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27.1 Behavioral π-Institutions

Let Sign be an arbitrary category of signatures, S a nonempty set of sorts
and, for each s ∈ S,

SENs ∶ Sign→ Set

a functor giving, for each signature Σ, a set of Σ-sentences of sort s. By a
multi-sorted sentence functor over set of sorts S we understand the
collection {SENs ∶ s ∈ S},
where all sets SENs(Σ), s ∈ S, are assumed to be disjoint, i.e.,

SENs(Σ) ∩ SENs′(Σ) = ∅, for all s, s′ ∈ S, s ≠ s′.

Because of this condition, given Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and Φ ⊆
⋃s∈S SENs(Σ), we write

SEN(f)(Φ) = ⋃
s∈S

{SENs(f)(φ) ∶ φ ∈ Φ of sort s}.
A multi-sorted sentence functor over set of sorts S is called behavioral if a
nonempty subset V ⊆ S of formula sorts has been singled out and, moreover,
there exists a companion subset V ∗ = {v∗ ∶ v ∈ V } of visible sorts. In that
case the (perhaps empty) set H = S − (V ∪ V ∗) is called the set of hidden
sorts. To denote a behavioral functor, making the set of visible and set of
hidden sorts explicit, we write

{SENv,SENv∗ ,SENh ∶ v ∈ V,h ∈H},
or sometimes, for the sake of succinctness,

{SENs}V,V ∗H .

Let Sign be a category and {SENs}s∈S a multi-sorted sentence functor. The
clone of all natural transformations on {SENs}s∈S is the locally small
category with:

• objects ∏κ<α SENsκ , with sκ ∈ S, α an ordinal;

• morphisms τ ∶ ∏κ<α SENsκ → ∏λ<β SENs′
λ

are β-sequences of natural
transformations

τλ ∶∏
κ<α

SENsκ → SENs′
λ
, λ < β.

Composition is defined as ordinary composition, i.e., by setting

∏
κ<α

SENsκ

⟨τλ ∶ λ < β⟩✲ ∏
λ<β

SENs′
λ

⟨σµ ∶ µ < γ⟩✲ ∏
µ<γ

SENs′′µ



Voutsadakis CHAPTER 27. BEHAVIORICITY 1581

⟨σµ ∶ µ < γ⟩ ○ ⟨τλ ∶ λ < β⟩ = ⟨σµ(⟨τλ ∶ λ < β⟩) ∶ µ < γ⟩.
A subcategory N of the clone of all natural transformations on {SENs}s∈S,
with objects all objects of the form ∏k

i=1 SENsi, k < ω, is called a category
of natural transformations on {SENs}s∈S if the following conditions hold:

• It contains all natural projections

ps1⋯sk→si ∶
k

∏
i=1

SENsi → SENsi, i < k, k < ω.

• For every collection {τi ∶ ∏k
i=1 SENsi → SENs′

i
∶ i < ℓ} of ℓ natural

transformations in N , the tuple

⟨τi ∶ i < ℓ⟩ ∶ k

∏
i=1

SENsi →
ℓ

∏
j=1

SENs′
j

is also a natural transformation in N .

We refer to these conditions by saying that N “includes all projections” and
is “closed under combinations” of natural transformations.

Let {SENs}V,V ∗H be a behavioral sentence functor. A subcategory N of the
clone of all natural transformations on {SENs}s∈S, with objects all objects
of the form ∏k

i=1 SENsi, k < ω, is called a category of natural trans-

formations on {SENs}V,V ∗H if, in addition to being a category of natural
transformations on {SENs}s∈S, i.e., to including all projections and being
closed under combinations, the following condition also holds:

• For all v ∈ V , there is no outgoing natural transformation from SENv∗ ,
other than the identity, and there exists a unique surjective natural
transformation

ov ∶ SENv → SENv∗ ,

called the v-observation natural transformation, or, simply, ob-
servation, when the formula sort v to which it corresponds is clear
from context, such that, every incoming natural transformation σ∗ ∶
SENs → SENv∗ factors through ov:

SENs

σ∗ ✲ SENv∗

❩
❩
❩
❩
❩σ ⑦ ✚

✚
✚
✚
✚

ov

❃

SENv

We express this condition by saying that N “has observations”.
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Given a natural transformation σ ∶ ∏k
i=1 SENsi → SENs in N , we call

s1⋯sk → s the type of σ and say that σ is of sort s (i.e., of the output
sort).

A multi-sorted algebraic system F = ⟨Sign,{SENs}s∈S,N⟩ consists of
a category of signatures, a multi-sorted sentence functor and a category N of
natural transformations on {SEN}s∈S. It is called behavioral if {SENs}V,V ∗H

is a behavioral sentence functor and N is a category of natural transforma-
tions on {SENs}V,V ∗H (i.e., has observations), and we then write

F = ⟨Sign,{SENs}V,V ∗H ,N⟩.
Let F = ⟨Sign♭,{SEN♭s}s∈S,N ♭⟩ be a multi-sorted algebraic system. An

N ♭-algebraic system is a multi-sorted algebraic system

A = ⟨Sign,{SENs}s∈S,N⟩,
such that there exists a surjective functor F ∶ N ♭ → N that preserves all
natural projections (and, hence, the type of all natural transformations in
N ♭). We use σA to refer to the image of σ in N ♭ under F .

Moreover, given two N -algebraic systems A = ⟨Sign,{SENs}s∈S,N⟩ and
B = ⟨Sign′,{SEN′s}s∈S,N ′⟩, a morphism

⟨F,α⟩ ∶ A→ B

consists of a functor F ∶ Sign → Sign′ and a collection α = {αs}s∈S of nat-
ural transformations αs ∶ SENs → SEN′s ○ F , s ∈ S, such that, for every
σ ∶∏k

i=1 SEN♭si → SEN♭s in N , all Σ ∈ ∣Sign∣, and all φi ∈ SENsi(Σ), i ≤ k,

αsΣ(σA
Σ (φ1, . . . φk)) = σB

F (Σ)(αs1Σ (φ1), . . . , αskΣ (φk)).
Let F = ⟨Sign♭,{SEN♭s}s∈S,N ♭⟩ be a multi-sorted algebraic system. An

F-algebraic system A is a pair ⟨A, ⟨F,α⟩⟩, where

• A = ⟨Sign,{SENs}s∈S,N⟩ is an N ♭-algebraic system;

• ⟨F,α⟩ ∶ F →A is a surjective morphism, i.e., such that F ∶ Sign → Sign′

is surjective and full and αsΣ ∶ SEN♭s(Σ) → SENs(F (Σ)) is surjective,
for all Σ ∈ ∣Sign∣ and all s ∈ S.

Given two F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and B = ⟨B, ⟨G,β⟩⟩, with
A = ⟨Sign,{SENs}s∈S,N⟩ and B = ⟨Sign′,{SEN′s}s∈S,N ′⟩, a morphism

⟨H,γ⟩ ∶ A → B
is a morphism ⟨H,γ⟩ ∶ A→B, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B
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⟨H,γ⟩ ○ ⟨F,α⟩ = ⟨G,β⟩.
A behavioral π-institution is a pair I = ⟨F,C⟩, where

• F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ is a behavioral algebraic system;

• C = {CΣ}Σ∈∣Sign♭∣ is a closure system on {SEN♭v}v∈V , i.e., for all Σ ∈
∣Sign♭∣,

CΣ ∶ P(⋃
v∈V

SEN♭v(Σ)) → P(⋃
v∈V

SEN♭v(Σ))
is a closure operator and, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′)
and all Φ ⊆ ∪v∈V SEN♭v(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN♭(f)(Φ)).
Given a behavioral algebraic system F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩, a be-

havioral sentence family T = {TΣ}Σ∈∣Sign♭∣ of F consists of subsets

TΣ ⊆ ⋃
v∈V

SENv(Σ), Σ ∈ ∣Sign♭∣.
Given a behavioral π-institution I = ⟨F,C⟩, based on F, a behavioral the-
ory family T = {TΣ}Σ∈∣Sign♭∣ of I is a behavioral sentence family of F, such

that, for all Σ ∈ ∣Sign♭∣,
CΣ(TΣ) = TΣ.

We write ThFam(I) for the collection of all behavioral theory families of I .

27.2 Behavioral Algebra

Let F = ⟨Sign,{SENs}s∈S,N⟩ be a multi-sorted algebraic system. An equiv-
alence family θ = {θΣ}Σ∈∣Sign∣ on F is a family, such that, for all Σ ∈ ∣Sign∣,
θΣ = {θsΣ}s∈S consists of equivalence relations θsΣ ⊆ SENs(Σ)2. It is called
an equivalence system on F if it is invariant under Sign-morphisms, i.e.,
such that, for all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and s ∈ S,

SENs(f)(θsΣ) ⊆ θsΣ′ .
An equivalence family/system θ on F is called a congruence family/sys-
tem on F if, for all σ ∶ ∏k

i=1 SENsi → SENs in N , all Σ ∈ ∣Sign∣ and all
φ⃗, ψ⃗ ∈∏k

i=1 SENsi(Σ),
φ⃗

k

∏
i=1

θsiΣ ψ⃗ implies σΣ(φ⃗) θsΣ σΣ(ψ⃗).
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The collection of all congruence systems on F is denoted by ConSys(F) and
it forms a complete lattice under signature-wise and sort-wise inclusion ≤:

ConSys(F) = ⟨ConSys(F),≤⟩.
Let F = ⟨Sign♭,{SENs}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and

T = {TΣ}Σ∈∣Sign♭∣ a behavioral sentence family of F. A congruence family

θ = {θΣ}Σ∈∣Sign♭∣ on F is compatible with T if, for all Σ ∈ ∣Sign♭∣, all v ∈ V
and all φ,ψ ∈ SENv(Σ),

⟨φ,ψ⟩ ∈ θvΣ and φ ∈ TΣ imply ψ ∈ TΣ.

