Chapter 18

Properties of Selected Classes

18.1 Protoalgebraic π -Institutions

18.1.1 The Correspondence Theorem

Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathbf{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} .

Recall that \mathcal{I} is **protoalgebraic** if the Leibniz operator is monotone on theory families, i.e., if, for all $T, T' \in \text{ThFam}(\mathcal{I})$,

 $T \leq T'$ implies $\Omega(T) \leq \Omega(T')$.

Recall, also, that, by Theorem 175, every protoalgebraic π -institution is stable and that, moreover, by Theorem 179, \mathcal{I} is protoalgebraic if and only if, for all **F**-algebraic systems $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$ and all $T, T' \in \text{FiFam}^{\mathcal{I}}(\mathcal{A})$,

 $T \leq T'$ implies $\Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}(T')$.

The π -institution \mathcal{I} has the **compatibility property** if, for every **F**algebraic system $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, all $T, T' \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, with $T \leq T'$, and all $\theta \in \operatorname{ConSys}(\mathbf{A})$,

 θ compatible with T implies θ compatible with T'.

The π -institution $\mathcal{I} = \langle \mathbf{F}, C \rangle$ has the **filter correspondence property** if, for all **F**-algebraic systems $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, $\mathcal{B} = \langle \mathbf{B}, \langle G, \beta \rangle \rangle$, and surjective morphism $\langle H, \gamma \rangle : \mathcal{A} \to \mathcal{B}$, with $H : \mathbf{Sign} \to \mathbf{Sign'}$ an isomorphism,

and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$ and $T' \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{B})$,

$$\gamma^{-1}(\widehat{\gamma}(T) \lor T') = T \lor \gamma^{-1}(T'),$$

where $\widehat{\gamma}(T) = C^{\mathcal{I},\mathcal{B}}(\gamma(T))$ is the least \mathcal{I} -filter family on \mathcal{B} that includes $\gamma(T)$.

Our goal is to show that both the compatibility property and the filter correspondence property characterize protoalgebraic π -institutions. We start with a lemma to the effect that, for every \mathcal{I} -filter family T of \mathcal{A} , if the kernel of $\langle H, \gamma \rangle$ happens to be compatible with T, then $\gamma(T)$ is already an \mathcal{I} -filter family of \mathcal{B} and, therefore, $\widehat{\gamma}(T) = \gamma(T)$.

Lemma 1333 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} , $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, $\mathcal{B} = \langle \mathbf{B}, \langle G, \beta \rangle \rangle$ \mathbf{F} -algebraic systems, and $\langle H, \gamma \rangle : \mathcal{A} \to \mathcal{B}$ a surjective morphism, with $H : \mathbf{Sign} \to \mathbf{Sign}'$ an isomorphism. If $T \in \mathrm{FiFam}^{\mathcal{I}}(\mathcal{A})$, such that $\mathrm{Ker}(\langle H, \gamma \rangle)$ is compatible with T, then $\widehat{\gamma}(T) = \gamma(T)$. **Proof:** By definition, $\gamma(T) \leq \widehat{\gamma}(T)$ always holds. To show the reverse inequality, it suffices to show that $\gamma(T)$, under the hypothesis of the compatibility of Ker($\langle H, \gamma \rangle$) with T, is an \mathcal{I} -filter family of \mathcal{B} . So assume $\Sigma \in |\mathbf{Sign}^{\flat}|, \Phi \cup \{\phi\} \subseteq \mathrm{SEN}^{\flat}(\Sigma)$, such that $\phi \in C_{\Sigma}(\Phi)$, and let $\Sigma' \in |\mathbf{Sign}^{\flat}|, f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$, such that

$$\beta_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\Phi)) \subseteq \gamma_{F(\Sigma')}(T_{F(\Sigma')}).$$

This gives

$$\gamma_{F(\Sigma')}(\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\Phi))) \subseteq \gamma_{F(\Sigma')}(T_{F(\Sigma')}).$$

By the postulated compatibility of $\operatorname{Ker}(\langle H, \gamma \rangle)$ with T, we obtain

$$\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\Phi)) \subseteq T_{F(\Sigma')}.$$

Since $\phi \in C_{\Sigma}(\Phi)$ and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, we get that

$$\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\phi)) \in T_{F(\Sigma')}.$$

Thus, $\gamma_{F(\Sigma')}(\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\phi))) \in \gamma_{F(\Sigma')}(T_{F(\Sigma')})$, and, therefore,

$$\beta_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\phi)) \in \gamma_{F(\Sigma')}(T_{F(\Sigma')}).$$

This shows that $\gamma(T) \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{B})$ and, hence, $\widehat{\gamma}(T) = \gamma(T)$.

Next, we give an equivalent formulation of the Filter Correspondence Property.

Proposition 1334 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} . \mathcal{I} has the filter correspondence property iff

for all \mathcal{I} -matrix families $\mathfrak{A} = \langle \mathcal{A}', T' \rangle$, $\mathfrak{A}'' = \langle \mathcal{A}'', T'' \rangle$ and strict surjective matrix morphism $\langle H, \gamma \rangle : \mathfrak{A}' \to \mathfrak{A}''$, with $H : \mathbf{Sign}' \to \mathbf{Sign}''$ an isomorphism,

 $T = \gamma^{-1}(\gamma(T)), \quad for \ all \ T' \leq T \in \mathrm{FiFam}^{\mathcal{I}}(\mathcal{A}').$

Proof: Suppose, first, that \mathcal{I} has the Filter Correspondence Property and consider \mathcal{I} -matrix families $\mathfrak{A} = \langle \mathcal{A}', T' \rangle$, $\mathfrak{A}'' = \langle \mathcal{A}'', T'' \rangle$, a strict surjective

matrix morphism $\langle H, \gamma \rangle : \mathfrak{A}' \to \mathfrak{A}''$, with $H : \mathbf{Sign}' \to \mathbf{Sign}''$ an isomorphism, and $T' \leq T \in \mathrm{FiFam}^{\mathcal{I}}(\mathcal{A}')$. Then we have

$$\begin{array}{lll} \gamma^{-1}(\gamma(T)) &\leq & \gamma^{-1}(\widehat{\gamma}(T) \lor T'') & (\gamma(T) \leq \widehat{\gamma}(T)) \\ &= & T \lor \gamma^{-1}(T'') & (\text{Filter Correspondence}) \\ &= & T \lor T' & (\langle H, \gamma \rangle \text{ strict}) \\ &= & T. & (T' \leq T \text{ by hypothesis}) \end{array}$$

Thus, the displayed property holds. Assume, conversely, that the displayed property holds. We must show that \mathcal{I} has the Filter Correspondence Property. So suppose that $\mathcal{A} = \langle \mathbf{A}', \langle F', \alpha' \rangle \rangle$, $\mathcal{A}'' = \langle \mathbf{A}'', \langle F'', \alpha'' \rangle \rangle$ are **F**-algebraic systems, $\langle H, \gamma \rangle : \mathcal{A}' \to \mathcal{A}''$ a surjective morphism, with $H : \mathbf{Sign}' \to \mathbf{Sign}''$ an isomorphism, and let $T' \in \mathrm{FiFam}^{\mathcal{I}}(\mathcal{A}')$ and $T'' \in \mathrm{FiFam}^{\mathcal{I}}(\mathcal{A}'')$. Our goal is to show that

$$\gamma^{-1}(\widehat{\gamma}(T') \vee T'') = T' \vee \gamma^{-1}(T'').$$

Notice that $\langle H, \gamma \rangle : \langle \mathcal{A}', \gamma^{-1}(T'') \rangle \to \langle \mathcal{A}'', T'' \rangle$ is a strict surjective morphism, with H an isomorphism, and $\gamma^{-1}(T'') \leq T' \vee \gamma^{-1}(T'')$. Thus, we fit the setup of the hypothesis, which allows us to conclude that

$$\gamma^{-1}(\gamma(T' \vee \gamma^{-1}(T''))) = T' \vee \gamma^{-1}(T'').$$

So, it suffices, in turn, to show that $\widehat{\gamma}(T') \vee T'' = \gamma(T' \vee \gamma^{-1}(T''))$ and, since, Ker($\langle H, \gamma \rangle$) is compatible with T' (having $\gamma^{-1}(\gamma(T')) = T'$, by hypothesis), it suffices, by Lemma 1333, to show that

$$\gamma(T') \lor T'' = \gamma(T' \lor \gamma^{-1}(T'')).$$

The left to right inclusion is obvious, since $\gamma(T'), T'' \leq \gamma(T' \vee \gamma^{-1}(T''))$. Conversely, note that, taking into account the hypothesis, $T', \gamma^{-1}(T'') \leq \gamma^{-1}(\gamma(T') \vee T'')$. Therefore, $T' \vee \gamma^{-1}(T'') \leq \gamma^{-1}(\gamma(T') \vee T'')$ and, therefore, $\gamma(T' \vee \gamma^{-1}(T'')) \leq \gamma(T') \vee T''$ and, hence, the right to left inclusion also holds. Thus, the Filter Correspondence Property holds.

Now we proceed with the formulation and proof of the main theorem.

Theorem 1335 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathbf{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} . The following statements are equivalent:

- (i) \mathcal{I} is protoalgebraic;
- *(ii) I* has the compatibility property;
- (iii) \mathcal{I} has the filter correspondence property.

Proof:

- (i) \Rightarrow (ii) Suppose \mathcal{I} is protoalgebraic and let $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$ be an **F**-algebraic system, $T, T' \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, with $T \leq T'$, and $\theta \in \operatorname{ConSys}(\mathbf{A})$, such that θ is compatible with T. Then we have
 - $\theta \leq \Omega(T)$ (by the compatibility of θ with T) $\leq \Omega(T')$. (by protoalgebraicity)

We conclude that θ is also compatible with T' and, hence, \mathcal{I} has the compatibility property.

- (ii) \Rightarrow (i) Suppose that \mathcal{I} has the compatibility property and let $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$ be an **F**-algebraic system and $T, T' \in \text{ThFam}^{\mathcal{I}}(\mathcal{A})$, such that $T \leq T'$. Then $\Omega(T) \in \text{ConSys}(\mathbf{A})$ and, by the definition of a Leibniz congruence system, it is compatible with T. Now it follows by the compatibility property, that $\Omega(T)$ is also compatible with T'. Hence $\Omega(T) \leq \Omega(T')$. We conclude that \mathcal{I} is protoalgebraic.
- (ii) \Rightarrow (iii) Suppose that \mathcal{I} has the compatibility property and consider **F**-algebraic systems $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, $\mathcal{B} = \langle \mathbf{B}, \langle G, \beta \rangle \rangle$, a commutative triangle

with $H : \operatorname{Sign} \to \operatorname{Sign}'$ an isomorphism, and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T' \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{B})$. Note that it is always the case that

$$T \vee \gamma^{-1}(T') \leq \gamma^{-1}(\widehat{\gamma}(T) \vee T').$$

Thus, it suffices to show that, under the hypothesis of compatibility, the reverse inclusion also holds.

