Chapter 22

The Strong Version of a π-Institution

22.1 The Strong Version of a π-Institution

Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π institution based on \mathbf{F}. We define the following classes of \mathcal{I}-matrix families.

$$
\begin{aligned}
\mathrm{M}^{\mathcal{I *}} & =\left\{\langle\mathcal{A}, T\rangle: \mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), T \in \operatorname{FiFam}^{\mathcal{I *}}(\mathcal{A})\right\} ; \\
\mathrm{M}^{\mathcal{I}, \mathrm{Su}} & =\left\{\langle\mathcal{A}, T\rangle: \mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), T \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})\right\} ; \\
\mathrm{M}^{\mathcal{I}, m} & =\left\{\langle\mathcal{A}, T\rangle: \mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), T=\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} .
\end{aligned}
$$

We show that all three classes of \mathcal{I}-matrix families generate the same closure system on \mathbf{F}.

Proposition 1662 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle a \pi$-institution based on \mathbf{F}. Then $\mathcal{I}^{\mathrm{M}^{\mathcal{I} *}}=\mathcal{I}^{\mathrm{M}^{\mathcal{I}, m}}$.

Proof: By Lemma 1568, we have that, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), \cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}) \in$ FiFam ${ }^{\mathcal{I}^{*}}(\mathcal{A})$. Thus, $\mathrm{M}^{\mathcal{I}, m} \subseteq \mathrm{M}^{\mathcal{I}^{*}}$. This implies that $\mathcal{I}^{\mathrm{M}^{\mathcal{I *}}} \leq \mathcal{I}^{\mathrm{M}^{\mathcal{I}, m}}$. To show the converse, assume that $\langle\mathcal{A}, T\rangle \in \mathrm{M}^{\mathcal{I}_{*}}$ and consider the quotient morphism $\langle I, \pi\rangle: \mathcal{A} \rightarrow \mathcal{A} / \Omega^{\mathcal{A}}(T)$. By Corollary 1554, $\pi\left(T^{*}\right)$ is the least \mathcal{I}-filter family of $\mathcal{A} / \Omega^{\mathcal{A}}(T)$. By hypothesis $T=T^{*}$, whence $\pi(T)=\pi\left(T^{*}\right)$ and, hence, since $\langle I, \pi\rangle:\langle\mathcal{A}, T\rangle \rightarrow\left\langle\mathcal{A} / \Omega^{\mathcal{A}}(T), \pi(T)\right\rangle$ is a strict surjective morphism,, we get that

$$
\mathcal{I}^{\langle\mathcal{A}, T\rangle}=\mathcal{I}^{\left\langle\mathcal{A} / \Omega^{\mathcal{A}}(T), \pi(T)\right\rangle}=\mathcal{I}^{\left\langle\mathcal{A} / \Omega^{\mathcal{A}}(T), \pi\left(T^{*}\right)\right\rangle}
$$

and $\left\langle\mathcal{A} / \Omega^{\mathcal{A}}(T), \pi\left(T^{*}\right)\right\rangle \in \mathrm{M}^{\mathcal{I}, m}$. Putting things together, we finally obtain

$$
\begin{aligned}
\mathcal{I}^{\mathrm{M}^{\mathcal{I}, m}} & \leq \bigcap\left\{\mathcal{I}^{\left\langle\mathcal{A} / \Omega^{\mathcal{A}}(T), \pi\left(T^{*}\right)\right\rangle}: T \in \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})\right\} \\
& =\bigcap\left\{\mathcal{I}^{\langle\mathcal{A}, T\rangle}: T \in \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})\right\} \\
& =\mathcal{I}^{\mathrm{I}^{\mathcal{I}}} .
\end{aligned}
$$

Therefore, $\mathcal{I}^{\mathrm{M}^{\mathcal{I}^{*}}}=\mathcal{I}^{\mathrm{M}^{\mathcal{I}, m}}$.
Proposition 1662 enables us to show that $\mathrm{M}^{\mathcal{I} *}$ and $\mathrm{M}^{\mathcal{I}, S u}$ also generate the same closure system on \mathbf{F}.

Corollary 1663 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. Then $\mathcal{I}^{\mathrm{M}^{\mathcal{I *}}}=\mathcal{I}^{\mathrm{M}^{\mathcal{I}, \mathrm{S}_{\mathrm{u}}}}$.

Proof: By Lemma $1583, \mathrm{M}^{\mathcal{I}, \mathrm{Su}} \subseteq \mathrm{M}^{\mathcal{I} *}$. Also by Lemma $1583, \mathrm{M}^{\mathcal{I}, m} \subseteq \mathrm{M}^{\mathcal{I}, \mathrm{Su}}$. So we get $\mathcal{I}^{\mathrm{M}^{\mathcal{I}^{*}}} \leq \mathcal{I}^{\mathrm{M}^{\mathcal{I}, \text { Su }}} \leq \mathcal{I}^{\mathrm{M}^{\mathcal{I}, m}}$. Therefore, by Proposition $1662, \mathcal{I}^{\mathrm{M}^{\mathcal{I *}}}=$ $\mathcal{I}^{\mathrm{M}^{\mathcal{I}, \mathrm{Su}}}$.

Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π institution based on F. Taking into account Proposition 1662 and Corollary 1663, we define the strong version of \mathcal{I}, denoted by $\mathcal{I}^{+}=\left\langle\mathbf{F}, C^{+}\right\rangle$, by

$$
\mathcal{I}^{+}:=\mathcal{I}^{\mathrm{M}^{I_{*}}}=\mathcal{I}^{\mathrm{M}^{\mathcal{I}, \mathrm{Su}}}=\mathcal{I}^{\mathrm{M}^{\mathcal{I}, m}} .
$$

There are even more ways to characterize the π-institution \mathcal{I}^{+}. Let $\mathbf{F}=$ $\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. Given a class K of \mathbf{F}-algebraic systems, we define

$$
\begin{aligned}
\mathrm{M}_{K}^{\mathcal{I}, m} & =\left\{\langle\mathcal{A}, T\rangle: \mathcal{A} \in \mathrm{K}, T=\bigcap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} ; \\
\mathrm{M}_{\mathrm{K} *}^{\mathcal{I}} & =\left\{\langle\mathcal{A}, T\rangle: \mathcal{A} \in \mathrm{K}, T \in \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})\right\} ; \\
\mathrm{M}_{\mathrm{K}}^{\mathcal{I}, \mathrm{Su}} & =\left\{\langle\mathcal{A}, T\rangle: \mathcal{A} \in \mathrm{K}, T \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})\right\} .
\end{aligned}
$$

Proposition 1664 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ be a π-institution based on \mathbf{F} and $\mathrm{K}=\operatorname{AlgSys}^{*}(\mathcal{I})$ or $\mathrm{K}=\operatorname{AlgSys}(\mathcal{I})$. Then

$$
\mathcal{I}^{+}=\mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{I}, m}}=\mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{I_{*}^{*}}}=\mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{I}, S u}} .
$$

Proof: By definition and Lemma 1583, we have

$$
\mathrm{M}_{\mathrm{K}}^{\mathcal{I}, m} \subseteq \mathrm{M}_{\mathrm{K}}^{\mathcal{I}, \mathrm{Su}} \subseteq \mathrm{M}_{\mathrm{K}}^{\mathcal{I}_{*}} \subseteq \mathrm{M}^{\mathcal{I} *_{*}} .
$$

Therefore, we get

$$
\mathcal{I}^{+} \leq \mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{I}^{*}}} \leq \mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\tau}, S \mathrm{su}} \leq \mathcal{I}_{\mathrm{k}}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{T}, m}} .
$$

For the converse, suppose $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$ and $T \in \operatorname{FiFam}^{\mathcal{I *}}(\mathcal{A})$. By Proposition $1572, T / \Omega^{\mathcal{A}}(T)$ is the least \mathcal{I}-filter family of $\mathcal{A} / \Omega^{\mathcal{A}}(T) \in \operatorname{AlgSys}^{*}(\mathcal{I}) \subseteq$ $\operatorname{AlgSys}(\mathcal{I})$. Therefore, we get

$$
\begin{aligned}
\mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{I}, m}} & \leq \bigcap\left\{\mathcal{I}^{\left\langle\mathcal{A} / \Omega^{\mathcal{A}}(T), T / \Omega^{\mathcal{A}}(T)\right\rangle}: \mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), T \in \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})\right\} \\
& =\bigcap\left\{\mathcal{I}^{\langle\mathcal{A}, T\rangle}: \mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), T \in \operatorname{FiFam}^{\mathcal{I}^{\mathcal{A}}}(\mathcal{A})\right\} \\
& =\mathcal{I}^{+} .
\end{aligned}
$$

We conclude that $\mathcal{I}^{+}=\mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{T}, m}}=\mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{I}^{*}}}=\mathcal{I}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{T}, \mathrm{Su}}}$.
The following proposition lists some of the properties of the strong version \mathcal{I}^{+}of a π-institution \mathcal{I}.

Proposition 1665 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}.
(a) $\mathcal{I} \leq \mathcal{I}^{+}$;
(b) $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, for every \mathbf{F}-algebraic system \mathcal{A};
(c) $\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, for every \mathbf{F}-algebraic system \mathcal{A};
(d) If \mathcal{I} is family reflective, then $\mathcal{I}^{+}=\mathcal{I}$.

Proof:

(a) Since $\mathrm{M}^{\mathcal{I}, m} \subseteq \operatorname{MatFam}(\mathcal{I})$, we get $\mathcal{I}=\mathcal{I}^{\operatorname{MatFam}(\mathcal{I})} \leq \mathcal{I}^{\mathrm{M}^{\mathcal{I}, m}}=\mathcal{I}^{+}$.
(b) Since, by Part (a), $\mathcal{I} \leq \mathcal{I}^{+}$, we get that $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$.
(c) By definition of \mathcal{I}^{+}, we have, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$, all $T \in \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})$ and all $T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A}), C^{+} \leq C^{\langle\mathcal{A}, T\rangle}$ and $C^{+} \leq C^{\left(\mathcal{A}, T^{\prime}\right)}$. Moreover, by Lemma 1583, every Suszko filter family is a Leibniz filter family. We conclude that $\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I *}^{*}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$.
(d) By the hypothesis and Proposition 1573, $\operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, for every \mathbf{F}-algebraic system \mathcal{A}. Therefore, $\mathcal{I}^{+}=\mathcal{I}^{\mathrm{M}^{I *}}=\mathcal{I}^{\mathrm{MatFam}(\mathcal{I})}=\mathcal{I}$.

It turns out that the strong version \mathcal{I}^{+}is mostly interesting when \mathcal{I} itself has theorems. In the absence of theorems \mathcal{I}^{+}has only trivial theory families.

Proposition 1666 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. If \mathcal{I} does not have theorems, then \mathcal{I} is almost inconsistent.

Proof: Assume that \mathcal{I} does not have theorems. Then, for every \mathbf{F}-algebraic system $\mathcal{A}, \varnothing \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Therefore, by definition $\mathcal{I}^{+}=\bigcap\left\{\mathcal{I}^{\langle\mathcal{A}, \varnothing\rangle}: \mathcal{A} \in\right.$ $\operatorname{AlgSys}(\mathbf{F})\}$. This implies that, for all $\Sigma \in\left|\operatorname{Sign}^{b}\right|$ and all $\phi \in \operatorname{SEN}^{b}(\Sigma)$, we have, vacuously, for all $\psi \in \operatorname{SEN}^{b}(\Sigma), \psi \in C_{\Sigma}^{+}(\phi)$. Therefore, the only Σ-theory families of \mathcal{I}^{+}are \varnothing and $\operatorname{SEN}^{b}(\Sigma)$. So \mathcal{I}^{+}is almost inconsistent.

