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12 CHAPTER 1. INTRODUCTION Voutsadakis

1.1 Introduction

The field of algebraic logic assumed its modern systematic form, known as
abstract algebraic logic, with the appearance of the pioneering “Memoirs”
monograph of Blok and Pigozzi [35]. In this celebrated monograph one can
find clearly discernible the seeds and the foundations of almost all subse-
quent developments in the field and, consequently, also, the foundations on
which most parts of the work and of the developments detailed in the present
monograph are based.

Related to the term “abstract algebraic logic”, another of the pioneers
of the field, Josep Maria Font, in a more recent textbook, titled “Abstract
Algebraic Logic An Introductory Textbook” [86], advocates that the name
should continue to be simply algebraic logic and that, as is the case with most
other fields of Mathematics, Logic and Science, the abstraction, to which the
term “abstract” refers, is part of the natural evolution of the same field, and
should not be construed as constituting a special subfield justifying a special
naming or rebranding.

In a similar sense, one may share the same belief for categorical abstract
algebraic logic, which is also another natural evolution of algebraic logic and,
therefore, according to this point of view, should also be referred to, simply,
as algebraic logic. It may, in fact, be preferable to refer to the underlying
formalizations of the logical systems treated in each particular context than to
rebrand the entire field. So instead of referring to “abstract algebraic logic”,
we may say “algebraic logic as applied to sentential logics” (or “to deductive
systems”) and, similarly, “algebraic logic as applied to logics formalized as
institutions or π-institutions”, instead of using “categorical abstract algebraic
logic” for the latter. For now, however, the traditional names have stuck and
have been used widely, with well-discernible meanings, and we use them
freely, as is also done in [86].

In “traditional” algebraic logic, which may be viewed to have started with
the work of Tarski [5], the underlying formalism consists of sentential logics
or deductive systems. These are pairs S = ⟨L,⊢S⟩, where L is an algebraic
language (a set of operation symbols with specified finite arities) and ⊢S is a
consequence relation on the absolutely free algebra FmL(V ) generated by a
countable set V of variables. That is, ⊢S ⊆ P(FmL(V )) × FmL(V ), satisfies
the following, for all Γ ∪∆ ∪ {ϕ} ⊆ FmL(V ),

Inflation: Γ ⊢S ϕ, for all ϕ ∈ Γ;

Monotonicity: Γ ⊢S ϕ and Γ ⊆ ∆ imply ∆ ⊢S ϕ;

Idempotency: Γ ⊢S ϕ and ∆ ⊢S γ, for all γ ∈ Γ, imply, ∆ ⊢S ϕ;

Structurality: Γ ⊢S ϕ implies σ(Γ) ⊢S σ(ϕ), for all endomorphisms σ ∶ FmL(V ) →
FmL(V ).
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Equivalently, S may be expressed in terms of a structural closure operator
CS , i.e., a function CS ∶ P(FmL(V ))→ P(FmL(V )), satisfying, for all Γ∪∆ ⊆
FmL(V ):

Inflation: Γ ⊆ CS(Γ);

Monotonicity: CS(Γ) ⊆ CS(∆), for all Γ ⊆ ∆;

Idempotency: CS(CS(Γ)) ⊆ CS(Γ);

Structurality: σ(CS(Γ)) ⊆ CS(σ(Γ)), for all endomorphisms σ ∶ FmL(V )→ FmL(V ).

The equivalence is established by setting, on the one hand, for all Γ ⊆
FmL(V ),

CS(Γ) = {ϕ ∈ FmL(V ) ∶ Γ ⊢S ϕ},

and, on the other, for all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢S ϕ iff φ ∈ CS(Γ).

The reliance on sentential logics as the underlying formalism of the theory
persists when passing to abstract algebraic logic. The reader is referred to the
aforementioned [35, 86], as well as to the standard reference [64] by Janusz
Czelakowski, another pioneer in the field, all clearly showcasing the primary
role of this framework in all related developments and investigations.

By contrast, in this monograph the underlying logical formalism consists
of π-institutions [33]. This formalism encompasses systems with varying sig-
natures and quantifiers in a more direct way than allowed by the formalism
of sentential logics (see Appendix C of [35], as well as the work on cylin-
dric [15, 27] and polyadic algebras [9] and related work at the institutional
level [100, 101, 102, 103] based and/or closely related to these). The struc-
ture of a π-institution forms a modification of the structure of an institution
[25, 41], which was introduced in computer science to formalize logical sys-
tems for specification and programming, based on semantics. Diaconescu’s
monograph [79] offers a comprehensive advanced study of institutions and
presents a multitude of model theoretic results that can be abstracted from
first-order, and other specific logical systems, to the institutional level. On
the other hand, in π-institutions, the framework is stripped of the semantic,
or model theoretic, aspects and the focus is on the syntax, thus recovering the
essential features of the sentential logic framework, without, however, shed-
ding the versatility afforded, and the advantage gained, by incorporating in
the object language multiple signatures and signature-changing morphisms.
In fact, this inclusion is what gives the area its distinctive and unique char-
acter inside (abstract) algebraic logic. This is apparent in all aspects of our
studies.

To make clearer the exact relationship between sentential logics and π-
institutions, and showcase the fact that the former constitute very narrow
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special cases of the latter, let us recall the definition of a π-institution. A
π-institution, as originally defined in [33], is a triple I = ⟨Sign,SEN,C⟩,
where

• Sign is an arbitrary category, whose objects are called signatures and
its morphisms signature morphisms;

• SEN ∶ Sign → Set is a functor giving, for each signature Σ ∈ ∣Sign∣, the
set SEN(Σ) of Σ-sentences;

• For every Σ ∈ ∣Sign∣, CΣ ∶ P(SEN(Σ)) → P(SEN(Σ)) is a closure
operator, such that the collection C = {CΣ}Σ∈∣Sign∣ satisfies the property
of structurality, i.e., for all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all
Φ ⊆ SEN(Σ),

SEN(f)(CΣ(Φ)) ⊆ CΣ′(SEN(f)(Φ)).

In the modified (enriched) form that is used in the present monograph, and
which was (essentially) introduced in [106], there is an additional component
N , which represents a category of natural transformations on the sentence
functor SEN. Roughly speaking, this category corresponds to clones of alge-
braic operations on {SEN(Σ) ∶ Σ ∈ ∣Sign∣}, under the assumption that all op-
erations are defined uniformly and naturally over all SEN(Σ), for Σ ∈ ∣Sign∣.
This accords in style with the algebraic theories of Lawvere [10], which are
closely related to the Eilenberg-Moore [11] and the Kleisli [12] constructions.
For more details on these, one may consult the classic texts by Mac Lane [16],
Pareigis [14], Borceux [45] and Barr and Wells [57]. Thus, we are studying
logical systems formalized as quadruples I = ⟨Sign,SEN,N,C⟩, which are
further recast as pairs

I = ⟨F,C⟩,

where

• F = ⟨Sign,SEN,N⟩ expresses the algebraic structure, corresponding to
the absolutely free algebra in the case of deductive systems, and

• C = {CΣ}Σ∈∣Sign∣ is a family of closure operators, satisfying structurality,
which is referred to as a closure system, and corresponds to the closure
CS in the case of sentential logics.

Suppose now that S = ⟨L,CS⟩ is a sentential logic. The standard rendering
of it as a π-institution

IS = ⟨FL,CS⟩,

with FL = ⟨SignL,SENL,NL⟩, is given by defining the four components as
follows:

• SignL is a trivial category, with object, say, V ;
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• SENL ∶ SignL → Set is given by SENL(V ) = FmL(V );

• NL is the clone of all L-operations on FmL(V );

• CSV = CS ∶ P(FmL(V )) → P(FmL(V )).

It is worth noting that FL only depends on L and V , as was to be expected
(since it was deemed to correspond to the algebraic structure), and the de-
ductive apparatus is reflected entirely in the definition of CS . Moreover, the
formalism on the logical side does not incorporate substitutions in the object
language, even though, since CSV = CS and the latter is structural, we have,
for every endomorphism σ ∶ FmL(V ) → FmL(V ),

σ(CSV (Φ)) ⊆ C
S
V (σ(Φ)),

for all Φ ⊆ FmL(V ). On the algebraic side, on the other hand, e.g., when
congruences are to be determined, the inclusion of the clone NL, reflecting
the algebraic L-structure, forces congruences at the institutional level to
exactly correspond to the familiar L-congruences on the formula algebra in
the universal algebraic sense.

The reasons why one might want to develop a theory of algebraization
for logical systems formalized as institutions or π-institutions parallel the
motivations provided by Blok and Pigozzi [35] for developing a theory of
algebraizability for sentential logics.

One of the main motivations is providing a classification of logical sys-
tems based on the strength of the ties of their deductive apparatuses with
those corresponding to algebraic deductive systems, i.e., deductive systems
whose closure systems are induced by algebraic structures. Preferably, when
the definitions applicable in the context of logical systems formalized as π-
institutions specialize in the way outlined above to π-institutions associated
with deductive systems, one would be able to recover the well-known alge-
braic (or Leibniz) hierarchy of abstract algebraic logic [64, 86]. The finitary
and finitely algebraizable sentential logics of [35] form a special class in this
hierarchy. In [86], this property is termed Blok-Pigozzi algebraizability (see
Definition 3.39 of [86]).

Another desideratum is that the definitions should be as general as pos-
sible so that, given virtually any π-institution, one would be able, at least in
principle, to classify it in one or more of the classes of the hierarchy, based
on the strength of its algebraic properties.

Further, an additional reassurance would be provided if the definitions
supplied turned out to be robust in the sense that one would be able to
obtain, at least for several, if not for most, of them, different characterizations
depending on the various viewpoints taken. This was clearly and successfully
undertaken in [35] for the class of algebraizable deductive systems. In fact,
Blok and Pigozzi obtained several different characterizations whose variety



16 CHAPTER 1. INTRODUCTION Voutsadakis

and strength played a major role in convincing other researchers that their
definitions were chosen wisely and, as a result, in establishing firmly the
new trends in the field and, thus, contributing, in large part, to virtually
all subsequent developments. It is hoped that pursuits along the same lines
here will prove, at least moderately, successful with respect to similar criteria.
In particular, it is hoped that the characterizations of many of the classes
presented in this monograph in a variety of ways will prove to many of the
readers and to, present and future, researchers in the field satisfactory and
motivating, as was the case with the work of Blok and Pigozzi [35].

One last motivation, equally important, however, in significance, comes
by taking an adversarial point of view. As Blok and Pigozzi realized when
studying sentential logics, and is certainly true also for logics formalized as π-
institutions, since they encompass sentential logics, is the fact that many log-
ical systems of historical and/or practical significance failed to be amenable
to classical methods of algebraization, such as, e.g., the Lindenbaum-Tarski
process. Naturally one is inclined to ask whether those systems can be alge-
braized in some alternative way, using different techniques, or whether the
failure in their algebraization is due to intrinsic reasons. That is, one would
like to investigate whether those systems have some innate characteristics,
e.g., pertaining to their structural properties, that many, if not all, of them
share and that decide their algebraizability status. This is reminiscent of
the extensive and intensive research in computational complexity theory in
separating various complexity classes [94, 92, 95, 93, 96, 91], where com-
mon features and rigorous criteria are sought for classification of problems
in hierarchies of complexity classes. As is the case there, such an analysis
and rigorous classification presupposes the existence of a formal definition
of algebraizability (and of other related properties) so as to delineate formal
boundaries and establish criteria that could potentially be used to falsify
claims of algebraizability for some logical systems. Such criteria would point
to shortcomings and defects of some logical systems as related to qualitative
requirements that a logic should satisfy in order to qualify for membership
in a corresponding class. It is believed that the definitions adopted here are
helpful in establishing such criteria and in setting up boundaries. The ex-
amples that are scattered throughout seem to support this assertion, but, of
course, the jury is out as far as gathering further evidence in support of, or
in criticism and opposition to, this claim.

The notion of algebraizability adopted in this monograph is inspired by
the one established for deductive systems by Blok and Pigozzi in [35]. Apart
from the technical complications inherent in passing from the sentential to
the institutional framework, one substantial difference is that we distinguish
between a treatment based on the Leibniz operator, referred to as semantic,
as contrasted to the one based on interpretations from logic to algebra and
vice-versa, which is termed syntactic, since it is based on natural transfor-
mations corresponding to term operations on the free algebra of terms. In
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the sentential logic framework, such a distinction is only apparent, since, as
it turns out, the two approaches are equivalent and, hence, interchangeable.
On the other hand, in π-institutions, the added flexibility afforded in the
relation between morphisms (which are treated in the object language in the
category of signatures) and clone operations (also part of the framework, but
added a posteriori to enhance the algebraic character of the intended studies)
means that the syntactic concepts dominate (i.e., are, in general, stronger)
than their corresponding semantic counterparts.

The role that theories play in sentential logics is subsumed here by the-
ory families, which consist of deductively closed sets of sentences, one for
each signature. They form a complete lattice ThFam(I) = ⟨ThFam(I),≤⟩,
when ordered by signature-wise inclusion ≤. To each theory family is associ-
ated a congruence system, a collection of equivalence relations on formulas,
one for each signature, that satisfy both the congruence property (or sub-
stitution property) and invariance under signature morphisms. These also
form a complete lattice under signature-wise inclusions, which is denoted by
ConSys(I) = ⟨ConSys(I),≤⟩. The congruence system selected is the largest
one compatible with the given theory family and is termed, by analogy with
the sentential logic framework, the Leibniz congruence system associated
with the theory family.

Starting from semantics, we say that a π-institution is algebraizable if
it satisfies two conditions that impose very intimate ties between the lattice
of theory families of the π-institution and that of the congruence systems
determined by a class of algebraic systems. The first condition is that the
Leibniz operator is monotone on theory families. The second is that it is
order-reflecting.

On the syntactic side, a π-institution is algebraizable if, on the one
hand, the Leibniz congruence systems are definable via a collection of natural
transformations in two arguments and, on the other, if the theory families
are definable via a collection of natural transformations in a single argument.
In general, parametric arguments are allowed and, by restricting those, we
obtain potentially narrower classes.

One of the main theorems established by Blok and Pigozzi in [35] is the
characterization of algebraizable sentential logics via the existence of an iso-
morphism between the theory lattice of the deductive system and the equa-
tional theory lattice associated to a class of algebras, which also commutes
with substitutions. A characterization along similar lines is established here
for logical systems formalized as π-institutions (see, e.g., Section 4.3 or Sec-
tion 12.3, even though other related forms appear in other places in the mono-
graph, as will be discussed in the overview). In the literature several forms
of this theorem and a host of generalizations of increasing power (or gener-
ality) have been discussed. A sample list includes [73, 35, 40, 99, 75, 81, 88].
The majority of these deal with deductive equivalence of logical systems, and
related lattice-theoretic algebraic structures. They encompass the character-
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ization of algebraizability mentioned above and deal with the case in which
mutual interpretations between logical structures induce isomorphisms be-
tween lattices of theories and vice versa, under some constraints and special
hypotheses, depending on the context under consideration.

Another major characterization theorem provided in [35] for the notion
of algebraizability asserts that, roughly speaking, in the context of sentential
logics, the aforementioned analogs of the semantic and of the syntactic no-
tions are equivalent. That is, the algebraization attained via the definability
of theories and congruences via sets of equations and formulas, respectively,
coincides with that ensured by the Leibniz operator being monotone and
order reflecting on the lattice of the theories of the logic. This characteriza-
tion, when abstracted to logics formalized as π-institutions, continues to hold
under special provisos, namely, under the hypotheses that the π-institution
under consideration has a rich enough supply of natural transformations or,
more formally, as will be studied in detail in the monograph, that it has a
Leibniz binary reflexive core and an adequate Suszko core.

In [35] as well as in many other works in the field, a considerable amount
of emphasis has been placed on, and a substantial amount of effort expended
in, studying specific logical systems of historical and/or practical interest
from the point of view of algebraizability. This was only natural, given, on
the one hand, the desire to showcase the applicability of the theory on logics
of particular interest in traditional studies, and, on the other, the urge to in-
vestigate the power of falsifiability that the theory provides for those concrete
logical systems that had resisted previous attempts at algebraization.

Our point of view, however, is slightly different and, as a consequence, we
do not deal with or present such examples. Firstly, the majority of logical
systems of historical and/or practical interest have already been dealt with
in existing literature. Secondly, since our treatment abstracts and subsumes
that of sentential logics and, considerably generalizes it, as was shown above,
our goal is not to look at the more concrete, already encompassed by the
study of the algebraization of deductive systems, but, rather, to look into
the more abstract and discern what can be carried over to that level and
how its validity and its applicability compares when applied to new systems
and new examples which do not fit exactly, or do not conform at all to, the
sentential logic framework. However, these aims and the mode of treatment
they motivate should in no way be construed as underestimating the signif-
icance, or underplaying the beauty and elegance, of the studies concerned
with the concrete and the more specific. After all, it is on those studies
that the abstract is based, to those studies’ insights, ideas and methodology
that an enormous scientific debt is due, and from those studies’ successes,
and widespread recognition and appreciation, that a relative confidence is
drawn regarding the potential usefulness and applicability of the more gen-
eral framework presented, and elaborated on, in this monograph.
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1.2 Fin de siècle: The Golden Age

We give an account of some of the major developments in abstract algebraic
logic that occurred mostly, but not exclusively, around the last two decades
of the 20th century. This period may be thought of as constituting the golden
age of algebraic logic, in the sense that, during this time, there is clearly dis-
cernible a passage from an ad-hoc, case-by-case algebraic treatment of logical
systems to a well-organized field, with a powerful arsenal of universally ap-
plicable concepts, methods and techniques, culminating to the classification
of logics in an algebraic hierarchy, known as the Leibniz hierarchy. Needless
to say, the foundations for this success were laid much earlier. Likewise, the
development continued, and many important results around, and comple-
menting, the main theory were obtained later, into the new millennium, and
the area continues to be active. In order to avoid, in our short exposition,
reinventing the wheel, we base this account on preexisting sources. We draw
the material primarily from the, perhaps best-known, survey of the field by
Font, Jansana and Pigozzi [69] and, when needed and/or convenient, the two
existing specialized books on the subject by Czelakowski [64] and by Font
[86].

Algebraic logic has its origins in the work of George Boole [1, 2], who
formalized the “laws of thought” in an algebraic way. The intuition govern-
ing this process was made mathematically precise by Tarski [5, 6, 8]. Tarski
used the key idea of Lindenbaum of identifying formulas of a logical language
with the terms of the absolutely free algebra formed using the logical connec-
tives as operation symbols [3] to give a precise connection between classical
propositional calculus and Boolean algebras. This formed the paradigmatic
example from which significant inspiration was drawn and on which subse-
quent developments were based. Furthermore, it served as a kind of testbed
for comparing, trying, modifying and calibrating new ideas, methods and
techniques. The way Boolean algebras arose as the algebraic counterparts
of classical propositional calculus has become known as the Lindenbaum-
Tarski method. It has subsequently been used to “algebraize” a variety of
propositional systems.

A conceptual shift occurred around 1950 when Rasiowa and Sikorski
[7, 20] (see, also, the historical surveys [59, 74]), among others, realized that
the Lindenbaum-Tarski method could be applied not only to isolated log-
ics but, rather, to classes of logical systems with an implication connective
satisfying certain properties. In passing from a “per logic” or “a la carte”
treatment to one addressing classes specified by some abstract properties,
one discerns clearly for the first time the seeds of what, later, became known
as “abstract algebraic logic”. Papers that may be thought of as protoab-
stract, in the sense that they advance further the main ideas of Rasiowa and
Sikorski towards the modern truly abstract era, were the one by Prucnal
and Wronski [19] introducing equivalential logics, the ones by Czelakowski



20 CHAPTER 1. INTRODUCTION Voutsadakis

introducing protoalgebraic logics [26, 29] and further studying equivalential
logics [23, 24] and the one by Blok and Pigozzi [28] studying protoalgebraic
logics.

The seismic shift, one might say, in firmly founding and establishing the
modern era came in the 1980s with the work of Blok and Pigozzi, which
led eventually to the publication of their famous, seminal “Memoirs” mono-
graph [35]. In a way analogous to the preceding three passages, from clas-
sical logic and Boolean algebra to the Lindenbaum-Tarski method, from the
Lindenbaum-Tarski method to dealing with implicative logics and from im-
plicative logics to abstract properties of deduction, Blok and Pigozzi were
able to distil the essential spirit of the association between logic and alge-
bra and, thus, extract and formalize the concept of an algebraizable logic
in modern abstract terms and provide landmark characterizations. On the
way, they established a very general process of algebraization, applicable to
arbitrary logical systems, which has been, since, further refined and used
to create the Leibniz hierarchy, often considered the pinnacle - certainly a
milestone and a gem - of algebraic logic in general.

Before returning to provide a more detailed account, we take a small break
to recount those features of the theory that distinguish the abstract approach
from the more traditional treatments and give it its special character. First,
as alluded to previously, instead of applying the Lindenbaum-Tarski process
in an ad-hoc way, on a case-by-case basis, or, as in Rasiowa’s work, to a class
of logics sharing a specific connective satisfying certain properties, it applies
the abstract process to arbitrary sentential logics and, according to the out-
come, classifies them into classes reflecting the closeness of the ties between
them and the corresponding algebraic counterparts. In establishing this as-
sociation and performing the resulting classification, it opens, in parallel, two
distinct but closely interrelated directions. On the one hand, it motivates the
study of classes of algebras arising as algebraic counterparts of either single
or groups of logical systems. On the other, it allows investigating the exact
correspondence between metalogical properties of the logical systems at hand
and algebraic properties of the classes of their algebraic counterparts.

By now a plethora of works falling distinctly in each of these three direc-
tions exist and many will appear as references in the more detailed account
that will follow. But to give some indication and pointers, we mention a few
of the earliest ones that may be viewed as ground breaking. Concerning the
process of algebraization itself and the classification, one should mention Blok
and Pigozzi’s [28, 35], Czelakowski’s [23, 24], Herrmann’s [43, 53, 54] and Font
and Jansana’s [52]. Concerning the study of classes of algebraic counterparts
arising from the abstract algebraization process, one should mention [38, 39]
dealing with the conjunction-disjunction fragment of classical propositional
calculus, as well as Jansana’s study of selfextensional logics in [71, 76], with
clear precedents in Font and Jansana’s [52]. Finally, paradigmatic examples
of the study of metalogical and corresponding algebraic properties constitute
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several works addressing forms of the deduction-detachment theorem, e.g.,
Czelakowski’s [26, 29] and Blok and Pigozzi’s [32, 37, 63], the work of Blok
and Hoogland on the Beth poperty [72], as well as the work of Czelakowski
and Pigozzi concerning interpolation and amalgamation properties [58].

1.3 Outline of Contents by Chapter

We give an outline of the contents of the monograph focusing on the main
points of each chapter and describing them by section, using some formal
notation, but without providing formal definitions, which will be presented
in the main body of the text. This section is very closely related to other
sections. First, in Section 1.4, we give a very concise summary, only men-
tioning the main overarching topics discussed in each chapter. Second, at the
beginning of each chapter, a similar overview is provided focusing only on
the specific chapter, with the exception that, in those introductions, being
closer to the formal treatment, an even more informal narrative is adopted
and a concerted effort is made to keep notation at a minimum.

1.3.1 Chapter 2

Chapter 2 presents the basic elements of the theory of algebraic systems,
of π-institutions and of the interaction between logical and algebraic struc-
tures. These constitute the foundations and form the backbone of our theory
throughout the monograph.

Section 2.1 gives an informal introduction to the chapter, akin to the
introduction presented here, only containing a little less of formal notation
and being more on the narrative, informal, side.

Section 2.2 is the first main section of the chapter. Here, we start by
introducing the notion of a sentence functor SEN ∶ Sign → Set, which is
simply a set-valued functor on an arbitrary category of signatures. It for-
malizes the carriers on which both algebras and logical systems are based,
akin to the underlying universe of a universal algebra. Then we consider
sentence families of sentence functors, which are families T = {TΣ}Σ∈∣Sign∣ of
subsets of sentences, one for each signature. These formalize distinguished
sets of sentences when one considers logical structures, much like the distin-
guished sets in logical matrices. A sentence system is a sentence family T

which is invariant under the action of signature morphisms. Two canonical
ways of obtaining from a given sentence family T a sentence system consist

of taking the largest sentence system
←Ð
T included in the family T and taking

the smallest sentence system
Ð→
T that includes the sentence family T . Sen-

tence functors are related via sentence morphisms, which are pairs ⟨F,α⟩, F
being a functor between the categories of signatures and α a natural trans-
formation mapping sentences to sentences, taking into account the effect of
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F . Special morphisms are those with surjective and full signature compo-
nents and surjective ones are special ones whose sentence components are
also surjective.

We then turn to relation families R = {RΣ}Σ∈∣Sign∣ over sentence functors.
Those assume the place of binary relations. Of the highest interest and im-
portance are equivalence families and equivalence systems, i.e., equivalence
families invariant under the action of signature morphisms. They induce
partitions on the components of sentence functors. Equivalence families and
systems have important interactions and connections with both sentence fam-
ilies and with morphisms. The notion that relates an equivalence family with
a sentence family is that of compatibility. An equivalence family R is com-
patible with a sentence family T if each component of the sentence family is
a union of blocks of the equivalence family on the same component. The con-
nection between equivalence systems and morphisms goes through the notion
of kernels. Namely, the kernel Ker(⟨F,α⟩) of a morphism ⟨F,α⟩ between two
sentence functors forms an equivalence system on the domain.

If a set is equipped with operations, we get an algebraic structure. On
this algebraic structure, one may reason in an algebraic way about any of the
operations that are in its clone, i.e., that can be generated by applying the
fundamental operations and the projections and composing them in arbitrary
ways. In an analogous fashion, if a sentence functor SEN ∶ Sign → Set is
equipped with a category of natural transformations N , which corresponds
to the clone of algebraic operations on an algebra, one obtains an algebraic
system A = ⟨Sign,SEN,N⟩. As algebras play a fundamental role in both log-
ical and algebraic aspects of the traditional theory, so do algebraic systems in
the theory developed in the monograph. The role of free algebra is played in
this context by that of a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩. More-
over, the notion of morphism extends from the context of sentence functors
to the context of algebraic systems. The additional stipulation is that they
also preserve the algebraic structure that turns the sentence functor into
an algebraic system, i.e., that they satisfy the well-known replacement or
congruence condition.

In traditional treatments, in specific contexts, all algebras are considered
to be over the same algebraic signature, which is fully captured by the abso-
lutely free algebra over that signature. In the present context, this similarity
is captured by fixing a base algebraic system F, as above, and considering
only F-algebraic systems, which are algebraic systems that, roughly speak-
ing, have similar clones of operations with F and whose sentences are all
images of sentences of F under a fixed algebraic system morphism ⟨F,α⟩.
Formally, these are expressed as pairs A = ⟨A, ⟨F,α⟩⟩, where ⟨F,α⟩ ∶ F → A
is a surjective algebraic system morphism. The notion of morphism extends
further to morphisms between F-algebraic systems.

In Section 2.3, the limelight falls on congruence systems, which play in
this context the same role that congruences play in the context of univer-
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sal algebras. The least congruence system on an algebraic system A is the
identity congruence system ∆A and the largest one is the full relation sys-
tem, written ∇A. These form the min and max elements, respectively, of
the complete lattice of congruence systems ConSys(A) on A. The kernel
Ker(⟨F,α⟩) of a morphism ⟨F,α⟩ ∶ A → B between two algebraic systems
forms a congruence system on A. Moreover, congruence systems allow the
definition of quotient algebraic systems. And, for every algebraic system A
and every one of its quotient systems Aθ ∶= A/θ , there is a canonical mor-
phism ⟨I, πθ⟩ ∶ A → Aθ onto the quotient algebraic system, whose kernel is
exactly the congruence system θ that gave rise to the quotient. All these
properties reflect well known properties from the context of congruences and
quotients of universal algebras.

Congruence systems inherit from equivalence families the relation of com-
patibility with given sentence families. The critical property to be established
is that for a given sentence family T on an algebraic system A, there exists
a largest congruence system on A that is compatible with T . This is called
the Leibniz congruence system of T on A, is denoted by ΩA(T ) and plays
the role that Leibniz congruences play in the context of traditional abstract
algebraic logic. As such, its role in characterizing many of the classes in
the algebraic hierarchy studied in the monograph is ubiquitous and, as a
consequence, the whole hierarchy is known as the Leibniz hierarchy. After
introducing the Leibniz operator on an algebraic system, we establish two
important results concerning it. The first, inspired by a result from the
traditional treatment, provides a characterization of the Leibniz operator in
terms of the category of natural transformations (i.e., clone operations) of
the algebraic system and the sentence family. Roughly speaking it asserts
that a pair of sentences are Leibniz related if and only if they are indistin-
guishable modulo T with respect to the available algebraic apparatus. The
second addresses specifically the categorical framework and asserts that the
Leibniz congruence system of a sentence family T is dominated by the Leib-

niz congruence system of the largest sentence system
←Ð
T contained in the

sentence family, i.e., that ΩA(T ) ≤ ΩA(
←Ð
T ). The value of this observation

in establishing refinements of the traditional hierarchy, as reflected in the
present context, is critical and hard to overestimate. Also of importance
is the fact that the surjective morphisms between algebraic systems, which
form the focus of our work, respect Leibniz congruence systems, in the sense
that, if ⟨F,α⟩ ∶ A → B is a surjective morphism and T is a sentence family
on B, then ΩA(α−1(T )) = α−1(ΩB(T )). Finally, it is worth noting that, in
general, the intersection of the Leibniz congruence systems of a collection of
sentence families is contained in the Leibniz congruence of the intersection
of those sentence families. Significantly, though, the reverse inclusion holds
universally on sentence families if and only if the Leibniz operator is mono-
tone on sentence families, a property that does not always hold. In fact, the
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latter property is used in a critical way, when restricted to special kinds of
sentence families, to determine some of the most important classes of logical
systems located close to the bottom of the algebraic hierarchy. In addition,
it is of great historical significance in many of the most important classical
developments in the field.

In Section 2.4, we focus on congruence systems relative to given classes
of algebraic systems. Given a class K of algebraic systems, all over the same
base algebraic system, that is, possessing, in some sense, the same algebraic
signature, a congruence system θ on an algebraic system A, not necessarily
belonging to K, is called a congruence system relative to K or a K-congruence
system if the quotient Aθ belongs to the class K. Naturally, if A ∈ K and
the class K happens to be closed under morphic images, then congruence
systems relative to K coincide with arbitrary congruence systems. The section
introduces another important notion in this context. That of an algebraic
system A being a subdirect intersection of a collection of algebraic systems.
This means that there exists surjective morphisms ⟨H i, γi⟩ ∶A→Ai from the
algebraic system to each of the algebraic systems in the given collection and,
moreover, the intersection of the kernels of those morphisms is the identity
congruence on A. Closure of a class of algebraic systems under subdirect
intersections ensures that the collection of congruence systems relative to
the class is closed under intersections. Additionally, if the class K contains
a trivial algebraic system, then the nabla congruence system happens to be
a relative congruence system. Therefore, possession of a trivial algebraic
system together with closure under subdirect intersections ensures that the
collection of all congruence systems relative to the class forms a complete
lattice under signature-wise inclusion.

Suppose that the class K contains a trivial algebraic system and is closed
under subdirect intersections so that it makes sense to associate with a given
relation family X on its base algebraic system the least congruence system
ΘK(X) relative to K containing X . An alternative, equally natural, way
to associate a congruence system with X is to consider the closure DK(X)
under equational consequence relative to the algebraic systems in the class
K. It is proven in this section that the two closures give rise to the same
congruence system on the base algebraic system F.

In Section 2.5, we study varieties of algebraic systems. There are two
possibilities in adopting a choice for the entities that would play the role of
equations in this context. The first is to view pairs of sentences as equations.
The second is to adopt pairs of natural transformations in the clone as equa-
tions. The ones of the latter type are called natural equations to differentiate
them from those of the former kind which are simply referred to as equations.
We define formally the notion of satisfiability of a given equation and of a
given natural equation in an algebraic system and that of validity of a natu-
ral equation in an algebraic system. Depending on whether we use equations
or natural equations to determine a class of algebraic systems through satis-
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fiability, we obtain two different kinds of varieties. Varieties determined by
families of equations are called semantic varieties. Those determined by col-
lections of natural equations are called syntactic varieties. It turns out that,
in general, every syntactic variety is also a semantic variety. The opposite
implication does not hold in general. The section concludes by presenting a
sufficient condition on the structure of a base algebraic system that ensures
that the classes of semantic and syntactic varieties over it coincide.

Much of the work in the first sections of Chapter 1 focuses on the al-
gebraic framework that underlies both the logical and the algebraic aspects
of the theory in the monograph. In Section 2.6, we turn to the study of
π-institutions, the underlying structure of the logical aspects of our theory.
The entire monograph assumes that all logical systems are formalized as π-
institutions and its main goal is to study the process of their algebraization
and to detail the various classes in the hierarchy that is formed by examining
their algebraic character. It is needless, thus, to point out the importance of
Section 2.6, as it presents the foundational aspects of the logical side of the
theory.

We start, here, by defining the notion of π-institution. It is a pair I =
⟨F,C⟩ consisting of a base algebraic system F and a closure system C on
the sentence functor of F. It generalizes the Tarskian concept of a deductive
system in that it allows multiple signatures and accommodates morphisms
between signatures. To take into account the logical structure imposed on
top of the underlying algebraic structure in this context, sentence families
and systems are subsumed by theory families and theory systems. These are
sentence families (systems, respectively) each of whose components is closed
under logical deduction. The least among these is called the theorem system
of I . It turns out that, due to the property of structurality, which is key in

the study of π-institutions, given a theory family T ,
←Ð
T is also closed under

deduction, whence it forms that largest theory system included in T . On

the other hand,
Ð→
T fails to be closed under deduction in general. That is

the reason why the smallest theory system including T is not simply
Ð→
T but,

rather, C(
Ð→
T ).

An important derived concept is that of the π-institution that has as
its theory families those theory families of I = ⟨F,C⟩ which include a given
theory system T of I . This is denoted by IT = ⟨F,CT ⟩. The construction
results in a π-institution whose theorem system is identical with the theory
system T of I .

As is the case in most mathematical contexts, objects are accompanied by
morphisms between them that preserve the structure of interest in each par-
ticular context. Morphisms between π-institutions are algebraic morphisms
between the underlying algebraic systems that, in addition, preserve the log-
ical structure in the sense that the forward image of the logical closure of
a set of sentences is included in the closure of the image of the same set of
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sentences. Among the most useful characterizations is that a given algebraic
morphism is logical if and only if preimages of theory families of the tar-
get institution under the morphism constitute theory families of the domain
π-institution.

In Section 2.7, we turn to those structures that are intermediate between
logic and algebra and facilitate the interplay and the establishment of mean-
ingful ties between the two domains. These are matrix families, which corre-
spond to the ordinary logical matrices in the traditional treatment. Roughly
speaking a matrix family A = ⟨A, T ⟩ consists of an algebraic system A to-
gether with a sentence family T of the algebraic system. If the sentence
family is a system, i.e., invariant under signature morphisms, then the ma-
trix family is called a matrix system. Their role is twofold. On the one hand,
a given collection of matrix families M, over a base algebraic system F, may
be used to define a closure system CM, and hence a π-institution structure
IM = ⟨F,CM⟩, on F. On the other, given a π-institution structure I on F,
we may define the class MatFam(I) of all matrix families whose sentence
families are closed under the deductive apparatus of the π-institution. Such
sentence families are termed I-filter families and, if they happen to be sys-
tems, then they are called I-filter systems. The collection FiFamI(A) of
all filter families over the same underlying algebraic system A, ordered by
component-wise inclusion, forms a complete lattice and the collection of all
filter systems on that same algebraic system forms a complete sublattice of
the complete lattice of all filter families.

Among the main results presented in this section are the ones relating
morphisms between algebraic systems with preservation of filter families.
More precisely, the inverse image of a filter family is a filter family. The
situation is more complicated when it comes to direct images. First of all,
it only makes sense to define the direct image of a filter family in case the
signature functor is an isomorphism. Second, it turns out that, in that case,
for the image to also be a filter family on the target algebraic system, we
must require additional restrictions. A sufficient condition is that the kernel
system of the algebraic morphism be compatible with the filter family in the
domain.

This result has particular consequences for the most important type of
morphisms considered in the monograph, the canonical quotient morphisms
associated with congruence systems on an algebraic system. It asserts that,
given a filter family T on the quotient Aθ, the inverse image πθ

−1(T ) under
the quotient morphism ⟨I, πθ⟩ ∶ A → Aθ is a filter family on A and that,
moreover, if the congruence system θ is compatible with a filter family T on
A, then the quotient T /θ is a filter family on Aθ.

We consider, by particularizing even further, the Leibniz quotient mor-
phisms, which are those morphisms defined using the Leibniz congruence
system that is compatible with a given filter family on the domain. Since,
by definition, the Leibniz congruence system ΩA(T ) associated with a given
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sentence family T is compatible with that sentence family, it follows that a
filter family T on A gives rise, by passing to the Leibniz quotient A/ΩA(T ),
to a filter family in the quotient. The corresponding matrix family A/θ =
⟨A/ΩA(T ), T /ΩA(T )⟩ is called a (Leibniz) reduced matrix family.

The section closes by defining two classes of matrix families and two
classes of algebraic systems that play a key role when investigating the alge-
braic nature of a given π-institution I . The first is the class MatFam∗(I) of
all Leibniz reduced matrix families associated with the given π-institution.
The second is the class MatSys∗(I) of all Leibniz reduced matrix systems.
Finally, on the algebraic side, by considering all algebraic system reducts of
the reduced matrix families, we get the class AlgSys∗(I) of all family reduced
algebraic systems and, by considering all algebraic system reducts of the re-
duced matrix systems, we get the class AlgSys●(I) of all system reduced
algebraic systems.

Section 2.8 studies the two related concepts of axiomatic extensions and
of filter extensions. An axiomatic extension I ′ of a given π-institution I is a
π-institution over the same base algebraic system whose closure system is ob-
tained by that of I by adding more axioms. More precisely, the consequences
C ′(X) of a family of sentences X under I ′ are the consequences under I of
the same family of sentences, augmented by some fixed family of sentences
T , i.e., C ′(X) = C(X ∪T ). The sentences in T are viewed as axioms in I ′. A
filter extension arises in a similar way. The difference is that one considers
filter families over arbitrary algebraic systems and not just theory families
over the base algebraic system.

One of the first results in this section provides a characterization of ax-
iomatic extensions. It asserts that axiomatic extensions are characterized by
preservation of all those theories that include the theorem system of the ex-
tension. An alternative, lifting the condition to arbitrary algebraic systems,
asserts that being an axiomatic extension is tantamount to the preservation
of filterhood over all algebraic systems, for all those filters that include the
least filter over the extension.

The last part of the section deals with filter generation over a given matrix
family modulo a given π-institution I . It defines the concept and formalizes,
in a rather technical proposition, how generation of filters and surjective
matrix family morphisms interact.

Section 2.9 turns the focus back to those structures that, like matrix
families, play a critical role as intermediate structures in connecting the log-
ical with the algebraic aspects of the theory. Generalized matrix families
correspond to the generalized matrices of classical algebraic logic and, like
generalized matrices, play a critical role in identifying classes of algebraic sys-
tems that may be naturally associated with given π-institutions (or classes
of π-institutions). The way this association is established sheds light on the
strength of ties between the two and on the nature of their interaction, e.g.,
by revealing which properties may be expected to be shared by the two or
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transferred from one to the other.
A generalized matrix family A = ⟨A,T ⟩ consists of an underlying alge-

braic system A and a collection of sentence families T of the algebraic system.
Such structures may also be used in two ways. They may serve in defining
a closure system on a base algebraic system and, therefore, a π-institution
structure. On the other hand, given a π-institution I , we may associate with
it the collection GMatFam(I) of those generalized matrices all of whose sen-
tence families are filter families of the π-institution. With any generalized
matrix family A = ⟨A,T ⟩, one may associate its Tarski congruence system
Ω̃(A) or Ω̃A(T ), an abstraction of the Tarski congruence systems associated
with generalized matrices in classical abstract algebraic logic. Tarski congru-
ence systems constitute the largest congruence systems on the base algebraic
system compatible with all sentence families of the generalized matrix family.
Taking the quotient A/Ω̃(A) of the generalized matrix family by its Tarski
congruence system gives a new generalized matrix family A∗, which is called
the Tarski reduction of A. A Tarski reduced matrix family is one that is
isomorphic to its reduction, i.e., one whose Tarski congruence system is the
identity congruence system on the underlying algebraic system.

There is a close connection between Tarski congruence systems and Leib-
niz congruence systems. Each generalized matrix system A = ⟨A,T ⟩ may be
viewed as a bundle of matrix families {⟨A, T ⟩ ∶ T ∈ T }, i.e., of those matrix
families whose sentence families belong to the collection of sentence families
of the generalized matrix family. In that case, the Tarksi congruence system
of the generalized matrix family is the intersection (in the component-wise
sense) of the Leibniz congruence systems of all matrix families in the corre-
sponding bundle, i.e., Ω̃A(T ) = ⋂T ∈T ΩA(T ).

In a similar way to Tarski congruence systems, one may also consider
Suszko congruence systems Ω̃A,T (T ) associated with ordinary matrix fam-
ilies A = ⟨A, T ⟩, and these are also introduced in Section 2.9. Suszko con-
gruence systems of matrix families are defined only in a relative way, by
viewing the matrix family A = ⟨A, T ⟩ as being part of a bundle expressed
as a generalized matrix family A = ⟨A,T ⟩. Then the Suszko congruence
system of the matrix family is identical to the Tarski congruence system
Ω̃A(T T ) of the bundle ⟨A,T T ⟩ consisting of only those sentence families that
include (in the component-wise ordering) the sentence family T of the ma-
trix family. Of course, expressed in terms of Lebniz congruence systems,
the Suszko congruence system is the intersection of the Leibniz congruence
systems of all matrix families determined by the sentence families in the
given bundle that include that of the matrix family under consideration, i.e.,
Ω̃A,T (T ) = ⋂T≤T ′∈T ΩA(T ′). As was the case with Tarski congruence sys-
tems, we may consider the Suszko reduction ASu of a given matrix family A,
obtained by dividing out by the Suszko congruence system Ω̃A,T (T ). And,
likewise, we call a matrix family Suszko reduced, when its Suszko congruence
system is the identity congruence system on the underlying algebraic system.



Voutsadakis CHAPTER 1. INTRODUCTION 29

Part of the significance of the Tarski and of the Suszko operators in alge-
braic logic is that they form one of the main mechanisms of selecting the “nat-
ural” class of algebraic systems to be associated with a given π-institution.
Briefly and sketchily, starting from a π-institution I , we obtain the collection
GMatFam(I) of all generalized matrix families A = ⟨A,T ⟩ whose sentence
families T ∈ T are filter families of the π-institution. We then compute
the Tarski reductions A∗ by dividing out by the corresponding Tarski con-
gruences Ω̃A(T ). This process gives rise to the class GMatFam∗(I) of all
Tarski reduced generalized matrix families and to the class AlgSys(I) of all
their underlying algebraic systems. This class subsumes, in the π-institution
framework, the class of algebras which has long been viewed, in the tradi-
tional framework, as the most appropriate one to be associated with a given
logic and, hence, as constituting the “natural” choice for the algebraic coun-
terpart of the sentential logic. As it turns out, using a similar path, but
relying on the Suszko operator, rather than on the Tarski operator, gives rise
to exactly the same class of algebraic systems. Tracing the analogous pro-
cess, one starts from a given π-institution I and considers all matrix families
A = ⟨A, T ⟩, viewed as part of the bundle A = ⟨A,FiFamI(A)⟩ of all matrix
families associated with the π-institution. Then, one considers the Suszko
reductions ASu by dividing out by the corresponding Suszko congruence sys-
tems Ω̃I,A(T ). The class of Suszko reduced matrix families obtained in this
way is denoted by MatFamSu(I). It can then be shown that the class of all
algebraic reducts of the matrix families in MatFamSu(I) coincides with the
class AlgSys(I).

In Sections 2.7 and 2.9, using the classes of Leibniz reduced matrix fam-
ilies and of Tarski reduced generalized matrix families associated with a
given π-institution I , we are able to define the two classes AlgSys∗(I) and
AlgSys(I) of algebraic systems associated with the π-institution. In Section
2.10, we take up the study of two additional classes of algebraic systems that
may be perceived as counterparts of a given π-institution and compare them
with those already defined.

Both new classes are based on a single algebraic system, namely the
algebraic system F/Ω̃(I) resulting by considering the quotient of the base
algebraic system F by the Tarski congruence of the collection of all theory
families of I . Using this quotient algebraic system, the two classes are formed
as the two kinds of varieties that may be generated by it. The first type, called
the semantic variety, denoted by VSem(I) = VSem(F/Ω̃(I)), is the class of
all algebraic systems that satisfy all equations that are satisfied by F/Ω̃(I),
i.e., all equations included in Ω̃(I). The second type, called the syntactic
variety, denoted by VSyn(I) = VSyn(F/Ω̃(I)), is the class of all algebraic
systems that satisfy all natural equations that are satisfied by F/Ω̃(I).

Some results relating the four classes are presented. There is a linear hier-
archy of inclusions that is not very difficult to establish. The class AlgSys∗(I)
is the smallest class, followed by AlgSys(I), which is, in turn, included in
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VSem(I), whereas VSyn(I) is the largest of the four classes considered. It
turns out that all four classes generate the same syntactic variety of alge-
braic systems, which is identical to VSyn(I), since it constitutes already a
syntactic variety by definition. The section concludes with an important re-
sult showing that the class AlgSys(I) - perhaps the most important class
associated with I - is closed under subdirect intersections and contains a
trivial algebraic system. The usefulness of this fact is that it enables con-
sideration, on any given algebraic system, of the least congruence system
relative to AlgSys(I) generated by a prespecified relation family.

In Section 2.11, we study equivalence families and systems that are in-
duced by sentence families or collections of sentence families of an algebraic
system. The most fundamental among these is the Frege equivalence family
λA(T ) associated with a sentence family T of an algebraic system A. It
identifies two sentences if they are both inside or both outside the sentence
family. Its companion Frege equivalence system ΛA(T ) is the largest equiv-
alence system included in λA(T ). The two Frege equivalences are intimately
connected with the Leibniz congruence system ΩA(T ), the latter being the
largest congruence system contained in either of λA(T ) or ΛA(T ).

In a way analogous to the extensions of the Leibniz congruence system
that give rise to the Tarski and Suszko congruence systems, the Frege rela-
tions give rise to two more equivalences with similar roles. Given a collection
T of sentence families of A, the Carnap equivalence family λ̃A(T ) identifies
two sentences if they are equivalent modulo T (in the Frege sense) for all
T ∈ T , i.e., λ̃A(T ) = ⋂T ∈T λA(T ). The Carnap equivalence system Λ̃A(T ) is
the largest equivalence system included in λ̃A(T ). The relation connecting
Leibniz congruence systems with the Frege equivalences persists here as well,
but with the Suszko congruence system in place of the Leibniz one. That
is, the Suszko congruence system Ω̃A(T ) is the largest congruence system
contained in either of λ̃A(T ) or Λ̃A(T ).

Finally, reminiscent of the passage from the Tarski to the Suszko congru-
ence system, given a collection of sentence families T and T ∈ T , the Lin-
denbaum equivalence family λ̃A,T (T ) is the relation family identifying two
sentences if they are equivalent modulo every T ′ ∈ T , such that T ≤ T ′. The
Lindenbaum equivalence system Λ̃A,T (T ) is the largest equivalence system
contained in λ̃A,T (T ), and the Suszko congruence system Ω̃A,T (T ) turns out
to be the largest congruence system included in either of λ̃A,T (T ) or Λ̃A,T (T ).

The Carnap operators, viewed as operators on collections of sentence
families on the same algebraic system, are monotone. The same applies to
the Lindenbaum operators, viewed as operators on sentence families relative
to the same collection of sentence families. However, the Frege operators do
not satisfy a monotonicity property.

In Section 2.12, we are discussing algebraic subsystems and π-subinsti-
tutions. The starting point is the observation that an algebraic system A =
⟨Sign,SEN,N⟩ may contain a universe, i.e., a functor SEN′ ∶ Sign → Set,
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such that SEN′ ≤ SEN and closed under the action of natural transformations
in N . Then, it is clear that this universe may be used to define an algebraic
subsystem A′ of A and, as it turns out, there exists a canonical injection
morphism ⟨I, j⟩ ∶ A′ → A. Apart from detecting the existence of universes,
there is a natural way to generate a universe starting from a given sentence
family T of A. This consists of passing, first, to the least sentence system
Ð→
T containing T and, then, closing

Ð→
T under the clone operations in N . This

two-step process gives rise to a universe νA(
Ð→
T ). In case the algebraic system

A supports a π-institution I = ⟨A,C⟩, then one obtains, for each algebraic
subsystem A′ of A, a π-subsinstitution I ′ = ⟨A′,C ′⟩ by restricting the action
of C on elements of A′. It can be shown that the theory families of I ′

are exactly the restrictions of those of I on the universe giving rise to A′.
The section ends with some results relating Leibniz congruence systems of
theory families of I with those of the corresponding theory families of I ′.
A similar result also holds for Leibniz congruence systems of corresponding
filter families of the two π-institutions.

Sections 2.13-2.15 deal with aspects of the “syntactic” apparatus of an
algebraic system, i.e., with properties of the natural transformations viewed
as term functions. Section 2.13 introduces the framework and studies some
connections with the definability of the Leibniz congruence systems. Section
2.14 explores various modes of definability and details their relative power.
Section 2.15 studies the effect of parameters and shows that two different
possible ways of obtain a parameterless collection of natural transformations
out of a given parametric one are essentially equivalent. We provide, next,
some more details by section.

Section 2.13 introduces the concepts of distinguished arguments and of
parametric arguments of a collection E of natural transformations. This
is a conceptual distinction which becomes important in practice when one
differentiates the role they each play when the collection of natural transfor-
mations is used to transform sentences, i.e., to produce new sets of sentences
from tuples of given ones. The new family of sentences produced from a tu-
ple of sentences φ⃗ (possibly with the aid of parameters) is denoted by EΣ[φ⃗],
where Σ is the signature of φ⃗. Another mode of transformation uses a dual or
inverse construction. Namely, given a sentence family T , we consider the set
←Ð
E (T ) consisting of all tuples φ⃗, such that EΣ[φ⃗] ≤ T . These tuples all share
the same length, which equals the number of distinguished arguments of the
transformations in E. The construction has some important properties, e.g.,
←Ð
E , viewed as an operator on sentence families is monotone and, moreover,
commutes with inverse surjective morphisms. But, perhaps, its most impor-
tant property is that, if E has two distinguished arguments and T is such

that
←Ð
E (T ) is reflexive, then

←Ð
E (T ) includes the Leibniz congruence system

ΩA(T ) of T . Consequently, if
←Ð
E (T ) is itself a congruence system compatible

with T , then it coincides with ΩA(T ). Thus, in this case, we may say that,
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in a specific sense, the Leibniz operator of T is definable using the natural
transformations in E. We view this as a syntactic definability condition,
which plays an important role in establishing the algebraic classification of
π-institutions “by syntactic means” in subsequent chapters.

In Section 2.14 we continue the study of natural transformations as means
of transforming tuples of sentences to sentences. We look as four possible
ways of relating, via a fixed collection E of natural transformations with k

distinguished arguments, a k-tuple of sentences φ⃗ to a sentence family T .
The simplest, E-local membership, asserts that EΣ(φ⃗, χ⃗) ⊆ TΣ, for all values
χ⃗ of the parametric arguments. The second, E-global membership, asserts
that EΣ′(SEN(f)(φ⃗), χ⃗) ⊆ TΣ′ holds for all signatures Σ′, all morphisms
f ∶ Σ → Σ′ and all appropriate values of the parameters χ⃗. The remaining two,
left E-local membership and left E-global membership mimic the preceding

ones except that they use membership in
←Ð
T instead of membership in T .

Closer scrutiny of the four modes reveals that the two global memberships
are equivalent, followed in strength by left local membership, which, in turn,
implies local membership. When a membership property holds for all φ⃗,
then we attribute it to the collection E itself. In this sense, it turns out that
global, local, left global and left local memberships of E in T all coincide.

In Section 2.15, starting from a given collection S of natural transforma-
tions, possibly including parametric arguments, we study ways of obtaining
a collection that is parameter-free. Here, two of the most natural, for our
purposes, ways of doing this turn out to be equivalent, and, hence, release us
from the obligation to distinguish between which one is applied in any specific
context. Let us assume that S is taken to have k distinguished arguments.
Then one way of obtaining from S a parameter-free collection is to replace
all parametric arguments with k-ary natural transformations. This results
in a collection Ṡ of k-ary, i.e., parameter-free, natural transformations. The
second method builds on the notion of an anti-monotone property of natu-
ral transformations. These are properties P that a natural transformation
either does or does not satisfy and for which an anti-monotonicity property
holds, namely, if for all tuples of sentences φ⃗, the family of transforms of φ⃗
under σ is included in the family of transforms of φ⃗ under τ , then τ satisfying
P implies that σ also satisfies P . If P also denotes the class of all natural
transformations satisfying property P , then we let P̂ be the subclass of P
consisting of the parameter-free members of P . The section concludes with
the assertion that, for anti-monotone properties P , both constructions Ṗ and
P̂ give the same class of parameter-free natural transformations associated
with P .

In Section 2.16, we study finitarity. This property holds for a π-institution
I if every sentence φ that is derivable from a set Φ of sentences can be
derived from some finite subset Φ′ of Φ. Finitarity holds for the overwhelming
majority of the logics considered in the literature. So it has played a central
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role in algebraic logic, even though much of the more abstract body of the
theory is formalized and developed in a way that encompasses arbitrary, that
is, not necessarily finitary, logical systems. A characterization of finitarity
using the property of continuity is provided. We say that a collection of
theory families is directed if every finite subcollection is included in some
theory family in the collection. A π-institution is continuous if the union of
a directed collection of theory families is also a theory family. Finitarity and
continuity, as it turns out, are equivalent properties.

In the second part of the section, given a finitary π-institution I , we
provide a construction of the filter family CI,A(X) generated by a sentence
family X of A. Taking advantage of the finitarity of I , the filter family may
be obtained by an incremental process, each step of which adds in the filter
family sentences of A which are derivable, in a certain sense, by finite subsets
of sentences that have already been included in the filter family at previous
stages of the construction. In this way, the family ΞI,A(X) is obtained as
the union of the families obtained at all stages and it can be shown that
CI,A(X) = ΞI,A(X).

In the last two sections, Sections 2.17 and 2.18, we study equational
consequences and provide analogs of some well-known fundamental results
of universal algebra for classes of algebraic systems.

In Section 2.17, we look at closure families on pairs of sentences, i.e.,
equations, over a base algebraic system F that are induced by classes of
F-algebraic systems. Given a class K of F-algebraic systems, we say that
an equation φ ≈ ψ is a consequence of a set E of equations relative to K if
every algebraic system in K satisfying E also satisfies φ ≈ ψ. The resulting
consequence family is denoted by DK. It is not necessarily a closure system
since it may fail to be structural. It is shown, however, that its theory families
are exactly the congruence systems on F relative to the class K.

The second part of the section deals with a process of generating the clo-
sure of a family of equations E relative to an equational axiomatic system Q

in an incremental way. Roughly speaking, it formalizes the process of closing
under reflexivity, symmetry and transitivity, as well as under replacement
and the action of signature morphisms. The family of equations obtained
under this step-wise process from axioms Q and hypotheses E is denoted
by ΞQ(E). In the final result of the section, it is shown that the operator
ΞQ coincides with DK when Q is taken to be the collection of all equations
satisfied by all algebraic systems in K.

Section 2.18, the closing section of the chapter, is inspired by univer-
sal algebra. It provides characterizations, in the spirit of Birkhoff’s variety
and Mal’cev’s quasivariety theorems, of classes of algebraic systems defined
by equations, quasiequations and generalized quasiequations, also referred
to as guasiequations. The section begins by formally defining equations,
quasiequations and guasiequations in the context of π-institutions. The re-
lation of satisfaction of a syntactic entity of either of the above types in an
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algebraic system is also formally defined. In the usual way, these satisfaction
relations establish Galois connections. The closed sets on the syntactic side
form equational, quasiequational and guasiequational theories, whereas, on
the semantic side, one obtains equational, quasiequational and guasiequa-
tional classes of algebraic systems, respectively. These are, respectively, the
classes closed under the semantic variety VSem, semantic quasivariety QSem

and semantic guasivariety GSem operators.

To formulate characterizations of these classes, we introduce and study
four operators on classes of algebraic systems. Let K be a class of algebraic
systems. First, we say that an algebraic system A is K-certified if, for each
signature Σ, there exists an algebraic system AΣ in the class K that satisfies
exactly the same equations of signature Σ as A. The class K is said to be
abstract or closed under K-certifications if every K-certified algebraic system
is in K. The operator C is a closure operator and, if A ∈ C(K), then A satisfies
all guasiequations satisfied by K. Moreover, if K is guasiequational, then it is
an abstract class. Next, we say that an algebraic system A is directedly K-
certified if, for each signature Σ, there exists a collection of algebraic systems{AΣ,i ∶ i ∈ I} in the class K that satisfy two conditions: On the one hand, the
collection of all finite sets of equations satisfied by some AΣ,i, i ∈ I, is directed
and, on the other, the union of all those sets is exactly the set of equations
of signature Σ satisfied by A. The class K is said to be directedly abstract or
closed under directed K-certifications if every directedly K-certified algebraic
system is in K. The operator C∗ is a closure operator. It is shown that,
if A is directedly K-certified, then it satisfies all quasiequations satisfied by
K and, furthermore, that directed abstraction is a necessary condition for a
class of algebraic systems to be a quasiequational class.

The third operator on classes of algebraic systems is that of taking sub-

direct intersections
⊲

IΠ. Subdirect intersections are collections of morphisms⟨H i, γi⟩ ∶ A → Ai, i ∈ I, with the same domain, the intersection of whose
kernels is the identity system on A. In that case, we also say that A is a
subdirect intersection of the Ai’s. This also turns out to be a closure operator

on classes of algebraic systems and, in fact, closure under
⊲

IΠ is necessary for
a class to be guasiequational. The last operator considered is that of taking
morphic images, denoted by H. It also forms a closure operator on classes
of algebraic systems and closure under H is necessary for a class to be an
equational class.

The four operators serve in formulating the Birkhoff-style characteriza-
tions referred to previously for equational, quasiequational and guasiequa-
tional classes. Guasiequational classes are characterized as those that are ab-
stract and closed under subdirect intersections. Quasiequational classes are
those that are directedly abstract and closed under subdirect intersections.
Finally, equational classes are characterized as those that are closed under
subdirect intersections and morphic images. The section concludes with some
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additional characterizations of these three classes involving the structure of
the subcollection ConSysK(F) of the complete lattice ConSys(F). All of
those additional results are based on the main characterizations described
above.

1.3.2 Chapter 3

In Chapter 3 we start in earnest the study of the Leibniz hierarchy of π-
institutions. Chapters 3-9 deal with the semantic Leibniz hierarchy. Here
the classes are defined using properties of the Leibniz operator on theory
families/systems of a π-institution. Chapters 11-??, on the other hand, deal
with the syntactic Leibniz hierarchy in which classes are defined using col-
lections of natural transformations satisfying specific definability properties.
We shall see that “corresponding” classes in the two hierarchies may not
coincide, but, nevertheless, the two hierarchies are closely connected - in
fact may be seen as forming parts of a single hierarchy - and they are both
modeled on the Leibniz hierarchy of sentential logics.

In Section 3.2, we study three properties. The first two are fundamen-
tal because they introduce concepts and terminology that play a critical
role throughout the monograph. The third is used to establish classes of
π-institutions at the very bottom of the hierarchy which abstract all other
classes considered later in this and in subsequent chapters.

The first property if systemicity. A π-institution I is called systemic if
every theory family of I is actually a theory system, i.e., if ThFam(I) =
ThSys(I). Recalling from Chapter 2 that, given a theory family T of I ,

←Ð
T

is the largest theory system included in T , I is systemic if and only if, for

every theory family T ,
←Ð
T = T . Yet another characterization asserts that,

for every Σ-sentence φ of I , the least theory family C(φ) of I generated by
φ contains all translates of φ under arbitrary signature morphisms. One of
the reasons why systemicity plays such a critical role is that, for a systemic
π-institution, it suffices to restrict attention to theory systems, i.e., one may
take invariance under signature morphisms for granted.

The second property is stability. It may be thought of as the counterpart
of systemicity when focus shifts from theory families to corresponding Leibniz
congruence systems. A π-institution I is stable if, for all theory families T ,

Ω(←ÐT ) = Ω(T ). Of course, every systemic π-institution is stable, and this
implication is proper. Both systemicity and stability transfer. This means
that a π-institution I = ⟨F,C⟩ is systemic if and only if, for every F-algebraic
system A, every I-filter family of A is a filter system. Similarly, I is stable
if and only if, for every F-algebraic system A and every I-filter family T

of A, ΩA(←ÐT ) = ΩA(T ). These two transfer results are only the first of a
host of, so-called, transfer theorems that are proved in the sequel for the
majority of properties used to define classes in the Leibniz hierarchy. Having
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established the pattern and exhibited the main idea, we only mention such
results briefly from now on, postponing the details for the main account in
the relevant sections of the text.

The third property we study in Section 3.2 is loyalty. Unlike systemicity
and stability, loyalty comes, as is typical for many subsequently introduced
properties, in multiple flavors. To establish the pattern that will be followed
in the presentation throughout, we introduce, first, the four versions, termed
family, left, right and system. They may or may not be all different. So we
study their properties, show which ones, if any, coincide, establish general
implications between those that are not equivalent, and show, via examples,
that these implications are proper, i.e., that no further collapsing of the
subhierarchy based on these properties is possible.

A π-institution I is family loyal if, for all theory families T , T ′ of I ,
T /< T ′ or Ω(T ) /> Ω(T ′), or, equivalently, if it is not the case that T < T ′

and Ω(T ) > Ω(T ′). If Ω, viewed as an operator mapping theory families to
congruence systems, is either order preserving or order reflecting, then it is
necessarily family loyal. So this property abstracts both monotonicity and
reflectivity of Ω. Since both monotonicity and reflectivity play important
roles in specifying classes in the Leibniz hierarchy, this observation provides
partial justification for considering loyalty as a common abstraction. Here, as
in all subsequently defined properties, once the family version is introduced,
the other three versions follow by applying similar modifications. To obtain
the left version one replaces, on the theory family side, all theory families
by their arrow versions. So I is left loyal if, for all theory families T , T ′,
←Ð
T /< ←ÐT ′ or Ω(T ) /> Ω(T ′). To obtain the right version, a similar replacement
is applied on the congruence system side. Thus, I is right loyal if, for all

theory families T , T ′, T /< T ′ or Ω(←ÐT ) /> Ω(←ÐT ′). Finally, the system version
is obtained by imposing the same condition as in the family version, but
restricting its application to theory systems, instead of insisting that it hold
for all theory families. Accordingly, I is system loyal if, for all theory systems
T , T ′ of I , T /< T ′ or Ω(T ) /> Ω(T ′).

Family loyalty properly implies stability. Moreover, family loyalty implies
left loyalty, which, in turn, implies system and right loyalty, the latter two
being equivalent properties. System loyalty, together with systemicity, imply
family loyalty. That is, as is the case with virtually all properties introduced
in the monograph, imposing systemicity has the effect of collapsing the entire
four-class subhierarchy into a single class. This observation can be applied
to obtain a backbone - or a bird’s eye view - of the Leibniz hierarchy without
worrying about the refinements and subdivisions due to the different flavors
of each property. Section 3.2 concludes by showing that all three distinct
versions of loyalty transfer, i.e., that a given π-institution has a certain loyalty
property if the corresponding defining condition holds for all pairs of filter
families (or systems) on arbitrary F-algebraic systems.
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In Section 3.3, we study monotonicity properties. A π-institution I is
family monotone if, for all theory families T , T ′, T ≤ T ′ implies Ω(T ) ≤ Ω(T ′),
i.e., if the Leibniz operator on theory families is order preserving. In accor-
dance with the general framework outlined above for loyalty, I is left mono-

tone if, for all T , T ′,
←Ð
T ≤

←Ð
T ′ implies Ω(T ) ≤ Ω(T ′), right monotone if, for

all T , T ′, T ≤ T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′) and system monotone if the same
condition defining family monotonicity is restricted to theory systems, i.e.,
if the Leibniz operator on theory systems is order preserving. It is shown
that family monotonicity implies stability. Most importantly, family and left
monotonicity coincide as do system and right monotonicity. Following ter-
minology inherited from sentential logics, we term π-institutions that satisfy
family monotonicity protoalgebraic and those that satisfy the system version
prealgebraic. Protoalgebraicity is equivalent to prealgebraicity plus stability.
In particular, every protoalgebraic π-institution is prealgebraic, and this in-
clusion is proper. Both monotonicity properties transfer. Finally, pursuing
connections with classes introduced in Section 3.2, we show that protoalge-
braicity implies family loyalty, whereas prealgebraicity is sufficient for system
loyalty.

