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26.1 Gentzen π-Institutions Revisited

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,SEN,N⟩ be an
N ♭-algebraic system, Σ ∈ ∣Sign∣ and m,n ∈ ω. An ⟨m,n⟩-Σ-sequent of A is
an expression

φ0, . . . , φm−1 ⊳Σ ψ0, . . . , ψn−1,

abbreviated φ⃗ ⊳Σ ψ⃗, consisting of two finite (possibly empty) sequences φ⃗, ψ⃗ ∈
SEN(Σ). A ⟨0, n⟩-Σ-sequent ∅ ⊳Σ ψ⃗ is abbreviated ⊳Σ ψ⃗.

Given Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and an ⟨m,n⟩-Σ-sequent φ⃗ ⊳Σ ψ⃗, we
write

SEN(f)(φ⃗ ⊳Σ ψ⃗) ∶= SEN(f)(φ⃗) ⊳Σ′ SEN(f)(ψ⃗),
where, as usual,

SEN(f)(φ⃗) ∶= ⟨SEN(f)(φ0), . . . ,SEN(f)(φm−1)⟩,
SEN(f)(ψ⃗) ∶= ⟨SEN(f)(ψ0), . . . ,SEN(f)(ψn−1)⟩.

Sometimes, we denote a Σ-sequent by φ ∶= φ⃗0 ⊳Σ φ⃗1 and a set of Σ-sequents
by Φ. The notation for images under morphisms is then extended to sets of
Σ-sequents by writing

SEN(f)(Φ) = {SEN(f)(φ) ∶ φ ∈ Φ}.
A trace tr is a nonempty subset of ω × ω. An ⟨m,n⟩-Σ-sequent is a tr-Σ-
sequent if ⟨m,n⟩ ∈ tr. The collection of all tr-Σ-sequents of A is denoted by
Seqtr

Σ(A) and we set

Seqtr(A) = {Seqtr
Σ(A)}Σ∈∣Sign∣.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and tr be a given trace.
A Gentzen π-institution G = ⟨F,G⟩ of trace tr based on F consists of a
closure system

G ∶ PSeqtr(F)→ PSeqtr(F),
i.e., a collection of closure operators

GΣ ∶ PSeqtr
Σ(F)→ PSeqtr

Σ(F), Σ ∈ ∣Sign♭∣,
that also satisfy structurality, that is, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,
Σ′), and all Φ ⊆ Seqtr

Σ(F),
SEN(f)(GΣ(Φ)) ⊆ GΣ′(SEN(f)(Φ)).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G = ⟨F,G⟩
a Gentzen π-institution of trace tr based on F. If, for some Σ ∈ ∣Sign♭∣,
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Φ ∪ {φ} ⊆ Seqtr
Σ(F), such that φ ∈ GΣ(Φ), we say that ⟨Φ,φ⟩ is a Σ-rule of

G or a Σ-derivable rule of G, sometimes denoted

Φ

φ
.

A Σ-rule of form ⟨∅,φ⟩ is called a Σ-derivable sequent or a Σ-theorem
of G.

G is inconsistent if all elements in Seqtr(F) are derivable sequents in G.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and Gi =⟨F,Gi⟩, i ∈ I, a collection of Gentzen π-institutions, all of trace tr, based on

F. Then

⋂
i∈I

Gi = ⟨F,⋂
i∈I

Gi⟩,
defined, by setting, for all Σ ∈ ∣Sign♭∣, Φ ⊆ Seqtr

Σ(F),
(⋂
i∈I

Gi)Σ(Φ) =⋂
i∈I

Gi
Σ(Φ),

is also a Gentzen π-institution.
Therefore, given a family X = {XΣ}Σ∈∣Sign♭∣ of rules, there is a smallest

Gentzen π-institution GX = ⟨F,GX⟩, such that, for all Σ ∈ ∣Sign♭∣ and all⟨Φ,φ⟩ ∈ XΣ,
φ ∈ GX

Σ(Φ).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a

Gentzen π-institution based on F, with ⟨0,1⟩ ∈ tr. Consider

G0 ∶ PSEN → PSEN

defined, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ G0
Σ(Φ) iff ⊳Σ φ ∈ GΣ({⊳Σ ψ ∶ ψ ∈ Φ}).

Lemma 1878 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G =⟨F,G⟩ a Gentzen π-institution based on F, with ⟨0,1⟩ ∈ tr. G0 ∶ PSEN♭ →
PSEN♭ is a closure system on F.

Proof: Suppose, first, that Σ ∈ ∣Sign♭∣, Φ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Φ.
Then, by the inflationarity of G, ⊳Σ φ ∈ GΣ({⊳Σ ψ ∶ ψ ∈ Φ}) and, hence,
by definition of G0, φ ∈ G0

Σ(Φ). Suppose, next, that Σ ∈ ∣Sign♭∣, Φ ∪ Ψ ⊆
SEN♭(Σ), such that Φ ⊆ Ψ. Then, by monotonicity ofG, GΣ({⊳Σ φ ∶ φ ∈ Φ}) ⊆
GΣ({⊳Σ ψ ∶ ψ ∈ Ψ}), whence, by the definition of G0, G0

Σ(Φ) ⊆ G0
Σ(Ψ). Now

assume that Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ G0
Σ(G0

Σ(Φ)).
Then, taking into account the idempotency of G, we get

⊳Σ φ ∈ GΣ({⊳Σ ψ ∶ ψ ∈ G0
Σ(Φ)})

⊆ GΣ(GΣ({⊳Σ φ ∶ φ ∈ Φ}))
⊆ GΣ({⊳Σ φ ∶ φ ∈ Φ}),
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whence φ ∈ G0
Σ(Φ). Finally, the structurality property of G0 follows directly

by the structurality property of G. ∎

According to Lemma 1878, the structure G0 = ⟨F,G0⟩ is a π-institution,
called the π-institution reduct of the Gentzen π-institution G.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic systems. Recall the closure system CK ∶ P(SEN♭)2 → P(SEN♭)2
defined, by setting, for all Σ ∈ ∣Sign♭∣ and all E ∪ {φ ≈ ψ} ⊆ SEN♭(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff for all A ∈ K,Σ′ ∈ ∣Sign♭∣, f ∈ Sign(Σ,Σ′),

αΣ′(SEN♭(f)(E)) ⊆ ∆A
F (Σ′)

implies αΣ′(SEN♭(f)(φ)) = αΣ′(SEN♭(f)(ψ)).
The π-institution IK = ⟨F,CK⟩ was called the equational π-institution
associated with the class K. This π-institution may be recast as a Gentzen
π-institution of trace {⟨1,1⟩}. More precisely, we define the Gentzen π-
institution GK = ⟨F,GK⟩ by setting, for all Σ ∈ ∣Sign♭∣ and all {φi, ψi ∶ i ∈
I} ∪ {φ,ψ} ⊆ SEN♭(Σ),

φ ⊳Σ ψ ∈ GK
Σ({φi ⊳Σ ψi ∶ i ∈ I}) iff φ ≈ ψ ∈ CK

Σ({φi ≈ ψi ∶ i ∈ I}).
We call GK the Gentzen π-institution associated with the class K.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I may also be recast as a Gentzen π-institution of
trace {⟨0,1⟩}. More precisely, given Σ ∈ ∣Sign♭∣ and Φ ⊆ SEN♭(Σ), denote by

⊳Σ Φ = {⊳Σ φ ∶ φ ∈ Φ}
and, similarly, given T = {TΣ}Σ∈∣Sign♭∣ ∈ SenFam(F), let

⊳ T = {⊳Σ TΣ}Σ∈∣Sign♭∣.
We define GI = ⟨F,GI⟩ by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆
SEN♭(Σ),

⊳Σ φ ∈ GIΣ(⊳Σ Φ) iff φ ∈ CΣ(Φ).
We call GI the Hilbert π-institution associated with I . In this termi-
nology, a Hilbert π-institution is a Gentzen π-institution of trace {⟨0,1⟩}.

Given a Gentzen π-institution G = ⟨F,G⟩ of trace tr, such that ⟨0,1⟩ ∈ tr,
we call the Hilbert π-institution GG

0

associated with the π-institution reduct
G0 of G the Hilbert π-institution reduct of G and we denote it by G0 =⟨F,G0⟩ (note the overloading of notation for G0, used both for the closure
system of the π-institution G0 and for the closure system of GG

0

; hopefully,
this will not result into any confusion, since it should be resolvable based on
context).
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26.2 Equivalence of Gentzen π-Institutions

Let F = ⟨Sign,SEN,N⟩, F′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and tr,
tr′ be traces. A tr-tr′-translation is a collection of functions

α = {αm,n ∶ ⟨m,n⟩ ∈ tr},
where, for all ⟨m,n⟩ ∈ tr,

αm,n = {αm,nΣ }Σ∈∣Sign∣
is such that, for all Σ ∈ ∣Sign∣,

α
m,n
Σ ∶ SEN(Σ)m,n → P(Seqtr′

Σ (F′))
assigns to each ⟨m,n⟩-Σ-sequent φ⃗ ⊳Σ ψ⃗ of F a set of tr′-Σ-sequents of F′

α
m,n
Σ [φ⃗; ψ⃗].

We extend the notation in a natural way in order to write expressions more
concisely. Thus, given Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ Seqtr

Σ(F), we set

αΣ[φ] = αΣ[φ⃗; ψ⃗],
if φ = φ⃗ ⊳Σ ψ⃗, and

αΣ[Φ] =⋃{αm,nΣ [φ] ∶ φ ∈Φm,n, ⟨m,n⟩ ∈ tr}.
Finally, if Φ = {ΦΣ}Σ∈∣Sign∣ ≤ Seqtr(F), we set

α[Φ] =⋃{αΣ[ΦΣ] ∶ Σ ∈ ∣Sign∣}.
Even though we defined translations in a very general way, we will deal

almost exclusively with a special kind of translation, called a transformation.
To introduce those, we fix F = ⟨Sign♭,SEN♭,N ♭⟩ and two traces tr and tr′.
A tr-tr′-translation α = {αm,n ∶ ⟨m,n⟩ ∈ tr} is called a tr-tr′-transformation
if there exists a family

τ = {τm,n ∶ ⟨m,n⟩ ∈ tr},
such that, for all ⟨m,n⟩ ∈ tr,

τm,n ∶ SENω →⋃{SENk+ℓ ∶ ⟨k, ℓ⟩ ∈ tr′}
is a collection of natural transformations in N ♭, with m + n distinguished
arguments, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ⊳Σ ψ⃗ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
αm,nΣ [φ⃗; ψ⃗] = τm,nΣ [φ⃗; ψ⃗],
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where, we let τm,nΣ [φ⃗; ψ⃗] be defined, for all Σ′ ∈ ∣Sign♭∣, by

τm,nΣ [φ⃗; ψ⃗] = ⋃{τm,nΣ (φ⃗, ψ⃗, χ⃗) ∶ χ⃗′ ∈ SEN♭(Σ)}.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr and tr′ two traces

and G = ⟨F,G⟩ and G′ = ⟨F,G′⟩ two Gentzen π-institutions of traces tr and
tr′, respectively, both based on F. A tr-tr′-transformation τ is an inter-
pretation from G to G′, written τ ∶ G → G′ if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GΣ(Φ) iff τΣ[φ] ⊆ G′Σ(τΣ[Φ]).

The two π-institutions G and G′ are equivalent if there exist a tr-tr′-
transformation τ and a tr′-tr-transformation ρ, such that:

• τ ∶ G→G′ is an interpretation;

• ρ ∶ G′ →G is an interpretation;

• for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F),

GΣ(φ) = GΣ(ρΣ[τΣ[φ]]);
• for all Σ ∈ ∣Sign♭∣ and all φ′ ∈ Seqtr′

Σ (F),
G′Σ(φ′) = G′Σ(τΣ[ρΣ[φ′]]).

In this case the pair (τ, ρ) is called a conjugate pair of transformations and
denoted by (τ, ρ) ∶ G⇄ G′.

As in Lemma 889, it suffices to check only the first and last conditions,
or, equivalently, the middle two conditions to ensure that two Gentzen π-
institutions are equivalent.

Lemma 1879 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

be traces, G = ⟨F,G⟩, G′ = ⟨F,G′⟩ two Gentzen π-institutions of traces
tr, tr′, respectively, based on F, τ a tr-tr′-transformation and ρ a tr′-tr-
transformation. The following are equivalent:

(i) τ ∶ G → G′ is an interpretation and, for all Σ ∈ ∣Sign♭∣, φ′ ∈ Seqtr′

Σ (F),
G′Σ(φ′) = G′Σ(τΣ[ρΣ[φ′]]);

(ii) ρ ∶ G′ → G is an interpretation and, for all Σ ∈ ∣Sign♭∣, φ ∈ Seqtr
Σ(F),

GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).
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Proof: Similar to the proof of Lemma 889. Suppose that the conditions in
(i) hold. Then, for all Σ ∈ ∣Sign♭∣ and all Φ′ ∪ {φ′} ⊆ Seqtr′

Σ (F), we have

φ′ ∈ G′Σ(Φ′) iff τΣ[ρΣ[φ′]] ⊆ G′Σ(τΣ[ρΣ[Φ′]])
iff ρΣ[φ′] ⊆ GΣ(ρΣ[Φ′]).

Hence, ρ ∶ G′ → G is also an interpretation. Finally, for all Σ ∈ ∣Sign♭∣ and
all φ ∈ Seqtr

Σ(F), we get, for all ψ ∈ Seqtr
Σ(F),

ψ ∈ GΣ(φ) iff τΣ[ψ] ⊆ G′Σ(τΣ[φ])
iff τΣ[ψ] ⊆ GΣ(τΣ[ρΣ[τΣ[φ]]])
iff ψ ∈ GΣ(ρΣ[τΣ[φ]]).

Thus, the second condition of (ii) is also satisfied. Thus (i) implies (ii) holds
and, by symmetry, we conclude that (i) and (ii) are equivalent. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ traces and τ a
tr-tr′-transformation. Define

τ∗ ∶ SenFam(Seqtr′(F)) → SenFam(Seqtr(F))
by setting, for all Φ′ ∈ SenFam(Seqtr′(F)),

τ∗(Φ′) = {τ∗Σ(Φ′)}Σ∈∣Sign♭∣
be given, for all Σ ∈ ∣Sign♭∣, by

τ∗Σ(Φ′) = {φ ∈ Seqtr
Σ(F) ∶ τΣ[φ] ⊆ Φ′Σ}.

Analogously to Theorem 893, we can show that, if G and G′ are equiv-
alent Gentzen π-institutions via a conjugate pair (τ, ρ) ∶ G ⇄ G′, then
ρ∗ ∶ ThFam(G) → ThFam(G′) and τ∗ ∶ ThFam(G′) → ThFam(G) form
a pair of mutually inverse order isomorphisms between the complete lattices
of the corresponding theory families.

Theorem 1880 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces, G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′, re-
spectively, and (τ, ρ) ∶ G⇄ G′ a conjugate pair of transformations. Then

ρ∗ ∶ ThFam(G)→ ThFam(G′) and τ∗ ∶ ThFam(G′)→ ThFam(G)
are mutually inverse order isomorphisms.

Proof: Similar to the proof of Theorem 893. Let T ∈ ThFam(G). Then, for
all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F), we get

φ ∈ τ∗Σ(ρ∗(T )) iff τΣ[φ] ⊆ ρ∗Σ(T )
iff ρΣ[τΣ[φ]] ⊆ T Σ

iff φ ∈ T Σ.
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Thus, τ∗(ρ∗(T )) = T . By symmetry, for all T ′ ∈ ThFam(G′), ρ∗(τ∗(T ′)) =
T ′. Thus, ρ∗ and τ∗ are mutually inverse bijections and, since they are both
order preserving, they form a pair of mutually inverse order isomorphisms
between ThFam(G) and ThFam(G′). ∎

Conversely, it is true that, under ceratin hypotheses, given mutually in-
verse order isomorphisms between the complete lattices of two Gentzen π-
institutions, one may define a conjugate pair between the two that establishes
the order-isomorphism via the process that was described above.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be traces, and
G = ⟨F,G⟩, G′ = ⟨F,G′⟩ be Gentzen π-institutions of traces tr, tr′, respec-
tively, based on F. Consider an order isomorphism

h ∶ ThFam(G′)→ ThFam(G)
between the corresponding complete lattices of theory families.

Define
Ð→
h = {Ð→h Σ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign∣,

Ð→
h Σ ∶ Seqtr

Σ(F) → P(Seqtr′

Σ (F))
be given, for all φ ∈ Seqtr

Σ(F), by

Ð→
h Σ[φ] = h−1Σ (G(φ)).

Further, define
←Ð
h = {←Ðh Σ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,

←Ð
h Σ ∶ Seqtr′

Σ (F)→ P(Seqtr
Σ(F))

be given, for all φ′ ∈ Seqtr′

Σ (F), by

←Ð
h Σ[φ′] = hΣ(G′(φ′)).

The order isomorphism h ∶ ThFam(G′) → ThFam(G) is called trans-
formational if there exist

• a tr-tr′-translation τ ,

• a tr′-tr-translation ρ,

such that, for all Σ ∈ ∣Sign♭∣, all φ ∈ Seqtr
Σ(F) and all φ′ ∈ Seqtr′

Σ (F),
Ð→
h Σ[φ] = G′Σ(τΣ[φ]) and

←Ð
h Σ[φ′] = GΣ(ρΣ[φ′]),

i.e., by definition of
Ð→
h and

←Ð
h , if and only if, for all Σ ∈ ∣Sign♭∣, all φ ∈

Seqtr
Σ(F) and all φ′ ∈ Seqtr′

Σ (F),
h−1Σ (G(φ)) = G′Σ(τΣ[φ]) and hΣ(G′(φ′)) = GΣ(ρΣ[φ′]).
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Here G(φ) and G′(φ′) denote the theory families of G and G’ generated
by the Σ-sequents φ and φ′, respectively. Since all components of these
theory families other than the Σ-components consist of sets of theorems, we
sometimes write by a slight abuse of notation

h−1Σ (GΣ(φ)) = G′Σ(τΣ[φ]) and hΣ(G′Σ(φ′)) = GΣ(ρΣ[φ′]).
In this case, we say that h is induced by the pair of translations (τ, ρ).

We can show that the properties defining transformationality of an order
isomorphism extend to sets of Σ-sequents.

Lemma 1881 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be
traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If h ∶ ThFam(G′) → ThFam(G) a transforma-
tional order isomorphism induced by the pair (τ, ρ) of translations, then, for
all for all Σ ∈ ∣Sign♭∣, all Φ ⊆ Seqtr

Σ(F) and all Φ′ ⊆ Seqtr′

Σ (F),
h−1Σ (G(Φ)) = G′Σ(τΣ[Φ]) and hΣ(G′(Φ′)) = GΣ(ρΣ[Φ′]).