The least \mathcal{I}-filter family on every algebraic system \mathcal{A} coincides with the least \mathcal{I}^{+}-filter family. As a consequence \mathcal{I} and \mathcal{I}^{+}share the same theorems.

Lemma 1667 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. For every \mathbf{F}-algebraic system \mathcal{A},

$$
\bigcap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})=\bigcap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) .
$$

In particular, $\operatorname{ThFam}\left(\mathcal{I}^{+}\right)=\operatorname{ThFam}(\mathcal{I})$.
Proof: Let \mathcal{A} be an \mathbf{F}-algebraic system. By Proposition 1665 , $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq$ $\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Thus, we have $\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}) \leq \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. On the other hand, by Lemma $1568, \cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}) \in \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})$, whence, by Proposition $1665, \cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}) \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Therefore, $\cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \leq \cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Equality now follows.

Lemma 1667 implies the idempotency of the strong version operator on π-institutions.

Corollary 1668 Let $\mathbf{F}=\left\langle\right.$ Sign $\left.^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. Then $\left(\mathcal{I}^{+}\right)^{+}=\mathcal{I}^{+}$.

Proof: We have

$$
\begin{aligned}
\left(\mathcal{I}^{+}\right)^{+} & =\bigcap\left\{\mathcal{I}^{\langle\mathcal{A}, T\rangle}: \mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), T=\bigcap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{I})\right\} \\
& =\bigcap\left\{\mathcal{I}\langle\mathcal{A}, T\rangle: \mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), T=\bigcap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{I})\right\} \\
& =\mathcal{I}^{+} .
\end{aligned}
$$

The first and last equalities follow by the definition of ${ }^{+}$, and the main equality is due to Lemma 1667.

The next proposition provides sufficient conditions for recognizing that a given π-institution is the strong version of another π-institution based on the same algebraic system.
Proposition 1669 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle, \mathcal{I}^{\prime}=\left\langle\mathbf{F}, C^{\prime}\right\rangle \pi$-institutions based on \mathbf{F}, such that

1. \mathcal{I}^{\prime} is family reflective;
2. $\operatorname{AlgSys}\left(\mathcal{I}^{\prime}\right)=\operatorname{AlgSys}(\mathcal{I})$;
3. For all $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{\prime}\right), \cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})=\bigcap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A})$.

Then $\mathcal{I}^{\prime}=\mathcal{I}^{+}$.
Proof: We have

$$
\begin{aligned}
\mathcal{I}^{\prime}= & \mathcal{I}^{\prime+} \quad(\text { by } 1 \text { and Proposition } 1665) \\
= & \cap\left\{\mathcal{I}\langle\mathcal{A}, T\rangle: \mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{\prime}\right), T=\bigcap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A})\right\} \\
& (\text { by Proposition } 1664) \\
= & \bigcap\left\{\mathcal{I}^{\langle\mathcal{A}, T\rangle}: \mathcal{A} \in \operatorname{AlgSys}(\mathcal{I}), T=\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} \\
& (\text { by } 2 \text { and } 3) \\
= & \left.\mathcal{I}^{+} . \quad \text { (by Proposition } 1664\right)
\end{aligned}
$$

This proves the claim.
We now show that Suszko and Leibniz \mathcal{I}-filter families form subclasses, respectively, of the classes of Suszko and Leibniz \mathcal{I}^{+}-filter families on every F-algebraic system.
Proposition 1670 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. For every \mathbf{F}-algebraic system \mathcal{A},

$$
\operatorname{FiFam}^{\mathcal{I}, \operatorname{Su}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}, \operatorname{Su}}(\mathcal{A}) \quad \text { and } \quad \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) .
$$

Proof: By Proposition 1665, $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FFam}^{\mathcal{I}}(\mathcal{A})$. Thus, for all $T \in$ $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}), \llbracket T \rrbracket^{\mathcal{I}^{+} *} \subseteq \llbracket T \rrbracket^{\mathcal{I}^{*}}$ and $\llbracket T \rrbracket^{\mathcal{I}^{+}, \mathrm{Su}} \subseteq \llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}}$.

Suppose that $T \in \operatorname{FiFam}^{\mathcal{I}, S u}(\mathcal{A})$. Then, by Proposition $1665, T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$ and, moreover, $T=\cap \llbracket T \rrbracket^{\mathcal{I}, \text { Su }} \leq \cap\left[T \rrbracket^{\mathcal{I}^{+}, \text {Su }}\right.$. Thus, since $T \in \llbracket T \rrbracket^{\mathcal{I}^{+}, \text {Su }}$, we get that $T=\bigcap \llbracket T \rrbracket^{\mathcal{I}^{+}, \mathrm{Su}} \in \operatorname{FiFam}^{\mathcal{I}^{+}, \mathrm{Su}}(\mathcal{A})$.

The second inclusion may be shown similarly.
But the Leibniz counterpart of an \mathcal{I}^{+}-filter family is identical whether it be considered with respect to \mathcal{I} or with respect to \mathcal{I}^{+}.

Lemma 1671 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. For every \mathbf{F}-algebraic system \mathcal{A}, and all $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}), T^{\mathcal{I} *}=T^{\mathcal{I}^{+} *}$.

Proof: By Proposition 1665, $\llbracket T \rrbracket^{\mathcal{I}^{+} *} \subseteq \llbracket T \rrbracket^{\mathcal{I}_{*}}$. Therefore, $T^{\mathcal{I}_{*}} \leq T^{\mathcal{I}^{+} *}$. On the other hand,

$$
\begin{aligned}
T^{\mathcal{I}_{*}} & \in \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A}) \quad \text { (by Proposition 1570) } \\
& \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})
\end{aligned} \text { (by Proposition 1670) }
$$

and, since $T^{\mathcal{I}_{*}} \in \llbracket T \rrbracket^{\mathcal{I}_{*}}, \Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\mathcal{I}_{*}}\right)$. Thus, $T^{\mathcal{I}_{*}} \subseteq \llbracket T \rrbracket^{\mathcal{I}^{+} *}$, which gives $T^{\mathcal{I}^{+} *} \leq T^{\mathcal{I}_{*}}$. We conclude that $T^{\mathcal{I}_{*}}=T^{\mathcal{I}^{+} *}$.

And this implies that the Leibniz \mathcal{I}-filter families and the Leibniz \mathcal{I}^{+}-filter families coincide on every \mathbf{F}-algebraic system.

Corollary 1672 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. For every \mathbf{F}-algebraic system \mathcal{A},

$$
\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})
$$

Proof: The right-to-left inclusion was shown in Proposition 1670. For the reverse, assume that $T \in \operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A})$. Then, by Proposition 1665, $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$ and, by Lemma 1671, $T=T^{\mathcal{I}^{+} *}=T^{\mathcal{I}^{*}}$. Therefore, $T \in$ $\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})$.

22.2 Leibniz and Suszko \mathcal{I}^{+}-Filter Families

There is a relation between the \mathcal{I}^{+}-filter families on algebraic systems and the Leibniz and Suszko \mathcal{I}-filter families on the same algebraic systems. The following proposition shows how these relations interplay with family creflectivity.

Proposition 1673 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}.
(a) If, for all \mathbf{F}-algebraic systems \mathcal{A}, $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$, then \mathcal{I}^{+} is family c-reflective.
(b) If \mathcal{I}^{+}is family c-reflective, then $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})$, for all F-algebraic systems \mathcal{A}.

Proof:
(a) Suppose, for all \mathbf{F}-algebraic systems $\mathcal{A}, \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$. Let \mathcal{A} be an \mathbf{F}-algebraic system. By Proposition $1670, \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A}) \subseteq$ $\operatorname{FiFam}^{\mathcal{I}^{+}, \text {Su }}(\mathcal{A})$. Hence, by hypothesis, $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}, \mathrm{Su}}(\mathcal{A})$. Thus, $\operatorname{FiFam}^{\mathcal{I}^{+}, S u}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. By Theorem $1590, \mathcal{I}^{+}$is family c-reflective.
(b) Suppose \mathcal{I}^{+}is family c-reflective and let \mathcal{A} be an \mathbf{F}-algebraic system. By Theorem 1590, $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{+} \text {,Su }}(\mathcal{A})$. Since, by Lemma 1583 and Corollary 1672, $\operatorname{FiFam}^{\mathcal{I}^{+}, \mathrm{Su}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})$, we get that $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$. The reverse inclusion holds by Proposition 1665.

A necessary and sufficient condition for the \mathcal{I}^{+}-filter families to coincide with the Leibniz \mathcal{I}-filter families is the universal reflectivity of the Leibniz operator on \mathcal{I}^{+}-filter families.

Proposition 1674 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. For every \mathbf{F}-algebraic system \mathcal{A},

$$
\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})
$$

if and only if, for every \mathbf{F}-algebraic system $\mathcal{A}, \Omega^{\mathcal{A}}$ is order reflecting on $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$.

Proof: By Corollary 1672, for every F-algebraic system $\mathcal{A}, \operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A})=$ $\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})$. By Proposition $1573, \Omega^{\mathcal{A}}$ is reflective on $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, for all \mathcal{A}, if and only if $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A})$, for all \mathcal{A}. Thus, we get that $\Omega^{\mathcal{A}}$ is reflective on $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, for all \mathcal{A}, if and only if $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})$, for all \mathcal{A}.

Under the stipulation that the strong version of \mathcal{I} be protoalgebraic, the identification of \mathcal{I}^{+}-filter families with the Leibniz \mathcal{I}-families have several characterizations.

Proposition 1675 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}, such that \mathcal{I}^{+}is protoalgebraic. The following conditions are equivalent:
(i) $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})$, for every \mathbf{F}-algebraic system \mathcal{A};
(ii) $\operatorname{ThFam}\left(\mathcal{I}^{+}\right)=\operatorname{ThFam}^{*}(\mathcal{I})$;
(iii) \mathcal{I}^{+}is weakly family algebraizable;
(iv) \mathcal{I}^{+}is family c-reflective;

Proof:

(i) \Rightarrow (ii) Trivial.
$($ ii $) \Rightarrow($ iii $)$ Suppose that $\operatorname{ThFam}\left(\mathcal{I}^{+}\right)=\operatorname{ThFam}^{*}(\mathcal{I})$. By Proposition $1528, \Omega$ is injective on $\operatorname{ThFam}^{*}(\mathcal{I})$. By definition it is onto $\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{F})$. Thus, by hypothesis and Corollary 1672, $\Omega: \operatorname{FiFam}\left(\mathcal{I}^{+}\right) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{F})$ is a bijection. By hypothesis it is monotone and, by Proposition 1528, it is order reflecting. Therefore, it is an order isomorphism. By Theorem $296, \mathcal{I}^{+}$is weakly family algebraizable.
(iii) \Rightarrow (iv) Every weakly family algebraizable π-institution is a fortiori family creflective.
$($ iv $) \Rightarrow$ (i) By hypothesis, \mathcal{I}^{+}is protoalgebraic, whence, by Proposition 1601 and Corollary 1672,

$$
\operatorname{FiFam}^{\mathcal{I}^{+}, \operatorname{Su}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})
$$

By hypothesis and Theorem 1590, $\operatorname{FiFam}^{\mathcal{I}^{+}, S u}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Therefore, we get that $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{\mathcal{L}}}(\mathcal{A})$.

