗(H(f))(γ∗Σ(φ∗)) = SEN′∗(H(f))(γΣ(φ)∗)
= SEN′(H(f))(γΣ(φ))∗
= γΣ′(SEN(f)(φ))∗
= γ∗Σ′(SEN(f)(φ)∗)
= γ∗Σ′(SEN∗(f)(φ∗)).
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Surjectivity of ⟨H,γ∗⟩ ∶ A∗ → A′∗ follows from the fact that ⟨H,γ⟩ ∶ A→ A′ is
surjective. So it suffices to show that ⟨F ′, πα′⟩ = ⟨H,γ∗⟩ ○ ⟨F,π,α⟩ and that⟨H,γ∗⟩ ∶ A∗ → A′∗ is a matrix family morphism. The first equation follows
from the fact that the upper triangle of the diagram commutes by hypothesis
and the rectangle commutes by the definition of ⟨H,γ∗⟩.

F

❂✚
✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨H,γ⟩ ✲ A′

A∗

⟨I, π⟩
❄

⟨H,γ∗⟩ ✲ A′∗

⟨I, π⟩
❄

To finish the proof, we calculate, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
φ∗ ∈ TΣ/ΩAΣ(T ) if and only if, by compatibility, φ ∈ TΣ implies, by hypothesis,
φ ∈ γ−1Σ (T ′H(Σ)) if and only if γΣ(φ) ∈ T ′H(Σ) if and only if, by compatibility,

γΣ(φ)∗ ∈ T ′H(Σ)/ΩA′H(Σ)(T ′) if and only if, by the definition of γ∗, γ∗Σ(φ∗) ∈
T ′
H(Σ)
/ΩA′

H(Σ)
(T ′) if and only if φ∗ ∈ (γ∗Σ)−1(T ′H(Σ)/ΩA′H(Σ)(T ′)). ∎

We also have the following construction.

Corollary 1338 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Let, also A = ⟨A, ⟨F,α⟩⟩,
A′ = ⟨A′, ⟨F ′, α′⟩⟩, with A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩, be F-
algebraic systems, A = ⟨A, T ⟩ an I-matrix family and A′ = ⟨A′, T ′⟩ a reduced
I-matrix family and ⟨H,γ⟩ ∶ A→ A′ a surjective morphism.

A
⟨I, π⟩ ✲ A∗

❩
❩
❩
❩
❩
❩
❩

⟨H,γ⟩
⑦

A′

⟨H,γ∗⟩
❄

There exists a unique surjective morphism ⟨H,γ∗⟩ ∶ A∗ → A′ that makes the
triangle commute.

Proof: By Theorem 1337, there exists a surjective matrix morphism ⟨H,γ∗⟩ ∶
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A∗ → A′∗, such that the following rectangle commutes:

A
⟨I, π⟩ ✲ A∗

A′

⟨H,γ⟩
❄

⟨I, π⟩ ✲ A′∗

⟨H,γ∗⟩
❄

But, by hypothesis, A′ is reduced, whence A′∗ = A′ and ⟨I, π⟩ = ⟨I, ι⟩ ∶ A′ →
A′∗ is the identity morphism. We now obtain the triangle depicted in the
diagram of the statement. ∎

Let us denote by MatFam(I) the category of I-matrix families with
surjective matrix morphisms between them and, similarly, MatFam∗(I) the
category of reduced I-matrix families with surjective matrix morphisms be-
tween them. Then, based on Theorem 1337, we obtain the following functor.

Theorem 1339 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

∗ ∶ MatFam(I)→MatFam∗(I)
is a functor. The subcategory MatFam∗(I) is a reflective subcategory of
MatFam(I) with ∗ a reflector from MatFam(I) to MatFam∗(I).
Proof: Given A ∈ MatFam(I), it is easy to see that ⟨I, ι∗⟩ ∶ A∗ → A∗ is
the identity matrix morphism. For the composition property, assume A,
A′, A′′ ∈ MathFam(I), and ⟨G,β⟩ ∶ A → A′, ⟨H,γ⟩ ∶ A′ → A′′ be matrix
morphisms. Then, we have, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

(γG(Σ) ○ βΣ)∗(φ∗) = γG(Σ)(βΣ(φ))∗
= γ∗

G(Σ)
(βΣ(φ)∗)

= γ∗
G(Σ)
(β∗Σ(φ∗)).

Thus, (⟨H,γ⟩ ○ ⟨G,β⟩)∗ = ⟨H,γ⟩∗ ○ ⟨G,β⟩∗. Therefore, ∗ ∶ MatFam(I) →
MatFam∗(I) is a functor.

As far a s reflectivity is concerned, for every A ∈ MatFam∗(I), we con-
sider the natural quotient morphism ⟨I, π⟩ ∶ A → A∗. Given reduced B ∈
MatFam∗(I) and a surjective morphism ⟨H,γ⟩ ∶ A →B, the surjective mor-
phism ⟨H,γ∗⟩ ∶ A∗ →B of Corollary 1338 is the unique surjective morphism
such that the following diagram commutes.

