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19.1 π-Structures Revisited

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. An N ♭-structure is
a pair IL = ⟨A,D⟩, where A = ⟨Sign,SEN,N⟩ is an N ♭-algebraic system and
D ∶ PSEN → PSEN is a closure (operator) family (not necessarily a system,
i.e., not necessarily structural) on A. An F-structure is a pair IL = ⟨A,D⟩,
where A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system and D ∶ PSEN → PSEN is a
closure family on A.

We give a condition pinpointing exactly when a closure family is a closure
system and, as a consequence, when a π-structure becomes a π-institution.

Proposition 1357 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and D ∶
PSEN → PSEN a closure family on SEN. Then D is a closure system, if and
only if, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), SEN(f)−1(DΣ′) ⊆ DΣ.

Proof: Suppose, first, that D is structural and let Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′), X ′ ⊆ SEN(Σ′), such that DΣ′(X ′) =X ′. Then we have

SEN(f)(DΣ(SEN(f)−1(X ′))) ⊆ DΣ′(SEN(f)(SEN(f)−1(X ′)))
⊆ DΣ′(X ′)
= X ′.

So DΣ(SEN(f)−1(X ′)) ⊆ SEN(f)−1(X ′) and SEN(f)−1(X ′) ∈ DΣ.
Suppose, conversely, that, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)−1(DΣ′) ⊆ DΣ. Let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and Φ ∪ {φ} ⊆
SEN(Σ), such that φ ∈ DΣ(Φ). Let T ′ ∈ DΣ′ , such that SEN(f)(Φ) ⊆ T ′.
Thus, Φ ⊆ SEN(f)−1(T ′). By hypothesis, SEN(f)−1(T ′) ∈ DΣ, whence, since
φ ∈DΣ(Φ) and Φ ⊆ SEN(f)−1(T ′), we get that φ ∈ SEN(f)−1(T ′) and, there-
fore, SEN(f)(φ) ∈ T ′. We conclude that SEN(f)(φ) ∈ DΣ′(SEN(f)(Φ)).
Thus, D is a structural closure family on SEN. ∎

Let IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic
system morphism ⟨F,α⟩ ∶ A→A′. We say that

⟨F,α⟩ is a logical morphism from IL to IL′ , denoted ⟨F,α⟩ ∶ IL⟩−IL′,
if, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) implies αΣ(φ) ∈D′F (Σ)(αΣ(Φ)),
or, equivalently, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),

αΣ(DΣ(Φ)) ⊆D′F (Σ)(αΣ(Φ)).
Proposition 1358 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic system morphism⟨F,α⟩ ∶ A→A′. ⟨F,α⟩ ∶ IL⟩−IL′ is a logical morphism if and only if, for every
T ′ ∈ ThFam(IL′), α−1(T ′) ∈ ThFam(IL).
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Proof: Suppose, first, that ⟨F,α⟩ ∶ IL⟩−IL′ is a logical morphism and let
T ′ ∈ ThFam(IL′), Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ DΣ(α−1Σ (T ′F (Σ))).
Then, we have

αΣ(φ) ∈ αΣ(DΣ(α−1Σ (T ′F (Σ))))
⊆ D′

F (Σ)
(αΣ(α−1Σ (T ′F (Σ))))

⊆ D′
F (Σ)
(T ′

F (Σ)
)

= T ′
F (Σ)

.

Therefore, φ ∈ α−1Σ (T ′F (Σ)) and we conclude that α−1(T ′) ∈ ThFam(IL).
Suppose, conversely, that, for every T ′ ∈ ThFam(IL′), we have α−1(T ′) ∈

ThFam(IL) and let Σ ∈ ∣Sign∣, Φ∪{φ} ⊆ SEN(Σ), such that φ ∈DΣ(Φ). Then,
for all T ′ ∈ ThFam(IL′), such that αΣ(Φ) ⊆ T ′F (Σ), we get Φ ⊆ α−1Σ (T ′F (Σ)).
Since φ ∈ DΣ(Φ) and, by hypothesis, α−1(T ) ∈ ThFam(IL), we get φ ∈
α−1Σ (T ′F (Σ)). Hence, αΣ(φ) ∈ T ′F (Σ). Since T ′ ∈ ThFam(IL′) was arbitrary,

we conclude that αΣ(φ) ∈ D′F (Σ)(αΣ(Φ)). Thus, ⟨F,α⟩ ∶ IL⟩−IL′ is a logical
morphism. ∎

Let IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic
system morphism ⟨F,α⟩ ∶ A→A′. We say that

⟨F,α⟩ is a bilogical morphism from IL to IL′ , denoted ⟨F,α⟩ ∶ IL ⊢
IL′, if ⟨F,α⟩ ∶ A → A′ is surjective and, for all Σ ∈ ∣Sign∣ and all
Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ)),
or, equivalently, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),

αΣ(DΣ(Φ)) = D′F (Σ)(αΣ(Φ)).
Proposition 1359 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩, and consider a surjective N ♭-algebraic system
morphism ⟨F,α⟩ ∶ A → A′. ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism if and
only if ThFam(IL) = α−1(ThFam(IL′)).
Proof: Suppose, first, that ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism. Then,
by Proposition 1358, if T ′ ∈ ThFam(IL′), then α−1(T ′) ∈ ThFam(IL), whence
α−1(ThFam(IL′)) ⊆ ThFam(IL). To show the converse, suppose that T ∈
ThFam(IL). For every Σ′ ∈ ∣Sign′∣, choose Σ ∈ ∣Sign∣, such that F (Σ) = Σ′

and let T ′Σ′ =D
′
Σ′(αΣ(TΣ)). Then set

T ′ = {T ′Σ′}Σ′∈∣Sign′∣.
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Clearly, T ′ ∈ ThFam(IL′) and, since ⟨F,α⟩ is a bilogical morphism, α−1(T ′) ∈
ThFam(IL). But we also have. for all Σ ∈ ∣Sign∣,

α−1Σ (T ′F (Σ)) = α−1Σ (D′F (Σ)(αΣ(TΣ))) = DΣ(TΣ) = TΣ.
Therefore, we conclude that ThFam(IL) ⊆ α−1(ThFam(IL′)).

Suppose, conversely, that ThFam(IL) = α−1(ThFam(IL′)) and let Σ ∈∣Sign∣, Φ ∪ {φ} ⊆ SEN(Σ). We have φ ∈ DΣ(Φ) iff, for all T ∈ ThFam(IL),
Φ ⊆ TΣ implies φ ∈ TΣ,

iff, for all T ′ ∈ ThFam(IL′),
Φ ⊆ α−1Σ (T ′F (Σ)) implies φ ∈ α−1Σ (T ′F (Σ)),

iff, for all T ′ ∈ ThFam(IL′),
αΣ(Φ) ⊆ T ′F (Σ) implies αΣ(φ) ∈ T ′F (Σ),

iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ)). Therefore, ⟨F,α⟩ is a bilogical morphism. ∎

Let IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic
system morphism ⟨F,α⟩ ∶ A→A′. We say that

⟨F,α⟩ is an α-isomorphism from IL to IL′ , denoted ⟨F,α⟩ ∶ IL ⊢α IL′,
if it is a bilogical morphism ⟨F,α⟩ ∶ IL ⊢ IL′, such that, for all Σ ∈ ∣Sign∣,
αΣ ∶ SEN(Σ)→ SEN′(F (Σ)) is a bijection.

Finally, ⟨F,α⟩ ∶ IL → IL′ is an isomorphism, denoted ⟨F,α⟩ ∶ IL ≅ IL′, if it is
an α-isomorphism and F ∶ Sign→ Sign′ is also an isomorphism.

In most instances, when a result holds for F ∶ Sign → Sign′ an isomor-
phism, we will formulate it, for simplicity, for the identity functor ISign ∶
Sign → Sign, which will be sufficient for most of our purposes.

The following is an important characterization result for bilogical mor-
phisms containing many equivalent formulations.

Given an N ♭-structure IL = ⟨A,D⟩, a congruence system θ ∈ ConSys(A)
is called a logical congruence system of IL if it is compatible with every
theory family of IL, i.e., if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ θΣ implies DΣ(φ) = DΣ(ψ).
If this is the case, we write θ ∈ ConSys(IL).
Proposition 1360 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩, and consider a surjective N ♭-algebraic system
morphism ⟨F,α⟩ ∶ A→A′. Then the following are equivalent:
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(i) ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism;

(ii) For all Σ ∈ ∣Sign∣, Φ ⊆ SEN(Σ), DΣ(Φ) = α−1Σ (D′F (Σ)(αΣ(Φ)));
(iii) For all Σ ∈ ∣Sign∣, Φ ⊆ SEN(Σ), αΣ(DΣ(Φ)) = D′F (Σ)(αΣ(Φ)) and

Ker(⟨F,α⟩) ∈ ConSys(IL);
(iv) For all Σ ∈ ∣Sign∣, Ψ ⊆ SEN′(F (Σ)), D′

F (Σ)
(Ψ) = αΣ(DΣ(α−1Σ (Ψ))) and

Ker(⟨F,α⟩) ∈ ConSys(IL);
(v) For all Σ ∈ ∣Sign∣, ThF (Σ)(IL′) = αΣ(ThΣ(IL)) and, also, Ker(⟨F,α⟩) ∈

ConSys(IL);
(vi) ThFam(IL) = α−1(ThFam(IL′)).

Proof:

(i)⇒(ii) Suppose ⟨F,α⟩ ∶ IL ⊢ IL′ and let Σ ∈ ∣Sign∣, Φ ∪ {φ} ⊆ SEN(Σ). Then,
we have

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ))
iff φ ∈ α−1Σ (D′F (Σ)(αΣ(Φ))).

We conclude that DΣ(Φ) = α−1Σ (D′F (Σ)(αΣ(Φ))).
(ii)⇒(iii) Let Σ ∈ ∣Sign∣ and Φ ⊆ SEN(Σ). Then, by the hypothesis (ii), DΣ(Φ) =

α−1Σ (D′F (Σ)(αΣ(Φ))), whence, by surjectivity of ⟨F,α⟩, αΣ(DΣ(Φ)) =
D′
F (Σ)
(αΣ(Φ)). For the second claim, suppose Σ ∈ ∣Sign∣ and φ,ψ ∈

SEN(Σ), such that αΣ(φ) = αΣ(ψ). Then

α−1Σ (D′F (Σ)(αΣ(φ))) = α−1Σ (D′F (Σ)(αΣ(ψ))).
Thus, by hypothesis, DΣ(φ) = DΣ(ψ). It follows that Ker(⟨F,α⟩) is a
logical congruence system of IL.

(iii)⇒(iv) Let Σ ∈ ∣Sign∣ and Ψ ∈ SEN′(F (Σ)). Then we have

D′
F (Σ)
(Ψ) = D′

F (Σ)
(αΣ(α−1Σ (Ψ)))

= αΣ(DΣ(α−1Σ (Ψ))).
(iv)⇒(v) Let Σ ∈ ∣Sign∣ and assume, first, that T ′ ∈ ThF (Σ)(IL′). Then, we have

T ′ =D′F (Σ)(T ′) = αΣ(DΣ(α−1Σ (T ′))) ∈ αΣ(ThΣ(IL)).
Suppose, conversely, that T ∈ ThΣ(IL). Then, we have

D′
F (Σ)
(αΣ(T )) = αΣ(DΣ(α−1Σ (αΣ(T ))))

= αΣ(DΣ(T ))
= αΣ(T ).

Therefore, αΣ(T ) ∈ ThF (Σ)(IL′).
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(v)⇒(vi) It suffices to show that, for all Σ ∈ ∣Sign∣, ThΣ(IL) = α−1Σ (ThF (Σ)(IL′)).
Suppose, first, T ∈ ThΣ(IL). Then, by hypothesis, αΣ(T ) ∈ ThF (Σ)(IL′).
But, since Ker(⟨F,α⟩) ∈ ConSys(IL), we now get

T = α−1Σ (αΣ(T )) ∈ α−1Σ (ThF (Σ)(IL′)).
Therefore, ThΣ(IL) ⊆ α−1Σ (ThF (Σ)(IL′)).
Suppose, conversely, T ′ ∈ ThF (Σ)(IL′). Then, by hypothesis, there ex-
ists T ∈ ThΣ(IL), such that T ′ = αΣ(T ). Thus, since Ker(⟨F,α⟩) ∈
ConSys(IL), we now get

α−1Σ (T ′) = α−1Σ (αΣ(T )) = T ∈ ThΣ(IL).
We conclude that α−1Σ (ThF (Σ)(IL′)) ⊆ ThΣ(IL) and, hence, ThFam(IL) =
α−1(ThFam(IL′)).

(vi)⇒(i) This is one part of Proposition 1359.
∎

A consequence of the preceding characterization is that, when the cate-
gories of signatures of the N ♭-structures that are connected via a bilogical
morphism are isomorphic, then the complete lattices of their theory families
are order isomorphic.

Proposition 1361 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩ and consider a surjective N ♭-algebraic system
morphism ⟨F,α⟩ ∶ A → A′. Then ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism
if and only if, for all Σ ∈ ∣Sign∣, αΣ ∶ ThΣ(IL) → ThF (Σ)(IL′) is an order
isomorphism.

Proof: First, by Part (v) of Proposition 1360, α is a well defined surjection
from ThΣ(IL) onto ThF (Σ)(IL′). Second, by Part (ii) of Proposition 1360, it
is an injection. Therefore, it is a bijection, whose inverse, also by Part (ii)
of Proposition 1360, is α−1Σ . That both αΣ and α−1Σ are order preserving is
straightforward.

Conversely, note that Part (vi) of Proposition 1360 is automatically sat-
isfied in case αΣ ∶ ThΣ(IL) → ThF (Σ)(IL′) is an order isomorphism, for all
Σ ∈ ∣Sign∣. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and consider an N ♭-
algebraic system A = ⟨Sign,SEN,N⟩. Extending the concept and notation
from the framework of closure systems and π-institutions, given two closure
families D and D′ on A and corresponding N ♭-structures IL = ⟨A,D⟩ and
IL′ = ⟨A,D′⟩, we write D ≤ D′ and IL ≤ IL′ to signify that, for all Σ ∈ ∣Sign∣
and all Φ ⊆ SEN(Σ),

DΣ(Φ) ⊆ D′Σ(Φ).
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Under this ordering, the collection of all closure families on the algebraic
system A forms a complete lattice, which will be denoted by

ClFam(A) = ⟨ClFam(A),≤⟩.
Given D ∈ ClFam(A) and corresponding N ♭-structure IL = ⟨A,D⟩, we write
ClFam(IL) = ClFamD(A) to denote the principal filter of ClFam(A) gener-
ated by D, i.e., we set

ClFam(IL) = {D′ ∈ ClFam(A) ∶ D ≤ D′}.
Then, we have the following corollary, expressed partially in terms of the

closed set families corresponding in the standard way with closure operator
families.

Corollary 1362 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, IL =⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩ and
A′ = ⟨Sign,SEN′,N ′⟩. If ⟨I,α⟩ ∶ IL ⊢ IL′, where I ∶ Sign → Sign is the
identity functor, is a bilogical morphism, then

T ↦ α(T ) ∶= {α(T ) ∶ T ∈ T }
is an isomorphism between ClFam(IL) and ClFam(IL′).
Proof: Directly from Proposition 1361. ∎

Recall that given an algebraic system A = ⟨Sign,SEN,N⟩ and a clo-
sure family D on A, with corresponding N ♭-structure IL = ⟨A,D⟩, and
T ∈ ThFam(IL), we denote by ILT = ⟨A,DT ⟩ the N ♭-structure whose the-
ory families are those closure families of IL that contain T . Moreover, we
denote by Ω̃(ILT ) or Ω̃A(DT ) the Tarski congruence system of ILT , i.e., the
large congruence system on A compatible with all theory families in DT .

Connecting Tarski congruence systems and bilogical morphisms, we ob-
tain the following:

Proposition 1363 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩. If ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, then,
for all T ′ ∈ ThFam(IL′),

α−1(Ω̃(IL′T ′)) = Ω̃(ILα−1(T ′)).
Proof: We have

α−1(Ω̃(IL′T ′)) = α−1(⋂{ΩA′(T ′′) ∶ T ′ ≤ T ′′ ∈ ThFam(IL′)})
= ⋂{α−1(ΩA′(T ′′)) ∶ T ′ ≤ T ′′ ∈ ThFam(IL′)})
= ⋂{ΩA(α−1(T ′′)) ∶ T ′ ≤ T ′′ ∈ ThFam(IL′)})
= ⋂{ΩA(T ) ∶ α−1(T ′) ≤ T ∈ ThFam(IL)})
= Ω̃(ILα−1(T ′)).

∎

In particular, we obtain
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Corollary 1364 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, IL =⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩ and
A′ = ⟨Sign′,SEN′,N ′⟩. If ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, then

α−1(Ω̃(IL′)) = Ω̃(IL).
Proof: By Proposition 1361, we have that α−1(Thm(IL′)) = Thm(IL). So
the result follows by applying Proposition 1363 with T ′ = Thm(IL′). ∎

We close the section by proving that two important properties of N ♭-
structures are preserved under bilogical morphisms.

First, we show that finitarity is preserved across bilogical morphisms.
Given a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, an N ♭-algebraic system
A = ⟨Sign,SEN,N⟩ and an N ♭-structure IL = ⟨A,D⟩, we say that IL is
finitary if, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),

DΣ(Φ) =⋃{DΣ(Ψ) ∶ Ψ ⊆f Φ},
where ⊆f denoted the finite subset relation.

Proposition 1365 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ N ♭-structures, based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′

a bilogical morphism. Then IL is finitary if and only if IL′ is finitary.

Proof: Since ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, it is surjective and, for
all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ)).
Now we have IL finitary iff, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ DΣ(Φ) implies φ ∈ DΣ(Ψ), some Ψ ⊆f Φ,

iff, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),
αΣ(φ) ⊆D′F (Σ)(αΣ(Φ)) implies αΣ(φ) ∈D′F (Σ)(αΣ(Ψ)), some Ψ ⊆f Φ,

which, taking into account the surjectivity of ⟨F,α⟩, is equivalent to IL′ being
finitary. ∎

Finally, we show that structurality is also preserved by bilogical mor-
phisms.

Proposition 1366 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ N ♭-structures, based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′

a bilogical morphism. Then D is structural if and only if D′ is structural.
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Proof: Suppose, first, that D is structural. We will use Proposition 1357.
Consider Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and T ′ ∈ D′

F (Σ′)
. Then we have

D′
F (Σ)
(SEN′(F (f))−1(T ′)) = αΣ(DΣ(α−1Σ (SEN′(F (f))−1(T ′))))

(Proposition 1360)

SEN(Σ) αΣ ✲ SEN′(F (Σ))

SEN(Σ′)
SEN(f)

❄

αΣ′

✲ SEN′(F (Σ′))
SEN′(F (f))
❄

= αΣ(DΣ(SEN(f)−1(α−1Σ′ (T ′))))
(Commutativity of Rectangle)

= αΣ(SEN(f)−1(α−1Σ′ (T ′)))
(Propositions 1360 and 1357)

= αΣ(α−1Σ′ (SEN′(F (f))−1(T ′)))
(Commutativity of Rectangle)

= SEN′(F (f))−1(T ′).
(Surjectivity of ⟨F,α⟩)

By Proposition 1357 and taking into account the surjectivity of ⟨F,α⟩, we
conclude that D′ is structural.

Assume, conversely, thatD′ is structural. Let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′)
and T ∈ DΣ′ . Then, there exists, by Proposition 1360, T ′ ∈ D′

F (Σ′)
, such that

T = α−1Σ′ (T ′). So we have

DΣ(SEN(f)−1(T )) = DΣ(SEN(f)−1(α−1Σ′ (T ′)))
= DΣ(α−1Σ (SEN′(F (f))−1(T ′)))

(Commutativity of Rectangle)
= α−1Σ (SEN′(F (f))−1(T ′))

(Propositions 1357 and 1360)
= SEN(f)−1(α−1Σ′ (T ′))

(Commutativity of Rectangle)
= SEN(f)−1(T ).

We conclude, using Proposition 1357, that D is structural. ∎

19.2 Quotients and Morphisms

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A = ⟨Sign,SEN,N⟩
be an N ♭-algebraic system. Given a congruence system θ ∈ ConSys(A),
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we may define the quotient Aθ ∶= A/θ and the quotient morphism ⟨I, πθ⟩ ∶
A → Aθ. Moreover, given an N ♭-structure IL = ⟨A,D⟩, we define on the
quotient Aθ the closure family Dθ ∶ PSENθ → PSENθ by stipulating that its
corresponding closure family Dθ ⊆ PSENθ is given by

Dθ ∶= {T ∈ SenFam(Aθ) ∶ (πθ)−1(T ) ∈ D}.
It is not difficult to see that Dθ is indeed a closure family on Aθ. Indeed, for
all T i ∈ Dθ, i ∈ I, we have

(πθ)−1(⋂
i∈I

T i) =⋂
i∈I

(πθ)−1(T i) ∈ D,
since D is, by hypothesis, a closure family on A. The N ♭-structure ILθ =⟨Aθ,Dθ⟩ is called the quotient of IL by θ.

Consider, again, the quotient morphism ⟨I, πθ⟩ ∶ A→Aθ. It is not difficult
to see either that ⟨I, πθ⟩ ∶ IL⟩−ILθ is a logical morphism. This simply follows
from the definition of ILθ and the characterization in Proposition 1358. This
logical morphism is also termed the quotient morphism from IL onto ILθ.

Suppose, now, that, in addition to being a congruence system on A, θ is a
logical congruence system of IL, θ ∈ ConSys(IL). An equivalent formalization
is to say that θ ≤ Ω̃(IL). This hypothesis ensures that Dθ = πθ(D) and
that, moreover, Ker(⟨I, πθ⟩) = θ ∈ ConSys(IL). Therefore, by Part (v) of
Proposition 1360, the quotient morphism ⟨I, πθ⟩ ∶ IL→ ILθ becomes a bilogical
morphism.

Having behind us this short introduction, we proceed to formulate and
prove the Morphism Theorems, which correspond for N ♭-structures to the
Homomorphism, Second Isomorphism and Correspondence Theorems of Uni-
versal Algebra in forms reminiscent of the versions applicable in the context
of abstract logics of abstract algebraic logic.

Theorem 1367 (Morphism Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a
base algebraic system, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-
algebraic systems, and IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ two N ♭-structures. If⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, with θ = Ker(⟨F,α⟩), then there ex-
ists an α-isomorphism ⟨F,β⟩ ∶ ILθ ⊢α IL′, that makes the following diagram
commute

IL
⟨F,α⟩ ✲ IL′

❩
❩
❩
❩
❩⟨I, πθ⟩ ⑦ ✚

✚
✚
✚
✚

⟨F,β⟩
❃

ILθ

Proof: Since ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, we get that θ =
Ker(⟨F,α⟩) is a congruence system of IL. Thus, ⟨I, πθ⟩ ∶ IL ⊢ ILθ is also a
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bilogical morphism. Define ⟨F,β⟩ ∶ Aθ →A′ by setting, for all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

βΣ(φ/θΣ) = αΣ(φ).
First, ⟨F,β⟩ is well-defined: This is straightforward, since, if ⟨φ,ψ⟩ ∈ θΣ =

KerΣ(⟨F,α⟩), then, by definition, αΣ(φ) = αΣ(ψ).
Second, β ∶ SENθ → SEN′ ○ F is natural: We have, for all Σ,Σ′ ∈ ∣Sign∣,

all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),
SENθ(Σ) βΣ✲ SEN′(F (Σ))

SENθ(Σ′)
SENθ(f)

❄

βΣ′
✲ SEN′(F (Σ′))

SEN′(F (f))
❄

SEN′(F (f))(βΣ(φ/θΣ)) = SEN′(F (f))(αΣ(φ))
= αΣ′(SEN(f)(φ))
= βΣ′(SEN(f)(φ)/θΣ′)
= βΣ′(SENθ(f)(φ/θΣ)).

Third, ⟨F,β⟩ ∶ Aθ →A′ is surjective: This is also clear, based on the fact
that ⟨F,α⟩ ∶ A→A′ is surjective.

Fourth, ⟨F,β⟩ ∶ ILθ ⊢ IL′ is bilogical: Since surjectivity was pointed out
above, we only have to show Part (iii) of Proposition 1360. First, note
that Ker(⟨F,β⟩) ∈ ConSys(ILθ), since, for all Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
if ⟨φ/θΣ, ψ/θΣ⟩ ∈ KerΣ(⟨F,β⟩), then βΣ(φ/θΣ) = βΣ(ψ/θΣ), whence αΣ(φ) =
αΣ(ψ). Thus, since Ker(⟨F,α⟩) ∈ ConSys(IL), DΣ(φ) = DΣ(ψ) and, hence,
Dθ

Σ(φ/θΣ) =Dθ
Σ(ψ/θΣ). This proves that Ker(⟨F,β⟩) ∈ ConSys(ILθ). Finally,

we have, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),
βΣ(Dθ

Σ(Φ/θΣ)) = βΣ(DΣ(Φ)/θΣ)
= αΣ(DΣ(Φ))
= D′

F (Σ)
(αΣ(Φ))

= D′
F (Σ)
(βΣ(Φ/θΣ)).

This shows that both conditions in Part (iii) of Proposition 1360 are satisfied
and, hence, ⟨F,β⟩ ∶ ILθ ⊢ IL′ is a bilogical morphism.

Fifth, for all Σ ∈ ∣Sign∣ βΣ ∶ SENθ(Σ) → SEN′(F (Σ)) is injective. If
φ,ψ ∈ SEN(Σ), such that βΣ(φ/θΣ) = βΣ(ψ/θΣ), then αΣ(φ) = βΣ(φ), whence
φ/θΣ = ψ/θΣ. We now conclude that ⟨F,β⟩ ∶ ILθ ⊢α IL′ is an α-isomorphism.

