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20.1 Gentzen π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Σ ∈ ∣Sign♭∣. A Σ-
sequent is a pair ⟨Φ, φ⟩,
where Φ ∪ {φ} ⊆ SEN♭(Σ) (with Φ possibly empty). Sometimes we write

Φ ⊳Σ φ or Φ ⊢Σ φ

to denote the Σ-sequent ⟨Φ, φ⟩. The set Φ is called set of antecedents of⟨Φ, φ⟩ and φ is called the consequent of ⟨Φ, φ⟩.
The collection of Σ-sequents is denoted by SeqΣ(F) and the set of all

Σ-sequents with nonempty set of antecedents is denoted by Seq0
Σ(F). We

then set

Seq(F) = {SeqΣ(F)}Σ∈∣Sign♭∣ and Seq0(F) = {Seq0
Σ(F)}Σ∈∣Sign♭∣.

We sometimes use boldface Greek letters such as γ,δ, . . . to denote Σ-
sequents and boldface capital Greek letters such as Γ,∆, . . . for sets of Σ-
sequents. Moreover, we write Γ ⊢Σ Φ to stand for the set {Γ ⊢Σ φ ∶ φ ∈ Φ} of
Σ-sequents.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A Gentzen π-insti-
tution based on F of type 1 (of type 0, respectively) is a pair

G = ⟨F,G⟩,
where G ∶ P(Seq(F)) → P(Seq(F)) (G ∶ P(Seq0(F)) → P(Seq0(F)), re-
spectively) is a closure system on Seq(F) (Seq0(F), respectively) that, in
addition, satisfies the following structural rules, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ):

(Axiom) φ ⊢Σ φ ∈ GΣ(∅);
(Weakening) Φ,Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ φ);

(Cut) Φ ⊢Σ φ ∈ GΣ(Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ).
If Φ ⊢Σ φ ∈ GΣ(∅) we call Φ ⊢Σ φ a Σ-theorem or a derivable Σ-sequent
of G.

Each Gentzen π-institution based on an algberaic system F defines in a
natural way a π-institution based on F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a
Gentzen π-institution based on F. The π-institution IG = ⟨F,CG⟩ de-
fined or determined by G is defined by setting, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CG
Σ(Φ) iff Φ ⊢Σ φ ∈ GΣ(∅).
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Proposition 1479 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a Gentzen π-institution based on F. CG ∶ PSEN♭ → PSEN♭ is a
closure system on SEN♭ and, hence, IG = ⟨F,CG⟩ is a π-institution.

Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ).
If φ ∈ Φ, then, by (Axiom) φ ⊢Σ φ ∈ GΣ(∅) and by (Weakening) Φ ⊢Σ φ ∈

GΣ(φ ⊢Σ φ), whence Φ ⊢Σ φ ∈ GΣ(∅). Therefore φ ∈ CG
Σ(Φ).

If Φ ⊆ Ψ and φ ∈ CG
Σ(Φ), then Φ ⊢Σ φ ∈ GΣ(∅) and, by (Weakening),

Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ φ), whence Ψ ⊢Σ φ ∈ GΣ(∅), giving φ ∈ CG
Σ(Ψ).

If φ ∈ CG
Σ(CG

Σ(Φ)), then CG
Σ(Φ) ⊢Σ φ ∈ GΣ(∅) and, by (Weakening),

Φ,CG
Σ(Φ) ⊢Σ φ ∈ GΣ(CG

Σ(Φ) ⊢Σ φ) ⊆ GΣ(∅).
Moreover, by definition Φ ⊢Σ CG

Σ(Φ) ⊆ GΣ(∅), whence, by (Cut),

Φ ⊢Σ φ ∈ GΣ(Φ ⊢Σ CG
Σ(Φ), Φ,CG

Σ (Φ) ⊢Σ φ) ⊆ GΣ(∅).
Therefore, φ ∈ CG

Σ(Φ).
Finally, suppose φ ∈ CG

Σ(Φ), Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then, by
definition, Φ ⊢Σ φ ∈ GΣ(∅) and, by structurality,

SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ GΣ′(∅).
This shows that SEN♭(f)(φ) ∈ CG

Σ′(SEN♭(f)(Φ)) and, therefore, CG is a
closure system on SEN♭, as was to be shown. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and G = ⟨F,G⟩ a Gentzen π-institution, also based on F.
We say that G is adequate for I if C = CG and, moreover,

• G is of type 1 if I has theorems and

• G is of type 0 if I does not have theorems.

The following proposition clarifies the distinction imposed on the type,
since it reveals the fact that, if I has no theorems, then it is sufficient to
assume that a Gentzen π-institution adequate for I has type 0.

Proposition 1480 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a Gentzen π-institution based on F.

(a) If G is of type 0, then IG does not have theorems.

(b) If G is of type 1, then its restriction G0 = ⟨F,G0⟩ to Seq0(F) is a
Gentzen π-institution of type 0.

(c) If G is of type 1 and IG has no theorems, then IG = IG0

.
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Proof:

(a) Suppose IG has theorems. Thus, for all Σ ∈ ∣Sign♭∣, there exists φ ∈
SEN♭(Σ), such that φ ∈ CG

Σ(∅). Thus, by definition, ∅ ⊢Σ φ ∈ GΣ(∅).
Therefore, G cannot be of type 0 (since it admits a sequent with an
empty set of antecedents).

(b) Suppose G = ⟨F,G⟩ is of type 1. Consider G0 = ⟨F,G0⟩. We must show
that G0 ∶ P(Seq0(F)) → P(Seq0(F)) is a closure system on Seq0(F)
that satisfies the structural rules.

– Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ Seq0
Σ(F), such that γ ∈ Γ. Then

γ ∈ GΣ(Γ) and, hence, γ ∈ G0
Σ(Γ).

– Suppose Σ ∈ ∣Sign♭∣, Γ∪∆∪ {γ} ⊆ Seq0
Σ(F), such that γ ∈ G0

Σ(Γ)
and Γ ⊆ ∆. Then, by definition, γ ∈ GΣ(Γ) and Γ ⊆ ∆, whence
γ ∈ GΣ(∆). So γ ∈ G0

Σ(∆).
– Suppose Σ ∈ ∣Sign♭∣, Γ∪{γ} ⊆ Seq0

Σ(F), such that γ ∈ G0
Σ(G0

Σ(Γ)).
Then γ ∈ GΣ(GΣ(Γ)) = GΣ(Γ). As Γ ∪ {γ} ⊆ Seq0

Σ(F), it follows
that γ ∈ G0

Σ(Γ).
– Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ Seq0

Σ(F), such that γ ∈ G0
Σ(Γ),

Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then γ ∈ GΣ(Γ), whence
SEN♭(f)(γ) ∈ GΣ′(SEN♭(f)(Γ)). Observing that, if Γ ∪ {γ} ⊆
Seq0

Σ(F), then SEN♭(f)(Γ) ∪ {SEN♭(f)(γ)} ⊆ Seq0
Σ′(F), we con-

clude that
SEN♭(f)(γ) ∈ G0

Σ′(SEN♭(f)(Γ)).
Next, for the structural rules:

(Axiom) For Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), φ ⊢Σ φ ∈ Seq0
Σ(F), whence, since, by

(Axiom), φ ⊢Σ φ ∈ GΣ(∅), φ ⊢Σ φ ∈ G0
Σ(∅).

(Weakening) Let Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ), such that Φ ≠ ∅. Then,
since Φ ∪Ψ ≠ ∅ and since, by (Weakening), Φ,Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ
φ), we conclude that Φ,Ψ ⊢Σ φ ∈ G0

Σ(Φ ⊢Σ φ).
(Cut) Let Σ ∈ ∣Sign♭∣, Φ∪Ψ∪{φ} ⊆ SEN♭(Σ), with Φ ≠ ∅. Then Φ∪Ψ ≠ ∅

and, since, by (Cut), Φ ⊢Σ φ ∈ GΣ(Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ), we get
Φ ⊢Σ φ ∈ G0

Σ(Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ).
(c) Suppose G is of type 1 and IG has no theorems. Clearly, G0 ≤ G so

that CG0 ≤ CG. On the other hand, let Σ ∈ ∣Sign♭∣, Φ∪{φ} ⊆ SEN♭(Σ),
such that φ ∈ CG

Σ(Φ). Since IG has no theorems, Γ ≠ ∅. Moreover, by
definition, Φ ⊢Σ φ ∈ GΣ(∅). Thus, Φ ⊢Σ φ ∈ G0

Σ(∅). We conclude that
φ ∈ CG0

Σ (Φ). So CG ≤ CG0

and equality follows.
∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Σ ∈ ∣Sign♭∣.
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• A Gentzen Σ-axiom is a Σ-sequent γ ∈ SeqΣ(F);
• A Gentzen Σ-rule is a pair ⟨Γ,γ⟩, where Γ ∪ {γ} ⊆ SeqΣ(F).

A Gentzen axiom system is a collection Ax = {AxΣ}Σ∈∣Sign♭∣, where AxΣ

is a set of Gentzen Σ-axioms, which is Sign♭-invariant.
A Gentzen rule system is a collection Ir = {IrΣ}Σ∈∣Sign♭∣, where IrΣ is a

set of Gentzen Σ-rules, which is also Sign♭-invariant. Set

R = Ax ∪ Ir.

The Gentzen closure system GR ⊆ P(Seq(F)) → P(Seq(F)) generated
by R is the least closure system on Seq(F), satisfying the structural rules,
that contains R, i.e., such that, for all Σ ∈ ∣Sign♭∣,

• γ ∈ GR
Σ(∅), for all γ ∈ AxΣ, and

• γ ∈ GR
Σ(Γ), for all ⟨Γ,γ⟩ ∈ IrΣ.

We denote by GR = ⟨F,GR⟩ the corresponding Gentzen π-institution, called
the Gentzen π-institution generated by R.