A fundamental result, akin to that allowing us to define Leibniz congru-
ence systems in the context of ordinary π-institutions, is asserting that, given
a behavioral sentence family, there exists a largest congruence system on F
compatible with the theory family.

Theorem 1958 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system, T = {TΣ}Σ∈∣Sign♭∣ a behavioral sentence family of F. There exists a
largest congruence system on F compatible with T .

Proof: We define θ = {θΣ}Σ∈∣Sign♭∣, where θΣ = {θsΣ}s∈S by setting, for all

Σ ∈ ∣Sign♭∣, all s ∈ S and all φ,ψ ∈ SEN♭s(Σ), ⟨φ,ψ⟩ ∈ θsΣ if and only if, for
all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V , all Σ′ ∈ ∣Sign♭∣, all

f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

σΣ′(SEN♭s(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN♭s(f)(ψ), χ⃗) ∈ TΣ′ .
We show that θ, thus defined, is a congruence system on F that is compatible
with T .

First, it is straightforward by the definition that, for all Σ ∈ ∣Sign♭∣ and all
s ∈ S, θsΣ is reflexive, symmetric and transitive. So θ is an equivalence family
on F. To see that it is a system, let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), s ∈ S and
φ,ψ ∈ SEN♭s(Σ), such that ⟨φ,ψ⟩ ∈ θsΣ. Then, for all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si →

SEN♭v in N ♭, with v ∈ V , all Σ′′ ∈ ∣Sign♭∣, all h ∈ Sign♭(Σ,Σ′′) and all
χ⃗ ∈∏k

i=1 SEN♭si(Σ′′),
σΣ′′(SEN♭s(h)(φ), χ⃗) ∈ TΣ′′ iff σΣ′′(SEN♭s(f)(ψ), χ⃗) ∈ TΣ′′ .

Thus, as fortiori, for all σ ∶ SEN♭s ×∏
k
i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V , all

Σ′′ ∈ ∣Sign♭∣, all g ∈ Sign♭(Σ′,Σ′′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′′),

Σ
f ✲ Σ′

❅
❅
❅h ❘ ✠�

�
�

g

Σ′′
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σΣ′′(SEN♭s(g)(SEN♭s(f)(φ)), χ⃗) ∈ TΣ′′
iff σΣ′′(SEN♭s(g)(SEN♭s(f)(ψ)), χ⃗) ∈ TΣ′′ .

This shows that ⟨SEN♭s(f)(φ),SEN♭s(f)(ψ)⟩ ∈ θsΣ′ and, hence, θ is an equiv-
alence system.

To see that θ is a congruence system, let τ ∶ ∏ℓ
j=1 SEN♭s′

j
→ SEN♭s be in

N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ ∏ℓ
j=1 SEN♭s′

j
(Σ), such that φ⃗∏ℓ

j=1 θ
s′j
Σ ψ⃗. Then, we

have, for all σ ∶ SEN♭s ×∏
k
i=1 → SEN♭v in N ♭, with v ∈ V , all Σ′ ∈ ∣Sign♭∣, all

f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

σΣ′(SEN♭s(f)(τΣ(φ⃗)), χ⃗) ∈ TΣ′
iff σΣ′(τΣ′(SEN♭s′

1

(f)(φ1),SEN♭s′
2

(f)(φ2),SEN♭s′
3

(f)(φ3), . . . ,
SEN♭s′

ℓ−1
(f)(φℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff σΣ′(τΣ′(SEN♭s′
1

(f)(ψ1),SEN♭s′
2

(f)(φ2),SEN♭s′
3

(f)(φ3), . . . ,
SEN♭s′

ℓ−1
(f)(φℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff σΣ′(τΣ′(SEN♭s′
1

(f)(ψ1),SEN♭s′
2

(f)(ψ2),SEN♭s′
3

(f)(φ3), . . . ,
SEN♭s′

ℓ−1
(f)(φℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff⋯
iff σΣ′(τΣ′(SEN♭s′

1

(f)(ψ1),SEN♭s′
2

(f)(ψ2),SEN♭s′
3

(f)(ψ3), . . . ,
SEN♭s′

ℓ−1
(f)(ψℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff σΣ′(τΣ′(SENs′
1
(f)(ψ1),SEN♭s′

2

(f)(ψ2),SEN♭s′
3

(f)(ψ3), . . . ,
SEN♭s′

ℓ−1
(f)(ψℓ−1),SEN♭s′

ℓ
(f)(ψℓ)), χ⃗) ∈ TΣ′

iff σΣ′(SEN♭s(f)(τΣ(ψ⃗)), χ⃗) ∈ TΣ′ .
Hence, ⟨τΣ(φ⃗), τΣ(ψ⃗)⟩ ∈ θsΣ, showing that θ is a congruence system on F.

θ is also compatible with T , since, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
ψ,ψ ∈ SEN♭v(Σ), such that φ ∈ TΣ and ⟨φ,ψ⟩ ∈ θvΣ, we get, as a special instance
in the definition by taking σ = ι ∶ SEN♭v → SEN♭v in N ♭, Σ′ = Σ and f = iΣ,
φ ∈ TΣ iff ψ ∈ TΣ. Therefore, ψ ∈ TΣ and θ is, in fact, a congruence system on
F compatible with T .

Finally, we show that, if θ′ is a congruence system on F compatible with
T , then θ′ ≤ θ. Suppose, to this end, that θ′ is a congruence system on F
compatible with T and let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), such that⟨φ,ψ⟩ ∈ θ′sΣ . Then, since θ′ is a congruence system, for all Σ′ ∈ ∣Sign♭∣ and
all f ∈ Sign♭(Σ,Σ′), ⟨SEN♭s(f)(φ),SEN♭s(f)(ψ)⟩ ∈ θ′sΣ′ . Thus, since θ′ is a
congruence system, for all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V ,

and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),
⟨σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(ψ), χ⃗)⟩ ∈ θ′vΣ′ .

Therefore, by the compatibility of θ′ with T , we get

σΣ′(SEN♭s(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN♭s(f)(ψ), χ⃗) ∈ TΣ′ .
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This shows that ⟨φ,ψ⟩ ∈ θsΣ and, hence, θ′ ≤ θ. Thus, θ is indeed the largest
congruence system on F compatible with T . ∎

The largest congruence system on F compatible with T is called the be-
havioral Leibniz congruence system of T on F and is denoted by Υ(T ).
Moreover, given a behavioral π-institution I = ⟨F,C⟩, and a behavioral the-
ory family T ∈ ThFam(I), we define the behavioral Suszko congruence
system of T on F by

Υ̃I(T ) =⋂{Υ(T ′) ∶ T ≤ T ′ ∈ ThFam(I)}.
Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and

A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,{SENs}s∈S,N⟩, an F-algebraic system. We
define ≡A = {≡AΣ}Σ∈∣Sign∣, where, for all Σ ∈ ∣Sign∣, ≡AΣ = {≡A,sΣ }s∈S is given,

for all s ∈ S, all φ,ψ ∈ SENs(Σ), by φ ≡A,sΣ ψ if and only if, for all σ ∶
SENs ×∏k

i=1 SENsi → SENv∗ , with v ∈ V , all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′)
and all χ⃗ ∈∏k

i=1 SENsi(Σ′),
σAΣ′(SENs(f)(φ), χ⃗) = σAΣ′(SENs(f)(ψ), χ⃗).

We show that ≡A is a congruence system on A.

Proposition 1959 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-

braic system and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,{SENs}V,V ∗H ,N⟩, an F-
algebraic system. The relation family ≡A is a congruence system on A.

Proof: By the definition, it is obvious that, for all Σ ∈ ∣Sign∣ and all s ∈ S,
≡A,sΣ is an equivalence family on SENs(Σ). We show that ≡A is a system and
that it satisfies the congruence property.

Let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), s ∈ S and φ,ψ ∈ SENs(Σ), such that
φ ≡A,sΣ ψ. Then, for all σ ∶ SENs × ∏k

i=1 SENsi → SENv∗ , with v ∈ V , all
Σ′′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′′) and χ⃗ ∈∏k

i=1 SENsi(Σ′′),
σAΣ′′(SENs(h)(φ), χ⃗) = σAΣ′′(SENs(h)(ψ), χ⃗).