Proof: Let Σ ∈ ∣Sign♭∣, and Φ ⊆ Seqtr
Σ(F). Then, taking into account that

both ThFam(G) and ThFam(G′) are ordered signature-wise, we have

h−1Σ (G(Φ)) = h−1Σ (⋁φ∈ΦG(φ))
= ⋁φ∈Φ h

−1
Σ (G(φ))

= ⋁φ∈ΦG
′
Σ(τΣ[φ])

= G′Σ(⋃φ∈Φ τΣ[φ])
= G′Σ(τΣ[Φ]).

The second equality holds by symmetry. ∎

Then the following result forms an analog of Theorem 900.

Theorem 1882 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

be traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr,
tr′, respectively, based on F. If h ∶ ThFam(G′) → ThFam(G) a transfor-
mational order isomorphism induced by the pair (τ, ρ) of translations, then(τ, ρ) ∶G ⇄G′ is a conjugate pair of transformations.

Proof: Similar to the proof of Theorem 900. Suppose h ∶ ThFam(G′) →
ThFam(G) is an order isomorphism and let Σ ∈ ∣Sign♭∣ and Φ′ ∪ {φ′} ⊆
Seqtr′

Σ (G′). Then we have

φ′ ∈ G′Σ(Φ′) iff G′Σ(φ′) ⊆ G′Σ(Φ′)
iff hΣ(G′(φ′)) ⊆ hΣ(G′(Φ′))
iff GΣ(ρΣ[φ]) ⊆ GΣ(ρΣ[Φ])
iff ρΣ[φ] ⊆ GΣ(ρΣ[Φ]).
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Thus, ρ ∶ G′ → G is an interpretation. Furthermore, for all Σ ∈ ∣Sign♭∣ and
φ ∈ Seqtr

Σ(F), we have

GΣ(ρΣ[τΣ[φ]]) = hΣ(G′Σ(τΣ[φ]))
= hΣ(h−1Σ (GΣ(φ)))
= GΣ(φ).

We conclude that (τ, ρ) ∶G ⇄G′ is a conjugate pair. ∎

Finally, we show that interpretations compose and the same holds for
equivalences of Gentzen π-institutions.

Lemma 1883 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′, tr′′

be traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩, G′′ = ⟨F,G′′⟩ be Gentzen π-institutions
of traces tr, tr′, tr′′, respectively, based on F.

(a) If τ ∶ G→ G′ and τ ′ ∶ G′ →G′′ are interpretations, then τ ′ ○ τ ∶G →G′′

is also an interpretation;

(b) If (τ, ρ) ∶ G ⇄ G′ and (τ ′, ρ′) ∶ G′ ⇄ G′′ are conjugate pairs, then(τ ′ ○ τ, ρ ○ ρ′) ∶G ⇄G′′ is also a conjugate pair.

Proof:

(a) Suppose τ ∶ G → G′ and τ ′ ∶ G′ → G′′ are interpretations. Then, for all
Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), we get

φ ∈ GΣ(Φ) iff τΣ[φ] ⊆ G′Σ(τΣ[Φ])
iff τ ′Σ[τΣ[φ]] ⊆ G′′Σ(τ ′Σ[τΣ[Φ]]).

hence, τ ′ ○ τ ∶G →G′′ is also an interpretation.

(b) Now suppose that (τ, ρ) ∶ G ⇄ G′ and (τ ′, ρ′) ∶ G′ ⇄ G′′ are conjugate
pairs. Then, by Part (a), τ ′○τ ∶ G→G′′ is an interpretation. Moreover,
for all Σ ∈ ∣Sign♭∣ and all φ′′,ψ′′ ∈ Seqtr′′

Σ (F), we have ψ′′ ∈ G′′Σ(φ′′) if
and only if

ρ′Σ[ψ′′] ⊆ G′Σ(ρ′Σ[φ′′]) = G′Σ(τΣ[ρΣ[ρ′Σ[φ′′]]]).
This holds if and only if

τ ′Σ[ρ′Σ[ψ′′]] ⊆ G′′Σ(τ ′Σ[τΣ[ρΣ[ρ′Σ[φ′′]]]]).
Equivalently,

ψ′′ ∈ G′′Σ(τ ′Σ[τΣ[ρΣ[ρ′Σ[φ′′]]]]).
We conclude that, for all Σ ∈ ∣Sign♭∣ and all φ′′ ∈ Seqtr′′

Σ (F),
G′′Σ(φ′′) = G′′Σ(τ ′Σ[τΣ[ρΣ[ρ′Σ[φ′′]]]]).

Therefore, by Lemma 1879, (τ ′ ○ τ, ρ ○ ρ′) ∶ G ⇄ G′′ is also a conjugate
pair.

∎
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26.3 Hilbertizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a Gentzen
π-institution based on F. G is Hilbertizable if it is equivalent to a Hilbert
π-institution based on F. In other words, G is Hilbertizable if there exists
a Hilbert π-institution H = ⟨F,H⟩, based on F, and a conjugate pair of
transformations (τ, ρ) ∶G ⇄ H.

We have the following proposition that follows directly from the relevant
definitions.

Proposition 1884 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
Hilbertizable if and only if there exist:

(1) A Hilbert π-institution H = ⟨F,H⟩;
(2) A collection ρ ∶ (SEN♭)ω → ⋃⟨m,n⟩∈tr SENm+m in N ♭ with a single distin-

guished argument;

(3) A family τ = {τm,n ∶ ⟨m,n⟩ ∈ tr}, where, for all ⟨m,n⟩ ∈ tr, the collection
τm,n ∶ (SEN♭)ω → SEN in N ♭ has m + n distinguished arguments;

such that, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ Seqtr
Σ(F) and all φ ∈ SEN♭(Σ),

(a) φ ∈ GΣ(Φ) iff τΣ[φ] ⊆HΣ(τΣ[Φ]);
(b) HΣ(φ) = HΣ(τΣ[ρΣ[φ]]);

or, equivalently, such that, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ SEN♭(Σ) and all
φ ∈ Seqtr

Σ(F),
(c) ⊳Σ φ ∈ HΣ(⊳Σ Φ) iff ρΣ[φ] ⊆ GΣ(ρΣ[Φ]);
(d) GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).

Proof: This is a rephrasing of the definition of Hilbertizability using the
conditions establishing an equivalence between two Gentzen π-institutions
and taking into account Lemma 1879. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution and H = ⟨F,H⟩ a Hilbert π-institution both based on F. Define
the {⟨0,1⟩}-tr-transformation ρ0 by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

ρ0Σ[φ] = {⊳Σ φ}.
We say that G and H are simply equivalent if they are equivalent via a
conjugate pair of the form (τ, ρ0) ∶ G ⇄ H. The Gentzen π-institution G is
simply Hilbertizable if it is simply equivalent to some Hilbert π-institution
H = ⟨F,H⟩.
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If G is simply Hilbertizable, it turns out that there is a unique Hilbert
π-institution simply equivalent to G, namely, the Hilbert π-institution reduct
G0 of G.

Proposition 1885 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a Gentzen π-institution based on F. If G is simply Hilbertizable,
then it is simply equivalent to a unique Hilbert π-institution, namely, the
Hilbert π-institution reduct G0 = ⟨F,G0⟩ of G.

Proof: Suppose that G is simply Hilbertizable via the conjugate pair (τ, ρ0) ∶
G → H, with H = ⟨F,H⟩. It suffices to show that H = G0. To this end, let
Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Then we have

⊳Σ φ ∈HΣ(⊳Σ Φ) iff ρ0Σ[φ] ⊆ GΣ(ρ0Σ[Φ]) (by hypothesis)
iff ⊳Σ φ ∈ GΣ(⊳Σ Φ) (definition of ρ0)
iff ⊳Σ φ ∈ G0

Σ(⊳Σ Φ). (definition of G0)

Therefore H = G0, whence it follows that G is simply Hilbertizable via a
simple equivalence involving the Hilbert π-institution reduct G0 of G ∎

We have, further, the following simpler characterization of simple Hilber-
tizability, due to the fact that the interpretation in one of the two directions
is required to be a fixed one.

Proposition 1886 Let F = ⟨Sign♭,SEN♭,N ♭⟩, be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
simply Hilbertizable if and only if there exists a tr-{⟨0,1⟩}-transformation
τ = {τm,n ∶ ⟨m,n⟩ ∈ tr}, such that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F),
GΣ(φ) = GΣ(⊳ τΣ[φ]).

Proof: If G is simply Hilbertizable, then, by Proposition 1885, it is equiv-
alent to the Hilbert π-institution reduct G0 of G via some conjugate pair(τ, ρ0) ∶ G ⇄ G0. Thus, by the definition of equivalence, we get, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F),
GΣ(φ) = GΣ(ρ0Σ[τΣ[φ]])

= GΣ(⊳Σ τΣ[φ]).
Assume, conversely, that there exists a tr-{⟨0,1⟩}-transformation τ , such
that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F), GΣ(φ) = GΣ(⊳ τΣ[φ]). To
show that G is simply Hilbertizable, it suffices, by Proposition 1885 and
Proposition 1884, to show that, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ),

⊳Σ φ ∈ G0
Σ(⊳Σ Φ) iff ⊳Σ φ ∈ GΣ(⊳Σ Φ).

This equivalence, however, holds by the definition of G0. ∎
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26.4 Syntactic WF Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G = ⟨F,G⟩
a Gentzen π-institution of trace tr based on F. G is (syntactically WF)
algebraizable if it is equivalent to the Gentzen π-institution GK = ⟨F,GK⟩
associated with some class K of F-algebraic systems.

Explicitly, using the definition of equivalence, this means that there exists
a class K of F-algebraic systems, a tr-{⟨1,1⟩}-transformation τ and a {⟨1,1⟩}-
tr-transformation ρ, such that, for all Σ ∈ ∣Sign♭∣, all Φ∪{φ} ⊆ Seqtr

Σ(F) and
φ,ψ ∈ SEN♭(Σ),

(a) φ ∈ GΣ(Φ) iff τΣ[φ] ⊆ GK
Σ(τΣ[Φ]);

(b) GK
Σ(φ ⊳Σ ψ) = GK

Σ(τΣ[ρΣ[φ;ψ]]);
or, equivalently, such that, for all Σ ∈ ∣Sign♭∣, all E ∪ {φ ≈ ψ} ⊆ EqΣ(F) and
all φ ∈ Seqtr

Σ(F),
(c) φ ⊳Σ ψ ∈ GK

Σ(E) iff ρΣ[φ;ψ] ⊆ GΣ(ρΣ[E]);
(d) GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).

Recall that, given a class K of F-algebraic systems, we denote by G(K),
the guasivariety of F-algebraic systems generated by K, i.e., the collection of
all F-algebraic systems that satisfy the F-guasiequations that are satisfied
by all A ∈ K.

It turns out that, when a Gentzen π-institution G is algebraizable via
two different classes K and K′ of F-algebraic systems, then both classes K

and K′ generate the same guasivariety and, hence, that there exists a unique
guasivariety of F-algebraic systems that serves as the algebraizing class of
G. This is proven in Proposition 1888, following a needed lemma.

Lemma 1887 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via (τ, ρ) ∶ G ⇄ GK, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr,

ψ ∈ GΣ({φ} ∪⋃{ρΣ[φi;ψi] ∶ i <m + n}).
Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr. By the
definition of an equational Gentzen π-institution, we get

τΣ[ψ] ⊆ GK
Σ(τΣ[φ] ∪ {φi ⊳Σ ψi ∶ i <m + n}).

Thus, since, by the definition of equivalence

GK
Σ(φi ⊳Σ ψi) = GK

Σ(τΣ[ρΣ[φi;ψi]]),
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we get that

τΣ[ψ] ⊆ GK
Σ(τΣ[φ] ∪⋃{τΣ[ρΣ[φi;ψi]] ∶ i <m + n}).

Therefore, since τ is an interpretation,

ψ ∈ GΣ({φ} ∪⋃{ρΣ[φi;ψi] ∶ i <m + n}).
This establishes the conclusion. ∎

Proposition 1888 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via both the conjugate pair (τ, ρ) ∶ G ⇄ GK of transformations
and the conjugate pair (τ ′, ρ′) ∶ G ⇄ GK′ of transformations, then G(K) =
G(K′).
Proof: Suppose that G is algebraizable via both the conjugate pair (τ, ρ) ∶
G ⇄ GK of transformations and the conjugate pair (τ ′, ρ′) ∶ G ⇄ GK′ of
transformations.

We show, first, that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
GΣ(ρΣ[φ;ψ]) = GΣ(ρ′Σ[φ;ψ]).

Note that ρ′Σ[φ;φ] ⊆ GΣ(∅), since φ ⊳Σ φ ∈ GK′

Σ (∅) and ρ′ ∶ GK′ → G is an
interpretation. Moreover, for all σ ∈ ρ′ of trace ⟨m,n⟩ ∈ tr, all i < m + n,all
Σ ∈ ∣Sign♭∣, and all χ⃗ ∈ SEN♭(Σ),

ρΣ[σiΣ(φ,φ, χ⃗);σiΣ(φ,ψ, χ⃗)] ⊆ GΣ(ρΣ[φ;ψ]).
Since, by Lemma 1887, ρ has the modus ponens in G, we get that ρ′Σ[φ;ψ] ⊆
GΣ(ρΣ[φ;ψ]). By symmetry, we conclude that GΣ(ρΣ[φ;ψ]) = GΣ(ρ′Σ[φ;ψ]).

Finally, we have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ ⊳Σ ψ ∈ GK

Σ(E) iff ρΣ[φ;ψ] ⊆ GΣ(ρΣ[E])
iff ρ′Σ[φ;ψ] ⊆ GΣ(ρ′Σ[E])
iff φ ⊳Σ ψ ∈ GK′

Σ (E).
Thus, we get that G(K) = G(K′). ∎

Given an algebraizable Gentzen π-institution G, there exists, by Propo-
sition 1888, a unique guasivariety K that serves as the algebraic counterpart
of G. It is called the equivalent algebraic semantics of G.

The next result asserts that equivalent Gentzen systems have the same
status vis-à-vis algebraizability and, in case they are algebraizable, they share
a common algebraic semantics. Moreover, they share the same Hilbertizabil-
ity status and, in case they are Hilbertizable, they share the same Hilberti-
zations (which, however, are not unique).
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Proposition 1889 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G = ⟨F,G′⟩ two equivalent Gentzen π-institutions of
traces tr, tr′, respectively, based on F.

(a) G is algebraizable if and only if G′ is algebraizable. If this is the case,
G and G′ have the same algebraic semantics.

(b) G is Hilbertizable if and only if G′ is Hilbertizable. If this is the case,
every Hilbertization of G is one of G′ also.

Proof:

(a) Suppose G and G′ are equivalent via (τ, ρ) ∶ G ⇄ G′ and that G′ is
algebraizable via (τ ′, ρ′) ∶ G′ ⇄ GK′ , for some class K′ of F-algebraic
systems. Then, by Lemma 1883,

G
τ ✲✛
ρ

G′
τ ′ ✲✛
ρ′

GK′

(τ ′ ○ τ, ρ ○ ρ′) ∶ G ⇄ GK′ is witnessing the algebraizability of G. By
symmetry G is algebraizable if and only if G′ is algebraizable. Since
any algebraizing class K′ for G′ is also an algebraizing class for G, and
vice versa, we get that G and G′ have the same equivalent algebraic
semantics.

(b) Suppose G and G′ are equivalent via (τ, ρ) ∶ G ⇄ G′ and that G′ is
Hilbertizable via (τ ′, ρ′) ∶ G′ ⇄ H′, for some Hilbert π-institution H′.
Then, again by Lemma 1883,

G
τ ✲✛
ρ

G′
τ ′ ✲✛
ρ′

H′

(τ ′○τ, ρ○ρ′) ∶G ⇄ H′ is witnessing the Hilbertizability of G. By symme-
try, G is Hilbertizable if and only if G′ is. Moreover, any Hilbertization
H′ for G′ serves also as one for G, and vice versa, i.e., G and G′ share
the same Hilbertizations.

∎

Suppose that a Gentzen π-institution G = ⟨F,G⟩ of trace tr, together
with a trace tr′, are given. We give, next, a characterization of the existence
of an equivalence (τ, ρ) ∶ G ⇄ G′ of G with some Gentzen π-institution G′,
having the given trace tr′.

Theorem 1890 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be
traces and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
equivalent to a Gentzen π-institution G′ = ⟨F,G′⟩ of trace tr′ based on F if
and only if there exist a tr-tr′-transformation τ and a tr′-tr-transformation
ρ, such that:
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(1) ρ∗ ∶ ThFam(G)→ SenFam(Seqtr′(F)) is injective on ThFam(G);
(2) For all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F), ρ∗Σ(G(φ)) = G′Σ(τΣ[φ]), where
G′ is the closure system induced by ρ∗(ThFam(G)).

Proof: Suppose, first, that there exists an equivalence (τ, ρ) ∶ G ⇄ G′,
where G′ = ⟨F,G′⟩ is a Gentzen π-institution of trace tr′ based on F. By
Theorem 1880, we know that ρ∗ ∶ ThFam(G) → ThFam(G′) is an order
isomorphism, whence, in particular, it is injective on ThFam(G). Moreover,
for all Σ ∈ ∣Sign♭∣ and all ψ ∈ Seqtr

Σ(F), we have

ψ ∈ ρ∗Σ(G(φ)) iff ρΣ[ψ] ⊆ GΣ(φ)
iff τΣ[ρΣ[ψ]] ⊆ G′Σ(τΣ[φ])
iff ψ ∈ G′Σ(τΣ[φ]).

Therefore, ρ∗Σ(G(φ)) = G′Σ(τΣ[φ]).
Suppose, conversely, that there exist a tr-tr′-transformation τ and a tr′-

tr-transformation ρ, such that Conditions (1) and (2) of the statement hold.
Since ρ∗(ThFam(G)) is closed under intersection, it defines a closure system
on Seqtr′(F), which we denote by G′, writing G′ = ⟨F,G′⟩ for the correspond-
ing Gentzen π-institution of trace tr′. It suffices now, by Theorem 1882, to
show that ρ∗ ∶ ThFam(G) → ThFam(G′) is a transformational order iso-
morphism induced by (τ, ρ). We know, by hypothesis, that ρ∗ is injective.
By definition of G′, it is surjective. By definition of ρ∗, it is order preserving.
Finally, it is order reflecting, since, for all T ,T ′ ∈ ThFam(G),

ρ∗(T ) ≤ ρ∗(T ′) iff ρ∗(T ) ∩ ρ∗(T ′) = ρ∗(T )
iff ρ∗(T ∩ T ′) = ρ∗(T )
iff T ∩ T ′ = T
iff T ≤ T ′.

