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22.1 The Strong Version of a π-Institution

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define the following classes of I-matrix families.

MI∗ = {⟨A, T ⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI∗(A)};
MI,Su = {⟨A, T ⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI,Su(A)};
MI,m = {⟨A, T ⟩ ∶ A ∈ AlgSys(F), T = ⋂FiFamI(A)}.

We show that all three classes of I-matrix families generate the same
closure system on F.

Proposition 1662 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then IMI∗ = IMI,m.

Proof: By Lemma 1568, we have that, for all A ∈ AlgSys(F), ⋂FiFamI(A) ∈
FiFamI∗(A). Thus, MI,m ⊆ MI∗. This implies that IMI∗ ≤ IMI,m. To show
the converse, assume that ⟨A, T ⟩ ∈MI∗ and consider the quotient morphism⟨I, π⟩ ∶ A → A/ΩA(T ). By Corollary 1554, π(T ∗) is the least I-filter family
of A/ΩA(T ). By hypothesis T = T ∗, whence π(T ) = π(T ∗) and, hence, since⟨I, π⟩ ∶ ⟨A, T ⟩ → ⟨A/ΩA(T ), π(T )⟩ is a strict surjective morphism,, we get
that

I ⟨A,T ⟩ = I ⟨A/Ω
A(T ),π(T )⟩ = I ⟨A/Ω

A(T ),π(T ∗)⟩

and ⟨A/ΩA(T ), π(T ∗)⟩ ∈MI,m. Putting things together, we finally obtain

IMI,m ≤ ⋂{I ⟨A/ΩA(T ),π(T ∗)⟩ ∶ T ∈ FiFamI∗(A)}
= ⋂{I ⟨A,T ⟩ ∶ T ∈ FiFamI∗(A)}
= IMI∗.

Therefore, IMI∗ = IMI,m. ∎

Proposition 1662 enables us to show that MI∗ and MI,Su also generate
the same closure system on F.

Corollary 1663 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then IMI∗ = IMI,Su.

Proof: By Lemma 1583, MI,Su ⊆ MI∗. Also by Lemma 1583, MI,m ⊆ MI,Su.
So we get IMI∗ ≤ IMI,Su ≤ IMI,m. Therefore, by Proposition 1662, IMI∗ =
IMI,Su. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Taking into account Proposition 1662 and Corollary
1663, we define the strong version of I , denoted by I+ = ⟨F,C+⟩, by

I+ ∶= IMI∗ = IMI,Su = IMI,m.
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There are even more ways to characterize the π-institution I+. Let F =⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-institution based
on F. Given a class K of F-algebraic systems, we define

M
I,m
K = {⟨A, T ⟩ ∶ A ∈ K, T = ⋂FiFamI(A)};

MI∗
K

= {⟨A, T ⟩ ∶ A ∈ K, T ∈ FiFamI∗(A)};
M
I,Su
K = {⟨A, T ⟩ ∶ A ∈ K, T ∈ FiFamI,Su(A)}.

Proposition 1664 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and K = AlgSys∗(I) or K = AlgSys(I).
Then

I+ = IM
I,m
K = IMI∗

K = IM
I,Su
K .

Proof: By definition and Lemma 1583, we have

M
I,m
K ⊆MI,SuK ⊆MI∗K ⊆M

I∗.

Therefore, we get

I+ ≤ IMI∗
K ≤ IM

I,Su
K ≤ IM

I,m
K .

For the converse, suppose A ∈ AlgSys(F) and T ∈ FiFamI∗(A). By Propo-
sition 1572, T /ΩA(T ) is the least I-filter family of A/ΩA(T ) ∈ AlgSys∗(I) ⊆
AlgSys(I). Therefore, we get

IM
I,m
K ≤ ⋂{I ⟨A/ΩA(T ),T /ΩA(T )⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI∗(A)}

= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI∗(A)}
= I+.

We conclude that I+ = IM
I,m
K = IMI∗

K = IM
I,Su
K . ∎

The following proposition lists some of the properties of the strong version
I+ of a π-institution I .

Proposition 1665 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) I ≤ I+;

(b) FiFamI
+(A) ⊆ FiFamI(A), for every F-algebraic system A;

(c) FiFamI,Su(A) ⊆ FiFamI∗(A) ⊆ FiFamI
+(A), for every F-algebraic sys-

tem A;

(d) If I is family reflective, then I+ = I.

Proof:

(a) Since MI,m ⊆MatFam(I), we get I = IMatFam(I) ≤ IMI,m = I+.
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(b) Since, by Part (a), I ≤ I+, we get that FiFamI
+(A) ⊆ FiFamI(A), for

all A ∈ AlgSys(F).
(c) By definition of I+, we have, for all A ∈ AlgSys(F), all T ∈ FiFamI∗(A)

and all T ′ ∈ FiFamI,Su(A), C+ ≤ C⟨A,T ⟩ and C+ ≤ C⟨A,T ′⟩. Moreover, by
Lemma 1583, every Suszko filter family is a Leibniz filter family. We
conclude that FiFamI,Su(A) ⊆ FiFamI∗(A) ⊆ FiFamI

+(A).
(d) By the hypothesis and Proposition 1573, FiFamI∗(A) = FiFamI(A),

for every F-algebraic system A. Therefore, I+ = IMI∗ = IMatFam(I) = I .
∎

It turns out that the strong version I+ is mostly interesting when I itself
has theorems. In the absence of theorems I+ has only trivial theory families.

Proposition 1666 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I does not have theorems, then I
is almost inconsistent.

Proof: Assume that I does not have theorems. Then, for every F-algebraic
system A, ∅ ∈ FiFamI(A). Therefore, by definition I+ = ⋂{I ⟨A,∅⟩ ∶ A ∈
AlgSys(F)}. This implies that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
we have, vacuously, for all ψ ∈ SEN♭(Σ), ψ ∈ C+Σ(φ). Therefore, the only
Σ-theory families of I+ are ∅ and SEN♭(Σ). So I+ is almost inconsistent. ∎

The least I-filter family on every algebraic system A coincides with the
least I+-filter family. As a consequence I and I+ share the same theorems.

Lemma 1667 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

⋂FiFamI(A) =⋂FiFamI
+(A).

In particular, ThFam(I+) = ThFam(I).
Proof: Let A be an F-algebraic system. By Proposition 1665, FiFamI

+(A) ⊆
FiFamI(A). Thus, we have ⋂FiFamI(A) ≤ ⋂FiFamI

+(A). On the other
hand, by Lemma 1568, ⋂FiFamI(A) ∈ FiFamI∗(A), whence, by Proposition
1665, ⋂FiFamI(A) ∈ FiFamI

+(A). Therefore, ⋂FiFamI
+(A) ≤ ⋂FiFamI(A).

Equality now follows. ∎

Lemma 1667 implies the idempotency of the strong version operator on
π-institutions.

Corollary 1668 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then (I+)+ = I+.
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Proof: We have

(I+)+ = ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(F), T = ⋂FiFamI
+(I)}

= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(F), T = ⋂FiFamI(I)}
= I+.