Consider, temporarily, $X \in \text{FiFam}^{\mathcal{I}}(\mathcal{A})$, such that $\gamma^{-1}(T') \leq X$. Since $\text{Ker}(\langle H, \gamma \rangle)$ is compatible with $\gamma^{-1}(T')$, by the postulated compatibility property, it is also compatible with X. Thus, by Lemma 1333, $\widehat{\gamma}(X) = \gamma(X)$. Moreover, we have $T' \leq \gamma(X) = \widehat{\gamma}(X)$.

Now set $X = T \vee \gamma^{-1}(T')$ and reason as follows:

$$\begin{array}{lll} \gamma^{-1}(\widehat{\gamma}(T) \lor T') & \leq & \gamma^{-1}(\widehat{\gamma}(X) \lor T') & (T \leq X) \\ & = & \gamma^{-1}(\widehat{\gamma}(X)) & (T' \leq \widehat{\gamma}(X)) \\ & = & \gamma^{-1}(\gamma(X)) & (\widehat{\gamma}(X) = \gamma(X)) \\ & = & X. & (\operatorname{Ker}(\langle H, \gamma \rangle) \text{ compatible with } X) \end{array}$$

So we get $\gamma^{-1}(\widehat{\gamma}(T) \vee T') = T \vee \gamma^{-1}(T')$ and \mathcal{I} has the correspondence property.

(iii) \Rightarrow (ii) Suppose that \mathcal{I} has the correspondence property and let $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$ be an **F**-algebraic system, $T, T' \in \text{FiFam}^{\mathcal{I}}(\mathcal{A})$, with $T \leq T'$, and $\theta \in \text{ConSys}(\mathbf{A})$, such that θ is compatible with T. We look at the commutative diagram

and calculate

$$(\pi^{\theta})^{-1}(\widehat{\pi^{\theta}}(T')) = (\pi^{\theta})^{-1}(\widehat{\pi^{\theta}}(T') \vee \widehat{\pi^{\theta}}(T)) \quad (T \leq T')$$

= $T' \vee (\pi^{\theta})^{-1}(\widehat{\pi^{\theta}}(T)) \quad (\text{correspondence property})$
 $\leq T' \vee T \quad (\theta \text{ compatible with } T)$
= $T'. \quad (T \leq T')$

Thus, θ is also compatible with T' and \mathcal{I} has the compatibility property.

As a consequence we obtain the Correspondence Theorem, which asserts that, under the same hypothesis, $\langle H, \gamma \rangle$ induces an order isomorphism between the principal filter of the lattice **FiFam**^{\mathcal{I}}(\mathcal{A}) generated by $\gamma^{-1}(T')$ and the principal filter of the lattice **FiFam**^{\mathcal{I}}(\mathcal{B}) generated by T'.

Theorem 1336 (Correspondence Theorem) Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a protoalgebraic π -institution based on \mathbf{F} . Let, also, $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, $\mathcal{B} = \langle \mathbf{B}, \langle G, \beta \rangle \rangle$ be \mathbf{F} -algebraic systems and $\langle H, \gamma \rangle : \mathcal{A} \to \mathcal{B}$ a surjective morphism, with $H : \mathbf{Sign} \to \mathbf{Sign'}$ an isomorphism, and $T' \in \mathrm{FiFam}^{\mathcal{I}}(\mathcal{B})$. Then, $Y \mapsto \gamma^{-1}(Y)$, $T' \leq Y \in \mathrm{FiFam}^{\mathcal{I}}(\mathcal{B})$, defines an order isomorphism $\mathbf{FiFam}^{\mathcal{I}}(\mathcal{B})^{T'} \cong \mathbf{FiFam}^{\mathcal{I}}(\mathcal{A})^{\gamma^{-1}(T')}$.

Proof: γ^{-1} : **FiFam**^{\mathcal{I}}(\mathcal{B})^{T'} \rightarrow **FiFam**^{\mathcal{I}}(\mathcal{A}) $\gamma^{-1}(T')$ is well defined by Corollary 55 and it is clearly monotone. Furthermore, $\widehat{\gamma}$: **FiFam**^{\mathcal{I}}(\mathcal{A}) $\gamma^{-1}(T') \rightarrow$ **FiFam**^{\mathcal{I}}(\mathcal{B})^{T'} is also well-defined and monotone. So it suffices to show that, for all $T' \leq Y \in \text{FiFam}^{\mathcal{I}}(\mathcal{B}), \ \widehat{\gamma}(\gamma^{-1}(Y)) = Y$ and that, for all $\gamma^{-1}(T') \leq X \in$ FiFam^{\mathcal{I}}(\mathcal{A}), $\gamma^{-1}(\widehat{\gamma}(X)) = X$.

First, for $T' \leq Y \in \text{FiFam}^{\mathcal{I}}(\mathcal{B})$, since $\langle H, \gamma \rangle$ is surjective, $\gamma(\gamma^{-1}(Y)) = Y$ and, therefore, $\widehat{\gamma}(\gamma^{-1}(Y)) = Y$, since $Y \in \text{FiFam}^{\mathcal{I}}(\mathcal{B})$. For the other equation, if $\gamma^{-1}(T') \leq X \in \text{FiFam}^{\mathcal{I}}(\mathcal{A})$, we have,

$$\gamma^{-1}(\widehat{\gamma}(X)) = \gamma^{-1}(\widehat{\gamma}(X) \lor T') \quad (\gamma^{-1}(T') \le X \Rightarrow T' \le \widehat{\gamma}(X))$$

= $X \lor \gamma^{-1}(T')$ (correspondence property)
= $X. \quad (\gamma^{-1}(T') \le X)$

So γ^{-1} : **FiFam**^{\mathcal{I}}(\mathcal{B})^{T'} \cong **FiFam**^{\mathcal{I}}(\mathcal{A})^{$\gamma^{-1}(T')$}.

18.1.2 The Homomorphism Theorem

We show that, in the case of protoalgebraic π -institutions \mathcal{I} , every surjective morphism of \mathcal{I} -matrix families gives rise to a corresponding surjective morphism between their reductions. This establishes a "reduction" functor and, moreover, gives rise to a version of the Homomorphism Theorem of Universal Algebra.

Recall that, given a base algebraic system $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ and an **F**-matrix family $\mathfrak{A} = \langle \mathcal{A}, T \rangle$, we denote by \mathfrak{A}^* the reduction of \mathfrak{A} , i.e.,

$$\mathfrak{A}^* = \langle \mathcal{A}/\Omega^{\mathcal{A}}(T), T/\Omega^{\mathcal{A}}(T) \rangle.$$

Moreover, extending this notation, given $\Sigma \in |\mathbf{Sign}|$ and $\phi \in \mathrm{SEN}(\Sigma)$, we set

$$\phi^* = \phi/\Omega_{\Sigma}^{\mathcal{A}}(T) \in \mathrm{SEN}^*(\Sigma).$$

Theorem 1337 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a protoalgebraic π -institution based on \mathbf{F} . Further, let $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, $\mathcal{A}' = \langle \mathbf{A}', \langle F', \alpha' \rangle \rangle$, with $\mathbf{A} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$, $\mathbf{A}' = \langle \mathbf{Sign}', \mathrm{SEN}', N' \rangle$, be \mathbf{F} -algebraic systems, $\mathfrak{A} = \langle \mathcal{A}, T \rangle$ and $\mathfrak{A}' = \langle \mathcal{A}', T' \rangle$ be \mathcal{I} -matrix families and $\langle H, \gamma \rangle$: $\mathfrak{A} \to \mathfrak{A}'$ a surjective morphism. Then, there exists a surjective morphism $\langle H, \gamma^* \rangle : \mathfrak{A}^* \to \mathfrak{A}'^*$, given, for all $\Sigma \in |\mathbf{Sign}|$ and all $\phi \in \mathrm{SEN}(\Sigma)$, by

$$\gamma_{\Sigma}^{*}(\phi^{*}) = \gamma_{\Sigma}(\phi)^{*}.$$

Proof: First, we show that, for all $\Sigma \in |\mathbf{Sign}|$, $\gamma_{\Sigma}^* : \mathrm{SEN}^*(\Sigma) \to \mathrm{SEN}'^*(H(\Sigma))$ is well-defined. Indeed, suppose $\Sigma \in |\mathbf{Sign}|$ and $\phi, \psi \in \mathrm{SEN}(\Sigma)$, such that $\phi^* = \psi^*$, i.e., $\langle \phi, \psi \rangle \in \Omega_{\Sigma}^{\mathcal{A}}(T)$. Then, since $T \leq \gamma^{-1}(T')$, we get, by protoalgebraicity, $\langle \phi, \psi \rangle \in \Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T'))$, whence, by Proposition 24, $\langle \phi, \psi \rangle \in \gamma_{\Sigma}^{-1}(\Omega_{H(\Sigma)}^{\mathcal{A}'}(T'))$, and, hence, $\langle \gamma_{\Sigma}(\phi), \gamma_{\Sigma}(\psi) \rangle \in \Omega_{H(\Sigma)}^{\mathcal{A}'}(T')$, or, equivalently, $\gamma_{\Sigma}(\phi)^* = \gamma_{\Sigma}(\psi)^*$.

Next we see that $\gamma^* : \text{SEN}^* \to \text{SEN}^{\prime*} \circ H$ is a natural transformation. To this end, let $\Sigma, \Sigma' \in |\text{Sign}|, f \in \text{Sign}(\Sigma, \Sigma')$ and $\phi \in \text{SEN}(\Sigma)$. Then we have

Surjectivity of $\langle H, \gamma^* \rangle : \mathcal{A}^* \to \mathcal{A}'^*$ follows from the fact that $\langle H, \gamma \rangle : \mathcal{A} \to \mathcal{A}'$ is surjective. So it suffices to show that $\langle F', \pi \alpha' \rangle = \langle H, \gamma^* \rangle \circ \langle F, \pi, \alpha \rangle$ and that $\langle H, \gamma^* \rangle : \mathfrak{A}^* \to \mathfrak{A}'^*$ is a matrix family morphism. The first equation follows from the fact that the upper triangle of the diagram commutes by hypothesis and the rectangle commutes by the definition of $\langle H, \gamma^* \rangle$.