Finally, the triangle commutes: This is clear, since, for all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ), βΣ(πθΣ(φ)) = βΣ(φ/θΣ) = αΣ(φ). ∎
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Theorem 1368 (Isomorphism Theorem) Suppose F = ⟨Sign♭,SEN♭,N ♭⟩
is a base algebraic system and A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system.
If IL = ⟨A,D⟩ is an N ♭-structure and θ, θ′ ∈ ConSys(IL), such that θ ≤ θ′,
then θ′/θ ∈ ConSys(ILθ) and (ILθ)θ′/θ ≅ ILθ

′

.

Proof: First, we show that θ′/θ ∈ ConSys(ILθ). To this end, let Σ ∈ ∣Sign∣
and φ,ψ ∈ SEN(Σ), such that ⟨φ/θΣ, ψ/θΣ⟩ ∈ θ′Σ/θΣ. Then ⟨φ,ψ⟩ ∈ θ′Σ, whence,
since θ′ ∈ ConSys(IL), DΣ(φ) = DΣ(ψ). Hence, Dθ

Σ(φ/θΣ) = Dθ
Σ(ψ/θΣ). So

θ′/θ ∈ ConSys(ILθ).
To finish the proof, we define ⟨I,α⟩ ∶ ILθ ⊢ ILθ

′

, by setting, for all Σ ∈∣Sign∣, φ ∈ SEN(Σ),
αΣ(φ/θΣ) = φ/θ′Σ.

If we show that ⟨I,α⟩ ∶ ILθ ⊢ ILθ
′

is a bilogical morphism, then, by noting
that Ker(⟨I,α⟩) = θ′/θ and applying Theorem 1367,

ILθ
⟨I,α⟩ ✲ ILθ

′

❩
❩
❩
❩
❩⟨I, πθ′/θ⟩ ⑦ ✚

✚
✚
✚
✚

⟨I, β⟩
❃

(ILθ)θ′/θ
we will have the sought after isomorphism ⟨I, β⟩ ∶ (ILθ)θ′/θ ≅ ILθ

′

.

First, ⟨I,α⟩ ∶ SENθ → SENθ′ is well-defined, since, for all Σ ∈ ∣Sign∣,
φ,ψ ∈ SEN(Σ), if ⟨φ,ψ⟩ ∈ θΣ, then, by hypothesis, ⟨φ,ψ⟩ ∈ θ′Σ, showing that
αΣ(φ/θΣ) = αΣ(ψ/θΣ).

Second, α ∶ SENθ → SENθ′ is natural, since, for all Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′) and all φ ∈ SEN(Σ),

SENθ(Σ) αΣ ✲ SENθ′(Σ)

SENθ(Σ′)
SENθ(f)

❄

αΣ′

✲ SENθ′(Σ′)
SENθ′(f)
❄

SENθ′(f)(αΣ(φ/θΣ)) = SENθ′(f)(φ/θ′Σ)
= SEN(f)(φ)/θ′Σ′
= αΣ′(SEN(f)(φ)/θΣ′)
= αΣ′(SENθ(φ/θΣ)).

Third, it is clear that ⟨I,α⟩ ∶ Aθ → Aθ′ is surjective. So it suffices now
to show that the conditions in Part (iii) of Proposition 1360 are satisfied.
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First, Ker(⟨I,α⟩) = θ′/θ ∈ ConSys(ILθ), as was shown above. Finally, for all
Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ), we have

αΣ(Dθ
Σ(Φ/θΣ)) = αΣ(DΣ(Φ)/θΣ)

= DΣ(Φ)/θ′Σ
= Dθ′

Σ(Φ/θ′Σ)
= Dθ′

Σ(αΣ(Φ/θΣ)).
Therefore, ⟨I,α⟩ ∶ ILθ ⊢ ILθ

′

is indeed a bilogical morphism. ∎

Theorem 1369 (Correspondence Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be a base algebraic system, A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system, IL =⟨A,D⟩ an N ♭-structure and θ ∈ ConSys(IL). Then θ′ ↦ θ′/θ defines an order
isomorphism between the principal filter [θ, Ω̃(IL)] in ConSys(IL) and the
complete lattice ConSys(ILθ).
Proof: By Theorem 1368, the mapping θ′ ↦ θ′/θ is a well defined mapping
from [θ, Ω̃(IL)] into ConSys(ILθ). The mapping is also one-to-one. To see
this, assume θ′/θ = θ′′/θ and let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ θ′Σ. Then ⟨φ/θΣ, ψ/θΣ⟩ ∈ θ′Σ/θΣ = θ′′Σ/θΣ and, therefore, ⟨φ,ψ⟩ ∈
θ′′Σ. Thus, θ′ ≤ θ′′ and, hence, by symmetry, θ′ = θ′′. The mapping is also
surjective. To prove surjectivity, Let η ∈ ConSys(ILθ). Define θ′ = {θ′Σ}Σ∈∣Sign∣
by setting, for all Σ ∈ ∣Sign∣,

θ′Σ = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ ⟨φ/θΣ, ψ/θΣ⟩ ∈ ηΣ}.
It is easy to see that θ′ is a congruence system on A. It is also easy to
see that θ ≤ θ′. Furthermore, θ′ is a congruence system of IL, since, if Σ ∈∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θ′Σ, we get ⟨φ/θΣ, ψ/θΣ⟩ ∈ ηΣ ∈
ConSys(ILθ), whence Dθ

Σ(φ/θΣ) = Dθ
Σ(ψ/θΣ), i.e., DΣ(φ)/θΣ = DΣ(ψ)/θΣ

and, since θ ∈ ConSys(IL), DΣ(φ) = DΣ(ψ). Since θ′ ↦ θ′/θ = η, it follows
that the mapping is also surjective. Finally, it is obvious that both it and its
inverse are monotone, which establishes that it is an order isomorphism. ∎

The Correspondence Theorem implies immediately a relation between
the quotient of a Tarski congruence system and the Tarski system of the
corresponding quotient structure.

Corollary 1370 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩ an N ♭-algebraic system, IL = ⟨A,D⟩ an N ♭-structure and
θ ∈ ConSys(IL). Then

Ω̃(ILθ) = Ω̃(IL)/θ.
Proof: We take θ′ = Ω̃(IL) and apply the Correspondence Theorem 1369.
∎
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Corollary 1370 allows us also to conclude that the quotient of any N ♭-
structure by its Tarski congruence system has an identity Tarski congruence
system. More precisely,

Ω̃(ILΩ̃(IL)) = Ω̃(IL)/Ω̃(IL) =∆A/Ω̃(IL).

This leads to the definition of a reduced N ♭-structure and of the reduction
of an N ♭-structure.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,SEN,N⟩
an N ♭-algebraic system and IL = ⟨A,D⟩ an N ♭-structure. We call IL reduced

if Ω̃(IL) =∆A. More generally, we set IL∗ = ILΩ̃(IL) and call IL∗ the reduction
of IL. Moreover, for a class L of N ♭-structures, we set

L∗ = {IL∗ ∶ IL ∈ L}.
By the comments following Corollary 1370, IL∗ is reduced for any N ♭-structure
IL. In case IL is reduced to start with, then IL∗ ≅ IL and, in this case, IL∗ will
be identified with IL.

Another important consequence of the Correspondence Theorem is that
reducing a quotient of a structure results in a reduced structure that is iso-
morphic (and, thus, can be identified) with the reduction of the originally
given structure.

Proposition 1371 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system, IL = ⟨A,D⟩ an N ♭-structure
and θ ∈ ConSys(IL). Then (ILθ)∗ ≅ IL∗.

Proof: We have

(ILθ)∗ = (ILθ)Ω̃(ILθ) (Definition of Reduction)

= (ILθ)Ω̃(IL)/θ (Corollary 1370)

≅ ILΩ̃(IL) (Theorem 1368)
= IL∗. (Definition of Reduction)

∎

Generalizing Proposition 1371, we can show that a similar relation holds
between the reductions of two N ♭-structures that are related via a bilogical
morphism.

Proposition 1372 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems and
IL = ⟨A,D⟩ and IL′ = ⟨A,D′⟩ N ♭-structures, based on A and A′, respectively.
If there exists a bilogical morphism ⟨F,α⟩ ∶ IL ⊢ IL′, then there exists an
α-isomorphism

IL∗ ⊢α IL′∗.
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Proof: We define ⟨F,β⟩ ∶ A∗ → A′∗ by setting, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

βΣ(φ/Ω̃Σ(IL)) = αΣ(φ)/Ω̃F (Σ)(IL′),
i.e., ⟨F,β⟩ is the morphism that makes the following rectangle commute

A
⟨F,α⟩ ✲ A′

A∗

⟨I, πΩ̃(IL)⟩
❄

⟨F,β⟩ ✲ A′∗

⟨I, πΩ̃(IL′)⟩
❄

First, ⟨I, β⟩ is well-defined: In fact, if Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such
that ⟨φ,ψ⟩ ∈ Ω̃Σ(IL), then, since, by Corollary 1364, Ω(IL) = α−1(Ω̃(IL′)), we
get that ⟨αΣ(φ), αΣ(ψ)⟩ ∈ Ω̃F (Σ)(IL′).

Second β ∶ SENΩ̃(IL) → SEN′Ω̃(IL
′) ○ F is a natural transformation: Let

Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ ∈ SEN(Σ). We have

SENΩ̃(IL)(Σ) βΣ ✲ SEN′Ω̃(IL
′)(F (Σ))

SENΩ̃(IL)(Σ′)
SENΩ̃(IL)(f)

❄

βΣ′
✲ SEN′Ω̃(IL

′)(F (Σ′))
SEN′Ω̃(IL

′)(F (f))
❄

SEN′Ω̃(IL
′)(F (f))(βΣ(φ/Ω̃Σ(IL)))

= SEN′Ω̃(IL
′)(F (f))(αΣ(φ)/Ω̃F (Σ)(IL′))

= SEN′(F (f))(αΣ(φ))/Ω̃F (Σ′)(IL′)
= αΣ′(SEN(f)(φ))/Ω̃F (Σ′)(IL′)
= βΣ′(SEN(f)(φ)/Ω̃Σ′(IL))
= βΣ′(SENΩ̃(IL)(f)(φ/Ω̃Σ(IL)).

Third, for every Σ ∈ ∣Sign∣, βΣ ∶ SENΩ̃(IL)(Σ) → SEN′Ω̃(IL
′)(F (Σ)) is

a bijection. Surjectivity is immediate and follows from the fat that both⟨F,α⟩ and ⟨I, πΩ̃(IL′)⟩ are surjective. For injectivity, if Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that βΣ(φ/Ω̃Σ(IL)) = βΣ(ψ/Ω̃Σ(IL)), then αΣ(φ)/Ω̃F (Σ)(IL′) =
αΣ(ψ)/Ω̃F (Σ)(IL′), whence

⟨φ,ψ⟩ ∈ α−1Σ (Ω̃F (Σ)(IL′)) = Ω̃Σ(IL).
This proves that βΣ is indeed a bijection.

Finally, we use Part (iii) of Proposition 1360 to show that it is a bi-
logical morphism. Of course, since ⟨F,β⟩ has injective components, we get
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Ker(⟨F,β⟩) = ∆A∗ and, hence it is a congruence system of IL∗. Finally, if
Σ ∈ ∣Sign∣ and Φ ⊆ SEN(Σ), we have

βΣ(D∗Σ(Φ/Ω̃Σ(IL))) = βΣ(DΣ(Φ)/Ω̃Σ(IL))
= αΣ(DΣ(Φ))/Ω̃F (Σ)(IL′)
= D′

F (Σ)
(αΣ(Φ))/Ω̃F (Σ)(IL′)

= D′∗
F (Σ)
(αΣ(Φ)/Ω̃F (Σ)(IL′))

= D′∗
F (Σ)
(βΣ(Φ/Ω̃Σ(IL)).

Thus, ⟨F,β⟩ ∶ IL∗ ⊢α IL′∗ is an α-isomorphism, as claimed. ∎

In case Sign′ = Sign and ⟨I,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, with
I ∶ Sign → Sign the identity functor, then we obtain

Corollary 1373 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign,SEN′,N ′⟩ N ♭-algebraic systems and IL =⟨A,D⟩ and IL′ = ⟨A,D′⟩ N ♭-structures, based on A and A′, respectively. If
there exists a bilogical morphism ⟨I,α⟩ ∶ IL ⊢ IL′, then

IL∗ ≅ IL′∗.

Proof: Immediate by Proposition 1372. ∎

The next result is a “fill-in” lemma that provides sufficient conditions
under which one can find a morphism that “fills-in” the third side of a com-
mutative triangle, given arrows emanating from one of its vertices.

Proposition 1374 (Fill-In Lemma) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base
algebraic system, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ and A′′ =⟨Sign, SEN′′,N ′′⟩ N ♭-algebraic systems and IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ and
IL′′ = ⟨A′′,D′′⟩ N ♭-structures, based on A, A′ and A′′, respectively. Given
a logical morphism ⟨F,α⟩ ∶ IL⟩−IL′ and a bilogical morphism ⟨I, β⟩ ∶ IL ⊢ IL′′,
such that ker(⟨I, β⟩) ≤ Ker(⟨F,α⟩),

IL
⟨F,α⟩ ✲ IL′

❩
❩
❩
❩
❩⟨I, β⟩ ⑦ ...

...
...

...
..

⟨F,γ⟩
❃

IL′′

there exists a unique logical morphism ⟨F,γ⟩ ∶ IL′′⟩−IL′, such that the triangle
commutes. Moreover, ⟨F,γ⟩ is bilogical if and only if ⟨F,α⟩ is bilogical.

Proof: Define, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN′′(Σ),
γΣ(φ) = αΣ(ψ),



Voutsadakis CHAPTER 19. FULL MODELS 1173

where ψ ∈ SEN(Σ), such that βΣ(ψ) = φ.
First, since, for all Σ ∈ ∣Sign∣, ψ,ψ′ ∈ SEN(Σ), such that βΣ(ψ) = βΣ(ψ′),

we have, by hypothesis, αΣ(ψ) = αΣ(ψ′), this definition is sound.
Second, γ ∶ SEN′′ → SEN′ ○ F is a natural transformation: For all Σ,Σ′ ∈∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN′′(Σ), such that φ = βΣ(ψ), for

some ψ ∈ SEN(Σ), we have

SEN′′(Σ) γΣ✲ SEN′(F (Σ))

SEN′′(Σ′)
SEN′′(f)

❄

γΣ′
✲ SEN′(F (Σ′))

SEN′(F (f))
❄

SEN′(F (f))(γΣ(φ)) = SEN′(F (f))(αΣ(ψ))
= αΣ′(SEN(f)(ψ))
= γΣ′(SEN′′(f)(φ)),

where the last equality follows from

βΣ′(SEN(f)(ψ)) = SEN′′(f)(βΣ(ψ)) = SEN′′(f)(φ)
and the definition of γΣ′ .

Now it is clear that the triangle of the diagram commutes. Moreover, for
all T ′ ∈ ThFam(IL′), since ⟨F,α⟩ is a logical morphism, α−1(T ′) ∈ ThFam(IL)
and, hence, by commutativity, β−1(γ−1(T ′)) ∈ ThFam(IL). Hence, since⟨I, β⟩ is a bilogical morphism, γ−1(T ′) ∈ ThFam(IL′′). This proves that ⟨F,γ⟩
is also a logical morphism.

Finally, for the last statement, note that ⟨F,γ⟩ is surjective if and only
if ⟨F,α⟩ is surjective, and, furthermore, ThFam(IL′′) = γ−1(ThFam(IL′)) if
and only if β−1(ThFam(IL′′)) = α−1(ThFam(IL′)) if and only if ThFam(IL) =
α−1(ThFam(IL′)). We conclude, taking into account Part (vi) of Proposition
1360, that ⟨F,γ⟩ is bilogical if and only if ⟨F,α⟩ is. ∎

19.3 Filter Families and π-Structures

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I = ⟨F,C⟩ a π-
institution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩ an
F-algebraic system. We have seen that the collection FiFamI(A) of I-filter
families on A forms a complete lattice FiFamI(A) = ⟨FiFamI(A),≤⟩ un-
der signature-wise inclusion. Therefore, the pair ⟨A,FiFamI(A)⟩ constitutes
an F-structure. This F-structure will also be denoted interchangeably by⟨A,CI,A⟩ or ⟨A,CI,A⟩, with reference to the closure (operator) family or the
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closed set family corresponding to FiFamI(A). Such pairs will play an im-
portant role in this chapter, since they will be used as models of I that
provide a semantics for the logical system formalized by I .

It is clear that the closure families of F-structures of this form are struc-
tural and, hence, F-structures of this form are actually π-institutions.

Proposition 1375 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,
SEN,N⟩, an F-algebraic system. Then CI,A ∶ PSEN → PSEN is a structural
closure operator on SEN.

Proof: We use Proposition 1357. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
T ∈ CI,A

F (Σ′)
. Then, by Lemma 51, α−1Σ′ (T ) ∈ CΣ′ . Since C is structural, by

Proposition 1357, SEN(f)−1(α−1Σ′ (T )) ∈ CΣ. By the naturality of α ∶ SEN♭ →
SEN ○ F , we get α−1Σ (SEN(F (f))−1(T )) ∈ CΣ, whence, again by Lemma 51,

SEN(F (f))−1(T ) ∈ CI,AΣ . Using the surjectivity of ⟨F,α⟩ and Proposition
1357, we conclude that CI,A is structural. ∎

Our next result characterizes bilogical morphisms between F-structures
of the form ⟨A,FiFamI(A)⟩.
Proposition 1376 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists a surjective ⟨G,γ⟩ ∶ A→A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩ ○ ⟨F,α⟩ = ⟨F ′, α′⟩. Then the following statements are equivalent:

(i) ⟨G,γ⟩ ∶ ⟨A,CI,A⟩ ⊢ ⟨A′,CI,A′⟩ is a bilogical morphism;

(ii) For every Σ ∈ ∣Sign∣, γΣ ∶ CI,AΣ → CI,A
′

G(Σ)
is an order isomorphism;

(iii) For every Σ ∈ ∣Sign∣, and all T ∈ CI,AΣ , γΣ(T ) ∈ CI,A′G(Σ)
and, in addition,

we have Ker(⟨G,γ⟩) ∈ ConSys(⟨A,CI,A⟩).
Proof:

(i)⇒(ii) This is a special case of Proposition 1361.
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(ii)⇒(iii) The first assertion is obvious. For the second, if Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that γΣ(φ) = γΣ(ψ), then, for every T ′ ∈ ThFamI(A′),

γΣ(φ) ∈ T ′G(Σ) iff γΣ(ψ) ∈ T ′G(Σ).
Hence, for every T ′ ∈ ThFamI(A′),

φ ∈ γ−1Σ (T ′G(Σ)) iff φ ∈ γ−1Σ (T ′G(Σ)).
Therefore, by hypothesis, for all T ∈ FiFamI(A),

φ ∈ TΣ iff ψ ∈ TΣ.

It now follows that Ker(⟨I, γ⟩) ∈ ConSys(⟨A,CI,A⟩).
(iii)⇒(i) By hypothesis, we get γ(CI,AΣ ) ⊆ CI,A

′

G(Σ)
and also that Ker(⟨I, γ⟩) ∈

ConSys(⟨A,CI,A⟩). Therefore, by Part (v) of Proposition 1360, it suf-

fices to show that CI,A
′

G(Σ)
⊆ γ(CI,AΣ ). But this follows from the fact that,

if T ′ ∈ CI,A
′

G(Σ)
, then by Corollary 55, γ−1Σ (T ′) ∈ CI,AΣ and, then, by surjec-

tivity, T ′ = γΣ(γ−1Σ (T ′)). ∎

We also have the following related result that, roughly speaking, forces
the closure family of a structure that is the bilogical morphism image of a
structure whose closure family consists of all filter families to also consist of
the entirely of filter families.

Proposition 1377 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists a surjective ⟨G,γ⟩ ∶ A→A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩○⟨F,α⟩ = ⟨F ′, α′⟩. If ⟨G,γ⟩ ∶ ⟨A,CI,A⟩ ⊢ ⟨A′,C′⟩ is a bilogical morphism,
then C′ = CI,A′.

Proof: First, since ⟨G,γ⟩ is a bilogical morphism, for all T ′ ∈ C′, we have
γ−1(T ′) ∈ CI,A. Thus, by Corollary 55, T ′ ∈ CI,A′ . This proves that C′ ⊆ CI,A′ .
Suppose, conversely, that T ′ ∈ CI,A′ . Then, again by Corollary 55, γ−1(T ′) ∈
CI,A. Therefore, since ⟨G,γ⟩ is a bilogical morphism, T ′ = γ(γ−1(T ′)) ∈ C′.
We conclude that C′ = CI,A′. ∎

This result has the following immediate corollaries, one addressing reduc-
tions and the other isomorphisms.
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Corollary 1378 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
an F-algebraic system. Then (FiFamI(A))∗ = FiFamI(A∗).
Proof: Let IL = ⟨A,CI,A⟩ and apply Proposition 1377 to the special config-
uration of morphisms depicted in the diagram:

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F,πΩ̃(IL) ○ α⟩
⑦

A ⟨I, πΩ̃(IL)⟩ ✲ A∗

∎

Corollary 1379 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists an isomorphism ⟨G,γ⟩ ∶ A ≅A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩ ○ ⟨F,α⟩ = ⟨F ′, α′⟩. If ⟨G,γ⟩ ∶ ⟨A,D⟩ ⊢ ⟨A′,D′⟩ is a bilogical morphism,
then D = CI,A if and only if D′ = CI,A′.

Proof: We apply Proposition 1377 twice; once using ⟨G,γ⟩ ∶ A → A′ and
once using ⟨G,γ⟩−1 ∶ A′ → A. ∎

Corollary 1379 can be strengthened slightly but, to accomplish this, we
need the following proposition, which is a sort of symmetric to Proposition
1377.

Proposition 1380 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ two
F-algebraic systems.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

If ⟨G,γ⟩ ∶ ⟨A,D⟩ ⊢α ⟨A′,CI,A′⟩ is an α-isomorphism, then D = CI,A.
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Proof: We show, first, that D ⊆ CI,A. Suppose T ∈ D. Then, since ⟨G,γ⟩ is
an α-isomorphism, there exists, by Proposition 1360, T ′ ∈ FiFamI(A′), such
that T = γ−1(T ′). Now, by Corollary 55, T ∈ FiFamI(A). Hence, D ⊆ CI,A.

Suppose, conversely, that T ∈ FiFamI(A). Since ⟨G,γ⟩ is an α-isomor-
phism, there exists a unique T ′ ∈ SenFam(A′), such that T = γ−1(T ′). Thus,
we have

α′−1(T ′) = α−1(γ−1(T ′)) = α−1(T ) ∈ ThFam(I).
Hence, T ′ ∈ FiFamI(A′) and, since ⟨G,γ⟩ is a bilogical morphism, T =
γ−1(T ′) ∈ D. We conclude that CI,A ⊆ D and equality follows. ∎

A generalization of Corollary 1379 relaxes the requirement that there
exists an isomorphism between F-algebraic systems to the requirement that
there exists an α-isomorphism.

Corollary 1381 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists a surjective morphism ⟨G,γ⟩ ∶ A ≅A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩ ○ ⟨F,α⟩ = ⟨F ′, α′⟩. If ⟨G,γ⟩ ∶ ⟨A,D⟩ ⊢α ⟨A′,D′⟩ is an α-isomorphism,
then D = CI,A if and only if D′ = CI,A′.

Proof: We put together Proposition 1377 and Proposition 1380. ∎

19.4 I-Structures

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩, with
A = ⟨Sign,SEN,N⟩, an F-algebraic system and IL = ⟨A,D⟩ an F-structure.
Define CIL = {CIL

Σ }Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
CIL

Σ ∶ PSEN♭ → PSEN♭

be defined, for all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CIL

Σ (Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(φ)) ⊆ DF (Σ′)(αΣ′(SEN♭(f)(Φ))).

More generally, given a class L of F-structures, we set

CL =⋂{CIL ∶ IL ∈ L}.
We show that CL is a closure system on F and, as a result, IL = ⟨F,CL⟩

qualifies as a π-institution.
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Proposition 1382 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and L

a class of F-structures. The collection CL ∶ PSEN♭ → PSEN♭ is a closure
system on F.

Proof: Inflationarity, monotonicity and idempotency of CL follow immedi-
ately from the corresponding properties of each of the operators of the F-
structures in L. We show structurality in more detail. Suppose Σ,Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CL

Σ(Φ). Then, for all⟨A,D⟩ ∈ L, all Σ′′ ∈ ∣Sign♭∣ and all g ∈ Sign♭(Σ,Σ′′),
αΣ′′(SEN♭(g)(φ)) ∈DF (Σ′′)(αΣ′′(SEN♭(g)(Φ))).

Σ
f ✲ Σ′

❩
❩
❩
❩
❩g ⑦ ❂✚

✚
✚
✚
✚

h

Σ′′

Thus, for all ⟨A,D⟩ ∈ L, all Σ′′ ∈ ∣Sign♭∣ and all h ∈ Sign♭(Σ′,Σ′′),
αΣ′′(SEN♭(h)(SEN♭(f)(φ))) ∈DF (Σ′′)(αΣ′′(SEN♭(h)(SEN♭(f)(Φ)))).

This proves that SEN♭(f)(φ) ∈ CL
Σ′(SEN♭(f)(Φ)), and, hence, that CL is

structural. ∎

CL is termed the closure system on F generated by L and we denote
by IL = ⟨F,CL⟩ the π-institution corresponding to CL.

Next, it is shown that F-structures related by bilogical morphism generate
identical closure systems.

Proposition 1383 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ two F-algebraic systems, IL = ⟨A,D⟩, IL′ =⟨A′,D′⟩ two F-structures and ⟨G,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism, such that⟨F ′, α′⟩ = ⟨G,γ⟩ ○ ⟨F,α⟩. Then CIL = CIL′.