In particular, for all g ∈ Sign(Σ′,Σ′′) and all χ⃗ ∈∏k
i=1 SENsi(Σ′′),

Σ
f ✲ Σ′

❅
❅
❅h ❘ ✠�

�
�

g

Σ′′

σAΣ′′(SENs(g)(SENs(f)(φ)), χ⃗) = σAΣ′′(SENs(g)(SENs(f)(ψ)), χ⃗).
Thus, by definition, SENs(f)(φ) ≡A,sΣ′ SENs(f)(ψ) and, therefore, ≡A is an
equivalence system.
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Finally, let σ ∶ ∏k
i=1 SENsi → SENs be in N , Σ ∈ ∣Sign∣ and φ⃗, ψ⃗ ∈

∏k
i=1 SENsi(Σ), such that φ⃗∏k

i=1 ≡
A,si
Σ ψ⃗. Then, we have, for all τ ∶ SENs ×

∏ℓ
j=1 SENs′

j
→ SENv∗ , with v ∈ V , all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all

χ⃗ ∈∏ℓ
j=1 SENs′

j
(Σ′),

τAΣ′(SENs(f)(σAΣ (φ⃗)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(φ1),SENs2(f)(φ2),SENs3(f)(φ3), . . . ,

SENsk−1(f)(φk−1),SENsk(f)(φk)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(φ2),SENs3(f)(φ3), . . . ,

SENsk−1(f)(φk−1),SENsk(f)(φk)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(ψ2),SENs3(f)(φ3), . . . ,

SENsk−1(f)(φk−1),SENsk(f)(φk)), χ⃗)
= ⋯
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(ψ2),SENs3(f)(ψ3), . . . ,

SENsk−1(f)(ψk−1),SENsk(f)(φk)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(ψ2),SENs3(f)(ψ3), . . . ,

SENsk−1(f)(ψk−1),SENsk(f)(ψk)), χ⃗)
= τAΣ′(SENs(f)(σAΣ (ψ⃗)), χ⃗)

Hence, σAΣ (φ⃗) ≡A,sΣ σAΣ (φ⃗) and ≡A is a congruence system on {SENs}V,V ∗H . ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and K a
class of F-algebraic systems. We define the closure system CK = {CK

Σ}Σ∈∣Sign♭∣
by letting, for all Σ ∈ ∣Sign♭∣,

CK
Σ ∶ P(⋃

v∈V

SEN♭v(Σ)2)→ P(⋃
v∈V

SEN♭v(Σ)2)
be given, for all E ∪ {φ ≈ ψ} ⊆ ⋃v∈V SENv(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff for all A ∈ K,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(E)) ⊆ ≡A
F (Σ′)

implies

αΣ′(SEN♭(f)(ψ)) ≡A
F (Σ′)

αΣ′(SEN♭(f)(ψ)).
Proposition 1960 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and K a class of F-algebraic systems. Then CK is a closure
system on ⋃v∈V (SEN♭v)2.

Proof: It is straightforward to check that CK
Σ is inflationary, monotone and

idempotent, for all Σ ∈ ∣Sign♭∣. The fact that it is invariant under Sign♭-
morphisms can be shown in a way similar to that in the proof of Proposition
1959. ∎

We call IK = ⟨F,CK⟩ the behavioral equational π-institution asso-
ciated with the class K of F-algebraic systems.
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27.3 Behavioral Algebraizability

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system, K a class
of F-algebraic systems and I = ⟨F,C⟩ a behavioral π-institution based on F.

• A transformation τ from I to IK is a collection τ = {τ v ∶ v ∈ V },
where, for every v ∈ V , τ v = {τ v,u ∶ u ∈ V } is such that

τ v,u ∶ SEN♭v ×∏
i<ω

SEN♭si → (SEN♭u)2

is a collection of natural transformations in N ♭;

• A transformation ρ from IK to I is a collection ρ = {ρv ∶ v ∈ V },
where, for every v ∈ V , ρv = {ρv,u ∶ u ∈ V } is such that

ρv,u ∶ (SEN♭v)2 ×∏
i<ω

SEN♭si → SEN♭u

is a collection of natural transformations in N ♭.

A transformation τ from I to IK is called an interpretation, written τ ∶
I → IK, if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all Φ ∪ {φ} ⊆ ⋃v∈V SENv(Σ),

φ ∈ CΣ(Φ) iff τΣ[φ] ⊆ CK
Σ(τΣ[Φ]).

Similarly, a transformation ρ from IK to I is called an interpretation,
written ρ ∶ IK → I , if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all E ∪ {φ ≈ ψ} ⊆
⋃v∈V SEN♭v(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E]).

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F. I is said to be behaviorally
(syntactically WF) algebraizable if there exists a class K of F-algebraic
systems and interpretations τ ∶ I → IK, ρ ∶ IK → I , that form a conjugate
pair, i.e., such that, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

• CΣ(φ) = CΣ(ρΣ[τΣ[φ]]);
• CK

Σ(φ ≈ ψ) = CK
Σ(τΣ[ρΣ[φ,ψ]]).

In this case we also say that I and IK are equivalent via (τ, ρ) and we
write (τ, ρ) ∶ I ⇄ IK.

Explicitly, I is behaviorally algebraizable if and only if, there exists a
class K of F-algebraic systems and translations τ from I to IK and ρ from
IK to I , such that, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ ⋃v∈V SEN♭v(Σ) and all
E ∪ {φ ≈ ψ} ⊆ ⋃v∈V SEN♭v(Σ)2,
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(1) φ ∈ CΣ(Φ) if and only if τΣ[φ] ⊆ CK
Σ(τΣ[Φ]);

(2) φ ≈ ψ ∈ CK
Σ(E) if and only if ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E]);

(3) CΣ(φ) = CΣ(ρΣ[τΣ[φ]]);
(4) CK

Σ(φ ≈ ψ) = CK
Σ(τΣ[ρΣ[φ,ψ]]).

As in normal syntactic WF algebraizability, it turns out that, in this case
as well, Conditions (1) and (4), or dually, Conditions (2) and (3) suffice to
establish behavioral algebraizability.

Proposition 1961 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system, I = ⟨F,C⟩ a behavioral π-institution based on F, K a class of
F-algebraic systems and τ , ρ translations from I to IK and from IK to I,
respectively. The following statements are equivalent:

(i) τ ∶ I → IK is an interpretation and, for all Σ ∈ ∣Sign♭∣, all v ∈ V and
all φ ≈ ψ ∈ SEN♭v(Σ), CK

Σ(φ ≈ ψ) = CK
Σ(τΣ[ρΣ[φ,ψ]]);

(ii) ρ ∶ IK → I is an interpretation and, for all Σ ∈ ∣Sign♭∣, all v ∈ V and
all φ ∈ SEN♭v(Σ), CΣ(φ) = CΣ(ρΣ[τΣ[φ]]).

Proof: We only prove that (i) implies (ii), since the converse then follows
by the symmetry of the notion of equivalence. Suppose that (i) holds and let
Σ ∈ ∣Sign♭∣ and E ∪ {φ ≈ ψ} ⊆ ⋃v∈V SEN♭v(Σ)2. Then we have

φ ≈ ψ ∈ CK
Σ(E) iff τΣ[ρΣ[φ,ψ]] ⊆ CK

Σ(τΣ[ρΣ[E]])
iff ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E]).

Moreover, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ), we have, for all
ψ ∈ ⋃v∈V SEN♭v(Σ),

ψ ∈ CΣ(ρΣ[τΣ[φ]]) iff τΣ[ψ] ⊆ CK
Σ(τΣ[ρΣ[τΣ[φ]]])

iff τΣ[ψ] ⊆ CK
Σ(τΣ[φ])

iff ψ ∈ CΣ(φ).
Hence, CΣ(φ) = CΣ(ρΣ[τΣ[φ]]). This shows that Condition (ii) holds. ∎

We look next at some properties that are entailed by behavioral alge-
braizability.

Proposition 1962 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system, I = ⟨F,C⟩ a behavioral π-institution based on F and K a class
of F-algebraic systems. If (τ, ρ) ∶ I ⇄ IK is a conjugate pair, then, for
all v, u ∈ V , all σ ∶ SENv ×∏k

i=1 SENsi → SENu in N ♭, all Σ ∈ ∣Sign♭∣, all
φ,ψ,χ ∈ SEN♭v(Σ) and all χ⃗ ∈∏k

i=1 SEN♭si(Σ),
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(a) ρΣ[φ,φ] ⊆ ThmΣ(I);
(b) ρΣ[ψ,φ] ⊆ CΣ(ρΣ[φ,ψ]);
(c) ρΣ[φ,χ] ⊆ CΣ[ρΣ[φ,ψ], ρΣ[ψ,χ]);
(d) ρΣ[σΣ(φ, χ⃗), σΣ(ψ, χ⃗)] ⊆ CΣ(ρΣ[φ,ψ]);
(e) ψ ∈ CΣ(φ, ρΣ[φ,ψ]).

Proof:

(a) We have φ ≈ φ ∈ CK
Σ(∅), whence, since ρ ∶ IK → I is an interpretation,

ρΣ[φ,φ] ⊆ CΣ(∅).
(b) Since ψ ≈ φ ∈ CK

Σ(φ ≈ ψ), we get, again by the fact ρ ∶ IK → I is an
interpretation, ρΣ[ψ,φ] ⊆ CΣ(ρΣ[φ,ψ]).

(c) Since φ ≈ χ ∈ CK
Σ(φ ≈ ψ,ψ ≈ χ) and ρ ∶ IK → I is an interpretation, we

get that ρΣ[φ,χ] ⊆ CΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]).
(d) By Proposition 1959, we have, for all σ ∶ SENv ×∏

k
i=1 SENsi → SENu

and all χ⃗ ∈ ∏k
i=1 SEN♭si(Σ), σΣ(φ, χ⃗) ≈ σΣ(ψ, χ⃗) ∈ CK

Σ(φ ≈ ψ). Hence,
again by the fact that ρ ∶ IK → I is an interpretation, we get that
ρΣ[σΣ(φ, χ⃗), σΣ(ψ, χ⃗)] ⊆ CΣ(ρΣ[φ,ψ]).

(e) In IK, we have τΣ[ψ] ⊆ CK
Σ(τΣ[φ], φ ≈ ψ). Hence, by Property (4) of

equivalence, τΣ[ψ] ⊆ CK
Σ(τΣ[φ], τΣ[ρΣ[φ,ψ]]). Thus, by Property (1) of

equivalence, we get that ψ ∈ CΣ(φ, ρΣ[φ,ψ]).
∎

We can also prove that, if a behavioral π-institution I is behaviorally
algebraizable in two different ways, then the interpretations are, roughly
speaking, interderivable and the classes of F-algebraic systems serving as
behavioral algebraic semantics generate the same behavioral consequence
operators.