A
⟨I, π⟩ ✲ A∗

❩
❩
❩
❩
❩
❩
❩

⟨H,γ⟩
⑦

B

⟨H,γ∗⟩
❄
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Thus, MatFam∗(I) is a reflective subcategory of MatFam(I) with ∗ a
reflector from MatFam(I) to MatFam∗(I). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. Given an I-matrix family A = ⟨A, T ⟩, we denote by
FiFamI(A) the principal filter of the complete lattice FiFamI(A) generated
by the I-filter family T :

FiFamI(A) = {T ′ ∈ FiFamI(A) ∶ T ≤ T ′}.
Recall that this set is also denoted by FiFamI(A)T , without explicit reference
to the matrix family A = ⟨A, T ⟩.

The Correspondence Theorem allows us to prove the following.

Theorem 1340 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a protoalgebraic π-institution based on F. For every I-matrix family
A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩,

FiFamI(A) ≅ FiFamI(A∗).
Proof: By The Correspondence Theorem 1336, with B = A/ΩA(T ), ⟨H,γ⟩ =⟨I, π⟩ ∶ A→ A/ΩA(T ) and T ′ = T /ΩA(T ), we get

FiFamI(A/ΩA(T ))T /ΩA(T ) ≅ FiFamI(A)π−1(T /ΩA(T )).
But this amounts to FiFamI(A∗) ≅ FiFam(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Consider F-matrix families A = ⟨A, T ⟩ and B =⟨B, T ′⟩ and a surjective matrix morphism ⟨H,γ⟩ ∶ A → B. By definition,
we have T ≤ γ−1(T ′). We call γ−1(T ′) the filter kernel of ⟨H,γ⟩. By the
inclusion relation above, we can see that, if B ∈MatFam(I), then γ−1(T ′) ∈
FiFamI(A).

Given A = ⟨A, T ⟩ and X ∈ SenFam(A), such that T ≤X , we define

A/X ∶= ⟨A,X⟩∗ = ⟨A/ΩA(X),X/ΩA(X)⟩.
We call A/X the quotient of A by X . We note that, if A ∈ MatFam(I),
then

X ∈ FiFamI(A) iff A/X ∈MatFam∗(I).
The following is an analog in the context of I-matrix families of the

Homomorphism Theorem of Universal Algebra.

Theorem 1341 (Homomorphism Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ be a protoalgebraic π-institution based
on F. Let also A = ⟨A, T ⟩, A′ = ⟨A′, T ′⟩ ∈MatFam(I) and ⟨H,γ⟩ ∶ A → A′ a
surjective morphism.



Voutsadakis CHAPTER 18. SELECTED CLASSES 1145

(i) There exists a strict surjective morphism ⟨H,γ′⟩ ∶ A/γ−1(T ′)→ A′∗ with
isomorphic components;

(ii) If X ∈ FiFamI(A) and X ≤ γ−1(T ′), then, there exists a surjective
morphism ⟨H,γX⟩ ∶ A/X → A′∗, such that

A
⟨H,γ⟩ ✲ A′

A/X
⟨I, πX⟩

❄

⟨H,γX⟩ ✲ A′∗

⟨I, π⟩
❄

⟨H,γX⟩ ○ ⟨I, πX⟩ = ⟨I, π⟩ ○ ⟨H,γ⟩.
Proof:

(i) First, note that γ−1(T ′) ≤ γ−1(T ′), whence, ⟨H,γ⟩ ∶ ⟨A, γ−1(T ′)⟩ → A′

is also a surjective matrix morphism. Thus, taking into account that
T ≤ γ−1(T ′), we get, by Theorem 1337, a surjective matrix morphism⟨H,γ∗⟩ ∶ A/γ−1(T ′)→ A′∗, such that the following diagram commutes.

⟨A, γ−1(T ′)⟩ ⟨H,γ⟩ ✲ A′

A/γ−1(T ′)
⟨I, π⟩

❄

⟨H,γ∗⟩ ✲ A′∗

⟨I, π⟩
❄

It remains to show that, for every Σ ∈ ∣Sign∣,
γ∗Σ ∶ SENγ−1(T ′)(Σ)→ SEN′∗(H(Σ))

is a bijection and that ⟨H,γ∗⟩ is strict. To see that γ∗Σ is a bijection,
let φ,ψ ∈ SEN(Σ), such that

γ∗Σ(φ/ΩAΣ(γ−1(T ′))) = γ∗Σ(ψ/ΩAΣ(γ−1(T ′))).
Then, by the commutativity of the rectangle,

γΣ(φ)/ΩA′H(Σ)(T ′) = γΣ(ψ)/ΩA′H(Σ)(T ′).
This gives that ⟨φ,ψ⟩ ∈ γ−1Σ (ΩA′H(Σ)(T ′)). Thus, ⟨φ,ψ⟩ ∈ ΩAΣ(γ−1(T ′))
and, hence,