Therefore, ρ∗ ∶ ThFam(G)→ ThFam(G′) is, indeed, an order isomorphism.
To show that ρ∗ ∶ ThFam(G)→ ThFam(G′) is transformational, it suffices
to show that, for all Σ ∈ ∣Sign♭∣, all φ ∈ Seqtr

Σ(F) and all φ′ ∈ Seqtr′

Σ (F),
ρ∗Σ(G(φ)) = G′Σ(τΣ[φ]) and (ρ∗)−1Σ (G′(φ′)) = GΣ(ρΣ[φ′]).

The first holds by hypothesis and the second holds by the definition of G′,
since ρ∗Σ(G(ρΣ[φ′])) is the least theory family of G′ containing φ′. ∎

26.5 Matrix Families and Algebraic Seman-

tics

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system. A tr-filter family
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of A is a family T ≤ Seqtr(A). The pair A = ⟨A,T ⟩ is called a tr-matrix
family. It defines a closure family GA of trace tr on F as follows: For all
Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GA

Σ(Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ T F (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ T F (Σ′).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system and T a tr-filter family
of A. T is called a G-filter family of A if G ≤ GA, i.e., if, for all Σ ∈ ∣Sign♭∣
and all Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GΣ(Φ) implies φ ∈ GA

Σ(Φ).
Note that, as was pointed out previously, because of the structurality of G,
it suffices to check that, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), such
that φ ∈ GΣ(Φ), we have

αΣ(Φ) ⊆ T F (Σ) implies αΣ(φ) ∈ T F (Σ).

If T is a G-filter family of A, then the pair A = ⟨A,T ⟩ is called a G-matrix
family of A. We denote by FiFamG(A) the collection of all G-filter families
of A and by MatFam(G) the collection of all G-matrix families.

Many facts, introduced previously in this work, that hold for I-filter
families and I-matrix families, for a π-institution I , have analogs for G-filter
and G-matrix families, respectively. We list some of those that will be needed
in the sequel.

Lemma 1891 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F and A = ⟨A, ⟨F,α⟩⟩,
B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems.

(a) The collection FiFamG(A) forms a complete lattice

FiFamG(A) = ⟨FiFamG(A),≤⟩
under signature-wise inclusion ≤;

(b) FiFamG(F) = ThFam(G);
(c) If A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ are F-algebraic systems and ⟨H,γ⟩ ∶
A → B a surjective morphism, then T ∈ FiFamG(B) if and only if
γ−1(T ) ∈ FiFamG(A).

Proof:
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(a) Let {T i ∶ i ∈ I} ⊆ FiFamG(A), Σ ∈ ∣Sign♭∣ and Φ∪ {φ} ⊆ Seqtr
Σ(F), such

that φ ⊆ GΣ(Φ). Then, if αΣ(Φ) ⊆ ⋂i∈I T
i
F (Σ), we get αΣ(Φ) ⊆ T i

F (Σ),

for all i ∈ I, whence, since T ∈ FiFamG(A), αΣ(φ) ∈ T i
F (Σ), for all i ∈ I,

i.e., αΣ(φ) ∈ ⋂i∈I T
i
F (Σ). We conclude that ⋂i∈I T

i ∈ FiFamG(A).
(b) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), such that φ ∈ GΣ(Φ),
we get that, for all T ∈ ThFam(G), Φ ⊆ T Σ implies φ ∈ T Σ. Therefore,
ThFam(G) ⊆ FiFamG(F). On the other hand, if T ∈ FiFamG(F),
then, if φ ∈ GΣ(T Σ), then φ ∈ T Σ, i.e., T ∈ ThFam(G). Therefore,
FiFamG(F) = ThFam(G).

(c) Assume, first, that T ∈ FiFamG(B) and let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆
Seqtr

Σ(F), such that φ ∈ GΣ(Φ) and αΣ(Φ) ⊆ γ−1F (Σ)(TH(F (Σ))). Then

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨G,β⟩
❘

A ⟨H,γ⟩ ✲ B

γF (Σ)(αΣ(Φ)) ⊆ TH(F (Σ)), i.e., βΣ(Φ) ⊆ TG(Σ). Since T ∈ FiFamG(B),
we now get βΣ(φ) ∈ T G(Σ). Reversing the steps above, we conclude

that αΣ(φ) ∈ γ−1F (Σ)(TH(F (Σ))). Therefore, γ−1(T ) ∈ FiFamG(A).
Assume, conversely, that γ−1(T ) ∈ FiFamG(A) and let Σ ∈ ∣Sign♭∣,
Φ ∪ {φ} ⊆ Seqtr

Σ(F), such that φ ∈ GΣ(Φ) and βΣ(Φ) ⊆ T G(Σ). Then
γF (Σ)(αΣ(Φ)) ⊆ TH(F (Σ)), whence αΣ(Φ) ⊆ γ−1F (Σ)(TH(F (Σ))). Since

γ−1(T ) ∈ FiFamG(A), we get αΣ(φ) ∈ γ−1F (Σ)(TH(F (Σ))). Reversing,

once more, the preceding steps, we get that βΣ(φ) ∈ T G(Σ). Therefore,

T ∈ FiFamG(B). ∎

The isomorphism between the complete lattices of theory families induced
by an equivalence extends to corresponding order isomorphisms between the
complete lattices of filter families of the equivalent Gentzen π-institutions on
the same algebraic system.

Proposition 1892 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

be traces, and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ two Gentzen π-institutions of traces
tr, tr′, respectively, based on F. If G and G′ are equivalent via the conjugate
pair (τ, ρ) ∶ G ⇄ G′, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the
mappings

T ✲ ρA∗(T ), T ∈ FiFamG(A),
τA∗(T ′) ✛ T ′, T ′ ∈ FiFamG′(A),

are mutually inverse isomorphisms from FiFamG(A) onto FiFamG′(A).
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Proof: We show, first, that, for all T ∈ FiFamG(A), all Σ ∈ ∣Sign♭∣ and all
φ ∈ Seqtr

Σ(F),
ρAF (Σ)[τAF (Σ)[αΣ(φ)]] ⊆ T F (Σ) iff αΣ(φ) ∈ T F (Σ).

Indeed, taking into account the surjectivity of ⟨F,α⟩, we obtain

ρA
F (Σ)
[τA
F (Σ)
[αΣ(φ)]] ⊆ T F (Σ) iff ρA

F (Σ)
[αΣ(τΣ[φ])] ⊆ T F (Σ)

iff αΣ(ρΣ[τΣ[φ]]) ⊆ T F (Σ)

iff ρΣ[τΣ[φ]] ⊆ α−1Σ (T F (Σ))
iff φ ∈ α−1Σ (T F (Σ))
iff αΣ(φ) ∈ T F (Σ).

By symmetry, we also have, for all T ′ ∈ FiFamG
′(A), all Σ ∈ ∣Sign♭∣ and all

φ′ ∈ Seqtr′

Σ (F),
τAF (Σ)[ρAF (Σ)[αΣ(φ′)]] ⊆ T ′F (Σ) iff αΣ(φ′) ∈ T ′F (Σ).

Using the first of these equivalences and, once again, taking into account the
surjectivity of ⟨F,α⟩, we get, for all T ∈ FiFamG(A), all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

φ ∈ τA∗Σ (ρA∗(T )) iff τAΣ [φ] ⊆ ρA∗Σ (T )
iff ρAΣ[τAΣ [φ]] ⊆ T Σ

iff φ ∈ T Σ.

Thus, τA∗(ρA∗(T )) = T , for all T ∈ FiFamG(A) and, by symmetry, we also
have ρA∗(τA∗(T ′)) = T ′, for all T ′ ∈ FiFamG′(A). Therefore, ρA∗ and τA∗

are mutually inverse bijections and reflect component-wise inclusion, since
they are obviously order preserving undel ≤. We conclude that

ρA∗ ∶ FiFamG(A)⇄ FiFamG′(A) ∶ τA∗
are mutually inverse order isomorphisms. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace, A = ⟨Sign,
SEN,N⟩ an N ♭-algebraic system and θ ∈ ConSys(A).

Given φ = φ⃗ ⊳Σ ψ⃗, φ′ = φ⃗′ ⊳Σ ψ⃗′ ∈ Seqtr
Σ(A) of the same trace ⟨m,n⟩, we

say that φ is θ-equivalent to φ′, denoted φ θΣ φ
′, if, for all i < m and all

j < n,
φi θΣ φ′i and ψj θΣ ψ′j .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace, A = ⟨Sign,
SEN,N⟩ an N ♭-algebraic system, T ≤ Seqtr(A) and θ ∈ ConSys(A).

We say that θ is compatible with T if, for all Σ ∈ ∣Sign∣, and all
φ,φ′ ∈ Seqtr

Σ(A) (of the same trace),

φ θΣ φ
′ and φ ∈ T Σ imply φ′ ∈ T Σ.

An alternative characterization of compatibility is given in the following
lemma.
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Lemma 1893 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system, T ≤ Seqtr(A) and θ ∈ ConSys(A). θ
is compatible with T if and only if the quotient morphism ⟨I, πθ⟩ ∶ A → Aθ
induces a strict matrix family morphism

⟨I, πθ⟩ ∶ ⟨A,T ⟩→ ⟨Aθ, πθ(T )⟩,
i.e., if and only if (πθ)−1(πθ(T )) = T .

Proof: Suppose, first, that θ is compatible with T and let Σ ∈ ∣Sign∣,
φ ∈ Seqtr

Σ(A), such that φ ∈ (πθΣ)−1(πθΣ(T Σ)). Then, we get πθΣ(φ) ∈ πθΣ(T Σ).
Hence, there exists φ′ ∈ T Σ, such that φ θΣ φ

′. Therefore, by the compati-
bility of θ with T , we get that φ ∈ T Σ. Thus, (πθ)−1(πθ(T )) ≤ T and, since
the reverse inclusion always holds, we conclude that (πθ)−1(πθ(T )) = T .

Conversely, assume that (πθ)−1(πθ(T )) = T . Let Σ ∈ ∣Sign∣, φ,φ′ ∈
Seqtr

Σ(A), such that φ θΣ φ
′ and φ ∈ T Σ. Then φ′ ∈ (πθΣ)−1(πθΣ(T Σ)) = T Σ

and, hence, θ is compatible with T . ∎

Given a Gentzen π-institution, taking the quotient of any filter family
by a compatible congruence system results in a filter family on the quotient
algebraic system.

Lemma 1894 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F, ⟨A,T ⟩ an F-matrix
family and θ ∈ ConSys(A). If θ is compatible with T , then

T ∈ FiFamG(A) iff T /θ ∈ FiFamG(Aθ).
Proof: Suppose that θ is compatible with T . Then, using Lemmas 1891 and
1893, we have the following equivalences:

T /θ ∈ FiFamG(A/θ) iff (πθ ○ α)−1(T /θ) ∈ ThFam(G)
iff α−1((πθ)−1(T /θ)) ∈ ThFam(G)
iff α−1(T ) ∈ ThFam(G)
iff T ∈ FiFamG(A).

Hence T /θ is a G-filter family of Aθ iff T is a G-filter family of A. ∎

The following lemma forms an analog of the characterization of the Leib-
niz congruence system of a filter family on a given F-algebraic system. It will
also give rise to a corresponding operator, also termed the Leibniz operator,
for theory families of Gentzen π-institutions.

Lemma 1895 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system, T ≤ Seqtr(A) and θ ∈ ConSys(A).
θ is compatible with T if and only if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),
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⟨φ,ψ⟩ ∈ θΣ implies, for all ⟨m,n⟩ ∈ tr, all σ⃗ = ⟨σ0, . . . , σm−1⟩, and all τ⃗ =⟨τ 0, . . . , τn−1⟩ in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),
σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗) ∈ T Σ′

iff σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗) ∈ T Σ′ .

Proof: Suppose that Σ ∈ ∣Sign∣ and ⟨φ,ψ⟩ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ.
Since θ is a congruence system, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′)⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ θΣ′ . Since θ is a congruence system, we get, for
all i <m, all j < n and all χ⃗ ∈ SEN(Σ′),

⟨σiΣ′(SEN(f)(φ), χ⃗), σiΣ′(SEN(f)(ψ), χ⃗)⟩ ∈ θΣ′
and ⟨τ jΣ′(SEN(f)(φ), χ⃗), τ jΣ′(SEN(f)(ψ), χ⃗)⟩ ∈ θΣ′ .

The conclusion follows immediately by the assumption of compatibility of θ
with T . ∎

Lemma 1895 serves to show that, given an algebraic system A and T ≤
Seqtr(A), there exists a largest congruence system on A that is compatible
with T .

Corollary 1896 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace, A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system and T ≤ Seqtr(A). There
exists a largest congruence system on A compatible with T .

Proof: Define θ = {θΣ}Σ∈∣Sign∣ as follows: For all Σ ∈ ∣Sign∣ and all φ,ψ ∈
SEN(Σ), ⟨φ,ψ⟩ ∈ θΣ iff, for all ⟨m,n⟩ ∈ tr, all σ⃗ = ⟨σ0, . . . , σm−1⟩, and all τ⃗ =⟨τ 0, . . . , τn−1⟩ in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),

σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗) ∈ T Σ′

iff σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗) ∈ T Σ′ .

It is easy to see that θ, thus defined, is a congruence system on A compatible
with T . By Lemma 1895, it is the largest one compatible with T . ∎

The largest congruence system on A compatible with T is denoted by
ΩA(T ) and called the Leibniz congruence system of T on A.

As a consequence of the definition of the Leibniz congruence system, given
T ∈ Seqtr(A) and θ ∈ ConSys(A),

θ is compatible with T if and only if θ ≤ ΩA(T ).
Given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, a trace tr, a Gentzen π-
institution G = ⟨F,G⟩ of trace tr based on F and an F-algebraic system A,
the operator

ΩA ∶ FiFamG(A)→ ConSys(A)
is called the Leibniz operator of G on A.



1540 CHAPTER 26. GENTZEN π-INSTITUTIONS Voutsadakis

Recall from Proposition 1892 that, given two equivalent Gentzen π-insti-
tutions, the conjugate transformations establishing the equivalence induce an
order isomorphism between the corresponding filter families of the gentzen
π-institutions involved on arbitrary algebraic systems. It turns out that,
under this isomorphism, corresponding filter families have identical Leibniz
congruence systems.

Proposition 1897 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr,
tr′ traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr,
tr′, respectively, based on F. If G and G′ are equivalent via a conjugate
pair (τ, ρ) ∶ G ⇄ G′ of transformations, then, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamG(A),

ΩA(T ) = ΩA(ρA∗(T )).
Proof: Let Σ ∈ ∣Sign∣, φ,φ′ ∈ Seqtr

Σ(A), such that φ ΩAΣ(T ) φ′ and suppose
that φ ∈ ρA∗Σ (T ). Then, we obtain ρAΣ[φ] ⊆ T Σ. Thus, since, by definition,
ΩA(T ) is a congruence system compatible with T , we get that ρAΣ[φ′] ⊆
T Σ and, therefore, φ′ ∈ ρA∗Σ (T ). Hence ΩA(T ) is compatible with ρA∗(T ),
showing that ΩA(T ) ≤ ΩA(ρA∗(T )).

Assume, conversely, that Σ ∈ ∣Sign∣, φ,φ′ ∈ Seqtr′

Σ (A), such that

φ ΩAΣ(ρA∗(T )) φ′
and suppose that φ ∈ T Σ. Then, we obtain ρAΣ[τAΣ [φ]] ⊆ T Σ, i.e., τAΣ [φ] ⊆
ρA∗Σ (T ). Thus, since, by definition, ΩA(ρA∗(T )) is a congruence system com-
patible with ρA∗(T ), we get that τAΣ [φ′] ⊆ ρA∗(T ). Therefore, ρAΣ[τAΣ [φ′]] ⊆
T Σ. So φ′ ∈ T Σ and, hence, ΩA(ρA∗(T )) is compatible with T , showing that
ΩA(ρA∗(T )) ≤ ΩA(T ). ∎

As was the case with ordinary π-institutions, the Suszko operator is a
very useful tool in the study of the algebraization of Gentzen π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace, G = ⟨F,G⟩
a Gentzen π-institution of trace tr based on F and A = ⟨A, ⟨F,α⟩⟩ an F-
algebraic system. The Suszko operator Ω̃G,A of G on A is the operator

Ω̃G,A ∶ FiFamG(A)→ ConSys(A)
defined, for all T ∈ FiFamG(A), by

Ω̃G,A(T ) =⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamG(A)}.
Since, obviously, for all T ∈ FiFamG(A),

Ω̃G,A(T ) ≤ ΩA(T ),
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Ω̃G,A(T ) is also a congruence system on A compatible with T . Moreover,
the operator Ω̃G,A is monotone on FiFamG(A), for every F-algebraic system
A.

Using the definition of the Suszko congruence system and Corollary 1896,
it is not difficult to see that the following characterization of the Suszko
congruence system of a filter family holds:

Proposition 1898 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace, G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F, A = ⟨A,⟨F,α⟩⟩ an F-algebraic system and T ∈ FiFamG(A). For all Σ ∈ ∣Sign∣ and
all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ Ω̃G,A

Σ (T ) if and only if, for all ⟨m,n⟩ ∈ tr, all
σ0, . . . , σm−1, τ 0, . . . , τn−1 in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all
χ⃗ ∈ SEN(Σ′),

G
G,A
Σ′ (T Σ′ , σ⃗

A
Σ′(SEN♭(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN♭(f)(φ), χ⃗))

= GG,A
Σ′ (T Σ′ , σ⃗

A
Σ′(SEN♭(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN♭(f)(ψ), χ⃗)).

Proof: The statement follows directly by combining the definition of the
Suszko congruence system of T on A with the characterization of the Leibniz
operator of each T ′, with T ≤ T ′, given in the proof of Corollary 1896. ∎

Moreover, as is clear from the definition, we have

Lemma 1899 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr be a
trace, G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F, and A =⟨A, ⟨F,α⟩⟩ an F-algebraic system. The Suszko and the Leibniz operators on
A coincide, i.e., Ω̃G,A = ΩA, if and only if ΩA is monotone on FiFamG(A).
Proof: Since Ω̃G,A is monotone on FiFamG(A), if the two operators coin-
cide, ΩA is also monotone on FiFamG(A).

On the other hand, if ΩA is monotone on FiFamG(A), then, for all T ∈
FiFamG(A), we get

Ω̃G,A(T ) = ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamG(A)}
= ΩA(T ).

