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23.1 The Frege Hierarchy

23.2 Self Extensionality and Implication

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 → SEN♭

a binary natural transformation in N ♭ and I = ⟨F,C⟩ a π-institution based
on F.

We say that →♭ has the Deduction Detachment Property in I if, for
all Σ ∈ ∣Sign♭∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ),

ψ ∈ CΣ(Φ, φ) iff φ→♭Σ ψ ∈ CΣ(Φ).
I has the Uniterm Deduction Detachment Property with respect to
→♭ if →♭ has the Deduction Detachment Property in I . I has the Uniterm
Deduction Detachment Property if it has the Uniterm Deduction De-
tachment Property with respect to some →♭ ∶ (SEN♭)2 → SEN♭ in N ♭.

If a π-institution has the Uniterm Deduction Detachment Theorem with
respect to two different binary natural transformations in N ♭, then the two
must be interderivable in the following precise sense.

Lemma 1711 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭

,→′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If
I has the Uniterm Deduction Detachment Property with respect to both →♭

and →′ ♭, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
CΣ(φ→♭Σ ψ) = CΣ(φ →′ ♭Σ ψ).

Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). We have φ→♭Σ ψ ∈ CΣ(φ→♭Σ ψ).
By the Uniterm Deduction Detachment Property with respect to →♭, we get
ψ ∈ CΣ(φ,φ →♭Σ ψ). By the Uniterm Deduction Detachment Property with
respect to →′ ♭, we get φ →′ ♭Σ ψ ∈ CΣ(φ →♭Σ ψ). Using symmetry, we obtain
that CΣ(φ→♭Σ ψ) = CΣ(φ→′ ♭Σ ψ). ∎

Thus, for self extensional π-institutions, we get immediately

Corollary 1712 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭

,→′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a self extensional π-institution
based on F. If I has the Uniterm Deduction Detachment Property with re-
spect to both →♭ and →′ ♭, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ→♭Σ ψ,φ →′ ♭Σ ψ⟩ ∈ Ω̃Σ(I).
Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). By Lemma 1711, ⟨φ→♭Σ ψ,φ →′ ♭Σ
ψ⟩ ∈ λ̃Σ(I). But, by self extensionality, λ̃(I) = Ω̃(I). This yields the conclu-
sion. ∎
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, and K a class of F-algebraic systems. The class K is said to be
Hilbert based with respect to →♭ if, for all A ∈ K, for all Σ ∈ ∣Sign∣ and
all φ,ψ,χ ∈ SEN(Σ),
H1. φ→AΣ φ = ψ →

A
Σ ψ;

H2. (φ→AΣ φ)→AΣ φ = φ;

H3. φ→AΣ (ψ →AΣ χ) = (φ→AΣ ψ)→AΣ (φ→AΣ χ);
H4. (φ→AΣ ψ)→AΣ ((ψ →AΣ φ)→AΣ ψ) = (ψ →AΣ φ)→AΣ ((φ →AΣ ψ)→AΣ φ).

These equations are commonly referred to as the Hilbert equations. The
class K is Hilbert based if it is Hilbert based with respect to →♭, for some
→♭∶ (SEN♭)2 → SEN♭ in N ♭.

A class K of F-algebraic systems is called pointed if there exists ⊺♭ ∶(SEN♭)k → SEN♭ in N ♭, such that, for all A ∈ K, all Σ ∈ ∣Sign∣ and all
φ⃗, ψ⃗ ∈ SEN(Σ),

⊺AΣ(φ⃗) = ⊺AΣ(ψ⃗).
⊺♭ is then called a constant in K and we sometimes write ⊺AΣ for ⊺AΣ(φ⃗),
since this value is independent of the argument φ⃗ ∈ SEN(Σ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, and K a Hilbert based class with respect to →♭. Then, by the
Hilbert equation H1, the natural transformation ⊺♭ ∶ SEN♭ → SEN♭ in N ♭

defined by
⊺♭ ∶=→♭ ○ ⟨p1,0, p1,0⟩

(in abbreviated more readable form ⊺♭(x) ∶= x →♭ x) is a constant in K. So in
this case, it makes sense to write ⊺AΣ for the constant defined by this natural
transformation in A ∈ K, for Σ ∈ ∣Sign∣.

Moreover, for A ∈ K, we define the relation family ≤A = {≤AΣ}Σ∈∣Sign∣ on A
by setting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≤AΣ ψ iff φ→AΣ ψ = ⊺
A
Σ .

It is not difficult to see that this is actually a partial order system on A.

Lemma 1713 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and K a Hilbert based class with respect to
→♭. For all A ∈ K, ≤A is a posystem on A.

Proof: We show, first, that, for all Σ ∈ ∣Sign∣, ≤AΣ is a partial order on
SEN(Σ). Let φ,ψ,χ ∈ SEN(Σ).

• By definition φ→AΣ φ = ⊺
A
Σ , whence φ ≤AΣ φ and ≤AΣ is reflexive;
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• Suppose φ ≤AΣ ψ and ψ ≤AΣ φ. Then, we get φ →AΣ ψ = ψ →AΣ φ = ⊺AΣ .
Thus, we get

φ = ⊺AΣ →
A
Σ φ (by H2)

= ⊺AΣ →
A
Σ (⊺AΣ →AΣ φ) (by H2)

= ⊺AΣ →
A
Σ (⊺AΣ →AΣ ψ) (by H4)

= ⊺AΣ →
A
Σ ψ (by H2)

= ψ. (by H2)

Hence, ≤AΣ is antisymmetric;

• Suppose φ ≤AΣ ψ and ψ ≤AΣ χ. Then φ →AΣ ψ = ψ →AΣ χ = ⊺AΣ . Thus, we
get

φ→AΣ χ = ⊺AΣ →
A
Σ (φ→AΣ χ) (by H2)

= (φ →AΣ ψ)→AΣ (φ→AΣ χ) (hypothesis)
= φ→AΣ (ψ →AΣ χ) (by H3)
= φ→AΣ ⊺AΣ (hypothesis)
= φ→AΣ (φ→AΣ φ) (definition)
= (φ →AΣ φ)→AΣ (φ→AΣ φ) (by H3)
= ⊺AΣ . (definition)

So ≤AΣ is also transitive.

Thus, ≤A is a partial order family on A. We show that, in addition, it is a
system, i.e., it is invariant under signature morphisms. To this end, suppose
Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ,ψ ∈ SEN(Σ), such that φ ≤AΣ ψ. Then
φ→AΣ ψ = ⊺

A
Σ . Hence, SEN(f)(φ→AΣ ψ) = SEN(f)(⊺AΣ). This gives

SEN(f)(φ)→AΣ′ SEN(f)(ψ) = ⊺AΣ′ .
We conclude that SEN(f)(φ) ≤AΣ′ SEN(f)(ψ). Therefore, ≤A is indeed a
posystem on A. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, K a Hilbert based class with respect to →♭, A ∈ K and T ∈
SenFam(A). We say that T is an →♭-implicative filter family of A if

• ⊺AΣ ∈ TΣ, for all Σ ∈ ∣Sign∣;
• φ →AΣ ψ ∈ TΣ and φ ∈ TΣ imply ψ ∈ TΣ, for all Σ ∈ ∣Sign∣ and all
φ,ψ ∈ SEN(Σ).

We write FiFam→(A) for the collection of all →♭-implicative filter families on
A.

Next, we show that in any F-algebraic system A in a Hilbert based class
K, for all Σ ∈ ∣Sign∣ and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ0 →AΣ (φ1 →AΣ ⋯→AΣ (φn−1 →AΣ φ)⋯) = ⊺AΣ
iff φπ(0) →AΣ (φπ(1) →AΣ ⋯ →AΣ (φπ(n−1) →AΣ φ)⋯) = ⊺AΣ ,

where π is any permutation of {0, . . . , n − 1}.
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Lemma 1714 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and K a Hilbert based class of F-algebraic
systems with respect to →♭. For all A ∈ K, all Σ ∈ ∣Sign∣, all φ0, φ1, . . . , φn−1, φ ∈
SEN(Σ) and every permutation π of {0,1, . . . , n − 1},

φ0 →AΣ (φ1 →AΣ ⋯→AΣ (φn−1 →AΣ φ)⋯) = ⊺AΣ
iff φπ(0) →AΣ (φπ(1) →AΣ ⋯→AΣ (φπ(n−1) →AΣ φ)⋯) = ⊺AΣ .

Proof:
∎

Lemma 1714 allows us to write
⇒

Φ→AΣ φ = ⊺
A
Σ

for φ0 →AΣ (φ1 →AΣ ⋯ →AΣ (φn−1 →AΣ φ)⋯) = ⊺AΣ , where Φ = {φ0, . . . , φn−1},
when appropriate, since the equation does not depend on the order in which
the elements of Φ are arranged in the implication expression. Moreover, for
convenience, if Φ = ∅, we take

⇒

Φ →AΣ φ ∶= φ.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, K a Hilbert based class with respect to →♭, and I = ⟨F,C⟩ a
finitary π-institution based on F. I is called Hilbert based with respect
to K and →♭ if, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f SEN♭(Σ),

φ ∈ CΣ(Φ) iff for all A ∈ K, αΣ(⇒Φ →♭Σ φ) = ⊺AF (Σ).
We say that I is Hilbert based if there exists →♭∶ (SEN♭)2 → SEN♭ in N ♭

and a Hilbert based class K of F-algebraic systems with respect to →♭, such
that I is Hilbert based with respect to K and →♭.

Corollary 1715 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary →♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭

and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭. For
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ) = CΣ(ψ) iff ⟨φ,ψ⟩ ∈ KerΣ(K).
Proof: Suppose I is Hilbert based with respect to K and →♭. Then, for
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), CΣ(φ) = CΣ(ψ) if and only if, by
definition, for all A ∈ K, αΣ(φ→♭Σ ψ) = αΣ(ψ →♭Σ φ) = ⊺AF (Σ), if and only if, by

Lemma 1713, for all A ∈ K, αΣ(φ) = αΣ(ψ), if and only if, ⟨φ,ψ⟩ ∈ KerΣ(K).
∎

It is not difficult to see that if a π-institution is Hilbert based with respect
to a Hilbert based class K, then it is also Hilbert based with respect to the
semantic variety generated by K.
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Lemma 1716 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭

and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭. Then
I is also Hilbert based with respect to VSem(K) and →♭.

Proof: Assume that I is Hilbert based with respect K and →♭. First, note
that, since, for all A ∈ VSem(K), Ker(K) ≤ Ker(A), all F-algebraic systems
in VSem(K) satisfy the Hilbert equations and, hence, VSem(K) is a Hilbert
based class with respect to →♭.

Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆f SEN♭(Σ).
Suppose φ ∈ CΣ(Φ) and let A ∈ VSem(K). By hypothesis ⟨⇒Φ →♭Σ φ,⊺♭Σ⟩ ∈

KerΣ(K). Since A ∈ VSem(K), Ker(K) ≤ Ker(A). Therefore, ⟨⇒Φ →♭Σ φ,⊺♭Σ⟩ ∈
KerΣ(A). This shows that αΣ(⇒Φ →♭Σ φ) = ⊺A

F (Σ)
. Conversely, if, for all

A ∈ VSem(K), αΣ(⇒Φ →♭Σ φ) = ⊺AF (Σ), then this holds, a fortiori, for all A ∈ K
and, hence, by the hypothesis φ ∈ CΣ(Φ).

Thus, I is Hilbert based both with respect to VSem(K) and →♭. ∎

Corollary 1717 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary →♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭

and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭. For
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ) = CΣ(ψ) iff ⟨φ,ψ⟩ ∈ KerΣ(VSem(K)).
Proof: By Corollary 1715 and Lemma 1716. ∎

We can also show that, if K and K′ are two Hilbert based classes of F-
algebraic systems with respect to binary transformations →♭ and →′ ♭ in N ♭,
respectively, and a π-institution I happens to be Hilbert based with respect
to both K and →♭ and K′ and →′ ♭, then, the two classes K and K′ generate
the same semantic variety of F-algebraic systems.

Proposition 1718 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭, →′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert class with respect to →♭ and
K′ a Hilbert class with respect to →′ ♭. If I = ⟨F,C⟩ is a π-institution that is
Hilbert based with respect to K and →♭ and Hilbert based with respect to K′

and →′ ♭, then VSem(K) = VSem(K′).
Proof: We show that K′ ⊆ VSem(K). Then the conclusion will follow by
symmetry. To this end, let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈
KerΣ(K), and A′ ∈ K′. By hypothesis, for all A, αΣ(φ) = αΣ(ψ). Hence,
for all A ∈ K, αΣ(φ →♭Σ ψ) = αΣ(ψ →♭Σ φ) = ⊺A

F (Σ)
. Thus, since I is

Hilbert based with respect to K and →♭, we get CΣ(φ) = CΣ(ψ). But,
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by hypothesis, I is also Hilbert based with respect to K′ and →′ ♭, whence
α′Σ(φ→′ ♭Σ ψ) = α′Σ(ψ →′ ♭Σ φ) = ⊺A′

F ′(Σ)
. Hence, by Lemma 1713, α′Σ(φ) = α′Σ(ψ)

or, equivalently, ⟨φ,ψ⟩ ∈ KerΣ(A′). This shows that A′ ∈ VSem(K). Thus,
K′ ⊆ VSem(K). ∎

We conclude that, if I = ⟨F,C⟩ is a Hilbert based π-institution, there is
a unique semantic variety of F-algebraic systems, with respect to which it is
Hilbert based. We denote this semantic variety by VSem(I) and call it the
semantic variety of I .

A key result is that every Hilbert based π-institution is self extensional
and has the Deduction Detachment Property. We also show that the semantic
variety of I coincides with the class KI , the semantic variety of I .

Proposition 1719 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭, and
I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭.

(a) I is self extensional;

(b) I has the Deduction Detachment Property with respect to →♭;

(c) VSem(I) = KI ; Thus, I is Hilbert based with respect to KI and →♭.

Proof:

(a) We must show that Λ̃(I) = Ω̃(I). Since Ω̃(I) is the largest congruence
system on F that is included in λ̃(I), it suffices to show that λ̃(I) is
a congruence system. To this end, let σ♭ be a natural transformation
in N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that ⟨φi, ψi⟩ ∈ λ̃Σ(I), for
all i < k. Hence, by definition, CΣ(φi) = CΣ(ψi), for all i ∈ I. Since I
is Hilbert based with respect to K and →♭, we get, by Corollary 1715,⟨φi, ψi⟩ ∈ KerΣ(K), for all i < k. But Ker(K) is a congruence system
on F, whence ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ KerΣ(K). Again, by Corollary 1715,

CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)) and, therefore, ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ λ̃Σ(I). We

conclude that λ̃(I) = Ω̃(I) and, hence, I is self extensional.