Proof: We have, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CIL

Σ (Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′)
αΣ′(SEN♭(f)(φ)) ⊆ DF (Σ′)(αΣ′(SEN♭(f)(Φ)))

iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′)
γF (Σ′)(αΣ′(SEN♭(f)(φ)))

⊆ D′
G(F (Σ′))

(γF (Σ′)(αΣ′(SEN♭(f)(Φ))))
iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′)

α′Σ′(SEN♭(f)(φ)) ⊆ D′
F ′(Σ′)

(α′Σ′(SEN♭(f)(Φ)))
iff φ ∈ CIL′

Σ (Φ).
We conclude that CIL = CIL′ . ∎
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As a special case of Proposition 1383, we get that both an F-structure
and its reduction generate the same closure system on the base algebraic
system F.

Corollary 1384 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A,⟨F,α⟩⟩ an F-algebraic system and IL = ⟨A,D⟩ an F-structure. Then CIL =
CIL∗.

Proof: This is obtained directly by Proposition 1383 once we recall that,
since Ω̃(IL) is a congruence system of IL, ⟨I, πΩ̃(IL)⟩ ∶ IL → IL∗ is a bilogical
morphism.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F,πΩ̃(IL)α⟩
⑦

A ⟨I, πΩ̃(IL)⟩ ✲ A∗

And this gives the configuration of the diagram that matches the setup in
the hypothesis of Proposition 1383. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I = ⟨F,C⟩ a π-
institution based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-
algebraic system and IL = ⟨A,D⟩ an F-structure. We say that IL is an I-
structure or a model of I if C ≤ CIL, i.e., if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) implies φ ∈ CIL
Σ (Φ).

Of course, C ≤ CIL requires that, for all T ∈ ThFam(IL), all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′) and all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′),
i.e., that T ∈ FiFamI(A). Therefore, we obtain the following characteriza-
tion:

Proposition 1385 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
an F-algebraic system and IL = ⟨A,D⟩ an F-structure. IL is an I-structure
if and only if, for all T ∈ ThFam(IL), T ∈ FiFamI(A), i.e., if and only if
ThFam(IL) ⊆ FiFamI(A).

Again, the defining condition of an I-structure may be simplified due to
the structurality of I . More precisely, based on Lemma 50, we have:
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Lemma 1386 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
an F-algebraic system and IL = ⟨A,D⟩ an F-structure. Then, the following
conditions are equivalent:

(a) IL is an I-structure;

(b) For all T ∈ ThFam(IL), all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ), such
that φ ∈ CΣ(Φ),

αΣ(Φ) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ);
(c) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ), αΣ(φ) ∈DF (Σ)(αΣ(Φ)).

Proof: Condition (a) clearly implies (b) and (b) and (c) are equivalent. So
it remains to show that (b) implies (a). But, if Condition (b) holds, then, by
Lemma 50, ThFam(IL) ⊆ FiFamI(A), whence, by Proposition 1385, IL is an
I-structure. ∎

We denote by Str(I) the class of all I-structures and let

Str∗(I) = (Str(I))∗
be the class of all reduced I-structures.

Since we know that IL ∈ Str(I) is and only if ThFam(IL) ⊆ FiFamI(A),
it follows that, given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ⟨A,FiFamI(A)⟩
is the weakest I-structure of A, i.e., the one with the finest closure family.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and I = ⟨F,C⟩ a
π-institution based on F. We say that I is complete with respect to a
given class L of F-structures if C = CL, i.e., if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) iff φ ∈ CL
Σ(Φ).

As consequences of Proposition 1383 and of its Corollary 1384, we have
the following results about models of π-institutions and about classes of struc-
tures with respect to which a π-institution is complete.

Proposition 1387 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If ⟨A,D⟩, IL′ = ⟨A′,D′⟩ are F-structures and ⟨G,γ⟩ ∶ IL ⊢ IL′ a bilogical
morphism, the IL is an I-structure if and only if IL′ is an I-structure.

(b) If IL = ⟨A,D⟩ is an F-structure, then IL is an I-structure if and only if
IL∗ is an I-structure.

(c) If I is complete with respect to a class L of F-structures, then it is also
complete with respect to L∗.
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Proof: the first part is a consequence of Proposition 1383, whereas Parts
(b) and (c) follow directly from Corollary 1384. ∎

Proposition 1388 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and L a class of I-structures. If L includes⟨F ,C⟩ or ⟨F ,C⟩∗, then I is complete with respect to both L and L∗. In
particular I is complete with respect to both Str(I) and Str∗(I).
Proof: The key here is to notice that C = C⟨F ,C⟩ = C⟨F ,C⟩∗ . Then, the rest
is easy because we have

C ≤ CL = CL∗ ≤ C⟨F ,C⟩ = C⟨F ,C⟩
∗

= C.

Therefore, we conclude C = CL = CL∗ and, hence, I is complete with respect
to both L and L∗. ∎

19.5 Full I-Structures

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and IL = ⟨A,D⟩ an F-
structure. IL is a full I-structure or a full model of I if

IL∗ = ⟨A∗,FiFamI(A∗)⟩,
i.e., if the closure family of the reduction of IL consists of all I-filter families
on the F-algebraic system A/Ω̃(IL).

We denote the class of all full I-structures by FStr(I) and the class of
all reduced full I-structures by FStr∗(I). We also write FStrI(A) for the
collection of all full I-structures on the F-algebraic system A = ⟨A, ⟨F,α⟩⟩.

We show that full I-structures are fully deserving of the name I-structures.

Proposition 1389 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ a full I-structure.

(a) D is structural;

(b) IL is an I-structure;

(c) IL has theorems if and only if I has theorems.

Proof:

(a) By Proposition 1375, D∗ is structural. Therefore, by Proposition 1366,
D is also structural.
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(b) Suppose IL ∈ FStr(I). Then, by definition, ThFam(IL∗) = FiFamI(A∗).
Thus, by Proposition 1385, IL∗ ∈ Str(I). Therefore, by Proposition
1387, IL ∈ Str(I).

(c) If I does not have theorems, then ∅ ∈ FiFamI(A∗). Therefore, by
the definition of a full I-structure, ∅ ∈ ThFam(IL∗) and, hence ∅ ∈
ThFam(IL). Conversely, if ∅ ∉ ThFam(I), then ∅ ∉ FiFamI(A) and,
hence, ∅ ∉ ThFam(IL).

∎

We now show that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the
pair ⟨A,FiFamI(A)⟩ is always a full I-structure and, thus, the weakest such
structure on A.

Proposition 1390 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. For every F-algebraic system A =⟨A, ⟨F,α⟩⟩, ⟨A,FiFamI(A)⟩ is the weakest full I-structure on A.

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. Then, by Corollary
1378,

(FiFamI(A))∗ = FiFamI(A∗).
So ⟨A,FiFamI(A)⟩ is a full I-structure. Moreover, since, by Proposition
1389, every full I-structure is an I-structure, by Proposition 1385, FiFamI(A)
is the largest possible set of theory families of a full I-structure. So ⟨A,FiFamI(A)⟩
is the weakest full I-structure. ∎

Specializing to the algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is
the identity morphism, we get

Corollary 1391 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then ⟨F ,C⟩ is the weakest full I-
structure on F = ⟨F, ⟨I, ι⟩⟩.
Proof: By taking A = F in Proposition 1390. ∎

Next, we see that bilogical morphisms between F-structures preserve the
property of being a full model in both directions.

Proposition 1392 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ two
F-algebraic systems and IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ two F-structures. If there
exists a bilogical morphism ⟨G,β⟩ ∶ IL ⊢ IL′, then IL is a full I-structure if
and only if IL′ is a full I-structure.
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Proof: Suppose IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ are two F-structures and let⟨G,β⟩ ∶ IL ⊢ IL′ be a bilogical morphism. Then, by Proposition 1372, there
exists an α-isomorphism ⟨G,γ⟩ ∶ IL∗ ⊢α IL′∗, such that the following diagram
commutes.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,β⟩ ✲ A′

A∗

⟨I, π⟩
❄

⟨G,γ⟩ ✲ A′∗

⟨I ′, π′⟩
❄

where ⟨I, π⟩ ∶ A→A/Ω̃(IL) and ⟨I ′, π′⟩ ∶ A′ →A′/Ω̃(IL′) denote the quotient
morphisms. If IL is a full I-structure, then, by definition, D∗ = FiFamI(A∗).
Thus, by Proposition 1377, D∗ = FiFamI(A′∗). This shows that IL′ is a full
I-structure. If, conversely, IL′ is a full I-structure, then, by definition D′∗ =
FiFamI(A′∗). Thus, by Proposition 1380, D = FiFamI(A∗) and, therefore,
IL is a full I-structure, by definition. ∎

Proposition 1392 allows the formulation of a characterizing property of
full I-structures in terms of bilogical morphisms and weakest full I-structures.

Corollary 1393 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and IL = ⟨A,D⟩ an F-structure. IL is a full I-structure if and only if
there exists a bilogical morphism from IL onto an F-structure of the form⟨A′,FiFamI(A′)⟩, for some F-algebraic system A′ = ⟨A′, ⟨F ′, α′⟩⟩.
Proof: The “only if” is clear, since, if IL = ⟨A,D⟩ is a full I-structure, then⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical morphism and, moreover, by the definition of
fullness, IL∗ = ⟨A∗,FiFamI(A∗)⟩.

Assume, conversely, that ⟨H,γ⟩ ∶ IL ⊢ ⟨A′,FiFamI(A′)⟩ is a bilogical
morphism. By Proposition 1390, ⟨A′,FiFamI(A′)⟩ ∈ FStr(I). Therefore, by
Proposition 1392, IL ∈ FStr(I), as well. ∎

We now formulate a result that can be used to show that a property of
F-structures for every full I-structure of a π-institution I based on F. It
characterizes FStr(I) as the smallest class of F-structures containing all F-
structures of the form ⟨A,FiFamI(A)⟩, with A ranging over all F-algebraic
systems, and closed under bilogical morphisms. It follows that to prove that a
property holds for all members of FStr(I) it suffices to show that it holds for
all F-structures of the specific form ⟨A,FiFamI(A)⟩ and that it is preserved
under bilogical morphisms.
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Corollary 1394 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. FStr(I) is the smallest class containing⟨A,FiFamI(A)⟩, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and closed
under both images and preimages under bilogical morphisms.

Proof: By Proposition 1390, for every F-algebraic system A, the pair ⟨A,
FiFamI(A)⟩ ∈ FStr(I). Moreover, by Proposition 1392, FStr(I) is closed
under both images and preimages under bilogical morphisms. On the other
hand, let L be a class satisfying these properties and let ⟨A,D⟩ ∈ FStr(I).
By Corollary 1393, there exists an F-algebraic system A′ and a bilogical
morphism ⟨H,γ⟩ ∶ ⟨A,D⟩ ⊢ ⟨A′,FiFamI(A′)⟩.
By hypothesis, ⟨A′,FiFamI(A′)⟩ ∈ L and, again by hypothesis, ⟨A,D⟩ ∈ L.
Thus, we conclude that FStr(I) ⊆ L. This proves that FStr(I) is indeed the
smallest class satisfying the given properties. ∎

An alternative characterization of full I-structures uses both the Leibniz
and the Tarski operators.

Theorem 1395 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and IL =⟨A,D⟩ an F-structure. Then IL is a full I-structure if and only if

D = {T ∈ FiFamI(A) ∶ Ω̃(IL) ≤ ΩA(T )}.
Proof: Let IL be an F-structure and set

T = {T ∈ FiFamI(A) ∶ Ω̃(IL) ≤ ΩA(T )}.
Suppose, first, that IL = ⟨A,D⟩ ∈ FStr(I). We must show D = T . To this
end, let T ∈ FiFamI(A). Then, by Proposition 1385, T ∈ FIFamI(A) and,
by the definition of the Tarski congruence system, Ω̃(IL) ≤ ΩA(T ). Thus,
D ⊆ T . Conversely, if T ∈ FiFamI(A), such that Ω̃(IL) ≤ ΩA(T ), then Ω̃(IL)
is compatible with T . Setting T ′ = T /Ω̃(IL), we have, by Corollary 56, that
T ′ ∈ FiFamI(A/Ω̃(IL)) and T = π−1(T ′), where ⟨I, π⟩ ∶ A → A/Ω̃(IL) is
the quotient morphism, which is also a bilogical morphism ⟨I, π⟩ ∶ IL ⊢ IL∗.
Since, by hypothesis IL is full, we get that D∗ = FiFamI(A/Ω̃(IL)), whence,
T = π−1(T ′) ∈ π−1(D∗) = D. We conclude that T ⊆ D.

Assume, conversely, that D = {T ∈ FiFamI(A) ∶ Ω̃(IL) ≤ ΩA(T )}. Then,
by Proposition 1360,

⟨I, π⟩ ∶ IL ⊢ ⟨A/Ω̃(IL),FiFamI(A/Ω̃(IL))⟩
is a bilogical morphism. Therefore, D∗ = FiFamI(A/Ω̃(IL)), showing that
IL ∈ FStr(I). ∎
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19.6 I-Algebraic Systems

Since ⟨A,D⟩ is a full I-structure if and only if D∗ = FiFamI(A∗), we conclude
that the reduced full I-structures are exactly those structures of the form⟨A,FiFamI(A)⟩, which are reduced.

Definition 1396 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. An F-algebraic system A = ⟨A, ⟨F,α⟩⟩
if an I-algebraic system if and only if the F-structure ⟨A,FiFamI(A)⟩
is reduced, i.e., if A is the underlying F-algebraic system of a reduced full
I-structure.

We denote by AlgSys(I) the class of all I-algebraic systems.

Since I-algebraic systems are determined based on reduced full I-struc-
tures, the following characterization is useful in this context.

Proposition 1397 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ an F-structure. Then the following are equivalent:

(i) IL is a reduced full I-structure;

(ii) IL is reduced and D = FiFamI(A);
(iii) A ∈ AlgSys(I) and D = FiFamI(A).
Proof:

(i)⇒(ii) Suppose that IL = ⟨A,D⟩ is a reduced full I-structure. Since IL is
full, IL∗ = ⟨A∗,FiFamI(A∗)⟩. Since IL is reduced, IL∗ = IL. Thus,
D = FiFamI(A).

(ii)⇒(ii) Assume IL = ⟨A,D⟩ is reduced and D = FiFamI(A). Since IL is reduced,
IL∗ = IL = ⟨A,FiFamI(A)⟩. Therefore, IL is also full and, consequently,
A ∈ AlgSys(I).

(iii)⇒(i) Let IL = ⟨A,D⟩, with A ∈ AlgSys(I) and D = FiFamI(A). Since A ∈
AlgSys(I), there exists a closure family D′ on A, such that ⟨A,D′⟩ is
a reduced full I-structure. Since ⟨A,D′⟩ is full and reduced, we have
D′ = FiFamI(A). Since, by hypothesis, D = FiFamI(A), we get that
D′ = D. Hence, IL = ⟨A,D⟩ = ⟨A,D′⟩ is a reduced full I-structure.

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. We
denote by ConSysI(A) the collection of all congruence systems θ on A, such
that the quotient algebraic system Aθ is in AlgSys(I):

ConSysI(A) = {θ ∈ ConSys(A) ∶ Aθ ∈ AlgSys(I)}.
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A congruence system θ ∈ ConSysI(A) is called an I-congruence system
on A.

It turns out that the Tarski congruence systems of full I-structures are
all I-congruence systems.

Proposition 1398 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ an F-structure. If IL is full, then A∗ ∈ AlgSys(I) and, therefore,
Ω̃(IL) ∈ ConSysI(A).
Proof: Suppose that IL = ⟨A,D⟩ is a full I-structure. Then, by definition,
IL∗ = ⟨A∗,D∗⟩ = ⟨A∗,FiFamI(A∗)⟩ is a reduced full I-structure. Hence A∗ ∈
AlgSys(I) and, therefore, by definition, Ω̃(IL) ∈ ConSysI(A). ∎

Even though, according to the definition, I-algebraic systems are deter-
mined as the F-algebraic system reducts of reduced full I-structures, they
can also be characterized without reference to fullness.

Proposition 1399 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. AlgSys(I) is the class of all underlying
F-algebraic systems of all reduced I-structures:

AlgSys(I) = {A ∶ (∃⟨A,D⟩ ∈ StrI(A))(Ω̃A(D) =∆A)}.
Proof: If A ∈ AlgSys(I), then, by Proposition 1397, ⟨A,FiFamI(A)⟩ is a
reduced full I-structure. Conversely, if IL = ⟨A,D⟩ is a reduced I-structure,
then D ⊆ FiFamI(A) and, therefore,

Ω̃(⟨A,FiFamI(A)⟩) ≤ Ω̃(IL) = ∆A.

Thus, ⟨A,FiFamI(A)⟩ is a reduced full I-structure and A ∈ AlgSys(I). ∎

The class of all I-algebraic systems is closed under isomorphisms.

Proposition 1400 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. AlgSys(I) is closed under isomor-
phisms.

Proof: Assume A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ ∈ AlgSys(I) and let ⟨H,γ⟩ ∶
A→ B be an isomorphism.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B
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Then, we have that FiFamI(A) = γ−1(FiFamI(B)), which shows that

⟨H,γ⟩ ∶ ⟨A,FiFamI(A)⟩ ≅ ⟨B,FiFamI(B)⟩.
Now we can use Proposition 1363 to see that ⟨A,FiFamI(A)⟩ is reduced if
and only if ⟨B,FiFamI(B)⟩ is reduced and, therefore, by Proposition 1399,
A ∈ AlgSys(I) if and only if B ∈ AlgSys(I). ∎

Proposition 1397 gave characterizing conditions for reduced full I-structures.
An analog for full I-structures is the following:

Proposition 1401 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ an F-structure. Then the following are equivalent:

(i) IL is a full I-structure;

(ii) A∗ ∈ AlgSys(I) and D∗ = FiFamI(A∗);
(iii) There exists a bilogical morphism ⟨H,γ⟩ ∶ IL ⊢ ⟨A′,D′⟩, such that A′ ∈

AlgSys(I) and D′ = FiFamI(A′).
Proof:

(i)⇒(ii) Suppose IL = ⟨A,D⟩ is a full I-structure. Then, by definition, IL∗ =⟨A∗,FiFamI(A∗)⟩. Thus, A∈AlgSys(I) and D∗ = FiFamI(A∗).
(ii)⇒(iii) Obvious, since ⟨H,γ⟩ ∶ IL ⊢ IL∗ is a bilogical morphism.

(iii)⇒(i) Assume that ⟨H,γ⟩ ∶ IL → ⟨A′,D′⟩ is a bilogical morphism, such that
A′ ∈ AlgSys(I) and D′ = FifamI(A′). Then, by Proposition 1372, there
exists an α-isomorphism IL∗ ⊢α ⟨A′∗,D′∗⟩. Since A′ ∈ AlgSys(I) and
D′ = FiFamI(A′), it follows, by Proposition 1397, that ⟨A′,D′⟩ is a
reduced full I-structure. So we have

⟨A′∗,D′∗⟩ = ⟨A′,D′⟩ = ⟨A′,FiFam(A′)⟩.
Hence, by Proposition 1380, IL∗ = ⟨A∗,FiFamI(A∗)⟩ and, therefore, IL
is a full I-structure.

∎

It turns out that, given a π-institution I , the class of all full I-structures,
the class of all F-structures of the form ⟨A,FiFamI(A)⟩, where A ranges over
all F-algebraic systems, as well as the class of all reduced full I-structures
are complete F-structure semantics for I .

Theorem 1402 (Completeness Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system and I = ⟨F,C⟩ a π-institution based on F. I is complete
with respect to the following classes of F-structures:
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(i) The class of all full I-structures;

(ii) The class of all F-structures of the form ⟨A,FiFamI(A)⟩;
(iii) The class of all reduced full I-structures, i.e., structures of the form⟨A,FiFamI(A)⟩, with A ∈ AlgSys(I).
Proof: Note that all three classes of F-structures consist of I-structures and
include ⟨F ,C⟩∗. Therefore, by Proposition 1388, I is complete with respect
to each one of them. ∎

Let I = ⟨F,C⟩ be a π-institution. To I we have associated (among others)
two classes of F-algebraic systems. One is the class AlgSys∗(I) of underly-
ing F-algebraic systems of reduced I-matrix families. The other is the class
AlgSys(I) of underlying F-algebraic systems of reduced I-structures (ac-
cording to Proposition 1399). To explore an important relationship between
these two classes, we introduce an operator on F-algebraic systems, which is
related to an operator on F-matrix families, given the same name.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider F-algebraic
systems A = ⟨A, ⟨F,α⟩⟩ and Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, and a system of surjec-
tive morphisms

⟨H i, γi⟩ ∶ A → Ai, i ∈ I.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F i, αi⟩
⑦

A ⟨H i, γi⟩ ✲ Ai

We say {⟨H i, γi⟩ ∶ i ∈ I} is a subdirect intersection (system) and call the⟨H i, γi⟩ subdirect intersection morphisms if

⋂
i∈I

Ker(⟨H i, γi⟩) =∆A.

If such a system exists, we say that A is a subdirect intersection of the
F-algebraic systems {Ai ∶ i ∈ I}. Given a class K of F-algebraic systems and
an F-algebraic system A, we write

A ∈
⊲

IΠ(K)
to signify that A is a subdirect intersection of a collection {Ai ∶ i ∈ I}, with
Ai ∈ K, for all i ∈ I.

We can show that the operator
⊲

IΠ is a closure operator on classes of
F-algebraic systems.
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Proposition 1403 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

⊲

IΠ ∶ P(AlgSys(F))→ P(AlgSys(F))
is a closure operator.

Proof: Suppose, first, that K ⊆ AlgSys(F) and A ∈ K. Since the identity

morphism ⟨I, ι⟩ ∶ A → A is a subdirect intersection, we get that A ∈
⊲

IΠ(K).
Thus,

⊲

IΠ is inflationary.

Suppose, next, that K ⊆ K′ ⊆ AlgSys(F) and A ∈
⊲

IΠ(K). Thus, A is a
subdirect intersection of a collection {Ai ∶ i ∈ I} ⊆ K. Then A is a subdirect

intersection of {Ai ∶ i ∈ I} ⊆ K′. Hence,
⊲

IΠ(K) ⊆ ⊲

IΠ(K′) and, therefore,
⊲

IΠ is
also monotone.

Assume, finally, that K ⊆ AlgSys(F) and let A ∈
⊲

IΠ( ⊲IΠ(K)). Thus, there
exists a subdirect intersection system

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

where Ai ∈
⊲

IΠ(K), for all i ∈ I. Consequently, for all i ∈ I, there exists a
subdirect intersection system

⟨H ij, γij⟩ ∶ Ai → Aij, j ∈ Ji,

where Aij ∈ K, for all i ∈ I, j ∈ Ji. We consider the collection

⟨H ij, γij⟩ ○ ⟨H i, γi⟩ ∶ A→ Aij , i ∈ I, j ∈ Ji.

We have

⋂i∈I ⋂j∈Ji Ker(⟨H ij , γij⟩ ○ ⟨H i, γi⟩) = ⋂i∈I ⋂j∈Ji(γi)−1(Ker(⟨H ij, γij⟩))
= ⋂i∈I(γi)−1(⋂j∈Ji(Ker(⟨H ij, γij⟩))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A.

Thus, the system {⟨H ij, γij⟩○⟨H i, γo⟩ ∶ i ∈ I, j ∈ Ji} is a subdirect intersection

system, showing that A ∈
⊲

IΠ(K). We conclude that
⊲

IΠ is also idempotent. ∎

Using subdirect intersections, we can give the exact relationship between
the classes AlgSys(I) and AlgSys∗(I). Namely, we show that the former is
the class of all subdirect intersections of collections of algebraic systems in
the latter class. In particular AlgSys∗(I) ⊆ AlgSys(I).
Theorem 1404 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

AlgSys(I) = ⊲IΠ(AlgSys∗(I)).
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Proof: Assume, first, that A ∈ AlgSys(I). Then, we have

⋂{ΩA(T ) ∶ T ∈ FiFamI(A)} = Ω̃A(FiFamI(A)) =∆A.

Now, consider the collection

⟨I, πΩA(T )⟩ ∶ A→ A/ΩA(T ), T ∈ FiFamI(A).
By the preceding equation, this collection constitutes a subdirect intersec-
tion. Moreover, for all T ∈ FiFamI(A), we have ⟨A/ΩA(T ), T /ΩA(T )⟩ ∈
MatFam∗(I) and, hence, A/ΩA(T ) ∈ AlgSys∗(I). Therefore, we get that

A ∈
⊲

IΠ(AlgSys∗(I)).
Suppose, conversely, that A ∈

⊲

IΠ(AlgSys∗(I)). Thus, there exists a sub-
direct intersection ⟨H iγi⟩ ∶ A→ Ai, i ∈ I,

with Ai ∈ AlgSys∗(I), for all i ∈ I. Thus, for all i ∈ I, there exists T i ∈
FiFamI(Ai), such that ΩA

i(T i) =∆A
i
. Now, we calculate:

Ω̃A(FiFamI(A)) = ⋂{ΩA(T ) ∶ T ∈ ThFamI(A)}
⊆ ⋂i∈I ΩA((γi)−1(T i))
= ⋂i∈I(γi)−1(ΩAi(T i))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A.

We conclude that A ∈ AlgSys(I). Thus, AlgSys(I) ⊆ ⊲IΠ(AlgSys∗(I)). ∎

Corollary 1405 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then AlgSys∗(I) ⊆ AlgSys(I) and, more-
over, ALgSys∗(I) = AlgSys(I) if and only if AlgSys∗(I) is closed under
subdirect intersections.