The first and last equalities follow by the definition of
+
, and the main

equality is due to Lemma 1667. ∎

The next proposition provides sufficient conditions for recognizing that
a given π-institution is the strong version of another π-institution based on
the same algebraic system.

Proposition 1669 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ π-institutions based on F, such that

1. I ′ is family reflective;

2. AlgSys(I ′) = AlgSys(I);
3. For all A ∈ AlgSys(I ′), ⋂FiFamI(A) = ⋂FiFamI

′(A).
Then I ′ = I+.

Proof: We have

I ′ = I ′+ (by 1 and Proposition 1665)

= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(I ′), T = ⋂FiFamI
′(A)}

(by Proposition 1664)
= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(I), T = ⋂FiFamI(A)}

(by 2 and 3)
= I+. (by Proposition 1664)

This proves the claim. ∎

We now show that Suszko and Leibniz I-filter families form subclasses,
respectively, of the classes of Suszko and Leibniz I+-filter families on every
F-algebraic system.

Proposition 1670 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

FiFamI,Su(A) ⊆ FiFamI
+,Su(A) and FiFamI∗(A) ⊆ FiFamI

+∗(A).
Proof: By Proposition 1665, FiFamI

+(A) ⊆ FFamI(A). Thus, for all T ∈
FiFamI

+(A), [[T ]]I+∗ ⊆ [[T ]]I∗ and [[T ]]I+,Su ⊆ [[T ]]I,Su.
Suppose that T ∈ FiFamI,Su(A). Then, by Proposition 1665, T ∈ FiFamI

+(A)
and, moreover, T = ⋂ [[T ]]I,Su ≤ ⋂ [[T ]]I+,Su. Thus, since T ∈ [[T ]]I+,Su, we get

that T = ⋂ [[T ]]I+,Su ∈ FiFamI
+,Su(A).

The second inclusion may be shown similarly. ∎

But the Leibniz counterpart of an I+-filter family is identical whether it
be considered with respect to I or with respect to I+.
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Lemma 1671 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A, and all
T ∈ FiFamI

+(A), T I∗ = T I+∗.
Proof: By Proposition 1665, [[T ]]I+∗ ⊆ [[T ]]I∗. Therefore, T I∗ ≤ T I+∗. On
the other hand,

T I∗ ∈ FiFamI∗(A) (by Proposition 1570)

⊆ FiFamI
+(A) (by Proposition 1670)

and, since T I∗ ∈ [[T ]]I∗, ΩA(T ) ≤ ΩA(T I∗). Thus, T I∗ ⊆ [[T ]]I+∗, which gives
T I

+∗ ≤ T I∗. We conclude that T I∗ = T I+∗. ∎

And this implies that the Leibniz I-filter families and the Leibniz I+-filter
families coincide on every F-algebraic system.

Corollary 1672 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

FiFamI
+∗(A) = FiFamI∗(A).

Proof: The right-to-left inclusion was shown in Proposition 1670. For
the reverse, assume that T ∈ FiFamI

+∗(A). Then, by Proposition 1665,
T ∈ FiFamI(A) and, by Lemma 1671, T = T I+∗ = T I∗. Therefore, T ∈
FiFamI∗(A). ∎

22.2 Leibniz and Suszko I+-Filter Families

There is a relation between the I+-filter families on algebraic systems and
the Leibniz and Suszko I-filter families on the same algebraic systems. The
following proposition shows how these relations interplay with family c-
reflectivity.

Proposition 1673 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If, for all F-algebraic systems A, FiFamI
+(A) = FiFamI,Su(A), then I+

is family c-reflective.

(b) If I+ is family c-reflective, then FiFamI
+(A) = FiFamI∗(A), for all

F-algebraic systems A.

Proof:
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(a) Suppose, for all F-algebraic systems A, FiFamI
+(A) = FiFamI,Su(A).

Let A be an F-algebraic system. By Proposition 1670, FiFamI,Su(A) ⊆
FiFamI

+,Su(A). Hence, by hypothesis, FiFamI
+(A) ⊆ FiFamI

+,Su(A).
Thus, FiFamI

+,Su(A) = FiFamI
+(A). By Theorem 1590, I+ is family

c-reflective.

(b) Suppose I+ is family c-reflective and let A be an F-algebraic system. By
Theorem 1590, FiFamI

+(A) = FiFamI
+,Su(A). Since, by Lemma 1583

and Corollary 1672, FiFamI
+,Su(A) ⊆ FiFamI

+∗(A) = FiFamI∗(A), we
get that FiFamI

+(A) ⊆ FiFamI∗(A). The reverse inclusion holds by
Proposition 1665.

∎

A necessary and sufficient condition for the I+-filter families to coincide
with the Leibniz I-filter families is the universal reflectivity of the Leibniz
operator on I+-filter families.

Proposition 1674 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

FiFamI
+(A) = FiFamI∗(A)

if and only if, for every F-algebraic system A, ΩA is order reflecting on
FiFamI

+(A).
Proof: By Corollary 1672, for every F-algebraic system A, FiFamI

+∗(A) =
FiFamI∗(A). By Proposition 1573, ΩA is reflective on FiFamI

+(A), for all A,
if and only if FiFamI

+(A) = FiFamI
+∗(A), for all A. Thus, we get that ΩA is

reflective on FiFamI
+(A), for all A, if and only if FiFamI

+(A) = FiFamI∗(A),
for all A. ∎

Under the stipulation that the strong version of I be protoalgebraic, the
identification of I+-filter families with the Leibniz I-families have several
characterizations.

Proposition 1675 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F, such that I+ is protoalgebraic. The
following conditions are equivalent:

(i) FiFamI
+(A) = FiFamI∗(A), for every F-algebraic system A;

(ii) ThFam(I+) = ThFam∗(I);
(iii) I+ is weakly family algebraizable;

(iv) I+ is family c-reflective;

Proof:
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(i)⇒(ii) Trivial.

(ii)⇒(iii) Suppose that ThFam(I+) = ThFam∗(I). By Proposition 1528, Ω is
injective on ThFam∗(I). By definition it is onto FiFamI∗(F). Thus,
by hypothesis and Corollary 1672, Ω ∶ FiFam(I+) → ConSysI

+∗(F) is
a bijection. By hypothesis it is monotone and, by Proposition 1528, it
is order reflecting. Therefore, it is an order isomorphism. By Theorem
296, I+ is weakly family algebraizable.

(iii)⇒(iv) Every weakly family algebraizable π-institution is a fortiori family c-
reflective.

(iv)⇒(i) By hypothesis, I+ is protoalgebraic, whence, by Proposition 1601 and
Corollary 1672,

FiFamI
+,Su(A) = FiFamI

+∗(A) = FiFamI∗(A).
By hypothesis and Theorem 1590, FiFamI

+,Su(A) = FiFamI
+(A). There-

fore, we get that FiFamI
+(A) = FiFamI∗(A).

∎

We close the section by looking at various consequences of the condition
imposed on a π-institution I that ΩA be an order isomorphism from the
Leibniz I-filter families of A onto the I∗-congruence systems on A, for ev-
ery I-algebraic system A. First, we show that this condition ensures that
I-algebraic systems, I∗-algebraic systems, I+-algebraic systems and (I+)∗-
algebraic systems all coincide.