(b) Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ,ψ} ⊆ SEN♭(Σ).
– Suppose that ψ ∈ CΣ(Φ, φ). Since I is finitary, there exists Φ′ ⊆f

Φ, such that ψ ∈ CΣ(Φ′, φ). Since I is Hilbert based with respect

to K and →♭, we get ⟨⇒Φ′ →♭Σ (φ →♭Σ ψ),⊺♭Σ⟩ ∈ KerΣ(K). Thus,
again, since I is Hilbert based with respect to K and →♭, φ→♭Σ ψ ∈
CΣ(Φ′) ⊆ CΣ(Φ).

– Suppose, conversely, that φ →♭Σ ψ ∈ CΣ(Φ). Again, by finitarity,
there exists Φ′ ⊆f Φ, such that φ →♭Σ ψ ∈ CΣ(Φ′). Hence, since I

is Hilbert based with respect to K and →♭, ⟨⇒Φ′ →♭Σ (φ→♭Σ ψ),⊺♭Σ⟩ ∈
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KerΣ(K). But, again by the fact that I is Hilbert based with
respect to K and →♭, we get that ψ ∈ CΣ(Φ′, φ) ⊆ CΣ(Φ, φ).

Hence I has the Deduction Detachment Property with respect to →♭.

(c) Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). We have

⟨φ,ψ⟩ ∈ KerΣ(VSem(I)) iff CΣ(φ) = CΣ(ψ) (by Corollary 1717)

iff ⟨φ,ψ⟩ ∈ λ̃Σ(I) (by definition)

iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I) (by Part (a))
iff ⟨φ,ψ⟩ ∈ KerΣ(KI). (by definition)

Therefore, since KI is a semantic variety by definition, we get that
VSem(I) = KI . The last statement follows now by Lemma 1716.

∎

If I is Hilbert based, not only is the semantic variety with respect to which
it is Hilbert based unique, but, in addition, any two binary natural transfor-
mations that serve as the Hilbert implications are in a sense interderivable
and, hence, indistinguishable modeulo the Tarski congruence system of I .

Corollary 1720 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭,
→′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a Hilbert based π-institution
with respect to →♭ and with respect to →′ ♭. Then, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

(a) CΣ(φ→♭Σ ψ) = CΣ(φ→′ ♭Σ ψ);
(b) ⟨φ→♭Σ ψ,φ→′ ♭Σ ψ⟩ ∈ Ω̃Σ(I).

Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then

φ→♭Σ ψ ∈ CΣ(φ→♭Σ ψ) iff ψ ∈ CΣ(φ,φ →♭Σ ψ) (Proposition 1719)
iff φ→′ ♭Σ ψ ∈ CΣ(φ→♭Σ ψ). (Proposition 1719)

Therefore, φ →′ ♭Σ ψ ∈ CΣ(φ →♭Σ ψ). By symmetry, we get the conclusion of
Part (a). Part (b) follows by Proposition 1719, which asserts that I is self
extensional. ∎

If I is self extensional and has the Deduction Detachment Property with
respect to →♭, it turns out that the singleton class K = {F/Ω̃(I)}, consisting
of the Lindenbaum-Tarski F-algebraic system of I , is Hilbert based with
respect to →♭.

Lemma 1721 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional
π-institution, having the Deduction Detachment Property with respect to →♭.
The class K = {F/Ω̃(I)} is Hilbert based with respect to →♭.
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Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ).
(H1) By the Deduction Detachment Property with respect to →♭, we get

CΣ(φ →♭Σ φ) = CΣ(ψ →♭Σ ψ) = CΣ(∅). Therefore, by self extensionality,

⟨φ→♭Σ φ,ψ →♭Σ ψ⟩ ∈ Ω̃Σ(I);
(H2) We have φ →♭Σ φ ∈ CΣ(φ →♭Σ φ), whence φ ∈ CΣ(φ,φ →♭Σ φ) and, hence,(φ→♭Σ φ)→♭Σ φ ∈ CΣ(φ).

On the other hand, (φ →♭Σ φ) →♭Σ φ ∈ CΣ((φ →♭Σ φ) →♭Σ φ), whence
φ ∈ CΣ((φ →♭Σ φ) →♭Σ φ,φ →♭Σ φ) and, since φ →♭Σ φ ∈ CΣ(∅), φ ∈
CΣ((φ→♭Σ φ)→♭Σ φ).
This shows that CΣ((φ →♭Σ φ) →♭Σ φ) = CΣ(φ) and, hence, by self

extensionality, ⟨(φ→♭Σ φ)→♭Σ φ,φ⟩ ∈ Ω̃Σ(I).
(H3) By the Deduction Detachment Property with respect to →♭, we get

χ ∈ CΣ(φ,φ →♭Σ ψ, (φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)). Thus, since φ →♭Σ ψ ∈
CΣ(ψ), we get χ ∈ CΣ(φ,ψ, (φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)). This gives
ψ →♭Σ χ ∈ CΣ(φ, (φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)) and, hence, φ →♭Σ (ψ →♭Σ χ) ∈
CΣ((φ→♭Σ ψ)→♭Σ (φ→♭Σ χ)).
On the other hand, χ ∈ CΣ(φ,φ →♭Σ ψ,φ →♭Σ (ψ →♭Σ χ)). Therefore,
φ →♭Σ χ ∈ CΣ(φ →♭Σ ψ,φ →♭Σ (ψ →♭Σ χ)), whence (φ →♭Σ ψ) →♭Σ (φ →♭Σ
χ) ∈ CΣ(φ→♭Σ (ψ →♭Σ χ)).
We conclude that CΣ(φ →♭Σ (ψ →♭Σ χ)) = CΣ((φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)).
Thus, by self extensionality, ⟨φ→♭Σ (ψ →♭Σ χ), (φ →♭Σ ψ)→♭Σ (φ→♭Σ χ)⟩ ∈
Ω̃Σ(I).

(H4) By the Deduction Detachment Property with respect to →♭,

ψ ∈ CΣ(ψ →♭Σ φ,φ→♭Σ ψ, (ψ →♭Σ φ)→♭Σ ((φ →♭Σ ψ)→♭Σ φ)).
Therefore, (ψ →♭Σ φ) →♭Σ ψ ∈ CΣ(φ →♭Σ ψ, (ψ →♭Σ φ) →♭Σ ((φ →♭Σ ψ) →♭Σ
φ)), whence (φ→♭Σ ψ)→♭Σ ((ψ →♭Σ φ)→♭Σ ψ) ∈ CΣ((ψ →♭Σ φ)→♭Σ ((φ →♭Σ
ψ)→♭Σ φ)). The other inclusion follows similarly and, then, we get the
conclusion by self extensionality.

Therefore, {F/Ω̃(I)} is Hilbert based with respect to →♭. ∎

Now we can fully characterize those finitary π-institutions which are
Hilbert based.

Theorem 1722 Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system and I a
finitary π-institution based on F. I is Hilbert based if and only if it is self
extensional and has the Uniterm Deduction Detachment Property.
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Proof: The left-to-right implication is given by Proposition 1719. Assume,
conversely, that I is self extensional and has the Uniterm Deduction Detach-
ment Property with respect to some →♭∶ (SEN♭)2 → SEN♭ in N ♭. Consider
K = {F/Ω̃(I)}. By Lemma 1721, K is Hilbert based with respect to →♭. Let
Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f SEN♭(Σ). Then we have

φ ∈ CΣ(Φ) iff
⇒

Φ→♭Σ φ ∈ CΣ(∅) (Deduction Detachment)

iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ λ̃Σ(I) (definition of λ̃(I))
iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ Ω̃Σ(I). (self extensionality)

Therefore, I is Hilbert based with respect to K and, hence, by Lemma 1716,
with respect to KI = VSem(K), and →♭. ∎

Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭ and K a Hilbert based semantic variety with respect to →♭. We
define the finitary π-institution

IK,→ = ⟨F,CK,→⟩,
associated with K and →♭, by setting, for all Σ ∈ ∣Sign♭∣ and all Φ∪ {φ} ⊆f
SEN♭(Σ),

φ ∈ CK,→
Σ (Φ) iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ KerΣ(K).

We can see easily from the definition that IK,→ is Hilbert based with
respect to K and →♭.

Corollary 1723 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, and K a Hilbert based semantic variety with respect
to →♭. Then IK,→ is Hilbert based with respect to K and →♭ and, moreover,
VSem(IK,→) = K.

Proof: This follows directly from the definition of IK,→ and by taking into
account Lemma 1716 and the definition of VSem(IK,→). ∎

Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭. Our next goal is to establish that the two mappings

I ✲ VSem(I)
IK,→ ✛ K

form a dual order isomorphism from the collection of Hilbert based π-insti-
tutions with respect to →♭, under ≤, and Hilbert based semantic varieties
with respect to →♭, under ⊆.

We first show that the Frege operator is both monotone and order reflect-
ing on Hilbert based π-institutions with respect to →♭.
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Proposition 1724 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ be Hilbert based
π-institutions with respect to →♭. Then

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′).
Proof: The left-to-right implication (monotonicity) is given by Lemma 1416.
For the right-to-left implication, suppose λ̃(I) ≤ λ̃(I ′) and let Σ ∈ ∣Sign♭∣,
Φ ∪ {φ} ⊆f SEN♭(Σ). Then we have

φ ∈ CΣ(Φ) iff CΣ(⇒Φ→♭Σ φ) = CΣ(∅) (by Theorem 1722)

iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ λ̃Σ(I) (definition)

implies ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ λ̃Σ(I ′) (hypothesis)

iff C ′Σ(⇒Φ→♭Σ φ) = C ′Σ(∅) (definition)
iff φ ∈ C ′Σ(Φ). (by Theorem 1722)

We conclude that I ≤ I ′ and, hence λ̃ is also order reflecting. ∎

Now we present the preannounced order isomorphism theorem. For an
algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, with →♭ a binary natural transfor-
mation in N ♭, we let

KF,→

be the semantic variety consisting of all F-algebraic systems satisfying the
Hilbert equations with respect to →♭.

Theorem 1725 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, There exists a dual order isomorphism between the
collection of all Hilbert based π-institutions with respect to →♭, ordered under
≤, and the collection of all semantic subvarieties of the semantic variety KF,→,
ordered under ⊆, given by I ↦ KI .

Proof: The given mapping is onto, since, by Corollary 1723, for K ⊆ KF,→ a
semantic subvariety of KF,→, K = KIK,→. Moreover, it is 1-1, since KI = KI′

implies that λ̃(I) = Ω̃(I) = Ω̃(I ′) = λ̃(I ′) and, hence, by Proposition 1724,
I = I ′. Finally, monotonicity and order reflectivity are both given by

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′) (Proposition 1724)

iff Ω̃(I) ≤ Ω̃(I ′) (Theorem 1722)

iff F/Ω̃(I ′) ∈ VSem(F/Ω̃(I))
iff KI

′ ⊆ KI .

This establishes the order isomorphism. ∎

Our next goal is to show that Hilbert based π-institutions, i.e., finitary
self extensional π-institutions that have the Uniterm Deduction Detachment
Property (by Theorem 1722) are fully self extensional.

We start by proving that on every F-algebraic system in the Hilbert class
VSem(I) = KI , I-filter families and implicative filter families coincide.
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Lemma 1726 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a Hilbert based π-institution
with respect to →♭. For every F-algebraic system A ∈ KI,

FiFamI(A) = FiFam→(A).
Proof: Let A ∈ KI .

Suppose that T ∈ FiFamI(A) and let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ).
• We have φ ∈ CΣ(φ), whence, by Proposition 1719, φ →♭Σ φ ∈ CΣ(∅).

Hence, ⊺A
F (Σ)
∈ TF (Σ);

• Assume αΣ(φ →♭Σ ψ) ∈ TF (Σ) and αΣ(φ) ∈ TF (Σ). Since, again by

Proposition 1719, ψ ∈ CΣ(φ,φ →♭Σ ψ) and T ∈ FiFamI(A), we get
αΣ(ψ) ∈ TF (Σ).

Therefore, taking into account the surjectivity of ⟨F,α⟩, T ∈ FiFam→(A).
Suppose, conversely, that T ∈ FiFam→(A), Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆f

SEN♭(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). By Proposition 1719,
⇒

Φ →♭Σ φ ∈ CΣ(∅). Therefore, CΣ(⇒Φ →♭Σ φ) = CΣ(⊺♭Σ). Thus, by Proposition

1719 and the fact that A ∈ KI , we get that αΣ(⇒Φ →♭Σ φ) = ⊺AF (Σ). Since, by

hypothesis, T ∈ FiFam→(A), αΣ(⇒Φ →♭Σ φ) ∈ TF (Σ). Thus, by the fact that
αΣ(Φ) ⊆ TF (Σ) and T ∈ FiFam→(A), we get that αΣ(φ) ∈ TF (Σ). We conclude

that T ∈ FiFamI(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩, with →♭∶ (SEN♭)2 → SEN♭ in N ♭, be an alge-
braic system, K be a Hilbert based class of F-algebraic systems with respect
to →♭, and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭.
For all A ∈ K, all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), define T ⟨Σ,φ⟩ = {T ⟨Σ,φ⟩Σ′ }Σ′∈∣Sign∣
by setting, for all Σ′ ∈ ∣Sign∣,

T
⟨Σ,φ⟩
Σ = {χ ∈ SEN(Σ) ∶ φ→AΣ χ = ⊺AΣ}

and

T
⟨Σ,φ⟩
Σ′ = {⊺AΣ′}, for all Σ′ ≠ Σ.

It is not difficult to see that T ⟨Σ,φ⟩ ∈ FiFam→(A).
Lemma 1727 Let F = ⟨Sign♭,SEN♭,N ♭⟩, with →♭∶ (SEN♭)2 → SEN♭ in N ♭,
be an algebraic system, K be a Hilbert based class of F-algebraic systems
with respect to →♭, and I = ⟨F,C⟩ a Hilbert based π-institution with respect
to K and →♭. For all A ∈ K, all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), T ⟨Σ,φ⟩ ∈
FiFam→(A).
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Proof: Consider, first, Σ′ ≠ Σ. By definition, ⊺AΣ′ ∈ T
⟨Σ,φ
Σ′ . Moreover, if

⊺AΣ′ →
A
Σ′∈ T

⟨Σ,φ⟩
Σ′ , then, by H2, φ ∈ T ⟨Σ,φ⟩Σ′ .

