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21.1 I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

An I-operator on A is a map

OA ∶ FiFamI(I)→ EqvFam(A),
where EqvFam(A) is the collection of equivalence families on A.

Given an I-operator OA on A, we define three derived operators (func-
tions) as follows:

• The lifting of OA, ÕA ∶ P(FiFamI(A)) → EqvFam(A), is given, for
all T ⊆ FiFamI(A), by

ÕA(T ) =⋂{OA(T ) ∶ T ∈ T };
• The relativization of OA to I , ÕI,A ∶ FiFamI(A) → EqvFam(A), is

given, for all T ∈ FiFamI(A), by

ÕI,A(T ) =⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} = ÕA(FiFamI(A)T );
• OA

−1
∶ EqvFam(A) → P(FiFamI(A)) is given, for all θ ∈ EqvFam(A),

by
OA

−1(θ) = {T ∈ FiFamI(A) ∶ θ ≤ OA(T )}.
Note that the lifting of the Leibniz operator ΩA on A is the Tarski operator
Ω̃A on A, whereas the relativization of the Leibniz operator on A is the
Suszko operator Ω̃I,A on A.

Immediately from the definitions, we obtain the following:

Lemma 1517 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) an I-operator on A.

(a) ÕI,A(T ) ≤ OA(T ), for all T ∈ FiFamI(A);
(b) ÕA(T ) ≤ OA(T ), for all T ∈ T ⊆ FiFamI(A).

Proof: Obvious from the definitions. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, let
there be given an I-operator OA ∶ FiFamI(A)→ EqvFam(A). We write

O = {OA ∶ A ∈ AlgSys(F)}
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and refer to this family as a family of I-operators.
Since I-operators are meant to abstract the operators of abstract alge-

braic logic, those properties that were studied in preceding chapters con-
cerning the Leibniz operator play also a significant role when it comes to
I-operators.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ EqvFam(A)
an I-operator on A.

• OA is order-preserving or monotone if, for all T,T ′ ∈ FiFamI(A),
T ≤ T ′ implies OA(T ) ≤ OA(T ′);

• OA is order-reflecting or reflective if, for all T,T ′ ∈ ThFamI(A),
OA(T ) ≤ OA(T ′) implies T ≤ T ′;

• OA is completely order reflecting or c-reflective if, for all T ∪{T ′} ⊆ FiFamI(A),
⋂
T ∈T

OA(T ) ≤ OA(T ′) implies ⋂T ≤ T ′.

Some important characterizations are related to these properties.

Lemma 1518 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) an I-operator on A.

OA is monotone if and only if OA = ÕI,A.

Proof: Suppose, first, that OA is monotone. Then, for all T ∈ FiFamI(A),
OA(T ) = ⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)}

= ÕI,A(T ).
If, conversely, OA = ÕI,A, then, for all T,T ′ ∈ FiFamI(A), such that T ≤ T ′,
we get

OA(T ) = ÕI,A(T )
= ⋂{OA(T ′′) ∶ T ≤ T ′′ ∈ FiFamI(A)}
≤ ⋂{OA(T ′′) ∶ T ′ ≤ T ′′ ∈ FiFamI(A)}
= ÕI,A(T ′)
= OA(T ′).

Therefore, OA is monotone. ∎
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Lemma 1519 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A) → EqvFam(A) an I-operator on A. OA is c-reflective if and
only if, for all T,T ′ ∈ FiFamI(A),

ÕI,A(T ) ≤ OA(T ′) implies T ≤ T ′.

Proof: Assume, first, that OA is c-reflective and let T,T ′ ∈ FiFamI(A),
such that ÕI,A(T ) ≤ OA(T ′). Then, by definition, ⋂{OA(T ′′) ∶ T ≤ T ′′ ∈
FiFamI(A)} ≤ OA(T ′). By c-reflectivity, ⋂{T ′′ ∶ T ≤ T ′′ ∈ ThFamI(A)} ≤ T ′,
i.e., T ≤ T ′.

Suppose, conversely, that the displayed condition holds and let T ∪{T ′} ⊆
FiFamI(A), such that ⋂T ∈T OA(T ) ≤ OA(T ′). Then we get

ÕI,A(⋂T ) ≤ ⋂
T ∈T

OA(T ) ≤ OA(T ′).
Hence, by the hypothesis, ⋂T ≤ T ′ and OA is c-reflective. ∎

We now show that the operators ÕA and OA
−1

, associated with a given I-
operator OA, establish a Galois connection between the class P(FiFamI(A))
of bundles of I-filters on A and the class EqvFam(A) of equivalence families
on A. This will yield several important consequences.

Proposition 1520 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A. The maps

ÕA ∶ P(FiFamI(A)) ✲ EqvFam(A)
P(FiFamI(A)) ✛ EqvFam(A) ∶ OA

−1

establish a Galois connection, where P(FiFamI(A)) is ordered under the
subclass relation and EqvFam(A) under signature-wise inclusion.

Proof: We must show that, for all T ⊆ FiFamI(A) and θ ∈ EqvFam(A),
T ⊆ OA

−1(θ) iff ÕA(T ) ≥ θ.
In fact, we have

T ⊆ OA−1(θ) iff θ ≤ OA(T ), for all T ∈ T ,
iff θ ≤ ⋂{OA(T ) ∶ T ∈ T }
iff θ ≤ ÕA(T ).

Thus (ÕA,OA−1) ∶ P(FiFamI(A)) ⇄ EqvFam(A) is, in fact, a Galois con-
nection. ∎
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Corollary 1521 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A.

(a) The operators

ÕA ∶ P(FiFamI(A)) → EqvFam(A)
OA

−1
∶ EqvFam(A)→ P(FiFamI(A))

are order reversing;

(b) The operators

OA
−1
○ ÕA ∶ P(FiFamI(A))→ P(FiFamI(A))

ÕA ○OA
−1
∶ EqvFam(A)→ EqvFam(A)

are closure operators;

(c) The collection of fixed-points of OA
−1
○ ÕA is the range of OA

−1
and the

collection of fixed-points of ÕA ○OA
−1

is the range of ÕA;

(d) ÕA and OA
−1

restrict to mutually inverse order isomorphisms between
the collections of fixed-points of OA

−1
○ ÕA and of fixed-points of ÕA ○

OA
−1

.

Proof: Known facts about Galois connections. ∎

We capture the elements described in Part (c) of Corollary 1521, by mak-
ing the following definitions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ EqvFam(A)
an I-operator on A.

• A family T ⊆ FiFamI(A) is called OA-full if T = OA−1(ÕA(T )) if and
only if T ∈ Ran(OA−1);

• An equivalence family θ ∈ EqvFam(A) is OA-full if θ = ÕA(OA−1(θ)) if
and only if θ ∈ Ran(ÕA).

The following statements provide a justification of the terminology used.

Proposition 1522 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A.
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(a) A collection T ⊆ FiFamI(A) is OA-full if and only if it is the largest
D ⊆ FiFamI(A), such that ÕA(D) = ÕA(T );

(b) An equivalence family θ ∈ EqvFam(A) is OA-full if and only if it is the
largest η ∈ EqvFam(A), such that OA

−1(η) = OA−1(θ).
Proof: We do Part (a). Part (b) can be proved analogously. Suppose,
first, that T ⊆ FiFamI(A) is OA-full and let D ⊆ FiFamI(A), such that
ÕA(D) = ÕA(T ). Then, we have

D ⊆ OA
−1(ÕA(D)) = OA−1(ÕA(T )) = T .

Suppose, conversely, that T is the largest among D ⊆ FiFamI(A), such
that ÕA(D) = ÕA(T ) and let T ∈ OA−1(ÕA(T )). Then, by definition,
ÕA(T ) ≤ OA(T ). Hence, ÕA(T ∪ {T}) = ÕA(T ). By the maximality of
T , we conclude that T ∈ T . This shows that OA

−1(ÕA(T )) ⊆ T . Since
the opposite inclusion always holds, we conclude that T is a fixed point of
OA

−1
○ ÕA and, hence, it is OA-full. ∎

We have the following consequences:

Corollary 1523 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A.

(a) FiFamI(A) is OA-full;

(b) ∇A is OA-full;

(c) If OA is monotone and T is OA-full, then T is an upset in the poset
P(FiFamI(A)).

Proof: All three statements are direct consequences of Proposition 1522. ∎

21.2 Congruential I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. An I-operator OA ∶
FiFamI(A)→ EqvFam(A) is called congruential if, for all T ∈ FiFamI(A),
OA(T ) ∈ ConSys(A). Thus a congruential I-operator is an operator OA ∶
FiFamI(A)→ ConSys(A).
Proposition 1524 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system,
θ ∈ ConSys(A) and ⟨I, π⟩ ∶ A→ A/θ the quotient natural transformation.
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(a) ΩA
−1(θ) = π−1(FiFamI(A/θ)) and FiFamI(A/θ) = π(ΩA−1(θ));

(b) The mappings

π ∶ SenFamI(A)→ SenFam(A/θ)
π−1 ∶ SenFam(A/θ)→ SenFam(A)

restrict to mutually inverse order isomorphisms between ΩA
−1(θ) and

FiFamI(A/θ).
Proof:

(a) Suppose T ∈ ΩA
−1(θ). Then θ ≤ ΩA(T ). Hence θ is compatible with

T , which implies, by Corollary 57, π(T ) ∈ FiFamI(A/θ). Suppose,
conversely, that T ∈ π−1(FiFamI(A/θ)). Then π(T ) ∈ FiFamI(A/θ)
and, hence, by Corollary 57, π−1(π(T )) ∈ FiFamI(A). Therefore, T is
compatible with θ, showing that θ ≤ ΩA(T ). This gives T ∈ ΩA

−1(θ).
The second equality of Part (a) is obtained from the first, using the
surjectivity of ⟨I, π⟩.

(b) By Part (a), the mappings

π ↾
ΩA

−1(θ)∶ Ω
A−1(θ)→ FiFamI(A)

π−1 ↾FiFamI(A)∶ FiFamI(A)→ ΩA
−1(θ)

are well-defined. Moreover, they are clearly inverses of one another and
order preserving. Thus, they establish an order isomorphism between
ΩA

−1(θ) and FiFamI(A/θ).
∎

21.3 O-Classes and O-Filter Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-
tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ EqvFam(A)
an I-operator on A. For all T ∈ FiFamI(A), the O-class of T , denoted[[T ]]O, is the collection

[[T ]]O = ΩA
−1(OA(T )) = {T ′ ∈ FiFamI(A) ∶ OA(T ) ≤ ΩA(T ′)}.

It turns out that this class forms a closure family on FiFamI(A).
Proposition 1525 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and OA ∶ FiFamI(A) → EqvFam(A) an I-operator on A. For all
T ∈ FiFamI(A), [[T ]]O is a closure family on FiFamI(A).
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Proof: First, observe that ΩA(SEN) = ∇A, whence SEN ∈ [[T ]]O. Next, let{T i ∶ i ∈ I} ⊆ [[T ]]O. Then, we have

OA(T ) ≤⋂
i∈I

ΩA(T i) ≤ ΩA(⋂
i∈I

T i).
So ⋂i∈I T i ∈ [[T ]]O and [[T ]]O is a closure family on FiFamI(A). ∎

Something even stronger is true in case OA happens to be a congruential
I-operator. In that case, the pair ⟨A, [[T ]]O⟩ turns out to be a full I-structure.

Proposition 1526 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A) → ConSys(A) a congruential I-operator on A. For all
T ∈ FiFamI(A), ⟨A, [[T ]]O⟩ is a full I-structure.

Proof: Let T ∈ FiFamI(A). Then [[T ]]O = ΩA
−1(OA(T )). By hypothesis,

OA(T ) ∈ ConSys(A). Thus, by Proposition 1524,

[[T ]]O = ΩA
−1(OA(T )) = π−1(FiFamI(A/ΩA(T ))),

where ⟨I, π⟩ ∶ A → A/ΩA(T ) is the quotient natural transformation. Thus,
by definition, ⟨A, [[T ]]O⟩ is a full I-structure. ∎

As a corollary, we obtain the fact that [[T ]]O is a closure system on A and,
therefore, ⟨A, [[T ]]O⟩ is a π-institution and not merely a π-structure.

Corollary 1527 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and OA ∶ FiFamI(A)→ ConSys(A) a congruential I-operator on A. For
all T ∈ FiFamI(A), [[T ]]O is a closure system on FiFamI(A).
Proof: By Propositions 1526 and 1389. ∎

Corollary 1527 justifies the following definition.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-

tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ ConSys(A)
a congruential I-operator on A. For all T ∈ FiFamI(A), the least element of
the O-class of T is denoted by TO:

TO =⋂ [[T ]]O.
A T ∈ FiFamI(A) is called an O-filter family if T = TO. Note that, by
Corollary 1527, an O-filter family must be an I-filter system.

The collection of all O-filter systems of A is denoted by FiFamI,O(A).
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Proposition 1528 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A) → EqvFam(A) an I-operator on A. OA is reflective
(and, hence, injective) on FiFamI,O(A).
Proof: Let T,T ′ ∈ FiFamI,O(A), such that OA(T ) ≤ OA(T ′). Then, [[T ′]]O ⊆[[T ]]O. Therefore,

T = TO (T ∈ FiFamI,O(A))
= ⋂ [[T ]]O (definition)

≤ ⋂ [[T ′]]O ([[T ′]]O ⊆ [[T ]]O)
= T ′O (definition)

= T ′. (T ′ ∈ FiFamI,O(A))
We conclude that OA is reflective. ∎

Proposition 1529 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A)→ EqvFam(A) a monotone I-operator on A. Then the
mapping T ↦ TO is monotone, i.e., for all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies TO ≤ T ′O.

Proof: We have, for all T,T ′ ∈ ThFamI(A),
T ≤ T ′ implies OA(T ) ≤ OA(T ′) (hypothesis)

implies [[T ′]]O ⊆ [[T ]]O (definitions of [[T ]]O, [[T ′]]O)
implies TO ≤ T ′O. (definitions of TO, T ′O)

So T ↦ TO is a monotone mapping. ∎

Proposition 1530 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system,
OA ∶ FiFamI(A) → ConSys(A) a congruential I-operator on A and T ∈
FiFamI(A). T ∈ FiFamI,O(A) if and only if T /OA(T ) is the least I-filter
family of A/OA(T ).
Proof: By hypothesis, OA(T ) ∈ ConSys(A). Consider the quotient natural
transformation ⟨I, π⟩ ∶ A→ A/OA(T ).
Since ΩA

−1(OA(T )) = [[T ]]O, we get, by Proposition 1524, that

π ∶ [[T ]]O → FiFamI(A/OA(T ))
is an order isomorphism. Thus, TO/OA(T ) is the least I-filter family on
A/OA(T ). ∎
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21.4 Compatibility I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶ FiFamI(A) →
EqvFam(A) an I-operator on A. OA is called a compatibility I-operator
if, for all T ∈ ThFamI(A),

OA(T ) ≤ ΩA(T ).
Clearly, ΩA ∶ FiFamI(A)→ ConSys(A) is the largest compatibility I-operator
on A. If one assumes monotonicity, then this role is played by the Suszko
operator instead:

Lemma 1531 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, the Suszko operator Ω̃I,A ∶ FiFamI(A) → ConSys(A) is the largest
monotone compatibility I-operator on A.

Proof: Suppose that OA ∶ FiFamI(A) → EqvFam(A) is a monotone com-
patibility I-operator on A. Then, for all T ∈ FiFamI(A),

OA(T ) = ÕI,A(T ) (by Lemma 1518)

= ⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (by Definition)

≤ ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (by Compatibility)

= Ω̃I,A(T ). (by Definition)

So Ω̃I,A is the largest monotone compatibility I-operator on A. ∎

For compatibility I-operators, we have the following properties pertaining
to O-classes and O-filter systems.

Lemma 1532 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a compatibility I-operator on A. Then, for every
T ∈ FiFamI(A),

T ∈ [[T ]]O and TO ≤ T.

Proof: Let T ∈ FiFamI(A). Since OA is a compatibility I-operator,OA(T ) ≤
ΩA(T ). Thus, by definition of [[T ]]O, we get T ∈ [[T ]]O. Moreover, since
T ∈ [[T ]]O, we now get TO = ⋂ [[T ]]O ≤ T . ∎

For monotone compatibility I-operators, we have the following properties.

Lemma 1533 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a monotone compatibility I-operator on A. Then,
for every T ∈ FiFamI(A):
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(a) FiFamI(A)T ⊆ [[T ]]O;

(b) [[T ]]O = FiFamI(A)T iff T = TO iff T ∈ FiFamI,O(A).
Proof:

(a) Suppose T ≤ T ′ ∈ FiFamI(A). Then

OA(T ) ≤ OA(T ′) (by Monotonicity)
≤ ΩA(T ′). (by Compatibility)

So, by definition of [[T ]]O, T ′ ∈ [[T ]]O.

(b) The second equivalence if simply the definition of FiFamI,O(A). So

it suffices to prove the first equivalence. Assume, first, that [[T ]]O =
FiFamI,O(A). Then, we have TO = ⋂ [[T ]]O = ⋂FiFamI(A)T = T .

Assume, conversely, that T = TO. Then, if T ′ ∈ [[T ]]O, we get T = TO =
⋂ [[T ]]O ≤ T ′. Thus, T ′ ∈ FiFamI(A)T . Since, by Part (a), the converse

always holds, we get [[T ]]O = FiFamI(A)T .
∎

In the case of compatibility I-operators, there are also close relationships
between their classes and their filter families and those associated to the
Leibniz operator. More precisely, we get:

Lemma 1534 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a compatibility I-operator on A. Then, for every
T ∈ FiFamI(A):

(a) [[T ]]Ω ⊆ [[T ]]O;

(b) TO ≤ TΩ;

(c) FiFamI,O(A) ⊆ FiFamI,Ω(A).
Proof:

(a) Let T ′ ∈ FiFamI(A). Then we have

T ′ ∈ [[T ]]Ω implies ΩA(T ) ≤ ΩA(T ′) (by Definition of [[T ]]Ω)
implies OA(T ) ≤ ΩA(T ′) (by Compatibility)

implies T ′ ∈ [[T ]]O. (by Definition of [[T ]]O)

Thus, [[T ]]Ω ⊆ [[T ]]O.

(b) Using Part (a), we get TO = ⋂ [[T ]]O ≤ ⋂ [[T ]]Ω = TΩ.
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(c) Assume T ′ ∈ FiFamI,O(A). Then, by definition, T ′O = T ′. Thus, by
Part (b), T ′ ≤ T ′Ω. Since, by Lemma 1532, T ′Ω ≤ T ′, we get T ′Ω = T ′

and, therefore, T ′ ∈ FiFamI,Ω(A). We conclude that FiFamI,O(A) ⊆
FiFamI,Ω(A).

∎

For monotone compatibility I-operators, we have similar relationships
between their classes and their filter families and those associated to the
Suszko operator.

Lemma 1535 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a monotone compatibility I-operator on A. Then,
for every T ∈ FiFamI(A):

(a) [[T ]]Ω̃I ≤ [[T ]]O;

(b) TO ≤ T Ω̃I ;

(c) FiFamI,O(A) ⊆ FiFamI,Ω̃
I(A).

Proof:

(a) Let T ′ ∈ FiFamI(A). Then we have

T ′ ∈ [[T ]]Ω̃I implies Ω̃I,A(T ) ≤ ΩA(T ′) (by Definition of [[T ]]Ω̃I )
implies OA(T ) ≤ ΩA(T ′) (by Lemma 1531)

implies T ′ ∈ [[T ]]O. (by Definition of [[T ]]O)

Thus, [[T ]]Ω̃I ⊆ [[T ]]O.

(b) Using Part (a), we get TO = ⋂ [[T ]]O ≤ ⋂ [[T ]]Ω̃I = T Ω̃I .

(c) Assume T ′ ∈ FiFamI,O(A). Then, by definition, T ′O = T ′. Thus, by
Part (b), T ′ ≤ T ′Ω̃I . Since, by Lemma 1532, T ′Ω̃

I ≤ T ′, we get T ′Ω̃
I = T ′

and, therefore, T ′ ∈ FiFamI,Ω̃
I(A). We conclude that FiFamI,O(A) ⊆

FiFamI,Ω̃
I(A).

∎

21.5 Commuting I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems and ⟨H,γ⟩ ∶
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A→ B a surjective morphism.

F

✠�
�
�⟨F,α⟩ ❅

❅
❅

⟨G,β⟩
❘

A ⟨H,γ⟩ ✲ B

Let, also OA ∶ FiFamI(A)→ EqvFam(A) and OB ∶ FiFamI(B)→ EqvFam(B)
be I-operators on A and on B, respectively. We say that the pair (OA,OB)
is commuting if, for all T ′ ∈ FiFamI(B),

OA(γ−1(T ′)) = γ−1(OB(T ′)).
More generally, let O = {OA ∶ A ∈ AlgSys(F)} be a family of I-operators.

We say that O is a commuting family if, for every pair A = ⟨A, ⟨F,α⟩⟩
and B = ⟨B, ⟨G,β⟩⟩ of F-algebraic systems, and every surjective morphism⟨H,γ⟩ ∶ A → B, the pair (OA,OB) is commuting.

A slightly more relaxed version, which will be of use to us later, is that
of semi-commutation. We say that a family of I-operators O = {OA ∶ A ∈
AlgSys(F)} is a semi-commuting family if, for every pair A = ⟨A, ⟨F,α⟩⟩
and B = ⟨B, ⟨G,β⟩⟩ of F-algebraic systems, and every surjective morphism⟨H,γ⟩ ∶ A → B, with H an isomorphism, the pair (OA,OB) is commuting.

It turns out that semi-commutation is too restrictive when applied to
compatibility I-operators, since there is only one semi-commuting family of
compatibility I-operators, namely, the Leibniz operator.

Theorem 1536 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-commuting
family of compatibility I-operators. Then O = Ω.

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∈ FiFamI(A).
Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/ΩA(T ).
We get, using Compatibility,

OA/Ω
A(T )(T /ΩA(T )) ≤ ΩA/Ω

A(T )(T /ΩA(T )) = ∆A/Ω
A(T ).

So, we get OA/Ω
A(T )(T /ΩA(T )) = ∆A/Ω

A(T ). Since, by hypothesis, O is a
semi-commuting family, we now get

OA(T ) = OA(π−1(T /ΩA(T )))
= π−1(OA/ΩA(T )(T /ΩA(T )))
= π−1(∆A/ΩA(T ))
= ΩA(T ).

We conclude that O = Ω. ∎

In particular, we have
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Corollary 1537 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Suszko operator Ω̃I is semi-commuting
if and only if Ω̃I = Ω.

Proof: If Ω̃I = Ω, then, by Proposition 24, Ω̃I is commuting and, hence,semi-
commuting. If conversely, Ω̃I is semi-commuting, then, by Theorem 1536,
Ω̃I = Ω. ∎

21.6 Coherent I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of I-operators. Moreover,
let A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a
surjective morphism, T ∈ FiFamI(A) and T ⊆ FiFamI(A).