Theorem 1963 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable via conjugate pairs (τ, ρ) ∶ I ⇄ IK and (τ ′, ρ′) ∶ I ⇄ IK′,
then, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

(a) CΣ(ρΣ[φ,ψ]) = CΣ(ρ′Σ[φ,ψ]);
(b) CK = CK′;

(c) CK
Σ(τΣ[φ]) = CK

Σ(τ ′Σ[φ]).
Proof:
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(a) For all σ′ ∈ ρ′ and all χ⃗ ∈∏k
i=1 SEN♭si(Σ), we get

ρΣ[σ′Σ(φ,φ, χ⃗), σ′Σ(φ,ψ, χ⃗)] ⊆ CΣ(ρΣ[φ,ψ]).
But we also have ρ′Σ[φ,φ] ⊆ CΣ(∅) ⊆ CΣ(ρΣ[φ,ψ]). Thus, by Propo-
sition 1962, Part (e), ρ′Σ[φ,ψ] ⊆ CΣ(ρΣ[φ,ψ]). By symmetry, we now
get CΣ(ρΣ[φ,ψ]) = CΣ(ρ′Σ[φ,ψ]).

(b) Using Part (a), we get, for all Σ ∈ ∣Sign♭∣ and all E ∪ {φ ≈ ψ} ⊆
⋃v∈V SEN♭v(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E])

iff ρ′Σ[φ,ψ] ⊆ CΣ(ρ′Σ[E])
iff φ ≈ ψ ∈ CK′

Σ (E).
(c) Using Parts (a) and (b), we get

CΣ(φ) = CΣ(φ) iff CΣ(ρΣ[τΣ[φ]]) = CΣ(ρ′Σ[τ ′Σ[φ]])
iff CΣ(ρΣ[τΣ[φ]]) = CΣ(ρΣ[τ ′Σ[φ]])
iff CK

Σ(τΣ[φ]) = CK
Σ(τ ′Σ[φ]).

∎

27.4 Behavioral Protoalgebraicity

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F.

• I is behaviorally protoalgebraic if the behavioral Leibniz operator
Υ ∶ ThFam(I) → ConSys(F) is monotone on the behavioral theory
families of I , i.e., for all T,T ′ ∈ ThFam(I),

T ≤ T ′ implies Υ(T ) ≤ Υ(T ′).
• I is behaviorally syntactically protoalgebraic if there exists a

collection ρ = {ρv ∶ v ∈ V }, where, for all v ∈ V , ρv = {ρv,u ∶ u ∈ V } is
such that ρv,u ∶ (SEN♭v)2 ×∏i<ω SEN♭si → SEN♭u in N ♭ is a collection of

natural transformations satisfying, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭v(Σ),

⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ρvΣ[φ,ψ] ≤ T.
The set ρ is referred to as the set of witnessing transformations for
the behavioral syntactic protoalgebraicity of I .

We have the following characterization of behavioral protoalgebraicity.
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Proposition 1964 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is be-
haviorally protoalgebraic if and only if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣,
all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

⟨φ,ψ⟩ ∈ ΥΣ(T ) implies CΣ(TΣ, φ) = CΣ(TΣ, ψ).
Proof: Suppose, first, that I is behaviorally protoalgebraic and let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ), such that ⟨φ,ψ⟩ ∈ ΥΣ(T ).
Let T ′ ∈ ThFam(I), such that TΣ ⊆ T ′Σ and ψ ∈ T ′Σ. Then, by behavioral
protoalgebraicity, we have ⟨φ,ψ⟩ ∈ ΥΣ(T ) ⊆ ΥΣ(T ′). Since, by hypothesis,
ψ ∈ T ′Σ, we get, by compatibility of Υ(T ′) with T ′, that φ ∈ T ′Σ. Thus,
φ ∈ CΣ(TΣ, ψ) and, by symmetry, CΣ(TΣ, φ) = CΣ(TΣ, ψ).

Suppose, conversely, that the condition in the statement holds and let
T,T ′ ∈ ThFam(I), such that T ≤ T ′ and Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈
SEN♭v(Σ), such that ⟨φ,ψ⟩ ∈ ΥΣ(T ). Then, since Υ(T ) is a congruence
system on F, we get, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), all σ ∶ SEN♭v ×
∏k
i=1 SEN♭si → SEN♭u in N ♭, with u ∈ V , and all χ⃗ ∈∏k

i=1 SEN♭si(Σ′),
⟨σΣ′(SEN♭v(f)(φ), χ⃗), σΣ′(SEN♭v(f)(ψ), χ⃗)⟩ ∈ ΥΣ′(T ).

By hypothesis,

CΣ′(TΣ′ , σΣ′(SEN♭v(f)(φ), χ⃗)) = CΣ′(TΣ′ , σΣ′(SEN♭v(f)(ψ), χ⃗)).
Hence, since T ≤ T ′,

CΣ′(T ′Σ′ , σΣ′(SEN♭v(f)(φ), χ⃗)) = CΣ′(T ′Σ′ , σΣ′(SEN♭v(f)(ψ), χ⃗)).
We now get

σΣ′(SEN♭v(f)(φ), χ⃗) ∈ T ′Σ′ iff σΣ′(SEN♭v(f)(ψ), χ⃗) ∈ T ′Σ′ .
Therefore, by the characterization in the proof of Theorem 1958, we get that⟨φ,ψ⟩ ∈ ΥΣ(T ′). Hence Υ(T ) ≤ Υ(T ′) and it follows that I is behaviorally
protoalgebraic. ∎

Behavioral syntactic protoalgebraicity implies behavioral protoalgebraic-
ity.

Theorem 1965 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic, then it is behaviorally protoalgebraic.

Proof: Suppose I is behaviorally syntactically protoalgebraic, with witness-
ing transformations ρ, and let T,T ′ ∈ ThFam(I), such that T ≤ T ′. Then,
for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ), we have

⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ρvΣ[φ,ψ] ≤ T
implies ρvΣ[φ,ψ] ≤ T ′

iff ⟨φ,ψ⟩ ∈ ΥΣ(T ′).
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Hence, Υ(T ) ≤ Υ(T ′) and, therefore, I is behaviorally protoalgebraic. ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We define the behavioral
reflexive core of I

AI = {AI,s ∶ s ∈ S},
by letting, for all s ∈ S, AI,s be the collection of all natural transformations
σ ∶ (SEN♭s)2 ×∏k

i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V , such that:

For all Σ ∈ ∣Sign♭∣, all s ∈ S, all φ ∈ SEN♭s(Σ),
σΣ[φ,φ] ≤ Thm(I).

The importance of the behavioral reflexive core lies, as in previous cases,
in the fact that it forms a pool of candidates for drawing witnessing trans-
formations for the behavioral syntactic protoalgebraicity of I .

Lemma 1966 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
syntactically protoalgebraic, with witnessing transformations ρ, then ρ ⊆ AI .

Proof: Suppose I is behaviorally syntactically protoalgebraic, with witness-
ing transformations ρ. Let σ ∈ ρ, Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). Since⟨φ,φ⟩ ∈ ΥΣ(Thm(I)), we get that σΣ[φ,φ] ≤ ρΣ[φ,φ] ≤ Thm(I). Therefore,
we get that ρ ⊆ AI . ∎

Moreover, if I is behaviorally syntactically protoalgebraic, then AI sat-
isfies a modus ponens property in I .

Theorem 1967 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic, then, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ,AIΣ[φ,ψ]).
Proof: Assume I is behaviorally syntactically protoalgebraic, with wit-
nessing transformations ρ and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and
φ,ψ ∈ SEN♭v(Σ), such that φ ∈ TΣ andAIΣ[φ,ψ] ≤ T . Then we have φ ∈ TΣ and,
by Lemma 1966, ρΣ[φ,ψ] ≤ AIΣ[φ,ψ] ≤ T , whence φ ∈ TΣ and ⟨φ,ψ⟩ ∈ ΥΣ(T ).
Thus, by compatibility of Υ(T ) with T , we conclude that ψ ∈ TΣ. Therefore,
ψ ∈ CΣ(φ,AIΣ[φ,ψ]). ∎

Define, for all T ∈ ThFam(I), a relation family AI(T ) = {AIΣ(T )}Σ∈∣Sign♭∣
on F, by setting, for all Σ ∈ ∣Sign♭∣, all s ∈ S and all φ,ψ ∈ SEN♭s(Σ),

⟨φ,ψ⟩ ∈ AIΣ(T ) iff A
I,s
Σ [φ,ψ] ≤ T.

Then we have
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Lemma 1968 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If, for all
Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ,AIΣ[φ,ψ]),
then, for all T ∈ ThFam(I), AI(T ) is a congruence system on F compatible
with T .

Proof: Fix T ∈ ThFam(I) and let Σ ∈ ∣Sign♭∣, s ∈ S and φ ∈ SEN♭s(Σ). By
definition of AI , we have AIΣ[φ,φ] ≤ Thm(I) ≤ T . Therefore, ⟨φ,φ⟩ ∈ AIΣ(T )
and, hence, AI(T ) is reflexive.

Let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), such that ⟨φ,ψ⟩ ∈ AIΣ(T ).
Then AIΣ[φ,ψ] ≤ T . Again by the definition of AI , we get that AIΣ[ψ,φ] =
AIΣ[φ,ψ] ≤ T , whence ⟨ψ,φ⟩ ∈ AIΣ(T ) and AI(T ) is symmetric.

Let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ,χ ∈ SEN♭s(Σ), such that ⟨φ,ψ⟩ ∈ AIΣ(T )
and ⟨ψ,χ⟩ ∈ AIΣ(T ). Then, we have AIΣ[φ,ψ] ≤ T and AIΣ[ψ,χ] ≤ T . Thus,
by hypothesis, we have, for all α ∈ AI , all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′)
and all χ⃗ ∈ SEN♭(Σ′) of appropriate sorts,

αΣ′(SEN♭(f)(φ),SEN♭(f)(χ), χ⃗)
∈ CΣ′(αΣ′(SEN♭(f)(φ),SEN♭(f)(ψ), χ⃗),

AIΣ′[αΣ′(SEN♭(f)(φ),SEN♭(f)(ψ), χ⃗),
αΣ′(SEN♭(f)(φ),SEN♭(f)(χ), χ⃗)])

⊆ CΣ′(AIΣ[φ,ψ],AIΣ[ψ,χ])
⊆ TΣ′ .