In Sections 3.4 and 3.5, we study versions of a property called complete
monotonicity. This is a property dual to complete order reflectivity, a prop-
erty that characterizes truth equationality in the sentential framework. Given
a sentential logic S , complete order reflectivity stipulates that, for every col-
lection T ∪{T ′} of theories of S , if ⋂T ∈T Ω(T ) ⊆ Ω(T ′), then ⋂T ⊆ T ′. Since,
in both the lattice of theories and that of congruences, meet and intersec-
tion coincide, but, on both theories and congruences, join is not the same as
union, one may obtain two “dual” versions of complete order reflectivity. The
first, following a set-theoretic approach, says that, for all T ∪ {T ′}, T ′ ⊆ ⋃T
implies Ω(T ′) ⊆ ⋃T ∈T Ω(T ). The second, taking a lattice-theoretic point of
view, asserts that, for all T ∪ {T ′}, T ′ ≤ ⋁T implies Ω(T ′) ≤ ⋁T ∈T Ω(T ),
where the join in the hypothesis is taken in the complete lattice of theories of
S and the one in the conclusion in the complete lattice of congruences on the
formula algebra. In Section 3.4 we study an analog of the former property
and in Section 3.5 an analog of the latter in the context of logics formalized
as π-institutions. A few more details follow in the next two paragraphs.

In Section 3.4, we look at complete ⋃-monotonicity, which is abbrevi-
ated as c∪-monotonicity or, simply, c-monotonicity. A π-institution is family
c∪-monotone if, for every collection T ∪ {T ′} of theory families, T ′ ≤ ⋃T
implies Ω(T ′) ≤ ⋃T ∈T Ω(T ). Left and right c∪-monotonicities are obtained
by replacing in the hypothesis and in the conclusion, respectively, every the-
ory family occurring by its arrow version. Finally, system c∪-monotonicity is
defined by the same condition as the family version, but applied exclusively
to collections of theory systems. Family c∪-monotonicity implies stability,
as does left c∪-monotonicity. Moreover, the family version is equivalent to
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the conjunction of the left and right versions and either of the latter implies
system c∪-monotonicity. All four c∪-monotonicity properties transfer. And,
whereas the left version is sufficient for protoalgebraicity, the system version
implies only prealgebraicity.

In Section 3.5, we continue the study of complete monotonicity but switch
from complete ⋃-monotonicity to complete ⋁-monotonicity, which is abbre-
viated as c∨-monotonicity. A π-institution I = ⟨F,C⟩ is family c∨-monotone
if, for every collection T ∪ {T ′} of theory families, T ′ ≤ ⋁I T implies Ω(T ′) ≤
⋁F
T ∈T Ω(T ), where ⋁I denotes the join in the complete lattice of theory fami-

lies of I and ⋁F the join in the complete lattice of congruence systems on F.
Again, following the general pattern, I is left c∨-monotone if, for all T ∪{T ′},
←Ð
T ′ ≤ ⋁IT ∈T

←Ð
T implies Ω(T ′) ≤ ⋁F

T ∈T Ω(T ) and is right c∨-monotone if, for all

T ∪ {T ′}, T ′ ≤ ⋁I T implies Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). Finally, I is system c∨-

monotone if, for every collection T ∪ {T ′} of theory systems of I , T ′ ≤ ⋁I T
implies Ω(T ′) ≤ ⋁F

T ∈T Ω(T ). Again, either family or left c∨-monotonicity im-
plies stability. The family version is equivalent to the conjunction of the left
and right versions and either of those two implies system c∨-monotonicity.
Left c∨-monotonicity implies protoalgebraicity and system c∨-monotonicity
implies prealgebraicity.

Contrary to what the similarities of results pertaining to c∨-monotonicity
with those of Section 3.4 on c∪-monotonicity may suggest, there are also sig-
nificant differences between the two complete monotonicity properties. One
instance concerns transfer theorems. Unlike c∪-monotonicity, c∨-monotonicity
properties do not transfer in general. This is due to the fact that, unlike
unions, joins do not commute with inverse surjective morphisms between
algebraic systems. A second difference, which affords, perhaps, partial justi-
fication for introducing and discussing both types of properties in some detail,
is that corresponding classes of π-institutions are incomparable. E.g., there
exists a family c∨-monotone π-institution which is not family c∪-monotone
and vice-versa.

In Section 3.6, we study injectivity. A π-institution I is family injective
if, for all theory families T , T ′, Ω(T ) = Ω(T ′) implies T = T ′, i.e., if the
Leibniz operator is injective on theory families. It is left injective if, for all

T , T ′, Ω(T ) = Ω(T ′) implies
←Ð
T =

←Ð
T ′ and right injective if, for all T , T ′,

Ω(←ÐT ) = Ω(←ÐT ′) implies T = T ′. Finally, it is system injective if the Leibniz
operator is injective on theory systems. Right injectivity is the strongest
of the four injectivity properties and it implies systemicity. It is followed
by family injectivity, then left injectivity, which implies system injectivity.
System injectivity together with systemicity is equivalent to right injectivity,
whereas, together with stability, which is weaker than systemicity, it implies
left injectivity. All four injectivity properties transfer.

In Section 3.7, we turn to reflectivity properties. A π-institution I is
family reflective if, for all theory families T , T ′ of I , Ω(T ) ≤ Ω(T ′) implies
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T ≤ T ′, i.e., if the Leibniz operator on theory families is order reflecting. If,

for all T , T ′, Ω(T ) ≤ Ω(T ′) implies
←Ð
T ≤
←Ð
T ′, then I is left reflective, whereas,

if, for all T , T ′, Ω(←ÐT ) ≤ Ω(←ÐT ′) implies T ≤ T ′, I is right reflective. System
reflectivity stipulates the order reflectivity of the Leibniz operator on the-
ory systems. It turns out that family or right reflectivity imply systemicity.
This allows showing that the two are actually equivalent properties. They
imply left reflectivity, which, in turn, implies system reflectivity. System re-
flectivity, coupled with stability, implies left reflectivity, whereas, together
with systemicity, it becomes equivalent to family reflectivity. All four ver-
sions transfer. Section 3.7 ends by relating reflectivity with the injectivity
properties, introduced in Section 3.6, and with the loyalty properties, intro-
duced in Section 3.2. More precisely, it is shown that family/right, left and
system reflectivity imply, respectively, right, left and system injectivity and
that family/right, left and system reflectivity imply, respectively, family, left
and system loyalty.

Section 3.8, the last section of Chapter 3, introduces complete reflectiv-
ity properties, abbreviated to c-reflectivity. These form a generalization of
the reflectivity properties of Section 3.7. Complete reflectivity originates in
the work of Raftery, where it is used to characterize truth equationality in
the context of sentential logics. A π-institution is family c-reflective if, for
every collection T ∪ {T ′} of theory families of I , ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies

⋂T ≤ T ′. It is left c-reflective if, for all T ∪{T ′}, ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies

⋂T ∈T
←Ð
T ≤

←Ð
T ′ and right c-reflective if, for all T ∪ {T ′}, ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′)

implies ⋂T ∈T T ≤ T ′. System c-reflectivity is defined using the same condi-
tion as family c-reflectivity restricted to collections of theory systems. As
was the case with reflectivity, either family or right c-reflectivity implies sys-
temicity and this enables showing that the family and right versions are
equivalent. They imply left c-reflectivity, which, in turn, implies the system
version. System c-reflectivity and systemicity are jointly equivalent to family
c-reflectivity, whereas system c-reflectivity, augmented with stability, implies
left c-reflectivity. All complete reflectivity properties transfer and, as is ap-
parent from the relevant definitions, each version of c-reflectivity implies the
corresponding reflectivity version.

1.3.3 Chapter 4

In Chapter 4, we visit weak prealgebraizability and weak algebraizability
properties of π-institutions. These create a subhierarchy of π-institutions
whose members roughly correspond to the weakly algebraizable logics in the
sentential logic framework. Weak prealgebraizability classes arise when cou-
pling family monotonicity with either of injectivity, reflectivity or complete
reflectivity properties. Analogously, weak algebraizability results by combin-
ing system monotonicity with injectivity, reflectivity or complete reflectivity.
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Before describing the versions of weak prealgebraizability and algebraizabil-
ity in more detail, we mention, firstly, that the term “weak” refers to the use
of monotonicity, as opposed to the stronger notion of equivalentiality, in the
definitions, and remind, secondly, the reader of the hierarchy, established in
Chapter 3, of the various flavors of injectivity, reflectivity and c-reflectivity
properties, which assumed the form depicted in the diagram.

Family c-Reflective

✠�
�
� ❅

❅
❅❘

Left c-Reflective Family Reflective

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

System c-Reflective Left Reflective Right Injective

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

Family Injective
�

System Reflective Left Injective

❅
❅
❅❘ ✠�

�
�

System Injective

In Section 4.2, we define the classes of weakly prealgebraizable π-institu-
tions. Each class results by imposing prealgebraicity (system monotonicity)
and one of the ten flavors of injectivity, reflectivity and complete reflectiv-
ity shown in the preceding hierarchy. Since prealgebraicity is shared by all
classes, the deciding factor in the subhierarchy is the type of injectivity, re-
flectivity or c-reflectivity imposed. Thus, a priori, one obtains ten potentially
distinct classes whose hierarchy reflects that shown in the preceding diagram.
We name the corresponding property “weak X prealgebraizability”, or “WX
prealgebraizability” for short, where the string X stands for one of SI, LI,
FI, RI for system, left, family, right injectivity, respectively, SR, LR, FR for
system, left, family reflectivity, respectively, or SC, LC, FC for system, left,
family c-reflectivity, respectively.

In our first result, we show that prealgebraicity is sufficient to identify
all system versions, which forces the collapsing of the classes of WSI, WSR
and WSC prealgebraizable π-institutions. We call the corresponding prop-
erty WS prealgebraizability. In what sets a pattern for subsequent work
in this chapter, it is shown that WS prealgebraizability transfers and, fur-
ther, a characterization is obtained via properties of the Leibniz operator ΩA,
viewed as a mapping between ordered sets, for arbitrary F-algebraic systems
A. More precisely, it is shown that a π-institution I = ⟨F,C⟩ is WS prealge-
braizable iff, for every F-algebraic system A, ΩA ∶ FiSysI(A)→ ConSysI∗(A)
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is an order embedding. Next, it is shown that, in view of prealgebraicity, fam-
ily reflectivity implies family c-reflectivity and this leads to the identification
of WFR prealgebraizability and WFC prealgebraizability. Moreover, under
protoalgebraicity, family injectivity implies family reflectivity. This enables
showing that both WFR and WRI prealgebraizability are characterized as
the conjunction of WFI prealgebraizability and systemicity and, hence, are
identical properties. Both WFR and WFI prealgebraizability transfer. More-
over, the WFI version is characterized by the property that, for all A, ΩA

is a bijection on filter families, restricting to an order embedding on filter
systems, whereas the WFR version is characterized by the condition that,
for all A, ΩA is an order isomorphism.

At this point, the hierarchy has been reduced to six classes, since, as it
turned out, all three system classes are identical and the three family plus
the WRI prealgebraizability collapse down to two classes. The only classes
not put under the microscope yet are those defined using the left versions
of injectivity, reflectivity and c-reflectivity. We return to them after a short
break that gives a glimpse of further possible reductions under special cir-
cumstances. Namely, it is proven that, under systemicity, the entire hierarchy
collapses to a single class and that, under stability, it collapses down to two
classes, as the only properties that can be distinguished are the family (but
including also WRI prealgebraizability) from the remaining versions.

Returning to the left properties, Section 4.2 concludes by showing that
all three transfer and by providing characterizations along the lines outlined
previously, using ΩA. More precisely, it is shown that I = ⟨F,C⟩ is WLC
(WLR, WLI, respectively) prealgebraizable iff, for every F-algebraic system
A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left completely order reflecting (left
order reflecting, left injective, respectively) surjection, restricting to an order
embedding on theory systems.

In Section 4.3, we study versions of weak algebraizability. These combine
protoalgebraicity (family monotonicity) with the various versions of injectiv-
ity, reflectivity and complete reflectivity. Since protoalgebraicity dominates
prealgebraicity, it is clear that one obtains at least as many identifications
between the ten apparent weak algebraizability properties as those estab-
lished between corresponding weak prealgebraizability properties in Section
4.2. However, the situation under closer scrutiny turns out to be much
more radical. Since protoalgebraicity is strong enough to yield stability,
the emerging landscape was anticipated by the previously mentioned col-
lapse of the weak prealgebraizability hierarchy down to two classes in the
presence of stability. Similarly, under protoalgebraicity and, hence, sta-
bility, all three weak family algebraizability properties together with WRI
algebraizability collapse to a single property, termed WF algebraizability.
Further, all remaining six left and system versions also collapse to a sin-
gle property we call WS algebraizability. Both of these properties transfer.
Also, for both one may obtain Leibniz operator type characterizations. More
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specifically, I = ⟨F,C⟩ is WS algebraizable iff it is stable and, for all A,
ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism, whereas it is WF
algebraizable iff, for all A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is an order iso-
morphism.

Observing that the characterization of WF algebraizability is identical
with that obtained for WF prealgebraizability, we conclude that the top
classes in the weak prealgebraizability and weak algebraizability subhierar-
chies actually coincide. Thus, by fusing these two subhierarchies, one obtains
a total of seven potentially distinct classes, which form the combined hierar-
chy depicted in the diagram.

WF-Algebraizable

✙✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅❘

WS-Algebraizable

WLC-Prealgebraizable
❄

WFI-Prealgebraizable

✠�
�
�
�
�
�

WLR-Prealgebraizable
❄

❍❍❍❍❍❍❥
WLI-Prealgebraizable

WS-Prealgebraizable
❄

1.3.4 Chapter 5

In Chapter 5, we deal with classes of π-institutions that result from weakly
prealgebraizable and weakly algebraizable π-institutions when the proper-
ties of prealgebraicity (system monotonicity) and protoalgebraicity (family
monotonicity) are strengthened to preequivalentiality and equivalentiality,
respectively. The strengthening, i.e., the passage from proto- (or pre-) al-
gebraicity to (pre)equivalentiality, involves adding the condition of either
family or system extensionality. Depending on which of these two proper-
ties is imposed, one obtains two parallel hierarchies, one on top of the other,
both of which reflect the structure of the weak (pre)algebraizability hierarchy,
described in Chapter 4.

In Section 5.2, we introduce and study extensionality. The definition re-
quires the notion of subsystem of an algebraic system F generated by a given
sentence family X , which is denoted by ⟨X⟩ and was introduced in Section
2.12. A π-institution I = ⟨F,C⟩ is called family extensional if, for all sentence
families X of F and all theory families T of I , Ω(T )∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).



Voutsadakis CHAPTER 1. INTRODUCTION 43

It is called system extensional if the same condition holds, but T is quantified
over all theory systems of I , instead of ranging over arbitrary theory families.
Since system extensionality specializes family extensionality, every family ex-
tensional π-institution is also system extensional. It is, moreover, the case
that system extensionality, coupled with stability, implies family extension-
ality. Extensionality is very useful because, when satisfied, it causes certain
properties that hold in a π-institution to be inherited by all its subinstitu-
tions. For instance, under system extensionality, stability propagates from a
π-institution I to all its subinstitutions I ′ ≤ I . Additionally, system or fam-
ily extensionality causes prealgebraicity or protoalgebraicity, respectively, to
be inherited by all subinstitutions of a given π-institution. Both versions of
extensionality transfer. The section closes by looking at 2-extensionality, an
apparently weaker condition than extensionality, which, however, turns out to
be equivalent to it. A π-institution I = ⟨F,C⟩ is family 2-extensional if, for all
Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and every theory family T of I , ⟨φ,ψ⟩ ∈ ΩΣ(T )
if and only if ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). System 2-extensionality is defined

by the same condition in which T is quantified over theory systems. A π-
institution is family/system extensional if and only if it is family/system
2-extensional, respectively.

In Section 5.3, we study Leibniz commutativity. The notion relies on the
concepts of extension and logical extension. Given an algebraic system F
and a sentence family X of F, an extension is an algebraic system morphism
of the form ⟨I,α⟩ ∶ ⟨X⟩ → F, where ⟨X⟩ is the algebraic subsystem of F
generated by X and I is the identity functor on signatures. Given a π-
institution I = ⟨F,C⟩, an extension ⟨I,α⟩ ∶ ⟨X⟩→ F is called logical, denoted

⟨I,α⟩ ∶ I ⟨X⟩ → I , if, for every signature Σ and all Φ ⊆ ⟨X⟩Σ, αΣ(C⟨X⟩Σ (Φ)) ⊆
CΣ(αΣ(Φ)), where C⟨X⟩ is the restriction of C on ⟨X⟩, discussed in detail in
Section 2.12. A characterization of this notion asserts that ⟨I,α⟩ is logical if
and only if α−1 preserves theory families, i.e., if α−1(T ) ∈ ThFam(I ⟨X⟩), for
every T ∈ ThFam(I).

Logical extensions form the background for introducing the property of
Leibniz commutativity, or, simply, commutativity. A π-institution I = ⟨F,C⟩
is called family commuting if the Leibniz operator on theory families com-
mutes with logical extensions, i.e., if, for every sentence family X of F, every
logical extension ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ′ ∈ ThFam(I ⟨X⟩), α(Ω⟨X⟩(T ′)) ≤
Ω(C(α(T ′))). Applying the same condition, where T ′ ranges over all theory
systems of I ⟨X⟩, defines system commutativity. A closely related concept
is that of inverse Leibniz commutativity, or, simply, inverse commutativ-
ity. A π-institution I is family inverse commuting if, for every sentence
family X , every logical extension ⟨I,α⟩ ∶ I ⟨X⟩ → I , and all T ∈ ThFam(I),
α−1(Ω(T )) = Ω⟨X⟩(α−1(T )). The same condition, imposed on theory sys-
tems only, defines system inverse commutativity. The fact that injection
morphisms ⟨I, j⟩ ∶ I ⟨X⟩ → I of subinstitutions into their parent institutions
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are logical extensions allows us to show that family/system inverse commu-
tativity implies family/system extensionality, respectively. It is clear that
the family version implies the system version and, as it turns out, the system
version augmented by stability implies the family version. What is important
for our purposes, and the reason why both direct and inverse commutativity
properties are studied, is that under pre/proto-algebraicity, respectively, sys-
tem/family commutativity is equivalent to system/family inverse commuta-
tivity. Moreover, in a result strengthening the relationship mentioned above,
it is proven that family/system inverse commutativity and family/system
extensionality, respectively, are actually equivalent properties. This section
concludes by showing that both versions of inverse commutativity transfer.

In Section 5.4, we introduce equivalentiality. This is the section we have
been preparing for by studying extensionality and commutativity in Sections
5.2 and 5.3, respectively. Equivalentiality is the result of coupling mono-
tonicity with extensionality. Since each of those two properties comes in two
flavors, there are, a priori, four possible versions of equivalentiality. Family
equivalentiality combines protoalgebraicity with family extensionality. Sys-
tem equivalentiality keeps protoalgebraicity but uses system extensionality.
Family and system preequivalentiality are defined analogously, but here one
uses prealgebraicity instead of protoalgebraicity. Since protoalgebraicity is
strong enough to imply stability, it turns out that family and system equiv-
alentiality coincide. This property is referred to simply as equivalentiality.
Thus, we get three properties in this hierarchy, namely, in decreasing order of
potency, equivalentiality, family preequivalentiality and system preequivalen-
tiality. Moreover, equivalentiality is equivalent to system preequivalentiality
plus stability. All three properties transfer. There also exist characterizations
of equivalentiality and preequivalentiality by conditions imposed on the Leib-
niz operator on filter families/systems, respectively, on arbitrary F-algebraic
systems. Finally, as is clear by the corresponding definitions, equivalentiality
dominates protoalgebraicity and preequivalentiality dominates prealgebraic-
ity.

In Section 5.5, by replacing prealgebraicity by preequivalentiality, we ob-
tain from the weak prealgebraizability hierarchy of Section 4.2 two parallel
prealgebraizability hierarchies. The term “prealgebraizability” in both refers
to the fact that preequivalentiality, as opposed to equivalentiality, is applied.
In one of the two hierarchies, “family prealgebraizability” refers to the ap-
plication of family preequivalentiality, whereas in “prealgebraizability”, it is
understood that (system) preequivalentiality is applied. The five classes in
the first hierarchy are termed XF prealgebraizable and in the second X preal-
gebraizable, where X is one of the following strings, suggesting the imposition
of an additional property on the Leibniz operator.

• LC for left completely reflective;

• LR for left reflective;
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• FI for family injective;

• LI for left injective; and

• S for system (system completely reflective, system reflective or system
injective, which are all equivalent in view of prealgebraicity).

It is shown that systemicity causes the total collapse of the hierarchy into
a single class, whereas stability collapses the two family injectivity classes,
FI and FIF prealgebraizability, and, also, all eight remaining classes and,
therefore, leads to a 2-class hierarchy. Moreover, it is proven that all ten
properties transfer. The remainder of this section is devoted to providing
characterizations of each of the ten classes using order theoretic properties
of the Leibniz operator viewed as a mapping from lattices of filters sys-
tems/families to lattices of congruence systems over arbitrary F-algebraic
systems. We focus only on a couple of pairs to give a flavor of the type
of results obtained, and refer the reader to the main text for a full ac-
count. A π-institution I = ⟨F,C⟩ is FIF prealgebraizable if and only if,
for all F-algebraic systems A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a bijec-
tion commuting with inverse logical extensions, which restricts to an order
embedding on filter systems. A similar characterization is obtained for FI
prealgebraizability, but with a subtle important change: I is FI prealgebraiz-
able if and only if, for all A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a bijection,
which restricts to an order embedding commuting with inverse logical mor-
phisms on filter systems. Analogously, for the left reflectivity classes, we get,
on the one hand, that I is LRF prealgebraizable if and only if, for all A,
ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left order reflecting surjection commut-
ing with inverse logical extensions, which restricts to an order embedding on
filter systems, and, on the other, noting again the same subtle change, I is LR
prealgebraizable if and only if, for all A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is
a left order reflecting surjection, which restricts to an order embedding com-
muting with inverse logical extensions on filter systems. Characterizations
of the remaining six classes follow a similar pattern.

In Section 5.6, we switch from prealgebraizability to algebraizability.
Dropping “pre” signifies using equivalentiality instead of the weaker pree-
quivalentiality property. Equivalentiality encompasses protoalgebraicity and,
under protoalgebraicity, only two classes of the ten potentially different ones
are actually distinct. Accordingly, we get family algebraizability, or, simply,
F algebraizability, when family injectivity is added, and system algebraiz-
ability, or, simply, algebraizability, when system injectivity is added. Family
algebraizability is equivalent to algebraizability plus systemicity. Both prop-
erties transfer. Finally, I = ⟨F,C⟩ is algebraizable if and only if it is stable
and, for every F-algebraic system A, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an
order isomorphism commuting with inverse logical extensions, whereas I is
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family algebraizable if and only if, for all A, ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism commuting with inverse logical extensions.

1.3.5 Chapter 6

The motivating force behind the considerations in this chapter is the obser-
vation that, since for a π-institution I = ⟨F,C⟩, with F = ⟨Sign♭,SEN♭,N ♭⟩,
Ω(∅) = ∇F = Ω(SEN♭), no π-institution without theorems can satisfy any of
the injectivity, reflectivity of complete reflectivity properties introduced in
Chapter 3. The question naturally arises whether, in that case, the existence
of theory families with empty components is the only reason causing the lack
of these properties or whether the π-institution in question would still not
satisfy them even if theory families with empty components were in some way
“discarded” or “bypassed”. We choose two ways in which this circumvention
may be accomplished, and study the various flavors of injectivity, reflectivity
and complete reflectivity properties that result.

In Section 6.2, we introduce and study the relation of rough equivalence
between theory families of a π-institution. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F. Given a theory
family T of I , we define the rough companion (rough associate or rough
representative) T̃ of T as the theory family resulting from T by replacing all
empty Σ-components of T by the corresponding set SEN♭(Σ) of Σ-sentences.
We say that two theory families T and T ′ are roughly equivalent, written
T ∼ T ′, if T̃ = T̃ ′. The rough equivalence class of T is denoted by [̃T ] and
T̃hFam(I) denotes the collection of all rough equivalence classes. When one
considers the restriction of rough equivalence on theory systems, the corre-
sponding rough equivalence class is denoted by ⌊̃T ⌋ and the collection of all
these classes by T̃hSys(I). Reasoning with rough equivalence classes is one
way of bypassing theory families with empty components. An alternative
way is to ignore those theory families that have at least one empty compo-
nent. This is accomplished by considering the collections ThFam (I) and
ThSys (I) of all theory families and theory systems, respectively, none of
whose components is empty.

The usefulness of rough equivalence in considering properties of the Leib-
niz operator stems from the fact that, for every theory family T , Ω(T ) =
Ω(T̃ ). As a consequence, the Leibniz operator is constant on each rough
equivalence class. It is fairly obvious that the rough companion T̃ of a the-
ory family T is the maximum element in the class [̃T ]. However, even if T
happens to be a theory system, T̃ may not be one. On the other hand, it
can be shown that, even in that case, ⌊̃T ⌋ has a maximum element, which, of
course, does not coincide with T̃ . An unfortunate fact, when considering the
operators ←Ð and ̃ in the same context is that, even if two theory families T

and T ′ are roughly equivalent, the same may not hold for
←Ð
T and

←Ð
T ′. On the

positive side, if A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system and T is an I-filter
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family of A, we do have α−1(T̃ ) = α̃−1(T ). This implies that the action of α−1

preserves rough equivalence, i.e., if T and T ′ are I-filter families of A, with
T ∼ T ′, then α−1(T ) ∼ α−1(T ′), the latter being roughly equivalent theory
families of I .

In Section 6.3, we look at some notions combining systemicity with rough
equivalence. They form a hierarchy weakening systemicity in the absence of
theorems. In the presence of theorems, however, all concepts considered
coincide. We say that a π-institution I is roughly systemic if, for every

theory family T ,
←Ð
T is roughly equivalent to T , i.e.,

←Ð
T ∼ T . We say I is

narrowly systemic if, for every theory family T in ThFam (I) (i.e., with

all components nonempty),
←Ð
T = T . Finally, we say that I is exclusively

systemic if, for all T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I), ←ÐT = T .

Systemicity is the strongest of these four conditions, followed by rough and
narrow systemicity, which are incomparable in strength, and each of these two
implies exclusive systemicity. Moreover, as mentioned previously, exclusive
systemicity in the presence of theorems implies systemicity and, therefore, in
that case, the entire hierarchy collapses to a single class.

In Section 6.4, we formalize and study various versions of rough injec-
tivity, resulting by combining injectivity of the Leibniz operator with rough
equivalence. The easiest to grasp is rough family injectivity. A π-institution
I is roughly family injective if, for all theory families T , T ′, Ω(T ) = Ω(T ′)
implies T ∼ T ′. Rough left injectivity results by replacing in the conclusion

of the implication defining rough family injectivity T and T ′ by
←Ð
T and

←Ð
T ′,

respectively. Rough right injectivity arises by a similar replacement in the
hypothesis. Finally, rough system injectivity imposes the same condition as
the family version, but restricts its application to theory systems. Rough
right injectivity implies rough systemicity, but the converse fails in general.
The rough injectivity hierarchy turns out to be more complex than the in-
jectivity hierarchy studied in Section 3.6. There, it was shown that right
injectivity implies family injectivity, which implies left injectivity, which, in
turn, implies system injectivity, giving rise to a linear injectivity hierarchy.
On the other hand, in the rough case, it is shown that rough right injectivity
implies rough family injectivity, which implies the system version, and, in
addition, rough left injectivity also implies the system version. Moreover,
rough right injectivity is equivalent to rough system injectivity plus rough
systemicity. Rough system injectivity, supplemented with stability, implies
rough left injectivity. Each of the four rough injectivity properties, together
with the availability of theorems, is equivalent to the corresponding injec-
tivity property. The section concludes by establishing that all four rough
injectivity properties transfer and by providing characterizations of rough
family and rough system injectivity via the Leibniz operator Ω, viewed as a
mapping from T̃hFam(I) and T̃hSys(I), respectively, to ConSys∗(I).

In Section 6.5, we switch to a different version of injectivity properties, the
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overarching motivation still remaining that of bypassing theory families with
empty components. Narrow family injectivity is defined by imposing the in-
jectivity of the Leibniz operator on ThFam (I), i.e., by stipulating that, for
all T,T ′ ∈ ThFam (I), Ω(T ) = Ω(T ′) implies T = T ′. Narrow left injectivity

replaces T,T ′ in the conclusion by
←Ð
T ,
←Ð
T ′, respectively, whereas narrow right

injectivity applies the same replacement in the hypothesis. Finally, narrow
system injectivity enforces the same condition as that of narrow family in-
jectivity, but restricts its scope on theory systems in ThSys (I). Narrow
right injectivity implies exclusive systemicity, but does not imply any of the
stronger versions of rough or narrow systemicity. With narrow injectivity,
we recover the linearity of the injectivity hierarchy that was lost in passing
to rough injectivity. That is, narrow right injectivity implies narrow fam-
ily injectivity, which implies narrow left injectivity, which, in turn, implies
the system version. Moreover, narrow system injectivity, supplemented by
narrow systemicity, implies narrow right injectivity. It turns out that nar-
row family injectivity is equivalent to rough family injectivity. On the other
hand, the two left injectivity properties, narrow left and rough left injectivity,
ar incomparable, i.e., none implies the other. Some order is regained when
looking at the right versions, where rough right injectivity implies narrow
right injectivity. This order is maintained at the system level in which rough
system injectivity also implies narrow system injectivity. As was the case
with rough injectivity, each narrow injectivity property, supplemented with
the existence of theorems, is equivalent to the corresponding injectivity prop-
erty. Moreover, all four narrow injectivity properties transfer. Finally, the
family and system versions have characterizations in terms of the injectivity
of Ω, viewed as a mapping from ThFam (I) and ThSys (I), respectively, to
ConSys∗(I).

In Sections 6.4 and 6.5, we looked at the rough and narrow injectivity
hierarchies. Following this paradigm, in Sections 6.6 and 6.7, we introduce
and study the rough and narrow reflectivity properties and, then, in Sections
6.8 and 6.9, the rough and narrow complete reflectivity properties.

In Section 6.6, we turn to rough reflectivity. Once more, the family
version is the easiest to describe. A π-institution is called roughly family
reflective if, for all theory families T , T ′, Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′.
Rough left reflectivity results by replacing T , T ′ in the conclusion by

←Ð
T ,

←Ð
T ′, respectively. Rough right reflectivity applies the same change in the
hypothesis. Finally, rough system reflectivity imposes the same implication
as the family version, but only on theory systems. Rough right reflectivity
implies rough systemicity. It also implies rough family reflectivity, which
implies rough system reflectivity. Rough left reflectivity also implies the
system version. Rough right reflectivity is actually equivalent to the system
version plus rough systemicity. On the other hand, rough system reflectivity
and stability imply rough left reflectivity. It is straightforward to see, based
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on the relevant defining conditions, that each of the four rough reflectivity
versions implies the corresponding rough injectivity version. Furthermore,
each rough reflectivity version, supplemented by the existence of theorems, is
equivalent to the corresponding reflectivity property. The section concludes
with a proof that all four rough reflectivity properties transfer and with
characterizations of rough family and rough system reflectivity in terms of
the Leibniz operator, viewed as a mapping from T̃hFam(I) and T̃hSys(I),
respectively, to ConSys∗(I).

In Section 6.7, we look at narrow reflectivity properties. These constitute
alternatives to rough reflectivity when dealing with reflectivity properties
while attempting to bypass theory families with empty components. A π-
institution is narrowly family reflective if, for all theory families T , T ′ in
ThFam (I), Ω(T ) ≤ Ω(T ′) implies T ≤ T ′. As before, narrow left reflec-

tivity results by replacing T , T ′ in the conclusion by
←Ð
T ,
←Ð
T ′, respectively,

and narrow right reflectivity by performing the same replacement in the hy-
pothesis instead. Finally, narrow system reflectivity stipulates that, for all
T,T ′ ∈ ThSys (I), Ω(T ) ≤ Ω(T ′) implies T ≤ T ′. Narrow family reflectivity
implies exclusive systemicity. As was the case with narrow injectivity prop-
erties, narrow reflectivity properties also align into a linear hierarchy. The
strongest is narrow right reflectivity, followed by narrow family reflectivity,
then by the left version and, at the tail, by narrow system reflectivity. The
weakest one, narrow system reflectivity, supplemented by narrow systemicity,
implies narrow right reflectivity. The relationships between corresponding
rough and narrow versions of reflectivity follow those established in Section
6.5 between corresponding rough and narrow injectivity properties. First,
rough family and narrow family reflectivity are equivalent. On the opposite
end, the left versions turn out to be incomparable. Somewhere in between,
for both the right and system versions, it turns out that the rough property
implies the narrow one. Not surprisingly, each narrow reflectivity property
implies the corresponding narrow injectivity property. Moreover, a given
narrow reflectivity property is equivalent to the corresponding reflectivity
property in the presence of theorems. All four narrow reflectivity properties
transfer. Finally, characterizations are provided of narrow family and narrow
system reflectivity in terms of the Leibniz operator seen as a mapping from
ThFam (I) and ThSys (I), respectively, to ConSys∗(I).

In Section 6.8, we turn to complete reflectivity (c-reflectivity) properties
starting with rough complete reflectivity. A π-institution I is roughly family
c-reflective if, for every collection T ∪ {T ′} of theory families, ⋂T ∈T Ω(T ) ≤
Ω(T ′) implies ⋂T ∈T T̃ ≤ T̃ ′. The left version results by replacing each theory
family by its arrow counterpart in the conclusion, whereas the right one by
applying the same change in the hypothesis instead. Finally, the system ver-
sion stipulates that the same condition as that defining the family version
applies, but T ∪ {T ′} is allowed to range over collections of theory systems
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instead of arbitrary theory families. Paralleling the rough reflectivity hi-
erarchy, rough right c-reflectivity implies rough family c-reflectivity, which
implies rough system c-reflectivity, while the left version also implies the sys-
tem version. In fact, rough right c-reflectivity is equivalent to rough system
c-reflectivity plus rough systemicity, whereas rough system c-reflectivity, to-
gether with stability, imply rough left c-reflectivity. It is clear that each rough
c-reflectivity property generalizes the corresponding rough reflectivity prop-
erty. It is also not difficult to show that each rough c-reflectivity property,
in the presence of theorems, coincides with the corresponding c-reflectivity
property. All four rough c-reflectivity properties transfer and, as before,
characterizations may be formulated of the family and system versions in
terms of the Leibniz operator, perceived as a mapping from T̃hFam(I) and
T̃hSys(I), respectively, to ConSys∗(I).

Section 6.9 deals with narrow complete reflectivity. A π-institution I is
narrowly family c-reflective if, for every collection T ∪ {T ′} ⊆ ThFam (I),
⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ≤ T ′. Once more, the left version arises by
replacing all theory families in the conclusion by their arrow counterparts
and, similarly, the right version by performing the same change in the hy-
pothesis. Narrow system c-reflectivity imposes the same condition as the
family version, but restricted to collections T ∪ {T ′} ⊆ ThSys (I). As with
narrow reflectivity, the narrow c-reflectivity hierarchy is linear. The right
version is the strongest, followed by the family, then the left and, finally, the
system version. In addition, narrow system c-reflectivity, together with nar-
row systemicity, implies the right version. Comparisons between the rough
c-reflectivity and the narrow c-reflectivity classes also follow the pattern re-
vealed for corresponding reflectivity properties. In accordance, rough family
and narrow family c-reflectivity are equivalent, rough left and narrow left
c-reflectivity are incomparable, whereas the rough right and rough system
versions imply, respectively, the narrow right and narrow system versions.
As with their rough counterparts in Section 6.8, all four narrow c-reflectivity
properties coincide with the corresponding c-reflectivity properties in the
presence of theorems. Furthermore, all four narrow c-reflectivity proper-
ties transfer. The family and system versions have characterizations via the
Leibniz operator seen as a mapping from ThFam (I) and ThSys (I), re-
spectively, to ConSys∗(I), analogous to the ones obtained for both narrow
injectivity and narrow reflectivity.

The last section of the chapter, Section 6.10, contains some characteriza-
tions of the property of a π-institution possessing theorems. This is closely
connected to the overarching ideas governing the properties investigated in
Sections 6.2-6.9, which aimed at rectifying the “pathologies” introduced by
the absence of theorems. The availability of theorems is characterized by
the injectivity of the Frege equivalence family operator, as well as by both
the injectivity and the complete reflectivity of the Lindenbaum equivalence
family operator, both applied to the collection of theory families of the π-
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institution. These operators were introduced in Section 2.11. Possession
of theorems transfers to the collections of all I-filter families over arbitrary
F-algebraic systems.

1.3.6 Chapter 7

In Chapter 7, we further pursue our endeavor of making properties in the
lower bottom of the algebraic hierarchy suitable for the study of π-institutions
that do not have theorems. Similarly to Chapter 6, we employ rough equiva-
lence and narrowness to achieve this goal, but, unlike in Chapter 6, the focus
here is on monotonicity and complete monotonicity properties, rather than
on injectivity, reflectivity and complete reflectivity properties.

In Section 7.2, we define a stability hierarchy, which serves, in the sequel,
to formalize properties of some of the classes in the monotonicity and com-
plete monotonicity hierarchies. Recall that a π-institution I is stable if, for

all theory families T ∈ ThFam(I), Ω(←ÐT ) = Ω(T ). Weakening this notion, we
call I narrowly stable if the same equation holds, provided T ∈ ThFam (I),
i.e., the scope is restricted to theory families all of whose components are
nonempty. A further weakening insists that the same equation hold for all

T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I), i.e., it further restricts the scope

of the quantification to theory families all of whose components are nonempty
and whose arrow counterparts also have all components nonempty. Clearly,
stability implies narrow stability, which, in turn, implies the last property,
which is termed exclusive stability. It is shown that both implications are
strict.

In Section 7.3, we study the rough monotonicity hierarchy. Recall that,
given a π-institution I and a theory family T of I , T̃ denotes the rough com-
panion of the theory family T , which is the theory family resulting from T

by replacing all empty Σ-components of T by SEN♭(Σ). Two theory families
T and T ′ are roughly equivalent if they have the same rough companion.
This is equivalent to saying that if T and T ′ differ at some signature Σ,
they one has an empty Σ-component, whereas the other has SEN♭(Σ) as
its Σ-component. A π-institution I is roughly family monotone if, for all
theory families T,T ′ ∈ ThFam(I), T̃ ≤ T̃ ′ implies Ω(T ) ≤ Ω(T ′). Rough

left monotonicity results by replacing T , T ′ in the hypothesis by
←Ð
T ,
←Ð
T ′, re-

spectively, and rough right monotonicity by applying the same replacement
in the conclusion. Rough system monotonicity stipulates that the original
implication hold, for all T,T ′ ∈ ThSys(I). It turns out that rough left mono-
tonicity implies both rough family and rough right monotonicity and that
each of the latter two implies the system version. Additionally, the strongest
version, rough left monotonicity, is equivalent to the weakest, system, ver-
sion, together with stability. Recall from Section 3.3 that family and left
monotonicity are equivalent and this property was termed protoalgebraicity.
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Recall also, from the same section, that system and right monotonicity are
equivalent and this property was called prealgebraicity. Protoalgebraicity
implies rough left monotonicity, whereas prealgebraicity implies rough right
monotonicity. Tighter connections can be established under some fairly gen-
eral hypotheses. For non almost inconsistent π-institutions, protoalgebraicity
is equivalent to rough family or rough left monotonicity, coupled with the
availability of theorems. Similarly, for π-institutions having a theory fam-

ily T ≠ SEN♭, with
←Ð
T ≠ ∅, prealgebraicity is equivalent to rough right or

rough system monotonicity, supplemented with the availability of theorems.
All four rough monotonicity properties transfer. E.g., I is roughly family
monotone if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all I-filter families T,T ′ ∈ FiFamI(A), T̃ ≤ T̃ ′ implies ΩA(T ) ≤ ΩA(T ′).
Both rough family and rough system monotonicity can be characterized us-
ing properties of the Leibniz operator viewed as a mapping from T̃hFam(I)
and T̃hSys(I), respectively, to ConSys∗(I).

In Section 7.4, we switch from rough monotonicity to narrow monotonic-
ity properties. These constitute an alternative approach to bypassing theory
families and theory systems with one or more empty components. We say
that a π-institution I is narrowly family monotone if, for all theory families
T , T ′, with all components nonempty, T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). The left

version results by replacing T , T ′ by
←Ð
T ,
←Ð
T ′, respectively, in the hypothesis and

the right version by performing the same replacement in the conclusion in-
stead. Narrow system monotonicity stipulates that, for all T,T ′ ∈ ThSys (I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Narrow left monotonicity implies narrow fam-
ily monotonicity, which implies narrow system monotonicity, while the latter
is also a consequence of narrow right monotonicity. Narrow left monotonicity
is strong enough to yield exclusive stability, which, however, is the weakest of
the three stability versions studied in Section 7.2. Under narrow systemicity,
introduced in Section 6.3, the narrow monotonicity hierarchy collapses to a
single class. Protoalgebraicity implies narrow left monotonicity and prealge-
braicity implies the right version. In this case as well, tighter connections are
possible under additional, fairly general, hypotheses, as was the case with
rough monotonicity properties. Namely, under the hypothesis that I is not
almost inconsistent, protoalgebraicity is equivalent to narrow left or narrow
family monotonicity, coupled with the existence of theorems. And, provided
that I possess a theory system T ≠ ∅,SEN♭, prealgebraicity is equivalent to
narrow right or narrow system monotonicity, together with the availability
of theorems. Of central interest here is whether and how the rough mono-
tonicity properties are related to the narrow monotonicity properties. In
comparing the two hierarchies, we discover that the two family versions are
equivalent, whereas each of the three remaining rough monotonicity proper-
ties implies the corresponding narrow monotonicity property. All four narrow
monotonicity properties transfer. Finally, characterizations of the family and
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the system versions may be formulated in terms of the Leibniz operator seen
as a mapping from ThFam (I) and ThSys (I), respectively, to ConSys∗(I).

In Section 7.5, we return to roughness, but study complete monotonic-
ity (c-monotonicity) instead of monotonicity properties. Rough family c-
monotonicity stipulates that, for all collections T ∪ {T ′} ⊆ ThFam(I), T̃ ′ ≤
⋃T ∈T T̃ implies Ω(T ′) ≤ ⋃T ∈T Ω(T ). Rough left c-monotonicity and rough
right c-monotonicity result by replacing in the hypothesis and in the conclu-
sion, respectively, all theory families by their arrow versions. Rough system
c-monotonicity imposes the same condition as does the family version, but
restricts its applicability on collections T ∪{T ′} consisting of theory systems.
Here, it turns out that each of the left, family and right versions implies
the system version. Moreover, rough left c-monotonicity is equivalent to
the conjunction of rough system c-monotonicity and stability. It is also the
case that, under stability, the rough family and rough right c-monotonicity
properties coincide and that, under rough systemicity, the entire rough c-
monotonicity hierarchy collapses to a single class. From the definitions, it
is obvious that each of the four rough c-monotonicity properties implies the
corresponding rough monotonicity version. It is also the case that each c-
monotonicity property implies its rough c-monotonicity counterpart. Once
more, for non almost inconsistent π-institutions, family (left c-monotonicity,
respectively) is equivalent to the conjunction of rough family (rough left, re-
spectively) c-monotonicity and the existence of theorems. Furthermore, if I
possesses a theory family T ≠ SEN♭, such that

←Ð
T ≠ ∅, then system (right, re-

spectively) c-monotonicity is equivalent to rough system (right, respectively)
c-monotonicity plus the existence of theorems. All four rough c-monotonicity
properties transfer and one may, in this case also, recast the family and sys-
tem versions in terms of properties of the Leibniz operator seen as a mapping
from T̃hFam(I) and T̃hSys(I), respectively, to ConSys∗(I).

In Section 7.6, we switch from rough versions of c-monotonicity to narrow
versions of the same property. A π-institution I is called narrowly family
c-monotone if, for all collections T ∪ {T ′} ⊆ ThFam (I), T ′ ≤ ⋃T ∈T T im-
plies Ω(T ′) ≤ ⋃T ∈T Ω(T ). In the left version, all theory families are replaced
in the hypothesis by their arrow counterparts and, in the right version, the
same change is applied in the conclusion. The system version stipulates
that the implication above hold for all collections T ∪ {T ′} ⊆ ThSys (I).
Each of the left, family and right versions implies the system version. More-
over, each of the four c-monotonicity versions implies the corresponding nar-
row c-monotonicity version. As was the case in relating rough and narrow
monotonicity classes in Section 7.4, rough family c-monotonicity is equiva-
lent to narrow family c-monotonicity, whereas each of the other three rough
c-monotonicity properties implies the corresponding narrow c-monotonicity
version. From the definitions, it is clear that a narrow c-monotonicity prop-
erty implies its narrow monotonicity counterpart, the latter being a special-
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ization of the former. All four narrow c-monotonicity properties transfer.
In closing, both the family and the system versions have characterizations
in terms of properties of the Leibniz operator perceived as a mapping from
ThFam (I) and ThSys (I), respectively, into ConSys∗(I).

1.3.7 Chapter 8

In Chapter 8, we undertake the study of regularity. Roughly speaking, it
is the property stipulating that, whenever two sentences belong to a theory
family of a given π-institution, they must be identified modulo the Leib-
niz congruence system relative to that theory family. When, in addition to
regularity, availability of theorems is also postulated, the property of asser-
tionality is obtained. Assertionality strengthens complete reflectivity and, as
a result, it can be used to strengthen (weak) (pre)algebraizability properties.
These strengthenings and their associated hierarchies are under the micro-
scope in Sections 8.4-8.7. The classes of π-institutions obtained here are
among the most powerful classes in the semantic hierarchy of π-institutions,
i.e., satisfy the strongest properties and are included in most of the other
classes in the hierarchy.

In Section 8.2, we introduce regularity. As was the case with other
properties in preceding chapters, regularity comes in four different versions.
Once more, we begin from the easiest to describe, the family version. A
π-institution I is family regular if, for all theory families T , all signatures Σ
and all Σ-sentences φ an ψ, if φ,ψ ∈ TΣ, then ⟨φ,ψ⟩ ∈ ΩΣ(T ). Left regularity

results by replacing T in the hypothesis by
←Ð
T , right regularity by performing

the same replacement in the conclusion instead, whereas system regularity
stipulates that the implication hold for all theory systems T . Family regular-
ity is the strongest of the four properties, followed by right regularity, which
implies left regularity, which, in turn, implies the system version. Thus,
regularity properties are stratified into a linear hierarchy. System regularity
plus stability imply left regularity, and right regularity plus stability yield
family regularity. It follows that, under stability, the four-class hierarchy is
reduced to two classes. On the other hand, system regularity plus systemic-
ity clearly yield family regularity, whence, systemicity leads to a collapse
of the regularity hierarchy into a single class. The family, left and system
versions have elegant characterizations in terms of the Suszko operator and
one of its variants. E.g., a π-institution I is family regular if and only if, for
every signature Σ and all Σ-sentences φ and ψ, ⟨φ,ψ⟩ ∈ Ω̃IΣ(C(φ,ψ)), where
C(φ,ψ) is the least theory family of I containing φ and ψ. All four regularity
properties transfer. For instance, with regards to the right version, I is right
regular if and only if, for every F-algebraic system A, all I-filter families T
of A, all signatures Σ in A and all Σ-sentences φ and ψ, φ,ψ ∈ TΣ implies

⟨φ,ψ⟩ ∈ ΩAΣ(←ÐT ). The other three transfer results are formalized similarly.
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Finally, the family and system versions may be characterized by the prop-
erty that the filter family (system, respectively) in any reduced matrix family
(system, respectively) is at most a singleton, in the sense that it consists of
components with at most one element each.

In Section 8.3, we study assertionality. This is the property resulting from
regularity by adding the requirement that theorems exist. Accordingly, four
versions of assertionality are a priori obtained, depending on which of the
four versions of regularity is postulated. They are termed family, right, left
and system assertionality and, based on the hierarchy of regularity properties
of Section 8.2, these also form a linear hierarchy, with the family version at
the top, followed by the right, then the left and, finally, the system version
at the bottom of the hierarchy. Assertionality is characterized by asserting,
roughly speaking, that each theory family is fully determined by its Leibniz
congruence system as the equivalence class of any theorem. Even though,
a priori, there are four assertionality versions, there is a reduction holding
without proviso. More precisely, it can be shown that right assertionality
implies systemicity and this entails that right and family assertionality are
equivalent. This property implies left assertionality, which, in turn, implies
the system version. Moreover, the latter supplied with systemicity, implies
family assertionality. By the definitions, it is clear that each assertional-
ity version implies the corresponding regularity version. What is, however,
more interesting, albeit not much more challenging to demonstrate, is that
each assertionality property implies the corresponding complete reflectivity
(c-reflectivity) property (see Section 3.8). So the assertionality properties
may be viewed as further strengthening the hierarchy of reflectivity and c-
reflectivity properties, studied in Sections 3.7 and 3.8. All three different as-
sertionality properties transfer. Again, indicative of the flavor, a π-institution
I = ⟨F,C⟩ is, e.g., left assertional if and only if, for every F-algebraic system
A, the π-institution ⟨A,CI,A⟩ is left assertional, meaning that, on the one
hand, the least I-filter family of A has all components nonempty and, on the
other, that, for all I-filter families T of A, all signatures Σ and all Σ-sentences
φ and ψ, such that φ,ψ ∈ TΣ, one has ⟨φ,ψ⟩ ∈ ΩAΣ(T ). The section concludes
with characterizations of the family and system versions, analogous to the
ones provided in the conclusion of Section 8.2 for regularity. Namely, it is
shown that I is family (system) assertional if and only if the filter family
(system, respectively) of every reduced matrix family (system, respectively)
is a singleton (i.e., consists of singleton components).

In Sections 8.4-8.7, we take advantage of the role of assertionality in
strengthening of c-reflectivity to obtain strengthened versions of weak (pre)-
algebraizability and (pre)algebraizability properties. The first two are ob-
tained by combining assertionality properties with pre- or protoalgebraicity,
whereas the latter are obtained by using (pre)equivalentiality instead.

In Section 8.4, we look at regular weak prealgebraizability properties.
These result from adding to prealgebraicity (i.e., system monotonicity) a
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version of assertionality. Since there are three distinct versions of asser-
tionality, one obtains three distinct corresponding versions of regular weak
prealgebraizability. A π-institution I is regularly weakly family (RWF) pre-
algebraizable if it is prealgebraic and family assertional. It is regularly weakly
left (RWL) prealgebraizable if it is prealgebraic and left assertional and it
is regularly weakly system (RWS) prealgebraizable if it is prealgebraic and
system assertional. Since the distinguishing feature between these three
properties is the type of assertionality imposed, the assertionality hierar-
chy immediately yields that RWF prealgebraizability implies RWL prealge-
braizability, which, in turn, implies RWS prealgebraizability. Equally clear
from the definitions is the fact that RWF/L/S prealgebraizability implies,
respectively, family/left/system assertionality. Additionally, the fact that
each assertionality property implies its c-reflectivity counterpart entails that
RWF/L/S prealgebraizability implies, respectively, WF/L/SC prealgebraiz-
ability (see Section 4.2). All three versions of regular weak prealgebraiz-
ability transfer. The section concludes with characterizations of the three
versions based on the Leibniz operator viewed as a mapping between or-
dered sets of filter families/systems and congruence systems. To provide a
flavor, we look at RWF prealgebraizability. The characterization states that
I is RWF prealgebraizable if and only if, for every F-algebraic system A,
ΩA ∶ FiFamI(A) → ConSysI∗(A) is an order isomorphism, such that, for all
T ∈ FiFamI(A), T /ΩA(T ) is a singleton.

In Section 8.5, we study regular weak algebraizability. The properties
here are obtained from the regular weak prealgebraizability properties of
Section 8.4 by upgrading prealgebraicity to protoalgebraicity. Accordingly,
a π-institution I is regularly weakly family (RWF) algebraizable if it is pro-
toalgebraic and family assertional, it is regularly weakly left (RWL) alge-
braizable if it is protoalgebraic and left assertional and it is regularly weakly
system (RWS) algebraizable if it is protoalgebraic and system assertional.
Notice that, since these properties constitute enhancements of the properties
of Section 8.4, the right version has been absorbed within the family ver-
sion. Here, however, protoalgebraicity, which, unlike prealgebraicity, implies
stability, forces, in addition, the identification of the left and the system
versions. Thus, there are only two distinct regular weak algebraizability
properties, regular weak family (equivalently, right) algebraizability being
the strongest and regular weak system (equivalently, left) algebraizability
the weakest of the two. In comparing this two-step hierarchy with that of
regular weak prealgebraizability properties, we discover that the two family
versions coincide, whereas regular weak system algebraizability implies reg-
ular weak left prealgebraizability. As a consequence, the combined regular
weak (pre)algebraizability hierarchy consists of four classes that are linearly
ordered. Moreover, essentially due to the fact that assertionality properties
imply c-reflectivity properties, each of the two regular weak algebraizability
classes are included in the corresponding weak algebraizability classes. Both
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regular weak algebraizability properties transfer. Finally, both have charac-
terizations in terms of the Leibniz operator seen as a mapping between or-
dered sets. E.g., I is RWS algebraizable if and only if, for every F-algebraic
system A, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphim, such
that, for all T ∈ FiSysI(A), T /ΩA(T ) is a singleton.

In Section 8.6, we introduce regular prealgebraizability properties. These
are obtained by combining assertionality properties with preequivalentiality.
Recalling that preequivalentiality is obtained by adding system extensionality
to prealgebraicity, an alternative point of view is that regular prealgebraiz-
ability is obtained from regular weak prealgebraizability, studied in Section
8.4, by adding system extensionality. A π-institution I is regularly family
(RF) prealgebraizable if it is preequivalential and family assertional, it is reg-
ularly left (RL) prealgebraizable if it is preequivalential and left assertional
and it is regularly system (RS) prealgebraizable if it is preequivalential and
system assertional. Based on the linear hierarchy of assertionality properties,
we obtain a linear hierarchy of regular prealgebraizability properties, with RF
prealgebraizability at the apex, followed by RL prealgebraizability, while RS
prealgebraizability is at the bottom. Since preequivalentiality strengthens
prealgebraicity, RF/L/S prealgebraizability implies, respectively, RWF/L/S
prealgebraizability. Moreover, since each version of assertionality implies the
corresponding c-reflectivity version, RF/L/S prealgebraizability implies, re-
spectively, family/ left c-reflective/ system prealgebraizability (see Section
5.5). All three versions transfer. Finally, characterization theorems may be
formulated for each of the three properties in terms of the Leibniz operator
viewed as a mapping between ordered sets. To provide, once more, a pre-
view, we mention the form this characterization takes in the case of regular
left prealgebraizability. A π-institution I is regularly left prealgebraizable if
and only if, for every F-algebraic system, A, ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding, commuting with inverse logical extensions, such that,

for all T ∈ FiFamI(A), ←ÐT /ΩA(T ) is a singleton.

In Section 8.7, the last section of Chapter 8, we turn to the study of
regular algebraizability properties, which combine equivalentiality with as-
sertionality. Equivalentiality forms a common strengthening of both protoal-
gebraicity and preequivalentiality. Even though one obtains, a priori, three
versions of regular algebraizability, only two are distinct. We say that I
is regularly family (RF) algebraizable if it is equivalential and family as-
sertional, regularly left (RL) algebraizable if it is equivalential and left as-
sertional, and regularly system (RS) algebraizable if it is equivalential and
system assertional. Regular left and regular system algebraizability coin-
cide and, as a result, the regular algebraizability hierarchy consists of the
class of RF algebraizable π-institutions and its proper subclass of RS al-
gebraizable π-institutions. In comparing regular algebraizability with regu-
lar prealgebraizability properties, we discover that the two family versions
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are equivalent and that regular system algebraizability implies regular left
prealgebraizability. Further, in comparing regular algebraizability with reg-
ular weak algebraizability properties, we obtain, based on equivalentiality’s
dominant position over protoalgebraicity, that RF/S algebraizability implies,
respectively, RWF/S algebraizability. In the ultimate comparison between
subhierarchies, based on the fact that assertionality implies c-reflectivity, we
obtain that RF/S algebraizability implies, respectively, F/S algebraizabil-
ity. The section closes with the same type of theorems as previous sections.
Namely, it is shown that both versions of regular algebraizability transfer
from a π-institution to the filter families/systems over arbitrary F-algebraic
systems and characterizations of both versions are obtained in terms of the
Leibniz operator perceived as a mapping between ordered sets. The family
version, e.g., asserts that I is regularly family algebraizable if and only if,
for every F-algebraic system A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is an order
isomorphism commuting with inverse logical extensions, such that, for all
T ∈ FiFamI(A), T /ΩA(T ) is a singleton.

1.3.8 Chapter 9

In Chapter 9, we undertake the study of finitarity properties of weakly family
algebraizable π-institutions. Here we draw inspiration by the analysis of
corresponding properties of algebraizable sentential logics.

According to the theory of algebraization of sentential logics, a, not nec-
essarily finitary, algebraizable sentential logic S is algebraized via an equiv-
alence that relates its consequence relation with the equational consequence
of a generalized quasivariety K. The relation of equivalence is established via
a possibly infinite set of defining equations E(x) in a single variable x, which
serve to translate formulas into equations, and a possibly infinite set ∆(x, y)
of equivalence formulas in two variables x and y, which serve to translate
equations into formulas. Besides constituting interpretations between the
two consequences, they should be mutually inverse in a specific sense. In ex-
amining the relationships between the various finitarity conditions that may
hold, namely, S finitary, SK (the equational deductive system induced by K)
finitary, E(x) finite and ∆(x, y) finite, one may show that they are related
by the implications depicted in the following diagram (see p. 137 in Section
3.4 of [86]).
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S ,SK finitary
E,∆ finite

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

SK finitary E,∆ finite
❄

S finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

∆ finite
❄

E finite
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

S algebraizable
via K,∆,E

In the framework of sentential logics, roughly speaking, syntactic and
semantic properties, i.e., those imposing the existence of transformations,
such as E(x) and ∆(x, y), satisfying certain properties, and those defined by
order-theoretic properties of the Leibniz operator go hand-in-hand, in a tight
correspondence. This is not the case in the framework of logics formalized
as π-institutions. So in this chapter, the goal is to translate the sentential
finitarity conditions to corresponding semantic properties and to establish an
analogous hierarchy for weakly family algebraizable π-institutions. We also
use examples from the sentential framework, recasting them as π-institutions,
to obtain logical systems that serve to separate the classes of π-institutions
specified by these finitarity properties.

In Section 9.2, the concept of π-structure is introduced, which abstracts
that of a π-institution by removing the requirement of structurality. For
π-structures, and, hence, also for π-institutions, the finitary companion is
constructed, which is the π-structure over the same base algebraic system
that has the largest finitary closure family included in the closure family of
the given π-structure. Locally finitely generated theory families are defined
and they are used to characterize those sentence families of a π-structure that
are theory families of its finitary companion. These turn out to be exactly
those sentence families that are unions of directed collections of locally finitely
generated theory families of the given π-structure.

In Section 9.3, we investigate under which provisos, if any, the properties
that define weak family algebraizability, i.e., protoalgebraicity and family re-
flectivity, are inherited by the finitay companion from the original π-structure
and vice-versa. It is shown, first, that protoalgebraicity and family reflectiv-
ity are propagated from the finitary companion up to the parent π-structure
unconditionally. On the other hand, the reverse inheritance requires addi-
tional conditions. To this end, the concept of continuity of the Leibniz and
of the inverse Leibniz operator are introduced. The latter, of course, makes
sense only if the π-institution under consideration is such that its Leibniz
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operator is an isomorphism, e.g., when it is weakly family algebraizable,
which is precisely the case we focus on. If the Leibniz operator is continu-
ous, it is easy to see that the π-institution is protoalgebraic. So continuity of
the Leibniz operator actually strengthens protoalgebraicity. If, in addition to
continuity, finiteness of the signature category is postulated, then the finitary
companion is also protoalgebraic. Finally, it is shown that, if a π-institution,
with a finite category of signatures, is weakly family algebraizable and both
its Leibniz and inverse Leibniz operators are continuous, then its finitary
companion is also weakly family algebraizable.

In Section 9.4, we undertake a detailed study of the interrelationships
of the four finitarity properties pertaining to weakly family algebraizable π-
institutions. These are the finitarity of the π-institution itself, the finitarity
of its equational counterpart, the continuity of the Leibniz operator and the
continuity of the inverse Leibniz operator, which is well-defined precisely be-
cause the π-institution is assumed to be weakly family algebraizable. These
four properties are appropriate abstractions in the semantical institutional
context of the properties of an algebraizable sentential logic being finitary,
of its equivalent algebraic semantics being a quasivariety, of the set of equiv-
alence formulas being finite and of the set of defining equations being finite,
respectively. The close analogy is reflected in the fact that the results and
hierarchy obtained here parallel the ones that hold for the corresponding
properties in the sentential context. Our results come, as do their sentential
counterparts, in dual pairs. In the first, it is shown that, for a weakly fam-
ily algebraizable π-institution I , the finitarity of I implies the continuity of
its inverse Leibniz operator and, dually, the finitarity of the equational π-
structure QK induced by K ∶= AlgSys(I) implies the continuity of the Leibniz
operator itself. Next, it is shown that, under weak family algebraizability,
the finitarity of I and the continuity of the Leibniz operator imply that the
equational counterpart is also finitary. Dually, the finitarity of the equa-
tional counterpart and the continuity of the inverse Leibniz operator imply
that I itself is finitary. These implications lead to the following conditional
equivalences, all applying to weakly family algebraizable π-institutions. For
continuous Leibniz and inverse Leibniz operators, a π-institution is finitary
if and only if its algebraic counterpart is finitary. For a finitary π-institution,
its counterpart is finitary if and only if its Leibniz operator is continuous.
Finally, if the algebraic counterpart of a π-institution is finitary, then the
π-institution itself is finitary if and only if its inverse Leibniz operator is
continuous. These outcomes lead to a finitarity hierarchy for weakly fam-
ily algebraizable π-institutions paralleling the hierarchy depicted above for
sentential logics.
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I ,QK finitary
Ω,Ω−1 continuous

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

QK finitary
Ω and Ω−1

continuous

❄

I finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

Ω continuous
❄

Ω−1 continuous
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

I weakly family
algebraizable

What remains to be done is separate the classes of π-institutions consti-
tuting the finitarity hierarchy. For this task, given the analogies established
with the sentential framework, we seek inspiration from the realm of senten-
tial logics.

In Section 9.5, we revisit three sentential logics that serve in separating
the classes that form the finitarity hierarchy in the sentential framework.
The classes related by the vertical arrows are separated by  Lukasiewicz’s
infinite valued logic. This is a non-finitary, semantically defined sentential
logic. It is algebraizable with a non-finitary equivalent algebraic semantics.
On the other hand, both sets of defining equations and equivalence formulas
are finite. The classes connected by the southeast arrows are separated using
a finitary logic introduced by Dellunde and defined via a Hilbert calculus.
It is regularly algebraizable via a singleton set of defining equations but a
necessarily infinite set of equivalence formulas. Finally, the classes related by
the southwest arrows of the diagram are separated using a non-finitary logic
semantically defined by Raftery. This logic has a finitary equivalent algebraic
semantics (actually a variety) and is algebraized via a finite set of equivalence
formulas but a necessarily infinite set of defining equations. Even though we
could certainly rely on well-written accounts from the literature to simply
refer to these logics, we chose to recount all details, based on those original
references. The Introduction to Chapter 9 and the main body contain more
information, as well as appropriate references.

In Section 9.6, the three sentential logics of Section 9.5 are recast as π-
institutions, according to the general procedure outlined in Section 1.1. The
resulting π-institutions serve, in turn, in separating the corresponding classes
appearing in the finitarity hierarchy of weakly family algebraizable π-insti-
tutions. Further evidencing the analogies described between the two finitarity
hierarchies, the π-institution encapsulating  Lukasiewicz’s logic separates the
classes of π-institutions connected via vertical arrows, the one incorporating
Dellunde’s logic separates classes along the southeast arrows, while the one
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arising from Raftery’s logic separates classes related by the southwest arrows
in the institutional finitarity hierarchy.

1.4 A Very Concise Summary of Contents

In Chapter 2, we introduce the basic definitions and fundamental results of
algebra and logic and some indispensable notions and results pertaining to
their interaction. These form the necessary background and the prerequisites
for the general theory of algebraization of logics formalized as π-institutions
that is presented in the monograph.