• The morphism ⟨H,γ⟩ is said to be O-compatible with T if

Ker(⟨H,γ⟩) ≤ OA(T );
• The morphism ⟨H,γ⟩ is said to be O-compatible with T if

Ker(⟨H,γ⟩) ≤ OA(T ), for all T ∈ T ,

i.e., if and only if
Ket(⟨H,γ⟩) ≤ ÕA(T ).

For the Leibniz operator, we have

Corollary 1538 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A,B F-algebraic systems and ⟨H,γ⟩ ∶
A → B a surjective morphism. ⟨H,γ⟩ is Ω-compatible with T if and only
if Ker(⟨H,γ⟩) is compatible with T .

Proof: We have ⟨H,γ⟩ is Ω-compatible with T if and only if, by definition,
Ker(⟨H,γ⟩) ≤ ΩA(T ) if and only if, by the compatibility of ΩA(T ) with T ,
Ker(⟨H,γ⟩) is compatible with T . ∎

Moreover, for a family O of compatibility I-operators, we get

Corollary 1539 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a family of
compatibility I-operators, A,B F-algebraic systems, ⟨H,γ⟩ ∶ A → B a sur-
jective morphism and T ∈ FiFamI(A). If ⟨H,γ⟩ is O-compatible with T ,
then:

(a) ⟨H,γ⟩ is Ω-compatible with T ;
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(b) If H is an isomorphism, T = γ−1(γ(T ));
(c) If H is an isomorphism, OA(T ) = γ−1(γ(OA(T )).

Proof:

(a) We have

Ker(⟨H,γ⟩) ≤ OA(T ) (hypothesis)
≤ ΩA(T ). (by Compatibility)

Thus, ⟨H,γ⟩ is Ω-compatible with T .

(b) Suppose H is an isomorphism. By Part (a) and Corollary 1539, we get
Ker(⟨H,γ⟩) is compatible with T . Therefore, γ−1(γ(T )) ≤ T . Since the
reverse inclusion is always satisfied, we get T = γ−1(γ(T )).

(c) Again the inclusion OA(T ) ≤ γ−1(γ(OA(T ))) is always satisfied. So it
suffices to show the reverse inclusion. So assume Σ ∈ ∣Sign∣, φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ γ−1Σ (γΣ(OAΣ(T ))). Thus, by definition,⟨γΣ(φ), γΣ(ψ)⟩ ∈ γΣ(OAΣ(T )). Therefore, there exist φ′, ψ′ ∈ SEN(Σ),
with ⟨φ′, ψ′⟩ ∈ OAΣ(T ), such that ⟨γΣ(φ), γΣ(ψ)⟩ = ⟨γΣ(φ′), γΣ(ψ′)⟩.
This shows that

⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ KerΣ(⟨H,γ⟩) ≤ OAΣ(T ).
Since ⟨φ′, ψ′⟩ ∈ OAΣ(T ) and OA(T ) is an equivalence family, we get,
using symmetry and transitivity, that ⟨φ,ψ⟩ ∈ OAΣ(T ). We conclude
that γ−1(γ(OA(T ))) ≤ OA(T ).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of I-operators.

• O is called coherent if, for all F-algebraic systems A, B, every surjec-
tive morphism ⟨H,γ⟩ ∶ A→ B and all T ′ ∈ FiFamI(B),

⟨H,γ⟩ O-compatible with γ−1(T ′)
implies OA(γ−1(T ′)) = γ−1(OB(T ′)).

• O is called semi-coherent if, for all F-algebraic systems A, B, every
surjective morphism ⟨H,γ⟩ ∶ A → B, with H an isomorphism, and all
T ′ ∈ FiFamI(B),

⟨H,γ⟩ O-compatible with γ−1(T ′)
implies OA(γ−1(T ′)) = γ−1(OB(T ′)).
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Clearly, if O is coherent, then it is also semi-coherent.

We define the identity I-operator

I = {IA ∶ A ∈ AlgSys(F)},
by letting, for all A ∈ AlgSys(F), IA ∶ FiFamI(A) → EqvFam(A), be given,
for all T ∈ FifamI(A), by

IA(T ) =∆A.

Lemma 1540 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The identity I is a coherent family of
compatibility I-operators.

Proof: It is clear that IA is a compatibility I-operator, for every F-algebraic
system A. So it suffices to prove coherence. To this end, let A, B be F-
algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism and T ′ ∈ FiFamI(B),
such that Ker(⟨H,γ⟩) ≤ IA(γ−1(T ′)) =∆A. Thus, we have Ker(⟨H,γ⟩) = ∆A.
Now we get

γ−1(IB(T ′)) = γ−1(∆B) = Ker(⟨H,γ⟩) =∆A = IA(γ−1(T )).
Thus, I is a coherent family of compatibility I-operators. ∎

Another example of a coherent I-operator is the Leibniz operator.

Lemma 1541 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Leibniz operator Ω is a coherent
family of compatibility operators.

Proof: By definition Ω is a family of compatibility I-operators. For coher-
ence, assume that A, B are F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective
morphism and T ′ ∈ FiFamI(B). Since, by Proposition 24, ΩA(γ−1(T ′)) =
γ−1(ΩB(T ′)), we get that the coherence implication is trivially satisfied and,
hence Ω is a coherent family of compatibility I-operators. ∎

For semi-coherence of compatibility I-operators, we get the following
characterization.

Lemma 1542 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of com-
patibility I-operators. O is semi-coherent if and only if, for all F-algebraic
systems A, B, all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an iso-
morphism, and all T ∈ FiFamI(A), if ⟨H,γ⟩ is O-compatible with T , then
γ(OA(T )) = OB(γ(T )).
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Proof: Suppose, first, that O is semi-coherent and let A, B be F-algebraic
systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism and
T ∈ FiFamI(A), such that

Ker(⟨H,γ⟩) ≤ OA(T ).
Then, by Corollary 1539, Ker(⟨H,γ⟩) ≤ OA(γ−1(γ(T ))). Applying semi-co-
herence gives

γ−1(OB(γ(T ))) = OA(γ−1(γ(T ))) (by semi-coherence)
= OA(T ). (by Corollary 1539)

By the surjectivity of ⟨H,γ⟩, OB(γ(T )) = γ(OA(T )).
Assume, conversely, that the condition in the statement holds. Let A, B

be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an
isomorphism, and T ′ ∈ FiFamI(B), such that

Ker(⟨H,γ⟩) ≤ OA(γ−1(T ′)).
Then, we get

OA(γ−1(T ′)) = γ−1(γ(OA(γ−1(T ′)))) (by Corollary 1539)
= γ−1(OB(γ(γ−1(T ′))) (by hypothesis)
= γ−1(OB(T ′)). (by surjectivity of ⟨H,γ⟩)

So O is a semi-coherent family of compatibility I-operators. ∎

We also have the following alternative characterization for semi-coherence
of compatibility I-operators.

Lemma 1543 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of com-
patibility I-operators. O is semi-coherent if and only if, for all F-algebraic
systems A, B and all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an iso-
morphism,

OA
−1(Ker(⟨H,γ⟩)) = {T ∈ FiFamI(A) ∶ γ−1(OB(γ(T ))) = OA(T )}.

Proof: Suppose O is semi-coherent and let A, B be F-algebraic systems,⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism, and T ∈
FiFamI(A).

• If T ∈ OA−1(Ker(⟨H,γ⟩)), then, by definition, Ker(⟨H,γ⟩) ≤ OA(T ).
Thus, by Lemma 1542, γ(OA(T )) = OB(γ(T )). Hence,

γ−1(γ(OA(T ))) = γ−1(OB(γ(T ))).
Thus, by Corollary 1539, OA(T ) = γ−1(OB(γ(T ))).
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• If γ−1(OB(γ(T ))) = OA(T ), then we get Ker(⟨H,γ⟩) = γ−1(∆B) ≤
γ−1(OB(γ(T ))) = OA(T ). Thus, T ∈ OA−1(Ker(⟨H,γ⟩)).

We conclude that OA
−1(Ker(⟨H,γ⟩)) = {T ∈ FiFamI(A) ∶ γ−1(OB(γ(T ))) =

OA(T )}.
Assume, conversely, that the condition of the statement holds. Let A,

B be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H

an isomorphism and T ′ ∈ FiFamI(B), such that Ker(⟨H,γ⟩) ≤ OA(γ−1(T ′)).
Then γ−1(T ′) ∈ OA−1(Ker(⟨H,γ⟩)), whence, by hypothesis,

γ−1(OB(γ(γ−1(T ′)))) = OA(γ−1(T ′)).
By surjectivity of ⟨H,γ⟩, γ−1(OB(T ′)) = OA(γ−1(T ′)) and, hence, O is a
semi-coherent family of compatibility I-operators. ∎

Next we show that semi-coherence of compatibility I-operators is pre-
served under relativization.

Proposition 1544 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then

ÕI = {ÕI,A ∶ A ∈ AlgSys(F)}
is also a semi-coherent family of compatibility I-operators.

Proof: It is easy to see that ÕI is also a compatibility operator. We have,
for every F-algebraic system A and all T ∈ FiFamI(A),

ÕI,A(T ) = ⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (definition)

≤ ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (compatibility)
≤ ΩA(T ). (set theory)

Thus, ÕI is indeed a compatibility I-operator.
For semi-coherence, assume A, B are F-algebraic systems, ⟨H,γ⟩ ∶ A→ B

a surjective morphism, with H an isomorphism, and T ′ ∈ FiFamI(B), such
that Ker(⟨H,γ⟩) ≤ ÕI,A(γ−1(T ′)). We must show that

ÕI,A(γ−1(T ′)) = γ−1(ÕI,B(T ′)).
Claim: We have

{T ∈ FiFamI(A) ∶ γ−1(T ′) ≤ T} = {γ−1(T ′′) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)}.
• Suppose T ∈ FiFamI(A), such that γ−1(T ′) ≤ T . Then, by Corol-

lary 1539, T = γ−1(γ(T )), where, by Corollary 56, γ(T ) ∈ FiFamI(B).
Moreover, by hypothesis and the surjectivity of ⟨H,γ⟩, T ′ = γ(γ−1(T ′)) ≤
γ(T ). This proves the left-to-right inclusion.
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• Let T ′ ≤ T ′′ ∈ FiFamI(B). Then, by Corollary 55, we obtain γ−1(T ′′) ∈
FiFamI(A) and, by hypothesis, γ−1(T ′) ≤ γ−1(T ′′). This shows that
the right-to-left inclusion also holds.

This proves the Claim. Now, based on the Claim, we reason as follows:

γ−1(ÕI,B(T ′)) = γ−1(⋂{OB(T ′′) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)})
= ⋂{γ−1(OB(T ′′)) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)}
= ⋂{OA(γ−1(T ′′)) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)}

(by Semi-Coherence of O)
= ⋂{OA(T ) ∶ γ−1(T ′) ≤ T ∈ FiFamI(A)}

(by the Claim)

= ÕI,A(γ−1(T ′)).
Thus, ÕI is indeed semi-coherent. ∎

Proposition 1545 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a coherent
family of compatibility I-operators. Let, also, A, B be F-algebraic systems
and ⟨H,γ⟩ ∶ A → B a surjective morphism. For all T ′ ⊆ FiFamI(B′), such
that ⟨H,γ⟩ is O-compatible with γ−1(T ′),

ÕA(γ−1(T ′)) = γ−1(ÕB(T ′)).
Proof: We have

γ−1(ÕB(T ′)) = γ−1(⋂{OB(T ′) ∶ T ′ ∈ T ′})
= ⋂{γ−1(OB(T ′)) ∶ T ′ ∈ T ′}
= ⋂{OA(γ−1(T ′)) ∶ T ′ ∈ T ′}

(hypothesis and coherence)
= ⋂{OA(T ) ∶ T ∈ γ−1(T ′)}
= ÕA(γ−1(T ′)).

∎

Proposition 1546 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Let, also, A, B be F-algebraic
systems and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism.
For all T ⊆ FiFamI(A), such that ⟨H,γ⟩ is O-compatible with T , γ(ÕA(T )) =
ÕB(γ(T )).
Proof: By the hypothesis and Corollary 1539, we get that T = γ−1(γ(T )).
So exploiting Proposition 1545, we get

γ(ÕA(T )) = γ(ÕA(γ−1(γ(T ))))
= γ(γ−1(ÕB(γ(T ))))
= ÕB(γ(T )).

∎



1298 CHAPTER 21. I-OPERATORS Voutsadakis

21.7 Semi-Coherence and Full Objects

We start by providing a characterization of the inverse operator associated
with a semi-coherent family of compatibility I-operators.

Proposition 1547 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all θ ∈ ConSys(A),
OA

−1(θ) = {T ∈ FiFamI(A) ∶ π−1(OA/θ(T /θ)) = OA(T )}
= π−1({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}),

where ⟨I, π⟩ ∶ A→ A/θ denotes the quotient morphism.

Proof: We have by hypothesis and Lemma 1543,

OA
−1(θ) = {T ∈ FiFamI(A) ∶ π−1(OA/θ(T /θ)) = OA(T )}.

For the second equality, if T ∈ FiFamI(A), such that π−1(OA/θ(T /θ)) =
OA(T ), then T = π−1(T /θ) and, also,

π−1(OA/θ(T /θ)) = OA(T ) = OA(π−1(T /θ)).
This proves the left-to-right inclusion, since, by Corollary 57, we have T /θ ∈
FiFamI(A/θ).

Assume, conversely, that T ′ ∈ FiFamI(A/θ), such that π−1(OA/θ(T ′)) =
OA(π−1(T ′)). Then, by Corollary, 57, π−1(T ′) ∈ FiFamI(A) and, moreover,

π−1(OA/θ(π−1(T ′)/θ)) = π−1(OA/θ(T ′)) = OA(π−1(T ′)).
This proves the right-to-left-inclusion. ∎

We now give a characterization of O-full I-classes for semi-coherent fam-
ilies of congruential compatibility I-operators.

Corollary 1548 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators, A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system and T ⊆ FiFamI(A). T is OA-full if and only if, for some
surjective ⟨H,γ⟩ ∶ A→ B, with H an isomorphism, which may be taken to be
the quotient morphism ⟨I, π⟩ ∶ A→ A/Õ(T ),

T = {T ∈ FiFamI(A) ∶ γ−1(OB(γ(T ))) = OA(T )}.
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Proof: Suppose T ⊆ FiFamI(A) isOA-full. By definition, T = OA−1(ÕA(T )).
Let ⟨I, π⟩ ∶ A → A/ÕA(T ) be the quotient morphism. Then we have T =
OA

−1(Ker(⟨I, π⟩)) whence, by Proposition 1547,

T = {T ∈ FifamI(A) ∶ π−1(OA/ÕA(T )(π(T ))) = OA(T )}.
Assume, conversely, that T = {T ∈ FifamI(A) ∶ γ−1(OB(γ(T ))) = OA(T )},
for some surjective ⟨H,γ⟩ ∶ A → B, with H an isomorphism. By Proposition
1547, T = OA−1(Ker(⟨H,γ⟩)), whence T ∈ Ran(OA−1), showing that T is
OA-full. ∎

Corollary 1549 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators, A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system and T ⊆ FiFamI(A). T is OA-full if and only if, for some
θ ∈ ConSys(I), which can be taken to be ÕA(T ), and with ⟨I, π⟩ ∶ A → A/θ
the corresponding quotient morphism,

T = π−1({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}).
Proof: Assume, first, that T is OA-full. Then, by definition, we have T =
OA

−1(ÕA(T )). Take θ = ÕA(T ). Then T = OA−1(θ), whence, by Proposition
1547,

T = π−1({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}).
Assume, conversely, that T is given by the displayed expression above, for
some θ ∈ ConSys(A) and ⟨I, π⟩ ∶ A → A/θ the quotient morphism. Then, by
Proposition 1547, T = OA−1(θ) ∈ Ran(OA−1) and, therefore, T is OA-full, by
definition. ∎

Turning, next, to the full congruence systems, we obtain the following
characterization.

Proposition 1550 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent
family of compatibility I-operators, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
θ ∈ ConSys(A). θ is OA-full if and only if

ÕA/θ({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}) =∆A/θ,

where ⟨I, π⟩ ∶ A→ A/θ is the quotient morphism.

Proof: Let T ′ = {T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}. Then⟨I, π⟩ is compatible with π−1(T ′), since, for all T ′ ∈ T ′,

Ker(⟨I, π⟩) = π−1(∆A/θ) ≤ π−1(OA/θ(T ′)) = OA(π−1(T ′)).
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Thus, by Propositions 1547 and 1545, θ is OA-full if and only if

θ = ÕA(OA−1(θ)) = ÕA(π−1(T ′)) = π−1(ÕA/θ(T ′)).
Now, if θ is OA-full, then we get, using the surjectivity of the quotient mor-
phism,

ÕA/θ(T ′) = π(π−1(ÕA/θ(T ′)))
= π(θ) =∆A/θ.

If, conversely, ÕA/θ(T ′) =∆A/θ, then θ = π−1(∆A/θ) = π−1(ÕA/θ(T ′)). Hence,
by the equivalence detailed above, θ is OA-full. ∎

Since Ω is a semi-coherent family of compatibility I-operators, we now
get

Corollary 1551 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and θ ∈ ConSys(A). Then

ΩA
−1(θ) = π−1(FiFamI(A/θ)),

where ⟨I, π⟩ ∶ A→ A/θ is the quotient morphism.

Proof: By Proposition 1547,

ΩA
−1(θ) = π−1({T ′ ∈ FiFamI(A/θ′) ∶ π−1(ΩA/θ(T ′)) = ΩA(π−1(T ′))}).

But, by Proposition 24, Ω is commuting and, hence,

{T ′ ∈ FiFamI(A/θ′) ∶ π−1(ΩA/θ(T ′)) = ΩA(π−1(T ′))} = FiFamI(A/θ).
Therefore, ΩA

−1(θ) = π−1(FiFamI(A/θ)). ∎

21.8 The General Correspondence Theorem

Theorem 1552 (General Correspondence Theorem) Let F = ⟨Sign♭,
SEN♭, N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on F
and O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent family of compatibility I-
operators. Then, for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩,
all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an isomorphism, and all
T ∈ FiFamI(A), if ⟨H,γ⟩ is O-compatible with T , then γ induces an order

isomorphism from [[T ]]OA onto [[γ(T )]]OB, with inverse γ−1.

Proof: Assume that ⟨H,γ⟩ is O-compatible with T . By Corollary 1539,⟨H,γ⟩ is Ω-compatible with T . By the same Corollary and by Corollary 56,
T = γ−1(γ(T )) and γ(T ) ∈ FiFamI(B).



Voutsadakis CHAPTER 21. I-OPERATORS 1301

Suppose, next, that T ′ ∈ [[T ]]OA. Then, Ker(⟨H,γ⟩) ≤ OA(T ) ≤ ΩA(T ′).
Again, based on Corollaries 1539 and 56, we get γ−1(γ(T ′)) = T ′ and γ(T ′) ∈
FiFamI(B). Moreover, we get

OB(γ(T )) = γ(OA(T )) (by Lemma 1542)
≤ γ(ΩA(T ′))
= ΩB(γ(T ′)). (by Lemma 1542)

Thus, γ(T ′) ∈ [[γ(T )]]OB .

Suppose, next, that T ′′ ∈ [[γ(T )]]OB . Then, we get OB(γ(T )) ≤ ΩB(T ′).
By Corollary 55, γ−1(T ′′) ∈ FiFamI(A) and by surjectivity, γ(γ−1(T ′′)) =
T ′′. Since ⟨H,γ⟩ is O-compatible with T = γ−1(γ(T )), we get, using semi-
coherence,

OA(T ) = OA(γ−1(γ(T ))
= γ−1(OB(γ(T )))
≤ γ−1(ΩB(T ′))
= ΩA(γ−1(T ′)).

Hence, γ−1(T ′′) ∈ [[T ]]OA. We conclude that γ is a bijection from [[T ]]OA
onto [[γ(T )]]OB , with inverse γ−1. But, clearly, both γ and γ−1 are order
preserving functions, whence they establish an order isomorphism between
these two ordered sets. ∎

The General Correspondence Theorem has the following consequence con-
cerning O-filter systems on different F-algebraic systems.

Corollary 1553 Let F = ⟨Sign♭, SEN♭, N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all surjective morphisms ⟨H,γ⟩ ∶ A →
B, with H an isomorphism, and all T ∈ FiFamI(A), if ⟨H,γ⟩ is O-compatible
with T , then

T ∈ FiFamI,O(A) iff γ(T ) ∈ FiFamI,O(B).
Proof: We have the following chain of equivalences:

T ∈ FiFamI,O(A) iff T = TO

iff T = ⋂ [[T ]]OA
iff γ(T ) = ⋂ [[γ(T )]]OB (by Theorem 1552)
iff γ(T ) = γ(T )O
iff γ(T ) ∈ FiFamI,O(B).

Thus, the claim is established. ∎

For semi-coherent congruential compatibility I-operators, we obtain a
relation between the O-filter systems on an algebraic system and those on
the quotient algebraic system.
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Corollary 1554 Let F = ⟨Sign♭, SEN♭, N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, and all T ∈ FiFamI(A),

TO/OA(T ) = (T /OA(T ))O
and it is the least I-filter family on A/OA(T ).
Proof: Consider the quotient morphism ⟨I, π⟩ ∶ A→ A/OA(T ). ⟨I, π⟩ is sur-
jective, with I an isomorphism, and it is O-compatible with T . By Theorem

1552, π ∶ [[T ]]OA → [[T /OA(T )]]OA/OA(T) is an order isomorphism with inverse

π−1. Since TO is the least I-filter family of [[T ]]OA, it follows that TO/OA(T )
must be the least I-filter family of [[T /OA(T )]]OA/OA(T) , which is, by defini-
tion, (T /OA(T ))O. Finally, since OA/O

A(T )(T /OA(T )) =∆A/O
A(T ), it follows

that [[T /OA(T )]]OA/OA(T) = FiFamI(A/OA(T )). Thus, (T /OA(T ))O is the
least I-filter family on A/OA(T ). ∎

Finally, applying the General Correspondence Theorem to the relativiza-
tion of an operator, we obtain the following:

Theorem 1555 Let F = ⟨Sign♭, SEN♭, N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all surjective morphisms ⟨H,γ⟩ ∶
A → B, with H an isomorphism, and all T ∈ FiFamI(A), if ⟨H,γ⟩ is ÕI-

compatible with T , then γ induces an order isomorphism from [[T ]]ÕI,A onto

[[γ(T )]]ÕI,B , with inverse γ−1.