We close the section by looking at various consequences of the condition imposed on a π-institution \mathcal{I} that $\Omega^{\mathcal{A}}$ be an order isomorphism from the Leibniz \mathcal{I}-filter families of \mathcal{A} onto the \mathcal{I}^{*}-congruence systems on \mathcal{A}, for every \mathcal{I}-algebraic system \mathcal{A}. First, we show that this condition ensures that \mathcal{I}-algebraic systems, \mathcal{I}^{*}-algebraic systems, \mathcal{I}^{+}-algebraic systems and $\left(\mathcal{I}^{+}\right)^{*}$ algebraic systems all coincide.

Lemma 1676 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathcal{I}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$,

$$
\Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A}) \rightarrow \operatorname{AlgSys}^{\mathcal{I}^{*}}(\mathcal{A})
$$

is an order isomorphism. Then

$$
\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)=\operatorname{AlgSys}^{*}\left(\mathcal{I}^{+}\right)=\operatorname{AlgSys}^{*}(\mathcal{I})=\operatorname{AlgSys}(\mathcal{I})
$$

Proof: We show, first, that $\operatorname{AlgSys}{ }^{*}\left(\mathcal{I}^{+}\right)=\operatorname{AlgSys}^{*}(\mathcal{I})$. The left-to-right inclusion holds because, by Proposition 1665, $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, for every \mathbf{F}-algebraic system \mathcal{I}. Assume, conversely, that $\mathcal{A} \in \operatorname{AlgSys}^{*}(\mathcal{I})$. Then $\Delta^{\mathcal{A}} \in \operatorname{ConSys}^{\mathcal{I} *}(\mathcal{A})$. By hypothesis, then, there exists $T \in \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$, such that $\Omega^{\mathcal{A}}(T)=\Delta^{\mathcal{A}}$. By Proposition 1665 again, $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Hence, $\mathcal{A} \in \operatorname{AlgSys}^{*}\left(\mathcal{I}^{+}\right)$.

Now we have

$$
\begin{aligned}
\operatorname{AlgSys}(\mathcal{I}) & =\operatorname{AlgSys}^{*}(\mathcal{I}) \quad(\text { by Lemma 1623) } \\
& =\operatorname{AlgSys}^{*}\left(\mathcal{I}^{+}\right) \quad \text { (shown above) } \\
& \subseteq \operatorname{AlgSys}\left(\mathcal{I}^{+}\right) \quad(\text { by Proposition } 65) \\
& \subseteq \operatorname{AlgSys}(\mathcal{I}) \quad \text { (by Proposition 1665) }
\end{aligned}
$$

We conclude that all four classes of algebraic system coincide.
Next we show that, under the same hypothesis the Leibniz congruence systems of a filter family and its Leibniz counterpart coincide and that the Suszko congruence system of a filter family coincides with the Leibniz congruence system of its Suszko counterpart.

Proposition 1677 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathcal{I}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$,

$$
\Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A}) \rightarrow \operatorname{AlgSys}^{\mathcal{I}^{*}}(\mathcal{A})
$$

is an order isomorphism. Then, for every \mathbf{F}-algebraic system and all $T \in$ $\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
\Omega^{\mathcal{A}}(T)=\Omega^{\mathcal{A}}\left(T^{*}\right) \quad \text { and } \quad \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)=\Omega^{\mathcal{A}}\left(T^{\mathcal{I}, \mathrm{Su}}\right)
$$

Proof: By Proposition 1622, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F}), \Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A}) \rightarrow$ ConSys ${ }^{\mathcal{I}_{*}}(\mathcal{A})$ is an order isomorphism.

Let $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$ and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Since $\Omega^{\mathcal{A}}(T) \in \operatorname{ConSys}^{\mathcal{I}^{*}}(\mathcal{A})$, there exists $T^{\prime} \in \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$, such that $\Omega^{\mathcal{A}}\left(T^{\prime}\right)=\Omega^{\mathcal{A}}(T)$. Hence, $\left[T \rrbracket^{*}=\right.$ $\llbracket T^{\prime} \rrbracket^{*}$, which gives $T^{*}=T^{* *}=T^{\prime}$. Thus, we get $\Omega^{\mathcal{A}}(T)=\Omega^{\mathcal{A}}\left(T^{\prime}\right)=\Omega^{\mathcal{A}}\left(T^{*}\right)$.

By hypothesis and Lemma 1623, $\operatorname{AlgSys}{ }^{*}(\mathcal{I})=\operatorname{AlgSys}(\mathcal{I})$. Since we have $\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T) \in \operatorname{ConSys}^{\mathcal{I}}(\mathcal{A})$, there exists $T^{\prime \prime} \in \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$, such that $\Omega^{\mathcal{A}}\left(T^{\prime \prime}\right)=$ $\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}\left(\underset{\widetilde{\Omega}}{ }\left(\right.\right.$. Thus, we get $\llbracket T \rrbracket^{\mathrm{Su}}=\llbracket T^{\prime \prime} \rrbracket^{*}$ and, therefore, $T^{\mathcal{I}, \mathrm{Su}}=T^{\prime \prime *}=T^{\prime \prime}$. This gives $\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)=\Omega^{\mathcal{A}}\left(T^{\prime \prime}\right)=\Omega^{\mathcal{A}}\left(T^{\mathcal{I}, \mathrm{Su}}\right)$.

Under the same hypothesis, it turns out that the coincidence of the class of Leibniz filter families with Suszko filter families on every algebraic system characterizes protoalgebraicity.

Corollary 1678 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathcal{I}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$,

$$
\Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A}) \rightarrow \operatorname{AlgSys}^{\mathcal{I}_{*}}(\mathcal{A})
$$

is an order isomorphism. \mathcal{I} is protoalgebraic if and only if, for every \mathbf{F} algebraic system $\mathcal{A}, \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$.

Proof: If \mathcal{I} is protoalgebraic, then, by Proposition 1601, Leibniz and Suszko classes coincide and, therefore, $\operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$, for all $\mathcal{A} \in$ AlgSys(F).

Suppose, conversely, that, for all \mathbf{F}-algebraic systems $\mathcal{A}, \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})=$ $\operatorname{FiFam}^{\mathcal{I} \text { Su }}(\mathcal{A})$. Let $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$ and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. By Lemma 1583, $T^{\mathcal{I}, \mathrm{Su}} \in \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$. By the hypothesis and Lemma 1586, $T^{\mathcal{I}, \text { Su }}$ is the largest Leibniz \mathcal{I}-filter family included in T. Since, by Lemma

1583, $T^{\mathcal{I}, \mathrm{Su}} \leq T^{*} \leq T$ and, by Proposition $1570, T^{*}$ is a Leibniz \mathcal{I}-filter family, we get $T^{\mathcal{I}, \text { Su }}=T^{*}$. Therefore, using Proposition 1570, we get

$$
\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)=\Omega^{\mathcal{A}}\left(T^{\mathcal{I}, \mathrm{Su}}\right)=\Omega^{\mathcal{A}}\left(T^{*}\right)=\Omega^{\mathcal{A}}(T) .
$$

Thus, on every \mathbf{F}-algebraic system \mathcal{A}, the Suszko and the Leibniz operators coincide and, therefore, by Lemma 1518, \mathcal{I} is protoalgebraic.

We already have the tools to show that the property that $\Omega^{\mathcal{A}}$ be an isomorphism between Leibniz filter families and reduced algebraic systems is bequeathed by a π-institution \mathcal{I} to its strong version \mathcal{I}^{+}.

Lemma 1679 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathcal{I}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$,

$$
\Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A}) \rightarrow \operatorname{AlgSys}^{\mathcal{I}^{*}}(\mathcal{A})
$$

is an order isomorphism. Then, for all $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{+}\right), \Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) \rightarrow$ $\operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{A})$ is also an order isomorphism.

Proof: By Corollary 1672, we have $\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})$. By Lemma 1676, $\left.\operatorname{AlgSys}^{*}(\mathcal{I})\right)=\operatorname{AlgSys}^{*}\left(\mathcal{I}^{+}\right)$. Now, taking into account the hypothesis, we get the conclusion.

In a proposition analogous to Proposition 1675, we provide under our working hypothesis, of the Leibniz operator being an order isomorphism, a characterization of the property of \mathcal{I}^{+}being weakly family algebraizable.

Proposition 1680 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathcal{I}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$,

$$
\Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A}) \rightarrow{\operatorname{Alg} \operatorname{Sys}^{\mathcal{I} *}}^{(\mathcal{A})}
$$

is an order isomorphism. The following conditions are equivalent:
(i) $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I} *^{*}}(\mathcal{A})$, for every \mathbf{F}-algebraic system \mathcal{A};
(ii) $\operatorname{ThFam}\left(\mathcal{I}^{+}\right)=\operatorname{ThFam}^{*}(\mathcal{I})$;
(iii) \mathcal{I}^{+}is weakly family algebraizable;
(iv) \mathcal{I}^{+}is family c-reflective;
(v) Ω is injective on the collection of reduced \mathcal{I}^{+}-filter families.

Proof:

(i) \Rightarrow (ii) Trivial.
(ii) $\Rightarrow($ iii $)$ By hypothesis and Lemma $1676, \Omega: \operatorname{ThFam}\left(\mathcal{I}^{+}\right) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{F})$ is an order isomorphism. Thus Ω is both monotone and family c-reflective, whence \mathcal{I}^{+}is weakly family algebraizable.
$($ iii $) \Rightarrow$ (iv) Weak family algebraizability implies family c-reflectivity.
(iv) \Rightarrow (v) If \mathcal{I}^{+}is family c-reflective, then it is a fortiori injective. Therefore, by Theorem $214, \Omega^{\mathcal{A}}$ is injective on the \mathcal{I}-filter families of every \mathbf{F}-algebraic system \mathcal{A}.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$ Suppose (v) holds and let $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$. By Proposition 1665, we have $\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. So it suffices to prove the reverse inclusion. To this end, suppose $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Consider the quotient morphism

$$
\langle I, \pi\rangle: \mathcal{A} \rightarrow \mathcal{A} / \Omega^{\mathcal{A}}(T)
$$

$\operatorname{Ker}(\langle I, \pi\rangle)=\Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{*}\right)$, the last inclusion, since, by Proposition $1525, T^{*} \in \llbracket T \rrbracket^{\mathcal{I}_{*}}$. Hence, by Corollary 56,

$$
\pi(T), \pi\left(T^{*}\right) \in \operatorname{FiFam}^{\mathcal{I}^{+}}\left(\mathcal{A} / \Omega^{\mathcal{A}}(T)\right)
$$

and, by compatibility, $\pi^{-1}(\pi(T))=T$ and $\pi^{-1}\left(\pi\left(T^{*}\right)\right)=T^{*}$. By Corollary $1554, \pi\left(T^{*}\right)=\pi(T)^{*}$. Now we get

$$
\begin{aligned}
\Delta^{\mathcal{A} / \Omega^{\mathcal{A}}(T)} & =\Omega^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}(\pi(T)) \quad \text { (by Lemma 1557) } \\
& \left.=\Omega^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\left(\pi(T)^{*}\right) \quad \text { (by Proposition } 1677\right) \\
& =\Omega^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\left(\pi\left(T^{*}\right)\right) .
\end{aligned}
$$

This, both $\pi(T)$ and $\pi\left(T^{*}\right)$ are reduced \mathcal{I}^{+}-filter families and, therefore, by the injectivity hypothesis, $\pi(T)=\pi\left(T^{*}\right)$. Now we conclude that $T=\pi^{-1}(\pi(T))=\pi^{-1}\left(\pi\left(T^{*}\right)\right)=T^{*}$. This proves that, for all \mathcal{A}, $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$. Equality now follows.