In Chapter 3, we introduce fundamental classes of the semantic Leibniz hi-
erarchy. The term semantic alludes to the fact that they are defined purely by
properties of the Leibniz operator on the complete lattices of the theory fam-
ilies or theory systems of π-institutions. Very central to our studies through-
out, partly because they equip us with indispensable terminology regarding
crucial properties, are the classes of systemic and stable π-institutions. At
the bottom center of the hierarchy lie the loyalty properties. These simul-
taneously abstract monotonicity properties, on the one side, and reflectivity
properties, on the other side. On the monotonicity side, we study monotonic-
ity and two kinds of complete monotonicity, complete ⋃-monotonicity, using
the union operation, and complete ⋁-monotonicity, using the join operation.
In crossing over to the reflectivity side, we pass through, and study, injectiv-
ity properties. On the other side, we look, first, at reflectivity and, finally,
at complete reflectivity properties. In Chapter 3, we not only define various
flavors of each of these properties and compare their various strengths, but
we also investigate the relations across those different kinds of properties. On
the way, we also present many concrete examples, some of which are reused
throughout the monograph to illustrate concepts, but, also - and mainly - to
separate classes in the various hierarchies.

In Chapter 4, we study weak prealgebraizability and weak algebraizabil-
ity properties. Weak prealgebraizability arises by combining prealgebraicity
(system monotonicity) with one of the ten possible versions of injectivity,
reflectivity or complete reflectivity. On the other hand, weal algebraizability
results when combining protoalgebraiciy (family monotonicity) with one of
those ten versions. Taking into account the combined hierarchy of injectiv-
ity, reflectivity and complete reflectivity properties, established in Chapter
3, we obtain a hierarchy of ten potentially different classes of weak prealge-
braizability and a similar one consisting of ten potentially different classes of
weak algebraizability. However, it is shown that the weak prealgebraizability
hierarchy collapses down to six classes, whereas the one of weak algebraiz-
ability down to only two. Moreover, the top classes in the two hierarchies are
identical. Therefore, when the two hierarchies are merged, a combined hier-
archy consisting of seven distinct classes is obtained. The chapter includes,
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inter alia, characterizations of these seven classes using the Leibniz opera-
tor perceived as a mapping from the lattice of filter families to the poset of
congruence systems over arbitrary algebraic systems.

In Chapter 5, we study the hierarchies of prealgebraizable and of alge-
braizable π-institutions. We look, first, at the property of extensionality
and the seemingly weaker property of 2-extensionality and show that they
are equivalent. Roughly speaking, extensionality relates Leibniz congruence
systems of theories of an institution with those of corresponding theories of
subinstitutions. Then, we look at the closely related properties of (Leibniz)
commutativity and inverse (Leibniz) commutativity. These two properties
are equivalent under monotonicity and, moreover, inverse commutativity is
equivalent to extensionality. By combining monotonicity with extensionality
properties, we build the hierarchy of equivalential π-institutions. Depending
on which of the available versions of monotonicity or extensionality are im-
posed, three versions of equivalentiality arise, namely, equivalentiality, family
preequivalentiality and (system) preequivalentiality in decreasing strength.
By combining versions of preequivalentiality with injectivity, reflectivity or
complete reflectivity properties, the ten classes of the prealgebraizability hier-
archy are obtained. Similarly, by combining equivalentiality with injectivity
properties (which are, in the presence of equivalentiality, equivalent to cor-
responding reflectivity or complete reflectivity properties), we get the two
classes of algebraizable π-institutions.

In Chapter 6, we look at classes of the Leibniz hierarchy lying below
the classes of injective, reflective and completely reflective π-institutions,
which were introduced in Chapter 3. The motivating observation is that,
if a π-institution satisfies injectivity or, a fortiori, reflectivity or complete
reflectivity, then it must possess theorems. Thus, π-institutions without the-
orems are automatically excluded from consideration in contexts where these
properties are postulated or studied. To bypass this hurdle, we define and
study weakened versions of injectivity, reflectivity and complete reflectivity
that can accommodate absence of theorems, but are equivalent to injectivity,
reflectivity and complete reflectivity, respectively, in the presence of theo-
rems. For each of those three properties, we study the rough versions and
the narrow versions and carefully compare them to the original versions, as
well as to each other, to obtain the hierarchies of injectivity, rough injectiv-
ity, narrow injectivity, reflectivity, rough reflectivity and narrow reflectivity,
and c-reflectivity, rough c-reflectivity and narrow c-reflectivity classes of π-
institutions. Roughly speaking, roughness identifies two theory families if
their Σ-components are either equal or one is ∅ and the other is SEN♭(Σ).
Those turn out to have identical Leibniz congruence systems. On the other
hand, narrowness excludes from consideration altogether theory families with
at least one empty component.

In Chapter 7, we continue the study of properties of π-institutions ob-
tained by combining properties lying at the bottom of the Leibniz hierar-
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chy with rough equivalence, on the one hand, and with narrowness, on the
other. As opposed to Chapter 6, which considered properties lying below in-
jectivity, reflectivity and complete reflectivity, this chapter undertakes the
study of properties lying below monotonicity and complete monotonicity
(c-monotonicity) properties. In a nutshell, roughly monotone and roughly
c-monotone π-institutions form super classes, respectively, of the classes of
monotone and c-monotone π-institutions. Additionally, narrowly monotone
and narrow c-monotone π-institutions encompass respectively, roughly mono-
tone and roughly c-monotone ones. By studying all four versions of each of
these properties, we obtain a mixed hierarchy of rough and narrow mono-
tonicity and rough and narrow c-monotonicity properties.

In Chapter 8, we study properties obtained by combining pre- or protoal-
gebraicity or (pre)equivalentiality, on the one hand, with assertionality, on
the other. The latter, a property that strengthen complete reflectivity as-
serts, roughly speaking, that a π-institution has theorems and, in addition,
each of its theory families is determined by its associated Leibniz congruence
system as the equivalence class of a theorem. The chapter starts with the
study of regularity, a property similar to assertionality, except that it does not
require existence of theorems. It holds when any two sentences belonging to
a theory family are identified modulo the Leibniz congruence system relative
to that theory family. Assertionality properties are formalized next. The hi-
erarchy they form and its interrelationships with the classes of the regularity
hierarchy are explored in detail. Prealgebraicity, coupled with asserrtional-
ity, gives rise to regular weak prealgebraizability, strengthening the classes
of weak prealgebraizability properties. Protoalgebraicity, together with as-
sertionality, leads to regular weak algebraizability properties. This hierarchy
strengthens both regular weak prealgebraizability and weak algebraizability
properties. Preequivalentiality and assertionality give rise to regular preal-
gebraizability, which strengthens both regular weak prealgebraizability and
prealgebraizability. The chapter concludes with the study of regular alge-
braizability, which combines equivalentiality with assertionality. The classes
of this hierarchy form subclasses of both those consisting of regularly preal-
gebraizable and those consisting of algebraizable π-institutions.

Chapter 9 starts with the introduction of the finitary companion of a π-
institution. It is the largest finitary π-institution below the given one in the
≤ ordering of π-institutions based on the same algebraic system. The focus
is on those properties defining weak family algebraizability, namely protoal-
gebraicity and family reflectivity. We investigate under which conditions,
if any, those properties are passed from a π-institution to its finitary com-
panion and vice-versa. In the second part, the focus shifts to the study of
finitarity properties of weakly family algebraizable π-institutions. This class
of π-institutions is chosen because, on its members, the Leibniz operator is
an isomorphism and, hence, it makes sense to consider the inverse Leibniz
operator. The four finitarity properties under investigation are the finitarity
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of the π-institution itself, the finitarity of its algebraic counterpart and the
continuity of the Leibniz operator and of the inverse Leibniz operator. The
implications holding between these properties give rise to the finitarity hier-
archy of weakly family algebraizable π-institutions. The chapter also revisits
some examples of sentential logics and formalizes them as π-institutions. The
latter are then used to separate the various classes in the finitarity hierarchy.
The three examples are  Lukasiewicz’s infinite valued logic, Dellunde’s logic
and a logic due to Raftery.

1.5 Further Reading

This is the first attempt to systematize the body of knowledge gathered over
the years concerning the algebraization of logics formalized as π-institutions.
However, for the readers interested in learning much more about the origins,
history, concepts, results and developments in algebraic logic as applied to
deductive systems, i.e., “abstract algebraic logic”, there are a few excellent
sources available that have served well over the years in educating the second
and third generations of “abstract algebraic logicians”.

Starting tangentially to the subject, but of interest, since they provide a
comprehensive study of logical calculi and of institutions, respectively, the
latter being the precursors of π-institutions used here, are the monographs
by Wójcicki [34] and Diaconescu [79].

Two of the first sources that played a critical role in establishing and
solidifying the discipline in its present form were the seminal “Memoirs”
monograph of Blok and Pigozzi [35], in which algebraizable logics were in-
troduced, and the pioneering monograph of Font and Jansana [52], in which
generalized matrices were studied in a systematic way and the notion of
Tarski congruence and accompanying reduced class of generalized matrices
and underlying class of algebras were defined and studied in detail.

More at the textbook, rather than at the research, level, are the books
of Czelakowski [64] and the more recent textbook by Font [86]. These are
the only two books, to my knowledge, that are focused on systematically
treating and presenting the most important results in the abstract setting. It
goes, of course, without saying, that they both contain a plethora of concrete
examples that have been studied in the literature, showcasing various aspects
of the general theory and exemplifying the wide reach of its applicability.

Apart from research monographs and books, a few surveys have also
appeared that provide overviews of, and/or details on, significant parts of
the theory. Among them are [40], [68], [69, 80] and [90].

Finally, there have been a few, as far as I am aware, Ph.D. Dissertations
which have dealt, either in their introductions or in their main corpus, with
expositions and/or overviews of significant parts of the theory. Among them,
some that have helped my own understanding and enhanced and/or diver-
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sified my point of view of various aspects of the theory are, in chronological
order, those of Herrmann [43], Elgueta [47], Rebagliato [49], Dellunde [51],
Gyuris [60], Martins [70], Russo [78], Albuquerque [85] and Moraschini [87].

The algebraization of logics formalized as π-institutions may be said to
have started with the Ph.D. Dissertation by the author [97] (see, also, [98]),
under the influence of preceding unpublished work by Zinovy Diskin [46]
(see, also, [51]), which had been communicated to Professor Don Pigozzi, the
author’s Ph.D. Dissertation advisor, and used with Zinovy’s kind permission
and encouragement.
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2.1 Introduction

In Section 2.2, we introduce the basic algebraic machinery that underlies all
structures considered in the monograph. We start with sentence functors,
which are arbitrary Set-valued functors on a category of signatures. Sen-
tence families are families of sets over sentence functors. They are called
systems in case they are invariant under signature morphisms. Associated

with a sentence family T is the largest sentence system
←Ð
T included in T and

the smallest sentence system
Ð→
T which includes T . We also introduce and

discuss morphisms between sentence functors and, in particular, distinguish
the key class of surjective morphisms. By analogy to sentence families, one
may also consider relation families over sentence functors, i.e., families of
relations on sentences. Relation families satisfying the requisite properties
constitute equivalence families. A fundamental notion, pervasive throughout
our treatise, is that of compatibility of an equivalence family with a given
sentence family. The importance of compatibility was exemplified in [35]
(see, e.g., Section 1.4 of [35], where the notion is defined). Whereas sentence
functors capture the underlying carriers of all algebraic and logical structures
we consider, the earnest algebraic treatment begins when they get endowed
with categories of natural transformations which correspond to clones of al-
gebraic operations [31, 44]. These enriched structures are termed algebraic
systems. Appropriate mappings, preserving the relevant features, are also
called morphisms (of algebraic systems). In most contexts, it is required
that all algebraic systems under consideration are over the same algebraic
signature. This is ensured by adopting a base algebraic system F, which fixes
the signature, and, then, considering only algebraic systems whose sentences
and clones of operations are, in a certain sense, interpretations of the ba-
sic one. These play an important role and are termed interpreted algebraic
systems or F-algebraic systems.

In Section 2.3, we introduce and study congruence systems. These are
equivalence systems on an underlying algebraic system that satisfy a suit-
ably adapted version of the congruence (sometimes also called compatibility
or replacement) property. They play in this context the role that congruences
play in universal algebra [22, 13, 21, 30, 84]. The collection of congruence
systems on a given algebraic system forms a complete lattice. Of utmost im-
portance is the process of constructing the quotient of an algebraic system by
a congruence system and of the accompanying canonical quotient morphism.
Equally important, in fact indispensable for the development of the theory,
is the fact that the collection of congruence systems on a given algebraic
system A that are compatible with a given sentence family T of A form a
complete lattice. This fact allows considering the largest congruence system
on A compatible with T , which is denoted by ΩA(T ) and termed the Leibniz
congruence system of T on A [35]. A property that is worth mentioning,
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since it plays a critical role in establishing pieces of the various hierarchies
considered in subsequent chapters, is that the Leibniz congruence system of
a sentence family T is always included in that of the largest sentence system

contained in T , i.e., ΩA(T ) ≤ ΩA(←ÐT ).
In Section 2.4, we look at a special class of congruence systems whose

definition presupposes fixed in the background a class K of algebraic systems.
Given an arbitrary algebraic system, a congruence system on it is said to be
a K-congruence system or a congruence system relative to K if the quotient
algebraic system it induces belongs to the class K (see, e.g., Chapter Q of
[64]). Two important concepts in this context are closure of a class under
morphic images and closure under subdirect intersections. If the class K

is closed under morphic images, then, for every algebraic system in K, the
absolute and relative concepts of congruence system coincide. On the other
hand, if K happens to be closed under subdirect intersections and contains a
trivial algebraic system, then the collection of all K-congruence systems on
any algebraic system forms a complete lattice. In this case, it makes sense
to consider, given a relation system X on an algebraic system A, the least
K-congruence system on A including X , also known as the K- congruence
system generated by X , and denoted by ΘK,A(X). In the main result of the
section, it is shown that this congruence system coincides with the equational
closure of X relative to the class K.

In Section 2.5, we introduce semantic and syntactic varieties of algebraic
systems. These play the role that varieties play in universal algebra (see,
e.g., [21, 30, 84]). All algebraic systems are understood to be over a fixed
signature specified by a base algebraic system F. To define the two types
of varieties, we look at equations, consisting of pairs of sentences, and at
natural equations, which are pairs of natural transformations. Given a class
K of algebraic systems, the semantic variety generated by K is the class of
all algebraic systems satisfying all equations valid in all members of K. The
syntactic variety generated by K is defined analogously with reference to
natural equations. It turns out that the semantic variety generated by K is
subsumed by the corresponding syntactic one. A technical definition, that
of a transformational algebraic system, is introduced as a way to establish a
sufficient condition for semantic and syntactic varieties to coincide.

In Section 2.6, we switch from purely algebraic to logical considerations.
We define systems of closure operators on algebraic systems, which give rise
to π-institutions [33] (see, also, [25, 41]). Those constitute the basic un-
derlying logical structures on which all subsequent studies will be founded.
Many well-known fundamental logical concepts are adapted to this frame-
work, among them, theorem systems, theory families and inconsistent, almost
inconsistent and trivial π-institutions (see, e.g., [64, 86] for the counterparts
in abstract algebraic logic). Concerning theory families, it is worth mention-
ing that in case T is a theory family of a given π-institution, the construction
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of
←Ð
T gives rise to a theory system, and not merely a sentence system, but this

is not the case for
Ð→
T . Therefore,

←Ð
T does constitute the largest theory system

included in T , but to construct the smallest theory system including T , one

has to apply the closure operator and obtain C(Ð→T ). Comparing closure sys-
tems over the same underlying algebraic system, the notions of extension and
weakening are introduced, as well as that of the closure system obtained as
the intersection of a family of closure systems. Given a closure system C and
one of its theory systems T , we also consider the extension CT of C that is
induced by adopting the given theory system as a system of axioms. Finally,
we look at logical morphisms between π-institutions. These are morphisms
that preserve the logical structure, i.e., map closures into closures in a for-
mal sense, or, what turns out to be equivalent, morphisms whose inverses
preserve theory families.

In Section 2.7, after having discussed the algebraic and logical prerequi-
sites, we turn into developing the first rudiments of their interaction. We
look at matrix families which serve both to define closure systems, and,
hence, also, π-institutions, but also as algebraically based models of given
π-institutions. They are pairs consisting of an underlying algebraic system
together with a sentence family over it and correspond to the ordinary logical
matrices of abstract algebraic logic [64, 86]. For a given π-institution I , its
matrix family models are termed I-matrix families and the corresponding
sentence families are called I-filter families. Some characterizations of these
families are provided along with the observation that the collection of all
I-filter families on a given algebraic system forms a complete lattice. A dis-
cussion follows on when and under which conditions morphisms between the
underlying algebraic systems preserve, under taking direct or inverse images,
I-filter families. In closing the Section, we look at quotients of matrix fami-
lies under the Leibniz congruence systems of their filter families. These are
referred to as Leibniz reductions (see, e.g., Section 4.3 of [86]). We say that a
matrix family is Leibniz reduced when the Leibniz congruence system of its
filter family is the identity. Leibniz reductions give rise to the fundamental
collection of Leibniz reduced I-matrix families and the accompanying collec-
tion of their algebraic system reducts. Two more related subcollections are
obtained if one restricts attention to I-filter systems and I-matrix systems,
i.e., those that consist of filter families that are invariant under the action of
signature morphisms.

In Section 2.8, continuing the study of filter families and matrix fam-
ilies, we introduce axiomatic extensions, or axiomatic strengthenings, and
the closely related concept of filter extension (see Section 0.8 of [64] and Sec-
tions 1.3 and 1.4 of [86]). We provide characterizations and study interactions
with morphisms, looking, in particular, into some preservation properties.

In Section 2.9, a generalization of matrix families and filter families is
introduced. Namely, we consider structures consisting of an underlying al-



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 71

gebraic system together with a collection of sentence families over it. These
are called generalized matrix families or gmatrix families, for short. They
play the role that generalized matrices play in the traditional treatment [52]
(see, also, Chapter 5 of [86]). As was the case with matrix families, gmatrix
families serve a dual purpose. They may be used to define closure systems,
but they also serve as models of π-institutions. In the latter case, if a gmatrix
family is a model of a given π-institution I , we say that it is an I-gmatrix
family. By analogy with I-matrix families, one may consider reductions of
gmatrix families. The Tarski congruence system of a gmatrix family is the
largest congruence system on its underlying algebraic system which is com-
patible with all filter families of the gmatrix family [52]. Equivalently, it
may be characterized as the intersection of all Leibniz congruence systems
of its constituent filter families. The process of taking the quotient of a
gmatrix family by its Tarski congruence system is called Tarski reduction.
We say that a gmatrix family is Tarski reduced if its Tarski congruence sys-
tem in the identity. The construction gives rise to the class of all Tarski
reduced I-gmatrix families and the class of the corresponding algebraic sys-
tem reducts. Both are of critical importance in the study of algebraization of
π-institutional logics. Very intimately related to Tarski congruence systems
is the notion of Suszko congruence systems [67] (see, also, Section 1.5 of [64]
and Section 5.3 of [86]). Here, one considers the filter family subcollection T T

of a filter family collection T by keeping only those filter families containing
a fixed filter family T ∈ T . The Suszko congruence system of T relative to
T is the Tarski congruence system of T T . Conversely, assuming that T has
a smallest filter family T , the Tarski congruence system of T coincides with
the Susko congruence system of T in T . As before, one may consider Suszko
reductions and Suszko reduced I-matrix families, where the reductions are
taken relative to the collection of all I-filter families. Even though, given
a π-institution I , this process results in the new class of Suszko reduced
I-matrix families, the class of corresponding algebraic system reducts turns
out to be identical with that obtained from the process of Tarski reduction.

In Section 2.10, we continue the study of classes of algebraic systems
associated with a given π-institution I . In Section 2.7, we introduced the
class of all algebraic system reducts of all Leibniz reduced I-matrix families.
This class is known as the class of I∗-algebraic systems. In Section 2.9, we
looked at the class of all algebraic system reducts of all Tarski reduced I-
gmatrix families. These are known as I-algebraic systems. The two classes
correspond, respectively, to the classes Alg∗S and AlgS in the case of a
sentential logic S [52]. On top of these two classes of algebraic systems, two
more classes considered in relation to a π-institution I are the semantic and
syntactic varieties generated by the underlying algebraic system of the Tarski
reduction of the I-gmatrix system consisting of the collection of all theory
families of I . The first is termed the semantic and the second the syntactic
variety of I . It turns out that, in general, the class of I∗-algebraic systems
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forms the smallest class, followed by the class of I-algebraic systems, followed
by the semantic variety of I , while the syntactic variety of I constitutes the
largest of these four classes. An interesting result is that any of these four
classes generates the same syntactic variety, namely, the syntactic variety of
I . The section concludes with the observation that the class of all I-algebraic
systems is closed under subdirect intersections and contains a trivial algebraic
system. Consequently, one is justified in considering congruence systems
generated by any relation system on any given algebraic system relative to
this class.

In Section 2.11, we switch from the study of congruence systems associ-
ated with a given π-institution and of their quotients to the study of equiv-
alence families and systems resulting by considering mutual membership or
non-membership in theory families. The reader is warned that the terminol-
ogy here deviates from the standard one for sentential logics (Section 2.4 of
[52] and Section 1.3 of [86]). This is done in an attempt to streamline the the-
ory of these equivalence families with the theory based on the Leibniz, Tarski
and Suszko congruence systems. The most basic equivalence family is the
Frege equivalence family of a given theory family, which identifies sentences if
they are both inside or both outside the given theory family. Sometimes, this
is expressed by saying that the sentences are equivalent modulo the theory
family. The Frege relation system is the largest equivalence system included
in the Frege equivalence family. There is a close connection between Leibniz
congruence systems and Frege relation families/systems. The Leibniz con-
gruence system of a given theory family is the largest congruence system con-
tained in the Frege equivalence family or system associated with the theory
family. In a way analogous to the passage from Leibniz congruence systems
of single theory families to the Tarski congruence systems of collections of
theory families, one transitions from Frege equivalence families to Carnap
equivalence families. These express equivalence of sentences modulo collec-
tions of theory families. The Carnap equivalence family turns out to be the
intersection of the Frege equivalence families of all theory families in the col-
lection. Here, again, the Carnap equivalence system is the largest equivalence
system included in the Carnap equivalence family. Further, extending the
relation between Leibniz congruence systems and Frege equivalence families,
the Tarski congruence system of a collection is the largest congruence system
included in either the Carnap equivalence family or the Carnap equivalence
system of the same collection. The same paradigm gives rise to Lindenbaum
equivalence families/systems, which formalize the equivalence of sentences
modulo a theory family, relative to a given collection of theory families. This
is identical to the intersection of all Frege equivalence families/systems of
those theory families in the collection including the given one. Similar rela-
tions as before hold in this case as well, with the role of Leibniz and Tarski
congruence systems played by Suszko congruence systems. A small table
at the end of the section summarizes the three congruence systems and the
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three corresponding pairs of equivalence families/systems that are consid-
ered in this context. Hopefully, the analogies outlined between congruence
systems and equivalence families/systems provide some justification for in-
troducing distinct names for the Carnap equivalences and the Lindenbaum
equivalences, which are all referred to as Frege equivalences in the literature.

In Section 2.12, we look at subsystems of algebraic systems and induced
π-subsinstitutions. Given an algebraic system, a universe is a sentence sub-
functor over the same category of signatures that is also closed under the
algebraic operations. In a natural way, a universe gives rise to an alge-
braic subsystem. With each subsystem, there is associated a natural injec-
tion morphism. Given a sentence family of an algebraic system, by closing
successively under the action of signature morphisms and under the action
of natural transformations, one obtains the universe of the algebraic sys-
tem generated by the given sentence family. If the given algebraic system
happens to be the underlying system of a π-institution, which is a case of
central interest, then, by restricting the action of the closure system of the
π-institution on sentences of the universe, we obtain a π-subinstitution. Its
theory families turn out to be exactly the restrictions of the theory families
of the original π-institution on the universe. The section concludes by estab-
lishing some connections between the Leibniz congruences of theory families
of the original π-institution and those of the induced theory families of the
subinstitution. These relations extend in a natural way to filter families of
the two institutions.

Up to Section 2.12, only cursory attention is paid to natural transforma-
tions. They are used in establishing syntactic varieties of algebraic systems
via natural equations, but they are not thoroughly studied as “syntactic”
objects of interest in their own right. This deficiency is rectified by devoting
Sections 2.13-2.15 to their study and to particular aspects of their properties
and behavior that are of interest for subsequent considerations.

In Section 2.13, we consider the role played by collections of natural
transformations. In general, in the context of collections of natural transfor-
mations, a number of arguments is fixed and they are considered as primary
or distinguished arguments. The remaining positions play an auxiliary role
and are perceived as parametric (see, e.g., Section 1.2 of [64] and Section
6.2 of [86]). In accordance with this paradigm, if E is a collection of natural
transformations, of which k positions are considered distinguished, then, for
any k-tuple of sentences φ⃗ over a signature Σ, EΣ[φ⃗] denotes the sentence
family consisting of all sentences of the form εΣ′(SEN(f)(φ⃗), χ⃗), for ε ∈ E,
f ∶ Σ → Σ′ a signature morphism and χ⃗ an arbitrary tuple of sentences over
Σ′. In this way a tuple, or a collection of tuples, of sentences gives rise to
a sentence family. Dually, given a sentence family T , one may consider the
family of all k-tuples φ⃗, such that εΣ′(SEN(f)(φ⃗), χ⃗) ∈ TΣ′ , for all ε, f and
χ⃗. This gives rise to a k-ary relation system, depending on both E and T ,
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denoted
←Ð
E (T ). ←ÐE , viewed as an operator from sentence families to relation

systems, is monotone and commutes with inverse surjective morphisms. For
the purposes of relating logical with algebraic systems, critical is the role

played by
←Ð
E as a potential means of defining Leibniz congruence systems

of theory families. Along those lines, it is shown that, if k = 2 and
←Ð
E (T )

defines a reflexive relation system, then this includes the Leibniz congruence

system of T . Consequently, if
←Ð
E (T ) is itself a congruence system compatible

with T , then it necessarily coincides with the Leibniz congruence system of
T (see, e.g., Theorem 1.6 of [35]).

In Section 2.14, taking a cue from the definition of the operator
←Ð
E in

Section 2.13, we investigate membership relations of k-tuples of sentences in
theory families of a π-institution induced by a fixed set E of natural transfor-
mations, taken to possess k distinguished arguments. Four modes are consid-
ered, namely, E-local, E-global, left E-local and left E-global membership.
It is shown that E-global and left E-global memberships are equivalent, that
they imply left E-local membership, which, in turn, implies E-local member-
ship. Both implications are shown to be strict in general. If a membership
property holds for all k-tuples of sentences (for the same E), then that prop-
erty is attributed to the set E itself. It turns out that, in that case, all
three resulting modes of membership of E in a theory family T are actually
equivalent properties.

Section 2.15 is the last of the three sections that are devoted exclusively
to the analysis of syntactic definability properties via sets of natural trans-
formations. In this section, we consider two possible ways which may be
used to obtain, starting from a parametric collection S of natural transfor-
mations, a related one that is parameter-free. The first is effectuated by
replacing all parametric arguments by k-ary terms, where k is the number of
distinguished arguments of S. This process gives rise to a new collection Ṡ of
natural transformations with k arguments altogether and, therefore, without
parameters. The second process is more abstract. It is defined via the use of,
so called, anti-monotone global properties of natural transformations. These
are properties that satisfy a technical anti-monotonicity condition. Given
such a property P , by slightly abusing notation, we also denote by P the
collection of all natural transformations (possibly with parameters) satisfy-
ing P . Then P̂ denotes the subcollection of P of parameter-free natural
transformations satisfying P . In the main result of Section 2.15, it is shown
that, given such a property P , both constructors Ṗ and P̂ result in identical
de-parameterizations of the collection P .

The last three sections of Chapter 2 deal with more specialized topics.
Section 2.16 addresses the special case of π-institutions whose closure systems
are finitary. Most applied logical systems encountered in the literature fall
under this case. Section 2.17 deals with equational π-institutions. These
are π-institutions whose sets of sentences are pairs of sentences drawn from
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a base algebraic system and whose closure operators reflect the equational
consequence determined by a class of algebraic systems. Finally, Section
2.18 adapts some of the rudiments pertaining to varieties, quasivarieties and
generalized quasivarieties of universal algebra and their generation to the
context of algebraic systems.

In Section 2.16, we study finitarity (see, e.g., Section 0.1 of [64] and Sec-
tion 1.4 of [86]). This is the property of a closure system (or π-institution)
that holds when every sentence which is a consequence of a set of sentences is
also a consequence of some finite subset of that set. Some characterizations
of finitarity are provided based on the properties of local continuity and con-
tinuity of a π-institution which, in turn, are defined using local directedness
and directedness of collections of theory families. The last part of the section
provides a step-wise, inductive construction of the filter family of a finitary
π-institution on an arbitrary algebraic system generated by a give sentence
family of the algebraic system.

In Section 2.17, we introduce equational consequences based on fixed
classes of algebraic systems and show that all their theory families happen
to be theory systems and that, moreover, they coincide with the congruence
systems relative to the class of algebraic systems inducing the equational
consequence. Then, as in Section 2.16, we present a step-wise construction
of the equational consequence generated by a given family of equations, con-
sidered as axioms. We show that, if this defining family of equations is taken
to be the family of equations that holds in a class K of algebraic systems,
then the equational consequence they generate, according to this step-wise
process, coincides with the equational consequence induced by the class K.

The final section, Section 2.18, translates some of the classical results
of universal algebra pertaining to varieties, quasivarieties and generalized
quasivarieties [21, 30, 84] (see, also, Chapter Q of [64]) to the context of
classes of algebraic systems. We revisit equations and, in addition, consider
quasiequations and generalized quasiequations, referred to as guasiequations.
Satisfaction of an equation, quasiequation or guasiequation by a given alge-
braic system is defined. These relations give rise to Galois connections (see,
e.g., Chapter 11 of [36]). The closed sets on the algebraic side form, respec-
tively, equational, quasiequational and guasiequational classes of algebraic
systems. Equivalently, these are the classes of algebraic systems defined by
equations, quasiequations and guasiequations. When they are thought of as
classes generated by given collections of algebraic systems, they are termed
varieties, quasivarieties and guasivarieties, respectively. The second part of
Section 2.18 is dedicated to proving Birkhoff [4] and Mal’cev [18] style char-
acterization theorems of these classes using closures under class operators
(see, also, [21, 30, 84]). The four operators considered are taking certifica-
tions, directed certifications, subdirect intersections and morphic images. It
is shown that a given class of algebraic systems is a variety if it is closed under
subdirect intersections and morphic images, it is a quasivariety if it is closed
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under directed certifications and subdirect intersections and it is a guasivari-
ety if it is closed under certifications and subdirect intersections. In the last
part of the section, we translate the conditions of closure under subdirect
intersections and morphic images into properties of the subcollection of the
collection of all congruence systems on the base algebraic system relative to
the class under consideration. On the other hand, certifications and directed
certifications are abstraction conditions (akin to closure under isomorphisms)
and do not seem to have such intrinsic equivalent formalizations.

Chapter 2, in a nutshell, includes the majority of the very basic concepts
and results that constitute the prerequisites for following the developments
recounted in subsequent chapters of the monograph.

2.2 Algebraic Systems

A sentence functor SEN ∶ Sign → Set is a Set-valued functor, with the
property that, for every Σ ∈ ∣Sign∣, SEN(Σ) ≠ ∅. We say that a sentence
functor SEN ∶ Sign → Set is trivial if ∣SEN(Σ)∣ = 1, for all Σ ∈ ∣Sign∣.

A sentence family of SEN is a collection T = {TΣ}Σ∈∣Sign∣, such that
TΣ ⊆ SEN(Σ), for all Σ ∈ ∣Sign∣. The collection of all sentence families
of SEN is denoted by SenFam(SEN). Sentence families can be ordered by
signature-wise inclusion. More precisely, given T,T ′ ∈ SenFam(SEN), we
define

T ≤ T ′ iff TΣ ⊆ T ′Σ, for all Σ ∈ ∣Sign∣.
Under this ordering sentence families form a complete lattice which is de-

noted by SenFam(SEN) = ⟨SenFam(SEN),≤⟩.
A sentence family T of SEN is called a sentence system if it is in-

variant under signature morphisms, i.e., if, for all Σ,Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′), we have

SEN(f)(TΣ) ⊆ TΣ′ .
The collection of all sentence systems of SEN is denoted by SenSys(SEN).
It forms a complete sublattice of the lattice of sentence families under ≤,
denoted by SenSys(SEN) = ⟨SenSys(SEN),≤⟩.

Let SEN ∶ Sign → Set be a sentence functor and T ∈ SenFam(SEN). We
define, based on T , two important sentence families of SEN:

•
←Ð
T = {←ÐT Σ}Σ∈∣Sign∣ is defined by setting, for all Σ ∈ ∣Sign∣,
←Ð
T Σ = {φ ∈ SEN(Σ) ∶ for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ TΣ′}.
Sometimes, we abbreviate this using the notation

←Ð
T Σ = {φ ∈ SEN(Σ) ∶ (∀f)(SEN(f)(φ) ∈ TΣ′)}
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•
Ð→
T = {Ð→T Σ}Σ∈∣Sign∣ is defined by setting, for all Σ ∈ ∣Sign∣,

Ð→
T Σ = {SEN(f)(φ) ∶ Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ′,Σ), φ ∈ TΣ′}

First, it is clear that both operators on sentence families are monotone.

Lemma 1 Let SEN ∶ Sign → Set be a sentence functor and consider T,T ′ ∈
SenFam(SEN). If T ≤ T ′, then

←Ð
T ≤
←Ð
T ′ and

Ð→
T ≤
Ð→
T ′.

Proof: Both implications are quite obvious. For the second, e.g., consider

Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈
Ð→
T Σ. Thus, there exists Σ0 ∈ ∣Sign∣,

φ0 ∈ TΣ0
and f0 ∈ Sign(Σ0,Σ) such that φ = SEN(f0)(φ0).

Σ0

f0 ✲ Σ

T ′Σ0
⊇ TΣ0

∋ φ0
✲ φ

Since TΣ0
⊆ T ′Σ0

, φ0 ∈ T ′Σ0
and we conclude that φ ∈

Ð→
T ′Σ. ∎

The importance of
←Ð
T and

Ð→
T stems, in part, from their relationship with

T , which is described in the following proposition, but also from the critical
role they play in the theory presented here.

Proposition 2 Let Sign be a category, SEN ∶ Sign → Set a sentence func-
tor and suppose that T ∈ SenFam(SEN).

(a)
←Ð
T is the largest sentence system of SEN included in T ;

(b)
Ð→
T is the smallest sentence system of SEN that contains T .

Proof:

(a) It is obvious that
←Ð
T ≤ T . We must show that

←Ð
T is a sentence system

and that it is the largest one included in T .

To show that it is a sentence system, consider Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′) and φ ∈

←Ð
T Σ. We must show that SEN(f)(φ) ∈ ←ÐT Σ′ . To

this end, let Σ′′ ∈ ∣Sign∣ and g ∈ Sign(Σ′,Σ′′).
Σ

f ✲ Σ′
g ✲ Σ′′

Then we have

SEN(g)(SEN(f)(φ)) = SEN(gf)(φ) φ∈←ÐT Σ

∈ TΣ′′ .
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Since this holds for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′), we conclude

that SEN(f)(φ) ∈←ÐT Σ′ .

To show that
←Ð
T is the largest sentence system in T , consider T ′ ∈

SenSys(SEN), such that T ′ ≤ T and let Σ ∈ ∣Sign∣ and φ ∈ T ′Σ. Since
T ′ is a sentence system, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we
get SEN(f)(φ) ∈ T ′Σ′ . Now since T ′ ≤ T , we get that, for all Σ′ ∈ ∣Sign∣
and all f ∈ Sign(Σ,Σ′), SEN(f)(φ) ∈ TΣ′ . But this shows that φ ∈

←Ð
T Σ.

Thus, T ′ ≤
←Ð
T and

←Ð
T is the largest sentence system included in T .

(b) It is obvious that T ≤
Ð→
T . We must show that

Ð→
T is a sentence system

and that it is the smallest one containing T .

To show that
Ð→
T is a sentence system, consider Σ ∈ ∣Sign∣ and φ ∈

SEN(Σ), such that φ ∈
Ð→
T Σ. Let Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′).

We must show that SEN(f)(φ) ∈ Ð→T Σ′ . Since φ ∈
Ð→
T Σ, there exists

Σ0 ∈ ∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that SEN(f0)(φ0) = φ.

Σ0

f0 ✲ Σ
f ✲ Σ′

Thus, we get

SEN(f)(φ) = SEN(f)(SEN(f0)(φ0)) = SEN(ff0)(φ0) ∈Ð→T Σ′ .

Finally, we must show that
Ð→
T is the smallest sentence system that

contains T . To this end, suppose that T ′ ∈ SenSys(SEN), such that

T ≤ T ′. Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈
Ð→
T Σ. Then,

there exist Σ0 ∈ ∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that φ =

SEN(f0)(φ0). Now, since T ≤ T ′, we get φ0 ∈ T ′Σ0
. Moreover, since

T ′ is a sentence system, we get SEN(f0)(φ0) ∈ T ′Σ. But this means

φ = SEN(f0)(φ0) ∈ T ′Σ. This proves that
Ð→
T ≤ T ′ and, hence,

Ð→
T is the

least sentence system that contains T .
∎

It is also of interest to observe that the back arrow operator commutes
with intersections:

Lemma 3 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and consider T ⊆ SenFam(SEN). Then

←ÐÐÐ
⋂
T ∈T

T = ⋂
T ∈T

←Ð
T .
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Proof: First, by Lemma 1, we have, for all T ∈ T ,
←ÐÐÐÐ
⋂T ∈T T ≤

←Ð
T . Therefore,

we conclude that
←ÐÐÐÐ
⋂T ∈T T ≤ ⋂T ∈T

←Ð
T .

On the other hand, we have, by Proposition 2,
←Ð
T ≤ T , for all T ∈ T .

Therefore ⋂T ∈T
←Ð
T ≤ ⋂T ∈T T . Now, since ⋂T ∈T

←Ð
T is a sentence system (Propo-

sition 2) included in ⋂T ∈T T , it must lie below the largest such, which, by

Proposition 2, is
←ÐÐÐÐ
⋂T ∈T T . Thus, we have ⋂T ∈T

←Ð
T ≤
←ÐÐÐÐ
⋂T ∈T T . ∎

On the other hand, the back arrow does not commute, in general, with
unions. We first prove a lemma showing the there is an inclusion relation
governing the interaction between the back arrow and unions and, then,
provide an example to show that this inclusion may be proper.

Lemma 4 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and consider T ⊆ SenFam(SEN). Then

⋃
T ∈T

←Ð
T ≤
←ÐÐÐ
⋃
T ∈T

T .

Proof: Since, for all T ∈ T , T ≤ ⋃T ∈T T , we get, by Lemma 1,
←Ð
T ≤
←ÐÐÐÐ
⋃T ∈T T .

Since this holds for all T ∈ T , we conclude that ⋃T ∈T
←Ð
T ≤
←ÐÐÐÐ
⋃T ∈T T . ∎

That the inclusion of Lemma 4 is, in general, a proper inclusion is show-
cased by the following example.

Example 5 Let Sign be the category with a single object Σ and a single
(non-identity) arrow f ∶ Σ → Σ, such that f ○ f = iΣ.

Let SEN ∶ Sign→ Set be the functor defined by setting SEN(Σ) = {0,1,2}
and SEN(f)(0) = 1, SEN(f)(1) = 0 and SEN(f)(2) = 2. Consider the col-

lection {T,T ′} ⊆ SenFam(SEN), with TΣ = {0,2} and T ′Σ = {1,2}. Then we

have
←Ð
T Σ = {2} = ←ÐT Σ′ and, therefore

←Ð
T Σ ∪

←Ð
T ′Σ = {2} ∪ {2} = {2}.
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On the other hand,

←ÐÐÐ
T ∪ T ′Σ =

←ÐÐÐÐÐÐ{{0,1,2}}Σ = {0,1,2}.
Thus, we get ⋃T ∈T

←Ð
T ≨
←ÐÐÐÐ
⋃T ∈T T .

Let Sign, Sign′ be categories and SEN ∶ Sign→ Set and SEN′ ∶ Sign′ →
Set be two sentence functors. A morphism (of sentence functors) ⟨F,α⟩ ∶
SEN → SEN′ consists of:

• A functor F ∶ Sign → Sign′;

• A natural transformation α ∶ SEN → SEN′ ○ F .

We will make heavy use of the following particular types of morphisms:

• A morphism ⟨F,α⟩ ∶ SEN → SEN′ is special if F ∶ Sign → Sign′ is
surjective on objects and full.

• A morphism ⟨F,α⟩ ∶ SEN → SEN′ is surjective if it is special and
αΣ ∶ SEN(Σ)→ SEN′(F (Σ)) is surjective, for all Σ ∈ ∣Sign∣.

Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶ Sign′ → Set
be two sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ be a morphism. Given
a sentence family T ∈ SenFam(SEN′), define the sentence family α−1(T ) ={α−1(T )Σ}Σ∈∣Sign∣ ∈ SenFam(SEN) by setting, for all Σ ∈ ∣Sign∣,

α−1(T )Σ = α−1Σ (TF (Σ)).
In the next lemma, we prove some useful properties concerning this op-

erator.

Lemma 6 Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶
Sign′ → Set be two sentence functors, ⟨F,α⟩ ∶ SEN → SEN′ be a morphism
and T ∈ SenFam(SEN′).

(a) If T ∈ SenSys(SEN′), then α−1(T ) ∈ SenSys(SEN), with equivalence
holding if ⟨F,α⟩ ∶ SEN→ SEN′ is surjective;

(b) α−1(←ÐT ) ≤←ÐÐÐÐα−1(T ), with equality holding if ⟨F,α⟩ is special;

(c)
ÐÐÐÐ→
α−1(T ) ≤ α−1(Ð→T ), with equality holding if ⟨F,α⟩ is surjective.

Proof:
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(a) Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ α−1Σ (TF (Σ)). Then, for all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we have

αΣ′(SEN(f)(φ)) = SEN′(F (f))(αΣ(φ))
(α natural transformation)

∈ SEN′(F (f))(TF (Σ)) (φ ∈ α−1Σ (TF (Σ)))
⊆ TF (Σ′) (T ∈ SenSys(SEN′)).

This shows that SEN(f)(φ) ∈ α−1Σ′ (TF (Σ′)). We now conclude that
α−1(T ) ∈ SenSys(SEN).
Suppose, next, that ⟨F,α⟩ ∶ SEN → SEN′ is surjective and α−1(T ) ∈
SenSys(SEN). Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that αΣ(φ) ∈ TF (Σ).
Note that this implies that φ ∈ α−1(TF (Σ)). So, by hypothesis, for all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ α−1Σ′ (TF (Σ′)).
Therefore,

SEN′(F (f))(αΣ(φ)) = αΣ′(SEN(f)(φ))
∈ αΣ′(α−1Σ′ (TF (Σ′)))
⊆ TF (Σ′).

Since ⟨F,α⟩ is surjective, we conclude that, for all Σ,Σ′ ∈ ∣Sign′∣ and
all f ∈ Sign′(Σ,Σ′),

SEN′(f)(TΣ) ⊆ TΣ′ .
Therefore, T ∈ SenSys(SEN′).

(b) Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ α−1Σ (←ÐT F (Σ)). Then we

get that αΣ(φ) ∈ ←ÐT F (Σ). Thus, by definition of
←Ð
T , for all Σ′ ∈ ∣Sign′∣

and all f ∈ Sign′(F (Σ),Σ′),
SEN′(f)(αΣ(φ)) ∈ TΣ′ .

This implies, in particular, that, for all Σ′′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′′),
SEN′(F (f))(αΣ(φ)) ∈ TF (Σ′′). So we get αΣ′′(SEN(f)(φ)) ∈ TF (Σ′′),
i.e., SEN(f)(φ) ∈ α−1Σ′′(TF (Σ′′)). Since Σ′′ and f were arbitrary, we

finally obtain φ ∈
←ÐÐÐÐÐÐ
α−1Σ (TF (Σ)).

It is straightforward to see that, if ⟨F,α⟩ is special, then the above chain
of implications is reversible and, by following it, we get the reverse
inclusion.
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(c) Let Σ ∈ ∣Sign∣, Then we have

αΣ(ÐÐÐÐÐÐ→α−1Σ (TF (Σ)))
= αΣ({SEN(f0)(φ0) ∶ f0 ∈ Sign(Σ0,Σ), φ0 ∈ α−1Σ0

(TF (Σ0))})
= {αΣ(SEN(f0)(φ0)) ∶ f0 ∈ Sign(Σ0,Σ), φ0 ∈ α−1Σ0

(TF (Σ0))}
= {SEN′(F (f0))(αΣ0

(φ0)) ∶ f0 ∈ Sign(Σ0,Σ), φ0 ∈ α−1Σ0
(TF (Σ0))}

⊆ {SEN′(f ′0)(φ′0) ∶ f ′0 ∈ Sign′(Σ′0, F (Σ)), φ′0 ∈ TΣ′0}
=
Ð→
T F (Σ).

Again, it is easy to see that the only inclusion becomes an equality in
case ⟨F,α⟩ is a surjective morphism.

∎

Let Sign be a category and SEN ∶ Sign → Set be a sentence functor. A
relation family on SEN is a collection R = {RΣ}Σ∈∣Sign∣, such that RΣ ⊆
SEN(Σ)2, for all Σ ∈ ∣Sign∣. A relation family is a relation system if
it is invariant under Sign-morphisms, i.e., if for all Σ,Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′),

SEN(f)(RΣ) ⊆ RΣ′ .

The collection of all relation families on SEN is denoted by RelFam(SEN)
and, similarly, the collection of all relation systems by RelSys(SEN). A
relation family/system on SEN is an equivalence family/system on SEN
if, for all Σ ∈ ∣Sign∣, RΣ is an equivalence relation on SEN(Σ). As with
relation families/systems, we denote the collection of all equivalence families
on SEN by EqvFam(SEN) and the collection of all equivalence systems on
SEN by EqvSys(SEN).

Given a sentence family T ∈ SenFam(SEN), we say that the equivalence
family R on SEN is compatible with T , if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈
SEN(Σ), ⟨φ,ψ⟩ ∈ RΣ and φ ∈ TΣ imply ψ ∈ TΣ.

Lemma 7 Let Sign be a category, SEN ∶ Sign → Set a sentence functor,
T ∈ SenFam(SEN) and θ a relation system on SEN. If θ is compatible with

T , then it is also compatible with
←Ð
T .

Proof: Suppose that θ is compatible with T . Let Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ and φ ∈

←Ð
T Σ. Let Σ′ ∈ ∣Sign∣ and f ∈

Sign(Σ,Σ′). Since θ is a relation system, we get ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈
θΣ′ . Since φ ∈

←Ð
T Σ, SEN(f)(φ) ∈ TΣ′ . Thus, by compatibility, we get

SEN(f)(ψ) ∈ TΣ′ . Since Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′) were arbitrary,

we conclude that ψ ∈
←Ð
T Σ, showing that θ is also compatible with

←Ð
T . ∎

Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶ Sign′ → Set
be sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ be a morphism. Define the
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kernel system of ⟨F,α⟩, denoted Ker(⟨F,α⟩) = {KerΣ(⟨F,α⟩)}Σ∈∣Sign∣, by
letting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩) iff αΣ(φ) = αΣ(ψ).
The kernel system Ker(⟨F,α⟩) is sometimes denoted more compactly by

θ⟨F,α⟩ = {θ⟨F,α⟩Σ }Σ∈∣Sign∣.
Lemma 8 Let Sign, Sign′ be categories, SEN ∶ Sign→ Set, SEN′ ∶ Sign′ →
Set be sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ a morphism. Then
Ker(⟨F,α⟩) is an equivalence system on SEN.

Proof: It is obvious from the definition that Ker(⟨F,α⟩) is an equiva-
lence family of SEN. The system property follows from the fact that α
is a natural transformation. Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩). Then, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

αΣ′(SEN(f)(φ)) = SEN′(F (f))(αΣ(φ)) (naturality of α)
= SEN′(F (f))(αΣ(ψ)) (⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩))
= αΣ′(SEN(f)(ψ)) (naturality of α).

Therefore, we get that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ KerΣ′(⟨F,α⟩), showing
that Ker(⟨F,α⟩) is an equivalence system. ∎

Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶ Sign′ →
Set be sentence functors and ⟨F,α⟩ ∶ SEN → SEN′ be a morphism, with
F an isomorphism. Given a sentence family T ∈ SenFam(SEN), define the
sentence family α(T ) = {α(T )F (Σ)}Σ∈∣Sign∣ ∈ SenFam(SEN′) by setting, for all
Σ ∈ ∣Sign∣,

α(T )F (Σ) = αΣ(TΣ).
In the next lemma, we prove some useful properties concerning this op-

erator.

Lemma 9 Let Sign, Sign′ be categories, SEN ∶ Sign → Set and SEN′ ∶
Sign′ → Set be sentence functors, ⟨F,α⟩ ∶ SEN → SEN′ a surjective mor-
phism, with F an isomorphism, and T ∈ SenFam(SEN), such that the kernel
Ker(⟨F,α⟩) of ⟨F,α⟩ is compatible with T .

(a) α(T ) ∈ SenSys(SEN′) iff T ∈ SenSys(SEN);
(b) α(←ÐT ) =←ÐÐÐα(T );
(c)
ÐÐÐ→
α(T ) = α(Ð→T ).

Proof:
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(a) Exploiting the surjectivity of ⟨F,α⟩, α(T ) ∈ SenSys(SEN′) holds if and
only if, for all Σ ∈ ∣Sign∣, all φ ∈ SEN(Σ), all Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′),

SEN′(F (f))(αΣ(φ)) ∈ αΣ′(TΣ′).
By the naturality of α, the latter is equivalent to

αΣ′(SEN(f)(φ)) ∈ αΣ′(TΣ′).
Finally, by compatibility of Ker(⟨F,α⟩) with T , this is equivalent to
SEN(f)(φ) ∈ TΣ′ . But this holds for all Σ ∈ ∣Sign∣, all φ ∈ SEN(Σ), all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′) if and only if T ∈ SenSys(SEN).

(b) Again we exploit the surjectivity of ⟨F,α⟩. We have, for all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ), αΣ(φ) ∈ ←ÐÐÐÐαΣ(TΣ) iff, for all Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′), SEN′(F (f))(αΣ(φ)) ∈ αΣ′(TΣ′) iff, by the naturality
of α, αΣ′(SEN(f)(φ)) ∈ αΣ′(TΣ′) iff, by the compatibility of Ker(⟨F,α⟩)
with T , SEN(f)(φ) ∈ TΣ′ iff, by the definition of

←Ð
T , φ ∈

←Ð
T Σ iff, by the

compatibility of Ker(⟨F,α⟩) with
←Ð
T , which follows from Lemmas 7 and

8, αΣ(φ) ∈ αΣ(←ÐT Σ). Thus, we conclude that α(←ÐT ) = ←ÐÐÐα(T ).
(c) Suppose, first, that αΣ(φ) ∈ÐÐÐÐ→αΣ(TΣ). Then, there exist, by surjectivity,

Σ0 ∈ ∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that

αΣ(φ) = SEN′(F (f0))(αΣ0
(φ0))

= αΣ(SEN(f0)(φ0))
∈ αΣ(Ð→T Σ).

Suppose, conversely, that αΣ(φ) ∈ αΣ(Ð→T Σ). Then, there exist Σ0 ∈∣Sign∣, f0 ∈ Sign(Σ0,Σ) and φ0 ∈ TΣ0
, such that

αΣ(φ) = αΣ(SEN(f0)(φ0))
= SEN′(F (f0))(αΣ0

(φ0))
∈
ÐÐÐÐ→
αΣ(TΣ).

∎

By analogy to the case of sentence families, we may also define the inverse
of a relation family under a morphism of sentence functors. Let Sign, Sign′

be categories, SEN ∶ Sign→ Set and SEN′ ∶ Sign′ → Set be sentence functors
and ⟨F,α⟩ ∶ SEN → SEN′ a morphism. Let, also, R = {RΣ}Σ∈∣Sign′∣ be a rela-
tion family on SEN′. Define the relation family α−1(R) = {α−1(R)Σ}Σ∈∣Sign∣
on SEN by setting, for all Σ ∈ ∣Sign∣,

α−1(R)Σ = α−1Σ (RF (Σ)).
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Proposition 10 Let Sign, Sign′ be categories, SEN ∶ Sign → Set and
SEN′ ∶ Sign′ → Set be sentence functors, ⟨F,α⟩ ∶ SEN → SEN′ a morphism
and R a relation family on SEN′.

(a) If R is a relation system, then α−1(R) is also a relation system;

(b) If R is an equivalence family, then α−1 is also an equivalence family.

Proof:

(a) Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ α−1Σ (RF (Σ)). Then,
we have ⟨αΣ(φ), αΣ(ψ)⟩ ∈ RF (Σ). Since R is a relation system, for all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we get

⟨SEN′(F (f))(αΣ(φ)),SEN′(F (f))(αΣ(ψ))⟩ ∈ RF (Σ′).

Thus, by the naturality of α,

⟨αΣ′(SEN(f)(φ)), αΣ′(SEN(f)(ψ))⟩ ∈ RF (Σ′).

Now we get ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ α−1Σ′ (RF (Σ′)). This proves that
α−1(R) is a relation system on SEN.

(b) Let Σ ∈ ∣Sign∣ and φ,χ,ψ ∈ SEN(Σ) be arbitrary. Then we have:

Reflexivity By the reflexivity of R, ⟨αΣ(φ), αΣ(φ)⟩ ∈ RF (Σ). Therefore, ⟨φ,φ⟩ ∈
α−1Σ (RF (Σ)).

Symmetry If ⟨φ,ψ⟩ ∈ α−1Σ (RF (Σ)), then ⟨αΣ(φ), αΣ(ψ)⟩ ∈ RF (Σ), whence, by
the symmetry of R, ⟨αΣ(ψ), αΣ(φ)⟩ ∈ RF (Σ), showing that ⟨ψ,φ⟩ ∈
α−1Σ (RF (Σ)).

Transitivity If ⟨φ,χ⟩, ⟨χ,ψ⟩ ∈ α−1Σ (RF (Σ)), then, we get

⟨αΣ(φ), αΣ(χ)⟩, ⟨αΣ(χ), αΣ(ψ)⟩ ∈ RF (Σ),

whence, by the transitivity of R, we get ⟨αΣ(φ), αΣ(ψ)⟩ ∈ RF (Σ),
showing that ⟨φ,ψ⟩ ∈ α−1Σ (RF (Σ)). ∎

Let Sign be a category and SEN ∶ Sign → Set a sentence functor. The
clone of all natural transformations on SEN is the category Cln(SEN)
with collection of objects {SENα ∶ α an ordinal} and collection of morphisms
τ ∶ SENα → SENβ β-sequences of natural transformations τ i ∶ SENα → SEN,
i < β. Composition of ⟨τ i ∶ i < β⟩ ∶ SENα → SENβ with ⟨σj ∶ j < γ⟩ ∶ SENβ →
SENγ

SENα ⟨τ i ∶ i < β⟩ ✲ SENβ ⟨σj ∶ j < γ⟩ ✲ SENγ

is defined by

⟨σj ∶ j < γ⟩ ○ ⟨τ i ∶ i < β⟩ = ⟨σj(⟨τ i ∶ i < β) ∶ j < γ⟩.
A clone (or a category) of natural transformations on SEN is a

subcategory N of the category Cln(SEN), such that:
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• Its objects are those in {SENk ∶ k < ω};
• Its morphisms include all projection natural transformations

pk,i ∶ SENk → SEN, i < k, k < ω,

with p
k,i
Σ ∶ SEN(Σ)k → SEN(Σ) given by

p
k,i
Σ (φ⃗) = φi, for all φ⃗ ∈ SEN(Σ)k,

and are such that, for every family {τ i ∶ SENk → SEN ∶ i < ℓ} of natural
transformations in N , ⟨τ i ∶ i < ℓ⟩ ∶ SENk → SENℓ is also in N .

This definition has two important consequences that we now make ex-
plicit. Let Sign be a category, SEN ∶ Sign → Set a sentence functor and
k ∈ ω. Consider a function

π ∶ {0,1, . . . , k − 1}→ {0,1, . . . , k − 1}.
Given Σ ∈ ∣Sign∣ and φ⃗ = ⟨φ0, φ1, . . . , φk−1⟩ ∈ SEN(Σ)k, we define

φ⃗π = ⟨φπ(0), φπ(1), . . . , φπ(k−1)⟩.
Now, consider, in addition, a clone N of natural transformations on SEN and
σ ∶ SENk → SEN in N . Define the natural transformation

σπ ∶ SENk → SEN

by setting, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ),
σπΣ(φ⃗) = σΣ(φ⃗π).

That this is a natural transformation is easy to see: For all Σ,Σ′ ∈ ∣Sign∣, all
f ∈ Sign(Σ,Σ′) and all φ⃗ ∈ SEN(Σ), we have

SEN(Σ)k σπΣ ✲ SEN(Σ)

SEN(Σ′)k
SEN(f)k

❄

σπΣ′
✲ SEN(Σ′)

SEN(f)
❄

SEN(f)(σπΣ(φ⃗)) = SEN(f)(σΣ(φ⃗π))
= σΣ′(SEN(f)k(φ⃗π))
= σΣ′(SEN(f)k(φ⃗)π)
= σπΣ′(SEN(f)k(φ⃗)).
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Proposition 11 Let Sign be a category, SEN ∶ Sign → Set a sentence func-
tor and N a clone of natural transformations on SEN. If σ ∶ SENk → SEN is
in N , then, for all functions π ∶ {0, . . . , k − 1} → {0, . . . , k − 1}, σπ ∶ SENk →
SEN is also in N .

Proof: The key is to observe that

σπ = σ ○ ⟨pk,π(0), . . . , pk,π(k−1)⟩.
Since all projections are in N and N is closed under formation of tuples, we
get that ⟨pk,π(0), . . . , pk,π(k−1)⟩ ∶ SENk → SENk is in N . Therefore, since N is
a category and, by hypothesis, σ is in N , we get that σπ is also in N . ∎

The following is a very useful consequence that allows simplifying quan-
tifications.

Corollary 12 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and N a clone of natural transformations on SEN. The statement

For all σ ∶ SENk → SEN in N , all i < k and all Σ ∈ ∣Sign∣, φ, χ⃗ ∈ SEN(Σ),
Property(σΣ(χ0, . . . , χi−1, φ,χi+1, . . . , χk−1))

is equivalent to the simpler statement

For all σ ∶ SENk → SEN in N and all Σ ∈ ∣Sign∣, φ, χ⃗ ∈ SEN(Σ),
Property(σΣ(φ, χ⃗)).

Proof: The left-to-right implication is trivial. The right-to-left implication
follows from Proposition 11, since σπi ∶ SENk → SEN, with πi being the
permutation

( 0 1 ⋯ i − 1 i i + 1 ⋯ k − 1
1 2 ⋯ i 0 i + 1 ⋯ k − 1

) ,
is also in N , for every i < k. ∎

An algebraic system is a triple A = ⟨Sign,SEN,N⟩, where:

• Sign is an arbitrary category;

• SEN ∶ Sign → Set is a sentence functor;

• N is a clone on SEN.

An algebraic system A = ⟨Sign,SEN,N⟩ is said to be trivial if its underlying
sentence functor SEN ∶ Sign → Set is trivial, i.e., if all its sets of sentences
are singletons.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. An N ♭-algebraic
system A = ⟨Sign,SEN,N⟩ is an algebraic system, such that there exists
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a surjective functor Ξ ∶ N ♭ → N that preserves all projection natural trans-
formations, i.e., such that, for all k < ω and all i < k, if pk,i

♭ ∶ (SEN♭)k →
SEN♭ denotes the i-th projection natural transformation on (SEN♭)k, then
Ξ(pk,i♭) ∶ SENk → SEN is the i-th projection pk,i on SENk.

This condition implies that Ξ also preserves the arities of all natural
transformations involved. Given σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, the image
Ξ(σ♭) ∶ SENk → SEN in N will be denoted by σ, keeping the same low-
ercase Greek letter, but adjusting superscripts, subscripts, primes, etc., as
demanded by context. Occasionally, to simplify notation, we might drop su-
perscripts, subscripts, etc., overloading the notation of the lowercase Greek
letter, allowing the context to make the interpretation of each occurrence
clear (and hoping that, because of this, confusion can be avoided).

In the context where N ♭-algebraic systems are under consideration, the
algebraic system F will be referred to as the base algebraic system, since
the clones on all other systems under consideration are images of the clone
of F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems. A morphism (of
N ♭-algebraic systems) ⟨F,α⟩ ∶ A → A′ is a morphism of sentence functors⟨F,α⟩ ∶ SEN → SEN′, such that, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all
Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ) (meaning φ⃗ ∈ SEN(Σ)k),

SEN(Σ)k σΣ ✲ SEN(Σ)

SEN′(F (Σ))k
αkΣ

❄

σ′
F (Σ)

✲ SEN′(F (Σ))
αΣ

❄

αΣ(σΣ(φ⃗)) = σ′F (Σ)(αΣ(φ⃗)).
We call this the morphism property.

Concerning algebraic systems, we will have occasion to make use of the
following useful construction and properties.

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and⟨F,α⟩ ∶ A → A′ an algebraic system morphism, with F ∶ Sign → Sign′

an isomorphism. We define the algebraic system α(A) = ⟨Sign′,SEN′α,N ′α⟩
as follows:

• For all Σ ∈ ∣Sign∣,
SEN′α(F (Σ)) = αΣ(SEN(Σ));
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For all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN′α(F (f)) ∶ SEN′α(F (Σ))→ SEN′α(F (Σ′))

is given by setting, for all φ ∈ SEN′α(F (Σ)),
SEN′α(F (f))(φ) = SEN′(F (f))(φ).

• For every σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, we let σ′α ∶ (SEN′α)k → SEN′α

be the restriction of σ′ ∶ SEN′k → SEN′ to SEN′α.

Composition works as expected, i.e., for all τ ♭ ∶ (SEN♭)k → (SEN♭)ℓ and
all σ♭ ∶ (SEN♭)ℓ → (SEN♭)m in N ♭,

σ′α ○ τ ′α = (σ′ ○ τ ′)α.
It is not difficult to see that α(A), thus defined, is an N ♭-algebraic system.

Lemma 13 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,
SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨F,α⟩ ∶A→
A′ an algebraic system morphism, with F ∶ Sign → Sign′ an isomorphism.
Then α(A) = ⟨Sign′,SEN′α,N ′α⟩ is an N ♭-algebraic system.

Proof: The critical step is to show that SEN′α ∶ Sign′ → Set is a well-defined
functor and that N ′α consists in fact of natural transformations on SEN′α.

For the first, let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ ∈ SEN(Σ). Then
we have

SEN′α(F (f))(αΣ(φ)) = SEN′(F (f))(αΣ(φ))
= αΣ′(SEN(f)(φ))
∈ SEN′α(F (Σ′)).

So SEN′α is a well-defined functor.
Similarly, for σ♭ ∈ N ♭, Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ⃗ ∈ SEN(Σ),

SEN′α(F (Σ))k σ′α
F (Σ)✲ SEN′α(F (Σ))

SEN′α(F (Σ′))k
SEN′α(F (f))k

❄

σ′α
F (Σ′)

✲ SEN′α(F (Σ′))
SEN′α(F (f))
❄

SEN′α(F (f))(σ′α
F (Σ)
(αΣ(φ⃗))) = SEN′α(F (f))(σ′

F (Σ)
(αΣ(φ⃗)))

= SEN′α(F (f))(αΣ(σΣ(φ⃗)))
= SEN′(F (f))(αΣ(σΣ(φ⃗)))
= αΣ′(SEN(f)(σΣ(φ⃗)))
= αΣ′(σΣ′(SEN(f)(φ⃗)))
= σ′

F (Σ′)
(αΣ′(SEN(f)(φ⃗)))

= σ′α
F (Σ′)
(SEN′(F (f))(αΣ(φ⃗)))

= σ′α
F (Σ′)
(SEN′α(F (f))(αΣ(φ⃗))).
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Thus, σ′α ∶ (SEN′α)k → (SEN′α) is a well-defined natural transformation on
SEN′α. ∎

We call α(A) the image algebraic system of A under ⟨F,α⟩.
It is not difficult to see that, additionally, one may construct a surjective

morphism from A to α(A). In fact, we define ⟨F,α′⟩ ∶A → α(A) by letting
α′ ∶ SEN → SEN′α ○ F be given, for all Σ ∈ ∣Sign∣, by

α′Σ(φ) = αΣ(φ), for all φ ∈ SEN(Σ).
Lemma 14 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,
SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨F,α⟩ ∶A→
A′ an algebraic system morphism, with F ∶ Sign → Sign′ an isomorphism.
Then ⟨F,α′⟩ ∶A→ α(A) is a surjective algebraic system morphism.

Proof: The fact that α′ ∶ SEN → SEN′α○F is a natural transformation follows
from the corresponding property of α. Moreover, the fact that ⟨F,α′⟩ has the
morphism property also follows from the corresponding property of ⟨F,α⟩.
Finally, surjectivity of α′Σ ∶ SEN(Σ) → SEN′α(F (Σ)), for all Σ ∈ ∣Sign∣,
follows by the definition of SEN′α. ∎

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. An F-
algebraic system (or an interpreted algebraic system) A = ⟨A, ⟨F,α⟩⟩
consists of:

• An N ♭-algebraic system A = ⟨Sign,SEN,N⟩;
• A surjective algebraic system morphism ⟨F,α⟩ ∶ F→A.

