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24.1 Rule Based m-Institutions

Let F = (Sign’, SEN", N*) be a base algebraic system.

An F-rule is a pair (P, p), where Pu{p} : (SEN")~ — SEN' is a finite set
of natural transformations in N*. If P = @, then (@, p) is called an F-axiom
and it is ordinarily identified with p.

Let R = (P, p) be an F-rule, ¥ € [Sign’| and ® u {¢} c SEN’(X). We say
¢ R-follows from ®, written ® £ ¢, if there exists ¥ € SEN’(X), such that

Pe(¥)c® and px(¥) = ¢.

Consider, now, a set R of F-rules. For all ¥ € |Sign’| and all ®u {¢} ¢
SEN’(X), we say ¢ is R-provable from ®, written ¢ € C¥(®) or ® +F ¢, if
there exists a sequence

G0, P15 P2, -, P15 On
in SEN*(X), such that ¢, = ¢ and, for all i <n,
e p;cdor
e ¢; R-follows from {¢g, d1,...,¢; 1}, for some R € R.

A sequence ¢, ¢, ..., ¢, witnessing ® FE ¢ is called an R-proof of ¢ from
.

We show that O, as defined here, is indeed a closure system on the base
algebraic system F.

Proposition 1778 Let F = (Sign’, SEN’, N*) be an algebraic system and R
a collection of F-rules. Then CR = {CF }y gignt| 8 @ closure system on F.

Proof: Let ¥ € |Sign’|, ®u V¥ u {¢} c SEN*(X).

(i) If ¢ € @, then ¢ is an R-proof of ¢ from ®. So ¢ € CR(P) and CR is
inflationary.

(ii) If ® ¢ ¥ and ¢ € CF(P), then, there exists an R-proof of ¢ from P.
The same sequence is then an R-proof of ¢ from ¥. So ¢ € CE (V) and
C™® is monotone.

(iii) Suppose ¢ € CF(CE(P)). Then, there exists an R-proof of ¢ from
CE(®), say
¢07¢1> cee 7¢n—1>¢n = ¢

Then, for each ¢; € CF(®P), there exists an R-proof of ¢; from ®. For
each such ¢;, we insert its R-proof from @ in its place in the sequence.
The new sequence is an R-proof of ¢ from ®. Thus, we get that ¢ €
CE(®) and C™ is also idempotent.



Voutsadakis CHAPTER 24. SPECIAL TOPICS 1437

(iv) Finally, it remains to show structurality. Let X,%/ ¢ |Sign’|, f ¢
Sign’(¥,Y) and ® u {¢} c SEN’(X), such that ¢ € CR(®P). Let
G0y P1y -y On_1,0n = ¢ be an R-proof of ¢ from ®. We consider the
sequence

SEN'(£)(¢0), SEN'(f)(1), -, SEN'(f)(dn-1), SEN'(f) ().

Then SEN’(f)(¢n) = SEN"(f)(¢) and, moreover, for all i < n, if
¢; € ®, then SEN’(f)(¢:) € SEN'(f)(®), and, if ¢; R-follows from
{bo,b1,...,0i_1}, for some R € R, then SEN’(f)(¢;) R-follows from
{SEN"(£)(¢0),SEN"(£)(¢1),...,SEN’(f)(¢:i-1)} because of the natu-
rality of R. So, the displayed sequence is an R-proof of SEN’(f)(¢)
from SEN’(f)(®) and CR is also structural.

We conclude that C® is a closure system on F. [

We denote by Z® = (F,C%) the m-institution corresponding to C.

In general, given a m-institution Z = (F,C'), we say that Z is rule based
if there exists a collection R of F-rules, such that C'= CR.

Let F = (Sign’, SEN’, N*) be an algebraic system, R a collection of F-
rules, A = (A, (F,«)), with A = (Sign,SEN, N), an F-algebraic system and
T e SenFam(.A). We say that T is closed under R or is R-closed if, for all
R=(P,p)eR, all ¥ €|Sign| and all y € SEN(X),

PA(X) Ty implies pd(Y) €Ty

This terminology allows the following elegant characterization of Z®-filter
families of A.

Proposition 1779 Let F = (Sign’,SEN’, N®) be an algebraic system, R
a collection of F-rules, A = (A,(F,«a)), with A = (Sign,SEN, N), an F-
algebraic system and T € SenFam(A). Then T € FiFam®" (A) if and only if
T is R-closed.

Proof: Assume, first, that 7' ¢ FiFamIR(A), R = (P,p) € R and, using
surjectivity of (F,a), let ¥ € |Sign’| and Y € SEN’(X), such that

Pﬁ(z)(az(i)) € Tr)-

Then we get as;(Ps(X)) € Tr(s). Since, by the definition of CT*, ps(X) €
C’%R(PE()Z)) and, by hypothesis, T" € FiFamIR(A), we get ax(pz(X)) € Tren)
or, equivalently, pﬁ(z)(ag(f()) € Tr(s). Thus, T is R-closed.

Suppose, conversely, that 7' € SenFam(A) is R-closed. Let ¥ € [Sign’|
and ® U {¢} ¢ SEN*(X), such that ¢ € CL"(®) and consider 3 € |Sign’| and
f e Sign’ (X%, %), such that

as (SEN'(f)(®)) € Tr(s).
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Since ¢ € C’%R(@), there exists an R-proof of ¢ from ®, say

¢07¢1> cee 7¢n—17¢n = ¢

We prove by induction on i < n that, every member of the sequence

asy (SEN'(£)(0)), s (SEN"(f)(¢1)). -,
sy (SEN'(f)(dn-1)), s (SEN'(£) (64))

belongs to Tx(xry. The case i = n, will yield the desired conclusion.

First, if ¢; € ®, then as/(SEN'(f)(¢:)) € as/(SEN'(£)(®)) € Trey,
where the latter inclusion holds by hypothesis.

Suppose, on the other hand, that ¢; R-follows from {¢g, ¢1,...,d;-1}, for
some R = (P, p) e R. Thus, there exists ¥ € SEN’(X), such that

Ps(X) € {b0,01,...,0i-1} and ps(X) = ¢
But then

P (o (SEN'(f)(X))) = as(SEN'(f)(Ps(X)))
;2'(SENb(f)({¢ow-,¢i—1}))
F(21)

N 1N

where the last inclusion follows by the induction hypothesis, and, hence,

since T is R-closed, we get that asy (SEN’(f)(¢:)) = as/(SEN'(f)(ps(X))) =
pﬁ(z,)(ag/(SENb(f)(i))) € Tr(sry. This concludes the induction step and

shows that, for all i <n, as/(SEN"(f)(¢:)) € Trs). n

In addition, we can characterize ZR-filter families generated by a given
sentence family as follows.