Lemma 1676 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)

is an order isomorphism. Then

AlgSys(I+) = AlgSys∗(I+) = AlgSys∗(I) = AlgSys(I).
Proof: We show, first, that AlgSys∗(I+) = AlgSys∗(I). The left-to-right
inclusion holds because, by Proposition 1665, FiFamI

+(A) ⊆ FiFamI(A), for
every F-algebraic system I . Assume, conversely, that A ∈ AlgSys∗(I). Then
∆A ∈ ConSysI∗(A). By hypothesis, then, there exists T ∈ FiFamI∗(A), such
that ΩA(T ) = ∆A. By Proposition 1665 again, T ∈ FiFamI

+(A). Hence,
A ∈ AlgSys∗(I+).

Now we have

AlgSys(I) = AlgSys∗(I) (by Lemma 1623)
= AlgSys∗(I+) (shown above)
⊆ AlgSys(I+) (by Proposition 65)
⊆ AlgSys(I). (by Proposition 1665).
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We conclude that all four classes of algebraic system coincide. ∎

Next we show that, under the same hypothesis the Leibniz congruence
systems of a filter family and its Leibniz counterpart coincide and that the
Suszko congruence system of a filter family coincides with the Leibniz con-
gruence system of its Suszko counterpart.

Proposition 1677 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),

ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)
is an order isomorphism. Then, for every F-algebraic system and all T ∈
FiFamI(A),

ΩA(T ) = ΩA(T ∗) and Ω̃I,A(T ) = ΩA(T I,Su).
Proof: By Proposition 1622, for all A ∈ AlgSys(F), ΩA ∶ FiFamI∗(A) →
ConSysI∗(A) is an order isomorphism.

Let A ∈ AlgSys(F) and T ∈ FiFamI(A). Since ΩA(T ) ∈ ConSysI
∗(A),

there exists T ′ ∈ FiFamI∗(A), such that ΩA(T ′) = ΩA(T ). Hence, [[T ]]∗ =[[T ′]]∗, which gives T ∗ = T ′∗ = T ′. Thus, we get ΩA(T ) = ΩA(T ′) = ΩA(T ∗).
By hypothesis and Lemma 1623, AlgSys∗(I) = AlgSys(I). Since we have

Ω̃I,A(T ) ∈ ConSysI(A), there exists T ′′ ∈ FiFamI∗(A), such that ΩA(T ′′) =
Ω̃I,A(T ). Thus, we get [[T ]]Su = [[T ′′]]∗ and, therefore, T I,Su = T ′′∗ = T ′′. This
gives Ω̃I,A(T ) = ΩA(T ′′) = ΩA(T I,Su). ∎

Under the same hypothesis, it turns out that the coincidence of the class
of Leibniz filter families with Suszko filter families on every algebraic system
characterizes protoalgebraicity.

Corollary 1678 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)

is an order isomorphism. I is protoalgebraic if and only if, for every F-
algebraic system A, FiFamI∗(A) = FiFamI,Su(A).
Proof: If I is protoalgebraic, then, by Proposition 1601, Leibniz and Suszko
classes coincide and, therefore, FiFamI∗(A) = FiFamI,Su(A), for all A ∈
AlgSys(F).

Suppose, conversely, that, for all F-algebraic systems A, FiFamI∗(A) =
FiFamI,Su(A). Let A ∈ AlgSys(F) and T ∈ FiFamI(A). By Lemma 1583,
T I,Su ∈ FiFamI∗(A) = FiFamI,Su(A). By the hypothesis and Lemma 1586,
T I,Su is the largest Leibniz I-filter family included in T . Since, by Lemma
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1583, T I,Su ≤ T ∗ ≤ T and, by Proposition 1570, T ∗ is a Leibniz I-filter family,
we get T I,Su = T ∗. Therefore, using Proposition 1570, we get

Ω̃I,A(T ) = ΩA(T I,Su) = ΩA(T ∗) = ΩA(T ).
Thus, on every F-algebraic system A, the Suszko and the Leibniz operators
coincide and, therefore, by Lemma 1518, I is protoalgebraic. ∎

We already have the tools to show that the property that ΩA be an
isomorphism between Leibniz filter families and reduced algebraic systems is
bequeathed by a π-institution I to its strong version I+.

Lemma 1679 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)

is an order isomorphism. Then, for all A ∈ AlgSys(I+), ΩA ∶ FiFamI
+∗(A)→

ConSysI
+∗(A) is also an order isomorphism.

Proof: By Corollary 1672, we have FiFamI
+∗(A) = FiFamI∗(A). By Lemma

1676, AlgSys∗(I)) = AlgSys∗(I+). Now, taking into account the hypothesis,
we get the conclusion. ∎

In a proposition analogous to Proposition 1675, we provide under our
working hypothesis, of the Leibniz operator being an order isomorphism, a
characterization of the property of I+ being weakly family algebraizable.

Proposition 1680 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),

ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)
is an order isomorphism. The following conditions are equivalent:

(i) FiFamI
+(A) = FiFamI∗(A), for every F-algebraic system A;

(ii) ThFam(I+) = ThFam∗(I);
(iii) I+ is weakly family algebraizable;

(iv) I+ is family c-reflective;

(v) Ω is injective on the collection of reduced I+-filter families.

Proof:

(i)⇒(ii) Trivial.
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(ii)⇒(iii) By hypothesis and Lemma 1676, Ω ∶ ThFam(I+)→ ConSysI
+∗(F) is an

order isomorphism. Thus Ω is both monotone and family c-reflective,
whence I+ is weakly family algebraizable.

(iii)⇒(iv) Weak family algebraizability implies family c-reflectivity.

(iv)⇒(v) If I+ is family c-reflective, then it is a fortiori injective. Therefore, by
Theorem 214, ΩA is injective on the I-filter families of every F-algebraic
system A.

(v)⇒(i) Suppose (v) holds and let A ∈ AlgSys(F). By Proposition 1665, we
have FiFamI∗(A) ⊆ FiFamI

+(A). So it suffices to prove the reverse
inclusion. To this end, suppose T ∈ FiFamI

+(A). Consider the quotient
morphism ⟨I, π⟩ ∶ A → A/ΩA(T ).
Ker(⟨I, π⟩) = ΩA(T ) ≤ ΩA(T ∗), the last inclusion, since, by Proposition
1525, T ∗ ∈ [[T ]]I∗. Hence, by Corollary 56,

π(T ), π(T ∗) ∈ FiFamI
+(A/ΩA(T ))

and, by compatibility, π−1(π(T )) = T and π−1(π(T ∗)) = T ∗. By Corol-
lary 1554, π(T ∗) = π(T )∗. Now we get

∆A/Ω
A(T ) = ΩA/Ω

A(T )(π(T )) (by Lemma 1557)

= ΩA/Ω
A(T )(π(T )∗) (by Proposition 1677)

= ΩA/Ω
A(T )(π(T ∗)).

This, both π(T ) and π(T ∗) are reduced I+-filter families and, there-
fore, by the injectivity hypothesis, π(T ) = π(T ∗). Now we conclude
that T = π−1(π(T )) = π−1(π(T ∗)) = T ∗. This proves that, for all A,
FiFamI

+(A) ⊆ FiFamI∗(A). Equality now follows.
∎

22.3 Full I+-Structures

We now explore the relation between full I-structures and full I+-structures.