φ/ΩAΣ(γ−1(T ′)) = φ/ΩAΣ(γ−1(T ′)).
Therefore, γ∗Σ ∶ SENγ−1(T ′)(Σ) → SEN′∗(H(Σ)) is a bijection, for all
Σ ∈ ∣Sign∣.
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To prove strictness, assume Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that
φ/ΩAΣ(γ−1(T ′)) ∈ γ∗−1Σ (T ′H(Σ)/ΩA′H(Σ)(T ′)). Then γ∗Σ(φ/ΩAΣ(γ−1(T ′))) ∈
T ′
H(Σ)
/ΩA′

H(Σ)
(T ′). Hence, by the definition of γ∗, we get γΣ(φ)∗ ∈

T ′
H(Σ)
/ΩA′

H(Σ)
(T ′). By compatibility, we obtain γΣ(φ) ∈ T ′H(Σ), whence

φ ∈ γ−1Σ (T ′H(Σ)). This, finally, yields

φ/ΩAΣ(γ−1(T ′)) ∈ γ−1Σ (T ′H(Σ))/ΩAΣ(γ−1(T ′)),
proving strictness.

(ii) This part is proven by the following diagram chase:

A
⟨H,γ⟩ ✲ A′

A/X
⟨I, πX⟩

❄

⟨I, π⟩✲ A/γ−1(T ′) ⟨H,γ′⟩✲ A′∗

⟨I, π⟩
❄

where ⟨I, π⟩ ∶ A/X → A/γ−1(T ′) is the canonical projection morphism,
defined because of the hypothesis X ≤ γ−1(T ′) and protoalgebraicity,
and ⟨H,γ′⟩ ∶ A/γ−1(T ′)→ A′∗

is the morphism obtained in Part (i).
∎

18.2 Pointed Classes of Algebraic Systems

Proposition 1342 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic π-institution based on F, having theorems. Then
the following conditions are equivalent:

(i) I is family regular;

(ii) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ TΣ, TΣ = φ/ΩΣ(T );
(iii) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all t ∈ ThmΣ(I), TΣ =

t/ΩΣ(T );
(iv) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and some φ ∈ TΣ, TΣ = φ/ΩΣ(T );
(v) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and some t ∈ ThmΣ(I), TΣ =

t/ΩΣ(T ).
Proof:
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(i)⇒(ii) Suppose I is family regular and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ TΣ. Then, we have, for all ψ ∈ SEN♭(Σ),
ψ ∈ TΣ iff φ,ψ ∈ TΣ (φ ∈ TΣ)

iff C(φ,ψ) ≤ T (definition of C(φ,ψ))
implies ΩΣ(C(φ,ψ)) ≤ ΩΣ(T ) (I protoalgebraic)
implies ⟨φ,ψ⟩ ∈ ΩΣ(T ) (I family regular)

iff ψ ∈ φ/ΩΣ(T ). (definition of φ/ΩΣ(T ))
On the other hand, if ψ ∈ φ/ΩΣ(T ), then, since φ ∈ TΣ, by the compat-
ibility of Ω(T ) with T , ψ ∈ TΣ. Thus, we conclude that TΣ = φ/ΩΣ(T ).

(ii)⇒(iii) Suppose (ii) holds and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and t ∈ ThmΣ(I).
Then, since Thm(I) ≤ T , we get that t ∈ TΣ and, hence, by hypothesis,
TΣ = t/ΩΣ(T ).

(iii)⇒(iv) Assume (iii) holds and let T ∈ ThFam(I) and Σ ∈ ∣Sign♭∣. Since I has
theorems, there exists t ∈ ThmΣ(I). Then, t ∈ TΣ and, by hypothesis,
TΣ = t/ΩΣ(T ).

(iv)⇒(v) Assume (iv) holds and let T ∈ ThFam(I) and Σ ∈ ∣Sign♭∣. Then, by
hypothesis, there exists φ ∈ TΣ, such that TΣ = φ/ΩΣ(T ). Moreover,
I has theorems, whence, there exists t ∈ ThmΣ(I). Then, we have t ∈
TΣ = φ/ΩΣ(T ), whence ⟨φ, t⟩ ∈ ΩΣ(T ) and, therefore, TΣ = φ/ΩΣ(T ) =
t/ΩΣ(T ).

(v)⇒(i) Assume that (v) holds and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈
TΣ. By hypothesis, for some t ∈ ThmΣ(I), TΣ = t/ΩΣ(T ). Hence,
φ,ψ ∈ t/ΩΣ(T ), i.e., ⟨φ, t⟩ ∈ ΩΣ(T ) and ⟨t,ψ⟩ ∈ ΩΣ(T ). By transitivity,⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, I is family regular.

∎

We show now that a protoalgebraic family assertional π-institution I is
weakly family algebraizable.

Theorem 1343 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. If I is family assertional,
then it is weakly family algebraizable.

Proof: By Definition 613, protoalgebraicity and family assertionality are
equivalent to regular weak family algebraizability. By Proposition 620, this
entails weak family algebraizability.