Proposition 1780 Let F = (Sign’, SEN’, N*) be an algebraic system, R
a collection of F-rules, A = (A,(F,«)), with A = (Sign,SEN,N), an F-
algebraic system and X € SenFam(A). Then, for all X € |Sign|,

O A(X) = {¢ € SEN(Z) Xz +5 ).
Proof: Define T' = {1 }s¢sign|, Dy letting, for all ¥ € |Sign|,
Ty = {$ € SEN(Z) : X5 -8 ¢}

It is not difficult to see that X <7 and T is R-closed. Thus, by Proposition
1779, CTA(X) < T. On the other hand, if 77 € SenFam(Z) contains X
and is R-closed, then T < T". Therefore, we conclude that T < CTA(X).
Equality now follows. ]
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24.2 Operators on Classes of Matrix Families

Let F = (Sign’,SEN’, N*) be a base algebraic system. Recall that an F-
algebraic system is a pair A = (A, (F,a)), where A = (Sign,SEN, N) is an
N'-algebraic system and (F,«a): F - A is a surjective N’-algebraic system
morphism. Recall, also, that an F-matrix family is a pair 2 = (A4, T"), where
A is an F-algebraic system and T € SenFam(A) is a sentence family on A.

We define now some class operators on classes of F-matrix families, i.e.,
operators that, given, as input a class of F-matrix families, produce a new
class of F-matrix families.

Given F-algebraic systems A = (A (F,«)) and B = (B,(G,)), and F-
matrix families 2 = (A,T") and B = (B,7"), we say that B is a morphic
image of 2 and write B ¢ IM(2l), if there exists a surjective morphism
(H,~): A— B (that is, such that (G, 5) = (H,v) o (F, a))

F
<1V mm
A <H > B

T =T.

In this case, we call 2 an inverse morphic image or a morphic preimage
of B and write A € M~1(B).

Given a class M of F-matrix families, we write B € M(M) if there exists
20 e M, such that B ¢ M(2).

Similarly, we write 2 € M~1(M) if there exists B € M, such that 2 €
M-1(*B).

It is not difficult to show that both IM and IM~! are closure operators on
the collection of all F-matrix families.

Y
such that

Lemma 1781 Let F = (Sign’, SEN’, N*) be an algebraic system. Then
M, M : P(MatFam(F)) - P(MatFam(F))
are closure operators on MatFam(F).

Proof: We prove the statement for IM in detail. The proof for M~! is similar.
Suppose, first, that M is a class of F-matrix families and 2 € M. Then,

the diagram
ij ' wa)
A 70 A
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where (I,:) : A - A is the identity morphism, shows that 2( € M(M). There-
fore, M is inflationary.

Monotonicity is obvious, since, if M,N are classes of F-matrix families,
such that M € N, and 20 € M(M), then, by definition, 2 € M(®B), with B € M.
But then, since M ¢ N, 2 € M(8), with B € N and, again, by definition,
20 e M(N). Thus, we have M(M) ¢ M(N).

Finally, assume that M is a class of F-matrix families and 2 € M(IM(M)).
Then, there exists B € M(M), such that 2 € M(®B). Furthermore, there exists
¢ € M, such that B € M(€). But these two statements combined reveal the
existence of the following diagram, in which the two small triangles commute.

F

(H,7) (G!g) (F,a)

C B A
(Q.q) (P.p)
As a result, the big triangle also commutes and this ensures that 2 € M (),
which yields 24 € M(M). ]

Next, we introduce another class operator on classes of F-matrix families.

Let A = (A, (F,«)) be an F-algebraic system and ' = (A,T%), i€ I, a
collection of F-matrix families, all over A. Define the intersection of the 2,
1 € I, as the F-matrix family, with the same underlying F-algebraic system
A and with filter family the intersection of the T%’s; more formally

A =(A,NT").
iel iel
Given a class M of F-matrix families and an F-matrix family B, we write
B e M(M) if B is the intersection of members of M, i.e., B = N;; AL, with
At e M, for all i€ I.
Again, it is not difficult to show that Il is a closure operator on the
collection of F-matrix families.

Lemma 1782 Let F = (Sign’, SEN’, N*) be an algebraic system. Then
IT: P(MatFam(F)) —» P(MatFam(F'))
is a closure operator on MatFam(F').

Proof: To show inflationarity, notice that, trivially, for all 20 € M, 20 = N{},
whence 2 € TI(M).

Monotonicity is straightforward, since, if M ¢ N and 2 € III(M), then
A = N,y A, with AP e M, for all 7 € I, and, hence, A = N,y AL, with A € N,
for all i e I. So A e II(N).



Voutsadakis CHAPTER 24. SPECIAL TOPICS 1441

Finally, for transitivity, if 20 € TI(ITI(M)), then 24 = N;c; A?, where A’ €
III(M), for all 5 € I. Thus, for all 7 € I, A = N , A, where A% € M, for all
j € J;. Therefore, we get

AN -2,

iel i€l jeJ;
where 20 € M, for all i € [, j € J;, and, hence, 2 € TI(M). [ ]

Let F = (Sign",SENb,N") be an algebraic system and M a class of F-
matrix families. Recall the closure system CM : PSEN’ — PSEN’ on F
generated by M. It is defined, for all ¥ € [Sign’| and all ® u {¢} ¢ SEN*(%),
by ¢ € OM(®) if and only if, for all %A = (A,T) € M, all ¥ € |Sign’|, all
f e Sign’(%, %),

as/(SEN'(f)(®)) € Tr(sy implies s/ (SEN’(f)()) € Tres).

IM = (F,CM) denotes the corresponding m-institution generated by M.
Now, given a m-institution Z, one can consider its matrix family models,
i.e., those F-matrix families 2, such that

I<T™

Doing this for the specific m-institution ZM, generated by the class M of F-
matrix families, we consider the class MatFam(ZM) of ZM-matrix families.
Clearly, since, for every 21 e M, CM < C%,

M ¢ MatFam(ZM).

In the spirit of many classical problems in universal algebraic logic, the fol-
lowing question naturally arises:

Characterize MathFam(ZM), i.e., find a list of operators on classes of F-
matrix families so that, when applied to M consecutively, they generate
the class MatFam(ZM).

Our goal here is to show that the list of operators that are needed consists
of MIITIM~!, i.e., that, given any class M of F-matrix families, we have

MatFam(ZM) = MITIM ' (M).

We start by showing that applying each of the three operators to classes
of matrix family models of a m-institution Z always results in classes of the
same character.

Proposition 1783 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a w-institution based on F.
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(a) M(MatFam(Z)) ¢ MatFam(Z);
(b) T(MatFam(Z)) ¢ MatFam(Z);
(¢) M-!(MatFam(Z)) ¢ MatFam(Z).

Proof:

(a) Let A = (A, T) € MatFam(Z) and consider a surjective morphism
(H,v): A - B, where B = (B,7"), as in the diagram.

F
<F,% wm
A <H > B

BHT") =™ (y7(T")) = ™ (T') € ThFam(Z),

)

We now have

where the last membership follows by the hypothesis and Lemma 51.
Thus, again by Lemma 51, we get that T’ € FiFam”(B) and, hence,
B € MatFam(Z).