Proposition 1681 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and A an F-algebraic system. ⟨A,D⟩ ∈
FStrI

+(A) if and only if, there exists T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈
FStrI(A) and D = T ∩FiFamI

+(A), i.e.,

FStr(I+) = {⟨A,T ∩FiFamI
+(A)⟩ ∶ ⟨A,T ⟩ ∈ FStr(I)}.

Proof:
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(⇒) Suppose that ⟨A,D⟩ ∈ FStr(I+). Set

T = {T ∈ FiFamI(A) ∶ Ω̃A(D) ≤ ΩA(T )}.
If T ∈ D, then Ω̃A(D) ≤ ΩA(T ) and T ∈ FiFamI

+(A) ⊆ FiFamI(T ).
Thus, T ∈ T ∩FiFamI

+(A). On the other hand, let T ∈ T ∩FiFamI
+(A).

Then Ω̃A(D) ≤ ΩA(T ) and, since T ∈ FiFamI
+(A) and ⟨A,D⟩ ∈ FStr(I+),

we must have, by Theorem 1395, T ∈ D. We conclude that D =
T ∩FiFamI

+(A). Thus, it only remains to show that ⟨A,T ⟩ ∈ FStr(I).
To this end, let T ∈ FiFamI(A), such that Ω̃A(T ) ≤ ΩA(T ). Then,
we get Ω̃A(T ) ≤ ⋂T ′∈DΩA(T ′) = Ω̃A(D) ≤ ΩA(T ). Thus, by definition,
T ∈ T . We conclude, using Theorem 1395, that ⟨A,T ⟩ ∈ FStr(I).

(⇐) Suppose, now, that ⟨A,T ⟩ ∈ FStr(I) and D = T ∩ FiFamI
+(A). Since,

by Proposition 1563, the least element of a full I-structure is a Leib-
niz I-filter family, we get that ⋂T ∈ FiFamI∗(A) ⊆ FiFamI

+(A). To
see that ⟨A,D⟩ is a dull I+-structure, let T ∈ FiFamI

+(A), such that
Ω̃A(D) ≤ ΩA(T ). Then, we infer

Ω̃A(T ) ≤ Ω̃A(D) ≤ ΩA(T ).
Since ⟨A,T ⟩ ∈ FStr(I), then, by Theorem 1395, T ∈ T . Since, in
addition, by hypothesis, T ∈ FiFamI

+(A), we get T ∈ D. Thus, again
by Theorem1395, ⟨A,D⟩ ∈ FStr(I+).

∎

Next, we show that the association

⟨A,T ⟩↦ ⟨A,T ∩FiFamI
+(A)⟩

of full I+-structures to full I-structures, given in Proposition 1681, is one-
to-one, provided that I- and I+-algebraic systems coincide.

Proposition 1682 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, such that AlgSys(I) = AlgSys(I+), and A
an F-algebraic system. For all ⟨A,T ⟩, ⟨A,T ′⟩ ∈ FStr(I),

T ∩ FiFamI
+(A) = T ′ ∩ FiFamI

+(A) implies T = T ′.

Proof: We start with some preparatory remarks. Suppose A is an F-
algebraic system. Since, by hypothesis, AlgSys(I) = AlgSys(I+), we get that
ConSysI(A) = ConSysI

+(A). Now, using Theorem 1408 (or, alternatively,
Corollary 1565), we have that FStrI(A) ≅ FStrI

+(A), through

T ↦ T = {T ∈ FiFamI
+(A) ∶ Ω̃A(T ) ≤ ΩA(T )}.
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This is obtained, by applying Theorem 1408 to get an isomorphism

γ ∶ FiFamI(A) → ConSysI(A);
T

γ
↦ Ω̃A(T ),

then, applying Theorem 1408 to get an isomorphism

δ ∶ ConSysI
+(A) → FStrI

+(A);
θ

δ
↦ {T ∈ FiFamI

+(A) ∶ θ ≤ ΩA(T )}
and, finally, composing these two, taking into account the hypothesis.

Now let T ,T ′ ∈ FiFamI(A), such that ⟨A,T ⟩, ⟨A,T ′⟩ ∈ FStrI(A), and
suppose that T ∩ FiFamI

+(A) = T ′ ∩ FiFamI
+(A).

Claim 1: T = T ∩FiFamI
+(A) and T ′ = T ′ ∩ FiFamI

+(A).
We show the first equality. The second one is shown in exactly the same

way. First, if T ∈ T , then T ∈ FiFamI
+(A) and Ω̃A(T ) ≤ ΩA(T ). Since ⟨A,T ⟩

is a full I-structure, by Theorem 1395, T ∈ T . Thus, T ∈ Y ∩ FiFamI
+(A).

If, on the other hand, T ∈ T ∩FiFamI
+(A), then T ∈ FiFamI

+(A) and T ∈ T .
Thus, T ∈ FiFamI

+(A) and Ω̃A(T ) ≤ ΩA(T ). Therefore, T ∈ T .

Claim 2: Ω̃A(T ) = Ω̃A(T ) and Ω̃A(T ′) = Ω̃A(T ′).
Again, it suffices to show the first equality, since the second is proven in

exactly the same way. By Claim 1 and Proposition 1681, ⟨A,T ⟩ ∈ FStrI
+(A).

Therefore, by Theorem 1395, T = {T ∈ FiFamI
+(A) ∶ Ω̃A(T ) ≤ ΩA(T )}.

Thus, we get δ(Ω̃A(T )) = δ(γ(T )) = T = δ(Ω̃A(T )). Since δ is an isomor-
phism, we get that Ω̃A(T ) = Ω̃A(T ).

To finish the proof, we get Ω̃A(T ) = Ω̃A(T ) = Ω̃A(T ′) = Ω̃A(T ′). There-
fore, by Theorem 1408, T = T ′. ∎

Now we can formulate an order isomorphism between full I- and full I+-
structures, subject to the condition that I- and I+-algebraic systems coincide.

Corollary 1683 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, such that AlgSys(I) = AlgSys(I+), and A
an F-algebraic system.

h ∶ FStrI(A) → FStrI
+(A);

⟨A,T ⟩ h
↦ ⟨A,T ∩ FiFamI

+(A)⟩
is an order isomorphism.

Proof: By Propositions 1681 and 1682. ∎

We turn next to relationships between full classes of filter families with
respect to a π-institution I and its strong version I+. Recall that, given any
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A ∈ AlgSys(F), we have FiFamI
+(A) ⊆ FiFamI(A). So we get immediately

the following inclusions, for all T ∈ FiFamI
+(A).

[[T ]]I+∗ = {T ′ ∈ FiFamI
+(A) ∶ ΩA(T ) ≤ ΩA(T ′)}

⊆ {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)}
= [[T ]]I∗.

Moreover, taking into account

Ω̃I,A(T ) = Ω̃A(FiFamI(A)T ) ≤ Ω̃A(FiFamI
+(A)T ) = Ω̃I

+,A(T ),
we infer

[[T ]]I+,Su = {T ′ ∈ FiFamI
+(A) ∶ Ω̃I+,A(T ) ≤ ΩA(T ′)}

⊆ {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ ΩA(T ′)}
= [[T ]]I,Su.