A Finitary Parenthesis

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R = Ax∪Ir a set of finitary
Gentzen axioms and rules of inference (i.e., such that the set of antecedents
of all sequents involved is finite and the set of hypotheses of each rule of
inference is also finite), and Γ ⊆ SeqΣ(F) a set of Σ-sequents. We define a
family

ΞR
Σ(Γ) =⋃{ΞR,n

Σ (Γ) ∶ n < ω},
where ΞR,n

Σ (Γ) is defined by induction on n < ω as follows:

• ΞR,0
Σ (Γ) = {φ ⊢Σ φ ∶ φ ∈ SEN♭(Σ)} ∪AxΣ ∪Γ;

• For all n ≥ 0, Φ ∪Ψ ∪ {φ} ⊆f SEN♭(Σ),
ΞR,n+1
Σ (Γ) = {Φ,Ψ ⊢Σ φ ∶ Φ ⊢Σ φ ∈ ΞR,n

Σ (Γ)}
∪{Φ ⊢Σ φ ∶ Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n

Σ (Γ)}
∪{Φ ⊢Σ φ ∶ ⟨∆,Φ ⊢Σ φ⟩ ∈ IrΣ,∆ ⊆ ΞR,n

Σ (Γ)}.
We define ΞR ∶ P(Seq(F)) → P(Seq(F)), by letting ΞR ∶= {ΞR

Σ}Σ∈∣Sign♭∣,
where ΞR

Σ ∶ P(SeqΣ(F)) → P(SeqΣ(F)) as defined above.
We show, next, that this is closure system on Seq(F), which satisfies the

structural rules, includes Ax and is closed under Ir.
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Lemma 1481 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R =
Ax∪Ir a collection of finitary axioms and rules of inference. ΞR ∶ P(Seq(F)) →
P(Seq(F)) is a closure system on Seq(F), satisfying the structural rules and
including R.

Proof: We show, first, that ΞR is a closure system on Seq(F).
• Suppose Σ ∈ ∣Sign♭∣ and Γ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ Γ. Then
γ ∈ ΞR,0

Σ (Γ) and, hence, γ ∈ ΞR
Σ(Γ).

• Suppose Σ ∈ ∣Sign♭∣, Γ ∪∆ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ ΞR
Σ(Γ) and

Γ ⊆ ∆. Then, for some n < ω, γ ∈ ΞR,n
Σ (Γ) and Γ ⊆ ∆. We show by

induction on n, that then γ ∈ ΞR,n
Σ (∆).

– If n = 0, then the conclusion follows directly from the inclusion
Γ ⊆∆.

– Now suppose that n > 0 and that the conclusion holds for n − 1.

∗ If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), then, by the

induction hypothesis, Φ ⊢Σ φ ∈ ΞR,n−1
Σ (∆), whence, it follows

that Φ,Ψ ⊢Σ φ ∈ ΞR,n
Σ (∆).

∗ If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), we get,

by the induction hypothesis, Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (∆),

whence Φ ⊢Σ φ ∈ ΞR,n
Σ (∆).

∗ If γ = Φ ⊢Σ φ, with ⟨Υ,Φ ⊢Σ φ⟩ ∈ IrΣ and Υ ⊆ ΞR,n−1
Σ (Γ),

then, by the induction hypothesis, Υ ⊆ ΞR,n−1
Σ (∆), whence,

again, Φ ⊢Σ φ ∈ ΞR,n
Σ (∆).

• Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ ΞR
Σ(ΞR

Σ(Γ)).
Then, for some n < ω, γ ∈ ΞR,n

Σ (ΞR
Σ(Γ)). We show by induction on n,

that then γ ∈ ΞR
Σ(Γ).

– If n = 0, then γ is of the form φ ⊢Σ φ or is in AxΣ or in ΞR
Σ(Γ).

In the first two cases, it is in ΞR,0
Σ (Γ) ⊆ ΞR

Σ(Γ) and in the last in
ΞR
Σ(Γ).

– Suppose n > 0 and the conclusion holds for n − 1.

∗ If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (ΞR

Σ(Γ)), then, by the

induction hypothesis, Φ ⊢Σ φ ∈ ΞR
Σ(Γ), i.e., Φ ⊢Σ φ ∈ ΞR,m

Σ (Γ),
for some m < ω. Thus Φ,Ψ ⊢Σ φ ∈ ΞR,m+1

Σ (Γ) ⊆ ΞR
Σ(Γ).

∗ If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (ΞR

Σ(Γ)), we
get, by the induction hypothesis, Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR

Σ(Γ).
Since Ψ is finite, there exists m > 0, such that Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ
φ ∈ ΞR,m

Σ (Γ). Thus, Φ ⊢Σ φ ∈ ΞR,m+1
Σ (Γ) ⊆ ΞR

Σ(Γ).
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∗ If γ = Φ ⊢Σ φ, with ⟨∆,Φ ⊢Σ φ⟩ ∈ IrΣ and ∆ ⊆ ΞR,n−1
Σ (ΞR

Σ(Γ)),
then, by the induction hypothesis, ∆ ⊆ ΞR

Σ(Γ), whence, again,

since ∆ is finite, there exists m > 0, such that ∆ ⊆ ΞR,m
Σ (Γ).

Therefore, Φ ⊢Σ φ ∈ ΞR,m+1
Σ (Γ) ⊆ ΞR

Σ(Γ).
• Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ ΞR

Σ(Γ), and let

Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′). Then, for some n < ω, γ ∈ ΞR,n
Σ (Γ). We

show by induction on n, that then SEN♭(f)(γ) ∈ ΞR,n
Σ′ (SEN♭(f)(Γ)).

– If n = 0, then γ is of the form φ ⊢Σ φ or in AxΣ or in Γ.
In the first case, SEN♭(f)(γ) = SEN♭(f)(φ) ⊢Σ′ SEN♭(f)(φ) ∈
ΞR,0
Σ′ (SEN♭(f)(Γ)), by definition. In the second case, the con-

clusion holds by the postulated invariance of Ax under Sign♭.
In the last case, it holds because, by definition, SEN♭(f)(γ) ∈
ΞR,0
Σ′ (SEN♭(f)(Γ)).

– Suppose n > 0 and the conclusion holds for n − 1.

∗ If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), then, by the

induction hypothesis,

SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n−1
Σ′ (SEN♭(f)(Γ)),

whence, by definition. SEN♭(f)(Φ ∪ Ψ) ⊢Σ′ SEN♭(f)(φ) ∈
ΞR,n
Σ′ (SEN♭(f)(Γ)).

∗ If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), we get,

by the induction hypothesis, SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(Ψ),
SEN♭(f)(Φ ∪Ψ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n−1

Σ′ (SEN♭(f)(Γ)). So,
again by definition,

SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n
Σ′ (SEN♭(f)(Γ)).

∗ If γ = Φ ⊢Σ φ, with ⟨∆,Φ ⊢Σ φ⟩ ∈ IrΣ and ∆ ⊆ ΞR,n−1
Σ (Γ),

then, by the induction hypothesis,

SEN♭(f)(∆) ⊆ ΞR,n
Σ′ (SEN♭(f)(Γ)),

whence, since Ir is invariant under Sign♭, we get, by definition,
SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n

Σ′ (SEN♭(f)(Γ)).
We have concluded the proof that ΞR is a closure system on Seq(F).

Next, we show that it satisfies the structural rules.

• For (Axiom), if Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), then, by definition, φ ⊢Σ φ ∈
ΞR,0
Σ (∅) ⊆ ΞR

Σ(∅).
• For (Weakening), if Σ ∈ ∣Sign♭∣, Φ ∪ Ψ ∪ {φ} ⊆f SEN♭(Σ), such that

Φ ⊢Σ φ ∈ ΞR
Σ(Γ), then, there exists n < ω, such that Φ ⊢Σ φ ∈ ΞR,n

Σ (Γ).
Therefore, by definition, Φ,Ψ ⊢Σ φ ∈ ΞR,n+1

Σ (Γ) ⊆ ΞR
Σ(Γ).
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• For (Cut), if Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆f SEN♭(Σ), such that Φ ⊢Σ Ψ,
Φ,Ψ ⊢Σ φ ∈ ΞR

Σ(Γ), then, since Ψ ⊆f SEN♭(Σ), there exists n < ω,

such that Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n
Σ (Γ). Thus, by definition, Φ ⊢Σ φ ∈

ΞR,n+1
Σ (Γ) ⊆ ΞR

Σ(Γ).
So ΞR does satisfy all three structural rules.

Finally, it does include all rules in R:

• For Σ ∈ ∣Sign♭∣, γ ∈ AxΣ, we have γ ∈ AxΣ ⊆ ΞR,0
Σ (∅) ⊆ ΞR

Σ(∅).
• For Σ ∈ ∣Sign♭∣, ⟨Γ,γ⟩ ∈ IrΣ, such that Γ ⊆ ΞR

Σ(∆), since Γ is finite,

there exists n < ω, such that Γ ⊆ ΞR,n
Σ (∆). Thus, by definition, γ ∈

ΞR,n+1
Σ (∆) ⊆ ΞR

Σ(∆).
This concludes the proof of the statement. ∎

We show that, given a system R of finitary Gentzen axioms and rules of
inference, the closure GR

Σ(Γ) of a set Γ of Σ-sequents in the least Gentzen
π-institution generated by R is exactly ΞR

Σ(Γ).
Proposition 1482 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
R = Ax ∪ Ir a set of finitary Gentzen axioms and rules of inference. Then,
for all Σ ∈ ∣Sign♭∣ and all Γ ⊆ SeqΣ(F),

GR
Σ(Γ) = ΞR

Σ(Γ).
Proof: Suppose, first, that γ ∈ SeqΣ(F), such that γ ∈ ΞR

Σ(Γ). Then,

γ ∈ ΞR,n
Σ (Γ), for some n < ω. We show by induction on n < ω that, if

γ ∈ ΞR,n
Σ (Γ), then γ ∈ GR

Σ(Γ).
• The conclusion is obvious for n = 0, since, by definition, GR

Σ(Γ) satisfies
the structural rules, contains AxΣ and, clearly, includes Γ;

• A similar clause applies for the induction step:

– If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), then, by the induction

hypothesis, Φ ⊢Σ φ ∈ GR
Σ(Γ) and, since GR satisfies the structural

rules, Φ,Ψ ⊢Σ φ ∈ GR
Σ(Γ) also.