To finish the proof, we calculate, for all $\Sigma \in |\mathbf{Sign}|$ and all $\phi \in \mathrm{SEN}(\Sigma)$, $\phi^* \in T_{\Sigma}/\Omega_{\Sigma}^{\mathcal{A}}(T)$ if and only if, by compatibility, $\phi \in T_{\Sigma}$ implies, by hypothesis, $\phi \in \gamma_{\Sigma}^{-1}(T'_{H(\Sigma)})$ if and only if $\gamma_{\Sigma}(\phi) \in T'_{H(\Sigma)}$ if and only if, by compatibility, $\gamma_{\Sigma}(\phi)^* \in T'_{H(\Sigma)}/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T')$ if and only if, by the definition of γ^* , $\gamma_{\Sigma}^*(\phi^*) \in T'_{H(\Sigma)}/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T')$ if and only if $\phi^* \in (\gamma_{\Sigma}^*)^{-1}(T'_{H(\Sigma)}/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T'))$.

We also have the following construction.

Corollary 1338 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a protoalgebraic π -institution based on \mathbf{F} . Let, also $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, $\mathcal{A}' = \langle \mathbf{A}', \langle F', \alpha' \rangle \rangle$, with $\mathbf{A} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$, $\mathbf{A}' = \langle \mathbf{Sign}', \mathrm{SEN}', N' \rangle$, be \mathbf{F} algebraic systems, $\mathfrak{A} = \langle \mathcal{A}, T \rangle$ an \mathcal{I} -matrix family and $\mathfrak{A}' = \langle \mathcal{A}', T' \rangle$ a reduced \mathcal{I} -matrix family and $\langle H, \gamma \rangle : \mathfrak{A} \to \mathfrak{A}'$ a surjective morphism.

There exists a unique surjective morphism $\langle H, \gamma^* \rangle : \mathfrak{A}^* \to \mathfrak{A}'$ that makes the triangle commute.

Proof: By Theorem 1337, there exists a surjective matrix morphism $\langle H, \gamma^* \rangle$:

 $\mathfrak{A}^* \to \mathfrak{A}^{\prime *}$, such that the following rectangle commutes:

But, by hypothesis, \mathfrak{A}' is reduced, whence $\mathfrak{A}'^* = \mathfrak{A}'$ and $\langle I, \pi \rangle = \langle I, \iota \rangle : \mathfrak{A}' \to \mathfrak{A}'^*$ is the identity morphism. We now obtain the triangle depicted in the diagram of the statement.

Let us denote by $MatFam(\mathcal{I})$ the category of \mathcal{I} -matrix families with surjective matrix morphisms between them and, similarly, $MatFam^*(\mathcal{I})$ the category of reduced \mathcal{I} -matrix families with surjective matrix morphisms between them. Then, based on Theorem 1337, we obtain the following functor.

Theorem 1339 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathbf{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} . Then

 $^*: \mathbf{MatFam}(\mathcal{I}) \to \mathbf{MatFam}^*(\mathcal{I})$

is a functor. The subcategory $MatFam^{*}(\mathcal{I})$ is a reflective subcategory of $MatFam(\mathcal{I})$ with * a reflector from $MatFam(\mathcal{I})$ to $MatFam^{*}(\mathcal{I})$.

Proof: Given $\mathcal{A} \in \operatorname{MatFam}(\mathcal{I})$, it is easy to see that $\langle I, \iota^* \rangle : \mathfrak{A}^* \to \mathfrak{A}^*$ is the identity matrix morphism. For the composition property, assume \mathfrak{A} , $\mathfrak{A}', \mathfrak{A}'' \in \operatorname{MathFam}(\mathcal{I})$, and $\langle G, \beta \rangle : \mathfrak{A} \to \mathfrak{A}', \langle H, \gamma \rangle : \mathfrak{A}' \to \mathfrak{A}''$ be matrix morphisms. Then, we have, for all $\Sigma \in |\mathbf{Sign}|$ and all $\phi \in \operatorname{SEN}(\Sigma)$,

$$(\gamma_{G(\Sigma)} \circ \beta_{\Sigma})^{*}(\phi^{*}) = \gamma_{G(\Sigma)}(\beta_{\Sigma}(\phi))^{*}$$
$$= \gamma_{G(\Sigma)}^{*}(\beta_{\Sigma}(\phi)^{*})$$
$$= \gamma_{G(\Sigma)}^{*}(\beta_{\Sigma}^{*}(\phi^{*})).$$

Thus, $(\langle H, \gamma \rangle \circ \langle G, \beta \rangle)^* = \langle H, \gamma \rangle^* \circ \langle G, \beta \rangle^*$. Therefore, $* : \mathbf{MatFam}(\mathcal{I}) \to \mathbf{MatFam}^*(\mathcal{I})$ is a functor.

As far a s reflectivity is concerned, for every $\mathfrak{A} \in \operatorname{MatFam}^*(\mathcal{I})$, we consider the natural quotient morphism $\langle I, \pi \rangle : \mathfrak{A} \to \mathfrak{A}^*$. Given reduced $\mathfrak{B} \in \operatorname{MatFam}^*(\mathcal{I})$ and a surjective morphism $\langle H, \gamma \rangle : \mathfrak{A} \to \mathfrak{B}$, the surjective morphism $\langle H, \gamma^* \rangle : \mathfrak{A}^* \to \mathfrak{B}$ of Corollary 1338 is the unique surjective morphism such that the following diagram commutes.

Thus, $MatFam^*(\mathcal{I})$ is a reflective subcategory of $MatFam(\mathcal{I})$ with * a reflector from $MatFam(\mathcal{I})$ to $MatFam^*(\mathcal{I})$.

Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ be a π institution based on \mathbf{F} . Given an \mathcal{I} -matrix family $\mathfrak{A} = \langle \mathcal{A}, T \rangle$, we denote by $\mathbf{FiFam}^{\mathcal{I}}(\mathfrak{A})$ the principal filter of the complete lattice $\mathbf{FiFam}^{\mathcal{I}}(\mathcal{A})$ generated
by the \mathcal{I} -filter family T:

$$\operatorname{FiFam}^{\mathcal{I}}(\mathfrak{A}) = \{ T' \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}) : T \leq T' \}.$$

Recall that this set is also denoted by $\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})^{T}$, without explicit reference to the matrix family $\mathfrak{A} = \langle \mathcal{A}, T \rangle$.

The Correspondence Theorem allows us to prove the following.

Theorem 1340 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ be a protoalgebraic π -institution based on \mathbf{F} . For every \mathcal{I} -matrix family $\mathfrak{A} = \langle \mathcal{A}, T \rangle$, with $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$,

$$\mathbf{FiFam}^{\mathcal{I}}(\mathfrak{A}) \cong \mathbf{FiFam}^{\mathcal{I}}(\mathfrak{A}^*).$$

Proof: By The Correspondence Theorem 1336, with $\mathcal{B} = \mathcal{A}/\Omega^{\mathcal{A}}(T)$, $\langle H, \gamma \rangle = \langle I, \pi \rangle : \mathcal{A} \to \mathcal{A}/\Omega^{\mathcal{A}}(T)$ and $T' = T/\Omega^{\mathcal{A}}(T)$, we get

$$\mathbf{FiFam}^{\mathcal{I}}(\mathcal{A}/\Omega^{\mathcal{A}}(T))^{T/\Omega^{\mathcal{A}}(T)} \cong \mathbf{FiFam}^{\mathcal{I}}(\mathcal{A})^{\pi^{-1}(T/\Omega^{\mathcal{A}}(T))}.$$

But this amounts to $\mathbf{FiFam}^{\mathcal{I}}(\mathfrak{A}^*) \cong \mathbf{FiFam}(\mathfrak{A})$.

Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π institution based on \mathbf{F} . Consider \mathbf{F} -matrix families $\mathfrak{A} = \langle \mathcal{A}, T \rangle$ and $\mathfrak{B} = \langle \mathcal{B}, T' \rangle$ and a surjective matrix morphism $\langle H, \gamma \rangle : \mathfrak{A} \to \mathfrak{B}$. By definition, we have $T \leq \gamma^{-1}(T')$. We call $\gamma^{-1}(T')$ the filter kernel of $\langle H, \gamma \rangle$. By the inclusion relation above, we can see that, if $\mathfrak{B} \in \mathrm{MatFam}(\mathcal{I})$, then $\gamma^{-1}(T') \in \mathrm{FiFam}^{\mathcal{I}}(\mathfrak{A})$.

Given $\mathfrak{A} = \langle \mathcal{A}, T \rangle$ and $X \in \text{SenFam}(\mathcal{A})$, such that $T \leq X$, we define

$$\mathfrak{A}/X \coloneqq \langle \mathcal{A}, X \rangle^* = \langle \mathcal{A}/\Omega^{\mathcal{A}}(X), X/\Omega^{\mathcal{A}}(X) \rangle.$$

We call \mathfrak{A}/X the **quotient of** \mathfrak{A} by X. We note that, if $\mathfrak{A} \in MatFam(\mathcal{I})$, then

 $X \in \operatorname{FiFam}^{\mathcal{I}}(\mathfrak{A})$ iff $\mathfrak{A}/X \in \operatorname{MatFam}^{*}(\mathcal{I})$.

The following is an analog in the context of \mathcal{I} -matrix families of the Homomorphism Theorem of Universal Algebra.

Theorem 1341 (Homomorphism Theorem) Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ be a protoalgebraic π -institution based on \mathbf{F} . Let also $\mathfrak{A} = \langle \mathcal{A}, T \rangle$, $\mathfrak{A}' = \langle \mathcal{A}', T' \rangle \in \mathrm{MatFam}(\mathcal{I})$ and $\langle H, \gamma \rangle : \mathfrak{A} \to \mathfrak{A}'$ a surjective morphism.