Hence AIΣ[φ,χ] ≤ T and, therefore, ⟨φ,χ⟩ ∈ AIΣ(T ) and AI(T ) is also transi-
tive. It is, by its definition, a system. To see that it is a congruence system,
suppose σ ∶∏k

i=1 SEN♭si → SENs is in N Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈∏k
i=1 SEN♭si(Σ),

such that φ⃗∏k
i=1A

I,si
Σ (T )ψ⃗. Then we have

AIΣ[σΣ(φ⃗), σΣ(φ⃗)] ≤ T iff AIΣ[σΣ(φ⃗), σΣ(ψ1, φ2, φ3, . . . , φk−1, φk)] ≤ T
iff AIΣ[σΣ(φ⃗), σΣ(ψ1, ψ2, φ3, . . . , φk−1, φk)] ≤ T
iff ⋯
iff AIΣ[σΣ(φ⃗), σΣ(ψ1, ψ2, ψ3, . . . , ψk−1, φk)] ≤ T
iff AIΣ[σΣ(φ⃗), σΣ(ψ⃗)] ≤ T.

Therefore, AI(T ) is a congruence system. Finally, by hypothesis, it is com-
patible with T . ∎

Lemma 1968 enables us to show that, if the behavioral reflexive core of
a behavioral π-institution satisfies the modus ponens property postulated
in its hypothesis, then it is behaviorally syntactically protoalgebraic, with
witnessing transformations AI,V = {AI,v ∶ v ∈ V }.
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Theorem 1969 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If, for all
Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ,AIΣ[φ,ψ]),
then I is behaviorally syntactically protoalgebraic, with witnessing transfor-
mations AI,V = {AI,v ∶ v ∈ V }.
Proof: Suppose that I satisfies the condition in the hypothesis. Let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ).

• Assume, first, that ⟨φ,ψ⟩ ∈ ΥΣ(T ). Then, since Υ(T ) is a congruence
system on F, we have, for all σ ∶ (SEN♭v)2 ×∏k

i=1 SEN♭si → SEN♭u in AI,v,

all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

⟨σΣ′(SEN♭v(f)(φ),SEN♭v(f)(φ), χ⃗),
σΣ′(SEN♭v(f)(φ),SEN♭v(f)(ψ), χ⃗)⟩ ∈ ΥΣ′(T ).

But, by definition of AI , we also have that

σΣ′(SEN♭v(f)(φ),SEN♭v(f)(φ), χ⃗) ∈ ThmΣ′(I) ⊆ TΣ′ .
Hence, by the compatibility property of Υ(T ) with T , we get that
σΣ′(SEN♭v(f)(φ),SEN♭v(f)(ψ), χ⃗) ∈ TΣ′ . Thus, AI,vΣ [φ,ψ] ≤ T .

• Assume, conversely, that AI,vΣ [φ,ψ] ≤ T . Then, we get ⟨φ,ψ⟩ ∈ AIΣ(T ).
But, by Lemma 1968 and the hypothesis, AI(T ) is a congruence system
on F compatible with T , whence, by the maximality of Υ(T ), AI(T ) ≤
Υ(T ). Thus, ⟨φ,ψ⟩ ∈ ΥΣ(T ).

We now conclude that I is behaviorally syntactically protoalgebraic. ∎

We have now the essential ingredients for formulating a characterization
of behavioral syntactic protoalgebraicity.

I is behaviorally syntactically protoalgebraic←→ AI,V has the MP.

Theorem 1970 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
syntactically protoalgebraic if and only if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and
all φ,ψ ∈ SEN♭v(Σ), ψ ∈ CΣ(φ,AI,vΣ [φ,ψ]).
Proof: The “only if” is by Theorem 1967. The “if” is by Theorem 1969. ∎

It is not difficult to show now that, if a behavioral π-institution is behav-
iorally syntactically protoalgebraic, then any set of witnessing transforma-
tions is deductively equivalent to the visible part of the behavioral reflexive
core.
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Corollary 1971 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic, with witnessing transformations ρ, then,
for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

C(AI,vΣ [φ,ψ]) = C(ρvΣ[φ,ψ]).
Proof: Suppose I is behaviorally syntactically protoalgebraic, with witness-
ing transformations ρ. Then, by Theorems 1967 and 1969, AI,V is also a
collection of witnessing transformations for the behavioral syntactic protoal-
gebraicity of I . Therefore, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all v ∈ V
and all φ,ψ ∈ SEN♭v(Σ), we get

A
I,v
Σ [φ,ψ] ≤ T iff ⟨φ,ψ⟩ ∈ ΥΣ(T )

iff ρvΣ[φ,ψ] ≤ T.
Hence, we get C(AI,vΣ [φ,ψ]) = C(ρvΣ[φ,ψ]). ∎

Another characterizing property, therefore, of behavioral syntactic pro-
toalgebraicity is that the behavioral reflexive core define behavioral Leibniz
congruence systems in I .

I is behaviorally syntactically protoalgebraic
←→ AI,V defines behavioral Leibniz congruence systems.

Theorem 1972 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behav-
iorally syntactically protoalgebraic if and only if AI,V defines behavioral Leib-
niz congruence systems of theory families in I, i.e., for all T ∈ ThFam(I),
AI,V (T ) = Υ(T ).
Proof: Suppose, first, that I is behaviorally syntactically protoalgebraic.
Then, by Theorems 1967 and 1969, AI,V is a collection of witnessing trans-
formations for the behavioral syntactic protoalgebraicity of I . Therefore, for
all T ∈ ThFam(I), AI,V (T ) = Υ(T ). Conversely, if AI,V (T ) = Υ(T ), for
all T ∈ ThFam(I), then I is behaviorally syntactically protoalgebraic, with
witnessing transformations AI,V . ∎

The connection between behavioral syntactic protoalgebraicity and be-
havioral protoalgebraicity passes through another property of the behavioral
Suszko core that we term Leibniz.

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We say that the behavioral
reflexive core AI of I is Leibniz if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ,ψ ∈ SEN♭v(Σ), ⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])).
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It is straightforward to show that, if AI,V has the modus ponens property
in I , then it is also Leibniz.

Proposition 1973 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If AI has
the modus ponens in I, then it is Leibniz.

Proof: Suppose that AI has the modus ponens in I . Then, by Theorem
1969, I is behaviorally syntactically protoalgebraic, with witnessing trans-
formations AI,V . Thus, we obtain, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ,ψ ∈ SEN♭v(Σ),

⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])) iff A
I,v
Σ [φ,ψ] ≤ C(AI,vΣ [φ,ψ]).

However, the condition of the right always holds, whence, we get that, for
all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ), ⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])),
i.e., AI is Leibniz. ∎

The opposite implication is not true in general. It holds, however, in
behaviorally protoalgebraic behavioral π-institutions.

Proposition 1974 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behaviorally protoalgebraic behavioral π-institution
based on F. If AI is Leibniz, then it has the modus ponens in I.

Proof: Suppose that I is behaviorally protoalgebraic and AI is Leibniz. Let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ), such that φ ∈ TΣ and
A
I,v
Σ [φ,ψ] ≤ T . Since AI is Leibniz, we get that ⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])).

Since A
I,v
Σ [φ,ψ] ≤ T , we get, by the hypothesis of behavioral protoalge-

braicity, Υ(C(AI,vΣ [φ,ψ])) ≤ Υ(T ), whence, ⟨φ,ψ⟩ ∈ ΥΣ(T ). Hence, by
the compatibility of Υ(T ), with T , we get ψ ∈ TΣ. We conclude that
ψ ∈ CΣ(φ,AI,vΣ [φ,ψ]) and, thus, AI has the modus ponens in I . ∎

We close by formulating the exact relation between behavioral syntactic
protoalgebraicity and behavioral protoalgebraicity.

Behavioral Syntactic Protoalgebraicity
= AI has the Modus Ponens
= AI Defines Behavioral Leibniz Congruence Systems
= Behavioral Protoalgebraicity +AI Leibniz

Theorem 1975 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
syntactically protoalgebraic if and only if it is behaviorally protoalgebraic and
has a Leibniz behavioral reflexive core.
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Proof: If I is behaviorally syntactically protoalgebraic, then, by Theorem
1965, it is behaviorally protoalgebraic, by Theorem 1967, AI has the modus
ponens and, hence, by Proposition 1973, AI is Leibniz.

Conversely, if I is behaviorally protoalgebraic and AI is Leibniz, then,
by Proposition 1974, AI has the modus ponens in I , whence, by Theorem
1969, I is behaviorally syntactically protoalgebraic. ∎

27.5 Behavioral Truth Equationality

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F.

• I is behaviorally completely reflective (or behaviorally c-ref-
lective, for short), if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Υ(T ) ≤ Υ(T ′) implies ⋂
T ∈T

T ≤ T ′.

• I is behaviorally truth equational if there exists τ = {τ v ∶ v ∈ V },
where, for all v ∈ V , τ v = {τ v,u ∶ u ∈ V } is a collection of natural
transformations τ v,u ∶ SEN♭v ×∏i<ω SEN♭si → (SEN♭u)2 in N ♭, such that,

for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ),
φ ∈ TΣ iff τ vΣ[φ] ≤ Υ(T ).

In this case, the collection τ forms a set of witnessing transforma-
tions for the behavioral truth equationality of I .