Consider, next, Σ′ = Σ. Note that we have

φ→AΣ ⊺AΣ = φ→AΣ (φ→AΣ φ) (definition)
= (φ →AΣ φ)→AΣ (φ→AΣ φ) (by H3)
= ⊺AΣ →

A
Σ ⊺AΣ (definition)

= ⊺AΣ . (by H2)

Hence, ⊺AΣ ∈ T
⟨Σ,φ⟩
Σ . Moreover, if ψ,ψ →AΣ χ ∈ T ⟨Σ,φ⟩Σ , then, we get, by defini-

tion, φ→AΣ ψ = ⊺
A
Σ and φ→AΣ (ψ →AΣ χ) ∈ ⊺AΣ . Therefore, we get

φ→AΣ χ = ⊺AΣ →
A
Σ (φ→AΣ χ) (by H2)

= (φ→AΣ ψ)→AΣ (φ→AΣ χ) (hypothesis)
= φ→AΣ (ψ →AΣ χ) (by H3)
= ⊺AΣ , (hypothesis)

We conclude that χ ∈ T ⟨Σ,φ⟩Σ . Thus, T ⟨Σ,φ⟩ ∈ FiFam→(A). ∎

We can now prove that the Frege equivalence system of every full I-
structure of the form ⟨A,FiFamI(A)⟩, with A ∈ KI , is the identity congruence
system. This shows, in particular that every F-algebraic system in KI is an
I-algebraic system and, moreover, satisfies the Congruence Property.

Lemma 1728 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Hilbert based π-institution based on F. For every A ∈ KI, λ̃I(FiFamI(A)) =
∆A. Thus, ⟨A,FiFamI(A)⟩ is reduced and satisfies the Congruence Property.

Proof: Let A ∈ KI , Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∉ ∆AΣ .
Thus, φ ≠ ψ. Taking into account Lemma 1727, consider T ⟨Σ,φ⟩, T ⟨Σ,ψ⟩ ∈
FiFam→(A). By Lemma 1726, T ⟨Σ,φ⟩, T ⟨Σ,ψ⟩ ∈ FiFamI(A). Moreover, by

definition, φ ∈ T ⟨Σ,φ⟩Σ and ψ ∈ T ⟨Σ,ψ⟩Σ . On the other hand, if it was the case

that ψ ∈ T ⟨Σ,φ⟩Σ and φ ∈ T ⟨Σ,ψ⟩Σ , then, by definition, φ →AΣ ψ = ψ →AΣ φ = ⊺AΣ ,
whence, by Lemma 1713, φ = ψ, contrary to hypothesis. Thus, it must
be the case that ψ ∉ T ⟨Σ,φ⟩Σ or φ ∉ T ⟨Σ,ψ⟩Σ . We can now conclude that

⟨φ,ψ⟩ ∉ λ̃AΣ(FiFamI(A)). This shows that λ̃A(FiFamI(A)) = ∆A. Since

Ω̃A(FiFamI(A)) ≤ λ̃A(FiFamI(A)), we get that ⟨A,FiFamI(A)⟩ is a reduced
I-structure and that it satisfies the Congruence Property. ∎

Lemma 1728 allows us to conclude that, for Hilbert based π-institutions
I , the semantic variety of I coincides with the class of all I-algebraic systems.

Theorem 1729 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Hilbert based π-institution based on F.

(a) AlgSys(I) = KI = VSem(I);
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(b) AlgSys(I) is a semantic variety;

(c) I is Hilbert based with respect to AlgSys(I).
Proof: By Proposition 65, we have AlgSys(I) ⊆ KI . On the other hand,
Lemma 1728 gives KI ⊆ AlgSys(I). Therefore, AlgSys(I) = KI . Since KI

is a semantic variety, we conclude that AlgSys(I) is also a semantic variety.
Finally, since, by Proposition 1719, I is Hilbert based with respect to KI , we
conclude that I is Hilbert based with respect to AlgSys(I). ∎

In one of the main theorems of the section, we show that a finitary self
extensional π-institution with the Uniterm Deduction Detachment Property
is necessarily fully self extensional.

Theorem 1730 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary self extensional π-institution with the Uniterm Deduction
Detachment Property. Then I is fully self extensional.

Proof: Suppose that I is finitary self extensional and that it has the Uniterm
Deduction Detachment Property with respect to →♭∶ (SEN♭)2 → SEN♭ in N ♭.
By Theorem 1722 and Proposition 1719, I is Hilbert based with respect to
KI and →♭. By Theorem 1729, KI = AlgSys(I), whence, by Lemma 1728, for
all A ∈ AlgSys(I),

λ̃A(FiFamI(A)) =∆A.

Now to prove full self extensionality, we use Proposition 1428. To this end,
assume ⟨A,FiFamI(A)⟩ is a full I-structure. Then A/Ω̃A(FiFamI(A)) ∈
AlgSys(I) and, by definition,

FiFamI(A/Ω̃A(FiFamI(A))) = FiFamI(A)/Ω̃A(FiFamI(A)).
Thus, by what was shown above,

λ̃A/Ω̃
A(FiFamI(A))(FiFamI(A)/Ω̃A(FiFamI(A))) =∆A/Ω̃

A(FiFamI(A)).

By Proposition 1426, we infer that ⟨A.FiFamI(A)⟩ also has the Congruence
Property. We now conclude, by Proposition 1428, that I is fully self exten-
sional. ∎

We finish the section by looking at some connections with the theory of
Gentzen π-institutions, that is presented in another chapter.

Recall that, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a fini-
tary π-institution I = ⟨F,C⟩ based on F, a finitary Gentzen π-institution
G = ⟨F,G⟩ is said to be adequate for I if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆f SEN♭(Σ),

φ ∈ CΣ(Φ) iff Φ ⊢Σ φ ∈ GΣ(∅).



Voutsadakis CHAPTER 23. THE FREGE HIERARCHY 1403

We say that the Gentzen π-institution G = ⟨F,G⟩ has the Congruence
Property if, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all
φ⃗, ψ⃗ ∈ SEN♭(Σ),

σ♭Σ(φ⃗) ⊢ σ♭Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i ∈ I}).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →

SEN♭ in N ♭, and G = ⟨F,G⟩ a finitary Gentzen π-institution based on F. We
say that:

• G has the Deduction Rule with respect to →♭, if, for all Σ ∈ ∣Sign♭∣
and all Φ ∪ {φ,ψ} ⊆f SEN♭(Σ),

Φ ⊢Σ φ→♭Σ ψ ∈ GΣ(Φ, φ ⊢Σ ψ);
• G has the Detachment Rule with respect to →♭, if, for all Σ ∈∣Sign♭∣ and all Φ ∪ {φ,ψ} ⊆f SEN♭(Σ),

Φ, φ ⊢Σ ψ ∈ GΣ(Φ ⊢Σ φ→♭Σ ψ);
• G has the Deduction Detachment Rule with respect to →♭, if it

has both the Deduction and the Detachment Property with respect to
→♭.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional π-institution, having
the Deduction Detachment Property with respect to →♭.

• Define AxI = {AxIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)};

• Define IrI = {IrIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
IrIΣ = {⟨{φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i ∈ I}, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶

σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ)}
∪{⟨{Φ, φ ⊢Σ ψ},Φ ⊢Σ φ→♭Σ ψ⟩ ∶ Φ ∪ {φ,ψ} ⊆f SEN♭(Σ)}
∪{⟨{Φ ⊢Σ φ→♭Σ ψ},Φ, φ ⊢Σ ψ⟩ ∶ Φ ∪ {φ,ψ} ⊆f SEN♭(Σ)}.

• RI ∶= AxI ∪ IrI .

Finally, define GI = ⟨F,CI⟩ ∶= GRI be the Gentzen π-institution generated by
the system RI of Gentzen rules. Recall, by Proposition 1482, that GI = ΞRI .

We are almost ready to establish the existence of a fully adequate Gentzen
π-institution for any given Hilbert based π-institution. Recall, again, from
work in a different chapter, that a Gentzen π-institution G is fully adequate
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for a π-institution I (with theorems) if, for every F-structure IL = ⟨A,D⟩,
IL is a full I-structure if and only if it is a G-structure.

For Hilbert based π-institutions, it turns out that any I-structure whose
Frege equivalence system is the identity is of the form ⟨A,FiFamI(A)⟩, for
some A ∈ KI .

Lemma 1731 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Hilbert based π-institution based on F. If ⟨A,D⟩ ∈ Str(I), such that
λ̃A(D) =∆A, then D = FiFamI(A) and A ∈ KI .

Proof: Let ⟨A,D⟩ ∈ Str(I), such that λ̃A(D) = ∆A. Then, we have

Ω̃A(D) ≤ λ̃A(D) =∆A,

i.e., Ω̃A(D) = ∆A and, therefore, A ∈ AlgSys(I) ⊆ KI .
Suppose, next, that T ∈ FiFamI(A). By Lemma 1726, T ∈ FiFam→(A),

where→♭ in N ♭ is the binary transformation with respect to which I is Hilbert
based. Let Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ DΣ(TΣ). By finitarity and
Proposition 114, there exists Φ ⊆f TΣ, such that φ ∈ DΣ(Φ). Thus, by

the hypothesis, Proposition 1719 and Corollary 1440,
⇒

Φ→AΣ φ ∈DΣ(⊺AΣ), i.e.,

DΣ(⇒Φ →AΣ φ) =DΣ(⊺AΣ). By hypothesis,
⇒

Φ→AΣ φ = ⊺
A
Σ . Since T ∈ FiFam→(A),

we have
⇒

Φ →AΣ φ ∈ TΣ and, since, also, Φ ⊆ TΣ, we infer that φ ∈ TΣ. Therefore,
T =D(T ), showing that T ∈ D and, hence, D = FiFamI(A). ∎

We finally show that any Hilbert based π-institution I has a fully ade-
quate Gentzen π-institution, namely, the π-institution GI , generated by the
Gentzen rules RI , which encode the rules of I , the Congruence Property and
the Deduction Detachment Property.

Theorem 1732 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F, having the Uniterm Deduction
Detachment Property. I is self extensional if and only if the Gentzen π-
institution G = ⟨F,GI⟩ if fully adequate for I.

Proof: Suppose that GI is fully adequate for I . We know that ⟨F ,C⟩ is a
full I-structure. Thus, by full adequacy, ⟨F ,C⟩ ∈ Str(GI). Therefore, ⟨F ,C⟩
satisfies all the Gentzen rules that hold in GI . In particular, for all σ♭ in N ♭,
all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ⊆ SEN♭(Σ), CΣ(φi) = CΣ(ψi), for all i ∈ I, imply
CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)). Thus, λ̃(I) is a congruence system and, hence I
is self extensional.

Suppose, conversely, that I is self extensional. By Theorem 1730, it is
fully self extensional. Let ⟨A,D⟩ ∈ FStr(I). Then, by Theorem 1444 and
the definition of GI , we get that ⟨A,D⟩ ∈ Str(GI). Assume, conversely, that⟨A,D⟩ ∈ Str(GI). By considering, if necessary, ⟨A/Ω̃A(D),D/Ω̃A(D)⟩, we
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may assume that Ω̃A(D) = ∆A and must show that D = FiFamI(A). By the
definition of GI , we get ⟨A,D⟩ ∈ Str(I). For the same reason, ⟨A,D⟩ satisfies
the Congruence Property. Therefore, λ̃A(D) = Ω̃A(D) = ∆A. Since, by
hypothesis, it has the Deduction Detachment Property, we get, by Theorem
1722, that it is Hilbert based. Now, applying Lemma 1731, we conclude that
D = FiFamI(A). Therefore, ⟨A,D⟩ ∈ FStr(I).

This shows that FStr(I) = Str(GI) and, hence, GI is, indeed, fully ade-
quate for I . ∎

23.3 Self Extensionality and Conjunction

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 → SEN♭

in N ♭, and I = ⟨F,C⟩ a π-institution based on F. We say that I has the
Conjunction Property with respect to ∧♭ and that ∧♭ is a conjunction
for I if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

• φ ∧♭Σ ψ ∈ CΣ(φ,ψ);
• φ,ψ ∈ CΣ(φ ∧♭Σ ψ).

Equivalently, ∧♭ is a conjunction for I if and only if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ).
We say I is conjunctive if it has the Conjunction Property with respect to
some ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭.

If a π-institution has the Conjunction Property with respect to two differ-
ent binary natural transformations in N ♭, then the two concjunctions must
be interderivable in an obvious sense.

Lemma 1733 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭,∧′ ♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I
has the Conjunction Property with respect to both ∧♭ and ∧′ ♭, then, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ ∧♭Σ ψ) = CΣ(φ ∧′ ♭Σ ψ).
Proof: Suppose that ∧♭ and ∧′ ♭ are both conjunctions for I and let Σ ∈∣Sign♭∣, ψ,ψ ∈ SEN♭(Σ). Then

CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ) (∧♭ a conjunction)
= CΣ(φ ∧′ ♭Σ ψ). (∧′ ♭ a conjunction)

This proves the statement. ∎
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Corollary 1734 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭,∧′ ♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on
F. If I is self extensional and has the Conjunction Property with respect to
both ∧♭ and ∧′ ♭, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ ∧♭Σ ψ,φ ∧′ ♭Σ ψ⟩ ∈ Ω̃Σ(I).
Proof: Suppose that I is self extensional and ∧♭ and ∧′ ♭ are both con-
junctions for I . Then, if Σ ∈ ∣Sign♭∣, ψ,ψ ∈ SEN♭(Σ), by Lemma 1733,⟨φ ∧♭Σ ψ,φ ∧′ ♭Σ ψ⟩ ∈ λ̃Σ(I), whence, by self extensionality, ⟨φ ∧♭Σ ψ,φ ∧′ ♭Σ ψ⟩ ∈
Ω̃Σ(I). ∎

We also know, by Proposition 1434 that the Conjunction Property trans-
fers from a π-institution I to all I-structures.