– If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ ⊆ ΞR,n−1
Σ (Γ) and Ψ ⊢Σ φ ∈ ΞR,n−1

Σ (Γ),
then, again by the induction hypothesis, Φ ⊢Σ Ψ ⊆ GR

Σ(Γ) and
Ψ ⊢Σ φ ∈ GR

Σ(Γ), whence, since GR satisfies the structural rules,
Φ ⊢Σ φ ∈ GR

Σ(Γ).
– If γ = Φ ⊢Σ φ, with ⟨∆,γ⟩ ∈ IrΣ and ∆ ⊆ ΞR,n−1

Σ (Γ), then, by the
induction hypothesis, ∆ ⊆ GR

Σ(Γ) and, since GR is closed under
the rules of inference, we get that Φ ⊢Σ φ ∈ GR

Σ(Γ).
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We conclude that ΞR,n
Σ (Γ) ⊆ GR

Σ(Γ), for all n < ω, and, therefore, ΞR
Σ(Γ) ⊆

GR
Σ(Γ).

Conversely, since, by Lemma 1481, ΞR ∶ P(Seq(F)) → P(Seq(F)) is a
closure system on Seq(F), which satisfies the structural rules, contains Ax
and is closed under Ir, we conclude by the minimality of GR, that, for all
Σ ∈ ∣Sign♭∣ and all Γ ⊆ SeqΣ(F), GR

Σ(Γ) ⊆ ΞR
Σ(Γ). From this, the conclusion

follows. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. Define a Gentzen π-institution GI = ⟨F,GI⟩, as
follows:

1. If I has theorems, GI is of type 1 and if I does not have theorems,
then GI is of type 0;

2. Set AxI = {AxIΣ}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)}.

Let RI ∶= AxI . Then set GI ∶= GRI .

Of course, GI is a Gentzen π-institution. Moreover, it turns out that, if
I is finitary, then GI is adequate for the π-institution I .

Lemma 1483 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F. Then GI = ⟨F,GI⟩ is a Gentzen
π-institution adequate for I.

Proof: Note that, by hypothesis and Proposition 1482, GI = ⟨F,ΞRI ⟩.
Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f SEN♭(Σ). We must show that

φ ∈ CΣ(Φ) iff Φ ⊢Σ φ ∈ ΞRI

Σ (∅).
First, if φ ∈ CΣ(Φ), then, by definition Φ ⊢Σ φ ∈ AxIΣ. Therefore, since

AxIΣ ⊆ ΞRI

Σ (∅), we get Φ ⊢Σ φ ∈ ΞRI

Σ (∅).
Conversely, we must show that, if Φ ⊢Σ φ ∈ ΞRI

Σ (∅), then φ ∈ CΣ(Φ). We
do this by showing, using induction on n < ω, that

Φ ⊢Σ φ ∈ ΞRI ,n
Σ (∅) implies φ ∈ CΣ(Φ).

• If Φ ⊢Σ φ ∈ ΞRI ,0
Σ (∅), then it is either of the form φ ⊢Σ φ or in AxIΣ. In

the first case, the conclusion follows by the inflationarity of C and, in
the second, by the definition of AxI .

• Suppose n > 0 and that the conclusion holds for n − 1. Then, since
IrI = ∅, there are only two cases to consider.
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– If Φ ⊢Σ φ is of the form Φ1,Φ2 ⊢Σ φ ∈ ΞRI ,n
Σ (∅), with Φ1 ⊢Σ φ ∈

ΞRI ,n−1
Σ (∅), then, by the induction hypothesis, φ ∈ CΣ(Φ1) and,

hence, by the monotonicity of C, φ ∈ CΣ(Φ1,Φ2).
– If Φ ⊢Σ φ ∈ ΞRI ,n

Σ (∅), with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞRI ,n−1
Σ (∅), then,

by the induction hypothesis, Ψ ⊆ CΣ(Φ) and φ ∈ CΣ(Φ,Ψ), whence

φ ∈ CΣ(Φ,Ψ) (hypothesis)
⊆ CΣ(Φ,CΣ(Φ)) (monotonicity)
⊆ CΣ(CΣ(Φ)) (monotonicity)
= CΣ(Φ). (idempotency)

This finishes the induction and concludes the proof. ∎

End of the Finitary Parenthesis

20.2 G-Structures and G-Algebraic Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen π-
institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and IL = ⟨A,D⟩
an F-structure. IL is a G-structure or a model of G if, for all Σ ∈ ∣Sign♭∣
and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F),

Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and αΣ(φi) ∈DF (Σ)(αΣ(Φi)), i ∈ I,
imply αΣ(φ) ∈DF (Σ)(αΣ(Φ)).

In relation to G-structures, we use the following notation:

• D ∈ ClFamG(A) if ⟨A,D⟩ is a G-structure;

• Str(G) is the collection of all G-structures;

• StrG(A) is the collection of all G-structures on the F-algebraic system
A.

Let, again, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a
Gentzen π-institution based on F and Γ = {ΓΣ}Σ∈∣Sign♭∣ ∈ ThFam(G). Define

DΓ ∶ PSEN → PSEN, by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),
DΓ

Σ(Φ) = {φ ∈ SEN♭(Σ) ∶ Φ ⊢Σ φ ∈ ΓΣ}.
We show that DΓ, thus defined, is a closure family on SEN♭ and, therefore,⟨F ,DΓ⟩ is an F-structure. In fact, ⟨F ,DΓ⟩ is a G-structure.

Lemma 1484 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩
a Gentzen π-institution based on F and Γ ∈ ThFam(G). Then ILΓ = ⟨F ,CΓ⟩
is a G-structure.
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Proof: We show, first, that DΓ is a closure family on F .

• Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Φ. Then, by
(Axiom) φ ⊢Σ φ ∈ GΣ(∅). By (Weakening), Φ ⊢Σ φ ∈ GΣ(φ ⊢Σ φ).
Therefore, by (Cut), Φ ⊢Σ φ ∈ GΣ(∅). Therefore, Φ ⊢Σ φ ∈ ΓΣ and,
hence, φ ∈DΓ

Σ(Φ).
• Let Σ ∈ ∣Sign♭∣ and Φ ∪ Ψ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ DΓ

Σ(Φ)
and Φ ⊆ Ψ. By definition, Φ ⊢Σ φ ∈ ΓΣ. Hence, by (Weakening)
Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ φ) ⊆ GΣ(ΓΣ) = ΓΣ. We conclude that φ ∈DΓ

Σ(Ψ).
• Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ DΓ

Σ(DΓ
Σ(Φ)). Then,

by definition, DΓ
Σ(DΓ

Σ(Φ)) ⊢Σ φ ∈ ΓΣ and DΓ
Σ(Φ) ⊢Σ DΓ

Σ(DΓ
Σ(Φ)) ⊆ ΓΣ.

Now we get

DΓ
Σ(Φ) ⊢Σ φ ∈ GΣ(DΓ

Σ(Φ),DΓ
Σ(DΓ

Σ(Φ)) ⊢Σ φ,
DΓ

Σ(Φ) ⊢Σ DΓ
Σ(DΓ

Σ(Φ)))
⊆ GΣ(DΓ

Σ(DΓ
Σ(Φ)) ⊢Σ φ,
DΓ

Σ(Φ) ⊢Σ DΓ
Σ(DΓ

Σ(Φ)))
⊆ GΣ(ΓΣ)
= ΓΣ.

Therefore, by definition, φ ∈DΓ
Σ(Φ).

We conclude that ILΓ = ⟨F ,DΓ⟩ is an F-structure. We show, next, that ILΓ

is a G-structure. Let Σ ∈ ∣Sign♭∣, {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F),
such that

• Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and

• φi ∈DΓ
Σ(Φi), for all i ∈ I.

Then, by definition, Φi ⊢Σ φi ∈ ΓΣ, for all i ∈ I. Since Γ ∈ ThFam(G), we
get Φ ⊢Σ φ ∈ ΓΣ. Thus, by definition, φ ∈ DΓ

Σ(Φ). So ILΓ = ⟨F ,DΓ⟩ is a
G-structure. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution based on F, and IL = ⟨F ,D⟩ a G-structure. We define ΓIL ={ΓIL

Σ}Σ∈∣Sign♭∣ by setting, for all Σ ∈ ∣Sign♭∣,
ΓIL

Σ = {Φ ⊢Σ φ ∈ SeqΣ(F) ∶ φ ∈DΣ(Φ)}.
We show that ΓIL, thus defined, is a theory family of the Gentzen π-

institution G.

Lemma 1485 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩
a Gentzen π-institution based on F, and IL = ⟨F ,D⟩ a G-structure. Then
ΓIL ∈ ThFam(G).
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Proof: Let Σ ∈ ∣Sign♭∣, {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), such that

• Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and

• Φi ⊢Σ φi ∈ ΓIL
Σ , for all i ∈ I.

Then, by definition, φi ∈DΣ(Φi), for all i ∈ I. Thus, since IL is a G-structure,
φ ∈DΣ(Φ). Therefore, Φ ⊢Σ φ ∈ ΓIL

Σ . We conclude ΓIL ∈ ThFam(G). ∎

We show next that the two preceding constructions, of a G-structure ILΓ

out of a given theory family Γ of G and of a theory family ΓIL out of a given
G-structure IL = ⟨F ,D⟩ are inverses of one another.

Proposition 1486 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a Gentzen π-institution based on F and IL = ⟨F ,D⟩ an F-structure.

(a) IL ∈ Str(G) if and only if ΓIL ∈ ThFam(G) and IL = ILΓIL

;

(b) Γ ∈ ThFam(G) if and only if ILΓ ∈ Str(G) and Γ = ΓILΓ

;

(c) IG = ⟨F,CG⟩ is the smallest G-structure on F and CG =DThm(G).

Proof:

(a) Suppose, first, that IL = ⟨F ,D⟩ ∈ Str(G). Then, by Lemma 1485,
ΓIL ∈ ThFam(G). Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). We have

φ ∈DΓIL

Σ (Φ) iff Φ ⊢Σ φ ∈ ΓIL
Σ

iff φ ∈DΣ(Φ).
So D =DΓIL

.

Assume, conversely, that ΓIL ∈ ThFam(G) and IL = ILΓIL

. By Lemma

1484, ILΓIL

∈ Str(G). Thus, IL = ILΓIL

∈ Str(G).
(b) Suppose, first, that Γ ∈ ThFam(G). Then, by Lemma 1484, ILΓ ∈

Str(G). Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ). Then we have

Φ ⊢Σ φ ∈ ΓILΓ

Σ iff φ ∈DΓ
Σ(Φ)

iff Φ ⊢Σ φ ∈ ΓΣ.