We have the following alternative characterization of behavioral c-ref-
lectivity, involving both the behavioral Suszko and the behavioral Leibniz
operator.

Lemma 1976 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
c-reflective if and only if, for all T,T ′ ∈ ThFam(I),

Υ̃(T ) ≤ Υ(T ′) implies T ≤ T ′.

Proof: Suppose, first, that I is behaviorally c-reflective and let T,T ′ ∈
ThFam(I), such that Υ̃(T ) ≤ Υ(T ′). Then, we have ⋂{Υ(X) ∶ T ≤ X ∈
FiFam(I)} ≤ Υ(T ′), whence, by behavioral c-reflectivity, ⋂{X ∶ T ≤ X ∈
ThFam(I)} ≤ T ′, i.e., T ≤ T ′. Thus, the condition of the statement holds.

Assume, conversely, that the condition of the statement holds and let
T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Υ(T ) ≤ Υ(T ′). Then we get

Υ̃(⋂T ) ≤⋂{Υ(T ) ∶ T ∈ T } ≤ Υ(T ′).
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Therefore, by the hypothesis, ⋂T ≤ T ′ and, hence, I is behaviorally c-
reflective. ∎

It is easy to see that behavioral truth equationality implies behavioral
c-reflectivity.

Proposition 1977 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is
behaviorally truth equational, then it is behaviorally c-reflective.

Proof: Suppose that I is behaviorally truth equational, with witnessing
transformations τ = {τ v ∶ v ∈ V }, and let T ∪ {T ′} ⊆ ThFam(I), such that

⋂T ∈T Υ(T ) ≤ Υ(T ′). Then, we have, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ ∈ SEN♭v(Σ),

φ ∈ ⋂T ∈T TΣ iff φ ∈ TΣ, T ∈ T ,
iff τ vΣ[φ] ≤ Υ(T ), T ∈ T ,
iff τ vΣ[φ] ≤ ⋂T ∈T Υ(T )

implies τ vΣ[φ] ≤ Υ(T ′)
iff φ ∈ T ′Σ.

Therefore, ⋂T ≤ T ′ and I is indeed behaviorally c-reflective. ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We define the behavioral
Suszko core ΣI = {ΣI,v ∶ v ∈ V } of I by setting, for all v ∈ V ,

ΣI,v = {σ ∶ SEN♭v ×∏
k
i=1 SEN♭si → (SEN♭u)2, u ∈ V ∶

(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭v(Σ))(σΣ[φ] ≤ Υ̃(C(φ)))}
ΣI is a pool for possible candidates witnessing the potential behavioral

truth equationality of I .

Lemma 1978 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
truth equational, with witnessing transformations τ , then τ ⊆ ΣI .

Proof: Suppose I is behaviorally truth equational, with witnessing transfor-
mations τ = {τ v ∶ v ∈ V } and let v ∈ V , σ ∈ τ v, Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭v(Σ).
Then, we have, for all T ∈ ThFam(I), such that φ ∈ TΣ, σΣ[φ] ≤ Υ(T ),
whence

σΣ[φ] ≤⋂{Υ(T ) ∶ φ ∈ TΣ} = Υ̃(C(φ)).
We conclude that σ ∈ ΣI,v. Therefore, τ ⊆ ΣI . ∎

The behavioral Suszko core ΣI was devised to carry a sentence of visible
sort into the behavioral Suszko congruence system of the theory family gen-
erated by it. Because of the monotonicity of the behavioral Suszko operator
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and the fact that the behavioral Suszko operator is universally subsumed by
the behavioral Leibniz operator, however, it turns out that the image of any
behavioral theory family under the behavioral Suszko core always lies inside
the behavioral Leibniz congruence system of the family.

Proposition 1979 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system, I = ⟨F,C⟩ a behavioral π-institution based on F, T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). If φ ∈ TΣ, then

ΣI,vΣ [φ] ≤ Υ(T ).
Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ), such that
φ ∈ TΣ. Then, we have

ΣI,vΣ [φ] ≤ Υ̃(C(φ)) (definition of ΣI)

≤ Υ̃(T ) (monotonicity of Υ̃)

≤ Υ(T ). (Υ̃ ≤ Υ)

This proves the conclusion. ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We say that the behavioral
Suszko core ΣI of I is soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all
v ∈ V and all φ ∈ SEN♭v(Σ),

ΣI,vΣ [φ] ≤ Υ(T ) implies φ ∈ TΣ.

The solubility of the behavioral Suszko core is a necessary condition for
a behavioral π-institution to be behaviorally truth equational.

Theorem 1980 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally truth equational, then ΣI is soluble.

Proof: Suppose I is behaviorally truth equational, with witnessing trans-
formations τ = {τ v ∶ v ∈ V }. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all
v ∈ V and all φ ∈ SEN♭v(Σ), such that ΣI,vΣ [φ] ≤ Υ(T ), we have, by Lemma
1978,

τ vΣ[φ] ≤ ΣI,vΣ [φ] ≤ Υ(T ),
whence, by the fact that τ witnesses the behavioral truth equationality of I ,
φ ∈ TΣ. Therefore, ΣI is indeed soluble. ∎

Conversely, the solubility of the behavioral Suszko core ensures that it can
serve as a collection of witnessing transformations for the behavioral truth
equationality of I .
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Theorem 1981 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If the behav-
ioral Suszko core ΣI is soluble, then I is behaviorally truth equational, with
witnessing transformations ΣI .

Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). If φ ∈ TΣ,
then, by Proposition 1979, ΣI,vΣ [φ] ≤ Υ(T ). On the other hand, if ΣI,vΣ [φ] ≤
Υ(T ), then, by the postulated solubility of ΣI , we get that φ ∈ TΣ. Hence,
we have φ ∈ TΣ if and only if ΣI,vΣ [φ] ≤ Υ(T ), showing that ΣI witnesses the
behavioral truth equationality of I . ∎

We now have the following characterization of behavioral truth equation-
ality depending on the behavior (in the ordinary sense) of the behavioral
Suszko core.

I is Behaviorally Truth Equational ←→ ΣI is Soluble.

Theorem 1982 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
truth equational if and only if it has a soluble behavioral Suszko core.

Proof: Necessity is by Theorem 1980, whereas sufficiency is proved in The-
orem 1981. ∎

We say that the behavioral Suszko core ΣI of a behavioral π-institution
I = ⟨F,C⟩ defines theory families if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣,
all v ∈ V and all φ ∈ SEN♭v(Σ),

φ ∈ TΣ iff ΣI,vΣ [φ] ≤ Υ(T ).
Then, another characterization of behavioral truth equationality is the fol-
lowing:

I is Behaviorally Truth Equational ←→ ΣI Defines Theory Families.

Theorem 1983 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
truth equational if and only if its behavioral Suszko core ΣI defines theory
families.

Proof: I is behaviorally truth equational if and only if, by Theorem 1982 ΣI

is soluble if and only if, by Proposition 1979 and the definition of solubility,
ΣI defines theory families in I . ∎

We have just seen that behavioral truth equationality of a behavioral π-
institution is equivalent to the solubility property of its behavioral Suszko
core. The solubility property implies another property, which, taking after



1602 CHAPTER 27. BEHAVIORICITY Voutsadakis

similar work in preceding chapters, we call adequacy. It says, roughly speak-
ing, that in a behavioral π-institution the category of natural transformations
is rich enough to determine behavioral Suszko congruence systems in terms of
the behavioral Leibniz congruence systems that it selects by inclusion. The
property of adequacy is motivated by the following property that holds in
every behavioral π-institution.

Proposition 1984 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. For all
Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ),

⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )} ≤ Υ̃(C(φ)).
Proof: Let Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). Then we have, for all
T ∈ ThFam(I),

φ ∈ TΣ implies ΣI,vΣ [φ] ≤ Υ̃(T )
implies ΣI,vΣ [φ] ≤ Υ(T ).

Thus, we get

⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )} ≤ ⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ̃(T )}
≤ ⋂{Υ(T ) ∶ φ ∈ TΣ}
= Υ̃(C(φ)).

Hence, the inclusion in the statement holds. ∎

The reverse inclusion is not always guaranteed, but, when it holds, we
say that the behavioral Suszko core of I is adequate. The terminology is
intended to convey the idea that ΣI,vΣ [φ] suffices to determine the theory
families whose behavioral Leibniz congruence systems form a “covering” of
the behavioral Suszko congruence system corresponding to the theory family
C(φ).

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. The behavioral Suszko core
ΣI of I is adequate if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ),

Υ̃(C(φ)) ≤⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )}.
We can prove immediately that the solubility of the behavioral Suszko

core implies its adequacy.

Proposition 1985 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If the
behavioral Suszko core ΣI is soluble, then it is adequate.
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Proof: Suppose that ΣI is soluble. Let Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ).
By solubility, for all T ∈ ThFam(I),

ΣI,vΣ [φ] ≤ Υ(T ) implies φ ∈ TΣ.

Hence, we get
Υ̃(C(φ)) ≤ Υ̃(T ) ≤ Υ(T ).

Since this holds, for all T ∈ ThFam(I), such that ΣI,vΣ [φ] ≤ Υ(T ), we get
that

Υ̃(C(φ)) ≤⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )}.
Therefore, ΣI is adequate. ∎

Conversely, if a behavioral π-institution is behaviorally c-reflective, then
the adequacy of its behavioral Suszko core is sufficient to give its solubility.

Proposition 1986 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is
behaviorally c-reflective and the behavioral Suszko core ΣI is adequate, then
ΣI is soluble.