More directly, assume I is family assertional. Since it is protoalgebraic,
by hypothesis, it suffices to show that I is family injective. To this end, let
T,T ′ ∈ ThFam(I), such that Ω(T ) = Ω(T ′). Then, we have, for all Σ ∈ ∣Sign♭∣
and all t ∈ ThmΣ(I),

TΣ = t/ΩΣ(T ) = t/ΩΣ(T ′) = T ′Σ.
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Therefore T = T ′. Hence I is family injective and, therefore, it is weakly
family algebraizable. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭, and K a class of F-algebraic systems. We say that K is ⊺♭-
pointed if, for allA = ⟨A, ⟨F,α⟩⟩ ∈ K, with A = ⟨Sign,SEN,N⟩, all Σ ∈ ∣Sign∣
and all φ⃗, ψ⃗ ∈ SEN(Σ),

⊺AΣ(φ⃗) = ⊺AΣ(ψ⃗).
K is called pointed if it is ⊺♭-pointed with respect to some ⊺♭ in N ♭.

If a class K is pointed, then, for every A ∈ K, we write ⊺A = {⊺AΣ}Σ∈∣Sign∣,
where ⊺AΣ ∶= ⊺AΣ(φ⃗), for some φ⃗ ∈ SEN(Σ), this value being independent of

the choice of φ⃗ ∈ SEN(Σ).
We focus now on protoalgebraic, family regular π-institutions that have

natural theorems. Recall that this means that there exists a natural trans-
formation ⊺♭ in N ♭, such that ⊺♭ is evaluated to a theorem in every signature
and at all tuples of sentences. Of course, by definition, all π-institutions
that fit this description are regularly weakly family algebraizable. We show
that for such π-institutions, the class AlgSys∗(I) of their reduced algebraic
systems is a pointed class of F-algebraic systems, where any natural theorem
may serve as the “point”.

Proposition 1344 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic family regular π-institution based on F, having
natural theorems. Then, the class AlgSys∗(I) is a pointed class of F-algebraic
systems.

Proof: Suppose I is protoalgebraic and family regular, with a natural
theorem ⊺♭ ∶ (SEN♭)k → SEN♭, i.e., such that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ), ⊺♭Σ(φ⃗) ∈ ThmΣ(I). By family regularity, we have, for all

Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ), ⟨⊺♭Σ(φ⃗),⊺♭Σ(ψ⃗)⟩ ∈ ΩΣ(Thm(I)). Now, let
A ∈ AlgSys∗(I). Thus, there exists T ∈ FiFamI(A), such that ΩA(T ) = ∆A.
Therefore, for all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ), we get, by what
was shown above and protoalgebraicity, and taking into account Lemma 51,⟨⊺♭Σ(φ⃗),⊺♭Σ(ψ⃗)⟩ ∈ ΩΣ(α−1(T )), whence, by Proposition 24, ⟨⊺♭Σ(φ⃗),⊺♭Σ(ψ⃗)⟩ ∈
α−1Σ (ΩAF (Σ)(T )). Thus,

⟨αΣ(⊺♭Σ(φ⃗)), αΣ(⊺♭Σ(ψ⃗))⟩ ∈ ΩAF (Σ)(T ) =∆AF (Σ),

i.e., since ⊺♭ is a natural transformation, ⊺A
F (Σ)
(αΣ(φ⃗)) = ⊺AF (Σ)(αΣ(ψ⃗)). Tak-

ing into account the surjectivity of ⟨F,α⟩, we conclude that AlgSys∗(I) is
a pointed class of F-algebraic systems, with any natural theorem serving as
the “point” natural transformation. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭ and K a ⊺♭-pointed class of F-algebraic systems. We say that K
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is relatively point regular if, for every θ, θ′ ∈ ConSysK(F),
⊺♭/θ = ⊺♭/θ′ implies θ = θ′.

It is not difficult to show that the defining property transfers from K-
congruence systems on F to K-congruence systems on every F-algebraic sys-
tem, under the proviso that K be an abstract class.

Lemma 1345 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶(SEN♭)k → SEN♭ a natural transformation in N ♭, and K a ⊺♭-pointed abstract
class of F-algebraic systems. If K is relatively point regular, then, for every
F-algebraic system A and all θ, θ′ ∈ ConSysK(A),

⊺A/θ = ⊺A/θ′ implies θ = θ′.

Proof: Suppose A is an F-algebraic system, θ, θ′ ∈ ConSysK(A), such that
⊺A/θ = ⊺A/θ′. Then, for all Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),

⟨φ,⊺♭Σ⟩ ∈ α−1Σ (θF (Σ)) iff ⟨αΣ(φ), αΣ(⊺♭Σ)⟩ ∈ θF (Σ)
iff ⟨αΣ(φ),⊺AF (Σ)⟩ ∈ θF (Σ)
iff ⟨αΣ(φ),⊺AF (Σ)⟩ ∈ θ′F (Σ)
iff ⟨αΣ(φ), αΣ(⊺♭Σ)⟩ ∈ θ′F (Σ)
iff ⟨φ,⊺♭Σ⟩ ∈ α−1Σ (θ′F (Σ)).