We denote the class of all F-algebraic systems by AlgSys(F).
Given two F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩, a

morphism (of F-algebraic systems) ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ consists of:

• A morphism of N ♭-algebraic systems ⟨G,γ⟩ ∶ F→ F;

• A morphism of N ♭-algebraic systems ⟨H,δ⟩ ∶A→A′

such that the following diagram commutes

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

We call a morphism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ special if ⟨G,γ⟩ ∶ F → F is
special and we call it surjective if ⟨G,γ⟩ ∶ F → F is surjective.

We show that these properties propagate to ⟨H,δ⟩ ∶A→A′.
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Lemma 15 Consider a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩. Let
A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩ be F-algebraic systems and ⟨⟨G,γ⟩,⟨H,δ⟩⟩ ∶ A→ A′ a morphism.

(a) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′ is special, then ⟨H,δ⟩ ∶A→A′ is special;

(b) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ is surjective, then ⟨H,δ⟩ ∶ A→ A′ is surjec-
tive.

Proof:

(a) Suppose ⟨G,γ⟩ is special. We show, first, that H is surjective on objects
and, then, that it is full. Surjectivity on objects is easy. Since F ′ and
G are surjective on objects, H ○F = F ′ ○G is also surjective on objects.
This implies that H is surjective on objects.

For fullness, recall that it suffices to show that, for all Y,Y ′ ∈ ∣Sign∣,
H ∶ Sign(Y,Y ′)→ Sign′(H(Y ),H(Y ′))

is surjective. So let k ∈ Sign′(H(Y ),H(Y ′)). Then, by the surjectivity
of F , there exist X,X ′ ∈ ∣Sign♭∣, such that F (X) = Y and F (X ′) = Y ′.
Thus, we get

k ∈ Sign′(H(F (X)),H(F (X ′))) = Sign′(F ′(G(X)), F ′(G(X ′))).
Since G and F ′ are full, there exists f ∈ Sign♭(X,X ′), such that
F ′(G(f)) = k. So we have that H(F (f)) = k and F (f) ∈ Sign(F (X),
F (X ′)) = Sign(Y,Y ′). Therefore H is full.

(b) By Part (a), it suffices to show that, for all Y ∈ ∣Sign∣, δY ∶ SEN(Y )→
SEN′(H(Y )) is surjective. Let χ ∈ SEN′(H(Y )). Since F is sur-
jective, there exists X ∈ ∣Sign♭∣, such that F (X) = Y . So we get
χ ∈ SEN′(H(F (X))) = SEN′(F ′(G(X))). Since both γX ∶ SEN♭(X) →
SEN♭(G(X)) and α′

G(X)
∶ SEN♭(G(X))→ SEN′(F ′(G(X))) are surjec-

tive, we get that α′
G(X)
○γX ∶ SEN♭(X)→ SEN′(F ′(G(X))) is surjective.

Thus, there exists φ ∈ SEN♭(X), such that

χ = α′G(X)(γX(φ)) = δF (X)(αX(φ)) = δY (αX(φ)).
So δY ∶ SEN(Y )→ SEN′(H(Y )) is also surjective.

∎

In the future, we will restrict attention mostly to F-algebraic system
morphisms ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′, with

⟨G,γ⟩ = ⟨I, ι⟩ ∶ F → F,
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where ⟨I, ι⟩ ∶ F → F denotes the identity morphism on F. Since this morphism
is surjective, by Lemma 15, this property will automatically hold for ⟨H,δ⟩ ∶
A→A′ as well. In this case, we also use the simplified notation ⟨H,δ⟩ ∶ A→
A′

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F ′, α′⟩
❘

A ⟨H,δ⟩ ✲ A′

and even though we might say a “surjective” morphism ⟨H,δ⟩ ∶ A → A′ for
emphasis, it is understood that this will always be the case, even without
this specification.

2.3 Congruence Systems

Let A = ⟨Sign,SEN,N⟩ be an algebraic system. A relation family on
A is a relation family on SEN, i.e., a collection R = {RΣ}Σ∈∣Sign∣, such that
RΣ ⊆ SEN(Σ)2, for all Σ ∈ ∣Sign∣. A relation family on A is a relation
system if it is a relation system on SEN, i.e., if it is invariant under Sign-
morphisms; that is, if for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(RΣ) ⊆ RΣ′ .

A relation family/system on A is an equivalence family/system on
A if it is an equivalence family/system on SEN, i.e., for all Σ ∈ ∣Sign∣, RΣ is
an equivalence relation on SEN(Σ). Finally, an equivalence system is called
a congruence system on A if, for all σ ∶ SENk → SEN in N , all Σ ∈ ∣Sign∣
and all φ⃗, ψ⃗ ∈ SEN(Σ),

⟨φi, ψi⟩ ∈ RΣ, i < k, implies ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ RΣ.

We call this the congruence property.
The collection of all congruence systems on the algebraic system A will be

denoted by ConSys(A). Ordered under signature-wise inclusion ≤, it forms
a complete lattice, which is denoted by ConSys(A) = ⟨ConSys(A),≤⟩.

The least congruence system on A is the identity congruence system,
which denoted by ∆A = {∆A

Σ}Σ∈∣Sign∣, where, for all Σ ∈ ∣Sign∣,
∆A

Σ = {⟨φ,φ⟩ ∶ φ ∈ SEN(Σ)}.
The largest congruence system is the nabla congruence system, denoted
∇A or SEN2, and defined by ∇A = {∇A

Σ}Σ∈∣Sign∣, such that, for all Σ ∈ ∣Sign∣,
∇A

Σ = {⟨φ,ψ⟩ ∶ φ,ψ ∈ SEN(Σ)} = SEN(Σ)2.
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The infimum of a family {θi ∶ i ∈ I} ⊆ ConSys(A) is given by signature-
wise intersection ⋂i∈I θi, while the supremum is the congruence system gen-
erated by the signature-wise union of the θi, ⋁i∈I θi = {Θ(⋃i∈I θiΣ)}Σ∈∣Sign∣,
where Θ(⋃i∈I θiΣ) denotes the congruence on SEN(Σ) (viewed as an ordinary
algebra with operations σΣ ∶ SEN(Σ)k → SEN(Σ), for σ ∶ SENk → SEN in N)
generated by ⋃i∈I θi.

Proposition 16 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-algebraic systems and ⟨F,α⟩ ∶
A → A′ a morphism of N ♭-algebraic systems. If θ ∈ ConSys(A′), then
α−1(θ) ∈ ConSys(A).
Proof: By Proposition 10 it suffices to show that, if θ has the congruence
property, then α−1(θ) also has the congruence property. To see this, consider
σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, Σ ∈ ∣Sign∣ and φ⃗, ψ⃗ ∈ SEN(Σ), such that ⟨φi, ψi⟩ ∈
α−1Σ (θF (Σ)), for all i < k. Then we get ⟨αΣ(φi), αΣ(ψi)⟩ ∈ θF (Σ), for all i < k.
Thus, by the congruence property of θ,

⟨σ′F (Σ)(αΣ(φ⃗)), σ′F (Σ)(αΣ(ψ⃗))⟩ ∈ θF (Σ).
By the morphism property, we get

⟨αΣ(σΣ(φ⃗)), αΣ(σΣ(ψ⃗))⟩ ∈ θF (Σ).
Hence ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ α−1Σ (θF (Σ)), showing that α−1(θ) also satisfies the
congruence property. ∎

As a special case of Proposition 16, we obtain that kernels of morphisms
are congruence systems.

Corollary 17 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-algebraic systems and ⟨F,α⟩ ∶
A→A′ a morphism of N ♭-algebraic systems. Then Ker(⟨F,α⟩) ∈ ConSys(A).
Proof: This follows by Proposition 16 by taking θ = ∆A

′
. Then, obviously,

α−1(θ) = Ker(⟨F,α⟩). ∎

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and θ ∈ ConSys(A). The
quotient Aθ (or A/θ) of A by θ is the algebraic system Aθ = ⟨Sign,SENθ,

N θ⟩, defined as follows:

• For all Σ ∈ ∣Sign∣,
SENθ(Σ) = SEN(Σ)/θΣ = {φ/θΣ ∶ φ ∈ SEN(Σ)}.

For all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),
SENθ(f)(φ/θΣ) = SEN(f)(φ)/θΣ′ .
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• N θ is the category of natural transformations on SENθ of the form
σθ ∶ (SENθ)k → SENθ, where σ ∶ SENk → SEN is in N , defined, for all
Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ), by

σθΣ(φ⃗/θΣ) = σΣ(φ⃗)/θΣ.
The fact that θ is an equivalence system makes the functor SENθ well-defined
at both the object and the morphism level. Moreover, the fact that θ is a
congruence system makes the definition of each natural transformation in N θ

sound. Finally, the identities, projections and the composition in N θ are the
images of the corresponding operations and of the composition in N under
⋅↦ ⋅θ: For all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), φ⃗ ∈ SEN(Σ),

• iθΣ(φ/θΣ) = φ/θΣ = iΣ(φ)/θΣ;

• p
k,iθ

Σ (φ⃗/θΣ) = φi/θΣ = pk,iΣ (φ⃗)/θΣ;

• τ θΣ(σ0θ

Σ (φ⃗/θΣ), . . . , σk−1θΣ (φ⃗/θΣ)) = τ θΣ(σ0
Σ(φ⃗)/θΣ, . . . , σk−1Σ (φ⃗)/θΣ)

= τΣ(σ0
Σ(φ⃗), . . . , σk−1Σ (φ⃗))/θΣ.

We denote by ⟨I, πθ⟩ ∶ A → Aθ the quotient morphism, defined, for all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

πθΣ(φ) = φ/θΣ.
To see that it is well-defined, we must show that πθ ∶ SEN → SENθ is a
natural transformation and that it satisfies the morphism property. In fact,
for all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),

SEN(Σ) πθΣ ✲ SENθ(Σ)

SEN(Σ′)
SEN(f)

❄

πθΣ′
✲ SENθ(Σ′)

SENθ(f)
❄

πθΣ′(SEN(f)(φ)) = SEN(f)(φ)/θΣ′
= SENθ(f)(φ/θΣ)
= SENθ(f)(πθΣ(φ)).

And for all σ ∶ SENk → SEN in N , all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ),
SEN(Σ)k πθ

k

Σ ✲ SENθ(Σ)k

SEN(Σ)
σΣ

❄

πθΣ

✲ SENθ(Σ)
σθΣ

❄
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πθΣ(σΣ(φ⃗)) = σΣ(φ⃗)/θΣ = σθΣ(φ⃗/θΣ) = σθΣ(πθΣ(φ⃗)).
Note that this construction allows us to discuss also quotients of F-

algebraic systems. More precisely, consider a base algebraic system F =⟨Sign♭,SEN♭,N ♭⟩. Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and let
θ ∈ ConSys(A) ∶= ConSys(A). The quotient F-algebraic system of A by
θ is defined as Aθ = ⟨Aθ, ⟨F,πθ ○ α⟩⟩.

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F,πθ ○ α⟩
❘

A ⟨I, πθ⟩ ✲ Aθ

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and let T ∈ SenFam(A).
We say that a congruence system θ on A is compatible with T if it is
compatible with T as an equivalence system on SEN, i.e., if, for all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ imply ψ ∈ TΣ.

Note that, for every T ∈ SenFam(A), ∆A is compatible with T . We denote
the collection of all congruence systems on A that are compatible with T by
ConSysA(T ).
Proposition 18 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ∈
SenFam(A). The collection ConSysA(T ), of all congruence systems on A
that are compatible with T , forms a complete lattice

ConSysA(T ) = ⟨ConSysA(T ),≤⟩
under signature-wise inclusion.

Proof: First, the collection ConSysA(T ) is closed under arbitrary inter-
sections: Let θi, i ∈ I, be in ConSysA(T ). Suppose that Σ ∈ ∣Sign∣ and
φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ⋂i∈I θiΣ and φ ∈ TΣ. Then ⟨φ,ψ⟩ ∈ θiΣ, for all
i ∈ I. Since θi is compatible with T , we get ψ ∈ TΣ. This shows that ⋂i∈I θi

is compatible with T .
It suffices, therefore, to show that ConSysA(T ) has a greatest element.

The signature-wise union of every directed subset of ConSysA(T ) is an upper
bound for the subset in ConSys(A). Moreover, it is in ConSysA(T ) since
every member of the subset is. So, by Zorn’s Lemma, ConSysA(T ) has a
maximal element.

Suppose, for the sake of obtaining a contradiction, that θ ≠ θ′ are two
such maximal elements. Recall that their join θ ∨ θ′ is given by θ ∨ θ′ =
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{θΣ ∨ θ′Σ}Σ∈∣Sign∣, where

θΣ ∨ θ′Σ =
∞

⋃
k=0

θΣ ○ θ′Σ ○ ⋯ ○ θΣ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k factors

.

Thus, their join θ∨θ′ as congruence systems on A is also compatible with T .
This, however, contradicts the maximality of θ and θ′, since, clearly, θ < θ∨θ′

and θ′ < θ ∨ θ′. Therefore, the unique maximal element of ConSysA(T ) is a
largest element. ∎

The largest congruence system on an algebraic system A compatible with
T ∈ SenFam(A) is called the Leibniz congruence system of T on A and
is denoted by ΩA(T ).

The following theorem provides an explicit characterization of the Leibniz
congruence system of a sentence family T on an algebraic system A.

Theorem 19 Suppose that A = ⟨Sign,SEN,N⟩ is an algebraic system and
T ∈ SenFam(A). Then, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),
⟨φ,ψ⟩ ∈ ΩA

Σ (T ) iff for all σ ∶ SENk → SEN in N , all Σ′ ∈ ∣Sign∣,
all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′), we have
σΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ .

Proof: Let R = {RΣ}Σ∈∣Sign∣ be the relation system on A defined by the given
condition, i.e., for all Σ ∈ ∣Sign∣,

RΣ = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶
for all σ ∶ SENk → SEN in N , all Σ′ ∈ ∣Sign∣,
all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),
σΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′}.

First, we show that ΩA(T ) ≤ R. Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ ΩA
Σ (T ). Since ΩA(T ) is a congruence system, we get that, for all

Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ ΩA
Σ′(T ).

Now, since ΩA(T ) is a congruence system, we get that, for all σ ∶ SENk →
SEN and all χ⃗ ∈ SEN(Σ′),

⟨σΣ′(SEN(f)(φ), χ⃗), σΣ′(SEN(f)(ψ), χ⃗)⟩ ∈ ΩA
Σ′(T ).

Finally, since ΩA(T ) is compatible with T , we get that

σΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ .
But the last condition, being universally quantified on Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′), σ in N and χ⃗ ∈ SEN(Σ′), yields ⟨φ,ψ⟩ ∈ RΣ. Therefore, we
get that ΩA(T ) ≤ R.
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Finally, we show that R ≤ ΩA(T ). For this inclusion, it suffices to show
that R is a congruence system on A that is compatible with T . Then the
conclusion would follow from the fact that ΩA(T ) is, by definition, the largest
congruence system on A that is compatible with T .

It is clear from its definition that R is an equivalence family on A.
To see that it is an equivalence system, let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ),

such that ⟨φ,ψ⟩ ∈ RΣ. Consider Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′). Then,
for all σ ∶ SENk → SEN in N , all Σ′′ ∈ ∣Sign∣, all g ∈ Sign(Σ′,Σ′′) and all
χ⃗ ∈ SEN(Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

we have

σΣ′′(SEN(g)(SEN(f)(φ)), χ⃗) ∈ TΣ′′
iff σΣ′′(SEN(gf)(φ), χ⃗) ∈ TΣ′′
iff σΣ′′(SEN(gf)(ψ), χ⃗) ∈ TΣ′′ (since ⟨φ,ψ⟩ ∈ RΣ)
iff σΣ′′(SEN(g)(SEN(f)(ψ)), χ⃗) ∈ TΣ′′ .

Thus, we conclude that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ RΣ′ , showing that R is
an equivalence system.

Next, to see that R is a congruence system, consider σ ∶ SENk → SEN
in N , Σ ∈ ∣Sign∣, and φ⃗, ψ⃗ ∈ SEN(Σ), such that ⟨φi, ψi⟩ ∈ RΣ, i < k. Let
τ ∶ SENℓ → SEN be in N , Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′).
Then, we have

τΣ′(SEN(f)(σΣ(φ⃗)), χ⃗) ∈ TΣ′
iff τΣ′(σΣ′(SEN(f)(φ⃗)), χ⃗) ∈ TΣ′
iff τΣ′(σΣ′(SEN(f)(ψ⃗)), χ⃗) ∈ TΣ′

(τ ○ ⟨σ ○ ⟨pk+ℓ−1,0, . . . , pk+ℓ−1,k⟩, pk+ℓ−1,k+1, . . . , pk+ℓ−1,k+ℓ−2⟩ in N

together with Corollary 12, applied k times)

iff τΣ′(SEN(f)(σΣ(ψ⃗)), χ⃗) ∈ TΣ′ .
This shows that ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ RΣ, whence R is a congruence system.

Finally, upon setting in the defining condition σ = p1,0 ∶ SEN → SEN in
N , Σ′ = Σ, f = iΣ, the identity Sign-morphism, we get that for all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ), with ⟨φ,ψ⟩ ∈ RΣ

φ ∈ TΣ iff ψ ∈ TΣ.

Thus, R is compatible with T . ∎

The characterization of the Leibniz congruence system, presented in The-
orem 19, provides a justification for an alternative name that is sometimes
attributed to the Leibniz congruence system of a sentence family T on an
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algebraic system A. Given Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), we say that φ and
ψ are indiscernible modulo T if

⟨φ,ψ⟩ ∈ ΩA
Σ (T ).

Therefore ΩA(T ) is also referred to as the indiscernibility relation on A
modulo T .

We can now prove a proposition asserting that the Leibniz congruence

system of a sentence family T is included in that of the sentence system
←Ð
T .

Proposition 20 Suppose that A = ⟨Sign,SEN,N⟩ is an algebraic system
and T ∈ SenFam(A). Then

ΩA(T ) ≤ ΩA(←ÐT ).
Proof: To prove this inclusion, it suffices to show that ΩA(T ) is compatible

with
←Ð
T . We can invoke Lemma 7, but we also give a direct proof due to the

heavy significance of this result. Let Σ ∈ ∣Sign∣, and φ,ψ ∈ SEN(Σ), such

that ⟨φ,ψ⟩ ∈ ΩA
Σ (T ) and φ ∈

←Ð
T Σ. Since ΩA(T ) is a congruence system and

by the definition of
←Ð
T , we get that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ ΩA
Σ′(T ) and SEN(f)(φ) ∈ TΣ′ .

Thus, by the compatibility of ΩA(T ) with T , we obtain SEN(f)(ψ) ∈ TΣ′ .
Since this holds for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we get ψ ∈

←Ð
T Σ.

Thus, ΩA(T ) is compatible with
←Ð
T , showing that ΩA(T ) ≤ ΩA(←ÐT ). ∎

We exhibit, next, an algebraic system A = ⟨Sign,SEN,N⟩ together with

a sentence family T ∈ SenFam(A), such that ΩA(T ) ≨ ΩA(←ÐT ).
Example 21 Define A = ⟨Sign,SEN,N⟩ as follows:

• Sign is a category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′.

• SEN ∶ Sign → Set is defined by setting SEN(Σ) = {0,1}, SEN(Σ′) ={a, b}, SEN(f)(0) = a and SEN(f)(1) = b.
• The clone N of natural transformations is trivial, i.e., consists of the

projection natural transformations only.

Finally, let T = {TΣ, TΣ′} be specified by setting TΣ = {1} and TΣ′ = ∅. Then

it is not difficult to see that
←Ð
T Σ = ∅ =

←Ð
T Σ′ and, therefore, that

ΩA
Σ (←ÐT ) = ∇A

Σ and ΩA
Σ′(←ÐT ) = ∇A

Σ′ ,

whereas
ΩA

Σ (T ) =∆A
Σ and ΩA

Σ′(T ) = ∇A
Σ′ .

Hence, we have ΩA(T ) ≨ ΩA(←ÐT ).
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Proposition 20 and Example 21 have important consequences. We give
a brief account here, as is proper after proving these facts, but postpone
further treatment for subsequent chapters.

1. Note that, given an algebraic system A, for any sentence family T of

A, both T,
←Ð
T are sentence families of A, such that, in general,

←Ð
T ≤ T and ΩA(T ) ≤ ΩA(←ÐT ).

But it is an accepted wisdom in abstract algebraic logic that a logic
is amenable to a meaningful algebraic treatment and, thus, deserves a
place in the algebraic (Leibniz) hierarchy, if it is at least protoalgebraic
or truth-equational, meaning that the Leibniz operator on its collection
of theories is at least monotone of completely order reflecting. The

displayed relations between T and
←Ð
T , therefore, force us to define a

new class of π-institutional logics, fulfilling a minimum, in some sense,
condition for amenability to algebraic treatment and techniques, which
we shall call stable, if their Leibniz operator satisfies, for all theory
families T of the π-institution,

Ω(T ) = Ω(←ÐT ).
The term “stable” is adopted to insinuate contrast to inverting or

changing the order, since, given that
←Ð
T ≤ T and that Ω(T ) ≤ Ω(←ÐT ),

for all theory families T , an inversion in the order would occur in case

Ω(T ) ≠ Ω(←ÐT ) for some theory family T .

2. Now note the remarkable fact that, for a stable π-institution, the range
of the Leibniz operator is entirely covered by its values on theory sys-
tems of the π-institution, since, given a theory family T , one can work
with its Leibniz congruence system by working with the congruence

system Ω(←ÐT ) of the theory system
←Ð
T .

These two remarkable facts form an enticement, a preview and a justification
for some of the upcoming definitions and concepts regarding classes of π-
institutions, forming the semantic Leibniz hierarchy, in subsequent chapters.
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In the next example it is shown that the Leibniz congruence system of
a sentence family T of an algebraic system A does not stand in a definite

relationship with that of the sentence system
Ð→
T .

Example 22 We exhibit, first, an algebraic system A = ⟨Sign,SEN,N⟩ to-

gether with a sentence family T ∈ SenFam(A), such that ΩA(Ð→T ) ≨ ΩA(T ).
We use the same algebraic system and the same sentence family as in

Example 21. Define A = ⟨Sign,SEN,N⟩ as follows:

• Sign is a category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′.

• SEN ∶ Sign → Set is defined by setting SEN(Σ) = {0,1}, SEN(Σ′) ={a, b}, SEN(f)(0) = a and SEN(f)(1) = b.
• The clone N of natural transformations is trivial, i.e., consists of the

projection natural transformations only.

Finally, let T = {TΣ, TΣ′} be specified by setting TΣ = {1} and TΣ′ = ∅.

Note that
Ð→
T Σ = {1} and

Ð→
T Σ′ = {b}. So in this case we have

ΩA
Σ (Ð→T ) =∆A

Σ and ΩA
Σ′(Ð→T ) =∆A

Σ′ ,

whereas, as pointed out in Example 21,

ΩA
Σ (T ) =∆A

Σ and ΩA
Σ′(T ) = ∇A

Σ′ .

So we see that ΩA(Ð→T ) ≨ ΩA(T ).
Finally, we construct an algebraic system A = ⟨Sign,SEN,N⟩ together

with a sentence family T ∈ SenFam(T ), such that ΩA(T ) ≨ ΩA(Ð→T ).
The algebraic system is the same algebraic system A = ⟨Sign,SEN,N⟩,

defined above. But now the sentence family T = {TΣ, TΣ′} is defined by

TΣ = {0,1} and TΣ′ = {b}.
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It is clear that
Ð→
T Σ = {0,1} and

Ð→
T Σ′ = {a, b}. Thus, we have

ΩA(T ) =∆A
Σ and ΩA

Σ′(T ) =∆A
Σ′ ,

whereas

ΩA
Σ (Ð→T ) = ∇A

Σ and ΩA
Σ′(Ð→T ) = ∇A

Σ′ .

Thus we see that, in this case, ΩA(T ) ≨ ΩA(Ð→T ).
It turns out that the Leibniz congruence system of the intersection of two

sentence families of an algebraic system is at least as large as the intersection
of the corresponding Leibniz congruence systems.

Lemma 23 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and let T ⊆
SenFam(A). Then

⋂
T ∈T

ΩA(T ) ≤ ΩA(⋂
T ∈T

T ).
Proof: The Leibniz congruence system of ⋂T ∈T T is, by definition, the largest
congruence system on A that is compatible with ⋂T ∈T T ∈ SenFam(A). So
to prove the conclusion it suffices to show that ⋂T ∈T ΩA(T ) is a congruence
system on A that is compatible with ⋂T ∈T T . That it is a congruence system
follows from the fact that ConSys(A) has the structure of a complete lattice
with signature-wise intersection as its infimum. For compatibility, Let Σ ∈∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ⋂T ∈T ΩA

Σ (T ) and φ ∈ ⋂T ∈T TΣ.
These two imply the following relations:

⟨φ,ψ⟩ ∈ ΩA
Σ (T ), φ ∈ TΣ, for all T ∈ T .

Now, using the compatibility property of ΩA(T ), T ∈ T , we get ψ ∈ TΣ, for
all T ∈ T . So ψ ∈ ⋂T ∈T TΣ and, therefore, ⋂T ∈T ΩA(T ) is compatible with

⋂T ∈T T . ∎

An important property of the Leibniz operator is that it commutes with
inverse surjective morphisms of N ♭-algebraic systems.
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Proposition 24 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-algebraic systems, ⟨F,α⟩ ∶
A→A′ an algebraic system morphism and T ∈ SenFam(A′). We have:

(a) α−1(ΩA′(T )) ≤ ΩA(α−1(T ));
(b) If ⟨F,α⟩ is surjective, α−1(ΩA′(T )) = ΩA(α−1(T )).

Proof:

(a) Since ΩA(α−1(T )) is the largest congruence system that is compati-
ble with α−1(T ), it suffices to show that α−1(ΩA′(T )) is a congruence
system on A that is compatible with α−1(T ). The fact that it is a
congruence system on A is guaranteed by Proposition 16. So it suffices
to show its compatibility with α−1(T ). Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ α−1Σ (ΩA′

F (Σ)
(T )) and φ ∈ α−1Σ (TF (Σ)). Now we get

⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA′

F (Σ)
(T ) and αΣ(φ) ∈ TF (Σ). By compatibility of

ΩA′(T ) with T , we get αΣ(ψ) ∈ TF (Σ). Therefore ψ ∈ α−1Σ (TF (Σ)),
which proves compatibility of α−1(ΩA′(T )) with α−1(T ).

(b) By Part (a), it suffices to prove, under the hypothesis that ⟨F,α⟩ ∶
A → A′ is surjective, the inclusion ΩA(α−1(T )) ≤ α−1(ΩA′(T )). Let
Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩA

Σ (α−1(T )). Then,
by Theorem 19, we get that, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all
Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),

σΣ′(SEN(f)(φ), χ⃗) ∈ α−1Σ′ (TF (Σ′))
iff σΣ′(SEN(f)(ψ), χ⃗) ∈ α−1Σ′ (TF (Σ′)).

Equivalently,

αΣ′(σΣ′(SEN(f)(φ), χ⃗)) ∈ TF (Σ′)
iff αΣ′(σΣ′(SEN(f)(ψ), χ⃗)) ∈ TF (Σ′).

Equivalently, by the morphism property,

σ′
F (Σ′)
(αΣ′(SEN(f)(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σ′
F (Σ′)
(αΣ′(SEN(f)(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′).

Equivalently, by the naturality of α,

σ′
F (Σ′)
(SEN′(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σ′
F (Σ′)
(SEN′(F (f))(αΣ(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′).

Equivalently, by Theorem 19 and the surjectivity of ⟨F,α⟩, we get that

⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA′

F (Σ)(T ),
which finishes the proof.

∎
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2.4 Relative Congruence Systems

We look at a variety of results related to congruence systems in this section.
First, we give a condition that ensures that, given a morphism ⟨H,γ⟩ ∶ A →
A′ of N ♭-algebraic systems, with an isomorphic functor component, and an
equivalence family θ on A, we have γ−1(γ(θ)) = θ.
Lemma 25 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems, ⟨F,α⟩ ∶ A → A′ a
morphism, with F an isomorphism, and θ ∈ EqvFam(A). Then

Ker(⟨F,α⟩) ≤ θ iff α−1(α(θ)) = θ.
Proof: Suppose, first, that Ker(⟨F,α⟩) ≤ θ and let Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ α−1Σ (αΣ(θΣ)). Then, by definition, we get

⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(θΣ).
Thus, there exist φ′, ψ′ ∈ SEN(Σ), such that

⟨φ′, ψ′⟩ ∈ θΣ and ⟨αΣ(φ), αΣ(ψ)⟩ = ⟨αΣ(φ′), αΣ(ψ′)⟩.
Thus, we get

⟨φ′, ψ′⟩ ∈ θΣ and ⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ KerΣ(⟨F,α⟩).
Since Ker(⟨F,α⟩) ≤ θ and θ is an equivalence family, we get that ⟨φ,ψ⟩ ∈ θΣ.
Thus, we conclude that α−1(α(θ)) ≤ θ. Since the reverse inclusion always
holds, α−1(α(θ)) = θ.

Assume, conversely, that α−1(α(θ)) = θ and let Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩). Then, by definition, αΣ(φ) =
αΣ(ψ). Therefore, since θ is an equivalence family, we get

⟨αΣ(φ), αΣ(ψ)⟩ = ⟨αΣ(φ), αΣ(φ)⟩ ∈ αΣ(θ).
Now we get ⟨φ,ψ⟩ ∈ α−1Σ (αΣ(θΣ)) and, by hypothesis, ⟨φ,ψ⟩ ∈ θΣ. We con-
clude that Ker(⟨F,α⟩) ≤ θ. ∎

Next we show that, given algebraic systems A and A′, a surjective mor-
phism ⟨F,α⟩ ∶ A → A′, with an isomorphic functor component, and a con-
gruence system θ on A, its image under ⟨F,α⟩ is a congruence system on A′,
provided that θ contains the kernel system of ⟨F,α⟩.
Lemma 26 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems, ⟨F,α⟩ ∶ A → A′ a
surjective morphism, with F an isomorphism, and θ ∈ ConSys(A), such that
Ker(⟨F,α⟩) ≤ θ. Then α(θ) ∈ ConSys(A′).
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Proof: We first show that α(θ) is an equivalence family on A′. To this end,
let Σ ∈ ∣Sign∣ and φ,ψ,ψ′, χ ∈ SEN(Σ).

• By hypothesis, θ ∈ ConSys(A). Hence, ⟨φ,φ⟩ ∈ θΣ. Thus, ⟨αΣ(φ),
αΣ(φ)⟩ ∈ αΣ(θΣ). Since ⟨F,α⟩ is surjective, α(θ) is reflexive.

• Suppose ⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(θΣ). Then ⟨φ,ψ⟩ ∈ α−1Σ (αΣ(θΣ)). By
Lemma 25, ⟨φ,ψ⟩ ∈ θΣ. Since θ ∈ ConSys(A), ⟨ψ,φ⟩ ∈ θΣ. Hence,⟨αΣ(ψ), αΣ(φ)⟩ ∈ αΣ(θΣ). Thus, by the surjectivity of ⟨F,α⟩, α(θ) is
also symmetric.

• Finally, suppose that ⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(θΣ) and ⟨αΣ(ψ′), αΣ(χ)⟩ ∈
αΣ(θΣ), with αΣ(ψ) = αΣ(ψ′). Then, by Lemma 25, ⟨φ,ψ⟩ ∈ θΣ
and ⟨ψ′, χ⟩ ∈ θΣ. Moreover, by hypothesis, ⟨ψ,ψ′⟩ ∈ KerΣ(⟨F,α⟩) ⊆
θΣ. Since θ ∈ ConSys(A), we get ⟨φ,χ⟩ ∈ θΣ and, therefore, ⟨αΣ(φ),
αΣ(χ)⟩ ∈ αΣ(θΣ). Taking into account the surjectivity of ⟨F,α⟩, we
conclude that α(θ) is also transitive.

We showed that α(θ) ∈ EqvFam(A′).
Next, we show that α(θ) is also a system. To this end, suppose Σ,Σ′ ∈∣Sign∣, f ∈ Sign(Σ,Σ′) and φ,ψ ∈ SEN(Σ), such that ⟨αΣ(φ), αΣ(ψ)⟩ ∈

αΣ(θΣ). Then, by Lemma 25, ⟨φ,ψ⟩ ∈ θΣ. Since θ ∈ ConSys(A), we get⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ θΣ′ . Thus,

⟨SEN′(F (f))(αΣ(φ)),SEN′(F (f))(αΣ(ψ))⟩
= ⟨αΣ′(SEN(f)(φ)), αΣ′(SEN(f)(ψ))⟩ ∈ αΣ′(θΣ′).

Since ⟨F,α⟩ is surjective, we get that α(θ) is invariant under Sign′-mor-
phisms. Now we have that α(θ) ∈ EqvSys(A′).

Finally, it remains to see that it is also a congruence system. To this
end, let σ♭ be a natural transformation in N ♭, Σ ∈ ∣Sign∣, φ⃗, ψ⃗ ∈ SEN(Σ),
such that ⟨αΣ(φi), αΣ(ψi)⟩ ∈ αΣ(θΣ), for all i < k. We get, by Lemma 25,⟨φi, ψi⟩ ∈ θΣ, whence, since θ ∈ ConSys(A), ⟨σA

Σ (φ⃗), σA
Σ (ψ⃗)⟩ ∈ θΣ. Now,

applying the morphism property, we get

⟨σA′

F (Σ)(αΣ(φ⃗)), σA′

F (Σ)(αΣ(ψ⃗))⟩ = ⟨αΣ(σA
Σ (φ⃗)), αΣ(σA

Σ (ψ⃗))⟩ ∈ αΣ(θΣ).
Again, taking into account the surjectivity of ⟨F,α⟩, we get that α(θ) has
the congruence property. We conclude that α(θ) ∈ ConSys(A′). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, K be a class of F-
algebraic systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. A congruence
system θ on A is called a K-congruence system, or a congruence system
relative to K, if the quotient algebraic system A/θ is a member of the class
K, i.e., A/θ = Aθ ∈ K. Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we denote
by ConSysK(A) the collection of all K-congruence systems on A:

ConSysK(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ K}.
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Let K be a class of F-algebraic systems. We write H(K) for the class of
all F-algebraic systems B, such that, there exists A ∈ K and a (surjective)
F-algebraic system morphism ⟨H,γ⟩ ∶ A→ B:

H(K) = {B ∈ AlgSys(F) ∶ (∃A ∈ K)(∃ ⟨H,γ⟩ ∶ A→ B)}.
We show that, if K is a class that is closed under the operator H, then

the K-congruence systems on any F-algebraic system in K coincide with the
ordinary congruence systems on A.

Proposition 27 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems, such that H(K) ⊆ K. Then, for every F-algebraic
system A ∈ K, ConSysK(A) = ConSys(A).
Proof: Clearly, ConSysK(A) ⊆ ConSys(A). Suppose θ ∈ ConSys(A). Con-
sider the quotient morphism

⟨I, πθ⟩ ∶ A→ A/θ.
Since A ∈ K, A/θ ∈H(K) ⊆ K. Thus, by definition, θ ∈ ConSysK(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨A, ⟨F,α⟩⟩ and
Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, be F-algebraic systems and, for all i ∈ I,

⟨H i, γi⟩ ∶ A→ Ai

a surjective morphism. We say that {⟨H i, γi⟩ ∶ A→ Ai ∶ i ∈ I} is a subdirect
intersection if

⋂
i∈I

Ker(⟨H i, γi⟩) = ∆A.

Given a class K of F-algebraic systems, we write
⊲

IΠ(K) to denote the class
of all F-algebraic systems A, for which there exists a subdirect intersection{⟨H i, γi⟩ ∶ A→ Ai ∶ i ∈ I}, with Ai ∈ K, for all i ∈ I.

We show that if a class K is closed under subdirect intersections, then the
collection of all K-congruence systems on any F-algebraic system A is closed
under intersections. If, in addition, K contains a trivial F-algebraic system,
then ConSysK(A) becomes a closure family on A2, for every F-algebraic
system A.

Proposition 28 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be

a class of F-algebraic systems, such that
⊲

IΠ(K) ⊆ K.

(a) For every F-algebraic system A, ConSysK(A) is closed under signature-
wise intersections;

(b) If, in addition, K contains a trivial F-algebraic system, then, for every
F-algebraic system A, ConSysK(A) is a closure family on A2.
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Proof: Let A be an F-algebraic system and {θi ∶ i ∈ I} ⊆ ConSysK(A). Then
A/θi ∈ K, for all i ∈ I. Consider the canonical morphisms

⟨I, πi⟩ ∶ A/⋂
i∈I

θi → A/θi, i ∈ I.

Clearly, we have

⋂
i∈I

Ker(⟨I, πi⟩) = ⋂
i∈I

(θi/⋂
i∈I

θi) = ⋂
i∈I

θi/⋂
i∈I

θi =∆A/⋂i∈I θ
i

.

Thus, {⟨I, πi⟩ ∶ A/⋂i∈I θi → A/θi ∶ i ∈ I} is a subdirect intersection. Since

A/θi ∈ K, for all i ∈ I, we get A/⋂i∈I θi ∈ ⊲

IΠ(K) ⊆ K. Therefore, ⋂i∈I θi ∈
ConSysK(A).

Suppose, in addition, that K contains a trivial F-algebraic system. Then
∇A ∈ ConSysK(A), whence ConSysK(A) is a closure family on A2. ∎

By Proposition 28, for a class K of F-algebraic systems closed under
⊲

IΠ
and containing a trivial F-algebraic system, it makes sense to define, for
every F-algebraic system A and all X ∈ SenFam(A2),

ΘK,A(X) = ⋂{θ ∈ ConSysK(A) ∶ X ≤ θ}.
When A coincides with the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶

F→ F is the identity morphism, we write simply ΘK.
We now provide a different characterization of the operator ΘK,A.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a class of

F-algebraic systems. Define the operator DK ∶ P(SEN♭)2 → P(SEN♭)2, by
letting, for all X ≤ (SEN♭)2, all Σ ∈ ∣Sign♭∣ and all ⟨φ,ψ⟩ ∈ SEN♭(Σ)2,

⟨φ,ψ⟩ ∈ DK
Σ(X) iff for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

α(X) ≤ ∆A implies αΣ(φ) = αΣ(ψ).
We show that DK is a closure family on (SEN♭)2.

Proposition 29 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems. DK is a closure family on (SEN♭)2.

Proof: We must show that DK is inflationary, monotone and idempotent.
Let X ≤ (SEN♭)2, Σ ∈ ∣Sign♭∣ and ⟨φ,ψ⟩ ∈ XΣ. Then, for all A ∈ K, if

α(X) ≤ ∆A, we clearly have α(φ) = α(ψ). Hence, ⟨φ,ψ⟩ ∈ DK
Σ(X) and DK is

inflationary.
Suppose X ≤ Y ≤ (SEN♭)2, Σ ∈ ∣Sign♭∣ and ⟨φ,ψ⟩ ∈ SEN♭(Σ)2, such that⟨φ,ψ⟩ ∈ DK

Σ(X). Let A ∈ K, such that α(Y ) ≤ ∆A. Then, we get α(X) ≤
α(Y ) ≤ ∆A, whence, by hypothesis, α(φ) = α(ψ). Therefore, ⟨φ,ψ⟩ ∈DK

Σ(Y )
and DK is also monotone.
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Finally, suppose X ≤ (SEN♭)2, Σ ∈ ∣Sign♭∣ and ⟨φ,ψ⟩ ∈ SEN♭(Σ), such
that ⟨φ,ψ⟩ ∈ DK

Σ(DK(X)). Let A ∈ K, such that α(X) ≤ ∆A. Then, by
definition, α(DK(X)) ≤ ∆A, whence, by hypothesis, αΣ(φ) = αΣ(ψ). Thus,⟨φ,ψ⟩ ∈ DK

Σ(X) and DK is also idempotent.
We conclude that DK is a closure family on (SEN♭)2. ∎

We show, next, that, for all X ≤ (SEN♭)2, the sentence family DK(X) is
a congruence system on the algebraic system F and that, moreover, it is a
congruence system relative to the class K.

Proposition 30 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems. For all X ≤ (SEN♭)2, DK(X) ∈ ConSys(F).
Proof: We first show that, for all Σ ∈ ∣Sign♭∣, DK

Σ(X) is an equivalence
family.

• Let φ ∈ SEN♭(Σ). Since, for all A = ⟨A, ⟨F,α⟩⟩ ∈ K, αΣ(φ) = αΣ(φ), we
get that ⟨φ,φ⟩ ∈DK

Σ(X), whence DK
Σ(X) is reflexive.

• Suppose ⟨φ,ψ⟩ ∈ DK
Σ(X) and let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that α(X) ≤

∆A. Then, by hypothesis, αΣ(φ) = αΣ(ψ), giving αΣ(ψ) = αΣ(φ).
Hence, ⟨ψ,φ⟩ ∈DK

Σ(X), showing that DK
Σ(X) is also symmetric.

• Finally, suppose ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ DK
Σ(X). Let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such

that α(X) ≤ ∆A. By hypothesis, αΣ(φ) = αΣ(ψ) and αΣ(ψ) = αΣ(χ).
Therefore, αΣ(φ) = αΣ(χ), showing that ⟨φ,χ⟩ ∈ DK

Σ(X). Hence,
DK

Σ(X) is also transitive.

We show, next, thatDK(X) is an equivalence system, i.e., invariant under sig-
nature morphisms. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ,ψ ∈ SEN♭(Σ),
such that ⟨φ,ψ⟩ ∈ DK

Σ(X). Let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that α(X) ≤ ∆A.
Then, by hypothesis, αΣ(φ) = αΣ(ψ). Thus, we get

αΣ′(SEN♭(f)(φ)) = SEN(F (f))(αΣ(φ))
= SEN(F (f))(αΣ(ψ))
= αΣ′(SEN♭(f)(ψ)).

Hence, ⟨SEN♭(f)(φ),SEN♭(f)(ψ)⟩ ∈DK
Σ′(X).

Finally, to see that it also satisfies the congruence property, let σ♭ ∶(SEN♭)k → SEN♭ be in N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that⟨φi, ψi⟩ ∈DK
Σ(X), for all i < k. Let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that α(X) ≤∆A.

then, by hypothesis, αΣ(φi) = αΣ(ψi), for all i < k. Therefore,

αΣ(σ♭Σ(φ⃗)) = σA
F (Σ)
(αΣ(φ⃗))

= σA
F (Σ)
(αΣ(ψ⃗))

= αΣ(σ♭Σ(ψ⃗)).
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We conclude that ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ DK
Σ(X) and, therefore, DK(X) is indeed

a congruence system on F. ∎

Furthermore, if K happens to contain a trivial F-algebraic system and
be closed under subdirect intersections, we can show that DK(X) is a K-
congruence system on F.

Proposition 31 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems, containing a trivial F-algebraic system and

closed under
⊲

IΠ. For all X ≤ (SEN♭)2, DK(X) ∈ ConSysK(F).
Proof: By Proposition 30, we know that DK(X) is a congruence system on
F. Therefore, it suffices to show that it is a congruence system relative to
K. For this, let A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that X ≤ Ker(⟨F,α⟩). Define the
morphism ⟨F,αK⟩ ∶ F/DK(X)→ A

by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ)/DK
Σ(X),

αK
Σ(φ/DK

Σ(X)) = αΣ(φ).
This morphism is well defined, since, if A ∈ K, with X ≤ Ker(⟨F,α⟩), then,
for all Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈DK
Σ(X) implies αΣ(φ) = αΣ(ψ).

Now consider the collection

⟨F,αK⟩ ∶ F/DK(X)→ A, A = ⟨A, ⟨F,α⟩⟩ ∈ K, X ≤ Ker(⟨F,α⟩).
We have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ/DK
Σ(X), ψ/DK

Σ(X)⟩ ∈ ⋂⟨F,αK⟩KerΣ(⟨F,αK⟩)
iff αK

Σ(φ/DK
Σ(X)) = αK

Σ(ψ/DK
Σ(X)), for all ⟨F,αK⟩

iff αΣ(φ) = αΣ(ψ) for all ⟨F,αK⟩
iff ⟨φ,ψ⟩ ∈DK

Σ(X).
Therefore, the displayed collection above constitutes a subdirect intersection
and, since A ∈ K, for all ⟨F,αK⟩, and K is closed under subdirect intersections,
we get that F/DK(X) ∈ K, and, therefore, DK(X) ∈ ConSysK(F). ∎

We are now in a position to show the promised alternative characteriza-
tion of the operator ΘK. It turns out that it coincides with DK.

Theorem 32 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class
of F-algebraic systems, containing a trivial F-algebraic system and closed
under subdirect intersections. For all X ≤ (SEN♭)2, ΘK(X) =DK(X).
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Proof: Let X ≤ (SEN♭)2. By Proposition 31, DK(X) ∈ ConSysK(X) and,
by Proposition 29, X ≤DK(X). Therefore, by the minimality of ΘK(X), we
get that ΘK(X) ≤ DK(X). To show the reverse inclusion, let Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ DK

Σ(X). Consider F/ΘK(X) ∈ K. Since

πΘK(X)(X) ≤ ∆F/Θ
K(X), we get, by hypothesis, π

ΘK(X)
Σ (φ) = πΘK(X)

Σ (ψ), i.e.,⟨φ,ψ⟩ ∈ ΘK
Σ(X). We conclude that DK(X) ≤ ΘK(X). ∎

We look, next, at how the operator ΘK interacts with morphisms.

Proposition 33 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be
a class of F-algebraic systems, containing a trivial F-algebraic system and

such that
⊲

IΠ(K) ⊆ K. Let also A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic
systems and ⟨H,γ⟩ ∶ A → B a surjective morphism.

(a) If θ ∈ ConSysK(B), then γ−1(θ) ∈ ConSysK(A);
(b) If H is an isomorphism, Ker(⟨H,γ⟩) ≤ θ and θ ∈ ConSysK(A), then

γ(θ) ∈ ConSysK(B).
Proof:

(a) By Proposition 16, γ−1(θ) ∈ ConSys(A). Consider the morphism

⟨H,γ∗⟩ ∶ A/γ−1(θ)→ B/θ,
defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

γ∗Σ(φ/γ−1Σ (θH(Σ))) = γΣ(φ)/θH(Σ).
This is well-defined, since, if ⟨φ,ψ⟩ ∈ γ−1Σ (θH(Σ)), then ⟨γΣ(φ), γΣ(ψ)⟩ ∈
θH(Σ). Moreover,

Ker(⟨H,γ∗⟩) = γ∗−1(∆B/θ) =∆A/γ
−1(θ).

Thus, {⟨H,γ∗⟩ ∶ A/γ−1(θ)→ B/θ} is a subdirect intersection and, since,

by hypothesis, B/θ ∈ K, A/γ−1(θ) ∈ ⊲

IΠ(K) ⊆ K. Therefore, γ−1(θ) ∈
ConSysK(A).

(b) By Lemma 26, γ(θ) ∈ ConSys(B). Moreover, it is not difficult to see
that ⟨H,γ∗⟩ ∶ A/θ → B/γ(θ),
defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

γ∗Σ(φ/θΣ) = γΣ(φ)/γΣ(θΣ)
is an isomorphism of F-algebraic systems, since, by Lemma 25, for all
Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ θΣ iff ⟨γΣ(φ), γΣ(ψ)⟩ ∈ γΣ(θΣ).
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Therefore, {⟨H,γ⟩−1 ∶ B/γ(θ)→ A/θ} is a subdirect intersection. Since

A/θ ∈ K, it follows that B/γ(θ) ∈ ⊲

IΠ(K) ⊆ K. Therefore, γ(θ) ∈
ConSysK(B).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, τ ♭ ∶ (SEN♭)ω →(SEN♭)2 be a collection of natural transformations in N ♭ and A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩ an F-algebraic system. If τ ♭ is perceived as having a
single distinguished argument, with the remaining arguments as parameters,
we define, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), the sentence family

τAΣ [φ] = {τAΣ,Σ′[φ]}Σ′∈∣Sign∣,
by setting, for all Σ′ ∈ ∣Sign∣,

τAΣ,Σ′[φ] = ⋃{τAΣ′(SEN(f)(φ), χ⃗) ∶ f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′)}.
Given Φ ⊆ SEN(Σ), we set

τAΣ [Φ] = ⋃{τAΣ [φ] ∶ φ ∈ Φ}
and, given a sentence family X ∈ SenFam(A), we set

τA[X] = ⋃{τAΣ [XΣ] ∶ Σ ∈ ∣Sign∣}.
We will revisit these and similar definitions in more depth in Section 2.13. For
now, we only use them to establish a result that involves the relative congru-
ence system operator ΘK, introduced in this section, and direct images under
morphisms of F-algebraic systems with isomorphic functor components.

Proposition 34 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ and K be a class of F-algebraic systems,

containing a trivial F-algebraic system and such that
⊲

IΠ(K) ⊆ K. Let also
A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic systems and ⟨H,γ⟩ ∶ A → B a
surjective morphism, with H an isomorphism. Then, for all X ∈ SenFam(A),

ΘK,B(γ(ΘK,A(τA[X]))) = ΘK,B(τB[γ(X)]).
Proof: Taking into account the surjectivity of ⟨H,γ⟩, we have τB[γ(X)] =
γ(τA[X]) ≤ γ(ΘK,A(τA[X])). Hence

ΘK,B(τB[γ(X)]) ≤ ΘK,B(γ(ΘK,A(τA[X]))).
On the other hand, γ−1(ΘK,B(τB[γ(X)])) is, by Proposition 33, a K-con-
gruence system on A, and, moreover, it contains τA[X], since

γ(τA[X]) = τB[γ(X)] ≤ ΘK,B(τB[γ(X)]).
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Hence, ΘK,A(τA[X]) ≤ γ−1(ΘK,B(τB[γ(X)])), i.e.,

γ(ΘK,A(τA[X])) ≤ ΘK,B(τB[γ(X)]).
This yields ΘK,B(γ(ΘK,A(τA[X]))) ≤ ΘK,B(τB[γ(X)]). ∎

We conclude the section by showing that the relative congruence system
generated by a family of pairs may be expressed as the join in the complete
lattice of relative congruence systems of those relative congruence systems
generated by the single pairs of elements in the generating family.

Proposition 35 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be
a class of F-algebraic systems, containing a trivial F-algebraic system and

such that
⊲

IΠ(K) ⊆ K. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all
X ∈ SenFam(A2),

ΘK,A(X) = ⋁{ΘK,A(φ,ψ) ∶ ⟨φ,ψ⟩ ∈XΣ,Σ ∈ ∣Sign∣}.
Proof: Set

θ ∶= ⋁{ΘK,A(φ,ψ) ∶ ⟨φ,ψ⟩ ∈XΣ,Σ ∈ ∣Sign∣}.
For all Σ ∈ ∣Sign∣ and all ⟨φ,ψ⟩ ∈ XΣ, we have ⟨φ,ψ⟩ ∈ ΘK,A

Σ (X). So
ΘK,A(φ,ψ) ≤ ΘK,A(X) and, therefore, θ ≤ ΘK,A(X). Conversely, for all
Σ ∈ ∣Sign∣ and all ⟨φ,ψ⟩ ∈ XΣ, we have ⟨φ,ψ⟩ ∈ ΘK,A

Σ (φ,ψ) ⊆ θΣ. Hence,
X ≤ θ, which implies that ΘK,A(X) ≤ θ. ∎

2.5 Varieties of F-Algebraic Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.
An natural F-equation (sometimes, referred to, simply, as natural

equation, F-equation or just equation, if the meaning is made clear from
context) is a pair ⟨σ♭, τ ♭⟩, where σ♭, τ ♭ ∶ (SEN♭)k → SEN♭ are natural trans-
formations in N ♭. The F-equation ⟨σ♭, τ ♭⟩ will be denoted also by σ♭ ≈ τ ♭.
Sometimes notation such as τ ♭ ∶= τ 0 ♭ ≈ τ 1 ♭ may also become handy. We
denote by NEq(F) the collection of all natural F-equations.

Let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system.
Then, given Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ), we write A ⊧Σ σ♭ ≈ τ ♭[φ⃗] and say
that φ⃗ Σ-satisfies σ♭ ≈ τ ♭ in A if

αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗)).
The following is a useful lemma concerning satisfiability of an equation.

Lemma 36 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, σ♭ ≈ τ ♭ a
natural F-equation and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. The following
statements are equivalent:
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(a) A ⊧Σ σ♭ ≈ τ ♭[φ⃗];
(b) σA

F (Σ)
(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗));

(c) For all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′),
αΣ′(σ♭Σ′(SEN♭(f)(φ⃗))) = αΣ′(τ ♭Σ′(SEN♭(f)(φ⃗))).

Proof:

(a)⇔(b) By the homomorphism property,

αΣ(σ♭Σ(φ⃗)) = σAF (Σ)(αΣ(φ⃗)) and αΣ(τ ♭Σ(φ⃗)) = τAF (Σ)(αΣ(φ⃗)).
So we get

A ⊧Σ σ♭ ≈ τ ♭[φ⃗] iff αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗))
iff σA

F (Σ)
(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗)).

(c)⇒(a) This implication is trivial by taking Σ′ = Σ and f = iΣ.

(b)⇒(c) We have

σA
F (Σ)
(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗))

implies αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗))
implies, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN(F (f))(αΣ(σ♭Σ(φ⃗))) = SEN(F (f))(αΣ(τ ♭Σ(φ⃗)))
implies, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(σ♭Σ(φ⃗))) = αΣ′(SEN♭(f)(τ ♭Σ(φ⃗)))
implies, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(σ♭Σ′(SEN♭(f)(φ⃗))) = αΣ′(τ ♭Σ′(SEN♭(f)(φ⃗))).
∎

Given a natural F-equation σ♭ ≈ τ ♭ and an F-algebraic system A =⟨A, ⟨F,α⟩⟩ we write
A ⊧ σ♭ ≈ τ ♭

and say that A satisfies σ♭ ≈ τ ♭ or that σ♭ ≈ τ ♭ is satisfied in A or is valid
in A, if, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), A ⊧Σ σ♭ ≈ τ ♭[φ⃗].

Let K be a class of F-algebraic systems and E♭ a set of natural F-
equations. We write K ⊧ E♭ for

A ⊧ σ♭ ≈ τ ♭, for all A ∈ K and all σ♭ ≈ τ ♭ ∈ E♭.

Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we define the kernel Ker(A)
of A to be the kernel of the morphism ⟨F,α⟩ ∶ F →A, i.e., we let

Ker(A) ∶= Ker(⟨F,α⟩).
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Moreover, given a class K of F-algebraic systems, we let

Ker(K) = ⋂
A∈K

Ker(A).
Now we are in a position to define two kinds of classes of F-algebraic systems
generated by a given class K of F-algebraic systems. In other words, we
introduce two class operators on classes of F-algebraic systems.

Definition 37 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K

be a class of F-algebraic systems.

• The semantic variety VSem(K) generated by K is defined by

VSem(K) = {A ∈ AlgSys(F) ∶ Ker(K) ≤ Ker(A)};
• The syntactic variety VSyn(K) generated by K is defined by

VSyn(K) = {A ∈ AlgSys(F) ∶ (∀σ♭ ≈ τ ♭)(K ⊧ σ♭ ≈ τ ♭ ⇒ A ⊧ σ♭ ≈ τ ♭)}.
It is relatively easy to see that both VSem and VSyn are closure operators

on the class of F-algebraic systems.

Proposition 38 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Then
VSem and VSyn are closure operators on AlgSys(F).
Proof: We work, first, with VSem.

• If A ∈ K, then, by definition, we have Ker(K) ≤ Ker(A). Thus, A ∈
VSem(K). So K ⊆ VSem(K).

• Suppose K ⊆ L and A ∈ VSem(K). Then we have

Ker(L) ≤ Ker(K) ≤ Ker(A).
So A ∈ VSem(L). Hence, if K ⊆ L then VSem(K) ⊆ VSem(L).

• Finally, suppose A ∈ VSem(VSem(K)). Then Ker(VSem(K)) ≤ Ker(A).
But, note that, for all B ∈ VSem(K), we have Ker(K) ≤ Ker(B), whence
Ker(K) ≤ Ker(VSem(K)). Combining the two inclusions, we get

Ker(K) ≤ Ker(VSem(K)) ≤ Ker(A).
Thus, A ∈ VSem(K). We conclude that VSem(VSem(K)) ⊆ VSem(K).
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We work, next, with VSyn. Consider the two mappings

NEq ∶ P(AlgSys(F)) → P(NEq(F)),
NMod ∶ P(NEq(F))→ P(AlgSys(F)),

defined by

NEq(K) = {σ♭ ≈ τ ♭ ∈ NEq(F) ∶ K ⊧ σ♭ ≈ τ ♭}, K ⊆ AlgSys(F);
NMod(E) = {A ∈ AlgSys(F) ∶ A ⊧ E}, E ⊆ NEq(F).

It is not difficult to see that NEq and NMod form a Galois connection. Thus,
VSyn = NMod ○NEq is a closure operator on AlgSys(F). ∎

We prove that the semantic variety is always included in the syntactic
variety generated by the same class of F-algebraic systems.

Theorem 39 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a
class of F-algebraic systems. Then

VSem(K) ⊆ VSyn(K).
Proof: Suppose that A ∈ VSem(K). Let σ♭ ≈ τ ♭ be a natural F-equation, such
that K ⊧ σ♭ ≈ τ ♭. We must show that A ⊧ σ♭ ≈ τ ♭. To this end, let Σ ∈ ∣Sign♭∣
and φ⃗ ∈ SEN♭(Σ). Since K ⊧ σ♭ ≈ τ ♭, we have, for all K = ⟨K, ⟨K,κ⟩⟩ ∈ K,

κΣ(σ♭Σ(φ⃗)) = κΣ(τ ♭Σ(φ⃗)).
This means that ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ KerΣ(K). Since this holds for all K ∈ K,

we conclude that ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ KerΣ(K). But, by hypothesis, Ker(K) ≤
Ker(A). Therefore, we get ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ KerΣ(A). This means that

αΣ(σ♭Σ(φ⃗)) = αΣ(τ ♭Σ(φ⃗)).
Since Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ) were arbitrary, we get that A ⊧ σ♭ ≈ τ ♭.
Now we conclude that A ∈ VSyn(K). Thus, VSem(K) ⊆ VSyn(K). ∎

Now we look at some sufficient conditions that ensure that these two
variety operators generate the same class of F-algebraic systems. However,
the terminology, methodology and work presented in the rest of the section
have proven very useful in many contexts and can be used to reconcile results
that hold in more restricted contexts with partial analogs that hold in this
very abstract setting.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and consider a
cardinal κ (which will usually be taken to be either finite or ω). A source
signature κ-variable pair (ssvκ for short) ⟨V, v⃗⟩ consists of a signature
V ∈ ∣Sign♭∣ and a vector v⃗ ∈ SEN♭(V )κ, satisfying the following conditions:
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1. For all Σ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ)κ, there exists f⟨Σ,φ⃗⟩ ∈ Sign♭(V,Σ), such
that

SEN♭(f⟨Σ,φ⃗⟩)(v⃗) = φ⃗;

2. For all Σ,Σ′ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ)κ and f ∈ Sign♭(Σ,Σ′),
V

✠�
�
�
�f⟨Σ,φ⃗⟩

❅
❅
❅
❅

f⟨Σ′,SEN♭(f)(φ⃗)⟩

❘

Σ
f

✲ Σ′

f ○ f⟨Σ,φ⃗⟩ = f⟨Σ′,SEN♭(f)(φ⃗)⟩.

An algebraic system F is called κ-term if it has an ssvκ. The morphisms
f⟨Σ,φ⃗⟩ ∶ V → Σ are referred to as the ssvκ maps.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. We say that F
has κ-variables if, for all Σ ∈ ∣Sign♭∣, there exists v⃗Σ ∈ SEN♭(Σ)κ, such that⟨Σ, v⃗Σ⟩ is an ssvκ, with ssvκ maps f⟨Σ,Σ′,φ⃗⟩ ∶ Σ → Σ′, for all Σ,Σ′ ∈ ∣Sign♭∣
and φ⃗ ∈ SEN♭(Σ′)κ. The algebraic system F is called κ-formulaic if it has
κ-variables.

It follows, according to the preceding definitions, that F is κ-formulaic,
with Σ-κ-variables v⃗Σ and ssvκ maps f⟨Σ,Σ′,φ⃗⟩ if:

• For all Σ,Σ′ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ′)κ,
f⟨Σ,Σ′,φ⃗⟩(v⃗Σ) = φ⃗;

• For all Σ,Σ′,Σ′′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ′,Σ′′) and all φ⃗ ∈ SEN♭(Σ′)κ,
Σ

✠�
�
�
�f⟨Σ,Σ′,φ⃗⟩

❅
❅
❅
❅

f⟨Σ,Σ′′,SEN♭(f)(φ⃗)⟩

❘

Σ′
f

✲ Σ′′

f ○ f⟨Σ,Σ′,φ⃗⟩ = f⟨Σ,Σ′′,SEN♭(f)(φ⃗)⟩.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a κ-formulaic algebraic system, with κ-
variables v⃗Σ, Σ ∈ ∣Sign♭∣. F will be called κ-transformational (modulo
the given κ-variables) if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), there
exists σ⟨Σ,φ⟩ ∶ (SEN♭)κ → SEN♭, such that:

• σ⟨Σ,φ⟩ depends on only finitely may variables;
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• φ = σ⟨Σ,φ⟩Σ (v⃗Σ).
We have the following relation now that serves, so to speak, in bridging

the gap between the semantical and syntactical definitions of varieties of
algebraic systems.

Lemma 40 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a transformational algebraic sys-
tem and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Then, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ KerΣ(A) iff A ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩.

Proof: Suppose, first, that A ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. This means that, for all
Σ′ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ′),

αΣ′(σ⟨Σ,φ⟩Σ′ (φ⃗)) = αΣ′(σ⟨Σ,ψ⟩Σ′ (φ⃗)).
Taking Σ′ = Σ and φ⃗ = v⃗Σ, we get αΣ(σ⟨Σ,φ⟩Σ (v⃗Σ)) = αΣ(σ⟨Σ,ψ⟩Σ (v⃗Σ)), or, what
amounts to the same, αΣ(φ) = αΣ(ψ). Hence, ⟨φ,ψ⟩ ∈ KerΣ(A).

Suppose, conversely, that ⟨φ,ψ⟩ ∈ KerΣ(A). This means that αΣ(φ) =
αΣ(ψ). Since F is assumed to be transformational, there exist σ⟨Σ,φ⟩ and

σ⟨Σ,ψ⟩ in N ♭, such that σ
⟨Σ,φ⟩
Σ (v⃗Σ) = φ and σ

⟨Σ,ψ⟩
Σ (v⃗Σ) = ψ. Thus, we get

αΣ(σ⟨Σ,φ⟩Σ (v⃗Σ)) = αΣ(σ⟨Σ,ψ⟩Σ (v⃗Σ)).
Now, by formulaicity, for all Σ′ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ′), we get an ssvκ

map f⟨Σ,Σ′,φ⃗⟩ ∶ Σ → Σ′, for which we have

SEN(F (f⟨Σ,Σ′,φ⃗⟩))(αΣ(σ⟨Σ,φ⟩Σ (v⃗Σ))) = SEN(F (f⟨Σ,Σ′,φ⃗⟩))(αΣ(σ⟨Σ,ψ⟩Σ (v⃗Σ))).
Hence, since α is a natural transformation,

αΣ′(SEN♭(f⟨Σ,Σ′,φ⃗⟩)(σ⟨Σ,φ⟩Σ (v⃗Σ))) = αΣ′(SEN♭(f⟨Σ,Σ′,φ⃗⟩)(σ⟨Σ,ψ⟩Σ (v⃗Σ))).
And since σ⟨Σ,φ⟩, σ⟨Σ,ψ⟩ are also natural transformations, we get

αΣ′(σ⟨Σ,φ⟩Σ′ (SEN♭(f⟨Σ,Σ′,φ⃗⟩)(v⃗Σ))) = αΣ′(σ⟨Σ,ψ⟩Σ′ (SEN♭(f⟨Σ,Σ′,φ⃗⟩)(v⃗Σ))).
Finally, by the κ-variable property, we get

αΣ′(σ⟨Σ,φ⟩Σ′ (φ⃗)) = αΣ′(σ⟨Σ,ψ⟩Σ′ (φ⃗)).
Since Σ′ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ′) were arbitrary, we conclude that A ⊧
σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. ∎

Now we are in a position to prove that, for algebraic systems over transfor-
mational base algebraic systems, the semantic and syntactic variety operators
coincide.
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Theorem 41 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a transformational algebraic sys-
tem and K a class of F-algebraic systems. Then

VSem(K) = VSyn(K).
Proof: By Theorem 39, VSem(K) ⊆ VSyn(K) always holds. For the reverse
inclusion, suppose that A ∈ VSyn(K). We must show that A ∈ VSem(K), i.e.,
that Ker(K) ≤ Ker(A). To this end, let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that ⟨φ,ψ⟩ ∈ KerΣ(K). Then, by Lemma 40, K ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. Since
A ∈ VSyn(K), we get that A ⊧ σ⟨Σ,φ⟩ ≈ σ⟨Σ,ψ⟩. Using Lemma 40 again, we infer
that ⟨φ,ψ⟩ ∈ KerΣ(A). Thus, Ker(K) ≤ Ker(A). Hence, A ∈ VSem(K). ∎

2.6 π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A closure (operator)
system on F is a collection C = {CΣ}Σ∈∣Sign♭∣, such that

CΣ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ))
is a closure operator on SEN♭(Σ), for all Σ ∈ ∣Sign♭∣, and, moreover, for all
Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), and all Φ ⊆ SEN♭(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN♭(f)(Φ)).
This condition is often referred to as structurality.