So Γ = ΓILΓ

.

Suppose, conversely, that ILΓ ∈ Str(G) and Γ = ΓILΓ

. Then, by Lemma

1485, ΓILΓ

∈ ThFam(G) and, hence, Γ ∈ ThFam(G).
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(c) By Parts (a) and (b),

IL ✲ ΓIL

ILΓ ✛ Γ

are mutually inverse mappings between ThFam(G) and StrG(F) and
both are clearly order-preserving. Thus ILThm(G) = IG is the least G-
structure on F .

∎

The next result shows that a Gentzen π-institution is complete with re-
spect to class of all G-structures.

Proposition 1487 (Completeness Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and G = ⟨F,G⟩ a Gentzen π-institution based on F.
For all Σ ∈ ∣Sign♭∣ and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), Φ ⊢Σ φ ∈
GΣ({Φi ⊢Σ φi ∶ i ∈ I}) if and only if, for every G-structure IL = ⟨A,D⟩, with
A = ⟨A, ⟨F,α⟩⟩,

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ)).
Proof: Let Σ ∈ ∣Sign♭∣ and {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F).

Suppose, first, that Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and let IL = ⟨A,D⟩ ∈
Str(G), such that αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), for all i ∈ I. Then, by the
definition of a G-structure, αΣ(φ) ∈ DF (Σ)(αΣ(Φ)).

Assume, conversely, that the displayed condition in the statement holds.
Let Γ ∈ ThFam(G), such that {Φi ⊢Σ φi ∶ i ∈ I} ⊆ ΓΣ. Then, by definition,
φi ∈ DΓ

Σ(Φi), for all ∈ I. Since, by Lemma 1484, ILΓ is a G-structure, we
get, by hypothesis, φ ∈ DΓ

Σ(Φ). Therefore, Φ ⊢Σ φ ∈ ΓΣ. We conclude that
Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}). ∎

Next, we show that the property of being a model of a Gentzen π-
institution is preserved under bilogical morphisms.

Proposition 1488 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a Gentzen π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩
two F-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ two F-structures and⟨H,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL is a G-structure if and only if IL′ is
a G-structure.

Proof: For the proof, it suffices to notice that, since ⟨H,γ⟩ is a bilogical
morphism, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),

αΣ(φ) ∈DF (Σ)(αΣ(Φ)) iff γF (Σ)(αΣ(φ)) ∈D′H(F (Σ))(γF (Σ)(αΣ(Φ)))
iff α′Σ(φ) ∈ D′F ′(Σ)(α′Σ(Φ)).
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The rest of the argument is straightforward: If IL is a G-structure, then,
for all Σ ∈ ∣Sign♭∣ and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), such
that Φ ⊢Σ φ ∈ GΣ({Φi ⊢ φi ∶ i ∈ I}) and α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), for all

i ∈ I, we get αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), for all i ∈ I, whence, by hypothesis,
αΣ(φ) ∈ DF (Σ)(αΣ(Φ)), which gives α′Σ(φ) ∈ D′F ′(Σ)(α′Σ(Φ)). We conclude

that IL′ is also a G-structure. If, conversely, IL′ is a G-structure, then, for
all Σ ∈ ∣Sign♭∣ and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), such that
Φ ⊢Σ φ ∈ GΣ({Φi ⊢ φi ∶ i ∈ I}) and αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), for all i ∈ I, we
get α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), for all i ∈ I, whence, by hypothesis, α′Σ(φ) ∈
D′
F ′(Σ)
(α′Σ(Φ)), which gives αΣ(φ) ∈ DF (Σ)(αΣ(Φ)). We conclude that IL is

also a G-structure. ∎

In particular, we obtain

Corollary 1489 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G =⟨F,G⟩ a Gentzen π-institution based on F. An F-structure IL = ⟨A,D⟩ is a
G-structure if and only if its reduction IL∗ is a G-structure.

Proof: This follows directly from Proposition 1488, since the quotient mor-
phism ⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical morphism. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. A is a
G-algebraic system if it is the underlying algebraic system of a reduced
G-structure. We denote the class of all G-algebraic systems by AlgSys(G),
i.e., we have

AlgSys(G) = {A ∶ (∃D ∈ ClFamG(A))(Ω̃A(D) =∆A)}.
We show that, if a Gentzen π-institution G happens to be adequate for a

π-institution I , then every G-algebraic system is also an I-algebraic system.

Lemma 1490 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution based on
F that is adequate for I. Then:

(a) Every G-structure is an I-structure;

(b) AlgSys(G) ⊆ AlgSys(I).
Proof:

(a) Let IL = ⟨A,D⟩ ∈ Str(G). Suppose Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ),
such that φ ∈ CΣ(Φ). By the adequacy of G for I , Φ ⊢Σ φ ∈ GΣ(∅).
Since IL ∈ Str(G), αΣ(φ) ∈ DF (Σ)(αΣ(Φ)). Thus, by Lemma 50, IL is
an I-structure.
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(b) Assume that G is adequate for I and let A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G).
Then, there exists a G-structure IL = ⟨A,D⟩, such that Ω̃A(D) = ∆A.
To conclude that A ∈ AlgSys(I), it suffices, by Proposition 1399, to
show that IL ∈ StrI(A). But this was done in Part (a).

∎

20.3 Fully Adequate Gentzen π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and G = ⟨F,G⟩ a Gentzen π-institution based on F, such that G
is adequate for I . Then, with I may be associated two classes of F-algebraic
systems and two classes of I-structures:

• I-algebraic systems and full I-structures;

• G-algebraic systems and G-structures.

We devise certain conditions that, when possible to enforce, would guarantee
that a Gentzen π-institution G adequate for I can be picked in such a way
as to have AlgSys(G) = AlgSys(I) and Str(G) = FStr(I).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and G = ⟨F,G⟩ a Gentzen π-institution based on F. G is
said to be fully adequate for I if one of the following two conditions holds:

• I has theorems, G is of type 1 and, for every F-structure IL = ⟨A,D⟩,
IL ∈ FStr(I) if and only if IL ∈ Str(G);

• I does not have theorems, G is of type 0 and, for every F-structure
IL = ⟨A,D⟩, IL ∈ FStr(I) if and only if IL ∈ Str(G) and IL does not have
theorems.

We show that, if G is fully adequate for I , then it is also adequate for I .

Proposition 1491 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution
based on F. If G is fully adequate for I, then G is adequate for I.

Proof: Assume that G is fully adequate for I and let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆
SEN♭(Σ).

If φ ∈ CG
Σ(Φ), then, by definition, Φ ⊢Σ φ ∈ GΣ(∅). Since, by Corollary

1391, ⟨F ,C⟩ ∈ FStr(I), we get, by hypothesis, ⟨F ,C⟩ ∈ Str(G). Therefore,
φ ∈ CΣ(Φ).

Assume, conversely, that φ ∈ CΣ(Φ). Since, by Proposition 1486, ⟨F ,CG⟩ ∈
Str(G), which, additionally, does not have theorems, if I has no theorems,
we get, by hypothesis, ⟨F ,CG⟩ ∈ FStr(I). But, by Corollary 1391, ⟨F ,C⟩ is
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the weakest full I-structure on F . Therefore, since φ ∈ CΣ(Φ), we get that
φ ∈ CG

Σ(Φ). ∎

We provide next a characterization of full adequacy, which also showcases
its features and hints at why it is a useful notion in trying to connect π-
institutions with Gentzen π-institutions.

Proposition 1492 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution
based on F. G is fully adequate for I if and only if

1. AlgSys(G) = AlgSys(I);
2. For all A ∈ AlgSys(I), ⟨A,FiFamI(A)⟩ is the only reduced G-structure

on A (without theorems if I does not have any);

3. I has theorems and G is of type 1 or I does not have theorems and G

is of type 0.

Proof: Assume G is fully adequate for I . Note that Condition 3 holds
by definition. By Proposition 1491, I is adequate for I . By Lemma 1490,
AlgSys(G) ⊆ AlgSys(I). If, on the other hand, A ∈ AlgSys(I), then ⟨A,
FiFamI(A)⟩ is a reduced full I-structure. Thus, by hypothesis, it is a reduced
G-structure. It follows that A ∈ AlgSys(G). This shows that Condition 1
also holds. It remains now to prove Condition 2. To this end, suppose
A ∈ AlgSys(I). Then ⟨A,FiFamI(A)⟩ is a reduced full I-structure. By
hypothesis, ⟨A,FiFamI(A)⟩ is a reduced G-structure. By the Isomorphism
Theorem 1408, it is the only full I-structure on A that is reduced. Hence, by
hypothesis, it is the only reduced G-structure on A. This proves Condition
2 and concludes the “only if”.

Assume, conversely, that Conditions 1-3 hold. Then, for all F-structures
IL = ⟨A,D⟩,

IL ∈ FStr(I) iff A∗ ∈ AlgSys(I) and D∗ = FiFamI(A∗)
iff A∗ ∈ AlgSys(G) and ⟨A∗,D∗⟩ ∈ Str(G)

(w/o theorems if I does not have any)
iff ⟨A,D⟩ ∈ Str(G)

(w/o theorems if I does not have any).

This, combined with Condition 3, gives that G is fully adequate for I . ∎

If a π-institution I has a fully adequate Gentzen π-institution, then that
Gentzen π-institution is unique.

Proposition 1493 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ two Gentzen
π-institutions based on F. If G and G′ are fully adequate for I, then G = G′.
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Proof: Let Σ ∈ ∣Sign♭∣, {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F). Then, we
get Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) if and only if, by Proposition 1487, for
every ⟨A,D⟩ ∈ Str(G),

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ))
if and only if, by full adequacy, for all ⟨A,D⟩ ∈ FStr(I),

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ))
if and only if, by full adequacy, for every ⟨A,D⟩ ∈ Str(G′),

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ))
if and only if, by Proposition 1487, Φ ⊢Σ φ ∈ G′Σ({Φi ⊢Σ φi ∶ i ∈ I}). There-
fore, G = G′ and, hence, G = G′. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Recall the notation
for the family of F-equations Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣, where EqΣ(F) =
SEN♭(Σ)2. Let K be a class of F-algebraic systems and recall the relative
equational consequence of K

CK = {CK
Σ}Σ∈∣Sign♭∣ ∶ P(Eq(F)) → P(Eq(F))

given, for all Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), by

φ ≈ ψ ∈ CK
Σ(E) iff for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

E ⊆ KerΣ(A) implies ⟨φ,ψ⟩ ∈ KerΣ(A).
We show that the structure QK = ⟨F2,CK⟩ is a π-structure.