(b) Suppose, next, that 20 = (A, T%), i € I, are Z-matrix families. Then
T e FiFam® (A), for all i € I. Since the collection FiFam®(A) forms a
closure system on A, it follows that M;e; 7% € FiFam® (A). Thus, we get
that Ny A € MatFam(Z). So MatFam(Z) is closed under TI.

(c¢) Let A = (A, T) € MatFam(Z) and consider a surjective morphism
(H,~):B — A, where B = (B,7"), as in the diagram.
F

<W Ww
B (H ) A

BHT") =B~ (v (T)) = a”(T)) € ThFam(Z),

Y

We now have

where the last membership follows by the hypothesis and Lemma 51.
Thus, again by Lemma 51, we get that 7" ¢ FiFam”(B) and, hence,
B € MatFam(Z).

]

Proposition 1783 gives
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Corollary 1784 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. Then

MIIM (MatFam(Z)) € MatFam(Z).

Proof: We have, using Proposition 1783,

MITM-! (MatFam(Z)) MITI(MatFam(Z))
M(MatFam(Z))

MatFam(Z).

N 1N N

Let F = (Sign’, SEN’, N*) be an algebraic system and Z = (F,C) a 7-
institution based on F. Recall that a Lindenbaum Z-matrix family is an
Z-matrix family of the form (F,T), where F = (F,(I,¢)) and T' € ThFam(Z).
We show, next, that the class of all Z-matrix families can be obtained by
applying the IM operator on the class of all Lindenbaum matrix families, i.e.,

MatFam(Z) = M(LMatFam(Z)).

Lemma 1785 Let F = (Sign’, SEN" N*) be an algebraic system and T =
(F,C) a m-institution based on F. Then

MatFam(Z) = M(LMatFam(Z)).

Proof: First, observe that, since LMatFam(Z) ¢ MatFam(Z), we have, by
Proposition 1783,

M(LMatFam(Z)) ¢ M(MatFam(Z)) ¢ MatFam(Z).

Suppose, conversely, that 2 = (A,T) € MatFam(Z), with A = (A, (F,a)).
Then, we have, by Lemma 51, a~!(T") € ThFam(Z). Hence, (F,a '(T)) €
LMatFam(Z). Now, it suffices to consider the surjective morphism (F, «) :

(F.a-1(T)) > 2
F
<V W)
F (F,a) A

to conclude that 2 € M(LMatFam(Z)). Therefore, we obtain MatFam(Z) ¢
M(LMatFam(Z)). [ ]

Now, to complete our task, we turn again to the specific 7m-institution
IM, generated by a given class M of F-matrix families. We show that all
its Lindenbaum matrix families, i.e., all matrix families of the form (F,T),
where T' € ThFam(ZM), can be obtained by applying the operator TIIM~! on
the class M.
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Lemma 1786 Let F = (Sign’, SEN’, N*) be an algebraic system and M a
collection of F-matrixz families. Then

LMatFam(Z") c TIM~'(M).

Proof: Let § = (F,T) € LMatFam(ZM), i.e., T € ThFam(ZM). Thus, there
exist A = (A", T%) e M, with A= (A% (F? o)), i € I, such that

T= ﬂj(a")‘l(Ti).

Consider the collection § = (F, (a?)"1(T7)), i € I. Taking into account the
surjective morphisms (F? of) : § — A i € I, and the fact that A7 € M, we
conclude that §F € M~1(M), for all i € I. Finally, observing that § = N &,
we get that § € IIM-1(M). Therefore, LMatFam(ZM) c TIM~-1(M). m

Now we are ready to provide the promised characterization of MatFam(ZM)
in terms of M and the class operators IM, IIT and IM~!, introduced in this sec-
tion.

Theorem 1787 Let F = (Sign’, SEN’, N*) be an algebraic system and M a
collection of F-matriz families. Then

MatFam(ZM) = MITM ! (M).
Proof: First, since M ¢ MatFam(ZM), we have, using Corollary 1784,
MIIM (M) ¢ MITM ! (MatFam(ZM)) ¢ MatFam(Z).
Conversely, let 2 € MatFam(ZM). Then, by Lemmas 1785 and 1786,
2l e M(LMatFam(Z")) ¢ MITIM ' (M).

Therefore, MatFam(ZM) ¢ MITIM-(M). u

As a consequence of this characterization, we can also show that the
operator MIITIM~! is a closure operator on classes of F-matrix families and,
moreover, given any such class M, applying the operator to the class results
in the smallest class of F-matrix systems that contains M and is closed under
the operations M, IIT and M.

Theorem 1788 Let F = (Sign’, SEN’, N*) be an algebraic system and M a
collection of F-matriz families.

() MIIM-! : P(MatFam(F)) - P(MatFam(F)) is a closure operator;

(b) MIIIIM-*(M) is the smallest class of F-matriz families containing M
and closed under the operators M, I and IM~!.



Voutsadakis CHAPTER 24. SPECIAL TOPICS 1445

Proof:

(a) Inflationarity and monotonicity follow from the corresponding proper-
ties of the three operators, which were established in Lemmas 1781 and
1782. For idempotency, we have

MITM-! (MIIM-1(M))

MITM-! (MatFam(ZM))
(by Theorem 1787)
MatFam(ZM)

(by Corollary 1784)

= MIIM-1(M).

(again by Theorem 1787)

In}

(b) By Part (a), M c MITIM-*(M). Moreover, if O € {IM, I, M~'}, then
O(MIIM-1(M)) O(MatFam(ZM)) (by Theorem 1787)

MatFam(ZM) (by Corollary 1784)

MIIM-*(M). (by Theorem 1787)

I mn

Hence, MITIM~*(M) is closed under all three operators. If N is a class
of F-matrix families such that M € N and N closed under the three
operators, then, clearly, MITIM-*(M) ¢ MIIIM~*(N) = N. Therefore,

IMIITIM-*(M) is the smallest class satisfying these properties.
[ ]

24.3 Classes of Reduced Matrix Families

Let F = (Sign’,SEN’, N*) be an algebraic system and Z = (F,C) a 7-
institution based on F. Recall that LMatFam*(Z) is the class of all re-
duced Lindenbaum Z-matrix families, i.e., all F-matrix families of the form
(FOD TIQT)), where F = (F,(I,.)) and T € ThFam(Z), and that Z is
complete with respect to LMatFam*(Z).

Recall, also, that MatFam™*(Z) is the collection of all reduced Z-matrix
families, i.e., F-matrix families of the form (A, T), where A is an F-algebraic
system and T € FiFam®(A), such that QA(T) = AA. Moreover, Z is also
complete with respect to MatFam™(Z).

Our first goal is to show that the class MatFam®(Z) is, in fact, the class
generated by applying the morphic image operator IM, introduced in the
previous section, on the class LMatFam™ (7).

