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24.1 Rule Based π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.
An F-rule is a pair ⟨P,ρ⟩, where P ∪{ρ} ∶ (SEN♭)ω → SEN♭ is a finite set

of natural transformations in N ♭. If P = ∅, then ⟨∅, ρ⟩ is called an F-axiom
and it is ordinarily identified with ρ.

Let R = ⟨P,ρ⟩ be an F-rule, Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). We say
φ R-follows from Φ, written Φ→RΣ φ, if there exists χ⃗ ∈ SEN♭(Σ), such that

PΣ(χ⃗) ⊆ Φ and ρΣ(χ⃗) = φ.
Consider, now, a set R of F-rules. For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆

SEN♭(Σ), we say φ is R-provable from Φ, written φ ∈ CRΣ (Φ) or Φ ⊢RΣ φ, if
there exists a sequence

φ0, φ1, φ2, . . . , φn−1, φn

in SEN♭(Σ), such that φn = φ and, for all i ≤ n,

• φi ∈ Φ or

• φi R-follows from {φ0, φ1, . . . , φi−1}, for some R ∈R.

A sequence φ0, φ1, . . . , φn witnessing Φ ⊢RΣ φ is called an R-proof of φ from
Φ.

We show that CR, as defined here, is indeed a closure system on the base
algebraic system F.

Proposition 1778 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R
a collection of F-rules. Then CR = {CRΣ }Σ∈∣Sign♭∣ is a closure system on F.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ).
(i) If φ ∈ Φ, then φ is an R-proof of φ from Φ. So φ ∈ CRΣ (Φ) and CR is

inflationary.

(ii) If Φ ⊆ Ψ and φ ∈ CRΣ (Φ), then, there exists an R-proof of φ from Φ.
The same sequence is then an R-proof of φ from Ψ. So φ ∈ CRΣ (Ψ) and
CR is monotone.

(iii) Suppose φ ∈ CRΣ (CRΣ (Φ)). Then, there exists an R-proof of φ from
CRΣ (Φ), say

φ0, φ1, . . . , φn−1, φn = φ.

Then, for each φi ∈ CRΣ (Φ), there exists an R-proof of φi from Φ. For
each such φi, we insert its R-proof from Φ in its place in the sequence.
The new sequence is an R-proof of φ from Φ. Thus, we get that φ ∈
CRΣ (Φ) and CR is also idempotent.
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(iv) Finally, it remains to show structurality. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈
Sign♭(Σ,Σ′) and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CRΣ (Φ). Let
φ0, φ1, . . . , φn−1, φn = φ be an R-proof of φ from Φ. We consider the
sequence

SEN♭(f)(φ0),SEN♭(f)(φ1), . . . ,SEN♭(f)(φn−1),SEN♭(f)(φn).
Then SEN♭(f)(φn) = SEN♭(f)(φ) and, moreover, for all i ≤ n, if
φi ∈ Φ, then SEN♭(f)(φi) ∈ SEN♭(f)(Φ), and, if φi R-follows from{φ0, φ1, . . . , φi−1}, for some R ∈ R, then SEN♭(f)(φi) R-follows from{SEN♭(f)(φ0),SEN♭(f)(φ1), . . . ,SEN♭(f)(φi−1)} because of the natu-
rality of R. So, the displayed sequence is an R-proof of SEN♭(f)(φ)
from SEN♭(f)(Φ) and CR is also structural.

We conclude that CR is a closure system on F. ∎

We denote by IR = ⟨F,CR⟩ the π-institution corresponding to CR.
In general, given a π-institution I = ⟨F,C⟩, we say that I is rule based

if there exists a collection R of F-rules, such that C = CR.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R a collection of F-

rules, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system and
T ∈ SenFam(A). We say that T is closed under R or is R-closed if, for all
R = ⟨P,ρ⟩ ∈R, all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ),

PAΣ (χ⃗) ⊆ TΣ implies ρAΣ(χ⃗) ∈ TΣ.
This terminology allows the following elegant characterization of IR-filter

families of A.

Proposition 1779 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R
a collection of F-rules, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-

algebraic system and T ∈ SenFam(A). Then T ∈ FiFamI
R(A) if and only if

T is R-closed.

Proof: Assume, first, that T ∈ FiFamI
R(A), R = ⟨P,ρ⟩ ∈ R and, using

surjectivity of ⟨F,α⟩, let Σ ∈ ∣Sign♭∣ and χ⃗ ∈ SEN♭(Σ), such that

PAF (Σ)(αΣ(χ⃗)) ⊆ TF (Σ).
Then we get αΣ(PΣ(χ⃗)) ⊆ TF (Σ). Since, by the definition of CI

R
, ρΣ(χ⃗) ∈

CI
R

Σ (PΣ(χ⃗)) and, by hypothesis, T ∈ FiFamI
R(A), we get αΣ(ρΣ(χ⃗)) ∈ TF (Σ)

or, equivalently, ρA
F (Σ)
(αΣ(χ⃗)) ∈ TF (Σ). Thus, T is R-closed.

Suppose, conversely, that T ∈ SenFam(A) is R-closed. Let Σ ∈ ∣Sign♭∣
and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CIRΣ (Φ) and consider Σ′ ∈ ∣Sign♭∣ and
f ∈ Sign♭(Σ,Σ′), such that

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′).
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Since φ ∈ CIRΣ (Φ), there exists an R-proof of φ from Φ, say

φ0, φ1, . . . , φn−1, φn = φ.

We prove by induction on i ≤ n that, every member of the sequence

αΣ′(SEN♭(f)(φ0)), αΣ′(SEN♭(f)(φ1)), . . . ,
αΣ′(SEN♭(f)(φn−1)), αΣ′(SEN♭(f)(φn))

belongs to TF (Σ′). The case i = n, will yield the desired conclusion.
First, if φi ∈ Φ, then αΣ′(SEN♭(f)(φi)) ∈ αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′),

where the latter inclusion holds by hypothesis.
Suppose, on the other hand, that φi R-follows from {φ0, φ1, . . . , φi−1}, for

some R = ⟨P,ρ⟩ ∈R. Thus, there exists χ⃗ ∈ SEN♭(Σ), such that

PΣ(χ⃗) ⊆ {φ0, φ1, . . . , φi−1} and ρΣ(χ⃗) = φi.
But then

PA
F (Σ′)
(αΣ′(SEN♭(f)(χ⃗))) = αΣ′(SEN♭(f)(PΣ(χ⃗)))

⊆ αΣ′(SEN♭(f)({φ0, . . . , φi−1}))
⊆ TF (Σ′),

where the last inclusion follows by the induction hypothesis, and, hence,
since T is R-closed, we get that αΣ′(SEN♭(f)(φi)) = αΣ′(SEN♭(f)(ρΣ(χ⃗))) =
ρA
F (Σ′)
(αΣ′(SEN♭(f)(χ⃗))) ∈ TF (Σ′). This concludes the induction step and

shows that, for all i ≤ n, αΣ′(SEN♭(f)(φi)) ∈ TF (Σ′). ∎

In addition, we can characterize IR-filter families generated by a given
sentence family as follows.

Proposition 1780 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R
a collection of F-rules, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-
algebraic system and X ∈ SenFam(A). Then, for all Σ ∈ ∣Sign∣,

CI
R,A

Σ (X) = {φ ∈ SEN(Σ) ∶ XΣ ⊢RΣ φ}.
Proof: Define T = {TΣ}Σ∈∣Sign∣, by letting, for all Σ ∈ ∣Sign∣,

TΣ = {φ ∈ SEN(Σ) ∶XΣ ⊢RΣ φ}.
It is not difficult to see that X ≤ T and T is R-closed. Thus, by Proposition
1779, CI

R,A(X) ≤ T . On the other hand, if T ′ ∈ SenFam(I) contains X
and is R-closed, then T ≤ T ′. Therefore, we conclude that T ≤ CIR,A(X).
Equality now follows. ∎
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24.2 Operators on Classes of Matrix Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Recall that an F-
algebraic system is a pair A = ⟨A, ⟨F,α⟩⟩, where A = ⟨Sign,SEN,N⟩ is an
N ♭-algebraic system and ⟨F,α⟩ ∶ F → A is a surjective N ♭-algebraic system
morphism. Recall, also, that an F-matrix family is a pair A = ⟨A, T ⟩, where
A is an F-algebraic system and T ∈ SenFam(A) is a sentence family on A.