Lemma 1494 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let K

be a class of F-algebraic systems. Then QK = ⟨F2,CK⟩ is a π-structure.

Proof: By Lemma ??. ∎

Recall from Proposition 115, that QK satisfies the properties of reflexivity,
symmetry, transitivity, congruence and invariance. So we have

Corollary 1495 et F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let
K be a class of F-algebraic systems. Then QK = ⟨F2,CK⟩ is an equational
π-structure.

Proof: By Lemma 1494 and Proposition 115. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution based on F and K a class of F-algebraic systems. According to
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the framework developed in Chapter 12, we say that G is equivalent to QK

if there exists a conjugate pair of translations (t, s) ∶ G⇄QK, where

t ∶ G ✲ QK

G ✛ QK ∶ s

We will focus specifically on the case in which the translation sq ∶ Eq(F) →
SenFam(G) is natural and given by the natural transformation κ ∶ Eq(F)→
P(Seq(F)), determined, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), by

κΣ(φ,ψ) = {φ ⊢Σ ψ,ψ ⊢Σ φ}.
Recall that, in this case, since κ does not have any parameters, we have that,
for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

sqΣ[φ ≈ ψ] = {sqΣ,Σ′[φ ≈ ψ]}Σ′∈∣Sign♭∣,
where

sqΣ,Σ′[φ ≈ ψ] = {SEN♭(f)(φ ⊢Σ ψ),SEN♭(ψ ⊢Σ φ) ∶ f ∈ Sign♭(Σ,Σ′)}.
Finally, we say that the Gentzen π-institution G has or satisfies Congru-
ence if, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗) ∈ GΣ(⋃
i<k

sqΣ[φi ≈ ψi]).
We show that the equivalence of a Gentzen π-institution G with an equa-

tional π-institution QK implies that G satisfies Congruence and, moreover,
that it has interesting consequences for any π-institution for which G happens
to be adequate. More precisely, such a π-institution must be self extensional
and the variety generated by its Lindenbaum-Tarski F-algebraic system must
coincide with the variety generated by the class K.

Proposition 1496 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a Gentzen π-institution based on F and K a class of F-algebraic sys-
tems. If G is equivalent to QK via a conjugate pair (t, sq) ∶ G ⇄ QK, then
G satisfies Congruence. If, in addition, G is adequate for a π-institution
I = ⟨F,C⟩, then I is self extensional and Q(K) = KI .

Proof: Suppose G is equivalent to QK via a conjugate pair (t, sq) ∶ G ⇄QK

and let σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, Σ ∈ ∣Sign♭∣ and φi, ψi ∈ SEN♭(Σ), i < k.
By Proposition 115,

σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ CK
Σ({φi ≈ ψi ∶ i < k}).

Thus, by the hypothesis,

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗) ∈ GΣ(⋃
i<k

sqΣ[φi ≈ ψi]).
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Thus, G satisfies Congruence.
Suppose, next, that I = ⟨F,C⟩ is a π-institution, for which G is adequate,

and let σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, Σ ∈ ∣Sign♭∣ and φi, ψi ∈ SEN♭(Σ), i < k,
such that CΣ(φi) = CΣ(ψi). By structurality, for all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′), CΣ′(SEN♭(f)(φ)) = CΣ′(SEN♭(f)(ψ)). Then, by adequacy,

SEN♭(f)(φi ⊢Σ ψi),SEN♭(f)(ψi ⊢Σ φi) ∈ GΣ′(∅).
Since G has Congruence, we get

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗), σ♭Σ(ψ⃗) ⊢Σ σ♭Σ(φ⃗) ∈ GΣ(⋃i<k sqΣ[φi ≈ ψi])
⊆ GΣ(GΣ(∅))
= GΣ(∅)

.

Again using adequacy, CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)). Therefore, λ̃(I) is a con-
gruence system on F and, by Proposition 1427, I is self extensional.

For the last claim, recall that

Q(K) = {A ∶ Ker(K) ≤ Ker(A)};
KI = Q(F/Ω̃(I)) = {A ∶ Ω̃(I) ≤ Ker(A)}.

Moreover, note that Ker(K) = Thm(QK). Therefore, to see that the claim
holds, it suffices to show that Thm(QK) = Ω̃(I). To this end, let Σ ∈ ∣Sign♭∣,
φ,ψ ∈ SEN♭(Σ). Then we have

φ ≈ ψ ∈DK
Σ(∅) iff sqΣ[φ ≈ ψ] ≤ G(∅) (by hypothesis)

iff CΣ(φ) = CΣ(ψ) (by adequacy)

iff ⟨φ,ψ⟩ ∈ λ̃Σ(I) (by definition)

iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I). (by self extensionality)

Thus, we have Q(K) = KI , as claimed. ∎

In closing the section, we show that, given a π-institution I that has an
adequate finitary Gentzen π-institution G, satisfying Congruence, the equa-
tional consequence based on the variety KI is translated into the consequence
of the Gentzen π-institution via sq.

Proposition 1497 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩ a finitary Gentzen π-
institution, having Congruence, that is adequate for I. Then, for all Σ ∈∣Sign♭∣ and all E ∪ {φ,ψ} ⊆ SEN♭(Σ),

φ ≈ ψ ∈DKI

Σ (E) implies sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).
Proof: Let Σ ∈ ∣Sign♭∣, E∪{φ,ψ} ⊆ SEN♭(Σ), such that φ ≈ ψ ∈DKI

Σ (E). By

Theorem 119, we have DKI = ΞKer(KI) = ΞΩ̃(I). So, we get φ ≈ ψ ∈ Ξ
Ω̃(I)
Σ (E).

We show by induction on n < ω, that, for all n < ω,

φ ≈ ψ ∈ Ξ
Ω̃(I),n
Σ (E) implies sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).
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• For n = 0, we must have φ = ψ or ⟨φ,ψ⟩ ∈ Ω̃Σ(I) or φ ≈ ψ ∈ E.

In the first case the conclusion follows by (Axiom).

In the second case, we have that CΣ(φ) = CΣ(ψ), whence, by adequacy,
sqΣ[φ ≈ ψ] ≤ G(∅) ≤ G(sqΣ[E]).
In the last case, the conclusion follows by the inflationarity of G.

• Suppose, now, that the implication holds for n > 0 and let Σ ∈ ∣Sign♭∣,
E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ Ξ

Ω̃(I),n+1
Σ (E).

If ψ ≈ φ ∈ Ξ
Ω̃(I),n
Σ (E), then, by the induction hypothesis, sqΣ[ψ ≈

φ] ≤ G(sqΣ[E]). Since sqΣ[φ ≈ ψ] = sqΣ[ψ ≈ φ], we conclude that
sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).
If φ ≈ χ,χ ≈ ψ ∈ Ξ

Ω̃(I),n
Σ (E), then, by the induction hypothesis,

sqΣ[φ ≈ χ], sqΣ[χ ≈ ψ] ≤ G(sqΣ[E]).
Using (Cut) and monotonicity, we get

sqΣ[φ ≈ ψ] ≤ G(sqΣ[φ ≈ χ], sqΣ[χ ≈ ψ])
≤ G(sqΣ[E]).

If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), with φi ≈ ψi ∈ Ξ
Ω̃(I),n
Σ (E), i < k,

then, by the induction hypothesis, sqΣ[φi ≈ ψi] ≤ G(sqΣ[E]) i < k.
Then, since G has Congruence, we conclude

sqΣ[σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗)] ≤ G(⋃i<k sqΣ[φi ≈ ψi])
≤ G(sqΣ[E]).

Last, assume that φ ≈ ψ has the form SEN♭(f)(φ′ ≈ ψ′), for some

Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ′,Σ), such that φ′ ≈ ψ′ ∈ Ξ
Ω̃(I),n
Σ′ (E). Then,

by the induction hypothesis, sqΣ′[φ′ ≈ ψ′] ≤ G(sqΣ[E]). But, note that
sqΣ[φ ≈ ψ] = sqΣ[SEN♭(f)(φ′ ≈ ψ′)] ≤ sqΣ′[φ′ ≈ ψ′]. Thus, we get
sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).

We conclude that, for all Σ ∈ ∣Sign♭∣ and all E ∪ {φ ≈ ψ} ⊆ EqΣ(F), φ ≈ ψ ∈
DKI

Σ (E) implies that sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]). ∎

20.4 Smoothness and Finitary Adaptations

In this section we define smooth Gentzen π-institutions and we also adapt
some of the preceding results to the case of finitary π-institutions. This work
is meant to pave the way for upcoming results on self extensionality and
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conjunction, presented in the next section, and on self extensionality and the
deduction detachment theorem, which follow in the section after that.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a
Gentzen π-institution based on F. We say that G is smooth if G oper-
ates on finite sequents and it is systemic, i.e., by Proposition 149, for all
Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), Φ ∪ {φ} ⊆ SEN♭(Σ),

SEN♭(f)(Φ ⊢Σ φ) ∈ GΣ′(Φ ⊢Σ φ).
In the case of smooth Gentzen systems, the equivalence of the Gentzen

system with an algebraic π-structure may be simplified as follows.

Proposition 1498 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a smooth Gentzen π-institution and K a class of F-algebraic systems.
Then G is equivalent to QK via the conjugate pair (t, sq) ∶ G ⇄ QK if and
only if its is equivalent to QK via the conjugate pair (t, κ) ∶ G⇄ QK.

Proof: By Lemma 889, it is enough to show that, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

G(sqΣ[φ ≈ ψ]) = G(κΣ(φ ≈ ψ)).
This is, however, a consequence of smoothness. ∎

Moreover, for a smooth Gentzen π-institution G, satisfying Congruence
is equivalent to an apparently simpler condition.