We prove, first, that the operator

M : P(MatFam*(F)) — P(MatFam* (F)),

i.e., the operator MM, introduced in Section 24.2, restricted to reduced F-
matrix families, is also a closure operator.
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Proposition 1789 Let F = (Sign’, SEN’, N*) be an algebraic system. Then
M : P(MatFam™(F)) - P(MatFam* (F))
is a closure operator on MatFam™ (F).

Proof: Since we know, by Lemma 1781, that IM is inflationary, monotone

and idempotent, it suffices to show that it is well-defined, i.e., that, when

applied to collections of reduced F-matrix families, it produces collections of

the same kind. In turn, it suffices to show that, given a reduced F-matrix

family 2 = (A, T), with A = (A,(F,«a)), an F-matrix family ' = (A", T"),

with A" = (A’ (F',a’)), and a strict surjective morphism (H,~) : A — ',
F

then 2l is also reduced.
<W wal)
A A’
(H,~)

Taking into account the surjectivity of (F’, '), we reason as follows. For all
Y € |Sign’| and all ¢, 1) € SEN’(X), we have

(0% (6), ak (1)) € O ) (T7)
i (1r)(a5(6)), 1005 (05(6))) € O ) (T7)

Y

iff (O‘Z(Cb)»ax(w)) € 713}(2)(Qél(p(2))(T,))
it (as(¢), ax(¥)) € Qp ) (v1(T7))

i (s (6), s () € 04 (T)

iff (ax(0),as(v)) € A}?(z)(T)

iff as(¢)=axs(y)
implies  yp)(as(9)) = vre)(as(®))
iff  ay(0) =ax(¥).

Therefore QA (T") = A4 and, hence 2’ is also reduced. |

Next, we show that, given 7m-institution Z, the class MatFam*(Z) is ob-
tained by applying the operator IM on the class LMatFam* (7).

Proposition 1790 Let F = (Sign’, SEN’, N*) be an algebraic system and
T =(F,C) a m-institution based on F. Then

MatFam™(Z) = M(LMatFam*(Z)).

Proof: The inclusion M(LMatFam*(Z)) ¢ MatFam*(Z) is obtained by ob-
serving that LMatFam*(Z) ¢ MatFam™(Z) and applying M:

M(LMatFam*(Z)) M(MatFam*(Z)) (Lemma 1781)

MatFam*(Z). (Propositions 1783 and 1789)

N 1N
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Suppose, conversely, that 2 = (A, T), with A = (A, (F,«a)), is a reduced
Z-matrix family. Let 6 = Ker({F,a)) and consider the commutative diagram

F
I:V W)
Fay 2

(
FG
F,af

where, for all ¥ € |Sign’| and all ¢ € SEN’(X),

a%(0/0s) = as(¢).

It now suffices to show that § := (F?,a~1(7")/6) € LMatFam™(Z). First, note
that since 2 € MatFam*(Z) ¢ MatFam(Z), then

§ e M ' (MatFam(Z)) ¢ MatFam(Z),
by Proposition 1783. So it suffices to show that O’ (a~}(T)/6) = AF’. We

have

Q7" (a=(T)/8)

OF (o)1 (T)
(a?) 1 (QA(T))
(a”)"1(A4)
Ker((F,af)) = A7,

Now we conclude that 2 € M(LMatFam*(Z7)). [

Consider, again, a base algebraic system F = (Sign’,SEN’, N*) and a
collection M of reduce F-matrix families. We pose now a problem similar to
that posed in Section 24.2, but for classes of reduced matrix families.

Characterize the class MatFam*(Z), i.e., find a list of operators on
classes of reduced F-matrix families so that, when applied to M con-
secutively, they generate the class MatFam™(ZM).

Unlike the operator IM that, when applied to reduced matrix families
yields reduced matrix families, the other two operators that we considered in
Section 24.2, namely IIT and IM~!, do not share this property. So to “localize”
them to reduced matrix families, we must take the output classes of F-matrix
families that they produce and “reduce” them so that the output produced
becomes a collection of reduced F-matrix families. According to this scheme,
we consider the following operators, induced by the operators Il and IM~! on
class of matrix families, introduced in Section 24.2.

o II" : P(MatFam™(F)) — P(MatFam™(F)) is given, by setting, for all
M ¢ MatFam* (F),

I (M) = {24* : 2 e (M)}
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o M-t :P(MatFam*(F)) - P(MatFam™(F)) is given, by setting, for all
M c MatFam”(F'),

M (M) = {20 : 2 e M (M)},

It is not very difficult to prove that both IIT* and IM~'* are closure oper-
ators on the class of reduced F-matrix families.

Proposition 1791 Let F = (Sign’, SEN’, N*) be an algebraic system. Then
IT* : P(MatFam”*(F)) - P(MatFam* (F))
is a closure operator on MatFam™ (F).

Proof: Let M ¢ MatFam*(F) and 20 € M. Then, by Proposition 1782,
2A e II(M) and, as 2 is reduced, we get 2 € II*(M). Thus, IIT* is inflationary.

Suppose, next, that M ¢ N ¢ MatFam™(F) and 2 € II"(M). Then 2 =
(Nier A)*, with A* € M, for all i € I. But then, since M ¢ N, 2 = (N;e; 2A%)*,
with A% € N, for all ¢ € I, and, hence, 2 € IT*(N). Therefore IIT* is also
monotone.

Suppose, finally, that M ¢ MatFam™(F') and that 2 € IT*(III*(M)). Then
A = (NiesA")*, where " € II"(M). Hence, for all ¢ € I, 2A* = (Njey, AY)*,
where 209 € M, for all i € [ and all j € J;. Now note the following:

e For every i € I, for Nje;, A to be defined, we must have A4 = (A?, 1),

for all j € J;.

o For Mies A' = Nier(Njes, A7) * to be defined, we must have, for all i € I,
AP = A, for some F-algebraic system A, and, moreover, for all i € I,
QA(Njes, T9) = 0, for some 6 € ConSys(A).
Under these restrictions, it is easy to show that
.. "] ..
(Im) (A NN T)) = A/ (NN T7)/6))
i€l jeJd; el jed;
defined, for all ¥ € [Sign| and all ¢ € SEN(X), by
0 ..
m(0) = (¢/05)/9% (ﬁj((@ T7)[9)),
i€ jed;
is a strict surjective matrix morphism, with kernel
Ker(I,7)) = 24 () T9).
el jed;
Therefore, we get an isomorphism
A/ N T) = @) (O T9)/6))).
iel jeJ; iel  jeJd;
We conclude that 24 € IT* (M) and, therefore, IIT* is also idempotent. |

To show that IM~'* is a closure operator, we employ a lemma to the effect
that, given a class M of reduced F-matrix families, M~1*(M) ¢ M-1(M).
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Lemma 1792 Let F = (Sign’, SEN’, N*) be an algebraic system. For every
F-matriz family A = (A, T), every reduced F-matriz family A" = (A", T") and
strict surjective morphism (H,~v) : A — ', there exists a strict surjective
morphism (H,~*) : A* - ', such that the following triangle commutes,

(H,v)

() Aw

Q[*

2

where (I,m) : A — A* is the quotient morphism.