We define now some class operators on classes of F-matrix families, i.e.,
operators that, given, as input a class of F-matrix families, produce a new
class of F-matrix families.

Given F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and B = ⟨B, ⟨G,β⟩⟩, and F-
matrix families A = ⟨A, T ⟩ and B = ⟨B, T ′⟩, we say that B is a morphic
image of A and write B ∈ M(A), if there exists a surjective morphism⟨H,γ⟩ ∶ A → B (that is, such that ⟨G,β⟩ = ⟨H,γ⟩ ○ ⟨F,α⟩)

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

such that
γ−1(T ′) = T.

In this case, we call A an inverse morphic image or a morphic preimage
of B and write A ∈M−1(B).

Given a class M of F-matrix families, we write B ∈M(M) if there exists
A ∈M, such that B ∈M(A).

Similarly, we write A ∈ M−1(M) if there exists B ∈ M, such that A ∈
M−1(B).

It is not difficult to show that both M and M−1 are closure operators on
the collection of all F-matrix families.

Lemma 1781 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

M,M−1 ∶ P(MatFam(F))→ P(MatFam(F))
are closure operators on MatFam(F).
Proof: We prove the statement for M in detail. The proof for M−1 is similar.

Suppose, first, that M is a class of F-matrix families and A ∈ M. Then,
the diagram

F

❂✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩

⟨F,α⟩
⑦

A ⟨I, ι⟩ ✲ A
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where ⟨I, ι⟩ ∶ A→ A is the identity morphism, shows that A ∈M(M). There-
fore, M is inflationary.

Monotonicity is obvious, since, if M,N are classes of F-matrix families,
such that M ⊆ N, and A ∈M(M), then, by definition, A ∈M(B), with B ∈M.
But then, since M ⊆ N, A ∈ M(B), with B ∈ N and, again, by definition,
A ∈M(N). Thus, we have M(M) ⊆M(N).

Finally, assume that M is a class of F-matrix families and A ∈M(M(M)).
Then, there exists B ∈M(M), such that A ∈M(B). Furthermore, there exists
C ∈ M, such that B ∈M(C). But these two statements combined reveal the
existence of the following diagram, in which the two small triangles commute.

F

✰✑
✑
✑
✑
✑
✑
✑⟨H,γ⟩ ◗

◗
◗
◗
◗
◗
◗

⟨F,α⟩
s

C ⟨Q,q⟩ ✲ B

⟨G,β⟩
❄

⟨P,p⟩ ✲ A

As a result, the big triangle also commutes and this ensures that A ∈M(C),
which yields A ∈M(M). ∎

Next, we introduce another class operator on classes of F-matrix families.
Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and Ai = ⟨A, T i⟩, i ∈ I, a

collection of F-matrix families, all over A. Define the intersection of the Ai,
i ∈ I, as the F-matrix family, with the same underlying F-algebraic system
A and with filter family the intersection of the T i’s; more formally

⋂
i∈I

Ai = ⟨A,⋂
i∈I

T i⟩.
Given a class M of F-matrix families and an F-matrix family B, we write
B ∈ IΠ(M) if B is the intersection of members of M, i.e., B = ⋂i∈I A

i, with
Ai ∈M, for all i ∈ I.

Again, it is not difficult to show that IΠ is a closure operator on the
collection of F-matrix families.

Lemma 1782 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

IΠ ∶ P(MatFam(F)) → P(MatFam(F))
is a closure operator on MatFam(F).
Proof: To show inflationarity, notice that, trivially, for all A ∈M, A = ⋂{A},
whence A ∈ IΠ(M).

Monotonicity is straightforward, since, if M ⊆ N and A ∈ IΠ(M), then
A = ⋂i∈I A

i, with Ai ∈ M, for all i ∈ I, and, hence, A = ⋂i∈I A
i, with Ai ∈ N,

for all i ∈ I. So A ∈ IΠ(N).
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Finally, for transitivity, if A ∈ IΠ(IΠ(M)), then A = ⋂i∈I A
i, where Ai ∈

IΠ(M), for all i ∈ I. Thus, for all i ∈ I, Ai = ⋂j∈JiA
ij , where Aij ∈ M, for all

j ∈ Ji. Therefore, we get

A =⋂
i∈I

Ai =⋂
i∈I

⋂
j∈Ji

Aij ,

where Aij ∈M, for all i ∈ I, j ∈ Ji, and, hence, A ∈ IΠ(M). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a class of F-
matrix families. Recall the closure system CM ∶ PSEN♭ → PSEN♭ on F
generated by M. It is defined, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
by φ ∈ CM

Σ (Φ) if and only if, for all A = ⟨A, T ⟩ ∈ M, all Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).
IM = ⟨F,CM⟩ denotes the corresponding π-institution generated by M.

Now, given a π-institution I , one can consider its matrix family models,
i.e., those F-matrix families A, such that

I ≤ IA.

Doing this for the specific π-institution IM, generated by the class M of F-
matrix families, we consider the class MatFam(IM) of IM-matrix families.
Clearly, since, for every A ∈M, CM ≤ CA,

M ⊆MatFam(IM).
In the spirit of many classical problems in universal algebraic logic, the fol-
lowing question naturally arises:

Characterize MathFam(IM), i.e., find a list of operators on classes of F-
matrix families so that, when applied to M consecutively, they generate
the class MatFam(IM).

Our goal here is to show that the list of operators that are needed consists
of MIΠM−1, i.e., that, given any class M of F-matrix families, we have

MatFam(IM) =MIΠM−1(M).
We start by showing that applying each of the three operators to classes

of matrix family models of a π-institution I always results in classes of the
same character.

Proposition 1783 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.
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(a) M(MatFam(I)) ⊆MatFam(I);
(b) IΠ(MatFam(I)) ⊆MatFam(I);
(c) M−1(MatFam(I)) ⊆MatFam(I).

Proof:

(a) Let A = ⟨A, T ⟩ ∈ MatFam(I) and consider a surjective morphism⟨H,γ⟩ ∶ A→B, where B = ⟨B, T ′⟩, as in the diagram.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

We now have

β−1(T ′) = α−1(γ−1(T ′)) = α−1(T ) ∈ ThFam(I),
where the last membership follows by the hypothesis and Lemma 51.
Thus, again by Lemma 51, we get that T ′ ∈ FiFamI(B) and, hence,
B ∈MatFam(I).

(b) Suppose, next, that Ai = ⟨A, T i⟩, i ∈ I, are I-matrix families. Then
T i ∈ FiFamI(A), for all i ∈ I. Since the collection FiFamI(A) forms a
closure system on A, it follows that ⋂i∈I T

i ∈ FiFamI(A). Thus, we get
that ⋂i∈I A

i ∈MatFam(I). So MatFam(I) is closed under IΠ.

(c) Let A = ⟨A, T ⟩ ∈ MatFam(I) and consider a surjective morphism⟨H,γ⟩ ∶B→ A, where B = ⟨B, T ′⟩, as in the diagram.

F

❂✚
✚
✚
✚
✚⟨G,β⟩ ❩

❩
❩
❩
❩

⟨F,α⟩
⑦

B ⟨H,γ⟩ ✲ A

We now have

β−1(T ′) = β−1(γ−1(T )) = α−1(T ) ∈ ThFam(I),
where the last membership follows by the hypothesis and Lemma 51.
Thus, again by Lemma 51, we get that T ′ ∈ FiFamI(B) and, hence,
B ∈MatFam(I).