These relationships may be strengthened to apply to all extensions to a
π-institution rather that only its strong version. More precisely, we obtain

Lemma 1684 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
and I ′ = ⟨F,C ′⟩ be π-institutions based on F, such that I ≤ I ′, A be an
F-algebraic system and T ∈ FiFamI

′(A). Then

[[T ]]I′∗ = [[T ]]I∗ ∩ FiFamI
′(A) and [[T ]]I′,Su ⊆ [[T ]]I,Su ∩ FiFamI

′(A).
Proof: We have, mimicking the process preceding the statement, applied to
the extension I ′ rather than specifically I+:

[[T ]]I′∗ = {T ′ ∈ FiFamI
′(A) ∶ ΩA(T ) ≤ ΩA(T ′)}

= {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)} ∩FiFamI
′(A)

= [[T ]]I∗ ∩ FiFamI
′(A).

Moreover, taking into account

Ω̃I,A(T ) = Ω̃A(FiFamI(A)T ) ≤ Ω̃A(FiFamI
′(A)T ) = Ω̃I

′,A(T ),
we infer

[[T ]]I′,Su = {T ′ ∈ FiFamI
+(A) ∶ Ω̃I′,A(T ) ≤ ΩA(T ′)}

⊆ {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ ΩA(T ′)} ∩ FiFamI
′(A)

= [[T ]]I,Su ∩ FiFamI
′(A).

Thus, we have the equality and the inclusion claimed. ∎

Since I+ is an extension of I , then we immediately deduce
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Corollary 1685 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A an F-algebraic system and T ∈ FiFamI
+(A).

Then

[[T ]]I+∗ = [[T ]]I∗ ∩FiFamI
+(A) and [[T ]]I+,Su ⊆ [[T ]]I,Su ∩ FiFamI

+(A).
Proof: By Lemma 1684, since I ≤ I+. ∎

Finally, we strengthen the preceding relation between Suszko classes to an
equality, in the special case, where T happens to be a Suszko I-filter family
of I (recalling that FiFamI,Su(I) ⊆ FiFamI

+(A)).
Lemma 1686 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A an F-algebraic system and T ∈ FiFamI,Su(A).
Then [[T ]]I+,Su = [[T ]]I,Su ∩ FiFamI

+(A).
Proof: Let T ∈ FiFamI,Su(A). Then, by Lemma 1583, [[T ]]I,Su = FiFamI(A)T .

Since T = ⋂ [[T ]]I,Su, [[T ]]I+,Su ⊆ [[T ]]I,Su and T ∈ FiFamI
+(A), we get T =

⋂ [[T ]]I+,Su. Hence T ∈ FiFamI
+,Su(A). Again, using Lemma 1583, we get

[[T ]]I+,Su = FiFamI
+(A)T . Therefore, we conclude that

[[T ]]I+,Su = FiFamI
+(A)T

= FiFamI(A)T ∩FiFamI
+(A)

= [[T ]]I,Su ∩ FiFamI
+(A).

∎

22.4 Leibniz Truth Equationality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is Leibniz truth equational if there exists
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, such that, for every F-algebraic system A
and all T ∈ FiFamI(A),

T ∗ = τA(ΩA(T )),
i.e., for all Σ ∈ ∣Sign∣ and all φ ∈ SEN♭(Σ),

φ ∈ T ∗Σ iff τAΣ [φ] ≤ ΩA(T ).
It follows directly by the definition that, if I is Leibniz truth equational,

then, for all A ∈ AlgSys(F) and all T ∈ FiFamI(A),
T ∈ FiFamI∗(A) iff T = τA(ΩA(T )).

Moreover, we can easily see that family truth equationality implies Leibniz
truth equationality.



1376 CHAPTER 22. STRONG VERSION Voutsadakis

Lemma 1687 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family truth equational, then I is
Leibniz truth equational.

Proof: Suppose that I is family truth equational, with witnessing transfor-
mations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Thus, by Theorem 848, for every
F-algebraic system A and all T ∈ FiFamI(A), T = τA(ΩA(T )). Let A be an
F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). We have

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T ) (I truth equational)
implies τA[φ] ≤ ΩA(T ∗) (T ∗ ∈ [[T ]]∗)

iff φ ∈ T ∗Σ. (I truth equational)

Thus, we get T ≤ T ∗. On the other hand, by Lemma 1568, T ∗ ≤ T , whence
T − T ∗. This gives T ∗ = T and, hence T ∗ = τA(ΩA(T )), showing that I is
Leibniz truth equational. ∎

If I is Leibniz truth equational, then the collection of all its Leibniz filters
on every algebraic system forms a closure family.

Proposition 1688 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz truth equational π-institution based on F. For every F-
algebraic system A, FiFamI∗(A) is closed under signature-wise intersections
and, hence, forms a closure family on A.

Proof: Suppose I is Leibniz truth-equational, with witnssing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Let A be an F-algebraic system and{T i ∶ i ∈ I} ⊆ FiFamI∗(A) be a collection of Leibniz I-filter families. Then

⋂i∈I T i = ⋂i∈I(T i)∗ (T i ∈ FiFamI∗(A))
= ⋂i∈I τA(ΩA(T i)) (I Leibniz truth equational)
≤ τA(ΩA(⋂i∈I T i)) (⋂i∈I ΩA(T i) ≤ ΩA(⋂i∈I T i))
= (⋂i∈I T i)∗. (I Leibniz truth equational)

Since, by Lemma 1568, (⋂i∈I T i)∗ ≤ ⋂i∈I T i, we get that (⋂i∈I T i)∗ = ⋂i∈I T i
and, therefore, ⋂i∈I T i ∈ FiFamI∗(A). ∎

The next proposition shows that to check that a given π-institution I is
Leibniz truth equational, it is sufficient to work with I∗-algebraic systems
only. That is, if the defining property holds for all Leibniz filters of I∗-
algebraic systems, then it extends to Leibniz filters over arbitrary F-algebraic
systems.

Proposition 1689 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is Leibniz truth equational if and
only if, there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, such that, for all A ∈
AlgSys∗(I) and all T ∈ FiFamI(A), T ∗ = τA(ΩA(T )).
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Proof: The implication left-to-right follows from the definition of Leibniz
truth equationality. Suppose, conversely, that there exists τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, such that, for all A ∈ AlgSys∗(I) and all T ∈ FiFamI(A), T ∗ =
τA(ΩA(T )). Let A be an arbitrary F-algebraic system, T ∈ FiFamI(A), and
consider the quotient morphism ⟨I, π⟩ ∶ A → A/ΩA(T ). Then, by Corollary
1554, π(T ∗) = π(T )∗ and, by Proposition 1530, π(T )∗ is the least I-filter
family on A/ΩA(T ). Since A/ΩA(T ) ∈ AlgSys∗(I), we get, by hypothesis,

π(T )∗ = τA/ΩA(T )(T /ΩA(T )) = τA/ΩA(T )(∆A/ΩA(T )).
Hence, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ T ∗Σ iff φ/ΩAΣ(T ) ∈ πΣ(T ∗Σ) (ΩA(T ) ≤ ΩA(T ∗))
iff φ/ΩAΣ(T ) ∈ π(T )∗Σ
iff φ/ΩAΣ(T ) ∈ τA/ΩA(T )Σ (∆A/ΩA(T ))
iff φ ∈ τAΣ (ΩA(T )).