22.3 Full \mathcal{I}^{+}-Structures

We now explore the relation between full \mathcal{I}-structures and full \mathcal{I}^{+}-structures.
Proposition 1681 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F} and \mathcal{A} an \mathbf{F}-algebraic system. $\langle\mathcal{A}, \mathcal{D}\rangle \in$ $\operatorname{FStr}^{\mathcal{I}^{+}}(\mathcal{A})$ if and only if, there exists $\mathcal{T} \subseteq \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, such that $\langle\mathcal{A}, \mathcal{T}\rangle \in$ $\operatorname{FStr}^{\mathcal{I}}(\mathcal{A})$ and $\mathcal{D}=\mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, i.e.,

$$
\operatorname{FStr}\left(\mathcal{I}^{+}\right)=\left\{\left\langle\mathcal{A}, \mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})\right\rangle:\langle\mathcal{A}, \mathcal{T}\rangle \in \operatorname{FStr}(\mathcal{I})\right\}
$$

Proof:

(\Rightarrow) Suppose that $\langle\mathcal{A}, \mathcal{D}\rangle \in \operatorname{FStr}\left(\mathcal{I}^{+}\right)$. Set

$$
\mathcal{T}=\left\{T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}): \widetilde{\Omega}^{\mathcal{A}}(\mathcal{D}) \leq \Omega^{\mathcal{A}}(T)\right\}
$$

If $T \in \mathcal{D}$, then $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{D}) \leq \Omega^{\mathcal{A}}(T)$ and $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}}(T)$. Thus, $T \in \mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. On the other hand, let $T \in \mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Then $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{D}) \leq \Omega^{\mathcal{A}}(T)$ and, since $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$ and $\langle\mathcal{A}, \mathcal{D}\rangle \in \operatorname{FStr}\left(\mathcal{I}^{+}\right)$, we must have, by Theorem 1395, $T \in \mathcal{D}$. We conclude that $\mathcal{D}=$ $\mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Thus, it only remains to show that $\langle\mathcal{A}, \mathcal{T}\rangle \in \operatorname{FStr}(\mathcal{I})$.
To this end, let $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, such that $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T}) \leq \Omega^{\mathcal{A}}(T)$. Then, we get $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T}) \leq \bigcap_{T^{\prime} \in \mathcal{D}} \Omega^{\mathcal{A}}\left(T^{\prime}\right)=\widetilde{\Omega}^{\mathcal{A}}(\mathcal{D}) \leq \Omega^{\mathcal{A}}(T)$. Thus, by definition, $T \in \mathcal{T}$. We conclude, using Theorem 1395, that $\langle\mathcal{A}, \mathcal{T}\rangle \in \operatorname{FStr}(\mathcal{I})$.
(\Leftarrow) Suppose, now, that $\langle\mathcal{A}, \mathcal{T}\rangle \in \operatorname{FStr}(\mathcal{I})$ and $\mathcal{D}=\mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Since, by Proposition 1563 , the least element of a full \mathcal{I}-structure is a Leibniz \mathcal{I}-filter family, we get that $\cap \mathcal{T} \in \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. To see that $\langle\mathcal{A}, \mathcal{D}\rangle$ is a dull \mathcal{I}^{+}-structure, let $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, such that $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{D}) \leq \Omega^{\mathcal{A}}(T)$. Then, we infer

$$
\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T}) \leq \widetilde{\Omega}^{\mathcal{A}}(\mathcal{D}) \leq \Omega^{\mathcal{A}}(T)
$$

Since $\langle\mathcal{A}, \mathcal{T}\rangle \in \operatorname{FStr}(\mathcal{I})$, then, by Theorem 1395, $T \in \mathcal{T}$. Since, in addition, by hypothesis, $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, we get $T \in \mathcal{D}$. Thus, again by Theorem $1395,\langle\mathcal{A}, \mathcal{D}\rangle \in \operatorname{FStr}\left(\mathcal{I}^{+}\right)$.

Next, we show that the association

$$
\langle\mathcal{A}, \mathcal{T}\rangle \mapsto\left\langle\mathcal{A}, \mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})\right\rangle
$$

of full \mathcal{I}^{+}-structures to full \mathcal{I}-structures, given in Proposition 1681, is one-to-one, provided that \mathcal{I} - and \mathcal{I}^{+}-algebraic systems coincide.

Proposition 1682 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}, such that $\operatorname{AlgSys}(\mathcal{I})=\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$, and \mathcal{A} an \mathbf{F}-algebraic system. For all $\langle\mathcal{A}, \mathcal{T}\rangle,\left\langle\mathcal{A}, \mathcal{T}^{\prime}\right\rangle \in \operatorname{FStr}(\mathcal{I})$,

$$
\mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\mathcal{T}^{\prime} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \quad \text { implies } \quad \mathcal{T}=\mathcal{T}^{\prime}
$$

Proof: We start with some preparatory remarks. Suppose \mathcal{A} is an \mathbf{F} algebraic system. Since, by hypothesis, $\operatorname{AlgSys}(\mathcal{I})=\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$, we get that $\operatorname{ConSys}^{\mathcal{I}}(\mathcal{A})=$ ConSys $^{\mathcal{I}^{+}}(\mathcal{A})$. Now, using Theorem 1408 (or, alternatively, Corollary 1565), we have that $\operatorname{FStr}^{\mathcal{I}}(\mathcal{A}) \cong \operatorname{FStr}^{\mathcal{I}^{+}}(\mathcal{A})$, through

$$
\mathcal{T} \mapsto \overline{\mathcal{T}}=\left\{T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}): \widetilde{\Omega}^{\mathcal{A}}(\mathcal{T}) \leq \Omega^{\mathcal{A}}(T)\right\}
$$

This is obtained, by applying Theorem 1408 to get an isomorphism

$$
\begin{aligned}
\gamma: \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}) & \rightarrow \operatorname{ConSys}^{\mathcal{I}}(\mathcal{A}) ; \\
\mathcal{T} & \stackrel{\gamma}{\mapsto} \widetilde{\Omega}^{\mathcal{A}}(\mathcal{T}),
\end{aligned}
$$

then, applying Theorem 1408 to get an isomorphism

$$
\begin{aligned}
\delta: \operatorname{ConSys}^{\mathcal{I}^{+}}(\mathcal{A}) & \rightarrow \\
& \operatorname{FStr}^{\mathcal{I}^{+}}(\mathcal{A}) ; \\
\theta & \stackrel{\delta}{\mapsto}
\end{aligned}\left\{T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}): \theta \leq \Omega^{\mathcal{A}}(T)\right\},
$$

and, finally, composing these two, taking into account the hypothesis.
Now let $\mathcal{T}, \mathcal{T}^{\prime} \in \operatorname{FiFam}_{\mathcal{T}^{+}}^{\mathcal{I}}(\mathcal{A})$, such that $\langle\mathcal{A}, \mathcal{T}\rangle,\left\langle\mathcal{A}, \mathcal{T}^{\prime}\right\rangle \in \operatorname{FStr}^{\mathcal{I}}(\mathcal{A})$, and suppose that $\mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\mathcal{T}^{\prime} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$.
Claim 1: $\overline{\mathcal{T}}=\mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$ and $\overline{\mathcal{T}^{\prime}}=\mathcal{T}^{\prime} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$.
We show the first equality. The second one is shown in exactly the same way. First, if $T \in \overline{\mathcal{T}}$, then $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$ and $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T}) \leq \Omega^{\mathcal{A}}(T)$. Since $\langle\mathcal{A}, \mathcal{T}\rangle$ is a full \mathcal{I}-structure, by Theorem 1395, $T \in \mathcal{T}$. Thus, $T \in \mathcal{Y} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. If, on the other hand, $T \in \mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, then $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$ and $T \in \mathcal{T}$. Thus, $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$ and $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T}) \leq \Omega^{\mathcal{A}}(T)$. Therefore, $T \in \overline{\mathcal{T}}$.
Claim 2: $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T})=\widetilde{\Omega}^{\mathcal{A}}(\overline{\mathcal{T}})$ and $\widetilde{\Omega}^{\mathcal{A}}\left(\mathcal{T}^{\prime}\right)=\widetilde{\Omega}^{\mathcal{A}}\left(\overline{\mathcal{T}^{\prime}}\right)$.
Again, it suffices to show the first equality, since the second is proven in exactly the same way. By Claim 1 and Proposition $1681,\langle\mathcal{A}, \overline{\mathcal{T}}\rangle \in \operatorname{FStr}^{\mathcal{I}^{+}}(\mathcal{A})$. Therefore, by Theorem 1395, $\overline{\mathcal{T}}=\left\{T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}): \widetilde{\Omega}^{\mathcal{A}}(\overline{\mathcal{T}}) \leq \Omega^{\mathcal{A}}(T)\right\}$. Thus, we get $\left.\delta\left(\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T})\right)=\delta\left(\widetilde{\Omega}^{\mathcal{T}}\right)\right)=\overline{\mathcal{T}}=\delta\left(\widetilde{\Omega}^{\mathcal{A}}(\overline{\mathcal{T}})\right)$. Since δ is an isomorphism, we get that $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T})=\widetilde{\Omega}^{\mathcal{A}}(\overline{\mathcal{T}})$.

To finish the proof, we get $\widetilde{\Omega}^{\mathcal{A}}(\mathcal{T})=\widetilde{\Omega}^{\mathcal{A}}(\overline{\mathcal{T}})=\widetilde{\Omega}^{\mathcal{A}}\left(\overline{\mathcal{T}^{\prime}}\right)=\widetilde{\Omega}^{\mathcal{A}}\left(\mathcal{T}^{\prime}\right)$. Therefore, by Theorem 1408, $\mathcal{T}=\mathcal{T}^{\prime}$.

Now we can formulate an order isomorphism between full \mathcal{I} - and full $\mathcal{I}^{+}-$ structures, subject to the condition that \mathcal{I} - and \mathcal{I}^{+}-algebraic systems coincide.

Corollary 1683 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}, such that $\operatorname{AlgSys}(\mathcal{I})=\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$, and \mathcal{A} an \mathbf{F}-algebraic system.

$$
\begin{aligned}
& h: \mathrm{FStr}^{\mathcal{I}}(\mathcal{A}) \rightarrow \\
& \mathrm{FStr}^{\mathcal{I}^{+}}(\mathcal{A}) ; \\
&\langle\mathcal{A}, \mathcal{T}\rangle \stackrel{h}{\mapsto}\left\langle\mathcal{A}, \mathcal{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})\right\rangle
\end{aligned}
$$

is an order isomorphism.