∎

Proposition 1783 gives
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Corollary 1784 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

MIΠM−1(MatFam(I)) ⊆MatFam(I).
Proof: We have, using Proposition 1783,

MIΠM−1(MatFam(I)) ⊆ MIΠ(MatFam(I))
⊆ M(MatFam(I))
⊆ MatFam(I).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that a Lindenbaum I-matrix family is an
I-matrix family of the form ⟨F , T ⟩, where F = ⟨F, ⟨I, ι⟩⟩ and T ∈ ThFam(I).
We show, next, that the class of all I-matrix families can be obtained by
applying the M operator on the class of all Lindenbaum matrix families, i.e.,
MatFam(I) =M(LMatFam(I)).
Lemma 1785 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

MatFam(I) =M(LMatFam(I)).
Proof: First, observe that, since LMatFam(I) ⊆ MatFam(I), we have, by
Proposition 1783,

M(LMatFam(I)) ⊆M(MatFam(I)) ⊆MatFam(I).
Suppose, conversely, that A = ⟨A, T ⟩ ∈ MatFam(I), with A = ⟨A, ⟨F,α⟩⟩.
Then, we have, by Lemma 51, α−1(T ) ∈ ThFam(I). Hence, ⟨F , α−1(T )⟩ ∈
LMatFam(I). Now, it suffices to consider the surjective morphism ⟨F,α⟩ ∶⟨F , α−1(T )⟩→ A

F

❂✚
✚
✚
✚
✚⟨I, ι⟩ ❩

❩
❩
❩
❩

⟨F,α⟩
⑦

F ⟨F,α⟩ ✲ A

to conclude that A ∈M(LMatFam(I)). Therefore, we obtain MatFam(I) ⊆
M(LMatFam(I)). ∎

Now, to complete our task, we turn again to the specific π-institution
IM, generated by a given class M of F-matrix families. We show that all
its Lindenbaum matrix families, i.e., all matrix families of the form ⟨F , T ⟩,
where T ∈ ThFam(IM), can be obtained by applying the operator IΠM−1 on
the class M.
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Lemma 1786 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of F-matrix families. Then

LMatFam(IM) ⊆ IΠM−1(M).
Proof: Let F = ⟨F , T ⟩ ∈ LMatFam(IM), i.e., T ∈ ThFam(IM). Thus, there
exist Ai = ⟨Ai, T i⟩ ∈M, with A = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, such that

T =⋂
i∈I

(αi)−1(T i).
Consider the collection Fi = ⟨F , (αi)−1(T i)⟩, i ∈ I. Taking into account the
surjective morphisms ⟨F i, αi⟩ ∶ Fi → Ai, i ∈ I, and the fact that Ai ∈ M, we
conclude that Fi ∈M−1(M), for all i ∈ I. Finally, observing that F = ⋂i∈I F

i,
we get that F ∈ IΠM−1(M). Therefore, LMatFam(IM) ⊆ IΠM−1(M). ∎

Now we are ready to provide the promised characterization of MatFam(IM)
in terms of M and the class operators M, IΠ and M−1, introduced in this sec-
tion.

Theorem 1787 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of F-matrix families. Then

MatFam(IM) =MIΠM−1(M).
Proof: First, since M ⊆MatFam(IM), we have, using Corollary 1784,

MIΠM−1(M) ⊆MIΠM−1(MatFam(IM)) ⊆MatFam(IM).
Conversely, let A ∈MatFam(IM). Then, by Lemmas 1785 and 1786,

A ∈M(LMatFam(IM)) ⊆MIΠM−1(M).
Therefore, MatFam(IM) ⊆MIΠM−1(M). ∎

As a consequence of this characterization, we can also show that the
operator MIΠM−1 is a closure operator on classes of F-matrix families and,
moreover, given any such class M, applying the operator to the class results
in the smallest class of F-matrix systems that contains M and is closed under
the operations M, IΠ and M−1.

Theorem 1788 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of F-matrix families.

(a) MIΠM−1 ∶ P(MatFam(F)) → P(MatFam(F)) is a closure operator;

(b) MIΠM−1(M) is the smallest class of F-matrix families containing M

and closed under the operators M, IΠ and M−1.
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Proof:

(a) Inflationarity and monotonicity follow from the corresponding proper-
ties of the three operators, which were established in Lemmas 1781 and
1782. For idempotency, we have

MIΠM−1(MIΠM−1(M)) = MIΠM−1(MatFam(IM))
(by Theorem 1787)

⊆ MatFam(IM)
(by Corollary 1784)

= MIΠM−1(M).
(again by Theorem 1787)

(b) By Part (a), M ⊆MIΠM−1(M). Moreover, if O ∈ {M, IΠ,M−1}, then

O(MIΠM−1(M)) = O(MatFam(IM)) (by Theorem 1787)
⊆ MatFam(IM) (by Corollary 1784)
= MIΠM−1(M). (by Theorem 1787)

Hence, MIΠM−1(M) is closed under all three operators. If N is a class
of F-matrix families such that M ⊆ N and N closed under the three
operators, then, clearly, MIΠM−1(M) ⊆ MIΠM−1(N) = N. Therefore,
MIΠM−1(M) is the smallest class satisfying these properties.

∎

24.3 Classes of Reduced Matrix Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that LMatFam∗(I) is the class of all re-
duced Lindenbaum I-matrix families, i.e., all F-matrix families of the form⟨FΩ(T ), T /Ω(T )⟩, where F = ⟨F, ⟨I, ι⟩⟩ and T ∈ ThFam(I), and that I is
complete with respect to LMatFam∗(I).

Recall, also, that MatFam∗(I) is the collection of all reduced I-matrix
families, i.e., F-matrix families of the form ⟨A, T ⟩, where A is an F-algebraic
system and T ∈ FiFamI(A), such that ΩA(T ) = ∆A. Moreover, I is also
complete with respect to MatFam∗(I).

Our first goal is to show that the class MatFam∗(I) is, in fact, the class
generated by applying the morphic image operator M, introduced in the
previous section, on the class LMatFam∗(I).

We prove, first, that the operator

M ∶ P(MatFam∗(F))→ P(MatFam∗(F)),
i.e., the operator M, introduced in Section 24.2, restricted to reduced F-
matrix families, is also a closure operator.
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Proposition 1789 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

M ∶ P(MatFam∗(F)) → P(MatFam∗(F))
is a closure operator on MatFam∗(F).
Proof: Since we know, by Lemma 1781, that M is inflationary, monotone
and idempotent, it suffices to show that it is well-defined, i.e., that, when
applied to collections of reduced F-matrix families, it produces collections of
the same kind. In turn, it suffices to show that, given a reduced F-matrix
family A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩, an F-matrix family A′ = ⟨A′, T ′⟩,
with A′ = ⟨A′, ⟨F ′, α′⟩⟩, and a strict surjective morphism ⟨H,γ⟩ ∶ A → A′,
then A′ is also reduced.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨H,γ⟩ ✲ A′

Taking into account the surjectivity of ⟨F ′, α′⟩, we reason as follows. For all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), we have

⟨α′Σ(φ), α′Σ(ψ)⟩ ∈ ΩA
′

F ′(Σ)
(T ′)

iff ⟨γF (Σ)(αΣ(φ)), γF (Σ)(αΣ(ψ))⟩ ∈ ΩA
′

G(F (Σ))
(T ′)

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ γ−1F (Σ)(ΩA′G(F (Σ))(T ′))
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA

F (Σ)
(γ−1(T ′))

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA
F (Σ)
(T )

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ∆A
F (Σ)
(T )

iff αΣ(φ) = αΣ(ψ)
implies γF (Σ)(αΣ(φ)) = γF (Σ)(αΣ(ψ))

iff α′Σ(φ) = α′Σ(ψ).
Therefore ΩA

′(T ′) =∆A
′

and, hence A′ is also reduced. ∎

Next, we show that, given π-institution I , the class MatFam∗(I) is ob-
tained by applying the operator M on the class LMatFam∗(I).
Proposition 1790 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then

MatFam∗(I) =M(LMatFam∗(I)).
Proof: The inclusion M(LMatFam∗(I)) ⊆ MatFam∗(I) is obtained by ob-
serving that LMatFam∗(I) ⊆MatFam∗(I) and applying M:

M(LMatFam∗(I)) ⊆ M(MatFam∗(I)) (Lemma 1781)
⊆ MatFam∗(I). (Propositions 1783 and 1789)
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Suppose, conversely, that A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩, is a reduced
I-matrix family. Let θ = Ker(⟨F,α⟩) and consider the commutative diagram

F

❂✚
✚
✚
✚
✚⟨I, πθ⟩ ❩

❩
❩
❩
❩

⟨F,α⟩
⑦

Fθ ⟨F,αθ⟩ ✲ A

where, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
αθΣ(φ/θΣ) = αΣ(φ).