Proof: We have

AlgSys∗(I) ⊆ ⊲

IΠ(AlgSys∗(I)) (by Proposition 1403)
= AlgSys(I). (by Theorem 1404)

If AlgSys∗(I) is closed under subdirect intersections,

AlgSys(I) = ⊲IΠ(AlgSys∗(I)) ⊆ AlgSys∗(I).
Conversely, if AlgSys∗(I) = AlgSys(I), then

⊲

IΠ(AlgSys∗(I)) = AlgSys(I) =
AlgSys∗(I). ∎
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Finally, we give a relation between the classes of algebraic systems as-
sociated in this way with π-institutions based on the same algebraic system
that are related by ≤. Recall that, given I = ⟨F,C⟩ and I ′ = ⟨F,C ′⟩, we write
C ≤ C ′ if, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ), CΣ(Φ) ⊆ C ′Σ(Φ). If this is
the case, we also write I ≤ I ′ and say that I ′ is stronger than I and that I is
weaker than I ′. Recall, also, that, I ≤ I ′ if and only if, for every F-algebraic
system A, FiFamI

′(A) ⊆ FiFamI(A).
Proposition 1406 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ be two π-institutions based on F. If I ≤ I ′, then

AlgSys(I ′) ⊆ AlgSys(I) and AlgSys∗(I ′) ⊆ AlgSys∗(I).
Proof: If A ∈ AlgSys∗(I ′), then, there exists T ′ ∈ FiFamI

′(A), such that
ΩA(T ′) = ∆A. But, since I ≤ I ′, we have T ′ ∈ FiFamI(A). Therefore
A ∈ AlgSys∗(I). We now conclude that AlgSys∗(I ′) ⊆ AlgSys∗(I).

For the second inclusion, we get

AlgSys(I ′) = ⊲

IΠ(AlgSys∗(I)) (Theorem 1404)

⊆
⊲

IΠ(AlgSys∗(I)) (Proposition 1403)
= AlgSys(I). (Theorem 1404)

∎

19.7 Lattice of Full I-Structures

In this section we show that, given a π-institution I = ⟨F,C⟩ and an F-
algebraic system A = ⟨F, ⟨F,α⟩⟩, the poset ⟨FStrI(A),≤⟩ of full I-structures
on A and the poset ⟨ConSysI(A),≤⟩ of I-congruence systems on A are iso-
morphic through the Tarski operator

⟨A,D⟩ ↦ Ω̃A(D).
We start by defining an operator which will turn out to be the inverse of the
Tarski operator.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Given
θ ∈ ConSys(A), define

H̃A(θ) = ⟨A,Dθ⟩,
by setting

Dθ = (πθ)−1(FiFamI(Aθ)),
where ⟨I, πθ⟩ ∶ A→ Aθ is the quotient morphism.

Note that, by definition of H̃A(θ), the morphism

⟨I, πθ⟩ ∶ H̃A(θ)→ ⟨Aθ,FiFamI(Aθ)⟩
is a bilogical morphism.

We have the following properties concerning the operator H̃ .
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Lemma 1407 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

(a) For every θ ∈ ConSys(A),
(i) θ ∈ ConSys(H̃A(θ));

(ii) H̃A(θ)/θ = ⟨Aθ,FiFamI(Aθ)⟩;
(iii) H̃A(θ) ∈ FStrI(A);

(b) θ ↦ H̃A(θ) is order preserving, i.e., for all θ, θ′ ∈ ConSys(A), θ ≤ θ′
implies H̃A(θ) ≤ H̃A(θ′).

Proof:

(a) For Part (i) we must show that, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),⟨φ,ψ⟩ ∈ θΣ implies that Dθ
Σ(φ) = Dθ

Σ(ψ). Suppose, to this end, that
Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ. Then, we have

C
I,Aθ

Σ (φ/θΣ) = CI,AθΣ (ψ/θΣ),
i.e., CI,A

θ

Σ (πθΣ(φ)) = CI,AθΣ (πθΣ(ψ)). This gives that

(πθΣ)−1(CI,AθΣ (πθΣ(φ))) = (πθΣ)−1(CI,AθΣ (πθΣ(ψ))).
Since ⟨I, πθ⟩ ∶ H̃A(θ) → ⟨Aθ,CI,A

θ⟩ is a bilogical morphism, we get by
Proposition 1360, Dθ

Σ(φ) = Dθ
Σ(ψ). We conclude that θ ∈ ConSys(H̃A(θ)).

For Part (ii), we have

πθ(Dθ) = πθ((πθ)−1(FiFamI(Aθ))) = FiFamA(Aθ),
where the last equality follows from the fact that ⟨I, πθ⟩ is a bilogical
morphism, by applying Proposition 1360.

Part (iii) follows from the fact that the morphism ⟨I, πθ⟩ ∶ H̃A(θ) →⟨Aθ,FiFamI(Aθ)⟩ is a bilogical morphism and Corollary 1393.

(b) Suppose θ, θ′ ∈ ConSys(A), such that θ ≤ θ′. Then we have the following
commutative diagram of F-algebraic systems.

A
⟨I, πθ⟩ ✲ Aθ

◗
◗
◗
◗
◗
◗
◗

⟨I, πθ′⟩
s

Aθ′

⟨I, π⟩
❄

where, ⟨I, π⟩ ∶ Aθ → Aθ′ is defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
by

πΣ(φ/θΣ) = φ/θ′Σ.
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Taking this diagram into account, we have

Dθ′ = (πθ′)−1(FiFamI(Aθ′)) (Definition of Dθ′)

= (πθ)−1(π−1(FiFamI(Aθ′))) (π ○ πθ = πθ′)
⊆ (πθ)−1(FiFamI(Aθ)) (Corollary 55)
= Dθ. (Definition of Dθ)

Thus, we get H̃A(θ) ≤ H̃A(θ′). ∎

We are ready now for the main isomorphism theorem that was promised
at the beginning of the section.

Theorem 1408 (Isomorphism Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system, I = ⟨F,C⟩ a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, an F-algebraic system. Then

Ω̃A ∶ ⟨FStrI(A),≤⟩→ ⟨ConSysI(A),≤⟩
is an order isomorphism, with inverse

H̃A ∶ ⟨ConSysI(A),≤⟩→ ⟨FStrI(A),≤⟩.
Proof: By Proposition 1398, if IL ∈ FStrI(A), then Ω̃A(IL) ∈ ConSysI(A).
Moreover, by Lemma 1407, if θ ∈ ConSysI(A), then H̃A(θ) ∈ FStrI(A). So,
both Ω̃A and H̃A are well-defined, with domains and codomains as indicated.

We show, next, that they are mutually inverse mappings.
Suppose, first, that IL = ⟨A,D⟩ ∈ FStrI(A). Then, by Proposition 1398,

A∗ ∈ AlgSysI(A) and Ω̃A(IL) ∈ ConSysI(A). By fullness, D = π−1(FiFamI(A∗)),
where ⟨I, π⟩ ∶ IL ⊢ IL∗ is the quotient bilogical morphism. Then, by definition
of H̃A, we get that H̃A(Ω̃A(IL)) = IL.

Suppose, on the other hand, that θ ∈ ConSysI(A). By definition, Aθ ∈
AlgSys(I). Thus, by definition,

⟨Aθ,FiFamI(Aθ)⟩ ∈ FStr(I) and Ω̃A
θ(FiFamI(Aθ)) =∆A

θ

.

Now, we get

Ω̃A(H̃A(θ)) = Ω̃A((πθ)−1(FiFamI(Aθ))) (Definition of H̃A(θ))
= (πθ)−1(Ω̃Aθ(FiFamI(Aθ))) (Corollary 1364)

= (πθ)−1(∆Aθ) (Hypothesis)
= θ. (Set Theory)

Since, by definition Ω̃A is order preserving and, by Lemma 1407, H̃A is also
order preserving, we conclude that Ω̃A is an order isomorphism with inverse
H̃A. ∎

We show next that the poset of I-congruence systems on an F-algebraic
system A is a complete lattice with infimum given by signature-wise inter-
section. In conjunction with the Isomorphism Theorem, this will yield that
the poset of full I-structures on A is also a complete lattice.
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Theorem 1409 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, the poset ⟨ConSysI(A),≤⟩ is a complete
lattice with infimum given by signature-wise intersection.

Proof: First, note that ∇A ∈ ConSysI(A), since Ω̃A(FiFamI(A/∇A)) =
∆A/∇

A
and, hence, A/∇A ∈ AlgSys(I). So ConSysI(A) has a largest element.

Assume, next, that, for all i ∈ I, θi ∈ ConSysI(A). We must show that

⋂i∈I θi ∈ ConSysI(A). To this end, set θ ∶= ⋂i∈I θi and consider the projection
morphisms ⟨I, πi⟩ ∶ Aθ → Aθi , i ∈ I,

which are bilogical morphisms

⟨I, πi⟩ ∶ ⟨Aθ,FiFamI(Aθ)⟩ ⊢ ⟨Aθi ,FiFamI(Aθi)⟩, i ∈ I.

By hypothesis, ⟨Aθi,FiFamI(Aθi)⟩ is reduced, i.e.,

Ω̃A
θi (FiFamI(Aθi)) =∆A

θi

, i ∈ I.

Now we have, for all i ∈ I,

Ω̃A
θ(FiFamI(Aθ)) ≤ Ω̃A

θ((πi)−1(FiFamI(Aθi)))
= (πi)−1(Ω̃Aθi (FiFamI(Aθi)))
= (πi)−1(∆Aθi )
= θi/θ.

Thus, we get

Ω̃A
θ(FiFamI(Aθ)) ≤⋂

i∈I

(θi/θ) = (⋂
i∈I

θi)/θ = θ/θ =∆A
θ

.

We conclude that ⟨Aθ,FiFamI(Aθ)⟩ is reduced and, hence, Aθ ∈ AlgSys(I),
giving that θ ∈ ConSysI(A).

The conclusion of the theorem now follows. ∎

As a consequence of the Isomorphism Theorem 1408 and Theorem 1409,
we get

Corollary 1410 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, ⟨FStrI(A),≤⟩ is a complete lattice and

Ω̃A ∶ ⟨FStrI(A),≤⟩→ ⟨ConSysI(A),≤⟩
is a lattice isomorphism.
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Proof: By Theorems 1408 and 1409. ∎

It follows from the preceding results that, given a collection {ILi ∶ i ∈
I} ⊆ FStrI(A), with ILi = ⟨A,Di⟩, i ∈ I, its infimum in ⟨FStrI(A),≤⟩ is the
I-structure ⟨A, (πθ)−1(FiFamI(Aθ)⟩,
where θ = ⋂i∈I Ω̃A(ILi), and ⟨I, πθ⟩ ∶ A → Aθ is the quotient morphism. It
is not necessarily the case, however, that this system be the signature-wise
intersection of the ILi’s. In other words, ⟨FStrI(A),≤⟩ is not, in general, a
sublattice of the complete lattice of all I-structures on A.

It turns out that bilogical morphisms with isomorphic functor compo-
nents induce isomorphisms between principal ideals of the corresponding full
structure lattices and, similarly isomorphisms between principal ideals of the
corresponding lattices of congruence systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. Let also A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
be an F-algebraic system. Consider the complete lattice ⟨FStrI(A),≤⟩ and
let IL = ⟨A,D⟩ ∈ FStrI(A). Recall that the ordering ≤ reflects the ordering
of the closure operators on A, which is dual to the inclusion ordering of
the corresponding closure set systems. So, when we refer to an ideal in⟨FStrI(A),≤⟩ we mean in the form of closure (operator) families and this
translates to a filter, when one views structures in the form of their theory
families. Keeping this in mind, we introduce the notation FStrI(IL) to refer
to the principal ideal of all full I-structures on A generated by IL. These are
full I-structures whose collection of theory families include D.

FStrI(⟨A,D⟩) = {⟨A,D′⟩ ∈ FStrI(A) ∶D′ ≤D}
= {⟨A,D′⟩ ∈ FStrI(A) ∶ D ≤ D′}.

Then we have the following.

Proposition 1411 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. Let also A = ⟨Sign,SEN,N⟩,
A′ = ⟨Sign,SEN′,N ′⟩ be N ♭-algebraic systems, over the same category of sig-
natures, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ F-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ full I-structures and ⟨I, γ⟩ ∶ IL ⊢ IL′ a bilogical morphism. Then

⟨A,X ⟩↦ ⟨A′, γ(X )⟩
is an isomorphism from FStrI(IL) to FStrI(IL′).

Moreover, the principal ideals of ConSysI(A) and of ConSysI(A′), gen-
erated by Ω̃A(IL) and Ω̃A

′(IL′), respectively, are isomorphic.

Proof: By Corollary 1362, the displayed mapping is an isomorphism between
ClFam(IL) and ClFam(IL′). Proposition 1392 gives the statement, since
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⟨I, γ⟩ induces bilogical morphisms between the corresponding elements in
ClFam(IL) and ClFam(IL′). The second statement now follows by applying
the Isomorphism Theorem 1408. ∎

Corollary 1412 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let also A = ⟨Sign,SEN,N⟩, A′ =⟨Sign,SEN′,N ′⟩ be N ♭-algebraic systems, over the same category of signa-
tures, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ F-algebraic systems and ⟨I, γ⟩ ∶ A→
A′ a surjective morphism, such that

⟨I, γ⟩ ∶ ⟨A,FiFamI(A)⟩ ⊢ ⟨A′,FiFamI(A′)⟩
is a bilogical morphism. Then ⟨A,X ⟩ ↦ ⟨A′, γ(X )⟩ is an isomorphism from
FStrI(A) to FStrI(A′). Moreover, ConSysI(A) ≅ConSysI(A′).
Proof: This follows by Proposition 1411, since, by Proposition 1390, the
I-structures ⟨A,FiFamI(A)⟩ and ⟨A′,FiFamI(A′)⟩ are the weakest full I-
structures on A and A′, respectively. The last isomorphism follows by the
second statement of Proposition 1411. ∎

We close the section by looking at some functors that relate the cate-
gories having as objects the structures that we have focused upon and with
surjective homomorphism running between them.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We describe three categories related to I .

• The category FStr(I):
– The objects are full I-structures IL = ⟨A,D⟩;
– Given objects IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩, a morphism in

FStr(I) ⟨H,γ⟩ ∶ IL→ IL′

is a surjective morphism ⟨H,γ⟩ ∶ A → A′, which is also a logical
morphism ⟨H,γ⟩ ∶ IL⟩−IL′.

It is not difficult to verify that these two clauses specify indeed a cate-
gory, with composition being ordinary composition of morphisms.

• The category FStr∗(I):
This is the full subcategory of FStr(I), with objects all full I-
structures.

• The category AlgSys(I):
– The objects are I-algebraic systems A = ⟨A, ⟨F,α⟩⟩;
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– Given objects A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩, a morphism
in AlgSys(I) ⟨H,γ⟩ ∶ A→ A′

is a surjective F-algebraic system morphism.

It is not difficult in this case either to verify that these two clauses
specify indeed a category, with composition being ordinary composition
of morphisms.

The following picture gives an overview of the relationships that hold
between these categories and will be established shortly. The categories
AlgSys(I) and FStr∗(I) are isomorphic through an isomorphism

Φ ∶ AlgSys(I) ≅ FStr∗(I),
which will be defined in the upcoming Theorem 1413. Moreover, the category
FStr∗(I) is a reflective subcategory of the category FStr(I), with reflector
the reduction functor ∗ ∶ FStr(I) → FStr∗(I) that will be visited in detail
in the last Theorem 1414 of the section.

AlgSys(I) Φ ✲✛
Φ−1

FStr∗(I) ⊂ J ✲✛
∗

FStr(I)
Theorem 1413 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then the categories AlgSys(I) and
FStr∗(I) are isomorphic.

Proof: We define the functor

Φ ∶ AlgSys(I)→ FStr∗(I)
by setting:

• For all A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(I),
Φ(A) = ⟨A,FiFamI(A)⟩;

• For all ⟨H,γ⟩ ∶ A → A′ in AlgSys(I),
Φ(⟨H,γ⟩) = ⟨H,γ⟩ ∶ ⟨A,FiFamI(A)⟩⟩−⟨A′,FiFamI(A′)⟩.

First, observe that, by Proposition 1397, if A ∈ AlgSys(I), then ⟨A,FiFamI(A)⟩
is a reduced full I-structure. So Φ is correctly defined. Moreover, if ⟨A,D⟩ ∈
FStr∗(I), then, again by Proposition 1397, D = FiFamI(A) and A ∈ AlgSys(I).
Thus, Φ is a bijection on objects.
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Finally, by Corollary 55, if ⟨H,γ⟩ ∶ A → A′ is a surjective morphism,
then, for all T ′ ∈ FiFamI(A′), γ−1(T ′) ∈ FiFamI(A). Therefore, Φ(⟨H,γ⟩) is
a well-defined logical morphism, by Proposition 1358. Since it is clear that
Φ is bijective on morphisms as well, we get that Φ ∶ AlgSys(I)→ FStr∗(I)
is indeed an isomorphism of categories. ∎

Finally, for the reflection:

Theorem 1414 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then FStr∗(I) is a full reflective subcate-
gory of FStr(I) with reflector the reduction functor ∗ ∶ FStr(I)→ FStr∗(I).
Proof: It is obvious that FStr∗(I) is a full subcategory of FStr(I). We
must show that, given IL = ⟨A,D⟩ ∈ FStr(I), the pair ⟨IL∗, ⟨I, π⟩ ∶ IL → IL∗⟩
is a reflector, i.e., that, given IL′ = ⟨A′,D′⟩ ∈ FStr∗(I) and ⟨H,γ⟩ ∶ IL→ IL′ in
FStr(I), there exists a unique ⟨H,γ∗⟩ ∶ IL∗ → IL′ in FStr∗(I), such that the
following diagram commutes.

IL
⟨H,γ⟩ ✲ IL′

◗
◗
◗
◗
◗
◗
◗
◗

⟨I, π⟩
s

IL∗

⟨H,γ∗⟩
✻

Consider ILγ ∶= ⟨A, γ−1(D′)⟩. Clearly, since, by hypothesis and Proposition
1358, γ−1(D′) ⊆ D, we have that IL ≤ ILγ . Now we have

Ker(⟨I, π⟩) = Ω̃A(IL) (Set Theory)

≤ Ω̃A(ILγ) (IL ≤ ILγ)

= γ−1(Ω̃A′(IL′)) (Corollary 1364)
= γ−1(∆A′) (IL′ ∈ FStr∗(I))
= Ker(⟨H,γ⟩). (Set Theory)

By the Fill-in Lemma (Proposition 1374), there exists a unique logical mor-
phism ⟨H,γ∗⟩ ∶ IL∗ → IL′, such that the displayed diagram commutes, which,
in addition, is surjective by the commutativity of the triangle. ∎

19.8 Frege Relations Revisited

We revisit here in more detail the types of Frege relations and Frege operators
one may consider in conjunction with π-institutions or π-structures, more
generally.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ∈ SenFam(A).
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• The local Frege relation family λA(T ) = {λAΣ (T )}Σ∈∣Sign∣ of T on
A is defined by setting, for all Σ ∈ ∣Sign∣,

λAΣ (T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ φ ∈ TΣ iff ψ ∈ TΣ}.
• The global Frege relation family ΛA(T ) = {ΛA

Σ (T )}Σ∈∣Sign∣ of T on
A is defined by setting, for all Σ ∈ ∣Sign∣,

ΛA
Σ (T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ TΣ′ iff SEN(f)(ψ) ∈ TΣ′}.
The operators λA,ΛA ∶ SenFam(A) → RelFam(A) are called the local and
global Frege operators on A, respectively.

Let now A = ⟨Sign,SEN,N⟩ be an algebraic system and IL = ⟨A,D⟩ be
a π-structure.

• The local Frege relation family λ̃A(IL) = λ̃A(D) = {λ̃AΣ (D)}Σ∈∣Sign∣
of IL, or of D on A, is defined by setting, for all Σ ∈ ∣Sign∣,

λ̃AΣ (D) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ DΣ(φ) = DΣ(ψ)}.
• The global Frege relation family Λ̃A(IL) = Λ̃A(D) = {Λ̃A

Σ (D)}Σ∈∣Sign∣
of IL, or of D on A, is defined by setting, for all Σ ∈ ∣Sign∣,

Λ̃A
Σ (D) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),

DΣ′(SEN(f)(φ)) =DΣ′(SEN(f)(ψ))}.
Consider again an algebraic system A = ⟨Sign,SEN,N⟩, a π-structure

IL = ⟨A,D⟩ and X ∈ SenFam(A). Recall the notation DX ∶ PSEN → PSEN
denoting the closure family on A that is defined, for all Σ ∈ ∣Sign∣ and all
Φ ⊆ SEN(Σ), by

DX
Σ (Φ) =DΣ(XΣ ∪Φ).

• The local Frege relation family

λ̃IL(X) = λ̃A,D(X) = {λ̃A,DΣ (X)}Σ∈∣Sign∣
of X in IL is defined by setting, for all Σ ∈ ∣Sign∣,

λ̃
A,D
Σ (X) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶DX

Σ (φ) =DX
Σ (ψ)}.

• The global Frege relation family

Λ̃IL(X) = Λ̃A,D(X) = {Λ̃A,D
Σ (X)}Σ∈∣Sign∣

of X in IL is defined by setting, for all Σ ∈ ∣Sign∣,
Λ̃A,D

Σ (X) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
DX

Σ′(SEN(f)(φ)) = DX
Σ′(SEN(f)(ψ))}.
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The operators λ̃A,D, Λ̃A,D ∶ SenFam(A) → RelFam(A) are called the local
and global Frege operators on IL, respectively.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩ be a π-
structure and X ∈ SenFam(A). Some obvious relationships hold between sev-
eral of the notions defined above. We denote by Thm(IL) = {ThmΣ(IL)}Σ∈∣Sign∣,
where ThmΣ(IL) = DΣ(∅), an obvious generalization of the corresponding
notion from π-institutions. Note, however, that, since D is not necessarily
structural, in this case Thm(IL) is a theory family, but not necessarily a
theory system. Then, we have the following:

λ̃A(D) = λ̃A,D(Thm(IL));
Λ̃A(D) = Λ̃A,D(Thm(IL));

λ̃A,D(X) = ⋂{λA(T ) ∶ X ≤ T ∈ ThFam(IL)};
Λ̃A,D(X) = ⋂{ΛA(T ) ∶ X ≤ T ∈ ThFam(IL)}.

We show that all three local Frege operators give rise to equivalence fam-
ilies, whereas all three global operators give rise to equivalence systems on
the underlying algebraic system A.

Lemma 1415 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩
a π-structure and X ∈ SenFam(A).

(a) λA(X), λ̃A(D) and λ̃A,D(X) are equivalence families on A;

(b) ΛA(X), Λ̃A(D) and Λ̃A,D(X) are equivalence systems on A.

Proof: Because of the interdependencies between these concepts, pointed
out before the lemma, it suffices to prove the statements only for λA(X) and
ΛA(X). That both λA(X) and ΛA(X) are equivalence families is obvious
because of the properties of the equivalence connective used in their defini-
tions. So it suffices to show only that ΛA(X) is a system, i.e., that it is
invariant under signature morphisms. So suppose Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ ΛA

Σ (X) and let Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′).
Σ

f ✲ Σ′

❩
❩
❩
❩
❩h ⑦ ❂✚

✚
✚
✚
✚

g

Σ′′

By the definition of ΛA(X), we have that, for all Σ′′ ∈ ∣Sign∣ and all h ∈
Sign(Σ,Σ′′),

DΣ′′(SEN(h)(φ)) =DΣ′′(SEN(h)(ψ)).
A fortiori, for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′), we have

DΣ′′(SEN(g)(SEN(f)(φ))) =DΣ′′(SEN(g)(SEN(f)(ψ))).
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By the definition of ΛA(X), this proves that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈
ΛA

Σ′(X). Thus ΛA(X) is indeed an equivalence system on A. ∎

The next lemma shows that all four “tilde” Frege operators are monotone.

Lemma 1416 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure on A.

(a) λ̃A, Λ̃A ∶ ClFam(A)→ EqvFam(A) are monotone;

(b) λ̃A,D, Λ̃A,D ∶ SenFam(A)→ EqvFam(A) are monotone.

Proof: Suppose D,D′ ∈ ClFam(A), such that D ≤ D′, and let Σ ∈ ∣Sign∣
and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ λ̃AΣ (D). Then DΣ(φ) =DΣ(ψ), whence

D′Σ(φ) =D′Σ(ψ). Thus, ⟨φ,ψ⟩ ∈ λ̃AΣ (D′). We conclude that λ̃A(D) ≤ λ̃A(D′).
The proof for Λ̃A ∶ ClFam(A)→ EqvFam(A) is similar.

Suppose, next, that X,X ′ ∈ SenFam(A), such that X ≤ X ′. Note that,
in this situation, we have

{T ∈ ThFam(IL) ∶X ′ ≤ T} ⊆ {T ∈ ThFam(IL) ∶X ≤ T}.
Therefore, we have

λ̃A,D(X) = ⋂{λA(T ) ∶ X ≤ T ∈ ThFam(IL)}
≤ ⋂{λA(T ) ∶ X ′ ≤ T ∈ ThFam(IL)}
= λ̃A,D(X ′).

The proof for Λ̃A,D ∶ SenFam(A)→ EqvFam(A) is similar. ∎

The equivalence families produced by applying the six Frege operators
form a hierarchy under inclusion that we now make explicit.

Proposition 1417 Let A = ⟨A,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩
a π-structure and X ∈ SenFam(A). Then, we have the following inclusions
between equivalence families on A:

Λ̃A(D)
✠�
�
� ❅

❅
❅❘

λ̃A(D) Λ̃A,D(X)
❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

λ̃A,D(X) ΛA(D(X))
❅
❅
❅❘ ✠�

�
�

λA(D(X))
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Proof: First, note that the three southwest inclusions are obvious, since the
conditions defining λ̃A, λ̃A,D and λA are special cases of the ones defining
Λ̃A, Λ̃A,D and ΛA, respectively.

We show, next, the southeast inclusions between the λ’s, since the ones
between the Λ’s may shown similarly. We have

λ̃A(D) = λ̃A,D(Thm(IL)) ≤ λ̃A,D(D(X)) = λ̃A,D(X).
Moreover,

λ̃A,D(X) = ⋂{λA(T ) ∶X ≤ T ∈ ThFam(IL)}
≤ λA(D(X)).