- (i) There exists a strict surjective morphism $\langle H, \gamma' \rangle : \mathfrak{A}/\gamma^{-1}(T') \to \mathfrak{A}'^*$ with isomorphic components;
- (ii) If $X \in \text{FiFam}^{\mathcal{I}}(\mathfrak{A})$ and $X \leq \gamma^{-1}(T')$, then, there exists a surjective morphism $\langle H, \gamma^X \rangle : \mathfrak{A}/X \to \mathfrak{A}'^*$, such that

 $\big\langle H, \gamma^X \big\rangle \circ \big\langle I, \pi^X \big\rangle = \big\langle I, \pi \big\rangle \circ \big\langle H, \gamma \big\rangle.$

Proof:

(i) First, note that $\gamma^{-1}(T') \leq \gamma^{-1}(T')$, whence, $\langle H, \gamma \rangle : \langle \mathcal{A}, \gamma^{-1}(T') \rangle \to \mathfrak{A}'$ is also a surjective matrix morphism. Thus, taking into account that $T \leq \gamma^{-1}(T')$, we get, by Theorem 1337, a surjective matrix morphism $\langle H, \gamma^* \rangle : \mathfrak{A}/\gamma^{-1}(T') \to \mathfrak{A}'^*$, such that the following diagram commutes.

$$\begin{array}{c} \langle \mathcal{A}, \gamma^{-1}(T') \rangle & \xrightarrow{\langle H, \gamma \rangle} & \mathfrak{A}' \\ \langle I, \pi \rangle \\ \downarrow & \downarrow \\ \mathfrak{A}/\gamma^{-1}(T') & \xrightarrow{\langle H, \gamma^* \rangle} & \mathfrak{A}'^* \end{array}$$

It remains to show that, for every $\Sigma \in |\mathbf{Sign}|$,

$$\gamma_{\Sigma}^{*} : \operatorname{SEN}^{\gamma^{-1}(T')}(\Sigma) \to \operatorname{SEN}^{\prime*}(H(\Sigma))$$

is a bijection and that $\langle H, \gamma^* \rangle$ is strict. To see that γ_{Σ}^* is a bijection, let $\phi, \psi \in \text{SEN}(\Sigma)$, such that

$$\gamma_{\Sigma}^{*}(\phi/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T'))) = \gamma_{\Sigma}^{*}(\psi/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T'))).$$

Then, by the commutativity of the rectangle,

$$\gamma_{\Sigma}(\phi)/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T') = \gamma_{\Sigma}(\psi)/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T').$$

This gives that $\langle \phi, \psi \rangle \in \gamma_{\Sigma}^{-1}(\Omega_{H(\Sigma)}^{\mathcal{A}'}(T'))$. Thus, $\langle \phi, \psi \rangle \in \Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T'))$ and, hence,

$$\phi/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T')) = \phi/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T')).$$

Therefore, $\gamma_{\Sigma}^{*} : \operatorname{SEN}^{\gamma^{-1}(T')}(\Sigma) \to \operatorname{SEN}^{\prime*}(H(\Sigma))$ is a bijection, for all $\Sigma \in |\mathbf{Sign}|$.

To prove strictness, assume $\Sigma \in |\mathbf{Sign}|$ and $\phi \in \mathrm{SEN}(\Sigma)$, such that $\phi/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T')) \in \gamma_{\Sigma}^{*-1}(T'_{H(\Sigma)}/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T'))$. Then $\gamma_{\Sigma}^{*}(\phi/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T'))) \in T'_{H(\Sigma)}/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T')$. Hence, by the definition of γ^{*} , we get $\gamma_{\Sigma}(\phi)^{*} \in T'_{H(\Sigma)}/\Omega_{H(\Sigma)}^{\mathcal{A}'}(T')$. By compatibility, we obtain $\gamma_{\Sigma}(\phi) \in T'_{H(\Sigma)}$, whence $\phi \in \gamma_{\Sigma}^{-1}(T'_{H(\Sigma)})$. This, finally, yields

$$\phi/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T')) \in \gamma_{\Sigma}^{-1}(T'_{H(\Sigma)})/\Omega_{\Sigma}^{\mathcal{A}}(\gamma^{-1}(T')),$$

proving strictness.

(ii) This part is proven by the following diagram chase:

$$\begin{array}{c|c} \mathfrak{A} & & \langle H, \gamma \rangle \\ & & & \downarrow \\ \langle I, \pi^X \rangle \downarrow & & \downarrow \\ \mathfrak{A}/X & & & \downarrow \\ \mathfrak{A}/X & & \langle I, \pi \rangle \end{array} \mathfrak{A}/\gamma^{-1}(T') & & \mathcal{A}'^* \end{array}$$

where $\langle I, \pi \rangle : \mathfrak{A}/X \to \mathfrak{A}/\gamma^{-1}(T')$ is the canonical projection morphism, defined because of the hypothesis $X \leq \gamma^{-1}(T')$ and protoalgebraicity, and

$$\langle H, \gamma' \rangle : \mathfrak{A}/\gamma^{-1}(T') \to \mathfrak{A}'$$

is the morphism obtained in Part (i).

18.2 Pointed Classes of Algebraic Systems

Proposition 1342 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a protoalgebraic π -institution based on \mathbf{F} , having theorems. Then the following conditions are equivalent:

- (i) \mathcal{I} is family regular;
- (*ii*) For all $T \in \text{ThFam}(\mathcal{I})$, all $\Sigma \in |\text{Sign}^{\flat}|$ and all $\phi \in T_{\Sigma}$, $T_{\Sigma} = \phi/\Omega_{\Sigma}(T)$;
- (iii) For all $T \in \text{ThFam}(\mathcal{I})$, all $\Sigma \in |\mathbf{Sign}^{\flat}|$ and all $t \in \text{Thm}_{\Sigma}(\mathcal{I})$, $T_{\Sigma} = t/\Omega_{\Sigma}(T)$;
- (iv) For all $T \in \text{ThFam}(\mathcal{I})$, all $\Sigma \in |\text{Sign}^{\flat}|$ and some $\phi \in T_{\Sigma}$, $T_{\Sigma} = \phi/\Omega_{\Sigma}(T)$;
- (v) For all $T \in \text{ThFam}(\mathcal{I})$, all $\Sigma \in |\text{Sign}^{\flat}|$ and some $t \in \text{Thm}_{\Sigma}(\mathcal{I})$, $T_{\Sigma} = t/\Omega_{\Sigma}(T)$.

Proof:

(i) \Rightarrow (ii) Suppose \mathcal{I} is family regular and let $T \in \text{ThFam}(\mathcal{I}), \Sigma \in |\mathbf{Sign}^{\flat}|$ and $\phi \in T_{\Sigma}$. Then, we have, for all $\psi \in \text{SEN}^{\flat}(\Sigma)$,

$\psi \in T_{\Sigma}$	iff	$\phi,\psi\in T_\Sigma$	$(\phi \in T_{\Sigma})$
	iff	$C(\phi,\psi) \le T$	(definition of $C(\phi, \psi)$)
	implies	$\Omega_{\Sigma}(C(\phi,\psi)) \leq \Omega_{\Sigma}(T)$	$(\mathcal{I} \text{ protoalgebraic})$
	implies	$\langle \phi, \psi \rangle \in \Omega_{\Sigma}(T)$	$(\mathcal{I} \text{ family regular})$
	iff	$\psi \in \phi/\Omega_{\Sigma}(T).$	(definition of $\phi/\Omega_{\Sigma}(T)$)

On the other hand, if $\psi \in \phi/\Omega_{\Sigma}(T)$, then, since $\phi \in T_{\Sigma}$, by the compatibility of $\Omega(T)$ with $T, \psi \in T_{\Sigma}$. Thus, we conclude that $T_{\Sigma} = \phi/\Omega_{\Sigma}(T)$.

- (ii) \Rightarrow (iii) Suppose (ii) holds and let $T \in \text{ThFam}(\mathcal{I}), \Sigma \in |\mathbf{Sign}^{\flat}|$ and $t \in \text{Thm}_{\Sigma}(\mathcal{I})$. Then, since $\text{Thm}(\mathcal{I}) \leq T$, we get that $t \in T_{\Sigma}$ and, hence, by hypothesis, $T_{\Sigma} = t/\Omega_{\Sigma}(T)$.
- (iii) \Rightarrow (iv) Assume (iii) holds and let $T \in \text{ThFam}(\mathcal{I})$ and $\Sigma \in |\mathbf{Sign}^{\flat}|$. Since \mathcal{I} has theorems, there exists $t \in \text{Thm}_{\Sigma}(\mathcal{I})$. Then, $t \in T_{\Sigma}$ and, by hypothesis, $T_{\Sigma} = t/\Omega_{\Sigma}(T)$.
- (iv) \Rightarrow (v) Assume (iv) holds and let $T \in \text{ThFam}(\mathcal{I})$ and $\Sigma \in |\mathbf{Sign}^{\flat}|$. Then, by hypothesis, there exists $\phi \in T_{\Sigma}$, such that $T_{\Sigma} = \phi/\Omega_{\Sigma}(T)$. Moreover, \mathcal{I} has theorems, whence, there exists $t \in \text{Thm}_{\Sigma}(\mathcal{I})$. Then, we have $t \in$ $T_{\Sigma} = \phi/\Omega_{\Sigma}(T)$, whence $\langle \phi, t \rangle \in \Omega_{\Sigma}(T)$ and, therefore, $T_{\Sigma} = \phi/\Omega_{\Sigma}(T) =$ $t/\Omega_{\Sigma}(T)$.
- (v) \Rightarrow (i) Assume that (v) holds and let $T \in \text{ThFam}(\mathcal{I}), \Sigma \in |\mathbf{Sign}^{\flat}|$ and $\phi, \psi \in T_{\Sigma}$. By hypothesis, for some $t \in \text{Thm}_{\Sigma}(\mathcal{I}), T_{\Sigma} = t/\Omega_{\Sigma}(T)$. Hence, $\phi, \psi \in t/\Omega_{\Sigma}(T)$, i.e., $\langle \phi, t \rangle \in \Omega_{\Sigma}(T)$ and $\langle t, \psi \rangle \in \Omega_{\Sigma}(T)$. By transitivity, $\langle \phi, \psi \rangle \in \Omega_{\Sigma}(T)$. Therefore, \mathcal{I} is family regular.

We show now that a protoalgebraic family assertional π -institution \mathcal{I} is weakly family algebraizable.

Theorem 1343 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a protoalgebraic π -institution based on \mathbf{F} . If \mathcal{I} is family assertional, then it is weakly family algebraizable.

Proof: By Definition 613, protoalgebraicity and family assertionality are equivalent to regular weak family algebraizability. By Proposition 620, this entails weak family algebraizability.

More directly, assume \mathcal{I} is family assertional. Since it is protoalgebraic, by hypothesis, it suffices to show that \mathcal{I} is family injective. To this end, let $T, T' \in \text{ThFam}(\mathcal{I})$, such that $\Omega(T) = \Omega(T')$. Then, we have, for all $\Sigma \in |\mathbf{Sign}^{\flat}|$ and all $t \in \text{Thm}_{\Sigma}(\mathcal{I})$,

$$T_{\Sigma} = t/\Omega_{\Sigma}(T) = t/\Omega_{\Sigma}(T') = T'_{\Sigma}.$$

Therefore T = T'. Hence \mathcal{I} is family injective and, therefore, it is weakly family algebraizable.

Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \rightarrow \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a class of \mathbf{F} -algebraic systems. We say that K is T^{\flat} -**pointed** if, for all $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle \in \mathsf{K}$, with $\mathbf{A} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$, all $\Sigma \in |\mathbf{Sign}|$ and all $\phi, \psi \in \mathrm{SEN}(\Sigma)$,

$$\mathsf{T}^{\mathcal{A}}_{\Sigma}(\phi) = \mathsf{T}^{\mathcal{A}}_{\Sigma}(\psi).$$

K is called **pointed** if it is T^{\flat} -pointed with respect to some T^{\flat} in N^{\flat} .

If a class K is pointed, then, for every $\mathcal{A} \in \mathsf{K}$, we write $\mathsf{T}^{\mathcal{A}} = \{\mathsf{T}^{\mathcal{A}}_{\Sigma}\}_{\Sigma \in |\mathbf{Sign}|}$, where $\mathsf{T}^{\mathcal{A}}_{\Sigma} := \mathsf{T}^{\mathcal{A}}_{\Sigma}(\vec{\phi})$, for some $\vec{\phi} \in \mathrm{SEN}(\Sigma)$, this value being independent of the choice of $\vec{\phi} \in \mathrm{SEN}(\Sigma)$.

We focus now on protoalgebraic, family regular π -institutions that have natural theorems. Recall that this means that there exists a natural transformation T^{\flat} in N^{\flat} , such that T^{\flat} is evaluated to a theorem in every signature and at all tuples of sentences. Of course, by definition, all π -institutions that fit this description are regularly weakly family algebraizable. We show that for such π -institutions, the class AlgSys^{*}(\mathcal{I}) of their reduced algebraic systems is a pointed class of **F**-algebraic systems, where any natural theorem may serve as the "point".

Proposition 1344 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a protoalgebraic family regular π -institution based on \mathbf{F} , having natural theorems. Then, the class $\mathrm{AlgSys}^*(\mathcal{I})$ is a pointed class of \mathbf{F} -algebraic systems.

Proof: Suppose \mathcal{I} is protoalgebraic and family regular, with a natural theorem T^{\flat} : $(\operatorname{SEN}^{\flat})^{k} \to \operatorname{SEN}^{\flat}$, i.e., such that, for all $\Sigma \in |\operatorname{Sign}^{\flat}|$ and all $\vec{\phi} \in \operatorname{SEN}^{\flat}(\Sigma)$, $\mathsf{T}^{\flat}_{\Sigma}(\vec{\phi}) \in \operatorname{Thm}_{\Sigma}(\mathcal{I})$. By family regularity, we have, for all $\Sigma \in |\operatorname{Sign}^{\flat}|$ and all $\vec{\phi}, \vec{\psi} \in \operatorname{SEN}^{\flat}(\Sigma)$, $\langle \mathsf{T}^{\flat}_{\Sigma}(\vec{\phi}), \mathsf{T}^{\flat}_{\Sigma}(\vec{\psi}) \rangle \in \Omega_{\Sigma}(\operatorname{Thm}(\mathcal{I}))$. Now, let $\mathcal{A} \in \operatorname{AlgSys}^{*}(\mathcal{I})$. Thus, there exists $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, such that $\Omega^{\mathcal{A}}(T) = \Delta^{\mathcal{A}}$. Therefore, for all $\Sigma \in |\operatorname{Sign}^{\flat}|$ and all $\vec{\phi}, \vec{\psi} \in \operatorname{SEN}^{\flat}(\Sigma)$, we get, by what was shown above and protoalgebraicity, and taking into account Lemma 51, $\langle \mathsf{T}^{\flat}_{\Sigma}(\vec{\phi}), \mathsf{T}^{\flat}_{\Sigma}(\vec{\psi}) \rangle \in \Omega_{\Sigma}(\alpha^{-1}(T))$, whence, by Proposition 24, $\langle \mathsf{T}^{\flat}_{\Sigma}(\vec{\phi}), \mathsf{T}^{\flat}_{\Sigma}(\vec{\psi}) \rangle \in \alpha_{\Sigma}^{-1}(\Omega^{\mathcal{A}}_{F(\Sigma)}(T))$. Thus,

$$\langle \alpha_{\Sigma}(\mathsf{T}^{\flat}_{\Sigma}(\vec{\phi})), \alpha_{\Sigma}(\mathsf{T}^{\flat}_{\Sigma}(\vec{\psi})) \rangle \in \Omega^{\mathcal{A}}_{F(\Sigma)}(T) = \Delta^{\mathcal{A}}_{F(\Sigma)}$$

i.e., since \top^{\flat} is a natural transformation, $\top^{\mathcal{A}}_{F(\Sigma)}(\alpha_{\Sigma}(\vec{\phi})) = \top^{\mathcal{A}}_{F(\Sigma)}(\alpha_{\Sigma}(\vec{\psi}))$. Taking into account the surjectivity of $\langle F, \alpha \rangle$, we conclude that AlgSys^{*}(\mathcal{I}) is a pointed class of **F**-algebraic systems, with any natural theorem serving as the "point" natural transformation.

Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \rightarrow \mathrm{SEN}^{\flat}$ in N^{\flat} and K a T^{\flat} -pointed class of **F**-algebraic systems. We say that K

is relatively point regular if, for every $\theta, \theta' \in \text{ConSys}^{\mathsf{K}}(\mathcal{F})$,

$$\top^{\flat}/\theta = \top^{\flat}/\theta'$$
 implies $\theta = \theta'$.

It is not difficult to show that the defining property transfers from Kcongruence systems on \mathcal{F} to K-congruence systems on every F-algebraic system, under the proviso that K be an abstract class.

Lemma 1345 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ a natural transformation in N^{\flat} , and K a T^{\flat} -pointed abstract class of \mathbf{F} -algebraic systems. If K is relatively point regular, then, for every \mathbf{F} -algebraic system \mathcal{A} and all $\theta, \theta' \in \mathrm{ConSys}^{\mathsf{K}}(\mathcal{A})$,

$$\top^{\mathcal{A}}/\theta = \top^{\mathcal{A}}/\theta' \quad implies \quad \theta = \theta'.$$

Proof: Suppose \mathcal{A} is an **F**-algebraic system, $\theta, \theta' \in \text{ConSys}^{\mathsf{K}}(\mathcal{A})$, such that $\top^{\mathcal{A}}/\theta = \top^{\mathcal{A}}/\theta'$. Then, for all $\Sigma \in |\mathbf{Sign}^{\flat}|$ and $\phi \in \text{SEN}^{\flat}(\Sigma)$,

$$\begin{array}{ll} \langle \phi, \mathsf{T}_{\Sigma}^{\flat} \rangle \in \alpha_{\Sigma}^{-1}(\theta_{F(\Sigma)}) & \text{iff} & \langle \alpha_{\Sigma}(\phi), \alpha_{\Sigma}(\mathsf{T}_{\Sigma}^{\flat}) \rangle \in \theta_{F(\Sigma)} \\ & \text{iff} & \langle \alpha_{\Sigma}(\phi), \mathsf{T}_{F(\Sigma)}^{\mathcal{A}} \rangle \in \theta_{F(\Sigma)} \\ & \text{iff} & \langle \alpha_{\Sigma}(\phi), \mathsf{T}_{F(\Sigma)}^{\mathcal{A}} \rangle \in \theta'_{F(\Sigma)} \\ & \text{iff} & \langle \alpha_{\Sigma}(\phi), \alpha_{\Sigma}(\mathsf{T}_{\Sigma}^{\flat}) \rangle \in \theta'_{F(\Sigma)} \\ & \text{iff} & \langle \phi, \mathsf{T}_{\Sigma}^{\flat} \rangle \in \alpha_{\Sigma}^{-1}(\theta'_{F(\Sigma)}). \end{array}$$

Thus, $\top^{\flat}/\alpha^{-1}(\theta) = \top^{\flat}/\alpha^{-1}(\theta')$. Since K is abstract and $\mathcal{A}/\theta, \mathcal{A}/\theta' \in K$, we get that $\mathcal{F}/\alpha^{-1}(\theta), \mathcal{F}/\alpha^{-1}(\theta') \in K$. It follows that $\alpha^{-1}(\theta), \alpha^{-1}(\theta') \in \operatorname{ConSys}^{\mathsf{K}}(\mathcal{F})$. Since K is relatively point regular, by definition, $\alpha^{-1}(\theta) = \alpha^{-1}(\theta')$. Therefore, by surjectivity of $\langle F, \alpha \rangle, \theta = \theta'$.

Moreover, we can show that, for a protoalgebraic family regular π -institution \mathcal{I} , having natural theorems, the associated class AlgSys^{*}(\mathcal{I}) of its reduced algebraic systems is a relatively point regular class.

Proposition 1346 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a protoalgebraic family regular π -institution based on \mathbf{F} , having natural theorems. Then, the class AlgSys^{*}(\mathcal{I}) is a relatively point regular class of \mathbf{F} -algebraic systems.

Proof: We know, by Proposition 1344, that AlgSys^{*}(\mathcal{I}) is pointed, with any natural theorem T^{\flat} serving as a "point". Consider $\theta, \theta' \in \mathrm{ConSys}^{*}(\mathcal{I})$, such that $\mathsf{T}^{\flat}/\theta = \mathsf{T}^{\flat}/\theta'$. Since $\theta, \theta' \in \mathrm{ConSys}^{*}(\mathcal{I})$, there exist $T, T' \in \mathrm{ThFam}(\mathcal{I})$, such that $\theta = \Omega(T)$ and $\theta' = \Omega(T')$. But then, since \mathcal{I} is protoalgebraic and family regular, with theorems, we get, by Proposition 1342,

=
$$\Omega(T)$$

= $\Omega(\tau^{\flat}/\Omega(T))$ (Proposition 1342)
= $\Omega(\tau^{\flat}/\theta)$
= $\Omega(\tau^{\flat}/\theta')$ (hypothesis)
= $\Omega(\tau^{\flat}/\Omega(T'))$
= $\Omega(T')$ (Proposition 1342)
= θ' .

θ

Hence $\operatorname{AlgSys}^*(\mathcal{I})$ is indeed relatively point regular.

Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \rightarrow \mathrm{SEN}^{\flat}$ in N^{\flat} , and $\mathsf{K} \neq \mathsf{T}^{\flat}$ -pointed class of \mathbf{F} -algebraic systems. Define on \mathbf{F} the family $C^{\mathsf{K},\mathsf{T}} = \{C_{\Sigma}^{\mathsf{K},\mathsf{T}}\}_{\Sigma \in |\mathbf{Sign}^{\flat}|}$, by letting, for all $\Sigma \in |\mathbf{Sign}^{\flat}|$,

$$C_{\Sigma}^{\mathsf{K},\mathsf{T}}: \mathcal{P}(\operatorname{SEN}^{\flat}(\Sigma)) \to \mathcal{P}(\operatorname{SEN}^{\flat}(\Sigma)),$$

be given, for all $\Phi \cup \{\phi\} \subseteq SEN^{\flat}(\Sigma)$, by

$$\phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi) \quad \text{iff} \quad \phi \approx \mathsf{T}_{\Sigma}^{\flat} \in C_{\Sigma}^{\mathsf{K}}(\Phi \approx \mathsf{T}_{\Sigma}^{\flat}),$$

i.e., $\phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi)$ if and only if, for all $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle \in \mathsf{K}$, all $\Sigma' \in |\mathbf{Sign}^{\flat}|$ and all $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$,

$$\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\Phi)) \subseteq \{\mathsf{T}_{F(\Sigma')}^{\mathcal{A}}\} \quad \text{implies} \quad \alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\phi)) = \mathsf{T}_{F(\Sigma')}^{\mathcal{A}}.$$

In the next proposition, it is shown that $C^{\mathsf{K},\mathsf{T}}$ is a closure system on **F**. In this way the pointed class K of **F**-algebraic systems defines a bona fide π -institution based on **F**.

Proposition 1347 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a T^{\flat} -pointed class of \mathbf{F} -algebraic systems. $C^{\mathsf{K},\mathsf{T}}$ is a closure system on \mathbf{F} .

Proof: Let $\Sigma \in |\mathbf{Sign}^{\flat}|$. It is obvious from the definition that

$$C_{\Sigma}^{\mathsf{K},\mathsf{T}}:\mathcal{P}(\operatorname{SEN}^{\flat}(\Sigma))\to\mathcal{P}(\operatorname{SEN}^{\flat}(\Sigma))$$

is inflationary and monotone. To show that it is also idempotent, let $\Phi \cup \{\phi\} \subseteq$ SEN^b(Σ), such that $\phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi))$. Thus, we have, by definition, for all $\mathcal{A} \in \mathsf{K}$, all $\Sigma' \in |\mathbf{Sign}^{\flat}|$ and all $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$,

$$\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi))) \subseteq \{\mathsf{T}_{F(\Sigma')}^{\mathcal{A}}\} \quad \text{implies} \quad \alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\phi)) = \mathsf{T}_{F(\Sigma')}^{\mathcal{A}}.$$

But, also by definition, we have, for all $\Sigma' \in |\mathbf{Sign}^{\flat}|$ and all $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$, $\alpha_{\Sigma'}(\mathrm{SEN}^{\flat}(f)(\Phi)) \subseteq \{\mathsf{T}^{\mathcal{A}}_{F(\Sigma')}\}$ implies $\alpha_{\Sigma'}(\mathrm{SEN}^{\flat}(f)(C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi))) \subseteq \{\mathsf{T}^{\mathcal{A}}_{F(\Sigma')}\}.$ Therefore, we get that, for all $\Sigma' \in |\mathbf{Sign}^{\flat}|$ and all $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$,

$$\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\Phi)) \subseteq \{\mathsf{T}_{F(\Sigma')}^{\mathcal{A}}\} \quad \text{implies} \quad \alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\phi)) = \mathsf{T}_{F(\Sigma')}^{\mathcal{A}},$$

showing that $\phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi)$.

It remains, finally, to show that $C^{\mathsf{K},\mathsf{T}}$ is structural. Let $\Sigma, \Sigma' \in |\mathbf{Sign}^{\flat}|$, $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$ and $\Phi \cup \{\phi\} \subseteq \mathrm{SEN}^{\flat}(\Sigma)$, such that $\phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi)$. Consider $\mathcal{A} \in \mathsf{K}$, such that, for all $\Sigma'' \in |\mathbf{Sign}^{\flat}|$ and all $g \in \mathbf{Sign}^{\flat}(\Sigma', \Sigma'')$,

$$\Sigma \xrightarrow{f} \Sigma' \xrightarrow{g} \Sigma''$$

 $\alpha_{\Sigma''}(\operatorname{SEN}^{\flat}(g)(\operatorname{SEN}^{\flat}(f)(\Phi))) \subseteq \{\mathsf{T}_{F(\Sigma'')}^{\mathcal{A}}\}. \text{ This gives } \alpha_{\Sigma''}(\operatorname{SEN}^{\flat}(gf)(\Phi)) \subseteq \{\mathsf{T}_{F(\Sigma'')}^{\mathcal{A}}\}, \text{ whence, by hypothesis, } \alpha_{\Sigma''}(\operatorname{SEN}^{\flat}(gf)(\phi)) = \mathsf{T}_{F(\Sigma'')}^{\mathcal{A}}. \text{ Thus, for all } \Sigma'' \in |\operatorname{Sign}^{\flat}| \text{ and all } g \in \operatorname{Sign}^{\flat}(\Sigma', \Sigma''), \, \alpha_{\Sigma''}(\operatorname{SEN}^{\flat}(g)(\operatorname{SEN}^{\flat}(f)(\phi))) = \mathsf{T}_{F(\Sigma'')}^{\mathcal{A}}.$ We conclude that $\operatorname{SEN}^{\flat}(f)(\phi) \in C_{\Sigma'}^{\mathsf{K},\mathsf{T}}(\operatorname{SEN}^{\flat}(f)(\Phi)) \text{ and, therefore, } C^{\mathsf{K},\mathsf{T}} \text{ is also structural.}$

Based on Proposition 1347, it makes sense, given an algebraic system $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$, with $\top^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a \top^{\flat} -pointed class of **F**-algebraic systems, to define the **assertional** π -institution of K as the pair

$$\mathcal{I}^{\mathsf{K},\mathsf{T}} = \langle \mathbf{F}, C^{\mathsf{K},\mathsf{T}} \rangle.$$

We have seen in Proposition 1346 that, if $\mathcal{I} = \langle \mathbf{F}, C \rangle$ is a protoalgebraic and family regular π -institution, having natural theorems, then its class AlgSys^{*}(\mathcal{I}) of reduced **F**-algebraic systems is a relatively point regular class. We show next, in a form of converse, that if K is a relatively point regular guasivariety of **F**-algebraic systems, then the assertional π -institution $\mathcal{I}^{\mathsf{K},\mathsf{T}}$, associated with K, is a protoalgebraic family regular π -institution that has natural theorems.

First, we establish possession of natural theorems, under the assumption that ${\sf K}$ is pointed.

Proposition 1348 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a pointed class of \mathbf{F} -algebraic systems. Then $\mathcal{I}^{\mathsf{K},\mathsf{T}}$ has natural theorems.

Proof: Let K be a pointed class of **F**-algebraic systems. Since K is pointed, there exists $\mathsf{T}^{\flat} : (\operatorname{SEN}^{\flat})^k \to \operatorname{SEN}^{\flat}$ in N^{\flat} , such that, for all $\Sigma \in |\operatorname{Sign}^{\flat}|$ and all $\vec{\phi} \in \operatorname{SEN}^{\flat}(\Sigma)$, all $\Sigma' \in |\operatorname{Sign}^{\flat}|$ and all $f \in \operatorname{Sign}^{\flat}(\Sigma, \Sigma')$,

$$\mathsf{T}^{\mathcal{A}}_{F(\Sigma')}(\alpha_{\Sigma'}(\operatorname{SEN}^{\flat}(f)(\vec{\phi}))) = \mathsf{T}^{\mathcal{A}}_{F(\Sigma')}$$

This implies that $\alpha_{\Sigma'}(\mathsf{T}^{\flat}_{\Sigma'}(\mathrm{SEN}^{\flat}(f)(\vec{\phi}))) = \mathsf{T}^{\mathcal{A}}_{F(\Sigma')}$ and, hence, we obtain $\alpha_{\Sigma'}(\mathrm{SEN}^{\flat}(f)(\mathsf{T}^{\flat}_{\Sigma}(\vec{\phi}))) = \mathsf{T}^{\mathcal{A}}_{F(\Sigma')}$. Thus, by definition, $\mathsf{T}^{\flat}_{\Sigma}(\vec{\phi}) \in C^{\mathsf{K},\mathsf{T}}_{\Sigma}(\emptyset)$ and, therefore, T^{\flat} is a natural theorem.

Next, we turn to proving family regularity, again under the assumption of pointedness.

Proposition 1349 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a pointed class of \mathbf{F} -algebraic systems. Then $\mathcal{I}^{\mathsf{K},\mathsf{T}}$ is a family regular π -institution.

Proof: Let K be a pointed class of **F**-algebraic systems. We know, by Proposition 1348, that $\mathcal{I}^{K,T}$ has a natural theorem T^{\flat} , where T^{\flat} is a point

in K. We show that $\mathcal{I}^{\mathsf{K},\mathsf{T}}$ is family regular. To this end, let $\Sigma \in |\mathbf{Sign}^{\flat}|$ and $\phi, \psi \in \mathrm{SEN}^{\flat}(\Sigma)$. Then, for all $\Sigma' \in |\mathbf{Sign}^{\flat}|$ and $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$, we have

$$\operatorname{SEN}^{\flat}(f)(\phi) \approx \operatorname{T}^{\flat}_{\Sigma'}, \operatorname{SEN}^{\flat}(f)(\psi) \approx \operatorname{T}^{\flat}_{\Sigma'} \in C^{\mathsf{K}}_{\Sigma'}(\phi \approx \operatorname{T}^{\flat}_{\Sigma}, \psi \approx \operatorname{T}^{\flat}_{\Sigma}).$$

This implies that, for all σ^{\flat} in N^{\flat} and all $\vec{\chi} \in \text{SEN}^{\flat}(\Sigma')$,

$$\sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\phi),\vec{\chi}) \approx \sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\psi),\vec{\chi}) \in C_{\Sigma'}^{\mathsf{K}}(\phi \approx \mathsf{T}_{\Sigma}^{\flat},\psi \approx \mathsf{T}_{\Sigma}^{\flat}).$$

Now we get

$$\begin{aligned} \sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\phi),\vec{\chi}) &\approx \mathsf{T}_{\Sigma'}^{\flat} \in C_{\Sigma'}^{\mathsf{K}}(\phi \approx \mathsf{T}_{\Sigma}^{\flat},\psi \approx \mathsf{T}_{\Sigma}^{\flat}) \\ & \text{iff} \quad \sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\psi),\vec{\chi}) \approx \mathsf{T}_{\Sigma'}^{\flat} \in C_{\Sigma'}^{\mathsf{K}}(\phi \approx \mathsf{T}_{\Sigma}^{\flat},\psi \approx \mathsf{T}_{\Sigma}^{\flat}). \end{aligned}$$

Hence, by definition,

$$\sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\phi), \vec{\chi}) \in C_{\Sigma'}^{\mathsf{K}, \mathsf{T}}(\phi, \psi)$$

iff $\sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\psi), \vec{\chi}) \in C_{\Sigma'}^{\mathsf{K}, \mathsf{T}}(\phi, \psi)$

Therefore, by Theorem 19, $\langle \phi, \psi \rangle \in \Omega_{\Sigma}(C(\phi, \psi))$.