Thus, ⊺♭/α−1(θ) = ⊺♭/α−1(θ′). Since K is abstract and A/θ,A/θ′ ∈ K, we get
that F/α−1(θ),F/α−1(θ′) ∈ K. It follows that α−1(θ), α−1(θ′) ∈ ConSysK(F).
Since K is relatively point regular, by definition, α−1(θ) = α−1(θ′). Therefore,
by surjectivity of ⟨F,α⟩, θ = θ′. ∎

Moreover, we can show that, for a protoalgebraic family regular π-insti-
tution I , having natural theorems, the associated class AlgSys∗(I) of its
reduced algebraic systems is a relatively point regular class.

Proposition 1346 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic family regular π-institution based on F, having
natural theorems. Then, the class AlgSys∗(I) is a relatively point regular
class of F-algebraic systems.

Proof: We know, by Proposition 1344, that AlgSys∗(I) is pointed, with any
natural theorem ⊺♭ serving as a “point”. Consider θ, θ′ ∈ ConSys∗(I), such
that ⊺♭/θ = ⊺♭/θ′. Since θ, θ′ ∈ ConSys∗(I), there exist T,T ′ ∈ ThFam(I),
such that θ = Ω(T ) and θ′ = Ω(T ′). But then, since I is protoalgebraic and
family regular, with theorems, we get, by Proposition 1342,

θ = Ω(T )
= Ω(⊺♭/Ω(T )) (Proposition 1342)
= Ω(⊺♭/θ)
= Ω(⊺♭/θ′) (hypothesis)
= Ω(⊺♭/Ω(T ′))
= Ω(T ′) (Proposition 1342)
= θ′.
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Hence AlgSys∗(I) is indeed relatively point regular. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭, and K a ⊺♭-pointed class of F-algebraic systems. Define on F
the family CK,⊺ = {CK,⊺

Σ }Σ∈∣Sign♭∣, by letting, for all Σ ∈ ∣Sign♭∣,
C

K,⊺
Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)),

be given, for all Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ CK,⊺
Σ (Φ) iff φ ≈ ⊺♭Σ ∈ C

K
Σ(Φ ≈ ⊺♭Σ),

i.e., φ ∈ CK,⊺
Σ (Φ) if and only if, for all A = ⟨A, ⟨F,α⟩⟩ ∈ K, all Σ′ ∈ ∣Sign♭∣ and

all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(φ)) = ⊺AF (Σ′).

In the next proposition, it is shown that CK,⊺ is a closure system on F.
In this way the pointed class K of F-algebraic systems defines a bona fide
π-institution based on F.

Proposition 1347 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed class of F-algebraic systems.
CK,⊺ is a closure system on F.

Proof: Let Σ ∈ ∣Sign♭∣. It is obvious from the definition that

C
K,⊺
Σ ∶ P(SEN♭(Σ))→ P(SEN♭(Σ))

is inflationary and monotone. To show that it is also idempotent, let Φ∪{φ} ⊆
SEN♭(Σ), such that φ ∈ CK,⊺

Σ (CK,⊺
Σ (Φ)). Thus, we have, by definition, for all

A ∈ K, all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(CK,⊺

Σ (Φ))) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(φ)) = ⊺AF (Σ′).
But, also by definition, we have, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(CK,⊺

Σ (Φ))) ⊆ {⊺AF (Σ′)}.
Therefore, we get that, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(φ)) = ⊺AF (Σ′),
showing that φ ∈ CK,⊺

Σ (Φ).
It remains, finally, to show that CK,⊺ is structural. Let Σ,Σ′ ∈ ∣Sign♭∣,

f ∈ Sign♭(Σ,Σ′) and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CK,⊺
Σ (Φ). Consider

A ∈ K, such that, for all Σ′′ ∈ ∣Sign♭∣ and all g ∈ Sign♭(Σ′,Σ′′),
Σ

f ✲ Σ′
g ✲ Σ′′
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αΣ′′(SEN♭(g)(SEN♭(f)(Φ))) ⊆ {⊺A
F (Σ′′)

}. This gives αΣ′′(SEN♭(gf)(Φ)) ⊆
{⊺A

F (Σ′′)
}, whence, by hypothesis, αΣ′′(SEN♭(gf)(φ)) = ⊺A

F (Σ′′)
. Thus, for all

Σ′′ ∈ ∣Sign♭∣ and all g ∈ Sign♭(Σ′,Σ′′), αΣ′′(SEN♭(g)(SEN♭(f)(φ))) = ⊺A
F (Σ′′)

.