Proof: We define y* : SEN* - SEN' o H by setting, for all ¥ € [Sign|, and
all ¢ e SEN(X),
75(97) = v=(9)-

This makes sense, since, for all 3 € |Sign| and all ¢,1) € SEN(X), such
that ¢* = ¢*, we have (¢,9) € QF(T) = Q&(v(T")), whence (},v) €
Vil(Qé’(z)(T,)) and, hence, <72(¢)a72(7/))> € Aﬁl(z)a Le., 'VZ(Cb) = '72(@”-

Moreover, v : SEN* - SEN o H is a natural transformation, since, for all
¥, 37 € |Sign|, all f € Sign(3,¥’) and all ¢ € SEN(X),

*

SEN*(X) ——= . SEN'(H (X))
SEN*(f) SEN"(H(f))
SEN*(Y) v SEN'(H(X'))
SEN"(H(f))(7s(¢*)) = SEN'(H(f))(v=(9))
= 72 (SEN(f)(¢))
= 75 (SEN(f)(¢)*)

= 7%(SEN"(9)(¢7)).

Further, the triangle commutes, by the definition of (H,~*) and, finally,
(H,~*): A - A" is strict since 771((v*)1(T")) =y~ 1(T") = T and, therefore,
(v)H(T") ==(T) =T u

Now, we show IM~1* is a closure operator.
Proposition 1793 Let F = (Sign’, SEN", N*) be an algebraic system. Then
M~ : P(MatFam*(F)) - P(MatFam* (F))

is a closure operator on MatFam™(F).
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Proof: Suppose, first, that M ¢ MatFam”(F) and 2 € M. Then, we have, by
Proposition 1781, 2 € M~1(M) and, since 2 is reduced, we get 2 € M~1*(M).
So M~ is inflationary.

Suppose, next, that M ¢ N ¢ MatFam*(F) and 2 € M~1*(M). Then
2A =B* with B € M-!(M). Thus, by Proposition 1781, we get 2 = B*, with
B e M1(N). We conclude that 2 € M~*(N) and, therefore, M~1* is also
monotone.

Finally, suppose that M ¢ MatFam*(F) and that 2 € M-*(IM-1*(M)).
Then, using Lemma 1792, we get

A e M1 (M- (M)) € ML (M- (M)) € ML (M1 (M)) € M~ (M),

and, since 2 is reduced, we get 2 € M~1*(M). Therefore IM~1* is also idem-
potent. ]

We need one more operator on reduced classes of F-matrix families.
Let F = (Sign’, SEN", N*) be an algebraic system. We define

Il : P(MatFam*(F)) - P(MatFam* (F))
by setting, for all M ¢ MatFam™(F),
<« %
I (M) = (M1 (M))*.
Note that this operator dominates both IIT* and IM~1*.

Proposition 1794 Let F = (Sign’, SEN’, N*) be an algebraic system. Then,
for all M c MatFam”*(F),

T (M) eI (M) and M- (M) c il (M).

Proof: The proofs of both statements are parallel. We have

IrM) = (M)~ M=(M) = (M~(M))*
c (M-t (M))~ ¢ (M- (M)~
= 1 (M) = 1 (M)
where the inclusions follow from Lemmas 1781 and 1782, respectively. ]

Our next goal is to show that the list of operators that are needed to
obtain the class of all reduced ZM-matrix families from a class M of reduced
F-matrix families generating a closure operator CM (of a m-institution ZM =

(F,CM)) consists of IMITT , i.e., that, given any class M of reduced F-matrix
families, we have

MatFam*(ZM) = MII (M).

We start by showing that applying each of these operators to classes of
reduced matrix family models of a 7-institution Z always results in classes of
the same character. This forms an analog of Proposition 1783.
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Proposition 1795 Let F = (Sign’,SEN’, N*) be an algebraic system and
T =(F,C) a w-institution based on F.

(a) M(MatFam™*(Z)) ¢ MatFam™(Z);

(b) I (MatFam*(Z)) ¢ MatFam* ().

Proof:
(a) We have
M(MatFam*(Z)) < M(MatFam(Z)) n M(MatFam*(F))
(Proposition 1781)
¢ MatFam(Z) n MatFam”* (F)

(Propositions 1783 and 1789)
= MatFam”®(Z). (Definition)
(b) Similarly,
ﬁ*(MatFam* (7)) (IMM-*(MatFam*(Z)))*
(MM~ (MatFam(Z)))*
(Lemmas 1781 and 1782)
(MatFam(Z))*

(Proposition 1783)
= MatFam* (7).

N

Proposition 1795, together with Proposition 1783, give the following

Corollary 1796 Let F = (Sign’, SEN’, N*) be an algebraic system and T =
(F,C) a m-institution based on F. Then

MIT (MatFam*(Z)) € MatFam* (Z).
Proof: We have, using Propositions 1783 and 1795,

MIT (MatFam*(Z)) ¢ M(MatFam*(Z))

MatFam*(Z).

N 1N

In order to establish our final result, we must show that, given a class
M of reduced F-matrix families, all reduced Lindenbaum matrix families of
the m-institution ZM, i.e., all matrix families of the form (F/Q(T), T/Q(T))

where T' € ThFam(ZM), can be obtained by applying the operator ]H on the
class M.
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Lemma 1797 Let F = (Sign’, SEN’, N*) be an algebraic system and M a
collection of reduced F-matriz families. Then

LMatFam*(ZY) c IIT (M).

Proof: we have

LMatFam™*(ZM) (LMatFam(ZM))* (Definition)
(IIM-1(M))* (Lemma 1786)

<%
IT (M). (Definition)

N 1

Now we provide the promised characterization of MatFam*(ZM) in terms

of the class M of reduced F-matrix families and the class operators IM and
<«—*

I .

Theorem 1798 Let F = (Sign’, SEN’, N*) be an algebraic system and M a
collection of reduced F-matriz families. Then

MatFam*(ZV) = MII (M).
Proof: First, since M ¢ MatFam*(ZM), we have, using Corollary 1796,
<«—* <%
MIIT (M) € MIIT (MatFam*(ZM)) ¢ MatFam*(ZM).

Conversely, let 24 € MatFam*(ZM). Then, by Proposition 1790 and Lemma
1797,

2 ¢ M(LMatFam*(Z)) ¢ MilT (M).

Therefore, MatFam™(ZM) c ]M]l(TI*(M), and equality follows. n

As a consequence of this characterization, we can also show that the

<%
operator IMIII is a closure operator on classes of reduced F-matrix families
and, moreover, given any such class M, applying the operator to the class

results in the smallest class of reduced F-matrix systems that contains M
<«—*
and is closed under the operations M, 1T .