Before establishing protoalgebraicity, we need a couple of lemmas. We show, first, that, if K is a pointed class, then all theory families of $\mathcal{I}^{K,T}$ are fully determined by the corresponding Leibniz class of the point.

Lemma 1350 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with a natural transformation $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a pointed class of \mathbf{F} -algebraic systems. Then, for all $T \in \mathrm{ThFam}(\mathcal{I}^{\mathsf{K},\mathsf{T}})$,

$$T = \mathsf{T}^{\flat}/\Omega(T).$$

Proof: Let K be a pointed class of **F**-algebraic systems, $T \in \text{ThFam}(\mathcal{I}^{\mathsf{K},\mathsf{T}})$, $\Sigma \in |\mathbf{Sign}^{\flat}|$ and $\phi \in \text{SEN}^{\flat}(\Sigma)$.

- Suppose $\phi \in \mathsf{T}^{\flat}_{\Sigma}/\Omega_{\Sigma}(T)$. This means that $\langle \phi, \mathsf{T}^{\flat}_{\Sigma} \rangle \in \Omega_{\Sigma}(T)$. But, by definition, $\mathsf{T}^{\flat}_{\Sigma} \in \mathrm{Thm}_{\Sigma}(\mathcal{I}^{\mathsf{K},\mathsf{T}}) \subseteq T_{\Sigma}$, whence, by the compatibility property of $\Omega(T)$ with T, we get that $\phi \in T_{\Sigma}$.
- Suppose $\phi \in T_{\Sigma}$. Then $\phi \approx \mathsf{T}_{\Sigma}^{\flat} \in C_{\Sigma}^{\mathsf{K}}(T \approx \mathsf{T}^{\flat})$. This implies that, for all σ^{\flat} in N^{\flat} , all $\Sigma' \in |\mathbf{Sign}^{\flat}|$, all $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$, and all $\vec{\chi} \in \mathrm{SEN}^{\flat}(\Sigma')$,

$$\sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\phi), \vec{\chi}) \approx \mathsf{T}_{\Sigma'}^{\flat} \in C_{\Sigma'}^{\mathsf{K}}(T \approx \mathsf{T}^{\flat})$$

iff $\sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\mathsf{T}_{\Sigma}^{\flat}), \vec{\chi}) \approx \mathsf{T}_{\Sigma'}^{\flat} \in C_{\Sigma'}^{\mathsf{K}}(T \approx \mathsf{T}^{\flat}).$

This is, by definition, equivalent to the statement that, for all σ^{\flat} in N^{\flat} , all $\Sigma' \in |\mathbf{Sign}^{\flat}|$, all $f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma')$, and all $\vec{\chi} \in \mathrm{SEN}^{\flat}(\Sigma')$,

$$\sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\phi), \vec{\chi}) \in C_{\Sigma'}^{\mathsf{K}, \mathsf{T}}(T) \quad \text{iff} \quad \sigma_{\Sigma'}^{\flat}(\operatorname{SEN}^{\flat}(f)(\mathsf{T}_{\Sigma}^{\flat}), \vec{\chi}) \in C_{\Sigma'}^{\mathsf{K}, \mathsf{T}}(T).$$

We conclude that $\langle \phi, \mathsf{T}_{\Sigma}^{\flat} \rangle \in \Omega_{\Sigma}(T)$, i.e., that $\phi \in \mathsf{T}_{\Sigma}^{\flat}/\Omega_{\Sigma}(T)$.

Thus, we get that $T = T^{\flat}/\Omega(T)$.

Next, we show that, if K is a relatively point regular guasivariety, then, for every theory family of $\mathcal{I}^{\mathsf{K},\mathsf{T}}$, the quotient of \mathcal{F} by the Leibniz congruence system of T, belongs to K and, therefore, for every theory family T of $\mathcal{I}^{\mathsf{K},\mathsf{T}}$, the Leibniz congruence system $\Omega(T)$ is a K-congruence system on \mathcal{F} .

Lemma 1351 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with a natural transformation $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a relatively point regular guasivariety of \mathbf{F} -algebraic systems. Then, for all $T \in \mathrm{ThFam}(\mathcal{I}^{\mathsf{K},\mathsf{T}})$, $\mathcal{F}/\Omega(T) \in \mathsf{K}$.

Proof: Suppose that K is a relatively point regular guasivariety of **F**-algebraic systems and let $\Sigma \in |\mathbf{Sign}^{\flat}|, \phi_i, \psi_i \in \mathrm{SEN}^{\flat}(\Sigma), i \in I, \phi, \psi \in \mathrm{SEN}^{\flat}(\Sigma)$, such that

$$\langle \{\phi_i \approx \psi_i : i \in I\}, \phi \approx \psi \rangle \in \operatorname{GEq}_{\Sigma}(\mathsf{K}).$$

This is equivalent to the statement $\langle \phi, \psi \rangle \in \Theta_{\Sigma}^{\mathsf{K},\mathcal{F}}(\{\langle \phi_i, \psi_i \rangle : i \in I\})$. Since $\Theta^{\mathsf{K},\mathcal{F}}(\{\langle \phi_i, \psi_i \rangle : i \in I\}) \in \mathrm{ConSys}^{\mathsf{K}}(\mathcal{F})$ and K is relatively point regular, $\Theta^{\mathsf{K},\mathcal{F}}(\{\langle \phi_i, \psi_i \rangle : i \in I\})$ is completely determined by its T^{\flat} -equivalence class. So it suffices to consider guasiequations of the form

$$\langle \{ \phi_i \approx \mathsf{T}_{\Sigma}^{\flat} : i \in I \}, \phi \approx \mathsf{T}_{\Sigma}^{\flat} \rangle \in \operatorname{GEq}_{\Sigma}(\mathsf{K}).$$

Now, let $T \in \text{ThFam}(\mathcal{I}^{\mathsf{K},\mathsf{T}})$, such that $\langle \phi_i, \mathsf{T}_{\Sigma}^{\flat} \rangle \in \Omega_{\Sigma}(T)$, for all $i \in I$. Then, taking into account Lemma 1350, $\phi_i \in \mathsf{T}_{\Sigma}^{\flat}/\Omega_{\Sigma}(T) = T_{\Sigma}$, for all $i \in I$. Therefore, by definition, $\phi_i \approx \mathsf{T}_{\Sigma}^{\flat} \in C_{\Sigma}^{\mathsf{K}}(T \approx \mathsf{T}^{\flat})$, for all $i \in I$. Since, by hypothesis, $\langle \{\phi_i \approx \mathsf{T}_{\Sigma}^{\flat} : i \in I\}, \phi \approx \mathsf{T}_{\Sigma}^{\flat} \rangle \in \text{GEq}_{\Sigma}(\mathsf{K})$, we get $\phi \approx \mathsf{T}_{\Sigma}^{\flat} \in C_{\Sigma}^{\mathsf{K}}(T \approx \mathsf{T}^{\flat})$, i.e., $\phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(T)$. Since $T \in \text{ThFam}(\mathcal{I}^{\mathsf{K},\mathsf{T}}), \phi \in T_{\Sigma} = \mathsf{T}_{\Sigma}^{\flat}/\Omega_{\Sigma}(T)$. Therefore, $\langle \phi, \mathsf{T}_{\Sigma}^{\flat} \rangle \in \Omega_{\Sigma}(T)$. We conclude that $\mathcal{F}/\Omega(T)$ satisfies all guasiequations of K and, hence, since K is a guasivariety, $\mathcal{F}/\Omega(T) \in \mathsf{K}$.

Finally, we establish protoalgebraicity of $\mathcal{I}^{K,\tau}$, under the hypotheses that K is a relatively point regular guasivariety of **F**-algebraic systems.

Proposition 1352 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a relatively point regular guasivariety of \mathbf{F} -algebraic systems. Then $\mathcal{I}^{\mathsf{K},\mathsf{T}}$ is a protoalgebraic π -institution.

Proof: Let K be a relatively point regular guasivariety of **F**-algebraic systems. We know, by Proposition 1348, that $\mathcal{I}^{K,T}$ has a natural theorem T^{\flat} , where T^{\flat} is a point in K, and, by Proposition 1349, that $\mathcal{I}^{K,T}$ is a family regular π -institution.

Now we show that $\mathcal{I}^{\mathsf{K},\mathsf{T}}$ is protoalgebraic. Suppose that $T, T' \in \mathrm{ThFam}(\mathcal{I})$, such that $T \leq T'$. Then, by Lemma 1350, we get $\mathsf{T}^{\flat}/\Omega(T) \leq \mathsf{T}^{\flat}/\Omega(T')$. Since, by Lemma 1351, $\Omega(T)$ and $\Omega(T')$ are K-congruence systems on \mathcal{F} and K is

relatively point regular, they are completely determined (generated) by their T^{\flat} -classes and, hence, we get $\Omega(T) \leq \Omega(T')$. Thus, $\mathcal{I}^{\mathsf{K},\mathsf{T}}$ is protoalgebraic.

We show, next, that, for a protoalgebraic family regular π -institution \mathcal{I} , having natural theorems, the assertional π -institution of its class AlgSys^{*}(\mathcal{I}) of reduced **F**-algebraic systems coincides with \mathcal{I} .