It now suffices to show that F ∶= ⟨F θ, α−1(T )/θ⟩ ∈ LMatFam∗(I). First, note
that since A ∈MatFam∗(I) ⊆MatFam(I), then

F ∈M−1(MatFam(I)) ⊆MatFam(I),
by Proposition 1783. So it suffices to show that ΩF

θ(α−1(T )/θ) = ∆F
θ
. We

have
ΩF

θ(α−1(T )/θ) = ΩF
θ((αθ)−1(T ))

= (αθ)−1(ΩA(T ))
= (αθ)−1(∆A)
= Ker(⟨F,αθ⟩) =∆F

θ
.

Now we conclude that A ∈M(LMatFam∗(I)). ∎

Consider, again, a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a
collection M of reduce F-matrix families. We pose now a problem similar to
that posed in Section 24.2, but for classes of reduced matrix families.

Characterize the class MatFam∗(I), i.e., find a list of operators on
classes of reduced F-matrix families so that, when applied to M con-
secutively, they generate the class MatFam∗(IM).

Unlike the operator M that, when applied to reduced matrix families
yields reduced matrix families, the other two operators that we considered in
Section 24.2, namely IΠ and M−1, do not share this property. So to “localize”
them to reduced matrix families, we must take the output classes of F-matrix
families that they produce and “reduce” them so that the output produced
becomes a collection of reduced F-matrix families. According to this scheme,
we consider the following operators, induced by the operators IΠ and M−1 on
class of matrix families, introduced in Section 24.2.

• IΠ∗ ∶ P(MatFam∗(F)) → P(MatFam∗(F)) is given, by setting, for all
M ⊆MatFam∗(F),

IΠ∗(M) = {A∗ ∶ A ∈ IΠ(M)};
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• M−1∗ ∶ P(MatFam∗(F)) → P(MatFam∗(F)) is given, by setting, for all
M ⊆MatFam∗(F),

M−1∗(M) = {A∗ ∶ A ∈M−1(M)}.
It is not very difficult to prove that both IΠ∗ and M−1∗ are closure oper-

ators on the class of reduced F-matrix families.

Proposition 1791 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

IΠ∗ ∶ P(MatFam∗(F))→ P(MatFam∗(F))
is a closure operator on MatFam∗(F).
Proof: Let M ⊆ MatFam∗(F) and A ∈ M. Then, by Proposition 1782,
A ∈ IΠ(M) and, as A is reduced, we get A ∈ IΠ∗(M). Thus, IΠ∗ is inflationary.

Suppose, next, that M ⊆ N ⊆ MatFam∗(F) and A ∈ IΠ∗(M). Then A =(⋂i∈I A
i)∗, with Ai ∈ M, for all i ∈ I. But then, since M ⊆ N, A = (⋂i∈I A

i)∗,
with Ai ∈ N, for all i ∈ I, and, hence, A ∈ IΠ∗(N). Therefore IΠ∗ is also
monotone.

Suppose, finally, that M ⊆MatFam∗(F) and that A ∈ IΠ∗(IΠ∗(M)). Then
A = (⋂i∈I A

i)∗, where Ai ∈ IΠ∗(M). Hence, for all i ∈ I, Ai = (⋂j∈Ji A
ij)∗,

where Aij ∈M, for all i ∈ I and all j ∈ Ji. Now note the following:

• For every i ∈ I, for ⋂j∈Ji A
ij to be defined, we must have Aij = ⟨Ai, T ij⟩,

for all j ∈ Ji.

• For ⋂i∈I Ai = ⋂i∈I(⋂j∈Ji A
ij)∗ to be defined, we must have, for all i ∈ I,

Ai = A, for some F-algebraic system A, and, moreover, for all i ∈ I,
ΩA(⋂j∈Ji T

ij) = θ, for some θ ∈ ConSys(A).
Under these restrictions, it is easy to show that

⟨I, π⟩ ∶ ⟨A,⋂
i∈I

⋂
j∈Ji

T ij)⟩ → Aθ/ΩAθ(⋂
i∈I

((⋂
j∈Ji

T ij)/θ))
defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

πΣ(φ) = (φ/θΣ)/ΩAθΣ (⋂
i∈I

((⋂
j∈Ji

T ij)/θ)),
is a strict surjective matrix morphism, with kernel

Ker(⟨I, π⟩) = ΩA(⋂
i∈I

⋂
j∈Ji

T ij).
Therefore, we get an isomorphism

A/ΩA(⋂
i∈I

⋂
j∈Ji

T ij) ≅ (Aθ)(ΩAθ(⋂
i∈I

((⋂
j∈Ji

T ij)/θ))).
We conclude that A ∈ IΠ∗(M) and, therefore, IΠ∗ is also idempotent. ∎

To show that M−1∗ is a closure operator, we employ a lemma to the effect
that, given a class M of reduced F-matrix families, M−1∗(M) ⊆M−1(M).
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Lemma 1792 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. For every
F-matrix family A = ⟨A, T ⟩, every reduced F-matrix family A′ = ⟨A′, T ′⟩ and
strict surjective morphism ⟨H,γ⟩ ∶ A → A′, there exists a strict surjective
morphism ⟨H,γ∗⟩ ∶ A∗ → A′, such that the following triangle commutes,

A
⟨H,γ⟩ ✲ A′

❩
❩
❩
❩
❩⟨I, π⟩ ⑦ ✚

✚
✚
✚
✚

⟨H,γ∗⟩
❃

A∗

where ⟨I, π⟩ ∶ A→ A∗ is the quotient morphism.

Proof: We define γ∗ ∶ SEN∗ → SEN′ ○H by setting, for all Σ ∈ ∣Sign∣, and
all φ ∈ SEN(Σ),

γ∗Σ(φ∗) = γΣ(φ).
This makes sense, since, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), such
that φ∗ = ψ∗, we have ⟨φ,ψ⟩ ∈ ΩAΣ(T ) = ΩAΣ(γ−1(T ′)), whence ⟨φ,ψ⟩ ∈
γ−1Σ (ΩA′H(Σ)(T ′)) and, hence, ⟨γΣ(φ), γΣ(ψ)⟩ ∈ ∆A

′

H(Σ)
, i.e., γΣ(φ) = γΣ(ψ).

Moreover, γ ∶ SEN∗ → SEN ○H is a natural transformation, since, for all
Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),

SEN∗(Σ) γ∗Σ ✲ SEN′(H(Σ))

SEN∗(Σ′)
SEN∗(f)

❄

γ∗Σ′
✲ SEN′(H(Σ′))

SEN′(H(f))
❄

SEN′(H(f))(γ∗Σ(φ∗)) = SEN′(H(f))(γΣ(φ))
= γΣ′(SEN(f)(φ))
= γ∗Σ′(SEN(f)(φ)∗)
= γ∗Σ′(SEN∗(g)(φ∗)).

Further, the triangle commutes, by the definition of ⟨H,γ∗⟩ and, finally,⟨H,γ∗⟩ ∶ A∗ → A′ is strict since π−1((γ∗)−1(T ′)) = γ−1(T ′) = T and, therefore,(γ∗)−1(T ′) = π(T ) = T ∗. ∎

Now, we show M−1∗ is a closure operator.