Theorem 1799 Let F = (Sign’,SEN’, N*) be an algebraic system and M a
collection of reduced F-matriz families.

(a) MIT : P(MatFam® (F)) — P(MatFam™(F)) is a closure operator;

(b) ]M]ﬁ*(M) is the smallest class of F-matriz families containing M and

closed under the operators M and i .
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Proof:

(a) Inflationarity and monotonicity follow from the corresponding proper-
ties of the operators IM and III, which were established in Lemmas 1781
and 1782. For idempotency, we have

MIT (MatFam* (ZM))
(by Theorem 1798)
MatFam™(ZM)

(by Corollary 1796)

- M (M).

(again by Theorem 1798)

MIT (MIT (M)

N

(b) By Part (a), M c Mﬁ*(M). Moreover, if O € {IM,]I(TI*}, then

O(MII (M)) = O(MatFam*(ZM)) (by Theorem 1798)

MatFam*(ZM) (by Corollary 1796)
IMII (M). (by Theorem 1798)

N

Hence, ]M]l(TI*(M) is closed under both operators. If N is a class of re-
duced F-matrix families such that M ¢ N and N closed under both op-
erators, then, clearly, M (M) ¢ M (N) = N. Therefore, M (M)

is the smallest class satisfying these properties.
[ ]

24.4 Protoclasses of Matrix Families

Let F = (Sign’, SEN", N*) be an algebraic system. A class of F-matrix fami-
lies M is called a protoclass if it is the class of all reduced Z-matrix families
for a protoalgebraic m-institution Z = (F, C') based on F.

Let F = (Sign’,SEN’, N*) be an algebraic system, A" = (A (Fi o)),
i € I, a collection of F-algebraic systems and 20 = (A}, T%) a collection of
F-matrix families. We say that an F-matrix family 2 = (A, T), with A =
(A, (F,«)), is a subdirect intersection of the collection 21, i € I, if there
exist surjective morphisms

(H' 4" A=A, del,
such that:
o T'=Mier (') H(T7);
o Mier Ker({(H',77)) = A4,
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Let M be a class of F-matrix families. Given an F-matrix family 2,

<
we write 2 € II(M) to denote the fact that 2 is a subdirect intersection of
members of M.

<
It is not difficult to see that III is a closure operator on classes of F-matrix
families.

Lemma 1800 Let F = (Sign’, SEN’, N*) be an algebraic system. Then

I P(MatFam(F)) — P(MatFam(F'))
is a closure operator on MatFam(F').

Proof: Assume, first, that M ¢ MatFam(F) and 2 € M. Then (I,.): A -2
is a subdlrect 1ntersect10n morphism and, therefore, since A € M, we get

A e ]H(M) Therefore 1 | is inflationary.

Suppose, next, that M ¢ N ¢ MatFam(F). Let (H? %) : A - A" iel, be
a collection of subdirect intersection morphisms, with 1’* € M, for all i € I.
Since, then A e N, for all 4 e I, the same collection of morphlsms witnesses

that 2 e ]H(N) Therefore, I is also monotone.

< <
Finally, assume that 2 € TI(II(M)), where M ¢ MatFam(F'). Thus, there
exists a collection of subdirect intersection morphisms

(H' ") A > A del,

<
where 21 € TI(M), for all ¢ € I. Tt now follows that, for each ¢ € I, there exists
a collection of subdirect intersection morphisms

(HY A9y A A9 je s,
where 49 € M, for all i € I and all j € J;. We look at the collection
(HY ~3yo (H',~"): A > AT el je s
with % € M, for all i € I, 5 € J;. We have

e For filter family intersections,

Mier Mjes, () 7H((v7)~H(T¥))

Nier (7))~ (Njes, (V) H(T))
Qie[(vi)_l(Ti)

e Similarly, for kernels,

miel mjeJi Ker(<Hij7f7ij>o <HZ772>) B
= Nier Nyes; (V) (7)1 (A7)
= Nier (7)) (Njeg, Ker((H7,77)))
= Nier(7') "1 (AY)
= ﬂie[ Ker(<HZ>72>)
= AA
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Therefore, (HY,~v%) o (H',~v%), i € I, j € J;, is also a collection of subdirect

< <
intersection morphisms, and, hence 2 € II(M). We conclude that I is also
idempotent. [ |

In general, given a class M of reduced F-matrix families, its closures under

<
both operators I and IM~* are included in its closure under III.

Proposition 1801 Let F = (Sign’, SEN’, N*) be an algebraic system and M
a class of reduced ¥-matrixz families. Then

T(M) TI(M)  and M-*(M) c TT(M).

Proof: Assume, first, that 2 = (A4, T) € II(M). Thus, there exists a collection
A = (A, T%) € M, such that
T=NT"
iel
Consider the family of surjective morphisms

(I,0): (A, T) - (ATY, iel.
We have
o T =Micr T = Nyer tH(T"), by hypothesis;
o Nies Ker({7,1)) = Nie AA = A4,

Therefore, since A € M, for all i€ I, A € ﬁ(M)

Assume, next, that 2A* = (A/QA(T), T/QA(T)) e M~1*(M), where (H, ) :
2A - A’ is a strict surjective morphism, with ' = (A’,7") € M. Since M ¢
MatFam”™ (F), there exists a factorization

H
2 UL A
<Lk Av)
Q/l*
Moreover, we have

o 71 (y*1(T7)) =4 1(T") = T, whence v+~ (T") = T/QA(T);

e Ker((H,7*)) = A4 holds, since, for all ¥ € |Sign| and all ¢,
SEN(Y),

(¢, 0) e Kers((H,v*)) iff 73(0/Q8(T)) = 5 (/Q4(T))
iff y2(8) =7vs(¥) ,
iff (¢a¢) € ’Vil(Q?](z)(T,))
iff (¢, 1) € (v 1(T7))
iff (¢, 1) € Q(T).



1456 CHAPTER 24. SPECIAL TOPICS Voutsadakis

Therefore, A* € Iﬁ(M) n

<
Another useful feature of the operator III is that among model classes of
matrix families, it characterizes those that are protoclasses.

Theorem 1802 Let F = (Sign’, SEN’, N*) be an algebraic system and M =
MatFam*(Z) a class of reduced F-matriz families. Then M is a protoclass if

and only if ]ﬁ(M) cM.

Proof: Suppose, first, that M = MatFam™(Z), with Z protoalgebraic and let
(Hi, ") : A - A" i€l be a collection of subdirect intersection morphisms.
Then, clearly,

IMM-*(M)  (Definition of ]f_l)
IIM-!'(MatFam*(Z)) (Lemmas 1781 and 1782)
MatFam(Z). (Proposition 1783)

2

N N m

It suffices now to show that A is reduced. We have
QAT) = Q%Mier(Y")"X(T7)) (Subdirect Intersection)
= Nier QA((7))71(T"))  (Z protoalgebraic)
= Mier(¥)HQA(T7))  ((H',") surjective)
= Mier(Y)H(AA") (A" reduced)
= (ier Ker(<Hi7 ’yl>)
= AA. (Subdirect Intersection)
Since A € MatFam(Z) and 2 is reduced, we conclude that 2 € MatFam”*(Z).
<
So II(MatFam®(Z)) ¢ MatFam™ (7).