Proof: It is clear that if O is a compatibility I-operator, the same holds for
ÕI . Moreover, by Proposition 1544, if O is a semi-coherent family, then ÕI

is also semi-coherent. Therefore, under the given hypotheses, we can apply
Theorem 1552 with ÕI in place of O and the result immediately follows. ∎

21.9 Algebraic Systems of I-Operators

With a given family of congruential operators, there are associated several
classes of algebraic systems, which it is the purpose of this section to study
closely, in analogy to the various classes ensued from applications of the
Leibniz operator, and to explore their interrelationships.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of congruential
I-operators. We define the following classes of F-algebraic systems associated
with O (assuming closure under isomorphisms):
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• AlgSysO(I) = {A/OA(T ) ∶ A ∈ AlgSys(F), T ∈ FiFamI(A)};
• AlgSysO(I) = {A ∈ AlgSys(F) ∶ (∃T ∈ FiFamI(A))(OA(T ) =∆A)};
• AlgSysÕ

I(I) = {A/ÕI,A(T ) ∶ A ∈ AlgSys(F), T ∈ FiFamI(A)};
• AlgSysÕI(I) = {A ∈ AlgSys(F) ∶ (∃T ∈ FiFamI(A))(ÕI,A(T ) = ∆A)};
• AlgSysÕ(I) = {A/ÕA(T ) ∶ A ∈ AlgSys(F),T ⊆ FiFamI(A)};
• AlgSysÕ(I) = {A ∈ AlgSys(F) ∶ (∃T ⊆ FiFamI(A))(ÕA(T ) = ∆A)}.

Names corresponding to these classes go as follows:

• AlgSysO(I) is the class of O-reduced F-algebraic systems;

• AlgSysO(I) is the class of O-reductions of F-algebraic systems;

• AlgSysÕ
I(I) is the class of ÕI-reduced F-algebraic systems;

• AlgSysÕI(I) is the class of ÕI-reductions of F-algebraic systems;

• AlgSysÕ(I) is the class of Õ-reduced F-algebraic systems;

• AlgSysÕ(I) is the class of Õ-reductions of F-algebraic systems.

We provide some alternative characterizations for the classes associated
with the lifting Õ of the operator O.

Lemma 1556 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of con-
gruential I-operators.

(a) AlgSysÕ(I) = {A/ÕA(T ) ∶ A ∈ AlgSys(F),T OA-full};
(b) AlgSysÕ(I) = {A ∶ ÕA(FiFamI(A)) =∆A};
(c) AlgSysÕ(I) = {A ∶ (∃T OA-full)(ÕA(T ) =∆A)}.

Proof: Note that, for all three equalities claimed, the right-to-left inclusions
are trivial, given the definitions of the corresponding classes on the left.
Therefore, in working out the various parts, it suffices to show the left-to-
right inclusions.

(a) Suppose that A/ÕA(T ) ∈ AlgSysÕ(I), for some T ⊆ FiFamA(A). Since
ÕA(T ) is by definition, an O-full congruence system on A, there ex-
ists, by Corollary 1521, an O-full T ′ ⊆ FiFamI(A), such that ÕA(T ′) =
ÕA(T ). Thus, we get A/ÕA(T ) = A/ÕA(T ′) ∈ {A/ÕA(T ) ∶ A ∈
AlgSys(F), T OA-full}.
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(b) Assume A ∈ AlgSysÕ(I). Then, by definition, there exists a collection
T ⊆ FiFamI(A), such that ÕA(T ) = ∆A. Therefore,

ÕA(FiFamA(A)) ≤ ÕA(T ) =∆A.

Thus, ÕA(FiFamI(A)) =∆A. We get that A ∈ {A ∶ ÕA(FiFamI(A)) =
∆A}.

(c) This follows directly from Part (b) and Corollary 1523.
∎

We now show that the three pairs of classes of reduced - classes of re-
ductions, associated with the same operator, consist of identical classes of
F-algebraic systems. This is due to the fact that the reduction of an F-
algebraic system results in a reduced F-algebraic system, taken with respect
to the same operator.

Lemma 1557 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent family
of congruential compatibility I-operators and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. For all T ∈ FiFamI(A) and all θ ∈ ConSys(A),

θ ≤ OA(T ) implies OA/θ(T /θ) = OA(T )/θ.
In particular, OA/O

A(T )(T /OA(T )) =∆A/O
A(T ).

Proof: Let A be an F-algebraic system, T ∈ FiFamI(A) and θ ∈ ConSys(A),
such that θ ≤ OA(T ). Consider the quotient morphism ⟨I, π⟩ ∶ A → A/θ. It
is surjective and, by hypothesis, O-compatible with T . By the assumption
of semi-coherence and Lemma 1542, we get

OA/θ(T /θ) = OA/θ(π(T )) = π(OA(T )) = OA(T )/θ.
The last assertion in the statement is the specialization of what was just
proven for θ = OA(T ). ∎

Proposition 1558 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysO(I) = AlgSysO(I).
Proof: Suppose A ∈ AlgSysO(I). Then, there exists T ∈ FiFamI(A), such
that OA(T ) = ∆A. But then A ≅ A/∆A = A/OA(T ) ∈ AlgSysO(I).

On the other hand, if T ∈ FiFamI(A) so that A/OA(T ) ∈ AlgSysO(I),
then, for T /OA(T ) ∈ FiFamI(A/OA(T )), we get, by Lemma 1557,

OA/O
A(T )(T /OA(T )) =∆A/O

A(T ),

whence, by definition A/OA(T ) ∈ AlgSysO(I). ∎
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Corollary 1559 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysÕ
I(I) = AlgSysÕI(I).

Proof: By Proposition 1544 together with Proposition 1558. ∎

Lemma 1560 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent family
of congruential compatibility I-operators and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. For all T ⊆ FiFamI(A)

ÕA/Õ
A(T )(T /ÕA(T )) = ∆A/Õ

A(T ).

Proof: Let A be an F-algebraic system and T ⊆ FiFamI(A). Consider the
quotient morphism ⟨I, π⟩ ∶ A→ A/ÕA(T ). It is surjective and O-compatible
with T . By the assumption of semi-coherence and Proposition 1546, we get

ÕA/Õ
A(T )(T /ÕA(T )) = ÕA/Õ

A(T )(π(T ))
= π(ÕA(T ))
= ÕA(T )/ÕA(T )
= ∆A/Õ

A(T ).

This concludes the proof of the statement. ∎

Proposition 1561 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysÕ(I) = AlgSysÕ(I).
Proof: Suppose A ∈ AlgSysÕ(I). Then, there exists T ⊆ FiFamI(A), such

that ÕA(T ) =∆A. But then A ≅ A/∆A = A/ÕA(T ) ∈ AlgSysÕ(I).
On the other hand, if T ⊆ FiFamI(A) so that A/ÕA(T ) ∈ AlgSysÕ(I),

then, for T /ÕA(T ) ⊆ FiFamI(A/ÕA(T )), we get, by Lemma 1560,

ÕA/Õ
A(T )(T /ÕA(T )) = ∆A/Õ

A(T ),

whence, by definition A/ÕA(T ) ∈ AlgSysÕ(I). ∎

Proposition 1562 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysÕ(I) = AlgSysÕ(I) = AlgSysÕ
I(I) = AlgSysÕI(I).
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Proof: For every F-algebraic system and every T ∈ FiFamI(A), we have
ÕI,A(T ) = ÕA(FiFamI(A)T ). This equality gives that

AlgSysÕI(I) ⊆ AlgSysÕ(I) and AlgSysÕ
I(I) ⊆ AlgSysÕ(I).

Assume, conversely, in the first case, that AlgSysÕ(I). By Lemma 1556,
ÕA(FiFamI(A)) =∆A. Let T = ⋂FiFamI(A). Then we get

ÕI,A(T ) = ÕA(FiFamI(A)T ) = Õ(FiFamI(A)) =∆A.

This shows that A ∈ AlgSysÕI(I). Due to Corollary 1559 and Proposition
1561 the equality just proven suffices to guarantee the conclusion. ∎

21.10 Leibniz Operator as an I-Operator

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We consider in this section the Leibniz operator

Ω = {ΩA ∶ A ∈ AlgSys(F)},
which is a coherent, congruential, compatibility I-operator. We saw that its
lifting is the Tarski operator Ω̃ and its relativization is the Suszko operator
Ω̃I . Using the definition, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all θ ∈ ConSys(A), we have

ΩA
−1(θ) = {T ∈ FiFamI(A) ∶ θ ≤ ΩA(T )}

= {T ∈ FiFamI(A) ∶ θ is compatible with T}.
We have the following characterizations of Ω-full objects:

Proposition 1563 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ⊆ FiFamI(A). T is Ω-full if and only if ⟨A,T ⟩ is a full I-structure.

Proof: We have

T is Ω-full iff T = ΩA
−1(Ω̃A(T ))

(by definition of Ω-full)

iff T = {T ′ ∈ FiFamI(A) ∶ Ω̃A(T ) ≤ ΩA(T ′)}
(by definition of ΩA

−1
)

iff ⟨A,T ⟩ is a full I-structure.
(by Theorem 1395)

∎

Recall that ConSysI(A) denotes the collection of all AlgSys(I)-congruence
systems on an F-algebraic system A, i.e., those congruence systems θ on A,
such that A/θ ∈ ConSys(I). For Ω-full congruence systems, we get
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Proposition 1564 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
θ ∈ ConSys(A). θ is Ω-full if and only if θ ∈ ConSysI(A).
Proof: We have

θ is Ω-full iff Ω̃A/θ(FiFamI(A)) =∆A/θ

(by Proposition 1550)
iff A/θ ∈ AlgSys(I)

(by Proposition 1399)
iff θ ∈ ConSys(A).

(by definition).
∎

As a corollary of these two characterizations, we can derive from our
work on Galois connections (more precisely Corollary 1521) the Isomorphism
Theorem 1408 between full I-structures and I-congruence systems.

Corollary 1565 (Isomorphism Theorem 1408) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system, I = ⟨F,C⟩ a π-institution based on F, and A =⟨A, ⟨F,α⟩⟩ an F-algebraic system. The operators Ω̃A and ΩA

−1
establish a Ga-

lois connection between P(FiFamI(A)) and EqvFam(A), which restricts to
mutually inverse isomorphisms between ⟨FStrI(A),≤⟩ and ⟨ConSysI(A),≤⟩.
Proof: By Corollary 1521 and Propositions 1563 and 1564, noting that the
order on ⟨FStrI(A),≤⟩ is the converse from that inherited by ⟨P(FiFamI(A)),⊆⟩.
∎

By applying Proposition 1522 to the Leibniz operator, we get a charac-
terization of full I-structures.

Proposition 1566 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ⊆ FiFamI(A). ⟨A,T ⟩ is a full I-structure if and only if T is the largest
collection D ⊆ FiFamI(A), such that Ω̃A(D) = Ω̃A(T ).
Proof: By instantiating Proposition 1522 to the Leibniz operator. ∎

Moreover, directly from Lemma 1518, we get:

Proposition 1567 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if
Ω̃I = Ω.

Proof: By instantiating Lemma 1518 to the Leibniz operator. ∎

We turn now to Ω-classes and Ω-filter families. Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system, I = ⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩
an F-algebraic system and T ∈ FiFamI(A).
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The Ω-class of T or Leibniz class of T is

[[T ]]∗ ∶= ΩA
−1(ΩA(T )) = {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)}.

The Leibniz filter family of T is the I-filter family

T ∗ =⋂ [[T ]]∗.
We say that T is a Leibniz filter family if T ∗ = T . The collection of all
Leibniz filter families of A is denoted by FiFamI∗(A).

We further denote by [T ] the equi-Leibniz class of T , i.e., the collection
of all I-filter families of A that share the same Leibniz congruence system
with T : [T ] = {T ′ ∈ FiFamI(A) ∶ ΩA(T ′) = ΩA(T )} ⊆ [[T ]]∗.

Some basic properties involving these concepts follow.

Lemma 1568 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A).

(a) T ∗ ≤ ⋂[T ] ≤ T ;

(b) If T ∗ = T , then T = ⋂[T ];
(c) If I is protoalgebraic, then T = T ∗ if and only if T = ⋂[T ].

Proof:

(a) We have T ∗ = ⋂ [[T ]]∗ ≤ ⋂[T ] ≤ T .

(b) If T ∗ = T , then, by Part (a), T = ⋂[T ].
(c) Suppose that I is protoalgebraic. The necessity is given by Part (b).

For the sufficiency, assume that T = ⋂[T ]. Since, by Part (a), T ∗ ≤ T ,
by protoalgebraicity, ΩA(T ∗) ≤ ΩA(T ). Since T ∗ ∈ [[T ]]∗, we get, by
definition, ΩA(T ) ≤ ΩA(T ∗). Hence, ΩA(T ) = ΩA(T ∗) and, therefore,
T ∗ ∈ [T ]. Now we conclude that T = ⋂[T ] ≤ T ∗. By Part (a), the
reverse inclusion always holds.

∎

Proposition 1569 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A).

(a) ⟨A, [[T ]]∗⟩ ∈ FStr(I);
(b) Ω̃A([[T ]]∗) = ΩA(T ).
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Proof: By Proposition 1563, ⟨A, [[T ]]∗⟩ is a full I-structure. Since T ∈ [[T ]]∗,
it follows that Ω̃A([[T ]]∗) ≤ ΩA(T ). On the other hand, for all T ′ ∈ [[T ]]∗,
ΩA(T ) ≤ ΩA(T ′). Thus, ΩA(T ) ≤ ⋂T ′∈[[T ]]∗ ΩA(T ′) = Ω̃A([[T ]]∗). ∎

It turns out that, for every theory family, its Leibniz counterpart is in
fact a Leibniz theory family.

Proposition 1570 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A). Then T ∗ ∈ FiFamI∗(A).
Proof: By Lemma 1568, we have (T ∗)∗ ≤ T ∗. On the other hand, T ∗ ∈ [[T ]]∗.
So, by definition ΩA(T ) ≤ ΩA(T ∗). This shows that [[T ∗]]∗ ⊆ [[T ]]∗. This, in
turn, yields T ∗ = ⋂ [[T ]]∗ ≤ ⋂ [[T ∗]]∗ = (T ∗)∗. We conclude that (T ∗)∗ = T ∗
and, hence, T ∗ ∈ FiFamI∗(A). ∎

We also have a characterization of Leibniz filter families in terms of full
structures.

Proposition 1571 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and T ∈ FiFamI(A). T ∈ FiFamI∗(A) if and only if, there exists ⟨A,T ⟩ ∈
FStrI(A), such that T = ⋂T .

Proof: Suppose, first, that T ∈ FiFamI∗(A). Then T = T ∗ = ⋂ [[T ]]∗ and, by
Proposition 1569, ⟨A, [[T ]]∗⟩ is a full I-structure.

Assume, conversely, that T = ⋂T , with ⟨A,T ⟩ ∈ FStr(I). Since T = ⋂T ∈
T , we get Ω̃A(T ) ≤ ΩA(T ). Thus, we get

[[T ]]∗ = ΩA
−1(ΩA(T )) ⊆ ΩA

−1(Ω̃A(T )) = T .
So T = ⋂T ≤ ⋂ [[T ]]∗ = T ∗. Since, by Lemma 1568, T ∗ ≤ T , we conclude that
T ∗ = T and, hence, T ∈ FiFamI∗(A). ∎

Corollary 1554, applied to the Leibniz operator, gives another character-
ization of Leibniz filter families.

Proposition 1572 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A). T ∈ FiFamI∗(A) if and only if T /ΩA(T ) is the least filter
family in FiFamI(A/ΩA(T )).
Proof: By specializing Corollary 1554 to the Leibniz operator. ∎

Leibniz filter families may also be used in characterizing the reflectivity
of the Leibniz operator, which characterizes family reflective π-institutions.
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Proposition 1573 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Ω is reflective if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, FiFamI∗(A) = FiFamI(A).
Proof: We have that Ω is reflective if and only if, by definition, for every
F-algebraic system A and all T,T ′ ∈ FiFamI(A),

ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′,

if and only if, by definition of [[T ]]∗, for every F-algebraic system A and
all T,T ′ ∈ FiFamI(A), T ′ ∈ [[T ]]∗ implies T ≤ T ′, if and only if, since T ∗ =
min [[T ]]∗, for every F-algebraic system A and all T ∈ FiFamI(A), T = T ∗, if
and only if, for every F-algebraic system A, FiFamI∗(A) = FiFamI(A). ∎

Surjective morphisms between algebraic systems, with isomorphic signa-
ture components, that satisfy a compatibility condition, induce order iso-
morphisms between Leibniz classes, which restrict to order isomorphisms
between equi-Leibniz classes.

Theorem 1574 (Correspondence Theorem for Leibniz Classes) Let F =⟨Sign♭, SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on
F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ two F-algebraic systems, ⟨H,γ⟩ ∶ A→ B a
surjective morphism, with H an isomorphism, and T ∈ FiFamI(A). If ⟨H,γ⟩
is Ω-compatible with T , then γ induces an order isomorphism from [[T ]]∗ onto[[γ(T )]]∗, with inverse γ−1. In addition, for all T ′ ∈ [[T ]]∗, γ induces an order
isomorphism from [T ′] onto [γ(T ′)].
Proof: The first statement follows from the General Correspondence Theo-
rem 1552 by instantiation to the Leibniz operator. So we undertake the proof
of the additional statement. Suppose that T ′, T ′′ ∈ [[T ]]∗. Since T ′ ∈ [[T ]]∗, we
get [T ′] ⊆ [[T ′]]∗ ⊆ [[T ]]∗. Thus, by the first statement, γ−1(γ(T ′)) = T ′ and
γ−1(γ(T ′′)) = T ′′. Thus, we get

ΩA(T ′′) = ΩA(T ′) iff ΩA(γ−1(γ(T ′′))) = ΩA(γ−1(γ(T ′)))
iff γ−1(ΩB(γ(T ′′))) = γ−1(ΩB(γ(T ′)))
iff ΩB(γ(T ′′)) = ΩB(γ(T ′)).

So T ′′ ∈ [T ′] if and only if γ(T ′′) ∈ [γ(T ′)]. Thus, the order isomorphism
γ ∶ [[T ]]∗ → [[γ(T )]]∗ restricts to an order isomorphism γ ∶ [T ]→ [γ(T )]. ∎

As a consequence of Correspondence Theorem, we get a correspondence
between Leibniz filter families.

Corollary 1575 Let F = ⟨Sign♭, SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ two F-
algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomor-
phism, and T ∈ FiFamI(A). If ⟨H,γ⟩ is Ω-compatible with T , then

T ∈ FiFamI∗(A) iff γ(T ) ∈ FiFamI∗(B).
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Proof: By Theorem 1574, under the isomorphism γ ∶ [[T ]]∗ → [[γ(T )]]∗, the
least theory family T ∗ of [[T ]]∗ corresponds to the least theory family γ(T )∗
of [[γ(T )]]∗. Therefore, T ∈ FiFamI∗(A) if and only if T = T ∗ if and only if
γ(T ) = γ(T )∗ if and only if γ(T ) ∈ FiFamI∗(B). ∎

Rephrased in terms of strict surjective morphisms Corollary 1575 yields

Corollary 1576 Let F = ⟨Sign♭, SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ two F-
algebraic systems, T ∈ FiFamI(A), T ′ ∈ FiFamA(B) and ⟨H,γ⟩ ∶ ⟨A, T ⟩ →⟨B, T ′⟩ a strict surjective morphism, with H an isomorphism. Then

T ∈ FiFamI∗(A) iff T ′ ∈ FiFamI∗(B).
Proof: It suffices to show that ⟨H,γ⟩ ∶ A → B is Ω-compatible with T . If
that is the case, then, since T = γ−1(T ′), we get, T ′ = γ(γ−1(T ′)) = γ(T ), and
the statement follows by applying Corollary 1575. We have, indeed

Ker(⟨H,γ⟩) = γ−1(∆B)
≤ γ−1(ΩB(T ′))
= ΩA(γ−1(T ′))
= ΩA(T ).

Therefore, ⟨H,γ⟩ is indeed compatible with T . ∎

The Correspondence Theorem 1574 allows us to formulate a Correspon-
dence Theorem for the special case of protoalgebraic π-institutions that, as
it turns out, provides an additional characterization of protoalgebraicity.

Theorem 1577 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is protoalgebraic if and only if, for all
F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all T ∈ FiFamI(A), T ′ ∈
FiFamI(B) and every strict surjective morphism ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩,
with H an isomorphism, γ induces an order isomorphism from FiFamI(A)T
onto FiFamI(B)T ′ , with inverse γ−1.

Proof: Suppose, first, that I is protoalgebraic and let ⟨H,γ⟩ ∶ ⟨A, T ⟩ →⟨B, T ′⟩ be a strict surjective morphism, with H an isomorphism. Then, we
get T = γ−1(T ′) and T ′ = γ(γ−1(T ′)) = γ(T ). So T = γ−1(γ(T )). This
implies that ⟨H,γ⟩ ∶ A → B is compatible with T . By the Correspon-
dence Theorem for Leibniz Classes 1574, γ induces an order isomorphism
γ ∶ [[T ]]∗ → [[T ′]]∗, with inverse γ−1. But, by protoalgebraicity, FiFamI(A)T
and FiFamI(B)T ′ are upsets of [[T ]]∗ and [[T ′]]∗, respectively and T cor-
responds to T ′ under γ. Therefore, γ restricts to an order isomorphism
γ ∶ FiFamI(A)T → FiFamI(B)T ′ , with inverse γ−1.
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Suppose, conversely, that the given condition holds. Let T,T ′ ∈ ThFam(I),
such that T ≤ T ′. Consider the quotient morphism ⟨I, π⟩ ∶ F → F/Ω(T ). It
gives a strict surjective morphism

⟨I, π⟩ ∶ ⟨F , T ⟩→ ⟨F/Ω(T ), T /Ω(T )⟩.
Since, by hypothesis, π ∶ FiFamI(F)T → FiFamI(F/Ω(T ))T /Ω(T ) is an order
isomorphism. with inverse π−1 and, clearly, T ′ ∈ FiFamI(F)T , we get that
π(T ′) ∈ FiFamI(F/Ω(T ))T /Ω(T ) and T ′ = π−1(π(T ′)). Now we get

Ω(T ) = Ker(⟨I, π⟩)
= π−1(∆F/Ω(T ))
≤ π−1(ΩF/Ω(T )(π(T ′)))
= Ω(π−1(π(T ′)))
= Ω(T ′).

Since Ω is monotone, we conclude that I is a protoalgebraic π-institution.
∎

Now we get a characterization of those full I-structures whose closure
families are Leibniz classes.

Proposition 1578 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ⊆ FiFamI(A), such that ⟨A,T ⟩ is a full I-structure. Then T = [[T ]]∗, for
some T ∈ FiFamI(A), if and only if A/Ω̃A(T ) ∈ AlgSys∗(I).
Proof: Suppose, first, that T = [[T ]]∗, for some T ∈ FiFamI(A). Then, using
Proposition 1569, we get

Ω̃A(T ) = Ω̃A([[T ]]∗) = ΩA(T ).
Therefore, A/Ω̃A(T ) = A/ΩA(T ) ∈ AlgSys∗(I).