We conclude that SEN♭(f)(φ) ∈ CK,⊺
Σ′ (SEN♭(f)(Φ)) and, therefore, CK,⊺ is

also structural. ∎

Based on Proposition 1347, it makes sense, given an algebraic system
F = ⟨Sign♭,SEN♭,N ♭⟩, with ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed
class of F-algebraic systems, to define the assertional π-institution of K
as the pair

IK,⊺ = ⟨F,CK,⊺⟩.
We have seen in Proposition 1346 that, if I = ⟨F,C⟩ is a protoalge-

braic and family regular π-institution, having natural theorems, then its class
AlgSys∗(I) of reduced F-algebraic systems is a relatively point regular class.
We show next, in a form of converse, that if K is a relatively point regular
guasivariety of F-algebraic systems, then the assertional π-institution IK,⊺,
associated with K, is a protoalgebraic family regular π-institution that has
natural theorems.

First, we establish possession of natural theorems, under the assumption
that K is pointed.

Proposition 1348 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a pointed class of F-algebraic systems.
Then IK,⊺ has natural theorems.

Proof: Let K be a pointed class of F-algebraic systems. Since K is pointed,
there exists ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ), all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

⊺AF (Σ′)(αΣ′(SEN♭(f)(φ⃗))) = ⊺AF (Σ′).
This implies that αΣ′(⊺♭Σ′(SEN♭(f)(φ⃗))) = ⊺A

F (Σ′)
and, hence, we obtain

αΣ′(SEN♭(f)(⊺♭Σ(φ⃗))) = ⊺AF (Σ′). Thus, by definition, ⊺♭Σ(φ⃗) ∈ CK,⊺
Σ (∅) and,

therefore, ⊺♭ is a natural theorem. ∎

Next, we turn to proving family regularity, again under the assumption
of pointedness.

Proposition 1349 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a pointed class of F-algebraic systems.
Then IK,⊺ is a family regular π-institution.

Proof: Let K be a pointed class of F-algebraic systems. We know, by
Proposition 1348, that IK,⊺ has a natural theorem ⊺♭, where ⊺♭ is a point
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in K. We show that IK,⊺ is family regular. To this end, let Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ). Then, for all Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′), we have

SEN♭(f)(φ) ≈ ⊺♭Σ′ ,SEN♭(f)(ψ) ≈ ⊺♭Σ′ ∈ CK
Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ).

This implies that, for all σ♭ in N ♭ and all χ⃗ ∈ SEN♭(Σ′),
σ♭Σ′(SEN♭(f)(φ), χ⃗) ≈ σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ CK

Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ).
Now we get

σ♭Σ′(SEN♭(f)(φ), χ⃗) ≈ ⊺♭Σ′ ∈ CK
Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ)

iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ≈ ⊺♭Σ′ ∈ CK
Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ).

Hence, by definition,

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ CK,⊺
Σ′ (φ,ψ)

iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ CK,⊺
Σ′ (φ,ψ).

Therefore, by Theorem 19, ⟨φ,ψ⟩ ∈ ΩΣ(C(φ,ψ)). ∎

Before establishing protoalgebraicity, we need a couple of lemmas. We
show, first, that, if K is a pointed class, then all theory families of IK,⊺ are
fully determined by the corresponding Leibniz class of the point.

Lemma 1350 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a nat-
ural transformation ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a pointed class of
F-algebraic systems. Then, for all T ∈ ThFam(IK,⊺),

T = ⊺♭/Ω(T ).
Proof: Let K be a pointed class of F-algebraic systems, T ∈ ThFam(IK,⊺),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).

• Suppose φ ∈ ⊺♭Σ/ΩΣ(T ). This means that ⟨φ,⊺♭Σ⟩ ∈ ΩΣ(T ). But, by def-
inition, ⊺♭Σ ∈ ThmΣ(IK,⊺) ⊆ TΣ, whence, by the compatibility property
of Ω(T ) with T , we get that φ ∈ TΣ.

• Suppose φ ∈ TΣ. Then φ ≈ ⊺♭Σ ∈ C
K
Σ(T ≈ ⊺♭). This implies that, for all

σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), and all χ⃗ ∈ SEN♭(Σ′),
σ♭Σ′(SEN♭(f)(φ), χ⃗) ≈ ⊺♭Σ′ ∈ CK

Σ′(T ≈ ⊺♭)
iff σ♭Σ′(SEN♭(f)(⊺♭Σ), χ⃗) ≈ ⊺♭Σ′ ∈ CK

Σ′(T ≈ ⊺♭).
This is, by definition, equivalent to the statement that, for all σ♭ in N ♭,
all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), and all χ⃗ ∈ SEN♭(Σ′),
σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ CK,⊺

Σ′ (T ) iff σ♭Σ′(SEN♭(f)(⊺♭Σ), χ⃗) ∈ CK,⊺
Σ′ (T ).

We conclude that ⟨φ,⊺♭Σ⟩ ∈ ΩΣ(T ), i.e., that φ ∈ ⊺♭Σ/ΩΣ(T ).
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Thus, we get that T = ⊺♭/Ω(T ). ∎

Next, we show that, if K is a relatively point regular guasivariety, then,
for every theory family of IK,⊺, the quotient of F by the Leibniz congruence
system of T , belongs to K and, therefore, for every theory family T of IK,⊺,
the Leibniz congruence system Ω(T ) is a K-congruence system on F .