Therefore, Ω̃G,A = ΩA. ∎

An analog of Proposition 1897 holds also for the Suszko operator. That
is, under the isomorphism between the corresponding filter families of two
gentzen π-institutions that are equivalent, corresponding filter families have
identical Suszko congruence systems.

Proposition 1900 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent via the conjugate pair(τ, ρ) ∶ G ⇄ G′, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all
T ∈ FiFamG(A),

Ω̃G,A(T ) = Ω̃G′,A(ρA∗(T )).
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Proof: Since ρA∗ ∶ FiFamG(A) → FiFamG′(A) is an order isomorphism,
and taking into account Proposition 1897, we obtain, for all T ∈ FiFamG(A),

Ω̃G,A(T ) = ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamG(A)}
= ⋂{ΩA(ρA∗(T ′)) ∶ ρA∗(T ) ≤ ρA∗(T ′) ∈ FiFamG′(A)}
= ⋂{ΩA(T ′′) ∶ ρA∗(T ) ≤ T ′′ ∈ FiFamG′(A)}
= Ω̃G′,A(ρA∗(T )).

Thus, the conclusion holds. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. A G-matrix family
A = ⟨A,T ⟩ is called Suszko reduced if

Ω̃G,A(T ) =∆A.

We denote by MatFamSu(G) the class of all Suszko reduced G-matrix fami-
lies.

Foe every G-matrix family A = ⟨A,T ⟩, the quotient structure

⟨A/Ω̃G,A(T ),T /Ω̃G,A(T )⟩
is also a G-matrix family and it is Suszko reduced. Moreover, if a G-matrix
family ⟨A,T ⟩ is Suszko reduced, it is obviously isomorphic to a G-matrix
family of this form.

Among other things, Suszko reduced G-matrix families are important
because they form a class of structures with respect to which G enjoys a
completeness property.

Theorem 1901 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr be a
trace, and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. For
all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), φ ∈ GΣ(Φ) if and only if, for all⟨A,T ⟩ ∈MatFamSu(G), all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ T F (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ T F (Σ′).

Proof: Suppose φ ∈ GΣ(Φ) and let ⟨A,T ⟩ be a Suszko reduced G-matrix
family. Then ⟨A,T ⟩ is, in particular, a G-matrix family, whence the conclu-
sion holds by applying the definition of a G-filter family to the G-filter family
T . Suppose, conversely, that, for all ⟨A,T ⟩ ∈MatFamSu(G), all Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ T F (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ T F (Σ′).

Let T ∈ ThFam(G) and consider the Suszko reduced G-matrix family

⟨F/Ω̃G,F(T ),T /Ω̃G,F(T )⟩.



Voutsadakis CHAPTER 26. GENTZEN π-INSTITUTIONS 1543

Then, we have, by hypothesis, taking Σ′ = Σ and f = iΣ,

Φ/Ω̃G,F
Σ (T ) ⊆ T Σ/Ω̃G,F

Σ (T ) implies φ/Ω̃G,F
Σ (T ) ∈ T Σ/Ω̃G,F

Σ (T ),
i.e., using the compatibility of Ω̃G,F(T ) with T , Φ ⊆ T Σ implies φ ∈ T Σ.
Equivalently, since T ∈ ThFam(G) was arbitrary, φ ∈ GΣ(Φ). ∎

If two Gentzen π-institutions are equivalent, then the classes of algebraic
system reducts of their Suszko reduced matrix families coincide.

Theorem 1902 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent via the conjugate pair(τ, ρ) ∶ G ⇄ G′, then MatFamSu(G) and MatFamSu(G′) have the same class
of F-algebraic system reducts.

Proof: Suppose that A = ⟨A, ⟨F,α⟩⟩ is the F-algebraic system reduct of⟨A,T ⟩ ∈MatFamSu(G). Then, by definition, we have Ω̃G,A(T ) = ∆A. There-
fore, by Proposition 1900, we obtain Ω̃G′,A(ρA∗(T )) = ∆A. Since, ρA∗(T ) ∈
FiFamG(A), we conclude that ⟨A, ρA∗(T )⟩ ∈ MatFamSu(G′) and, hence, A
is also the F-algebraic system reduct of a Suszko reduced G′-matrix family.
By symmetry of equivalence, every F-algebraic system reduct of a Suszko
reduced G′-matrix family is also one of a Suszko reduced G-matrix family.
Therefore, the two classes of F-algebraic system reducts coincide. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr be a trace, and
G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The class of all
F-algebraic system reducts of Suszko reduced G-matrix families is denoted
by AlgSys(G), i.e., we have, by definition,

AlgSys(G) = {A ∶ (∃T ≤ Seqtr(A)(⟨A,T ⟩ ∈MatFamSu(G)}
= {A ∶ (∃T ∈ FiFamG(A))(Ω̃G,A(T ) =∆A)}.

It is not difficult to show that the class AlgSys(G) is closed under
⊲

IΠ
and, thence, conclude that the class of all AlgSys(G)-congruence systems on
every F-algebraic system A forms a complete lattice under signature-wise
inclusion.

Proposition 1903 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Then
AlgSys(G) is closed under subdirect intersections, i.e.,

⊲

IΠ(AlgSys(G)) ⊆ AlgSys(G).



1544 CHAPTER 26. GENTZEN π-INSTITUTIONS Voutsadakis

Proof: Suppose that Ai = ⟨Ai, ⟨F i, αi⟩⟩ ∈ AlgSys(G), for all i ∈ I, and let

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

be a subdirect intersection, i.e., such that ⋂i∈I Ker(⟨H i, γi⟩) = ∆A. Then,
for all i ∈ I, there exists T i ∈ FiFamG(Ai), such that Ω̃G,Ai(T i) = ∆A

i
. We

consider the least G-filter family on A, namely ⋂FiFamG(A). We have

Ω̃G,A(⋂FiFamG(A)) = ⋂{ΩA(X) ∶X ∈ FiFamG(A)}
≤ ⋂i∈I ⋂Xi∈FiFamG(Ai)(γi)−1(ΩAi(X i))
= ⋂i∈I(γi)−1(⋂Xi∈FiFamG(Ai)Ω

Ai(X i))
≤ ⋂i∈I(γi)−1(Ω̃G,Ai(T i))
= ⋂i∈I(γi)−1(∆Ai)
= ∆A.

Hence, we get that A ∈ AlgSys(G). Therefore, AlgSys(G) is indeed closed
under subdirect intersections. ∎

26.6 Equivalence and Algebraic Counterpart

In Theorem 1890, given a π-institution G and a trace tr′, we gave a charac-
terization of the existence of an equivalence (τ, ρ) ∶ G ⇄ G′ of G with some
Gentzen π-institution G′, having the given trace tr′. We strengthen this re-
sult here, by considering only G-filter families on algebraic systems belonging
to AlgSys(G).
Theorem 1904 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be
traces and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
equivalent to a Gentzen π-institution G′ = ⟨F,G′⟩ of trace tr′ based on F if
and only if there exist a tr-tr′-transformation τ and a tr′-tr-transformation
ρ, such that, for all A ∈ AlgSys(G):

(1) ρA∗ ∶ FiFamG(A)→ SenFam(Seqtr′(A)) is injective on FiFamG(A);
(2) For all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr

Σ(A), ρA∗Σ (GG,A(φ)) = G′Σ(τAΣ [φ]),
where G′ is the closure system on A induced by ρA∗(FiFamG(A)).

Proof: Suppose, first, that there exists an equivalence (τ, ρ) ∶ G ⇄ G′,
where G′ = ⟨F,G′⟩ is a Gentzen π-institution of trace tr′ based on F. By
Proposition 1892, we know that ρA∗ ∶ FiFamG(A)→ FiFamG′(A) is an order
isomorphism, whence, in particular, it is injective on FiFamG(A). Moreover,
for all Σ ∈ ∣Sign∣ and all ψ ∈ Seqtr

Σ(A), we have

ψ ∈ ρA∗Σ (GG,A(φ)) iff ρAΣ[ψ] ⊆ GG,A
Σ (φ)

iff τAΣ [ρAΣ[ψ]] ⊆ GG′,A
Σ (τAΣ [φ])

iff ψ ∈ GG′,A
Σ (τAΣ [φ]).
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Therefore, ρA∗Σ (GG,A(φ)) = GG′,A
Σ (τAΣ [φ]) and, again by Proposition 1892,

GG′,A is the closure system on A induced by ρA∗(FiFamG(A)).
Suppose, conversely, that there exist a tr-tr′-transformation τ and a tr′-

tr-transformation ρ, such that Conditions (1) and (2) of the statement hold.
The function ρA∗ commutes with intersections of G-filter families on A. As
a consequence, we obtain, on the one hand, that ρA∗ is order reflecting on
FiFamG(A) and, on the other, that ρA∗(FiFamG(A)) is closed under inter-
section, and, hence, defines a closure system on Seqtr′(A), which we denote
by G′. It suffices now, to prove the two conditions of Theorem 1890.

Assume, first, that T ,T ′ ∈ ThFam(G), such that ρ∗(T ) ≤ ρ∗(T ′). Let
X = G(ρ[ρ∗(T )]) and A = F/Ω̃G,F(X). Since X/Ω̃G,F(X) ∈ FiFamG(A),
we get that ⟨A,X/Ω̃G,F(X)⟩ ∈ MatFamSu(G). Therefore, A ∈ AlgSys(G).
Further, T ∈ ThFam(G) and ρ[ρ∗(T )] ≤ T , which give X ≤ T . Moreover,
ρ[ρ∗(T )] ≤ ρ[ρ∗(T ′)] ≤ T ′. Hence, X ≤ T ′. Thus, by the monotonicity of
the Suszko operator, Ω̃G,F(X) ≤ Ω̃G,F(T ) and Ω̃G,F(X) ≤ Ω̃G,F(T ′). These
imply that Ω̃G,F(X) is compatible with both T and T ′. This, in turn,
gives that both T /Ω̃G,F(X) and T ′/Ω̃G,F(X) are G-filter families on A and,
furthermore, that

ρA∗(T /Ω̃G,F(X)) = ρ∗(T )/Ω̃G,F(X)
and, similarly, ρA∗(T ′/Ω̃G,F(X)) = ρ∗(T ′)/Ω̃G,F(X). Since, by hypothesis,
ρ∗(T ) ≤ ρ∗(T ′), we get

ρA∗(T /Ω̃G,F(X)) ≤ ρA∗(T ′/Ω̃G,F(X)).
Thus, by Condition (1) in the hypothesis, we get T /Ω̃G,F(X) ≤ T ′/Ω̃G,F(X),
whence, using again the compatibility of Ω̃G,F(X) with both T and T ′, we
obtain T ≤ T ′. We conclude that ρ∗ is order reflecting and, therefore, a
fortiori, injective on ThFam(G).

Finally, let Σ ∈ ∣Sign♭∣, φ ∈ Seqtr
Σ(F) and consider θ = Ω̃G,F(Thm(G)).

Then F/θ ∈ AlgSys(G), whence, by hypothesis,

ρ(F/θ)∗(GG,F/θ(φ/θΣ)) = G′Σ(τF/θΣ [φ/θΣ]),
where G′ is the closure system on F/θ generated by

ρ(F/θ)∗(FiFamG(F/θ)) = ρ(F/θ)∗(ThFam(G)/θ)
= ρ∗(ThFam(G))/θ.

Thus, we get ρ∗Σ(G(φ))/θ = G′Σ(τΣ[φ]/θΣ), whence

ρ
(F/θ)∗
Σ (G(φ)/θ) = ⋂{ρ∗(X)/θ ∶ τΣ[φ]/θ ⊆ ρ∗(X)/θ}

= ⋂{ρ∗(X) ∶ τΣ[φ] ⊆ ρ∗(X)}/θ.
Therefore, ρ∗Σ(G(φ)) = ⋂{ρ∗(X) ∶ τΣ[φ] ⊆ ρ∗Σ(X)} = G′′(τΣ[φ]), where G′′

is the closure system on F generated by ρ∗(ThFam(G)). ∎
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Theorem 1904 may be used to provide a characterization of equivalence
based on the coincidence of the algebraic counterparts of two Gentzen π-
institutions.

Theorem 1905 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. G and G′ are equivalent if and only if

• AlgSys(G) = AlgSys(G′) and

• there exist a tr-tr′-transformation τ and a tr′-tr-transformation ρ, such
that, for all A ∈ AlgSys(G),

– ρA∗ ∶ FiFamG(A)→ FiFamG′(A) is an order isomorphism and

– for all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr(A),
ρA∗Σ (GG,A(φ)) = G′AΣ (τAΣ [φ]),

where G′A is the closure system on A induced by ρA∗(FiFamG(A)).
Proof: Suppose that G and G′ are equivalent via the conjugate pair (τ, ρ) ∶
G ⇄ G′. Then, by Theorem 1902, AlgSys(G) = AlgSys(G′). By Proposition
1892, ρA∗ is an order isomorphism and, finally, for all Σ ∈ ∣Sign∣ and all
φ ∈ Seqtr

Σ(A) and all φ′ ∈ Seqtr′

Σ (A),
φ′ ∈ ρA∗Σ (GG,A(φ)) iff ρAΣ[φ′] ⊆ GG,A

Σ (φ)
iff τAΣ [ρAΣ[φ′]] ⊆ GG′,A

Σ (τAΣ [φ])
iff φ′ ∈ GG′,A

Σ (τAΣ [φ]),
i.e., for all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr(A), ρA∗Σ (GG,A(φ)) = GG′,A

Σ (τAΣ [φ]).
Conversely, assume that the conditions in the claimed characterization

of equivalence hold. Then, by Theorem 1904, there exists a Gentzen π-
institution X′ of trace tr′ to which G is equivalent, such that ρ∗ ∶ ThFam(G)→
ThFam(X) is an order isomorphism. Thus, ρ∗ is both order preserving and
order reflecting and, hence, injective, on ThFam(G). Thus, it suffices to
show that it is onto ThFam(G′).

Suppose T ∈ ThFam(G). Set A = F/Ω(T ) and let ⟨I, π⟩ ∶ F → A be
the quotient morphism. Then, since Ω̃G,F(T ) ≤ Ω(T ), we get, by the defi-
nition of AlgSys(G) and the hypothesis, A ∈ AlgSys(G) = AlgSys(G′). By
the compatibility of Ω(T ) with T , we get that T /Ω(T ) ∈ FiFamG(A) and
π−1(T /Ω(T )) = T . By hypothesis, ρA∗(T /Ω(T )) ∈ FiFamG′(A), whence
π−1(ρA∗(T /Ω(T ))) ∈ ThFam(G′). On the other hand, we have

ρ∗(T ) = ρ∗(π−1(T /Ω(T ))) = π−1(ρA∗(T /Ω(T ))).
Hence, we obtain ρ∗(T ) ∈ ThFam(G′).
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Finally, consider T ′ ∈ ThFam(G′). Set B = F/Ω(T ′) ∈ AlgSys(G′) =
AlgSys(G) and let ⟨I, π′⟩ ∶ F → B be the quotient morphism. Then we have
T ′/Ω(T ′) ∈ FiFamG′(B) and, by compatibility, π′−1(T ′/Ω(T ′)) = T ′. By
hypothesis, there exists T ∈ FiFamG(B), such that T ′/Ω(T ′) = ρB∗(T ). On
the other hand, π′−1(T ) ∈ ThFam(G) and

ρ∗(π′−1(T )) = π′−1(ρB∗(T )) = π′−1(T ′/Ω(T ′)) = T ′.
thus, ρ∗ maps ThFam(G) onto ThFam(G′) and, hence, it is an order iso-
morphism from ThFam(G) onto ThFam(G′). Therefore, G′ = X and G′ is
equivalent to G. ∎

Directly from Theorem 1904, we get the following

Corollary 1906 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is Hilberti-
zable if and only if there exist a tr-{⟨0,1⟩}-transformation τ and a {⟨0,1⟩}-
tr-transformation ρ, such that, for all A ∈ AlgSys(G):

(1) ρA∗ ∶ FiFamG(A)→ SenFam(A) is injective on FiFamG(A);
(2) For all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr

Σ(A),
ρA∗Σ (GG,A(φ)) = G′AΣ (τAΣ [φ]),

where G′A is the closure system on A induced by ρA∗(FiFamG(A)).
Proof: This is a special case of Theorem 1904. ∎

Specializing further, we get the following result characterizing simple
Hilbertizability.

Corollary 1907 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is simply
Hilbertizable if and only if there exists a tr-{⟨0,1⟩}-transformation τ , such
that:

(1) For all A ∈ AlgSys(G) and all T ,T ′ ∈ FiFamG(A),
T∩ ⊳ A = T ′∩ ⊳ A implies T = T ′;

(2) For all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr
Σ(A),

G
G,A
Σ (φ)∩ ⊳ A =⋂{⊳ T Σ ∶ τAΣ [φ] ⊆ T Σ,T ∈ FiFamG(A)}.

Proof: It suffices to see that Conditions (1) and (2) in the statement reflect
exactly Conditions (1) and (2) in the statement of Corollary 1906, where the
role of ρ is assumed by the special {⟨0,1⟩}-tr-transformation ρ0. ∎

Finally, we obtain a characterization of those algebraic Gentzen π-ins-
titutions, i.e., Gentzen π-institutions associated with guasivarieties of alge-
braic systems, which are equivalent to some Hilbert π-institution.
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Corollary 1908 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a guasivariety of F-algebraic systems. GK = ⟨F,GK⟩ is Hilbertizable if and
only if there exists a {⟨1,1⟩}-{⟨0,1⟩}-transformation τ and a {⟨0,1⟩}-{⟨1,1⟩}-
transformation ρ, such that, for all A ∈ K:

(1) ρA∗ ∶ ConSysK(A)→ SenFam(A̧) is injective on ConSysK(A);
(2) For all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

ρA∗Σ (ΘK,A(φ ≈ ψ)) = G′A(τAΣ [φ;ψ]),
where G′A is the closure system on A induced by ρA∗(ConSysK(A)).

Proof: This is again a specialization of Theorem 1904 for G = GK, where

we take into account the facts FiFamGK(A) = ConSysK(A), AlgSys(GK) = K
and, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), we have, under appropriate
identifications, GGK,A(φ ⊳Σ ψ) = ΘK,A(φ ≈ ψ). ∎

26.7 Protoalgebraicity

We now start a relatively brief tour of analogs of some of the classes in
the algebraic hierarchy of π-institutions that were introduced in the earlier
chapters of this work, as adapted and generalized for Gentzen π-institutions.
Even though we revisit and recast only very few of the classes considered
previously for π-institutions, the observant reader would realize that all other
classes have similarly adapted analogs that have analogous properties.