A π-institution is a pair I = ⟨F,C⟩, where F = ⟨Sign♭,SEN♭,N ♭⟩ is
an algebraic system and C is a closure system on F. We say that the π-
institution I is based on the algebraic system F. The following assumption
is adopted throughout our treatise, unless explicitly stated otherwise:

Global Assumption: If, for some Σ ∈ ∣Sign♭∣, CΣ(∅) ≠ ∅,

then, for all Σ ∈ ∣Sign♭∣, CΣ(∅) ≠ ∅.
(2.1)

The set of Σ-theorems, denoted ThmΣ(I), is defined by

ThmΣ(I) = CΣ(∅).
We then set Thm(I) = {ThmΣ(I)}Σ∈∣Sign∣. We denote by ∅ the ∣Sign♭∣-
indexed collection ∅ = {∅}Σ∈∣Sign♭∣. The Global Assumption (2.1), adopted
above, says that, if a π-institution has Σ-theorems, for some signature Σ,
then it has Σ-theorems, for every signature Σ.

A natural theorem of I is a natural transformation

⊺♭ ∶ (SEN♭)k → SEN♭
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in N ♭, for some k ≥ 0, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,
⊺♭Σ(φ⃗) ∈ ThmΣ(I).

That is, a natural theorem of I is a natural transformation in N ♭ all of whose
values are theorems. We denote by NThm(I) the collection of all natural
theorems of a π-institution I .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution, based on F, and Σ ∈ ∣Sign♭∣. A subset TΣ ⊆ SEN♭(Σ) is called a
Σ-theory if

CΣ(TΣ) = TΣ.
We use ThΣ(I) to denote the collection of all Σ-theories of the π-institution
I . A theory family of I is a sentence family T = {TΣ}Σ∈∣Sign♭∣ of F, such

that TΣ ∈ ThΣ(I), for all Σ ∈ ∣Sign♭∣. The collection of all theory families of
I will be denoted by ThFam(I). Ordered by signature-wise inclusion ≤, it
forms a complete lattice, denoted ThFam(I) = ⟨ThFam(I),≤⟩.

A theory family of I is called a theory system of I if it is a sentence
system, i.e., if it is invariant under signature morphisms. We denote by
ThSys(I), the collection of all theory systems of I . This collection forms
a complete sublattice ThSys(I) = ⟨ThSys(I),≤⟩ of the complete lattice
ThFam(I).

Note that the minimum element of both ThFam(I) and ThSys(I) is
Thm(I), the theorem system of I , and the maximum element is

SEN♭ = {SEN♭(Σ)}Σ∈∣Sign♭∣.
Thus, SEN♭ is used to denote both the sentence functor of the base algebraic
system F of the π-institution I = ⟨F,C⟩ and the maximum theory family
(system) SEN♭ = {SEN♭(Σ)}Σ∈∣Sign♭∣ of I . This overloading will not, hopefully,
cause any confusion, since the context can be used to clarify the meaning.

Proposition 42 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =
⟨F,C⟩ be a π-institution and T ∈ ThFam(I). Then

←Ð
T is the largest the-

ory system of I included in T .

Proof: Since, by Proposition 2,
←Ð
T is the largest sentence system included in

T , it suffices to show that
←Ð
T is a theory system. To this end, let Σ ∈ ∣Sign♭∣

and φ ∈ SEN♭(Σ), such that φ ∈ CΣ(←ÐT Σ). We must show that φ ∈
←Ð
T Σ. So let

Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then we have

SEN♭(f)(φ) ∈ SEN(f)(CΣ(←ÐT Σ)) (hypothesis)

⊆ CΣ′(SEN(f)(←ÐT Σ)) (structurality)

⊆ CΣ′(TΣ′) (definition of
←Ð
T )

= TΣ′ (T ∈ ThFam(I)).
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We now conclude, by the definition of
←Ð
T , that φ ∈

←Ð
T Σ. ∎

On the negative side, it is not true, in general, that, given a theory family

T of a π-institution I , the least sentence system
Ð→
T , containing T , is a theory

system. We show that this is the case via an example.

Example 43 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ consists of two signatures Σ and Σ′ and the only (non-identity)
morphism is f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign → Set is defined by setting

SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ consists of only the projection natural transformations.

Consider the closure system C on F defined by setting

CΣ = {∅,{0},{1},{0,1}} and CΣ′ = {∅,{a, b}}
and let I = ⟨F,C⟩ be the associated π-institution.

Finally, take T = {TΣ, TΣ′} ∈ ThFam(I) to be the theory family specified
by

TΣ = {1} and TΣ′ = ∅.

Then we have Ð→
T Σ = {1} and

Ð→
T Σ′ = {b}.

Since clearly

CΣ′(Ð→T Σ′) = CΣ′({b}) = {a, b} ≠ Ð→T Σ′ ,

it follows that
Ð→
T is not a theory system of I.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define two operators

C ∶ SenFam(F) → ThFam(I);
Ð→
C ∶ SenFam(F) → ThSys(I);

as follows. Consider a sentence family T ∈ SenFam(F).
• C(T ) = {C(T )Σ}Σ∈∣Sign♭∣ is defined by setting, for all Σ ∈ ∣Sign♭∣,

C(T )Σ = CΣ(TΣ);
•
Ð→
C (T ) = {Ð→C (T )Σ}Σ∈∣Sign♭∣ is defined by setting, for all Σ ∈ ∣Sign♭∣,

Ð→
C (T )Σ = CΣ(Ð→T Σ).

It is clear that C(T ) is the smallest theory family of I containing T . We

show in the next proposition that
Ð→
C (T ) is the smallest theory system of I

that contains the sentence family T . Note that this implies, in particular,

that
Ð→
C (T ) is the smallest theory system of I that contains a given theory

family T of I . Note, also, that
Ð→
C (T ) = C(Ð→T ) should not be confused with

ÐÐÐ→
C(T ), which, as shown in Example 43, may not be a theory family of I .

Proposition 44 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =
⟨F,C⟩ a π-institution, based on F, and T ∈ SenFam(F). Then

Ð→
C (T ) is

the smallest theory system of I that includes T .

Proof: It is clear by the definition that
Ð→
C (T ) = C(Ð→T ) ∈ ThFam(I). We

show that it is a theory system. To this end, let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),
such that φ ∈ CΣ(Ð→T Σ). Consider Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then we
have

SEN♭(f)(φ) ∈ SEN♭(f)(CΣ(Ð→T Σ)) (definition of
Ð→
C (T ))

⊆ CΣ′(SEN♭(f)(Ð→T Σ)) (structurality)

⊆ CΣ′(Ð→T Σ′) (definition of
Ð→
T )

=
Ð→
C (T )Σ′ (definition of

Ð→
C (T )).

It remains to show that C(Ð→T ) is the smallest theory system containing T .
To this end, let T ′ ∈ ThSys(I), such that T ≤ T ′. Since, by Proposition

2,
Ð→
T is the least sentence system containing T , we get

Ð→
T ≤ T ′. Therefore,

since C(Ð→T ) is the least theory family containing
Ð→
T , C(Ð→T ) ≤ T ′. Thus, we

conclude that
Ð→
C (T ) = C(Ð→T ) ≤ T ′ and

Ð→
C (T ) is the least theory system of I

that includes T . ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. We say that I is:
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• inconsistent if ThFam(I) = {SEN♭}, i.e., if, for all Σ ∈ ∣Sign♭∣,
CΣ(∅) = SEN♭(Σ);

• almost inconsistent if

ThFam(I) = {T ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ = ∅ or TΣ = SEN♭(Σ))};
• trivial if it is either inconsistent or almost inconsistent.

Lemma 45 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩
be a π-institution based on F. I is trivial if and only if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ), ψ ∈ CΣ(φ).
Proof: Suppose, first, that I is trivial and let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN(Σ).
Since φ ∈ CΣ(φ), we have CΣ(φ) ≠ ∅, which implies that CΣ(φ) = SEN♭(Σ).
Therefore, ψ ∈ CΣ(φ).

Suppose, conversely, that the given condition holds. Let T ∈ ThFam(I)
and Σ ∈ ∣Sign♭∣, such that TΣ ≠ ∅. Then, there exists φ ∈ SEN♭(Σ), such that
φ ∈ TΣ. But then, by hypothesis, for all ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(φ) ⊆ CΣ(TΣ) = TΣ.
Therefore, we get that, for all Σ ∈ ∣Sign♭∣, TΣ = ∅ or TΣ = SEN♭(Σ), showing
that T is almost inconsistent. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. We can order π-
institutions based on F by comparing their closure systems. Let I = ⟨F,C⟩
and I ′ = ⟨F,C ′⟩ two π-institutions based on F. We say that I ′ is an exten-
sion of I and that I is weaker than I ′, written I ≤ I ′ (or C ≤ C ′) if, for
all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),

CΣ(Φ) ⊆ C ′Σ(Φ).
Given a collection I i = ⟨F,C i⟩, i ∈ I, of π-institutions based on the same
algebraic system F, the intersection ⋂i∈I I i = ⟨F,⋂i∈I C i⟩ is defined by
setting, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),

(⋂
i∈I

C i)Σ(Φ) = ⋂
i∈I

C i
Σ(Φ).

It can be shown that ⋂i∈I C i is a closure system on F and that it forms the
meet with respect to the ≤ order of the closure systems C i, i ∈ I, on F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution. Given a theory system T ∈ ThSys(I), we define the family
CT = {CT

Σ}Σ∈∣Sign♭∣ of operators CT
Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)) by setting,

for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),
CT

Σ(Φ) = CΣ(TΣ ∪Φ).
We show that CT is a closure system on F.
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Proposition 46 Let I = ⟨F,C⟩ be a π-institution and T ∈ ThSys(I). Then
CT is a closure system on F.

Proof: We must first show that CT
Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)) is a

closure operator. That it is inflationary and monotone follows directly from
the corresponding properties of CΣ. To see that it is idempotent, let Φ ⊆
SEN♭(Σ). Then

CT
Σ(CT

Σ(Φ)) = CΣ(TΣ ∪CΣ(TΣ ∪Φ)) (by definition)
= CΣ(CΣ(TΣ ∪Φ)) (since TΣ ⊆ CΣ(TΣ ∪Φ))
= CΣ(TΣ ∪Φ) (idempotency of C)
= CT

Σ(Φ) (by definition).

Finally, we must show that CT is structural. To this end, let Σ,Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and Φ ⊆ SEN♭(Σ). We have

SEN♭(f)(CT
Σ(Φ)) = SEN♭(f)(CΣ(TΣ ∪Φ)) (by definition)

⊆ CΣ′(SEN♭(f)(TΣ) ∪ SEN♭(f)(Φ))
(by the structurality of C)

⊆ CΣ′(TΣ′ ∪ SEN♭(f)(Φ)) (T ∈ ThSys(I))
= CT

Σ′(SEN♭(f)(Φ)) (by definition).

We conclude that CT = {CT
Σ}Σ∈∣Sign♭∣ is a closure system on F. ∎

Since CT is a closure system on F, we get, by definition, that the structure⟨F,CT ⟩ is a π-institution. We use the notation IT = ⟨F,CT ⟩ to denote this
π-institution.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be
a π-institution based on F. An I-logical morphism (or simply logical
morphism if I is clear from context) is a morphism ⟨F,α⟩ ∶ F → F, such
that, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),

αΣ(CΣ(Φ)) ⊆ CF (Σ)(αΣ(Φ)).
More generally, let F = ⟨Sign,SEN,N⟩ and F′ = ⟨Sign′,SEN′,N ′⟩ be

two algebraic systems and I = ⟨F,C⟩ and I ′ = ⟨F′,C ′⟩ be π-institutions
based on F and F′, respectively. A logical morphism ⟨F,α⟩ ∶ I → I ′ is an
algebraic system morphism ⟨F,α⟩ ∶ F → F′, such that, for all Σ ∈ ∣Sign∣ and
all Φ ⊆ SEN(Σ),

αΣ(CΣ(Φ)) ⊆ CF (Σ)(αΣ(Φ)).
The following lemma characterizes logical morphisms:

Lemma 47 Let F = ⟨Sign,SEN,N⟩, F′ = ⟨Sign′,SEN′,N ′⟩ be two algebraic
systems and I = ⟨F,C⟩, I ′ = ⟨F′,C ′⟩ be π-institutions, based on F, F′, re-
spectively. Suppose ⟨F,α⟩ ∶ F → F is an algebraic system morphism. Then
the following conditions are equivalent:



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 123

(a) ⟨F,α⟩ ∶ I → I ′ is a logical morphism;

(b) For all Σ ∈ ∣Sign∣ and all Ψ ⊆ SEN′(F (Σ)),
CΣ(α−1Σ (Ψ)) ≤ α−1Σ (C ′F (Σ)(Ψ));

(c) For all T ′ ∈ ThFam(I ′), α−1(T ′) ∈ ThFam(I).
Proof:

(a)⇒(b) Let Σ ∈ ∣Sign∣ and Ψ ⊆ SEN′(F (Σ)). Then, we have

αΣ(CΣ(α−1Σ (Ψ))) ⊆ CF (Σ)(αΣ(α−1Σ (Ψ))) (hypothesis)
⊆ CF (Σ)(Ψ). (set theory)

We conclude that CΣ(α−1Σ (Ψ)) ⊆ α−1Σ (CF (Σ)(Ψ)).
(b)⇒(c) Suppose that T ′ ∈ ThFam(I ′). Then we have

C(α−1(T ′)) ≤ α−1(C ′(T ′)) (hypothesis)
= α−1(T ′). (T ′ ∈ ThFam(I ′))

Therefore, α−1(T ′) ∈ ThFam(I).
(c)⇒(a) Let Σ ∈ ∣Sign∣ and Φ ⊆ SEN(Σ). Then, we have, for all T ∈ ThFam(I ′),

αΣ(Φ) ⊆ TF (Σ) iff Φ ⊆ α−1Σ (TF (Σ)) (set theory)
implies CΣ(Φ) ⊆ α−1Σ (TF (Σ)) (hypothesis)

iff αΣ(CΣ(Φ)) ⊆ TF (Σ). (set theory)

Since T ∈ ThFam(I ′) was arbitrary, we get that

αΣ(CΣ(Φ)) ⊆ C ′F (Σ)(αΣ(Φ)).
So ⟨F,α⟩ is a logical morphism.

∎

In the special case of I-logical morphisms, we obtain the following

Corollary 48 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I =⟨F,C⟩ a π-institution, based on F, and ⟨F,α⟩ ∶ F → F an algebraic system
morphism. Then ⟨F,α⟩ is an I-logical morphism if and only if, for all T ∈
ThFam(I), α−1(T ) ∈ ThFam(I).
Proof: Directly from Lemma 47. ∎
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2.7 Matrix Families and Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. An F-matrix fam-
ily is a pair A = ⟨A, T ⟩, where A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system
and T ∈ SenFam(A). The collection of all F-matrix families is denoted by
MatFam(F). An F-matrix system is an F-matrix family A = ⟨A, T ⟩, such
that T ∈ SenSys(A). The collection of all F-matrix systems is denoted by
MatSys(F).

An F-matrix family A = ⟨A, T ⟩ defines a closure system CA = {CA
Σ}Σ∈∣Sign♭∣

on F by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CA

Σ(Φ) if and only if, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) imlpies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).

Let, now, M be a class of F-matrix families. We denote by

CM = {CM
Σ }Σ∈∣Sign♭∣

the closure system on F that is the signature-wise intersection of the closure
systems CA, A ∈M, i.e.,

CM = ⋂
A∈M

CA.

We use the notation IM = ⟨F,CM⟩ to denote the associated π-institution
based on F.

We give a characterization of the closure system CM on F generated by a
class M of matrix families which shows how that closure system is constructed
using the generating matrix families.

Proposition 49 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
class of F-matrix families. Then CM is the least closure system on F con-
taining the family

T = {α−1(T ) ∶ A = ⟨⟨A, ⟨F,α⟩⟩, T ⟩ ∈M}.
Proof: First we show that T ⊆ CM. To this end, let A = ⟨⟨A, ⟨F,α⟩⟩, T ⟩ ∈M.
We must show that α−1(T ) ∈ CM. Suppose Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such
that φ ∈ CM

Σ (α−1Σ (TF (Σ))). Then, by the definition of CM and the fact that
A ∈M, we get

αΣ(α−1Σ (TF (Σ))) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
Note, however, that the antecedent of the displayed implication always holds.
So the consequent αΣ(φ) ∈ TF (Σ) holds. Hence, φ ∈ α−1Σ (TF (Σ)). Therefore,
CM(α−1(T )) ≤ α−1(T ), showing that α−1(T ) ∈ CM.

Next, we show that, if C is a closure system on F, such that T ⊆ C,
then CM ⊆ C. Equivalently, it suffices to show that C ≤ CM. To this end,
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let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ). Since C is a
closure system on F, we get, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
SEN♭(f)(φ) ∈ CΣ′(SEN♭(f)(Φ)). Thus, since T ⊆ C, we get, for all ⟨A, T ⟩ ∈
M, with A = ⟨A, ⟨F,α⟩⟩,

SEN♭(f)(Φ) ⊆ α−1Σ′ (TF (Σ′)) implies SEN♭(f)(φ) ∈ α−1Σ′ (TF (Σ′)),
i.e., for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).
Hence, for all A = ⟨A, T ⟩ ∈ M, φ ∈ CA

Σ(Φ). We conclude that φ ∈ CM
Σ (Φ).

Therefore, C ≤ CM, as was to be shown. ∎

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩
be a π-institution based on F. Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system,
with A = ⟨Sign,SEN,N⟩. A sentence family T ∈ SenFam(A) is called an
I-filter family and the F-matrix family A = ⟨A, T ⟩ an I-matrix family if

C ≤ CA.

If T happens to be a sentence system, then we refer to T as an I-filter
system and to A = ⟨A, T ⟩ as an I-matrix system.

We have the following simpler characterization of I-filter families, which
follows from the structurality of the closure system of a π-institution.

Lemma 50 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a
π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system, with A =⟨Sign,SEN,N⟩, and T ∈ SenFam(A). T is an I-filter family if and only if,
for every Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ),

αΣ(Φ) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
Proof: Suppose, first, that T is an I-filter family and let Σ ∈ ∣Sign♭∣, Φ∪{φ} ⊆
SEN♭(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). Since T is an I-filter
family, C ≤ C⟨A,T ⟩. Therefore, by taking in the definition of C⟨A,C⟩, Σ′ = Σ
and f ∶ Σ → Σ to be the identity morphism, we get that αΣ(φ) ∈ TF (Σ).

Suppose, conversely, that the given condition holds and let Σ ∈ ∣Sign♭∣,
Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ). Consider Σ′ ∈ ∣Sign♭∣, f ∈
Sign♭(Σ,Σ′), such that αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′). Note, that, by struc-
turality, SEN♭(f)(φ) ∈ CΣ′(SEN♭(f)(Φ)). Therefore, by the assumption and
the hypothesis, αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′). We conclude that T is an I-filter
family. ∎

The next lemma shows that the inverse image under an interpretation of
an I-filter family or system is a theory family or system, respectively, of I .
Moreover this property also characterizes I-filter families/systems.
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Lemma 51 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be
a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system.

(a) T ∈ FiFamI(A) if and only if α−1(T ) ∈ ThFam(I);
(b) T ∈ FiSysI(A) if and only if α−1(T ) ∈ ThSys(I).

Proof:

(a) Suppose, first, that T ∈ FiFamI(A). We must show that α−1(T ) ∈
ThFam(I). To this end, suppose Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such
that φ ∈ CΣ(α−1Σ (TF (Σ)). Since T ∈ FiFamI(A), we have, by definition,

αΣ(α−1Σ (TF (Σ))) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
But the hypothesis of this implication holds, whence the conclusion is
also true and we get αΣ(φ) ∈ TF (Σ) or, equivalently, φ ∈ α−1Σ (TF (Σ)).
Thus α−1(T ) ∈ ThFam(I).
Suppose, conversely, that α−1(T ) ∈ ThFam(I). To show that T ∈
FiFamI(A), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈
CΣ(Φ), and assume that αΣ(Φ) ⊆ TF (Σ). Then, we have Φ ⊆ α−1Σ (TF (Σ)).
Since φ ∈ CΣ(Φ) and α−1(T ) ∈ ThFam(I), we get that φ ∈ α−1Σ (TF (Σ))
or, equivalently, αΣ(φ) ∈ TF (Σ). This proves, by Lemma 50, that

T ∈ FiFamI(A).
(b) This follows from Part (a) and from Part (a) of Lemma 6.

∎

We denote by FiFamI(A) and by MatFam(I), respectively, the collection
of all I-filter families on A and the collection of all I-matrix families. Note
that FiFamI(A) is a complete lattice FiFamI(A) = ⟨FiFamI(A),≤⟩, with
the order ≤ inherited by the corresponding order on sentence families.

Similarly, we denote by FiSysI(A) and by MatSys(I), respectively, the
collection of all I-filter systems on A and the collection of all I-matrix sys-
tems. Note that FiSysI(A) forms a complete lattice

FiSysI(A) = ⟨FiSysI(A),≤⟩,
which is a complete sublattice of the complete lattice FiFamI(A).

Moreover, given a F-matrix family A = ⟨A, T ⟩, we say that T ′ is a sen-
tence family of A, written T ′ ∈ SenFam(A), if T ≤ T ′. Similarly, given
an I-matrix family A = ⟨A, T ⟩, we say that T ′ ∈ FiFamI(A) is an I-filter
family of A, written T ′ ∈ FiFamI(A), if T ≤ T ′.

Since FiFamI(A) and FiSysI(A) are both complete lattices, it makes
sense to define associated closure operators on SenFam(A).
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• Denote by CI,A ∶ SenFam(I) → FiFamI(A) the operator that maps
a given sentence family T of A to the least I-filter family of A that
includes T ;

• Denote by
Ð→
C
I,A

∶ SenFam(A) → FiSysI(A) the operator that maps a
given sentence family T of A to the least I-theory system of A that
includes T .

We look now at some relations between the pairs of operators CI,A, C

on the one hand, and
Ð→
C
I,A

,
Ð→
C on the other, established via the inverse

interpretation α−1 of the F-algebraic system A = ⟨A, ⟨F,α⟩⟩.
Proposition 52 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic
system. Then, for all T ∈ SenFam(A), we have:

(a) C(α−1(T )) ≤ α−1(CI,A(T ));
(b)
Ð→
C (α−1(T )) ≤ α−1(Ð→C I,A(T )).

Proof:

(a) Suppose T ∈ SenFam(A). We have T ≤ CI,A(T ), whence α−1(T ) ≤
α−1(CI,A(T )). By Lemma 51, α−1(CI,A(T )) is a theory family of I
and it includes α−1(T ). Therefore, by the definition of C, C(α−1(T )) ≤
α−1(CI,A(T )).

(b) We have T ≤
Ð→
C
I,A(T ). Therefore, since, by Proposition 2,

Ð→
T is the

least sentence system containing T , we get
Ð→
T ≤
Ð→
C
I,A(T ). Now, taking

into account Lemma 6, we get
ÐÐÐÐ→
α−1(T ) = α−1(Ð→T ) ≤ α−1(Ð→C I,A(T )). By

Lemma 51, α−1(Ð→C I,A(T )) is a theory system of I including
ÐÐÐÐ→
α−1(T ) and,

therefore, C(ÐÐÐÐ→α−1(T )) ≤ α−1(Ð→C I,A(T )), i.e.,
Ð→
C (α−1(T )) ≤ α−1(Ð→C I,A(T )).

∎

We now exhibit a relation between the closure operators CI,A and
Ð→
C
I,A

and the arrow operators, as applied to I-filter families on an F-algebraic
system A.

Proposition 53 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system,
with A = ⟨Sign,SEN,N⟩. Consider T ∈ SenFam(A). Then, we have:

(a) If T ∈ FiFamI(A), then
←Ð
T ∈ FiSysI(A) and it is the largest I-filter

system on A included in T ;
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(b)
Ð→
C
I,A(T ) =Ð→C I,A(Ð→T ).

Proof:

(a) By Proposition 2, we know that
←Ð
T is a sentence system of A and that

it is the largest one included in T . It suffices, thus, to show that
←Ð
T is

an I-filter system. To this end, let Σ ∈ ∣Sign♭∣ and Φ∪ {φ} ⊆ SEN♭(Σ),
such that

φ ∈ CΣ(Φ) and αΣ(Φ) ⊆←ÐT F (Σ).

Then, by definition of
←Ð
T , we get that, for all Σ′ ∈ ∣Sign♭∣ and all

f ∈ Sign♭(Σ,Σ′), SEN(F (f))(αΣ(Φ)) ⊆ TF (Σ′). Since α is a natu-

ral transformation, αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′). Since T ∈ FiFamI(A)
and φ ∈ CΣ(Φ), we get that αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′). Therefore,
SEN(F (f))(αΣ(φ)) ∈ TF (Σ′). Now, noting that this holds for all f ∈

Sign♭(Σ,Σ′) and that F is surjective, we conclude that αΣ(φ) ∈←ÐT F (Σ).

Therefore, we get that
←Ð
T ∈ FiSysI(A).

(b) The inclusion from left to right is clear, since T ≤
Ð→
T . On the other

hand, since, by Proposition 2,
Ð→
T is the least sentence system including

T , we have that every I-filter system including T , also includes
Ð→
T .

Therefore,

Ð→
C
I,A(T ) = ⋂{T ′ ∈ FiSysI(A) ∶ T ≤ T ′}

= ⋂{T ′ ∈ FiSysI(A) ∶Ð→T ≤ T ′}
=
Ð→
C
I,A(Ð→T ).

∎

We extend the definition of logical morphism to morphisms between F-
algebraic systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. An I-logical morphism is a morphism

⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′,

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

such that ⟨G,γ⟩ ∶ F → F is an I-logical morphism ⟨G,γ⟩ ∶ I → I .
Next, we prove a result relating I-filter families/systems on algebraic

systems related by morphisms. This result generalizes Lemma 51.
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Proposition 54 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Consider two F-algebraic systems A =⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩ and a logical morphism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶
A→ A′.

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

(a) If T ∈ FiFamI(A′), then δ−1(T ) ∈ FiFamI(A);
(b) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ is surjective and δ−1(T ) ∈ FiFamI(A), then

T ∈ FiFamI(A′);
(c) If ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′ is surjective, with G,H isomorphisms and

T ∈ FiFamI(A) is such that δ−1(δ(T )) = T , then δ(T ) ∈ ThFamI(A′).
Proof:

(a) Let T ∈ FiFamI(A′). Then, by Lemma 51, α′−1(T ) ∈ ThFam(I). Thus,
by Corollary 48, γ−1(α′−1(T )) ∈ ThFam(I). Therefore, by the com-
mutativity of the rectangle, α−1(δ−1(T )) ∈ ThFam(I). So, again by
Lemma 51, we get that δ−1(T ) ∈ FiFamI(A).

(b) Because of the surjectivity of ⟨G,γ⟩ and Lemma 50, it suffices to show
that, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ),
we have

α′G(Σ)(γΣ(Φ)) ⊆ TF ′(G(Σ)) implies α′G(Σ)(γΣ(φ)) ∈ TF ′(G(Σ)).
We have the following:

α′
G(Σ)
(γΣ(Φ)) ⊆ TF ′(G(Σ))

⇒ δF (Σ)(αΣ(Φ)) ⊆ TH(F (Σ))
⇒ αΣ(Φ) ⊆ δ−1F (Σ)(TH(F (Σ)))
⇒ αΣ(φ) ∈ δ−1F (Σ)(TH(F (Σ)))
⇒ δF (Σ)(αΣ(φ)) ∈ TH(F (Σ′))
⇒ α′

G(Σ)
(γΣ(φ)) ∈ TF ′(G(Σ)).

(c) As in Part (b) because of the surjectivity of ⟨G,γ⟩ and Lemma 50, it
suffices to show that for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ), such
that φ ∈ CΣ(Φ), we have

α′G(Σ)(γΣ(Φ)) ⊆ δF (Σ)(TF (Σ)) implies α′G(Σ)(γΣ(φ)) ∈ δF (Σ)(TF (Σ)).
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We have
α′
G(Σ)
(γΣ(Φ)) ⊆ δF (Σ)(TF (Σ))

⇒ δF (Σ)(αΣ(Φ)) ⊆ δF (Σ)(TF (Σ))
⇒ αΣ(Φ) ⊆ δ−1F (Σ)(δF (Σ)(TF (Σ))) = TF (Σ)
⇒ αΣ(φ) ∈ δ−1F (Σ)(δF (Σ)(TF (Σ)))
⇒ δF (Σ)(αΣ(φ)) ∈ δF (Σ)(TF (Σ))
⇒ α′

G(Σ)
(γΣ(φ)) ∈ δF (Σ)(TF (Σ)).

∎

This proposition has the following significant consequences.

Corollary 55 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ and A′ =⟨A′, ⟨F ′, α′⟩⟩ be two F-algebraic systems and ⟨H,δ⟩ ∶ A → A′ a (surjective)
morphism (making the following diagram commute):

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F ′, α′⟩
❘

A ⟨H,δ⟩ ✲ A′

Consider T ∈ SenFam(A′).
(a) T ∈ FiFamI(A′) iff δ−1(T ) ∈ FiFamI(A);
(b) T ∈ FiSysI(A′) iff δ−1(T ) ∈ FiSysI(A).

Proof: Follows immediately from Proposition 54 upon considering the com-
mutative square,

F
⟨I, ι⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

where ⟨I, ι⟩ ∶ F→ F is the identity morphism. ∎

Corollary 56 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ and A′ =
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⟨A′, ⟨F ′, α′⟩⟩ be two F-algebraic systems and ⟨H,δ⟩ ∶ A → A′ a morphism,
with H an isomorphism:

F

✠�
�
�⟨F,α⟩ ❅

❅
❅

⟨F ′, α′⟩
❘

A ⟨H,δ⟩ ✲ A′

Suppose T ∈ SenFam(A) and Ker(⟨H,δ⟩) is compatible with T .

(a) T ∈ FiFamI(A) iff δ(T ) ∈ FiFamI(A′);
(b) T ∈ FiSysI(A) iff δ(T ) ∈ FiSysI(A′).

Proof: First we show that δ−1(δ(T )) = T : The right to left inclusion is
obvious. For the left to right inclusion, consider Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ),
such that φ ∈ δ−1Σ (δΣ(TΣ)). Then, we have δΣ(φ) ∈ δΣ(TΣ). Thus, there exists
ψ ∈ TΣ, such that δΣ(φ) = δΣ(ψ). By hypothesis, Ker(⟨H,δ⟩) is compatible
with T . Therefore, φ ∈ TΣ. Thus, we get δ−1(δ(T )) ≤ T .

Now the conclusion follows from Proposition 54, since δ−1(δ(T )) = T . ∎

Corollary 57 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ be an F-
algebraic system and θ ∈ ConSys(A). Consider T ∈ SenFam(Aθ).

(a) T ∈ FiFamI(Aθ) iff πθ
−1(T ) ∈ FiFamI(A);

(b) T ∈ FiSysI(Aθ) iff πθ
−1(T ) ∈ FiSysI(A).

On the other hand, if T ∈ SenFam(A) and θ is compatible with T , then we
have:

(c) T ∈ FiFamI(A) iff πθ(T ) ∈ FiFamI(Aθ);
(d) T ∈ FiSysI(A) iff πθ(T ) ∈ FiSysI(Aθ).

Proof: Parts (a) and (b) follow immediately from Corollary 55 upon con-
sidering the commutative diagram

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨F,πθ ○ α⟩
❘

A ⟨I, πθ⟩ ✲ Aθ
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Parts (c) and (d) follow from Corollary 56 upon noticing that I ∶ Sign → Sign
is an isomorphism and that, by hypothesis, Ker(⟨I, πθ⟩) = θ is compatible
with T . ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be
a π-institution based on F. Consider two I-matrix families A = ⟨A, T ⟩
and A′ = ⟨A′, T ′⟩, where A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩. A mor-
phism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A → A′, is called a matrix family morphism⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′ if, for all Σ ∈ ∣Sign∣,

δΣ(TΣ) ⊆ T ′H(Σ).
This matrix family morphism is said to be strict if, for all Σ ∈ ∣Sign∣,

δΣ(TΣ) ⊆ T ′H(Σ) and δΣ(SEN(Σ)/TΣ) ⊆ SEN′(H(Σ))/T ′H(Σ).
These conditions can be equivalently expressed by saying that, for all Σ ∈∣Sign∣,

δ−1Σ (T ′H(Σ)) = TΣ.
They are also equivalent to the statement that, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

φ ∈ TΣ if and only if δΣ(φ) ∈ T ′H(Σ).
We have the following result relating strict morphisms between matrix

families with strict morphisms between matrix families based on F .

Lemma 58 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be
a π-institution, based on F, A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩ be two
F-algebraic systems and A = ⟨A, T ⟩ and A′ = ⟨A′, T ′⟩ two I-matrix families.
A matrix morphism ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′

F
⟨G,γ⟩ ✲ F

A

⟨F,α⟩
❄

⟨H,δ⟩ ✲ A′

⟨F ′, α′⟩
❄

is strict if and only if ⟨G,γ⟩ ∶ ⟨F , α−1(T )⟩ → ⟨F , α′−1(T ′)⟩ is strict.

Proof: The statement follows by noticing that

δ−1(T ′) = T iff α−1(δ−1(T ′)) = α−1(T ) (by the surjectivity of ⟨F,α⟩)
iff γ−1(α′−1(T ′)) = α−1(T )

(by the commutativity of the square).
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Therefore ⟨⟨G,γ⟩, ⟨H,δ⟩⟩ ∶ A→ A′ is strict if and only if ⟨G,γ⟩ ∶ ⟨F , α−1(T )⟩ →⟨F , α′−1(T ′)⟩ is strict. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Given an F-matrix family A = ⟨A, T ⟩, the Leibniz
reduction of A, denoted A∗, is defined as

A∗ = ⟨A∗, T ∗⟩ = ⟨AΩA(T ), T /ΩA(T )⟩,
where AΩA(T ) is the quotient F-algebraic system of A by the congruence
system ΩA(T ) and T /ΩA(T ) = {TΣ/ΩAΣ(T )}Σ∈∣Sign∣, with

TΣ/ΩAΣ(T ) = {φ/ΩAΣ(T ) ∶ φ ∈ TΣ}.
An I-matrix family A = ⟨A, T ⟩ is Leibniz reduced if

ΩA(T ) = ∆A.

An F-algebraic system A is Leibniz reduced if it is the algebraic system
reduct of a Leibniz reduced I-matrix family.

We denote:

• the class of all Leibniz reduced I-matrix families by MatFam∗(I);
• the class of all Leibniz reduced I-matrix systems by MatSys∗(I);
• the class of all reduced F-algebraic systems by AlgSys∗(I);
• the class of all system reduced F-algebraic systems by AlgSys●(I);

i.e., we have:

MatFam∗(I) = {⟨A, T ⟩ ∶ T ∈ FiFamI(A) and ΩA(T ) = ∆A};
MatSys∗(I) = {⟨A, T ⟩ ∶ T ∈ FiSysI(A) and ΩA(T ) =∆A};
AlgSys∗(I) = {A ∶ (∃T ∈ FiFamI(A))(ΩA(T ) = ∆A)};
AlgSys●(I) = {A ∶ (∃T ∈ FiSysI(A))(ΩA(T ) =∆A)}.

2.8 Axiomatic and Filter Extensions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
an F-matrix family A = ⟨A, T ⟩, we set

FiFamI(A) = {T ′ ∈ FiFamI(A) ∶ T ≤ T ′}.
FiFamI(A) is a complete sublattice of FiFamI(A) and we have T ∈ FiFamI(A)
if and only if T ∈ FiFamI(A). We call A′ = ⟨A, T ′⟩ a filter extension of
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A if T ′ ∈ FiFamI(A). Sometimes, by slightly abusing notation, we write
A′ ∈ FiFamI(A) in this case.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩, I ′ =⟨F,C ′⟩ be two π-institutions based on F. I ′ is an axiomatic extension (or
axiomatic strengthening) of I if there exists X ∈ SenSys(F), such that,
for all Φ ∈ SenFam(F),

C ′(Φ) = C(X ∪Φ).
If this is the case, X is said to be a system of axioms witnessing the
extension.

We provide now a characterization of axiomatic extensions.

Lemma 59 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩,
I ′ = ⟨F,C ′⟩ be two π-institutions based on F. I ′ is an axiomatic extension
of I if and only if, for all Φ ∈ SenFam(F),

C ′(Φ) = C(Thm(I ′) ∪Φ).
Proof: Assume, first, that I ′ is an axiomatic extension of I , with witnessing
system of axioms X . Then, we have Thm(I ′) = C ′(∅) = C(X ∪ ∅) = C(X).
Therefore, for all Φ ∈ SenFam(F),

C ′(Φ) = C(X ∪Φ) = C(C(X) ∪Φ) = C(Thm(I ′) ∪Φ).
Assume conversely, that, for all Φ ∈ SenFam(F), C ′(Φ) = C(Thm(I ′) ∪ Φ).
Then X = Thm(I ′) is a system of axioms witnessing the fact that I ′ is an
axiomatic extension of I . ∎

We also have the following characterization in terms of I- and I ′-filter
families and corresponding theory families.

Proposition 60 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩, I ′ = ⟨F,C ′⟩ be two π-institutions based on F. The following state-
ments are equivalent:

(i) I ′ is an axiomatic extension of I;

(ii) For all A ∈MatFam(I ′), FiFamI(A) = FiFamI
′(A);

(iii) For all T ′ ∈ ThFam(I ′) and T ′ ≤ T ∈ SenFam(F),
T ∈ ThFam(I) if and only if T ∈ ThFam(I ′).

Proof:
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(i)⇒(ii) Suppose that I ′ is an axiomatic extension of I and let A = ⟨A, T ′⟩ ∈
MatFam(I ′). Since C ≤ C ′, we have FiFamI

′(A) ⊆ FiFamI(A). So
suppose that T ′′ ∈ FiFamI(A), i.e., T ′ ≤ T ′′ ∈ FiFamI(A). Let Σ ∈∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ C ′Σ(Φ) and αΣ(Φ) ⊆ T ′′F (Σ).
Since φ ∈ C ′Σ(Φ), by Lemma 59, φ ∈ CΣ(ThmΣ(I ′) ∪Φ). Now observe

that αΣ(ThmΣ(I ′)) ⊆ T ′F (Σ) ⊆ T ′′F (Σ), since T ′ ∈ FiFamI
′(A). Thus, we

get
αΣ(ThmΣ(I ′) ∪Φ)) ⊆ T ′′F (Σ).

Hence, since T ′′ ∈ FiFamI(A), we get that αΣ(φ) ∈ T ′′F (Σ). So T ′′ ∈

FiFamI
′(A). And, since T ′ ≤ T ′′, T ′′ ∈ FiFamI

′(A).
(ii)⇒(iii) Let A = ⟨F , T ′⟩ ∈ MatFam(I ′). Then, by hypothesis, for all T ′ ≤ T ,

we have ⟨F , T ⟩ ∈ MatFamI(A) iff ⟨F , T ⟩ ∈ MatFamI
′(A), i.e., T ∈

ThFam(I) iff T ∈ ThFam(I ′).
(iii)⇒(i) First, note that (iii) implies that ThFam(I ′) ⊆ ThFam(I) and, there-

fore, C ≤ C ′. We use this to show that, for all X ∈ SenFam(F),
C ′(X) = C(Thm(I ′) ∪X).

From left to right, note that Thm(I ′) ⊆ C(Thm(I ′)) ⊆ C(Thm(I ′) ∪
X). So, by hypothesis, C(Thm(I ′) ∪X) ∈ ThFam(I ′). Thus, we get

C ′(X) ⊆ C ′(C(Thm(I ′) ∪X)) = C(Thm(I ′) ∪X).
On the other hand, C(Thm(I ′) ∪X) ⊆ C ′(Thm(I ′) ∪X) = C ′(X).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and A =⟨A, T ⟩ ∈MatFam(I). Define, for all Φ ∈ SenFam(A),

CI,A(Φ) = CI,A(T ∪Φ).
CI,A(Φ) is the I-filter family of A generated by Φ.

We have, for all Φ ∈ SenFam(A), T ≤ CI,A(Φ). In the special case where
A = F and A = F = ⟨F , T ⟩ ∈MatFam(I), we get, for all Φ ∈ SenFam(F),

CF(Φ) = C(T ∪Φ).
The following proposition gives many properties governing filter family

generation and the interaction with surjective morphisms between I-matrix
families.

Proposition 61 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, T ⟩, A′ = ⟨A′, T ′⟩ be F-matrix
families, ⟨H,γ⟩ ∶ A → A′ a surjective morphism and X ∈ FiFamI(A), Y,Y ′ ∈
FiFamI(A′).
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(a) γ−1(Y ) ∈ FiFamI(A);
(b) If H is an isomorphism, CI,A

′(γ(X)) ∈ FiFamI(A′);
(c) If H is an isomorphism, CI,A

′(γ(γ−1(Y ))) = γ(γ−1(Y )) = Y ;

(d) If H is an isomorphism, γ−1(CI,A′(γ(X))) = γ−1(γ(X)) = X if and
only if γ−1(T ′) ≤X and Ker(⟨H,γ⟩) is compatible with X;

(e) γ−1(Y ∩ Y ′) = γ−1(Y ) ∩ γ−1(Y ′);
(f) If H is an isomorphism, for all Φ ∈ SenFam(A), CI,A′(γ(CI,A(Φ))) =

CI,A
′(γ(Φ)).

Proof:

(a) We know, by Corollary 55, that γ−1(Y ) ∈ FiFamI(A). In addition,
T ≤ γ−1(T ′) ≤ γ−1(Y ). So we get γ−1(Y ) ∈ FiFamI(A).

(b) It is obvious that CI,A
′(γ(X)) ∈ FiFamI(A′). Moreover, by definition,

T ′ ≤ CI,A′(γ(X)). So, we get CI,A
′(γ(X)) ∈ FiFamI(A′).

(c) We have

CI,A
′(γ(γ−1(Y ))) = CI,A

′(Y ) (⟨H,γ⟩ surjective)

= Y. (Y ∈ FiFamI(A′))
(d) Assume, first, that γ−1(CI,A′(γ(X))) = γ−1(γ(X)) = X . Then, by

surjectivity of ⟨H,γ⟩, CI,A′(γ(X)) = γ(X). This implies that T ′ ≤
γ(X), whence γ−1(T ′) ≤X . To show compatibility, suppose Σ ∈ ∣Sign∣,
φ,ψ ∈ SEN(Σ), such that γΣ(φ) = γΣ(ψ) and φ ∈XΣ. Then, we have

ψ ∈ γ−1Σ (γΣ(φ)) ⊆ γ−1Σ (γΣ(XΣ)) = XΣ.

So Ker(⟨H,γ⟩) is compatible with X .

Assume, conversely, that γ−1(T ′) ≤X and that Ker(⟨H,γ⟩) is compat-
ible with X . Then, by compatibility, γ−1(γ(X)) = X ∈ FiFamI(A).
Thus, by Corollary 55, γ(X) ∈ FiFamI(A′). But we also have T ′ ≤
γ(X), whence γ(X) ∈ FiFamI(A′). Now we get γ−1(CI,A′(γ(X))) =
γ−1(γ(X)) = X .

(e) This follows from set theory.

(f) Let Φ ∈ SenFam(A). Clearly, CI,A
′(γ(Φ)) ≤ CI,A′(γ(CI,A(Φ))), since

CI,A
′(γ(CI,A(Φ))) is an I-filter family of A′ including γ(Φ).
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To show the reverse inclusion, assume Y ∈ FiFamI(A′), such that
γ(Φ) ≤ Y . Then Φ ≤ γ−1(Y ). Thus, CI,A(Φ) ≤ CI,A(γ−1(Y )) = γ−1(Y ),
the equality following by Part (a). Hence, we get

CI,A
′(γ(CI,A(Φ))) ≤ CI,A′(γ(γ−1(Y ))) = CI,A′(Y ) = Y.

Since CI,A
′(γ(CI,A(Φ))) ≤ Y holds, for all Y ∈ FiFamI(A′), such that

γ(Φ) ≤ Y , we get, in particular, CI,A
′(γ(CI,A(Φ))) ≤ CI,A′(γ(Φ)).

∎

2.9 Generalized Matrix Families and Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A generalized F-matrix
family, or F-gmatrix family for short, is a pair A = ⟨A,T ⟩, where A =⟨A, ⟨F,α⟩⟩ is an F-algebraic system and T ⊆ SenFam(A) is a collection of
sentence families of A.

An F-gmatrix family A = ⟨A,T ⟩ is said to be an F-gmatrix system if
T ⊆ SenSys(A).

Given an F-gmatrix family A = ⟨A,T ⟩, the Tarski congruence system
of A (or of T on A), denoted Ω̃(A) or Ω̃A(T ), is the largest congruence
system on A that is compatible with all sentence families in T .

Lemma 62 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then, for all
F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and all T ⊆ SenFam(A),

Ω̃A(T ) = ⋂
T ∈T

ΩA(T ).
Proof: Note that, by definition, Ω̃A(T ) is compatible with every T ∈ T .
Therefore, since ΩA(T ) is the largest congruence system on A compatible
with T , we get that

Ω̃A(T ) ≤ ΩA(T ), for all T ∈ T .

Thus, Ω̃A(T ) ≤ ⋂T ∈T ΩA(T ).
For the reverse inclusion, note that ⋂T ∈T ΩA(T ) is a congruence system

on A that is compatible with every T ∈ T . Therefore, since Ω̃A(T ) is the
largest such congruence system, we get that ⋂T ∈T ΩA(T ) ≤ Ω̃A(T ). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. An F-gmatrix family A = ⟨A,T ⟩ is called a general-
ized I-matrix family, or I-gmatrix family for short, if T ⊆ FiFamI(A).

We have a special notation for the Tarski congruence systems, when ap-
plied and/or relativized to the collection of all I-filter families:

Ω̃A(I) ∶= Ω̃A(FiFamI(A)).
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Recall that F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F→ F is the identity morphism. We
set

Ω̃(I) ∶= Ω̃F(I) = Ω̃F(ThFam(I)).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-

institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Given
an F-gmatrix family A = ⟨A,T ⟩, the Tarski reduction of A, denoted A∗, is
defined as

A
∗ = ⟨A∗,T ∗⟩ = ⟨AΩ̃A(T ),T /Ω̃A(T )⟩,

where AΩ̃A(T ) is the quotient F-algebraic system of A by the Tarski congru-
ence system Ω̃A(T ) and

T /Ω̃A(T ) = {T /Ω̃A(T ) ∶ T ∈ T },
with T /Ω̃A(T ) = {TΣ/Ω̃AΣ(T )}Σ∈∣Sign∣ such that, for all Σ ∈ ∣Sign∣,

TΣ/Ω̃AΣ(T ) = {φ/Ω̃AΣ(T ) ∶ φ ∈ TΣ}.
An F-gmatrix family A = ⟨A,T ⟩ is Tarski reduced if Ω̃A(T ) = ∆A. An
F-algebraic system A is Tarski reduced if it is the algebraic system reduct
of a Tarski reduced F-gmatrix family.

We denote:

• the class of all Tarski reduced I-gmatrix families by GMatFam∗(I);
• the corresponding class of all Tarski reduced F-algebraic systems by

AlgSys(I),
i.e., we have:

GMatFam∗(I) = {⟨A,T ⟩ ∶ T ⊆ FiFamI(A) and Ω̃A(T ) = ∆A};
AlgSys(I) = {A ∶ (∃T ⊆ FiFamI(A))(Ω̃A(T ) = ∆A)}.

Consider again an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, an F-algebraic
system A and T ⊆ SenFam(A). The Suszko congruence system of T ∈ T
(relative to T ), denoted by Ω̃A,T (T ), is the largest congruence system on
A that is compatible with all T ′ ∈ T , such that T ≤ T ′.

Lemma 63 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then, for all
F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, all T ⊆ SenFam(A) and all T ∈ T ,

Ω̃A,T (T ) = ⋂
T≤T ′∈T

ΩA(T ′).
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Proof: The proof is similar to that of Lemma 62. ∎

We note also the following relation between the Suszko congruence system
of T relative to T and the Tarski congruence system of T T = {T ′ ∈ T ∶ T ≤ T ′}:

Ω̃A,T (T ) = Ω̃A(T T ).
We also have some special notations reserved for the Suszko congruence

systems, when applied and/or relativized to ThFam(I) and to all I-filter
families.

Ω̃I(T ) ∶= Ω̃F ,ThFam(I)(T ), for all T ∈ ThFam(I);
Ω̃I,A(T ) ∶= Ω̃A,FiFam

I(A)(T ), for all T ∈ FiFamI(A).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-

institution based on F. Given an I-matrix family A = ⟨A, T ⟩, the Suszko
reduction of A, denoted ASu, is defined as

ASu = ⟨ASu, T Su⟩ = ⟨AΩ̃I,A(T ), T /Ω̃I,A(T )⟩,
where AΩ̃I,A(T ) is the quotient F-algebraic system of A by the Suszko con-
gruence system Ω̃I,A(T ) and T /Ω̃I,A(T ) = {TΣ/Ω̃I,AΣ (T )}Σ∈∣Sign∣, with

TΣ/Ω̃I,AΣ (T ) = {φ/Ω̃I,AΣ (T ) ∶ φ ∈ TΣ}.
An I-matrix family A = ⟨A, T ⟩ is Suszko reduced if Ω̃I,A(T ) = ∆A. An
F-algebraic system A is Suszko reduced if it is the algebraic system reduct
of a Suszko reduced I-matrix family.

It turns out that, relative to a given π-institution I = ⟨F,C⟩, the classes
of Tarski reduced F-algebraic systems and of Suszko reduced F-algebraic
systems coincide.

Proposition 64 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. A is Suszko reduced if and only if A ∈ AlgSys(I).
Proof: Suppose, first, that A is a Suszko reduced F-algebraic system. Then,
there exists T ∈ FiFamI(A), such that Ω̃I,A(T ) =∆A. But then we have

Ω̃A(FiFamI(A)) ⊆ Ω̃I,A(T ) =∆A.

Hence ⟨A,FiFamI(A)⟩ ∈ GMatFam∗(I) and, consequently, A ∈ AlgSys(I).
Suppose, conversely, that A ∈ AlgSys(I). Thus, by definition, there exists

T ⊆ FiFamI(A), such that Ω̃A(T ) =∆A. Now we get

Ω̃I,A(⋂T ) = Ω̃A({T ∈ FiFamI(A) ∶ ⋂T ≤ T})
≤ Ω̃A(T ) =∆A.
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Since ⋂T ∈ FiFamI(A), we get that ⟨A,⋂T ⟩ ∈ MatFamSu(I) and, conse-
quently, A is Suszko reduced. ∎

We let MatFamSu(I) be the class of all Suszko reduced I-matrix families,
i.e., we have

MatFamSu(I) = {⟨A, T ⟩ ∶ T ∈ FiFamI(A) and Ω̃I,A(T ) =∆A},
whereas, because of Proposition 64, there is no reason for introducing fresh
notation for the class of all Suszko reduced F-algebraic systems, that class
being AlgSys(I).

2.10 The Algebraic Systems of a π-Institution

We have introduced in Sections 2.7 and 2.9 two of the most important classes
of F-algebraic systems associated to a π-institution I = ⟨F,C⟩, namely, the
classes AlgSys∗(I) and AlgSys(I). In this section, we introduce two more
classes and consider some of the relationships that hold between them.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The semantic variety of I is the semantic variety
generated by the algebraic system F/Ω̃(I), i.e., the class

VSem(I) ∶= VSem(F/Ω̃(I))
= {A ∈ AlgSys(F) ∶ Ω̃(I) ≤ Ker(A)}.

The syntactic variety of I is the syntactic variety generated by F/Ω̃(I),
i.e., the class defined by

VSyn(I) ∶= VSyn(F/Ω̃(I))
= {A ∈ AlgSys(F) ∶ (∀σ♭ ≈ τ ♭ ∈ NEq(F))

(F/Ω̃(I) ⊧ σ♭ ≈ τ ♭ ⇒ A ⊧ σ♭ ≈ τ ♭)}.
We can say a few things about the relationships governing the four classes

of F-algebraic systems associated with a given π-institution I = ⟨F,C⟩.
Proposition 65 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then we have

AlgSys∗(I) ⊆ AlgSys(I) ⊆ VSem(I) ⊆ VSyn(I).
Proof: Suppose, first, that A ∈ AlgSys∗(I). Then there exists an I-filter
family T ∈ FiFamI(A), such that ΩA(T ) =∆A. Hence, we get

Ω̃A(FiFamI(A)) ≤ ΩA(T ) =∆A.

It follows that A ∈ AlgSys(I).
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Suppose, next, that A ∈ AlgSys(I). Thus, there exists T ⊆ FiFamI(A),
such that Ω̃A(T ) = ∆A. This implies that Ω̃A(FiFamI(A)) ≤ Ω̃A(T ) = ∆A,
i.e., that Ω̃A(FiFamI(A)) =∆A. Applying the inverse of the surjective mor-
phism ⟨F,α⟩, we get α−1(Ω̃A(FiFamI(A)) = α−1(∆A) = Ker(A). Therefore,
we obtain

Ω̃(I) = ⋂T ∈ThFam(I)Ω(T ) (by Lemma 62)
≤ ⋂T ∈FiFamI(A)Ω(α−1(T )) (by Lemma 51)

= ⋂T ∈FiFamI(A) α−1(ΩA(T )) (by Proposition 24)

= α−1(⋂T ∈FiFamI(A)ΩA(T )) (set theory))

= α−1(Ω̃A(FiFamI(A))) (by Lemma 62)
= Ker(A). (as shown above)

Hence A ∈ VSem(I).
The last inclusion follows from Theorem 39. ∎

Finally, it can be shown that all four classes generate the same syntactic
variety. We first prove a technical lemma that simplifies some algebraic
computations.

Lemma 66 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system, θ ∈ ConSys(A)
and σ♭ ≈ τ ♭ an F-equation. Then

A/θ ⊧ σ♭ ≈ τ ♭ iff for all Σ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ),
⟨αΣ(σ♭Σ(φ⃗)), αΣ(τ ♭Σ(φ⃗))⟩ ∈ θF (Σ).

Proof: We have, by definition, A/θ ⊧ σ♭ ≈ τ ♭ iff, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

αθΣ(σ♭Σ(φ⃗)) = αθΣ(τ ♭Σ(φ⃗))
iff, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

αΣ(σ♭Σ(φ⃗))/θF (Σ) = αΣ(τ ♭Σ(φ⃗))/θF (Σ)
iff, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

⟨αΣ(σ♭Σ(φ⃗)), αΣ(τ ♭Σ(φ⃗))⟩ ∈ θF (Σ).
∎

Theorem 67 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

VSyn(AlgSys∗(I)) = VSyn(AlgSys(I)) = VSyn(VSem(I)) = VSyn(I).
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Proof: By Propositions 65 and 38, we have

VSyn(AlgSys∗(I)) ⊆ VSyn(AlgSys(I)) ⊆ VSyn(VSem(I)) ⊆ VSyn(I).
To conclude the proof we need to show that

VSyn(I) ⊆ VSyn(AlgSys∗(I)).
To this end, suppose A ∈ VSyn(I), i.e., that, for every natural F-equation
σ♭ ≈ τ ♭,

F/Ω̃(I) ⊧ σ♭ ≈ τ ♭ implies A ⊧ σ♭ ≈ τ ♭.

To show that A ∈ VSyn(AlgSys∗(I)), suppose that σ♭ ≈ τ ♭ is an F-equation,
such that AlgSys∗(I) ⊧ σ♭ ≈ τ ♭. In particular, for all T ∈ ThFam(I), we have
that F/Ω(T ) ⊧ σ♭ ≈ τ ♭. This means, by Lemma 66, that, for all Σ ∈ ∣Sign♭∣
and all φ⃗ ∈ SEN♭(Σ), ⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ ΩΣ(T ). Since this holds for all T ∈
ThFam(I), we get that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

⟨σ♭Σ(φ⃗), τ ♭Σ(φ⃗)⟩ ∈ ⋂
T ∈ThFam(I)

ΩΣ(T ) = Ω̃Σ(I).
Thus, again by Lemma 66, F/Ω̃(I) ⊧ σ♭ ≈ τ ♭. Therefore, by hypothesis,
A ⊧ σ♭ ≈ τ ♭. We conclude that A ∈ VSyn(AlgSys∗(I)) and, hence, VSyn(I) ⊆
VSyn(AlgSys∗(I)). ∎

We close this section by showing that, given a π-institution I , the class
of Tarski reduced algebraic systems AlgSys(I) is closed under the operator
⊲

IΠ and contains a trivial F-algebraic system and, therefore, by Proposition
28, it makes sense, for every F-algebraic system A, to consider the relative
congruence system ΘAlgSys(I),A(X) on A generated by a relation family X ∈
RelFam(A).
Proposition 68 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The class of F-algebraic systems AlgSys(I)
is closed under subdirect intersections and contains a trivial F-algebraic sys-
tem.

Proof: It is clear that AlgSys(I) contains a trivial F-algebraic system A,
since ∆A = ∇A is the only congruence system on A. So it suffices to show
that AlgSys(I) is closed under subdirect intersections. To this end, let

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

be a subdirect intersection, with Ai ∈ AlgSys(I), for all i ∈ I. Thus, by
definition, we have, on the one hand, that

⋂
i∈I

Ker(⟨H i, γi⟩) =∆A,
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and on the other, that, for all i ∈ I, there exists T i ⊆ FiFamI(Ai), such that

Ω̃A
i(T i) =∆A

i

.

Now we obtain

Ω̃A(FiFamI(A)) ≤ Ω̃A(⋃i∈I(γi)−1(FiFamI(Ai)))
= ⋂i∈I Ω̃A((γi)−1(FiFamI(Ai)))
= ⋂i∈I(γi)−1(Ω̃Ai(FiFamI(Ai)))
≤ ⋂i∈I(γi)−1(Ω̃Ai(T i))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A.

Therefore, A ∈ AlgSys(I), showing that
⊲

IΠ(AlgSys(I)) ⊆ AlgSys(I). ∎

Based on Proposition 68 and Proposition 28, we define, for every F-
algebraic system A, and all X ∈ RelFam(A),

ΘI,A(X) ∶= ΘAlgSys(I),A(X).

2.11 Frege Relations

Let SEN ∶ Sign → Set be a sentence functor and T ∈ SenFam(SEN). We
define:

• The Frege relation system Λ(T ) = {ΛΣ(T )}Σ∈∣Sign∣ of T on SEN by
setting, for all Σ ∈ ∣Sign∣,

ΛΣ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
SEN♭(f)(φ) ∈ TΣ′ ⇔ SEN♭(f)(ψ) ∈ TΣ′};

• The Frege relation family λ(T ) = {λΣ(T )}Σ∈∣Sign∣ of T on SEN by
setting, for all Σ ∈ ∣Sign∣,

λΣ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ (φ ∈ TΣ ⇔ ψ ∈ TΣ)}.
It turns out that the Frege relation system of T on SEN is an equivalence

system, the Frege relation family of T on SEN is an equivalence family and
that the former is the largest equivalence system included in the latter.

Proposition 69 Let SEN ∶ Sign → Set be a sentence functor and T ∈
SenFam(SEN).
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(a) Λ(T ) is an equivalence system on SEN;

(b) λ(T ) is an equivalence family on SEN;

(c) Λ(T ) is the largest equivalence system included in λ(T ).
Proof:

(a) That Λ(T ) is an equivalence family, i.e., that, for all Σ ∈ ∣Sign∣, ΛΣ(T )
is an equivalence relation, is straightforward. To see that it is a sys-
tem, i.e., invariant under signature morphisms, let Σ ∈ ∣Sign∣, φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΛΣ(T ), and Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′).
Then, we have, for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

SEN(gf)(φ) ∈ TΣ′′ iff SEN(gf)(ψ) ∈ TΣ′′ , whence, we derive that , for
all g ∈ Sign(Σ′,Σ′′),

SEN(g)(SEN(f)(φ)) ∈ TΣ′′ iff SEN(g)(SEN(f)(ψ)) ∈ TΣ′′ .
This shows that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ TΣ′ . Thus, Λ(T ) is an
equivalence system.

(b) This part is straightforward.

(c) It is clear that Λ(T ) ≤ λ(T ), simply by considering, in the definition of
Λ(T ), the particular case where Σ′ = Σ and f = iΣ ∶ Σ → Σ is the identity
signature morphism. Suppose, next, that θ is an equivalence system,
such that θ ≤ λ(T ). We must show that θ ≤ Λ(T ). To this end, let Σ ∈∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ. Since θ is a system, we get,
for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈
θΣ′ . Hence, since θ ≤ λ(T ), we conclude that SEN(f)(φ) ∈ TΣ′ iff
SEN(f)(ψ) ∈ TΣ′ . Therefore, by definition, ⟨φ,ψ⟩ ∈ ΛΣ(T ). Thus,
θ ≤ Λ(T ) and Λ(T ) is indeed the largest equivalence system included
in λ(T ).

∎

There is also a close relationship between the two Frege equivalence fam-
ilies and the Leibniz congruence system of a sentence family. In case SEN is
the underlying sentence functor of an algebraic system A = ⟨Sign,SEN,N⟩,
we sometimes write ΛA(T ) and λA(T ) for the relation families Λ(T ) and
λ(T ), respectively.

Proposition 70 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ∈
SenFam(A).

(a) ΩA(T ) is the largest congruence system contained in λA(T );
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(b) ΩA(T ) is the largest congruence system contained in ΛA(T ).
Proof:

(a) By definition ΩA(T ) is a congruence system on A. So we must show
that ΩA(T ) ≤ λA(T ) and that, moreover, it is the largest congruence
system that satisfies this inclusion property.

To see that ΩA(T ) ≤ λA(T ), let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such
that ⟨φ,ψ⟩ ∈ ΩA

Σ (T ). Then, by compatibility of ΩA(T ) with T , we get
that, φ ∈ TΣ iff ψ ∈ TΣ. So, by definition ⟨φ,ψ⟩ ∈ λAΣ (T ).
Finally, suppose, that θ ∈ ConSys(A), such that θ ≤ λA(T ). We must
show that θ ≤ ΩA(T ). Since, by definition ΩA(T ) is the largest congru-
ence system compatible with T , it suffices to show that θ is compatible
with T . To this end, let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ. Since θ ≤ λA(T ), we get that ⟨φ,ψ⟩ ∈ λAΣ (T )
and φ ∈ TΣ. By the definition of λA(T ), we conclude that ψ ∈ TΣ.
Therefore, θ is compatible with T and, hence, θ ≤ ΩA(T ).

(b) Since ΩA(T ) is, in particular, an equivalence system, we get, by Part (a)
and Part (c) of Proposition 69, that ΩA(T ) ≤ ΛA(T ). It is the largest
congruence system satisfying this property, since ΛA(T ) ≤ λA(T ) and,
by Part (a), it is the largest congruence system in λA(T ).

∎

Let SEN ∶ Sign → Set be a sentence functor and T ⊆ SenFam(SEN) a
collection of sentence families of SEN. The following relation systems are also
known by the name of Frege in the literature, but we use the name “Carnap”
instead to differentiate the two. In the present context, they have the same
relation with Frege relation systems as Tarski congruence systems have with
Leibniz congruence systems. We define:

• The Carnap relation system Λ̃(T ) = {Λ̃Σ(T )}Σ∈∣Sign∣ of T on SEN,
by

Λ̃(T ) = ⋂
T ∈T

Λ(T ),
where the intersection is taken signature-wise;

• The Carnap relation family λ̃(T ) = {λ̃Σ(T )}Σ∈∣Sign∣ of T on SEN,
by

λ̃(T ) = ⋂
T ∈T

λ(T ),
where the intersection is taken signature-wise.

That is, we have, for all Σ ∈ ∣Sign∣,
Λ̃Σ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all T ∈ T ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ TΣ′ ⇔ SEN(f)(ψ) ∈ TΣ′}
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and, similarly,

λ̃Σ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all T ∈ T ,
φ ∈ TΣ ⇔ ψ ∈ TΣ}

We have analogs of Propositions 69 and 1420 for the case of Λ̃ and λ̃.
The analog of Proposition 69 asserts that Λ̃(T ) is an equivalence system on
SEN, λ̃(T ) is an equivalence family on SEN and that Λ̃(T ) is the largest
equivalence system included in λ̃(T ).
Corollary 71 Let SEN ∶ Sign → Set be a sentence functor and consider
T ⊆ SenFam(SEN).

(a) Λ̃(T ) is an equivalence system on SEN;

(b) λ̃(T ) is an equivalence family on SEN;

(c) Λ̃(T ) is the largest equivalence system on SEN included in λ̃(T ).
Proof:

(a) Since the intersection of equivalence relations is an equivalence relation,
we get, by definition, that Λ̃(T ) is an equivalence family. Moreover,
since the intersection of relation systems is a relation system, we get,
by Proposition 69, that Λ̃(T ) is an equivalence system.