Thus, I is Leibniz truth equational. ∎

A fortiori, it suffices to show that the condition in the statement of Propo-
sition 1689 holds for all I-algebraic systems, since this class encompasses all
I∗-algebraic systems.

Corollary 1690 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is Leibniz truth equational if and only if,
there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, such that, for all A ∈ AlgSys(I)
and all T ∈ FiFamI(A), T ∗ = τA(ΩA(T )).
Proof: The conclusion follows from Proposition 1689, taking into account
the fact that AlgSys∗(I) ⊆ AlgSys(I). ∎

Next, we provide another characterization of Leibniz truth equationality
by showing that it is equivalent to τA(∆A) being the least I-filter family on
every I- (or I∗-)algebraic system.

Proposition 1691 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭.
The following conditions are equivalent.

(i) I is Leibniz truth equational, with witnessing transformations τ ♭;

(ii) For all A ∈ AlgSys∗(I), τA(∆A) = ⋂FiFamI(A);
(iii) For all A ∈ AlgSys(I), τA(∆A) = ⋂FiFamI(A).
Proof:
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(i)⇒(iii) Suppose I is Leibniz truth equational, with witnessing transformations
τ ♭. Let A ∈ AlgSys(I) and Tm = ⋂FiFamI(A). Then, by Lemma 1568,
Tm ∈ FiFamI∗(A). Since τA(∆A) ≤ τA(ΩA(Tm)), we get, by hypoth-
esis, τA(∆A) ≤ Tm. On the other hand, since Tm = ⋂FiFamI(A),
we have, for all T ∈ FiFamI(A), Tm ≤ T ∗, whence, by hypothesis,
Tm ≤ τA(ΩA(T )). Since, this holds for all T ∈ FiFamI(A), we get,
taking into account that A ∈ AlgSys(I),

Tm ≤ τA(Ω̃A(FiFamI(A))) = τA(∆A).
Therefore, τA(∆A) = Tm.

(iii)⇒(ii) Trivial, since AlgSys∗(I) ⊆ AlgSys(I).
(ii)⇒(i) Suppose, for all A ∈ AlgSys∗(I), τA(∆A) = ⋂FiFamI(A). Let A be

an F-algebraic system, T ∈ FiFamI(A) and consider the quotient mor-
phism ⟨I, π⟩ ∶ A→ A/ΩA(T ).
Then, A/ΩA(T ) ∈ AlgSys∗(I) and, by Corollary 1554, π(T ∗) = π(T )∗
and, by Proposition 1530, π(T )∗ = ⋂FiFamI(A/ΩA(T )). Thus, by
hypothesis, π(T ∗) = τA/ΩA(T )(∆A/ΩA(T )). Therefore, for all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

φ ∈ T ∗Σ iff φ/ΩAΣ(T ) ∈ πΣ(T ∗Σ)
iff φ/ΩAΣ(T ) ∈ τA/ΩA(T )Σ (∆A/ΩA(T ))
iff φ ∈ τAΣ (ΩA(T )).

Hence, τ ♭ witnesses the Leibniz truth equationality of I .
∎

If I-algebraic systems and I+-algebraic systems coincide, then truth equa-
tionality of I+ guarantees the Leibniz truth equationality of I .

Proposition 1692 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in
N ♭. If I+ is family truth equational, with witnessing transformations τ ♭ and
AlgSys(I) = AlgSys(I+), then I is Leibniz truth equational, with witnessing
transformations τ ♭.

Proof: We use Proposition 1691. Suppose I+ is family truth equational via
τ ♭ and AlgSys(I) = AlgSys(I+). Let A ∈ AlgSys(I). Since, by hypothesis
A ∈ AlgSys(I+), we get, by hypothesis, Lemma 1687 and Proposition 1691,
τA(∆A) = FiFamI

+(A). By Lemma 1667, ⋂FiFamI(A) = ⋂FiFamI
+(A).

Hence, we get τA(∆A) = ⋂FiFamI(A), whence, by Proposition 1691, I is
Leibniz truth equational via τ ♭. ∎
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ and K a class of F-algebraic
systems. We define, as before, on F the closure system CK,τ = {CK,τ

Σ }Σ∈∣Sign♭∣,
where, for all Σ ∈ ∣Sign♭∣, CK,τ

Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)) is given, for all
Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ CK,τ
Σ (Φ) iff τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]).

Then we say that K is a τ ♭-algebraic semantics for I if C = CK,τ .
We show that, if a π-institution I is Leibniz truth equational, with

witnessing transformations τ ♭, then any of the four classes AlgSys∗(I+),
AlgSys(I+), AlgSys∗(I) or AlgSys(I) serves as a τ ♭-algebraic semantics for
I+.

Theorem 1693 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Set K = AlgSys∗(I+) or
AlgSys(I+) or AlgSys∗(I) or AlgSys(I). Then K is a τ ♭-algebraic semantics
for I+.

Proof: Let, first, K = AlgSys∗(I) or AlgSys(I), Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆
SEN♭(Σ). Then, we have φ ∈ C+Σ(Φ) if and only if, by Proposition 1664,

φ ∈ CM
I,m
K

Σ (Φ) if and only if, for all A ∈ K,

αΣ(Φ) ⊆ CI,AF (Σ)(∅) implies αΣ(φ) ∈ CI,AF (Σ)(∅).
if and only if, by hypothesis and Proposition 1691,

αΣ(Φ) ⊆ τAF (Σ)(∆A) implies αΣ(φ) ∈ τAF (Σ)(∆A),
if and only if

τAF (Σ)[αΣ(Φ)] ≤∆A implies τAF (Σ)[αΣ(φ)] ≤∆A,

if and only if

α(τ ♭Σ[Φ]) ≤∆A implies α(τ ♭Σ[φ]) ≤ ∆A,

if and only if τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]) if and only if φ ∈ CK,τ
Σ (Φ). Thus, K is a

τ ♭-algebraic semantics of I+.
Finally, note that, by hypothesis and Lemma 1671, I+ is Leibniz truth

equational via τ ♭, as well. Moreover, by Corollary 1668, (I+)+ = I+. Ap-
plying, therefore, what was shown above to I+, we get the result for K =
AlgSys∗(I+) or AlgSys(I+). ∎

Theorem 1693 implies that for AlgSys(I) to be a τ ♭-algebraic semantics
of a Leibniz truth equational π-institution I , where τ ♭ is a set of witnessing
transformations, I and I+ must be identical.
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Corollary 1694 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. AlgSys(I) is a τ ♭-algebraic
semantics for I if and only if I = I+.

Proof: By Theorem 1693, C+ = CAlgSys(I),τ . Therefore, we get that AlgSys(I)
is a τ ♭-algebraic semantics of I if and only if, by definition C = CAlgSys(I),τ if
and only if C = C+. ∎

Moreover, we can show that Leibniz truth equationality of I implies the
family truth equationality of I+.