Theorem 1353 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a family regular protoalgebraic π -institution based on \mathbf{F} , having a natural theorem \intercal . Then

$$\mathcal{I}^{\mathrm{AlgSys}^*(\mathcal{I}),\mathsf{T}} = \mathcal{I}.$$

Proof: Set, for brevity in the course of this proof, $\mathsf{K} \coloneqq \operatorname{AlgSys}^*(\mathcal{I})$. Let $\Sigma \in |\operatorname{Sign}^{\flat}|$ and $\Phi \cup \{\phi\} \subseteq \operatorname{SEN}^{\flat}(\Sigma)$. Then

$$\begin{split} \phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi) & \text{iff} \quad \phi \approx \mathsf{T}_{\Sigma}^{\flat} \in C_{\Sigma}^{\mathsf{K}}(\Phi \approx \mathsf{T}_{\Sigma}^{\flat}) \\ & \text{iff} \quad \text{for all } T \in \mathrm{ThFam}(\mathcal{I}), \Sigma' \in |\mathbf{Sign}^{\flat}|, f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma'), \\ & \mathrm{SEN}^{\flat}(f)(\Phi) \approx \mathsf{T}_{\Sigma'}^{\flat} \in \Omega_{\Sigma'}(T) \\ & \text{implies } \mathrm{SEN}^{\flat}(f)(\phi) \approx \mathsf{T}_{\Sigma'}^{\flat} \in \Omega_{\Sigma'}(T) \\ & \text{iff} \quad \text{for all } T \in \mathrm{ThFam}(\mathcal{I}), \Sigma' \in |\mathbf{Sign}^{\flat}|, f \in \mathbf{Sign}^{\flat}(\Sigma, \Sigma'), \\ & \mathrm{SEN}^{\flat}(f)(\Phi) \in T_{\Sigma'} \text{ implies } \mathrm{SEN}^{\flat}(f)(\phi) \in T_{\Sigma'} \\ & \text{iff} \quad \phi \in C_{\Sigma}(\Phi). \end{split}$$

We conclude that $C^{\mathsf{K},\mathsf{T}} = C$ and, therefore, $\mathcal{I}^{\mathrm{AlgSys}^*(\mathcal{I}),\mathsf{T}} = \mathcal{I}$.

Moreover, starting with a relatively point regular guasivariety of **F**-algebraic systems, the class of all reduced **F**-algebraic systems of its assertional π -institution coincides with the original class.

Theorem 1354 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} , and K a relatively point regular guasivariety of \mathbf{F} -algebraic systems. Then

$$\operatorname{AlgSys}^{*}(\mathcal{I}^{\mathsf{K},\mathsf{T}}) = \mathsf{K}.$$

Proof: Let K be a relatively point regular guasivariety of **F**-algebraic systems. Assume that $\mathcal{A} \in \mathsf{K}$ and consider $\{\mathsf{T}^{\mathcal{A}}\} := \{\mathsf{T}^{\mathcal{A}}_{\Sigma}\}_{\Sigma \in |\mathbf{Sign}|} \in \mathrm{SenFam}(\mathcal{A})$. Then, for all $\Sigma \in |\mathbf{Sign}^{\flat}|$, all $\Phi \cup \{\phi\} \subseteq \mathrm{SEN}^{\flat}(\Sigma)$, such that $\phi \in C_{\Sigma}^{\mathsf{K},\mathsf{T}}(\Phi)$ and $\alpha_{\Sigma}(\Phi) \subseteq \{\mathsf{T}^{\mathcal{A}}_{F(\Sigma)}\}$, we get, by the definition of $C^{\mathsf{K},\mathsf{T}}$, $\alpha_{\Sigma}(\phi) = \mathsf{T}^{\mathcal{A}}_{F(\Sigma)}$. Therefore, $\{\mathsf{T}^{\mathcal{A}}\} \in \mathrm{ThFam}(\mathcal{I}^{\mathsf{K},\mathsf{T}})$. Moreover, for all $\Sigma \in |\mathbf{Sign}|$ and all $\phi \in \mathrm{SEN}(\Sigma)$,

$$\langle \phi, \mathsf{T}_{\Sigma}^{\mathcal{A}} \rangle \in \Omega_{\Sigma}^{\mathcal{A}}(\{\mathsf{T}^{\mathcal{A}}\})$$
 iff $\phi = \mathsf{T}_{\Sigma}^{\mathcal{A}}$ (Lemma 1350)
iff $\langle \phi, \mathsf{T}_{\Sigma}^{\mathcal{A}} \rangle \in \Delta_{\Sigma}^{\mathcal{A}}$.

Thus, $\top^{\mathcal{A}}/\Omega^{\mathcal{A}}(\{\top^{\mathcal{A}}\}) = \top^{\mathcal{A}}/\Delta^{\mathcal{A}}$. Therefore, by relative point regularity, we obtain $\Omega^{\mathcal{A}}(\{\top^{\mathcal{A}}\}) = \Delta^{\mathcal{A}}$. This yields $\mathcal{A} \in \operatorname{AlgSys}^{*}(\mathcal{I}^{\mathsf{K},\top})$.

Assume, conversely, that $\mathcal{A} \in \operatorname{AlgSys}^*(\mathcal{I}^{\mathsf{K},\mathsf{T}})$. Then, by definition, there exists $T \in \operatorname{FiFam}^{\mathcal{I}^{\mathsf{K},\mathsf{T}}}(\mathcal{A})$, such that $\Omega^{\mathcal{A}}(T) = \Delta^{\mathcal{A}}$. Suppose that $\Sigma \in |\operatorname{Sign}^{\flat}|$, $\Phi \cup \{\phi\} \subseteq \operatorname{SEN}^{\flat}(\Sigma)$, such that

$$\langle \Phi \approx \mathsf{T}_{\Sigma}^{\flat}, \phi \approx \mathsf{T}_{\Sigma}^{\flat} \rangle \in \operatorname{GEq}_{\Sigma}(\mathsf{K})$$

and $\alpha_{\Sigma}(\Phi) \subseteq \{\mathsf{T}_{F(\Sigma)}^{\mathcal{A}}\}$. Then, since $T \in \mathrm{FiFam}^{\mathcal{I}^{\mathsf{K},\mathsf{T}}}(\mathcal{A}), \ \alpha_{\Sigma}(\Phi) \subseteq T_{F(\Sigma)}$. Hence, $\Phi \subseteq \alpha_{\Sigma}^{-1}(T_{F(\Sigma)})$. Since $T \in \mathrm{ThFam}^{\mathcal{I}^{\mathsf{K},\mathsf{T}}}(\mathcal{A})$, by Lemma 51, $\alpha^{-1}(T) \in \mathrm{ThFam}(\mathcal{I}^{\mathsf{K},\mathsf{T}})$, whence, by Lemma 1350, $\alpha^{-1}(T) = \mathsf{T}^{\flat}/\Omega(\alpha^{-1}(T))$. Thus, we get $\Phi \subseteq \mathsf{T}_{\Sigma}^{\flat}/\Omega_{\Sigma}(\alpha^{-1}(T))$. Hence, $\Phi \approx \mathsf{T}_{\Sigma}^{\flat} \in \Omega_{\Sigma}(\alpha^{-1}(T))$. By Lemma 1351, $\Omega(\alpha^{-1}(T)) \in \mathrm{ConSys}^{\mathsf{K}}(\mathcal{F})$, whence, since $\langle \Phi \approx \mathsf{T}_{\Sigma}^{\flat}, \phi \approx \mathsf{T}_{\Sigma}^{\flat} \rangle \in \mathrm{GEq}_{\Sigma}(\mathsf{K})$, $\phi \approx \mathsf{T}_{\Sigma}^{\flat} \in \Omega_{\Sigma}(\alpha^{-1}(T))$. By Proposition 24, $\phi \approx \mathsf{T}_{\Sigma}^{\flat} \in \alpha_{\Sigma}^{-1}(\Omega_{F(\Sigma)}^{\mathcal{A}}(T))$, i.e., $\alpha_{\Sigma}(\phi) \approx \mathsf{T}_{F(\Sigma)}^{\mathcal{A}} \in \Omega_{F(\Sigma)}^{\mathcal{A}}(T) = \Delta_{F(\Sigma)}^{\mathcal{A}}$. Thus, $\alpha_{\Sigma}(\phi) = \mathsf{T}_{F(\Sigma)}^{\mathcal{A}}$. We conclude that $\langle \Phi \approx \mathsf{T}_{\Sigma}^{\flat}, \phi \approx \mathsf{T}_{\Sigma}^{\flat} \rangle \in \mathrm{GEq}_{\Sigma}(\mathcal{A})$. Since \mathcal{A} satisfies all guasiequations in GEq(\mathsf{K}) and \mathsf{K} is, by hypothesis, a guasivariety, we get that $\mathcal{A} \in \mathsf{K}$. Therefore, AlgSys^{*}($\mathcal{I}^{\mathsf{K},\mathsf{T}}$) = K .

Now we can formulate the main theorems of the section.

Theorem 1355 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} . \mathcal{I} is protoalgebraic family regular, with natural theorems, if and only if it is the assertional π -institution of a relatively point regular guasivariety of \mathbf{F} -algebraic systems.

More precisely, \mathcal{I} is protoalgebraic family regular, with natural theorems, if and only if AlgSys^{*}(\mathcal{I}) is a relatively point regular guasivariety and $\mathcal{I} = \mathcal{I}^{AlgSys^*(\mathcal{I}), \mathsf{T}}$, where T^{\flat} is any natural theorem.

Proof: Suppose \mathcal{I} is protoalgebraic family regular, with natural theorems. Then, by Proposition 1346, AlgSys^{*}(\mathcal{I}) is a relatively point regular class of **F**-algebraic systems and, by protoalgebraicity, Proposition 68 and Theorem ??, it is a guasivariety. Moreover, by Theorem 1353, $\mathcal{I} = \mathcal{I}^{\text{AlgSys}^*(\mathcal{I}), \intercal}$.

Assume, conversely, that $\mathcal{I}^{\mathsf{K},\mathsf{T}}$ is the assertional π -institution of a relatively point regular guasivariety K of \mathbf{F} -algebraic systems. Then, by Proposition 1349, it is family regular, by Proposition 1352, it is protoalgebraic and, by Proposition 1348, it has natural theorems.

Theorem 1356 Let $\mathbf{F} = \langle \mathbf{Sign}^{\flat}, \mathrm{SEN}^{\flat}, N^{\flat} \rangle$ be an algebraic system, with $\mathsf{T}^{\flat} : (\mathrm{SEN}^{\flat})^k \to \mathrm{SEN}^{\flat}$ in N^{\flat} . Then, there exists a one to one correspondence between relatively point regular guasivarieties, with point T^{\flat} , and family regular protoalgebraic π -institutions, with a natural theorem T^{\flat} .

Every relatively point regular guasivariety with point \top^{\flat} determines a unique family regular protoalgebraic π -institution with natural theorems, its assertional π -institution.

Every family regular protoalgebraic π -institution with natural theorems is the assertional π -institution of a unique relatively point regular guasivariety, the guasivariety AlgSys^{*}(\mathcal{I}) of all its reduced **F**-algebraic systems.

For each family regular protoalgebraic π -institution, with a natural theorem T^{\flat} , we have $\mathcal{I} = \mathcal{I}^{\mathrm{AlgSys}^*(\mathcal{I}),\mathsf{T}}$ and, conversely, for every relatively point regular guasivariety K, with point T^{\flat} , we have $\mathsf{K} = \mathrm{AlgSys}^*(\mathcal{I}^{\mathsf{K},\mathsf{T}})$.

Proof: This is a recap of Theorems 1353 and 1354.