Proof: By Propositions 1681 and 1682.
We turn next to relationships between full classes of filter families with respect to a π-institution \mathcal{I} and its strong version \mathcal{I}^{+}. Recall that, given any
$\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$, we have $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}_{\mathcal{T}^{+}}(\mathcal{A})$. So we get immediately the following inclusions, for all $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$.

$$
\begin{aligned}
\llbracket T \rrbracket^{\mathcal{I}^{+} *} & =\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}): \Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \\
& \subseteq\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}): \Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \\
& =\llbracket T \rrbracket^{\mathcal{I}_{*}} .
\end{aligned}
$$

Moreover, taking into account

$$
\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)=\widetilde{\Omega}^{\mathcal{A}}\left(\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})^{T}\right) \leq \widetilde{\Omega}^{\mathcal{A}}\left(\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})^{T}\right)=\widetilde{\Omega}^{\mathcal{I}^{+}, \mathcal{A}}(T),
$$

we infer

$$
\begin{aligned}
\llbracket T \rrbracket^{\mathbb{I}^{+}, \mathrm{Su}} & =\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}): \widetilde{\Omega}^{\mathcal{I}^{+}, \mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \\
& \subseteq\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}): \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \\
& =\llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}} .
\end{aligned}
$$

These relationships may be strengthened to apply to all extensions to a π-institution rather that only its strong version. More precisely, we obtain

Lemma 1684 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=\langle\mathbf{F}, C\rangle$ and $\mathcal{I}^{\prime}=\left\langle\mathbf{F}, C^{\prime}\right\rangle$ be π-institutions based on \mathbf{F}, such that $\mathcal{I} \leq \mathcal{I}^{\prime}, \mathcal{A}$ be an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A})$. Then

$$
\llbracket T \rrbracket^{\mathcal{I}^{\prime} *}=\llbracket T \rrbracket^{\mathcal{I} *_{*}} \cap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A}) \quad \text { and } \quad \llbracket T \rrbracket^{\mathcal{I}^{\prime}, \mathrm{Su}} \subseteq \llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}} \cap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A})
$$

Proof: We have, mimicking the process preceding the statement, applied to the extension \mathcal{I}^{\prime} rather than specifically \mathcal{I}^{+}:

$$
\begin{aligned}
\llbracket T \rrbracket^{\mathcal{I}^{\prime} *} & =\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A}): \Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \\
& =\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}): \Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \cap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A}) \\
& =\llbracket T \rrbracket^{\mathcal{I}_{*}} \cap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A}) .
\end{aligned}
$$

Moreover, taking into account

$$
\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)=\widetilde{\Omega}^{\mathcal{A}}\left(\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})^{T}\right) \leq \widetilde{\Omega}^{\mathcal{A}}\left(\operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A})^{T}\right)=\widetilde{\Omega}^{\mathcal{I}^{\prime}, \mathcal{A}}(T),
$$

we infer

$$
\begin{aligned}
\llbracket T \rrbracket^{\mathcal{I}^{\prime}, \mathrm{Su}} & =\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}): \widetilde{\Omega}^{\mathcal{I}^{\prime}, \mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \\
& \subseteq\left\{T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}): \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)\right\} \cap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A}) \\
& =\llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}} \cap \operatorname{FiFam}^{\mathcal{I}^{\prime}}(\mathcal{A}) .
\end{aligned}
$$

Thus, we have the equality and the inclusion claimed.
Since \mathcal{I}^{+}is an extension of \mathcal{I}, then we immediately deduce

Corollary 1685 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}, \mathcal{A} an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Then

$$
\llbracket T \rrbracket^{I^{+*}}=\llbracket T \rrbracket^{I^{*}} \cap \operatorname{FiFam}^{I^{+}}(\mathcal{A}) \text { and } \llbracket T \rrbracket^{I^{+}, S u} \subseteq \llbracket T \rrbracket^{\mathbb{I}, \mathrm{Su}} \cap \operatorname{FiFam}^{I^{+}}(\mathcal{A}) \text {. }
$$

Proof: By Lemma 1684, since $\mathcal{I} \leq \mathcal{I}^{+}$.
Finally, we strengthen the preceding relation between Suszko classes to an equality, in the special case, where T happens to be a Suszko \mathcal{I}-filter family of \mathcal{I} (recalling that $\operatorname{FiFam}^{\mathcal{I}, S u}(\mathcal{I}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$).

Lemma 1686 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}, \mathcal{A} an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$. Then $\llbracket T \rrbracket^{\mathcal{I}^{+}, \mathrm{Su}}=\llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$.

Proof: Let $T \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$. Then, by Lemma $1583, \llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}}=\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})^{T}$. Since $T=\cap \llbracket T \rrbracket^{\mathcal{I}, \text { Su }}, \llbracket T \rrbracket^{\mathcal{I}^{+}, \text {Su }} \subseteq \llbracket T \rrbracket^{\mathcal{I}, \text { Su }}$ and $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$, we get $T=$ $\cap \llbracket T]^{\mathcal{I}^{+}, \text {Su }}$. Hence $T \in \operatorname{FiFam}^{\mathcal{I}^{+}, \text {Su }}(\mathcal{A})$. Again, using Lemma 1583, we get $\llbracket T \rrbracket^{\mathcal{I}^{+}, \mathrm{Su}}=\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})^{T}$. Therefore, we conclude that

$$
\begin{aligned}
\llbracket T]^{\mathcal{I}^{+}, \text {Su }} & =\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})^{T} \\
& =\operatorname{FiFam}^{(}(\mathcal{A})^{T} \cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \\
& =\llbracket T \rrbracket^{\mathcal{T}, \text { Su }} \cap \operatorname{FiFa}^{T^{+}}(\mathcal{A}) .
\end{aligned}
$$

22.4 Leibniz Truth Equationality

Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π institution based on \mathbf{F}. \mathcal{I} is Leibniz truth equational if there exists $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}, such that, for every \mathbf{F}-algebraic system \mathcal{A} and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T^{*}=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right),
$$

i.e., for all $\Sigma \in|\operatorname{Sign}|$ and all $\phi \in \operatorname{SEN}^{b}(\Sigma)$,

$$
\phi \in T_{\Sigma}^{*} \quad \text { iff } \quad \tau_{\Sigma}^{\mathcal{A}}[\phi] \leq \Omega^{\mathcal{A}}(T)
$$

It follows directly by the definition that, if \mathcal{I} is Leibniz truth equational, then, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$ and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T \in \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A}) \quad \text { iff } \quad T=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)
$$

Moreover, we can easily see that family truth equationality implies Leibniz truth equationality.

Lemma 1687 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. If \mathcal{I} is family truth equational, then \mathcal{I} is Leibniz truth equational.

Proof: Suppose that \mathcal{I} is family truth equational, with witnessing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. Thus, by Theorem 848, for every F-algebraic system \mathcal{A} and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$. Let \mathcal{A} be an F-algebraic system, $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), \Sigma \in|\operatorname{Sign}|$ and $\phi \in \operatorname{SEN}(\Sigma)$. We have

$$
\begin{array}{ccl}
\phi \in T_{\Sigma} & \text { iff } & \tau_{\Sigma}^{\mathcal{A}}[\phi] \leq \Omega^{\mathcal{A}}(T) \quad(\mathcal{I} \text { truth equational }) \\
& \text { implies } & \tau^{\mathcal{A}}[\phi] \leq \Omega^{\mathcal{A}}\left(T^{*}\right) \quad\left(T^{*} \in[T]^{*}\right) \\
\text { iff } & \phi \in T_{\Sigma}^{*} . \quad(\mathcal{I} \text { truth equational })
\end{array}
$$

Thus, we get $T \leq T^{*}$. On the other hand, by Lemma $1568, T^{*} \leq T$, whence $T-T^{*}$. This gives $T^{*}=T$ and, hence $T^{*}=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$, showing that \mathcal{I} is Leibniz truth equational.

If \mathcal{I} is Leibniz truth equational, then the collection of all its Leibniz filters on every algebraic system forms a closure family.

Proposition 1688 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution based on \mathbf{F}. For every \mathbf{F} algebraic system \mathcal{A}, $\operatorname{FiFam}^{\mathcal{I *}}(\mathcal{A})$ is closed under signature-wise intersections and, hence, forms a closure family on \mathcal{A}.

Proof: Suppose \mathcal{I} is Leibniz truth-equational, with witnssing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. Let \mathcal{A} be an \mathbf{F}-algebraic system and $\left\{T^{i}: i \in I\right\} \subseteq \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$ be a collection of Leibniz \mathcal{I}-filter families. Then

$$
\begin{aligned}
\bigcap_{i \in I} T^{i} & =\bigcap_{i \in I}\left(T^{i}\right)^{*} \quad\left(T^{i} \in \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})\right) \\
& =\bigcap_{i \in I} \tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}\left(T^{i}\right)\right) \quad(\mathcal{I} \text { Leibniz truth equational }) \\
& \leq \tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}\left(\bigcap_{i \in I} T^{i}\right)\right) \quad\left(\bigcap_{i \in I} \Omega^{\mathcal{A}}\left(T^{i}\right) \leq \Omega^{\mathcal{A}}\left(\bigcap_{i \in I} T^{i}\right)\right) \\
& =\left(\bigcap_{i \in I} T^{i}\right)^{*} . \quad(\mathcal{I} \text { Leibniz truth equational })
\end{aligned}
$$

Since, by Lemma 1568, $\left(\bigcap_{i \in I} T_{\tau}^{i}\right)^{*} \leq \bigcap_{i \in I} T^{i}$, we get that $\left(\bigcap_{i \in I} T^{i}\right)^{*}=\bigcap_{i \in I} T^{i}$ and, therefore, $\bigcap_{i \in I} T^{i} \in \operatorname{FiFam}^{\mathcal{I ̇}^{*}}(\mathcal{A})$.

The next proposition shows that to check that a given π-institution \mathcal{I} is Leibniz truth equational, it is sufficient to work with \mathcal{I}^{*}-algebraic systems only. That is, if the defining property holds for all Leibniz filters of \mathcal{I}^{*} algebraic systems, then it extends to Leibniz filters over arbitrary \mathbf{F}-algebraic systems.

Proposition 1689 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on $\mathbf{F} . \mathcal{I}$ is Leibniz truth equational if and only if, there exists $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}, such that, for all $\mathcal{A} \in$ $\operatorname{AlgSys}^{*}(\mathcal{I})$ and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T^{*}=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$.

Proof: The implication left-to-right follows from the definition of Leibniz truth equationality. Suppose, conversely, that there exists $\tau^{b}:\left(\text { SEN }^{b}\right)^{\omega} \rightarrow$ $\left(\operatorname{SEN}^{b}\right)^{2}$ in N^{b}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}^{*}(\mathcal{I})$ and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T^{*}=$ $\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$. Let \mathcal{A} be an arbitrary \mathbf{F}-algebraic system, $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, and consider the quotient morphism $\langle I, \pi\rangle: \mathcal{A} \rightarrow \mathcal{A} / \Omega^{\mathcal{A}}(T)$. Then, by Corollary 1554, $\pi\left(T^{*}\right)=\pi(T)^{*}$ and, by Proposition $1530, \pi(T)^{*}$ is the least \mathcal{I}-filter family on $\mathcal{A} / \Omega^{\mathcal{A}}(T)$. Since $\mathcal{A} / \Omega^{\mathcal{A}}(T) \in \operatorname{AlgSys}{ }^{*}(\mathcal{I})$, we get, by hypothesis,

$$
\pi(T)^{*}=\tau^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\left(T / \Omega^{\mathcal{A}}(T)\right)=\tau^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\left(\Delta^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\right)
$$

Hence, for all $\Sigma \in|\operatorname{Sign}|$ and all $\phi \in \operatorname{SEN}(\Sigma)$,

$$
\begin{array}{lll}
\phi \in T_{\Sigma}^{*} & \text { iff } & \phi / \Omega_{\Sigma}^{\mathcal{A}}(T) \in \pi_{\Sigma}\left(T_{\Sigma}^{*}\right) \quad\left(\Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{*}\right)\right) \\
& \text { iff } \phi / \Omega_{\Sigma}^{\mathcal{A}}(T) \in \pi(T)_{\Sigma}^{\star} \\
& \text { iff } & \phi / \Omega_{\Sigma}^{\mathcal{A}}(T) \in \tau_{\Sigma}^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\left(\Delta^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\right) \\
& \text { iff } \phi \in \tau_{\Sigma}^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right) .
\end{array}
$$

Thus, \mathcal{I} is Leibniz truth equational.
A fortiori, it suffices to show that the condition in the statement of Proposition 1689 holds for all \mathcal{I}-algebraic systems, since this class encompasses all \mathcal{I}^{*}-algebraic systems.