Lemma 1351 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a nat-
ural transformation ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a relatively point
regular guasivariety of F-algebraic systems. Then, for all T ∈ ThFam(IK,⊺),
F/Ω(T ) ∈ K.

Proof: Suppose that K is a relatively point regular guasivariety of F-algebraic
systems and let Σ ∈ ∣Sign♭∣, φi, ψi ∈ SEN♭(Σ), i ∈ I, φ,ψ ∈ SEN♭(Σ), such that

⟨{φi ≈ ψi ∶ i ∈ I}, φ ≈ ψ⟩ ∈ GEqΣ(K).
This is equivalent to the statement ⟨φ,ψ⟩ ∈ ΘK,F

Σ ({⟨φi, ψi⟩ ∶ i ∈ I}). Since
ΘK,F({⟨φi, ψi⟩ ∶ i ∈ I}) ∈ ConSysK(F) and K is relatively point regular,
ΘK,F({⟨φi, ψi⟩ ∶ i ∈ I}) is completely determined by its ⊺♭-equivalence class.
So it suffices to consider guasiequations of the form

⟨{φi ≈ ⊺♭Σ ∶ i ∈ I}, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K).
Now, let T ∈ ThFam(IK,⊺), such that ⟨φi,⊺♭Σ⟩ ∈ ΩΣ(T ), for all i ∈ I. Then,
taking into account Lemma 1350, φi ∈ ⊺♭Σ/ΩΣ(T ) = TΣ, for all i ∈ I. Therefore,
by definition, φi ≈ ⊺♭Σ ∈ C

K
Σ(T ≈ ⊺♭), for all i ∈ I. Since, by hypothesis, ⟨{φi ≈

⊺♭Σ ∶ i ∈ I}, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K), we get φ ≈ ⊺♭Σ ∈ C
K
Σ(T ≈ ⊺♭), i.e., φ ∈ CK,⊺

Σ (T ).
Since T ∈ ThFam(IK,⊺), φ ∈ TΣ = ⊺♭Σ/ΩΣ(T ). Therefore, ⟨φ,⊺♭Σ⟩ ∈ ΩΣ(T ). We
conclude that F/Ω(T ) satisfies all guasiequations of K and, hence, since K is
a guasivariety, F/Ω(T ) ∈ K. ∎

Finally, we establish protoalgebraicity of IK,⊺, under the hypotheses that
K is a relatively point regular guasivariety of F-algebraic systems.

Proposition 1352 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a relatively point regular guasivariety of
F-algebraic systems. Then IK,⊺ is a protoalgebraic π-institution.

Proof: Let K be a relatively point regular guasivariety of F-algebraic sys-
tems. We know, by Proposition 1348, that IK,⊺ has a natural theorem ⊺♭,
where ⊺♭ is a point in K, and, by Proposition 1349, that IK,⊺ is a family
regular π-institution.

Now we show that IK,⊺ is protoalgebraic. Suppose that T,T ′ ∈ ThFam(I),
such that T ≤ T ′. Then, by Lemma 1350, we get ⊺♭/Ω(T ) ≤ ⊺♭/Ω(T ′). Since,
by Lemma 1351, Ω(T ) and Ω(T ′) are K-congruence systems on F and K is
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relatively point regular, they are completely determined (generated) by their
⊺♭-classes and, hence, we get Ω(T ) ≤ Ω(T ′). Thus, IK,⊺ is protoalgebraic. ∎

We show, next, that, for a protoalgebraic family regular π-institution I ,
having natural theorems, the assertional π-institution of its class AlgSys∗(I)
of reduced F-algebraic systems coincides with I .

Theorem 1353 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family regular protoalgebraic π-institution based on F, having a nat-
ural theorem ⊺. Then

IAlgSys∗(I),⊺ = I .

Proof: Set, for brevity in the course of this proof, K ∶= AlgSys∗(I). Let
Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Then

φ ∈ CK,⊺
Σ (Φ) iff φ ≈ ⊺♭Σ ∈ C

K
Σ(Φ ≈ ⊺♭Σ)

iff for all T ∈ ThFam(I),Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
SEN♭(f)(Φ) ≈ ⊺♭Σ′ ∈ ΩΣ′(T )

implies SEN♭(f)(φ) ≈ ⊺♭Σ′ ∈ ΩΣ′(T )
iff for all T ∈ ThFam(I),Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(Φ) ∈ TΣ′ implies SEN♭(f)(φ) ∈ TΣ′
iff φ ∈ CΣ(Φ).

We conclude that CK,⊺ = C and, therefore, IAlgSys∗(I),⊺ = I . ∎

Moreover, starting with a relatively point regular guasivariety of F-alge-
braic systems, the class of all reduced F-algebraic systems of its assertional
π-institution coincides with the original class.