(b) As in Part (a), Part (b) follows from the fact that λ(T ) is an equivalence
family, for all T ∈ T .

(c) By Proposition 69, we get Λ̃(T ) = ⋂T ∈T Λ(T ) ≤ ⋂T ∈T λ(T ) = λ̃(T ). Let,
now, θ be an equivalence system on SEN, such that θ ≤ λ̃(T ). We must
show that θ ≤ Λ̃(T ). By hypothesis, θ ≤ λ(T ), for all T ∈ T . Therefore,
by Proposition 69, θ ≤ Λ(T ), for all T ∈ T . Hence, θ ≤ ⋂T ∈T Λ(T ) =
Λ̃(T ). Thus, Λ̃(T ) is indeed the largest equivalence system included
in λ̃(T ).

∎

Once more, if SEN happens to be the underlying sentence functor of an
algebraic system A = ⟨Sign,SEN,N⟩, we sometimes write Λ̃A(T ) and λ̃A(T )
for Λ̃(T ) and λ̃(T ), respectively.

The analog of Proposition 1420 asserts that both Λ̃A(T ) and λ̃A(T ) are
in the same relation with Ω̃A(T ) as ΛA(T ) and λA(T ) are with ΩA(T ), i.e.,
that the Tarski congruence system of a collection of sentence families is the
largest congruence system included in either the Carnap equivalence system
or the Carnap equivalence family of the collection.

Proposition 72 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ⊆
SenFam(A).
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(a) Ω̃A(T ) is the largest congruence system on A included in λ̃A(T );
(b) Ω̃A(T ) is the largest congruence system on A included in Λ̃A(T ).

Proof:

(a) To see that Ω̃A(T ) ≤ λ̃A(T ), let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ Ω̃A
Σ (T ). Since Ω̃A(T ) is compatible with every T ∈ T , we get

that, for all T ∈ T , φ ∈ TΣ if and only if ψ ∈ TΣ. Thus, ⟨φ,ψ⟩ ∈ λ̃AΣ (T ).
Suppose, next, that θ is a congruence system on A, such that θ ≤
λ̃A(T ). We must show that θ ≤ Ω̃A(T ). For this it suffices to show that
θ is compatible with every T ∈ T . Let T ∈ T , Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ. By hypothesis, ⟨φ,ψ⟩ ∈ λ̃AΣ (T ). By
definition, ⟨φ,ψ⟩ ∈ λAΣ (T ). Therefore, since φ ∈ TΣ we get ψ ∈ TΣ and,
hence, θ is compatible with T .

(b) Since Ω̃A(T ) is an equivalence system and, by Part (a), Ω̃A(T ) ≤
λ̃A(T ), we get, by Corollary 71, Ω̃A(T ) ≤ Λ̃A(T ). Moreover, since, by
Corollary 71, Λ̃A(T ) ≤ λ̃A(T ) and, by Part (a), Ω̃A(T ) is the largest
congruence system in λ̃A(T ), it must also be the largest one in Λ̃A(T ).

∎

Finally, consider a sentence functor SEN ∶ Sign → Set, a collection T
of sentence families of SEN and a sentence family X ∈ T . The following is
sometimes also termed Frege relation family, but, once more, to differentiate
it from the preceding notions, we use the term “Lindenbaum” instead. we
define:

• The Lindenbaum relation system Λ̃T (X) = {Λ̃TΣ(X)}Σ∈∣Sign∣ of X

relative to T by instantiating the definition of Λ̃, given above, to the
collection T X of sentence families in T that include X , i.e.,

Λ̃T (X) ∶= Λ̃(T X) = ⋂{Λ(T ) ∶ T ∈ T ,X ≤ T}.
• The Lindenbaum relation family λ̃T (X) = {λ̃TΣ(X)}Σ∈∣Sign∣ of X

relative to T by instantiating the definition of λ̃ to the collection T X

of sentence families in T that include X , i.e.,

λ̃T (X) ∶= λ̃(T X) = ⋂{λ(T ) ∶ T ∈ T ,X ≤ T}.
Using Corollary 71, we get immediately

Corollary 73 Let SEN ∶ Sign → Set be a sentence functor, T ⊆ SenFam(SEN)
and X ∈ T .

(a) Λ̃T (X) is an equivalence system on SEN;
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(b) λ̃T (X) is an equivalence family on SEN;

(c) Λ̃T (X) is the largest equivalence system on SEN included in λ̃T (X).
Proof: Directly by Corollary 71. ∎

When SEN happens to be the underlying sentence functor of an algebraic
system A = ⟨Sign,SEN,N⟩, we sometimes write Λ̃A,T (X) and λ̃A,T (X) for
the equivalence system Λ̃T (X) and the equivalence family λ̃T (X), respec-
tively. Proposition 72 allows us to derive a relation between the Lindenbaum
equivalence system Λ̃A,T (X) or the Lindenbaum equivalence family λ̃A,T (X)
of a sentence family X relative to the collection T of sentence families and
the Suszko congruence system Ω̃A,T (X) of the family relative to the same
collection.

Corollary 74 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, consider T ⊆
SenFam(A) and X ∈ T .

(a) Ω̃A,T (X) is the largest congruence system on A included in λ̃T (X);
(b) Ω̃A,T (X) is the largest congruence system on A included in Λ̃T (X).

Proof: We apply Proposition 72 to the collection T X . We get that Ω̃A(T X)
is the largest congruence system on A that is included in either λ̃(T X) or
Λ̃(T X). The former is, by definition, equal to Ω̃A,T (X) and the latter ones
to λ̃A,T (X) and Λ̃A,T (X), respectively. So we get the conclusion. ∎

Consider now a π-institution I = ⟨F,C⟩, with F = ⟨Sign♭,SEN♭,N ♭⟩, and
let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. The most common application
of the Carnap operator will be to the collection FiFamI(A) of all I-filter
families and that of the Lindenbaum operator to an I-filter family T of A
relative to FiFamI(A). So we set the following notation:

Λ̃A(I) ∶= Λ̃A(FiFamI(A)) and λ̃A(I) ∶= λ̃A(FiFamI(A)).
Moreover, given T ∈ FiFamI(A), we set

Λ̃I,A(T ) ∶= Λ̃A,FiFam
I(A)(T ) and λ̃I,A(T ) ∶= λ̃A,FiFamI(A)(T ).

When those notions specialize to the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩, the
superscript referring to the algebraic system is often omitted. Thus, we have

Λ̃(I) = Λ̃F(I) and λ̃(I) = λ̃F(I)
and, for T ∈ ThFam(I),

Λ̃I(T ) = Λ̃I,F(T ) and λ̃I(T ) = λ̃I,F(T ).
We have the following characterizations of Lindenbaum equivalence sys-

tems and Lindenbaum equivalence families. We use those to derive charac-
terizations of other relation families/systems as corollaries.
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Theorem 75 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). Then, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

(a) ⟨φ,ψ⟩ ∈ Λ̃I,AΣ (T ) if and only if, for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
C
I,A
Σ′ (TΣ′ ,SEN(f)(φ)) = CI,AΣ′ (TΣ′ ,SEN(f)(ψ));

(b) ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ) if and only if CI,AΣ (TΣ, φ) = CI,AΣ (TΣ, ψ).
In particular, if T ∈ FiSysI(A), then Λ̃I,A(T ) = λ̃I,A(T ).
Proof:

(a) We have, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ Λ̃I,AΣ (T ) iff,
for all T ≤ T ′ ∈ FiFamI(A), all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ T ′Σ′ iff SEN(f)(ψ) ∈ T ′Σ′
iff, for all T ′ ∈ FiFamI(A), all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

TΣ ∪ {SEN(f)(φ)} ⊆ T ′Σ′ iff TΣ ∪ {SEN(f)(ψ)} ⊆ T ′Σ′
iff, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

C
I,A
Σ′ (TΣ,SEN(f)(φ)) = CI,AΣ′ (TΣ,SEN(f)(ψ)).

(b) We have, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ) iff,
for all T ≤ T ′ ∈ FiFamI(A), φ ∈ T ′Σ⇔ ψ ∈ T ′Σ iff, for all T ′ ∈ FiFamI(A),
TΣ ∪ {φ} ⊆ T ′Σ⇔ TΣ ∪ {ψ} ⊆ T ′Σ iff C

I,A
Σ (TΣ, φ) = CI,AΣ (TΣ, ψ).

The last statement follows from Parts (a) and (b) and the structurality prop-
erty of CI,A. ∎

Specializing to the least I-filter family on A, which happens to be a theory
system, we get

Corollary 76 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Then
Λ̃A(I) = λ̃A(I) and, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ λ̃AΣ(I) iff C
I,A
Σ (φ) = CI,AΣ (ψ).

Proof: Directly by Theorem 75, by taking T = CI,A(∅). ∎

Specializing to theory families, we get the following
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Theorem 77 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and T ∈ ThFam(I). Then, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

(a) ⟨φ,ψ⟩ ∈ Λ̃IΣ(T ) if and only if, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
CΣ′(TΣ′ ,SEN♭(f)(φ)) = CΣ′(TΣ′ ,SEN♭(f)(ψ));

(b) ⟨φ,ψ⟩ ∈ λ̃IΣ(T ) if and only if CΣ(TΣ, φ) = CΣ(TΣ, ψ).
In particular, if T ∈ ThSys(I), then Λ̃I(T ) = λ̃I(T ).
Proof: We apply Theorem 75 to the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. ∎

As a corollary, we also get

Corollary 78 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then Λ̃(I) = λ̃(I) and, for all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ λ̃Σ(I) iff CΣ(φ) = CΣ(ψ).

Proof: Apply Theorem 77 to T = Thm(I), which happens to be a theory
system. ∎

We record, finally, a couple of relatively straightforward monotonicity
properties of the Carnap and Lindenbaum operators. The following theorem
refers to collections of filter families and individual filter families and the
subsequent corollary specializes this to theory families.

Theorem 79 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩,
I ′ = ⟨F,C ′⟩ π-institutions based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and T,T ′ ∈ FiFamI(A).

(a) If I ≤ I ′, then Λ̃A(I) ≤ Λ̃A(I ′) and λ̃A(I) ≤ λ̃A(I ′);
(b) If T ≤ T ′, then Λ̃A,I(T ) ≤ Λ̃A,I(T ′) and λ̃A,I(T ) ≤ λ̃A,I(T ′).

Proof:

(a) Since I ≤ I ′, we have FiFamI
′(A) ⊆ FiFamI(A). Hence,

Λ̃A(I) = ⋂{ΛA(X) ∶ X ∈ FiFamI(A)}
≤ ⋂{ΛA(X) ∶ X ∈ FiFamI

′(A)}
= Λ̃A(I ′).

An almost identical reasoning yields the second inclusion.



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 151

(b) Since T ≤ T ′, we get

FiFamI(A)T ′ ⊆ FiFamI(A)T ,
whence we have

Λ̃I,A(T ) = ⋂{ΛA(X) ∶ T ≤ X ∈ FiFamI(A)}
≤ ⋂{ΛA(X) ∶ T ′ ≤X ∈ FiFamI(A)}
= Λ̃I,A(T ′)

and, similarly, λ̃I,A(T ) ≤ λ̃I,A(T ′).
∎

Corollary 80 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩,
I ′ = ⟨F,C ′⟩ π-institutions, based on F, and T,T ′ ∈ ThFam(I).

(a) If I ≤ I ′, then Λ̃(I) ≤ Λ̃(I ′) and λ̃(I) ≤ λ̃(I ′);
(b) If T ≤ T ′, then Λ̃I(T ) ≤ Λ̃I(T ′) and λ̃I(T ) ≤ λ̃I(T ′).

Proof: Apply Theorem 79 to A = F = ⟨F, ⟨I, ι⟩⟩. ∎

In closing, we provide the following table summarizing the correspon-
dences between notions giving rise to congruence systems and notions giving
rise to equivalence families and systems:

T ∈ SenFam(A) T ⊆ SenFam(A) T ∈ T ⊆ SenFam(A)
Congrunece Leibniz Tarski Suszko

Systems ΩA(T ) Ω̃A(T ) Ω̃A,T (T )
Equivalence Fa- Frege Carnap Lindenbaum

milies/Systems ΛA(T ), λA(T ) Λ̃A(T ), λ̃A(T ) Λ̃A,T (T ), λ̃A,T (T )
2.12 Subsystems and π-Subinstitutions

In this section, we look at N ♭-algebraic subsystems. Let F = ⟨Sign♭,SEN♭,
N ♭⟩ be a base algebraic system and let A = ⟨Sign,SEN,N⟩ be an N ♭-
algebraic system. A universe U of A is a sentence system of A that is closed
under the operations in N , i.e., such that, for all σ♭ in N ♭, all Σ ∈ ∣Sign∣ and
all φ⃗ ∈ UΣ,

σΣ(φ⃗) ∈ UΣ.

We denote by Unv(A) the collection of all universes of A.
Given a universe U ∈ Unv(A), we may define a functor SEN′ ∶ Sign →

Set, as follows:

• For all Σ ∈ ∣Sign∣, SEN′(Σ) = UΣ;
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• For all Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN′(Σ),
SEN′(f)(φ) = SEN(f)(φ).

Moreover, given a natural transformation σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, we
may define the natural transformation σ′ ∶ SEN′k → SEN′ by setting, for all
Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN′(Σ),

σ′Σ(φ⃗) = σΣ(φ⃗).
In other words σ′ = σ ↾U= σ ↾SEN′ .

We denote by N ′ the category of natural transformations on SEN′ consist-
ing of the restrictions σ′ = σ ↾SEN′ , with the composition operation inherited
by that of N , i.e., such that

σ′ ○ τ ′ = σ ↾SEN′ ○ τ ↾SEN′= (σ ○ τ) ↾SEN′= (σ ○ τ)′.
Finally, we set A′ = ⟨Sign,SEN′,N ′⟩ and call A′ the algebraic subsys-

tem of A on the universe U or on the functor SEN′. We write A′ ≤ A to
signify that A′ is an algebraic subsystem of A.

Note that the pair ⟨I, j⟩ ∶ A′ →A, where I ∶ Sign→ Sign and j ∶ SEN′ →
SEN, defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN′(Σ), by

jΣ(φ) = φ,
becomes a morphism of N ♭-algebraic systems, called the injection mor-
phism of A′ into A.

Now we relate injection morphisms with the construction of the image
algebraic system outlined in Lemma 13.

Proposition 81 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems and ⟨F,α⟩ ∶
A → A′ an algebraic system morphism, with F ∶ Sign → Sign′ an isomor-
phism. Then, we have ⟨F,α⟩ = ⟨I, j⟩ ○ ⟨F,α′⟩,

α(A)

✚
✚
✚
✚
✚⟨F,α′⟩ ❃ ❩

❩
❩
❩
❩

⟨I, j⟩
⑦

A ⟨F,α⟩ ✲ A′

where ⟨F,α′⟩ ∶ A → α(A) is the surjective morphism defined in Lemma 14
and ⟨I, j⟩ ∶ α(A)→A′ is the injection morphism.
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Proof: We have, using the definitions, that, for all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

jF (Σ)(α′Σ(φ)) = jF (Σ)(αΣ(φ)) = αΣ(φ).
This proves the commutativity of the triangle. ∎

We call the decomposition of ⟨F,α⟩ ∶ A → A′ established in Proposition
81, the (natural) epi-mono factorization of ⟨F,α⟩.

Of particular interest are the subuniverses of an algebraic system that are
generated by a given sentence family X of the algebraic system. We detail
this construction here and introduce some relevant notation.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and let A = ⟨Sign,
SEN,N⟩ be an N ♭-algebraic system. Consider a sentence family

X ∈ SenFam(A).
Of course, it is very likely that X is neither a system (i.e., invariant under
signature morphisms) nor closed under the operations in N . But we have
pertinent constructions that can be employed to obtain a closure of X with
respect to those operations.

Recall, first, that, by Proposition 2,
Ð→
X is the least sentence system of A

containing X .
Second, define νA(X) = {νAΣ (X)}Σ∈∣Sign∣, by letting, for all Σ ∈ ∣Sign∣,

νAΣ (X) be given by

νAΣ (X) = {σA
Σ (φ⃗) ∶ σ ∈ N, φ⃗ ∈XΣ}.

We can show that νA(X) is the least sentence family of A containing
X and closed under the operations in N and that, moreover, it happens to
be a sentence system in case X is a sentence system. As a consequence, we

obtain that νA(Ð→X) is the least universe of A including X . These results are
detailed in the following proposition and theorem.

Proposition 82 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and X ∈
SenFam(A).

(a) νA(X) is the least sentence family of A including X and closed under
the operations in N ;

(b) If X ∈ SenSys(A), the νA(X) is also a sentence system.

Proof: Note, first, that, since the identity ι ∶ SEN → SEN is a natural
transformation in N , we have, by definition, that X ≤ νA(X). Suppose,
next, that σ ∶ SENk → SEN is in N , Σ ∈ ∣Sign∣ and φ⃗ ∈ νAΣ (X). Thus, for all
i < k, there exists τ i ∶ SENni → SEN and χ⃗i ∈XΣ, such that

φi = τ iΣ(χ⃗i).
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Let n = n0 + n1 + ⋯ + nk−1 and χ⃗ = ⟨χ⃗0, χ⃗1, . . . , χ⃗k−1⟩ be the vector of length
n resulting from the concatenation of the elements of the χ⃗i’s. Then we get
that

σΣ(φ⃗) = σΣ(τ 0Σ(χ⃗0), . . . , τk−1Σ (χ⃗k−1))
= [σ ○ ⟨τ 0 ○ ⟨pn,0, . . . , pn,n0−1⟩, τ 1 ○ ⟨pn,n0, . . . , pn,n0+n1−1⟩, . . . ,

τk−1 ○ ⟨pn,n0+⋯+nk−1 , . . . , pn,n0+⋯+nk−1⟩⟩](χ⃗).
Since the natural transformation above is in N and χ⃗ ∈ XΣ, we conclude that
σΣ(φ⃗) ∈ νAΣ (X), whence νA(Σ) is closed under the operations in N .

To show minimality, suppose that Y ∈ SenFam(A), such that X ≤ Y and
Y is closed under the operations in N . Consider Σ ∈ ∣Sign∣ and φ ∈ νAΣ (X).
By definition, there exists σ in N and φ⃗ ∈ XΣ, such that φ = σΣ(φ⃗). But, then,
since φ⃗ ∈ XΣ ⊆ YΣ and Y is closed under the operations in N , we get that
φ = σΣ(φ⃗) ∈ YΣ. Since this holds for all Σ ∈ ∣Sign∣, we get that νA(X) ≤ Y
and, hence, νA(X) is the least sentence family of A including X and closed
under the operations in N .

Finally, let X ∈ SenSys(A). Suppose Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and
φ ∈ νAΣ (X). Then, there exists σ in N and φ⃗ ∈ XΣ, such that φ = σΣ(φ⃗). We
now get

SEN(f)(φ) = SEN(f)(σΣ(φ⃗))
= σΣ′(SEN(f)(φ⃗)) (σ in N)
∈ νAΣ′(X). (σ in N , φ ∈ XΣ, X ∈ SenSys(A))

Therefore νA(X) ∈ SenSys(A). ∎

Theorem 83 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and consider

X ∈ SenFam(A). Then νA(Ð→X) is the least universe of A including X.

Proof: By Proposition 2,
Ð→
X ∈ SenSys(A). Therefore, by Proposition 82,

νA(Ð→X) ∈ Unv(A). Suppose, that U ∈ Unv(A), such that X ≤ U . Since U is a

universe, it is a sentence system. Thus, by Proposition 2,
Ð→
X ≤ U . Moreover,

since U is a universe, it is closed under the operations in N , whence, by

Proposition 82, νA(Ð→X) ≤ U . We conclude that νA(Ð→X) is the least universe
of A containing X . ∎

Based on Theorem 83, given X ∈ SenFam(A), we call νA(Ð→X) the uni-
verse of A generated by X and sometimes denote it by

⟨X⟩ = {⟨X⟩Σ}Σ∈∣Sign∣.
We adopt many simplifying notations such as writing ⟨Φ⟩, Φ ⊆ SEN(Σ), for

the universe ⟨T ⟩, generated by T ∈ SenFam(A), with

TΣ′ = { Φ, if Σ′ = Σ
∅, if Σ′ ≠ Σ
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and ⟨φ,ψ⟩ for ⟨{φ,ψ}⟩, φ,ψ ∈ SEN(Σ), if such overloading is unlikely to result
into major mayhem.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Consider an F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩ and let A′ = ⟨Sign,SEN′,
N ′⟩ be an algebraic subsystem of A. Define α−1(SEN′) = {α−1Σ (SEN′)}Σ∈∣Sign♭∣
by letting α−1Σ (SEN′) be given, for all Σ ∈ ∣Sign♭∣, by

α−1Σ (SEN′) = α−1Σ (SEN′(F (Σ))).
Lemma 84 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system. If A′ = ⟨Sign,
SEN′,N ′⟩ ≤A is an algebraic subsystem of A, then α−1(SEN′) is a universe
of F.

Proof: Since SEN′ is a sentence system of A, by Lemma 6, we get that
α−1(SEN′) is a sentence system of F. So it suffices to show that α−1(SEN′)
is closed under the operations in N ♭. To this end, let σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣
and φ⃗ ∈ α−1(SEN′(F (Σ)). Then we have

αΣ(σ♭Σ(φ⃗)) = σA
F (Σ)
(αΣ(φ⃗))

∈ SEN′(F (Σ)),
since αΣ(φ⃗) ∈ SEN′(F (Σ)), by hypothesis, and SEN′(F (Σ)) is a universe of
A. Thus α−1(SEN′) is indeed a universe of F. ∎

We define the triple α−1(A′) = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ as the algebraic sub-
system of F determined by the universe α−1(SEN′) of F.

Let, again, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩
an F-algebraic system, with A = ⟨Sign,SEN,N⟩, and A′ = ⟨Sign,SEN′,N ′⟩
be an algebraic subsystem of A. We define the pair ⟨F,α′⟩ ∶ α−1(A′) → A′

by letting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ α−1Σ (SEN′(F (Σ)),
α′Σ(φ) = αΣ(φ).

Then ⟨F,α′⟩ turns out to be a surjective morphism from α−1(A′) to A′.

Lemma 85 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system. If A′ = ⟨Sign,
SEN′,N ′⟩ ≤A is an algebraic subsystem of A, then ⟨F,α′⟩ ∶ α−1(A′)→A′ is
a surjective morphism.

Proof: Since F ∶ Sign♭ → Sign is surjective and full, by hypothesis, it suffices
to show that, for all Σ ∈ ∣Sign♭∣, α′Σ ∶ α−1(SEN′(F (Σ))) → SEN′(F (Σ)) is
also surjective. But this follows by the definition of α−1(SEN′) and the
surjectivity of ⟨F,α⟩ ∶ F→A. ∎
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Lemma 85 shows that A′ = ⟨A′, ⟨F,α′⟩⟩ may be viewed as an α−1(A′)-
algebraic system.

Consider now an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-insti-
tution I = ⟨F,C⟩ based on F. Given an algebraic subsystem F′ = ⟨Sign♭,
SEN′ ♭,N ′ ♭⟩ of F, we define the π-subinstitution induced by, or associ-
ated with F′, to be the pair I ′ = ⟨F′,C ′⟩, where C ′ ∶ PSEN′ ♭ → PSEN′ ♭ is
defined, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN′ ♭(Σ), by

C ′Σ(Φ) = CΣ(Φ) ∩ SEN′ ♭(Σ).
Proposition 86 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ an al-
gebraic subsystem of F. Then I ′ = ⟨F′,C ′⟩ is a π-institution.

Proof: We must show that C ′ ∶ PSEN′ ♭ → PSEN′ ♭ is a closure system on F′.
The inflation property is clear, since, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN′ ♭(Σ),

Φ ⊆ CΣ(Φ) ∩ SEN′ ♭(Σ) = C ′Σ(Φ).
Monotonicity is also clear, since, for all Σ ∈ ∣Sign♭∣ and all Φ,Ψ ⊆ SEN′ ♭(Σ),
such that Φ ⊆ Ψ,

C ′Σ(Φ) = CΣ(Φ) ∩ SEN′ ♭(Σ) ⊆ CΣ(Ψ) ∩ SEN′ ♭(Σ) = C ′Σ(Ψ).
For idempotency, let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN′ ♭(Σ), such that φ ∈
C ′Σ(C ′Σ(Φ)). Then we have

φ ∈ CΣ(CΣ(Φ) ∩ SEN′ ♭(Σ)) ∩ SEN′ ♭(Σ)
⊆ CΣ(CΣ(Φ)) ∩ SEN′ ♭(Σ)
= CΣ(Φ) ∩ SEN′ ♭(Σ)
= C ′Σ(Φ).

It now only remains to show that C ′ is also structural. Let Σ,Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and Φ ⊆ SEN′ ♭(Σ). Then, we have

SEN′ ♭(f)(C ′Σ(Φ)) = SEN′ ♭(f)(CΣ(Φ) ∩ SEN′ ♭(Σ))
⊆ SEN♭(f)(CΣ(Φ)) ∩ SEN′ ♭(Σ′)
⊆ CΣ′(SEN♭(f)(Φ)) ∩ SEN′ ♭(Σ′)
= CΣ′(SEN′ ♭(f)(Φ)) ∩ SEN′ ♭(Σ′)
= C ′Σ′(SEN′ ♭(f)(Φ)).

We conclude that C ′ is a closure system on F′ and, therefore, I ′ is a π-
institution. ∎

We also give a characterization of the theory families and the theory
systems of the induced subinstitution in terms of those of its parent.
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Proposition 87 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution, based on F, and F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ an al-
gebraic subsystem of F. Then

ThFam(I ′) = {T ∩ SEN′ ♭ ∶ T ∈ ThFam(I)}
and ThSys(I ′) = {T ∩ SEN′ ♭ ∶ T ∈ ThSys(I)}.

Proof: We show the first equality. The second may be proved similarly.
Suppose, first, that T ′ ∈ ThFam(I ′). Then we have C ′(T ′) = T ′. By

definition, C ′(T ′) = C(T ′) ∩ SEN′ ♭. Thus, we get T ′ = C(T ′) ∩ SEN′ ♭. Since
C(T ′) ∈ ThFam(I), we get that ThFam(I ′) ⊆ {T ∩ SEN′ ♭ ∶ T ∈ ThFam(I)}.

Suppose, conversely, that T ∈ ThFam(I). Then, we have

C ′(T ∩ SEN′ ♭) = C(T ∩ SEN′ ♭) ∩ SEN′ ♭

⊆ C(T ) ∩ SEN′ ♭

= T ∩ SEN′ ♭.

So T ∩ SEN′ ♭ ∈ ThFam(I ′) and we conclude that

{T ∩ SEN′ ♭ ∶ T ∈ ThFam(I)} ⊆ ThFam(I ′).
Equality now follows. ∎

Proposition 87 implies that the property of all theory families being theory
systems (which shall be used in the next chapter as the defining property of a
systemic π-institution) is inherited by all π-subinstitutions of a π-institution:

Corollary 88 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution, based on F, and F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ an algebraic
subsystem of F. If I is such that ThFam(I) = ThSys(I), then I ′ = ⟨F′,C ′⟩
satisfies the same property.

Proof: If T ′ ∈ ThFam(I ′), then, by Proposition 87, there exists a theory
family T ∈ ThFam(I), such that T ′ = T ∩SEN′ ♭. By hypothesis, we have T ∈
ThSys(I), whence T ′ = T ∩ SEN′ ♭ ∈ ThSys(I ′). It follows that ThFam(I ′) =
ThSys(I ′). ∎

We now look at a relationship between Leibniz congruence systems of
theory families in institutions and of Leibniz congruence systems of corre-
sponding theory families in subinstitutions associated with given universes.

Proposition 89 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution, based on F, and I ′ = ⟨F′,C ′⟩ a π-subinstitution of
I, associated with F′ = ⟨Sign,SEN′ ♭,N ′ ♭⟩ ≤ F. Then, for all T ∈ ThFam(I),

ΩF(T ) ∩ (SEN′ ♭)2 ≤ ΩF′(T ∩ SEN′ ♭).
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Proof: By the maximality property of ΩF′(T ∩ SEN′ ♭), it suffices to show
that ΩF(T )∩ (SEN′ ♭)2 is a congruence system on F′ that is compatible with
the theory family T ∩ SEN′ ♭.

The reflexivity, symmetry, transitivity and congruence properties of

ΩF(T ) ∩ (SEN′ ♭)2
are inherited by those of ΩF(T ). Moreover, we have, for all Σ,Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′),

SEN′ ♭(f)(ΩF
Σ(T ) ∩ SEN′ ♭(Σ)2) ⊆ SEN♭(f)(ΩF

Σ(T )) ∩ SEN′ ♭(Σ′)2
⊆ ΩF

Σ′(T ) ∩ SEN′ ♭(Σ′)2.
So ΩF(T ) ∩ (SEN′ ♭)2 is indeed a congruence system on F′. Finally, assume
that Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN′ ♭(Σ), such that

⟨φ,ψ⟩ ∈ ΩF
Σ(T ) ∩ SEN′ ♭(Σ)2 and φ ∈ TΣ ∩ SEN′ ♭(Σ).

Then, by the compatibility of ΩF(T ) with T , we get that ψ ∈ TΣ∩SEN′ ♭(Σ).
We conclude that ΩF(T )∩(SEN′ ♭)2 is indeed compatible with T ∩SEN′ ♭ and,
therefore, ΩF(T ) ∩ (SEN′ ♭)2 ≤ ΩF′(T ∩ SEN′ ♭). ∎

In particular, we have the following, where, recall that ⟨φ,ψ⟩ denotes the
universe of F generated by {φ,ψ} ⊆ SEN♭(Σ).
Corollary 90 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) implies ⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩).

Proof: This follows directly by Proposition 89 by considering the universe⟨φ,ψ⟩ of F generated by the sentence family T , with TΣ = {φ,ψ} and TΣ′ = ∅,
for all Σ′ ≠ Σ. ∎

We turn now to the examination of the relation between π-institutions
and their models, on the one hand, and π-subinstitutions and their models,
on the other.

We show first that, for every π-institution I , every I-filter family on an
F-algebraic system A gives rise naturally to an I ′-filter family on an F′-
algebraic subsystem of A.

Proposition 91 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and T ∈ FiFamI(A). Let, also A′ = ⟨Sign′,SEN′,N ′⟩ ≤ A be an
algebraic subsystem of A. Then T ∩ SEN′ ∈ FiFamI

′(⟨A′, ⟨F,α′⟩⟩), where
I ′ = ⟨α−1(A′),C ′⟩ is the π-subinstitution of I induced by α−1(A′).
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Proof: By Lemma 84, α−1(A′) is an algebraic subsystem of F. Therefore,
the pair I ′ = ⟨α−1(A′),C ′⟩ is a well defined π-subinstitution of I . So it
suffices to show, by Lemma 51, that α−1(T ∩ SEN′) ∈ ThFam(I ′). But this
is easy, since we have

α−1(T ∩ SEN′) = α−1(T ) ∩α−1(SEN′) ∈ ThFam(I ′),
membership following by Lemma 51 and Proposition 87. ∎

As a corollary, we obtain the fact that inverse images of Leibniz congru-
ence systems of filter families on algebraic subsystems equal Leibniz congru-
ence systems of the corresponding theory families of π-subinstitutions.

Corollary 92 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). Let, also A′ = ⟨Sign′,SEN′,N ′⟩ ≤ A be an algebraic subsystem
of A. Then

α−1(ΩA′(T ∩ SEN′)) = Ωα−1(A′)(α−1(T ) ∩ α−1(SEN′)).
Proof: This follows by Proposition 91 and Proposition 24. ∎

2.13 Syntax

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and consider a set E ⊆
N of natural transformations in N . All natural transformations in E are,
therefore, finitary. Since, however, there may be an infinite number of them,
they may be collectively of unbounded arity. As a consequence, we write, for
all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)ω,

EΣ(φ⃗) = {σΣ(φ0, . . . , φk−1) ∶ σ ∈ E}
to denote the values of E on the tuple φ⃗, where, for each σ ∈ E k-ary, only

the first k components of φ⃗ are actually used.
In certain contexts, we will view the first k positions of each natural

transformation in E as distinguished, while treating all remaining positions
as parametric. In that case we have to exercise meticulous care when we
employ the following notation. Given Σ ∈ ∣Sign∣ and φ⃗ ∈ SEN(Σ)k, we write

EΣ[φ⃗] = {EΣ,Σ′[φ⃗]}Σ′∈∣Sign∣,
where, for all Σ′ ∈ ∣Sign∣, we define

EΣ,Σ′[φ⃗] = {σΣ′(SEN(f)(φ⃗), χ⃗) ∶ σ ∈ E,f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN♭(Σ′)}.
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Let, again, A = ⟨Sign,SEN,N⟩ be an algebraic system and E ⊆ N . For
T ∈ SenFam(A), we set

←Ð
E (T ) = {←ÐEΣ(T )}Σ∈∣Sign∣,

where, for all Σ ∈ ∣Sign∣,
←Ð
EΣ(T ) = {φ⃗ ∈ SEN(Σ) ∶ EΣ[φ⃗] ≤ T}.

We show that
←Ð
E (T ) is a relation system on A.

Lemma 93 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, E ⊆ N and

T ∈ SenFam(A). Then
←Ð
E (T ) is a relation system on A.

Proof: Let Σ ∈ ∣Sign∣ and φ⃗ ∈ SEN(Σ), such that φ⃗ ∈
←Ð
EΣ(T ). Our goal is to

show that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN(f)(φ⃗) ∈←ÐEΣ′(T ).

So we fix Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′). By hypothesis, we have that,
EΣ[φ⃗] ≤ T . Thus, for all Σ′′ ∈ ∣Sign∣, g ∈ Sign(Σ′,Σ′′) and χ⃗ ∈ SEN(Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

EΣ′′(SEN(gf)(φ⃗), χ⃗) ⊆ TΣ′′ ,
or, equivalently,

EΣ′′(SEN(g)(SEN(f)(φ⃗)), χ⃗) ⊆ TΣ′′ .
By definition, this means that EΣ′[SEN(f)(φ⃗)] ≤ T , i.e., that SEN(f)(φ⃗) ∈
←Ð
EΣ′(T ). Therefore

←Ð
E (T ) is a relation system. ∎

We show, next, that
←Ð
E is a monotone operator on SenFam(A).

Lemma 94 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and E ⊆ N .
Then, for all T,T ′ ∈ SenFam(A),

T ≤ T ′ implies
←Ð
E (T ) ≤←ÐE (T ′).

Proof: Suppose that T,T ′ ∈ SenFam(I), with T ≤ T ′. Then, for all Σ ∈∣Sign∣ and all φ⃗ ∈ SEN(Σ), we have

φ⃗ ∈
←Ð
EΣ(T ) iff EΣ[φ⃗] ≤ T

implies EΣ[φ⃗] ≤ T ′
iff φ⃗ ∈

←Ð
EΣ(T ′).

So
←Ð
E (T ) ≤←ÐE (T ′). ∎

A very useful property of the
←Ð
E operator on sentence families is that it

commutes with inverse surjective morphisms.



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 161

Lemma 95 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,
SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨F,α⟩ ∶ A→A′

be a surjective morphism. Then, for all E ⊆ N ♭, we have

α−1(←ÐÐEA′(T )) =←ÐEA(α−1(T )), for all T ∈ SenFam(A′).
Proof: Let Σ ∈ ∣Sign∣ and φ⃗ ∈ SEN(Σ). Then we have φ⃗ ∈ α−1Σ (←ÐÐÐEA′

F (Σ)
(T )) iff

αΣ(φ⃗) ∈←ÐÐÐEA′

F (Σ)
(T ) iff EA′

F (Σ)
[αΣ(φ⃗)] ≤ T iff, by surjectivity, for all Σ′ ∈ ∣Sign∣,

f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),
EA′

F (Σ′)(SEN′(F (f))(αΣ(φ⃗)), αΣ′(χ⃗)) ⊆ TF (Σ′)
iff for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),

EA′

F (Σ′)(αΣ′(SEN(f)(φ⃗)), αΣ′(χ⃗)) ⊆ TF (Σ′)
iff for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),

αΣ′(EA
Σ′(SEN(f)(φ⃗), χ⃗)) ⊆ TF (Σ′)

iff for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),
EA

Σ′(SEN(f)(φ⃗), χ⃗) ⊆ α−1Σ′ (TF (Σ′))
iff EA

Σ [φ⃗] ≤ α−1(T ) iff φ⃗ ∈
←Ð
EA

Σ (α−1(T )). ∎

On the other hand, there is also a relationship between the operator
←Ð
E

and images under morphisms.

Lemma 96 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a a base algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems, ⟨F,α⟩ ∶ A→
A′ be a morphism and E ⊆ N . Then, for all Σ ∈ ∣Sign∣, all φ⃗ ∈ SEN(Σ) and
all Σ′ ∈ ∣Sign∣, we have

αΣ′(EΣ,Σ′[φ⃗]) ⊆ E′F (Σ),F (Σ′)[αΣ(φ⃗)],
with equality holding in case ⟨F,α⟩ is surjective.

Proof: Let ε ∈ E and f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′). Then, we have

αΣ′(εΣ′(SEN(f)(φ⃗), χ⃗))
= ε′

F (Σ′)
(αΣ′(SEN(f)(φ⃗)), αΣ′(χ⃗))

= ε′
F (Σ′)
(SEN′(F (f))(αΣ(φ⃗)), αΣ′(χ⃗))

∈ E′
F (Σ),F (Σ′)

[αΣ(φ⃗)].
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If ⟨F,α⟩ is surjective, then every element in E′
F (Σ),F (Σ′)

[αΣ(φ⃗)] is of the

form ε′
F (Σ′)
(SEN′(F (f))(αΣ(φ⃗)), αΣ′(χ⃗)), for some ε ∈ E, Σ′ ∈ ∣Sign∣, f ∈

Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′). Thus, by following the preceding equalities
bottom-up, we get the reverse inclusion. ∎

Finally, we prove a close relationship between
←Ð
EA, where E is a collec-

tion of natural transformations, with two distinguished arguments, and the
Leibniz operator on the algebraic system A.

Proposition 97 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, E ⊆ N ,

with two distinguished arguments, and T ∈ SenFam(A). If
←Ð
E (T ) is a reflex-

ive relation system on A, then

ΩA(T ) ≤←ÐE (T ).
Proof: Suppose that Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈
ΩA

Σ (T ). Since ΩA(T ) is a congruence system, we have, for all σ ∈ E ⊆ N and
all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′),

⟨σΣ′(SEN(f)(φ),SEN(f)(ψ), χ⃗),
σΣ′(SEN(f)(φ),SEN(f)(φ), χ⃗)⟩ ∈ ΩA

Σ′(T ).
By the assumption of reflexivity, we get that, for all σ ∈ E, all Σ′ ∈ ∣Sign∣,
f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′), σΣ′(SEN(f)(φ),SEN(f)(φ), χ⃗) ∈ TΣ′ .
Therefore, by the compatibility of ΩA(T ) with T , we conclude that, for all
σ ∈ E, all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′),

σΣ′(SEN(f)(φ),SEN(f)(ψ), χ⃗) ∈ TΣ′ .
This means that EΣ[φ,ψ] ≤ T , or equivalently, ⟨φ,ψ⟩ ∈ ←ÐEΣ(T ). Therefore,

ΩA(T ) ≤←ÐE (T ). ∎

Proposition 97 allows us to conclude that in cases where
←Ð
E (T ) is actually

a congruence system compatible with the sentence family T , it coincides with
the Leibniz congruence system of T on A.

Corollary 98 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, E ⊆ N , with

two distinguished arguments, and T ∈ SenFam(A). If
←Ð
E (T ) is a congruence

system on A compatible with T , then

←Ð
E (T ) = ΩA(T ).

Proof: Since, by hypothesis,
←Ð
E (T ) is a congruence system on A, it is re-

flexive. So, by Proposition 97, we have ΩA(T ) ≤ ←ÐE (T ). On the other hand,
since it is a congruence system on A compatible with T and, by definition,

ΩA(T ) is the largest such, we get that
←Ð
E (T ) ≤ ΩA(T ). We conclude that

←Ð
E (T ) = ΩA(T ). ∎
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2.14 Global versus Local Membership

We turn now to exploring some syntactic conditions with respect to mor-
phisms, parameters and theory families in a π-institution. We consider the
following setting: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭ a
collection of natural transformations in N ♭, with k distinguished arguments,
and I = ⟨F,C⟩ a π-institution based on F.

Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ)k.
• We say φ⃗ is E-locally in T if, for all χ⃗ ∈ SEN♭(Σ),

EΣ(φ⃗, χ⃗) ⊆ TΣ.
• We say that φ⃗ is E-globally in T if

EΣ[φ⃗] ≤ T.
• We say φ⃗ is left E-locally in T if it is E-locally in

←Ð
T .

• Similarly, φ⃗ is left E-globally in T if it is E-globally in
←Ð
T .

We show next that these properties satisfy the following diagram, where
arrows are implications pointing from the stronger to the weaker property.
After the lemma proving this result, we construct some examples showing
that all implications are proper (i.e., none of them are equivalences in general
for arbitrary π-institutions).

Left E-Global ✛ ✲ E-Global

Left E-Local
❄

E-Local
❄

Proposition 99 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭,
with k distinguished variables, I = ⟨F,C⟩ a π-institution based on F, T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ)k.

(a) φ⃗ is left E-globally in T if and only if it is E-globally in T .

(b) If φ⃗ is E-globally in T , then it is left E-locally in T . The implication
becomes an equivalence if all arguments in E are distinguished (i.e.,
there are no parameters).



164 CHAPTER 2. ALGEBRA AND LOGIC Voutsadakis

(c) If φ⃗ is left E-locally in T , then it is E-locally in T . The implication
becomes an equivalence if T ∈ ThSys(I).

Proof:

(a) If φ⃗ is left E-globally in T , then EΣ[φ⃗] ≤ ←ÐT . But, by Proposition 2,
←Ð
T ≤ T , whence EΣ[φ⃗] ≤ T . Thus, φ⃗ is E-globally in T .

Suppose, conversely, that φ⃗ is E-globally in T . Then, for all Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ TΣ′ .
As a special case, we get that, for all Σ′,Σ′′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
g ∈ Sign♭(Σ′,Σ′′) and all χ⃗ ∈ SEN♭(Σ′),

Σ
f ✲ Σ′

g ✲ Σ′′

φ⃗ ✲ SEN♭(f)(φ⃗) ✲ SEN♭(g ○ f)(φ⃗)
χ⃗ ✲ SEN♭(g)(χ⃗)

EΣ′′(SEN♭(g ○ f)(φ⃗),SEN♭(g)(χ⃗)) ⊆ TΣ′′ .
So SEN♭(g)(EΣ′(SEN♭(f)(φ⃗), χ⃗)) ⊆ TΣ′′ . Since this holds for all Σ′′ ∈
∣Sign♭∣ and all g ∈ Sign♭(Σ′,Σ′′), we get EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ ←ÐT Σ′ .
Since this holds for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), we get

EΣ[φ⃗] ≤←ÐT . We now conclude that φ⃗ is left E-globally in T .

(b) Suppose φ⃗ is E-globally in T . Then, for all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ TΣ′ .
Thus, in particular, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
χ⃗ ∈ SEN♭(Σ), EΣ′(SEN♭(f)(φ⃗),SEN♭(f)(χ⃗)) ⊆ TΣ′ . Therefore,

SEN♭(f)(EΣ(φ⃗, χ⃗)) ⊆ TΣ′ ,
which shows that EΣ(φ⃗, χ⃗) ⊆←ÐT Σ. So φ⃗ is left E-locally in T .

Finally, assume all arguments in E are distinguished. Then, if φ⃗ is left

E-locally in T , we have EΣ(φ⃗) ⊆ ←ÐT Σ, whence, for all Σ′ ∈ ∣Sign♭∣ and
all f ∈ Sign♭(Σ,Σ′),

EΣ′(SEN♭(f)(φ⃗)) = SEN♭(f)(EΣ(φ⃗)) ⊆ TΣ′ .
Hence EΣ[φ⃗] ≤ T and φ⃗ is E-globally in T .
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(c) The implication holds, exactly as the left to right implication in Part

(a), because
←Ð
T ≤ T , for all T ∈ ThFam(I). The equivalence statement

holds because, by Proposition 2,
←Ð
T = T , whenever T ∈ ThSys(I). ∎

We provide examples to show that the implications in Proposition 99 are
proper in general, i.e., they are not equivalences for arbitrary π-institutions,
arbitrary sets of natural transformations E and arbitrary theory families T .

Example 100 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single non-identity
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is determined by SEN♭(Σ) = {0}, SEN♭(Σ′) = {a, b}
and SEN♭(f) ∶ SEN♭(Σ)→ SEN♭(Σ′), given by SEN♭(f)(0) = b;

• N ♭ is the category of natural transformations generated by the binary
transformation σ♭ ∶ (SEN♭)2 → SEN♭, determined by the following ta-
bles:

σ♭Σ
0 0

σ♭Σ′ a b

a b b

b a b

Consider the closure system C on F defined by setting

CΣ = {{0}} and CΣ′ = {{b},{a, b}}
and let I = ⟨F,C⟩ be the associated π-institution.

Finally, take T = {TΣ, TΣ′} ∈ ThFam(I) to be the theory family specified
by

TΣ = {0} and TΣ′ = {b}
and consider E = {σ♭} ⊆ N ♭, with one distinguished argument. Notice that
←Ð
T = T .

We now have σ♭Σ(0,0) ∈ TΣ = ←ÐT Σ. Thus, 0 is E-left locally in T . On
the other hand σ♭Σ′(SEN♭(f)(0), a) = σ♭Σ′(b, a) = a ∉ TΣ′. Therefore 0 is not
E-globally in T .
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Example 101 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single non-identity
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is determined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b} and SEN♭(f) ∶ SEN♭(Σ) → SEN♭(Σ′), given by SEN♭(f)(0) = a
and SEN♭(f)(1) = b;

• N ♭ is the category of natural transformations generated by the binary
transformation σ♭ ∶ (SEN♭)2 → SEN♭, determined by the following ta-
bles:

σ♭Σ 0 1
0 1 1
1 0 1

σ♭Σ′ a b

a b b

b a b

Consider the closure system C on F defined by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}
and let I = ⟨F,C⟩ be the associated π-institution.

Finally, take T = {TΣ, TΣ′} ∈ ThFam(I) to be the theory family specified
by

TΣ = {0,1} and TΣ′ = {b}
and consider E = {σ♭} ⊆ N ♭, with one distinguished argument. Notice that

we have
←Ð
T = {{1},{b}}.

Since σ♭Σ(1,0) = 0 and σ♭Σ(1,1) = 1 are both in TΣ, we conclude that 1 is

E-locally in T . On the other hand, σ♭Σ(1,0) = 0 ∉
←Ð
T Σ. Thus 1 is not left

E-locally in T .

Let again F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭ a set
of natural transformations, I = ⟨F,C⟩ a π-institution based on F and T ∈
ThFam(I). Quantifying over all signatures and all sentences, we get the
following definitions:
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• We say E is locally in T if, for all Σ ∈ ∣Sign♭∣ and all φ⃗, χ⃗ ∈ SEN♭(Σ),
EΣ(φ⃗, χ⃗) ⊆ TΣ.

• We say E is left locally in T if, for all Σ ∈ ∣Sign♭∣ and all φ⃗, χ⃗ ∈
SEN♭(Σ),

EΣ(φ⃗, χ⃗) ⊆←ÐT Σ.

• We say E is globally in T if, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),
EΣ[φ⃗] ≤ T.

Of course, we have, taking into account Proposition 99:

Corollary 102 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭,
with k distinguished arguments, I = ⟨F,C⟩ a π-institution, based on F, and
T ∈ ThFam(I).

(a) If E is globally in T , then it is left locally in T ;

(b) If E is left locally in T , then it is locally in T .

Proof: Directly by Proposition 99. ∎

But Corollary 102 gives only half the true story. It turns out all three
universal properties are equivalent.

Proposition 103 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, E ⊆ N ♭,
with k distinguished arguments, I = ⟨F,C⟩ a π-institution, based on F, and
T ∈ ThFam(I). E is globally in T if and only if it is locally in T .

Proof: By Corollary 102, it suffices to show that, if E is locally in T , then
it is also globally in T . To this end, suppose E is locally in T , i.e., that for
all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

EΣ(φ⃗, ψ⃗) ⊆ TΣ.
Thus, in particular, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), all φ⃗ ∈
SEN♭(Σ) and all χ⃗ ∈ SEN♭(Σ′),

Σ
f ✲ Σ′

φ⃗ ✲ SEN♭(f)(φ⃗)
χ⃗

EΣ′(SEN♭(f)(φ⃗), χ⃗) ⊆ TΣ′ .
But this is equivalent to EΣ[φ⃗] ≤ T , for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ).
Thus, E is globally in T . ∎
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2.15 Global Properties and Parameters

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Every σ♭ ∈ N ♭ has finite
arity, but, when the exact arity is unimportant, we will write

σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ.
As already mentioned at the beginning of Section 2.13, this is also convenient
in case we are dealing with a set S♭ ⊆ N ♭. In that case the set of arities of
the natural transformations in S♭ may be unbounded and we write

S♭ ∶ (SEN♭)ω → (SEN♭)ℓ,
even though, again, the arity of each member of S♭ is finite. Finally, we

denote
pk ∶= ⟨pk,0, pk,1, . . . , pk,k−1⟩ ∶ (SEN♭)k → (SEN♭)k

the identity natural transformation, being a tuple of the appropriate k-ary
projections.

For all σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished arguments,
we denote by

σ̇♭ ∶ (SEN♭)k → (SEN♭)ℓ
the collection of k-ary natural transformations in N ♭, defined by

σ̇♭ = {σ♭ ○ ⟨pk, τ ♭⟩ ∶ τ ♭ ∶ (SEN♭)k → (SEN♭)ω ∈ N ♭}.
More generally, given a collection S♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k

distinguished arguments, we denote by

Ṡ♭ ∶ (SEN♭)k → (SEN♭)ℓ
the collection of all k-ary natural transformations in N ♭ defined by

Ṡ♭ = ⋃{σ̇♭ ∶ σ♭ ∈ S♭}.
Concerning these definitions, we adopt the following conventions:

1. If σ♭ ∶ (SEN♭)k → (SEN♭)ℓ is k-ary, with k distinguished arguments,
i.e., is thought of as parameter free, then σ̇♭ = {σ♭}. In this case, we
identify the singleton σ̇♭ with σ♭, the unique element that it contains.
Similarly, for a parameterless collection S♭ ∶ (SEN♭)k → (SEN♭)ℓ in N ♭,
we identify Ṡ♭ with S♭.

2. If σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ has 2 distinguished arguments, we write
σ̈♭ ∶ (SEN♭)2 → (SEN♭)ℓ for the collection σ̇♭ to emphasize the binary
character of σ̈♭. More generally, S̈♭ ∶ (SEN♭)2 → (SEN♭)ℓ stands for
the collection Ṡ♭, when S♭ ∶ (SEN♭)ω → (SEN♭)ℓ has 2 distinguished
arguments.
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We have the following relation concerning global membership based on a
set of natural transformations and membership based on the corresponding
parameter free counterpart.

Lemma 104 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider
a collection S♭ ∶ (SEN♭)ω → (SEN♭)ℓ of natural transformations in N ♭, with
k distinguished arguments. Then, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,

Ṡ♭Σ[φ⃗] ≤ S♭Σ[φ⃗].
Proof: Let Σ ∈ ∣Sign♭∣ and φ⃗ ∈ SEN♭(Σ)k. Then, for all Σ′ ∈ ∣Sign♭∣, we have

Ṡ♭Σ,Σ′[φ⃗] = ⋃
f∈Sign♭(Σ,Σ′)

{σ♭Σ′(SEN♭(f)(φ⃗), τ ♭Σ′(SEN♭(f)(φ⃗))) ∶
σ♭ ∈ S♭, τ ♭ ∈ N ♭} (by definition)

⊆ ⋃
f∈Sign♭(Σ,Σ′)

{σ♭Σ′(SEN♭(f)(φ⃗), χ⃗) ∶ σ♭ ∈ S♭, χ⃗ ∈ SEN♭(Σ′)}
(set theoretic)

= S♭Σ,Σ′[φ⃗]. (by definition)

Since Σ′ ∈ ∣Sign♭∣ was arbitrary, we conclude that Ṡ♭Σ[φ⃗] ≤ S♭Σ[φ⃗]. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, S♭ ∶ (SEN♭)ω → (SEN♭)ℓ
a collection of natural transformations in N ♭, with k distinguished arguments,

and T ∈ SenFam(Fℓ). Recall that by
←Ð
S♭(T ) is denoted the k-ary relation sys-

tem
←Ð
S♭(T ) = {←ÐS♭Σ(T )}Σ∈∣Sign♭∣ on F, given, for all Σ ∈ ∣Sign♭∣, by

←Ð
S♭Σ(T ) = {φ⃗ ∈ SEN♭(Σ)k ∶ S♭Σ[φ⃗] ≤ T}.

Then we obtain

Corollary 105 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and con-
sider a collection S♭ ∶ (SEN♭)ω → (SEN♭)ℓ of natural transformations in N ♭,
with k distinguished arguments. Then, for all T ∈ SenFam(Fℓ),

←Ð
S♭(T ) ≤←ÐṠ♭(T ).

Proof: We have, for all Σ ∈ ∣Sign♭∣,
←Ð
S♭Σ(T ) = {φ⃗ ∈ SEN♭(Σ)k ∶ S♭Σ[φ⃗] ≤ T} (definition)

⊆ {φ⃗ ∈ SEN♭(Σ)k ∶ Ṡ♭Σ[φ⃗] ≤ T} (Lemma 104)

=
←Ð
Ṡ♭Σ(T ). (definition)

We conclude that
←Ð
S♭(T ) ≤ ←ÐṠ♭(T ). ∎
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We now turn to collections of natural transformations satisfying certain
properties globally.

For fixed k, we assume P is a (antimonotone) global property of
natural transformations σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished
arguments. That is:

(a) For σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished arguments, σ♭

either does or does not satisfy P ;

(b) For every σ♭, τ ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished argu-
ments, if, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k, σ♭Σ[φ⃗] ≤ τ ♭Σ[φ⃗], then,
if τ ♭ satisfies P , then σ♭ also satisfies P .

For instance, given T ∈ SenFam(Fℓ),
P T(σ) ∶ for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,

σΣ[φ⃗] ≤ T
is a global property of natural transformations in N ♭, with k distinguished
arguments.

Given such a global property P , we denote by P ♭ ⊆ N ♭ the collection of all
σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in N ♭, with k distinguished arguments, that satisfy
property P :

P ♭ = {σ♭ ∈ N ♭ ∶ P (σ♭)}.
We call P ♭ the P -core of N ♭.

As an example, for the property P T introduced above, based on a fixed
sentence family T ∈ SenFam(Fℓ), we have

P T ♭ = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ⃗ ∈ SEN♭(Σ)k)(σ♭Σ[φ⃗] ≤ T )}.
Along the same lines, given a global property P of natural transformations

in N ♭, with k distinguished arguments, we may consider the restriction P̂ of
P to the collection of parameter free k-ary natural transformations in N ♭:

P̂ ∶ σ ∶ (SEN♭)k → (SEN♭)ℓ ∈ N ♭ and P (σ).
Then we define

P̂ ♭ = {σ♭ ∈ N ♭ ∶ P̂ (σ♭)}.
We call P̂ ♭ the k-ary P -core of N ♭ or the parameter free P -core of N ♭.

The following inclusion is straightforward:

Lemma 106 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider
a global property P of natural transformations σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ in
N ♭, with k distinguished arguments. Then

P̂ ♭ ⊆ P ♭.
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Proof: Straightforward by the definition of P̂ , since any parameter free k-
ary natural transformation is a natural transformation with k distinguished
arguments and no parameters. ∎

Let P be a global property of natural transformations in N ♭, with k

distinguished arguments. We have now defined two sets of k-ary natural
transformations in N ♭ associated with P :

• The first set is Ṗ ♭, obtained by P ♭ by applying the dot operator;

• The second is the set P̂ ♭ obtained by restricting the property P on the
subfamily of parameter free k-ary natural transformations in N ♭.

In the main theorem of the section we show that, for any global property P
of natural transformations in N ♭, with k distinguished arguments, these two
sets are identical, i.e., P̂ ♭ = Ṗ ♭.

Theorem 107 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and con-
sider a global property P of natural transformations σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ
in N ♭, with k distinguished arguments. Then

P̂ ♭ = Ṗ ♭.

Proof: Suppose, first, that σ♭ ∈ P̂ ♭. Then, by definition, σ♭ ∶ (SEN♭)k →(SEN♭)ℓ is parameter free and satisfies P . Thus, we have σ♭ ∈ P ♭ and σ♭ =
σ̇♭ ∈ Ṗ ♭. Therefore, P̂ ♭ ⊆ Ṗ ♭.

Suppose, conversely, that ρ♭ ∈ Ṗ ♭. Then, by definition, there exists
σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ, with k distinguished arguments, in P ♭ and τ ♭ ∶(SEN♭)k → (SEN♭)ω in N ♭, such that

ρ♭ = σ♭ ○ ⟨pk, τ ♭⟩ ∶ (SEN♭)k → (SEN♭)ℓ.
Noting that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), ρ♭Σ[φ⃗] ≤ σ♭Σ[φ⃗], and
taking into account that P is global and that σ♭ ∈ P ♭, we obtain that ρ♭ ∈ P ♭.
But ρ♭ ∶ (SEN♭)k → (SEN♭)ℓ is also parameter free. Therefore ρ♭ ∈ P̂ ♭. We
conclude that Ṗ ♭ ⊆ P̂ ♭. ∎

2.16 Finitarity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

I is finitary if, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ), if φ ∈ CΣ(Φ),
then, there exists finite Ψ ⊆ Φ, such that φ ∈ CΣ(Ψ).

Equivalently, I is finitary if, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),
CΣ(Φ) = ⋃{CΣ(Ψ) ∶ Ψ ⊆ω Φ},
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where Ψ ⊆ω Φ denotes the finite subset relation.
Yet another well-known equivalent characterization of finitarity asserts

that I is finitary if and only if, for all Σ ∈ ∣Sign♭∣ and every upward directed
collection {T iΣ ∶ i ∈ I} of Σ-theories, i.e., a collection, such that:

• CΣ(T iΣ) = T iΣ, for all i ∈ I;

• for every i, j ∈ I, there exists k ∈ I, such that T iΣ, T
j
Σ ⊆ T

k
Σ,

the union ⋃i∈I T iΣ is also a Σ-theory.
We formulate next some versions of these properties with reference to

theory families.
Let Sign be a category and SEN ∶ Sign → Set a functor. A sentence

family X ∈ SenFam(SEN) is called locally finite if, for all Σ ∈ ∣Sign∣, XΣ

is finite. In this case we write ∣X ∣ <l ω. Given sentence families X,Y ∈
SenFam(SEN), we use the notation X ≤lf Y to suggest that X is a locally
finite subfamily of Y .

We say that a collection {X i ∶ i ∈ I} ⊆ SenFam(SEN) is:

• locally directed if, for all Σ ∈ ∣Sign∣ and all finite J ⊆ I, there exists
k ∈ I, such that Xj

Σ ≤X
k
Σ, for all j ∈ J ;

• directed if, for all finite J ⊆ I, there exists k ∈ I, such that Xj ≤ Xk,
for all j ∈ J .

Directedness is a stronger property than local directedness.

Lemma 108 Let Sign be a category, SEN ∶ Sign → Set a sentence functor
and {T i ∶ i ∈ I} ⊆ SenFam(SEN). If {T i} is directed, then it is locally directed.

Proof: Suppose {T i} is directed. Let Σ ∈ ∣Sign∣ and i, j ∈ I. Since {T i} is
directed, there exists a k ∈ I, such that T i, T j ≤ T k. In particular, T iΣ, T

j
Σ ⊆ T

k
Σ.

Therefore, {T i} is also locally directed. ∎

The opposite implication patently fails, i.e., in general, local directedness
does not imply directedness.

Example 109 Let Sign be the discrete category with objects Σ and Σ′. Let
SEN♭ ∶ Sign→ Set be defined by SEN♭(Σ) = {0,1} and SEN♭(Σ′) = {a, b}.

Consider the sentence families T = {{1},{a, b}} and T ′ = {{0,1},{b}}
and the collection T = {T,T ′}.

T is locally directed, since TΣ ⊆ T ′Σ and T ′Σ′ ⊆ TΣ′.
On the other hand, T is not directed since there does not exist X ∈ T ,

such that T,T ′ ≤X.

Given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution I =⟨F,C⟩, based on F, we say that I is:
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• locally continuous if, for every locally directed family {T i ∶ i ∈ I} ⊆
ThFam(I),

⋃
i∈I

T i ∈ ThFam(I);
• continuous if, for every directed family {T i ∶ i ∈ I} ⊆ ThFam(I),

⋃
i∈I

T i ∈ ThFam(I).
Since, by Lemma 108, directedness implies local directedness, we get the

following straightforward relationship between local continuity and continu-
ity.

Corollary 110 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is locally continuous, then it is con-
tinuous.

Proof: Assume I is locally continuous and let T ⊆ ThFam(I) be directed.
By Lemma 108, T is locally directed. Thus, by local continuity, ⋃T ∈
ThFam(I). Hence, I is continuous. ∎

However, more is true. In fact, continuity turns out to be equivalent to
the seemingly stronger notion of local continuity.

Theorem 111 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is locally continuous if and only if it is
continuous.

Proof: The “only if” is by Corollary 110. Suppose, conversely, that I is
continuous. Let {T i ∶ i ∈ I} ⊆ ThFam(I) be locally directed. We construct
the collection

T = {T ′ ∈ ThFam(I) ∶ (∀Σ ∈ ∣Sign♭∣)(∃i ∈ I)(T ′Σ = T iΣ)}.
First, note that T is directed. In fact, let T,T ′ ∈ T and Σ ∈ ∣Sign♭∣. By

the definition of T , there exist i(Σ), j(Σ) ∈ I, such that TΣ = T
i(Σ)
Σ and

T ′Σ = T
j(Σ)
Σ . Since {T i ∶ i ∈ I} is locally directed, there exists k(Σ) ∈ I,

such that T
i(Σ)
Σ , T

j(Σ)
Σ ⊆ T k(Σ)Σ . Consider T ′′ = {T ′′Σ}Σ∈∣Sign♭∣, where, for all

Σ ∈ ∣Sign♭∣,
T ′′Σ = T

k(Σ)
Σ .

Then T ′′ ∈ T and, moreover, T,T ′ ≤ T ′′. Thus, T is indeed directed. Second,
notice that ⋃T = ⋃i∈I T i. Thus, taking into account the continuity of I , we
get

⋃
i∈I

T i = ⋃T ∈ ThFam(I).
Therefore, I is locally continuous. ∎

Now we get the following characterizations of finitarity.
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Proposition 112 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then the following conditions are
equivalent:

(i) I is finitary;

(ii) For every X ∈ SenFam(F),
C(X) = ⋃{C(Y ) ∶ Y ≤lf X};

(iii) I is locally continuous.

(iv) I is continuous.

Proof:

(i)⇒(ii) Suppose I is finitary and let X ∈ SenFam(F). Clearly, by the mono-
tonicity of C, ⋃{C(Y ) ∶ Y ≤lf X} ≤ C(X). To prove the converse, let
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ CΣ(XΣ). By finitarity, there
exists YΣ ⊆f XΣ, such that φ ∈ CΣ(YΣ). Now set Y = {YΣ′}Σ′∈∣Sign♭∣,
where, for all Σ′ ∈ ∣Sign♭∣,

YΣ′ = { YΣ, if Σ′ = Σ
∅, if Σ′ ≠ Σ

Clearly, Y ≤lf X and, moreover, φ ∈ CΣ(Y ). Thus, we get C(X) ≤
⋃{C(Y ) ∶ Y ≤lf X}.

(ii)⇒(iii) Suppose that, for every X ∈ SenFam(F), C(X) = ⋃{C(Y ) ∶ Y ≤lf X}
and let {T i ∶ i ∈ I} ⊆ ThFam(I) be locally directed. Consider Σ ∈∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ CΣ(⋃i∈I T iΣ). By hypothesis,
there exists locally finite Y ≤ ⋃i∈I T i, such that φ ∈ CΣ(YΣ). Since{T i ∶ i ∈ I} is locally directed, there exists i ∈ I, such YΣ ⊆ T iΣ. Now
we get φ ∈ CΣ(T iΣ) = T iΣ ⊆ ⋃i∈I T iΣ. We conclude that ⋃i∈I T i is a theory
family and, therefore, I is locally continuous.