Suppose, conversely, that ﬁ(MatFam*(I )) € MatFam™(Z) and let T,T" €
ThFam(Z), with T' < T". We set

§ = (F/(UT) n Q1)) (T T")/(AT) nT7)))
and consider the surjective natural projection morphisms

(Lm): &= (F/UT), T/UT))
(L) e § = (F/UT), T [UT")).

We observe that
e As far as filter families, we have
(T'nT7)[(T) nQ(T7))

=T/(QT) n QUT")) nT'[(QUT) n QUT"))
=7 W(T/QT")) n a1 (T"[QT"));
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e As far as kernels, we get
Ker((I, 7)) nKer({I,7"))
= Q(T)/(UT) n Q1)) nQT")/(AT) n(T"))
= (QUT) nQ(T"))/(UT) nQT")) = AS.

Therefore,
Fe ]ﬁ(MatFam* (7)) < MatFam”*(Z).
Hence Q(T) =QUT nT") = Q(T)nQ(T"), which implies that Q(T") < Q(T").
Thus, €2 is monotone on theory families and, hence, Z is protoalgebraic. m
Finally, we work to obtain expressions for the protoclass MatFam™(Z)

based on a reduced class M of generating F-matrix families for Z.

We show, first, that if M is a class of reduced models of a protoalgebraic
< *
m-institution, then its closure under III is included in its closure under i

Proposition 1803 Let F = (Sign’, SEN’, N*) be an algebraic system, T =
(F,C) a protoalgebraic m-institution based on F and M ¢ MatFam™(Z) a
class of reduced T-matriz families. Then

(M) c 1T (M),

Proof: Let A = (A,T) € II(M). Then, there exists a collection of subdirect
intersection morphisms

(H',)y") : (A, T) > (A", T"), iel,
where A% = (A" T") € M, for all i € I. By using the same morphisms,
(H' ") (A () (T) A", e,

which have now become strict and surjective, we get that, for all i € I,
(A, (7)"1(T")) e M~1(M). Moreover, since, by the definition of a subdirect
intersection, 2A = (A4, T) = (A, Nics;(7*)1(T")), we get that A € IIM-1(M).

Now, by Theorem 1802, 2 is reduced, whence A € (ITIM-1(M))* = H(_T*(M).
]

Next, it is shown that, if M is a class of reduced models of a protoalgebraic
<~—*
m-institution, then its closure under Il is included in its closure under the
<
operator TIIM~1*.
Proposition 1804 Let F = (Sign’, SEN’, N*) be an algebraic system, I =

(F,C) a protoalgebraic m-institution based on F and M ¢ MatFam™(Z) a
class of reduced T-matriz families. Then

T (M) ¢ TV (M),
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Proof: Suppose that M ¢ MatFam*(Z), for a protoalgebraic m-institution
T = (F,C) and let A* = (A/QA(T), T/QA(T)) e T (M), where 2 = (A, T) =
(A, Njer T7) is such that there exist strict surjective morphisms

<Hi,’yi> . <A,TZ> N (A’i,T’i), i€ ]’

with 07 = (A" T"") € M, for all i € I. The key now is to look at the collection
of the projection morphisms

(1,7 2 — (AJQAT), THQATY)), e,
where, for all ¥ € |Sign| and all ¢ € SEN(X),
WE(QS/Q“S(QTi)) = o/ (T").
Since (H? ~*%) is strict and surjective, we have that (A,T%) ¢ M~1(M), for
all i € I. Thus, (A/QA(T?), T*/QA(T?)) €e M~1*(M). Therefore, to complete
the proof, it suffices to show that the collection (I,7?), i € I, constitutes a

collection of subdirect intersection morphisms. This is not difficult to verify.
We have

L miel(ﬂ-i)_l (Ti/QA(Ti)) = Njer Ti/QA(ﬂieI Ti) = (Mier Ti)/QA(ﬂz’eI Ti)?
e For kernels,

Mier Ker(([,wi)) Mier QA(Ti)/QA(ﬂieI Ti)

QANier T /2% (Nies TP) (T protoalgebraic)
AAQA(Nier TY)

<
Now we have 20* € TIM~1(M). ]
We are now able to obtain, under protoalgebraicity, some equivalent ex-

<« *
pressions for the operator III , which, based on Theorem 1798, will allow us
to provide characterizations for the class MatFam™(Z), in case Z is protoal-
gebraic.

Theorem 1805 Let F = (Sign’, SEN’, N*) be an algebraic system and M ¢
MatFam™(Z), for a protoalgebraic m-institution I = (F,C) based on F. Then

TI(M) = I (M) = TTM-* (M),

Proof: Suppose M ¢ MatFam*(Z), for a protoalgebraic m-institution Z =
(F,C). Then, we have

N

]ﬁ*(l\/l) (Proposition 1803)
]liﬂM‘l*(M) (Proposition 1804)
ﬁ(ﬁ(M)) (Proposition 1801)
= TI(M). (Lemma 1800)

(M)

In}

In}
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The conclusion follows. ]

Finally, we get the following characterization of MatFam*(ZM) in terms
of closure operators on M, under the hypothesis that M is a subclass of a
protoclass of F-matrix families.

Theorem 1806 Let F = (Sign’, SEN’, N*) be an algebraic system and M ¢
MatFam*(Z), for a protoalgebraic w-institution Z = (F,C) based on F. Then

MatFam*(ZM) = MII(M).

Proof: Suppose M ¢ MatFam*(Z), for a protoalgebraic m-institution Z =
(F,C). Then,

MatFam™(ZM)

MIIT (M) (Theorem 1798)
MIT(M). (Theorem 1805)

24.5 Irreducibility

Let F = (Sign’,SEN’, N*) be an algebraic system, Z = (F,C') a m-institution
based on F, A= (A, (F,a)), with A = (Sign, SEN, N), an F-algebraic system
and 2A = (A, X) € MatFam(Z).

An Z-filter family T € FiFam®(2) is completely meet irreducible in
FiFam® (1) if, for all {T%:i ¢ I} ¢ FiFam® (),

T=(T" implies T =T", for someice [.
iel

Let F = (Sign’,SEN’, N*) be an algebraic system, A* = (Al (Fi af)),
i € I, a collection of F-algebraic systems and 2A' = (A, T%) a collection of
F-matrix families. Recall that an F-matrix family 2 = (A, 7T), with A =
(A, (F,«)), is a subdirect intersection of the collection 21, i € I, if there
exist surjective morphisms

(H' 4" : A > A del,

such that T = N (7)) H(T?) and Ny Ker((H?,+)) = AA. This subdirect
intersection is called a special subdirect intersection if H: Sign — Sign’
is an isomorphism, for all 7 € I.