Corollary 1735 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F, having
the Conjunction Property with respect to ∧♭. For every I-structure ⟨A,D⟩,
all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

DΣ(φ ∧AΣ ψ) = DΣ(φ,ψ).
Proof: This is simply a restatement of Proposition 1434. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and K a class of F-algebraic systems. K is semilattice based
with respect to ∧♭ if, for all A ∈ K, all Σ ∈ ∣Sign∣ and all φ,ψ,χ ∈ SEN(Σ),

L1. φ ∧AΣ φ = φ;

L2. φ ∧AΣ ψ = ψ ∧
A
Σ φ;

L3. (φ ∧AΣ ψ) ∧AΣ χ = φ ∧AΣ (ψ ∧AΣ χ).
L1-L3 are referred to as the semilattice equations. We say that K is semi-
lattice based if it is semilattice based with respect to some ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭.

If a class of F-algebraic systems is semilattices based, then the semantic
variety generated by the class is also semilattice based with respect to the
same binary natural transformation.

Lemma 1736 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and K a class of F-algebraic systems. If K is semi-
lattice based with respect to ∧♭, then VSem(K) is also semilattice based with
respect to ∧♭.
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Proof: Let A ∈ VSem(K). We show A satisfies L2. The work for L1 and L3
follows along the same lines. Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Since K is
semilattice based with respect to ∧♭, ⟨φ ∧♭Σ ψ,ψ ∧♭Σ φ⟩ ∈ KerΣ(K). Since, by
hypothesis, A ∈ VSem(K), we get Ker(K) ≤ Ker(A), whence ⟨φ∧♭Σψ,ψ ∧♭Σ φ⟩ ∈
KerΣ(A). This shows that αΣ(φ∧♭Σψ) = αΣ(ψ∧♭Σφ), i.e., αΣ(φ)∧AF (Σ)αΣ(ψ) =
αΣ(ψ)∧AF (Σ)αΣ(φ). Thus, by the surjectivity of ⟨F,α⟩, we conclude that, for

all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), φ ∧AΣ ψ = ψ ∧AΣ φ. Therefore, A satisfies
L2. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and K a semilattice based class of F-algebraic systems with
respect to ∧♭. For every A ∈ VSem(K), define the relation family ≤A ={≤AΣ}Σ∈∣Sign∣ on A by setting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≤AΣ ψ iff φ ∧AΣ ψ = φ.

It is easily shown that ≤A is a partial order system on A.

Lemma 1737 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and K a semilattice based class with respect to ∧♭.
For all A ∈ VSem(K), ≤A is a posystem on A.

Proof: First, fix A ∈ VSem(K), Σ ∈ ∣Sign∣. We show that ≤AΣ is a partial
order on SEN(Σ). To this end, let φ,ψ,χ ∈ SEN(Σ).

• By L1, φ = φ ∧AΣ φ, whence, by definition, φ ≤AΣ φ and ≤AΣ is reflexive;

• If φ ≤AΣ ψ and ψ ≤AΣ φ, then, we get

φ = φ ∧AΣ ψ (φ ≤AΣ ψ)
= ψ ∧AΣ φ (by L2)
= ψ. (ψ ≤AΣ φ)

Thus, ≤AΣ is antisymmetric.

• If φ ≤AΣ ψ and ψ ≤AΣ χ, then

φ = φ ∧AΣ ψ (φ ≤AΣ ψ)
= φ ∧AΣ (ψ ∧AΣ χ) (ψ ≤AΣ χ)
= (φ ∧AΣ ψ) ∧AΣ χ (by L3)
= φ ∧AΣ χ. (φ ≤AΣ ψ)

Hence φ ≤AΣ χ and ≤AΣ is also transitive.

Thus, ≤A is a partial order on SEN(Σ). Suppose, now, that Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′) and φ,ψ ∈ SEN(Σ), such that φ ≤AΣ ψ. Then, by definition, φ =
φ∧AΣψ. Thus, SEN♭(f)(φ) = SEN♭(f)(φ∧AΣψ) = SEN♭(f)(φ)∧AΣ′SEN♭(f)(ψ).
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This shows that SEN♭(f)(φ) ≤AΣ′ SEN♭(f)(ψ). Thus, ≤A is a partial order
system on A. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, K a semilattice based class of F-algebraic systems with respect to
∧♭, A ∈ K and T ∈ SenFam(A). We say that T is a semilattice filter family
of A if the following conditions hold, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ):

• TΣ ≠ ∅;

• φ,ψ ∈ TΣ implies φ ∧AΣ ψ ∈ TΣ;

• φ ∈ TΣ and φ ≤AΣ ψ imply ψ ∈ TΣ.

We denote by FiFam∧(A) the collection of all semilattice filter families on
A. Moreover, we write FiFam∧,∅(A) for the same collection augmented by
those sentence families resulting from semilattice filter families after one or
more components are replaced by the empty set.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, K a semilattice based class of F-algebraic systems with respect
to ∧♭, A ∈ K, Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Define

T ⟨Σ,φ⟩ = {T ⟨Σ,φ⟩Σ′ }Σ′∈∣Sign∣
by setting,

• T
⟨Σ,φ⟩
Σ = {χ ∈ SEN(Σ) ∶ φ ≤AΣ χ};

• T
⟨Σ,φ⟩
Σ′ = { {χ ∈ SEN(Σ) ∶ 1Σ ≤AΣ χ}, if 1Σ is a maximum in ≤AΣ

∅, if ≤AΣ has no maximum
, for all

Σ ≠ Σ′ ∈ ∣Sign∣,
We show that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), T ⟨Σ,φ⟩ ∈ FiFam∧(A)

or T ⟨Σ,φ⟩ ∈ FiFam∧,∅(A).
Lemma 1738 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class of F-algebraic systems
with respect to ∧♭, A ∈ K, Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then, T ⟨Σ,φ⟩ ∈
FiFam∧(A) or T ⟨Σ,φ⟩ ∈ FiFam∧,∅(A).
Proof: It suffices to show that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), the
collection {χ ∈ SEN(Σ) ∶ φ ≤AΣ χ} is an upset under ≤AΣ , closed under ∧AΣ . Let
ψ,χ ∈ SEN(Σ).

• If ψ,χ ∈ T ⟨Σ,φ⟩Σ , then, by definition, φ ≤AΣ ψ and φ ≤AΣ χ. Thus, we get

φ = φ ∧AΣ χ (φ ≤AΣ χ)
= (φ ∧AΣ ψ) ∧AΣ χ (φ ≤AΣ ψ)
= φ ∧AΣ (ψ ∧AΣ χ). (by L3)

Therefore, φ ≤AΣ ψ ∧
A
Σ χ and, hence ψ ∧AΣ χ ∈ T

⟨Σ,φ⟩
Σ .
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• If ψ ∈ T ⟨Σ,φ⟩Σ and ψ ≤AΣ χ, then φ ≤AΣ ψ and ψ ≤AΣ χ, whence, by Lemma

1737, φ ≤AΣ χ, i.e., χ ∈ T ⟨Σ,φ⟩Σ .

Thus, T ⟨Σ,φ⟩ ∈ FiFam∧(A) or T ⟨Σ,φ⟩ ∈ FiFam∧,∅(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, K a semilattice based class of F-algebraic systems with respect to
∧♭ and I = ⟨F,C⟩ a finitary π-institution based on F. We say I is semilattice
based with respect to K and ∧♭ if, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f
SEN♭(Σ), with Φ ≠ ∅,

φ ∈ CΣ(Φ) iff for all A ∈ K,
⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ).

We say that I is semilattice based if it is semilattice based with respect
to K and ∧♭, for some semilattice based class K with respect to some ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭.

We get immediately from the definition that interderivability in I is re-
flected into equality in all algebraic systems in the defining class K.

Lemma 1739 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class of F-algebraic systems
with respect to ∧♭ and I = ⟨F,C⟩ a semilattice based π-institution with respect
to K and ∧♭. For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ) = CΣ(ψ) iff for all A ∈ K, αΣ(φ) = αΣ(ψ).
Proof: By the definition, we have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
CΣ(φ) = CΣ(ψ) iff, for all A ∈ K, αΣ(φ) ≤AF (Σ) αΣ(ψ) and αΣ(ψ) ≤AF (Σ) αΣ(φ)
iff, by Lemma 1737, for all A ∈ K, αΣ(φ) = αΣ(ψ). ∎

Moreover, in case I is semilattice based with respect to a class K, then
it is also semilattice based with respect to the semantic variety generated by
K, with respect to the same binary transformation.

Lemma 1740 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class of F-algebraic systems
with respect to ∧♭ and I = ⟨F,C⟩ a semilattice based π-institution with respect
to K and ∧♭. Then I is semilattice based with respect to VSem(K) and ∧♭.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f SEN♭(Σ), such that φ ∈ CΣ(Φ) and
A ∈ VSem(K). Since I is semilattice based with respect to K and ∧♭, ⟨⋀♭Σ Φ∧♭Σ
φ,⋀♭Σ Φ⟩ ∈ KerΣ(K). Since A ∈ VSem(K), we get Ker(K) ≤ Ker(A). This gives

⋀AF (Σ)αΣ(Φ) ∧AF (Σ) αΣ(φ) = ⋀AF (Σ)αΣ(Φ), and, therefore, ⋀AF (Σ)αΣ(Φ) ≤AF (Σ)
αΣ(φ).

Conversely, if, for all A ∈ VSem(K), ⋁AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ), then, a

fortiori, for all A ∈ K, we have ⋁AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ). Therefore, by
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hypothesis, φ ∈ CΣ(Φ). We conclude that I is semilattice based with respect
to VSem(K) and ∧♭. ∎

We can now show that, if a π-institution is semilattice based with respect
to two different classes of semilattice based F-algebraic systems, then, they
both have to generate the same semantic variety.

Lemma 1741 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭,∧′ ♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class with respect to ∧♭ and
K′ a semilattice based class with respect to ∧′ ♭. If I = ⟨F,C⟩ is a semilattice
based π-institution both with respect to K and ∧♭ and with respect to K′ and
∧′ ♭, then VSem(K) = VSem(K′).
Proof: Suppose I = ⟨F,C⟩ is a semilattice based π-institution both with
respect to K and ∧♭ and with respect to K′ and ∧′ ♭ and let Σ ∈ ∣Sign♭∣,
φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ KerΣ(K) and A ∈ K′. Then, since I
is semilattice based with respect to K, by Lemma 1739, CΣ(φ) = CΣ(ψ).
Thus, since I is semilattice based with respect to K′, again, by Lemma 1739,
αΣ(φ) = αΣ(ψ). Hence, Ker(K) ≤ Ker(A), which gives that A ∈ VSem(K).
We conclude that K′ ⊆ VSem(K) and, by symmetry, VSem(K) = VSem(K′). ∎

Thus, if I is semilattice based with respect to some K and ∧♭, it makes
sense, based on Lemma 1741 and Lemma 1740, to denote by VSem(I) the
unique semantic variety of F-algebraic systems with respect to which it is
semilattice based.

In one of the cornerstone results of the section, we show that, if a π-
institution is semilattice based, then it is self extensional and has the Con-
junction Property, and, in addition, its semantic variety coincides with the
semantic variety KI generated by the Lindenbaum-Tarski algebraic system
of I .

Proposition 1742 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ in N ♭, K a semilattice based class with respect to ∧♭, I = ⟨F,C⟩ a semilat-
tice based π-institution with respect to K and ∧♭.

(a) I is self extensional;

(b) I has the Conjunction Property with respect to ∧♭;

(c) VSem(I) = KI; Hence I is semilattice based with respect to KI .

Proof:

(a) For self extensionality, it suffices to show that the Frege equivalence
system λ̃(I) is a congruence system. To this end, let σ♭ be in N ♭,
Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that ⟨φi, ψi⟩ ∈ λ̃Σ(I), for all i < k.
By definition, we get CΣ(φi) = CΣ(ψi), for all i < k. Hence, since
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I is semilattice based with respect to K and ∧♭, ⟨φi, ψi⟩ ∈ KerΣ(K),
for all i < k. But Ker(K) is a congruence system on F, whence,⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ KerΣ(K). By Lemma 1739, CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)),
whence ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ λ̃Σ(I). Therefore, λ̃(I) is a congruence sys-
tem on F and I is self extensional.

(b) Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then, for all A ∈ K,

αΣ(φ ∧♭Σ ψ) = αΣ(φ) ∧AF (Σ) αΣ(ψ) ≤AF (Σ) αΣ(φ), αΣ(ψ).
Thus, since I is semilattice based with respect to K and ∧♭, we get that
φ∧♭Σψ ∈ CΣ(φ,ψ) and φ,ψ ∈ CΣ(φ∧♭Σψ). Hence, ∧♭ is a conjunction for
I .

(c) We have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ KerΣ(VSem(I)) iff ⟨φ,ψ⟩ ∈ KerΣ(VSem(K))

(definition of VSem(I))
iff ⟨φ,ψ⟩ ∈ KerΣ(K)

(definition of VSem(K))
iff CΣ(φ) = CΣ(ψ)

(Lemma 1739)

iff ⟨φ,ψ⟩ ∈ λ̃Σ(I)
(definition of λ̃(I))

iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I)
(Part (a))

iff ⟨φ,ψ⟩ ∈ KerΣ(KI).
(definition of KI)

Therefore, since both classes are semantic varieties, we conclude that
VSem(I) = KI .

∎

If I is a finitary self extensional π-institution I , having the Conjunction
Property with respect to ∧♭, then the singleton class K = {F/Ω̃(I)}, con-
sisting of its Lindenbaum-Tarski F-algebraic system F/Ω̃(I), is semilattice
based with respect to ∧♭.

Lemma 1743 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional π-insti-
tution, having the Conjunction Property with respect to ∧♭. Then the class
K = {F/Ω̃(I)} is semilattice based with respect to ∧♭.

Proof: We have to verify that the class K satisfies the semilattice identities.
To this end, let Σ ∈ ∣Sign♭∣, φ,ψ,χ ∈ SEN♭(Σ).

• By the Conjunction Property, CΣ(φ ∧♭Σ φ) = CΣ(φ). Thus, using self

extensionality, ⟨φ ∧♭Σ φ,φ⟩ ∈ λ̃Σ(I) = Ω̃Σ(I). Hence K satisfies L1.
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• By the Conjunction Property, CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ) = CΣ(ψ ∧♭Σ φ).
Thus, again using self extensionality, ⟨φ∧♭Σ ψ,ψ ∧♭Σ φ⟩ ∈ λ̃Σ(I) = Ω̃Σ(I).
Hence K satisfies L2.