Proposition 1793 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

M−1∗ ∶ P(MatFam∗(F))→ P(MatFam∗(F))
is a closure operator on MatFam∗(F).
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Proof: Suppose, first, that M ⊆MatFam∗(F) and A ∈M. Then, we have, by
Proposition 1781, A ∈M−1(M) and, since A is reduced, we get A ∈M−1∗(M).
So M−1∗ is inflationary.

Suppose, next, that M ⊆ N ⊆ MatFam∗(F) and A ∈ M−1∗(M). Then
A =B∗, with B ∈M−1(M). Thus, by Proposition 1781, we get A =B∗, with
B ∈ M−1(N). We conclude that A ∈ M−1∗(N) and, therefore, M−1∗ is also
monotone.

Finally, suppose that M ⊆ MatFam∗(F) and that A ∈ M−1∗(M−1∗(M)).
Then, using Lemma 1792, we get

A ∈M−1∗(M−1∗(M)) ⊆M−1(M−1∗(M)) ⊆M−1(M−1(M)) ⊆M−1(M),
and, since A is reduced, we get A ∈M−1∗(M). Therefore M−1∗ is also idem-
potent. ∎

We need one more operator on reduced classes of F-matrix families.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. We define

←Ð
IΠ
∗

∶ P(MatFam∗(F))→ P(MatFam∗(F))
by setting, for all M ⊆MatFam∗(F),

←Ð
IΠ
∗(M) = (IΠM−1(M))∗.

Note that this operator dominates both IΠ∗ and M−1∗.

Proposition 1794 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then,
for all M ⊆MatFam∗(F),

IΠ∗(M) ⊆←ÐIΠ∗(M) and M−1∗(M) ⊆←ÐIΠ∗(M).
Proof: The proofs of both statements are parallel. We have

IΠ∗(M) = (IΠ(M))∗ M−1(M) = (M−1(M))∗
⊆ (IΠM−1(M))∗ ⊆ (IΠM−1(M))∗
=
←Ð
IΠ
∗(M) =

←Ð
IΠ
∗(M)

where the inclusions follow from Lemmas 1781 and 1782, respectively. ∎

Our next goal is to show that the list of operators that are needed to
obtain the class of all reduced IM-matrix families from a class M of reduced
F-matrix families generating a closure operator CM (of a π-institution IM =

⟨F,CM⟩) consists of M
←Ð
IΠ
∗

, i.e., that, given any class M of reduced F-matrix
families, we have

MatFam∗(IM) =M←ÐIΠ∗(M).
We start by showing that applying each of these operators to classes of

reduced matrix family models of a π-institution I always results in classes of
the same character. This forms an analog of Proposition 1783.
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Proposition 1795 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) M(MatFam∗(I)) ⊆MatFam∗(I);
(b)
←Ð
IΠ
∗(MatFam∗(I)) ⊆MatFam∗(I).

Proof:

(a) We have

M(MatFam∗(I)) ⊆ M(MatFam(I)) ∩M(MatFam∗(F))
(Proposition 1781)

⊆ MatFam(I) ∩MatFam∗(F)
(Propositions 1783 and 1789)

= MatFam∗(I). (Definition)

(b) Similarly,

←Ð
IΠ
∗(MatFam∗(I)) = (IΠM−1(MatFam∗(I)))∗

⊆ (IΠM−1(MatFam(I)))∗
(Lemmas 1781 and 1782)

⊆ (MatFam(I))∗
(Proposition 1783)

= MatFam∗(I).
∎

Proposition 1795, together with Proposition 1783, give the following

Corollary 1796 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

M
←Ð
IΠ
∗(MatFam∗(I)) ⊆MatFam∗(I).

Proof: We have, using Propositions 1783 and 1795,

M
←Ð
IΠ
∗(MatFam∗(I)) ⊆ M(MatFam∗(I))

⊆ MatFam∗(I).
∎

In order to establish our final result, we must show that, given a class
M of reduced F-matrix families, all reduced Lindenbaum matrix families of
the π-institution IM, i.e., all matrix families of the form ⟨F/Ω(T ), T /Ω(T )⟩,
where T ∈ ThFam(IM), can be obtained by applying the operator

←Ð
IΠ
∗

on the
class M.
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Lemma 1797 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of reduced F-matrix families. Then

LMatFam∗(IM) ⊆ ←ÐIΠ∗(M).
Proof: we have

LMatFam∗(IM) = (LMatFam(IM))∗ (Definition)
⊆ (IΠM−1(M))∗ (Lemma 1786)

=
←Ð
IΠ
∗(M). (Definition)

∎

Now we provide the promised characterization of MatFam∗(IM) in terms
of the class M of reduced F-matrix families and the class operators M and
←Ð
IΠ
∗

.

Theorem 1798 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of reduced F-matrix families. Then

MatFam∗(IM) =M←ÐIΠ∗(M).
Proof: First, since M ⊆MatFam∗(IM), we have, using Corollary 1796,

M
←Ð
IΠ
∗(M) ⊆M←ÐIΠ∗(MatFam∗(IM)) ⊆MatFam∗(IM).

Conversely, let A ∈ MatFam∗(IM). Then, by Proposition 1790 and Lemma
1797,

A ∈M(LMatFam∗(IM)) ⊆M←ÐIΠ∗(M).
Therefore, MatFam∗(IM) ⊆M←ÐIΠ∗(M), and equality follows. ∎

As a consequence of this characterization, we can also show that the

operator M
←Ð
IΠ
∗

is a closure operator on classes of reduced F-matrix families
and, moreover, given any such class M, applying the operator to the class
results in the smallest class of reduced F-matrix systems that contains M

and is closed under the operations M,
←Ð
IΠ
∗

.

Theorem 1799 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of reduced F-matrix families.

(a) M
←Ð
IΠ
∗

∶ P(MatFam∗(F))→ P(MatFam∗(F)) is a closure operator;

(b) M
←Ð
IΠ
∗(M) is the smallest class of F-matrix families containing M and

closed under the operators M and
←Ð
IΠ
∗

.
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Proof:

(a) Inflationarity and monotonicity follow from the corresponding proper-
ties of the operators M and IΠ, which were established in Lemmas 1781
and 1782. For idempotency, we have

M
←Ð
IΠ
∗(M←ÐIΠ∗(M)) = M

←Ð
IΠ
∗(MatFam∗(IM))

(by Theorem 1798)
⊆ MatFam∗(IM)

(by Corollary 1796)

= M
←Ð
IΠ
∗(M).

(again by Theorem 1798)

(b) By Part (a), M ⊆M
←Ð
IΠ
∗(M). Moreover, if O ∈ {M,

←Ð
IΠ
∗}, then

O(M←ÐIΠ∗(M)) = O(MatFam∗(IM)) (by Theorem 1798)
⊆ MatFam∗(IM) (by Corollary 1796)

= M
←Ð
IΠ
∗(M). (by Theorem 1798)

Hence, M
←Ð
IΠ
∗(M) is closed under both operators. If N is a class of re-

duced F-matrix families such that M ⊆ N and N closed under both op-

erators, then, clearly, M
←Ð
IΠ
∗(M) ⊆M←ÐIΠ∗(N) = N. Therefore, M

←Ð
IΠ
∗(M)

is the smallest class satisfying these properties.
∎

24.4 Protoclasses of Matrix Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A class of F-matrix fami-
lies M is called a protoclass if it is the class of all reduced I-matrix families
for a protoalgebraic π-institution I = ⟨F,C⟩ based on F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Ai = ⟨Ai, ⟨F i, αi⟩⟩,
i ∈ I, a collection of F-algebraic systems and Ai = ⟨Ai, T i⟩ a collection of
F-matrix families. We say that an F-matrix family A = ⟨A, T ⟩, with A =⟨A, ⟨F,α⟩⟩, is a subdirect intersection of the collection Ai, i ∈ I, if there
exist surjective morphisms

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

such that:

• T = ⋂i∈I(γi)−1(T i);
• ⋂i∈I Ker(⟨H i, γi⟩) = ∆A.