In this section, we define protoalgebraic and syntactically protoalgebraic
Gentzen π-institutions and study some of their properties. In the following
section, we shall take a look at order algebraizable Gentzen π-institutions,
which parallel the order algebraizable π-institutions of Chapter 25. In the
last section, we look at completely reflective and truth equational Gentzen
π-institutions.

We look, first, at some properties of the Leibniz operator, whose analogs
for π-institutions have been established in Chapter 2.

Lemma 1909 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,
SEN,N⟩, B = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨H,γ⟩ ∶ A → B
a morphism. For every trace tr and all T ≤ Seqtr(B),

(a) γ−1(ΩB(T )) ≤ ΩA(γ−1(T ));
(b) γ−1(ΩB(T )) = ΩA(γ−1(T )), if ⟨H,γ⟩ is surjective.

Proof:
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(a) It is straightforward to check that γ−1(ΩB(T )) is a congruence system
on A compatible with γ−1(T ). Hence, by the maximality property of
ΩA(γ−1(T )), we get that γ−1(ΩB(T )) ≤ ΩA(γ−1(T )).

(b) Suppose, now, that ⟨H,γ⟩ is surjective and let Σ ∈ ∣Sign∣, φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩA

Σ (γ−1(T )). Then, by Lemma 1895, we get
that, for all ⟨m,n⟩ ∈ tr, all σ⃗ = ⟨σ0, . . . , σm−1⟩, and all τ⃗ = ⟨τ 0, . . . , τn−1⟩
in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),
σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗) ∈ γ−1Σ′ (TH(Σ′))

iff σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗) ∈ γ−1Σ′ (TH(Σ′)).

Equivalently,

γΣ′(σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗)) ∈ TH(Σ′)

iff γΣ′(σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗)) ∈ TH(Σ′).

This holds if and only if, by the morphism property,

σ⃗B
H(Σ′)

(γΣ′(SEN(f)(φ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(γΣ′(SEN(f)(φ)), γΣ′(χ⃗)) ∈ TH(Σ′)

iff σ⃗B
H(Σ′)

(γΣ′(SEN(f)(ψ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(γΣ′(SEN(f)(ψ)), γΣ′(χ⃗)) ∈ TH(Σ′).

Equivalently, by the naturality of γ,

σ⃗B
H(Σ′)

(SEN′(H(f))(γΣ(φ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(SEN′(H(f))(γΣ(φ)), γΣ′(χ⃗)) ∈ TH(Σ′)

iff σ⃗B
H(Σ′)

(SEN′(H(f))(γΣ(ψ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(SEN′(H(f))(γΣ(ψ)), γΣ′(χ⃗)) ∈ TH(Σ′).

Hence, taking into account the surjectivity of ⟨H,γ⟩, by Lemma 1895,
we get ⟨γΣ(φ), γΣ(ψ)⟩ ∈ ΩB

H(Σ)
(T ), i.e., γΣ(ΩA

Σ (γ−1(T ))) ⊆ ΩB
H(Σ)
(T ).

We conclude that ΩA(γ−1(T )) ≤ γ−1(ΩB(T )).
∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution based on F.

• We say G is protoalgebraic if the Leibniz operator Ω ∶ ThFam(G) →
ConSys(F) is monotone on ThFam(G);

• We say G is syntactically protoalgebraic if, for all ⟨m,n⟩ ∈ tr, there
exists I⟨m,n⟩ ∶ (SEN♭)ω → ⋃⟨k,ℓ⟩∈tr(SEN♭)k+ℓ in N ♭ with (m+n)+(m+n)
distinguished arguments, such that, for all T ∈ ThFam(G), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ Seqtr(F) of trace ⟨m,n⟩,

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ.
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In this case the collection I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} is called a collection
of witnessing transformations of the syntactic protoalgebraicity of
G.

We give an alternative characterization of syntactic protoalgebraicity that
comes handy in what follows.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and tr a trace. Given⟨m,n⟩ ∈ tr, we say that a collection I ∶ (SEN♭)ω → (SEN♭)k of natural trans-
formations in N ♭, with (m+n)+(m+n) distinguished variables is (pairwise)
permutable if and only if, for all Σ ∈ ∣Sign♭∣, all φ⃗, ψ⃗ ∈ SEN♭(Σ) and all{i1, . . . , im+n} = {0, . . . ,m + n − 1},

IΣ[φi1, . . . , φim+n , ψi1 , . . . , ψim+n] = IΣ[φ0, . . . , φ(m+n)−1, ψ0, . . . , ψ(n+m)−1].
When we want to refer to an arbitrary pairwise permutation of two sequences
φ⃗, ψ⃗ of the same length as above, we write φ⃗π, ψ⃗π, the meaning being that φ⃗, ψ⃗
have the same length and that in φ⃗π, ψ⃗π, their elements have been permuted
both by applying the same arbitrary permutation π.

Theorem 1910 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution based on F. G is syntactically pro-
toalgebraic if and only if, for all ⟨m,n⟩ ∈ tr, there exists Î⟨m,n⟩ ∶ (SEN♭)ω →
⋃⟨k,ℓ⟩∈tr(SEN♭)k+ℓ in N ♭, with (m + n) + (m + n) distinguished arguments,

which is permutable, such that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all
φ,ψ, χ⃗ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff Î
⟨m,n⟩
Σ [⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.

Proof: Suppose, first, that G is syntactically protoalgebraic, with witnessing
transformations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}. For all ⟨m,n⟩ ∈ tr, we symmetrize
I⟨m,n⟩ by defining Î⟨m,n⟩ in N ♭, with (m+n)+(m+n) distinguished arguments,
by setting, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
Î
⟨m,n⟩
Σ [φ,ψ] =⋃{I⟨m,n⟩Σ [φπ,ψπ] ∶ π a permutation}.

Then, we have, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr
Σ(F) of

the same trace ⟨m,n⟩,
I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ iff ⟨φ,ψ⟩ ∈ ΩΣ(T )

iff ⟨φπ,ψπ⟩ ∈ ΩΣ(T ), for all π,

iff Î
⟨m,n⟩
Σ [φ,ψ] ⊆Σ T Σ.

Therefore, we obtain, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ, χ⃗ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I
⟨m,n⟩
Σ [⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ

iff Î
⟨m,n⟩
Σ [⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.
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Suppose, conversely, that there exists a permutable I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈
tr} that satisfies the condition in the statement of the theorem. Define a
collection Ǐ = {Ǐ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} in N ♭ having (m+n)+(m+n) distinguished
arguments by setting, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
ǏΣ[φ,ψ] =⋃{I⟨m,n⟩Σ [(φψ)i+1, (φψ)i] ∶ i <m + n − 1},

where (φψ)i ∶= ⟨φ0, . . . , φi−1, ψi, . . . , ψm+n−1⟩.
Then we have, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F)
of trace ⟨m,n⟩,

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φi, ψi⟩ ∈ ΩΣ(T ), i <m + n − 1,
iff I⟨m,n⟩[(φψ)i+1, (φψ)i] ⊆ T Σ, i <m + n − 1,

iff Ǐ
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ.

Therefore, G is syntactically protoalgebraic with witnessing transformations
Ǐ. ∎

Before embarking on a characterization of the exact relationship between
syntactic protoalgebraicity and protoalgebraicity, we look at some proper-
ties related to notions that have been studied in this chapter, namely, the
algebraic counterpart of a Gentzen π-institution and equivalence between
Gentzen π-institutions.

The first property states that it suffices to check monotonicity of the
Leibniz operator only on the filter families of algebraic systems belonging to
the algebraic counterpart.

Lemma 1911 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G), ΩA is monotone, then G is protoalgebraic.

Proof: Suppose that ΩA is monotone, for all A ∈ AlgSys(G) and let T ,T ′ ∈
ThFam(G), such that T ≤ T ′. Then, by the monotonicity of the Suszko
operator, Ω̃G,F(T ) ≤ Ω̃G,F(T ′). Thus, the congruence system Ω̃G,F(T ) is
compatible with both T and T ′. Hence, both T /Ω̃G,F(T ) and T ′/Ω̃G,F(T )
are G-filter families of F/Ω̃G,F(T ), such that T /Ω̃G,F(T ) ≤ T ′/Ω̃G,F(T ). By
hypothesis, since F/Ω̃G,F(T ) ∈ AlgSys(G),

ΩF/Ω̃
G,F (T )(T /Ω̃G,F(T )) ≤ ΩF/Ω̃

G,F (T )(T ′/Ω̃G,F(T )).
Thus, applying the inverse of the quotient morphism ⟨I, π⟩ ∶ F → F/Ω̃G,F(T ),
we get that

π−1(ΩF/Ω̃G,F (T )(T /Ω̃G,F(T ))) ≤ π−1(ΩF/Ω̃G,F (T )(T ′/Ω̃G,F(T ))),
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whence, by Lemma 1909,

Ω(π−1(T /Ω̃G,F(T ))) ≤ Ω(π−1(T ′/Ω̃G,F(T ))).
Thus, since Ω̃G,F(T ) is compatible with both T and T ′, we get that Ω(T ) ≤
Ω(T ′). Therefore, G is protoalgebraic. ∎

Now we prove that protoalgebraicity is preserved under equivalence.

Theorem 1912 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is protoalgebraic
if and only if G′ is also.

Proof: Suppose G and G′ are equivalent via the conjugate pair (τ, ρ) ∶ G⇄
G′ and that G′ is protoalgebraic. Let T ,T ′ ∈ ThFam(G), such that T ≤ T ′.
Then, by Theorem 1880, ρ∗(T ) ≤ ρ∗(T ′). Thus, by hypothesis, Ω(ρ∗(T )) ≤
Ω(ρ∗(T ′)). Hence, by Proposition 1897, Ω(T ) ≤ Ω(T ′). Therefore, G is also
protoalgebraic. The converse follows by the symmetry of equivalence. ∎

Finally, it is shown that the same applies to syntactic protoalgebraicity,
i.e., if two Gentzen π-institutions are equivalent, then one is syntactically
protoalgebraic if and only if the other is also.

Theorem 1913 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is syntactically
protoalgebraic if and only if G′ is also.

Proof: Suppose that G and G′ are equivalent via a conjugate pair (τ, ρ) ∶
G ⇄ G′ and that G′ is syntactically protoalgebraic, with witnessing trans-
formations I ∶= {I⟨m,m⟩ ∶ ⟨m,n⟩ ∈ tr′}. Then, for all T ∈ ThFam(G), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F), we get, setting, according to Theorem

1880, T ′ ∈ ThFam(G′) be such that T
ρ∗

⇄
τ∗
T ′, and taking into account Theo-

rem 1919,

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ ΩΣ(ρ∗(T ))
iff ⟨φ,ψ⟩ ∈ ΩΣ(T ′)
iff ÎΣ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ T ′Σ, i <m + n,
iff ÎΣ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ τ∗Σ(T ), i <m + n,
iff τΣ[ÎΣ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩]] ⊆ T Σ, i <m + n.

Therefore, (τ ○ Î)ˇ witnesses the syntactic protoalgebraicity of G. The con-
verse follows by the symmetry of equivalence. ∎

It is relatively easy to see that, if a Gentzen π-institution G is syntactically
protoalgebraic, then it is protoalgebraic.
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Theorem 1914 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
syntactically protoalgebraic, then it is protoalgebraic.

Proof: Suppose G is syntactically protoalgebraic, with witnessing transfor-
mations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} in N ♭, and let T ,T ′ ∈ ThFam(G), such that
T ≤ T ′. Then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of the same trace⟨m,n⟩, we have

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ

implies I
⟨m,n⟩
Σ [φ,ψ] ⊆ T ′Σ

iff ⟨φ,ψ⟩ ∈ ΩΣ(T ′).
Hence Ω(T ) ≤ Ω(T ′) and G is protoalgebraic. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The reflexive core
RG of G is the collection

RG = {RG,⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr},
where, for all ⟨m,n⟩ ∈ tr, RG,⟨m,n⟩ consists of all natural transformations
ρ ∶ (SEN♭)ω → ⋃⟨k,ℓ⟩∈tr(SEN♭)k+ℓ in N ♭ with (m + n) + (m + n) distinguished
arguments that satisfy:

1. For all Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈ SEN♭(Σ),
ρΣ[⟨φ, χ⃗⟩, ⟨φ, χ⃗⟩] ⊆ ThmΣ(G);

2. For all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all φ,ψ ∈ Seqtr
Σ(F) of

trace ⟨m,n⟩,
ρΣ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ⊆ GΣ′(ρΣ[φ,ψ]).

Using the notation in the proof of Theorem 1919, we observe that, R̂G ⊆
RG and that ŘG ⊆ RG:

• If ρ ∈ RG, then, for

σΣ(φ,ψ, χ⃗) ∶= ρΣ(φπ,ψπ, χ⃗),
we get σΣ[φ,φ] = ρΣ[φπ,φπ] ⊆ ThmΣ(G);

• If ρ ∈ RG, then, for

σΣ(φ,ψ, χ⃗) ∶= ρΣ((φψ)i+1, (φψ)i, χ⃗),
we get σΣ[φ,φ] = ρΣ[φ,φ] ⊆ ThmΣ(G).
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If a Gentzen π-institution G of trace tr is syntactically protoalgebraic
with witnessing transformations I, then I⟨m,n⟩ ⊆ RG,⟨m,n⟩, for all ⟨m,n⟩ ∈ tr.

Lemma 1915 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is syn-
tactically protoalgebraic with witnessing transformations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈
tr}, then I ⊆ RG.

Proof: Suppose that G is syntactically protoalgebraic, with witnessing trans-
formations I.

• Since, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F), ⟨φ,φ⟩ ∈ ΩΣ(Thm(G)),

we get that IΣ[φ,φ] ⊆ ThmΣ(G).
• If, for some T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F), we have
IΣ[φ,ψ] ⊆ T Σ, then we get ⟨φ,ψ⟩ ∈ ΩΣ(T ), whence, since Ω(T ) is a
congruence system on F, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
we get ⟨SEN♭(f)(φ),SEN♭(f)(ψ)⟩ ∈ ΩΣ′(T ), showing that

IΣ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ⊆ T Σ′ .

Thus, by definition of RG, we get that I ⊆ RG. ∎

Another important property of syntactic protoalgebraicity is that it guar-
antees that the reflexive core of G possesses a modus ponens property in G.

Theorem 1916 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
syntactically protoalgebraic, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F)
of the same trace,

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]).

Proof: Suppose G is syntactically protoalgebraic, with witnessing transfor-
mations I and let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F), such
that φ ∈ T Σ and RG

Σ[φ,ψ] ⊆ T Σ. Then, by Lemma 1915, we get φ ∈ T Σ

and IΣ[φ,ψ] ⊆ T Σ, that is, by syntactic protoalgebraicity, φ ∈ T Σ and⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, by compatibility, we get ψ ∈ T Σ, showing that
ψ ∈ GΣ(φ,RG

Σ[φ,ψ]). ∎

Conversely, if the reflexive core RG of a Gentzen π-institution G has the
modus ponens property in G, then G is syntactically protoalgebraic, with
witnessing transformations RG. First, a lemma of a technical nature. For a
Gentzen π-institution G and T ∈ ThFam(G), we set

RG(T ) = {RG
Σ(T )}Σ∈∣Sign♭∣,
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where, for all Σ ∈ ∣Sign♭∣,
RG

Σ(T ) = {⟨φ,ψ⟩ ∈ SEN♭(Σ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(RG
Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ)}.

Of course, by the symmetry of the transformations in N ♭, in this definition,
φ and ψ may appear, equivalently, in any position of the sequents on the
right, as long as they appear in the same position in both of the first sequent
arguments of RG.

Lemma 1917 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of the same trace,

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]),

the RG(T ) is a congruence family on F compatible with T .

Proof: We start by showing that RG
Σ(T ) is an equivalence family on F.

• By the definition of RG, we get, for all φ, χ⃗ ∈ SEN♭(Σ),
RG

Σ[⟨φ, χ⃗⟩, ⟨φ, χ⃗⟩] ⊆ ThmΣ(G) ⊆ T Σ.

Thus, ⟨φ,φ⟩ ∈ RG
Σ(T ) and RG

Σ(T ) is reflexive.

• Suppose ⟨φ,ψ⟩ ∈ RG
Σ(T ). Then, for all χ⃗ ∈ SEN♭(Σ), we have

RG
Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.

But then, by the definition of RG and the symmetry of N ♭, we get

RG
Σ[⟨ψ, χ⃗⟩, ⟨φ, χ⃗⟩] ⊆ RG

Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.

Therefore, ⟨ψ,φ⟩ ∈ RG
Σ(T ) and RG

Σ(T ) is also symmetric.

• Suppose, now, that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ RG
Σ(T ). Thus, we get, for all χ⃗ ∈

SEN(Σ),
RG

Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ and RG
Σ[⟨ψ, χ⃗⟩, ⟨χ, χ⃗⟩] ⊆ T Σ.

By hypothesis, we have, for all ρ ∈ RG and all ξ⃗ ∈ SEN♭(Σ),
ρΣ(⟨φ, χ⃗⟩, ⟨χ, χ⃗⟩, ξ⃗) ⊆ GΣ(ρΣ(⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩, ξ⃗),

RG
Σ[ρΣ(⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩, ξ⃗), ρΣ(⟨φ, χ⃗⟩, ⟨χ, χ⃗⟩, ξ⃗)])

⊆ GΣ(RG
Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩],RG

Σ[⟨ψ, χ⃗⟩, ⟨χ, χ⃗⟩])
⊆ GΣ(T Σ) = T Σ.

Therefore, RG
Σ[⟨φ, χ⃗⟩, ⟨χ, χ⃗⟩] ⊆ T Σ, showing that ⟨φ,χ⟩ ∈ RG

Σ(T ) and,
hence, RG

Σ(T ) is also transitive.
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We show, next, that RG(T ) is a congruence family. Let σ be in N ♭, φ⃗, ψ⃗ ∈
SEN♭(Σ), such that, for all i < k, ⟨φi, ψi⟩ ∈ RG

Σ(T ). Then, for all i < k and all
χ⃗ ∈ SEN♭(Σ), RG

Σ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ T Σ. But, then, for all i < k,

RG
Σ[⟨σΣ((φ⃗ψ⃗)i+1), χ⃗⟩, ⟨σΣ((φ⃗ψ⃗)i), χ⃗⟩] ⊆ RG

Σ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ T Σ,

i.e., ⟨σΣ((φ⃗ψ⃗)i+1), σΣ((φ⃗ψ⃗)i)⟩ ∈ RG
Σ(T ). Since this holds for all i < k, we

get by the transitivity of RG(T ) proven above, that ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ RG
Σ(T )

and, therefore, RG(T ) is also a congruence family.
Finally, RG(T ) is a congruence system by the definition of RG. Com-

patibility of RG(T ) with T is also readily obtainable by the hypothesis,
since ⟨φ,ψ⟩ ∈ RG

Σ(T ) implies RG
Σ[φ,ψ] ⊆ T Σ. Therefore, if φ ∈ TΣ and⟨φ,ψ⟩ ∈ RG

Σ(T ), we get

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]) ⊆ GΣ(T Σ) = T Σ.