Corollary 1690 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on $\mathbf{F} . \mathcal{I}$ is Leibniz truth equational if and only if, there exists $\tau^{b}:\left(\operatorname{SEN}^{b}\right)^{\omega} \rightarrow\left(\operatorname{SEN}^{b}\right)^{2}$ in N^{b}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$ and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T^{*}=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$.

Proof: The conclusion follows from Proposition 1689, taking into account the fact that $\operatorname{AlgSys}{ }^{*}(\mathcal{I}) \subseteq \operatorname{AlgSys}(\mathcal{I})$.

Next, we provide another characterization of Leibniz truth equationality by showing that it is equivalent to $\tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)$ being the least \mathcal{I}-filter family on every \mathcal{I} - (or \mathcal{I}_{*-})algebraic system.

Proposition 1691 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F} and $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. The following conditions are equivalent.
(i) \mathcal{I} is Leibniz truth equational, with witnessing transformations τ^{b};
(ii) For all $\mathcal{A} \in \operatorname{AlgSys}^{*}(\mathcal{I}), \tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)=\bigcap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$;
(iii) For all $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I}), \tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)=\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$.

Proof:

(i) \Rightarrow (iii) Suppose \mathcal{I} is Leibniz truth equational, with witnessing transformations τ^{b}. Let $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$ and $T^{m}=\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Then, by Lemma 1568, $T^{m} \in \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$. Since $\tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right) \leq \tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}\left(T^{m}\right)\right)$, we get, by hypothesis, $\tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right) \leq T^{m}$. On the other hand, since $T^{m}=\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, we have, for all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T^{m} \leq T^{*}$, whence, by hypothesis, $T^{m} \leq \tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$. Since, this holds for all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, we get, taking into account that $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$,

$$
T^{m} \leq \tau^{\mathcal{A}}\left(\widetilde{\Omega}^{\mathcal{A}}\left(\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right)\right)=\tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)
$$

Therefore, $\tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)=T^{m}$.
$($ iii $) \Rightarrow($ ii $)$ Trivial, since $\operatorname{AlgSys}{ }^{*}(\mathcal{I}) \subseteq \operatorname{AlgSys}(\mathcal{I})$.
(ii) \Rightarrow (i) Suppose, for all $\mathcal{A} \in \operatorname{AlgSys}^{*}(\mathcal{I}), \tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)=\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Let \mathcal{A} be an \mathbf{F}-algebraic system, $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$ and consider the quotient morphism

$$
\langle I, \pi\rangle: \mathcal{A} \rightarrow \mathcal{A} / \Omega^{\mathcal{A}}(T)
$$

Then, $\mathcal{A} / \Omega^{\mathcal{A}}(T) \in \operatorname{AlgSys}{ }^{*}(\mathcal{I})$ and, by Corollary $1554, \pi\left(T^{*}\right)=\pi(T)^{*}$ and, by Proposition 1530, $\pi(T)^{*}=\cap \operatorname{FiFam}^{\mathcal{I}}\left(\mathcal{A} / \Omega^{\mathcal{A}}(T)\right)$. Thus, by hypothesis, $\pi\left(T^{*}\right)=\tau^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\left(\Delta^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\right)$. Therefore, for all $\Sigma \in|\mathbf{S i g n}|$ and all $\phi \in \operatorname{SEN}(\Sigma)$,

$$
\begin{array}{lll}
\phi \in T_{\Sigma}^{*} & \text { iff } & \phi / \Omega_{\Sigma}^{\mathcal{A}}(T) \in \pi_{\Sigma}\left(T_{\Sigma}^{*}\right) \\
& \text { iff } & \phi / \Omega_{\Sigma}^{\mathcal{A}}(T) \in \tau_{\Sigma}^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\left(\Delta^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}\right) \\
& \text { iff } & \phi \in \tau_{\Sigma}^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right) .
\end{array}
$$

Hence, τ^{b} witnesses the Leibniz truth equationality of \mathcal{I}.

If \mathcal{I}-algebraic systems and \mathcal{I}^{+}-algebraic systems coincide, then truth equationality of \mathcal{I}^{+}guarantees the Leibniz truth equationality of \mathcal{I}.

Proposition 1692 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F} and $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. If \mathcal{I}^{+}is family truth equational, with witnessing transformations τ^{b} and $\operatorname{AlgSys}(\mathcal{I})=\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$, then \mathcal{I} is Leibniz truth equational, with witnessing transformations τ^{b}.

Proof: We use Proposition 1691. Suppose \mathcal{I}^{+}is family truth equational via τ^{b} and $\operatorname{AlgSys}(\mathcal{I})=\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$. Let $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$. Since, by hypothesis $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$, we get, by hypothesis, Lemma 1687 and Proposition 1691, $\tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)=\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. By Lemma 1667, $\cap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})=\cap \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. Hence, we get $\tau^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)=\bigcap \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, whence, by Proposition 1691, \mathcal{I} is Leibniz truth equational via τ^{b}.

Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system, $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on $\mathbf{F}, \tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b} and K a class of \mathbf{F}-algebraic systems. We define, as before, on \mathbf{F} the closure system $C^{\mathrm{K}, \tau}=\left\{C_{\Sigma}^{\mathrm{K}, \tau}\right\}_{\Sigma \in\left|\mathbf{S i g n}^{\mathrm{b}}\right|}$, where, for all $\Sigma \in\left|\operatorname{Sign}^{b}\right|, C_{\Sigma}^{K, \tau}: \mathcal{P}\left(\operatorname{SEN}^{b}(\Sigma)\right) \rightarrow \mathcal{P}\left(\operatorname{SEN}^{b}(\Sigma)\right)$ is given, for all $\Phi \cup\{\phi\} \subseteq \operatorname{SEN}^{b}(\Sigma)$, by

$$
\phi \in C_{\Sigma}^{\mathrm{K}, \tau}(\Phi) \quad \text { iff } \quad \tau_{\Sigma}^{\mathrm{b}}[\phi] \leq C^{\mathrm{K}}\left(\tau_{\Sigma}^{\mathrm{b}}[\Phi]\right)
$$

Then we say that K is a τ^{b}-algebraic semantics for \mathcal{I} if $C=C^{\mathrm{K}, \tau}$.
We show that, if a π-institution \mathcal{I} is Leibniz truth equational, with witnessing transformations τ^{b}, then any of the four classes $\operatorname{AlgSys}^{*}\left(\mathcal{I}^{+}\right)$, $\operatorname{AlgSys}\left(\mathcal{I}^{+}\right), \operatorname{AlgSys}{ }^{*}(\mathcal{I})$ or $\operatorname{AlgSys}(\mathcal{I})$ serves as a τ^{b}-algebraic semantics for \mathcal{I}^{+}.

Theorem 1693 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution based on \mathbf{F}, with witnessing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. Set K $=\operatorname{AlgSys}^{*}\left(\mathcal{I}^{+}\right)$or $\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$or $\operatorname{AlgSys}{ }^{*}(\mathcal{I})$ or $\operatorname{AlgSys}(\mathcal{I})$. Then K is a τ^{b}-algebraic semantics for \mathcal{I}^{+}.

Proof: Let, first, $K=\operatorname{AlgSys}^{*}(\mathcal{I})$ or $\operatorname{AlgSys}(\mathcal{I}), \Sigma \in\left|\operatorname{Sign}^{b}\right|$ and $\Phi \cup\{\phi\} \subseteq$ $\operatorname{SEN}^{b}(\Sigma)$. Then, we have $\phi \in C_{\Sigma}^{+}(\Phi)$ if and only if, by Proposition 1664, $\phi \in C_{\Sigma}^{\mathrm{M}_{\mathrm{K}}^{\mathcal{I}, m}}(\Phi)$ if and only if, for all $\mathcal{A} \in \mathrm{K}$,

$$
\alpha_{\Sigma}(\Phi) \subseteq C_{F(\Sigma)}^{\mathcal{I}, \mathcal{A}}(\varnothing) \quad \text { implies } \quad \alpha_{\Sigma}(\phi) \in C_{F(\Sigma)}^{\mathcal{I}, \mathcal{A}}(\varnothing)
$$

if and only if, by hypothesis and Proposition 1691,

$$
\alpha_{\Sigma}(\Phi) \subseteq \tau_{F(\Sigma)}^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right) \quad \text { implies } \quad \alpha_{\Sigma}(\phi) \in \tau_{F(\Sigma)}^{\mathcal{A}}\left(\Delta^{\mathcal{A}}\right)
$$

if and only if

$$
\tau_{F(\Sigma)}^{\mathcal{A}}\left[\alpha_{\Sigma}(\Phi)\right] \leq \Delta^{\mathcal{A}} \quad \text { implies } \quad \tau_{F(\Sigma)}^{\mathcal{A}}\left[\alpha_{\Sigma}(\phi)\right] \leq \Delta^{\mathcal{A}}
$$

if and only if

$$
\alpha\left(\tau_{\Sigma}^{\mathrm{b}}[\Phi]\right) \leq \Delta^{\mathcal{A}} \quad \text { implies } \quad \alpha\left(\tau_{\Sigma}^{\mathrm{b}}[\phi]\right) \leq \Delta^{\mathcal{A}}
$$

if and only if $\tau_{\Sigma}^{b}[\phi] \leq C^{\mathrm{K}}\left(\tau_{\Sigma}^{b}[\Phi]\right)$ if and only if $\phi \in C_{\Sigma}^{\mathrm{K}, \tau}(\Phi)$. Thus, K is a τ^{b}-algebraic semantics of \mathcal{I}^{+}.

Finally, note that, by hypothesis and Lemma $1671, \mathcal{I}^{+}$is Leibniz truth equational via τ^{b}, as well. Moreover, by Corollary 1668, $\left(\mathcal{I}^{+}\right)^{+}=\mathcal{I}^{+}$. Applying, therefore, what was shown above to \mathcal{I}^{+}, we get the result for $\mathrm{K}=$ $\operatorname{AlgSys}{ }^{*}\left(\mathcal{I}^{+}\right)$or $\operatorname{AlgSys}\left(\mathcal{I}^{+}\right)$.

Theorem 1693 implies that for $\operatorname{AlgSys}(\mathcal{I})$ to be a $\tau^{\text {b }}$-algebraic semantics of a Leibniz truth equational π-institution \mathcal{I}, where τ^{b} is a set of witnessing transformations, \mathcal{I} and \mathcal{I}^{+}must be identical.

Corollary 1694 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution based on \mathbf{F}, with witnessing transformations $\tau^{b}:\left(\operatorname{SEN}^{b}\right)^{\omega} \rightarrow\left(\operatorname{SEN}^{b}\right)^{2}$ in $N^{b} . \operatorname{AlgSys}(\mathcal{I})$ is a τ^{b}-algebraic semantics for \mathcal{I} if and only if $\mathcal{I}=\mathcal{I}^{+}$.

Proof: By Theorem 1693, $C^{+}=C^{\operatorname{AlgSys}(\mathcal{I}), \tau}$. Therefore, we get that $\operatorname{AlgSys}(\mathcal{I})$ is a τ^{b}-algebraic semantics of \mathcal{I} if and only if, by definition $C=C^{\operatorname{AlgSys}(\mathcal{I}), \tau}$ if and only if $C=C^{+}$.

Moreover, we can show that Leibniz truth equationality of \mathcal{I} implies the family truth equationality of \mathcal{I}^{+}.

Corollary 1695 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a π-institution based on \mathbf{F}. If \mathcal{I} is Leibniz truth equational, with witnessing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$, then \mathcal{I}^{+}is family truth equational via τ^{b}.