(iii)⇒(i) Assume that I is locally continuous and let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆
SEN♭(Σ), such that φ ∈ CΣ(Φ). We define a collection of theory families
of I as follows: For every finite subset Ψ ⊆f Φ, let TΨ = {TΨ

Σ′}Σ′∈∣Sign♭∣
be given, for all Σ′ ∈ ∣Sign♭∣, by setting

TΨ
Σ′ = { CΣ(Ψ), if Σ′ = Σ

CΣ′(∅), if Σ′ ≠ Σ

Clearly, {TΨ ∶ Ψ ⊆f Φ} is a locally directed. Therefore, by hypothesis

C(⋃{TΨ ∶ Ψ ⊆f Φ}) = ⋃{TΨ ∶ Ψ ⊆f Φ}.
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Now we get
φ ∈ CΣ(Φ) = CΣ( ⋃

Ψ⊆fΦ

TΨ
Σ ) = ⋃

Ψ⊆fΦ

TΨ
Σ ,

whence φ ∈ TΨ
Σ = CΣ(Ψ), for some Ψ ⊆f Φ. We conclude that I is

finitary.

(iii)⇔(iv) This is the content of Theorem 111.
∎

We now prove a lemma concerning I-filter generation to the effect that,
for a finitary π-institution, the I-filter generated by a certain sentence family
can be built inductively by “closing under consequences” in a structured way.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a finitary
π-institution based on F. Then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all X ∈ SenFam(A), we define

ΞI,A,n(X) = {ΞI,A,nΣ (X)}Σ∈∣Sign∣, n < ω,

by induction on n, as follows:

• If n = 0, ΞI,A,0(X) =X ;

• Assume ΞI,A,i(X) has been defined, for all i < n. We define

ΞI,A,n(X) = {ΞI,A,nΣ (X)}Σ∈∣Sign∣,
by setting, for all Σ′ ∈ ∣Sign∣,

ΞI,A,nΣ′ (X) = {αΣ(φ) ∶ Σ ∈ ∣Sign♭∣, such that F (Σ) = Σ′,
and Φ ∪ {φ} ⊆ω SEN♭(Σ), such that

φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ ΞI,A,n−1Σ′ (X)}.
We may write the latter set more concisely as

ΞI,A,nΣ′ (X) = ⋃
Σ∶F (Σ)=Σ′

{αΣ(φ) ∶ φ ∈ CΣ(Φ), αΣ(Φ) ⊆ ΞI,A,n−1Σ′ (X)}.
We prove some basic properties of this set.

Lemma 113 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a
finitary π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
X ∈ SenFam(A).

(a) For all n < ω, ΞI,A,n(X) ≤ ΞI,A,n+1(X);
(b) ⋃n<ω ΞI,A,n(X) ∈ FiFamI(A);
(c) ⋃n<ω ΞI,A,n(X) ≤ CI,A(X).
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Proof:

(a) Let Σ′ ∈ ∣Sign∣, φ′ ∈ SEN(Σ), such that φ′ ∈ ΞI,A,nΣ′ (X). By surjectivity
of ⟨F,α⟩, there exists Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that F (Σ) = Σ′

and αΣ(φ) = φ′. But φ ∈ CΣ(φ) and αΣ(φ) = φ′ ∈ ΞI,A,nΣ′ (X) imply that

φ′ ∈ αΣ(φ) ∈ ΞI,A,n+1Σ′ (X). So, we get ΞI,A,n(X) ≤ ΞI,A,n+1(X).
(b) Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ω SEN♭(Σ), such that φ ∈ CΣ(Φ) and assume

that αΣ(Φ) ⊆ ⋃n<ω ΞI,A,n
F (Σ)
(X). Then, since Φ ⊆ω SEN♭(Σ), there exists

n < ω, such that αΣ(Φ) ⊆ ΞI,A,n
F (Σ)
(X). Since φ ∈ CΣ(Φ), we get, by the

definition of ΞI,A,n+1(X),
αΣ(φ) ∈ ΞI,A,n+1

F (Σ)
(X) ⊆ ⋃

n<ω

ΞI,A,n
F (Σ′)
(X).

We conclude that ⋃n<ω ΞI,A,n(X) ∈ FiFamI(A).
(c) We prove this by induction on n < ω.

For n = 0, ΞI,A,0(X) = X ≤ CI,A(X).
Suppose that ΞI,A,i(X) ≤ CI,A(X), for all i < n.

Let Σ′ ∈ ∣Sign∣, φ′ ∈ ΞI,A,nΣ′ (X). Thus, there exists Σ ∈ ∣Sign♭∣, such that
F (Σ) = Σ′, and Φ ∪ {φ} ⊆ω SEN♭(Σ), such that φ ∈ CΣ(Φ), αΣ(Φ) ⊆
ΞI,A,n−1Σ′ (X) and αΣ(φ) = φ′. By the induction hypothesis, αΣ(Φ) ⊆
C
I,A
Σ′ (X). Hence, since φ ∈ CΣ(Φ) and CI,A(X) ∈ FiFamI(A), it follows

that φ′ = αΣ(φ) ∈ CI,AΣ′ (X). We conclude that ΞI,A,nΣ′ (X) ⊆ CI,AΣ′ (X).
It now follows that ⋃n<ω ΞI,A,n(X) ≤ CI,A(X).

∎

We set

ΞI,A(X) ∶= ⋃
n<ω

ΞI,A,n(X).

Proposition 114 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a finitary π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system and X ∈ SenFam(A). Then

CI,A(X) = ΞI,A(X).
Proof: Since by Lemma 113, ΞI,A(X) ∈ FiFamI(A) and X ≤ ΞI,A(X),
we get, by the minimality of CI,A(X), that CI,A(X) ≤ ΞI,A(X). On the
other hand, by Lemma 113, ΞI,A(X) ≤ CI,A(X). Thus, we conclude that
CI,A(X) = ΞI,A(X). ∎



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 177

2.17 Equational π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K be a class of F-
algebraic systems. Denote by Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣ the family of F-

equations, i.e., for all Σ ∈ ∣Sign♭∣,
EqΣ(F) = SEN♭(Σ)2.

The equational consequence relative to K or K-equational conse-
quence is the closure family DK ∶ PEq(F) → PEq(F), defined by letting,
for all Σ ∈ ∣Sign♭∣,

DK
Σ ∶ P(EqΣ(F)) → P(EqΣ(F))

be given, for all E ∪ {φ ≈ ψ} ⊆ EqΣ(F), by

φ ≈ ψ ∈ DK
Σ(E) iff for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

αΣ(E) ⊆ ∆A
F (Σ)

implies αΣ(φ) = αΣ(ψ).
This closure operator appeared, for the first time, in Section 2.4 as a means
to characterize the relative congruence system generated by a family of equa-
tions, with respect to the class K of F-algebraic systems. In Proposition 29,
it was shown that, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a
class K of F-algebraic systems, DK ∶ PEq(F)→ PEq(F) is a (not necessarily
structural) closure family on Eq(F).

Moreover, it turns out that the closure family DK satisfies the properties
of reflexivity, symmetry, transitivity, congruence and invariance, detailed in
the following

Proposition 115 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let
K be a class of F-algebraic systems. For all Σ ∈ ∣Sign♭∣, all φ,ψ,χ ∈ SEN♭(Σ),
all σ♭ in N ♭, all φ⃗, ψ⃗ ∈ SEN♭(Σ), all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

(Reflexivity) φ ≈ φ ∈DK
Σ(∅);

(Symmetry) ψ ≈ φ ∈DK
Σ(φ ≈ ψ);

(Transitivity) φ ≈ χ ∈ DK
Σ(φ ≈ ψ,ψ ≈ χ);

(Congruence) σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈DK
Σ({φi ≈ ψi ∶ i ∈ I});

(Invariance) SEN♭(f)(φ) ≈ SEN♭(f)(ψ) ∈DK
Σ′(φ ≈ ψ).

Proof: All properties follow directly by applying Proposition 30. ∎

Corollary 116 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. Then ThFam(DK) = ThSys(DK) = ConSysK(F).
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Proof: The first equality is a direct consequence of Invariance, given in
Proposition 115, while the second follows directly from Theorem 32. ∎

Assume, next, that Q = {QΣ}Σ∈∣Sign♭∣ ≤ Eq(F) is an F-equation system,
i.e., a family of F-equations that is invariant under signature morphisms in
the sense that, for all Σ,Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(QΣ) ⊆ QΣ′ .

Let, also E = {EΣ}Σ∈∣Sign♭∣ ≤ Eq(F) be an F-equation family (not necessarily

invariant under signature morphisms). We define, for all Σ ∈ ∣Sign♭∣ and all
n < ω,

ΞQ,n
Σ (E) ∶ P(EqΣ(F))→ P(EqΣ(F)),

by induction on n < ω, as follows:

• ΞQ,0
Σ (E) = {φ ≈ φ ∶ φ ∈ SEN♭(Σ)} ∪QΣ ∪EΣ;

• Assuming that ΞQ,n
Σ (E) has been defined, for all Σ ∈ ∣Sign♭∣, we set

ΞQ,n+1
Σ (E) = {ψ ≈ φ ∶ φ ≈ ψ ∈ ΞQ,n

Σ (E)}
∪{φ ≈ χ ∶ φ ≈ ψ,ψ ≈ χ ∈ ΞQ,n

Σ (E)}
∪{σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∶ φi ≈ ψi ∈ ΞQ,n

Σ (E), i < k}
∪{SEN♭(f)(φ ≈ ψ) ∶ φ ≈ ψ ∈ ΞQ,n

Σ′ (E),
Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ′,Σ)}.

Now, set, for all Σ ∈ ∣Sign♭∣,
ΞQ
Σ(E) = ⋃

n<ω

ΞQ,n
Σ (E)

and, finally,
ΞQ(E) = {ΞQ

Σ(E)}Σ∈∣Sign♭∣.
We show that ΞQ ∶ P(Eq(F)) → P(Eq(F)) is a closure family on Eq(F)

that satisfies Reflexivity, Symmetry, Transitivity, Congruence and Invariance.

Proposition 117 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
Q ≤ Eq(F) an F-equation system. Then ΞQ ∶ PEq(F)→ PEq(F) is a closure
family on Eq(F), that satisfies Reflexivity, Symmetry, Transitivity, Congru-
ence and Invariance.

Proof: We start by showing that ΞQ is a closure family.

• Let Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ E. Then, by
definition, φ ≈ ψ ∈ ΞQ,0

Σ (E) ⊆ ΞQ
Σ(E). So ΞQ is inflationary.
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• Let Σ ∈ ∣Sign♭∣ and E ∪F ∪{φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ ΞQ
Σ(E)

and E ⊆ F . Then, for some n < ω, φ ≈ ψ ∈ ΞQ,n
Σ (E). We show by

induction on n < ω that, for all n < ω,

φ ≈ ψ ∈ ΞQ,n
Σ (E) implies φ ≈ ψ ∈ ΞQ,n

Σ (F ).
– For n = 0, we have φ = ψ or φ ≈ ψ ∈ QΣ or φ ≈ ψ ∈ E. In the first

two cases, φ ≈ ψ ∈ ΞQ,0
Σ (F ) by definition, and, in the last case,

φ ≈ ψ ∈ ΞQ,0
Σ (F ), since E ⊆ F , by hypothesis.

– Assume, next, that the statement holds for n > 0. Let Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ ≈ ψ ∈ ΞQ,n+1

Σ (E).
If ψ ≈ φ ∈ ΞQ,n

Σ (E), then, by the induction hypothesis, ψ ≈ φ ∈
ΞQ,n
Σ (F ), whence, by definition, φ ≈ ψ ∈ ΞQ,n+1

Σ (F ).
If φ ≈ χ,χ ≈ ψ ∈ ΞQ,n

Σ (E), then, by the induction hypothesis,

φ ≈ χ,χ ≈ ψ ∈ ΞQ,n
Σ (F ), whence, by definition, φ ≈ ψ ∈ ΞQ,n+1

Σ (F ).
If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), with φi ≈ ψi ∈ ΞQ,n

Σ (E), i < k,

then, by the induction hypothesis, φi ≈ ψi ∈ ΞQ,n
Σ (F ), whence, by

definition, σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ ΞQ,n+1
Σ (F ).

Finally, if φ ≈ ψ is of form SEN♭(f)(φ′ ≈ ψ′), with φ′ ≈ ψ′ ∈
ΞQ,n
Σ′ (E), then, by the induction hypothesis, φ′ ≈ ψ′ ∈ ΞQ,n

Σ′ (F ),
and, therefore, by definition, SEN♭(f)(φ′ ≈ ψ′) ∈ ΞQ,n+1

Σ (F ).
Thus, if φ ≈ ψ ∈ ΞQ

Σ(E), then φ ≈ ψ ∈ ΞQ
Σ(F ) and ΞQ is monotone.

• Let Σ ∈ ∣Sign♭∣ and E∪{φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ ΞQ
Σ(ΞQ

Σ(E)).
Then, for some n < ω, φ ≈ ψ ∈ ΞQ,n

Σ (ΞQ
Σ(E)). We show by induction on

n < ω that, for all n < ω,

φ ≈ ψ ∈ ΞQ,n
Σ (ΞQ

Σ(E)) implies φ ≈ ψ ∈ ΞQ
Σ(E).

– For n = 0, φ = ψ or φ ≈ ψ ∈ QΣ or φ ≈ ψ ∈ ΞQ
Σ(E). In the first two

cases φ ≈ ψ ∈ ΞQ,0
Σ (E) ⊆ ΞQ

Σ(E), by definition, and in the last the
implication is trivial.

– Suppose that the statement holds for n > 0 and let Σ ∈ ∣Sign♭∣,
φ ≈ ψ ∈ ΞQ,n+1

Σ (ΞQ
Σ(E)).

If ψ ≈ φ ∈ ΞQ,n
Σ (ΞQ

Σ(E)), then, by the induction hypothesis, ψ ≈
φ ∈ ΞQ

Σ(E), i.e., ψ ≈ φ ∈ ΞQ,m
Σ (E), for some m < ω. Thus, by

definition, φ ≈ ψ ∈ ΞQ,m+1
Σ (E) ⊆ ΞQ

Σ(E).
If φ ≈ χ,χ ≈ ψ ∈ ΞQ,n

Σ (ΞQ
Σ(E)), then, by the induction hypothesis,

φ ≈ χ,χ ≈ ψ ∈ ΞQ
Σ(E), i.e., for some m < ω, φ ≈ χ,χ ≈ ψ ∈ ΞQ,m

Σ (E).
Thus, by definition, φ ≈ ψ ∈ ΞQ,m+1

Σ (E) ⊆ ΞQ
Σ(E).
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If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), with φi ≈ ψi ∈ ΞQ,n
Σ (ΞQ

Σ(E)),
i < k, then, by the induction hypothesis, φi ≈ ψi ∈ ΞQ

Σ(E), for all

i < k. Thus, there exists m < ω, such that φi ≈ ψi ∈ ΞQ,m
Σ (E),

for all i < k, and, consequently, by definition, σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈
ΞQ,m+1
Σ (E) ⊆ ΞQ

Σ(E).
Finally, suppose that φ ≈ ψ is of the form SEN♭(f)(φ′ ≈ ψ′), where
φ′ ≈ ψ′ ∈ ΞQ,n

Σ′ (E). Then, by the induction hypothesis, φ′ ≈ ψ′ ∈
ΞQ
Σ′(E), whence, there exists m < ω, such that φ′ ≈ ψ′ ∈ ΞQ,m

Σ′ (E).
But, then, by definition, SEN♭(f)(φ′ ≈ ψ′) ∈ ΞQ,m+1

Σ (E) ⊆ ΞQ
Σ(E).

So ΞQ is a closure family. Finally, we show that it satisfies the five extra
rules.

• For Reflexivity, let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, by definition,
φ ≈ φ ∈ ΞQ,0

Σ (∅) ⊆ ΞQ
Σ(∅), whence ΞQ is Reflexive.

• For Symmetry, let E ≤ Eq(F), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
φ ≈ ψ ∈ ΞQ

Σ(E). Then, there exists n < ω, such that φ ≈ ψ ∈ ΞQ,n
Σ (E).

By definition, ψ ≈ φ ∈ ΞQ,n+1
Σ (E) ⊆ ΞQ

Σ(E). We conclude that ψ ≈ φ ∈
ΞQ
Σ(φ ≈ ψ) and, hence ΞQ is Symmetric.

• For Transitivity, let E ≤ Eq(F), Σ ∈ ∣Sign♭∣, φ,ψ,χ ∈ SEN♭(Σ), such
that φ ≈ ψ,ψ ≈ χ ∈ ΞQ

Σ(E). Then, there exists n < ω, such that φ ≈
ψ,ψ ≈ χ ∈ ΞQ,n

Σ (E). By definition, φ ≈ χ ∈ ΞQ,n+1
Σ (E) ⊆ ΞQ

Σ(E). So ΞQ

is Transitive.

• For Congruence, let E ≤ Eq(F), σ♭ ∶ (SEN♭)k → SEN♭ inN ♭, Σ ∈ ∣Sign♭∣,
φi, ψi ∈ SEN♭(Σ), i < k, such that φi ≈ ψi ∈ ΞQ

Σ(E). Then, there exists

n < ω, such that φi ≈ ψi ∈ ΞQ,n
Σ (E), for all i < k, whence, by definition,

σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ ΞQ,n+1
Σ (E) ⊆ ΞQ

Σ(E). Thus ΞQ satisfies Congruence.

• Finally, for Invariance, let E ≤ Eq(F), Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign(Σ,Σ′),
φ,ψ ∈ SEN♭(Σ), such that φ ≈ ψ ∈ ΞQ

Σ(E). Then, there exists n < ω,

such that φ ≈ ψ ∈ ΞQ,n
Σ (E), and, hence, by definition,

SEN♭(f)(φ ≈ ψ) ∈ ΞQ,n+1
Σ′ (E) ⊆ ΞQ

Σ′(E).
We conclude that ΞQ satisfies Invariance as well.

This shows that ΞQ ∶ PEq(F) → PEq(F) is a closure family that satisfies
Reflexivity, Symmetry, Transitivity, Congruence and Invariance. ∎

We show that, given a semantic variety, i.e., a class K of F-algebraic
systems, such that VSem(K) = K, we have DK = ΞKer(K).

We prove first a lemma.
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Lemma 118 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a se-
mantic variety of F-algebraic systems, i.e., a class of F-algebraic systems,
such that VSem(K) = K. Then, for all E ⊆ Eq(F), ΞKer(K)(E) ∈ ConSysK(F).
Proof: By Proposition 117, ΞKer(K)(E) is a congruence system on F. More-
over, by definition, Ker(K) ≤ ΞKer(K)(E). But, note that

Ker(F/ΞKer(K)(E)) = ΞKer(K)(E).
Thus, we have Ker(K) ≤ Ker(F/ΞKer(K)(E)). Thus, by definition and the
hypothesis,

F/ΞKer(K)(E) ∈ VSem(K) = K.
We conclude that ΞKer(K)(E) ∈ ConSysK(F). ∎

Theorem 119 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems, such that VSem(K) = K. Then DK = ΞQ, where
Q = Ker(K).
Proof: Assume, first, that Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that
φ ≈ ψ ∈ DK

Σ(E). Thus, by definition, for all A ∈ K,

E ⊆ KerΣ(A) implies ⟨φ,ψ⟩ ∈ KerΣ(A).
In particular, by Lemma 118,

E ⊆ KerΣ(F/ΞQ(E)) implies ⟨φ,ψ⟩ ∈ KerΣ(F/ΞQ(E)).
Equivalently, we have E ⊆ ΞQ

Σ(E) implies φ ≈ ψ ∈ ΞQ
Σ(E). Since the first

inclusion holds by the definition of ΞQ, we have φ ≈ ψ ∈ ΞQ
Σ(E). We conclude

that DK ≤ ΞQ.

Assume, conversely, that Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that
φ ≈ ψ ∈ ΞQ

Σ(E). Then, by definition, there exists an n < ω, such that φ ≈ ψ ∈
ΞQ,n
Σ (E). We show, by induction on n < ω, that, for all n < ω,

φ ≈ ψ ∈ ΞQ,n
Σ (E) implies φ ≈ ψ ∈DK

Σ(E).
• If n = 0, then φ = ψ or φ ≈ ψ ∈ KerΣ(K) or φ ≈ ψ ∈ E.

In the first case, the conclusion follows by Proposition 115, and in the
last, by Proposition 29.

In the second case, we have, for all A ∈ K, Ker(K) ≤ Ker(A), whence
φ ≈ ψ ∈ KerΣ(A). So φ ≈ ψ ∈DK

Σ(∅) ⊆DK
Σ(E).
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• Assume, now, that the conclusion holds for n > 0. Let Σ ∈ ∣Sign♭∣,
E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ ΞQ,n+1

Σ (E).
If ψ ≈ φ ∈ ΞQ,n

Σ (E), then, by the induction hypothesis, ψ ≈ φ ∈ DK
Σ(E),

whence, by Proposition 115, φ ≈ ψ ∈DK
Σ(E).

If φ ≈ χ,χ ≈ ψ ∈ ΞQ,n
Σ (E), then , by the induction hypothesis, φ ≈ χ,χ ≈

ψ ∈DK
Σ(E). So, by Proposition 115, we have φ ≈ ψ ∈DK

Σ(E).
If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), for some σ♭ in N ♭ and φi ≈ ψi ∈
ΞQ,n
Σ (E), i < k, then, by the induction hypothesis, φi ≈ ψi ∈ DK

Σ(E),
for all i < k, whence, once more by Proposition 115, σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈
DK

Σ(E).
Finally, if φ ≈ ψ is of the form SEN♭(f)(φ′ ≈ ψ′), for some Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ′,Σ) and φ′ ≈ ψ′ ∈ ΞQ,n

Σ′ (E), then, by the induction hypoth-
esis, φ′ ≈ ψ′ ∈ DK

Σ′(E), whence, by Proposition 115, SEN♭(f)(φ′ ≈ ψ′) ∈
DK

Σ(E).
Thus, we get ΞQ ≤DK and, therefore, DK = ΞQ. ∎

2.18 Categorical Universal Algebra

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. We define F-equations,
F-quasiequations and F-guasiequations (standing for generalized F-quasi-
equations). Recall that F-equations have already been introduced in Section
2.17, but the definition is repeated here for the sake of completeness.

• The family Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣ of F-equations is defined by

setting, for all Σ ∈ ∣Sign♭∣,
EqΣ(F) = SEN♭(Σ)2 = {φ ≈ ψ ∶ φ,ψ ∈ SEN♭(Σ)};

• The family QEq(F) = {QEqΣ(F)}Σ∈∣Sign♭∣ of F-quasiequations is de-

fined by setting, for all Σ ∈ ∣Sign♭∣,
QEqΣ(F) = {⟨{φi ≈ ψi ∶ i < k}, φ ≈ ψ⟩ ∶ k ∈ ω, φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ)};

• The family GEq(F) = {GEqΣ(F)}Σ∈∣Sign♭∣ of F-guasiequations is de-

fined by setting, for all Σ ∈ ∣Sign♭∣,
GEqΣ(F) = {⟨{φi ≈ ψi ∶ i ∈ I}, φ ≈ ψ⟩ ∶ φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ)}.

Sometimes we write ⟨φ,ψ⟩ in place of φ ≈ ψ. Moreover, we use the notation

φ⃗ ≈ ψ⃗ ∶= {φi ≈ ψi ∶ i ∈ I}.
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Thus, the F-guasiequation ⟨{φi ≈ ψi ∶ i ∈ I}, φ ≈ ψ⟩ may be written more
compactly ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ and, sometimes, also φ⃗ ≈ ψ⃗ → φ ≈ ψ. Note that

Eq(F) ≤ QEq(F) ≤ GEq(F).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣, ⟨φ⃗ ≈ ψ⃗, φ ≈
ψ⟩ ∈ GEqΣ(F) and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. We say that A
satisfies ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ or that the guasiequation ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ is true in,
or is satisfied in, or holds in A, written

A ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩,
if

αΣ(φi) = αΣ(ψi), i ∈ I, imply αΣ(φ) = αΣ(ψ).
Since F-quasiequations and F-equations are special cases of F-guasiequations,
the definition covers them as well. Thus, we have

• A satisfies the F-quasiequation ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ if αΣ(φi) = αΣ(ψi), for
all i < k, imply αΣ(φ) = αΣ(ψ);

• A satisfies the F-equation φ ≈ ψ if αΣ(φ) = αΣ(ψ).
Now we define the following families:

• The family Eq(A) = {EqΣ(A)}Σ∈∣Sign♭∣ of F-equations satisfied by A is

defined by setting, for all Σ ∈ ∣Sign♭∣,
EqΣ(A) = {e ∈ EqΣ(F) ∶ A ⊧Σ e};

• The family QEq(A) = {QEqΣ(A)}Σ∈∣Sign♭∣ of F-quasiequations satisfied

by A is defined by setting, for all Σ ∈ ∣Sign♭∣,
QEqΣ(A) = {q ∈ QEqΣ(F) ∶ A ⊧Σ q};

• The family GEq(A) = {GEqΣ(A)}Σ∈∣Sign♭∣ of F-guasiequations satisfied

by A is defined by setting, for all Σ ∈ ∣Sign♭∣,
GEqΣ(A) = {g ∈ GEqΣ(F) ∶ A ⊧Σ g}.

Finally, given a class K of F-algebraic systems, we define:

• Eq(K) = ⋂{Eq(A) ∶ A ∈ K};
• QEq(K) = ⋂{QEq(A) ∶ A ∈ K};
• GEq(K) = ⋂{GEq(A) ∶ A ∈ K}.
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Note, again, that

Eq(A) ≤ QEq(A) ≤ GEq(A) and Eq(K) ≤ QEq(K) ≤ GEq(K).
Given a class G ≤ GEq(F) of F-guasiequations (which includes the case of
quasiequations or equations), we define AlgSys(G) or, sometimes, Mod(G),
to be the collection of all F-algebraic systems that satisfy all the F-guasi-
equations in G:

AlgSys(G) = {A ∈ AlgSys(F) ∶ A ⊧ G}.
As is well-known, based on an underlying Galois connection, we get the
following, for all G,G′ ≤ GEq(F) and all K,K′ ⊆ AlgSys(F),

• If K ⊆ K′, then GEq(K′) ≤ GEq(K);
• If G ≤ G′, then AlgSys(G′) ⊆ AlgSys(G);
• K ⊆ AlgSys(GEq(K)) and GEq(K) = GEq(AlgSys(GEq(K)));
• G ⊆ GEq(AlgSys(G)) and AlgSys(G) = AlgSys(GEq(AlgSys(G))).

Similar relations hold with the GEq operator replaced by either the Eq or
the QEq operator. We may apply some of these either without providing
explicit justification or, simply, by saying “by the Galois connection”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic systems.

• K is called an equational class if there exists E ≤ Eq(F), such that
K = AlgSys(E);

• K is called a quasiequational class if there exists Q ≤ QEq(F), such
that K = AlgSys(Q);

• K is called a guasiequational class if there exists G ≤ GEq(F), such
that K = AlgSys(G).

Clearly, by definition, if K is an equational class, then it is a quasiequational
class and, if it is a quasiequational class, then it is a guasiequational class.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic systems. We define:

• The semantic variety generated by K

VSem(K) = {A ∈ AlgSys(F) ∶ Eq(K) ≤ Eq(A)};
• The semantic quasivariety generated by K

QSem(K) = {A ∈ AlgSys(F) ∶ QEq(K) ≤ QEq(A)};
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• The semantic guasivariety generated by K

GSem(K) = {A ∈ AlgSys(F) ∶ GEq(K) ≤ GEq(A)}.
We have the following straightforward relationships between these classes.

Lemma 120 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class
of F-algebraic systems. Then

K ⊆ GSem(K) ⊆ QSem(K) ⊆ VSem(K).
Proof: The essential observation we use, which has been discussed before,
is that

Eq(K) ≤ QEq(K) ≤ GEq(K).
Thus, we get

{A ∈ AlgSys(F) ∶ (∀g ∈ GEq(K))(A ⊧ g)}
⊆ {A ∈ AlgSys(F) ∶ (∀q ∈ QEq(K))(A ⊧ q)}
⊆ {A ∈ AlgSys(F) ∶ (∀e ∈ Eq(K))(A ⊧ e)}.

In other words, K ⊆ GSem(K) ⊆ QSem(K) ⊆ VSem(K). ∎

Given a class K of F-algebraic systems

• K is a semantic variety if VSem(K) = K;

• K is a semantic quasivariety if QSem(K) = K;

• K is a semantic guasivariety if GSem(K) = K.

We have the following result identifying equational classes with semantic
varieties, quasiequational classes with semantic quasivarieties and guasiequa-
tional classes with semantic guasivarieties.

Proposition 121 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a class of F-algebraic systems.

(a) K is an equational class iff it is a semantic variety;

(b) K is a quasiequational class iff it is a semantic quasivariety;

(c) K is a guasiequational class iff it is a semantic guasivariety.

Proof:
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(a) Suppose, first, that K is an equational class. Then, there exists E ≤
Eq(F), such that K = AlgSys(E). Let A ∈ AlgSys(F), such that
Eq(K) ≤ Eq(A). Then we have

A ∈ AlgSys(Eq(A))
⊆ AlgSys(Eq(K))
= AlgSys(Eq(AlgSys(E)))
= AlgSys(E) = K.

Therefore, K is a semantic variety.

Suppose, conversely, that K is a semantic variety. Set E = Eq(K). Then
K ⊆ AlgSys(Eq(K)) = AlgSys(E). On the other hand, if A ∈ AlgSys(E),
then

Eq(K) = Eq(AlgSys(Eq(K))) = Eq(AlgSys(E)) ≤ Eq(A),
whence, by hypothesis, A ∈ K. Therefore, K = AlgSys(E) and K is an
equational class.

(b) Suppose, first, that K is a quasiequational class. Then, there exists
Q ≤ QEq(F), such that K = AlgSys(Q). Let A ∈ AlgSys(F), such that
QEq(K) ≤ QEq(A). Then we have

A ∈ AlgSys(QEq(A))
⊆ AlgSys(QEq(K))
= AlgSys(QEq(AlgSys(Q)))
= AlgSys(Q) = K.

Therefore, K is a semantic quasivariety.

Suppose, conversely, that K is a semantic quasivariety. SetQ = QEq(K).
Then K ⊆ AlgSys(QEq(K)) = AlgSys(Q). On the other hand, if A ∈
AlgSys(Q), then

QEq(K) = QEq(AlgSys(QEq(K))) = QEq(AlgSys(Q)) ≤ QEq(A),
whence, by hypothesis, A ∈ K. Therefore, K = AlgSys(Q) and K is a
quasiequational class.

(c) Very similar to Part (b).
∎

We define or revisit, next, some operators on classes of F-algebraic sys-
tems that will serve to provide different characterizations to the equational,
quasi-equational and guasiequational classes of F-algebraic systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of F-algebraic
systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.
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• Given Σ ∈ ∣Sign♭∣, we say that A is Σ-K-certified if there exists AΣ ∈ K,
such that EqΣ(A) = EqΣ(AΣ). In this case AΣ is called the Σ-K-
certificate of A.

• We say that A is K-certified if it is Σ-K-certified, for all Σ ∈ ∣Sign♭∣.
This, of course, means that

(∀Σ ∈ ∣Sign♭∣)(∃AΣ ∈ K)(EqΣ(A) = EqΣ(AΣ)).
We write C(K) for the class of all F-algebraic systems that are K-certified.
We say that K is an abstract class whenever every K-certified F-algebraic
system belongs to K, i.e., when C(K) = K.

It is not difficult to show that C is a closure operator on classes of F-
algebraic systems.

Proposition 122 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then
the operator C on classes of F-algebraic systems is a closure operator.

Proof: Suppose K is a class of F-algebraic systems.

• Let A ∈ K. Then, since for all Σ ∈ ∣Sign♭∣, AΣ = A ∈ K is a Σ-K-
certificate for A, we get that A ∈ C(K). Thus, K ⊆ C(K) and C is
inflationary.

• If K ⊆ K′ and A ∈ C(K), then, by definition, for every Σ ∈ ∣Sign♭∣,
there exists a Σ-K-certificate AΣ. Since K ⊆ K′, AΣ ∈ K′ is also a Σ-K′-
certificate. Thus, A ∈ C(K′) and C is also monotone.

• Finally, suppose that A ∈ C(C(K)). Then, there exists, for all Σ ∈∣Sign♭∣, a Σ-C(K)-certificate AΣ for A. Therefore, for all Σ ∈ ∣Sign♭∣
and all Σ′ ∈ ∣Sign♭∣, there exists a Σ′-K-certificate A⟨Σ,Σ

′⟩ for AΣ. But,
then, for every Σ ∈ ∣Sign♭∣,

EqΣ(A) = EqΣ(AΣ) = EqΣ(A⟨Σ,Σ⟩).
Thus, for every Σ ∈ ∣Sign♭∣, there exists a Σ-K-certificate A⟨Σ,Σ⟩ for A,
i.e., A ∈ C(K) and C is also idempotent.

Thus C is a closure operator on classes of F-algebraic systems. ∎

The importance of abstract classes of F-algebraic systems here, and the
reason why they will be our exclusive focus in this section, rests on the fol-
lowing observation to the effect that the validity of a guasiequation transfers
from K-certificates of an F-algebraic system to the F-algebraic system itself.

Lemma 123 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of
F-algebraic systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If A ∈ C(K),
then GEq(K) ≤ GEq(A).
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Proof: Suppose A ∈ C(K), Σ ∈ ∣Sign♭∣ and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K), such
that φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Let AΣ ∈ K be a Σ-K-certificate for A. Then, by
definition φ⃗ ≈ ψ⃗ ⊆ EqΣ(AΣ). Since AΣ ∈ K and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K), we
get φ ≈ ψ ∈ EqΣ(AΣ) = EqΣ(A). Therefore, ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(A). We
conclude that GEq(K) ≤ GEq(A). ∎

Using Lemma 123, we get the following corollary to the effect that all
semantically defined classes of algebraic systems are abstract.

Corollary 124 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. If K is a guasiequational class (and, hence,
a fortiori, if it is a quasiequational class or an equational class), then it is
abstract.

Proof: Suppose K is a guasiequational class defined by the family of F-
guasiequations G ≤ GEq(F) and let A ∈ C(K). Then, by Lemma 123,
GEq(K) ≤ GEq(A), whence

A ∈ AlgSys(GEq(A))
⊆ AlgSys(GEq(K))
= AlgSys(GEq(AlgSys(G)))
= AlgSys(G)
= K.

Thus, K is an abstract class. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of F-algebraic
systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

• Given Σ ∈ ∣Sign♭∣, we say that A is directedly Σ-K-certified if there
exists a collection of F-algebraic systems {AΣ,i ∶ i ∈ I} ⊆ K, such that:

– ⋃i∈I EqωΣ(AΣ,i) is directed, where, for all i ∈ I, EqωΣ(AΣ,i) denotes
the collection of all finite subsets of KerΣ(AΣ,i), and

– KerΣ(A) = ⋃i∈I KerΣ(AΣ,i).
We call {AΣ,i ∶ i ∈ I} the directed Σ-K-certificate of A.

• We say thatA is directedly K-certified if it is directedly Σ-K-certified,
for all Σ ∈ ∣Sign♭∣.

We write C∗(K) for the class of all F-algebraic systems that are directedly
K-certified. We say that K is a directedly abstract class whenever every
directedly K-certified F-algebraic system belongs to K, i.e., when C∗(K) = K.

We show that, like C, C∗ is a closure operator on classes of F-algebraic
systems.
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Proposition 125 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then
the operator C∗ on classes of F-algebraic systems is a closure operator.

Proof: Suppose K is a class of F-algebraic systems.

• Let A ∈ K. Then, since, for all Σ ∈ ∣Sign♭∣, {A} ⊆ K is a directed Σ-K-
certificate for A, we get that A ∈ C∗(K). Thus, K ⊆ C∗(K) and C∗ is
inflationary.

• If K ⊆ K′ and A ∈ C∗(K), then, by definition, for every Σ ∈ ∣Sign♭∣,
there exists a directed Σ-K-certificate {AΣ,i ∶ i ∈ IΣ} ⊆ K. Since K ⊆ K′,{AΣ,i ∶ i ∈ IΣ} ⊆ K′ is also a directed Σ-K′-certificate. Thus, A ∈ C∗(K′)
and C∗ is also monotone.

• Finally, suppose that A ∈ C∗(C∗(K)). Then, for all Σ ∈ ∣Sign♭∣, there
exists {AΣ,i ∶ i ∈ IΣ} ⊆ C∗(K), such that ⋃i∈IΣ EqωΣ(AΣ,i) is directed and
KerΣ(A) = ⋃i∈IΣ KerΣ(AΣ,i). Thus, for all Σ,Σ′ ∈ ∣Sign♭∣ and all i ∈ IΣ,

there exists {AΣ,i,Σ′,j ∶ j ∈ JΣ,i
Σ′ } ⊆ K, such that ⋃j∈JΣ,i

Σ′
EqωΣ′(AΣ,i,Σ′,j)

is directed and, moreover, KerΣ′(AΣ,i) = ⋃j∈JΣ,i

Σ′
KerΣ′(AΣ,i,Σ′,j). Now

notice that, for all Σ ∈ ∣Sign♭∣, the collection

{AΣ,i,Σ,j ∶ i ∈ IΣ, j ∈ J
Σ,i
Σ } ⊆ K

satisfies

KerΣ(A) = ⋃
i∈IΣ

KerΣ(AΣ,i) = ⋃
i∈IΣ

⋃
j∈JΣ,i

Σ

KerΣ(AΣ,i,Σ,j).

Thus, to see that A ∈ C∗(K), it suffices to show that the collection

⋃
i∈IΣ

⋃
j∈JΣ,i

Σ

EqωΣ(AΣ,i,Σ,j)

is directed. Consider X ∈ EqωΣ(AΣ,i,Σ,j) and X ′ ∈ EqωΣ(AΣ,i′,Σ,j′). Then,
as

EqΣ(AΣ,i) = ⋃j∈JΣ,i
Σ

EqΣ(AΣ,i,Σ,j),
EqΣ(AΣ,i′) = ⋃j∈JΣ,i′

Σ

EqΣ(AΣ,i′,Σ,j),
we get that X ∈ EqωΣ(AΣ,i) and X ′ ∈ EqωΣ(AΣ,i′). As ⋃i∈IΣ EqωΣ(AΣ,i) is
directed, there exists k ∈ IΣ and Y ∈ EqωΣ(AΣ,k), such that X,X ′ ⊆ Y .
Now, from EqΣ(AΣ,k) = ⋃j∈JΣ,k

Σ

EqωΣ(AΣ,k,Σ,j), the finiteness of Y and

the fact that the union is directed, there must exist ℓ ∈ JΣ,k
Σ , such that

Y ∈ EqωΣ(AΣ,k,Σ,ℓ). This establishes the directedness of the collection

⋃i∈IΣ⋃j∈JΣ,i
Σ

EqωΣ(AΣ,i,Σ,j).
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Thus C∗ is a closure operator on classes of F-algebraic systems. ∎

The importance of directedly abstract classes of F-algebraic systems stems
from the fact that the validity of a quasiequation transfers from directed K-
certificates of an F-algebraic system to the F-algebraic system itself.

Lemma 126 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of
F-algebraic systems and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If A ∈ C∗(K),
then QEq(K) ≤ QEq(A).
Proof: Suppose A ∈ C∗(K), Σ ∈ ∣Sign♭∣ and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ QEqΣ(K), such
that φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Let {AΣ,i ∶ i ∈ I} ⊆ K be a directed Σ-K-certificate
for A. Then, by definition φ⃗ ≈ ψ⃗ ⊆ ⋃i∈I EqωΣ(AΣ,i). Since φ⃗ ≈ ψ⃗ is finite and
the union is directed, there exists i ∈ I, such that φ⃗ ≈ ψ⃗ ⊆ EqΣ(AΣ,i). But
AΣ,i ∈ K and ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ QEqΣ(K), whence

φ ≈ ψ ∈ EqΣ(AΣ,i) ⊆ ⋃
i∈I

EqΣ(AΣ,i) = EqΣ(A).
Therefore, ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ QEqΣ(A) and QEq(K) ≤ QEq(A). ∎

Using Lemma 126, we get that all semantic quasivarieties of algebraic
systems are directedly abstract.

Corollary 127 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. If K is a quasiequational class (and, hence, a
fortiori, if it is an equational class), then it is directedly abstract.

Proof: Suppose K is a quasiequational class defined by the family of F-
quasiequations Q ≤ QEq(F) and let A ∈ C∗(K). Then, by Lemma 126,
QEq(K) ≤ QEq(A), whence

A ∈ AlgSys(QEq(A))
⊆ AlgSys(QEq(K))
= AlgSys(QEq(AlgSys(Q)))
= AlgSys(Q)
= K.

Thus, K is a directedly abstract class. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩, Ai =⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, F-algebraic systems and ⟨H i, γi⟩ ∶ A→ Ai, i ∈ I, surjective
morphisms. Recall from Section 2.4 that we say that the collection

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

is a subdirect intersection if

⋂
i∈I

Ker(⟨H i, γi⟩) =∆A.
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Given a class K of F-algebraic systems, we write A ∈
⊲

IΠ(K) in case there
exists a subdirect intersection {⟨H i, γi⟩ ∶ A → Ai, i ∈ I}, with Ai ∈ K, for all

i ∈ I. If
⊲

IΠ(K) = K, we say that K is closed under subdirect intersections.

The following lemma provides an alternative characterization of the con-
cept of subdirect intersection.

Lemma 128 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨A,⟨F,α⟩⟩, Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, F-algebraic systems and {⟨H i, γi⟩ ∶ A →
Ai ∶ i ∈ I} a collection of morphisms. The collection {⟨H i, γi⟩ ∶ i ∈ I} is a
subdirect intersection if and only if Ker(⟨F,α⟩) = ⋂i∈I Ker(⟨F i, αi⟩).
Proof: Suppose, first, that {⟨H i, γi⟩ ∶ i ∈ I} is a subdirect intersection and
let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ). Then

⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩) iff αΣ(φ) = αΣ(ψ)
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈∆A

F (Σ)

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I KerΣ(⟨H i, γi⟩)
iff γi

F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ)), i ∈ I

iff αiΣ(φ) = αiΣ(ψ), i ∈ I
iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F i, αi⟩).

The reverse relies on the surjectivity of ⟨F,α⟩. Suppose Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ). Then we get

⟨αΣ(φ), αΣ(ψ)⟩ ∈∆A
F (Σ)

iff ⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩)
iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F i, αi⟩)
iff αiΣ(φ) = αiΣ(ψ), i ∈ I
iff γi

F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ)), i ∈ I

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I KerF (Σ)(⟨H i, γi⟩).
Thus, by the surjectivity of ⟨F,α⟩ we get that ∆A = ⋂i∈I Ker(⟨H i, γi⟩). ∎

It is not difficult to verify that the subdirect intersection operator is also
a closure operator on classes of F-algebraic systems.

Proposition 129 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

the operator
⊲

IΠ on classes of F-algebraic systems is a closure operator.

Proof: Suppose K is a class of F-algebraic systems.

• If A ∈ K, then {⟨I, ι⟩ ∶ A → A}, where ⟨I, ι⟩ ∶ A → A is the identity
morphism, is a subdirect intersection family. Thus, we get that A ∈
⊲

IΠ(K). Hence K ⊆
⊲

IΠ(K) and
⊲

IΠ is inflationary;
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• It is obvious that
⊲

IΠ is monotonic;

• Suppose that A ∈
⊲

IΠ( ⊲IΠ(K)). Then, there exists a subdirect intersec-

tion family {⟨H i, γi⟩ ∶ A → Ai, i ∈ I}, with Ai ∈
⊲

IΠ(K), for all i ∈ I.
Therefore, for each i ∈ I, there exists a sibdirect intersection family{⟨H ij, γij⟩ ∶ Ai → Aij , j ∈ Ji}, with Aij ∈ K, for all i ∈ I and all j ∈ Ji.
Consider {⟨H ij, γij⟩ ○ ⟨H i, γi⟩ ∶ A→ Aij, i ∈ I, j ∈ Ji}.
It is a subdirect intersection family, since

⋂i∈I,j∈Ji Ker(⟨H ij, γij⟩ ○ ⟨H i, γi⟩)
= ⋂i∈I,j∈Ji(γij ○ γi)−1(∆Aij)
= ⋂i∈I,j∈Ji(γi)−1((γij)−1(∆Aij))
= ⋂i∈I(γi)−1(⋂j∈Ji(γij)−1(∆Aij))
= ⋂i∈I(γi)−1(∆Ai)
=∆A.

Since Aij ∈ K, for all i ∈ I, j ∈ Ji, we get that
⊲

IΠ( ⊲IΠ(K)) ⊆ ⊲IΠ(K) and
⊲

IΠ
is idempotent.

Thus,
⊲

IΠ is a closure operator. ∎

A key property concerning subdirect intersections, which is very useful in
applying the concept, is given in the following

Lemma 130 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider
a class K ⊆ AlgSys(F). The class of morphisms

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩)→ B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,
where, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

βK
Σ(φ/ ⋂

B∈K

KerΣ(⟨G,β⟩)) = βΣ(φ),
forms a subdirect intersection.

Proof: It is not difficult to see that βK is well defined and forms a natural
transformation. Moreover, ⟨G,βK⟩ is an F-morphism. Letting Ker(K) =
⋂B∈K Ker(⟨G,β⟩), we have, by definition, the following commutative triangle.

F

❂✚
✚
✚
✚⟨I, πKer(K)⟩ ❩

❩
❩
❩

⟨G,β⟩
⑦

F/Ker(K) ⟨G,βK⟩ ✲ B
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To show that the displayed family forms a subdirect intersection, let Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then, we get

⟨φ/KerΣ(K), ψ/KerΣ(K)⟩ ∈ ⋂B∈K KerΣ(⟨G,βK⟩)
iff βK

Σ(φ/KerΣ(K)) = βK
Σ(ψ/KerΣ(K)), B ∈ K,

iff βΣ(φ) = βΣ(ψ), B ∈ K,
iff φ/KerΣ(K) = ψ/KerΣ(K).

Thus, ⋂B∈K Ker(⟨G,βK⟩) =∆F/Ker(K), showing that

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩)→ B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,
constitutes indeed a subdirect intersection. ∎

Finally, we show that every semantic guasivariety of F-algebraic systems
is closed under subdirect intersections.

Proposition 131 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆

AlgSys(F). If K = GSem(K), then
⊲

IΠ(K) ⊆ K.

Proof: Assume that K = GSem(K). Let X = GEq(K). Assume that A ∈
⊲

IΠ(K) and Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ, such that A ⊧Σ φ⃗ ≈ ψ⃗, i.e.,

φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Since A ∈
⊲

IΠ(K), there exists a subdirect intersection

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

such that Ai ∈ K, for all i ∈ I. Hence, we get φ⃗ ≈ ψ⃗ ⊆ EqΣ(Ai), i ∈ I.
Now, since Ai ∈ K and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ = GEqΣ(K), we conclude that
φ ≈ ψ ∈ EqΣ(Ai), for all i ∈ I. Therefore, φ ≈ ψ ∈ ⋂i∈I EqΣ(Ai) = EqΣ(A), the
latter by the definition of subdirect intersection and Lemma 128. Therefore,
A ⊧Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ. This shows that A ∈ AlgSys(X) = AlgSys(GEq(K)) =
GSem(K) = K. We conclude that

⊲

IΠ(K) ⊆ K, i.e., K is closed under subdirect
intersections. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩, B =⟨B, ⟨G,β⟩⟩ F-algebraic systems and ⟨H,γ⟩ ∶ A → B a surjective morphism.

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨G,β⟩
❘

A ⟨H,γ⟩ ✲ B

In this case we say B is a morphic image of A. Given a class K of F-algebraic
systems, we write B ∈H(K) in case there exists a surjective morphism ⟨H,γ⟩ ∶
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A → B, with A ∈ K. If H(K) = K, we say that K is closed under morphic
images.

It is straightforward to verify that H is a closure operator on classes of
F-algebraic systems.

Proposition 132 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then
the operator H on classes of F-algebraic systems is a closure operator.

Proof: Let K be a class of F-algebraic systems. If A ∈ K, then, using
again the identity ⟨I, ι⟩ ∶ A → A, we see that A ∈ H(K), and, hence, H is
inflationary. It is again obvious that it is monotonic. Finally, if A ∈H(H(K)),
then, there exists a surjective morphism ⟨G,β⟩ ∶ A′ → A, with A′ ∈ H(K),
whence, there also exists a surjective morphism ⟨H,γ⟩ ∶ A′′ → A′, with A′′ ∈ K.
Now the surjective morphism ⟨G,β⟩○ ⟨H,γ⟩ ∶ A′′ → A witnesses the fact that
A ∈H(K). Therefore, H(H(K)) ⊆ H(K), and H is idempotent. Thus, H is a
closure operator. ∎

We show, next, that, if a class K of F-algebraic systems is closed un-
der subdirect intersections and morphic images, then it is also closed under
directed K-certifications.

Proposition 133 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

be a class of F-algebraic systems. Then C∗(K) ⊆H( ⊲IΠ(K)).
Proof: Suppose A ∈ C∗(K). Then, by definition, for all Σ ∈ ∣Sign♭∣, there
exists a collection {AΣ,i ∶ i ∈ IΣ} ⊆ K, such that ⋃i∈IΣ EqωΣ(AΣ,i) is directed
and KerΣ(A) = ⋃i∈IΣ KerΣ(AΣ,i). Fix, for every Σ ∈ ∣Sign♭∣, an iΣ ∈ IΣ and
consider the family of morphisms

⟨HΣ,iΣ, γΣ,iΣ⟩ ∶ F/ ⋂
Σ∈∣Sign♭∣

Ker(AΣ,iΣ)→ AΣ,iΣ , Σ ∈ ∣Sign♭∣.
By Lemma 130, it constitutes a subdirect intersection, whence, since AΣ,iΣ ∈

K, for all Σ ∈ ∣Sign♭∣, we get F/⋂Σ∈∣Sign♭∣Ker(AΣ,iΣ) ∈ ⊲IΠ(K). Now it is not
difficult to see that there exists a morphism ⟨F,α∗⟩ ∶ F/⋂Σ∈∣Sign♭∣Ker(AΣ,iΣ)→
A, such that the following diagram commutes

F

❂✚
✚
✚
✚
✚
✚⟨I, π⟩ ❩

❩
❩
❩
❩
❩

⟨F,α⟩
⑦

F/ ⋂
Σ∈∣Sign♭∣

Ker(AΣ,iΣ) ⟨F,α∗⟩ ✲ A

The natural transformation α∗ is defined, for all Σ′ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ′), by

α∗Σ′(φ/ ⋂
Σ∈∣Sign♭∣

KerΣ′(AΣ,iΣ)) = αΣ′(φ).
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It is well-defined, since, for all Σ′ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ′), we have

⟨φ,ψ⟩ ∈ ⋂Σ∈∣Sign♭∣KerΣ′(AΣ,iΣ) implies ⟨φ,ψ⟩ ∈ KerΣ′(AΣ′,iΣ′)
implies ⟨φ,ψ⟩ ∈ ⋃i∈IΣ′ KerΣ′(AΣ′,i)
implies ⟨φ,ψ⟩ ∈ KerΣ′(A).

Taking into account the surjectivity of ⟨F,α⟩, we conclude that A ∈H( ⊲IΠ(K)).
Therefore, C∗(K) ⊆H( ⊲IΠ(K)). ∎

Finally, it is not difficult to see that semantic varieties are closed under
morphic images.

Proposition 134 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆
AlgSys(F). If K = VSem(K), then H(K) ⊆ K.

Proof: Assume that K = VSem(K). Let X = Eq(K). Assume that A =⟨A, ⟨F,α⟩⟩ ∈ H(K) and Σ ∈ ∣Sign♭∣, φ ≈ ψ ∈ XΣ. Since A ∈ H(K), there exists
B = ⟨B, ⟨G,β⟩⟩ ∈K and ⟨H,γ⟩ ∶ B → A:

F

✠�
�
�
�⟨G,β⟩ ❅

❅
❅
❅

⟨F,α⟩
❘

B ⟨H,γ⟩ ✲ A

Since B ∈ K and φ ≈ ψ ∈ XΣ = EqΣ(K), we conclude that φ ≈ ψ ∈ EqΣ(B).
Therefore, βΣ(φ) = βΣ(ψ). But this gives γG(Σ)(βΣ(φ)) = γG(Σ)(βΣ(ψ)) or,
equivalently, αΣ(φ) = αΣ(ψ). Therefore, A ⊧Σ φ ≈ ψ. This shows that A ∈
AlgSys(X) = AlgSys(Eq(K)) = VSem(K) = K. We conclude that H(K) ⊆ K,
i.e., K is closed under morphic images. ∎

We are now ready to provide alternative characterizations of equational,
quasiequational and guasiequational classes of F-algebraic systems. Namely,
we show that a class of F-algebraic systems is:

• a guasiequational class if and only if it is abstract and closed under
subdirect intersections;

• a quasiequational class if and only if it is directedly abstract and closed
under subdirect intersections;

• an equational class if and only if it is closed under subdirect intersec-
tions and morphic images.

Theorem 135 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a guasiequational class if and only if it is
abstract and closed under subdirect intersections.
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Proof: If K is a guasiequational class, then it is abstract by Corollary 124
and it is closed under subdirect intersections by Proposition 131.

Assume, conversely, that K is abstract and closed under subdirect inter-
sections and set G = GEq(K). Let A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(F), such that
G ≤ GEq(A). Let Σ ∈ ∣Sign♭∣, and φ ≈ ψ ∈ EqΣ(F), such that φ ≈ ψ ∉ EqΣ(A),
i.e., such that αΣ(φ) ≠ αΣ(ψ). Thus, by definition, the guasiequation

⟨EqΣ(A), φ ≈ ψ⟩ ∉ GEqΣ(A).
Therefore, since G ≤ GEq(A), ⟨EqΣ(A), φ ≈ ψ⟩ ∉ GEqΣ(K). Hence, for every
Σ ∈ ∣Sign♭∣ and all φ ≈ ψ ∉ EqΣ(A), there exists K⟨Σ,φ≈ψ⟩ ∈ K, such that
EqΣ(A) ⊆ EqΣ(K⟨Σ,φ≈ψ⟩), but φ ≈ ψ ∉ EqΣ(K⟨Σ,φ≈ψ⟩). We conclude that

EqΣ(A) = ⋂{EqΣ(K⟨Σ,φ≈ψ⟩) ∶ φ ≈ ψ ∉ EqΣ(A)}.
Let, for all Σ ∈ ∣Sign♭∣,

KΣ = {K⟨Σ,φ≈ψ⟩ ∶ φ ≈ ψ ∉ EqΣ(A)}.
• Since, by hypothesis, K is closed under subdirect intersections, and, by

Lemma 130, {⟨FK, αK⟩ ∶ F/Ker(KΣ)→ K,K ∈ KΣ}
is a subdirect intersection, we get that F/Ker(KΣ) ∈ K.

• Since, for all Σ ∈ ∣Sign♭∣,
KerΣ(A) = KerΣ(KΣ) = KerΣ(F/Ker(KΣ))

and F/Ker(KΣ) ∈ K, A ∈ C(K). Since K is abstract, we conclude that
A ∈ K.

Therefore, K is a guasiequational class of F-algebraic systems. ∎

Theorem 136 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a quasiequational class if and only if it is
directedly abstract and closed under subdirect intersections.

Proof: If K is a quasiequational class, then it is directedly abstract by
Corollary 127 and it is closed under subdirect intersections by Proposition
131.

Conversely, suppose that K ⊆ AlgSys(F), such that C∗(K) ⊆ K and
⊲

IΠ(K) ⊆ K. It suffices to show that K = AlgSys(QEq(K)). The left to
right inclusion always holds. For the converse, consider A = ⟨A, ⟨F,α⟩⟩ ∈
AlgSys(QEq(K)). For all Σ ∈ ∣Sign♭∣, all X ∈ EqωΣ(A) and all φ ≈ ψ ∉ EqΣ(A),
we consider the F-quasiequation

qΣ,X,φ≈ψ ∶=X → φ ≈ ψ.
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Since A ⊧Σ EqΣ(A) and A /⊧Σ φ ≈ ψ, we get that qΣ,X,φ≈ψ ∉ QEqΣ(A). Thus,
since A ∈ AlgSys(QEq(K)), we infer that qΣ,X,φ≈ψ ∉ QEqΣ(K). Therefore,
there exists AΣ,X,φ≈ψ ∈ K, such that AΣ,X,φ≈ψ /⊧Σ qΣ,X,φ≈ψ, i.e.,

AΣ,X,φ≈ψ ⊧Σ X and AΣ,X,φ≈ψ /⊧Σ φ ≈ ψ.
Let, for all X ∈ EqωΣ(A),

AΣ,X = {AΣ,X,φ≈ψ ∶ φ ≈ ψ ∉ EqΣ(A)}.
Define, for all X ∈ EqωΣ(A),

AΣ,X ∶= F/Ker(AΣ,X) = F/ ⋂
φ≈ψ∉EqΣ(A)

Ker(AΣ,X,φ≈ψ).

By Proposition 130, for all X ∈ EqωΣ(A), AΣ,X ∈
⊲

IΠ(K) = K. Consequently, it
suffices to show the following:

• ⋃X∈Eqω
Σ
(A)EqωΣ(AΣ,X) is directed;

• KerΣ(A) = ⋃X∈Eqω
Σ
(A)KerΣ(AΣ,X).

Suppose, first, that E ∈ EqωΣ(AΣ,X) and E′ ∈ EqωΣ(AΣ,X′), for some X,X ′ ∈
EqωΣ(A). Then, by construction of AΣ,X and AΣ,X′ , we get that E,E′ ∈
EqωΣ(A). Therefore, E∪E′ ∈ EqωΣ(AΣ,E∪E′) and, hence, ⋃X∈Eqω

Σ
(A)EqωΣ(AΣ,X)

is indeed directed.
Finally, note that, by construction, for all Σ ∈ ∣Sign♭∣,

KerΣ(A) = ⋃
X∈Eqω

Σ
(A)

KerΣ(AΣ,X).
Indeed, for all φ ≈ ψ ∈ EqΣ(F),

• if φ ≈ ψ ∈ KerΣ(A), then, φ ≈ ψ ∈ KerΣ(AΣ,{φ≈ψ}), whence φ ≈ ψ ∈
⋃X∈Eqω

Σ
(A)KerΣ(AΣ,X).

• if φ ≈ ψ ∉ KerΣ(A), then, by construction, for all X ∈ EqωΣ(A), φ ≈ ψ ∉
KerΣ(AΣ,X). Therefore, φ ≈ ψ ∉ ⋃X∈Eqω

Σ
(A)KerΣ(AΣ,X).

Since, for all Σ ∈ ∣Sign♭∣ and all X ∈ EqωΣ(A), AΣ,X ∈ K, we get, by the
definition of C∗ and the two properties just proven, that A ∈ C∗(K) = K.
Thus, K is a quasiequational class of F-algebraic systems. ∎

Theorem 137 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is an equational class if and only if it is
closed under subdirect intersections and morphic images.
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Proof: If K is an equational class, then it is closed under subdirect intersec-
tions by Proposition 131 and under morphic images by Proposition 134.

Suppose, conversely, that K is a class of F-algebraic systems that is closed
under subdirect intersections and morphic images. Set E = Eq(K) and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, such that E ≤ Eq(A). Consider,
for all K = ⟨K, ⟨K,κ⟩⟩ ∈ K, the mapping

⟨K,πK⟩ ∶ F/Ker(K)→K

defined by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
F

✠�
�
�
�⟨I, πK⟩ ❅

❅
❅
❅

⟨K,κ⟩
❘

F/Ker(K) ⟨K,πK⟩ ✲ K

πKΣ(φ/KerΣ(K)) = κΣ(φ).
By Lemma 130, the collection

{⟨K,πK⟩ ∶ F/Ker(K)→ K,K = ⟨K, ⟨K,κ⟩⟩ ∈ K}
forms a subdirect intersection. Since all codomains are in K and K is closed
under subdirect intersections, we get F/Ker(K) ∈ K. Now consider the mor-
phism ⟨F,α∗⟩ ∶ F/Ker(K)→ A,

given, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), by

F

✠�
�
�
�⟨I, πK⟩ ❅

❅
❅
❅

⟨F,α⟩
❘

F/Ker(K) ⟨F,α∗⟩ ✲ A

α∗Σ(φ/KerΣ(K)) = αΣ(φ).
It is well defined, since, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), if ⟨φ,ψ⟩ ∈
KerΣ(K), then, by hypothesis, ⟨φ,ψ⟩ ∈ EqΣ(A) and, hence, αΣ(φ) = αΣ(ψ).
Moreover, since ⟨F,α⟩ is surjective, so is ⟨F,α∗⟩. Since F/Ker(K) ∈ K and K

is closed under morphic images, we conclude that A ∈ K. Therefore, K is an
equational class of F-algebraic systems. ∎

We prove, next, the following result to the effect that, for any guasiequa-
tional class K of F-algebraic systems, the theory families of the equational
structure QK = ⟨F,DK⟩ coincide with the K-congruence systems on F .



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 199

Corollary 138 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. If K is a guasiequational class, then

ThFam(QK) = ConSysK(F).
Proof: We can rely on preceding results, but we also give a direct proof.

Since K is a guasiequational class, by Theorem 135, it is abstract and
closed under subdirect intersections. Since any guasiequational class also
contains a trivial F-algebraic system, we conclude, by Theorem 32, that
ThFam(QK) = ConSysK(F).

Next, we provide a direct proof of the same result. Suppose K is a
guasiequational class of F-algebraic systems.

Let θ ∈ ConSysK(F) and φ ≈ ψ ∈ DK
Σ(θΣ). Then ⟨θΣ, φ ≈ ψ⟩ ∈ GEqΣ(K).

Thus, since, by hypothesis, F/θ ∈ K, F/θ ⊧Σ ⟨θΣ, φ ≈ ψ⟩. But, obviously,
F/θ ⊧Σ θΣ. Therefore, we get F/θ ⊧Σ φ ≈ ψ, or, equivalently, ⟨φ,ψ⟩ ∈ θΣ. We
conclude that DK(θ) = θ and, hence, θ ∈ ThFam(QK).

Assume, conversely, that θ ∈ ThFam(QK) and consider Σ ∈ ∣Sign♭∣, φ⃗, ψ⃗,
φ,ψ ∈ SEN♭(Σ), such that ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K) and F/θ ⊧Σ φ⃗ ≈ ψ⃗.
Then, ⟨φi, ψi⟩ ∈ θΣ, for all i ∈ I. Since ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ ∈ GEqΣ(K) and
θ ∈ ThFam(QK), we get ⟨φ,ψ⟩ ∈ θΣ. Hence, F/θ ⊧Σ φ ≈ ψ. We conclude,
taking into account the fact that K is a guasiequational class, that F/θ ∈
AlgSys(GEq(K)) = K. Thus, θ ∈ ConSysK(F). ∎

We obtain, as a corollary, that, if the relative equational consequences of
two semantic guasivarieties are identical, then the two guasivarieties coincide.

Proposition 139 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

and K′ semantic guasivarieties of F-algebraic systems, such that DK = DK′.
Then K = K′.

Proof: Let A ∈ K and consider Σ ∈ ∣Sign♭∣, φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ), such that

K′ ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩.
This is equivalent to φ ≈ ψ ∈ DK′

Σ (φ⃗ ≈ ψ⃗). By hypothesis, we get φ ≈ ψ ∈
DK

Σ(φ⃗ ≈ ψ⃗), i.e., K ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩. Since A ∈ K, A ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩.
This shows that GEq(K′) ≤ GEq(A) and, hence A ∈ GSem(K′) = K′, the latter
equation by the assumption that K′ is a semantic guasivariety. We conclude
that K ⊆ K′. By symmetry, we get K = K′. ∎

These results allow us to obtain another round of different character-
izations of equational, quasiequational and guasiequational classes of F-
algebraic systems.

To provide the characterization of guasiequational classes, we need, first,
some technical lemmas.
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Lemma 140 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K an
abstract class of F-algebraic systems. K is closed under subdirect intersections
if and only if, for every F-algebraic system A, ConSysK(A) is closed under
intersection.

Proof: Let K be an abstract class of F-algebraic systems. Suppose, first,
that K is closed under subdirect intersections and let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system and {θi ∶ i ∈ I} ⊆ ConSysK(A). Then, by definition,
A/θi ∈ K, for all i ∈ I. Let, for all i ∈ I,

⟨I, ρi⟩ ∶ A/⋂
i∈I

θi → A/θi

be defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

F

✠�
�
�⟨F,π ○ α⟩ ❅

❅
❅

⟨F,πi ○ α⟩
❘

A/⋂
i∈I

θi ⟨I, ρi⟩ ✲ A/θi

ρiΣ(φ/⋂
i∈I

θiΣ) = φ/θiΣ.
Then, we have ⋂i∈I Ker(⟨I, ρi⟩) =∆A/⋂i∈I θ

i
. Hence, the family {⟨I, ρi⟩ ∶ i ∈ I}

forms a subdirect intersection. Thus, by hypothesis, since A/θi ∈ K, for all
i ∈ I, A/⋂i∈I θi ∈ K and, therefore, ⋂i∈I θi ∈ ConSysK(A). We conclude that
ConSysK(A) is closed under intersections.