Proposition 1499 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a smooth Gentzen π-institution. G satisfies Congruence if and
only if, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ
♭
Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}).

Proof: Assume, first, that G satisfies Congruence. Then, for all σ♭ in N ♭,
all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ
♭
Σ(ψ⃗) ∈ GΣ(⋃i<k sqΣ[φi ≈ ψi])

(by Congruence)
⊆ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}).

(by Smoothness)

Assume, conversely, that the given condition holds. Then, for all σ♭ in N ♭,
all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ
♭
Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k})

(Hypothesis)
⊆ GΣ(⋃i<k sqΣ[φi ≈ ψi]).

(by Monotonicity)
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We conclude that G has Congruence. ∎

If a π-institution I is finitary, any I-structure must also be finitary.
Therefore, for any Gentzen π-institution G, no infinitary G-structure can
be a full I-structure. It is this observation that leads to the following modi-
fication of the definition of full adequacy for finitary π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a finitary
π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution based on F.
G is said to be fully adequate for I if one of the following two conditions
holds:

• I has theorems, G is of type 1 and, for every F-structure IL = ⟨A,D⟩,
IL ∈ FStr(I) if and only if IL is finitary and IL ∈ Str(G);

• I does not have theorems, G is of type 0 and, for every F-structure
IL = ⟨A,D⟩, IL ∈ FStr(I) if and only if IL ∈ Str(G) and IL is finitary
without theorems.

For the sequel we need a finitary adaptation of Proposition 1492. This
is a characterization of full adequacy of a Gentzen system for a finitary π-
institution I .

Proposition 1500 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a finitary π-institution based on F and G = ⟨F,G⟩ a Gentzen π-
institution based on F. G is fully adequate for I if and only if

1. AlgSys(G) = AlgSys(I);
2. For all A ∈ AlgSys(I), ⟨A,FiFamI(A)⟩ is the only finitary and reduced

G-structure on A (without theorems if I does not have any);

3. I has theorems and G is of type 1 or I does not have theorems and G

is of type 0.

Proof: Assume G is fully adequate for I . Then, by Proposition 1492, Con-
ditions 1-3 hold, where in Condition 2 ⟨A,FiFamI(A)⟩ is finitary by Propo-
sition 114. Thus, the “only if” holds.

Assume, conversely, that Conditions 1-3 hold. Then, for all F-structures
IL = ⟨A,D⟩,

IL ∈ FStr(I) iff A∗ ∈ AlgSys(I),D∗ = FiFamI(A∗)
iff A∗ ∈ AlgSys(G) and ⟨A∗,D∗⟩ ∈ Str(G)

finitary (w/o theorems if I does not have any)
iff ⟨A,D⟩ ∈ Str(G) finitary

(w/o theorems if I does not have any).

This, combined with Condition 3, gives that G is fully adequate for I . ∎
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20.5 IsoFull Adequacy and the DD Theorem

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and, for all n < ω, ∆n ∶(SEN♭)ω → SEN♭ a collection of natural transformations in N ♭, with n + 1
distinguished arguments. Set

∆ = {∆n ∶ n < ω}.
Given a π-institution I = ⟨F,C⟩, based on F, and T ∈ ThFam(I), ∆ is a
Parameterized Graded Deduction Detachment (PGDD) system for
I over T if, for all n < ω, all Σ ∈ ∣Sign♭∣ and all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(TΣ, φ0, . . . , φn−1) iff ∆n
Σ[φ0, . . . , φn−1, ψ] ≤ T.

The left-to-right implication is the Graded Deduction Property over
T and the right-to-left implication is the Graded Detachment Property
over T .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and ∆ = {∆n ∶ n < ω}
in N ♭. Define a family r∆

n = {r∆nΣ }Σ∈∣Sign♭∣ of Gentzen F-rules by setting, for

all Σ ∈ ∣Sign♭∣,
r∆

n

Σ = {⟨{φ0, . . . , φn−1 ⊢Σ ψ},⊢Σ ∆n
Σ(φ0, . . . , φn−1, ψ, χ⃗)⟩ ∶
φ⃗, ψ, χ⃗ ∈ SEN♭(Σ)}.

Existence of a PGDD system ∆ over a theory family T guarantees that
the I-structure ⟨F ,CT ⟩ satisfies all Gentzen F-rules in r∆

n
, n < ω.

Lemma 1501 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, T ∈ ThFam(I) and ∆ = {∆n ∶ n < ω} a PGDD
system for I over T . Then, for all n < ω,

⟨F ,ThFam(I)T ⟩ ⊧ r∆n.
Proof: Suppose Σ ∈ ∣Sign♭∣, φ⃗, ψ ∈ SEN♭(Σ), such that ψ ∈ CT

Σ(φ0, . . . , φn−1).
Equivalently, we get ψ ∈ CΣ(TΣ, φ0, . . . , φn−1). By hypothesis, since ∆ is a
PGDD system for I over T , we get ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ T . In particular,
we get, for all χ⃗ ∈ SEN♭(Σ), ∆n

Σ(φ0, . . . , φn−1, ψ, χ⃗) ⊆ TΣ. Equivalently, ⊢Σ
∆n

Σ(φ0, . . . , φn−1, ψ, χ⃗) ∈ CT
Σ(∅). Thus, ⟨F ,ThFam(I)T ⟩ ⊧ r∆n. ∎

We show, next, that all Gentzen F-rules are preserved by bilogical mor-
phisms between F-structures.

Lemma 1502 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A,⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ F-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩
two F-structures and ⟨H,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism. Then, for all
Σ ∈ ∣Sign♭∣, every F-sequent Ψ ⊢Σ ψ and every Gentzen F-rule r ∶= ⟨{Φi ⊢Σ
φi ∶ i ∈ I},Φ ⊢Σ φ⟩,
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(a) IL ⊧Σ Ψ ⊢Σ ψ if and only if IL′ ⊧Σ Ψ ⊢Σ ψ;

(b) IL ⊧Σ r if and only if IL′ ⊧Σ r.

Proof:

(a) We have

IL ⊧Σ Ψ ⊢Σ ψ iff αΣ(ψ) ∈DF (Σ)(αΣ(Ψ))
iff γF (Σ)(αΣ(ψ)) ∈ D′H(F (Σ))(γH(F (Σ))(αΣ(Ψ)))
iff α′Σ(ψ) ∈D′F ′(Σ)(α′Σ(Ψ))
iff IL′ ⊧Σ Ψ ⊢Σ ψ.

(b) This part follows easily from Part (a).

(⇒) If α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), i ∈ I, then αΣ(φi) ∈ DF (Σ)(αΣ(Φ)),
i ∈ I, whence αΣ(φ) ∈ DF (Σ)(αΣ(Φ)). So α′Σ(φ) ∈D′F ′(Σ)(α′Σ(Φ)).

(⇐) If αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, then α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)),
i ∈ I, whence α′Σ(φ) ∈ D′F ′(Σ)(α′Σ(Φi)), i ∈ I, and, therefore,

αΣ(φ) ∈DF (Σ)(αΣ(Φ)).
∎

Some of the elements of the discussion that follows will be revisited in
Chapter 21 on I-operators in a more general context. We give a preview of
a few results here, as needed, restricting the discussion mostly to protoalge-
braic π-institutions. This restriction will be lifted in Chapter 21, where the
concepts will be revisited in full generality.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and an
I-filter family T ∈ FiFamI(A), we let

[T ] = {T ′ ∈ FiFamI(A) ∶ ΩA(T ′) = ΩA(T )},
the equi-Leibniz class of T . If [T ] has a smallest member, it is denoted
by T ∗. T is called a Leibniz filter if T = T ∗, i.e., if it is the smallest filter in
its equi-Leibniz class. We denote by FiFamI∗(A) the collection of all Leibniz
I-filter families of A.

We show that Leibniz filter families are preserved under inverse surjective
morphisms with isomorphic functor components. For a more general result,
see Corollary 1575 in Chapter 21.

Lemma 1503 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism.
Then

γ−1(FiFamI∗(B)) ⊆ FiFamI∗(A).
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Proof: Let T ′ ∈ FiFamI∗(B) and T = γ−1(T ′). Then T ∈ FiFamI(A).
Moreover, ΩA(T ) = ΩA(γ−1(T ′)) = γ−1(ΩB(T ′)). Consider X ∈ FiFamI(A),
such that X ∈ [T ], i.e., such that ΩA(X) = ΩA(T ). Then, since ΩA(T ) =
γ−1(ΩB(T ′)), Ker(⟨H,γ⟩) is compatible with X . Hence γ(X) ∈ FiFamI(B).
Furthermore,

γ−1(ΩB(γ(X))) = ΩA(γ−1(γ(X))) = ΩA(X) = ΩA(T ) = γ−1(ΩB(T ′)).
So ΩB(γ(X)) = ΩB(T ′). Thus, since T ′ ∈ FiFamI∗(B), T ′ ≤ γ(X). Now
we get, taking again into account the compatibility of Ker(⟨H,γ⟩) with X ,
T = γ−1(T ′) ≤ γ−1(γ(X)) =X . This proves that T ∈ FiFamI∗(A). ∎

As a corollary, we obtain

Corollary 1504 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic
systems and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism.
Then, for all T ′ ∈ FiFamI(B), such that T ′∗ exists,

γ−1(T ′∗) = γ−1(T ′)∗.
Proof: Suppose T ′ ∈ FiFamI(B), such that T ′∗ exists. Then γ−1(T ′∗) ∈
FiFamI∗(A), by Lemma 1503. Hence, we have

ΩA(γ−1(T ′∗)) = γ−1(ΩB(T ′∗)) = γ−1(ΩB(T ′)) = ΩA(γ−1(T ′)).
Thus, since γ−1(T ′∗) is Leibniz, we get γ−1(T ′∗) = γ−1(T ′)∗. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. An I-structure IL = ⟨A,D⟩, with A = ⟨A, ⟨F,α⟩⟩, is
called isofull if it is full and F is an isomorphism.

We show, next, that, if ∆ = {∆n ∶ n < ω} is a PGDD system for I over
every I-theory family, then every isofull I-structure satisfies the Gentzen
F-rules r∆

n
.