Assume, conversely, that A/Ω̃A(T ) ∈ AlgSys∗(I). By definition, there
exists T ∈ FiFamI(A/Ω̃A(T )), such that ΩA/Ω̃

A(T )(T ) = ∆A/Ω̃
A(T )

. This
equality implies that [[T ]]∗ = FiFamI(A/Ω̃A(T )). Now consider the quo-
tient morphism ⟨I, π⟩ ∶ A → A/Ω̃A(T ). Since, by hypothesis ⟨A,T ⟩ is a full
I-structure, we get

T = π−1(T /Ω̃A(T )) = π−1(FiFamI(A/Ω̃A(T ))) = π−1([[T ]]∗).
Moreover,

Ker(⟨I, π⟩) = π−1(∆A/Ω̃A(T )) = π−1(ΩA/Ω̃A(T )(T )) = ΩA(π−1(T )).
So ⟨I, π⟩ is Ω-compatible with π−1(T ). By the Correspondence Theorem for
Leibniz Classes 1574, we get an order isomorphism π ∶ [[π−1(T )]]∗ → [[T ]]∗.
This gives T = π−1([[T ]]∗) = [[π−1(T )]]∗. ∎

We get, as a consequence, a characterization of those π-institutions for
which all full I-structures are determined by Leibniz classes of I-filter fami-
lies.
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Proposition 1579 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, FStrI(A) = {⟨A, [[T ]]∗⟩ ∶ T ∈ FiFamI(A)} if and only if AlgSys(I) =
AlgSys∗(I).
Proof: Suppose, first, that, for every F-algebraic system A, FStrI(A) ={⟨A, [[T ]]∗⟩ ∶ T ∈ FiFamI(A)}. Since AlgSys∗(I) ⊆ AlgSys(I) holds in gen-
eral, it suffices to show the reverse inclusion. To this end, let A ∈ AlgSys(I).
Thus, there exists T ∈ FiFamI(A), such that Ω̃I,A(T ) = ∆A. Since [[T ]]Ω̃I ∈
FStrI(A), we get, by hypothesis, T ′ ∈ FiFamI(A), such that [[T ]]Ω̃I = [[T ′]]∗.
Now notice the following:

• FiFamI(A)T ⊆ [[T ]]Ω̃I , whence ΩA(T ′) ≤ ⋂T≤T ′′ ΩA(T ′′) = Ω̃I,A(T );
• T ′ ∈ [[T ′]]∗ implies Ω̃I,A(T ) ≤ ΩA(T ′).

We conclude that ΩA(T ′) = Ω̃I,A(T ) =∆A. Hence, we have A ∈ AlgSys∗(I).
Assume, conversely, that AlgSys(I) = AlgSys∗(I). Since, by Proposition

1569, we have, in general, {⟨A, [[T ]]∗⟩ ∶ T ∈ FiFamI(A)} ⊆ FStrI(A), it suf-
fices to show the reverse inclusion. To this end, let ⟨A,T ⟩ ∈ FStrI(A). Then
A/Ω̃A(T ) ∈ AlgSys(I). By hypothesis, A/Ω̃A(T ) ∈ AlgSys∗(I). Therefore,
by Proposition 1578, there exists T ∈ FiFamI(A), such that T = [[T ]]∗. ∎

So, one way to characterize π-institutions I for which I-algebraic systems
and I∗-algebraic systems coincide is to look at the form of full I-structures.
An alternative characterization uses the Leibniz and Suszko operators.

Proposition 1580 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. AlgSys(I) = AlgSys∗(I) if and only
if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A), there
exists T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) = ΩA(T ′).
Proof: Assume AlgSys(I) = AlgSys∗(I). Let T ∈ FiFamI(A), so that
A/Ω̃I,A(T ) ∈ AlgSys(I). By Proposition 1579, there exists T ′ ∈ FiFamI(A),
such that [[T ]]Ω̃I = [[T ′]]∗. We now get

Ω̃I,A(T ) = Ω̃A([[T ]]Ω̃I) = Ω̃A([[T ′]]∗) = ΩA(T ′).
Assume, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all T ∈ FiFamI(A), there exists T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) =
ΩA(T ′). Let A ∈ AlgSys(I). Then, there exists T ∈ FiFamI(A), such
that Ω̃I,A(T ) = ∆A. By hypothesis, there exists T ′ ∈ FiFamI(A), such that
ΩA(T ′) = Ω̃I,A(T ) = ∆A. We conclude that A ∈ AlgSys∗(I). The reverse
inclusion always holds. Therefore, AlgSys(I) = AlgSys∗(I). ∎

Proposition 1580, gives the following feature of protoalgebraic π-institutions.
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Corollary 1581 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is protoalgebraic, then every full I-
structure is of the form ⟨A, [[T ]]∗⟩, for some F-algebraic system A and some
T ∈ FiFamI(A).
Proof: We know that, if I is protoalgebraic and A is an F-algebraic system,
then, for all T ∈ FiFamI(A), we have Ω̃I,A(T ) = ΩA(T ). Therefore, by
Proposition 1580 and Proposition 1579, every full I-structure has the form
claimed in the statement. ∎

This property of the full I-structures in a more precise form, yields a
characterization of protoalgebraicity.

Theorem 1582 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is protoalgebraic;

(ii) Every full I-structure is of the form ⟨A,FiFamI(A)T ⟩, for some F-
algebraic system A and some T ∈ FiFamI(A);

(iii) Every full I-structure is of the form ⟨A,FiFamI(A)T ⟩, for some F-
algebraic system A and some T ∈ FiFamI∗(A);

(iv) [[T ]]∗ = FiFamI(A)T ∗, for every F-algebraic system A and all T ∈
FiFamI(A).

Proof:

(i)⇒(ii) Suppose that I is protoalgebraic and let ⟨A,T ⟩ ∈ FStrI(A). By Propo-
sition 1563, T = {T ∈ FiFamI(A) ∶ Ω̃A(T ) ≤ ΩA(T )}. By protoalge-
braicity, T is an upset in FiFamI(A). Moreover, T has a least element,
T = ⋂T . Thus, we have T = FiFamI(A)⋂T .

(ii)⇒(iii) Assume (ii) holds and let ⟨A,T ⟩ ∈ FStrI(A). Then, there exists T ∈
FiFamI(A), such that T = FiFamI(A)T . By Proposition 1571, T ∈
FiFamI∗(A).

(iii)⇒(iv) Assume (iii) holds and let A be an F-algebraic system and T ∈ FiFamI(A).
By Proposition 1569, ⟨A, [[T ]]∗⟩ ∈ FStr(I). By Proposition 1570, T ∗ ∈
FiFamI∗(A) and, by definition T ∗ = ⋂ [[T ]]∗. Thus, by (iii), we get[[T ]]∗ = FiFamI(A)T ∗ .

(iv)⇒(i) Let A be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that
T ≤ T ′. Then, by Lemma 1568, T ∗ ≤ T ≤ T ′. By hypothesis, T ′ ∈ [[T ]]∗.
So we get, by definition of [[T ]]∗, ΩA(T ) ≤ ΩA(T ′). Since Ω is monotone
on every F-algebraic system, we get that I is protoalgebraic.

∎
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21.11 Suszko Operator as an I-Operator

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈ FiFamI(A).

The Ω̃I-class of T or Suszko class of T is

[[T ]]Su = ΩA
−1(Ω̃I,A(T )) = {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ ΩA(T ′)}.

The Suszko filter family of T is

T Su =⋂ [[T ]]Su.
T is a Suszko filter family if T Su = T . The collection of all Suszko filter
families of A is denoted by FiFamI,Su(A).

The following lemma gives some of the basic properties of Suszko classes
and Suszko theory families.

Lemma 1583 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T,T ′ ∈
FiFamI(A).

(a) T Su ≤ T ∗ ≤ T ;

(b) T Su = T implies T ∗ = T ;

(c) If T ≤ T ′, then [[T ′]]Su ⊆ [[T ]]Su and T Su ≤ T ′Su;

(d) FiFamI(A)T ⊆ [[T ]]Su ⊆ FiFamI(A)T Su
;

(e) [[T ]]Su = FiFamI(A)T if and only if T Su = T .

Proof:

(a) We have Ω̃I,A(T ) ≤ ΩA(T ). Hence [[T ]]∗ ⊆ [[T ]]Su. This gives

T Su =⋂ [[T ]]Su ≤ [[T ]]∗ = T ∗.
The last inequality is by Lemma 1568.

(b) If T = T Su, then, by Part (a), T = T ∗.

(c) If T ≤ T ′, by the monotonicity of the Suszko operator, Ω̃I,A(T ) ≤
Ω̃I,A(T ′). Thus, we get [[T ′]]Su ⊆ [[T ]]Su. Finally, T Su = ⋂ [[T ]]Su ≤
⋂ [[T ′]]Su = T ′Su.

(d) Suppose T ≤ T ′. Then Ω̃I,A(T ) ≤ Ω̃I,A(T ′) ≤ ΩA(T ′). So T ′ ∈ [[T ]]Su.
Moreover, if T ′ ∈ [[T ]]Su, then T Su = ⋂ [[T ]]Su ≤ T ′.
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(e) By specializing Lemma 1533.
∎

For the Suszko classes, we get an analogous result to Proposition 1569, to
the effect that they are closure families of full I-structures and their Tarski
congruence systems equal the Suszko congruence system of their generating
theory family.

Proposition 1584 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A).

(a) ⟨A, [[T ]]Su⟩ ∈ FStr(I);
(b) Ω̃A([[T ]]Su) = Ω̃I,A(T ).

Proof: Part (a) is a specialization of Proposition 1526.

Since, by Lemma 1583, FiFamI(A)T ⊆ [[T ]]Su, we get Ω̃A([[T ]]Su) ≤ Ω̃I,A(T ).
On the other hand, if T ′ ∈ [[T ]]Su, then Ω̃I,A(T ) ≤ ΩA(T ′). Hence Ω̃I,A(T ) ≤
⋂T ′∈[[T ]]Su ΩA(T ′) = Ω̃A([[T ]]Su). Equality now follows. ∎

The mapping T ↦ T Su is monotone.

Lemma 1585 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. For
all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies T Su ≤ T ′Su.

Proof: By Proposition 1529. ∎

Moreover, even though T Su is not necessarily a Suszko theory family, in
case it happens to be, it is the largest such below T .

Lemma 1586 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). For all T ′ ∈ FiFamI,Su(A), such that T ′ ≤ T , we have T ′ ≤ T Su.

Proof: Suppose T ′ ∈ FiFamI,Su(A), such that T ′ ≤ T . Then, by the hypoth-
esis and Lemma 1585, T ′ = T ′Su ≤ T Su. ∎

As far as characterizing Suszko theory families, we have the following

Proposition 1587 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A). T ∈ FiFamI,Su(A) if and only if T /Ω̃I,A(T ) is the least
I-filter family of A/Ω̃I,A(T ).
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Proof: By Proposition 1530. ∎

It turns out that the collection of Suszko theory families of a π-institution
forms a join complete subsemilattice of the lattice of all theory families.

Lemma 1588 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩ FiFamI,Su(A) is a join complete subsemilattice of FiFamI(A).
Proof: Suppose {T i ∶ i ∈ I} ⊆ FiFamI,Su(A). By Lemma 1585, we get, for
all i ∈ I,

T i = (T i)Su ≤ (⋁
i∈I

T )Su.
This gives ⋁i∈I T i ≤ (⋁i∈I T i)Su. But, by Lemma 1583, (⋁i∈I T i)Su ≤ ⋁i∈I T i.
Hence, we conclude that ⋁i∈I T i ∈ FiFamI,Su(A). ∎

For an F-algebraic system A and T ∈ FiFamI(A), it turns out that T is
a Suszko I-filter family exactly when it is the least filter family of a full I-
structure, whose closure family consists of the upset in the lattice of I-theory
families generated by T .

Theorem 1589 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). The following conditions are equivalent:

(i) T ∈ FiFamI,Su(A);
(ii) ⟨A,FiFamI(A)T ⟩ ∈ FStr(I);

(iii) T = ⋂T , where T ⊆ FiFamI(A) is an upset and ⟨A,T ⟩ ∈ FStr(I).
Proof:

(i)⇒(ii) Assume that T ∈ FiFamI,Su(A). Then, by Lemma 1583, FiFamI(A)T =
[[T ]]Su and, moreover, by Proposition 1584, ⟨A, [[T ]]Su⟩ ∈ FStr(I).

(ii)⇒(iii) Assume (ii) holds and set T = FiFamI(A)T . Then, T = ⋂T , T is an
upset in FiFamI(A) and, by hypothesis, ⟨A,T ⟩ ∈ FStr(I).

(iii)⇒(i) Suppose, finally, that T = ⋂T , where T is an upset in FiFamI(T )
and ⟨A,T ⟩ is a full I-structure. We then have T = ⋂T ∈ T , since
T is a closure family. Hence, since T is an upset, FiFamI(A)T ⊆ T .
But, by hypothesis T = ⋂T , whence T ⊆ FiFamI(A)T . Thus, we get
that T = FiFamI(A)T . Since ⟨A,T ⟩ is a full I-structure, we have, by
Theorem 1395,

T = FiFamI(A)T = {T ′ ∈ FiFamI(A) ∶ Ω̃A(FiFamI(A)T ) ≤ ΩA(T ′)}.
But Ω̃A(FiFamI(A)T ) = Ω̃I,A(T ), whence FiFamI(A)T = [[T ]]Su. Now

we get T = ⋂FiFamI(A)T = ⋂ [[T ]]Su = T Su and T ∈ FiFamI,Su(A).
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∎

It turns out that requiring that all I-filter families on all F-algebraic
systems be Suszko filter families is tantamount to I being family completely
reflective.

Theorem 1590 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is family c-reflective;

(ii) For every F-algebraic system A, FiFamI,Su(A) = FiFamI(A);
(iii) For every A ∈ AlgSys(I), FiFamI,Su(A) = FiFamI(A).
Proof:

(i)⇒(iii) Assume that I is family c-reflective and let A be an I-algebraic system

and T ∈ FiFamI(A). Then, for all T ′ ∈ [[T ]]Su, we have Ω̃I,A(T ) ≤
ΩA(T ′). By family c-reflectivity and Lemma 826, we get T ≤ T ′, Thus,

T ≤ ⋂ [[T ]]Su = T Su. Since, by Lemma 1583, T Su ≤ T , we get T = T Su,
i.e., T ∈ FiFamI,Su(A). We conclude that FiFamI,Su(A) = FiFamI(A).

(iii)⇒(ii) Suppose that (iii) holds and let A be an F-algebraic system and T ∈
FiFamI(A). Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
Set T ′ ∈ ⋂FiFamI(A/Ω̃I,A(T )). Since Ω̃I,A(T ) is compatible with T ,
by Corollary 57, T /Ω̃I,A(T ) ∈ FiFamI(A/Ω̃I,A(T )). Thus, by defini-
tion, T ′ ≤ T /Ω̃I,A(T ). Thus, we get

Ω̃I,A/Ω̃
I,A(T )(T ′) ≤ Ω̃I,A/Ω̃

I,A(T )(T /Ω̃I,A(T )) =∆A/Ω̃
I,A(T ).

By hypothesis, since A/Ω̃I,A(T ) ∈ AlgSys(I), we get that

T ′, T /Ω̃I,A(T ) ∈ FiFamI,Su(A/Ω̃I,A(T )).
By Proposition 1528, T ′ = T /Ω̃I,A(T ). Thus, T /Ω̃I,A(T ) is the least
I-theory family on A/Ω̃I,A(T ). Therefore, by Proposition 1587, T ∈
FiFamI,Su(A).

(ii)⇒(i) Assume (ii) and let A be an F-algebraic system, T,T ′ ∈ FiFamI(A),
such that Ω̃I,A(T ) ≤ ΩA(T ′). By definition, T ′ ∈ [[T ]]Su. Since T = T Su,

we get that T = ⋂ [[T ]]Su ≤ T ′. By Lemma 826, I is family c-reflective.
∎

Using Theorem 1590, we get additional characterizations of family c-ref-
lectivity.
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Corollary 1591 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is family c-reflective;

(ii) ⟨A,FiFamI(A)T ⟩ ∈ FStr(I), for every F-algebraic system A and all
T ∈ FiFamI(A);

(iii) [[T ]]Su = FiFamI(A)T , for every F-algebraic system A and all T ∈
FiFamI(A).

Proof:

(i)⇒(ii) Assume I is family c-reflective and let A be an F-algebraic system
and T ∈ FiFamI(A). By Theorem 1590, T ∈ FiFamI,Su(A). Thus, by
Theorem 1589, ⟨A,FiFamI(A)T ⟩ ∈ FStr(I).

(ii)⇒(iii) Assume (ii). Let A be an F-algebraic system and T ∈ FiFamI(A).
By hypothesis, ⟨A,FiFamI(A)T ⟩ ∈ FStr(I). Thus, by Theorem 1589,

T ∈ FiFamI,Su(A). Therefore, by Lemma 1583, [[T ]]Su = FiFamI(A)T .

(iii)⇒(i) Assume (iii). Then, by Lemma 1583, FiFamI(A) = FiFamI,Su(A).
Therefore, by Theorem 1590, I is family c-reflective.

∎

The condition that all full I-structures are of the form given in Part (ii)
of Theorem 1591 is tantamount to weak family algebraizability.

Corollary 1592 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is weakly family algebraizable if and only
if FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI(A)}, for every F-algebraic
system A.

Proof: By definition I is WF algebraizable if and only if it is protoalge-
braic and family c-reflective, if and only if, by Theorem 1582 and by Corol-
lary 1591, for every F-algebraic system A, FStrI(A) ⊆ {⟨A,FiFamI(A)T ⟩ ∶
T ∈ FiFamI(A)} and {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI(A)} ⊆ FStrI(A), if
and only if FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI(A)}, for every F-
algebraic system A. ∎

Moreover, as far as characterizations of WF algberaizability we obtain
one that involves both Suszko classes and Suszko filter families.

Proposition 1593 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is weakly family algebraizable if
and only if, for every F-algebraic system A, FiFamI(A) = FiFamI,Su(A)
and, for every T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈ FStr(I), there exists

T ∈ FiFamI(A), such that T = [[T ]]Su.
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Proof: Suppose that I is weakly family algebraizable. Since it is protoalge-
braic, by Theorem 1582, for every F-algebraic system A, if ⟨A,T ⟩ ∈ FStr(I),
then T = FiFamI(A)T , for some T ∈ FiFamI(A). Since I is family c-

reflective, by Corollary 1591, FiFamI(A)T = [[T ]]Su. Hence, if ⟨A,T ⟩ ∈
FStr(I), then T = [[T ]]Su, for some T ∈ FiFamI(A). Finally, by Theorem
1590, FiFamI(A) = FiFamI,Su(A).

Suppose, conversely, that the given property holds. Since, for every F-
algebraic system A, FiFamI(A) = FiFamI,Su(A), by Theorem 1590, I is

family c-reflective. By, Corollary 1591, for all T ∈ FiFamI(A), [[T ]]Su =
FiFamI(A)T . By hypothesis, for all T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈
FStr(I), there exists T ∈ FiFamI(A), such that T = FiFamI(A)T . Hence,
by Theorem 1582, I is also protoalgebraic. We conclude that I is WF alge-
braizable. ∎

As far as Suszko classes go, we have a special correspondence theorem
that follows from the General Correspondence Theorem 1552 for O-classes.

Theorem 1594 (Correspondence Theorem for Suszko Classes) Let F =⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on
F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, ⟨H,γ⟩ ∶ A → B a
surjective morphism, with H an isomorphism, and T ∈ FiFamI(A). If ⟨H,γ⟩
is Ω̃I-compatible with T , then γ induces an order isomorphism from [[T ]]Su
to [[γ(T )]]Su, with inverse γ−1.

Proof: By Proposition 1544, Ω̃I is a semi-coherent family of compatibility
I-operators, whence, by Theorem 1552, we get the conclusion. ∎

Under the hypotheses of Theorem 1594, we also obtain a correspondence
between Suszko filter families:

Corollary 1595 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic
systems, ⟨H,γ⟩ ∶ A→ B a surjective morphism, with H an isomorphism, and
T ∈ FiFamI(A), such that ⟨H,γ⟩ is Ω̃I-compatible with T . Then

T ∈ FiFamI,Su(A) iff γ(T ) ∈ FiFamI,Su(B).
Proof: We have

T ∈ FiFamI,Su(A) iff T = T Su

iff T = ⋂ [[T ]]Su
iff γ(T ) = ⋂ [[γ(T )]]Su (by Theorem 1594)
iff γ(T ) = γ(T )Su
iff γ(T ) ∈ FiFamI,Su(B).

∎
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Analogously to Theorem 1577, characterizing protoalgebraicity via a cor-
respondence between posets of filter families of F -algebraic systems related
via surjective strict morphisms, we get a correspondence theorem character-
izing family c-reflectivity.

Theorem 1596 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family c-reflective if and only if, for
all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all T ∈ FiFamI(A)
and T ′ ∈ FiFamI(B), and all strict surjective ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩, with
H an isomorphism, such that ⟨H,γ⟩ is Ω̃I-compatible with T , γ induces an
order isomorphism from FiFamI(A)T onto FiFamI(B)T ′Su , with inverse γ−1.

Proof: Suppose, first, that I is family c-reflective. Let ⟨H,γ⟩ ∶ ⟨A, T ⟩ →⟨B, T ′⟩ be a strict surjective morphism, with H an isomorphism, such that

⟨H,γ⟩ is Ω̃I-compatible with T . By Theorem 1594, γ ∶ [[T ]]Su → [[T ′]]Su is an

order isomorphism with inverse γ−1. By Corollary 1591, [[T ]]Su = FiFamI(AT

and [[T ′]]Su = FiFamI(B)T ′ . Moreover, by Theorem 1590, T ′ = T ′Su. Thus,
we get the conclusion.

Assume, conversely, that the given condition holds. It suffices, by Theo-
rem 1590, to show that every I-filter family on every F-algebraic system is a
Suszko I-filter family. So let A be an F-algebraic system and T ∈ FiFamI(A).
Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
Then ⟨I, π⟩ ∶ ⟨A, T ⟩ → ⟨A/Ω̃I,A(T ), T /Ω̃I,A(T )⟩ is a strict surjective mor-
phism, with I an isomorphism and it is Ω̃I-compatible with T . By hypothe-
sis,

π ∶ FiFamI(A)T → FiFamI(A/Ω̃I,A(T ))(T /Ω̃I,A(T ))Su
is an order isomorphism with inverse π−1.

• By Lemma 1557, we get Ω̃A/Ω̃
I,A(T )(T /Ω̃I,A(T )) = Ω̃I,A(T )/Ω̃I,A(T ) =

∆A/Ω̃
I,A(T ). Thus, by the definition of a Suszko class,

[[T /Ω̃I,A(T )]]Su = FiFamI(T /Ω̃I,A(T )),
whence (T /Ω̃I,A(T ))Su = ⋂FiFamI(T /Ω̃I,A(T )) and, therefore,

FiFamI(T /Ω̃I,A(T ))(T /Ω̃I,A(T ))Su = FiFamI(T /Ω̃I,A(T )).
• By Theorem 1594, π ∶ [[T ]]Su → [[T /Ω̃I,A(T )]]Su is an order isomorphism

with inverse π−1.
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We conclude that [[T ]]Su = FiFamI(A)T . By Lemma 1583, T ∈ FiFamI,Su(A).
Thus, every I-filter family on every F-algebraic system is a Suszko I-filter
family and, by Theorem 1590, I is family c-reflective. ∎

Along similar lines, for weakly family algebraizable π-institutions, we get
the following characterization, which consists of strengthening the condition
in Theorem 1596 by requiring that it holds for all strict surjective morphisms
with isomorphic signature components, without additional compatibility re-
quirements.