Hence, RG(T ) is a congruence system on F compatible with T . ∎

Now we are ready for the promised theorem.

Theorem 1918 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of the same trace,

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]),

then G is syntactically protoalgebraic, with witnessing transformations RG.

Proof: Suppose that RG satisfies the displayed condition. We must show
that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff RG

Σ[φ,ψ] ⊆ T Σ.

Suppose, first, that ⟨φ,ψ⟩ ∈ ΩΣ(T ). Then,, since Ω(T ) is a congruence
system on F, we get, for all ρ ∈ RG and all χ⃗ ∈ SEN♭(Σ),

⟨ρΣ(φ,φ, χ⃗), ρΣ(φ,ψ, χ⃗)⟩ ∈ ΩΣ(T ).
Moreover, RG

Σ[φ,φ] ⊆ ThmΣ(G) ⊆ T Σ, by the definition of the reflexive core.
Therefore, by the compatibility of Ω(T ), with T , we get that, for all ρ ∈ RG

and all χ⃗ ∈ SEN♭(Σ), ρΣ(φ,ψ, χ⃗) ∈ T Σ. We conclude that RG
Σ[φ,ψ] ⊆ T Σ.

Assume, conversely, that RG
Σ[φ,ψ] ⊆ TΣ. Since, by Lemma 1917, RG(T )

is a congruence system on F compatible with T , we get, by the maximality of
Ω(T ), that RG(T ) ≤ Ω(T ). But the hypothesis implies that ⟨φ,ψ⟩ ∈ RG

Σ(T ).
Therefore, we conclude that ⟨φ,ψ⟩ ∈ ΩΣ(T ). ∎

We now have a characterization of syntactic protoalgebraicity in terms
of the property of modus ponens of the reflexive core RG of the Gentzen
π-institution G.

G is syntactically protoalgebraic←→ RG has the MP.
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Theorem 1919 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is syntac-
tically protoalgebraic if and only if RG has the modus ponens in G.

Proof: Theorem 1916 gives the “only if” and the “if” is by Theorem 1918.
∎

As a corollary, we obtain

Corollary 1920 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is syn-
tactically protoalgebraic with witnessing transformations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈
tr}, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
GΣ(RG,⟨m,n⟩

Σ [φ,ψ]) = GΣ(I⟨m,n⟩Σ [φ,ψ]).
Proof: If G is syntactically protoalgebraic, with witnessing transformations
I, then, by Theorems 1919 and 1918, both I and RG are families of witnessing
transformations for the syntactic protoalgebraicity of G. Therefore, for all
T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
R

G,⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ iff ⟨φ,ψ⟩ ∈ ΩΣ(T )

iff I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ.

Therefore, GΣ(RG,⟨m,n⟩
Σ [φ,ψ]) = GΣ(I⟨m,n⟩Σ [φ,ψ]). ∎

We get relatively easily another related characterization of syntactic pro-
toalgberaicity.

G is syntactically protoalgebraic
←→ RG Defines Leibniz Congruence Systems.

Theorem 1921 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is syntac-
tically protoalgebraic if and only if, for every T ∈ ThFam(G),

Ω(T ) = RG(T ).
Proof: If G is syntactically protoalgebraic, then, by Theorems 1919 and
1918, RG constitutes a collection of witnessing transformations, whence, for
every T ∈ ThFam(G) Ω(T ) = R̂G(T ) = RG(T ).

The converse follows by the definition of syntactic protoalgberaicity, since,
in that case, ŘG = RG forms a collection of witnessing transformations. ∎

We finally show that the property that separates protoalgebraicity from
syntactic protoalgebraicity is the compatibility property with respect to the
theory family generated by the reflexive core.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. We say that the
reflexive core RG is Leibniz if, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ Seqtr

Σ(F),
φ ΩΣ(G(RG

Σ[φ,ψ])) ψ.
This property is weaker than RG having the modus ponens, i.e., if RG

has the modus ponens, then it is Leibniz.

Proposition 1922 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If RG

has the modus ponens, then it is Leibniz.

Proof: If RG has the modus ponens, then, by Theorem 1919, we get, for all
T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr,

φ ΩΣ(T ) ψ iff RG
Σ[φ,ψ] ⊆ T Σ.

Therefore, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr
Σ(F), by considering, in

particular, T = G(RG
Σ[φ,ψ]), and taking into account that

RG
Σ[φ,ψ] ⊆ GΣ(RG

Σ[φ,ψ]),
we get that φ ΩΣ(G(RG

Σ[φ,ψ])) ψ. Thus, RG is Leibniz. ∎

In the opposite direction, in a protoalgebraic Gentzen π-institution G, if
the reflexive core RG is Leibniz, then it has the modus ponens in G.

Proposition 1923 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a protoalgebraic Gentzen π-institution of trace tr based
on F. If RG is Leibniz, then it has the modus ponens in G.

Proof: Suppose that G is protoalgebraic and that RG is Leibniz. Let T ∈
ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr, such that
φ ∈ T Σ and RG

Σ[φ,ψ] ⊆ T Σ. Since RG is Leibniz, we have

φ ΩΣ(G(RG
Σ[φ,ψ])) ψ,

whence, since G is protoalgebraic and RG
Σ[φ,ψ] ⊆ T Σ, we get φ ΩΣ(T ) ψ.

Therefore, since φ ∈ T Σ, we get, by the compatibility of Ω(T ) with T , that
ψ ∈ T Σ. We conclude that RG has the modus ponens in G. ∎

We now show that a Gentzen π-institution is syntactically protoalgebraic
if and only if it is protoalgebraic and it has a Leibniz reflexive core.

Syntactic Protoalgebraicity = RG has the Modus Ponens
= RG Defines Leibniz Congruence Systems
= Protoalgebraicity +RG Leibniz
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Theorem 1924 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. I is syntac-
tically protoalgebraic if and only if it is protoalgebraic and has a Leibniz
reflexive core.

Proof: Suppose, first, that G is syntactically protoalgebraic. Then it is
protoalgebraic by Theorem 1914. Moreover, its reflexive core has the modus
ponens by Theorem 1916 and, hence, by Proposition 1922, its reflexive core
is Leibniz.

Suppose, conversely, that G is protoalgebraic with a Leibniz reflexive
core. Then, by Proposition 1923, its reflexive core has the modus ponens
and, therefore, by Theorem 1919, G is syntactically protoalgebraic. ∎

26.8 Order Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-algebraic
posystems. Recall the inequational π-institution IK = ⟨F,CK⟩ associated
with the class K, i.e., in which, for all Σ ∈ ∣Sign♭∣ and all I∪{φ ≼ ψ} ⊆ InΣ(F),

φ ≼ ψ ∈ CK
Σ(I) iff for all ⟨A,≤⟩ ∈ K,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(I)) ⊆ ≤F (Σ′) implies
αΣ′(SEN♭(f)(φ)) ≤F (Σ′) αΣ′(SEN♭(f)(ψ)).

To IK we associate the Gentzen π-institution GK = ⟨F,GK⟩ of trace {⟨1,1⟩}
defined by setting, for all Σ ∈ ∣Sign♭∣ and all {φi, ψi ∶ i ∈ I}∪{φ,ψ} ⊆ SEN♭(Σ),

φ ⊳Σ ψ ∈ GK
Σ({φi ⊳Σ ψi ∶ i ∈ I}) iff φ ≼ ψ ∈ CK

Σ({φi ≼ ψi ∶ i ∈ I}).
We call GK the inequational Gentzen π-institution associated with K.

It turns out that, for every class K of F-algebraic posystems, the associ-
ated inequational Gentzen π-institution GK is syntactically protoalgebraic.

Theorem 1925 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic posystems. Then GK = ⟨F,GK⟩ is syntactically protoal-
gebraic.

Proof: Consider I = {I⟨1,1⟩}, where I⟨1,1⟩ ∶ (SEN♭)4 → (SEN♭)2 is given, for
all Σ ∈ ∣Sign♭∣ and all φ,ψ,φ′, ψ′ ∈ SEN♭(Σ), by

I
⟨1,1⟩
Σ [⟨φ,ψ⟩, ⟨φ′, ψ′⟩] = {φ ⊳Σ φ′, φ′ ⊳Σ φ ψ ⊳Σ ψ′, ψ′ ⊳Σ ψ}.

Then, we have, for all T ∈ ThFam(GK, all Σ ∈ ∣Sign♭∣ and all φ ⊳Σ ψ ∈
Seq

{⟨1,1}
Σ (F),
⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ ΩΣ(T ) iff {φ ⊳Σ φ′, φ′ ⊳Σ φ, ψ ⊳Σ ψ′, ψ′ ⊳Σ ψ} ⊆ T Σ

iff I
⟨1,1⟩
Σ [φ ⊳Σ ψ,φ′ ⊳Σ ψ′] ⊆ T Σ.
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Therefore, GK is syntactically protoalgebraic, with witnessing transforma-
tions I. ∎

Note, also, how I⟨1,1⟩ satisfies the modus ponens property in GK, i.e., for
all Σ ∈ ∣Sign♭∣ and all φ,ψ,φ′, ψ′ ∈ SEN♭(Σ),

φ′ ⊳Σ ψ′ ∈ GK
Σ(φ ⊳Σ ψ, I⟨1,1⟩Σ [φ ⊳Σ ψ,φ′ ⊳Σ ψ′]).

We now show that, if the class K happens to be an order guasivariety of
F-algebraic posystems, then the Leibniz reduced GK-matrix families coincide
with the class K.

Proposition 1926 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

an ordered guasivariety of F-algebraic posystems. Then MatFam∗(GK) = K.

Proof: Suppose ⟨A,≤⟩ ∈ K and let Σ ∈ ∣Sign∣ φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ ΩAΣ(≤). Since φ ≤Σ φ, we get, by compatibility of ΩA(≤) with ≤,
that φ ≤Σ ψ and ψ ≤Σ φ. Thus, since ≤ is a posystem on A and, therefore,
antisymmetric, we get that φ = ψ. Hence, ΩA(≤) = ∆A. We conclude that⟨A,≤⟩ ∈MatFam∗(GK). Thus, K ⊆MatFam∗(GK).

Suppose, conversely, that ⟨A,≤⟩ ∈ MatFam∗(GK). Then ΩA(≤) = ∆A.
Since K is a class of F-algebraic posystems, we get that, for all σ, τ in N ♭, all
Σ,Σ′ ∈ ∣Sign∣, all f ∈ ∣Sign(Σ,Σ′) and all φ,ψ, χ⃗ ∈ SEN(Σ′),

σAΣ′(SEN♭(f)(ψ), χ⃗) ≤Σ′ τAΣ′(SEN♭(f)(ψ), χ⃗)
∈ GK,A

Σ (φ ≤Σ ψ,ψ ≤Σ φ,σAΣ′(SEN♭(f)(φ), χ⃗) ≤Σ′ τAΣ′(SEN♭(f)(φ), χ⃗)).
Therefore, if φ ≤Σ ψ and ψ ≤Σ φ, then we get that ⟨φ,ψ⟩ ∈ ΩAΣ(≤) = ∆AΣ , i.e.,
that φ = ψ. Therefore, ≤ is antisymmetric, i.e., ⟨A,≤⟩ ∈ GOSem(K) = K. We
conclude that MatFam∗(GK) ⊆ K. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is order alge-
braizable if it is equivalent to the inequational Gentzen π-institution GK

associated with some class K of F-algebraic posystems.
Order algebraizability implies protoalgebraicity.

Proposition 1927 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
order algebraizable, then it is protoalgebraic.

Proof: Suppose that G is equivalent to GK, for some class K of F-algebraic
posystems. Then, since, by Theorem 1925, GK is syntactically protoalgebraic,
it is, by Theorem 1914, protoalgebraic. Therefore, by Theorem 1912, G is
protoalgebraic as well. ∎

The following result provides a characterization of order algebraizability.
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Theorem 1928 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is order
algebraizable if and only if there exist a tr-{⟨1,1⟩}-transformation τ and an{⟨1,1⟩}-tr-transformation ρ, such that, for all σ,σ′ in N ♭, all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′), all φ,ψ,χ ∈ SEN♭(Σ), all χ⃗ ∈ SEN♭(Σ′), all {φi, ψi ∶ i ∈
I} ⊆ SEN♭(Σ), and all φ ∈ Seqtr

Σ(F):
(1) ρΣ[φ,φ] ⊆ ThmΣ(G);
(2) ρΣ[φ,χ] ⊆ GΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]);
(3) ρΣ[σΣ(ψ, χ⃗), σ′Σ(ψ, χ⃗)]

⊆ GΣ(ρΣ[φ,ψ], ρΣ[ψ,φ], ρΣ[σΣ(φ, χ⃗), σ′Σ(φ, χ⃗)]);
(4) ρΣ[φ,ψ] ⊆ GΣ(⋃i∈I ρΣ[φi, ψi]) implies

ρΣ′[SEN♭(f)(φ),SEN♭(ψ)] ⊆ GΣ′(⋃
i∈I

ρΣ′[SEN♭(f)(φi),SEN♭(f)(ψi)]);
(5) GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).

Proof: Suppose, first, that G is order algebraizable. Then there exist τ
and ρ as postulated and a class K of F-algebraic posystems, such that G

is equivalent to GK via the conjugate pair (τ, ρ) ∶ G ⇄ GK. Since, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ⊳Σ φ ∈ ThmΣ(GK), we get that ρΣ[φ,φ] ⊆
ThmΣ(G). So Condition (1) holds. Since, for all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈
SEN♭(Σ), φ ⊳Σ χ ∈ GK

Σ(φ ⊳ ψ,ψ ⊳Σ χ), we get that

ρΣ[φ,χ] ⊆ GΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]).
Hence, Condition (2) is also satisfied. If, for some ⟨A,≤⟩ ∈ K, we have, for
some Σ ∈ ∣Sign∣ and some φ,ψ ∈ SEN(Σ), φ ≤Σ ψ and ψ ≤Σ φ, then, since K

is a class of F-algebraic posystems, we get that φ = ψ. Hence, it follows that,
if, for σ,σ′ in N ♭, and χ⃗ ∈ SEN(Σ), σAΣ (φ, χ⃗) ≤Σ σ′AΣ (φ, χ⃗), then, we will also
have σAΣ(ψ, χ⃗) ≤Σ σ′AΣ (ψ, χ⃗). In other words, we get that, for all σ,σ′ in N ♭,
all Σ ∈ ∣Sign♭∣, and all φ,ψ, χ⃗ ∈ SEN♭(Σ),

σΣ(ψ, χ⃗) ⊳Σ σ′Σ(ψ, χ⃗) ∈ GK
Σ(φ ⊳Σ ψ,ψ ⊳Σ φ,σΣ(φ, χ⃗) ⊳Σ σ′Σ(φ, χ⃗)).

Again, by applying ρ we get that Condition (3) holds. Suppose, now, that
for some Σ ∈ ∣Sign♭∣ and {φi, ψi ∶ i ∈ I} ∪ {φ,ψ} ⊆ SEN♭(Σ), ρΣ[φ,ψ] ⊆
GΣ(⋃i∈I ρΣ[φi, ψi]). Then, we get φ ⊳Σ ψ ∈ GK

Σ({φi ⊳Σ ψi ∶ i ∈ I}). Therefore,
since GK is structural, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(φ ⊳Σ ψ) ∈ GK
Σ′({SEN♭(f)(φi ⊳Σ ψi) ∶ i ∈ I}).

By applying ρ again, we get that Condition (4) holds. Finally, Condition (5)
holds directly by the definition of equivalence.
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Assume, conversely, that ρ and τ , as postulated in the statement, exist
and that they satisfy Conditions (1)-(5). Define G′ = ⟨F,G′⟩ of trace {⟨1,1⟩}
by setting, for all Σ′ ∈ ∣Sign♭∣ and all {φi, ψi ∶ i ∈ I} ∪ {φ,ψ} ⊆ SEN♭(Σ),
φ ⊳Σ ψ ∈ G′Σ({φi ⊳Σ ψi ∶ i ∈ I}) iff ρΣ[φ,ψ] ⊆ GΣ(⋃{ρΣ[φi, ψi] ∶ i ∈ I}).

Then, by the fact that G is a Gentzen π-institution and Property (4), we
get that G′ is also a Gentzen π-institution. Moreover, by its definition and
Condition (5), taking into account Lemma 1879, (τ, ρ) ∶G ⇄G′ is an equiva-
lence. Thus, it suffices to show that G′ = GK, for some class K of F-algebraic
posystems. For this, in turn, it suffices, by Theorem 1901, to show that
MatFamSu(G′) is a class of F-algebraic posystems.

Note, first, that I = {I⟨1,1⟩}, defined by setting, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ,φ′, ψ′ ∈ SEN♭(Σ),

I
⟨1,1⟩
Σ [⟨φ,ψ⟩, ⟨φ′, ψ′⟩] ∶= {φ ⊳Σ φ′, φ′ ⊳Σ φ, ψ ⊳Σ ψ′, ψ′ ⊳Σ ψ}

is a subset of RG′ , which, by Condition (2) and the definition of G′ satisfies
the Modus Ponens in G′. Therefore, by Theorem 1918, G′ is syntactically
protoalgebraic and, hence, by Theorem 1914, it is protoalgebraic. Thus, by
Lemma 1899, the Leibniz and the Suszko operator coincide. Moreover, by
Conditions (1) and (2) and the definition of G′, for all ⟨A,≤⟩ ∈MatFam(G′),
the relation family ≤ is reflexive and transitive. Also, by Condition (3) and
the definition of G′, we get that, for all ⟨A,≤⟩ ∈MatFam(G′), all σ,σ′ in N ♭,
all Σ ∈ ∣Sign∣ and all φ,ψ, χ⃗ ∈ SEN(Σ),

φ ≤Σ ψ, ψ ≤Σ φ, σAΣ(φ, χ⃗) ≤Σ σ′AΣ (φ, χ⃗) imply σAΣ (ψ, χ⃗) ≤Σ σ′AΣ (ψ, χ⃗).
We finish the proof by showing that, for all ⟨A,≤⟩ ∈MatFamSu(G′), ≤ is also
antisymmetric. To this end, let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that φ ≤Σ ψ
and ψ ≤Σ φ. Then, by Property (4) and the definition of G′, we get that, for
all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ≤Σ′ SEN(f)(ψ) and SEN(f)(ψ) ≤Σ′ SEN(f)(φ).
Then, by what was shown above, we have, for all σ,σ′ in N ♭ and all χ⃗ ∈
SEN(Σ′),

σAΣ′(SEN(f)(φ), χ⃗) ≤Σ′ σ′AΣ′ (SEN(f)(φ), χ⃗)
iff σAΣ′(SEN(f)(ψ), χ⃗) ≤Σ′ σ′AΣ′ (SEN(f)(ψ), χ⃗).