1454 CHAPTER 24. SPECIAL TOPICS Voutsadakis

Let M be a class of F-matrix families. Given an F-matrix family A,

we write A ∈
⊲

IΠ(M) to denote the fact that A is a subdirect intersection of
members of M.

It is not difficult to see that
⊲

IΠ is a closure operator on classes of F-matrix
families.

Lemma 1800 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

⊲

IΠ ∶ P(MatFam(F)) → P(MatFam(F))
is a closure operator on MatFam(F).
Proof: Assume, first, that M ⊆MatFam(F) and A ∈M. Then ⟨I, ι⟩ ∶ A→ A

is a subdirect intersection morphism and, therefore, since A ∈ M, we get

A ∈
⊲

IΠ(M). Therefore
⊲

IΠ is inflationary.
Suppose, next, that M ⊆ N ⊆MatFam(F). Let ⟨H i, γi⟩ ∶ A→ A′i, i ∈ I, be

a collection of subdirect intersection morphisms, with A′i ∈ M, for all i ∈ I.
Since, then, A′i ∈ N, for all i ∈ I, the same collection of morphisms witnesses

that A ∈
⊲

IΠ(N). Therefore,
⊲

IΠ is also monotone.

Finally, assume that A ∈
⊲

IΠ( ⊲IΠ(M)), where M ⊆MatFam(F). Thus, there
exists a collection of subdirect intersection morphisms

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

where Ai ∈
⊲

IΠ(M), for all i ∈ I. It now follows that, for each i ∈ I, there exists
a collection of subdirect intersection morphisms

⟨H ij, γij⟩ ∶ Ai → Aij , j ∈ Ji,

where Aij ∈M, for all i ∈ I and all j ∈ Ji. We look at the collection

⟨H ij, γij⟩ ○ ⟨H i, γi⟩ ∶ A→ Aij , i ∈ I, j ∈ Ji,

with Aij ∈M, for all i ∈ I, j ∈ Ji. We have

• For filter family intersections,

⋂i∈I ⋂j∈Ji(γi)−1((γij)−1(T ij)) = ⋂i∈I(γi)−1(⋂j∈Ji(γij)−1(T ij))
= ⋂i∈I(γi)−1(T i)
= T.

• Similarly, for kernels,

⋂i∈I ⋂j∈Ji Ker(⟨H ij, γij⟩ ○ ⟨H i, γi⟩)
= ⋂i∈I ⋂j∈Ji(γi)−1((γij)−1(∆Aij))
= ⋂i∈I(γi)−1(⋂j∈Ji Ker(⟨H ij , γij⟩))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
=∆A.



Voutsadakis CHAPTER 24. SPECIAL TOPICS 1455

Therefore, ⟨H ij, γij⟩ ○ ⟨H i, γi⟩, i ∈ I, j ∈ Ji, is also a collection of subdirect

intersection morphisms, and, hence A ∈
⊲

IΠ(M). We conclude that
⊲

IΠ is also
idempotent. ∎

In general, given a class M of reduced F-matrix families, its closures under

both operators IΠ and M−1∗ are included in its closure under
⊲

IΠ.

Proposition 1801 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M

a class of reduced F-matrix families. Then

IΠ(M) ⊆ ⊲IΠ(M) and M−1∗(M) ⊆ ⊲IΠ(M).
Proof: Assume, first, that A = ⟨A, T ⟩ ∈ IΠ(M). Thus, there exists a collection
Ai = ⟨A, T i⟩ ∈M, such that

T =⋂
i∈I

T i.

Consider the family of surjective morphisms

⟨I, ι⟩ ∶ ⟨A, T ⟩→ ⟨A, T i⟩, i ∈ I.

We have

• T = ⋂i∈I T
i = ⋂i∈I ι

−1(T i), by hypothesis;

• ⋂i∈I Ker(⟨I, ι⟩) = ⋂i∈I ∆A = ∆A.

Therefore, since Ai ∈M, for all i ∈ I, A ∈
⊲

IΠ(M).
Assume, next, that A∗ = ⟨A/ΩA(T ), T /ΩA(T )⟩ ∈M−1∗(M), where ⟨H,γ⟩ ∶

A → A′ is a strict surjective morphism, with A′ = ⟨A′, T ′⟩ ∈ M. Since M ⊆
MatFam∗(F), there exists a factorization

A
⟨H,γ⟩ ✲ A′

❩
❩
❩
❩
❩⟨I, π⟩ ⑦ ❂✚

✚
✚
✚
✚

⟨H,γ∗⟩
A∗

Moreover, we have

• π−1(γ∗−1(T ′)) = γ−1(T ′) = T , whence γ∗−1(T ′) = T /ΩA(T );
• Ker(⟨H,γ∗⟩) = ∆A

∗
holds, since, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈

SEN(Σ),
⟨φ,ψ⟩ ∈ KerΣ(⟨H,γ∗⟩) iff γ∗Σ(φ/ΩAΣ(T )) = γ∗Σ(ψ/ΩAΣ(T ))

iff γΣ(φ) = γΣ(ψ)
iff ⟨φ,ψ⟩ ∈ γ−1Σ (ΩA′H(Σ)(T ′))
iff ⟨φ,ψ⟩ ∈ ΩAΣ(γ−1(T ′))
iff ⟨φ,ψ⟩ ∈ ΩAΣ(T ).
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Therefore, A∗ ∈
⊲

IΠ(M). ∎

Another useful feature of the operator
⊲

IΠ is that among model classes of
matrix families, it characterizes those that are protoclasses.

Theorem 1802 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M =
MatFam∗(I) a class of reduced F-matrix families. Then M is a protoclass if

and only if
⊲

IΠ(M) ⊆M.

Proof: Suppose, first, that M =MatFam∗(I), with I protoalgebraic and let⟨H i, γi⟩ ∶ A → A′i, i ∈ I, be a collection of subdirect intersection morphisms.
Then, clearly,

A ∈ IΠM−1(M) (Definition of
⊲

IΠ)
⊆ IΠM−1(MatFam∗(I)) (Lemmas 1781 and 1782)
⊆ MatFam(I). (Proposition 1783)

It suffices now to show that A is reduced. We have

ΩA(T ) = ΩA(⋂i∈I(γi)−1(T ′i)) (Subdirect Intersection)
= ⋂i∈I ΩA((γi)−1(T ′i)) (I protoalgebraic)

= ⋂i∈I(γi)−1(ΩA′i(T ′i)) (⟨H i, γi⟩ surjective)
= ⋂i∈I(γi)−1(∆A′i) (A′i reduced)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A. (Subdirect Intersection)

Since A ∈MatFam(I) and A is reduced, we conclude that A ∈MatFam∗(I).
So

⊲

IΠ(MatFam∗(I)) ⊆MatFam∗(I).
Suppose, conversely, that

⊲

IΠ(MatFam∗(I)) ⊆MatFam∗(I) and let T,T ′ ∈
ThFam(I), with T ≤ T ′. We set

F ∶= ⟨F/(Ω(T ) ∩Ω(T ′)), (T ∩ T ′)/(Ω(T ) ∩Ω(T ′))⟩
and consider the surjective natural projection morphisms

⟨I, π⟩ ∶ F→ ⟨F/Ω(T ), T /Ω(T )⟩⟨I, π′⟩ ∶ F→ ⟨F/Ω(T ′), T ′/Ω(T ′)⟩.
We observe that

• As far as filter families, we have

(T ∩ T ′)/(Ω(T ) ∩Ω(T ′))
= T /(Ω(T ) ∩Ω(T ′)) ∩ T ′/(Ω(T ) ∩Ω(T ′))
= π−1(T /Ω(T ′)) ∩ π′−1(T ′/Ω(T ′));
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• As far as kernels, we get

Ker(⟨I, π⟩) ∩Ker(⟨I, π′⟩)
= Ω(T )/(Ω(T ) ∩Ω(T ′)) ∩Ω(T ′)/(Ω(T ) ∩Ω(T ′))
= (Ω(T ) ∩Ω(T ′))/(Ω(T ) ∩Ω(T ′)) =∆F.