Theorem 1597 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is weakly family algebraizable if and
only if, for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all T ∈
FiFamI(A) and T ′ ∈ FiFamI(B), and all strict surjective morphisms ⟨H,γ⟩ ∶⟨A, T ⟩ → ⟨B, T ′⟩, with H an isomorphism, γ induces an order isomorphism
from FiFamI(A)T onto FiFamI(B)T ′Su , with inverse γ−1.

Proof: Suppose, first, that I is weakly family algebraizable. On the one
hand, it is protoalgberaic, whence, by Theorem 1577, γ ∶ FiFamI(A)T →
FiFamI(B)T ′ is an order isomorphism with inverse γ−1. On the other hand,
it is family c-reflective, whence by Theorem 1590, T ′ = T ′Su. This establishes
the conclusion.

Assume, conversely, that the property in the statement holds. Then, by
Theorem 1596, I is family c-reflective. Thus, by Theorem 1590, T ′Su = T ′.
So γ ∶ FiFamI(A)T → FiFamI(B)T ′ is an order isomorphism with inverse γ−1.
Hence, by Theorem 1577, I is also protoalgebraic. Therefore, I , being both
protoalgebraic and family c-reflective, is weakly family algebraizable. ∎

Next, in analogy with Proposition 1579, we give a characterization of
those π-institutions I all of whose I-structures correspond to closure families
consisting of Suszko classes.

Proposition 1598 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) FStrI(A) = {⟨A, [[T ]]Su⟩ ∶ T ∈ FiFamI(A)}, for every F-algebraic system
A;

(ii) Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is surjective, for every F-algebraic
system A.

Proof:

(i)⇒(ii) Suppose (i) holds. Let A be an F-algebraic system and θ ∈ ConSysI(A).
Then, by Corollary 1565, there exists T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈
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FStrI(A) and Ω̃A(T ) = θ. By hypothesis, there exists T ∈ FiFamI(A),
such that T = [[T ]]Su. Now we get, using Proposition 1584,

θ = Ω̃A(T ) = Ω̃A([[T ]]Su) = Ω̃I,A(T ).
Thus, Ω̃I,A is indeed surjective.

(ii)⇒(i) Assume that (ii) holds. Since, by Proposition 1584, the right-to-left
inclusion in (i) always holds, it suffices to show the reverse inclusion.
To this end, let T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈ FStr(I). Then
A/Ω̃A(T ) ∈ AlgSys(I), which gives that Ω̃A(T ) ∈ ConSysA(A). There-
fore, by hypothesis, there exists T ∈ FiFamI(A), such that Ω̃A(T ) =
Ω̃I,A(T ). Since, by Proposition 1584, Ω̃A([[T ]]Su) = Ω̃I,A(T ) and, by

Proposition 1584, ⟨A.[[T ]]Su⟩ ∈ FStrI(A), we get, by the isomorphism

established in Corollary 1565, that T = [[T ]]Su.
∎

The next proposition provides a characterization of weakly family alge-
braizable π-institution inside the class of family c-reflective ones, based on
the form of their full I-structures.

Proposition 1599 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family c-reflective π-institution based on F. I is weakly family
algebraizable if and only if, for every F-algebraic system A,

FStrI(A) = {⟨A, [[T ]]Su⟩ ∶ T ∈ FiFamI(A)}.
Proof: Suppose, first, that I is weakly family algebraizable. Since this
implies that I is protoalgebraic, we get that AlgSys(I) = AlgSys∗(I). Thus,

by Proposition 1579, FStrI(A) = {⟨A, [[T ]]Su⟩ ∶ T ∈ FiFamI(A)}, for every
F-algebraic system A.

Suppose, conversely, that the condition given in the statement holds
and let A be an F-algebraic system and T ∈ FiFamI(A). Since ΩA(T ) ∈
ConSysI∗(A) ⊆ ConSysI(A), by hypothesis and Proposition 1598, there ex-

ists T ′ ∈ FiFamI(A), such that ΩA(T ) = Ω̃I,A(T ′). Hence, [[T ]]∗ = [[T ′]]Su.
Since I is family c-reflective, by Theorem 1590 and Lemma 1583, FiFamI(A) =
FiFamI,Su(A) ⊆ FiFamI∗(A). Thus, T = T ∗ = T ′Su = T ′. We conclude that
ΩA(T ) = Ω̃I,A(T ). By Proposition 1567, we conclude that I is protoalge-
braic. Since, by hypothesis, it is family c-reflective, we conclude that I is
weakly family algebraizable. ∎

We see, next, that family c-reflectivity is characterized by the property
that all principal filters in the lattice of filter families are Suszko full classes
and, also, by the reflectivity of the Suszko operator on every F-algebraic
system.
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Proposition 1600 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is family c-reflective;

(ii) FiFamI(A)T is Suszko full for every F-algebraic system A and all T ∈
FiFamI(A);

(iii) Ω̃I,A ∶ FiFamI(A) → ConSys(A) is order reflecting, for every F-alge-
braic system A.

Proof:

(i)⇒(iii) Suppose that I is family c-reflective and let A be an F-algebraic system
and T,T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) ≤ Ω̃I,A(T ′). Then we get

⋂{ΩA(T ′′) ∶ T ≤ T ′′ ∈ FiFamI(A)} ≤ Ω̃I,A(T ′) ≤ ΩA(T ′).
By hypothesis and Lemma 826, ⋂{T ′′ ∶ T ≤ T ′′ ∈ FiFamI(A)} ≤ T ′, i.e.,
T ≤ T ′. Thus, Ω̃I,A is order reflecting.

(iii)⇒(i) If Ω̃I is order reflecting, then it is a fortiori injective. Thus, by Theorem
827, I is family c-reflective.

(ii)⇒(iii) Assume (ii) holds. LetA be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that Ω̃I,A(T ) ≤ Ω̃I,A(T ′). Then, by hypothesis,

FiFamI(A)T = Ω̃I,A
−1(̃̃I,AΩ(FiFamI(A)T ))

= Ω̃I,A
−1(Ω̃I,A(T ))

= {T ′′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ Ω̃I,A(T ′′)}.
Similarly, FiFamI(A)T ′ = {T ′′ ∈ FiFamI(A) ∶ Ω̃I,A(T ′) ≤ Ω̃I,A(T ′′)}.
Therefore, T ′ ∈ FiFamI(A)T , i.e., T ≤ T ′ and Ω̃I,A is order reflecting.

(iii)⇒(ii) Assume Ω̃I,A is order reflecting for every F-algebraic system A. Then

Ω̃I,A
−1(̃̃I,AΩ(FiFamI(A)T ))

= Ω̃I,A
−1(Ω̃I,A(T ))

= {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ Ω̃I,A(T ′)}
= FiFamI(A)T .

Hence FiFamI(A)T is Suszko full.
∎

Finally, we conclude the section with a characterization of protoalgebraic-
ity in terms of the form of full I-structures and, also, by the coincidence of
Leibniz and Suszko classes.
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Proposition 1601 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is protoalgebraic;

(ii) FStr(I) = {⟨A,FiFamI,Ω̃
I(A)⟩ ∶ A ∈ AlgSys(F)};

(iii) [[T ]]∗ = [[T ]]Su, for every F-algebraic system A and all T ∈ FiFamI(A).
Proof:

(i)⇒(ii) Suppose I is protoalgebraic. Then, by Theorem 1582,

FStr(I) = {⟨A,FiFamI,Ω(A)⟩ ∶ A ∈ AlgSys(F)}.
But, by Lemma 1518, Ω̃I = Ω, whence, the conclusion follows.

(i)⇒(iii) If I is protoalgebraic, then, by Lemma 1518, Ω̃I = Ω. Therefore, [[T ]]∗ =
[[T ]]Su, for every F-algebraic system A and all T ∈ FiFamI(A).

(ii)⇒(i) Suppose (ii) holds. Then, for every F-algebraic system A,

FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI,Ω̃
I(A)}.

So by Theorem 1582, I is protoalgebraic.

(iii)⇒(i) Assume (iii). Let A be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that T ≤ T ′. By Lemma 1583,

T ′ ∈ [[T ′]]Su ⊆ [[T ]]Su = [[T ]]∗.
So ΩA(T ) ≤ ΩA(T ′). Thus, Ω is monotone and, therefore, I is protoal-
gebraic.

∎

21.12 Frege Operator as an I-Operator

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-
tution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

Recall that λA ∶ FiFamI(A)→ EqvFam(A) is given, for all T ∈ FiFamI(A),
by setting λA(T ) = {λAΣ(T )}Σ∈∣Sign∣, where, for all Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),

λAΣ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ φ ∈ TΣ iff ψ ∈ TΣ}.
Its lifting is the operator λ̃A ∶ P(FiFamI(A)) → EqvFam(A), given, for all
T ⊆ FiFamI(A),

λ̃A(T ) =⋂{λA(T ′) ∶ T ′ ∈ T }.
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Its relativization is the operator λ̃I,A ∶ FiFamI(A)→ EqvFam(A), given, for
all T ∈ FiFamI(A), by

λ̃I,A(T ) =⋂{λA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)}.
Given T ∈ FiFamI(A), the λ̃I-class of T or Frege class of T is

[[T ]]λ̃I = ΩA
−1(λ̃I,A(T )) = {T ′ ∈ FiFamI(A) ∶ λ̃I,A(T ) ≤ ΩA(T ′)}.

Since λ is not a compatibility I-operator, [[T ]]λ̃I may not be the closure
family of a full I-structure. But, nevertheless, it is still a closure family on
FiFamI(A).
Proposition 1602 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system

and T ∈ FiFamI(A). Then [[T ]]λ̃I is a closure family on FiFamI(A).
Proof: This is specialization of Proposition 1525. ∎

Given T ∈ FiFamI(A), based on Proposition 1602, we denote by T λ̃
I

the

least I-filter family of [[T ]]λ̃I , i.e.,

T λ̃
I

=⋂ [[T ]]λ̃I .
Moreover, we say that T is a Frege filter family if T = T λ̃I . The collection

of all Frege I-filter families of A is denoted by FiFamI,λ̃
I(A).

We give, now, a characterization of Frege filter families for π-institutions
with theorems.

Lemma 1603 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, having theorems, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system and T ∈ FiFamI(A).

T ∈ FiFamI,λ̃
I(A) iff λ̃I,A(T ) ≤ ΩA(T ) iff T ∈ [[T ]]λ̃I .

Proof: The last equivalence is by the definition of [[T ]]λ̃I . So it suffices to
show the first equivalence.

Suppose, first, that T ∈ FiFamI,λ̃
I(A). Then, we have

T = T λ̃
I

= ⋂ [[T ]]λ̃I
= ⋂{T ′ ∈ FiFamI(A) ∶ λ̃I,A(T ) ≤ ΩA(T ′)}.

Thus, taking into account Proposition 1602, λ̃I,A(T ) ≤ ΩA(T ).



Voutsadakis CHAPTER 21. I-OPERATORS 1327

Suppose, conversely, that T ∈ FiFamI(A), such that λ̃I,A(T ) ≤ ΩA(T ).
Let T ′ ∈ FiFamI(A), such that T ′ ∈ [[T ]]λ̃I , i.e., λ̃I,A(T ) ≤ ΩA(T ′). Let
Σ ∈ ∣Sign∣ and t ∈ CI,AΣ (∅), which exists, since I is assumed to have theorems.

Then, if φ ∈ SEN(Σ), such that φ ∈ TΣ, we get CI,AΣ (TΣ, φ) = TΣ = CI,AΣ (TΣ, t).
Thus, ⟨φ, t⟩ ∈ λ̃I,AΣ (T ) ⊆ ΩAΣ(T ′). Since t ∈ T ′Σ, by compatibility, φ ∈ T ′Σ.
Therefore, T ≤ T ′. Now we have

T ≤ ⋂ [[T ]]λ̃I (T ≤ T ′, for all T ′ ∈ [[T ]]λ̃I )

= T λ̃
I

(by definition)

≤ T. (since T ∈ [[T ]]λ̃I )

Hence, we conclude that T = T λ̃I and T ∈ FiFamI,λ̃
I(A). ∎

Assuming that the π-institution I is protoalgebraic, gives the following
characterization of Frege filter families.

Corollary 1604 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a protoalgebraic π-institution based on F, having theorems, A =⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈ FiFamI(A).
T ∈ FiFamI,λ̃

I(A) iff λ̃I,A(T ) ≤ ΩA(T ).
Proof: If T ∈ FiFamI,λ̃

I(A), then

λ̃I,A(T ) ≤ ΩA(T ) (by Lemma ??)

= Ω̃I,A(T ) (by protoalgebraicity)

≤ λ̃I,A(T ). (by compatibility)

Thus, λ̃I,A(T ) = ΩA(T ). The converse is by Lemma 1603. ∎

Each component of any I-filter family is determined by any of its elements
modulo the Frege operator.

Proposition 1605 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, having theorems, A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system and T ∈ FiFamI(A). Then, for all Σ ∈ ∣Sign∣ and all
φ ∈ TΣ, TΣ = φ/λ̃I,AΣ (T ).
Proof: Suppose that T ∈ FiFamI,λ̃

I(A) and let Σ ∈ ∣Sign∣, φ ∈ TΣ.

• Let ψ ∈ TΣ. Then, we have C
I,A
Σ (TΣ, φ) = TΣ = CI,AΣ (TΣ, ψ). Thus,

⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ), i.e., ψ ∈ φ/λ̃I,AΣ (T ).
• Conversely, if ψ ∈ φ/λ̃I,AΣ (T ), then ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ), which gives CI,AΣ (TΣ, φ) =
CI,AΣ (TΣ, ψ). Since φ ∈ TΣ, we get ψ ∈ TΣ.
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We conclude that TΣ = φ/λ̃I,AΣ (T ). ∎

Every Frege filter family is also a Leibniz filter family.

Lemma 1606 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, having theorems. Then

FiFamI,λ̃
I(A) ⊆ FiFamI∗(A).

Proof: Suppose T ∈ FiFamI,λ̃
I(A). Then, by Lemma 1603, λ̃I,A(T ) ≤

ΩA(T ). Since T ∗ ∈ [[T ]]∗, we also have ΩA(T ) ≤ ΩA(T ∗). Therefore, λ̃I,A(T ) ≤
ΩA(T ∗). Thus, by definition, T ∗ ∈ [[T ]]λ̃I . Now we have

T = T λ
I

=⋂ [[T ]]λ̃I ≤ T ∗
and, since, by Lemma 1568, T ∗ ≤ T always holds, we get T = T ∗, i.e., T ∈
FiFamI∗(A). ∎

We saw that, in general, the Leibniz and Suszko filter families of a given
filter family T are included in T , i.e., T ∗, T Su ≤ T . On the other hand, for
Frege filter families, we have the reverse inclusion.

Lemma 1607 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, having theorems, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. For all T ∈ FiFamI(A), T ≤ T λ̃I .

Proof: By Proposition 1602, T λ
I ∈ [[T ]]λ̃I . Thus, λ̃I,A(T ) ≤ ΩA(T λI). Let

Σ ∈ ∣Sign∣ and t ∈ CI,AΣ (∅) and assume φ ∈ TΣ. Then, we have CI,AΣ (TΣ, t) =
TΣ = C

I,A
Σ (TΣ, φ), i.e., ⟨t, φ⟩ ∈ λ̃I,AΣ (T ). By the preceding inequality, ⟨t, φ⟩ ∈

ΩAΣ(T λ̃I). But t ∈ T λ̃IΣ , whence, by compatibility, φ ∈ T λIΣ . We conclude that

T ≤ T λ̃I . ∎

Strong Fregeanity is characterized by compatibility of the Frege operator
on theory families and, similarly, full strong Fregeanity by the compatibility
of the Frege operator on filter families of arbitrary algebraic systems.

Proposition 1608 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F.

(a) I is strongly Fregean if and only if λ̃I,F is a compatibility I-operator
on F ;

(b) I is fully strongly Fregean if and only if λ̃I,A is a compatibility I-
operator on every F-algebraic system A.
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Proof: We only prove Part (a) in detail. Part (b) may be proved similarly,
by working on an arbitrary F-algebraic system A instead of on F .

Suppose I is strongly Fregean. Then, by definition, for all T ∈ ThFam(I),
λ̃I,F(T ) ≤ Ω̃I,F(T ) ≤ ΩF(T ). So λI,F is a compatibility I-operator on F .

Suppose, conversely, that λ̃I,F is a compatibility I-operator on F . Then,
for all T ∈ ThFam(I), λ̃I,F(T ) ≤ ΩF(T ). Therefore,

λ̃I,F(T ) = ⋂{λ̃I,F(T ′) ∶ T ≤ T ′ ∈ ThFam(I)} (monotonicity of λ̃I,F)
≤ ⋂{ΩF(T ′) ∶ T ≤ T ′ ∈ ThFam(I)} (by the hypothesis)

= Ω̃I,F(T ). (by definition)

Since, by compatibility, Ω̃I,F(T ) ≤ λ̃I,F(T ) always holds, we conclude that I
is strongly Fregean. ∎

The characterizations of Proposition 1608 imply that a π-institution if
strongly Fregean if and only if every theory family is Frege and that it is fully
strongly Fregean if and only if every filter family of any algebraic system is
a Frege filter family.

Corollary 1609 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F, having theorems. I is strongly Fregean

if and only if ThFam(I) = ThFamλ̃I(I).
Proof: Suppose I is strongly Fregean and let T ∈ ThFam(I). By Proposition

1608, λ̃I,F(T ) ≤ ΩF(T ). Thus, by Lemma 1603, T ∈ ThFamλ̃I(I).
Assume, conversely, that every theory family of I is Frege. Then, by

Lemma 1603, for all T ∈ ThFam(I), λ̃I,F(T ) ≤ ΩF(T ). Thus, by Proposition
1608, I is strongly Fregean. ∎

Corollary 1610 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F, having theorems. I is fully strongly

Fregean if and only if FiFamI(A) = FiFamI,λ̃
I(A), for every F-algebraic

system A.

Proof: The proof follows along the same lines as that of Corollary 1609,
using Proposition 1608 and Lemma 1603, but applied over an arbitrary F-
algebraic system A instead of over F . ∎

Our next goal is to show that the Frege operator λ̃I is a semi-coherent
family of I-operators. But, first, we need to have available an isomorphism
theorem involving this operator. So we embark on some preparatory work.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, and T ∈
FiFamI(A), T ′ ∈ FiFamI(B). A surjective morphism ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩
is called deductive if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

γΣ(φ) = γΣ(ψ) implies CI,AΣ (TΣ, φ) = CI,AΣ (TΣ, ψ).
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Equivalently, ⟨H,γ⟩ is deductive if and only if

Ker(⟨H,γ⟩) ≤ λ̃I,A(T ),
i.e., if and only if ⟨H,γ⟩ is λ̃I-compatible with T .

We now show that for a surjective morphism, with an isomorphic signa-
ture component, compatibility properties and deductive morphisms are very
closely interrelated.

Lemma 1611 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems, and T ∈ FiFamI(A). For a surjective morphism ⟨H,γ⟩ ∶ A → B, with
H an isomorphism, the following statements are equivalent:

(i) ⟨H,γ⟩ is Ω̃I-compatible with T ;

(ii) ⟨H,γ⟩ is λ̃I-compatible with T ;

(iii) ⟨H,γ⟩ ∶ ⟨A, T ⟩→ ⟨B, γ(T )⟩ is deductive.

Proof:

(i)⇒(ii) Suppose Ker(⟨H,γ⟩) ≤ Ω̃I,A(T ). Since, by compatibility, Ω̃I,A(T ) ≤
λ̃I,A(T ), we get that Ker(⟨H,γ⟩) ≤ λ̃I,A(T ). Thus ⟨H,γ⟩ is λ̃I-com-
patible with T .

(ii)⇒(iii) Suppose Ker(⟨H,γ⟩) ≤ λ̃I,A(T ). This implies that Ker(⟨H,γ⟩) is com-
patible with T . Indeed, if Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that
γΣ(φ) = γΣ(ψ) and φ ∈ TΣ, then, by the hypothesis, ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ),
i.e., CI,AΣ (TΣ, φ) = CI,AΣ (TΣ, ψ). Since φ ∈ TΣ, we get that ψ ∈ TΣ.
Thus, by Corollary 56, γ(T ) ∈ FiFamI(B). Moreover, by hypothesis
and the comments preceding the lemma, ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, γ(T )⟩ is
a deductive morphism.

(iii)⇒(i) Suppose that Ker(⟨H,γ⟩) ≤ λ̃I,A(T ). Then, since, by Corollary 17,
Ker(⟨H,γ⟩) is a congruence system on A and, by Proposition 1420,
Ω̃I,A(T ) is the largest congruence system on A included in λ̃I,A(T ), we
conclude that Ker(⟨H,γ⟩) ≤ Ω̃I,A(T ). Thus, ⟨H,γ⟩ is Ω̃I-compatible
with T .

∎

We now show that each deductive morphism, with an isomorphic signa-
ture component, induces an order isomorphism between the principal filter of
the lattice of filter families generated by the domain and the principal filter
of the lattice of theory families generate by its codomain.
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Theorem 1612 (Correspondence Theorem for Deductive Morphisms)
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, T ∈ FiFamI(A),
T ′ ∈ FiFamI(B) and ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ a deductive morphism, with H

an isomorphism. Then γ induces an order isomorphism from FiFamI(A)γ−1(T ′)
onto FiFamI(B)T ′ , with inverse γ−1.

Proof: By Lemma 1611, ⟨H,γ⟩ is Ω̃I-compatible with T . This implies that,
for every T ′′ ∈ FiFamI(A)T ⊆ FiFamI(A)γ−1(T ′), Ker(⟨H,γ⟩) is compatible
with T ′′. It follows by Corollary 56 that, for all T ′′ ∈ FiFamI(A)γ−1(T ′),
γ(T ′′) ∈ FiFamI(B)T ′ . Moreover, the same compatibility property implies
that γ−1(γ(T ′′)) = T ′′, for all T ′′ ∈ FiFamI(A)γ−1(T ′). Finally, by surjectivity
of ⟨H,γ⟩, we get, for all T ′′′ ∈ FiFamI(B)T ′ , γ(γ−1(T ′′′)) = T ′′′. Therefore,
γ ∶ FiFamI(A)γ−1(T ′) → FiFamI(B)T ′ is a bijection and, since, clearly, both γ
and γ−1 are order preserving, they are mutually inverse order isomorphisms,
as claimed. ∎

Now we are ready to return to the main line of work and establish that
λ̃I constitutes a semi-coherent family of I-operators.

Theorem 1613 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Frege operator λ̃I is a semi-coherent
family of I-operators.