Theorem 1354 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶(SEN♭)k → SEN♭ in N ♭, and K a relatively point regular guasivariety of F-
algebraic systems. Then

AlgSys∗(IK,⊺) = K.
Proof: Let K be a relatively point regular guasivariety of F-algebraic sys-
tems. Assume that A ∈ K and consider {⊺A} ∶= {⊺AΣ}Σ∈∣Sign∣ ∈ SenFam(A).
Then, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CK,⊺

Σ (Φ) and
αΣ(Φ) ⊆ {⊺AF (Σ)}, we get, by the definition of CK,⊺, αΣ(φ) = ⊺AF (Σ). Therefore,

{⊺A} ∈ ThFam(IK,⊺). Moreover, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
⟨φ,⊺AΣ⟩ ∈ ΩAΣ({⊺A}) iff φ = ⊺AΣ (Lemma 1350)

iff ⟨φ,⊺AΣ⟩ ∈ ∆AΣ .

Thus, ⊺A/ΩA({⊺A}) = ⊺A/∆A. Therefore, by relative point regularity, we
obtain ΩA({⊺A}) = ∆A. This yields A ∈ AlgSys∗(IK,⊺).
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Assume, conversely, that A ∈ AlgSys∗(IK,⊺). Then, by definition, there

exists T ∈ FiFamI
K,⊺(A), such that ΩA(T ) = ∆A. Suppose that Σ ∈ ∣Sign♭∣,

Φ ∪ {φ} ⊆ SEN♭(Σ), such that

⟨Φ ≈ ⊺♭Σ, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K)
and αΣ(Φ) ⊆ {⊺AF (Σ)}. Then, since T ∈ FiFamI

K,⊺(A), αΣ(Φ) ⊆ TF (Σ).

Hence, Φ ⊆ α−1Σ (TF (Σ)). Since T ∈ ThFamI
K,⊺(A), by Lemma 51, α−1(T ) ∈

ThFam(IK,⊺), whence, by Lemma 1350, α−1(T ) = ⊺♭/Ω(α−1(T )). Thus, we
get Φ ⊆ ⊺♭Σ/ΩΣ(α−1(T )). Hence, Φ ≈ ⊺♭Σ ∈ ΩΣ(α−1(T )). By Lemma 1351,
Ω(α−1(T )) ∈ ConSysK(F), whence, since ⟨Φ ≈ ⊺♭Σ, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K),
φ ≈ ⊺♭Σ ∈ ΩΣ(α−1(T )). By Proposition 24, φ ≈ ⊺♭Σ ∈ α

−1
Σ (ΩAF (Σ)(T )), i.e.,

αΣ(φ) ≈ ⊺AF (Σ) ∈ ΩA
F (Σ)
(T ) = ∆A

F (Σ)
. Thus, αΣ(φ) = ⊺AF (Σ). We conclude

that ⟨Φ ≈ ⊺♭Σ, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(A). Since A satisfies all guasiequations in
GEq(K) and K is, by hypothesis, a guasivariety, we get that A ∈ K. There-
fore, AlgSys∗(IK,⊺) = K. ∎

Now we can formulate the main theorems of the section.

Theorem 1355 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic family regular, with
natural theorems, if and only if it is the assertional π-institution of a relatively
point regular guasivariety of F-algebraic systems.

More precisely, I is protoalgebraic family regular, with natural theorems,
if and only if AlgSys∗(I) is a relatively point regular guasivariety and I =
IAlgSys∗(I),⊺, where ⊺♭ is any natural theorem.

Proof: Suppose I is protoalgebraic family regular, with natural theorems.
Then, by Proposition 1346, AlgSys∗(I) is a relatively point regular class of
F-algebraic systems and, by protoalgebraicity, Proposition 68 and Theorem
??, it is a guasivariety. Moreover, by Theorem 1353, I = IAlgSys∗(I),⊺.

Assume, conversely, that IK,⊺ is the assertional π-institution of a relatively
point regular guasivariety K of F-algebraic systems. Then, by Proposition
1349, it is family regular, by Proposition 1352, it is protoalgebraic and, by
Proposition 1348, it has natural theorems. ∎

Theorem 1356 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭. Then, there exists a one to one correspondence
between relatively point regular guasivarieties, with point ⊺♭, and family reg-
ular protoalgebraic π-institutions, with a natural theorem ⊺♭.

Every relatively point regular guasivariety with point ⊺♭ determines a
unique family regular protoalgebraic π-institution with natural theorems, its
assertional π-institution.
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Every family regular protoalgebraic π-institution with natural theorems is
the assertional π-institution of a unique relatively point regular guasivariety,
the guasivariety AlgSys∗(I) of all its reduced F-algebraic systems.

For each family regular protoalgebraic π-institution, with a natural theo-
rem ⊺♭, we have I = IAlgSys∗(I),⊺ and, conversely, for every relatively point
regular guasivariety K, with point ⊺♭, we have K = AlgSys∗(IK,⊺).
Proof: This is a recap of Theorems 1353 and 1354. ∎