Corollary 1695 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is Leibniz truth equational, with
witnessing transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2, then I+ is family truth
equational via τ ♭.

Proof: Let A be an F-algebraic system and T ∈ FiFamI
+(A). By hypothesis

and Theorem 1693, I+ has a τ ♭-algebraic semantics. Therefore, by Corollary
824, T = τA(Ω̃I+,A(T )) ≤ τA(ΩA(T )). Conversely, by hypothesis and the
fact that, by Proposition 1665, T ∈ FiFamI(A), we get, using Lemma 1568,
τA(ΩA(T )) = T ∗ ≤ T . We now conclude that T = τA(ΩA(T )). Thus, I+ is
family truth equational, with witnessing transformations τ ♭. ∎

As another consequence, we get that, under Leibniz truth equational-
ity, I+ filter families coincide with Leibniz I-filter families on any algebraic
system.

Corollary 1696 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is Leibniz truth equational, then, for
every F-algebraic system A, FiFamI

+(A) = FiFamI∗(A).
Proof: Suppose I is Leibniz truth equational. Then, by Corollary 1695,
I+ is family truth equational. Thus, by Proposition 1673, FiFamI

+(A) =
FiFamI∗(A), for every F-algebraic system A. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a
Leibniz truth equational π-institution, with witnessing transformations τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭. Let, also, A be an F-algebraic system and T ∈
FiFamI(A). Then, by definition T I,Su = ⋂ [[T ]]I,Su and, by Proposition 1584,

⟨A, [[T ]]I,Su⟩ ∈ FStr(I). Thus, by Proposition 1584, T I,Su ∈ FiFamI∗(A).
Now it follows, by hypothesis, that

T I,Su = τA(ΩA(T I,Su)).
There is also an additional characterization of the Suszko filter family,

using the Suszko operator.
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Proposition 1697 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transfor-
mations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system A and
all T ∈ FiFamI(A),

T I,Su = τA(Ω̃I,A(T )).
Proof: Let A be an F-algebraic system, T ∈ FiFamI(A) and consider the
quotient morphism ⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
Then A/Ω̃I,A(T ) ∈ AlgSys(I). Moreover, by Lemma 1557, π(T I,Su) = π(T )I,Su
and, by Proposition 1587, π(T )I,Su = ⋂FiFamI(A/Ω̃I,A(T )). Thus, by
Proposition 1691,

π(T I,Su) = τA/Ω̃I,A(T )(∆A/Ω̃I,A(T )).
Now we get

T I,Su = π−1(π(T I,Su))
= π−1(τA/Ω̃I,A(T )(∆A/Ω̃I,A(T )))
= τA(π−1(∆A/Ω̃I,A(T )))
= τA(Ω̃I,A(T )).

This proves the statement. ∎

Proposition 1697 enables us to characterize the Suszko filter counterpart
T I,Su of a given filter family T as the intersection of all Leibniz filter family
companions of filter families in the upset of T .

Corollary 1698 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system A and all
T ∈ FiFamI(A),

T I,Su =⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)}.
Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). Then we have

T I,Su = τA(Ω̃I,A(T )) (by Proposition 1697)

= τA(⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)})
(definition of Ω̃I,A(T ))

= ⋂{τA(ΩA(T ′)) ∶ T ≤ T ′ ∈ FiFamI(A)})
= ⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)}.

(Leibniz truth equationality)

This proves the corollary. ∎

We now get immediately
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Corollary 1699 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system A and all
T ∈ FiFamI(A),

T ∈ FiFamI,Su(I) iff T ≤ T ′∗, for all T ′ ∈ FiFamI(A)T .
Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). Then we have
T ∈ FiFamI,Su(A) if and only if, by definition, T = T I,Su if and only if, by
Corollary 1698, T = ⋂{T ′∗ ∶ T ′ ∈ FiFamI(A)T }, if and only if, taking into
account that T ∗ ≤ T , T ≤ T ′∗, for all T ′ ∈ FiFamI(A)T . ∎

We close the section with a characterization of weak family algebraizabil-
ity of the strong version of I among those π-institutions that are Leibniz
truth equational.

Proposition 1700 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transfor-
mations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. I+ is weakly family algebraizable if
and only if, for all A ∈ AlgSys(I+), ΩA ∶ FiFamI

+∗(A) → ConSysI
+∗(A) is

an order isomorphism.

Proof: If I+ is weakly family algebraizable, then it is, a fortiori, pro-
toalgebraic. Therefore, by Proposition 1621, for all A ∈ AlgSys(I+), ΩA ∶
FiFamI

+∗(A)→ ConSysI
+∗(A) is an order isomorphism.

Assume, conversely, that the condition in the statement holds. Then, for
every F-algebraic system A,

FiFamI
+∗(A) = FiFamI∗(A) (by Corollary 1672)

= FiFamI
+(A). (by Corollary 1696)

Thus, for all A ∈ AlgSys(I+), ΩA ∶ FiFamI
+(A) → ConSysI

+∗(A) is an order
isomorphism. Hence, by Theorem 296, I+ is weakly family algebraizable. ∎

Proposition 1700 gives a sufficient condition for the weak family algbe-
braizability of I+ that involves only I-algebraic systems.

Corollary 1701 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. If, for every A ∈ AlgSys(I), ΩA ∶
FiFamI∗(A) → ConSysI∗(A) is an order isomorphism, then I+ is weakly
family algebraizable.

Proof: By hypothesis and Lemma 1679, for every A ∈ AlgSys(I+), ΩA ∶
FiFamI

+∗(A)→ ConSysI
+∗(A) is an order isomorphism. Hence, by Proposi-

tion 1700, I+ is weakly family algebraizable. ∎
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22.5 Leibniz Definability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is Leibniz definable if, there exists µ♭ ∶ (SEN♭)ω →
SEN♭ inN ♭, such that, for every F-algebraic system A, and all T ∈ FiFamI(A),

T ∗ = µA(T ),
i.e., for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ T ∗Σ iff µAΣ[φ] ≤ T.
We show that it suffices to consider only I∗-algebraic systems to establish

Leibniz definability.

Proposition 1702 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is Leibniz definable if and only if,
there exists µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭, such that, for all A ∈ AlgSys∗(I)
and all T ∈ FiFamI(A), T ∗ = µA(T ).
Proof: The “only if” is trivial. For the “if”, suppose the stated condition
holds and let A be an F-algebraic system and T ∈ FiFamI(A). Consider the
quotient morphism ⟨I, π⟩ ∶ A→ A/ΩA(T ).
Then A/ΩA(T ) ∈ AlgSys∗(I) and, moreover, Ker(⟨I, π⟩) = ΩA(T ) ≤ ΩA(T ∗),
since T ∗ ∈ [[T ]]∗. Now we have

T ∗ = π−1(π(T ∗)) (Ker(⟨I, π⟩) compatible with T ∗)
= π−1(π(T )∗) (by Lemma 1557)

= π−1(µA/ΩA(T )(π(T ))) (by hypothesis)
= µA(π−1(π(T ))) (algebra and surjectivity of ⟨I, π⟩)
= µA(T ). (Ker(⟨I, π⟩) compatible with T )

Therefore, I is Leibniz definable via µ♭. ∎

Leibniz definability ensures that the mapping sending a filter family to
it Leibniz counterpart is monotone and this, in turn, implies that T ∗ is the
largest Leibniz filter family below T .