Proof: Let A, B be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective mor-
phism, with H an isomorphism, and T ′ ∈ FiFamI(B), such that ⟨H,γ⟩ is
λ̃I-compatible with γ−1(T ′). Then, by Lemma 1611 and Theorem 1612, γ ∶
FiFamI(A)γ−1(T ′) → FiFamI(B)T ′ is an order isomorphism with inverse γ−1.
Thus, for all T ∈ FiFamI(A)γ−1(T ′), γ(T ) ∈ FiFamI(B)T ′ and γ−1(γ(T )) = T .
Now we get, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

C
I,B
H(Σ)
(T ′

H(Σ)
, γΣ(φ)) = C

I,B
H(Σ)
(γΣ(γ−1Σ (T ′H(Σ))), γΣ(φ))

= C
I,B
H(Σ)
(γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), φ)))

= γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), φ)).
Therefore, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ γ−1Σ (λ̃I,BH(Σ)(T ′))
iff ⟨γΣ(φ), γΣ(ψ)⟩ ∈ λ̃I,BH(Σ)(T ′)
iff CI,B

H(Σ)
(T ′

H(Σ)
, γΣ(φ)) = CI,BH(Σ)(T ′H(Σ), γΣ(ψ))

iff γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), φ)) = γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), ψ))
iff C

I,A
Σ (γ−1Σ (T ′H(Σ)), φ) = CI,AΣ (γ−1Σ (T ′H(Σ)), ψ)

iff ⟨φ,ψ⟩ ∈ λ̃I,AΣ (γ−1(T ′)).
We conclude that λ̃I is semi-coherent. ∎
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It turns out that if we strengthen the semi-coherence condition by requir-
ing that λ̃I be commuting over all morphisms, with isomorphic signature
components (regardless of compatibility), then we get a characterization of
protoalgebraicity.

Theorem 1614 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if λ̃I is a
semi-commuting family of I-operators.

Proof: Suppose, first, that I is protoalgebraic and let A, B be F-algebraic
systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism,
and T ′ ∈ FiFamI(B). Then, by Corollary 55, γ−1(T ′) ∈ FiFamI(A). Let
Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ). Then

⟨φ,ψ⟩ ∈ λ̃I,AΣ (γ−1(T ′))
iff C

I,A
Σ (γ−1Σ (T ′H(Σ)), φ) = CI,AΣ (γ−1Σ (T ′H(Σ)), ψ)

iff CI,B
H(Σ)
(T ′

H(Σ)
, γΣ(φ)) = CI,BH(Σ)(T ′H(Σ), γΣ(ψ))

iff ⟨γΣ(φ), γΣ(ψ)⟩ ∈ λ̃I,BH(Σ)(T ′)
iff ⟨φ,ψ⟩ ∈ γ−1Σ (λ̃I,BH(Σ)(T ′)).

Therefore, λ̃I,A(γ−1(T ′)) = γ−1(λ̃I,B(T ′)) and λ̃I is a semi-commuting family
of I-operators.

Assume, conversely, that λ̃I is semi-commuting and let A, B be F-
algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an iso-
morphism, and T ′ ∈ FiFamI(B). Since Ω̃I,B(T ′) ≤ λ̃I,B(T ′), we get

γ−1(Ω̃I,B(T ′)) ≤ γ−1(λ̃I,B(T ′)) = λ̃I,A(γ−1(T ′)).
By Corollary 17, γ−1(Ω̃I,B(T ′)) is a congruence system on A. By Proposition
1420, Ω̃I,A(γ−1(T ′)) is the largest congruence system below λ̃I,A(γ−1(T ′)).
Therefore, we get γ−1(Ω̃I,B(T ′)) ≤ Ω̃I,A(γ−1(T ′)). Since the converse inclu-
sion always holds, Ω̃I is semi-commuting. Thus, by Corollary 1537, we get
that Ω̃I = Ω and, therefore, by Lemma 1518, I is protoalgebraic. ∎

We also get a commutativity property with direct images.

Lemma 1615 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism and
T ∈ FiFamI(A). If ⟨H,γ⟩ is λ̃I-compatible with T , then

γ(λ̃I,A(T )) = λ̃I,B(γ(T )).
Proof: By hypothesis and Lemma 1611, ⟨H,γ⟩ is Ω̃I-compatible with T .
Therefore, by Corollary 56, γ(T ) ∈ FiFamI(B) and, also, T = γ−1(γ(T )).
Since, by Theorem 1613, λ̃I is semi-coherent, we get

λ̃I,A(T ) = λ̃I,A(γ−1(γ(T ))) = γ−1(λ̃I,B(γ(T ))).
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Hence, by the surjectivity of ⟨H,γ⟩, we get γ(λ̃I,A(T )) = λ̃I,B(γ(T )). ∎

In analogy with previous correspondence theorems we have the following
one regarding correspondence between Frege classes.

Theorem 1616 (Correspondence Theorem for Frege Classes) Let F =⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on
F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, ⟨H,γ⟩ ∶ A → B a
surjective morphism, with H an isomorphism and T ∈ FiFamI(A). If ⟨H,γ⟩
is λ̃I-compatible with T , then γ induces an order isomorphism from [[T ]]λ̃I
onto [[γ(T )]]λ̃I , with inverse γ−1.

Proof: Since ⟨H,γ⟩ is λ̃I-compatible with T , we get, by Lemma 1611,
that ⟨H,γ⟩ is Ω̃I-compatible with T . Therefore, by Corollary 56, γ(T ) ∈
FiFamI(B) and, also, T = γ−1(γ(T )).

Now, let T ′ ∈ [[T ]]λ̃I . Then Ker(⟨H,γ⟩) ≤ λ̃I,A(T ) ≤ ΩA(T ′). As a conse-
quence, we get γ(T ′) ∈ FiFamI(B) and γ−1(γ(T ′)) = T ′. Now we get

λ̃I,B(γ(T )) = γ(λ̃I,A(T )) (by Lemma 1615)

≤ γ(ΩA(T ′)) (λ̃I,A(T ) ≤ ΩA(T ′))
= ΩB(γ(T ′)). (by Lemma 1542).

We conclude that γ(T ′) ∈ [[γ(T )]]λ̃I .

Suppose, conversely, that T ′ ∈ [[γ(T )]]λ̃I . Then λ̃I,B(γ(T )) ≤ ΩB(T ′). By
Corollary 55, γ−1(T ′) ∈ FiFamI(A) and, by surjectivity, γ(γ−1(T ′)) = T ′.
Moreover, ⟨H,γ⟩ is λ̃I-compatible with γ−1(γ(T )) = T . Hence, we have

λ̃I,A(T ) = λ̃I,A(γ−1(γ(T )))
= γ−1(λ̃I,B(T )) (by Theorem 1613)

≤ γ−1(ΩB(T ′)) (λ̃I,B(γ(T )) ≤ ΩB(T ′))
= ΩA(γ−1(T ′)). (by Proposition 24)

Hence, γ−1(T ′) ∈ [[T ]]λ̃I .

Thus, γ ∶ [[T ]]λ̃I → [[γ(T )]]λ̃I is a bijection, with inverse γ−1. Since both
mappings are order-preserving, we conclude that they form a pair of mutually
inverse order isomorphisms. ∎

This correspondence theorem allows us to provide characterizations of full
self extensionality and full strong Fregeanity in the following two corollaries.

Corollary 1617 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is fully self extensional if and only if,
for all A ∈ AlgSys(I), λ̃I,A(⋂FiFamI(A)) = ∆A.
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Proof: Suppose, first, that I is fully self extensional and let A ∈ AlgSys(I).
Then we have

λ̃I,A(⋂FiFamI(A)) = Ω̃I,A(⋂FiFamI(A))
(by full self extensionality)

= ∆A. (since A ∈ AlgSys(I))
Suppose, conversely, that, for all A ∈ AlgSys(I), λ̃I,A(⋂FiFamI(A)) =

∆A, and let A be an F-algebraic system. Set, for notational convenience and
brevity, B = A/Ω̃I,A(⋂FiFamI(A)), and consider the quotient morphism

⟨I, π⟩ ∶ A→ B.

Then Ker(⟨I, π⟩) = Ω̃I,A(⋂FiFamI(A)), whence Ker(⟨I, π⟩) is compatible
with ⋂FiFamI(A). Hence, we get, by Corollary 56, π(⋂FiFamI(A)) ∈
FiFamI(B) and π−1(π(⋂FiFamI(A))) = ⋂FiFamI(A). Since, ⋂FiFamI(A)
is the least I-family of A, it must be a Suszko I-filter family. Hence, by
Corollary 1554, π(⋂FiFamI(A)) is the least I-filter family on B, i.e., we
have

π(⋂FiFamI(A)) =⋂FiFamI(B).
Since Ker(⟨I, π⟩) = Ω̃I,A(⋂FiFamI(A)) ≤ λ̃I,A(⋂FiFamI(A)), ⟨I, π⟩ is λ̃I-
compatible with π−1(π(⋂FiFamI(A))) = ⋂FiFamI(A). Moreover, since B ∈
AlgSys(I), we get, by hypothesis, λ̃I,B(⋂FiFamI(B)) =∆B. Now we get

Ω̃I,A(⋂FiFamI(A)) = Ker(⟨I, π⟩) (definition of ⟨I, π⟩)
= π−1(∆B) (definition of kernel)

= π−1(λ̃I,B(π(⋂FiFamI(A))))
(shown above)

= λ̃I,A(π−1(π(⋂FiFamI(A))))
(Theorem 1614)

= λ̃I,A(⋂FiFamI(A)).
We conclude that I is fully self extensional. ∎

Corollary 1618 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is fully strongly Fregean if and only if,
for all A ∈ AlgSys(I) and all T ∈ FiFamI(A), λ̃I,A(T ) = Ω̃I,A(T ).
Proof: The left-to-right implication follows directly by the definition of full
strong Fregeanity. Assume, conversely, that, for all A ∈ AlgSys(I) and all
T ∈ FiFamI(A), λ̃I,A(T ) = Ω̃I,A(T ). Let A be an arbitrary F-algebraic
system, T ∈ FiFamI(A) and consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
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Ker(⟨I, π⟩) = Ω̃I,A(T ) is compatible with T . Hence π(T ) ∈ FiFamI(A/Ω̃I,A(T ))
and π−1(π(T )) = T . Moreover, Ker(⟨I, π⟩) = Ω̃I,A(T ) ≤ λ̃I,A(T ). Thus, ⟨I, π⟩
is λ̃I-compatible with T . Since A/Ω̃I,A(T ) ∈ AlgSys(I), we get, by hypoth-
esis,

λ̃I,A/Ω̃
I,A(T )(π(T )) = Ω̃I,A/Ω̃

I,A(T )(π(T )) = ∆A/Ω̃
I,A(T ).

Now we have

Ω̃I,A(T ) = Ker(⟨I, π⟩) (definition of ⟨I, π⟩)
= π−1(∆A/Ω̃I,A(T )) (definition of kernel)

= π−1(λ̃I,A/Ω̃I,A(T )(π(T ))) (shown above)

= λ̃I,A(π−1(π(T ))) (Theorem 1614)

= λ̃I,A(T ).
We conclude that I is fully strongly Fregean. ∎

On the other hand, strong Fregeanity, combined with the existence of
natural theorems, implies assertionality.

Corollary 1619 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly Fregean and has natural
theorems, then it is syntactically family assertional.

Proof: Assume I is strongly Fregean and has natural theorems. Let ϑ♭ ∶(SEN♭)k → SEN♭ be a natural theorem. Then define τ ♭ ∶ (SEN♭)k+1 → SEN♭

by
τ ♭ ∶= {pk+1,0 ≈ ϑ♭ ○ ⟨pk+1,1, . . . , pk+1,k⟩}.

We show, first, that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all χ⃗, χ⃗′ ∈
SEN♭(Σ), ⟨ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′⟩ ∈ ΩΣ(T ). Since, ϑ♭ is a natural theorem, we have,
for all Σ ∈ ∣Sign♭∣ and all χ⃗, χ⃗′ ∈ SEN♭(Σ), ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′) ∈ ThmΣ(I). There-

fore, we get ⟨ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′)⟩ ∈ λ̃IΣ(T ). Thus, by strong Fregeanity, ⟨ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′)⟩ ∈
ΩIΣ(T ) ≤ ΩΣ(T ).

We show, next, that I is systemic. To this end, let T ∈ ThFam(I),
Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ ∈ SEN♭(Σ), such that φ ∈ TΣ.
Let t ∈ ThmΣ(I). Then, we have ⟨φ, t⟩ ∈ λ̃IΣ(T ) = Ω̃IΣ(T ). Hence, since

Ω̃I(T ) is a congruence system, we get ⟨SEN♭(f)(φ),SEN♭(f)(t)⟩ ∈ Ω̃IΣ′(T ) =
λ̃IΣ′(T ). But SEN♭(f)(t) ∈ ThmΣ′(I) ⊆ TΣ′ and, therefore, by compatibility,
SEN♭(f)(φ) ∈ TΣ′ . Hence, T ∈ ThSys(I) and I is systemic.

Finally, we show that, for all T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),
φ ∈ TΣ iff τ ♭Σ[φ] ≤ ΩΣ(T ).

Assume, first φ ∈ TΣ. By systemicity, for every Σ′ ∈ ∣Sign♭∣ and all f ∈
Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ TΣ′ . Therefore, for all χ⃗′ ∈ SEN♭(Σ′), ⟨SEN♭(f)(φ), ϑ♭Σ′(χ⃗′)⟩ ∈
λ̃IΣ′(T ) = Ω̃IΣ′(T ) ≤ ΩΣ′(T ). If, conversely, for all Σ′ ∈ ∣Sign♭∣, all f ∈
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Sign(Σ,Σ′) and all χ⃗′ ∈ SEN♭(Σ′), we have ⟨SEN♭(φ), ϑ♭Σ′(χ⃗′)⟩ ∈ ΩΣ′(T ),
then, in particular for f = iΣ, we get, for all χ⃗ ∈ SEN♭(Σ), ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ ΩΣ(T ).
Since ϑ♭Σ(χ⃗) ∈ ThmΣ(I) ⊆ TΣ, we get, by compatibility, that φ ∈ TΣ. ∎

Finally, combining this work with previously obtained results, we get the
following corollary comparing the injectivity of the various I-operators we
have studied.

Corollary 1620 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If Ω̃I is injective, then Ω̃ is injective.

(b) If Ω is injective, then λ̃I is injective.

Proof:

(a) If Ω̃I is injective, then, by Theorem 827, Ω is c-reflective. Thus, it is,
a fortiori, injective.

(b) If Ω is injective, then, necessarily, I has theorems. Therefore, by The-
orem 495, we get that λ̃I is injective.

∎

21.13 Leibniz Hierarchy Revisited

Using the Isomorphism Theorem 1408 between full I-structures and I-con-
gruence systems, we obtain, in the case of protoalgebraic π-institutions, the
following special isomorphism theorem between Leibniz I-filter families and
I∗-congruence systems.

Proposition 1621 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic π-institution based on F. Then, for every F-
algebraic system A, the Leibniz operator ΩA ∶ FiFamI∗(A) → ConSysI∗(A)
is an order isomorphism.

Proof: By Theorem 1408, for every F-algebraic system A,

Ω̃A ∶ FStrI(A)→ ConSysI(A)
is an order isomorphism. By protoalgebraicity and Theorem 1582,

FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI∗(A)}.
Moreover, by protoalgebraicity, for all T ∈ FiFamI(A), Ω̃A(FiFamI(A)T ) =
ΩA(T ) and, also, ConSysI(A) = ConSysI∗(A). Therefore, we get that ΩA ∶
FiFamI∗(A)→ ConSysI∗(A) is an order isomorphism. ∎
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We now show that ΩA, as a mapping from Leibniz I-filter families to
I∗-congruence systems on I-algebraic systems, being an order isomorphism
is sufficient to establish that the same mapping is an order isomorphism for
all F-algebraic systems.

Proposition 1622 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then, the following conditions are
equivalent:

(i) For every F-algebraic system A, ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is
an order isomorphism;

(ii) For every A ∈ AlgSys(I), ΩA ∶ FiFamI∗(A)→ ConSysI∗(A) is an order
isomorphism.

Proof: Since (i)⇒(ii) is trivial, assume (ii) holds and let A = ⟨A, ⟨F,α⟩⟩ be
an arbitrary F-algebraic system.

By Proposition 1528, ΩA is injective on FiFamI∗(A).
To show surjectivity, assume θ ∈ ConSysI∗(A). By definition, there exists

T ∈ FiFamI(A), such that θ = ΩA(T ). Consider the quotient morphism⟨I, π⟩ ∶ A → A/ΩA(T ). Since Ker(⟨I, π⟩) = ΩA(T ) is compatible with T ,
by Corollary 56, π(T ) ∈ FifamI(A/ΩA(T )). Since A/ΩA(T ) ∈ AlgSys∗(I) ⊆
AlgSys(I), we get, by hypothesis, that there exists T ′ ∈ FiFamI∗(A/ΩA(T )),
such that ΩA/Ω

A(T )(π(T )) = ΩA/Ω
A(T )(T ′). Now we have

ΩA(T ) = ΩA(π−1(π(T ))) (Ker(⟨I, π⟩) compatible with T )

= π−1(ΩA/ΩA(T )(π(T )))
= π−1(ΩA/ΩA(T )(T ′))
= ΩA(π−1(T ′)).

Since Ker(⟨I, π⟩) = ΩA(T ) = ΩA(π−1(T ′)), we get that Ker(⟨I, π⟩) is com-
patible with π−1(T ′), and, hence, π(π−1(T ′)) = T ′ ∈ FiFamI∗(A/ΩA(T )).
by Corollary 1575, π−1(T ′) ∈ FiFamI∗(A). We showed that θ = ΩA(T ) =
ΩA(π−1(T ′)), with π−1(T ′) ∈ FiFamI∗(A). Therefore, ΩA ∶ FiFamI∗(A) →
ConSysI∗(A) is surjective.

Next, we turn to monotonicity. To this end, let T,T ′ ∈ FifamI∗(A), such
that T ≤ T ′. Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
We have Ker(⟨I, π⟩) = Ω̃I,A(T ) ≤ ΩA(T ) and, also, Ker(⟨I, π⟩) = Ω̃I,A(T ) ≤
Ω̃I,A(T ′) ≤ ΩA(T ′). Thus, by Corollary 56,

π(T ), π(T ′) ∈ FiFamI(A/Ω̃I,A(T )).
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Since A/Ω̃I,A(T ) ∈ AlgSys(I), we get, by hypothesis, ΩA/Ω̃
I,A(T )(π(T )) ≤

ΩA/Ω̃
I,A(T )(π(T ′)). Therefore,

ΩA(T ) = ΩA(π−1(π(T ))) (compatibility)

= π−1(ΩA/Ω̃I,A(T )(π(T )))
≤ π−1(ΩA/Ω̃I,A(T )(π(T ′)))
= ΩA(π−1(π(T ′)))
= ΩA(T ′).

Hence ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is monotone. Finally, by Propo-
sition 1528, ΩA is reflective on FiFamI∗(A). Thus, we conclude that ΩA ∶
FiFamI∗(A)→ ConSysI∗(A) is an order isomorphism. ∎

Next, we show that, if ΩA from the Leibniz filter families onto the I∗-
congruence systems happens to be an order isomorphism on every I-algebraic
system, then the class of I-algebraic systems coincides with the class of I∗-
algebraic systems.

Lemma 1623 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ ConSysI∗(A)

is an order isomorphism, then AlgSys(I) = AlgSys∗(I).
Proof: By Corollary 1405, we know that AlgSys∗(I) ⊆ AlgSys(I) always
holds. So it suffices to show the reverse inclusion. To this end, let A ∈
AlgSys(I) and let Tm = ⋂FiFamI(A). Then, for all T ∈ FiFamI∗(A), we
have, by the hypothesis, ΩA(Tm) ≤ ΩA(T ), which yields [[T ]]∗ ⊆ [[Tm]]∗.

Now let T ′ ∈ ThFamI(A). By hypothesis, there exists T ∈ ThFamI∗(A),
such that ΩA(T ′) = ΩA(T ). Thus, we get T ′ ∈ [[T ′]]∗ = [[T ]]∗ ⊆ [[Tm]]∗. Since
this holds for every T ′ ∈ FiFamI(A), we conclude that [[Tm]]∗ = FiFamI(A).
By Proposition 1578, we get A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I) and, as, by
hypothesis, A ∈ AlgSys(I) and, hence, Ω̃A(FiFamI(A)) = ∆A, we get A =
A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I). We conclude that AlgSys(I) ⊆ AlgSys∗(I)
and, therefore, the two classes of algebraic systems coincide. ∎

The same conclusion may be drawn if we assume that ΩA is an order
isomorphism from the collection of Suszko I-filter families to the collection
of all I∗-congruence systems and, in fact, the proof follows along very similar
lines.

Lemma 1624 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI,Su(A)→ ConSysI∗(A)

is an order isomorphism, then AlgSys(I) = AlgSys∗(I).
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Proof: By Corollary 1405, we know that AlgSys∗(I) ⊆ AlgSys(I) always
holds. So it suffices to show the reverse inclusion. To this end, let A ∈
AlgSys(I) and let Tm = ⋂FiFamI(A). Then, for all T ∈ FiFamI,Su(A), we
have, by the hypothesis, ΩA(Tm) ≤ ΩA(T ), which yields [[T ]]∗ ⊆ [[Tm]]∗.

Now let T ′ ∈ ThFamI(A). By hypothesis, there exists T ∈ ThFamI,Su(A),
such that ΩA(T ′) = ΩA(T ). Thus, we get T ′ ∈ [[T ′]]∗ = [[T ]]∗ ⊆ [[Tm]]∗. Since
this holds for every T ′ ∈ FiFamI(A), we conclude that [[Tm]]∗ = FiFamI(A).
By Proposition 1578, we get A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I) and, as, by
hypothesis, A ∈ AlgSys(I) and, hence, Ω̃A(FiFamI(A)) = ∆A, we get A =
A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I). We conclude that AlgSys(I) ⊆ AlgSys∗(I)
and, therefore, the two classes of algebraic systems coincide. ∎

We know that, under protoalgebraicity, AlgSys(I) = AlgSys∗(I). The
converse is true when family c-reflectivity is also assumed.

Proposition 1625 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a family completely reflective π-institution based on F. If
AlgSys(I) = AlgSys∗(I), then I is protoalgebraic.

Proof: Assume that I is family c-reflective and that AlgSys(I) = AlgSys∗(I).
By Proposition 1579, every full I-structure on an F-algebraic system A has
the form ⟨A, [[T ]]∗⟩, for some T ∈ FiFamI(A). By Proposition 1584, then, for

every T ∈ FiFamI(A), there exists T ′ ∈ FiFamI(A), such that [[T ]]Su = [[T ′]]∗.
Hence, T Su = T ′∗. Now we have

T = T Su (by Theorem 1590)
= T ′∗ (shown above)
= T ′. (by Lemma 1583)

We conclude that [[T ]]Su = [[T ]]∗. Since this holds, for every F-algebraic
system A and all T ∈ FifamI(A), we conclude, by Proposition 1601, that I
is protoalgebraic. ∎

By Lemma 1623, we may replace equality of the two classes of algebraic
system in Proposition 1625 by the condition that the Leibniz operator be an
order isomorphism.