Proof: Suppose that I is behaviorally c-reflective and that the behavioral
Suszko core ΣI is adequate. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and
φ ∈ SEN♭v(Σ), such that ΣI,vΣ [φ] ≤ Υ(T ). Then, by the adequacy of the Suszko

core, we get that Υ̃(C(φ)) ≤ Υ(T ), whence, by behavioral c-reflectivity and
Lemma 1976, we get C(φ) ≤ T , i.e., φ ∈ TΣ. We conclude that ΣI is soluble.
∎

We can now show that a behavioral π-institution is behaviorally truth
equational if and only if it is behaviorally c-reflective and has an adequate
behavioral Suszko core.

Behavioral Truth Equationality
= ΣI Soluble
= ΣI Defines Theory Families
= Behavioral c-Reflectivity +ΣI Adequate

Theorem 1987 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behav-
iorally truth equational if and only if it is behaviorally c-reflective and has an
adequate behavioral Suszko core.

Proof: If I is behaviorally truth equational, then, by Proposition 1977, it is
behaviorally c-reflective, by Theorem 1980, its behavioral Suszko core is sol-
uble and, by Proposition 1985, its behavioral Suszko core is adequate. Con-
versely, if I is behaviorally c-reflective with an adequate behavioral Suszko
core, then, by Proposition 1986, its behavioral Suszko core is soluble and,
hence, by Theorem 1981, I is behaviorally truth equational. ∎
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27.6 Behavioral Weak Algebraizability

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally WF alge-
braizable if it is behaviorally protoalgebraic and behaviorally c-reflective.

Lemma 1988 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
protoalgebraic, then, for all {T i ∶ i ∈ I} ⊆ ThFam(I),

Υ(⋂
i∈I

T i) =⋂
i∈I

Υ(T i).
Proof: Suppose I is behaviorally protoalgebraic and let {T i ∶ i ∈ I} ⊆
ThFam(I). Then, by hypothesis, Υ(⋂i∈I T i) ≤ ⋂i∈I Υ(T i). On the other
hand, ⋂i∈I Υ(T i) is a congruence system on F. Moreover, it is easy to see
that it is compatible with ⋂i∈I T i. Hence, by the maximality property of the
behavioral Leibniz congruence system, we get ⋂i∈I Υ(T i) ≤ Υ(⋂i∈I T i). ∎

Lemma 1989 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
protoalgebraic and the behavioral Leibniz operator is injective, then, for all
T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Υ(T ) ≤ Υ(T ′) implies ⋂T ≤ T ′.

Proof: Suppose that I is behaviorally protoalgebraic and that the behav-
ioral Leibniz operator is injective. Let T ∪ {T ′} ⊆ ThFam(I), such that

⋂T ∈T Υ(T ) ≤ Υ(T ′). Then we have

Υ(⋂T ∩ T ′) = ⋂T ∈T Υ(T ) ∩Υ(T ′) (Lemma 1988)
= ⋂T ∈T Υ(T ) (hypothesis)
= Υ(⋂T ). (Lemma 1988)

Hence, by the injectivity of the behavioral Leibniz operator, ⋂T ∩ T ′ = ⋂T ,
showing that ⋂T ≤ T ′. ∎

Proposition 1990 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is
behaviorally WF algebraizable if and only if the behavioral Leibniz operator
is monotone and injective on ThFam(I).
Proof: Suppose I is behaviorally WF algebraizable. Then by definition, it
is behaviorally protoalgebraic and behaviorally c-reflective. Thus, the behav-
ioral Leibniz operator is monotone and c-reflective on ThFam(I), whence it
is monotone and, a fortiori, injective on ThFam(I).
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If, conversely, Υ is monotone and injective on ThFam(I), then it is mono-
tone and, by Lemma 1989, c-reflective on ThFam(I). Hence, I is behav-
iorally protoalgebraic and behaviorally c-reflective, i.e., by definition, it is
behaviorally WF algebraizable. ∎

Another characterization of behavioral WF algebraizability asserts that
it is equivalent to the existence of an isomorphism from the complete lattice
of theory families of a behavioral π-institution to the complete lattice of the
I-congruence systems on its underlying behavioral algebraic system.

We need the following preparatory definitions.
Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and

I = ⟨F,C⟩ a behavioral π-institution based on F.

• Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. A family T = {TΣ}Σ∈∣Sign∣,
with TΣ ⊆ ⋃v∈V SENv(Σ), for all Σ ∈ ∣Sign∣, is called an I-filter family
of A if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all Φ ∪ {φ} ⊆ ⋃v∈V SEN♭v(Σ),
such that φ ∈ CΣ(Φ),

αΣ(Φ) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
The collection of all I-filter families of A is denoted by FiFamI(A).
It is a complete lattice, whose corresponding closure operator will be
denoted by CI,A.

• An F-algebraic system A = ⟨A, ⟨F,α⟩⟩ is an I-algebraic system if
there exists T ∈ FiFamI(A), such that Υ̃(T ) = ∆A. The collection of
all I-algebraic systems is denoted by AlgSys(I).

• Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, a congruence system θ ∈
ConSys(A) is a I-congruence system on A if A/θ ∈ AlgSys(I). The
collection of all I-congruence systems on A is denoted by ConSysI(A).

Lemma 1991 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. For every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T = {TΣ}Σ∈∣Sign∣, such that, for all
Σ ∈ ∣Sign∣, TΣ ⊆ ⋃v∈V SENv(Σ),

T ∈ FiFamI(A) iff α−1(T ) ∈ ThFam(I).
Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T = {TΣ}Σ∈∣Sign∣,
such that, for all Σ ∈ ∣Sign∣, TΣ ⊆ ⋃v∈V SENv(Σ).

Assume, first, that T ∈ FiFamI(A) and let Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈
SEN♭v(Σ), such that φ ∈ CΣ(α−1Σ (TF (Σ))). Then, by the definition of CI,A, we
get

αΣ(φ) ∈ CI,AF (Σ)(αΣ(α−1Σ (TF (Σ)))) ⊆ CI,AF (Σ)(TF (Σ)) = TF (Σ).
Hence, we get φ ∈ α−1Σ (TF (Σ)) and we conclude that α−1(T ) ∈ ThFam(I).
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Suppose, conversely, that α−1(T ) ∈ ThFam(I) and let Σ ∈ ∣Sign♭∣, Φ ∪{φ} ⊆ ⋃v∈V SEN♭v(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). Then Φ ⊆
α−1Σ (TF (Σ)), whence, since φ ∈ CΣ(Φ) and α−1(T ) ∈ ThFam(I), we get that

φ ∈ α−1Σ (TF (Σ)), i.e., αΣ(φ) ∈ TF (Σ). We conclude that T ∈ FiFamI(A). ∎

Lemma 1992 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. For every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A),

Υ(α−1(T )) = α−1(ΥA(T )).
Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∈ FiFamI(A).
Then, for all Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), we have ⟨φ,ψ⟩ ∈
ΥΣ(α−1(T )) if and only if, for all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si → SEN♭v, with v ∈ V ,

all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

σΣ′(SEN♭s(f)(φ), χ⃗) ∈ α−1Σ′ (TF (Σ′))
iff σΣ′(SEN♭s(f)(ψ), χ⃗) ∈ α−1Σ′ (TF (Σ′))

iff
αΣ′(σΣ′(SEN♭s(f)(φ), χ⃗)) ∈ TF (Σ′)

iff αΣ′(σΣ′(SEN♭s(f)(ψ), χ⃗)) ∈ TF (Σ′)
iff

σA
F (Σ′)
(αΣ′(SEN♭s(f)(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σA
F (Σ′)
(αΣ′(SEN♭s(f)(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff

σA
F (Σ′)
(SENs(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σA
F (Σ′)
(SENs(F (f))(αΣ(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′)

if and only if, by the surjectivity of ⟨F,α⟩, ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΥA
F (Σ)
(T ) if

and only if ⟨φ,ψ⟩ ∈ α−1
F (Σ)
(ΥA

F (Σ)
(T )). We now conclude that Υ(α−1(T )) =

α−1(ΥA(T )). ∎

Now we have the following characterization result for behavioral WF al-
gebraizability.

Theorem 1993 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
WF algebraizable if and only if Υ ∶ ThFam(I) → ConSysI(F) is an order
isomorphism.
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Proof: Suppose that I is behaviorally WF algebraizable. Then, by Propo-
sition 1990, Υ is monotone and injective on ThFam(I). Moreover, by defi-
nition of behavioral WF algebraizability Υ is c-reflective on ThFam(I) and,
therefore, a fortiori, it is order reflecting. Thus, it suffices to show that it
is surjective, i.e., onto ConSysI(F). To this end, let θ ∈ ConSysI(F). By
definition, F/θ ∈ AlgSys(I). Thus, there exists T θ ∈ FiFamI(F/θ), such that
Υ̃F/θ(T θ) = ∆F/θ. Let ⟨I, πθ⟩ ∶ F → F/θ be the quotient morphism. Now, by
Lemma 1991, πθ

−1(T θ) ∈ ThFam(I) and

Υ(πθ−1(T θ)) = πθ
−1(ΥF/θ(T θ)) (Lemma 1992)

= πθ
−1(∆F/θ) (hypothesis and protoalgebraicity)

= θ. (set theory)

Therefore, Υ is surjective and, hence, an order isomorphism from ThFam(I)
onto ConSysI(F).

Conversely, if Υ ∶ ThFam(I) → ConSysI(F) is an order isomorphism,
then it is monotone and injective on ThFam(I) and, hence, by Proposition
1990, I is behaviorally WF algebraizable. ∎

Finally, we close by providing a relation between behavioral algebraiz-
ability and behavioral WF algebraizability. Our first step in this direction
is to show that behavioral algebraizability implies both behavioral syntac-
tic protoalgebraicity and behavioral truth equationality. To be able to show
this, we start by proving two technical results asserting that the binary rela-
tion family induced on the underlying behavioral algebraic system of a given
behaviorally algebraizable π-institution by one of the two interpretations
witnessing the behavioral algebraizability is a congruence system having a
compatibility property.