Lemma 1703 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing transfor-
mations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. For every F-algebraic system A and all
T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies T ∗ ≤ T ′∗.

Proof: Let A be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that
T ≤ T ′. Then T ∗ = µA(T ) ≤ µA(T ′) = T ′∗. ∎
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Corollary 1704 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing transfor-
mations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. For every F-algebraic system A and all
T ∈ FiFamI(A), T ∗ is the largest Leibniz filter family below T .

Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). Suppose
T ′ ∈ FiFamI∗(A), such that T ′ ≤ T . Then we have T ′ = T ′∗ ≤ T ∗, where
the last inclusion is due to Lemma 1703. ∎

Under Leibniz definability, the condition that ΩA be an order isomor-
phism from Leibniz filter families of A onto I∗-congruence systems on A, for
every I-algebraic system yields protoalgebraicity.

Proposition 1705 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing
transformations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. If, for every A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is an order isomorphism, then I is pro-
toalgebraic.

Proof: Suppose the stated condition holds and let A be an F-algebraic
system and T ∈ FiFamI(A). Then we have

Ω̃I,A(T ) = ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)}
(definition of Ω̃I,A(T ))

= ⋂{ΩA(T ′∗) ∶ T ≤ T ′ ∈ FiFamI(A)}
(by Proposition 1677)

= ΩA(⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)})
(by the hypothesis)

= ΩA(T ∗) (by Lemma 1703)
= ΩA(T ). (by Proposition 1677)

Hence, the Leibniz and Suszko operators on every F-algebraic system coin-
cide, whence, by Lemma 1518, I is protoalgebraic. ∎

We show, next, that, under Leibniz definability, the collection of Leibniz
I-filter families on every F-algebraic system is closed under morphic images
and preimages and under intersections.

Proposition 1706 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing trans-
formations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭.

(a) M(MI∗) ⊆MI∗ and M−1(MI∗) ⊆MI∗;
(b) IΠ(MI∗) ⊆MI∗.

Proof:
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(a) Let A, B be F-algebraic systems, T ∈ FiFamI(A), T ′ ∈ FiFamI(B) and⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ a strict surjective morphism. We then have

T = T ∗ iff T = µA(T )
iff γ−1(T ′) = µA(γ−1(T ′))
iff γ−1(T ′) = γ−1(µB(T ′))
iff T ′ = µB(T ′)
iff T ′ = T ′∗.

Thus, ⟨A, T ⟩ ∈MI∗ if and only if ⟨B, T ′⟩ ∈MI∗.
(b) Let A be an F-algebraic system and {T i ∶ i ∈ I} ⊆ FiFamI∗(A). Then

we have
⋂i∈I T i = ⋂i∈I(T i)∗

= ⋂i∈I µA(T i)
= µA(⋂i∈I T i)
= (⋂i∈I T i)∗.

Therefore ⋂i∈I T i ∈ FiFamI∗(A). Thus, if ⟨A, T i⟩ ∈ MI∗, for all i ∈ I,
then ⟨A,⋂i∈I T i⟩ ∈MI∗. ∎

Proposition 1706, in conjunction with the characterization Theorem 1787
of the IM-matrix families for a class M of F-matrix families, allow us to prove
that, under Leibniz definability, I+-filter families and Leibniz I-filter families
on any F-algebraic system coincide.

Theorem 1707 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing transfor-
mations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. For every F-algebraic system A,

FiFamI
+(A) = FiFamI∗(A).

Proof: We have

MatFam(I+) = MatFam(IMI∗) (I+ = IMI∗, by definition)
= MIΠM−1(MI∗) (by Theorem 1787)
⊆ MI∗. (by Proposition 1706)

This shows that FiFamI
+(A) ⊆ FiFamI∗(A). But, by Proposition 1665, the

reverse inclusion always holds. Therefore, for every F-algebraic system A,
FiFamI

+(A) = FiFamI∗(A). ∎

We give several conditions involving the strong version of I that turn out
to characterize both the protoalebraicity of I and the protoalgebraicity of
I+, under the proviso that I be Leibniz definable.

Corollary 1708 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F. The following conditions
are equivalent:
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(i) I+ is protoalgebraic;

(ii) I is protoalgebraic;

(iii) For every A ∈ AlgSys(I), ΩA ∶ FiFamI∗(A)→ ConSysI∗(A) is an order
isomorphism;

(iv) For every A ∈ AlgSys(I+), ΩA ∶ FiFamI
+∗(A) → ConSysI

+∗(A) is an
order isomorphism;

(v) I+ is weakly family algebraizable.

Proof:

(i)⇒(ii) Suppose I+ is protoalgebraic. Let A be an F-algebraic system and
T,T ′ ∈ FiFamI(A), such that T ≤ T ′. By Lemma 1703, T ∗ ≤ T ′∗.
Hence, by Proposition 1665 and the hypothesis, ΩA(T ∗) ≤ ΩA(T ′∗). By
hypothesis, Proposition 1621 and Proposition 1677, ΩA(T ) ≤ ΩA(T ′).
Thus, the Leibniz operator is monotone on the I-filter families of every
F-algebraic system and, therefore, I is protoalgebraic.

(ii)⇒(iii) By Proposition 1621.

(iii)⇒(iv) By Lemma 1679.

(iv)⇒(v) We have, for every F-algebraic system A,

FiFamI
+∗(A) = FiFamI∗(A) (by Corollary 1672)

= FiFamI
+(A). (by Theorem 1707)

Therefore, by hypothesis, ΩA ∶ FiFamI
+(A) → ConSysI

+∗(A) is an or-
der isomorphism. By Theorem 296, I+ is weakly family algebraizable.

(v)⇒(i) If I+ is weakly family algebraizable, then it is, a fortiori, protoalgebraic.
∎

Finally, we give some consequences of imposing both Leibniz definabil-
ity and Leibniz truth equationality. The combination is strong enough to
guarantee that Leibniz filter families and Suszko filter families coincide.

Proposition 1709 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz definable and Leibniz truth equational π-institution based
on F. For every F-algebraic system A and all T ∈ FiFamI(A),

T ∗ = T I,Su.
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Proof: Let A ∈ AlgSys(F) and T ∈ FiFamI(A). Then

T I,Su = ⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)} (by Corollary 1698)
= T ∗. (by Lemma 1703)

This proves the statement. ∎

Corollary 1710 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable and Leibniz truth equational π-institution based on
F. For every F-algebraic system A,

FiFamI∗(A) = FiFamI,Su(A).
Proof: Let A ∈ AlgSys(F). By Lemma 1583, FiFamI,Su(A) ⊆ FiFamI∗(A).
On the other hand, if T ∈ FiFamI∗(A), then, by Proposition 1709, T = T ∗ =
T I,Su. Thus, T ∈ FiFamI,Su(A). ∎
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