Therefore, by Corollary 1896, we get ⟨φ,ψ⟩ ∈ ΩAΣ(≤) = Ω̃G′,A
Σ (≤) = ∆AΣ . We

conclude that ⟨A,≤⟩ is indeed an F-algebraic posystem. Hence, G′ is an
inequational Gentzen π-institution associated with the class MatFamSu(G′)
of F-algebraic posystems and, as a consequence, the Gentzen π-institution
G is indeed order algebraizable. ∎

Specializing Theorem 1928 to the case of Hilbert π-institutions, we get
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Corollary 1929 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and H =⟨F,H⟩ a Hilbert π-institution based on F. H is order algebraizable if and only
if there exist a {⟨0,1⟩}-{⟨1,1⟩}-transformation τ and an {⟨1,1⟩}-{⟨0,1⟩}-
transformation ρ, such that, for all σ,σ′ in N ♭, all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′), all φ,ψ,χ ∈ SEN♭(Σ) all χ⃗ ∈ SEN♭(Σ′) and all {φi, ψi ∶ i ∈ I} ⊆
SEN♭(Σ):

(1) ρΣ[φ,φ] ⊆ ThmΣ(H);
(2) ρΣ[φ,χ] ⊆HΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]);
(3) ρΣ[σΣ(ψ, χ⃗), σ′Σ(ψ, χ⃗)]

⊆HΣ(ρΣ[φ,ψ], ρΣ[ψ,φ], ρΣ[σΣ(φ, χ⃗), σ′Σ(φ, χ⃗)]);
(4) ρΣ[φ,ψ] ⊆HΣ(⋃i∈I ρΣ[φi, ψi]) implies

ρΣ′[SEN♭(f)(φ),SEN♭(ψ)] ⊆ HΣ′(⋃
i∈I

ρΣ′[SEN♭(f)(φi),SEN♭(f)(ψi)]);
(5) HΣ(⊳Σ φ) =HΣ(ρΣ[τΣ[φ]]).

Proof: Directly from Theorem 1928. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is simply order
algebraizable if it is equivalent to the inequational Gentzen π-institution
GK, associated with some class K of F-algebraic posystems, via a conjugate
pair (τ, ρ0) ∶ G ⇄ GK, where, as before, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

ρ0Σ(φ;ψ) = φ ⊳Σ ψ.
We have the following analog of Lemma 1823.

Lemma 1930 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is simply
order algebraizable via both (τ, ρ0) ∶ G ⇄ GK and (τ ′, ρ0) ∶ G ⇄ GK′, then
GOSem(K) = GOSem(K′).
Proof: Suppose G is simply order algebraizable via both (τ, ρ0) ∶ G ⇄ GK

and (τ ′, ρ0) ∶ G⇄GK′ . Then, for all Σ ∈ ∣Sign♭∣ and all I ∪{φ ≼ ψ} ⊆ InΣ(F),
we have

φ ≼ ψ ∈ GK
Σ(I) iff ρ0Σ[φ;ψ] ⊆ GΣ(ρ0Σ[I])

iff φ ≼ ψ ∈ GK′

Σ (I).
Thus, K and K′ satisfy exactly the same F-guasiinequations. ∎

The unique order guasivariety K that simply order algebraizes a simply
order algebraizable Gentzen π-institution G is called the order class of G.

Specializing Theorem 1928, we get
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Corollary 1931 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace, with ⟨1,1⟩ ∈ tr, and G = ⟨F,G⟩ a Gentzen π-institution of trace tr
based on F. G is simply order algebraizable if and only if there exists a tr-{⟨1,1⟩}-transformation τ , such that, for all σ,σ′ in N ♭, all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′), all φ,ψ,χ ∈ SEN♭(Σ), all χ⃗ ∈ SEN♭(Σ′) and all φ ∈
Seqtr

Σ(F):
(1) φ ⊳Σ φ ∈ ThmΣ(G);
(2) φ ⊳Σ χ ∈ GΣ(φ ⊳Σ ψ,ψ ⊳Σ χ);
(3) σΣ(ψ, χ⃗) ⊳Σ σ′Σ(ψ, χ⃗) ∈ GΣ(φ ⊳Σ ψ,ψ ⊳Σ φ,σΣ(φ, χ⃗) ⊳Σ σ′Σ(φ, χ⃗));
(4) GΣ(φ) = GΣ(ρ0Σ[τΣ[φ]]).

Proof: Directly by Theorem 1928. ∎

26.9 Truth Equationality

By Theorem 1901, the closure system G of a Gentzen π-institution G = ⟨F,G⟩
can be recovered by the class MatFamSu(G) of its Suszko reduced matrix
families. A related issue is to investigate when G can be recovered just from
the class of underlying F-algebraic systems of the class MatFamSu(G), i.e.,
from the class AlgSys(G). The algebraizability property of G gives that

MatFamSu(G) = {⟨A, τA∗(∆A) ∶ A ∈ AlgSys(G)},
where τ ∶ G → GK is the {⟨1,1⟩}-tr-transformation witnessing the algebraiz-
ability. In this case, the F-algebraic system A ∈ AlgSys(G) is the F-algebraic
system reduct of a unique Suszko reduced G-matrix family, i.e., the G-filter
family of every Suszko reduced G-matrix family is uniquely determined by
the F-algebraic system A, since it is exactly τA∗(∆A) and this expression
does not depend on the choice of τ witnessing the algebraizability of G.

Even in the absence of algebraizability, however, if each F-algebraic sys-
tem in AlgSys(G) is the F-algebraic system reduct of e unique Suszko reduced
G-matrix family, then, there exists, modulo a technical condition, analogous
to the adequacy of the Suszko core introduced in a preceding chapter, a{⟨1,1⟩}-tr-transformation τ that determines the unique G-matrix filter on
the F-algebraic system, as described previously.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution os trace tr based on F.

• G is completely reflective, or c-reflective for short, if, for all T ∪{T ′} ⊆ ThFam(G),
⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′) implies ⋂T ≤ T ′;
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• G is truth equational if there exists τ = {τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}, where
τ ⟨m,n⟩ ∶ (SEN♭)ω → (SEN♭)2, with m + n distinguished arguments, such
that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
φ ∈ T Σ iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

First, we provide a characterization of c-reflectivity.

Theorem 1932 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution os trace tr based on F. Then, the
following statements are equivalent:

(i) For every A ∈ AlgSys(G), there exists unique T ∈ FiFamG(A), such
that ⟨A,T ⟩ ∈MatFamSu(G);

(ii) For every F-algebraic system A, and all T ∈ FiFamG(A), T /Ω̃G,A(T )
is the least G-filter family on A/Ω̃G,A(T );

(iii) For every F-algebraic system A, Ω̃G,A is injective on FiFamG(A);
(iv) For every F-algebraic system A and all T ∪ {T ′} ⊆ FiFamG(A),

⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′) implies ⋂T ≤ T ′;

(v) For all T ∪ {T ′} ⊆ ThFam(G), ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ≤ T ′.

Proof:

(i)⇒(ii) Suppose (i) holds and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system
and T ∈ FiFamG(A). Consider the algebraic system A/Ω̃G,A(T ) and
let T ′ be the least filter on A/Ω̃G,A(T ). Then, since T /Ω̃G,A(T ) ∈
FiFamG(A/Ω̃G,A(T )), we get that T ′ ≤ T /Ω̃G,A(T ). Thus, by the
monotonicity of the Suszko operator,

Ω̃G,A/Ω̃G,A(T )(T ′) ≤ Ω̃G,A/Ω̃G,A(T )(T /Ω̃G,A(T )) = ∆A/Ω̃
G,A(T ).

But, noting that A/Ω̃G,A(T ) ∈ AlgSys(G), we get, by hypothesis, that
T ′ = T /Ω̃G,A(T ). Therefore, T /Ω̃G,A(T ) is the least G-filter family on
A/Ω̃G,A(T ).

(ii)⇒(iii) Suppose that (ii) holds and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic sys-
tem and T ,T ′ ∈ FiFamG(A), such that Ω̃G,A(T ) = Ω̃G,A(T ′). Then
Ω̃G,A(T ) is compatible with both T and T ′ and, hence, T /Ω̃G,A(T )
and T ′/Ω̃G,A(T ) are both G-filter families on A/Ω̃G,A(T ). Thus, by
hypothesis, T /Ω̃G,A(T ) ≤ T ′/Ω̃G,A(T ). Therefore, taking into account
the compatibility of Ω̃G,A(T ) with both T and T ′, we get T ≤ T ′. By
symmetry, we also have T ′ ≤ T , whence T = T ′. Thus, Ω̃G,A is injective
on FiFamG(A).
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(iii)⇒(iv) Suppose (iii) holds and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system
and T ∪ {T ′} ⊆ FiFamG(A), such that

⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′).
Then, we have

Ω̃G,A(⋂T ∩T ′) = ⋂{ΩA(X) ∶ T ∩T ′ ≤X ∈ FiFamG(A)}
= ⋂{ΩA(X) ∶ ⋂T ≤X ∈ FiFamG(A)}
= Ω̃G,A(⋂T ).

By hypothesis, we get ⋂T ∩T ′ = ⋂T , whence ⋂T ≤ T ′.

(iv)⇒(v) Condition (v) is a special case of Condition (iv).

(v)⇒(i) Assume that (v) holds and let A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G) and T ,T ′ ∈
FiFamG(A), such that Ω̃G,A(T ) = Ω̃G,A(T ′) = ∆A. By Lemma 1891,
α−1(T ) and α−1(T ′) are both theory families of G. Now we have,
by hypothesis, Ω̃G,A(T ) = Ω̃G,A(T ′), whence, by the definition of the
Suszko operator,

⋂{ΩA(X) ∶ T ≤X ∈ FiFamG(A)} ≤ ΩA(T ′).
Hence, applying α−1 to both sides,

α−1(⋂{ΩA(X) ∶ T ≤X ∈ FiFamG(A)}) ≤ α−1(ΩA(T ′)).
Equivalently,

⋂{α−1(ΩA(X)) ∶ T ≤X ∈ FiFamG(A)} ≤ α−1(ΩA(T ′)).
By Lemma 1909,

⋂{Ω(α−1(X)) ∶ T ≤X ∈ FiFamG(A)} ≤ Ω(α−1(T ′)).
By Condition (v),

⋂{α−1(X) ∶ T ≤X ∈ FiFamG(A)} ≤ α−1(T ′).
Hence, α−1(T ) ≤ α−1(T ′), which gives, by the surjectivity of ⟨F,α⟩,
T ≤ T ′. By symmetry, we get that T = T ′ and, therefore, there exists
only one G-filter family T on A, such that ⟨A,T ⟩ ∈MatFamSu(G).

∎

It also turns out that a sufficient condition for the c-reflectivity of a
Gentzen π-institution G is the injectivity of the Suszko operator on all F-
algebraic systems in AlgSys(G).
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Lemma 1933 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
A ∈ AlgSys(G), Ω̃G,A is injective on FiFamG(A), then G is c-reflective.

Proof: By the hypothesis, for all A ∈ AlgSys(G), there exists a unique
T ∈ FiFamG(A), such that ⟨A,T ⟩ ∈ MatFamSu(G). Therefore, by Theorem
1932, G is c-reflective. ∎

Next we provide an alternative characterization of truth equationality,
forming an analog of Theorem 818.

Theorem 1934 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if, there exists τ = {τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}, where τ ⟨m,n⟩ ∶(SEN♭)ω → (SEN♭)2, with m + n distinguished arguments, such that, for all⟨A,T ⟩ ∈MatFamSu(G), T = τA∗(∆A).
Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}. Let ⟨A,T ⟩ ∈ MatFamSu(G), Σ ∈ ∣Sign♭∣ and φ ∈
Seqtr

Σ(F) of trace ⟨m,n⟩. Then we have

αΣ(φ) ∈ T F (Σ) iff αΣ(φ) ∈ T ′F (Σ), all T ≤ T ′ ∈ FiFamG(A)
iff φ ∈ α−1Σ (T ′F (Σ)), all T ≤ T ′ ∈ FiFamG(A)
iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(α−1(T ′)), all T ≤ T ′ ∈ FiFamG(A)

iff τ
⟨m,n⟩
Σ [φ] ⊆ α−1Σ (ΩAF (Σ)(T ′)), all T ≤ T ′ ∈ FiFamG(A)

iff αΣ(τ ⟨m,n⟩Σ [φ]) ⊆ ΩA
F (Σ)
(T ′), all T ≤ T ′ ∈ FiFamG(A)

iff τ
A,⟨m,n⟩

F (Σ)
[αΣ(φ)] ⊆ Ω̃G,A

F (Σ)
(T )

iff τ
A,⟨m,n⟩

F (Σ)
[αΣ(φ)] ⊆∆A

F (Σ)
.

The conclusion follows by taking into account the surjectivity of ⟨F,α⟩.
Conversely, assume that the condition in the statement holds and let

T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr
Σ(F) of trace ⟨m,n⟩. Then, since

Ω̃G,F/Ω(T )(T /Ω(T )) ≤ ΩF/Ω(T )(T /Ω ∗ T ) =∆F/Ω(T ),

we get that ⟨F/Ω(T ),T /Ω(T )⟩ ∈MatFamSu(G). Therefore, by hypothesis,

φ/ΩΣ(T ) ∈ T Σ/ΩΣ(T ) iff τ
F/Ω(T ),⟨m,n⟩
Σ [φ/ΩΣ(T )] ⊆∆

F/Ω(T )
Σ ,

i.e.,
φ/ΩΣ(T ) ∈ T Σ/ΩΣ(T ) iff τ

⟨m,n⟩
Σ [φ]/ΩΣ(T ) ⊆∆

F/Ω(T )
Σ .

By the compatibility of Ω(T ) with T , we now get

φ ∈ T Σ iff τ
⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).
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Therefore, G is truth equational. ∎

Before turning into a characterization of the exact relationship between
c-reflectivity and truth equationality, we prove that both c-reflectivity and
truth equationality are preserved under equivalence of Gentzen π-institu-
tions.

Theorem 1935 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is c-reflective if
and only if G′ is also.

Proof: Suppose that G′ is c-reflective and let T ∪ {T ′} ⊆ ThFam(G), such
that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by Proposition 1897, ⋂T ∈T Ω(ρ∗(T )) ≤
Ω(ρ∗(T ′)). Thus, by Theorem 1880 and the hypothesis, we get ⋂T ∈T ρ

∗(T ) ≤
ρ∗(T ′) and, then, ρ∗(⋂T ) ≤ ρ∗(T ′). As ρ∗ is order reflecting, we conclude
that ⋂T ≤ T ′ and, therefore, G is c-reflective. The converse follows by the
symmetry of the notion of equivalence. ∎

Theorem 1936 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is truth equa-
tional if and only if G′ is also.

Proof: Suppose that G and G′ are equivalent via a conjugate pair (τ, ρ) ∶
G ⇄ G′ and that G′ is truth equational, with witnessing transformations
σ ∶= {σ⟨m,m⟩ ∶ ⟨m,n⟩ ∈ tr′}. Then, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and
all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr, we get, setting, according to Theorem

1880, T ′ ∈ ThFam(G′) be such that T
ρ∗

⇄
τ∗
T ′,

φ ∈ T Σ iff φ ∈ τ∗Σ(T ′) (definition of T ′)
iff τΣ[φ] ⊆ T ′Σ (definition of τ∗)
iff σΣ[τΣ[φ]] ⊆ ΩΣ(T ′) (hypothesis)
iff σΣ[τΣ[φ]] ⊆ ΩΣ(ρ∗(T )) (definition of T ∗)
iff σΣ[τΣ[φ]] ⊆ ΩΣ(T ). (Proposition 1897)

Therefore, σ ○ τ witnesses the truth equationality of G. The converse follows
by the symmetry of equivalence. ∎

We now turn to the investigation of the exact relationship between com-
plete reflectivity and truth equationality. We will show that for a Gentzen
π-institution to be truth equational, it must be c-reflective and, in addition
satisfy a technical condition analogous to the adequacy of the Suszko core
in the context of π-institutions, that ensures that there are enough natu-
ral transformations in its category of natural transformations to specify the
Suszko operator in a precise sense.

We start by showing that truth equationality implies c-reflectivity.
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Proposition 1937 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. if G is
truth equational, then it is c-reflective.

Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}, and let T ∪ {T ′} ⊆ ThFam(G), such that ⋂T ∈T Ω(T ) ≤
Ω(T ′). Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩, we have

φ ∈ ⋂T ∈T T Σ iff φ ∈ T Σ, T ∈ T ,
iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ), T ∈ T ,

iff τ
⟨m,n⟩
Σ [φ] ⊆ ⋂T ∈T ΩΣ(T )

implies τ
⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ′)

iff φ ∈ T ′Σ.

Thus, ⋂T ≤ T ′ and, hence, G is c-reflective. ∎

The property of c-reflectivity also has a characterization involving both
the Suszko and the Leibniz operator. Namely, we obtain

Lemma 1938 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is c-
reflective if and only if, for all T ,T ′ ∈ ThFam(G),

Ω̃G,F(T ) ≤ Ω(T ′) implies T ≤ T ′.

Proof: Suppose, first, that G is c-reflective and let T ,T ′ ∈ ThFam(G), such
that Ω̃G,F(T ) ≤ Ω(T ′). Then, we get

⋂{Ω(X) ∶ T ≤X ∈ ThFam(G)} ≤ Ω(T ′).
Hence, by hypothesis, ⋂{X ∶ T ≤X ∈ ThFam(G)} ≤ T ′, i.e., T ≤ T ′.

Assume, conversely, that the condition of the statement holds and let
T ∪ {T ′} ⊆ ThFam(G), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we get

Ω̃G,F(⋂T ) ≤⋂{Ω(T ) ∶ T ∈ T } ≤ Ω(T ′).
Thus, by hypothesis, ⋂T ≤ T ′ and G is c-reflective. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Define the Suszko
core

SG = {SG,⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}
of G, by setting, for all ⟨m,n⟩ ∈ tr,

SG,⟨m,n⟩ = {σ ∶ (SEN♭)ω → (SEN♭)2 ∈ N ♭ ∶
(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ Seq

{⟨m,n⟩}
Σ (F))

(σΣ[φ] ⊆ Ω̃G,F
Σ (G(φ)))}.