• Finally, we have

CΣ((φ ∧♭Σ ψ) ∧♭Σ χ) = CΣ(φ ∧♭Σ ψ,χ)
= CΣ(φ,ψ,χ)
= CΣ(φ,ψ ∧♭Σ χ)
= CΣ(φ ∧♭Σ (ψ ∧♭Σ χ)).

Thus, again using self extensionality,

⟨(φ ∧♭Σ ψ) ∧♭Σ χ,φ ∧♭Σ (ψ ∧♭Σ χ)⟩ ∈ λ̃Σ(I) = Ω̃Σ(I)
and K also satisfies L3.

Thus, K is semilattice based with respect to ∧♭. ∎

In one of our main theorems, we characterize semilattice based π-insti-
tutions as those that are self extensional and conjunctive.

Theorem 1744 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F. I is semilattice based if and only
if it is self extensional and conjunctive.

Proof: The left-to-right implication is by Proposition 1742. Suppose, con-
versely, that I is self extensional and conjunctive, with ∧♭ ∶ (SEN♭)2 → SEN♭

in N ♭ a conjunction for I . By Lemma 1743, K = {F/Ω̃(I)} is semilattice
based with respect to ∧♭. Moreover, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f
SEN♭(Σ),

φ ∈ CΣ(Φ) iff φ ∈ CΣ(⋀♭Σ Φ) (Conjunction Property)
iff CΣ(⋀♭Σ Φ ∧♭Σ φ) = CΣ(⋀♭Σ Φ) (Conjunction Property)

iff ⟨⋀♭Σ Φ ∧♭Σ φ,⋀
♭
Σ Φ⟩ ∈ λ̃Σ(I) (definition of λ̃(I))

iff ⟨⋀♭Σ Φ ∧♭Σ φ,⋀
♭
Σ Φ⟩ ∈ Ω̃Σ(I) (self extensionality)

iff ⋀
F/Ω̃(I)
Σ Φ/Ω̃Σ(I) ≤F/Ω̃(I)Σ φ/Ω̃Σ(I). (def. of ≤F/Ω̃(I))

Therefore, I is indeed semilattice based with respect to K and ∧♭. ∎

In some contexts it is desirable to have a specification of the theorems of a
π-institution under discussion. However, the hypothesis that I is semilattice
based by itself does not provide information about the theorems of I , since
it only specifies, based on properties of the defining class K, entailments with
non empty sets of hypotheses. We discuss the property of being non psudo-
axiomatic, which serves to streamline this ambiguity concerning theorems.



Voutsadakis CHAPTER 23. THE FREGE HIERARCHY 1413

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a finitary
π-institution based on F. We say that I is non pseudo-axiomatic if, for
all Σ ∈ ∣Sign♭∣,

ThmΣ(I) =⋂{CΣ(φ) ∶ φ ∈ SEN♭(Σ)}.
The property may be equivalently expressed by the condition

Thm(I) =⋂{T ∈ ThFam(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}.
Non pseudo-axiomatic semilattice based π-institutions form a generaliza-

tion of π-institutions with theorems.

Lemma 1745 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a semilattice based π-institution with theorems, based on F.

(a) I is non pseudo-axiomatic;

(b) For all A ∈ KI , all Σ ∈ ∣Sign♭∣, all t ∈ ThmΣ(I) and all φ ∈ SEN♭(Σ),
αΣ(φ) ≤AF (Σ) αΣ(t).

Proof:

(a) Let Σ ∈ ∣Sign♭∣. On the one hand, ThmΣ(I) ⊆ ⋂{CΣ(φ) ∶ φ ∈ SEN♭(Σ)}.
On the other, ⋂{CΣ(φ) ∶ φ ∈ SEN♭(Σ)} ⊆ ⋂{CΣ(φ) ∶ φ ∈ ThmΣ(I)} =
ThmΣ(I). Hence, I is non pseudo-axiomatic.

(b) Suppose Σ ∈ ∣Sign♭∣ and t ∈ ThmΣ(I). Then, for all φ ∈ SEN♭(Σ),
t ∈ CΣ(φ). Since, by Proposition 1742, I is semilattice based with
respect to KI , we get that, for all A ∈ KI , αΣ(φ) ≤AF (Σ) αΣ(t). ∎

By Lemma 1739, for all Σ ∈ ∣Sign♭∣, and all t, t′ ∈ ThmΣ(I), αΣ(φ) =
αΣ(ψ), for all A ∈ K. Furthermore, the common value of all theorems in
SEN(Σ) is, by Lemma 1745, a maximum element under ≤AΣ . This element
will be denoted by 1AΣ .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and K a semilattice based semantic variety with respect to ∧♭.
We assume that K is conditionally max natural, i.e., for all A ∈ K, either
for no Σ ∈ ∣Sign∣ is there a maximum under ≤AΣ or, for every Σ ∈ ∣Sign∣, there
exists a maximum 1AΣ under ≤AΣ , and moreover, 1A = {1AΣ}Σ∈∣Sign∣ is natural,
i.e., it satisfies, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(1AΣ) = 1AΣ′ .

Define a finitary closure system

CK,∧ ∶ PSEN♭ → PSEN♭

on F by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f SEN♭(Σ),
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• φ ∈ CK,∧
Σ (∅) if and only if, for all A ∈ K and all χ ∈ SEN(F (Σ)),

χ ≤A
F (Σ)

αΣ(φ);
• φ ∈ CK,∧

Σ (Φ) if and only if, for all A ∈ K, ⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ).
We note that conditional max naturality is essential in guaranteeing the

structurality of CK,∧.

Lemma 1746 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and K a conditionally max natural semilattice based
semantic variety with respect to ∧♭. Then IK,∧ = ⟨F,CK,∧⟩ is a non pseudo-
axiomatic π-institution.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ ⋂{CΣ(ψ) ∶ ψ ∈
SEN♭(Σ)}. Then, by definition, for all A ∈ K, αΣ(ψ) ≤ αΣ(φ), for all
ψ ∈ SEN♭(Σ). By the surjectivity of ⟨F,α⟩, we get that φ ∈ ThmΣ(IK,∧).
Therefore, IK,∧ is non pseudo-axiomatic. ∎

The semantic variety of IK,∧ turns out to be the class K.

Proposition 1747 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and K a conditionally max natural semilattice
based semantic variety with respect to ∧♭. Then IK,∧ = ⟨F,CK,∧⟩ is semilattice
based with respect to K and ∧♭ and VSem(IK,∧) = K.

Proof: By the second condition in the definition of CK,∧, we conclude that
IK,∧ is semilattice based with respect to K and ∧♭. Then, by definition
VSem(IK,∧) = VSem(K) = K, since, by hypothesis, K is a semantic variety. ∎

Proposition 1748 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a semilattice based non pseudo-
axiomatic π-institution. Then IV

Sem(I),∧ = I.

Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), with Φ ≠ ∅. Then, we have:

φ ∈ CV
Sem(I),∧

Σ (∅) iff for all A ∈ VSem(I), χ ∈ SEN(F (Σ)),
χ ≤A

F (Σ)
αΣ(φ),

iff for all A ∈ VSem(I), ψ ∈ SEN♭(Σ),
αΣ(ψ) ≤AF (Σ) αΣ(φ),

iff for all A ∈ K, ψ ∈ SEN♭(Σ),
αΣ(ψ) ≤AF (Σ) αΣ(φ),

iff φ ∈ ⋂{CΣ(ψ) ∶ ψ ∈ SEN♭(Σ)}
iff φ ∈ CΣ(∅).
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Moreover,

φ ∈ CV
Sem(I),∧

Σ (Φ) iff for all A ∈ VSem(I),
⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ)

iff for all A ∈ K,
⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ)

iff φ ∈ CΣ(Φ).
Thus, we get IV

Sem(I),∧ = I . ∎

For non pseudo-axiomatic semilattice based π-institutions on the same
algebraic system, the Frege relations reflect the ≤ ordering on their closure
systems.

Proposition 1749 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ non pseudo-
axiomatic semilattice based π-institutions with respect to ∧♭. Then

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′).
Proof: The left-to-right implication is by Lemma 1416. Assume, conversely,
that I , I ′ are non pseudo-axiomatic semilattice based with respect to ∧♭,
such that λ̃(I) ≤ λ̃(I ′). Then, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆f SEN♭(Σ),
with Φ ≠ ∅,

φ ∈ CΣ(Φ) iff φ ∈ CΣ(⋀♭Σ Φ)
iff CΣ(⋀♭Σ Φ ∧♭Σ φ) = CΣ(⋀♭Σ Φ)
iff ⟨⋀♭Σ Φ ∧♭Σ φ,⋀

♭
Σ Φ⟩ ∈ λ̃Σ(I)

implies ⟨⋀♭Σ Φ ∧♭Σ φ,⋀
♭
Σ Φ⟩ ∈ λ̃Σ(I ′)

iff C ′Σ(⋀♭Σ Φ ∧♭Σ φ) = C ′Σ(⋀♭Σ Φ)
iff φ ∈ C ′Σ(⋀♭Σ Φ)
iff φ ∈ C ′Σ(Φ).

Moreover, taking into account what was just demonstrated,

φ ∈ CΣ(∅) iff φ ∈ ⋂{CΣ(ψ) ∶ ψ ∈ SEN♭(Σ)}
implies φ ∈ ⋂{C ′Σ(ψ) ∶ ψ ∈ SEN♭(Σ)}

iff φ ∈ C ′Σ(∅).
We conclude that I ≤ I ′. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭. Denote by KF,∧ the semantic variety of F-algebraic systems
generated by the semilattice equations L1-L4.

Theorem 1750 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭. There exists a dual isomorphism between the
collection of semilattice based non pseudo-axiomatic π-institutions with re-
spect to ∧f lat, ordered under ≤, and the collection of all conditionally max
natural semantic subvarieties of KF,∧, ordered under ⊆, given by I ↦ KI .
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Proof: Consider the mapping I ↦ KI .
Suppose, first, that I , I ′ are non pseudo-axiomatic and semilattice based

with respect to ∧♭, such that KI = KI′ . Then IKI ,∧ = IKI
′
,∧. By Proposition

1742 and Proposition 1748, we get I = I ′. Therefore, the mapping is one-to-
one.

Assume, now, that K is conditionally max natural and semilattice based
with respect to ∧♭. Then, by Lemma 1746 and Proposition 1747, IK,∧ is a
non pseudo-axiomatic and semilattice based π-institution with respect to K

and ∧♭, such that VSem(IK,∧) = K. Therefore, by Proposition 1742, KI
K,∧ = K

and the mapping is also onto. Thus, it is a bijection from the collection of
semilattice based non pseudo-axiomatic π-institutions with respect to ∧f lat
onto the collection of all conditionally max natural semantic subvarieties of
KF,∧.

Finally, for all non pseudo-axiomatic and semilattice based π-institutions
I , I ′, with respect to ∧♭, we have

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′) (by Proposition 1749)

iff Ω̃(I) ≤ Ω̃(I ′) (by Proposition 1742)
iff KI

′ ≤ KI . (definition of KI ,KI
′
)

Thus, the bijection is also order reversing and dual order reflecting and,
therefore, it is a dual order isomorphism, as claimed. ∎

Our next goal is to show that for semilattice based π-institutions, their
semantic variety coincides with the class of all I-algebraic systems. We start
by showing that, for such a π-institution, the I-filter families on any algebraic
system in their semantic variety coincides (roughly) with the collection of all
semilattice filter families.

Lemma 1751 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a semilattice based π-institution based on F. For all A ∈ KI ,

FiFamI(A) = { FiFam∧(A), if I has theorems
FiFam∧,∅(A), otherwise

Proof: It suffices to show that, for all T ∈ SenFam(A), such that TΣ ≠ ∅, for
all Σ ∈ ∣Sign∣, T ∈ FiFamI(A) if and only if T ∈ FiFam∧(A).

Suppose, first, that T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ).
• Suppose that αΣ(φ), αΣ(ψ) ∈ TF (Σ). Then, since φ∧♭Σ ψ ∈ CΣ(φ,ψ) and

T ∈ FiFamI(A), we get αΣ(φ) ∧AF (Σ) αΣ(ψ) = αΣ(φ ∧♭Σ ψ) ∈ TF (Σ);
• If αΣ(φ) ∈ TF (Σ) and αΣ(φ) ≤AF (Σ) αΣ(ψ), then αΣ(φ∧♭Σψ) = αΣ(φ)∧AF (Σ)
αΣ(ψ) = αΣ(φ) ∈ TF (Σ). Since ψ ∈ CΣ(φ ∧♭Σ ψ) and T ∈ FiFamI(A), we
get αΣ(ψ) ∈ TF (Σ).
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Taking into account the surjectivity of ⟨F,α⟩, we get T ∈ FiFam∧(A).
Assume, conversely, that T ∈ FiFam∧(A) and let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f

SEN♭(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). Since, by Proposition
1742, I is semilattice based with respect to KI , we get that ⋀AF (Σ)αΣ(Φ) ≤AF (Σ)
αΣ(φ) and αΣ(Φ) ⊆ TF (Σ). Since, by hypothesis, T ∈ FiFam∧(A), αΣ(φ) ∈
TF (Σ).

Finally, if φ ∈ CΣ(∅), then φ ∈ CΣ(ψ), for all ψ ∈ SEN♭(Σ). Since I
has theorems, TF (Σ) ≠ ∅, whence, by the surjectivity of ⟨F,α⟩, for some
ψ ∈ SEN♭(Σ), αΣ(ψ) ∈ TF (Σ). For this chosen ψ, we also have, since I is
semilattice based with respect to KI , that αΣ(ψ) ≤AF (Σ) αΣ(φ). Thus, since

T ∈ FiFam∧(A), we conclude that αΣ(φ) ∈ TF (Σ).
Since in all cases φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ) imply αΣ(φ) ∈ TF (Σ),

T ∈ FiFamI(A). ∎

In the next step, we show that, for a semilattice based π-institution, the
Frege congruence system of any I-structure of the form ⟨A,FiFamI(A)⟩,
with A in the semantic variety of I , is reduced.

Lemma 1752 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a semilattice based π-institution based on F. For every A ∈ KI ,

λ̃A(FiFamI(A)) = ∆A.

Hence, ⟨A,FiFamI(A)⟩ is reduced.