Therefore,

F ∈
⊲

IΠ(MatFam∗(I)) ⊆MatFam∗(I).
Hence Ω(T ) = Ω(T ∩ T ′) = Ω(T ) ∩Ω(T ′), which implies that Ω(T ) ≤ Ω(T ′).
Thus, Ω is monotone on theory families and, hence, I is protoalgebraic. ∎

Finally, we work to obtain expressions for the protoclass MatFam∗(I)
based on a reduced class M of generating F-matrix families for I .

We show, first, that if M is a class of reduced models of a protoalgebraic

π-institution, then its closure under
⊲

IΠ is included in its closure under
←Ð
IΠ
∗

.

Proposition 1803 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a protoalgebraic π-institution based on F and M ⊆ MatFam∗(I) a
class of reduced I-matrix families. Then

⊲

IΠ(M) ⊆←ÐIΠ∗(M).
Proof: Let A = ⟨A, T ⟩ ∈ ⊲IΠ(M). Then, there exists a collection of subdirect
intersection morphisms

⟨H i, γi⟩ ∶ ⟨A, T ⟩→ ⟨A′i, T ′i⟩, i ∈ I,

where A′i = ⟨A′i, T ′i⟩ ∈M, for all i ∈ I. By using the same morphisms,

⟨H i, γi⟩ ∶ ⟨A, (γi)−1(T ′i)⟩→ A′i, i ∈ I,

which have now become strict and surjective, we get that, for all i ∈ I,⟨A, (γi)−1(T ′i)⟩ ∈M−1(M). Moreover, since, by the definition of a subdirect
intersection, A = ⟨A, T ⟩ = ⟨A,⋂i∈I(γi)−1(T ′i)⟩, we get that A ∈ IΠM−1(M).
Now, by Theorem 1802, A is reduced, whence A ∈ (IΠM−1(M))∗ = ←ÐIΠ∗(M).
∎

Next, it is shown that, if M is a class of reduced models of a protoalgebraic

π-institution, then its closure under
←Ð
IΠ
∗

is included in its closure under the

operator
⊲

IΠM−1∗.

Proposition 1804 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a protoalgebraic π-institution based on F and M ⊆ MatFam∗(I) a
class of reduced I-matrix families. Then

←Ð
IΠ
∗(M) ⊆ ⊲IΠM−1∗(M).
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Proof: Suppose that M ⊆ MatFam∗(I), for a protoalgebraic π-institution

I = ⟨F,C⟩ and let A∗ = ⟨A/ΩA(T ), T /ΩA(T )⟩ ∈ ←ÐIΠ∗(M), where A = ⟨A, T ⟩ =⟨A,⋂i∈I T
i⟩ is such that there exist strict surjective morphisms

⟨H i, γi⟩ ∶ ⟨A, T i⟩→ ⟨A′i, T ′i⟩, i ∈ I,

with A′i = ⟨A′i, T ′i⟩ ∈M, for all i ∈ I. The key now is to look at the collection
of the projection morphisms

⟨I, πi⟩ ∶ A∗ → ⟨A/ΩA(T i), T i/ΩA(T i)⟩, i ∈ I,

where, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
πiΣ(φ/ΩAΣ(⋂

i∈I

T i)) = φ/ΩAΣ(T i).
Since ⟨H i, γi⟩ is strict and surjective, we have that ⟨A, T i⟩ ∈ M−1(M), for
all i ∈ I. Thus, ⟨A/ΩA(T i), T i/ΩA(T i)⟩ ∈M−1∗(M). Therefore, to complete
the proof, it suffices to show that the collection ⟨I, πi⟩, i ∈ I, constitutes a
collection of subdirect intersection morphisms. This is not difficult to verify.
We have

• ⋂i∈I(πi)−1(T i/ΩA(T i)) = ⋂i∈I T
i/ΩA(⋂i∈I T

i) = (⋂i∈I T
i)/ΩA(⋂i∈I T

i);
• For kernels,

⋂i∈I Ker(⟨I, πi⟩) = ⋂i∈I ΩA(T i)/ΩA(⋂i∈I T
i)

= ΩA(⋂i∈I T
i)/ΩA(⋂i∈I T

i) (I protoalgebraic)

= ∆A/Ω
A(⋂i∈I T

i).

Now we have A∗ ∈
⊲

IΠM−1(M). ∎

We are now able to obtain, under protoalgebraicity, some equivalent ex-

pressions for the operator
←Ð
IΠ
∗

, which, based on Theorem 1798, will allow us
to provide characterizations for the class MatFam∗(I), in case I is protoal-
gebraic.

Theorem 1805 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M ⊆
MatFam∗(I), for a protoalgebraic π-institution I = ⟨F,C⟩ based on F. Then

⊲

IΠ(M) =←ÐIΠ∗(M) = ⊲IΠM−1∗(M).
Proof: Suppose M ⊆ MatFam∗(I), for a protoalgebraic π-institution I =⟨F,C⟩. Then, we have

⊲

IΠ(M) ⊆ ←ÐIΠ∗(M) (Proposition 1803)

⊆
⊲

IΠM−1∗(M) (Proposition 1804)

⊆
⊲

IΠ( ⊲IΠ(M)) (Proposition 1801)

=
⊲

IΠ(M). (Lemma 1800)
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The conclusion follows. ∎

Finally, we get the following characterization of MatFam∗(IM) in terms
of closure operators on M, under the hypothesis that M is a subclass of a
protoclass of F-matrix families.

Theorem 1806 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M ⊆
MatFam∗(I), for a protoalgebraic π-institution I = ⟨F,C⟩ based on F. Then

MatFam∗(IM) =M ⊲

IΠ(M).
Proof: Suppose M ⊆ MatFam∗(I), for a protoalgebraic π-institution I =⟨F,C⟩. Then,

MatFam∗(IM) = M
←Ð
IΠ
∗(M) (Theorem 1798)

= M
⊲

IΠ(M). (Theorem 1805)

∎

24.5 Irreducibility

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system
and A = ⟨A,X⟩ ∈MatFam(I).

An I-filter family T ∈ FiFamI(A) is completely meet irreducible in
FiFamI(A) if, for all {T i ∶ i ∈ I} ⊆ FiFamI(A),

T =⋂
i∈I

T i implies T = T i, for some i ∈ I.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Ai = ⟨Ai, ⟨F i, αi⟩⟩,
i ∈ I, a collection of F-algebraic systems and Ai = ⟨Ai, T i⟩ a collection of
F-matrix families. Recall that an F-matrix family A = ⟨A, T ⟩, with A =⟨A, ⟨F,α⟩⟩, is a subdirect intersection of the collection Ai, i ∈ I, if there
exist surjective morphisms

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

such that T = ⋂i∈I(γi)−1(T i) and ⋂i∈I Ker(⟨H i, γi⟩) = ∆A. This subdirect
intersection is called a special subdirect intersection if H i ∶ Sign → Signi

is an isomorphism, for all i ∈ I.
It turns out that F-matrix families are representable as subdirect inter-

sections if and only they are representable as special subdirect intersections.
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Proposition 1807 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system and A = ⟨A, T ⟩
an F-matrix family. Then ⟨H i, γi⟩ ∶ A→ A′i, i ∈ I, is a collection of subdirect
intersection morphisms if and only if

⟨I, πi⟩ ∶ A→ ⟨A/Ker(⟨H i, γi⟩), (γi)−1(T ′i)/Ker(⟨H i, γi⟩)⟩, i ∈ I,

is a collection of special subdirect intersection morphisms.