Therefore, we have λ̃A(D) ≤ λ̃A,D(X) ≤ λA(D(X)). ∎

In the case of structural π-structures, i.e., π-institutions, the hierarchy
collapses to a smaller one, the top pair collapses and in the case of a sentence
system, the middle pair does also. More precisely, we have

Proposition 1418 Let A = ⟨A,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩
a π-structure and X ∈ SenSys(A). If D is structural, then

Λ̃A(D) = λ̃A(D) and Λ̃A,D(X) = λ̃A,D(X).

Proof: By the remarks preceding Lemma 1415, it suffices to show that the
second equation holds. Since it is always the case that Λ̃A,D(X) ≤ λ̃A,D(X),
we must prove the opposite inclusion. Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ λ̃A,DΣ (X). Then, we have, by definition, DΣ(XΣ, φ) =
DΣ(XΣ, ψ). By the structurality of D, for all Σ′ ∈ ∣Sign∣ and all f ∈
Sign(Σ,Σ′),

DΣ′(SEN(f)(XΣ),SEN(f)(φ)) =DΣ′(SEN(f)(XΣ),SEN(f)(ψ)).
Therefore, is X is a sentence system, we get

DΣ′(XΣ′ ,SEN(f)(φ)) =DΣ′(XΣ′ ,SEN(f)(ψ)).
We conclude that ⟨φ,ψ⟩ ∈ Λ̃A,D

Σ (X). ∎

Thus, if IL = ⟨A,D⟩ is a π-institution, and X ∈ SenFam(A), we obtain
the simplified hierarchy of Frege relation families shown on the left and, if,
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in addition, X ∈ SenSys(A), we get the linear hierarchy shown on the right.

Λ̃A(D) = λ̃A(D) Λ̃A(D) = λ̃A(D)

Λ̃A,D(X)❄

Λ̃A,D(X) = λ̃A,D(X)❄

✠�
�
� ❅

❅
❅❘

λ̃A,D(X) ΛA(D(X)) ΛA(D(X))❄

❅
❅
❅❘ ✠�

�
�

λA(D(X)) λA(D(X))❄

We look next at how finitarity of a closure family relates to continuity of
Frege operators.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system. Recall that:

• An X ∈ SenFam(A) is called locally finite if, for all Σ ∈ ∣Sign∣, XΣ is
finite. We write Y ≤lf X to suggest that Y is a locally finite sentence
subfamily of X .

• A collection X ⊆ SenFam(A) is said to be locally directed if, for every
Σ ∈ ∣Sign∣ and finite Y ⊆ X , there exists X ∈ X , such that YΣ ≤XΣ, for
all Y ∈ Y.

Let IL = ⟨A,D⟩ be a π-structure based on A.

• IL is finitary if, for all X ∈ SenFam(A),
D(X) =⋃{D(Y ) ∶ Y ≤lf X}.

• The operator λ̃A,D ∶ SenFam(A)→ EqvFam(A) is locally continuous
if, for every locally directed {X i ∶ i ∈ I} ⊆ SenFam(A),

λ̃A,D(⋃
i∈I

X i) =⋃
i∈I

λ̃A,D(X i).

Proposition 1419 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure based on A. IL is finitary if and only if

λ̃A,D ∶ SenFam(A)→ EqvFam(A)
is locally continuous.
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Proof: Suppose, first, that IL is finitary and let {X i ∶ i ∈ I} ⊆ SenFam(A)
be locally directed. Since, by Lemma 1416, λ̃A,D is monotone, we have

⋃
i∈I

λ̃A,D(X i) ≤ λ̃A,D(⋃
i∈I

X i).
To show the reverse inclusion, let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈
λ̃
A,D
Σ (⋃i∈IX i). Then, by definition, DΣ(⋃i∈IX i

Σ, φ) = DΣ(⋃i∈IX i
Σ, ψ). Since

IL is finitary, there exists finite Φ ≤f ⋃i∈IX i
Σ, such that DΣ(Φ, φ) = DΣ(Φ, ψ).

Hence, since {X i ∶ i ∈ I} is locally directed, there exists i ∈ I, such that Φ ⊆
X i

Σ. Hence, DΣ(X i
Σ, φ) = DΣ(X i

Σ, ψ), i.e., ⟨φ,ψ⟩ ∈ λ̃A,DΣ (X i). We conclude

that λ̃A,D(⋃i∈IX i) ≤ ⋃i∈I λ̃A,D(X i).
Assume, conversely, that λ̃A,D is locally continuous and consider X ∈

SenFam(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ DΣ(XΣ). Let Z ={Z ∈ SenFam(A) ∶ Z ≤lf X}. Z is a locally directed family, such that

⋃Z = X . For all ψ ∈ XΣ, we have DΣ(XΣ, φ) = DΣ(XΣ, ψ) = DΣ(XΣ). So
we get ⟨φ,ψ⟩ ∈ λ̃A,DΣ (X) = λ̃A,DΣ (⋃Z).
By the local directedness of Z and local continuity of λ̃A,D, we get ⟨φ,ψ⟩ ∈
⋃Z∈Z λ̃

A,D
Σ (Z). Therefore, we get, for some Z ≤lf X , φ ∈ DΣ(ZΣ, ψ) =

DΣ(ZΣ). This shows that IL is finitary. ∎

Among the key properties of Frege relations, which partly explains their
usefulness in the algebraic study of logical systems, is that, loosely speaking,
they are approximated from below by the Leibniz, the Tarski and the Suszko
congruence systems.

Proposition 1420 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure based on A and T ∈ ThFam(IL).
(a) The Leibniz congruence system ΩA(T ) is the largest congruence system

on A included in ΛA(T ) and in λA(T );
(b) The Tarski congruence system Ω̃A(D) is the largest congruence system

on A included in Λ̃A(D) and in λ̃A(D);
(c) The Suszko congruence system Ω̃A,D(T ) is the largest congruence sys-

tem on A included in Λ̃A,D(T ) and in λ̃A,D(T ).
Proof: Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩA

Σ (T ). Since
ΩA(T ) is a congruence system, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ ΩA

Σ′(T ). Thus, by the compatibility property of
ΩA(T ) with T , we get

SEN(f)(φ) ∈ TΣ′ iff SEN(f)(ψ) ∈ TΣ′ ,
i.e., ⟨φ,ψ⟩ ∈ ΛA

Σ (T ). We conclude that ΩA(T ) ≤ ΛA(T ) ≤ λA(T ).
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Suppose, next, that θ ∈ ConSys(A), such that θ ≤ λA(T ). If Σ ∈ ∣Sign∣,
φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ, then ⟨φ,ψ⟩ ∈ λA(T ) and
φ ∈ TΣ, whence by the definition of λA(T ), ψ ∈ TΣ. Thus, θ is a congruence
system on A compatible with T and, therefore, θ ≤ ΩA(T ), by the maximality
property of ΩA(T ).

Parts (b) and (c) can be proved similarly. ∎

We show next that Frege relations are preserved under inverse surjective
morphisms.

Lemma 1421 Let A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be π-structures based on A, A′, respec-
tively, and ⟨F,α⟩ ∶ A→A′ a surjective morphism.

(a) For every X ∈ SenFam(A′), ΛA(α−1(X)) = α−1(ΛA′(X)) and, also,
λA(α−1(X)) = α−1(λA′(X));

(b) If ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, then Λ̃A(D) = α−1(Λ̃A′(D′))
and, also, λ̃A(D) = α−1(λ̃A′(D′)).

Proof:

(a) Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ). We have ⟨φ,ψ⟩ ∈ α−1Σ (ΛA′(X)) iff⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΛA′

F (Σ)
(X) iff, by surjectivity, for all Σ′ ∈ ∣Sign∣ and

all f ∈ Sign(Σ,Σ′),
SEN′(F (f))(αΣ(φ)) ∈XF (Σ′) iff SEN′(F (f))(αΣ(ψ)) ∈XF (Σ′),

iff, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
αΣ′(SEN(f)(φ)) ∈XF (Σ′) iff αΣ′(SEN′(f)(ψ)) ∈XF (Σ′),

iff, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN(f)(φ) ∈ α−1Σ′ (XF (Σ′)) iff SEN(f)(ψ) ∈ α−1Σ′ (XF (Σ′)),

iff, ⟨φ,ψ⟩ ∈ ΛA
Σ (α−1(X)).

The proof of λA(α−1(X)) = α−1(λA′(X)) is similar.

(b) We have

Λ̃(D) = ⋂{ΛA(T ) ∶ T ∈ ThFam(IL)}
= ⋂{Λ(α−1(T ′)) ∶ T ′ ∈ ThFam(IL′)}
= ⋂{α−1(ΛA′(T ′)) ∶ T ′ ∈ ThFam(IL′)}
= α−1(⋂{ΛA′(T ′) ∶ T ′ ∈ ThFam(IL′)})
= α−1(Λ̃A′(D′)).

The proof of λ̃A(D) = α−1(λ̃A′(D′)) is similar.
∎
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19.9 Fullness and Metalogical Properties

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system.
An F-rule is a pair ⟨P,ρ⟩, with P ∪ {ρ} ∶ (SEN♭)ω → SEN♭ a finite set of

natural transformations in N ♭.
A generalized or Gentzen F-rule, or F-grule for short, is a pair

⟨{⟨P i, ρi⟩ ∶ i ∈ I}, ⟨P,ρ⟩⟩,
where {⟨P i, ρi⟩ ∶ i ∈ I}∪{⟨P,ρ⟩} is a finite set of F-rules. We sometimes write
an F-grule in the “two-line” format

⟨P i, ρi⟩ ∶ i ∈ I
⟨P,ρ⟩ or

P i ⊢ ρi ∶ i ∈ I
P ⊢ ρ

.

Let I = ⟨F,C⟩ be a π-institution based on F. I satisfies
⟨P i, ρi⟩ ∶ i ∈ I
⟨P,ρ⟩ if,

for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),
ρiΣ(χ⃗) ∈ CΣ(P i

Σ(χ⃗)), i ∈ I, impies ρΣ(χ⃗) ∈ CΣ(PΣ(χ⃗)).
Similarly, an F-structure IL = ⟨A,D⟩, with A = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign,

SEN,N⟩, satisfies
⟨P i, ρi⟩ ∶ i ∈ I
⟨P,ρ⟩ if, for all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ),

ρiΣ(χ⃗) ∈DΣ(P i
Σ(χ⃗)), i ∈ I, impies ρΣ(χ⃗) ∈DΣ(PΣ(χ⃗)).

Since an F-rule can be perceived as a a special case of an F-grule (with empty
set of premises), this notion of satisfaction applies in particular to F-rules.

It turns out that satisfaction of F-rules is transferred from a π-institution
to all its structure models.

Proposition 1422 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. If I satisfies an F-rule ⟨P,ρ⟩, then
every I-structure satisfies the same F-rule.

Proof: Suppose I satisfies ⟨P,ρ⟩ and let IL = ⟨A,D⟩ be an I-structure,
with A = ⟨A, ⟨F,α⟩⟩. Then, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign♭∣ and all
χ⃗ ∈ SEN♭(Σ), we have PF (Σ)(αΣ(χ⃗)) ⊆ TF (Σ) if and only if αΣ(PΣ(χ⃗)) ⊆ TF (Σ)
if and only if PΣ(χ⃗) ⊆ α−1Σ (TF (Σ)). Thus, since, by Lemma 51, α−1(T ) ∈
ThFam(I), we get, by hypothesis, ρΣ(χ⃗) ∈ α−1Σ (TF (Σ)). This is equivalent to
αΣ(ρΣ(χ⃗)) ∈ TF (Σ) and, in turn, to ρF (Σ)(αΣ(χ⃗)) ∈ TF (Σ). We conclude, by
the surjectivity of ⟨F,α⟩, that IL satisfies ⟨P,ρ⟩ as well. ∎

Moreover, it turns out that satisfaction of an F-grule, in general, is pre-
served by bilogical morphisms.
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Proposition 1423 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ π-structures based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′

a bilogical morphism. Then IL satisfies an F-grule ⟨{⟨P i, ρi⟩ ∶ i ∈ I}, ⟨P,ρ⟩⟩ if
and only if IL′ satisfies the same F-grule.

Proof: Suppose, first, that IL satisfies the F-grule and let Σ ∈ ∣Sign∣, χ⃗ ∈
SEN(Σ), such that, for all i ∈ I,

ρ′iF (Σ)(αΣ(χ⃗)) ∈D′F (Σ)(P ′iF (Σ)(αΣ(χ⃗))).
This is equivalent to

αΣ(ρiΣ(χ⃗)) ∈D′F (Σ)(αΣ(P i
F (Σ)(χ⃗))).

Since ⟨F,α⟩ is a bilogical morphism, we get ρiΣ(χ⃗) ∈ DΣ(P i
Σ(χ⃗)). Since, by

hypothesis, IL satisfies the given F-grule, we get that ρΣ(χ⃗) ∈ DΣ(PΣ(χ⃗)).
Reversing the steps above, we conclude that

ρ′F (Σ)(αΣ(χ⃗)) ∈D′F (Σ)(P ′F (Σ)(αΣ(χ⃗))).
Since ⟨F,α⟩ is surjective, this shows that IL′ satisfies the F-grule as well.

Suppose, conversely, that IL′ satisfies the F-grule ⟨{⟨P i, ρi⟩ ∶ i ∈ I}, ⟨P,ρ⟩⟩.
Let Σ ∈ ∣Sign∣ and χ⃗ ∈ SEN(Σ), such that, for all i ∈ I,

ρiΣ(χ⃗) ∈DΣ(P i
Σ(χ⃗)).

Since, ⟨F,α⟩ is a bilogical morphism, we get

αΣ(ρiΣ(χ⃗)) ∈D′F (Σ)(αΣ(P i
Σ(χ⃗))),

which gives ρ′i
F (Σ)
(αΣ(χ⃗)) ∈ D′F (Σ)(P ′iF (Σ)(αΣ(χ⃗))). Since, by hypothesis, IL′

satisfies the given F-grule, we now get

ρ′F (Σ)(αΣ(χ⃗)) ∈D′F (Σ)(P ′F (Σ)(αΣ(χ⃗))).
Reversing again the preceding steps, we finally obtain that

ρΣ(χ⃗) ∈DΣ(PΣ(χ⃗)).
Thus, IL satisfies the same F-grule as well. ∎
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19.9.1 The Congruence Property

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL = ⟨A,D⟩ a π-structure.

• IL has the Congruence Property if Λ̃A(D) is a congruence system
on A, i.e., by Proposition 1420, if and only if

Λ̃A(D) = Ω̃A(D);
• IL has the strong Congruence Property if λ̃A(D) is a congruence

system on A, i.e., by Proposition 1420, if and only if

λ̃A(D) = Ω̃A(D).
Of course, the strong Congruence Property implies the Congruence Prop-

erty.

Proposition 1424 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure. If I has the strong Congruence Property, then it has
the Congruence Property.

Proof: We know that Ω̃A(D) ≤ Λ̃A(T ) ≤ λ̃A(T ). If IL has the strong Con-
gruence Property, Ω̃A(D) = λ̃A(T ), whence, also, Ω̃A(D) = Λ̃A(T ). Thus, IL
has the Congruence Property. ∎

Corollary 1425 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a reduced π-structure based on A.

(a) IL has the Congruence Property if and only if Λ̃A(D) = ∆A.

(b) IL has the strong Congruence Property if and only if λ̃A(D) = ∆A.

Proof: IL has the Congruence Property if and only if Λ̃A(D) = Ω̃A(D) if
and only if, since IL is reduced, Λ̃A(D) =∆A. Part (b) is similar. ∎

It turns out that the Congruence Property is preserved in both directions
under bilogical morphisms.

Proposition 1426 Let A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be al-
gebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ π-structures based on A, A′,
respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism.

(a) IL has the Congruence Property if and only if IL′ has the Congruence
Property;

(b) IL has the strong Congruence Property if and only if IL′ has the strong
Congruence Property.
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Proof:

(a) We have

Λ̃A(D) = Ω̃A(D) iff α−1(Λ̃A′(D′)) = α−1(Ω̃A′(D′))
iff Λ̃A′(D′) = Ω̃A′(D′),

the first equivalence by Corollary 1364 and Lemma 1421, and the sec-
ond equivalence by the surjectivity of ⟨F,α⟩. Therefore, IL has the
Congruence Property if and only if IL′ has the Congruence Property.

(b) Similarly,

λ̃A(D) = Ω̃A(D) iff α−1(λ̃A′(D′)) = α−1(Ω̃A′(D′))
iff λ̃A

′(D′) = Ω̃A′(D′),
the first equivalence by Corollary 1364 and Lemma 1421, and the sec-
ond equivalence by the surjectivity of ⟨F,α⟩. Therefore, IL has the
strong Congruence Property if and only if IL′ has the strong Congru-
ence Property. ∎

Using the Congruence Property, we are now able to introduce the first
two classes of the Frege hierarchy of π-institutions, which will be looked more
closely at in a subsequent chapter.

Let F = ⟨Sign♭,SEN♭, IN♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is selfextensional if it has the Congruence Property, i.e., if

Λ̃(I) = Ω̃(I).
Recall from Proposition 1418, that, since I , is structural, this is equiv-
alent to having the strong Congruence Property.

• I is fully selfextensional if every full I-structure IL = ⟨A,D⟩ has the
Congruence Property, i.e., if, for all IL = ⟨A,D⟩ ∈ FStr(I),

Λ̃A(D) = Ω̃A(D).
Recall, also, from Proposition 1389 and Proposition 1418, that, since
every full I-structure is structural, this amounts to every full I-structure
having the strong Congruence Property.

We give a characterization of selfextensional π-institutions next.

Proposition 1427 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is selfextensional if and only if, for
all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

CΣ(φi) = CΣ(ψi), i < k,
imply CΣ(σ♭Σ(φ0, . . . , φk−1)) = CΣ(σ♭Σ(ψ0, . . . , ψk−1)).
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Proof: Suppose that I is selfextensional and let σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣ and
φi, ψi ∈ SEN♭(Σ), i < k, such that CΣ(φi) = CΣ(ψi), i < k. Thus, for all i < k,⟨φi, ψi⟩ ∈ λ̃Σ(I) = Ω̃Σ(I), by selfextensionality. Since Ω̃(I) is a congruence
system,

⟨σ♭Σ(φ0, . . . , φk−1), σ♭Σ(ψ0, . . . , ψk−1)⟩ ∈ Ω̃Σ(I) = λ̃Σ(I).
We conclude that CΣ(σ♭Σ(φ0, . . . , φk−1)) = CΣ(σ♭Σ(ψ0, . . . , ψk−1)).

Suppose, conversely, that the displayed condition holds. Then λ̃(I) is
a congruence system on F. Therefore, by Proposition 1420, we have that
Ω̃(I) = λ̃(I). We conclude that I is selfextensional. ∎

And also a characterization of fully selfextensional π-institutions.

Proposition 1428 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is fully selfextensional if and only if
every F-structure of the form ⟨A,FiFamI(A)⟩ has the Congruence Property.

Proof: Assume, first, that I is fully selfextensional. By definition, ev-
ery full I-structure has the Congruence Property. By Proposition 1390,⟨A,FiFamI(A)⟩ is full, for every F-algebraic system A. Therefore, every
F-structure of the form ⟨A,FiFamI(A)⟩ has the Congruence Property.

Assume, conversely, that every F-structure of the form ⟨A,FiFamI(A)⟩
has the Congruence Property. Let IL = ⟨A,D⟩ be a full I-structure. Then,
by definition, the reduction morphism is a bilogical morphism

⟨I, π⟩ ∶ ⟨A,D⟩ ⊢ ⟨A∗,FiFamI(A∗)⟩.
By hypothesis, ⟨A∗,FiFamI(A∗)⟩ has the Congruence Property. Thus, by
Proposition 1426, IL also has the Congruence Property. Therefore, every full
I-structure has the Congruence Property and we conclude that I is fully
selfextensional. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. Recall that the Lindenbaum-Tarski algebraic
system of I is the algebraic system F/Ω̃(I), where F = ⟨F, ⟨I, ι⟩⟩. Recall,
also, that, given a class of F-algebraic systems, Q(K) denotes the syntactic
variety generated by K, i.e., those F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, such
that ⋂{Ker(K) ∶ K ∈ K} ≤ Ker(A). We denoted Q(I) = Q(F/Ω̃(I)), the
syntactic variety generated by the Lindenbaum-Tarski F-algebraic system of
I . Moreover, given Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), we write K ⊧Σ φ ≈ ψ for⟨φ,ψ⟩ ∈ ⋂K∈K KerΣ(K).

Using these conventions, we can formulate a proposition to the effect that,
for a selfextensional π-institution I , an equation is satisfied in Q(I) if and
only if it is in the Frege equivalence family λ̃(I).
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Proposition 1429 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is selfextensional, then, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

Q(I) ⊧Σ φ ≈ ψ if and only if ⟨φ,ψ⟩ ∈ λ̃Σ(I).
Proof: By the definition of Q(I), it is easy to see that, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

Q(I) ⊧Σ φ ≈ ψ iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I).
Since I is assumed selfextensional, this happens if and only if ⟨φ,ψ⟩ ∈ Λ̃Σ(I),
i.e., due to the structurality of C, if and only if ⟨φ,ψ⟩ ∈ λ̃Σ(I). ∎

19.9.2 The Property of Conjunction

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, such that, in N , there exists
a binary natural transformation

∧ ∶ SEN2 → SEN,

and IL = ⟨A,D⟩ a π-structure. We say that IL has the Conjunction Prop-
erty with respect to ∧ if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

DΣ(φ ∧Σ ψ) =DΣ(φ,ψ),
where φ∧Σ ψ ∶= ∧Σ(φ,ψ). In this case, we also say ∧ is a conjunction for IL
and that IL is conjunctive.

Lemma 1430 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∧ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure based on A. IL has
the Conjunction Property with respect to ∧ if and only if, for every T ∈
ThFam(IL), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ∧Σ ψ ∈ TΣ iff φ ∈ TΣ and ψ ∈ TΣ.

Proof: Suppose that IL has the Conjunction Property with respect to ∧ and
let T ∈ ThFam(IL), Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ).

If φ ∧Σ ψ ∈ TΣ, then

φ ∈DΣ(φ,ψ) =DΣ(φ ∧Σ ψ) ⊆DΣ(TΣ) = TΣ.
Similarly, ψ ∈ TΣ.

Conversely, if φ,ψ ∈ TΣ, then

φ ∧Σ ψ ∈DΣ(φ ∧Σ ψ) =DΣ(φ,ψ) ⊆DΣ(TΣ) = TΣ.
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Thus, φ ∧Σ ψ ∈ TΣ if and only if φ,ψ ∈ TΣ.
Suppose, conversely, that the displayed condition in the statement is sat-

isfied. Then, for all Σ ∈ ∣Sign∣, and all φ,ψ ∈ SEN(Σ),
DΣ(φ ∧Σ ψ) = ⋂{TΣ ∶ T ∈ ThFam(IL) and φ ∧Σ ψ ∈ TΣ}

= ⋂{TΣ ∶ T ∈ Thfam(IL) and φ,ψ ∈ TΣ}
= DΣ(φ,ψ).

So ∧ ∶ SEN2 → SEN is a conjunction for IL. ∎

In terms of F-rules one can characterize the Conjunction Property as
follows.

Proposition 1431 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭ and I = ⟨F,C⟩ a π-institution I = ⟨F,C⟩ based
on F. I has the Conjunction Property if and only if it satisfies

p2,0, p2,1 ⊢ ∧♭ ○ ⟨p2,0, p2,1⟩, ∧♭ ○ ⟨p2,0, p2,1⟩ ⊢ p2,0, ∧♭ ○ ⟨p2,0, p2,1⟩ ⊢ p2,1.
Note that, in practice, we write these F-grules in the more familiar form

x, y ⊢ x ∧♭ y, x ∧♭ y ⊢ x, x ∧♭ y ⊢ y,

where x, y, z, . . . stand for the corresponding projection natural transforma-
tions in N ♭.
Proof: We have that I satisfies

x, y ⊢ x ∧♭ y, x ∧♭ y ⊢ x, x ∧♭ y ⊢ y,

iff, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ ∧♭Σ ψ ∈ CΣ(φ,ψ), φ ∈ CΣ(φ ∧♭Σ ψ), ψ ∈ CΣ(φ ∧♭Σ ψ),

iff, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ)

iff I has the Conjunction Property with respect to ∧♭. ∎

Having the Conjunction Property is preserved under bilogical morphisms
in both directions.

Proposition 1432 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system with
a binary ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭. Suppose A = ⟨Sign,SEN,N⟩, A′ =⟨Sign′,SEN′,N ′⟩ are N ♭-algebraic systems IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ π-
structures based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical mor-
phism. IL has the Conjunction Property with respect to ∧ if and only if IL′

has the Conjunction Property with respect to ∧′.
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Proof: This follows by Proposition 1431 and Proposition 1423. ∎

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and ∧ ∶ SEN2 → SEN
a binary natural transformation in N . We denote by N∧ the category of
natural transformations on SEN generated by ∧. Clearly, since ∧ is in N , we
have that N∧ is a wide subcategory of N . Moreover, we denote

A∧ = ⟨Sign,SEN,N∧⟩
the algebraic system that results by taking N∧ instead of N as its category
of natural transformations. This corresponds to the well-known operation of
reducing the type of an algebra.

Proposition 1433 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∧ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ be a π-structure based on A. If IL has the
Conjunction Property with respect to ∧, then Λ̃A(D) is a congruence system
on A∧. Moreover, for all X ∈ SenFam(A), Λ̃A,D(X) is also a congruence
system on A∧.