Proof: Let A ∈ KI , Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∉ ∆AΣ .
Then, by definition, φ ≠ ψ and, by Lemma 1737 and Proposition 1742, we
get ψ ∉ T ⟨Σ,φ⟩Σ or φ ∈ T ⟨Σ,ψ⟩Σ . Since, by Lemmas 1738 and 1751, T ⟨Σ,φ⟩, T ⟨Σ,ψ⟩ ∈
FiFamI(A), we get that ⟨φ,ψ⟩ ∉ λ̃A(FiFamI(A)). Thus, λ̃A(FiFamI(A)) =
∆A.

Finally, Ω̃A(FiFamI(A)) ≤ λ̃A(FiFamI(A)), whence, Ω̃A(FiFamI(A)) =
∆A and, therefore, ⟨A,FiFamI(A)⟩ is a reduced I-structure. ∎

In the last step before the main theorem, we show that for a semilattice
based π-institution I , if ⟨A,D⟩ is any I-structure, such that λ̃A(D) = ∆A,
then D is either FiFamI(A), if I has theorems, or D∅ is FiFamI(A), if I does
not have theorems, where D∅ consists of the filter families in D, (potentially)
augmented by filter families in D, in which one or more components have
been replaced by ∅.

Lemma 1753 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a semilattice based π-institution based on F, and ⟨A,D⟩ ∈ Str(I), such that
λ̃A(D) = ∆A. If I has theorems, then D = FiFamI(A). If I does not have
theorems, then D∅ = FiFamI(A).
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Proof: Let A be an F-algebraic system and suppose T ∈ FiFamI(A), with
TΣ ≠ ∅, for all Σ ∈ ∣Sign∣. Let Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈DΣ(TΣ).
By Proposition 114, there exists Φ ⊆f TΣ, such that φ ∈ DΣ(Φ). Since⟨A,D⟩ ∈ Str(I), by Corollary 1735, DΣ(⋀AΣ Φ ∧AΣ φ) = DΣ(⋀AΣ Φ). Hence,
by hypothesis, ⋀AΣ Φ ∧AΣ φ = ⋀AΣ Φ. Since Φ ⊆f TΣ and, by Lemma 1751,
T ∈ FiFam∧(A), ⋀AΣ Φ ∈ TΣ. By the preceding equation, ⋀AΣ Φ ∧AΣ φ ∈ TΣ and,
therefore, φ ∈ TΣ. We conclude that T =D(T ) and, hence, T ∈ D.

If I has theorems, then, for every T ∈ FiFamI(A), TΣ ≠ ∅, for all Σ ∈∣Sign∣. By what was proven above, D = FiFamI(A). On the other hand, if
I does not have theorems, then any of the components of T ∈ FiFamI(A) is
allowed to be empty and, therefore, D∅ = FiFamI(A). ∎

In one of the main theorems, we show that, for a semilattice based π-
institution I , the semantic variety KI of I coincides with the class AlgSys(I)
of all I-algebraic systems.

Theorem 1754 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a semilattice based π-institution based on F.

(a) AlgSys(I) = KI ;

(b) AlgSys(I) is a semantic variety;

(c) I is semilattice based with respect to AlgSys(I).
Proof: We have, by Proposition 65, that, in general, AlgSys(I) ⊆ KI . Sup-
pose, conversely, that A ∈ KI . Then, by Lema 1752, ⟨A,FiFamI(A)⟩ is
reduced. Therefore, A ∈ AlgSys(I). We conclude that AlgSys(I) = KI .
Since KI is, by definition, a semantic variety, then so is AlgSys(I). Finally,
since, by Proposition 1742, I is semilattice based with respect to KI , it is
semilattice based with respect to AlgSys(I). ∎

In another main theorem, it is shown that a finitary self extensional and
conjunctive π-institution I is necessarily fully self extensional, i.e., that every⟨A,D⟩ ∈ FStr(I) satisfies the Congruence Property.

Theorem 1755 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F. If I is self extensional and con-
junctive, then it is fully self extensional.

Proof: Suppose that I is finitary, self extensional and has the Conjunction
Property with respect to ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭. By Theorem 1744
and Proposition 1742, I is semilattice based with respect to KI and ∧♭. By
Proposition 65, AlgSys(I) ⊆ KI , whence, by Lemma 1752, if A ∈ AlgSys(I),
then λ̃A(FiFamI(A)) =∆A.

Suppose, now, that ⟨A,D⟩ ∈ FStr(I). Then, by definition,

FiFamI(A/Ω̃A(D)) = D/Ω̃A(D).
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Since A/Ω̃A(D) ∈ AlgSys(I), by what was shown in the preceding paragraph,

λ̃A/Ω̃
A(D)(D/Ω̃A(D)) =∆A/Ω̃

A(D).

Therefore, we get that ⟨A/Ω̃A(D),D/Ω̃A(D)⟩ has the Congruence Property.
Therefore, by Proposition 1426, ⟨A,D⟩ also has the Congruence Property.
We conclude that I is fully self extensional. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and G = ⟨F,G⟩ a finitary Gentzen π-institution based on F.

G has congruence if, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈
SEN♭(Σ),

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}).
Moreover, G has conjunction with respect to ∧♭ if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ⊢Σ φ ∧♭Σ ψ, φ ∧
♭
Σ ψ ⊢Σ φ, φ ∧

♭
Σ ψ ⊢Σ ψ ∈ GΣ(∅).

Let, also, I = ⟨F,C⟩ be a finitary π-institutuon based on F. Recall that:

• If I has theorems, G is fully adequate for I if Str(G) = FStr(I);
• If I does not have theorems, then G is fully adequate for I if

Str(G)∅ = FStr(I).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →

SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional π-institution, having
the Conjunction Property with respect to ∧♭.

• Define AxI = {AxIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)};

• Define IrI = {IrIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
IrIΣ = {⟨{φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i ∈ I}, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶

σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ)}.
• RI ∶= AxI ∪ IrI .

Finally, define GI = ⟨F,CI⟩ ∶= GRI as the Gentzen π-institution generated by
the system RI of Gentzen rules. Recall, by Proposition 1482, that GI = ΞRI .

This Gentzen π-institution turns out to be fully adequate for the π-
institution I :
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Theorem 1756 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary conjunctive π-institution. I is self extensional if and only
if GI = ⟨F,GI⟩ is fully adequate for I.

Proof: Suppose, first, that G is fully adequate for I . Since ⟨F ,C⟩ ∈ FStr(I),
we get that ⟨F ,C⟩ ∈ Str(GI), if I has theorems, and that ⟨F ,C⟩ ∈ Str(GI)∅,
otherwise. Since, by definition, GI has congruence, we get that ⟨F ,C⟩ has the
Congruence Property, which amounts to I having the Congruence Property.
Thus, I is self extensional.

Assume, conversely, that I is finitary, self extensional and has the Con-
junction Property with respect to ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭.

• Suppose, first, that ⟨A,D⟩ ∈ FStr(I). Then, by Theorem 1755, ⟨A,D⟩
has the Congruence Property. Moreover, by definition, for all Σ ∈∣Sign♭∣ and all Φ ∪ {φ} ⊆f SEN♭(Σ), if φ ∈ CΣ(Φ), then, αΣ(φ) ∈
DF (Σ)(αΣ(Φ)). We conclude that, if I has theorems, then ⟨A,D⟩ ∈
Str(GI) and that, otherwise, ⟨A,D⟩ ∈ Str(GI)∅.

• Suppose, conversely, that ⟨A,D⟩ ∈ Str(GI), if I has theorems, or⟨A,D⟩ ∈ Str(GI)∅, otherwise. Consider the reduction

⟨A/Ω̃A(FiFamI(A)),FiFamI(A)/Ω̃A(FiFamI(A))⟩.
This reduction is an I-structure and, by hypothesis and Proposition
1426, it has the Congruence Property. Thus, we get

λ̃A/Ω̃
A(FiFamI(A))(FiFamI(A)/Ω̃A(FiFamI(A))) = ∆A/Ω̃

A(FiFamI(A)).

Now Lemma 1753 allows us to conclude that

FiFamI(A)/Ω̃A(FiFamI(A)) = FiFamI(A/Ω̃A(FiFamI(A))).
Therefore, ⟨A,D⟩ ∈ FStr(I).

We conclude that GI is fully adequate for I . ∎

23.4 Fregeanity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a binary natural
transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution
based on F.

Recall that I is called:

• strongly Fregean if, for every T ∈ ThFam(I), λ̃(T ) = Ω̃(T ), i.e., if
and only if the strong Frege equivalence family λ̃(T ) is a congruence
system;
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• congruential if, for every T ∈ ThFam(I), λ̃(T ) satisfies the congru-
ence property, i.e., λ̃(T ) is a congruence family (but not necessarily a
system);

• Fregean if, for every T ∈ ThFam(I), Λ̃(T ) = Ω̃(T ), i.e., if its Frege
equivalence system Λ̃ is a congruence system.

Strong Fregeanity implies congruentiality, which, in turn, implies Fregeanity.

Recall, also, that I is said to have the Deduction Detachment Theo-
rem with respect to →♭ if, for every Σ ∈ ∣Sign♭∣, all Φ∪ {φ,ψ} ⊆ SEN♭(Σ),

ψ ∈ CΣ(Φ, φ) iff φ→♭Σ ψ ∈ CΣ(Φ).
In the following proposition, it is shown that every strongly Fregean π-

institution with the Deduction Detachment Theorem satisfies certain axioms
and the rule of Modus Ponens.

Proposition 1757 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
a binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩
a congruential π-institution having the Deduction Detachment Theorem with
respect to →♭. Then, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ, φ⃗, ψ⃗ ∈
SEN♭(Σ),

(a) φ→♭Σ (ψ →♭Σ φ) ∈ CΣ(∅);
(b) (φ→♭Σ (ψ →♭Σ χ))→♭Σ ((φ→♭Σ ψ)→♭Σ (φ→♭Σ χ)) ∈ CΣ(∅);
(c) (φ0 →♭Σ ψ0) →♭Σ ((ψ0 →♭Σ φ0) →♭Σ (⋯((φk−1 →♭Σ ψk−1) →♭Σ ((ψk−1 →♭Σ

φk−1)→♭Σ (σ♭Σ(φ⃗)→♭Σ σ♭Σ(ψ⃗))))⋯)) ∈ CΣ(∅);
(d) ψ ∈ CΣ(φ,φ →♭Σ ψ).

Proof:

(a) We have, by inflationarity, φ ∈ CΣ(φ,ψ), whence, by two applications
of the Deduction Theorem, φ→♭Σ (ψ →♭Σ φ) ∈ CΣ(∅).

(b) We have, using the Detachment Theorem,

χ ∈ CΣ(ψ,ψ →♭Σ χ) ⊆ CΣ(φ,φ→♭Σ ψ,φ →♭Σ (ψ →♭Σ χ)).
Thus, using the Deduction Theorem, we get

(φ→♭Σ (ψ →♭Σ χ))→♭Σ ((φ →♭Σ ψ)→♭Σ (φ→♭Σ χ)) ∈ CΣ(∅).
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(c) Since I is congruential, we get, for all T ∈ ThFam(I),
CΣ(TΣ, φi) = CΣ(TΣ, ψi), i < k,

imply CΣ(TΣ, σ♭Σ(φ⃗)) = CΣ(TΣ, σ♭Σ(ψ⃗)).
But CΣ(TΣ, φi) = CΣ(TΣ, ψi) is equivalent, by the Deduction Detach-
ment Theorem, to φ→♭Σ ψ, ψ →♭Σ φ ∈ CΣ(TΣ) = TΣ. Similarly,

CΣ(TΣ, σ♭Σ(φ⃗)) = CΣ(TΣ, σ♭Σ(ψ⃗))
is equivalent to σ♭Σ(φ⃗) →♭Σ σ♭Σ(ψ⃗), σ♭Σ(ψ⃗) →♭Σ σ♭Σ(φ⃗) ∈ CΣ(TΣ) = TΣ.
Therefore, we get

σ♭Σ(φ⃗)→♭Σ σ♭Σ(ψ⃗) ∈ CΣ({φi →♭Σ ψi, ψi →♭Σ φi ∶ i < k}).
Now (c) follows by several applications of the Deduction Theorem.

(d) By inflationarity, φ →♭Σ ψ ∈ CΣ(φ →♭Σ ψ), whence by the Detachment
Theorem, ψ ∈ CΣ(φ,φ→♭Σ ψ). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭. Define Ax0 = {Ax0

Σ}Σ∈∣Sign♭∣, by setting, for all Σ ∈ ∣Sign♭∣, Ax0
Σ

is the set consisting, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ, φ⃗, ψ⃗ ∈
SEN♭(Σ),

• φ→♭Σ (ψ →♭Σ φ);
• (φ→♭Σ (ψ →♭Σ χ))→♭Σ ((φ →♭Σ ψ)→♭Σ (φ →♭Σ χ));
• (φ0 →♭Σ ψ0) →♭Σ ((ψ0 →♭Σ φ0) →♭Σ (⋯((φk−1 →♭Σ ψk−1) →♭Σ ((ψk−1 →♭Σ
φk−1)→♭Σ (σ♭Σ(φ⃗)→♭Σ σ♭Σ(ψ⃗))))⋯)).

Furthermore, define Ir0 = {Ir0Σ}Σ∈∣Sign♭∣ by setting, for all Σ ∈ ∣Sign♭∣,
Ir0Σ = {⟨{φ,φ→♭Σ ψ}, ψ⟩ ∶ φ,ψ ∈ SEN♭(Σ)}.

Finally, let R0 = Ax0∪Ir0. Set I0 = ⟨F,C0⟩ be the finitary π-institution, based
on F, with C0 = CR0

the closure system on F generated by the collection R0

of F-axioms and F-rules of inference.
Our work in Proposition 1757 allows us to formalize the fact that a con-

gruential finitary π-institution having the Deduction Detachment Theorem
with respect to →♭ is an axiomatic extension of I0. Recall that I = ⟨F,C⟩ is
an axiomatic extension of I0 if there exists an axiom family Ax′, such that
C = CR0∪Ax′ .