Proof: Suppose, first, that ⟨H i, γi⟩ ∶ A→ A′i, i ∈ I, is a sibdirect intersection
representation of A. For convenience, denote θi = Ker(⟨H i, γi⟩), i ∈ I. Note
that there exist algebraic system morphisms ⟨H i, γ̂i⟩ ∶ Aθi → A′i, such that

A
⟨H i, γi⟩ ✲ A′i

❩
❩
❩
❩
❩⟨I, πi⟩ ⑦ ✚

✚
✚
✚
✚

⟨H i, γ̂i⟩
❃

Aθi

⟨H i, γi⟩ = ⟨H i, γ̂i⟩ ○ ⟨I, πi⟩,
where ⟨I, πi⟩ ∶ A → Aθi, i ∈ I, are the quotient morphisms. Moreover, these
morphisms are well-defined F-matrix family morphisms, since, for all i ∈ I, we
have, on the one hand, T ≤ (γi)−1(T ′i) = (πi)−1((γi)−1(T ′i)/θi), and, on the
other, (πi)−1((γi)−1(T ′i)/θi) = (γi)−1(T ′i) = (πi)−1((γ̂i)−1(T ′i)) and, hence,
by the surjectivity of ⟨I, πi⟩, (γi)−1(T ′i)/θi = (γ̂i)−1(T ′i). Now we compute:

• For the filter families:

⋂i∈I(πi)−1((γi)−1(T ′i)/θi)
= ⋂i∈I(πi)−1(πi((γi)−1(T ′i)))
= ⋂i∈I(γi)−1(T ′i)

(θi compatible with (γi)−1(T ′i))
= T. (by hypothesis)

• For the kernels

⋂i∈I Ker(⟨I, πi⟩) = ⋂i∈I θ
i

= ∆A. (by hypothesis)

Therefore,

⟨I, πi⟩ ∶ A→ ⟨A/Ker(⟨H i, γi⟩), (γi)−1(T ′i)/Ker(⟨H i, γi⟩)⟩, i ∈ I,

is a collection of special subdirect intersection morphisms. ∎

Special subdirect intersections of reduced matrix families have a char-
acterization similar to the one applicable for subdirect products of reduced
matriced.
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Proposition 1808 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨A, ⟨F,α⟩ be an F-algebraic system and A = ⟨A, T ⟩ an F-matrix family. A

is a special subdirect intersection of the system {A′i = ⟨A′i, T ′i⟩ ∶ i ∈ I} of
reduced F-matrix families if and only if, there exists a corresponding system
of sentence families {T i ∶ i ∈ I} ⊆ SenFam(A), such that:

(i) ⋂i∈I T
i = T ;

(ii) A/T i ≅ A′i, for all i ∈ I.

Proof: Suppose, first, that ⟨H i, γi⟩ ∶ A → A′i, i ∈ I, is a collection of special
subdirect intersection morphisms. Define T i = (γi)−1(T ′i), i ∈ I. Then, we
have

• ⋂i∈I T
i = ⋂i∈I(γi)−1(T ′i) = T ;

• Noting that

ΩA(T i) = ΩA((γi)−1(T ′i)) (definition of T i)
= (γi)−1(ΩA′i(T ′i)) (Proposition 24)

= (γi)−1(∆A′i) (A′i reduced)
= Ker(⟨H i, γi⟩), (set theory)

we obtain

A/T i = ⟨A/ΩA(T i), T i/ΩA(T i)⟩
= ⟨A/Ker(⟨H i, γi⟩), (γi)−1(T ′i)/Ker(⟨H i, γi⟩)⟩
≅ A′i,

where the last isomorphism is established by the morphism ⟨H i, γ̂i⟩ ∶
A/Ker(⟨H i, γi⟩)→ A′i, given in Proposition 1807.

Thus, (i) and (ii) of the statement hold.
Assume, conversely, that there exists a system {T i ∶ i ∈ I} ⊆ SenFam(A)

satisfying (i) and (ii). Consider ⟨I, πi⟩ ∶ A → A/ΩA(T i), i ∈ I. This forms a
well-defined system of F-matrix family morphisms

⟨I, πi⟩ ∶ A→ A/T i, i ∈ I.

Since, by hypothesis, A/T i ≅ A′i, for all i ∈ I, it suffices to show that the
above system of morphisms constitutes a subdirect intersection. We indeed
have

• ⋂i∈I(πi)−1(T i/ΩA(T i)) = ⋂i∈I T
i = T ;

• ⋂i∈I Ker(⟨I, πi⟩) = ⋂i∈I ΩA(T i) ≤ ΩA(⋂i∈I T
i) = ΩA(T ) =∆A.
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So {⟨I, πi⟩ ∶ A → A/T i ∶ i ∈ I} is a system of special subdirect intersection
morphisms. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M a class of reduced
F-matrix families and A = ⟨A, T ⟩ ∈M, with A = ⟨A, ⟨F,α⟩⟩.

The F-matrix family A ∈ M is called subdirectly irreducible relative
to M if, for every subdirect intersection

⟨H i, γi⟩ ∶ A→ A′i, i ∈ I,

with A′i ∈M, for all i ∈ I, there exists i ∈ I, such that

(i) T = (γi)−1(T ′i) and

(ii) Ker(⟨H i, γi⟩) =∆A.

We write M§ for the class of all relatively subdirectly irreducible members of
M.

If I = ⟨F,C⟩ is a π-institution based on F and M = MatFam∗(I) is the
class of all reduced I-matrix families, then a subdirectly irreducible A relative
to M is also called subdirectly irreducible relative to I .

It turns out that relative subdirect irreducibility and complete meet ir-
reducibility have a close relationship. To detail the relationship, we need an
additional operator on classes of F-matrix families.

Proposition 1809 Let F = ⟨Sign♭,SEN♭, IN♭⟩ be an algebraic system and M

a class of reduced F-matrix families closed under reduced inverse morphic
images, i.e., such that M−1∗(M) ⊆M. Then an F-matrix family A = ⟨A, T ⟩ ∈
M is subdirectly irreducible relative to M if and only if T is completely meet
irreducible in X = {X ∈ SenFam(A) ∶ A/X ∈M}.
Proof: Suppose, first, that A = ⟨A, T ⟩ ∈ M§ and let {X i ∶ i ∈ I} ⊆ X , such
that T = ⋂i∈IX

i. Then, by Proposition 1807,

⟨I, πi⟩ ∶ A→ A/X i, i ∈ I,

constitutes a special subdirect intersection. Moreover, since X i ∈ X , for all
i ∈ I, we have that A/X i ∈M, for all i ∈ I. By hypothesis, there exists an i ∈ I,
such that T = (πi)−1(X i/ΩA(X i)) = X i. We conclude that T is completely
meet irreducible in X .

Assume, conversely, that T is completely meet irreducible in X and let

⟨H i, γi⟩ ∶ A→ A′i, i ∈ I,

be a system of subdirect intersection morphisms, with A′i ∈ M, for all i ∈ I.
By Proposition 1807,

⟨I, πi⟩ ∶ A→ A/(γi)−1(T ′i), i ∈ I,
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is a collection of special subdirect intersection morphisms. Moreover, ⟨H i, γ̂i⟩ ∶
A/(γi)−1(T ′i) → A′i, i ∈ I, are strict surjective morphisms and A/(γi)−1(T ′i)
is reduced. Thus, since A′i ∈ M, for all i ∈ I and M−1∗(M) ⊆ M, we get
that A/(γi)−1(T ′i) ∈ M, for all i ∈ I. This shows that (γi)−1(T ′i) ∈ X , for
all i ∈ I. But, by the subdirect intersection property, T = ⋂i∈I(γi)−1(T ′i),
whence, by hypothesis, there exists i ∈ I, such that T = (γi)−1(T ′i). More-
over, Ker(⟨H i, γi⟩) = (γi)−1(∆A′i) = (γi)−1(ΩA′i(T ′i)) = ΩA((γi)−1(T ′i)) =
ΩA(T ) =∆A. Therefore, A is subdirectly irreducible relative to M. ∎



1464 CHAPTER 24. SPECIAL TOPICS Voutsadakis