Proof: It suffices to show that, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign∣ and all
φ,φ′, ψ,ψ′ ∈ SEN(Σ),

⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ Λ̃A
Σ (T ) implies ⟨φ ∧Σ ψ,φ

′ ∧Σ ψ
′⟩ ∈ Λ̃A

Σ (T ).
To this end, suppose Σ ∈ ∣Sign∣, φ,φ′, ψ,ψ′ ∈ SEN(Σ), such that ⟨φ,φ′⟩,⟨ψ,ψ′⟩ ∈ Λ̃A

Σ (T ). Then, by definition, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN(f)(φ) ∈ TΣ′ iff SEN(f)(φ′) ∈ TΣ′ ,
SEN(f)(ψ) ∈ TΣ′ if SEN(f)(ψ′) ∈ TΣ′ .

Thus, we have, by the Conjunction Property and Lemma 1430,

SEN(f)(φ ∧Σ ψ) ∈ TΣ′ iff SEN(f)(φ) ∧Σ′ SEN(f)(ψ) ∈ TΣ′
iff SEN(f)(φ),SEN(f)(ψ) ∈ TΣ′
iff SEN(f)(φ′),SEN(f)(ψ′) ∈ TΣ′
iff SEN(f)(φ′) ∧Σ′ SEN(f)(ψ′) ∈ TΣ′
iff SEN(f)(φ′ ∧Σ ψ′) ∈ TΣ′ .

Thus, ⟨φ ∧Σ ψ,φ′ ∧Σ ψ′⟩ ∈ Λ̃A
Σ (T ) and Λ̃A(T ) is a congruence system on A∧.

The fact that Λ̃A(D) and Λ̃A,D(X) are congruence systems on A∧ now
follow from the relationships outlined before Lemma 1415. ∎

The Conjunction Property also satisfies a transfer property to the effect
that a given π-institution has the Conjunction Property if and only if all its
π-structure models have the Conjunction Property.
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Proposition 1434 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
I has the Conjunction Property with respect to ∧♭ if and only if, for every
I-structure IL = ⟨A,D⟩, IL has the Conjunction Property with respect to ∧.

Proof: Suppose that I has the Conjunction Property with respect to ∧♭.
Then, by Propositions 1431 and 1422, IL has the Conjunction Property with
respect to ∧.

The converse is trivial, since ⟨F ,C⟩ ∈ Str(I), where F = ⟨F, ⟨I, ι⟩⟩. ∎

Finally, we show that if a π-institution I has the Conjunction Property,
then any finitary I-structure with the Congruence Property is full.

Proposition 1435 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, I = ⟨F,C⟩ a π-institution based on F, and IL =⟨A,D⟩ a finitary I-structure, which has no theorems if I has no theorems.
If I has the Conjunction Property with respect to ∧♭ and IL has the strong
Congruence Property, then IL is a full I-structure.

Proof: Suppose IL = ⟨A,D⟩ is a finitary I-structure, without theorems, if
I has no theorems, satisfying the strong Congruence Property. Our goal is
to show that D∗ = FiFamI(A∗). We denote by ⟨I, π⟩ ∶ IL ⊢ IL∗ the bilogical
quotient morphism.

Assume, first, that T ∈ D∗. Then π−1(T ) ∈ D ⊆ FiFamI(D), by Propo-
sition 1385. Hence, by Corollary 55, T ∈ ThFamI(A∗). We conclude that
D∗ ⊆ FiFamI(A∗).

Conversely, assume that T ∈ FiFamI(A∗). If T = ∅, then I does not
have theorems. Thus, by hypothesis, ∅ ∈ D and, therefore, ∅ ∈ D∗. Suppose,
next, that T ≠ ∅. Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ D∗Σ(TΣ).
By hypothesis and Proposition 1365, there exist φ0, . . . , φn−1 ∈ TΣ, such that
φ ∈ D∗Σ(φ0, . . . , φn−1). By the Conjunction Property and Proposition 1434,
φ ∈D∗Σ(φ0 ∧Σ (⋯∧Σ φn−1)). Therefore,

D∗Σ(φ ∧Σ (φ0 ∧Σ (⋯∧Σ φn−1))) =D∗Σ(φ0 ∧Σ (⋯∧Σ φn−1)).
By hypothesis, Proposition 1426 and Corollary 1425, we get that

φ ∧Σ (φ0 ∧Σ (⋯∧Σ φn−1)) = φ0 ∧Σ (⋯∧Σ φn−1).
Since T ∈ FiFamI(A∗) and I has the Conjunction Property with respect to
∧♭, φ0, . . . , φn−1 ∈ TΣ imply that φ0∧Σ (⋯∧φn−1) ∈ TΣ. Thus, by the displayed
equation above, φ ∧Σ (φ0 ∧Σ (⋯∧Σ φn−1)) ∈ TΣ. By Proposition 1434, φ ∈ TΣ.
So we have D∗Σ(TΣ) = TΣ and, hence, T ∈ D∗. Thus, D∗ = FiFamI(A∗) and
IL is a full I-structure. ∎
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19.9.3 The Deduction-Detachment Theorem

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with →∶ SEN2 → SEN a
binary natural transformation in N , and IL = ⟨A,D⟩ a π-structure.

• IL has the Modus Ponens or Detachment with respect to → if,
for all Σ ∈ ∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ),

φ→Σ ψ ∈DΣ(Φ) implies ψ ∈DΣ(Φ, φ).
• IL has the Deduction Theorem with respect to → if, for all Σ ∈∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ),

ψ ∈ DΣ(Φ, φ) implies φ→Σ ψ ∈DΣ(Φ).
• IL has the Deduction Detachment Theorem with respect to → if

it has both the Modus Ponens and the Deduction Theorem with respect
to →.

Structures that have the Deduction Detachment Theorem always have
theorems. The following proposition gives a few of those theorems that are
inspired by classical propositional calculus.

Proposition 1436 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
→∶ SEN2 → SEN a binary natural transformation in N , and IL = ⟨A,D⟩ a
π-structure that has the Deduction Detachment Theorem with respect to →.
Then, for all Σ ∈ ∣Sign∣ and all φ,ψ,χ ∈ SEN(Σ),

(a) φ→Σ φ ∈ ThmΣ(IL);
(b) φ→Σ (ψ →Σ φ) ∈ ThmΣ(IL);
(c) (φ→Σ (ψ →Σ χ))→Σ ((φ→Σ ψ)→Σ (φ→Σ χ)) ∈ ThmΣ(IL).

Proof: Let Σ ∈ ∣Sign∣ and φ,ψ,χ ∈ SEN(Σ).
(a) Since φ ∈ DΣ(φ), we get by the Deduction Theorem, φ →Σ φ ∈ DΣ(∅).

So φ→Σ φ ∈ ThmΣ(IL).
(b) Since φ ∈ DΣ(φ,ψ), we get, by the Deduction Theorem, ψ →Σ φ ∈

DΣ(φ). By yet another application of the Deduction Theorem, we
conclude that φ →Σ (ψ →Σ φ) ∈ DΣ(∅). Therefore, φ →Σ (ψ →Σ φ) ∈
ThmΣ(IL).

(c) Since φ →Σ ψ ∈ DΣ(φ →Σ ψ) and φ →Σ (ψ →Σ χ) ∈ DΣ(φ →Σ (ψ →Σ

χ)), we get, by Modus Ponens, ψ ∈ DΣ(φ →Σ ψ,φ) and ψ →Σ χ ∈



1216 CHAPTER 19. FULL MODELS Voutsadakis

DΣ(φ →Σ (ψ →Σ χ), φ). Moreover, since ψ →Σ χ ∈ DΣ(ψ →Σ χ), we
get, by Modus Ponens, χ ∈ DΣ(ψ →Σ χ,ψ). Thus, we obtain

χ ∈DΣ(ψ →Σ χ,ψ) ⊆DΣ(φ→Σ (ψ →Σ χ), φ →Σ ψ,φ).
By the Deduction Theorem, φ →Σ χ ∈ DΣ(φ →Σ (ψ →Σ χ), φ →Σ ψ).
By another application of the Deduction Theorem, (φ→Σ ψ)→Σ (φ→Σ

χ) ∈ DΣ(φ →Σ (ψ →Σ χ)). A final application of the Deduction Theo-
rem yields

(φ→Σ (ψ →Σ χ))→Σ ((φ →Σ ψ)→Σ (φ→Σ χ)) ∈DΣ(∅).
Therefore, (φ →Σ (ψ →Σ χ))→Σ ((φ →Σ ψ)→Σ (φ→Σ χ)) ∈ ThmΣ(IL).

∎

Corollary 1437 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ a binary natural transformation in N ♭, and I = ⟨F,C⟩
a π-institution based on F, which has the Deduction Detachment Theorem
with respect to →♭. Then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, and
every T ∈ FiFamI(A), T ≠ ∅. Consequently, for every IL = ⟨A,D⟩ ∈ Str(I),
Thm(IL) ≠ ∅.

Proof: Clear by Proposition 1436. ∎

We now give a characterization of the Podus Ponens property.

Proposition 1438 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with →∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure. IL has the Modus Ponens
with respect to → if and only if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

ψ ∈ DΣ(φ,φ→Σ ψ)
if and only if, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ∈ TΣ and φ→Σ ψ ∈ TΣ imply ψ ∈ TΣ.

Proof: Suppose, first, that IL has the Modus Ponens with respect to → and
let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ). Then φ →Σ ψ ∈ DΣ(φ →Σ ψ), whence, by the
Modus Ponens, ψ ∈ DΣ(φ →Σ ψ,φ). Conversely, suppose, for all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ), ψ ∈ DΣ(φ,φ →Σ ψ) and let Φ ⊆ SEN(Σ), such that
φ→Σ ψ ∈DΣ(Φ). Then, we have

ψ ∈DΣ(φ,φ →Σ ψ) ⊆DΣ(Φ, φ).
So IL has the Modus Ponens with respect to →.

The second equivalence is straightforward. ∎

The Modus Ponens in a π-institution I = ⟨F,C⟩ may also be characterized
in terms of F-rules.
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Proposition 1439 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. I has
the Modus Ponens with respect to →♭ if and only if it satisfies the F-rule

x,x →♭ y ⊢ y.

Proof: I satisfies x,x →♭ y ⊢ y if and only if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(φ,φ→♭Σ ψ)
if and only if, by Proposition 1438, I has the Modus Ponens with respect to
→♭. ∎

Since the Modus Ponens in a π-institution is expressible in terms of F-
rules, we may use Propositions 1422 and 1423 to draw the conclusions that
the Modus Ponens transfers to all models and, moreover, that it is preserved
by all bilogical morphisms.

Corollary 1440 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I
has the Modus Ponens with respect to →♭, then, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and every IL = ⟨A,D⟩ ∈ Str(I), IL has the Modus Ponens with
respect to →.

Proof: This follows by combing Proposition 1439 with Proposition 1422. ∎

Corollary 1441 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-
algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on A,
A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the Modus
Ponens with respect to → if and only if IL′ has the Modus Ponens with respect
to →′.

Proof: The conclusion follows by combining Proposition 1439 with Propo-
sition 1423. ∎

It turns out that the Deduction Theorem also transfers under bilogical
morphisms.

Proposition 1442 Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Deduction Theorem with respect to → if and only if IL′ has the Deduction
Theorem with respect to →′.
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Proof: Suppose, first, that IL has the Deduction Theorem with respect to
→ and let Σ ∈ ∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ), such that

αΣ(ψ) ∈D′F (Σ)(αΣ(Φ), αΣ(φ)).
Then, since ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, ψ ∈DΣ(Φ, φ). Thus, since
IL has the Deduction Theorem, φ →Σ ψ ∈ DΣ(Φ). Again, by the fact that⟨F,α⟩ is a bilogical morphism, we obtain αΣ(φ →Σ ψ) ∈ D′

F (Σ)
(αΣ(Φ)) or,

equivalently, αΣ(φ)→′F (Σ) αΣ(ψ) ∈ D′F (Σ)(αΣ(Φ)). Since ⟨F,α⟩ is surjective,

we conclude that IL′ also has the Deduction Theorem with respect to →′.
Suppose, conversely, that IL′ has the Deduction Theorem with respect to

→′ and let Σ ∈ ∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ), such that ψ ∈ DΣ(Φ, φ). Since⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, we get that

αΣ(φ) ∈D′F (Σ)(αΣ(Φ), αΣ(φ)).
Since IL′ has the Deduction Theorem with respect to →′, αΣ(φ) →′F (Σ)
αΣ(ψ) ∈D′F (Σ)(αΣ(Φ)) or, equivalently, αΣ(φ→Σ ψ) ∈D′F (Σ)(αΣ(Φ)). Again

by the fact that ⟨F,α⟩ is a bilogical morphism, we get φ →Σ ψ ∈ DΣ(Φ).
Therefore, IL also has the Deduction Theorem with respect to →. ∎

In an analog of Theorem 1433, we prove that, in case a π-structure has
the Deduction Detachment Theorem, with respect to a binary natural trans-
formation, then, Frege relation systems defined on the π-structure are con-
gruence systems if one restricts to the category of natural transformations
generated by the binary natural transformation.

Proposition 1443 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
→∶ SEN2 → SEN in N , and IL = ⟨A,D⟩ be a π-structure based on A. If IL
has the Deduction Detachment Property with respect to →, then Λ̃A(D) is a
congruence system on A→. Moreover, for all X ∈ SenFam(A), Λ̃A,D(X) is
also a congruence system on A→.

Proof: It suffices to show that, for all X ∈ SenFam(A), all Σ ∈ ∣Sign∣ and
all φ,φ′, ψ,ψ′ ∈ SEN(Σ),
⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ Λ̃A,D

Σ (X) implies ⟨φ→Σ ψ,φ
′ →Σ ψ

′⟩ ∈ Λ̃A,D
Σ (X).

So, suppose X ∈ SenFam(A), Σ ∈ ∣Sign∣ and φ,φ′, ψ,ψ′ ∈ SEN(Σ), such that⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ Λ̃A,D
Σ (X). Thus, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

DΣ′(XΣ′ ,SEN(f)(φ)) = DΣ′(XΣ′ ,SEN(f)(φ′)),
DΣ′(XΣ′ ,SEN(f)(ψ)) = DΣ′(XΣ′ ,SEN(f)(ψ′)).

Now, using the Modus Ponens with respect to → and the displayed equations,
we get

SEN(f)(ψ) ∈ DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ),SEN(f)(φ)),
SEN(f)(φ) ∈DΣ′(XΣ′ ,SEN(f)(φ′)).
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Therefore,

SEN(f)(ψ′) ∈ DΣ′(XΣ′ ,SEN(f)(ψ))
⊆ DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ),SEN(f)(φ))
⊆ DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ),SEN(f)(φ′)).

By the Deduction Theorem, we now get

SEN(f)(φ′)→Σ′ SEN(f)(ψ′) ∈DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ)).
This is equivalent to SEN(f)(φ′ →Σ ψ′) ∈DΣ′(XΣ′ ,SEN(f)(φ→Σ ψ)). Thus,
by symmetry, we get that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
DΣ′(XΣ′ ,SEN(f)(φ →Σ ψ)) = DΣ′(XΣ′ ,SEN(f)(φ′ →Σ ψ′)) and, we con-
clude that ⟨φ→Σ ψ,φ′ →Σ ψ′⟩ ∈ Λ̃A,D

Σ (X). ∎

Our next goal is to show that, if a finitary π-institution I has the Deduc-
tion Detachment Theorem, then every full I-structure also has the Deduction
Detachment Theorem.

Theorem 1444 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on F. If
I has the Deduction Detachment Theorem with respect to →♭, then every full
I-structure IL = ⟨A,D⟩ has the Deduction Detachment Theorem with respect
to →.

Proof: Suppose I has the Deduction Detachment Theorem with respect to
→♭. By Corollary 1393, Corollary 1441 and Proposition 1442, it is enough
to show that every I-structure of the form ⟨A,FiFamI(A)⟩ has the Deduc-
tion Detachment Theorem with respect to →. By Corollary 1440, every
I-structure has the Modus Ponens with respect to →. So it suffices to show
that ⟨A,FiFamI(A)⟩ has the Deduction Theorem with respect to →, i.e.,
that, for all Σ′ ∈ ∣Sign∣ and all Φ′ ∪ {φ′, ψ′} ⊆ SEN(Σ′),

ψ′ ∈ CI,AΣ′ (Φ′, φ′) implies φ′ →Σ′ ψ
′ ∈ CI,AΣ′ (Φ′).

We do this, using Proposition 114, by applying induction on n < ω to show
that, for all n < ω,

ψ′ ∈ Ξn
Σ′(Φ′, φ′) implies φ′ →Σ′ ψ

′ ∈ CI,AΣ′ (Φ′).
For n = 0, we get ψ′ ∈ Ξ0

Σ′(Φ′, φ′) = Φ′ ∪ {φ′}.
• If ψ′ = φ′, then φ′ →Σ′ ψ′ = φ′ →Σ′ φ′ ∈ C

I,A
Σ′ (∅) ⊆ CA,IΣ′ (Φ′), because of

Proposition 1436.

• If ψ′ ∈ Φ′, then ψ′ →Σ′ (φ′ →Σ′ ψ′) ∈ CI,AΣ′ (∅) ⊆ CI,AΣ′ (Φ′), again by

Proposition 1436. Since ψ′ ∈ Φ′ ⊆ CI,AΣ′ (Φ′), we get by the Modus

Ponens, φ′ →Σ′ ψ′ ∈ C
I,A
Σ′ (Φ′).
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Assume, next that, if, for some i < n, ψ′ ∈ Ξi
Σ(Φ′, φ′), then φ′ →Σ′ ψ′ ∈

C
I,A
Σ′ (Φ′). Consider ψ′ ∈ Ξn

Σ′(Φ′, φ′). By definition, there exists Σ ∈ ∣Sign♭∣,
such that F (Σ) = Σ′, and Φ ∪ {φ,ψ} ⊆ SEN♭(Σ), such that

ψ ∈ CΣ(Φ, φ), αΣ(Φ) ⊆ Ξn−1
Σ′ (Φ′, φ′), αΣ(φ) = φ′, αΣ(ψ) = ψ′.

Now, we have, on the one hand, by the Induction Hypothesis, φ′ →Σ′ αΣ(χ) ∈
C
I,A
Σ′ (Φ′), for all χ ∈ Φ. On the other hand, since ψ ∈ CΣ(Φ, φ), we get, using

Modus Ponens,

ψ ∈ CΣ(Φ, φ) ⊆ CΣ({φ→♭Σ χ ∶ χ ∈ Φ}, φ)
and, therefore, by the Deduction Theorem, φ →♭Σ ψ ∈ CΣ({φ →♭Σ χ ∶ χ ∈ Φ}).
Therefore, we obtain

φ′ →Σ′ ψ
′ ∈ CI,AΣ′ ({φ′ →Σ′ αΣ(χ) ∶ χ ∈ Φ}).

Finally, we obtain

φ′ →Σ′ ψ′ ∈ C
I,A
Σ′ ({φ′ →Σ′ αΣ(χ) ∶ χ ∈ Φ})

⊆ C
I,A
Σ′ (CI,AΣ′ (Φ′))

= C
I,A
Σ′ (Φ′).

We conclude that ⟨A,FiFamI(A)⟩ has the Deduction Detachment Theorem
and therefore, every full I-structure does also. ∎

Finally, we show that if a π-institution has the Deduction Detachment
Theorem, then every finitary I-structure, with the Deduction Theorem and
the Congruence Property is a full I-structure.

Proposition 1445 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution that has the
Deduction Detachment Theorem with respect to →♭. If IL = ⟨A,D⟩ is a finitary
I-structure with the Deduction Theorem and the strong Congruence Property,
then IL is a full I-structure.

Proof: Suppose IL = ⟨A,D⟩ is a finitary I-structure with the Deduction
Theorem and the Congruence Property. Then, by Proposition 1385, D ⊆
FiFamI(A) and our goal is to show that D∗ = FiFamI(A∗).

Suppose, first, that T ′ ∈ D∗. Consider the bilgical quotient morphism⟨I, π⟩ ∶ IL ⊢ IL∗. Then we have T = π−1(T ′) ∈ D ⊆ FiFamI(A). Thus, by
Corollary 55, T ′ ∈ FiFamI(A∗). We conclude that D∗ ⊆ FiFamI(A∗).

Suppose, conversely, that T ′ ∈ FiFamI(A∗). Since I has the Deduction
Detachment Theorem, by Corollary 1437, T ′ ≠ ∅. Let Σ ∈ ∣Sign∣ and φ ∈
SEN(Σ), such that φ∗ ∈ D∗Σ(T ′Σ). By the finitarity of IL and Proposition
1365, there exist φ0, . . . , φn−1 ∈ SEN(Σ), such that φ∗0, . . . , φ

∗
n−1 ∈ T

′
Σ and
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φ∗ ∈ D∗Σ(φ∗0, . . . , φ∗n−1). Since IL has the Deduction Theorem, by Proposition
1442, so does IL∗, whence

φ∗0 →
∗
Σ (⋯(φ∗n−1 →∗Σ φ∗)⋯) ∈D∗Σ(∅) = D∗Σ(φ∗ →∗Σ φ∗),

the last equality, by Proposition 1436. Now we get

D∗Σ(φ∗0 →∗Σ (⋯(φ∗n−1 →∗Σ φ∗)⋯)) =D∗Σ(φ∗ →∗Σ φ∗).
Since IL has the strong Congruence Property, by Proposition 1426, so does
IL∗. Hence, by Corollary 1425,

φ∗0 →
∗
Σ (⋯(φ∗n−1 →∗Σ φ∗)⋯) = φ∗ →∗Σ φ∗ ∈ T ′Σ.

Since T ′ ∈ FiFamI(A∗) and φ∗0, . . . , φ
∗
n−1 ∈ T

′
Σ, we get by the Modus Ponens,

φ∗ ∈ T ′Σ. We conclude that D∗Σ(T ′Σ) ⊆ T ′Σ and, therefore, T ′ ∈ D∗. So D∗ =
FiFamI(A∗). Hence, IL = ⟨A,D⟩ is a full I-structure. ∎

19.9.4 The Property of Disjunction

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∨ ∶ SEN2 → SEN a
binary natural transformation in N , and IL = ⟨A,D⟩ a π-structure.

IL has the Disjunction Property with respect to ∨ if, for all Σ ∈ ∣Sign∣
and all Φ ∪ {φ,ψ} ⊆ SEN(Σ),

DΣ(Φ, φ ∨Σ ψ) =DΣ(Φ, φ) ∩DΣ(Φ, ψ).
In the next proposition, we discuss some of the F(g)rules that a π-

institution having the Disjunction Property satisfies.

Proposition 1446 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∨♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I
has the Disjunction Property with respect to ∨♭, then I satisfies the following
F-grules:

(a) x ⊢ x ∨♭ y and y ⊢ x ∨♭ y;

(b)
X,x ⊢ z, X, y ⊢ z

X,x ∨♭ y ⊢ z
, where X consists of any set of projections;

(c) x ∨♭ y ⊢ y ∨♭ x;

(d) x ⊢ x ∨♭ x and x ∨♭ x ⊢ x.

Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ,ψ,χ} ⊆ SEN♭(Σ).
(a) By the Disjunction Property, φ ∨♭Σ ψ ∈ CΣ(φ) ∩CΣ(ψ).
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(b) Suppose χ ∈ CΣ(Φ, φ) and χ ∈ CΣ(Φ, ψ). Then, by the Disjunction
Property,

χ ∈ CΣ(Φ, φ) ∩CΣ(Φ, ψ) = CΣ(Φ, φ ∨♭Σ ψ).
(c) We have, using the Disjunction Property,

ψ ∨♭Σ φ ∈ CΣ(ψ ∨♭Σ φ) = CΣ(ψ) ∩CΣ(φ)
= CΣ(φ) ∩CΣ(ψ) = CΣ(φ ∨♭Σ ψ).

(d) We have

φ ∨♭Σ φ ∈ CΣ(φ ∨♭Σ φ) = CΣ(φ) ∩CΣ(φ) = CΣ(φ)
and, also,

φ ∈ CΣ(φ) = CΣ(φ) ∩CΣ(φ) = CΣ(φ ∨♭Σ φ). ∎

It is not difficult to see that the Disjunction Property is also preserved
under bilogical morphisms.

Proposition 1447 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∨♭ ∶ (SEN♭)2 → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Disjunction Property with respect to ∨ if and only if IL′ has the Disjunction
Property with respect to ∨′.

Proof: Let Σ ∈ ∣Sign∣ and Φ∪ {φ,ψ} ⊆ SEN(Σ). Then, since ⟨F,α⟩ ∶ IL ⊢ IL′

is a bilogical morphism, we have, using Proposition 1360,

DΣ(Φ, φ ∨Σ ψ) = α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(φ) ∨′F (Σ) αΣ(ψ));
DΣ(Φ, φ) ∩DΣ(Φ, ψ) = α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(φ))

∩ α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(ψ))
= α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(φ))

∩D′
F (Σ)
(αΣ(Φ), αΣ(ψ))).

Now, using the surjectivity of ⟨F,α⟩, we get that

DΣ(Φ, φ ∨Σ ψ) = DΣ(Φ, φ) ∩DΣ(Φ, ψ)
if and only if

D′
F (Σ)
(αΣ(Φ), αΣ(φ) ∨′F (Σ) αΣ(ψ))
=D′

F (Σ)
(αΣ(Φ), αΣ(φ)) ∩D′F (Σ)(αΣ(Φ), αΣ(ψ))

Once more, taking into account the surjectivity of ⟨F,α⟩, we conclude that
IL has the Disjunction Property with respect to ∨ if and only if IL′ has the
Disjunction Property with respect to ∨′. ∎

Using induction, we can extend the defining equation of the Disjunction
Property so that we can accommodate a finite number of conjunctions instead
of only a single conjunction.
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Proposition 1448 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∨ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure. If IL has the Disjunction
Property with respect to ∨, then, for all Σ ∈ ∣Sign∣ and all Φ∪{φ0, . . . , φn−1} ⊆
SEN(Σ),

DΣ(Φ, φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ) =DΣ(Φ, φ0, . . . , φn−1) ∩DΣ(Φ, ψ).
Proof: First, note that, for all Σ ∈ ∣Sign∣, all Φ∪{φ0, . . . , φn−1, ψ} ⊆ SEN(Σ)
and all i < n,

φi ∨Σ ψ ∈ DΣ(Φ, φi) ∩DΣ(Φ, ψ)
⊆ DΣ(Φ, φ0, . . . , φn−1) ∩DΣ(Φ, ψ).