Theorem 1758 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a
congruential finitary π-institution having the Deduction Detachment Theo-
rem with respect to →♭. Then I is an axiomatic extension of I0.
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Proof: Since I is finitary, its closure system is specified by a collection
R = Ax ∪ Ir of F-axioms and F-rules. We define R′ = Ax′ ∪ Ir′, where, for all
Σ ∈ ∣Sign♭∣,

• Ax′Σ = AxΣ ∪ {φ0 →♭Σ (φi →♭Σ ⋯→♭Σ (φn−1 →♭Σ φ)⋯) ∶ ⟨{φ0, . . . , φn−1}, φ⟩ ∈
IrΣ};

• Ir′Σ = {⟨{⟨φ,φ→♭Σ ψ}, ψ⟩ ∶ φ,ψ ∈ SEN♭(Σ)}.
Note that, by the Deduction Theorem of I , for every Σ ∈ ∣Sign♭∣, Ax′Σ ⊆
CΣ(∅). Moreover, by the Detachment Theorem for I , for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), ψ ∈ CΣ(φ,φ→♭Σ ψ). Therefore, we conclude that CR′ ≤ C.

Conversely, note that, by definition, Ax ≤ Ax′. Moreover, for all Σ ∈∣Sign♭∣ and all ⟨{φ0, . . . , φn−1}, φ⟩ ∈ IrΣ,

φ ∈ CR′

Σ (Φ, φ0 →♭Σ (φ1 →♭Σ ⋯→
♭
Σ (φn−1 →♭Σ φ)⋯)) ⊆ CR′

Σ (Φ).
Hence, C = CR ≤ CR′ . We now conclude that C = CR′ . ∎

Next, we show that, if I is an axiomatic extension of I0, then it has the
Deduction Detachment Theorem with respect to →♭.

Proposition 1759 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ an
axiomatic extension of I0. Then I has the Deduction Detachment Theorem
with respect to →♭.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ,ψ} ⊆ SEN♭(Σ), such that φ →♭Σ ψ ∈ CΣ(Φ).
Then, since, by hypothesis, CR0 ≤ C, we get

ψ ∈ CΣ(φ,φ→♭Σ ψ) ⊆ CΣ(Φ, φ).
Suppose, conversely, that ψ ∈ CΣ(Φ, φ). Then, there exists in I a proof
φ0, φ1, . . . , φn = ψ of ψ from premises Φ∪{φ}. We show by induction on k ≤ n
that there exists a proof in I of φ→♭Σ ψ from premises Φ in I .

• If k = 0, then φ0 ∈ AxΣ or φ0 ∈ Φ ∪ {φ}.
– If φ0 ∈ AxΣ, then φ0 →♭Σ (φ →♭Σ φ0), φ0, φ →♭Σ φ0 is a proof in I of
φ→♭Σ φ0 from Φ;

– If φ0 ∈ Φ, then φ0 →♭Σ (φ →♭Σ φ0), φ0, φ →♭Σ φ0 is a proof in I of
φ→♭Σ φ0 from premises Φ.

– If φ0 = φ, then

(φ0 →♭Σ ((φ0 →♭Σ φ0)→♭Σ φ0))
→♭Σ ((φ0 →♭Σ (φ0 →♭Σ φ0))→♭Σ (φ0 →♭Σ φ0))

φ0 →♭Σ ((φ0 →♭Σ φ0)→♭Σ φ0)(φ0 →♭Σ (φ0 →♭Σ φ0))→♭Σ (φ0 →♭Σ φ0)
φ0 →♭Σ (φ0 →♭Σ φ0)
φ0 →♭Σ φ0

is a proof in I of φ0 →♭Σ φ0 from Φ
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• If k > 0, assume that, for all ℓ < k, φ →♭Σ φℓ ∈ CΣ(Φ). If φk is either an
axiom or in Φ∪{φ}, then the treatment is the same as in the Induction
Basis. So assume, for the final case, that φk follows from preceding Σ-
sentences in the sequel by an application of the only F-rule available,
i.e., that, for some i, j < k, φi = φj →♭Σ φk. Then, by the Induction
Hypothesis, φ →♭Σ (φj →♭Σ φk) ∈ CΣ(Φ) and φ →♭Σ φj ∈ CΣ(Φ). Then by
adjoining the following Σ-sentences to the sequence consisting of the
proofs in I from Φ of φ→♭Σ (φj →♭Σ φk) and φ→♭Σ φj, we obtain a proof
in I from Φ of φ→♭Σ φk:

⋮
φ→♭Σ (φj →♭Σ φk)
⋮
φ→♭Σ φj(φ→♭Σ (φj →♭Σ φk))→♭Σ ((φ →♭Σ φj)→♭Σ (φ→♭Σ φk))(φ→♭Σ φj)→♭Σ (φ→♭Σ φk)
φ→♭Σ φk

This completes the Induction Step.

Thus, we conclude that φ→♭Σ ψ ∈ CΣ(Φ) and, therefore, I has the Deduction
Detachment Theorem with respect to →♭. ∎

Moreover, under the same hypotheses, I turns out to be strongly Fregean.

Proposition 1760 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
a binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩
an axiomatic extension of I0. Then I is congruential.

Proof: Let T ∈ ThFam(I), σ♭ ∶ (SEN♭)k → SEN♭ be in N ♭, Σ ∈ ∣Sign♭∣ and
φ⃗, ψ⃗ ∈ SEN♭(Σ), such that CΣ(TΣ, φi) = CΣ(TΣ, ψi), for all i < k. Then, by
Proposition 1759, we get that

φi →♭Σ ψi, ψi →
♭
Σ φi ∈ CΣ(TΣ) = TΣ, i < k.

Since CR0 ≤ C, we get, by multiple applications of the Detachment Theo-
rem, σ♭Σ(φ⃗) →♭Σ σ♭Σ(ψ⃗), σ♭Σ(ψ⃗) →♭Σ σ♭Σ(φ⃗) ∈ CΣ(TΣ). Hence, CΣ(TΣ, σ♭Σ(φ⃗)) =
CΣ(TΣ, σ♭Σ(ψ⃗)). Thus, λ̃(T ) is a congruence family on F and, therefore, I is
congruential. ∎

Thus, we have obtained an exact characterization of those π-institutions
that are congruential and possess the Deduction Detachment Property with
respect to a binary natural transformation →♭.

Theorem 1761 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a
finitary π-institution based on F. I is congruential and has the Deduction
Detachment Theorem with respect to →♭ if and only if it is an axiomatic
extension of I0.
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Proof: The implication left-to-right is by Theorem 1758. The converse is
given by Propositions 1759 and 1760. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Recall that a Σ-
sequent is an expression of the form Φ ⊢Σ φ, where Φ ∪ {φ} ⊆ SEN♭(Σ).
It is finite if Φ is a finite set. Moreover, a Gentzen F-rule is an expression
of the form ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩,
where Φi ⊢Σ φi, i ∈ I, and Φ ⊢Σ φ are Σ-sequents. We say the rule is finitary
if I is finite and all sequents in the rule are finite.

Let IL = ⟨A,D⟩ be an F-structure, Σ ∈ ∣Sign♭∣, s = Φ ⊢Σ φ a Σ-sequent
and r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a Gentzen F-rule.

• IL satisfies s or s is true or valid or holds in IL, written IL ⊧Σ s, if
αΣ(φ) ∈DF (Σ)(αΣ(Φ));

• IL satisfies r or r is true or valid or holds in IL, written IL ⊧Σ r, if

αΣ(φi) ∈DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈ DF (Σ)(αΣ(Φ)).
These definitions are extended in the ordinary way to sets of rules and sets
of structures.

Let M be a class of F-structures. We say that M is a (finitary) Gentzen
class if it is specified by a collection R = {RΣ}Σ∈∣Sign♭∣ of (finitary) Gentzen
F-rules (including sequents, viewed as rules with empty sets of premises).

The following examples illustrate the definition.

• The class of all finitary F-structures having the Deduction Detach-
ment Theorem with respect to a binary natural transformation →♭∶(SEN♭)2 → SEN♭ in N ♭ is a finitary Gentzen class specified by R ={RΣ}Σ∈∣Sign∣♭∣, where

RΣ = {φ,φ→♭Σ ψ ⊢Σ ψ ∶ φ,ψ ∈ SEN♭(Σ)}
∪{⟨{Φ, φ ⊢Σ ψ},Φ ⊢Σ φ→♭Σ ψ⟩ ∶ Φ ∪ {φ,ψ} ⊆f SEN♭(Σ)}.

• The class of all finitary self extensional F-structures is also a finitary
Gentzen class specified by R = {RΣ}Σ∈∣Sign♭∣, with

RΣ = {⟨{φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶
σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ)}.

• The class of all finitary congruential F-structures is also a finitary
Gentzen class specified by R = {RΣ}Σ∈∣Sign♭∣, with

RΣ = {⟨{Φ, φi ⊢Σ ψi, Φ, ψi ⊢Σ φi ∶ i < k}, Φ, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶
σ♭ ∈ N ♭,Φ ⊆f SEN♭(Σ), φ⃗, ψ⃗ ∈ SEN♭(Σ)}.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣ and r =⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a finitary Gentzen F-rule. The accumulation of
r, denoted acm(r), is the collection of finitary Gentzen F-rules

acm(r) = {⟨{X,Φi ⊢Σ φi ∶ i ∈ I}, X,Φ ⊢Σ φ⟩ ∶ X ⊆f SEN♭(Σ)}.
We say that a collection R of Gentzen rules is accumulative if it is the union
of accumulations. We say that a class M of F-structures is an accumula-
tive class if it is a Gentzen class specified by an accumulative collection of
Gentzen F-rules.

Note, e.g., that both the class of all finitary F-structures having the De-
duction Detachment Theorem with respect to→♭ and the class of congruential
finitary F-structures are accumulative classes. On the other hand, the class
of of all self extensional finitary F-structures is not accumulative.

It is not difficult to see that satisfaction of Gentzen F-rules is preserved
under bilogical morphisms between F-structures.

Proposition 1762 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, IL =⟨A,D⟩, IL′ = ⟨A′,D′⟩ two F-structures, ⟨H,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism,
Σ ∈ ∣Sign♭∣ and r = ⟨{Φi ⊢ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a Gentzen F-rule. Then

IL ⊧Σ r iff IL′ ⊧Σ r.

Proof: We have, by the definition of satisfaction and that of bilogical mor-
phism, IL ⊧Σ r if and only if

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ)),
if and only if

γF (Σ)(αΣ(φi)) ∈D′H(F (Σ))(γF (Σ)(αΣ(Φi))), i ∈ I,
imply γF (Σ)(αΣ(φ)) ∈D′H(F (Σ))(γF (Σ)(αΣ(Φ))),

if and only if

α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), i ∈ I, imply α′Σ(φ) ∈D′F ′(Σ)(α′Σ(Φ)),
if and only if IL′ ⊧Σ r. ∎

Additionally, we can show that the accumulation of a Gentzen rule hold-
ing in a finitary F-structure IL = ⟨A,D⟩ necessarily holds in all structures of
the form ILT = ⟨A,DT ⟩, where, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈DT
Σ(Φ) iff φ ∈DΣ(TΣ,Φ).
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Lemma 1763 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣,
r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ be an F-rule and IL = ⟨A,D⟩ a finitary F-
structure. If IL ⊧Σ acm(r), then, for all T ∈ ThFam(IL), ILT ⊧Σ acm(r).
Proof: Let X ⊆f SEN♭(Σ) and assume αΣ(φi) ∈ DT

F (Σ)
(αΣ(X), αΣ(Φi)), for

all i ∈ I. By definition,

αΣ(φi) ∈DF (Σ)(TΣ, αΣ(X), αΣ(Φi)), i ∈ I.
But ⟨F,α⟩ is surjective, whence there exists Ψ ∈ SEN♭(Σ), such that αΣ(Ψ) =
TΣ. Therefore, we get

αΣ(φi) ∈DF (Σ)(αΣ(Ψ), αΣ(X), αΣ(Φi)), i ∈ I.
By finitarity of IL, we get that there exists Ψ′ ⊆f Ψ, such that

αΣ(φi) ∈DF (Σ)(αΣ(Ψ′), αΣ(X), αΣ(Φi)), i ∈ I.
By the hypothesis, αΣ(φ) ∈DF (Σ)(αΣ(Ψ′), αΣ(X), αΣ(Φ)). Since Ψ′ ⊆ Ψ, we
get αΣ(φ) ∈ DF (Σ)(αΣ(Ψ), αΣ(X), αΣ(Φ)). Thus,

αΣ(φ) ∈DF (Σ)(TΣ, αΣ(X), αΣ(Φ)),
i.e., αΣ(φ) ∈DT

F (Σ)
(αΣ(X), αΣ(Φ). We conclude that ILT ⊧Σ acm(r). ∎

Proposition 1764 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M

an accumulative class of finitary F-structures. If IL = ⟨A,D⟩ ∈ M, then, for
all T ∈ ThFam(IL), ILT = ⟨A,DT ⟩ ∈M.

Proof: Directly by Lemma 1763. ∎

Next, we show that, if I is an accumulative protoalgebraic finitary π-
institution, then all full I-structures satisfy the defining Gentzen F-rules of
I .

Theorem 1765 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M an
accumulative class of finitary F-structures. If I = ⟨F,C⟩ is a protoalgebraic
π-institution in M, then the full I-structures of the form IL = ⟨A,D⟩, where
A = ⟨A, ⟨F,α⟩⟩, with F an isomorphism, are in M.

Proof: Suppose I = ⟨F,C⟩ is a protoalgebraic π-institution in M. By
Proposition 1762, it suffices to show that, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with F an isomorphism, IL = ⟨A,FiFamI(A)⟩ ∈ M. By protoal-
gebraicity and Theorem 1577, we get

α−1(FiFamI(A)) = ThFam(I)T ,
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where T = α−1(CI,A(∅)). But

⟨F,α⟩ ∶ ⟨F , α−1(FiFamI(A))⟩ → ⟨A,FiFamI(A)⟩
is a bilogical morphism. Since, by the hypothesis and Proposition 1764, we
have ⟨F ,ThFam(I)T ⟩ ∈M, we get, by Proposition 1762. IL ∈M. ∎

Now we get easily the following results concerning the Deduction Detach-
ment Theorem and congruentiality, respectively.

Corollary 1766 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ a binary natural transformations in N ♭, and I = ⟨F,C⟩ a
finitary π-institution based on F that has the Deduction Detachment Theorem
with respect to →♭. Then, every full I-structure of the form IL = ⟨A,D⟩, where
A = ⟨A, ⟨F,α⟩⟩, with F an isomorphism, has the Deduction Detachment
Theorem with respect to →♭.