Proposition 1626 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a family completely reflective π-institution based on F. If, for
every F-algebraic system A, ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is an order
isomorphism, then I is protoalgebraic.

Proof: By Proposition 1625 and Lemma 1623. ∎

We also get a characterization of weak family algebraizability.
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Corollary 1627 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is weakly family algebraizable if and
only if it is family c-reflective and AlgSys(I) = AlgSys∗(I).
Proof: If I is weakly family algebraizable, then it is, by definition, family c-
reflective and protoalgebraic. By protoalgebraicity, AlgSys(I) = AlgSys∗(I).
On the other hand, if I is family c-reflective and AlgSys(I) = AlgSys∗(I),
then it is family c-reflective and, by Proposition 1625, it is also protoalgebraic.
Hence, I is weakly family algebraizable. ∎

If, in Proposition 1626, we drop the hypothesis of I being family c-
reflective, but compensate by assuming that ΩA is an order isomorphism
between the collection of Suszko filter families and I∗-congruence systems on
all F-algebraic systems, then we can still infer the protoalgebraicity of I .

Theorem 1628 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if, for
every F-algebraic system A, ΩA ∶ FiFamI,Su(A) → ConSysI∗(A) is an order
isomorphism.

Proof: By Proposition 1621, for all A ∈ AlgSys(F), ΩA ∶ FiFamI∗(A) →
ConSysI∗(A) is an order isomorphism. By protoalgebraicity and Theo-
rem 1601, FiFamI∗(A) = FiFamI,Su(A). Therefore, ΩA ∶ FiFamI,Su(A) →
ConSysI∗(I) is an order isomorphism.

Conversely, assume that, for all A ∈ AlgSys(F), ΩA ∶ FiFamI,Su(A) →
ConSysI∗(A) is an order isomorphism. By Lemma 1518, it suffices to show
that the Leibniz and Suszko operators on an arbitrary F-algebraic system
coincide. To this end, let A ∈ AlgSys(F) and T ∈ FiFamI(A).

• Note that Ω̃I,A(T ) ∈ ConSysI(A). By Lemma 1624 and the hypothesis,
there exists T ′ ∈ FiFamI,Su(A), such that Ω̃I,A(T ) = ΩA(T ′). Hence,

[[T ]]Su = [[T ′]]∗ and, therefore, by Lemma 1583, T Su = T ′∗ = T ′. We
conclude that Ω̃I,A(T ) = ΩA(T Su).

• Note that ΩA(T ) ∈ ConSysI∗(A). Thus, there exists, by hypothesis,
T ′′ ∈ FiFamI,Su(A), such that ΩA(T ) = ΩA(T ′′). So [[T ]]∗ = [[T ′′]]∗.
Hence, by Lemma 1583, T ∗ = T ′′∗ = T ′′. This gives ΩA(T ) = ΩA(T ∗).
Since T ∗ = T ′′ ∈ FiFamI,Su(A), (T ∗)Su = T ∗. But, by Lemma 1568,

T ∗ ≤ T . Hence, [[T ]]Su ⊆ [[T ∗]]Su and, thus, T ∗ = (T ∗)Su ≤ T Su. By
Lemma 1583, the reverse inclusion always holds, whence T ∗ = T Su.
Now we get ΩA(T ) = ΩA(T Su).

Since, for all A ∈ AlgSys(F) and all T ∈ FiFamI(A), Ω̃I,A(T ) = ΩA(T Su) =
ΩA(T ), we get that I is a protoalgebraic π-institution. ∎

Theorem 1628 allows us to give a related characterization of equivalential
π-institutions.
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Corollary 1629 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family equivalential if and only if it is
family commuting and, for every F-algebraic system A, ΩA ∶ FiFamI,Su(A)→
ConSysI∗(A) is an order isomorphism.

Proof: Suppose, first, that I is family equivalential. Then, by definition, I
is family extensional and protoalgebraic. Thus, by Theorem 327, it is family
inverse commuting and, by Theorem 325, it is family commuting. Moreover,
by Theorem 1628, for every F-algebraic system A, ΩA ∶ FiFamI,Su(A) →
ConSysI∗(A) is an order isomorphism.

Assume, conversely, that I is family commuting and that, for every F-
algebraic system A, ΩA ∶ FiFamI,Su(A) → ConSysI∗(A) is an order isomor-
phism. Then, by Theorem 1628, it is protoalgebraic. Therefore, by Theorem
325, it is family inverse commuting and, by Theorem 327, it is family ex-
tensional. Being protoalgebraic and family extensional, it is, by definition,
family equivalential. ∎

We turn now to establishing some characterizations of semantic classes
in the Leibniz hierarchy via the use of the Suszko operator. First, we show
that the family c-reflectivity of the Leibniz operator is equivalent with the
universal injectivity of the Suszko operator and, in turn, a sufficient (and,
trivially, necessary) condition fr it is the injectivity of the Suszko operator
on an I-algebraic systems.

Theorem 1630 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is family c-reflective;

(ii) Ω̃I,A is injective, for all A ∈ AlgSys(F);
(iii) Ω̃I,A is injective, for all A ∈ AlgSys(I).
Proof:

(i)⇒(ii) By Proposition 1528, Ω̃I,A is injective on FiFamI,Su(A). By hypoth-
esis and Theorem 1590, FiFamI,Su(A) = FiFamI(A). Thus, Ω̃I,A is
injective, for all A ∈ AlgSys(F).

(ii)⇒(iii) Trivial.

(iii)⇒(i) We use again Theorem 1590, showing that for every F-algebraic sys-
tem A, FiFamI,Su(A) = FiFamI(A). To this end. let A ∈ AlgSys(F)
and T ∈ FiFamI(A). Consider Tm = ⋂FiFamI(A/Ω̃I,A(T )). We have
A/Ω̃I,A(T ) ∈ AlgSys(I) and, by Corollary 56, T /Ω̃I,A(T ) ∈ FiFamI(A/Ω̃I,A(T )).
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Hence, by assumption, Tm ≤ T /Ω̃I,A(T ). By monotonicity of the
Suszko operator, Proposition 1544 and Lemma 1557,

Ω̃A/Ω̃
I,A(T )(Tm) ≤ Ω̃A/Ω̃

I<A(T )(T /Ω̃I,A(T )) =∆A/Ω̃
I,A(T ).

Hence, by hypothesis, T /Ω̃I,A(T ) = Tm. Therefore, by Proposition
1587, T ∈ FiFamI,Su(A). This proves that FiFamI,Su(A) = FiFamI(A)
and, by Theorem 1590, yields that I is family c-reflective.

∎

As regards protoalgebraicity, we have the following characterization.

Theorem 1631 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if Ω̃I is
commuting.

Proof: If I is protoalgebraic, then, by Lemma 1518, Ω̃I = Ω and, by Proposi-
tion 24, Ω̃I is commuting. If, conversely, Ω̃I is commuting, then, by Corollary
1537, Ω̃I = Ω. Therefore, by Lemma 1518, I is protoalgebraic. ∎

We also get characterizations for equivalential, weakly algebraizable and
algebraizable π-institutions.

Theorem 1632 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family equivalential if and only if Ω̃I is commuting and family
extensional.

(b) I is weakly family algebraizable if and only if Ω̃I is injective and com-
muting.

(c) I is family algebraizable if and only if Ω̃I is injective and commuting
and family extensional.

Proof:

(a) Suppose I is equivalential. Then, by Theorem 334, Ω is monotone and
family extensional. By Lemma 1518, Ω = Ω̃I . Thus, by Proposition
24, Ω̃I is commuting and family extensional. Conversely, if Ω̃I is com-
muting and family extensional, then, by Corollary 1537, Ω̃I = Ω. Thus,
Ω is monotone and family extensional. By Theorem 334, I is family
equivalential.

(b) By Theorems 1630 and 1631.

(c) By Part (a) and Theorem 1630.
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∎

In general, it is not hard to show that the Suszko operator on an F-
algebraic system is an order embedding from the collection of Suszko I-filter
families into the family of I-congruence systems.

Proposition 1633 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A)
is an order embedding.

Proof: The Suszko operator Ω̃I,A is always into ConSysI(A). It is monotone
by definition, and it is order-reflecting on FiFamI,Su(A) by Proposition 1528.
Therefore, it is an order embedding, as claimed. ∎

Requiring the preceding embedding to be an order isomorphism turns out
to be equivalent to the protoalgebraicity of I .

Theorem 1634 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is protoalgebraic;

(ii) Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A) is an order isomorphism, for every
F-algebraic system A;

(iii) Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A) is surjective, for every F-algebraic
system A.

Proof:

(i)⇒(ii) By hypothesis and Lemma 1518, ΩA = Ω̃I,A. Thus, by Proposition
1580, AlgSys(I) = AlgSys∗(I). It follows that ConSysI(A) = ConSysI

∗(A).
Now, by Theorem 1628, we get that Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A)
is an order isomorphism.

(ii)⇒(iii) Trivial.

(iii)⇒(i) Assume (iii). We show that the Leibniz operator ΩA is monotone on
the I-filter families of every F-algebraic system A. To this end, let
A be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that T ≤ T ′.
Since ΩA(T ) ∈ ConSysI

∗(A) ⊆ ConSysI(A), there exists, by hypothesis,
T ′′ ∈ FiFamI,Su(A), such that Ω̃I,A(T ′′) = ΩA(T ). Thus, we have

Ω̃A([[T ′′]]Su) = Ω̃I,A(T ′′)
= ΩA(T )
= Ω̃A([[T ]]∗).
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Since ⟨A, [[T ′′]]Su⟩, ⟨A, [[T ]]∗⟩ ∈ FStr(I ∣), by Theorem 1408, [[T ′′]]Su =[[T ]]∗. Moreover, since T ′′ ∈ FiFamI,Su(A), by Lemma 1583, we obtain

[[T ′′]]Su = FiFamI(A)T ′′ . Since T ∈ [[T ]]∗ = [[T ′′]]Su = FiFamI(A)T ′′ , we

get T ′′ ≤ T ≤ T ′. Thus, T ′ ∈ FiFamI(A)T ′′ = [[T ′′]]Su = [[T ]]∗. In other
words, ΩA(T ) ≤ ΩA(T ′). We conclude that ΩA is monotone on every
A, whence I is protoalgebraic.

∎

In closing the section, we exploit Theorem 1634 to provide characteriza-
tions of some of the classes of the semantic Leibniz hierarchy.

Theorem 1635 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is protoalgebraic if and only if, for every F-algebraic system A, Ω̃I,A ∶
FiFamI,Su(A)→ ConSysI(A) is an order isomorphism;

(b) I is family c-reflective if and only if, for every F-algebraic system A,
Ω̃I,A ∶ FiFamI(A)→ ConSysI(A) is an order embedding;

(c) I is weakly family algebraizable if and only if, for every F-algebraic
system A, Ω̃I,A ∶ FiFamI(A)→ ConSysI(A) is an order isomorphism;

(d) I is family algebraizable if and only if, for every F-algebraic system A,
Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is an order isomorphism and I is
family extensional.

Proof:

(a) By Theorem 1634.

(b) By Proposition 1633, Ω̃I,A ∶ FiFamI,Su(A) → ConSysI(A) is always
an order embedding. By Theorem 1590, family c-reflectivity implies
FiFamI,Su(A) = FiFamI(A). We conclude that Ω̃I,A ∶ FiFamI(A) →
ConSysI(A) is an order embedding. If, conversely, Ω̃I,A ∶ FiFamI(A)→
ConSysI(A) is an order embedding, then it is injective on FiFamI(A),
whence, by Theorem 1630, I is family c-reflective.

(c) Assume, first, that I is weakly family algebraizable. By Theorem 1628,
ΩA ∶ FiFamI,Su(A) → ConSysI∗(A) is an order isomorphism. By The-
orem 1590, FiFamI,Su(A) = FiFamI(A). Therefore, ΩA ∶ FiFamI(A)→
FiFamI∗(A) is an order isomorphism. Finally, by protoalgebraicity
and Lemma 1518, Ω̃I,A = ΩA, and by protoalgebraicity and Proposi-
tion 1580, ConSysI∗(A) = ConSysI(A). Thus, Ω̃I,A ∶ FiFamI(A) →
ConSysI(A) is an order isomorphism.

If, conversely, Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is an order isomor-
phism, then, by Theorem 1630, I is family c-reflective, whence, by
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Theorem 1590, FiFamI,Su(A) = FiFamI(A) and, hence, Ω̃I,A is onto
FiFamI,Su(A). Thus, by Theorem 1634, I is protoalgebraic. We con-
clude that I is weakly family algebraizable.

(d) By Part (c) and the definition of family algebraizability.
∎

21.14 Suszko Operator and Truth Equation-

ality

Recall that by Proposition 68 and Proposition 28, it makes sense, for every
F-algebraic system A, to consider the relative congruence system ΘI,A(R) ∶=
ΘAlgSys(I),A(R) on A generated by a relation family R ∈ RelFam(A).
Lemma 1636 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system
A and all X ∈ SenFam(A), if θ = ΘI,A(τA[X]) and ⟨I, π⟩ ∶ A → A/θ is the
quotient morphism, then

FiFamI(A/θ) = π(FiFamI(A)X) and π−1(FiFamI(A/θ)) = FiFamI(A)X .
Proof: Let us set

T = {T ∈ FiFamI(A) ∶ ΘI,A(τA[X]) ≤ ΩA(T )}.
By Proposition 1524, FiFamI(A/θ) = π(T ) and π−1(FiFamI(A/θ)) = T . But
we also have

T = {T ∈ FiFamI(A) ∶ θ ≤ ΩA(T )}
(definition of T )

= {T ∈ FiFamI(A) ∶ τA[X] ≤ ΩA(T )}
(since θ = ΘI,A(τA[X]) and ΩA(T ) ∈ ConSysI(A))

= {T ∈ FiFamI(A) ∶ X ≤ T}
(by family truth equationality)

= FiFamI(A)X . (definition of FiFamI(A)X)

The conclusion follows. ∎

We show, next that, under the same hypotheses, the Suszko congruence
system of an I-filter family generated by a sentence family X equals the least
I-congruence system on A generated by the relation family τA[X].
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Proposition 1637 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system
A and all X ∈ SenFam(A),

Ω̃I,A(CI,A(X)) = ΘI,A(τA[X]).
In particular, if T ∈ FiFamI(A), Ω̃I,A(T ) = ΘI,A(τA[T ]).
Proof: Let A be an F-algebraic system, X ∈ SenFam(A) and set θ =
ΘI,A(τA[X]). Since θ ∈ ConSysI(A), we have A/θ ∈ AlgSys(I). Therefore,

Ω̃A/θ(FiFamI(A/θ)) = ∆A/θ.

Consider the quotient morphism

⟨I, π⟩ ∶ A → A/θ.
We have

Ω̃I,A(CI,A(X)) = Ω̃A(FiFamI(A)X)
= Ω̃A(π−1(FiFamI(A/θ))) (Lemma 1636)

= π−1(Ω̃A/θ(FiFamI(A/θ)))
= π−1(∆A/θ)
= θ.

Therefore, Ω̃I,A(CI,A(X)) = ΘI,A(τA[X]), as was to be shown. ∎

Proposition 1638 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) = ΘI(τ ♭Σ[φ]).
Proof: Directly from Proposition 1637, letting X = {XΣ}Σ∈∣Sign♭∣, where
XΣ = {φ} and XΣ′ = ∅, for all Σ′ ≠ Σ. ∎

Another property is that the Suszko congruence family of the I-filter
family generated by a sentence family X can be obtained as the join of the
Suszko congruence families of the I-filter families generated by each singleton
in X .

Proposition 1639 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F. For every
F-algebraic system A and all X ∈ SenFam(A),

Ω̃I,A(CI,A(X)) =⋁{Ω̃I,A(CI,A(φ)) ∶ φ ∈XΣ,Σ ∈ ∣Sign∣}.
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Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then, we have, for every F-algebraic
system A and all X ∈ SenFam(A),

Ω̃I,A(CI,A(X))) = ΘI,A(τA[X])
(by Proposition 1637)

= ⋁{ΘI,A(τAΣ [φ]) ∶ φ ∈XΣ,Σ ∈ ∣Sign∣}
(by Proposition 35)

= ⋁{Ω̃I,A(CI,A(φ)) ∶ φ ∈ XΣ,Σ ∈ ∣Sign∣}.
(by Proposition 1637)

This proves the statement. ∎

More generally, we have

Proposition 1640 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F. For every
F-algebraic system A and all {T i ∶ i ∈ I} ⊆ FiFamI(A),

Ω̃I,A(FiFamI(A)

⋁
i∈I

T i) = ConSysI(A)

⋁
i∈I

Ω̃I,A(T i).

Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and let A be an F-algebraic system and{T i ∶ i ∈ I} ⊆ FiFamI(A). Then, we have

Ω̃I,A(⋁i∈I T i) = Ω̃(CI,A(⋃i∈I T i)) (joins in FiFamI(A))
= ΘI,A(τA[⋃i∈I T i]) (Proposition 1637)
= ΘI,A(⋃i∈I τA[T i])
= ⋁i∈I ΘI,A(τA[T i]) (joins in ConSysI(A))
= ⋁i∈I Ω̃I,A(T i). (Proposition 1637)

This proves the statement. ∎

Another property is the commutativity of the Suszko operator with sur-
jective morphisms with isomorphic functor components.

Proposition 1641 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F. For all F-
algebraic systems A, B, all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an
isomorphism, and all T ∈ FiFamI(A),

Ω̃I,B(CI,B(γ(T ))) = ΘI,B(γ(Ω̃I,A(T ))).
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Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and let A, B be F-algebraic sys-
tems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism, and
T ∈ FiFamI(A). We now get

Ω̃I,B(CI,B(γ(T ))) = ΘI,B(τB[γ(T )]) (by Proposition 1637)
= ΘI,B(γ(ΘI,A(τA[T ]))) (by Proposition 34)

= ΘI,B(γ(Ω̃I,A(T ))). (by Proposition 1637)

This proves the equality in the statement. ∎

We now build a little further on our work of Section 12.2 in order to give
another characterization of family truth equationality.

Let K = ⟨Sign,SEN,N⟩ and K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems
and K = ⟨K,D⟩ and K′ = ⟨K′,D′⟩ be two π-structures based on K and K′,
respectively. Consider an order embedding

h ∶ ThFam(K)→ ThFam(K′).
Recall that

←Ð
h = {←Ðh Σ}Σ∈∣Sign∣ is defined, for all Σ ∈ ∣Sign∣, by letting

←Ð
h Σ ∶ SEN(Σ) → SenFam(K′)

be given, for all φ ∈ SEN(Σ), by

←Ð
h Σ[φ] = h(D(φ)).

Then we have the following analog of Lemma 894.

Lemma 1642 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, re-
spectively, and h ∶ ThFam(K) → ThFam(K′) an order embedding, which

preserves suprema. Then
←Ð
h ∶ K → K′ is an interpretation.

Proof: Suppose h ∶ ThFam(K′) → ThFam(K) is an order embedding and
let Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ). Then we have

φ ∈ DΣ(Φ) iff D(φ) ≤D(Φ)
iff h(D(φ)) ≤ h(D(Φ))
iff h(D(φ)) ≤ h(⋁{D(χ) ∶ χ ∈ Φ})
iff h(D(φ)) ≤ ⋁{h(D(χ)) ∶ χ ∈ Φ}
iff
←Ð
h Σ[φ] ≤ ⋁{←Ðh Σ[χ] ∶ χ ∈ Φ}

iff
←Ð
h Σ[φ] ≤D′(←Ðh Σ[Φ]).

Thus,
←Ð
h ∶ K′ → K is indeed an interpretation. ∎
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Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K = ⟨Kk,D⟩ and
K′ = ⟨Kℓ,D′⟩ be two π-structures based on Kk and Kℓ, respectively. Consider
a suprema preserving order embedding

h ∶ ThFam(K)→ ThFam(K′).
We say that the order embedding h ∶ ThFam(K)→ ThFam(K′) is transfor-
mational if there exists τ ∶ SENω → SENℓ, with k distinguished arguments,
such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k,

←Ð
h Σ[φ⃗] = D′(τΣ[φ⃗]).

We have the following analog of Lemma 899.

Lemma 1643 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K) → ThFam(K′) a
transformational suprema preserving order embedding induced by τ ∶ Kk →
Kℓ. Then, for all Σ ∈ ∣Sign∣, all Φ ⊆ SEN(Σ)k,

h(D(Φ)) =D′(τΣ[Φ]).
Proof: We have, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ)k,

h(D(Φ)) = h(⋁φ∈ΦD(φ)) (join in ThFam(K))
= ⋁φ∈Φ h(D(φ)) (h suprema preserving)

= ⋁φ∈ΦD′(τΣ[φ]) (
←Ð
h Σ[φ] = D′(τΣ[φ]))

= D′(⋃φ∈Φ τΣ[φ]) (join in ThFam(K′))
= D′(τΣ[Φ]). (by definition)

This proves the equality of the statement. ∎

Furthermore, we have an analog of Theorem 900:

Theorem 1644 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,

D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational suprema preserving order embedding induced by τ ∶ Kk →
Kℓ. Then τ ∶ K → K′ is an interpretation.

Proof: Let Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ)k. We then have:

φ ∈ DΣ(Φ) iff DΣ(φ) ≤DΣ(Φ)
iff h(D(φ)) ≤ h(D(Φ)) (h order embedding)
iff D′(τΣ[φ]) ≤ D′(τΣ[Φ]) (Lemma 1643)
iff τΣ[φ] ≤D′(τΣ[Φ]).

Thus, τ ∶ K → K′ is an interpretation. ∎

Now, we obtain the following theorem characterizing family truth equa-
tionality in terms of transformational suprema preserving order embeddings.
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Theorem 1645 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family truth equational if and only
if, for every F-algebraic system A, Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is a
transformational suprema preserving order embedding.

Proof: Suppose, first, that I is family truth equational, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2. Then, it is, a fortiori, family c-
reflective, whence, by Theorem 1635, Ω̃I,A ∶ FiFamI(A)→ ConSysI(A) is an
order embedding, for every F-algebraic system A. By Proposition 1637, Ω̃I,A

is transformational and, by Proposition 1640, it is suprema preserving.
Assume, conversely, that Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is a transfor-

mational suprema preserving order embedding. Then, on the one hand, by
Theorem 1635, I is family c-reflective, and, on the other, by definition, there
exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2, such that Ω̃I ∶ ThFam(I) → ConSysI(F) is
induced by τ ♭. Thus, by Theorem 1644, τ ♭ ∶ I → QAlgSys(I) is an interpreta-
tion. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). we have

φ ∈ TΣ iff τ ♭Σ[φ] ≤ ΘI,F(τ ♭Σ[TΣ]) (τ ♭ an interpretation)

iff τ ♭Σ[φ] ≤ Ω̃I(T ) (by Lemma 1643)

implies τ ♭Σ[φ] ≤ Ω(T ). (Ω̃I(T ) ≤ Ω(T ))
If, conversely, τ ♭Σ[φ] ≤ Ω(T ), then ΘI,F(τ ♭Σ[φ]) ≤ Ω(T ), whence, by Lemma

1643, Ω̃I(C(φ)) ≤ Ω(T ). Thus, by family c-reflectivity and Lemma 1519,
φ ∈ TΣ. Therefore, for all T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ ΩΣ(T ).
We conclude that I is family truth-equational, with witnessing transforma-
tions τ ♭. ∎

21.15 Relations With Algebraic Semantics

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
Given a class K of F-algebraic systems, recall the definition oof the closure

system CK,τ = {CK,τ
Σ }Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣, CK,τ

Σ ∶ P(SEN♭(Σ))→
P(SEN♭(Σ)) is given, for all Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ CK,τ
Σ (Φ) iff τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]).