Thus, we get

DΣ(Φ, φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ) ⊆DΣ(Φ, φ0, . . . , φn−1) ∩DΣ(Φ, ψ).
For the reverse inclusion, we use induction on n.

For n = 1, by the Disjunction Property, we get DΣ(Φ, φ0) ∩DΣ(Φ, ψ) =
DΣ(Φ, φ0 ∨Σ ψ).

Assume that the inclusion holds for n.
Let Σ ∈ ∣Sign∣ and Φ ∪ {φ0, . . . , φn, ψ} ⊆ SEN(Σ). Then we have

DΣ(Φ, φ0, φ1, . . . , φn) ∩DΣ(Φ, ψ)
=DΣ(Φ, φ0, φ1, . . . , φn) ∩DΣ(Φ, ψ) ∩DΣ(Φ, ψ)
⊆DΣ(Φ, φ0, φ1, . . . , φn) ∩DΣ(Φ, ψ,φ1, . . . , φn) ∩DΣ(Φ, ψ)
⊆DΣ(Φ, φ0 ∨Σ ψ,φ1, . . . , φn) ∩DΣ(Φ, φ0 ∨Σ ψ,ψ)
⊆DΣ(Φ, φ0,∨Σψ,φ1 ∨Σ ψ, . . . , φn ∨Σ ψ).

Hence the inclusion - and, therefore, the equation - holds for all n < ω. ∎

Another property of structures having disjunction is that, if a specific
entailment with a finite number of premises holds and the hypotheses are
disjuncted with the same sentence, then the disjunction of the conclusion
with the same sentence follows from the disjuncted hypotheses.

Lemma 1449 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∨ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure. If IL has the Disjunction
Property with respect to ∨, then, for all Σ ∈ ∣Sign∣ and all φ0, φn−1, φ,ψ ∈
SEN(Σ),

φ ∈DΣ(φ0, . . . , φn−1) implies φ ∨Σ ψ ∈DΣ(φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ).
Proof: Let Σ ∈ ∣Sign∣ and φ0, φn−1, φ,ψ ∈ SEN(Σ). By Proposition 1448,

DΣ(φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ) =DΣ(φ0, . . . , φn−1) ∩DΣ(ψ).
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But, by hypothesis, φ ∈DΣ(φ0, . . . , φn−1). So we get

φ ∨Σ ψ ∈ DΣ(φ) ∩DΣ(ψ)
⊆ DΣ(φ0, . . . , φn−1) ∩DΣ(ψ)
= DΣ(φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ).

∎

Our final goal is to show that, if a finitary π-institution has the Disjunc-
tion Property, then every full I-structure also has the Disjunction Property.
To accomplish this, we prove, first, a lemma to the effect that, if an entail-
ment holds in a model then the disjunct of the conclusion with an arbitrary
sentence is entailed by the same premises except for one, which is replaced
by the disjunct of the original with the same sentence.

Lemma 1450 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∨♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on
F, which has the Disjunction Property with respect to ∨♭. Then, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all Σ′ ∈ ∣Sign∣ and all Φ′ ∪ {φ′, ψ′, χ′} ⊆
SEN(Σ′),

χ′ ∈ CI,AΣ′ (Φ′, φ′) implies χ′ ∨Σ′ ψ
′ ∈ CI,AΣ′ (Φ′, φ′ ∨Σ′ ψ

′).
Proof: Let Σ′ ∈ ∣Sign∣ and Φ′ ∪ {φ′, ψ′, χ′} ⊆ SEN(Σ′). By Proposition 114,
C
I,A
Σ′ (Φ′, φ′) = ΞΣ′(Φ′, φ′) = ⋃n<ω Ξn

Σ′(Φ′, φ′). We show by induction on n < ω
that, for all n < ω

χ′ ∈ Ξn
Σ′(Φ′, φ′) implies χ′ ∨Σ′ ψ

′ ∈ CI,AΣ′ (Φ′, φ′ ∨Σ′ ψ
′).

If n = 0, the hypothesis is χ′ ∈ Ξ0
Σ′(Φ′, φ′) = Φ′ ∪ {φ′}.

• If χ′ = φ′, then the conclusion follows trivially.

• Suppose that χ′ ∈ Φ′. Then, we have χ′ ∨Σ′ ψ′ ∈ C
I,A
Σ′ (χ′) ⊆ CI,AΣ′ (Φ′) ⊆

C
I,A
Σ′ (Φ′, φ′ ∨Σ′ ψ′), where the first inclusion follows by Propositions

1446 and 1422.

Assume that the displayed implication holds for all i < n. Let χ′ ∈ Ξn
Σ′(Φ′, φ′).

By definition, there exists Σ ∈ ∣Sign♭∣, such that F (Σ) = Σ′, and φ0, . . . ,

φk−1, χ ∈ SEN♭(Σ), such that

χ ∈ CΣ(φ0, . . . , φk−1), αΣ(χ) = χ′, αΣ(φi) ∈ Ξn−1
Σ′ (Φ′, φ′), i < k.

By the induction hypothesis, αΣ(φi) ∨Σ′ ψ′ ∈ C
I,A
Σ′ (Φ′, φ′ ∨Σ′ ψ′), for all i < k.

Note that, by the surjectivity of ⟨F,α⟩, there exists ψ ∈ SEN(Σ), such that
αΣ(ψ) = ψ′. Since χ ∈ CΣ(φ0, . . . , φk−1), we get, by Lemma 1449, χ ∨♭Σ ψ ∈
CΣ(φ0 ∨♭Σ ψ, . . . , φk−1 ∨

♭
Σ ψ). Therefore, applying ⟨F,α⟩,

χ′ ∨Σ′ ψ′ ∈ C
I,A
Σ′ (αΣ(φ0) ∨Σ′ ψ′, . . . , αΣ(φk−1) ∨Σ′ ψ′)

⊆ C
I,A
Σ′ (Φ′, φ′ ∨Σ′ ψ′).



Voutsadakis CHAPTER 19. FULL MODELS 1225

Thus, the displayed formula holds for all n < ω, yielding the conclusion. ∎

Finally, we show that all full models of a given finitary π-institution with
the Disjunction Property also have the Disjunction Property.

Theorem 1451 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∨♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on F. If
I has the Disjunction Property with respect to ∨♭, then every full I-structure
IL = ⟨A,D⟩ has the Disjunction Property with respect to ∨.

Proof: By Corollary 1393 and Proposition 1447, it suffices to show that, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ,ψ} ⊆
SEN♭(Σ),

C
I,A
F (Σ)
(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ))

= CI,A
F (Σ)
(αΣ(Φ), αΣ(φ)) ∩CI,AF (Σ)(αΣ(Φ), αΣ(ψ)).

By Propositions Propositions 1446 and 1422, we have

C
I,A
F (Σ)
(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ))

C
I,A
F (Σ)
(αΣ(Φ), αΣ(φ)) ∩CI,AF (Σ)(αΣ(Φ), αΣ(ψ)).

Conversely, suppose that, for some χ ∈ SEN♭(Σ),
αΣ(χ) ∈ CI,AF (Σ)(αΣ(Φ), αΣ(φ)) ∩CI,AF (Σ)(αΣ(Φ), αΣ(ψ)).

Then, by Lemma 1450,

αΣ(χ) ∨F (Σ) αΣ(ψ) ∈ CI,AF (Σ)(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ)),
αΣ(χ) ∨F (Σ) αΣ(χ) ∈ CI,AF (Σ)(αΣ(Φ), αΣ(ψ) ∨F (Σ) αΣ(χ)).

Now we get

αΣ(χ) ∈ C
I,A
F (Σ)
(αΣ(χ) ∨F (Σ) αΣ(χ))

⊆ C
I,A
F (Σ)
(αΣ(Φ), αΣ(ψ) ∨F (Σ) αΣ(χ))

⊆ C
I,A
F (Σ)
(αΣ(Φ), αΣ(χ) ∨F (Σ) αΣ(ψ))

⊆ CI,A
F (Σ)
(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ)).

Taking into account the surjectivity of ⟨F,α⟩, we conclude that IL has the
Disjunction Property with respect to ∨. ∎
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19.9.5 Reductio ad Absurdum

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ¬ ∶ SEN→ SEN a unary
natural transformation in N , and IL = ⟨A,D⟩ a π-structure based on A.

IL has the Intuitionistic Reductio ad Absurdum with respect to
¬ if, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

¬Σφ ∈DΣ(Φ) if and only if DΣ(Φ, φ) = SEN(Σ).
IL has the Reductio ad Absurdum with respect to ¬ if, for all Σ ∈ ∣Sign∣
and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) if and only if DΣ(Φ,¬Σφ) = SEN(Σ).
The two properties of the Reductio ad Absurdum are related.

Proposition 1452 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
¬ ∶ SEN → SEN in N , and IL = ⟨A,D⟩ a π-structure based on A. IL has the
Reductio as Absurdum with respect to ¬ if and only if it has the Intuitionistic
Reductio ad Absurdum with respect to ¬ and, for all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ), φ ∈DΣ(¬Σ¬Σφ).
Proof: Suppose, first, that IL has the Reduction ad Absurdum with respect
to ¬ and let Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ).

Since ¬Σφ ∈ DΣ(¬Σφ), we get DΣ(¬Σφ,¬Σ¬Σφ) = SEN(Σ). Therefore,
φ ∈DΣ(¬Σ¬Σφ).

Suppose, next, that ¬Σφ ∈ DΣ(Φ). Note that, since φ ∈ DΣ(φ), we also
have DΣ(φ,¬Σφ) = SEN(Σ). So, finally, SEN(Σ) = DΣ(φ,¬Σφ) ⊆ DΣ(Φ, φ)
and equality follows.

On the other hand, ifDΣ(Φ, φ) = SEN(Σ), then DΣ(Φ,¬Σ¬Σφ) = SEN(Σ),
whence ¬Σφ ∈DΣ(φ).

Suppose, conversely, that IL has the Intuitionistic Reductio ad Absurdum
and that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), φ ∈ DΣ(¬Σ¬Σφ), and let
Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ).

Suppose, first, φ ∈ DΣ(Φ). Since ¬Σφ ∈ DΣ(¬Σφ), we get DΣ(φ,¬Σφ) =
SEN(Σ). Therefore, SEN(Σ) =DΣ(φ,¬Σφ) ⊆ DΣ(Φ,¬Σφ).

On the other hand, if DΣ(Φ,¬Σφ) = SEN(Σ), then ¬Σ¬Σφ ∈ DΣ(Φ),
whence φ ∈DΣ(¬Σ¬Σφ) ⊆DΣ(φ). ∎

We also show for future reference that the Intuitionistic Reductio ad
Absurdum is preserved under bilogical morphisms.

Proposition 1453 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
¬♭ ∶ SEN♭ → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Intuitionistic Reductio ad Absurdum with respect to ¬ if and only if IL′ has
the Intuitionistic Reduction ad Absurdum with respect to ¬′.
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Proof: Suppose Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ). Then, we have

¬Σφ ∈DΣ(Φ) iff αΣ(¬Σφ) ∈ D′F (Σ)(αΣ(Φ))
iff ¬′

F (Σ)
(αΣ(φ)) ∈D′F (Σ)(αΣ(Φ)).

Moreover, using the surjectivity of ⟨F,α⟩,
DΣ(Φ, φ) = SEN(Σ) iff D′

F (Σ)(αΣ(Φ), αΣ(φ)) = SEN′(F (Σ)).
Thus, the equivalence

¬Σφ ∈DΣ(Φ) iff DΣ(Φ, φ) = SEN(Σ)
holds if and only if the equivalence

¬′F (Σ)αΣ(φ) ∈D′F (Σ)(αΣ(Φ)) iff D′F (Σ)(αΣ(Φ), αΣ(φ)) = SEN′(F (Σ))
holds. In other words, IL has the Intuitionistic Reduction ad Absurdum with
respect to ¬ if and only if IL′ has the Intuitionistic Reductio ad Absurdum
with respect to ¬′. ∎

The Intuitionistic Reductio ad Absurdum is also closely related with are
called inconsistent elements or inconsistencies.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with � ∶ SEN → SEN a
unary natural transformation in N , and IL = ⟨A,D⟩ a π-structure based on
A. � is an inconsistency in IL if, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

DΣ(�Σφ) = SEN(Σ).
Having an inconsistency is clearly expressible by an F-rule and, therefore,

if a π-institution has an inconsistency then all its models do also.

Lemma 1454 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with �♭ ∶
SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. �♭ is an
inconsistency in I if and only if I satisfies the F-rule �♭x ⊢ y.

Proof: We have that I satisfies �♭x ⊢ y if and only if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ), ψ ∈ CΣ(�♭Σφ), if and only if, for all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ), CΣ(�♭Σφ) = SEN(Σ), if and only if �♭ ∶ SEN♭ → SEN♭ is an
inconsistency in I . ∎

Corollary 1455 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with �♭ ∶
SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If �♭

is an inconsistency in IL, then, � is an inconsistency in every I-structure
IL = ⟨A,D⟩, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩.
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Proof: By Lemma 1454 and Proposition 1422. ∎

The following proposition exhibits the relation between the Intuitionistic
Reductio ad Absurdum and inconsistencies.

Proposition 1456 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
→∶ SEN2 → SEN, and IL = ⟨A,D⟩ a π-structure that has the Deduction De-
tachment Theorem with respect to →. IL has the Intuitionistic Reductio ad
Absurdum with respect to some ¬ ∶ SEN→ SEN in N if and only if it has an
inconsistency � ∶ SEN → SEN in N . Moreover, in that case, for all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

DΣ(¬Σφ) = DΣ(φ→Σ �Σφ).
Proof: Suppose that IL has the Deduction Detachment Theorem with re-
spect to →.

Assume, first, that IL also has the Intuitionistic Reductio ad Absurdum
with respect to ¬. Let � ∶ SEN → SEN be defined, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ), by

�Σφ = ¬Σ(φ→Σ φ).
First, note, that, since � = ¬○ → ○⟨p1,0, p1,0⟩ and both → and ¬ are in N ,
we get that � is also in N . Moreover, we have, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

¬Σ(φ→Σ φ) ∈ DΣ(¬Σ(φ→Σ φ))
iff DΣ(φ→Σ φ,¬Σ(φ→Σ φ)) = SEN(Σ)

(by the Intuitionistic Reductio ad Absurdum)
iff DΣ(¬Σ(φ→Σ φ)) = SEN(Σ).

(by Proposition 1436)

Thus, � is an inconsistency in IL.
Assume, conversely, that � ∶ SEN → SEN is an inconsistency in IL. Define

¬ ∶ SEN → SEN, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

¬Σφ = φ→Σ �Σφ.

Since ¬ =→ ○⟨p1,0,�⟩ and, both → and � are in N , it follows that ¬ is also in
N . Moreover, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ), we have

¬Σφ ∈DΣ(Φ) iff φ→Σ �Σφ ∈DΣ(Φ)
iff �Σφ ∈ DΣ(Φ, φ)
iff DΣ(Φ, φ) = SEN(Σ).

Thus, IL has the Intuitionistic Reductio ad Absurdum with respect to ¬.
Finally, it remains to prove the last equality. Let Σ ∈ ∣Sign∣ and φ ∈

SEN(Σ). On the one hand, we have, by the Modus Ponens, �Σφ ∈ DΣ(φ,φ→Σ
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�Σφ), whence, since � is an inconsistency, DΣ(φ,φ →Σ �Σφ) = SEN(Σ) and,
hence, by the Intuitionistic Reductio ad Absurdum, ¬Σφ ∈ DΣ(φ →Σ �Σφ).
On the other hand, since ¬Σφ ∈ DΣ(¬Σφ), by the Intuitionistic Reductio ad
Absurdum, DΣ(φ,¬Σφ) = SEN(Σ) and, hence, ¬Σφ ∈DΣ(φ,¬Σφ). Therefore,
by the Deduction Theorem, φ→Σ �Σφ ∈DΣ(¬Σφ). These two parts allow us
to conclude that DΣ(¬Σφ) =DΣ(φ →Σ �Σφ). ∎

Since both the Deduction Detachment Theorem and inconsistencies are
inherited by the full models of a finitary π-institution, we obtain the following
concerning transference of the Intuitionistic Reductio ad Absurdum by full
models.

Corollary 1457 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ and ¬♭ ∶ SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary
π-institution based on F. If I has the Deduction Detachment Theorem with
respect to →♭ and the Intuitionistic Reductio ad Absurdum with respect to
¬♭, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, every full I-structure
IL = ⟨A,D⟩ also has the Deduction Detachment Theorem with respect to →
and the Intuitionistic Reductio ad Absurdum with respect to ¬.

Proof: Assume the hypothesis and let IL = ⟨A,D⟩ ∈ FStr(I). By Theorem
1444, IL has the Deduction Detachment Theorem with respect to →. By
Proposition 1456, �♭ = ¬♭○→♭ ○⟨p1,0, p1,0⟩ is an inconsistency in I . Therefore,
by Corollary 1455, � is an inconsistency in IL. Finally, we use again Proposi-
tion 1456 to conclude that IL has both the Deduction Detachment Theorem
with respect to → and the Intuitionistic Reductio ad Absurdum with respect
to ¬. ∎

19.9.6 Modality Introduction

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with # ∶ SEN → SEN a
unary natural transformation in N , and IL = ⟨A,D⟩ a π-structure based on
A. IL has Modality Introduction with respect to # if, for all Σ ∈ ∣Sign∣
and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) implies #Σφ ∈DΣ(#ΣΦ),
where #ΣΦ = {#Σχ ∶ χ ∈ Φ}.

It turns out that Modality Introduction is also preserved under bilogical
morphisms.

Proposition 1458 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
#♭ ∶ SEN♭ → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Modality Introduction with respect to # if and only if IL′ has the Modality
Introduction with respect to #′.
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Proof: Let Σ ∈ ∣Sign∣ and Φ∪{φ} ⊆ SEN(Σ). Then, since ⟨F,α⟩ is a bilogical
morphism, we have

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ));
#Σφ ∈DΣ(#ΣΦ) iff #′

F (Σ)
αΣ(φ) ∈D′F (Σ)(#′F (Σ)αΣ(Φ)).

Therefore, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),
φ ∈DΣ(Φ) implies #Σφ ∈ DΣ(#ΣΦ)

is equivalent to

αΣ(φ) ∈D′F (Σ)(αΣ(Φ)) implies #′F (Σ)αΣ(φ) ∈D′F (Σ)(#′F (Σ)αΣ(Φ)).
Taking into account the surjectivity of ⟨F,α⟩, we conclude that IL has Modal-
ity Introduction with respect to # if and only if IL′ has Modality Introduction
with respect to #′. ∎

We conclude this section by showing that modality introduction is in-
herited by all full I-structures if I is a finitary π-institution possessing the
property.

Proposition 1459 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
#♭ ∶ SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on F.
If I has Modality Introduction with respect to #♭, then every full I-structure
IL = ⟨A,D⟩ has the Modality Introduction with respect to #.

Proof: By Corollary 1393 and Proposition 1458, it suffices to show that
every I-structure of the form ⟨A,FiFamI(A)⟩ has the Modality Introduction
with respect to #. Let Σ′ ∈ ∣Sign∣ and Φ′ ∪ {φ′} ⊆ SEN(Σ′). By Proposition
114, it suffices to show that

φ′ ∈ ΞΣ′(Φ′) implies #Σ′φ
′ ∈ CI,AΣ′ (#Σ′Φ

′).
We do this by applying induction on n < ω to show that, for all n < ω,

φ′ ∈ Ξn
Σ′(Φ′) implies #Σ′φ

′ ∈ CI,AΣ′ (#Σ′Φ
′).

If n = 0, then the hypothesis is φ′ ∈ Ξ0
Σ′(Φ′) = Φ′ and the conclusion is

trivial. Assume that the displayed formula holds, for all i < n and assume Σ′ ∈∣Sign∣ and Φ′ ∪ {φ′} ⊆ SEN(Σ′), such that φ′ ∈ Ξn
Σ′(Φ′). Then, by definition,

there exists Σ ∈ ∣Sign♭∣, such that F (Σ) = Σ′, and φ0, . . . , φk−1, φ ∈ SEN♭(Σ),
such that

φ ∈ CΣ(φ0, . . . , φk−1), αΣ(φ) = φ′, αΣ(φi) ∈ Ξn−1
Σ′ (Φ′), i < k.
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By the induction hypothesis, for all i < k, #Σ′αΣ(φi) ∈ CI,AΣ′ (#Σ′Φ′). More-
over, since I has Modality Introduction with respect to #♭, we get #♭Σφ ∈
CΣ(#♭Σφ0, . . . ,#♭Σφk−1). Therefore, applying ⟨F,α⟩,

#F (Σ)φ′ ∈ C
I,A
Σ′ (#F (Σ)αΣ(φ0), . . . ,#F (Σ)αΣ(φk−1))

⊆ C
I,A
Σ′ (#ΣΦ′).

This proves the induction step and shows that IL has the Modality Introduc-
tion with respect to #. ∎

19.10 I-Structures and Protoalgebraicity

We now work with an arbitrary π-institution I and look at its I-structures
and their properties. We start with a characterization of protoalgebraicity
involving I-structures.

Proposition 1460 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then the following conditions are
equivalent.

(i) I is protoalgebraic;

(ii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and every I-structure
IL = ⟨A,D⟩, Ω̃A(D) = ΩA(Thm(IL));

(iii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and every I-matrix family
A = ⟨A, T ⟩, Ω̃A(FiFamI(A)) = ΩA(T );

(iv) For every T ∈ ThFam(I), Ω̃(IT ) = Ω(T ).
Proof:

(i)⇒(ii) Assume I is protoalgebraic and let IL = ⟨A,D⟩ be an I-structure. Then,
by Proposition 1385, D ⊆ FiFamI(A). Moreover, by Theorem 179, ΩA

is monotone on FiFamI(A). Hence, we get

Ω̃A(D) =⋂{ΩA(T ) ∶ T ∈ D} = ΩA(⋂D) = ΩA(Thm(IL)).
(ii)⇒(iii) Follows by applying (ii) to IL = ⟨A,FiFamI(A)⟩.
(iii)⇒(iv) Follows by applying (iii) to A = ⟨F , T ⟩, where, as usual, F = ⟨F, ⟨I, ι⟩⟩,⟨I, ι⟩ ∶ F → F the identity morphism.

(iv)⇒(i) Suppose that, for every T ∈ ThFam(I), Ω̃(IT) = Ω(T ) and let T,T ′ ∈
ThFam(I), such that T ≤ T ′. Then T ′ ∈ ThFam(IT ), whence Ω̃(IT ) ≤
Ω(T ′). But, by hypothesis, Ω̃(IT) = Ω(T ). Thus, we get Ω(T ) ≤ Ω(T ′).
We conclude that Ω is monotone on theory families and, therefore, I
is protoalgebraic.
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∎

Recall that to a π-institution I , we have associated two different classes
of algebraic systems. On the one hand, the class AlgSys∗(I) consists of
the F-algebraic system reducts of the reduced I-matrix families. On the
other, the class AlgSys(I) consists of the F-algebraic system reducts of the
reduced full I-structures, or, equivalently, as was shown in Proposition 1399,
by the F-algebraic system reducts of the reduced I-structures. Under the
hypothesis of protoalgebraicity, it turns out that the two classes AlgSys(I)
and AlgSys∗(I) coincide.

Proposition 1461 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. If I is protoalgebraic, then AlgSys(I) =
AlgSys∗(I).
Proof: By Theorem 1404, we know that AlgSys∗(I) ⊆ AlgSys(I). As-
sume, conversely, that A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(I). Then, there exists, by
Proposition 1399, D ∈ ClFam(A), such that Ω̃A(D) = ∆A. Thus, by Propo-
sition 1460, Ω̃A(⋂D) = Ω̃A(D) = ∆A, whence, since ⋂D ∈ D ⊆ FiFamI(A),
A ∈ AlgSys∗(I). ∎

Protoalgebraicity is strong enough to allow full I-structures on an alge-
braic system to be determined by their theorem systems.

Lemma 1462 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If I
is protoalgebraic and IL = ⟨A,D⟩, IL′ = ⟨A,D′⟩ are full I structures based on
A, such that Thm(IL) = Thm(IL′), then IL = IL′.

Proof: Since I is protoalgebraic, we have, by Proposition 1460,

Ω̃A(D) = ΩA(Thm(IL)) = ΩA(Thm(IL′)) = Ω̃A(D′).
By the Isomorphism Theorem 1408, Ω̃A ∶ FStrI(A) → ConSysI(A) is an
order isomorphism, in particular one-to-one. So we get that IL = IL′. ∎

For protoalgebraic π-institutions, it follows that all full I-models have the
form ⟨A,FiFamI(A)T ⟩ = ⟨A,FiFamA(⟨A, T ⟩)⟩, i.e., their closure systems are
principal filters in the lattice of I-filter families of the underlying algebraic
system.