Proof: This follows from Theorem 1765 once it is show that if I has the
Deduction Detachment Property with respect to→♭, then it is protoalgebraic.
Suppose T,T ′ ∈ ThFam(I), such that T ≤ T ′, Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that ⟨φ,ψ⟩ ∈ ΩΣ(T ). Then, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′), we have

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ TΣ′ .
But, by the Deduction Detachment Theorem, this holds if and only if,

σ♭Σ′(SEN♭(f)(φ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(ψ), χ⃗),
σ♭Σ′(SEN♭(f)(ψ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ .

Since T ≤ T ′, we get that

σ♭Σ′(SEN♭(f)(φ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(ψ), χ⃗),
σ♭Σ′(SEN♭(f)(ψ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ T ′Σ′ .

Hence, again by the Deduction Detachment Theorem,

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ T ′Σ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ T ′Σ′ .
This gives ⟨φ,ψ⟩ ∈ ΩΣ(T ′). Therefore, Ω(T ) ≤ Ω(T ′) and, hence, I is pro-
toalgebraic. ∎

Corollary 1767 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic finitary π-institution based on F. If I is congruential,
then the full I-structures of the form IL = ⟨A,D⟩, where A = ⟨A, ⟨F,α⟩⟩, with
F an isomorphism, are also congruential.
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Proof: This follows from Theorem 1765 and the fact that the class of all
congruential finitary F-structures is accumulative. ∎

Now we look at the converse, in a certain sense, of the inheritance problem
of properties specified by Gentzen F-rules. Namely, we identify a type of
properties that are bequeathed to the π-institution specified by classes of
F-structures, when all structures in the class satisfy the property.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M be a class of
F-structures. Recall that the π-institution IM = ⟨F,CM⟩ determined by, or
specified by or generated by, M is defined by setting, for all Σ ∈ ∣Sign♭∣ and
all Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CM
Σ (Φ) iff for all ⟨A,D⟩ ∈M,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(φ)) ∈ DF (Σ′)(αΣ′(SEN♭(f)(Φ))).
Let, now, Σ ∈ ∣Sign♭∣ and r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ be a Gentzen F-

rule. The structure of r, denoted str(r) is the family of all Gentzen F-rules
of the form

SEN♭(f)(r) ∶= ⟨{SEN♭(f)(Φi) ⊢Σ′ SEN♭(f)(φi) ∶ i ∈ I},
SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ)⟩,

where Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). We say that a collection R of
Gentzen F-rules is structural if it is the union of structures. We say that a
class M of F-structures is a structural class if it is a Gentzen class specified
by a structural collection of Gentzen F-rules.

Lemma 1768 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣,
r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a Gentzen F-rule and M a class F-structures.
If M ⊧ str(r), then str(r) holds in IM.

Proof: Let Σ ∈ ∣Sign♭∣, r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ and suppose M ⊧
str(r) and Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), such that

SEN♭(f)(φi) ∈ CM
Σ′(SEN♭(f)(Φi)), i ∈ I.

Then, by definition of IM, for all ⟨A,D⟩ ∈ M, all Σ′′ ∈ ∣Sign♭∣ and all g ∈
Sign♭(Σ′,Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

αΣ′′(SEN♭(g)(SEN♭(f)(φi))) ∈DF (Σ′′)(αΣ′′(SEN♭(g)(SEN♭(f)(Φi)))), i ∈ I,
i.e.,

αΣ′′(SEN♭(gf)(φi)) ∈DF (Σ′′)(αΣ′′(SEN♭(gf)(Φi))), i ∈ I.
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Since, by hypothesis, M ⊧ str(r) and ⟨A,D⟩ ∈M, we get

αΣ′′(SEN♭(gf)(φ)) ∈ DF (Σ′′)(αΣ′′(SEN♭(gf)(Φ)))
and, thus,

αΣ′′(SEN♭(g)(SEN♭(f)(φ))) ∈DF (Σ′′)(αΣ′′(SEN♭(g)(SEN♭(f)(Φ)))).
By the definition of IM, we conclude that SEN♭(f)(φ) ∈ CM

Σ′(SEN♭(f)(Φ)).
Therefore, IM ⊧ str(r). ∎

Theorem 1769 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and P a
structural class F-structures. If M ⊆ P, then IM ∈ P.

Proof: Suppose that str(r) is a rule of P. Since M ⊆ P, str(r) is a rule of
M. Therefore, by Lemma 1768, str(r) is a rule of IM. Thus, IM satisfies
all Gentzen F-rules determining P (since all of them are, by hypothesis,
structural) and, therefore, IM ∈ P. ∎

An application of Theorem 1769 gives that, if all F-structures in a class
M are congruential, then the π-institution determined by the class is also
congruential.

Corollary 1770 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
class of congruential F-structures. Then IM is congruential.

Proof: It suffices, by Theorem 1769 to show that the class of congruential
F-structures is a structural class. This is easily seen by observing that it is
the class of F-structures specified by R = {RΣ}Σ∈∣Sign♭∣, with

RΣ = {⟨{Φ, φi ⊢Σ ψi, Φ, ψi ⊢Σ φi ∶ i < k}, Φ, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶
σ♭ ∈ N ♭,Φ ⊆ SEN♭(Σ), φ⃗, ψ⃗ ∈ SEN♭(Σ)}.

It is easy to check that R is a structural class of Gentzen F-rules, whence
the class of all congruential F-structures is a structural class. ∎

23.5 Fregeanity and Congruence Orderabil-

ity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k → SEN♭

in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic systems.
We say that K is congruence orderable if, for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ = ψ if for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

ΘK,A(SEN♭(f)(φ),⊺AΣ′) = ΘK,A(SEN♭(f)(ψ),⊺AΣ′).
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Moreover, we say that K is Fregean if it is both relatively point regular and
congruence orderable.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic systems. For
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, define the relation family

≤K,A= {≤K,AΣ }Σ∈∣Sign∣
on A by letting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≤K,AΣ ψ iff for all Σ′ ∈ ∣Sign, f ∈ Sign(Σ,Σ′),
ΘK,A(SEN(f)(φ),⊺AΣ′) ≥ ΘK,A(SEN(f)(ψ),⊺AΣ′).

We show that ≤K,A is in fact a quasiordering system (qosystem, for short)
on A.

Proposition 1771 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic
systems. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ≤K,A is a quasiorder-
ing system on A.

Proof: Let Σ ∈ ∣Sign∣. Since, for all φ ∈ SEN(Σ), all Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′), ΘK,A(SEN(f)(φ),⊺AΣ′) = ΘK,A(SEN(f)(φ),⊺AΣ′), we get that

φ ≤K,AΣ φ and ≤K,A is reflexive. Since, for all φ,ψ,χ ∈ SEN(Σ), if φ ≤K,AΣ ψ and

ψ ≤K,AΣ χ imply, by definition, that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
ΘK,A(SEN(f)(φ),⊺AΣ′) ≥ ΘK,A(SEN(f)(ψ),⊺AΣ′) ≥ ΘK,A(SEN(f)(χ),⊺AΣ′),

we, get, again by definition, φ ≤K,AΣ χ. Thus, ≤K,A is also transitive.

Finally, suppose φ ≤K,AΣ ψ and let Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′). Then, by
definition, for all Σ′′ ∈ ∣Sign∣ and all h ∈ Sign(Σ,Σ′′), we get

ΘK,A(SEN(h)(φ),⊺AΣ′′) ≥ ΘK,A(SEN(h)(ψ),⊺AΣ′′).
In particular, for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′),

Σ
f ✲ Σ′

❩
❩
❩
❩gf ⑦ ❂✚

✚
✚
✚

g
Σ′′

ΘK,A(SEN(g)(SEN(f)(φ)),⊺AΣ′′) ≥ ΘK,A(SEN(g)(SEN(f)(ψ)),⊺AΣ′′),
i.e., SEN(f)(φ) ≤K,AΣ′ SEN(f)(ψ) and ≤K,A is a system. ∎
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Corollary 1772 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic
systems. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the qosystem ≤K,A is
a posystem if and only if K is congruence orderable.

Proof: Clear, by Proposition 1772 and the definitions of ≤K,A and of con-
gruence orderability. ∎

Recall the assertional π-institution IK,⊺ associated with a ⊺♭-pointed gua-
sivariety K of F-algebraic systems. Recall, also, that, if IK,⊺ is family regular,
protoalgebraic, with ⊺♭ a natural theorem, then the guasivariety K is rela-
tively point regular.

We show, next, that, if IK,⊺ is strongly Fregean, protoalgebraic, with ⊺♭ a
natural theorem, then it is also family regular. Thus, the property of being
strongly Freagean, protoalgebraic, with ⊺♭ a natural theorem is stronger than
being family regular, protoalgebraic, with ⊺♭ a natural theorem. In terms of
the ⊺♭-pointed guasivariety K, this is reflected, as we shall see in the following
theorem, in the fact that, in additional to being relatively point regular, it
is also congruence orderable, i.e., it is a Fregean guasivariety of F-algebraic
systems.

Lemma 1773 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶(SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic sys-
tems. If IK,⊺ = ⟨F,CK,⊺⟩ is Fregean, then it is also family regular.

Proof: Suppose IK,⊺ is Fregean. Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ) and con-
sider the theory family CK,⊺(φ,ψ). We have, for all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′),
C

K,⊺
Σ′ (CK,⊺

Σ′ (φ,ψ),SEN♭(f)(φ)) = CK,⊺
Σ′ (φ,ψ) = CK,⊺

Σ′ (CK,⊺
Σ′ (φ,ψ),SEN♭(f)(ψ)).

Therefore, we get

⟨φ,ψ⟩ ∈ Λ̃Σ(CK,⊺(φ,ψ))
= Ω̃Σ(CK,⊺(φ,ψ)) (by Fregeanity)
⊆ ΩΣ(CK,⊺(φ,ψ)).

This shows that IK,⊺ is family regular. ∎

Theorem 1774 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic
systems. If IK,⊺ = ⟨F,CK,⊺⟩ is Fregean, protoalgebraic, with ⊺♭ a natural
theorem, then K is Fregean.
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Proof: Since IK,⊺ is Fregean, by Lemma 1774, it is family regular. Since
IK,⊺ is family regular, protoalgebraic, with ⊺♭ a natural theorem, by Theo-
rem 1356, K is a relatively point regular guasivariety of F-algebraic systems.
Thus, to show that K ir Fregean, it suffices, by definition, to show that it is
also congruence orderable.

To this end, assume that A = ⟨A, ⟨F,α⟩⟩ ∈ K, Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

ΘK,A(SEN(f)(φ),⊺AΣ′) = ΘK,A(SEN(f)(ψ),⊺AΣ′).
This is equivalent to asserting that

C
IK,⊺,A
Σ (φ) = CIK,⊺,AΣ (ψ).

Thus, we obtain

⟨φ,ψ⟩ ∈ Λ̃AΣ(FiFamI
K,⊺(A)) (definition of Frege relation)

= Ω̃AΣ(FiFamI
K,⊺(A)) (Fregeanity)

= ΩAΣ({⊺A}) (protoalgebraicity)
= ∆AΣ .

We conclude that φ = ψ and, therefore, K is also congruence orderable. ∎

To conclude the section, we would like to prove the converse of Theorem
1774, i.e., that, if K is a Fregean class of F-algebraic systems, then the
assertional π-institution IK,top of K is a Fregean, protoalgebraic π-institution
with ⊺♭ a natural theorem. Parts of the conclusion, we have already obtained
in Theorem 1356. To obtain the full conclusion, we work towards the only
remaining subgoal, expressed in the following proposition.

Proposition 1775 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a ⊺♭-pointed class of F-algebraic systems. If K is Fregean, then the assertional
π-institution IK,⊺ = ⟨F,CK,⊺⟩ of K is Fregean.

Proof: Suppose K is a Fregean guasivariety of F-algebraic systems, i.e.,
relatively point regular and congruence orderable. We must show that, for
all T ∈ ThFam(IK,⊺), Λ̃I

K,⊺(T ) = Ω̃I
K,⊺(T ). Let T ∈ ThFam(IK,⊺). Since

Ω̃I
K,⊺(T ) ≤ Λ̃I

K,⊺(T ) always holds, it suffices to show the reverse inclusion,
i.e., that Λ̃I

K,⊺(T ) ≤ Ω̃I
K,⊺(T ). Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that⟨φ,ψ⟩ ∉ Ω̃I

K,⊺

Σ (T ). Equivalently, φ/Ω̃IK,⊺Σ (T ) ≠ ψ/Ω̃IK,⊺Σ (T ). Let us denote, for

the sake of brevity θ ∶= Ω̃I
K,⊺(T ). Then, by Lemma 1351 and Proposition

1352, F/θ ∈ K. Thus,y congruence orderability, there exists Σ′ ∈ ∣Sign♭∣ and
f ∈ Sign♭(Σ,Σ′), such that

ΘK,F/θ(SEN♭(f)(φ)/θΣ′ ,⊺F/θΣ′ ) ≠ ΘK,F/θ(SEN♭(f)(ψ)/θΣ′ ,⊺F/θΣ′ ).
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Thus, by relative point regularity, we must have

⊺F/θ/ΘK,F/θ(SEN♭(f)(φ)/θΣ′ ,⊺F/θΣ′ ) ≠ ⊺F/θ/ΘK,F/θ(SEN♭(f)(ψ)/θΣ′ ,⊺F/θΣ′ ).
This gives that

C
K,⊺
Σ (SEN♭(f)(φ),⊺♭Σ′/ΩΣ′(T )) ≠ CK,⊺

Σ (SEN♭(f)(φ),⊺♭Σ′/ΩΣ′(T )),
which translates to ⟨φ,ψ⟩ ∉ Λ̃I

K,⊺

Σ (T ). We conclude that IK,⊺ is Fregean. ∎

Finally, putting this together, we get

Theorem 1776 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
⊺♭-pointed class of F-algebraic systems. If K is Fregean, then IK,⊺ = ⟨F,CK,⊺⟩
is a Fregean, protoalgebraic π-institution, with ⊺♭ a natural theorem.

Proof: By Proposition 1348, ⊺♭ is a natural theorem of IK,⊺. By Proposition
1352, IK,⊺ is protoalgebraic. Finally, by Proposition 1775, IK,⊺ is Fregean.
∎

The main result proven in this section is summarized in

Theorem 1777 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a ⊺♭-pointed class of F-algebraic systems. K is Fregean if and only if IK,⊺ =⟨F,CK,⊺⟩ is a Fregean, protoalgebraic π-institution, with ⊺♭ a natural theorem.

Proof: The “if” by Theorem 1774. The “only if” by Theorem 1776. ∎