SG is a set of natural candidates from which to seek witnesses for the truth
equationality of G, if such exist, since it satisfies the following property.
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Lemma 1939 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is truth
equational, with witnessing transformations τ , then τ ⊆ SG.

Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}. Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F) of trace⟨m,n⟩, we have φ ∈ GΣ(φ), whence, φ ∈ T Σ, for all G(φ) ≤ T ∈ ThFam(G).

Thus, by truth equationality, τ
⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ) and, therefore, τ

⟨m,n⟩
Σ [φ] ⊆

Ω̃G,F
Σ (G(φ)). We conclude that τ ⟨m,n⟩ ⊆ SG,⟨m,n⟩. ∎

The Suszko core of G always carries a theory family T of G into the
Leibniz congruence system Ω(T ) of the theory family T .

Proposition 1940 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. For all
T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ T Σ of trace ⟨m,n⟩ ∈ tr,

S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

Proof: Let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ T Σ of trace ⟨m,n⟩ ∈ tr.
Then, by the definition of SG, we get

S
G,⟨m,n⟩
Σ [φ] ⊆ Ω̃G,F

Σ (G(φ)) ⊆ Ω̃G,F
Σ (T ) ⊆ ΩΣ(T ).

This establishes the conclusion. ∎

The converse property, which does not always hold, is called solubility of
the Suszko core.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. SG is soluble if, for
all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr,
we get

S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ) implies φ ∈ T Σ.

Truth equationality of a Gentzen π-institution guarantees the solubility
of its Suszko core.

Theorem 1941 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is truth
equational, then the Suszko core SG is soluble.

Proof: Suppose that G is truth equational, with witnessing transformations
τ , and let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩, such

that S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). Then, by Lemma 1939, τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). By

truth equationality, φ ∈ T Σ. Therefore, SG is indeed soluble. ∎

Conversely, if the Suszko core of a given Gentzen π-institution G is sol-
uble, then it acts as a set of witnessing transformations for the truth equa-
tionality of G.
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Theorem 1942 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If SG is
soluble, then G is truth equational, with witnessing transformations SG.

Proof: We must show that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all
φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
φ ∈ T Σ iff S

G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

The left to right implication is by Proposition 1940, whereas the reverse is
by the hypothesis of the solubility of the Suszko core. ∎

Theorems 1941 and 1942 allow two characterizations of truth equational-
ity in terms of the solubility of the Suszko core and in terms of the definability
of theory families by the Suszko core.

G is Truth Equational ←→ SG is Soluble.

Theorem 1943 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if its Suszko core SG is soluble.

Proof: The “only if” by Theorem 1941. The “if” by Theorem 1942. ∎

We say that SG defines theory families if, for all T ∈ ThFam(G) and
all Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F),
φ ∈ T Σ iff S

G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

Then we can show

G is Truth Equational ←→ SG Defines Theory Families.

Theorem 1944 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if SG defines theory families.

Proof: If G is truth equational, then, by Theorem 1943, SG is soluble,
whence it defines theory families. On the other hand, if SG defines theory
families, then it is soluble and, hence, by Theorem 1943, G is truth equa-
tional. ∎

We now know that truth equationality of a Gentzen π-institution is equiv-
alent to the solubility property of its Suszko core. The solubility property
implies another property, which, in accordance with our previous work on π-
institutions, we call adequacy. It says, roughly speaking, that in a Gentzen
π-institution the category of natural transformations is rich enough to deter-
mine Suszko congruence systems in terms of the Leibniz congruence systems
that it selects by inclusion. This property arises in a natural way by con-
sidering the following result relating the Suszko core with both Suszko and
Leibniz congruence systems of theory families generated by single sequents.
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Proposition 1945 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. For all
Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
⋂{Ω(T ) ∶ SG,⟨m,n⟩

Σ [φ] ⊆ ΩΣ(T )} ≤ Ω̃G,F(G(φ)).
Proof: Note that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F)
of trace ⟨m,n⟩, we have

φ ∈ T Σ ⇒ S
G,⟨m,n⟩
Σ [φ] ⊆ Ω̃G,F

Σ (T ) (Suszko core)

⇒ S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). (Ω̃G,F(T ) ≤ Ω(T ))

Therefore, we get

⋂{Ω(T ) ∶ SG,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T )} ≤ ⋂{Ω(T ) ∶ SG,⟨m,n⟩

Σ [φ] ⊆ Ω̃G,F
Σ (T )}

≤ ⋂{Ω(T ) ∶ φ ∈ T Σ}
= Ω̃(G(φ)).

Thus, the displayed inclusion always holds. ∎

The reverse inclusion is not always guaranteed, but, when it holds, we
say that the Suszko core of G is adequate. As the name suggests, the prop-
erty somehow conveys the idea that SG[φ] suffices to determine the theory
families whose Leibniz congruence systems form a covering of the Suszko
congruence system corresponding to the theory family G(φ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The Suszko core SG

is adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F) of trace ⟨m,n⟩,

Ω̃G,F
Σ (G(φ)) ≤⋂{Ω(T ) ∶ SG,⟨m,n⟩

Σ [φ] ⊆ ΩΣ(T )}.
We can prove immediately that solubility implies adequacy.

Proposition 1946 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If the
Suszko core SG is soluble, then it is adequate.

Proof: Suppose SG is soluble. We have, for all Σ ∈ ∣Sign♭∣ and all φ ∈
Seqtr

Σ(F) of trace ⟨m,n⟩,
Ω̃G,F(G(φ)) = ⋂{Ω(T ) ∶ φ ∈ T Σ}

(Suszko congrunece system)

= ⋂{Ω(T ) ∶ SG,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T )}.

(solubility of SG)

Hence, the Suszko core of G is adequate. ∎

Conversely, if a Gentzen π-institution is c-reflective, then the adequacy
of its Suszko core is sufficient to give its solubility.
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Proposition 1947 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
c-reflective and the Suszko core SG is adequate, then SG is soluble.

Proof: Assume G is c-reflective and SG is adequate. Let T ∈ ThFam(G),
Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩.
If φ ∈ T Σ, then, by the definition of the Suszko core, we get

S
G,⟨m,n⟩
Σ [φ] ⊆ Ω̃G,F

Σ (G(φ)) ⊆ Ω̃G,F
Σ (T ) ⊆ ΩΣ(T ).

Assume conversely, that S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). Then, by adequacy of the

Suszko core, Ω̃G,F(G(φ)) ≤ Ω(T ). Hence, by c-reflectivity and Lemma 1938,
G(φ) ≤ T , i.e., φ ∈ T Σ. We conclude that SG is soluble. ∎

We finally show that a Gentzen π-institution is truth equational if and
only if it is c-reflective and has an adequate Suszko core.

Truth Equationality = SG Soluble
= SG Defines Theory Families
= c-Reflectivity + SG Adequate

Theorem 1948 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if it is c-reflective and has an adequate Suszko core.

Proof: If G is truth equational, then, by Proposition 1937, it is c-reflective,
by Theorem 1941, its Suszko core is soluble and, by Proposition 1946, its
Suszko core is adequate. On the other hand, if G is c-reflective with an
adequate Suszko core, then, by Proposition 1947, its Suszko core is soluble
and, hence, by Theorem 1942, G is truth equational. ∎

We also obtain immediately

Corollary 1949 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a protoalgebraic Gentzen π-institution of trace tr based on F.
G is truth equational if and only if its Leibniz operator is injective on theory
families and has an adequate Suszko core.

Proof: If G is truth equational, then, by Theorem 1948, it is c-reflective and
has an adequate Suszko core, whence, it has, a fortiori, a Leibniz operator
injective on theory families and an adequate Suszko core.

Conversely, by Theorem 1948, it suffices to show that monotonicity and
injectivity of the Leibniz operator imply its c-reflectivity. In fact, given
T ,T ′ ∈ ThFam(G), we have

Ω̃G,G(T ) ≤ Ω(T ′) ⇒ Ω(T ) ≤ Ω(T ′) (Protoalgebraicity)
⇒ Ω(T ∩ T ′) = Ω(T ) ∩Ω(T ′) = Ω(T )

(Protoalgebraicity)
⇒ T ∩ T ′ = T (Injectivity)
⇒ T ≤ T ′.
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Thus, G is c-reflective, by Lemma 1938. ∎

We close the section by a result asserting that truth equationality trans-
fers from a Gentzen π-institution G to all G-matrix families.

Theorem 1950 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational, with witnessing transformations τ = {τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} if and
only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, and all T ∈ FiFamG(A),
Σ ∈ ∣Sign∣ and φ ∈ Seqtr

Σ(A) of trace ⟨m,n⟩,
φ ∈ T Σ iff τ

A,⟨m,n⟩
Σ [φ] ⊆ ΩAΣ(T ).

Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈
FiFamG(A), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩. Then, we have

αΣ(φ) ∈ T F (Σ) iff φ ∈ α−1Σ (T F (Σ))
iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(α−1(T ))

iff τ
⟨m,n⟩
Σ [φ] ⊆ α−1Σ (ΩAF (Σ)(T ))

iff αΣ(τ ⟨m,n⟩Σ [φ]) ⊆ ΩA
F (Σ)
(T )

iff τ
A,⟨m,n⟩

F (Σ)
[αΣ(φ)] ⊆ ΩA

F (Σ)
(T ).

Taking into account the surjectivity of ⟨F,α⟩, we have the conclusion. ∎

26.10 Weak Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G = ⟨F,G⟩ a
Gentzen π-institution of trace tr based on F. G is called WF algebraizable
if it is protoalgebraic and c-reflective.

Proposition 1951 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is WF
algebraizable if and only if the Leibniz operator is monotone and injective on
ThFam(G).
Proof: It suffices to show that, under monotonicity, c-reflectivity and injec-
tivity are equivalent properties. Indeed, c-reflectivity always implies injectiv-
ity because it implies order reflectivity. On the other hand, suppose that the
Leibniz operator is monotone and injective. Then, we have, by monotonicity,
for all T ∪ {T } ⊆ ThFam(G), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′),

Ω(⋂T ∩ T ′) = ⋂
T ∈T

Ω(T ) ∩Ω(T ′) = ⋂
T ∈T

Ω(T ) = Ω(⋂T ).
Thus, by injectivity, ⋂T ∩ T ′ = ⋂T and, hence, ⋂T ≤ T ′. Therefore G is
also c-reflective. ∎

The following theorem provides characterations of WF algebraizability.
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Theorem 1952 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Then the
following statements are equivalent:

(i) G is WF algebraizable;

(ii) The Leibniz operator defines an order isomorphism from ThFam(G)
onto the lattice of all AlgSys(G)-congruence families on F ;

(iii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator de-
fines an order isomorphism from FiFamG(A) onto the lattice of all
AlgSys(G)-congruence systems on A;

(iv) For every A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G), the Leibniz operator defines an
order isomorphism from FiFamG(A) onto the lattice of all AlgSys(G)-
congruence systems on A.

Proof:

(i)⇒(ii) Suppose G is WF algebraizable. Denote ConSys(G) the collection of
all AlgSys(G)-congruences on F . Then, since, for all T ∈ ThFam(G),

Ω̃G,F/Ω(T )(T /Ω(T )) ≤ ΩF/Ω(T )(T /Ω(T )) =∆F/Ω(T ),

we get that ⟨F/Ω(T ),T /Ω(T )⟩ ∈ MatFamSu(G). Thus, F/Ω(T ) ∈
AlgSys(G) and, therefore, Ω(T ) ∈ ConSys(G). This shows that Ω ∶
ThFam(G) → ConSys(G) is well defined. By Proposition 1951, it is
injective. To see that it is surjective, consider θ ∈ ConSys(G). Then,
by definition, F/θ ∈ AlgSys(G), i.e., there exists T ∈ FiFamG(F/θ),
such that Ω̃G,F/θ(T ) = ∆F/θ. However, since the Leibniz operator is
monotone, by hypothesis, we get that the Susko operator coincides with
the Leibniz operator, whence ΩF/θ(T ) =∆F/θ. Denoting by ⟨I, π⟩ ∶ F →
F/θ the quotient morphism, we now get

Ω(π−1(T )) = π−1(ΩF/θ(T )) = π−1(∆F/θ) = θ.
Thus, Ω is indeed surjective. It is monotone by hypothesis and it
is order reflecting, since it is c-reflective. Thus, Ω ∶ ThFam(G) →
ConSys(G) is in fact an order isomorphism.

(ii)⇒(iii) It is not difficult to show that ΩA is also monotone and c-reflective.
Therefore, one can work in the same way as in Part (ii) replacing the
mapping Ω by ΩA ∶ FiFamG(A) → ConSysG(A), where ConSysG(A)
denotes the collection of AlgSys(G)-congruence systems on A.

(iii)⇒(iv) Condition (iv) is a special case of Condition (iii).
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(iv)⇒(i) If Condition (iv) holds, the G is protoalgebraic, by Lemma 1911. Hence
the Leibniz and Suszko operators coincide on the G-filter families of all
F-algebraic systems. Thus, by Theorem 1932, G is also truth equa-
tional. Therefore, it is WF algebraizable.

∎

Finally, based on results of preceding sections, we can also give a relation
between algebraizability and WF algebraizability.

We show, first, that, if G is algebraizable, then it is both syntactically
protoalgebraic and truth equational.

We start by giving a modus ponens property in the case of algebraizability.

Lemma 1953 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK, for some class K of F-
algebraic systems, then, for all Σ ∈ ∣Sign♭∣ and all φ,φ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
ψ ∈ GΣ({φ} ∪ ⋃

i<m+n

ρΣ[φi, ψi]).
Proof: We have, for all Σ ∈ ∣Sign♭∣ and all φ,φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
τΣ[ψ] ⊆ GK

Σ(τΣ[φ] ∪ {φi ⊳Σ ψi ∶ i <m + n}).
Thus, we get

ρΣ[τΣ[ψ]] ⊆ GΣ(ρΣ[τΣ[φ]] ∪ ⋃
i<m+n

ρΣ[φi, ψi]).
Therefore, ψ ∈ GΣ({φ} ∪⋃i<m+n ρΣ[φi, ψi]). ∎

Moreover, in case of algebraizability, the isomorphism ρ∗ from the theory
families of the Gentzen π-institution G to the K-congruence systems on F
coincides with the Leibniz operator Ω.

Proposition 1954 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G

is algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK, for some class K of
F-algebraic systems, then, for all T ∈ ThFam(G),

ρ∗(T ) = Ω(T ).
Proof: Let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ).

If ⟨φ,ψ⟩ ∈ ΩΣ(T ), then, since Ω(T ) is a congruence system, we get, for
all σ ∈ ρ and all χ⃗ ∈ SEN♭(Σ),

⟨σΣ(φ,φ, χ⃗), σΣ(φ,ψ, χ⃗)⟩ ∈ ΩΣ(T ).
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But σΣ(φ,φ, χ⃗) ∈ ThmΣ(G) ⊆ T Σ. Therefore, by the compatibility of Ω(T )
with T , we get that σΣ(φ,ψ, χ⃗) ∈ T Σ. Therefore, ρΣ[φ,ψ] ⊆ T Σ, which gives
that ⟨φ,ψ⟩ ∈ ρ∗Σ(T ).

Conversely, to see that ρ∗(T ) ≤ Ω(T ) it suffices, by the maximality prop-
erty of Ω(T ), to show that ρ∗(T ) is compatible with T . Let Σ ∈ ∣Sign♭∣
and φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩, such that ⟨φ,ψ⟩ ∈ ρ∗Σ(T ) and φ ∈ T Σ.
Then, we have ρΣ[φi, ψi] ⊆ T Σ, for all i < m + n, and φ ∈ T Σ, whence, by
Lemma 1953, ψ ∈ T Σ. We conclude that ρ∗(T ) is compatible with T , giving
ρ∗(T ) ≤ Ω(T ). ∎

Now, we prove one of the main theorems of the section to the effect that
algebraizability implies both syntactic protoalgebraicity and truth equation-
ality.

Theorem 1955 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK, for some class K of
F-algebraic systems, then, G is syntactically protoalgebraic and truth equa-
tional.

Proof: Suppose G is algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK,
for some class K of F-algebraic systems.

Let, first, T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ ρ∗Σ(T ) (Proposition 1954)
iff ρΣ[φ,ψ] ⊆ T Σ. (definition of ρ∗)

Therefore, G is syntactically protoalgebraic, with witnessing transformations
ρ.

Finally, let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr
Σ(F) of trace ⟨m,n⟩.

Then, we have

φ ∈ T Σ iff ρΣ[τΣ[φ]] ⊆ T Σ ((τ, ρ) conjugate pair)
iff τΣ[φ] ⊆ ρ∗Σ(T ) (definition of ρ∗)
iff τΣ[φ] ⊆ ΩΣ(T ). ((Proposition 1954))

Therefore, G is truth equational, with witnessing transformations τ . ∎

We show, next, that, conversely, syntactic protoalgebraicity and truth
equationality guarantee algebraizability.

Theorem 1956 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
syntactically protoalgebraic and truth equational, then it is algebraizable.
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Proof: Suppose that G is syntactically protoalgebraic, with witnessing trans-
formations ρ, and truth equational, with witnessing transformations τ . Then,
we have, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GΣ(Φ) iff φ ∈ ⋂{T Σ ∶ Φ ⊆ T Σ}

iff τΣ[φ] ⊆ ⋂{ΩΣ(T ) ∶ τΣ[Φ] ⊆ ΩΣ(T )}
iff τΣ[φ] ⊆ GK

Σ(τΣ[Φ]).
Moreover, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ρΣ[φ,ψ] ⊆ T Σ

iff τΣ[ρΣ[φ,ψ]] ⊆ ΩΣ(T ).
Hence, we have that GK

Σ(φ ⊳Σ ψ) = GK
Σ(τΣ[ρΣ[φ,ψ]]).

We conclude, by Lemma 1879, that G is equivalent to GK and, therefore,
G is algebraizable. ∎

Now we can formulate the main characterization theorem:

Theorem 1957 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The following
statements are equivalent:

(i) G is algebraizable;

(ii) G is syntactically protoalgebraic and truth equational;

(iii) G is WF algebraizable (i.e., protoalgebraic and c-reflective) and has
both a Leibniz reflexive core and an adequate Suszko core.

Proof: If G is algebraizable, then, by Theorem 1955, it is syntactically pro-
toalgebraic and truth equational. If G is syntactically protoalgebraic and
truth equational, then, by Theorems 1924 and 1948, it is protoalgebraic,
c-reflective and has both a Leibniz reflexive core and an adequate Suszko
core. Finally, if G is WF algebraizable, with a Leibniz reflexive core and
an adequate Suszko core, then, by Theorems 1924 and 1948, it is syntacti-
cally protoalgebraic and truth equational, whence, by Theorem 1956, it is
algebraizable. ∎