Lemma 1505 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a protoalgebraic π-institution based on F and ∆ = {∆n ∶ n < ω} a PGDD sys-
tem for I over every Leibniz I-theory family. Then every isofull I-structure
satisfies r∆

n
, for all n < ω.

Proof: By Lemma 1502, it suffices to show that, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with F an isomorphism, and every n < ω,

⟨A,FiFamI(A)⟩ ⊧ r∆n .
Let T = CI,A(∅) be the smallest I-filter family on A. By the Correspon-
dence Theorem for protoalgebraic π-institutions, we have α−1(FiFamI(A)) =
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ThFam(I)α−1(T ). Since T is least among all I-filter families of A, we have
T ∈ FiFamI∗(A). Therefore, by Lemma 1503, α−1(T ) ∈ ThFam∗(I). Thus,
by the hypothesis and Lemma 1501, we get that ⟨F ,ThFam(I)α−1(T )⟩ ⊧ r∆n.
However, ⟨F,α⟩ ∶ ⟨F ,ThFam(I)α−1(T )⟩ ⊢ ⟨A,FiFamI(A)⟩ is a bilogical mor-
phism, whence, by Lemma 1502, we get ⟨A,FiFamI(A)⟩ ⊧ r∆n. ∎

In the next lemma, it is shown that, in case the π-institution I is syntacti-
cally protoalgebraic, the witnessing transformations may be used to generate
Leibniz filter families.

Lemma 1506 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a syntactically protoalgebraic π-institution based on F, with witnessing trans-
formations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and T ∈ FiFamI(A). Then

T ∗ = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ ΩAΣ(T )}).
Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). We set

T̃ = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ ΩAΣ(T )}).
Our goal is to show that T ∗ = T̃ . First, let T ′ ∈ FiFamI(A), such that
T ′ ∈ [T ], i.e., ΩA(T ′) = ΩA(T ). Then, we have, for all Σ ∈ ∣Sign∣ and all
φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ ΩAΣ(T ) iff ⟨φ,ψ⟩ΩAΣ(T ′)

iff
↔

I
A

Σ[φ,ψ] ≤ T ′.
We conclude that T̃ ≤ T ∗ and, by protoalgebraicity, ΩA(T̃ ) ≤ ΩA(T ∗). On the
other hand, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩAΣ(T ),
↔

I
A

Σ[φ,ψ] ≤ T̃ . Thus, ΩA(T ∗) = ΩA(T ) ≤ ΩA(T̃ ). Therefore, ΩA(T̃ ) = ΩA(T ∗)
and, since we showed that T̃ ≤ T ∗, we get by the minimality property of T ∗

in [T ], T ∗ = T̃ . ∎

Corollary 1507 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a syntactically protoalgebraic π-institution based on F, with witnessing
transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system and T ∈ FiFamI(A). Then T ∈ FiFamI∗(A) if and only if, there exists
X ≤ SEN2, such that

T = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ XΣ}).
Proof: For the left-to-right implication, assume T ∈ FiFamI∗(A). Take
X = ΩA(T ). Then we have, using the hypothesis and Lemma 1506, T = T ∗ =

CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈XΣ}).
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Suppose, conversely, that T = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ XΣ}),
for some X ≤ SEN. Then, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈XΣ

implies
↔

I
A

Σ[φ,ψ] ≤ T . Thus, ⟨φ,ψ⟩ ∈ ΩAΣ(T ). Therefore, by Lemma 1506,

T ≤ CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ XΣ}) = T ∗. Since, it is always the
case that T ∗ ≤ T , we get that T = T ∗ and T ∈ FiFamI∗(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. A collection ∆ = {∆n ∶ n < ω}, where ∆n ∶ (SEN♭)ω →
SEN in N ♭, with n+1 distinguished arguments, is called Leibniz generating
over I if, for all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ ∈ SEN♭(Σ),

C(∆n
Σ[φ⃗, ψ]) ∈ ThFam∗(I),

for all n < ω.
We show that, for a syntactically protoalgebraic π-institution I , the prop-

erty of being Leibniz generating over I , transfers, in certain sense, to the filter
families over arbitrary F-algebraic systems.

Lemma 1508 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a syntactically protoalgebraic π-institution based on F, with witnessing trans-
formations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, and ∆ ∶ (SEN♭)ω → SEN♭ a Leibniz
generating collection in N ♭, with n + 1 distinguished arguments. Then for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, Σ ∈ ∣Sign∣ and φ⃗, ψ ∈ SEN(Σ),

CI,A(∆AΣ[φ⃗, ψ]) ∈ FiFamI∗(A).
Proof: By hypothesis, ∆ is Leibniz generating. Hence, for all Σ ∈ ∣Sign♭∣,
φ⃗, ψ ∈ SEN♭(Σ), C(∆Σ[φ⃗, ψ]) ∈ ThFam∗(I). Thus, by Corollary 1507, there
exists X ≤ (SEN♭)2, such that

C(∆Σ[φ⃗, ψ]) = C(⋃{↔I ♭Σ′[φ′, ψ′] ∶ Σ′ ∈ ∣Sign♭∣, ⟨φ′, ψ′⟩ ∈XΣ′}).
Now we get

CI,A(∆A
F (Σ)
[αΣ(φ⃗), αΣ(ψ)])

= CI,A(α(∆Σ[φ,ψ]))
= CI,A(α(C(⋃{↔I ♭Σ′[φ′, ψ′] ∶ Σ′ ∈ ∣Sign♭∣, ⟨φ′, ψ′⟩ ∈XΣ′})))
= CI,A(α(⋃{↔I ♭Σ′[φ′, ψ′] ∶ Σ′ ∈ ∣Sign♭∣, ⟨φ′, ψ′⟩ ∈ XΣ′}))
= CI,A(⋃{↔IAF (Σ′)[αΣ′(φ′), αΣ′(ψ′)] ∶ Σ′ ∈ ∣Sign♭∣,⟨αΣ′(φ′), αΣ′(ψ′)⟩ ∈ αΣ′(XΣ′)}).

Thus, taking into account the surjectivity of ⟨F,α⟩, we obtain, using again
Corollary 1507, that for all Σ ∈ ∣Sign∣ and all φ⃗, ψ ∈ SEN(Σ), CI,A(∆AΣ[φ⃗, ψ]) ∈
FiFamI∗(A). ∎
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. A PGDD system ∆ = {∆n ∶ n < ω} for I is called
Leibniz generating if ∆n is Leibniz generating, for every n < ω.

It is not difficult to see that Leibniz generating PGDD systems have a
graded Modus Ponens property, in the sense detailed in the following

Lemma 1509 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ∆ = {∆n ∶ n < ω} is a PGDD system for
I over every Leibniz theory family, then, for all n < ω, all Σ ∈ ∣Sign♭∣ and all
φ⃗, ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(∆n
Σ[φ⃗, ψ], φ⃗).

Proof: Let Σ ∈ ∣Sign♭∣ and φ⃗, ψ ∈ SEN♭(Σ) and set T = C(∆n
Σ[φ⃗, ψ]). By

hypothesis, T ∈ ThFam∗(I). Since ∆ is a PGDD system for I over every
Leibniz theory family, we get

ψ ∈ CΣ(TΣ, φ⃗) iff ∆n
Σ[φ⃗, ψ] ≤ C(T ) = T.

Thus, since the right hand side of the equivalence holds, we obtain ψ ∈
CΣ(TΣ, φ⃗) = CΣ(CΣ(∆n

Σ[φ⃗, ψ]), φ⃗) = CΣ(∆n
Σ[φ⃗, ψ], φ⃗). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∆ ∶ (SEN♭)ω →
SEN♭ in N ♭, with a single distinguished argument. We say that ∆ isode-
fines Leibniz filter families over I if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with F an isomorphism, all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣,

T ∗Σ = {φ ∈ SEN(Σ) ∶ ∆AΣ[φ] ≤ T}.
We show, next, that, in a syntactically protoalgebraic π-institution I ,

which has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over every
Leibniz theory family, the 0-th component ∆0 does isodefine Leibniz filter
families over I .

A couple of lemmas are needed first.

Lemma 1510 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. For every F-algebraic sys-
tem A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), T ≤ T ′ implies T ∗ ≤ T ′∗.

Proof: Suppose T,T ′ ∈ FiFamI(A), such that T ≤ T ′. By protoalgebraicity
of I , we get

ΩA(T ∩ T ′∗) = ΩA(T ) ∩ΩA(T ′∗) = ΩA(T ) ∩ΩA(T ′) = ΩA(T ).
Thus T ∗ ≤ T ∩ T ′∗ ≤ T ′∗. ∎
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Lemma 1511 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A),

⟨A,FiFamI(A)T ⟩ ∈ FStr(I) iff T ∈ FiFamI∗(A).
Proof: We have, using Theorem 1395 and protoalgebraicity, ⟨A,FiFamI(A)T ⟩ ∈
FStr(I) if and only if

FiFamI(A)T = {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)}.
Since, under protoalgebraicity, it always holds that

FiFamI(A)T ⊆ {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)},
it suffices to show that

T ∈ FiFamI∗(A) iff for all T ′ ∈ FiFamI(A),
ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′.

The right to left implication is trivial, since the condition on the right im-
plies that T is smallest among all filter families sharing the same Leibniz
congruence system with T . For the converse, suppose T is a Leibniz fil-
ter family of A and that ΩA(T ) ≤ ΩA(T ′). Then, using protoalgebraicity,
we get Ω(T ∩ T ′) = ΩA(T ) ∩ ΩA(T ′) = ΩA(T ). Thus, we conclude that
T = T ∗ ≤ T ∩ T ′ ≤ T ′. ∎

Theorem 1512 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic π-institution based on F, with ∆ = {∆n ∶
n < ω} a Leibniz generating PGDD system for I over every Leibniz theory
family. Then ∆0 isodefines Leibniz filter families over I.

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, with F an isomor-
phism, and T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ).