Proof: Let \mathcal{A} be an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})$. By hypothesis and Theorem $1693, \mathcal{I}^{+}$has a τ^{b}-algebraic semantics. Therefore, by Corollary 824, $T=\tau^{\mathcal{A}}\left(\widetilde{\Omega}^{\mathcal{I}^{+}, \mathcal{A}}(T)\right) \leq \tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$. Conversely, by hypothesis and the fact that, by Proposition 1665, $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, we get, using Lemma 1568, $\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)=T^{*} \leq T$. We now conclude that $T=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}(T)\right)$. Thus, \mathcal{I}^{+}is family truth equational, with witnessing transformations τ^{b}.

As another consequence, we get that, under Leibniz truth equationality, \mathcal{I}^{+}filter families coincide with Leibniz \mathcal{I}-filter families on any algebraic system.

Corollary 1696 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle a \pi$-institution based on \mathbf{F}. If \mathcal{I} is Leibniz truth equational, then, for every \mathbf{F}-algebraic system $\mathcal{A}, \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})$.

Proof: Suppose \mathcal{I} is Leibniz truth equational. Then, by Corollary 1695, \mathcal{I}^{+}is family truth equational. Thus, by Proposition $1673, \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=$ $\operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$, for every \mathbf{F}-algebraic system \mathcal{A}.

Let $\mathbf{F}=\left\langle\boldsymbol{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution, with witnessing transformations τ^{b} : $\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. Let, also, \mathcal{A} be an \mathbf{F}-algebraic system and $T \epsilon$ $\operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Then, by definition $T^{\mathcal{I}, \mathrm{Su}}=\bigcap \llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}}$ and, by Proposition 1584, $\left\langle\mathcal{A}, \llbracket T \rrbracket^{\mathcal{I}, \mathrm{Su}}\right\rangle \in \operatorname{FStr}(\mathcal{I})$. Thus, by Proposition $1584, T^{\mathcal{I}, \mathrm{Su}} \in \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$. Now it follows, by hypothesis, that

$$
T^{\mathcal{I}, \mathrm{Su}}=\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}\left(T^{\mathcal{I}, \mathrm{Su}}\right)\right)
$$

There is also an additional characterization of the Suszko filter family, using the Suszko operator.

Proposition 1697 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution, with witnessing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. For every \mathbf{F}-algebraic system \mathcal{A} and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T^{\mathcal{I}, \mathrm{Su}}=\tau^{\mathcal{A}}\left(\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)\right)
$$

Proof: Let \mathcal{A} be an \mathbf{F}-algebraic system, $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$ and consider the quotient morphism

$$
\langle I, \pi\rangle: \mathcal{A} \rightarrow \mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)
$$

Then $\mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T) \in \operatorname{AlgSys}(\mathcal{I})$. Moreover, by Lemma $1557, \pi\left(T^{\mathcal{I}, \mathrm{Su}}\right)=\pi(T)^{\mathcal{I}, \mathrm{Su}}$ and, by Proposition 1587, $\pi(T)^{\mathcal{I}, \mathrm{Su}}=\cap \operatorname{FiFam}^{\mathcal{I}}\left(\mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)\right)$. Thus, by Proposition 1691,

$$
\pi\left(T^{\mathcal{I}, \mathrm{Su}}\right)=\tau^{\mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)}\left(\Delta^{\mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)}\right)
$$

Now we get

$$
\begin{aligned}
T^{\mathcal{I}, \mathrm{Su}} & =\pi^{-1}\left(\pi\left(T^{\mathcal{I}, \mathrm{Su}}\right)\right) \\
& =\pi^{-1}\left(\tau^{\mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)}\left(\Delta^{\mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)}\right)\right) \\
& =\tau^{\mathcal{A}}\left(\pi^{-1}\left(\Delta^{\mathcal{A} / \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)}\right)\right) \\
& =\tau^{\mathcal{A}}\left(\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)\right)
\end{aligned}
$$

This proves the statement.
Proposition 1697 enables us to characterize the Suszko filter counterpart $T^{\mathcal{I}, \text { Su }}$ of a given filter family T as the intersection of all Leibniz filter family companions of filter families in the upset of T.

Corollary 1698 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution, with witnessing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. For every \mathbf{F}-algebraic system \mathcal{A} and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T^{\mathcal{I}, \mathrm{Su}}=\bigcap\left\{T^{\prime *}: T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} .
$$

Proof: Let \mathcal{A} be an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Then we have
(Leibniz truth equationality)

This proves the corollary.
We now get immediately

$$
\begin{aligned}
& T^{\mathcal{I}, \mathrm{Su}}=\tau^{\mathcal{A}}\left(\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)\right) \quad \text { (by Proposition 1697) } \\
& =\tau^{\mathcal{A}}\left(\cap\left\{\Omega^{\mathcal{A}}\left(T^{\prime}\right): T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\}\right) \\
& \text { (definition of } \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T) \text {) } \\
& \left.=\bigcap\left\{\tau^{\mathcal{A}}\left(\Omega^{\mathcal{A}}\left(T^{\prime}\right)\right): T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\}\right) \\
& =\bigcap\left\{T^{\prime *}: T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} \text {. }
\end{aligned}
$$

Corollary 1699 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution, with witnessing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. For every \mathbf{F}-algebraic system \mathcal{A} and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{I}) \quad \text { iff } \quad T \leq T^{\prime *}, \text { for all } T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})^{T} .
$$

Proof: Let \mathcal{A} be an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Then we have $T \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$ if and only if, by definition, $T=T^{\mathcal{I}, \mathrm{Su}}$ if and only if, by Corollary 1698, $T=\bigcap\left\{T^{\prime *}: T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})^{T}\right\}$, if and only if, taking into account that $T^{*} \leq T, T \leq T^{\prime *}$, for all $T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})^{T}$.

We close the section with a characterization of weak family algebraizability of the strong version of \mathcal{I} among those π-institutions that are Leibniz truth equational.

Proposition 1700 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution, with witnessing transformations $\tau^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow\left(\mathrm{SEN}^{b}\right)^{2}$ in N^{b}. \mathcal{I}^{+}is weakly family algebraizable if and only if, for all $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{+}\right), \Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{A})$ is an order isomorphism.

Proof: If \mathcal{I}^{+}is weakly family algebraizable, then it is, a fortiori, protoalgebraic. Therefore, by Proposition 1621, for all $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{+}\right), \Omega^{\mathcal{A}}$: $\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{A})$ is an order isomorphism.

Assume, conversely, that the condition in the statement holds. Then, for every \mathbf{F}-algebraic system \mathcal{A},

$$
\begin{aligned}
\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) & =\operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A}) \quad \text { (by Corollary 1672) } \\
& =\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) . \quad(\text { by Corollary } 1696)
\end{aligned}
$$

Thus, for all $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{+}\right), \Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{A})$ is an order isomorphism. Hence, by Theorem 296, \mathcal{I}^{+}is weakly family algebraizable.

Proposition 1700 gives a sufficient condition for the weak family algbebraizability of \mathcal{I}^{+}that involves only \mathcal{I}-algebraic systems.

Corollary 1701 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz truth equational π-institution, with witnessing transformations $\tau^{b}:\left(\operatorname{SEN}^{b}\right)^{\omega} \rightarrow\left(\operatorname{SEN}^{b}\right)^{2}$ in N^{b}. If, for every $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I}), \Omega^{\mathcal{A}}$: $\operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{*}}(\mathcal{A})$ is an order isomorphism, then \mathcal{I}^{+}is weakly family algebraizable.

Proof: By hypothesis and Lemma 1679, for every $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{+}\right), \Omega^{\mathcal{A}}$: $\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{A})$ is an order isomorphism. Hence, by Proposition $1700, \mathcal{I}^{+}$is weakly family algebraizable.

22.5 Leibniz Definability

Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π institution based on $\mathbf{F} . \mathcal{I}$ is Leibniz definable if, there exists $\mu^{b}:\left(\operatorname{SEN}^{b}\right)^{\omega} \rightarrow$ SEN^{b} in N^{b}, such that, for every \mathbf{F}-algebraic system \mathcal{A}, and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T^{*}=\mu^{\mathcal{A}}(T),
$$

i.e., for all $\Sigma \in|\operatorname{Sign}|$ and all $\phi \in \operatorname{SEN}(\Sigma)$,

$$
\phi \in T_{\Sigma}^{*} \quad \text { iff } \quad \mu_{\Sigma}^{\mathcal{A}}[\phi] \leq T .
$$

We show that it suffices to consider only \mathcal{I}^{*}-algebraic systems to establish Leibniz definability.

Proposition 1702 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a π-institution based on $\mathbf{F} . \mathcal{I}$ is Leibniz definable if and only if, there exists $\mu^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow \mathrm{SEN}^{b}$ in N^{b}, such that, for all $\mathcal{A} \in \operatorname{AlgSys}^{*}(\mathcal{I})$ and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T^{*}=\mu^{\mathcal{A}}(T)$.

Proof: The "only if" is trivial. For the "if", suppose the stated condition holds and let \mathcal{A} be an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Consider the quotient morphism

$$
\langle I, \pi\rangle: \mathcal{A} \rightarrow \mathcal{A} / \Omega^{\mathcal{A}}(T)
$$

Then $\mathcal{A} / \Omega^{\mathcal{A}}(T) \in \operatorname{AlgSys}^{*}(\mathcal{I})$ and, moreover, $\operatorname{Ker}(\langle I, \pi\rangle)=\Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{*}\right)$, since $T^{*} \in \llbracket T \rrbracket^{*}$. Now we have

$$
\begin{aligned}
T^{*} & =\pi^{-1}\left(\pi\left(T^{*}\right)\right) \quad\left(\operatorname{Ker}(\langle I, \pi\rangle) \text { compatible with } T^{*}\right) \\
& =\pi^{-1}\left(\pi(T)^{*}\right) \quad(\text { by Lemma 1557) } \\
& =\pi^{-1}\left(\mu^{\mathcal{A} / \Omega^{\mathcal{A}}(T)}(\pi(T))\right) \quad \text { (by hypothesis) } \\
& =\mu^{\mathcal{A}}\left(\pi^{-1}(\pi(T))\right) \quad(\text { algebra and surjectivity of }\langle I, \pi\rangle) \\
& =\mu^{\mathcal{A}}(T) . \quad(\operatorname{Ker}(\langle I, \pi\rangle) \text { compatible with } T)
\end{aligned}
$$

Therefore, \mathcal{I} is Leibniz definable via μ^{b}.
Leibniz definability ensures that the mapping sending a filter family to it Leibniz counterpart is monotone and this, in turn, implies that T^{*} is the largest Leibniz filter family below T.

Lemma 1703 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz definable π-institution based on \mathbf{F}, with witnessing transformations $\mu^{b}:\left(\operatorname{SEN}^{b}\right)^{\omega} \rightarrow \operatorname{SEN}^{b}$ in N^{b}. For every \mathbf{F}-algebraic system \mathcal{A} and all $T, T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T \leq T^{\prime} \quad \text { implies } \quad T^{*} \leq T^{* *} .
$$

Proof: Let \mathcal{A} be an \mathbf{F}-algebraic system and $T, T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, such that $T \leq T^{\prime}$. Then $T^{*}=\mu^{\mathcal{A}}(T) \leq \mu^{\mathcal{A}}\left(T^{\prime}\right)=T^{\prime *}$.

Corollary 1704 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz definable π-institution based on \mathbf{F}, with witnessing transformations $\mu^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow \mathrm{SEN}^{b}$ in N^{b}. For every \mathbf{F}-algebraic system \mathcal{A} and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T^{*}$ is the largest Leibniz filter family below T.