Theorem 1463 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all I-structures in FStrI(A) have
the form ⟨A,FiFamI(A)⟩, for some A = ⟨A, T ⟩ ∈MatFamI(A).
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Proof: Assume, first, that I is protoalgebraic and let IL = ⟨A,D⟩ ∈ FStr(I).
Let T = Thm(IL) and set A = ⟨A, T ⟩. Clearly, D ⊆ FiFamI(A). By protoal-
gebracity and Proposition 1460, Ω̃A(IL) = ΩA(T ). Therefore, if ⟨I, π⟩ ∶ A →
A/ΩA(T ) denotes the quotient morphism, ⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical mor-
phism. Since IL ∈ FStr(I), D∗ = ThFamI(A∗). But then, if T ′ ∈ ThFamI(A),
T ≤ T ′, whence ΩA(T ) is compatible with T ′ and, hence, by Corollary 56,
T ′/ΩA(T ) ∈ FiFamI(A∗) = D∗. Therefore, T ′ = π−1(T ′/ΩA(T )) ∈ D. So
FiFamI(A) = D.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
all I-structures in FStrI(A) have the form ⟨A,FiFamI(A)⟩, for some A =⟨A, T ⟩ ∈MatFamI(A). Let T,T ′ ∈ ThFamI(A), such that T ≤ T ′. Since, by
Theorem 1404, AlgSys∗(I) ⊆ AlgSys(I), ΩA(T ) ∈ ConSysI(A). Therefore,
by the Isomorphism Theorem 1408, there exists IL = ⟨A,D⟩ ∈ FStrI(A),
such that Ω̃A(D) = ΩA(T ). Let ⟨I, π⟩ ∶ A → A/ΩA(T ) be the quotient
morphism. Then ⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical morphism and, since IL is
full, D∗ = FiFamI(A∗). Thus, T = π−1(T /ΩA(T )) ∈ D. By hypothesis,
T ∈ FiFamI(A), for some A = ⟨A, T ′′⟩ ∈ FiFamI(A). Thus, T ′′ ≤ T ′, whence
T ′ ∈ FiFamI(A) = D. We now get ΩA(T ) = Ω̃A(D) ≤ ΩA(T ′). So ΩA is
monotone on A. Since A was arbitrary, we conclude that I is protoalgebraic.
∎

We proved that, for a protoalgebraic π-institution I , all full I-structures
have the form ⟨A,FiFamI(A)T ⟩, for some T ∈ FiFamI(A). We seek now
to characterize those I-filter families T for which the pair ⟨A,FiFamI(A)T ⟩
is a full I-model, i.e., those I-filter families T that give rise, through the
principal filters they determine in FiFamI(A) to full I-structures.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. We define

FiFamI,f(A) = {T ∈ FiFamI(A) ∶ ⟨A,FiFamI(A)T )⟩ ∈ FStrI(A)}.
Using the Isomorphism Theorem 1408, it is not difficult to see that, un-

der protoalgebraicity, there exists an order isomorphism between the poset
determined by FiFamI,f(A) and the lattice of all I-congruence systems on
A.

Proposition 1464 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F. If I is protoalgebraic, then, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI,f(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Consider the mapping T ↦ ⟨A,FiFamI(AT ⟩. This is a mapping from
FiFamI,f(A) into FStrI(A), by the definition of FiFamI,f(A). Clearly, it is
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one-to-one and both order preserving and order reflecting. If I is protoalge-
braic, by Theorem 1463, it is also surjective. Hence, it is an order isomor-
phism. By the Isomorphism Theorem 1408, Ω̃A ∶ FStrI(A) → ConSysI(A)
is also an order isomorphism. Thus, T ↦ Ω̃A(FiFamI(A)T ) is an order iso-
morphism from FiFamI,f(A) onto ConSysI(A). By Protoalgebraicity and
Proposition 1460, we have Ω̃A(FiFamI(A)T ) = ΩA(T ) and. moreover, by
Proposition 1461, ConSysI(A) = ConSysI∗(A). Hence, we conclude that
ΩA ∶ FiFamI,f(A)→ ConSysI∗(A) is an order-isomorphism. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Define

∼I,A ⊆ FiFamI(A)2
by setting, for all T,T ′ ∈ FiFamI(A),

T ∼I,A T ′ iff ΩA(T ) = ΩA(T ′),
i.e., ∼I,A is the kernel of the Leibniz operator on FiFamI(A).

It is clear from the definition that ∼I,A is an equivalence relation on
FiFamI(A). In case I is protoalgebraic, we have another important property.

Lemma 1465 Let F = ⟨Sign♭, SEN ♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If I is
protoalgebraic, then each equivalence class of ∼I,A has a minimum element.

Proof: Let T ∈ FiFamI(A) and consider the equivalence class [T ] of T under∼I,A. Then we have ⋂[T ] ∈ FiFamI(A) and, moreover,

ΩA(⋂[T ]) = ⋂{ΩA(T ′);T ′ ∈ [T ]}
= ⋂{ΩA(T ) ∶ T ′ ∈ [T ]}
= ΩA(T ).

So ⋂[T ] ∈ [T ] and, therefore, ⋂[T ] is the minimum element of [T ]. ∎

The next proposition provides the promised characterization of those I-
filter families that determine full I-structures through their principal filters
in FiFamI(A), in the case of a protoalgebraic I .

Proposition 1466 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a protoalgebraic π-institution based on F. For every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and every T ∈ FiFamI(A), the following conditions
are equivalent:

(i) T ∈ FiFamI,f(A), i.e., ⟨A,FiFamI(A)T ⟩ ∈ FStr(I);
(ii) T = min [T ], where [T ] is the equivalence class of T under ∼I,A;
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(iii) T /ΩA(T ) =min FiFamI(A/ΩA(T )).
Proof:

(ii)⇒(iii) Assume that T = min [T ] and let Y ∈ FiFamI(A/ΩA(T )). Our goal is
to show that T /ΩA(T ) ≤ Y . Consider the quotient morphism ⟨I, π⟩ ∶
A→ A/ΩA(T ) and let X = π−1(Y ) ∩ T ∈ FiFamI(A). Then

X = π−1(Y ) ∩ π−1(π(T )) = π−1(Y ∩ π(T )).
It follows that ΩA(T ) is compatible with X and, hence, ΩA(T ) ≤
ΩA(X). But, by definition, X ≤ T and, thus, by protoalgebraicity,
ΩA(X) ≤ ΩA(T ). We conclude that ΩA(T ) = ΩA(X) and, hence,
T ∼I,A X . By hypothesis, we now get T ≤ π−1(Y ), i.e., T /ΩA(T ) ≤
X . Since Y ∈ FiFamI(A/ΩA(T )) was arbitrary, we conclude that
T /ΩA(T ) =min FiFamI(A/ΩA(T )).

(iii)⇒(i) Suppose that T /ΩA(T ) = min FiFamI(A/ΩA(T )). By protoalgebraic-
ity (see the Correspondence Theorem 1336),

π ∶ FiFamI(⟨A, T ⟩) ≅ FiFamI(⟨A/ΩA(T ), T /ΩA(T )⟩).
By hypothesis,

FiFamI(⟨A/ΩA(T ), T /ΩA(T )⟩) = FiFamI(A/ΩA(T )).
Since, by Proposition 1460, Ω̃A(FiFamI(⟨A, T ⟩)) = ΩA(T ), we obtain

FiFamI(⟨A, T ⟩)∗ = FiFamI(⟨A, T ⟩∗).
This proves that ⟨A,FiFamI(⟨A, T ⟩)⟩ is a full I-structure. We conclude
that T ∈ FiFamI,f(A).

(i)⇒(ii) Suppose T ∈ FiFamI,f(A). Since I is protoalgebraic, by Lemma 1465,
there exists T ′ = min [T ]. By the proofs of the two preceding impli-
cations (ii)⇒(iii)⇒(i), ⟨A,FiFamI(A)T ′⟩ is a full I-structure. But, by
hypothesis, ⟨A,FiFamI(A)T ⟩ is also a full I-structure. Now observe
that, by Proposition 1460,

Ω̃A(FiFamI(A)T ′) = ΩA(T ′) = ΩA(T ) = Ω̃A(FiFamI(A)T ).
By the Isomorphism Theorem 1408, FiFamI(A)T ′ = FiFamI(A)T and,
therefore, T ′ = T . So we conclude that T =min [T ].

∎

Since, for a protoalgebraic π-institution I , the filter families determining
full I-structures are the ones that are minimal in their equivalence classes un-
der ∼I,A, we can easily conclude that the class of those filter families consists
of all filter families just in case all equivalence classes are singletons.



1236 CHAPTER 19. FULL MODELS Voutsadakis

Proposition 1467 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic π-institution based on F. Then FiFamI,f(A) =
FiFamI(A) (i.e., for all T ∈ FiFamI(A), ⟨A,FiFamI(A)T ⟩ is a full I-struc-
ture) if and only if ΩA is injective on FiFamI(A).
Proof: By Proposition 1466, FiFamI,f(A) = FiFamI(A) if and only if, for
all T ∈ FiFamI(A), T = min [T ], if and only if, for all T,T ′ ∈ FiFamI(A),
ΩA(T ) = ΩA(T ′) implies T = T ′, if and only if ΩA is injective on FiFamI(A).

∎

Recall that a π-institution I = ⟨F,C⟩ is called weakly family algebraiz-
able, or WF algebraizable for short, if the Leibniz operator Ω is monotone
and injective on the theory families of I . Equivalently, by Theorem 295, I is
WF algebraizable if and only if, for every F-algebraic system A, the Leibniz
operator on A is monotone and injective on I-filter families.

The following theorem provides additional characterizations in terms of
I-structures and I-congruence systems.

Theorem 1468 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then the following conditions are equiva-
lent.

(i) I is protoalgebraic and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T ∈ FiFamI(A), T /ΩA(T ) =min FiFamI(A/ΩA(T ));

(ii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone and
injective on FiFamI(A);

(iii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, T ↦ ⟨A,FiFamI(A)T ⟩
is a bijection between FiFamI(A) and FStrI(A) and, hence, an order
isomorphism from FiFamI(A) to FStrI(A);

(iv) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) →
ConSysI(A) is an order isomorphism;

(v) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) →
ConSysI∗(A) is an order isomorphism.

Proof:

(i)⇔(ii) By Propositions 1466 and 1467.

(i)⇒(iii) It is clear that T → ⟨A,FiFamI(A)T ⟩ is injective. By Proposition 1466,
it is into FStrI(A) and, by Theorem 1463, it is onto FStrI(A). Hence
it is a bijection, as claimed.
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(iii)⇒(iv) Since, by hypothesis, every full I-structure is of the form ⟨A,FiFamI(A)T ⟩,
by Theorem 1463, I is protoalgebraic. The composition of the given
isomorphism

FiFamI(A) ≅ FStrI(A)
with the isomorphism established in the Isomorphism Theorem 1408,

Ω̃A ∶ FStrI(A)→ ConSysI(A)
gives an isomorphism

FiFamI(A) ≅ConSysI(A),
which by protoalgebraicity and Proposition 1460 is identical to the
Leibniz operator.

(iv)⇒(v) By Corollary 1405, AlgSys∗(I) ⊆ AlgSys(I). Thus, ConSysI∗(A) ⊆
ConSysI(A). By the hypothesis, every θ ∈ ConSysI(A) is of the
form ΩA(T ), for some T ∈ FiFamI(A). Therefore, ConSysI(A) ⊆
ConSysI∗(A).

(v)⇒(ii) is trivial.
∎

In the context of weakly family algebraizable π-institutions, we look, also
at the local continuity of the Leibniz and the Tarski operators.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

• ΩA is continuous if, for every directed collection {T i ∶ i ∈ I} ⊆ FiFamI(A),
such that ⋃i∈I T i ∈ FiFamI(A), we have

ΩA(⋃
i∈I

T i) =⋃
i∈I

ΩA(T i).

• Ω̃A is continuous if, for every directed family {ILi ∶ i ∈ I} ⊆ FStrI(A),
Ω̃A(sup{ILi ∶ i ∈ I}) =⋃

i∈I

Ω̃A(ILi).

Proposition 1469 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a finitary π-institution based on F. If I is weakly family algebraiz-
able, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is continuous if
and only if Ω̃A is continuous.

Proof: Let Φ ∶ FiFamI(A) → FStrI(A) be the bijection of Theorem 1468.
Then, by Proposition 1460,

ΩA = Ω̃A ○Φ and Ω̃A = ΩA ○Φ−1.
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Suppose, first, that ΩA is continuous and let {ILi ∶ i ∈ I} ⊆ FStrI(A) be
directed. If T i = Φ−1(ILi), i ∈ I, then {T i ∶ i ∈ I} ⊆ FiFamI(A) is also directed.
Directedness implies local directedness and, therefore, by Proposition 112,

⋃i∈I T i ∈ FiFamI(A). Now we get

Φ(⋃
i∈I

T i) = ⟨A,FiFamI(A)⋃i∈I T i⟩ = ⟨A,⋂
i∈I

FiFamI(A)T i⟩,
whence Φ(⋃i∈I T i) = supi∈I ILi. Therefore, we get

Ω̃A(sup
i∈I

ILi) = (ΩA ○Φ−1)(Φ(⋃
i∈I

T i)) = ΩA(⋃
i∈I

T i) =⋃
i∈I

ΩA(T i) =⋃
i∈I

Ω̃A(ILi).
So Ω̃A is also continuous.

Assume, conversely, Ω̃A is continuous. Let {T i ∶ i ∈ I} ⊆ FiFamI(A) be
directed. Then {Φ(T i) ∶ i ∈ I} ⊆ FStrI(A) is also directed and we have

ΩA(⋃
i∈I

T i) = Ω̃A(Φ(⋃
i∈I

T i)) = Ω̃A(sup
i∈I

ILi) =⋃
i∈I

Ω̃A(ILi) =⋃
i∈I

ΩA(T i).
Therefore ΩA is also continuous. ∎

19.11 I-Structures and Fregeanity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is called Fregean if, for all T ∈ ThFam(I), the
π-structure IT has the Congruence Property, i.e., for all T ∈ ThFam(I),

Λ̃I(T ) = Ω̃I(T ).
Clearly, I is Fregean if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ), if, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

CΣ′(TΣ′ ,SEN♭(f)(φ)) = CΣ′(TΣ′ ,SEN♭(f)(ψ)),
then, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈
SEN♭(Σ′),

CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(φ), χ⃗)) = CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(ψ), χ⃗)).
I is called strongly Fregean if, for all T ∈ ThFam(I), the π-structure

IT has the strong Congruence Property, i.e., for all T ∈ ThFam(I),
λ̃I(T ) = Ω̃I(T ).

In this case, we get that I is strongly Fregean if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

CΣ(TΣ, φ) = CΣ(TΣ, ψ)
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implies, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈
SEN♭(Σ′),

CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(φ), χ⃗)) = CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(ψ), χ⃗)).
A consequence of strong Fregeanity is that every reduced matrix fam-

ily model has either an empty filter family or a filter family all of whose
components are singletons.

Proposition 1470 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is strongly Fregean, then, for
every reduced I-matrix family A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩ and A =⟨Sign,SEN,N⟩, we have, for all Σ ∈ ∣Sign∣, ∣TΣ∣ = 0, or, for all Σ ∈ ∣Sign∣,∣TΣ∣ = 1.

We abbreviate the first disjunct of the conclusion, as usual, by T = ∅ and
the second by writing ∣T ∣ = 1.
Proof: Assume that T ≠ ∅ and let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
αΣ(φ), αΣ(ψ) ∈ TF (Σ). Then φ,ψ ∈ α−1Σ (TF (Σ)). Hence,

CΣ(α−1Σ (TF (Σ)), φ) = CΣ(α−1Σ (TF (Σ)), ψ),
i.e., ⟨φ,ψ⟩ ∈ λ̃IΣ(α−1(T )). By strong Fregeanity, ⟨φ,ψ⟩ ∈ Ω̃IΣ(α−1(T )). Thus,
for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

CΣ′(α−1Σ′ (TF (Σ′)), σ♭Σ′(SEN♭(f)(φ), χ⃗))
= CΣ′(α−1Σ′ (TF (Σ′)), σ♭Σ′(SEN♭(f)(ψ), χ⃗)).

Now we get

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ α−1Σ′ (TF (Σ′)) iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ α−1Σ′ (TF (Σ′)).
Equivalently,

σF (Σ′)(SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)
iff σF (Σ′)(SEN(F (f))(αΣ(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′).

Taking into account the surjectivity of ⟨F,α⟩, we get that ⟨αΣ(φ), αΣ(ψ)⟩ ∈
ΩA
F (Σ)
(T ) = ∆A

F (Σ)
, the last equation holding since A is reduced. Hence,

αΣ(φ) = αΣ(ψ) and, therefore, for all Σ ∈ ∣Sign∣, ∣TΣ∣ = 1. ∎

Of course, in the case of Fregeanity and protoalgebraicity, the role of the
Tarski operator may be substituted by the Leibniz operator.

Proposition 1471 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.
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(a) I is protoalgebraic and Fregean if and only if, for all T ∈ ThFam(I),
Ω(T ) = Λ̃I(T );

(b) I is protoalgebraic and strongly Fregean if and only if, for all T ∈
ThFam(I), Ω(T ) = λ̃I(T ).

Proof: We only prove Part (a), since Part (b) can be proven by following a
similar reasoning.

If I is protoalgebraic, then, by Proposition 1460, for all T ∈ ThFam(I),
Ω(T ) = Ω̃I(T ). If I is Fregean, then ,by definition, for all T ∈ ThFam(I),
Ω̃I(T ) = Λ̃I(T ). Therefore, if I is protoalgebraic and Fregean, then, for all
T ∈ ThFam(I), Ω(T ) = Λ̃I(T ).

Assume, conversely, that, for all T ∈ ThFam(I), we have Ω(T ) = Λ̃I(T ).
Then, for all T,T ′ ∈ ThFam(I), such that T ≤ T ′, we have

Ω(T ) = Λ̃I(T ) Lemma 1416

≤ Λ̃I(T ′) = Ω(T ′).
Thus, Ω is monotone on ThFam(I) and I is protoalgebraic. Moreover, since,
by Proposition 1460, for all T ∈ ThFam(I), Ω̃I(T ) = Ω(T ), we get Ω̃I(T ) =
Λ̃I(T ) and, therefore, I is also Fregean. ∎

Recall that a π-institution I is self extensional if

Ω̃(I) = Λ̃(I) (= λ̃(I)).
It turns out that Fregeanity (and, therefore, strong Fregeanity) implies

self extensionality.

Corollary 1472 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is Fregean, then it is self extensional.

Proof: We have

Ω̃(I) = Ω̃I(Thm(I)) (by definition)

= Λ̃I(Thm(I)) (by Fregeanity)

= Λ̃(I). (by definition)

So I is self extensional. ∎

If a π-institution I is strongly Fregean and has theorems, then the map-
ping T ↦ IT establishes an order embedding from the lattice of the theory
families of I into the lattice of full I-structures on the algebraic system F .

Proposition 1473 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is strongly Fregean with theorems,
then T ↦ IT is an order embedding of ThFam(I) into FStrI(F).
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Proof: We start by showing that the proposed mapping is indeed well-
defined into FStrI(F), i.e., that, for all T ∈ ThFam(I), IT = ⟨F ,ThFam(I)T ⟩
is a full I-structure. To this end, let T ∈ ThFam(I) and set θ = Ω̃I(T ) =
λ̃I(T ). To verify that IT is a full I-structure, it suffices to show that
ThFam(IT )/θ = FiFamI(F/θ).

If T ′ ∈ ThFam(IT ), then, by definition of θ, θ is compatible with T ′.
Therefore, by Corollary 56, T ′/θ ∈ FiFamI(F/θ). Thus, ThFam(IT)/θ ⊆
FiFamI(F/θ).

If, on the other hand, T ′ ∈ FiFamI(F/θ), then, setting ⟨I, π⟩ ∶ F → F/θ
the quotient morphism, we have, by Corollary 55, π−1(T ′) ∈ FifamI(F), i.e.,
π−1(T ′) ∈ ThFam(I). We also have, taking into account that I has theorems,
that, for all Σ ∈ ∣Sign♭∣, all φ ∈ TΣ and ψ ∈ TΣ ∩ π−1Σ (T ′Σ),

⟨φ,ψ⟩ ∈ λ̃IΣ(T ) = θΣ.
So πΣ(φ) = πΣ(ψ), whence φ ∈ π−1Σ (πΣ(ψ)) ∈ π−1Σ (T ′Σ). Since φ ∈ TΣ was arbi-
trary, T ≤ π−1(T ′) and, hence, π−1(T ′) ∈ ThFam(IT ). This shows that T ′ ∈
ThFam(IT )/θ and allows us to conclude that FiFamI(F/θ) ⊆ ThFam(IT )/θ.

As for the rest, everything follows, since T ↦ IT is clearly one-to-one and
both order preserving and order reflecting. ∎

If one adds protoalgebraicity into the mix, then the order embedding of
Proposition 1473 becomes an order isomorphism.

Proposition 1474 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a strongly Fregean protoalgebraic π-institution with theorems,
based on F. Then T ↦ IT is an isomorphism between ThFam(I) and
FStrI(F).
Proof: By Proposition 1473, it suffices to show that the mapping T ↦ IT is
also onto FStrI(F). The latter follows from Theorem 1463. ∎

Strong Fregeanity, protoalgebraicity and the existence of theorems have
very strong consequences for a π-institution. They ensure that the π-institution
is weakly family algebraizable, that the Leibniz operator is continuous (in
case of finitarity) and that all reduced matrix families have singleton filter
families.

Proposition 1475 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a strongly Fregean protoalgebraic π-institution with theorems.

(a) I is family injective and hence weakly family algebraizable;

(b) If I is finitary, then Ω is locally continuous;

(c) For every A = ⟨A, T ⟩ ∈MatFam∗(I), ∣T ∣ = 1.
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Proof: By Proposition 1460, for all T ∈ ThFam(I), Ω(T ) = Ω̃I(T ). Thus,
composing the mapping T ↦ IT of Proposition 1474, with the isomorphism of
Theorem 1408, we obtain an isomorphism Ω ∶ ThFam(I) → ConSysI(F).
By Proposition 1471, Ω = λ̃I and, hence, by Proposition 1419, Ω is locally
continuous. Finally, if A = ⟨A, T ⟩ ∈MatFam∗(I), then, since I has theorems,
T ≠ ∅ and, therefore, by Proposition 1470, ∣T ∣ = 1. ∎

We saw in Corollary 1472 that Fregeanity implies self extensionality. On
the other hand, even though we cannot prove that strong Fregeanity, coupled
with protoalgebraicity, are strong enough to guarantee full self extensionality,
we can show that they imply a weaker property, namely a version of full
self extensionality applying only to full I-structures with isomorphic functor
components. We start with a technical lemma.

Lemma 1476 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a strongly Fregean protoalgebraic π-institution based on F and A = ⟨A, ⟨F,α⟩⟩
an F-algebraic system, with F ∶ Sign♭ → Sign an isomorphism. Then, for
all T ∈ FiFamI(A),

ΩA(T ) = λ̃A(FiFamI(A)T ).
Proof: Note that, by protoalgebraicity, ΩA(T ) = Ω̃A(FiFamI(A)T ). There-
fore, by compatibility, ΩA(T ) ≤ λ̃A(FiFamI(A)T ). It therefore suffices to
show the reverse inclusion. To this end and taking into account the surjectiv-
ity of ⟨F,α⟩, let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨αΣ(φ), αΣ(ψ)⟩ ∈
λ̃A
F (Σ)
(FiFamI(A)T ). Then, by definition, for all T ≤ T ′′ ∈ FiFamI(A), we

have
αΣ(φ) ∈ T ′′F (Σ) iff αΣ(ψ) ∈ T ′′F (Σ).

However, since I is protoalgebraic, we get, by the Correspondence Theorem
1336, that, for all α−1(T ) ≤ T ′ ∈ ThFam(I),

φ ∈ T ′Σ iff ψ ∈ T ′Σ.

Hence, by definition,

⟨φ,ψ⟩ ∈ λ̃IΣ(α−1(T ))
= ΩΣ(α−1(T )) (strong Fregeanity)
= α−1Σ (ΩAF (Σ)(T )). (Proposition 24)

Hence ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA
F (Σ)
(T ). Taking into account the surjectivity of

⟨F,α⟩, we now conclude that λ̃A(FiFamI(A)T ) ≤ ΩA(T ). ∎

Proposition 1477 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is strongly Fregean and protoal-
gebraic, then, every full I-structure, with an isomorphic functor component,
has the Congruence Property.



Voutsadakis CHAPTER 19. FULL MODELS 1243

Proof: We deal first with the case Thm(I) = ∅. Then, since I is protoalge-
braic, the only option is

ThFam(I) = {T ∶ TΣ = ∅ or SEN♭(Σ), for all Σ ∈ ∣Sign♭∣}.
In this case, given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the only full I-
structures on A are of the form ⟨A,D⟩, with

D = {T ∶ TΣ = ∅ or SEN(Σ), for all Σ ∈ ∣Sign∣}.
All those have the Congruence Property.

Assume, next, that I has theorems. By Lemma 1476, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with F ∶ Sign♭ → Sign an isomorphism,
and every T ∈ FiFamI(A),

ΩA(T ) = λ̃A(FiFamI(A)T ).
Thus, ⟨A,FiFamI(A)T ⟩ has the strong Congruence Property. Since, by The-
orem 1463, every full I-structure, with an isomorphic functor component
has this form, we conclude that every full I-structure, with an isomorphic
functor component, has the Congruence Property. ∎

For finitary fully self extensional π-institutions, we obtain the following
characterizations of weak family algebraizability.

Proposition 1478 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a finitary, fully self extensional π-institution based on F. Then
the following conditions are equivalent.

(i) I is strongly Fregean, protoalgebraic and has theorems;

(ii) I is weakly family algebraizable and Ω is locally continuous;

(iii) I is weakly family algebraizable.

Proof: (i)⇒(ii) follows from Proposition 1475. (ii)⇒(iii) is trivial. For
(iii)⇒(i) note, first, that, by hypothesis I is family monotone and fam-
ily injective. Thus, I is protoalgebraic. By Proposition 1468, for all T ∈
ThFam(I), IT ∈ FStrI(F). Hence, by full self extensionality, IT has the
strong Congruence Property and, hence, I is strongly Fregean. Finally, since
Ω(∅) = Ω(SEN♭) = ∇F , we get, by injectivity, ∅ ∉ ThFam(I) and I has
theorems. ∎
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