Lemma 1994 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of F-
algebraic systems, then, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ, ρvΣ[φ,ψ]).
Proof: Assume T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ), such
that φ ∈ TΣ and ρvΣ[φ,ψ] ≤ T . Then we get that

τ vΣ[φ] ≤ CK(τΣ[T ]) and ⟨φ,ψ⟩ ∈ CK(τΣ[T ]).
Hence, by the definition of CK, we get that τ vΣ[ψ] ≤ CK(τΣ[T ]) and, therefore,
ψ ∈ CΣ(T ) = TΣ. We conclude that ψ ∈ CΣ(φ, ρvΣ[φ,ψ]). ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behaviorally algebraizable π-institution, as witnessed by the
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conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of F-algebraic systems. We
define a class ρ+ = {ρ+,s ∶ s ∈ S} of natural transformations in N ♭ by setting,
for all s ∈ S, ρ+,s to be the collection of all natural transformations in N ♭ of
the form

σv(σ(x, z⃗), σ(y, z⃗), w⃗),
where

σ ∶ SEN♭s ×
k

∏
i=1

SEN♭si → SEN♭v, σv ∈ ρv, v ∈ V.

Moreover, for all T ∈ ThFam(I), we define ρ+∗(T ) = {ρ+∗Σ (T )}Σ∈∣Sign♭∣,
where, for all Σ ∈ ∣Sign♭∣, we set

ρ+∗Σ (T ) = {ρ+∗,sΣ (T ) ∶ s ∈ S}
by letting, for all Σ ∈ ∣Sign♭∣, all s ∈ S and all φ,ψ ∈ SEN♭s(Σ),

⟨φ,ψ⟩ ∈ ρ+∗,sΣ (T ) iff ρ+,sΣ [φ,ψ] ≤ T.
Proposition 1995 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is
behaviorally algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class
K of F-algebraic systems, then, for all T ∈ ThFam(I), ρ+∗(T ) is a congruence
system on F compatible with T .

Proof: Let T ∈ ThFam(I) and Σ ∈ ∣Sign♭∣. Then ρ+∗Σ (T ) is reflexive, sym-
metric and transitive, by the definition of IK, the definition of ρ+ and the
fact that ρ is an interpretation.

E.g., to show symmetry, we let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ),
such that ⟨φ,ψ⟩ ∈ ρ+∗,sΣ (T ). Then, we have ρ+,sΣ [φ,ψ] ≤ T and, thus, for all
σ ∶ SEN♭s × ∏

k
i=1 SEN♭si → SEN♭v in N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and

χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

ρvΣ′[σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(ψ), χ⃗)] ≤ T.
This, however, implies that

ρvΣ′[σΣ′(SEN♭s(f)(ψ), χ⃗), σΣ′(SEN♭s(f)(φ), χ⃗)] ≤ T.
Reversing the steps above, we get that ⟨ψ,φ⟩ ∈ ρ+∗,sΣ (T ). Hence, ρ+∗Σ (T ) is
symmetric.

Moreover, it has, by the same considerations, the congruence property.
Finally, it is a system by the definition of ρ+∗(T ). It is compatible with T

due to Lemma 1994. ∎
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Corollary 1996 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of
F-algebraic systems, then, for all v ∈ V , ρ+∗,v(T ) = ρ∗,v(T ).
Proof: Let v ∈ V and suppose Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭v(Σ), such that⟨φ,ψ⟩ ∈ ρ+∗,vΣ (T ). Then ρ

+,v
Σ [φ,ψ] ≤ T . But, by definition, ρ ⊆ ρ+, whence,

ρvΣ[φ,ψ] ≤ T , Therefore, ⟨φ,ψ⟩ ∈ ρ∗,vΣ (T ).
Suppose, conversely, that ⟨φ,ψ⟩ ∈ ρ∗,vΣ (T ). Then ρvΣ[φ,ψ] ≤ T . But this

implies that, for all σ ∶ SEN♭v ×∏
k
i=1 SEN♭si → SEN♭u, with u ∈ V , in N ♭, all

Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

ρuΣ′[σΣ′(SEN♭v(f)(φ), χ⃗), σΣ′(SEN♭v(f)(ψ), χ⃗)] ≤ T.
Therefore, we conclude that ρ+,vΣ [φ,ψ] ≤ T , giving that ⟨φ,ψ⟩ ∈ ρ+∗,vΣ (T ). ∎

Proposition 1995 allows us to establish that the congruence system ρ+∗(T )
coincides with the behavioral Leibniz congruence system Υ(T ) of T in I .

Theorem 1997 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of
F-algebraic systems, then, for all T ∈ ThFam(I),

ρ+∗(T ) = Υ(T ).
Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), such that⟨φ,ψ⟩ ∈ ΥΣ(T ). Since Υ(T ) is a congruence system, we get, for all Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′), ⟨SEN♭s(f)(φ),SEN♭s(f)(ψ)⟩ ∈ ΥΣ′(T ). Since Υ(T )
is a congruence system, we now get, for all σv ∈ ρv, all σ ∶ SEN♭s×∏

k
i=1 SEN♭si →

SEN♭v in N ♭, and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′), ξ⃗ ∈∏j<ω SEN♭sj(Σ′),

⟨σvΣ′(σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(φ), χ⃗), ξ⃗),
σvΣ′(σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(ψ), χ⃗), ξ⃗)⟩ ∈ ΥΣ′(T ).

On the other hand, we know that ρ+,sΣ [φ,φ] ≤ T , whence, by the compatibility
of Υ(T ) with T , we get that ρ+,sΣ [φ,ψ] ≤ T . Therefore, ⟨φ,ψ⟩ ∈ ρ+∗Σ (T ).

Conversely, since, by Proposition 1995, ρ+∗(T ) is a congruence system
on F that is compatible with T , we get, by the maximality property of the
behavioral Leibniz operator, ρ+∗(T ) ≤ Υ(T ). ∎

Now, we prove that behavioral algebraizability implies both behavioral
syntactic protoalgebraicity and behavioral truth equationality.

Theorem 1998 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable, then it is both behaviorally syntactically protoalgebraic
and behaviorally truth equational.
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Proof: Suppose I is behaviorally algebraizable via the conjugate pair (τ, ρ) ∶
I ⇄ IK, for some class K of F-algebraic systems.

Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ). Then we have

⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ⟨φ,ψ⟩ ∈ ρ+∗Σ (T ) (Theorem 1997)
iff ⟨φ,ψ⟩ ∈ ρ∗Σ(T ) (by Corollary 1996)
iff ρΣ[φ,ψ] ≤ T. (definition of ρ∗)

Therefore, I is behaviorally syntactically protoalgebraic, with witnessing
transformations ρ.

Finally, let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). Then,
we have

φ ∈ TΣ iff ρΣ[τΣ[φ]] ≤ T ((τ, ρ) conjugate pair)
iff τΣ[φ] ⊆ ρ∗Σ(T ) (definition of ρ∗)
iff τΣ[φ] ⊆ ρ+∗Σ (T ) (by Corollary 1996)
iff τΣ[φ] ≤ Υ(T ). (Theorem 1997)

Therefore, I is behaviorally truth equational, with witnessing transforma-
tions τ . ∎

We show, next, that, conversely, behavioral syntactic protoalgebraicity
and behavioral truth equationality guarantee behavioral algebraizability.

Theorem 1999 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic and behaviorally truth equational, then it
is behaviorally algebraizable.

Proof: Suppose that I is behaviorally syntactically protoalgebraic, with
witnessing transformations ρ, and behaviorally truth equational, with wit-
nessing transformations τ . Then, we have, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆
⋃v∈V SEN♭v(Σ),

φ ∈ CΣ(Φ) iff φ ∈ ⋂{TΣ ∶ Φ ⊆ TΣ}
iff τΣ[φ] ≤ ⋂{Υ(T ) ∶ τΣ[Φ] ≤ Υ(T )}
iff τΣ[φ] ≤ CK(τΣ[Φ]).

Moreover, for all Σ ∈ ∣Sign♭∣, v ∈ V and all φ,ψ ∈ SEN♭v(Σ),
⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ρvΣ[φ,ψ] ≤ T

iff τ[ρvΣ[φ,ψ]] ≤ Υ(T ).
Hence, we have that CK(φ ≈ ψ) = CK(τ[ρvΣ[φ,ψ]]).

We conclude, by Proposition 1961, that I is equivalent to IK and, there-
fore, I is behaviorally algebraizable. ∎

Now we can formulate the main characterization theorem:
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Theorem 2000 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. The following
statements are equivalent:

(i) I is behaviorally algebraizable;

(ii) I is behaviorally syntactically protoalgebraic and behaviorally truth e-
quational;

(iii) I is behaviorally WF algebraizable (i.e., behaviorally protoalgebraic and
behaviorally c-reflective) and has both a Leibniz behavioral reflexive core
and an adequate behavioral Suszko core.

Proof: If I is behaviorally algebraizable, then, by Theorem 1998, it is both
behaviorally syntactically protoalgebraic and behaviorally truth equational.
If I is behaviorally syntactically protoalgebraic and behaviorally truth equa-
tional, then, by Theorems 1975 and 1987, it is behaviorally protoalgebraic,
behaviorally c-reflective and has both a Leibniz behavioral reflexive core and
an adequate behavioral Suszko core. Finally, if I is behaviorally WF alge-
braizable, with a Leibniz behavioral reflexive core and an adequate behavioral
Suszko core, then, by Theorems 1975 and 1987, it is behaviorally syntacti-
cally protoalgebraic and behaviorally truth equational, whence, by Theorem
1999, it is behaviorally algebraizable. ∎



1612 CHAPTER 27. BEHAVIORICITY Voutsadakis