Proof: Let \mathcal{A} be an \mathbf{F}-algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Suppose $T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})$, such that $T^{\prime} \leq T$. Then we have $T^{\prime}=T^{* *} \leq T^{*}$, where the last inclusion is due to Lemma 1703.

Under Leibniz definability, the condition that $\Omega^{\mathcal{A}}$ be an order isomorphism from Leibniz filter families of \mathcal{A} onto \mathcal{I}^{*}-congruence systems on \mathcal{A}, for every \mathcal{I}-algebraic system yields protoalgebraicity.

Proposition 1705 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a Leibniz definable π-institution based on \mathbf{F}, with witnessing transformations $\mu^{b}:\left(\operatorname{SEN}^{b}\right)^{\omega} \rightarrow \operatorname{SEN}^{b}$ in N^{b}. If, for every $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I})$, $\Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}_{*}}(\mathcal{A})$ is an order isomorphism, then \mathcal{I} is protoalgebraic.

Proof: Suppose the stated condition holds and let \mathcal{A} be an F -algebraic system and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Then we have

$$
\begin{aligned}
\widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)= & \cap\left\{\Omega^{\mathcal{A}}\left(T^{\prime}\right): T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} \\
& \left(\operatorname{definition~of~} \widetilde{\Omega}^{\mathcal{I}, \mathcal{A}}(T)\right) \\
= & \bigcap\left\{\Omega^{\mathcal{A}}\left(T^{\prime *}\right): T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} \\
& (\text { by Proposition } 1677) \\
= & \Omega^{\mathcal{A}}\left(\cap\left\{T^{\prime *}: T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\}\right) \\
& \text { (by the hypothesis) } \\
= & \Omega^{\mathcal{A}}\left(T^{*}\right) \quad \text { (by Lemma 1703) } \\
= & \left.\Omega^{\mathcal{A}}(T) . \quad \text { (by Proposition } 1677\right)
\end{aligned}
$$

Hence, the Leibniz and Suszko operators on every F-algebraic system coincide, whence, by Lemma $1518, \mathcal{I}$ is protoalgebraic.

We show, next, that, under Leibniz definability, the collection of Leibniz \mathcal{I}-filter families on every \mathbf{F}-algebraic system is closed under morphic images and preimages and under intersections.

Proposition 1706 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a Leibniz definable π-institution based on \mathbf{F}, with witnessing transformations $\mu^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow \mathrm{SEN}^{b}$ in N^{b}.
(a) $\mathrm{M}\left(\mathrm{M}^{\mathcal{I}^{*}}\right) \subseteq \mathrm{M}^{\mathcal{I}^{*}}$ and $\mathrm{M}^{-1}\left(\mathrm{M}^{\mathcal{I}_{*}}\right) \subseteq \mathrm{M}^{\mathcal{I}^{*}}$;
(b) $\Pi\left(\mathrm{M}^{\mathcal{I}_{*}}\right) \subseteq \mathrm{M}^{\mathcal{I}^{*}}$.

Proof:

(a) Let \mathcal{A}, \mathcal{B} be \mathbf{F}-algebraic systems, $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A}), T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{B})$ and $\langle H, \gamma\rangle:\langle\mathcal{A}, T\rangle \rightarrow\left\langle\mathcal{B}, T^{\prime}\right\rangle$ a strict surjective morphism. We then have

$$
\begin{array}{lll}
T=T^{*} & \text { iff } & T=\mu^{\mathcal{A}}(T) \\
& \text { iff } & \gamma^{-1}\left(T^{\prime}\right)=\mu^{\mathcal{A}}\left(\gamma^{-1}\left(T^{\prime}\right)\right) \\
& \text { iff } & \gamma^{-1}\left(T^{\prime}\right)=\gamma^{-1}\left(\mu^{\mathcal{B}}\left(T^{\prime}\right)\right) \\
& \text { iff } & T^{\prime}=\mu^{\mathcal{B}}\left(T^{\prime}\right) \\
& \text { iff } & T^{\prime}=T^{\prime *} .
\end{array}
$$

Thus, $\langle\mathcal{A}, T\rangle \in \mathrm{M}^{\mathcal{I}^{*}}$ if and only if $\left\langle\mathcal{B}, T^{\prime}\right\rangle \in \mathrm{M}^{\mathcal{I}^{*}}$.
(b) Let \mathcal{A} be an \mathbf{F}-algebraic system and $\left\{T^{i}: i \in I\right\} \subseteq \operatorname{FiFam}^{\mathcal{I *}}(\mathcal{A})$. Then we have

$$
\begin{aligned}
\bigcap_{i \in I} T^{i} & =\bigcap_{i \in I}\left(T^{i}\right)^{*} \\
& =\bigcap_{i \in I} \mu^{\mathcal{A}}\left(T^{i}\right) \\
& =\mu^{\mathcal{A}}\left(\bigcap_{i \in I} T^{i}\right) \\
& =\left(\bigcap_{i \in I} T^{i}\right)^{*} .
\end{aligned}
$$

Therefore $\bigcap_{i \in I} T^{i} \in \operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})$. Thus, if $\left\langle\mathcal{A}, T^{i}\right\rangle \in \mathrm{M}^{\mathcal{I}^{*}}$, for all $i \in I$, then $\left\langle\mathcal{A}, \bigcap_{i \in I} T^{i}\right\rangle \in \mathrm{M}^{\mathcal{I}^{*}}$.

Proposition 1706, in conjunction with the characterization Theorem 1787 of the \mathcal{I}^{M}-matrix families for a class M of \mathbf{F}-matrix families, allow us to prove that, under Leibniz definability, \mathcal{I}^{+}-filter families and Leibniz \mathcal{I}-filter families on any \mathbf{F}-algebraic system coincide.

Theorem 1707 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz definable π-institution based on \mathbf{F}, with witnessing transformations $\mu^{b}:\left(\mathrm{SEN}^{b}\right)^{\omega} \rightarrow \mathrm{SEN}^{b}$ in N^{b}. For every \mathbf{F}-algebraic system \mathcal{A},

$$
\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}_{*}}(\mathcal{A})
$$

Proof: We have

$$
\begin{aligned}
\operatorname{MatFam}\left(\mathcal{I}^{+}\right) & =\operatorname{MatFam}\left(\mathcal{I}^{\mathrm{M}^{\mathcal{I}_{*}}}\right) \quad\left(\mathcal{I}^{+}=\mathcal{I}^{\mathrm{M}^{\mathcal{I}^{*}}},\right. \text { by definition) } \\
& =\mathrm{MIIII}^{-1}\left(\mathrm{M}^{\mathcal{I}^{*}}\right) \quad(\text { by Theorem } 1787) \\
& \subseteq \mathrm{M}^{\mathcal{I}_{*}} . \quad(\text { by Proposition } 1706)
\end{aligned}
$$

This shows that $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})$. But, by Proposition 1665, the reverse inclusion always holds. Therefore, for every \mathbf{F}-algebraic system \mathcal{A}, $\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})$.

We give several conditions involving the strong version of \mathcal{I} that turn out to characterize both the protoalebraicity of \mathcal{I} and the protoalgebraicity of \mathcal{I}^{+}, under the proviso that \mathcal{I} be Leibniz definable.

Corollary 1708 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz definable π-institution based on \mathbf{F}. The following conditions are equivalent:
(i) \mathcal{I}^{+}is protoalgebraic;
(ii) \mathcal{I} is protoalgebraic;
(iii) For every $\mathcal{A} \in \operatorname{AlgSys}(\mathcal{I}), \Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{*}}(\mathcal{A})$ is an order isomorphism;
(iv) For every $\mathcal{A} \in \operatorname{AlgSys}\left(\mathcal{I}^{+}\right), \Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{A})$ is an order isomorphism;
(v) \mathcal{I}^{+}is weakly family algebraizable.

Proof:

(i) \Rightarrow (ii) Suppose \mathcal{I}^{+}is protoalgebraic. Let \mathcal{A} be an \mathbf{F}-algebraic system and $T, T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$, such that $T \leq T^{\prime}$. By Lemma $1703, T^{*} \leq T^{* *}$. Hence, by Proposition 1665 and the hypothesis, $\Omega^{\mathcal{A}}\left(T^{*}\right) \leq \Omega^{\mathcal{A}}\left(T^{* *}\right)$. By hypothesis, Proposition 1621 and Proposition 1677, $\Omega^{\mathcal{A}}(T) \leq \Omega^{\mathcal{A}}\left(T^{\prime}\right)$. Thus, the Leibniz operator is monotone on the \mathcal{I}-filter families of every F-algebraic system and, therefore, \mathcal{I} is protoalgebraic.
(ii) \Rightarrow (iii) By Proposition 1621.
(iii) \Rightarrow (iv) By Lemma 1679 .
(iv) \Rightarrow (v) We have, for every \mathbf{F}-algebraic system \mathcal{A},

$$
\begin{aligned}
\operatorname{FiFam}^{\mathcal{I}^{+} *}(\mathcal{A}) & =\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \quad(\text { by Corollary 1672) } \\
& =\operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) . \quad(\text { by Theorem 1707) }
\end{aligned}
$$

Therefore, by hypothesis, $\Omega^{\mathcal{A}}: \operatorname{FiFam}^{\mathcal{I}^{+}}(\mathcal{A}) \rightarrow \operatorname{ConSys}^{\mathcal{I}^{+} *}(\mathcal{A})$ is an order isomorphism. By Theorem 296, \mathcal{I}^{+}is weakly family algebraizable.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$ If \mathcal{I}^{+}is weakly family algebraizable, then it is, a fortiori, protoalgebraic.

Finally, we give some consequences of imposing both Leibniz definability and Leibniz truth equationality. The combination is strong enough to guarantee that Leibniz filter families and Suszko filter families coincide.

Proposition 1709 Let $\mathbf{F}=\left\langle\operatorname{Sign}^{b}, \operatorname{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=\langle\mathbf{F}, C\rangle$ a Leibniz definable and Leibniz truth equational π-institution based on \mathbf{F}. For every \mathbf{F}-algebraic system \mathcal{A} and all $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$,

$$
T^{*}=T^{\mathcal{I}, \mathrm{Su}}
$$

Proof: Let $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$ and $T \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})$. Then

$$
\begin{aligned}
T^{\mathcal{I}, \mathrm{Su}} & =\bigcap\left\{T^{\prime *}: T \leq T^{\prime} \in \operatorname{FiFam}^{\mathcal{I}}(\mathcal{A})\right\} \quad \text { (by Corollary 1698) } \\
& =T^{*} . \quad(\text { by Lemma } 1703)
\end{aligned}
$$

This proves the statement.

Corollary 1710 Let $\mathbf{F}=\left\langle\mathbf{S i g n}^{b}, \mathrm{SEN}^{b}, N^{b}\right\rangle$ be an algebraic system and $\mathcal{I}=$ $\langle\mathbf{F}, C\rangle$ a Leibniz definable and Leibniz truth equational π-institution based on F. For every \mathbf{F}-algebraic system \mathcal{A},

$$
\operatorname{FiFam}^{\mathcal{I} *}(\mathcal{A})=\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})
$$

Proof: Let $\mathcal{A} \in \operatorname{AlgSys}(\mathbf{F})$. By Lemma 1583, $\operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A}) \subseteq \operatorname{FiFam}^{\mathcal{I}^{*}}(\mathcal{A})$. On the other hand, if $T \in \operatorname{FiFam}^{\mathcal{I *}^{*}}(\mathcal{A})$, then, by Proposition $1709, T=T^{*}=$ $T^{\mathcal{I}, \mathrm{Su}}$. Thus, $T \in \operatorname{FiFam}^{\mathcal{I}, \mathrm{Su}}(\mathcal{A})$.