Define the class K(I , τ) of F-algebraic systems by

K(I , τ) = {A ∈ AlgSys(F) ∶ C ≤ CA,τ}.
The following proposition gives a characterization of this class.
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Proposition 1646 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
Then

K(I , τ) = {A ∈ AlgSys(F) ∶ τA(∆A) ∈ FiFamI(A)}.
Proof: Suppose, first, that A ∈ K(I , τ). Let Σ ∈ ∣Sign♭∣, Φ∪ {φ} ⊆ SEN♭(Σ),
such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ τAF (Σ)(∆A). Then, by definition, τA

F (Σ)
[αΣ(Φ)] ≤

∆A. This implies α(τ ♭Σ[Φ]) ≤ ∆A. Since, by hypothesis, φ ∈ CΣ(Φ) and
C ≤ CA,τ , we get α(τ ♭Σ[φ]) ≤ ∆A. Equivalently, τA

F (Σ)
[αΣ(φ)] ≤ ∆A, i.e.,

αΣ(φ) ∈ τAF (Σ)(∆A). We conclude that τA(∆A) ∈ FiFamI(A). This proves
the left-to-right inclusion.

Assume, conversely, that A is an F-algebraic system, such that τA(∆A) ∈
FiFamI(A). Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ)
and α(τ ♭Σ[Φ]) ≤ ∆A. Then τA

F (Σ)
[αΣ(Φ)] ≤ ∆A, i.e., αΣ(Φ) ⊆ τAF (Σ)(∆A).

Since, by hypothesis, φ ∈ CΣ(Φ) and τA(∆A) ∈ FiFamI(A), we get αΣ(φ) ∈
τA
F (Σ)
(∆A), whence τA

F (Σ)
[αΣ(φ)] ≤ ∆A or, equivalently, α(τ ♭Σ[φ]) ≤ ∆A. We

conclude that φ ∈ CA,τΣ (Φ) and, hence, A ∈ K(I , τ). ∎

It is readily inferred from the definition that, provided I has a τ ♭-algebraic
semantics, then the class K(I , τ) is the largest such.

Corollary 1647 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on
F. If I has a τ ♭-algebraic semantics, then K(I , τ) is its largest τ ♭-algebraic
semantics.

Proof: Suppose K is a τ ♭-algebraic semantics for I and let A ∈ K. Then,
by the definition of τ ♭-algebraic semantics and taking into account the mem-
bership A ∈ K, we get C = CK,τ ≤ CA,τ . Therefore, by definition of K(I , τ),
A ∈ K(I , τ). We conclude that K ⊆ K(I , τ). ∎

we can also show that, if I is family truth equational, with witnessing
transformations τ ♭, then AlgSys(I) is a τ ♭-algebraic semantics for I .

Proposition 1648 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on
F. If I is family truth equational, with witnessing transformations τ ♭, then
AlgSys(I) is a τ ♭-algebraic semantics for I.

Proof: We must show that C = CAlgSys(I),τ .

Let A ∈ AlgSys(I), Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that
φ ∈ CΣ(Φ) and α(τ ♭Σ[Φ]) ≤ ∆A. Since A ∈ AlgSys(I), there exists T ⊆
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FiFamI(A), such that Ω̃A(T ) =∆A. Hence, we get

α(τ ♭Σ[Φ]) ≤∆A iff α(τ ♭Σ[Φ]) ≤ Ω̃A(T )
iff α(τ ♭Σ[Φ]) ≤ ΩA(T ), for all T ∈ T ,
iff τ ♭Σ[Φ] ≤ Ω(α−1(T )), for all T ∈ T ,
iff Φ ⊆ α−1Σ (T ), for all T ∈ T ,

implies φ ⊆ α−1Σ (T ), for all T ∈ T ,
iff τ ♭Σ[φ] ≤ Ω(α−1(T )), for all T ∈ T ,
iff α(τ ♭Σ[φ]) ≤ ΩA(T ), for all T ∈ T ,
iff α(τ ♭Σ[φ]) ≤ Ω̃A(T )
iff α(τ ♭Σ[φ]) ≤∆A.

We conclude that φ ∈ CAlgSys(I),τ
Σ (Φ). Therefore, C ≤ CAlgSys(I),τ .

Suppose, conversely, that Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈
C

AlgSys(I),τ
Σ (Φ) and T ∈ ThFam(I), such that Φ ⊆ TΣ. Then, we have τ ♭Σ[Φ] ≤

Ω(T ), i.e., τ
F/Ω(T )
Σ [Φ/ΩΣ(T )] ≤∆F/Ω(T ). But F/Ω(T ) ∈ AlgSys∗(I) ⊆ AlgSys(I).

Therefore, since φ ∈ CAlgSys(I),τ
Σ (Φ), we get that τ

F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ),

whence τ ♭Σ[φ] ≤ Ω(T ). Therefore, φ ∈ TΣ and we conclude that φ ∈ CΣ(Φ).
This proves that CAlgSys(I),τ ≤ C and, as a result, equality follows.

We have now shown that AlgSys(I) is a τ ♭-algebraic semantics for I . ∎

Corollary 1649 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I is
family truth equational, with witnessing transformations τ ♭, then AlgSys(I) ⊆
K(I , τ).
Proof: By Proposition 1648 and Corollary 1647. ∎

For family truth equational π-institutions we have the following charac-
terization of the least I-filter families on arbitrary algebraic systems and on
I-algebraic systems.

Lemma 1650 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭.

(a) For every A ∈ AlgSys(F), CI,A(τA(∆A)) = CI,A(∅);
(b) For every A ∈ AlgSys(I), τA(∆A) = CI,A(∅).

Proof:

(a) Let A be an F-algebraic system. We have τA(∆A) ≤ τA(ΩA(CI,A(∅))).
By family truth equationality, τA(∆A) ≤ CI,A(∅). It follows that
CI,A(τA(∆A)) = CI,A(∅).
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(b) Let A ∈ AlgSys(I). Then, by Part (a), τA(∆A) ≤ CI,A(∅). Assume,
conversely, that Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ CI,AΣ (∅). Then,
for all T ∈ FiFamI(A), φ ∈ TΣ = τAΣ (ΩA(T )), i.e., for all T ∈ FiFamI(A),
τAΣ [φ] ≤ ΩA(T ). We conclude that τAΣ [φ] ≤ Ω̃I,A(CI,A(∅)) = ∆A. This
shows that φ ∈ τAΣ (∆A). Thus, CI,A(∅) ≤ τA(∆A). Equality now
follows.

∎

So in the case of family truth equational π-institutions, we may strengthen
the characterization of the class K(I , τ) given in Proposition 1646.

Proposition 1651 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then

K(I , τ) = {A ∈ AlgSys(F) ∶ τA(∆A) = CI,A(∅)}.
Proof: Note that, taking into account Proposition 1646,

{A ∈ AlgSys(F) ∶ τA(∆A) = CI,A(∅)}
⊆ {A ∈ AlgSys(F) ∶ τA(∆A) ∈ FiFamI(A)}
= K(I , τ).

Assume, conversely, that A ∈ K(I , τ). Then, by Proposition 1646, τA(∆A) ∈
FiFamI(A) and, by definition of K(I , τ), τA(∆A) ≤ CI,A(∅). Hence τA(∆A) =
CI,A(∅). ∎

Proposition 1651 has some interesting consequences. First, any two sets
of witnessing transformations for truth equationality are, roughly speaking,
deductively equivalent over any I-algebraic system.

Corollary 1652 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭τ ′ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
If I is family truth equational, with witnessing transformations τ ♭ and τ ′ ♭,
then, for every A ∈ AlgSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

CA(τ ♭Σ[φ]) = CA(τ ′ ♭Σ [φ]).
Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ and τ ′ ♭ and let A ∈ AlgSys(I) and Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ),
such that α(τ ′ ♭Σ [φ]) ≤ ∆A. This is equivalent to τ ′A

F (Σ)
[αΣ(φ)] ≤ ∆A, i.e.,

αΣ(φ) ∈ τ ′AF (Σ)(∆A). By Proposition 1651, αΣ(φ) ∈ CI,AF (Σ)(∅). Again by

Proposition 1651, αΣ(φ) ∈ τAF (Σ)(∆A). Thus, τA
F (Σ)
[αΣ(φ)] ≤ ∆A. Hence,

αΣ(τ ♭Σ[φ]) ≤ ∆A. This shows that τ ♭Σ[φ] ≤ CA(τ ′ ♭Σ [φ]). By symmetry, we
conclude that CA(τ ♭Σ[φ]) = CA(τ ′ ♭Σ [φ]). ∎

Finally, the Suszko core S♭ has a special position among all witnessing
transformations. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =
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⟨F,C⟩ be a π-institution based on F. Recall that the Suszko core of I is the
collection

SI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[T ] ≤ Ω̃(T )}.
Recall, also, that, by Lemma 835, if I is truth equational, with witnessing
equations τ ♭ ⊆ N ♭, then τ ♭ ⊆ SI .

Corollary 1653 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then

K(I , SI) ⊆ K(I , τ).
Proof: Suppose A ∈ K(I , SI). By hypothesis and Lemma 835, τ ♭ ⊆ SI .
Hence SI(∆A) ≤ τ ♭(∆A). But, by hypothesis, Theorem 840 and Proposition
1651, SI(∆A) = CI,A(∅) and, by hypothesis and Lemma 1650, τA(∆A) ≤
CI,A(∅). Hence, we have

CI,A(∅) = SI(∆A) ≤ τA(∆A) ≤ CI,A(∅).
Therefore, τA(∆A) = CI,A(∅) and, thus, by Proposition 1651, A ∈ K(I , τ).
We conclude that K(I , SI) ⊆ K(I , τ). ∎

Corollary 1654 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then K(I , SI) is a τ ♭-
algebraic semantics for I.

Proof: Observe that we have

AlgSys(I) ⊆ K(I , SI) (by Theorem 840 and Corollary 1649)
⊆ K(I , τ). (by Corollary 1653)

Since, by Proposition 1648, AlgSys(I) is a τ ♭-algebraic semantics for I and,
by Corollary 1647, K(I , τ) is also a τ ♭-algebraic semantics for I , we conclude
that K(I , SI) is one also. ∎

21.16 The I-Operator ΨK,τ

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F, with a τ ♭-algebraic
semantics K, such that AlgSys∗(I) ⊆ K. For every F-algebraic system A, we
define the operator

ΨK,τ,A ∶ FiFamI(A)→ EqvFam(A)
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by setting, for all T ∈ FiFamI(A),
ΨK,τ,A(T ) = Θ

⊲
IΠ(K),A(τA[T ]).

Note that, by the hypotheses and Proposition 28, ΨK,τ,A is well-defined, since
⊲

IΠ(K)-congruence systems on A form a closure system on A2.
It is the case that if a class K of F-algebraic systems is a τ ♭-algebraic

semantics for a π-institution I , then so is the larger class
⊲

IΠ(K).
Proposition 1655 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If
a class K of F-algebraic systems is a τ ♭-algebraic semantics for I, then so is
⊲

IΠ(K).
Proof: First, observe that K ⊆

⊲

IΠ(K), whence C
⊲
IΠ(K),τ ≤ CK,τ = C. To show

the converse, let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ). Let

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

be a subdirect intersection, with Ai ∈ K, for all i ∈ I, and assume that
α(τ ♭Σ[Φ]) ≤ ∆A. Since, by definition ∆A = ⋂i∈I Ker(⟨H i, γi⟩), we get that
α(τ ♭Σ[Φ]) ≤ Ker(⟨H i, γi⟩), for all i ∈ I, i.e., γi(α(τ ♭Σ[Φ])) ≤ ∆A

i
, i ∈ I, or,

equivalently, αi(τ ♭Σ[Φ]) ≤ ∆A
i
, i ∈ I. Since φ ∈ CΣ(Φ), Ai ∈ K, for all i ∈ I

and K is a τ ♭-algebraic semantics for I , we get αi(τ ♭Σ[φ]) ≤∆A
i
, for all i ∈ I.

We now reverse the steps above. We get γi(α(τ ♭Σ[φ])) ⊆ ∆A
i
, i ∈ I, then

α(τ ♭Σ[φ]) ≤ Ker(⟨H i, γi⟩), i ∈ I, and, finally, α(τ ♭Σ[φ]) ≤ ∆A. Thus, φ ∈

C
A,τ
Σ (Φ). Since, for all A ∈

⊲

IΠ(K), C ≤ CA,τ , we conclude that C ≤ C
⊲
IΠ(K),τ .

Therefore,
⊲

IΠ(K) is also a τ ♭-algebraic semantics for I . ∎

Tying the operator ΨK,τ,A with our preceding work in this Chapter, we
show that it is a congruential monotone compatibility I-operator on A.

Proposition 1656 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on
F, with a τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K. For every
F-algebraic system A, ΨK,τ,A is a congruential, monotone, compatibility I-
operator on A.

Proof: ΨK,τ,mcA is, by definition, an I-operator on A. It is congruen-

tial, since, again by definition, for all T ∈ FiFamI(A), Θ
⊲
IΠ(K),A(τA[T ]) ∈

ConSys(A). It is monotone, since, for all T,T ′ ∈ FiFamI(A), with T ≤ T ′,

we get τA[T ] ≤ τA[T ′] and, therefore, Θ
⊲
IΠ(K),A(τA[T ]) ≤ Θ

⊲
IΠ(K),A(τA[T ′]).
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To see that it is also a compatibility I-operator, consider T ∈ FiFamI(A).
Note, first, that

AlgSys(I) = ⊲

IΠ(AlgSys∗(I) (by Theorem 1404)

⊆
⊲

IΠ(K). (since AlgSys∗(I) ⊆ K)

Thus, we get Ω̃I,A(T ) ∈ ConSysI(A) ⊆ ConSys
⊲
IΠ(K)(A). Since, by Corollary

824, τA[T ] ≤ Ω̃I,A(T ), we get

Θ
⊲
IΠ(K),A(τA[T ]) ≤ Ω̃I,A(T ) ≤ ΩA(T ).

Therefore, ΨK,τ,A is also a compatibility I-operator on A. ∎

It turns out that ΨK,τ = {ΨK,τ,A ∶ A ∈ AlgSys(F)} is also semi-coherent.
To show this, we formulate two technical lemmas on the way.

Lemma 1657 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭. For all F-algebraic systems A, B, every surjective
morphism ⟨H,γ⟩ ∶ A → B, with H an isomorphism, and all T ′ ∈ SenFam(B),

(a) τB[T ′] = γ(τA[γ−1(T ′)]);
(b) τA[γ−1(T ′)] ≤ γ−1(τB[T ′]).

Proof: First, note that, for all T ∈ SenFam(A), we have, taking into account
the fact that ⟨H,γ⟩ is a surjective morphism, γ(τA[T ]) = τB[γ(T )]. Now,
we set T = γ−1(T ′). This gives

γ(τA[γ−1(T ′)]) = τB[γ(γ−1(T ′))] = τB[T ′],
which conclude the proof of Part (a). For Part (b), we have, using Part (a),

τA[γ−1(T ′)] ≤ γ−1(γ(τA[γ−1(T ′)])) = γ−1(τB[T ′]).
∎

Lemma 1658 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and K a class of F-algebraic systems, such that
⊲

IΠ(K) ⊆ K. For all F-algebraic systems A, B, every surjective morphism⟨H,γ⟩ ∶ A→ B, with H an isomorphism, and all T ′ ∈ FiFamI(B),
{θ ∈ ConSysK(A) ∶ Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ}

= {γ−1(θ′) ∶ θ′ ∈ ConSysK(B) and τB[T ′] ≤ θ′}.
Proof: Suppose K is closed under subdirect intersections and let A, B be
F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an iso-
morphism, and T ′ ∈ SenFam(B).
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(⊆) Let θ ∈ ConSysK(A), such that Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ.
By Lemma 1657, τB[T ′] = γ(τA[γ−1(T ′)]) ≤ γ(θ). By Proposition 33,
γ(θ) ∈ ConSysK(B). Finally, by Lemma 25, θ = γ−1(γ(θ)). Hence, we
get

θ = γ−1(γ(θ)) ∈ {γ−1(θ′) ∶ θ′ ∈ ConSysK(B) and τB[T ′] ≤ θ′}.
(⊇) Suppose, now, θ′ ∈ ConSysK(B), such that τB[T ′] ≤ θ′. By Lemma 1657,

τA[γ−1(T ′)] ≤ γ−1(τB[T ′]) ≤ γ−1(θ′). Finally, Ker(⟨H,γ⟩) = γ−1(∆B) ≤
γ−1(θ′). So we get

γ−1(θ′) ∈ {θ ∈ ConSysK(A) ∶ Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ}.
∎

Now, for the main theorem to the effect that ΨK,τ is a semi-coherent
family of congruential monotone compatibility I-operators.

Theorem 1659 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F, with a
τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K. ΨK,τ is a semi-coherent
family of congruential monotone compatibility I-operators.

Proof: Let A, B be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective mor-
phism, with H an isomorphism, and T ′ ∈ FiFamI(B), such that ⟨H,γ⟩ is
ΨK,τ -compatible with γ−1(T ′). Then, by definition,

Ker(⟨H,γ⟩) ≤ ΨK,τ,A(γ−1(T ′)) = Θ
⊲
IΠ(K),A(τA[γ−1(T ′)]).

So we have

ΨK,τ,A(γ−1(T ′)) = Θ
⊲
IΠ(K),A(τA[γ−1(T ′)])

= ⋂{θ ∈ ConSys
⊲
IΠ(K)(A) ∶

Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ}
= ⋂{γ−1(θ′) ∶ θ′ ∈ ConSys

⊲
IΠ(K)(B) and τB[T ′] ≤ θ′}

= γ−1(⋂{θ′ ∈ ConSys
⊲
IΠ(K)(B) ∶ τB[T ′] ≤ θ′})

= γ−1(Θ ⊲
IΠ(K),B(τB[T ′]))

= γ−1(ΨK,τ,B(T ′)).
This proves that ΨK,τ is also semi-coherent (the remaining properties having
been demonstrated in Proposition 1656). ∎

Since, by Proposition 1648, every family truth equational π-institution I
has AlgSys(I) as a τ ♭-algebraic semantics and AlgSys∗(I) ⊆ AlgSys(I), set-
ting K ∶= AlgSys(I), we get that ΨK,τ is a semi-coherent family of monotone
congruential compatibility I-operators.
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Our last result shows that the classes of F-algebraic systems associated

with ΨK,τ (which are equal by Proposition 1558) coincide with
⊲

IΠ(K).
First, however, we show that, for any π-institution I , with τ ♭ in N ♭, the

class K(I , τ) is closed under subdirect intersections.

Lemma 1660 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F. Then

⊲

IΠ(K(I , τ)) ⊆ K(I , τ).
Proof: Let Ai ∈ K(I , τ), for all i ∈ I, and

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

be a subdirect intersection. Then, we have, by definition of subdirect in-
tersection, ⋂i∈I Ker(⟨H i, γi⟩) = ∆A and, by Proposition 1646, τA

i(∆Ai) ∈
FiFamI(Ai), for all i ∈ I. These give

τA(∆A) = τA(⋂i∈I Ker(⟨H i, γi⟩))
= ⋂i∈I τA(Ker(⟨H i, γi⟩))
= ⋂i∈I τA((γi)−1(∆Ai))
= ⋂i∈I(γi)−1(τAi(∆Ai))
∈ FiFamI(A),

where membership follows from the fact that τA
i(∆Ai) ∈ FiFamI(Ai), for all

i ∈ I, by Corollary 55 and by closure of FiFamI(A) under intersections. We
conclude, using again Proposition 1646, that A ∈ K(I , τ). ∎

Recall the classes of F-algebraic systems

AlgSysΨK,τ (I) = {A ∈ AlgSys(F) ∶ (∃T ∈ FiFamI(A))(ΨK,τ,A(T ) =∆A)};
AlgSysΨ

K,τ (I) = {A/ΨK,τ,A(T ) ∶ A ∈ AlgSys(F), T ∈ FiFamI(A)}.
Proposition 1661 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F,
with a τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K. Then

AlgSysΨK,τ (I) = AlgSysΨ
K,τ (I) = ⊲IΠ(K).

Proof: First, by Proposition 1558, AlgSysΨK,τ (I) = AlgSysΨ
K,τ (I). So it

suffices to show that AlgSysΨK,τ(I) = ⊲IΠ(K).
Suppose, first, that A ∈

⊲

IΠ(K). By Corollary 1647, K ⊆ K(I , τ). By

Lemma 1660,
⊲

IΠ(K) ⊆ ⊲

IΠ(K(I , τ)) ⊆ K(I , τ), whence A ∈ K(I , τ). Thus, by
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Proposition 1646, τA(∆A) ∈ FiFamI(A). Moreover, ∆A ∈ ConSys
⊲
IΠ(K)(A).

We now get

ΨK,τ,A(τA(∆A)) = Θ
⊲
IΠ(K),A(τA[τA(∆A)]) ≤ Θ

⊲
IΠ(K),A(∆A) = ∆A.

We conclude that A ∈ AlgSysΨK,τ (I).
Suppose, conversely, that A ∈ AlgSysΨK,τ (I). Then, there exists T ∈

FiFamI(A), such that ΨK,τ,A(T ) = ∆A, that is, Θ
⊲
IΠ(K),A(τA[T ]) = ∆A. This

shows that ∆A is an
⊲

IΠ(K)-congruence system on A. Hence A ∈
⊲

IΠ(K). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F, with a τ ♭-algebraic
semantics K, such that AlgSys∗(I) ⊆ K. Then we have

AlgSys∗(I) ⊆ K ⊆ K(I , τ).
Assume, now, that I is family truth equational, with witnessing transforma-
tions τ ♭. By Proposition 1648, AlgSys(I) is a τ ♭-algebraic semantics for I
and, by Proposition 65, AlgSys∗(I) ⊆ AlgSys(I). Thus, in the case of truth
equationality I has a τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K ⊆
K(I , τ).

• If K = AlgSys∗(I), then, by Proposition 1637 and Theorem 1404, we
would have ΨK,τ = Ω̃I ;

• At the other extreme, if K = K(I , τ), then, we get, by Proposition 1661
and Lemma 1660, a semi-coherent family of congruential monotone
compatibility I-operators ΨK,τ , such that, similarly, AlgSysΨK,τ(I) =
K(I , τ).
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