Suppose, first, that ∆0
Σ[φ] ≤ T . Let T ′ = CI,A(∆0

Σ[φ]). By hypothesis
and Lemma 1508, T ′ ∈ FiFamI∗(A). Since T ′ ≤ T , by Lemma 1510, T ′ ≤ T ∗.
Hence, ∆0

Σ[φ] ≤ T ∗. Therefore, by Lemma 1509, φ ∈ T ∗Σ.
Suppose, conversely, that φ ∈ T ∗Σ. Then, by definition, the I-structure⟨A,FiFamI(A)T ∗⟩ satisfies ⊢Σ φ. By Lemma 1511, ⟨A,FiFamI(A)T ∗⟩ ∈

FStr(I). Thus, by Lemma 1505, ⟨A,FiFamA(A)T ∗⟩ satisfies r∆
0

. Hence, for
all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′), ∆0

Σ′(SEN(f)(φ), χ⃗) ∈
T ∗Σ′ ⊆ TΣ′ . We conclude that ∆0

Σ[φ] ≤ T . ∎

We are ready now to prove one half of the main result of this section.
We would like to show that, for a syntactically protoalgebraic finitary π-
institution, the existence of a Leibniz generating PGDD system over all
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Leibniz theory families implies the existenc of an isofully adequate Gentzen
π-institution.

We define that institution, first, preceding the statement of the theorem
that involves it in its proof.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∆ = {∆n ∶ n < ω}
in N ♭, where ∆n has n + 1 distinguished arguments, and I = ⟨F,C⟩ a π-
institution based on F. Define:

• AxI = {AxIΣ}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)};

• IrI = {IrIΣ}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣,
IrIΣ = {r∆nΣ ∶ n < ω}.

Set RI = AxI ∪ IrI and let
GI = ⟨F,GI⟩

be the Gentzen π-institution generated by RI (recall that GI is required
to be a structural closed system on Seq(F) and, therefore, it is assumed to
satisfy, by default, (Axiom), (Weakening) and (Cut)).

Theorem 1513 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic finitary π-institution based on F. If I
has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over all Leibniz the-
ory families, then it has an isofully adequate Gentzen π-institution, namely
the Gentzen π-institution GI = ⟨F,GI⟩.
Proof: We must show that, for every F-structure IL = ⟨A,D⟩, where A =⟨A, ⟨F,α⟩⟩, with F an isomorphism, we have

IL ∈ Str(GI) iff IL ∈ FStr(I).
Suppose, first, that IL ∈ FStr(I). Then IL is, in particular, an I-structure.
Therefore, it satisfies AxI . Moreover, by Lemma 1505, IL satisfies r∆

n
, for

all n < ω. Hence, it also satisfies IrI . We conclude that IL ∈ Str(GI).
Suppose, conversely, that IL ∈ Str(GI). Clearly, IL ∈ Str(I), since it

satisfies AxI . So it suffices to show that it is also full. Assume, to the
contrary, that IL is not full and let T = D(∅). Since I is protoalgebraic
and IL is not full, we have, using Lemma 1511, D ⫋ FiFamI(A)T ∗ . Consider
T ′ ∈ FiFamI(A)T ∗ − D. Then we get D(T ′) ∈ FiFamI(A)T ∗ and T ∗ ≤ T ′ ≨
D(T ′). Let Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ DΣ(T ′) − T ′Σ. Then,
there exists Φ ⊆f T ′Σ, such that φ ∈ DΣ(Φ). Since IL satisfies IrI , we get
∆n

Σ[Φ, φ] ≤ T . But ∆ is also Leibniz generating, whence, by Lemma 1508,
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D(∆n
Σ[Φ, φ]) ∈ FiFamI∗(A). Therefore, by Lemma 1510, ∆n

Σ[Φ, φ] ≤ T ∗.
Now we get φ ∈DΣ(T ′Σ,Φ) ⊆DΣ(T ′Σ) = T ′Σ, which contradicts our assumption.
Therefore, IL is also full, as was to be shown. ∎

Suppose, now, that I is a syntactically protoalgebraic, finitary π-insti-
tution with an isofully adequate Gentzen π-institution G = ⟨F,G⟩. Then, for
all ⟨F ,D⟩ ∈ Str(G), we must have⟨F ,D⟩ ∈ FStr(I) and, therefore, taking into
account Lemma 1511, we get that D = ThFam(I)T , where T ∈ ThFam∗(I).
We denote by

hG ∶ StrG(F)→ ThFam∗(I)
the bijection that is established by this association, which is, in addiction an
order isomorphism.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a
Gentzen π-institution based on F. Given a theory family Γ ∈ ThFam(G),
recall the F-structure ILΓ = ⟨F ,DΓ⟩, which was shown in Lemma 1484 to be
a G-structure. For notational purposes, given Σ ∈ ∣Sign♭∣, φ0, . . . , φn−1, ψ ∈
SEN♭(Σ), let us write

G[φ0, . . . , φn−1 ⊢Σ ψ] ∶= ILG(φ0,...,φn−1⊢Σψ),

where, as usual, G(φ0, . . . , φn−1 ⊢Σ ψ) denotes the least theory family of G
including the F-sequent φ0, . . . , φn−1 ⊢Σ ψ.

We call the Gentzen π-institution G = ⟨F,G⟩ transformational if, for
all all n < ω, all Σ ∈ ∣Sign♭∣ and all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ),

hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) = C(∆n
Σ[φ0, . . . , φn−1, ψ]),

for some ∆n ∶ (SEN♭)ω → SEN♭ in N ♭, with n + 1 distinguished arguments.
We can show that the isofully adequate Gentzen π-institution GI associ-

ated with a syntactically protoalgebraic finitary π-institution I = ⟨F,C⟩ that
has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over all Leibniz
theory families, as in Theorem 1513, is, in fact, a transformational Gentzen
π-institution.

Theorem 1514 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic finitary π-institution based on F. If I
has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over all Leibniz
theory families, then the isofully adequate Gentzen π-institution GI = ⟨F,GI⟩
for I is transformational.

Proof: Let Σ ∈ ∣Sign♭∣, φ0, . . . , φn−1, ψ ∈ SEN♭(Σ) and denote

T ∶= C(∆n
Σ[φ0, . . . , φn−1, ψ]).

By hypothesis, we have T ∈ ThFam∗(I). Since T is a Leibniz I-theory fam-
ily and ∆ is a PGDD system over all Leibniz theory families, T is closed
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under all axioms and rules of GI . Moreover, if φ0, . . . , φn−1 ∈ TΣ, then,
since ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ T , we get, by Lemma 1509, ψ ∈ TΣ. Hence, T
is a theory family of the F-structure GI[φ0, . . . , φn−1, ψ]. Since, by def-
inition, hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) is its least theory family, we get that
hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) ≤ C(∆n

Σ[φ0, . . . , φn−1, ψ]).
On the other hand, by definition,

φ0, . . . , φn−1 ⊢Σ ψ ∈ GIΣ(φ0, . . . , φn−1 ⊢Σ ψ),
whence, writing GI[φ0, . . . , φn−1 ⊢Σ ψ] ∶= ⟨F ,D⟩, we get ψ ∈ DΣ(φ0, . . . , φn−1).
Recalling that every full model is structural, we get, for all Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(ψ) ∈DΣ′(SEN♭(f)(φ0), . . . ,SEN♭(f)(φn−1)).
Thus, since GI satisfies r∆

n
, we get, for all χ⃗ ∈ SEN♭(Σ′),

∆Σ′(SEN♭(f)(φ0), . . . ,SEN♭(f)(φn−1),SEN♭(f)(ψ), χ⃗) ⊆DΣ(∅),
i.e., that ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ hG(G[φ0, . . . , φn−1 ⊢Σ ψ]). We now conclude
that

C(∆n
Σ[φ0, . . . , φn−1, ψ]) ≤ hG(G[φ0, . . . , φn−1 ⊢Σ ψ]).

Therefore, for all all n < ω, all Σ ∈ ∣Sign♭∣ and all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ),
hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) = C(∆n

Σ[φ0, . . . , φn−1, ψ]),
showing that GI is transformational. ∎

Finally, we show that, for a syntactically protoalgebraic, finitary π-insti-
tution I , the existence of an isofully adequate, transformational Gentzen
π-institution G for I implies that I has a Leibniz generating PGDD system
over every Leibniz theory family.

Theorem 1515 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic, finitary π-institution based on F. If I
has an isofully adequate transformational Gentzen π-institution, then I has
a Leibniz generating PGDD system over every Leibniz theory family.

Proof: Suppose that I has an isofully adequate transformational Gentzen
π-institution G = ⟨F,G⟩. Thus, by definition, for all n < ω, all Σ ∈ ∣Sign♭∣ and
all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ), there exists a collection ∆n ∶ (SEN♭)ω → SEN♭

in N ♭, with n + 1 distinguished arguments, such that

hG(G[φ0, . . . , φn−1, ψ]) = C(∆n
Σ[φ0, . . . , φn−1, ψ]).

By the fact that hG maps, by hypothesis and Lemma 1511, into ThFam∗(I),
ensures that ∆ = {∆n ∶ n < ω} is Leibniz generating. So it suffices to show
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that ∆ is a PGDD system for I over every Leibniz theory family. To this
end, assume that T ∈ ThFam∗(I), n < ω, Σ ∈ ∣Sign♭∣ and φ0, . . . , φn−1, ψ ∈
SEN♭(Σ). We must show that

ψ ∈ CΣ(TΣ, φ0, . . . , φn−1) iff ∆n
Σ[φ0, . . . , φn−1, ψ] ≤ T.

We have

ψ ∈ CΣ(TΣ, φ0, . . . , φn−1) iff ψ ∈ CT
Σ(φ0, . . . , φn−1)

iff G[φ0, . . . , φn−1 ⊢Σ ψ] ≤ CT
iff hG(G(φ0, . . . , φn−1 ⊢Σ ψ]) ≤ T
iff C(∆n

Σ[φ0, . . . , φn−1, ψ]) ≤ T
iff ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ T.
We conclude that ∆ is indeed Leibniz generating PGDD system for I over
every Leibniz theory family. ∎

In conclusion, we have

Theorem 1516 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A syn-
tactically protoalgebraic, finitary π-institution I = ⟨F,C⟩ based on F has an
isofully adequate transformational Gentzen π-institution if and only if it has
a Leibniz generating PGDD system over every Leibniz theory family.

Proof: The “if” was proven in Theorems 1513 and 1514. The “only if” is
by Theorem 1515. ∎
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