It turns out that F-matrix families are representable as subdirect inter-
sections if and only they are representable as special subdirect intersections.
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Proposition 1807 Let F = (Sign’, SEN’, N*) be an algebraic system, A =
(A, (F,«)), with A = (Sign,SEN, N), an F-algebraic system and 2 = (A, T)
an F-matriz family. Then (H',~%) : A - A" i€, is a collection of subdirect
intersection. morphisms if and only if

(1,71} 2 2 > (AfKer((H,7)), () (1) [Ker((H', ), e,
s a collection of special subdirect intersection morphisms.

Proof: Suppose, first, that (H? ~%) : A - A" i€ I, is a sibdirect intersection
representation of 2. For convenience, denote ¢ = Ker({H?,+%)), i € I. Note
that there exist algebraic system morphisms (H? %) : A" — A" such that

H'\ v

( ) A/i
fk | A( ¥
A”

(7 = (4% o (1,7,
where (I,7%): A - A%, i e I, are the quotient morphisms. Moreover, these
morphisms are well-defined F-matrix family morphisms, since, for all i € I, we
have, on the one hand, T' < (7*)"1(T") = (%)Y ((v")~1(7"")/0?), and, on the
other, ()1((/)(T")/87) = (+)-1(T") = (w)-1((4)-*(T")) and. hence.
by the surjectivity of (I,7%), (v*)~"1(T"")/6" = (5°)~1(T""). Now we compute:

A
{

e [or the filter families:

() () (T ey
= uer () ()1 (7))
= Nier(Y)H(T™)
(0% compatible with (~v%)=1(7"%))
=T. (by hypothesis)

e For the kernels

Nier Ker(([,ﬂi)) Mier 0°

A4, (by hypothesis)

Therefore,
(I,7") : A > (A[Ker((H', 7)), (v') " (T") [Ker((H",7'))), i€l

is a collection of special subdirect intersection morphisms. ]

Special subdirect intersections of reduced matrix families have a char-
acterization similar to the one applicable for subdirect products of reduced
matriced.
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Proposition 1808 Let F = (Sign’, SEN’, N*) be an algebraic system, A =
(A, (F, ) be an F-algebraic system and A = (A, T) an F-matriz family. 2A
is a special subdirect intersection of the system {A"" = (A" T") : i € I} of
reduced F-matrixz families if and only if, there exists a corresponding system
of sentence families {T%:i € I} ¢ SenFam(A), such that:

(7') mie[ T = TJ'
(11) AT = A", for all iel.

Proof: Suppose, first, that (H? %) : 24 - A" i€ I, is a collection of special
subdirect intersection morphisms. Define 7% = (y%)~1(7"), i € I. Then, we
have

® Mier T% = Mier (V) (1) = T

e Noting that

QAT = QA(y)H(T")) (definition of T7)
= (y)H(QA(T7))  (Proposition 24)
= ()1 (AA") (A reduced)
= Ker({H%~")), (set theory)
we obtain
AT = (A/QATY), TTQAT?))

(QlA/Ker«HW’?), ()~ (T") [Ker ((H*, 7))

e 1

where the last isomorphism is established by the morphism (H¢ 4¢) :
A/Ker((H?,~")) - A", given in Proposition 1807.

Thus, (i) and (ii) of the statement hold.

Assume, conversely, that there exists a system {T%:i € [} € SenFam(.A)
satisfying (i) and (ii). Consider (I,7?) : A — A/QA(T"), i € I. This forms a
well-defined system of F-matrix family morphisms

(I,7): %A > AT, el

Since, by hypothesis, /7% = 20, for all i € I, it suffices to show that the
above system of morphisms constitutes a subdirect intersection. We indeed
have

o N () (T/QATY)) = Mies T = T

o Mier Ker({1,7%)) = Nies QA(T?) < QAN T7) = QA(T) = AA,
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So {(I,7%) : A - AT :i € I} is a system of special subdirect intersection
morphisms. ]

Let F = (Sign’, SEN’, N*) be an algebraic system, M a class of reduced
F-matrix families and 2 = (A4,7T") e M, with A= (A, (F,a)).

The F-matrix family 2 € M is called subdirectly irreducible relative
to M if, for every subdirect intersection

(H' 4" A - A" del,
with 2" € M, for all 7 € I, there exists i € I, such that
(i) T=(y")"(T") and
(i) Ker((H,7)) = A4,

We write M8 for the class of all relatively subdirectly irreducible members of
M

If 7= (F,C) is a w-institution based on F and M = MatFam*(Z) is the
class of all reduced Z-matrix families, then a subdirectly irreducible 2 relative
to M is also called subdirectly irreducible relative to Z.

It turns out that relative subdirect irreducibility and complete meet ir-
reducibility have a close relationship. To detail the relationship, we need an
additional operator on classes of F-matrix families.

Proposition 1809 Let F = (Sign’, SEN’,IN*) be an algebraic system and M
a class of reduced F-matriz families closed under reduced inverse morphic
images, i.e., such that M~1*(M) ¢ M. Then an F-matriz family A = (A,T) €
M is subdirectly irreducible relative to M if and only if T is completely meet
irreducible in X = {X € SenFam(A) : A/ X € M}.

Proof: Suppose, first, that 2 = (A4, 7) € M3 and let {X?:4i € [} ¢ X, such
that T = ;e X*. Then, by Proposition 1807,

(I,7): A —>A/X, del,

constitutes a special subdirect intersection. Moreover, since X* € X, for all
i € I, we have that A/ X? e M, for all i € I. By hypothesis, there exists an i € I,
such that T = (7)1 (X?/QA(X?)) = X?. We conclude that T is completely
meet irreducible in X.

Assume, conversely, that 7" is completely meet irreducible in X and let

(Hi,y'): A7, el

be a system of subdirect intersection morphisms, with 1% € M, for all i € I.
By Proposition 1807,

(I,m'): %A > A/ (y)H(T"), iel,
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is a collection of special subdirect intersection morphisms. Moreover, (H? 4%) :
A/ () (T") - A% i € I, are strict surjective morphisms and 20/(v*)~1(71"")
is reduced. Thus, since A" € M, for all 7+ € I and M~1*(M) ¢ M, we get
that A/(7*)"1(T") € M, for all 7 € I. This shows that (7*)~*(7") € X, for
all i € I. But, by the subdirect intersection property, T = N;e; (7)1 (T"),
whence, by hypothesis, there exists 7 € I, such that T" = (y*)~*(7""). More-
over, Ker({H', ")) = (1/)"/(A4") = (7)1 (Q4" (")) = QA((7)1(T")) =
QA(T) = A4, Therefore, 2 is subdirectly irreducible relative to M. [ ]
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