Suppose, conversely, that, for every F-algebraic system A, ConSysK(A)
is closed under intersection and let

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

be a subdirect intersection, such that Ai ∈ K, for all i ∈ I. For every i ∈ I,
consider the morphism

⟨H i, δi⟩ ∶ A/Ker(⟨H i, γi⟩)→ Ai,

defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

F

✠�
�
�⟨F,πi ○ α⟩ ❅

❅
❅

⟨F i, αi⟩
❘

A/Ker(⟨H i, γi⟩) ⟨H i, δi⟩✲ Ai

δiΣ(φ/KerΣ(⟨H i, γi⟩)) = γiΣ(φ).
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It is clearly well-defined and, moreover, we have, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

φ ≈ ψ ∈ EqΣ(A/Ker(⟨H i, γi⟩)) iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ KerF (Σ)(⟨H i, γi⟩)
iff γi

F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ))

iff αiΣ(φ) = αiΣ(ψ)
iff φ ≈ ψ ∈ EqΣ(Ai).

Thus, Ai is a Σ-K-certificate for A/Ker(⟨H i, γi⟩), for all Σ ∈ ∣Sign♭∣. Since
K is abstract, we get that A/Ker(⟨H i, γi⟩) ∈ K and, hence, Ker(⟨H i, γi⟩) ∈
ConSysK(A). Thus, by hypothesis, ∆A = ⋂i∈I Ker(⟨H i, γi⟩) ∈ ConSysK(A),
showing that A ∈ K. We conclude that K is closed under subdirect intersec-
tions. ∎

Lemma 141 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, K be
an abstract class of F-algebraic systems, A an F-algebraic system and θ ∈
ConSys(A). Then θ ∈ ConSysK(A) if and only if Ker(⟨F,αθ⟩) ∈ ConSysK(F),

F
⟨F,α⟩ ✲ A

⟨I, πθ⟩✲ A/θ
where ⟨F,αθ⟩ = ⟨I, πθ⟩ ○ ⟨F,α⟩.
Proof: Consider the diagram,

F

✠�
�
�⟨I, π⟩ ❅

❅
❅

⟨F,αθ⟩
❘

F/Ker(⟨F,αθ⟩) ⟨F,ρ⟩ ✲ A/θ
where ⟨F,ρ⟩ ∶ F/Ker(⟨F,αθ⟩) → A/θ is defined, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ), by

ρΣ(φ/KerΣ(⟨F,αθ⟩)) = αΣ(φ)/θF (Σ).
This is well-defined, since, if ⟨φ,ψ⟩ ∈ KerΣ(⟨F,αθ⟩), then αθΣ(φ) = αθΣ(ψ), i.e.,
by definition, αΣ(φ)/θF (Σ) = αΣ(ψ)/θF (Σ). Moreover, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), we have

φ ≈ ψ ∈ EqΣ(F/Ker(⟨F,αθ⟩)) iff ⟨φ,ψ⟩ ∈ KerΣ(⟨I, π⟩)
iff ⟨φ,ψ⟩ ∈ KerΣ(⟨F,αθ⟩)
iff φ ≈ ψ ∈ EqΣ(A/θ).

Thus, Eq(F/Ker(⟨F,αθ⟩)) = Eq(A/θ). Since K is abstract, we conclude that
F/Ker(⟨F,αθ⟩) ∈ K if and only if A/θ ∈ K. Therefore, θ ∈ ConSysK(A) if and
only if Ker(⟨F,αθ⟩) ∈ ConSysK(F). ∎
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Lemma 142 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K an
abstract class of F-algebraic systems. ConSysK(F) is closed under intersec-
tion if and only if, for every F-algebraic system A, ConSysK(A) is closed
under intersection.

Proof: The “if” direction is obvious. For the only if, suppose ConSysK(F)
is closed under intersection and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system
and {θi ∶ i ∈ I} ⊆ ConSysK(A). Note that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⋂i∈I θi⟩) iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I θiF (Σ)
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ θiF (Σ), all i ∈ I,
iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F,αθi⟩).

Thus, Ker(⟨F,α⋂i∈I θi⟩) = ⋂i∈I Ker(⟨F,αθi⟩). Using Lemma 141, we now get

θi ∈ ConSysK(A), i ∈ I, iff Ker(⟨F,αθi⟩) ∈ ConSysK(F), i ∈ I,
implies ⋂i∈I Ker(⟨F,αθi⟩) ∈ ConSysK(F)

iff Ker(⟨F,α⋂i∈I θi⟩) ∈ ConSysK(F)
iff ⋂i∈I θi ∈ ConSysK(A).

Therefore, ConSysK(A) is closed under intersection. ∎

Now we formulate our first characterization theorem.

Theorem 143 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a guasiequational class if and only if it is
abstract and ConSysK(F) is closed under intersection.

Proof: We have K is a guasiequational class if and only if, by Theorem
135, it is abstract and closed under subdirect intersections, if and only if,
by Lemma 140, it is abstract and, for all A ∈ AlgSys(F), ConSysK(A) is
closed under intersection, if and only if, by Lemma 142, it is abstract and
ConSysK(F) is closed under intersection. ∎

A similar characterization can be obtained for quasiequational classes.

Theorem 144 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is a quasiequational class if and only if it is
directedly abstract and ConSysK(F) is closed under intersection.

Proof: We have K is a quasiequational class if and only if, by Theorem
136, it is directedly abstract and closed under subdirect intersections, if and
only if, by Lemma 140 (taking into account that directed abstraction implies
abstraction), it is directedly abstract and, for all A ∈ AlgSys(F), ConSysK(A)
is closed under intersections, if and only if, by Lemma 142, it is directedly
abstract and ConSysK(F) is closed under intersection. ∎



Voutsadakis CHAPTER 2. ALGEBRA AND LOGIC 203

Finally, we work with equational classes. Again, to provide an analogous
characterization, we go through a couple of technical lemmas.

The first is an analog of Lemma 140, but instead of addressing subdirect
intersections and intersections of relative congruence systems, it addresses
morphic images and shows that closure of an abstract class under morphic
images amounts to the collection of all relative congruence systems on every
algebraic system being an up-set in the lattice of congruence systems.

Lemma 145 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K

an abstract class of F-algebraic systems. K is closed under morphic images
if and only if, for every F-algebraic system A, ConSysK(A) is an up-set in
ConSys(A).
Proof: Let K be an abstract class of F-algebraic systems.

Assume, first, that K is closed under morphic images and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system and θ, θ′ ∈ ConSys(A), such that θ ≤ θ′ and
θ ∈ ConSysK(A). We consider the morphism ⟨I, ρ⟩ ∶ A/θ → A/θ′, given,
for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

F

✠�
�
�⟨F,αθ⟩ ❅

❅
❅

⟨F,αθ′⟩
❘

A/θ ⟨I, ρ⟩ ✲ A/θ′
ρΣ(φ/θΣ) = φ/θ′Σ.

It is clearly, well-defined, since θ ≤ θ′. Since θ ∈ ConSysK(A), A/θ ∈ K,
whence, since K is closed under morphic images, A/θ′ ∈ K, giving θ′ ∈
ConSysK(A). Therefore, ConSysK(A) is an up-set in ConSys(A).

Suppose, conversely, that ConSysK(A) is an up-set in ConSys(A), for
every F-algebraic system A. Consider F-algebraic systems A = ⟨A, ⟨F,α⟩⟩,
A′ = ⟨A′, ⟨F ′, α′⟩⟩ and a surjective morphism ⟨H,γ⟩ ∶ A→ A′

F

✠�
�
�⟨F,α⟩ ❅

❅
❅

⟨F ′, α′⟩
❘

A ⟨H,γ⟩ ✲ A′

and assume that A ∈ K. Then, we have ∆A ∈ ConSysK(A) iff, by Lemma 141,
Ker(⟨F,α⟩) ∈ ConSysK(F) implies, by the hypothesis and the commutativity
of the triangle, Ker(⟨F ′, α′⟩) ∈ ConSysK(F) iff, again by Lemma 141, ∆A

′ ∈
ConSysK(A′) iff A′ ∈ K. Therefore, K is closed under morphic images. ∎

The second is an analog of Lemma 142, but instead of addressing closure
of the collections of relative congruence systems under intersection, it deals
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with their upward closure under the signature-wise ordering in the lattices
of congruence systems.

Lemma 146 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K an
abstract class of F-algebraic systems. ConSysK(F) is an upset in ConSys(F)
if and only if, for every F-algebraic system A, ConSysK(A) is an upset in
ConSys(A).
Proof: The “if” direction is obvious.

For the “only if” assume that ConSysK(F) is an up-set in ConSys(F)
and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and θ, θ′ ∈ ConSys(A), such
that θ ≤ θ′ and θ ∈ ConSysK(A). Then, taking into account the fact that
Ker(⟨F,αθ⟩) ≤ Ker(⟨F,αθ′⟩) and that ConSysK(F) is an upset and using
Lemma 141, we have

θ ∈ ConSysK(A) iff Ker(⟨F,αθ⟩) ∈ ConSysK(F)
implies Ker(⟨F,αθ′⟩) ∈ ConSysK(F)

iff θ′ ∈ ConSysK(A).
Therefore, ConSysK(A) is an up-set in ConSys(A). ∎

Now we get the following theorem characterizing equational classes of
F-algebraic systems.

Theorem 147 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic systems. K is an equational class if and only if it is
abstract and ConSysK(F) is an upset in ConSys(F), closed under intersec-
tions.

Proof: We have K is an equational class if and only if, by Theorem 137,
it is closed under subdirect intersections and morphic images, if and only
if, by Proposition 133 and Lemmas 140 and 145, it is abstract and, for
all A ∈ AlgSys(F), ConSysK(A) is an upset in ConSys(A), closed under
intersections, if and only if, by Lemmas 142 and 146, it is abstract and
ConSysK(F) is an upset in ConSys(F), closed under intersections. ∎
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3.1 Introduction

In this chapter we give the main definitions and some key properties of the
main classes of the semantic Leibniz hierarchy. The term Leibniz hierarchy
refers to the classification of logical systems according to the strength of their
relation to classes of algebraic systems. The term semantic refers to the
definition of those classes by means of the Leibniz operator as applied to the
theory families/systems of the corresponding π-institution or, via available
so called transfer theorems, to the filter families/systems of their Leibniz
reduced matrix systems.

As we will see later, there is also a syntactic Leibniz hierarchy whose
classes do not coincide with those of the semantic hierarchy in general. How-
ever, we will show that under certain conditions, there is a correspondence
between the classes in the two hierarchies.

A very rough idea of the main classes of the semantic Leibniz hierarchy,
with the inclusion relations between them, is given in the following diagram.
The hierarchy parallels that of sentential logics, established in the classical
theory (see, e.g., Figure 9 on Page 316 of [86]). However, as we will see in this
and subsequent chapters, in the case of logics formalized as π-institutions,
various refinements of these classes are possible. One of the main goals of
the monograph is to study those refinements and their interrelations. In the
diagram we also give an idea of how this hierarchy is extended with other
classes that are “attached” via dotted links to the main classes. Some of
these extensions will also be studied later.

Finiteness Algebraizable
........❘ ✠�

�
� ❅

❅
❅❘

Equivalential Weakly Algebraizable Regularity

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠..

..
..

..

Protoalgebraic Truth Equational

❅
❅
❅❘ ✠�

�
�

........❘
Loyal Definability of Truth

Stable
❄

Trivial or Has Theorems
❄
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In Section 3.2, we introduce three fundamental classes of π-institutions,
namely systemic, stable and loyal π-institutions. Systemicity and stability
play a very important role throughout the monograph and facilitate dis-
cussions about the refinements of the various classes alluded to previously.
Loyalty does not play a comparable role, but it constitutes at the same time a
relaxation of order preservation and of order reflectivity and, as such, defines
an important class close to the bottom of the hierarchy.

A π-institution is called systemic if all of its theory families are theory
systems, i.e., invariant under the action of signature morphisms. In the con-
text of π-institutions, the importance of systemicity was brought to the fore
in the study of protoalgebraicity [105, 104]. Generally speaking, however,
preservation of relations or, more concretely, of distinguished sets, is an im-
portant property in the model theory of first-order logics (see, e.g., page 71
of [17], page 5 of [43] or page 8 of [66]) and, hence, also in the theory of
logical matrices serving as models of sentential logics (see, e.g., page 31 of
[64] or page 200 of [86]). Systemicity is characterized by asserting that the
closure family generated by any sentence of the given π-institution includes
all translates of that sentence via signature morphisms. Systemicity also
affords the chance to introduce the first of a host of so-called transfer theo-
rems. This term refers to a property holding on the lattice of theory families
of a π-institution transferring to the lattice of its filter families on arbitrary
algebraic systems. This paradigm follows an oft-encountered situation in the
theory of sentential logics (see, e.g., Section 3.6 of [86]). In this specific in-
stance, it is shown that a π-institution I = ⟨F,C⟩ is systemic if and only if
every filter family on every F-algebraic system is actually a filter system.

Recall from Chapter 2 that, given a π-institution I and a theory family

T of I ,
←Ð
T is the largest theory system of I included in T . In Section 2.3 it

was shown (Proposition 20) that the Leibniz congruence system associated

with T is included in the one associated with
←Ð
T . We call the π-institution I

stable if, for all theory families T of I , these two Leibniz congruence systems

coincide. Since systemicity directly yields that, for all T ,
←Ð
T = T , it clearly

implies stability. Moreover, this implication is proper. As was the case with
systemicity, stability also transfers.

The last concept introduced in Section 3.2 is that of loyalty. There are
four possible flavors, analogs of which also arise and are pursued for many
other properties considered in the monograph. The general idea of the prop-
erty is, perhaps, best conveyed by family loyalty. The property holds for
a π-institution I if, for no pair T and T ′ of theory families of I is it the
case that T < T ′ and Ω(T ) > Ω(T ′), i.e., I is family loyal if proper inclu-
sion between theory families is never reversed when passing to corresponding
Leibniz congruence systems. As in most other properties that we study, the
other three versions are obtained from the family version as follows:

• left loyalty by replacing on the theory family side T and T ′ by their
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arrow counterparts
←Ð
T ,
←Ð
T ′, respectively;

• right loyalty by replacing on the congruence system side T and T ′ by
←Ð
T

and
←Ð
T ′, respectively, i.e., by considering the inequality Ω(←ÐT ) > Ω(←ÐT ′)

in place of Ω(T ) > Ω(T ′);
• system loyalty by applying the defining condition only on the collection

of theory systems of I , instead of considering arbitrary pairs of theory
families.

It turns out that family loyalty implies stability. Moreover, family loyalty
is the strongest of the four properties, followed by left loyalty, which, in
turn, implies system loyalty, which is equivalent to right loyalty. Both im-
plications are proper. Another feature of family loyalty is that, apart from
trivial π-institutions, all family loyal ones must possess theorems. In closing
the section, it is shown that all flavors of loyalty also transfer from theory
families/systems to filter families/systems over arbitrary algebraic systems.

In Section 3.3, we introduce versions of the monotonicity property. This
property is very important historically, since one of the first major classes
of sentential logics to be studied in detail in the context of abstract alge-
braic logic was that of protoalgebraic logics [28] (see, also, Chapter 1 of [64]
and Section 6.2 of [86]). They are characterized by the monotonicity of the
Leibniz operator on their theory lattices. In the context of π-institutions,
family monotonicity asserts that, for every pair T , T ′ of theory families, if T
is included in T ′, then the Leibniz congruence system of T is also dominated
by that of T ′. Left monotonicity results by replacing, on the theory fam-

ily side (hypothesis), T and T ′ by
←Ð
T and

←Ð
T ′, respectively. Similarly, right

monotonicity ensues when the same is done on the congruence system side
(conclusion). Finally, system monotonicity is monotonicity restricted to the
collection of theory systems. It is shown that family and left monotonic-
ity coincide, as do right and system monotonicity. In agreement with the
terminology inherited by the sentential framework, we call a π-institution
satisfying family monotonicity protoalgebraic, whereas one satisfying sys-
tem monotonicity is termed prealgebraic [105, 104]. Since prealgebraicity
is defined by the same monotonicity condition as protoalgebraicity, but re-
stricted to theory systems, protoalgebraic π-institutions form a subclass of
the class of prealgebraic ones. Moreover, it turns out that a π-institution is
protoalgebraic if and only if it is prealgebraic and stable. Protoalgebraicity
actually implies family loyalty, a condition stronger than stability, and sim-
ilarly, prealgebraicity implies system loyalty. Finally, it is shown that both
monotonicity properties transfer.

In Sections 3.4 and 3.5, we undertake the study of properties that may
be referred to, collectively, as complete monotonicity properties. The reason
for studying these properties can be traced back to the work of Raftery
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[77] in an indirect way, but they are also loosely related, especially in the
study of finitary deductive systems, to the property of continuity, whose
importance was already apparent in [35]. Raftery used a property termed
complete order reflectivity to characterize truth equationality of sentential
logics. The property asserts that, given a sentential logic S , for all collections
T ∪ {T ′} of theories of S , ⋂T ∈T Ω(T ) ⊆ Ω(T ′) implies ⋂T ⊆ T ′. Noting that
in both the lattice of theories and the lattice of congruences on the formula
algebra intersection coincides with meet, this property may be rewritten as

⋀T ∈T Ω(T ) ≤ Ω(T ′) implies ⋀T ≤ T ′. Since, however, join and union of both
theories and congruences differ, depending on whether one adopts a set-
theoretic or a lattice-theoretic point of view, the dual property of complete
order reflectivity may take one of two possible forms. The first asserts that,
for all T ∪ {T ′}, T ′ ⊆ ⋃T implies Ω(T ′) ⊆ ⋃T ∈T Ω(T ). The second stipulates
that, for all T ∪ {T ′}, T ′ ≤ ⋁T implies Ω(T ′) ≤ ⋁T ∈T Ω(T ). The translation
of complete order reflectivity in the categorical context was first introduced
in [107]. Various flavors of it are studied in detail in Section 3.8. In Sections
3.4 and 3.5, we study the properties corresponding to the two aforementioned
duals.

In Section 3.4, we look at the various flavors of complete ⋃-monotonicity.
Again, the simplest one is family complete ⋃-monotonicity. A π-institution
is family completely ⋃-monotone if, for all collections T ∪{T ′} of theory fam-
ilies, T ′ ≤ ⋃T ∈T T implies Ω(T ′) ≤ ⋃T ∈T Ω(T ). Left complete ⋃-monotonicity
results by replacing all theory families appearing in the hypothesis by their
arrow counterparts. Similarly, right complete ⋃-monotonicity arises by per-
forming the same replacement in the conclusion. Finally, system complete

⋃-monotonicity is the property resulting by applying the same condition
defining the family version to collections of theory systems only. We use the
abbreviation c∪-monotonicity to refer to complete ⋃-monotonicity. More-
over, when we drop the ⋃ (or ∪) from the notation, it is to this version of
complete monotonicity that we refer to. Family or left c∪-monotonicity are
strong enough to imply stability. Moreover, family c∪-monotonicity is equiv-
alent to possessing both left and right c∪-monotonicity. Either left or right
c∪-monotonicity on its own implies system c∪-monotonicity. For these four
properties, it is also the case that they transfer from theory families/systems
to filter families/systems on arbitrary algebraic systems. In closing, it is es-
tablished that left c∪-monotonicity implies protoalgebraicity, whereas system
c∪-monotonicity is sufficient for prealgebraicity.

In Section 3.5, we undertake a similar study of the complete monotonic-
ity properties involving the join instead of the union operation. We say
that a π-institution I = ⟨F,C⟩ is family completely ⋁-monotone, abbrevi-
ated family c∨-monotone, if, for every collection T ∪ {T ′} of theory families,
T ′ ≤ ⋁I T implies Ω(T ′) ≤ ⋁F

T ∈T Ω(T ), where ⋁I denotes the join in the
complete lattice of theory families of I and ⋁F the join in the complete
lattice of congruence systems on F. As in Section 3.4, left c∨-monotonicity
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results by replacing in the hypothesis every theory family by its arrow coun-
terpart, right c∨-monotonicity by doing the same in the conclusion and sys-
tem c∨-monotonicity by restricting the defining implication to all collections
of theory systems, instead of insisting that it hold for arbitrary collections
of theory families. Working with join instead of union leaves most of our
conclusions intact. It is still the case that family c∨-monotonicity and left
c∨-monotonicity are each sufficient for stability. Family c∨ monotonicity is
equivalent to the combination of left and right c∨-monotonicities and each
of the latter implies system c∨-monotonicity. And it is still the case that
left c∨-monotonicity implies protoalgebraicity and system c∨-monotonicity
implies prealgebraicity. There are, however, some differences between c∨-
monotonicity properties and their counterparts using union. One example
is that c∨-monotonicity properties, unlike c∪-monotonicity properties, do not
transfer in general. This is due to the fact that, unlike union, the join opera-
tion does not commute with inverse surjective morphisms between algebraic
systems. Another difference, which may also be viewed as a partial justifi-
cation for considering both properties, is that the corresponding classes in
the two hierarchies are incomparable. For instance, there exists a family
c∪-monotone π-institution which is not family c∨-monotone and vice-versa.

In Section 3.6 we switch from the study of monotonicity properties to the
study of injectivity properties. The importance of injectivity in the context
of sentential logics was already apparent in the work of Blok and Pigozzi
[35], but it was brought more in focus following its generalizations, first by
Herrmann [43] and, ultimately, with the work of Czelakowski and Jansana
[62] on weakly algebraizable logics. A π-institution is family injective if, for
all theory families T and T ′, Ω(T ) = Ω(T ′) implies T = T ′, i.e., when the
Leibniz operator on theory families is injective. Left injectivity is obtained

by replacing T and T ′ on the theory family side (conclusion) by
←Ð
T and

←Ð
T ′,

respectively, while right injectivity by doing the same on the congruence
system side (hypothesis). Finally, system injectivity imposes injectivity of
the Leibniz operator on theory systems only. Here, right injectivity turns
out to be the most potent of the four properties and it implies systemicity.
Then comes family injectivity, followed by left injectivity, which, in turn,
implies system injectivity. Right injectivity is equivalent to system injectivity
coupled with systemicity, whereas, if system injectivity is combined with
stability, they imply left injectivity. All injectivity properties transfer.

In the last two sections of the chapter, Sections 3.7 and 3.8, we study
reflectivity properties, which are dual to the monotonicity properties delved
into in Sections 3.3, 3.4 and 3.5.

In Section 3.7, we study the various flavors of reflectivity. In the context
of algebraizable sentential logics the importance of this property was at least
implicit, if not apparent, in the work of Blok and Pigozzi [35]. And, as was
the case with injectivity, it kept its central role in the generalizations to infini-
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tary algebraizable [43] and weakly algebraizable logics [62]. A π-institution
I is family reflective if, for all theory families T and T ′, Ω(T ) ≤ Ω(T ′) im-
plies T ≤ T ′, i.e., if the Leibniz operator is order reflecting on the theory
families of I . Left reflectivity replaces T and T ′ on the theory family side
(conclusion) by their arrow counterparts, while right reflectivity applies the
same replacement on the congruence system side (hypothesis). Finally, sys-
tem reflectivity imposes order reflectivity of the Leibniz operator on theory
systems only. Each of family and right reflectivity implies systemicity. This
allows proving that these two versions of reflectivity are actually equivalent.
They imply left reflectivity, which dominates system reflectivity. System
reflectivity together with stability imply left reflectivity. System reflectiv-
ity, coupled with systemicity, is equivalent to family reflectivity. All these
properties transfer. Section 3.7 ends by establishing some relations between
reflectivity and properties introduced in preceding sections. More precisely,
it is shown that family, left and system reflectivity imply, respectively, right,
left and system injectivity. Additionally, family, left and system reflectivity
imply, respectively, family, left and system loyalty.

In Section 3.8, we study versions of complete reflectivity. As was men-
tioned previously, in the context of sentential logics, the property was intro-
duced by Raftery in [77], where it was used to characterize truth equationality
of sentential logics. A logic is truth equational if the filters of its Leibniz re-
duced matrix models are equationally definable. This is equivalent to the
assertion that the filters of arbitrary matrix models are definable using equa-
tions via the corresponding Leibniz congruences. Raftery showed that truth
equationality is equivalent to the complete order reflectivity of the Leibniz
operator on the theories of the logic, i.e., the property that, for every col-
lection T ∪ {T ′} of theories, ⋂T ∈T Ω(T ) ⊆ Ω(T ′) implies ⋂T ⊆ T ′ (see, e.g.,
pages 371-382 of [86]; in particular, Theorem 6.101). Given a π-institution
I , family complete reflectivity asserts that, for every collection T ∪ {T ′} of
theory families of I , ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ≤ T ′. Left complete
reflectivity is obtained by replacing on the theory family side (conclusion)
each theory appearing by its arrow version. Similarly, right complete reflec-
tivity results by performing the same replacement on the congruence system
side (hypothesis). System complete reflectivity is the restriction of the con-
dition defining family complete reflectivity on collections of theory systems.
We abbreviate complete reflectivity by c-reflectivity. On their own, family
and right c-reflectivity each implies systemicity, and this allows showing that
they are equivalent properties. They imply left c-reflectivity, which, in turn,
implies system c-reflectivity. System c-reflectivity, coupled with stability im-
plies left c-reflectivity. Moreover, together with systemicity, it turns out to be
equivalent to family c-reflectivity. All three different properties transfer and
it is fairly obvious that they generalize the corresponding reflectivity prop-
erties, since the latter are special cases of the former in which the collection
T is a singleton.
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The properties of systemicity, stability, loyalty, monotonicity, c∪-mono-
tonicity, c∨-monotonicity, injectivity, reflectivity and c-reflectivity constitute
the building blocks of the hierarchies of π-institutions that will be presented
and studied in subsequent chapters of the monograph.

3.2 Systemicity, Stability and Loyalty

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Recall that, by Propo-

sition 42, for every theory family T ∈ ThFam(I), ←ÐT is the largest theory sys-

tem included in T . Moreover, recall that, by Proposition 20, Ω(T ) ≤ Ω(←ÐT ).
Definition 148 (Systemicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F. I is called systemic if
ThFam(I) = ThSys(I), or, equivalently, if, for all T ∈ ThFam(I),

←Ð
T = T.

Another interesting characterization is the following. Recall that, given
an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, a π-institution I = ⟨F,C⟩, based
on F, and a sentence family X ∈ SenFam(F), we denote by

C(X) = {CΣ(X)}Σ∈∣Sign♭∣
the least theory family of I including X . Moreover if Φ∪{φ} ⊆ SEN♭(Σ), we
use C(Φ) and C(φ) ∶= C({φ}) to denote C(X), where X = {XΣ′}Σ′∈∣Sign♭∣ is

such that, for all Σ′ ∈ ∣Sign♭∣, XΣ′ = { Φ, if Σ′ = Σ
∅, if Σ′ ≠ Σ

.

Proposition 149 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is systemic if and only if, for all Σ,Σ′ ∈∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all φ ∈ SEN♭(Σ),
SEN♭(f)(φ) ∈ CΣ′(φ).

Proof: Suppose, first, that I is systemic. Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Since, by hypothesis, for all T ∈ ThFam(I), such that φ ∈ TΣ, we have, for
all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ TΣ′ , we conclude that
for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ CΣ′(φ).

Assume, conversely, that the displayed condition in the statement holds
and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ TΣ.
Consider Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then, by hypothesis,

SEN♭(f)(φ) ∈ CΣ′(φ)
= ⋂{T ′Σ′ ∶ T ′ ∈ ThFam(I), φ ∈ T ′Σ}
⊆ TΣ′ .
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Thus, T ∈ ThSys(I) and I is systemic. ∎

The following is one of many typical transfer theorems that we will en-
counter for various properties regarding π-institutions.

Theorem 150 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is systemic if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, FiFamI(A) = FiSysI(A).
Proof: The right to left implication follows by considering the F-algebraic
system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is the identity morphism, and
taking into account the fact that, by Lemma 51, FiFamI(F) = ThFam(I)
and FiSysI(F) = ThSys(I).

For the left to right implication, suppose that I is systemic and assume
that A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system and T ∈ FiFamI(A). Then, by
Lemma 51, α−1(T ) ∈ ThFam(I). Thus, by hypothesis, α−1(T ) ∈ ThSys(I).
Hence, using again Lemma 51, T ∈ FiSysI(A). Therefore FiFamI(A) =
FiSysI(A). ∎

Now we introduce another important class of π-institutions in the seman-
tic Leibniz hierarchy.

Definition 151 (Stability) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic sys-
tem and I = ⟨F,C⟩ a π-institution based on F. I is called stable if, for all
T ∈ ThFam(I),

Ω(←ÐT ) = Ω(T ).
Since, by Proposition 20, it always holds that Ω(T ) ≤ Ω(←ÐT ), we have

that

I is stable if and only if, for all T ∈ ThFam(I), Ω(←ÐT ) ≤ Ω(T ).
The following obvious relation holds between these two classes.

Proposition 152 Let I = ⟨F,C⟩ be a π-institution. If I is systemic, then it
is stable.

Proof: If I is systemic, then, for all T ∈ ThFam(I), ←ÐT = T , whence Ω(←ÐT ) =
Ω(T ). Thus, I is stable. ∎

We denote this relation by the following diagram, where the arrow repre-
sents inclusion.

Systemic

Stable
❄

We show that this is a proper inclusion, i.e., there are stable π-institutions
that are not systemic.
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Example 153 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is a category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone (consisting only of the projection natural trans-
formations).

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
There is a single theory family which is not a theory system, namely

T = {{0,1},{b}}. So I is not systemic. On the other hand, we have Ω(←ÐT ) =
Ω({{1},{b}}) = ∆F = Ω(T ). Therefore, I is stable.

The stability property transfers from the theory families of a π-institution
I = ⟨F,C⟩ to all I-filter families on all F-algebraic systems.

Theorem 154 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is stable if and only if, for every

F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A), ΩA(←ÐT ) = ΩA(T ).
Proof: The “if” part is trivial, since stability is defined by the given condition
on all theory families of the π-institution, which, by Lemma 51, are exactly
the I-filter families on F = ⟨F, ⟨I, ι⟩⟩.

For the “only if” assume that I is stable and let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system and T ∈ FiFamI(A). Then we have:

α−1(ΩA(←ÐT )) = Ω(α−1(←ÐT )) (by Proposition 24)

= Ω(←ÐÐÐÐα−1(T )) (by Lemma 6)
= Ω(α−1(T ))

(by Lemma 51, Proposition 42 and stability)
= α−1(ΩA(T )) (by Proposition 24).
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By surjectivity of ⟨F,α⟩, we get that ΩA(←ÐT ) = ΩA(T ). ∎

Next, we introduce various versions of the loyalty property and the cor-
responding classes in the loyalty hierarchy of π-institutions.

Definition 155 (Loyalty) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic sys-
tem and I = ⟨F,C⟩ a π-institution based on F.

• I is called family loyal if, for all T,T ′ ∈ ThFam(I),
T /< T ′ or Ω(T ) /> Ω(T ′).

• I is called left loyal if, for all T,T ′ ∈ ThFam(I),
←Ð
T /< ←ÐT ′ or Ω(T ) /> Ω(T ′).

• I is called right loyal if, for all T,T ′ ∈ ThFam(I),
T /< T ′ or Ω(←ÐT ) /> Ω(←ÐT ′).

• I is called system loyal if, for all T,T ′ ∈ ThSys(I),
T /< T ′ or Ω(T ) /> Ω(T ′).

We establish relationships between these properties that lead to a loyalty
hierarchy of π-institutions.

We show, first, that family loyalty implies stability.

Lemma 156 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family loyal, then it is stable.

Proof: Suppose I is family loyal and let T ∈ ThFam(I). We must show

that Ω(←ÐT ) = Ω(T ). If
←Ð
T = T , then the conclusion is obvious. So suppose

←Ð
T ≠ T . Then, by Proposition 42, we have

←Ð
T < T . Using family loyalty, we

get Ω(←ÐT ) /> Ω(T ). Hence, by Proposition 20, we have Ω(←ÐT ) = Ω(T ). We

conclude that, for all T ∈ ThFam(I), Ω(←ÐT ) = Ω(T ), whence I is stable. ∎

There are π-institutions that are stable but not family loyal. The follow-
ing example shows that family loyal π-institutions form a proper subclass of
the class of stable π-institutions.

Example 157 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category, with object Σ;
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• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1};
• N ♭ is the trivial clone (consisting only of the projections).

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {∅,{1},{1,0}}.
The lattice of theory families (which are all systems) and the corresponding
Leibniz congruence systems are given in the diagram.

{0,1}.........❥
∇F

{1}

..
..
..
..
..
..
..
..
.
✣

.........❥
∆F

∅

Since all theory families are theory systems, I is clearly stable. On the other
hand, letting T = {∅} and T ′ = {{1}}, we have T < T ′ and Ω(T ) > Ω(T ′).
Therefore, I is not family loyal.

Now we can establish the following relationships between the four loyalty
properties.

Proposition 158 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family loyal then it is left loyal;

(b) If I is left loyal, then it is system loyal;

(c) I is system loyal if and only if it is right loyal;

(b) I is family loyal if and only if it is system loyal and stable.
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Proof:

(a) Suppose I is family loyal. Let T,T ′ ∈ ThFam(I), such that
←Ð
T <

←Ð
T ′.

Then, by family loyalty Ω(←ÐT ) /> Ω(←ÐT ′). But, by Lemma 156, I is
stable. So we get Ω(T ) /> Ω(T ′). We conclude that I is left loyal.

(b) Suppose that I is left loyal and let T,T ′ ∈ ThSys(I), such that Ω(T ) >
Ω(T ′). Then, by left loyalty,

←Ð
T /< ←ÐT ′. But, since T,T ′ are theory

systems,
←Ð
T = T and

←Ð
T ′ = T ′. Hence T /< T ′. Therefore I is system

loyal.

(c) Suppose, now, that I is right loyal and let T,T ′ ∈ ThSys(I), such that

T < T ′. Then, by right loyalty, Ω(←ÐT ) /> Ω(←ÐT ′). Thus, since T,T ′ are
theory systems, Ω(T ) /> Ω(T ′). We conclude that I is system loyal.

Suppose, conversely, that I is system loyal and let T,T ′ ∈ ThFam(I),
such that T < T ′. Then, by Lemma 1,

←Ð
T ≤

←Ð
T ′. If

←Ð
T =

←Ð
T ′, then

Ω(←ÐT ) /> Ω(←ÐT ′). On the other hand, if
←Ð
T <
←Ð
T ′, then, by system loyalty,

Ω(←ÐT ) /> Ω(←ÐT ′). We conclude that I is right loyal.

(d) Suppose, first, that I is family loyal. Then, by Lemma 156, it is stable
and it is, a fortiori, system loyal.

Suppose, conversely, that I is system loyal and stable. Let T,T ′ ∈
ThFam(I), such that Ω(T ) > Ω(T ′). By stability, Ω(←ÐT ) > Ω(←ÐT ′).
Therefore, by system loyalty,

←Ð
T /< ←ÐT ′. Since Ω(←ÐT ) ≠ Ω(←ÐT ′), we also

have,
←Ð
T ≰
←Ð
T ′. Therefore, by Lemma 1, T /< T ′. We conclude that I is

family loyal.
∎

By Proposition 158, the following loyalty hierarchy arises.

Family Loyal
..........❘

Left Loyal
❄

Stable

System/Right Loyal
❄

Example 157 brings to the fore another interesting point, namely, that
family loyal π-institutions must have theorems, unless they are trivial.

Proposition 159 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) If I is trivial, then it is family loyal.

(b) If I is family loyal and non-trivial, then it has theorems.

Proof:

(a) If I is trivial, then the only Leibniz congruence system is ∇F. So I is
family loyal.

(b) Suppose I is family loyal and non-trivial. By non-triviality, it has a
theory family T , such that, for some Σ ∈ ∣Sign♭∣, TΣ ≠ ∅ and TΣ ≠
SEN(Σ). Therefore, we have ∅ < T . So, by loyalty, Ω(∅) /> Ω(T ). But
Ω(∅) = ∇F. So ∇F /> Ω(T ). This shows that Ω(T ) = ∇F, which is a
contradiction, since ∇F cannot be compatible with any theory family
T , with a component TΣ ≠ ∅,SEN(Σ).

∎

We also have the following straightforward relationship.

Proposition 160 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is systemic and system loyal, then it
is family loyal.

Proof: If I is systemic, then ThFam(I) = ThSys(I) and, as a result, for all

T ∈ ThFam(I), ←ÐT = T . Thus, under this hypothesis, all loyalty properties
coincide. ∎

The next example serves many purposes:

• It shows a π-institution that is left loyal, but not family loyal.

• It shows a π-institution that is system loyal, but not stable, and, hence,
by Proposition 158, not family loyal.

• It shows an example of a nontrivial π-institution without theorems that
is system loyal, but not family loyal, illustrating Proposition 159.

Example 161 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and two non-identity mor-
phisms f, g ∶ Σ → Σ, such that f ○ f = f , g ○ g = g, g ○ f = g and
f ○ g = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(f)(0) =
SEN♭(f)(1) = 0, SEN♭(g)(0) = SEN♭(g)(1) = 1;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {∅,{0},{1},{0,1}}.
The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T

∅ ∅{0} ∅{1} ∅{0,1} {0,1}
The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1}
�
�
� ❅

❅
❅

.....................③ ∇F

{0} {1}
...

...
...

...
...

...
...❃

..........................③❅
❅
❅ �

�
�

.......❥
∆F

∅

Note that, since
←ÐÐÐ{{0}} = {∅} and these theory families map to different con-

gruence systems, I is not stable. I is not family loyal, since {∅} < {{0}} and

Ω({∅}) = ∇F > ∆F = Ω({{0}}). However, I is left loyal, since, if
←Ð
T <

←Ð
T ′,

then T ′ = {{0,1}} and, therefore, since Ω(T ′) = ∇F, Ω(T ) /> Ω(T ′).
Now we provide a variety of additional examples, all showcasing π-insti-

tutions that are left loyal (and, hence, also system loyal), but fail to be family
loyal.

Example 162 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

Taking into account the fact that {{1,2}} is a theory family that is not a
theory system, it is easy to see that this π-institution is left loyal (and, hence,
system loyal), but fails to be family loyal.

Example 163 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that {{1,2}} is the only theory family that is not a theory system.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

{0,1,2} ...............................................................✲ ∇F

✚✚✚✚✚ ❩❩❩❩❩ ✚✚✚✚✚ ❩❩❩❩❩{1,2} {0,2} .....✲ {0,2},{1} {0,1},{2}...............................................③

❩❩❩❩❩ ✚✚✚✚✚ ❩❩❩❩❩ ✚✚✚✚✚

.......
.......

.......
.......

.......
.......

.....✿

{2} ∆F

Again it is not difficult to see that I is left and right loyal, but fails to be
family loyal.

Example 164 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and two non-identity mor-
phisms f, g ∶ Σ → Σ, such that f ○ f = f , g ○ g = g, g ○ f = g and
f ○ g = f ;
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• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2 and SEN♭(g)(0) = 1, SEN♭(g)(1) =
1, SEN♭(g)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:

T
←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} .................................✲ ∇F

�
�
� ❅

❅
❅{1,2} {0,2} {0,1},{2}

❅
❅
❅

..................................q
�
�
�

..............s....
....

....
....

....
.✯

{2} ∆F

Again it is easy to check, keeping in mind that {{2}} and {{0,1,2}} are the
only theory systems, that I is left loyal (and, hence, system loyal), but not
family loyal.

Finally, an example of a system loyal π-institution that is not left loyal.
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Example 165 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2,3} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2 and SEN♭(f)(3) = 3;

• N ♭ is the clone generated by the following two unary natural transfor-
mations σ♭, τ ♭ ∶ SEN♭ → SEN♭:

x σ♭Σ(x) τ ♭Σ(x)
0 0 0
1 1 1
2 0 3
3 3 3

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
The following table gives the theory families and the theory systems of the

π-institution I:

T
←Ð
T{3} {3}{2,3} {2,3}{1,2,3} {2,3}{0,1,2,3} {0,1,2,3}

The lattice of theory families and the corresponding Leibniz congruence sys-
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tems are shown in the diagram.

{0,1,2,3} .....................✲ ∇F

{1,2,3}
.....................❘

{{0,1},{2},{3}}
{2,3}...........

.......
...✿

...
...

...
...

...
...

...❃

{3} ∆F

I has three theory systems, Thm(I) = {{3}}, T = {{2,3}} and SEN ={{0,1,2,3}}. An inspection of the diagram shows that I is system loyal.
On the other hand, setting T ′ = {{1,2,3}}, we get that

←Ð
T ′ =
←ÐÐÐÐÐÐ{{1,2,3}} = {{2,3}} > {{3}} = ←ÐÐÐ{{3}} =←ÐÐÐÐÐThm(I),

whereas
Ω(T ′) = ∆F < {{0,1},{2},{3}} = Ω(Thm(I)).

Therefore, I is not left loyal.

For all loyalty properties, we have transfer theorems, detailed in the var-
ious parts of the following result.

Theorem 166 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) I is family loyal if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A),
T /< T ′ or ΩA(T ) /> ΩA(T ′);

(b) I is left loyal if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T,T ′ ∈ FiFamI(A),

←Ð
T /<←ÐT ′ or ΩA(T ) /> ΩA(T ′);

(c) I is system loyal if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A),
T /< T ′ or ΩA(T ) /> ΩA(T ′).
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Proof:

(a) For the “if”, suppose that the loyalty condition holds for the I-filter
families of every F-algebraic system. Then it holds, in particular, for
the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is the iden-
tity morphism. The fact that, by Lemma 51, FiFamI(F) = ThFam(I),
concludes the proof.

Suppose, conversely, that I is family loyal. Let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system and T,T ′ ∈ FiFamI(A), such that T < T ′. We must
show that ΩA(T ) /> ΩA(T ′). Since T < T ′, we must have α−1(T ) ≤
α−1(T ′). However, by surjectivity of ⟨F,α⟩, if α−1(T ) = α−1(T ′), we
get T = T ′. Thus, we must have α−1(T ) < α−1(T ′). By Lemma 51,
α−1(T ), α−1(T ′) ∈ ThFam(I). Thus, by loyalty, we get Ω(α−1(T )) />
Ω(α−1(T ′)). Thus, by Proposition 24,

α−1(ΩA(T )) /> α−1(ΩA(T ′)).
The following claim now completes the proof:

Claim: α−1(ΩA(T )) /> α−1(ΩA(T ′)) implies ΩA(T ) /> ΩA(T ′).
We work by contraposition. Assume ΩA(T ) > ΩA(T ′). Then, clearly,
α−1(ΩA(T )) ≥ α−1(ΩA(T ′)). Moreover, by surjectivity, α−1(ΩA(T )) ≠
α−1(ΩA(T ′)). Thus, we conclude that α−1(ΩA(T )) > α−1(ΩA(T ′)).

(b) If the left loyalty condition holds for the I-filter families of every F-
algebraic system, it holds, in particular, for the F-algebraic system F .
Since, by Lemma 51, FiFamI(F) = ThFam(I), I is left loyal.

Suppose, conversely, that I is left loyal. Let A = ⟨A, ⟨F,α⟩⟩ be an F-

algebraic system and T,T ′ ∈ FiFamI(A), such that
←Ð
T <
←Ð
T ′. We must

show that ΩA(T ) /> ΩA(T ′). Since
←Ð
T <

←Ð
T ′, we must have α−1(←ÐT ) ≤

α−1(←ÐT ′). However, by surjectivity of ⟨F,α⟩, if α−1(←ÐT ) = α−1(←ÐT ′), we

get
←Ð
T =

←Ð
T ′. Thus, we must have α−1(←ÐT ) < α−1(←ÐT ′). By Lemma 51,

α−1(T ), α−1(T ′) ∈ ThFam(I). By Lemma 6,
←ÐÐÐÐ
α−1(T ) < ←ÐÐÐÐα−1(T ′). Thus,

by left loyalty, we get Ω(α−1(T )) /> Ω(α−1(T ′)). Thus, by Proposition
24, α−1(ΩA(T )) /> α−1(ΩA(T ′)). The claim used in Part (a) is used
once more to complete the proof of Part (b).

(c) The proof follows along the lines of that of Part (a).
∎

As a concluding remark, we rephrase the definitions of family and of
system loyalty in terms of mappings between partially ordered sets.

Given two posets P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, we call a mapping f ∶ P → Q

loyal if, for all p1, p2 ∈ P ,

p1 < p2 implies f(p1) ⊁ f(p2).
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Then we have the following easy consequence (or, rather, reformulation)
of the definition, combined with Theorem 166.

For a π-institution I = ⟨F,C⟩ and an F-algebraic system A, we define

ConSysI∗(A) ∶= ConSysAlgSys∗(I)(A);
ConSysI(A) ∶= ConSysAlgSys(I)(A).

Moreover, we set

ConSys∗(I) ∶= ConSysI∗(F) = ConSysAlgSys∗(I)(F);
ConSys(I) ∶= ConSysI(F) = ConSysAlgSys(I)(F).

Proposition 167 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family loyal;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is loyal;

(c) ΩA ∶ FiFamI(A)→ ConSysI∗(A) is loyal, for every F-algebraic system
A.

Similarly, we get

Proposition 168 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system loyal;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is loyal;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is loyal, for every F-algebraic system
A.

3.3 Monotonicity

In this section we define and study classes of π-institutions that are defined
using monotonicity properties of the Leibniz operator.

Definition 169 (Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called family monotone if, for all T,T ′ ∈ ThFam(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).
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• I is called left monotone if, for all T,T ′ ∈ ThFam(I),
←Ð
T ≤
←Ð
T ′ implies Ω(T ) ≤ Ω(T ′).

• I is called right monotone if, for all T,T ′ ∈ ThFam(I),
T ≤ T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′).

• I is called system monotone if, for all T,T ′ ∈ ThSys(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).

First, we show a very useful lemma to the effect that family monotonicity
implies stability.

Lemma 170 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family monotone, then I is stable.

Proof: Let T ∈ ThFam(I). Then we have, by Proposition 42, that T,
←Ð
T ∈

ThFam(I), such that
←Ð
T ≤ T . Therefore, by family monotonicity, Ω(←ÐT ) ≤

Ω(T ). However, by Proposition 20, Ω(T ) ≤ Ω(←ÐT ). Therefore, we get that

Ω(←ÐT ) = Ω(T ). So I is stable. ∎

Using Lemma 170, we can now show that family and left monotonicity
are equivalent properties.

Proposition 171 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family monotone if and only if it is
left monotone.

Proof: Suppose, first, that I is left monotone. Let T,T ′ ∈ ThFam(I),
such that T ≤ T ′. Then, by Lemma 1,

←Ð
T ≤

←Ð
T ′. Therefore, by hypothesis,

Ω(T ) ≤ Ω(T ′). Hence I is family monotone.
Suppose, conversely, that I is family monotone. Let T,T ′ ∈ ThFam(I),

such that
←Ð
T ≤
←Ð
T ′. Then, by hypothesis, Ω(←ÐT ) ≤ Ω(←ÐT ′). But, by Lemma 170,

I is stable, whence Ω(←ÐT ) = Ω(T ) and Ω(←ÐT ′) = Ω(T ′). Thus, we conclude
that Ω(T ) ≤ Ω(T ′). Therefore, I is left monotone. ∎

An interesting observation is that system monotonicity may also be de-
fined by using arbitrary theory families, but modifying the application of
monotonicy to that of “arrow monotonicity”. Formally speaking, given a
π-institution I = ⟨F,C⟩, we say that I is arrow monotone if, for all
T,T ′ ∈ ThFam(I),

←Ð
T ≤
←Ð
T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′).
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Lemma 172 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system monotone if and only if it
is arrow monotone.

Proof: Suppose, first, that I is system monotone and let T,T ′ ∈ ThFam(I),
such that

←Ð
T ≤

←Ð
T ′. Since, by Proposition 42,

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), we get, by

system monotonicity, that Ω(←ÐT ) ≤ Ω(←ÐT ′). Thus, I is arrow monotone.
Suppose, conversely, that I is arrow monotone and let T,T ′ ∈ ThSys(I),

such that T ≤ T ′. Then, again by Proposition 42, we get that
←Ð
T = T ≤ T ′ =

←Ð
T ′.

Therefore, by arrow monotonicity, Ω(T ) = Ω(←ÐT ) ≤ Ω(←ÐT ′) = Ω(T ′). So I is
system monotone. ∎

Next, we show that the two properties of right monotonicity and system
monotonicity also coincide.

Proposition 173 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system monotone if and only if it is
right monotone.

Proof: Suppose, first, that I is right monotone and let T,T ′ ∈ ThSys(I),
such that T ≤ T ′. Then, by right monotonicity, Ω(←ÐT ) ≤ Ω(←ÐT ′). But, since

T,T ′ are theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′. Hence, Ω(T ) ≤ Ω(T ′).

Therefore, I is system monotone.
Suppose, conversely, that I is system monotone and let T,T ′ ∈ ThFam(I),

such that T ≤ T ′. Then by Lemma 1,
←Ð
T ≤
←Ð
T ′. Since

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), we can

apply system monotonicity to get Ω(←ÐT ) ≤ Ω(←ÐT ′). Thus, I is right monotone.
∎

Because of Propositions 171 and 173, we make the following definitions:

Definition 174 (Pre- and Protoalgebraicity) Let F = ⟨Sign♭,SEN♭, N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is called protoalgebraic if it is family monotone;

• I is called prealgebraic if it is system monotone.

We show now that stability is exactly the separating property between
prealgebraicity and protoalgebraicity.

Theorem 175 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if it is
prealgebraic and stable.
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Proof: Suppose, first, that I is protoalgebraic. Then it is clearly prealgebraic
and, by Lemma 170, it is stable.

Suppose, conversely, that I is stable and prealgebraic and consider T,T ′ ∈
ThFam(I), such that T ≤ T ′. Then, using stability, Proposition 42 and
prealgebraicity, we get

Ω(T ) = Ω(←ÐT ) (stability)

≤ Ω(←ÐT ′) (Proposition 42 and prealgebraicity)
= Ω(T ′) (stability).

So Ω is monotone on theory families and I is protoalgebraic. ∎

In terms of monotonicity, we have established the following monoto-
nicity hierarchy:

Protoalgebraic
................⑦

Prealgebraic
❄

Stable

Now we give examples of π-institutions to show that the two inclusions
depicted in this diagram are proper. Moreover, we show that there are π-
institutions that are neither prealgebraic nor stable. In other words, we show
the following

• There exist π-institutions that are neither prealgebraic nor stable.

• There exist π-institutions that are prealgebraic but not stable and,
hence, not protoalgebraic.

• There exist π-institutions that are stable but not prealgebraic and,
hence, not protoalgebraic.

Example 176 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a and SEN♭(f)(2) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{b},{a, b}}.
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It is easy to see that I is not stable: Consider the theory family T =
{{1,2},{b}}. Then we have

←Ð
T = {{2},{b}} and

Ω(←ÐT ) = {{{0,1},{2}},{{a},{b}}} ≠ ∆F = Ω(T ).
As a consequence, we get that I is not protoalgebraic.

We now show that it is not prealgebraic either. We use the two theory
systems

T = {{2},{a, b}} ≤ {{1,2},{a, b}} = T ′.
We have

ΩΣ(T ) = {{0,1},{2}}, ΩΣ′(T ) = {{a, b}};
ΩΣ(T ′) = {{0},{1,2}}, ΩΣ′(T ′) = {{a, b}}.

Since T ≤ T ′ but Ω(T ) ≰ Ω(T ′), we conclude that I is not prealgebraic.

Example 177 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

First, observe that the only two theory systems are T = {{2}} and T ′ ={{0,1,2}}. Further, we have ΩΣ(T ) = {{0,1},{2}} and ΩΣ(T ′) = {{0,1,2}}.
So I is prealgebraic.
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On the other hand, for T ′′ = {{1,2}} ∈ ThFam(I), we have
←Ð
T ′′ = {{2}}.

Moreover ΩΣ(T ′′) = {{0},{1},{2}} ≨ {{0,1},{2}} = ΩΣ(←ÐT ′′). Therefore, we
conclude that I is not stable. As a consequence, it is not protoalgebraic either.

Example 178 Take any non-protoalgebraic deductive system S = ⟨L,⊢S⟩ or,
in closure system notation, S = ⟨L,CS⟩. Consider the discrete π-institution
IS = ⟨FL,CS⟩ corresponding to the deductive system S (see Section 1.1 for
details). This π-institution is not protoalgebraic (since the deductive system
is not), but it is certainly stable (since its only signature morphism is the
identity). Therefore, we conclude that it is not prealgebraic either.

The monotonicity property transfers from the theory families/systems of
a π-institution I = ⟨F,C⟩ to all I-filter families/systems on an arbitrary
F-algebraic system.

Theorem 179 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is prealgebraic if and only if, for every F-algebraic system A = ⟨A,⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A),
T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);

(b) I is protoalgebraic if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A),
T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′).

Proof:

(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that ThSys(I) = FiSysI(F), by Lemma 51.

For the “only if”, suppose that I is prealgebraic and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system and T,T ′ ∈ FiSysI(A), such that T ≤ T ′.
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Then, clearly, α−1(T ) ≤ α−1(T ′). Since, by Lemma 51, we have α−1(T ),
α−1(T ′) ∈ ThSys(I), we get, by applying prealgebraicity, Ω(α−1(T )) ≤
Ω(α−1(T ′)). But, then, by Proposition 24, we get that α−1(ΩA(T )) ≤
α−1(ΩA(T ′)). Finally, surjectivity yields that ΩA(T ) ≤ ΩA(T ′).

(b) The “if” is obtained by considering the F-algebraic system F = ⟨F,⟨I, ι⟩⟩ and taking into account that ThFam(I) = FiFamI(F), by Lemma
51.

For the “only if”, assume I is protoalgebraic and let A = ⟨A, ⟨F,α⟩⟩ be
an F-algebraic system and T,T ′ ∈ FiFamI(A), such that T ≤ T ′. Then,
clearly, α−1(T ) ≤ α−1(T ′). Since, by Lemma 51, α−1(T ), α−1(T ′) ∈
ThFam(I), we get, by protoalgebraicity, Ω(α−1(T )) ≤ Ω(α−1(T ′)). By
Proposition 24, α−1(ΩA(T )) ≤ α−1(ΩA(T ′)) and, hence, using surjec-
tivity of ⟨F,α⟩, ΩA(T ) ≤ ΩA(T ′).

∎

As we did for loyalty, we may recast the two monotonicity classes in
terms of the monotonicity of mappings from posets of theory or filter fami-
lies/systems into posets of congruence systems.

Given two posets P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, we call a mapping f ∶ P → Q

monotone or order preserving if, for all p1, p2 ∈ P ,

p1 ≤ p2 implies f(p1) ≼ f(p2).
Proposition 180 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is protoalgebraic;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is monotone;

(c) ΩA ∶ FiFamI(A) → ConSysI∗(A) is monotone, for every F-algebraic
system A.

Similarly, for prealgebraicity, we get

Proposition 181 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is prealgebraic;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is monotone;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is monotone, for every F-algebraic
system A.
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Now we turn into exploring some of the relationships that hold between
protoalgebraicity and prealgebraicity, on the one hand, and the various loy-
alty properties, on the other. Namely, we show that protoalgebraicity implies
family loyalty and that prealgebraicity implies system loyalty. Note that,
since family loyalty implies stability, the first part of the following theorem
is a strengthening of Lemma 170.

Theorem 182 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is protoalgebraic, then it is family loyal;

(b) If I is prealgebraic, then it is system loyal.

Proof:

(a) Suppose I is protoalgebraic and let T,T ′ ∈ ThFam(I), such that T < T ′.
Then, we have T ≤ T ′, whence, by protoalgebraicity, Ω(T ) ≤ Ω(T ′).
But this implies that Ω(T ) /> Ω(T ′). We conclude that I is family
loyal.

(b) Suppose that I is prealgebraic and let T,T ′ ∈ ThSys(I), such that
T < T ′. Then, by prealgebraicity, Ω(T ) ≤ Ω(T ′). This implies that
Ω(T ) /> Ω(T ′). We conclude that I is system loyal.

∎

We have now established the following hierarchies:

Protoalgebraic

✠�
�
� ❅

❅
❅❘

Prealgebraic Family Loyal

✠�
�
� ❅

❅
❅❘

Left Loyal Stable

✠�
�
�

System Loyal
❄

Finally, we provide an example to show that the loyalty classes are proper
subclasses of the classes defined using monotonicity.

Example 183 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be defined as follows:

• Sign♭ is a trivial one object category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1,2};
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• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{{0,1,2}}.
The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅{0,2} {1,2} {{0,2},{1}} {{0,1},{2}} {{0},{1,2}}

❅
❅
❅ �

�
�

{2}
First, note that, since the category Sign♭ is trivial, I is systemic, i.e., every
theory family is also a theory system.

By considering, for instance, T = {{2}} and T ′ = {{0,2}}, we see that
T ≤ T ′, but Ω(T ) /≤ Ω(T ′). Thus, I is not prealgebraic.

On the other hand, it is clear that there do not exist T,T ′ ∈ ThFam(I),
such that T < T ′ and Ω(T ) > Ω(T ′). Hence I is family loyal.

3.4 Complete ⋃-Monotonicity

We now define classes of π-institutions that are based on various versions of
a property called complete monotonicity. These properties are strengthened
versions of the monotonicity properties and the purpose for introducing them
is that they are, in some sense, the dual properties of complete order reflec-
tivity, which strengthens order reflectivity, which, in turn, is, in this same
sense, the property dual to monotonicity. This property is somehow related
to a property known as continuity in the context of sentential logics.
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In the case of sentential logics, the property of complete reflectivity asserts
that, given a sentential logic S and a collection of theories T ∪ {T ′} of S ,

⋂
T ∈T

Ω(T ) ⊆ Ω(T ′) implies ⋂T ⊆ T.

Note that meet and intersection coincide both in the lattice of theories of
S and in the lattice of congruences on the formula algebra. Since, however,
join and union differ, depending on the point of view, either lattice- or set-
theoretic, one may perceive two different properties as dual properties of
complete reflectivity. One, which we refer to as complete ∪-monotonicity,
asserts that, for every collection T ∪ {T ′} of theories,

T ′ ⊆⋃T implies Ω(T ′) ⊆ ⋃
T ∈T

Ω(T ).
The other, which may be termed complete ∨-monotonicity, asserts that, for
every collection T ∪ {T ′} of theories,

T ′ ⊆⋁T implies Ω(T ′) ⊆ ⋁
T ∈T

Ω(T ).
In this section, we deal with an analog of the first property for π-institutions.
In the next section, we look at the second property.

Definition 184 (Complete ⋃-Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is family completely ⋃-monotone or, simply, family com-
pletely monotone if, for all T ∪ {T ′} ⊆ ThFam(I),

T ′ ≤ ⋃
T ∈T

T implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).
• I is left completely ⋃-monotone or, simply, left completely

monotone if, for all T ∪ {T ′} ⊆ ThFam(I),
←Ð
T ′ ≤ ⋃

T ∈T

←Ð
T implies Ω(T ′) ≤ ⋃

T ∈T

Ω(T ).
• I is right completely ⋃-monotone or, simply, right completely

monotone if, for all T ∪ {T ′} ⊆ ThFam(I),
T ′ ≤ ⋃

T ∈T

T implies Ω(←ÐT ′) ≤ ⋃
T ∈T

Ω(←ÐT ).
• I is system completely ⋃-monotone or, simply, system com-

pletely monotone if, for all T ∪ {T ′} ⊆ ThSys(I),
T ′ ≤ ⋃

T ∈T

T implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).
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Sometimes we will use the abbreviated form c∪-monotonicity or c-
monotonicity to refer to complete ⋃-monotonicity.

We have seen in Lemma 170 that family monotonicity (protoalgebraicity)
implies stability. Since family complete monotonicity is a stronger property
than family monotonicity, we get Part (a) of the following:

Lemma 185 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family completely monotone, then it is stable.

(b) If I is left completely monotone, it is stable.

Proof:

(a) If I is family completely monotone, then it is, a fortiori, family mono-
tone. Thus, the result follows from Lemma 170.

(b) Suppose that I is left c-monotone and let T ∈ ThFam(I). By Propo-

sition 42,
←Ð←Ð
T =
←Ð
T . Applying left c-monotonicity, we get that Ω(←ÐT ) =

Ω(T ). Hence I is stable.
∎

Family completely monotone π-institutions are both left and right com-
pletely monotone. And, conversely, if a π-institution is both left and right
c-monotone, then it is family c-monotone.

Proposition 186 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely monotone if and
only if it is both left and right completely monotone.

Proof: Suppose, first, that I is family completely monotone.

• Let T ∪ {T ′} ⊆ ThFam(I), such that
←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Applying family

c-monotonicity, we get Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). However, by Lemma 185,
I is stable. Hence we get Ω(T ′) ≤ ⋃T ∈T Ω(T ). We conclude that I is
left completely monotone.

• Next, let T ∪{T ′} ⊆ ThFam(I), such that T ′ ≤ ⋃T ∈T T . Applying family
c-monotonicity, we get Ω(T ′) ≤ ⋃T ∈T Ω(T ). Once more, by Lemma 185,

I is stable. Hence we get Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). We conclude that I is
right completely monotone.

Suppose, conversely, that I is both left and right completely monotone and let
T ∪{T ′} ⊆ ThFam(I), such that T ′ ≤ ⋃T ∈T T . Then, by right c-monotonicity,

we get that Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). But since I is left completely monotone,



Voutsadakis CHAPTER 3. SEMANTIC HIERARCHY I 237

by Lemma 185, it is stable, whence we get Ω(T ′) ≤ ⋃T ∈T Ω(T ). Therefore, I
is family completely monotone. ∎

If a π-institution I is left or right completely monotone, then it is also
system completely monotone.

Proposition 187 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c-monotone, then it is system c-monotone;

(b) If I is right c-monotone, then it is system c-monotone.

Proof:

(a) Suppose I is left c-monotone and let T ∪ {T ′} ⊆ ThSys(I), such that
T ′ ≤ ⋃T ∈T T . Since T ∪ {T ′} is a collection of theory systems, we get
←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Hence, applying left c-monotonicity, we get Ω(T ′) ≤

⋃T ∈T Ω(T ). Thus, I is system c-monotone.

(b) Suppose I is right c-monotone and let T ∪ {T ′} ⊆ ThSys(I), such

that T ′ ≤ ⋃T ∈T T . Applying right c-monotonicity, we get Ω(←ÐT ′) ≤
⋃T ∈T Ω(←ÐT ). Since T ∪ {T ′} is a collection of theory systems, we now
get Ω(T ′) ≤ ⋃T ∈T Ω(T ). Thus, I is system c-monotone.

∎

In terms of complete monotonicity, we have established the following
hierarchy:

Family c-Monotone

✠�
�
� ❅

❅
❅❘

Left c-Monotone Right c-Monotone

✠..
..

..
.. ❅

❅
❅❘ ✠�

�
�

Stable System c-Monotone

Now we give examples of π-institution to show that the inclusions depicted
in this diagram are proper. We first give an example of a π-institution that
is left c-monotone but not right c-monotone. This shows that:

• The class of family c-monotone π-institutions is properly contained in
the class of all left c-monotone π-institutions;

• The class of all system c-monotone π-institutions properly includes the
class of all right c-monotone π-institutions.
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Example 188 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and six non-identity mor-
phisms f, g, g′, h, h′, t ∶ Σ → Σ, in which composition is defined by the
following table, whose entry in row k and column ℓ is the result of the
composition ℓ ○ k:

○ f g g′ h h′ t

f f h′ h g′ g t

g g′ g g′ t t t

g′ g t t g′ g t

h h′ t t h h′ t

h′ h h′ h t t t

t t t t t t t

• SEN♭ ∶ Sign♭ → Set is given, on objects, by SEN♭(Σ) = {0,1,2} and,
on morphisms, by the following table, whose entries in column k give
the values of the function SEN♭(k) ∶ SEN♭(Σ)→ SEN♭(Σ):

x f g g′ h h′ t

0 1 2 2 0 1 2
1 0 1 0 2 2 2
2 2 2 2 2 2 2

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ........................................✲ ∇F

�
�
�
� ❅

❅
❅
❅{0,2} {1,2}

❅
❅
❅
❅

.......................................q
�
�
�
�

................s{2} ............................................✲ ∆F

I has only two theory systems, Thm(I) = {{2}}, and SEN = {{0,1,2}}.
To show that I is left completely monotone, assume that, for some T ∪

{T ′} ⊆ ThFam(I), ←ÐT ′ ≤ ⋃T ∈T

←Ð
T .

• If ⋃T ∈T

←Ð
T = {{0,1,2}}, then {{0,1,2}} ∈ T and, hence,

Ω(T ′) ≤ ∇F = Ω({{0,1,2}}) ≤ ⋃
T ∈T

Ω(T );

• If ⋃T ∈T

←Ð
T = {{2}}, then T ′ ≠ {{0,1,2}}, whence

Ω(T ′) =∆F ≤ ⋃
T ∈T

Ω(T ).
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Thus, in any case, Ω(T ′) ≤ ⋃T ∈T Ω(T ) and I is left completely monotone.
On the other hand, we have

{{0,1,2}} ≤ {{0,2}} ∪ {{1,2}},
whereas

Ω(←ÐÐÐÐÐÐ{{0,1,2}}) = Ω({{0,1,2}}) = ∇F

≰ ∆F

= Ω({{2}}) ∪Ω({{2}})
= Ω(←ÐÐÐÐ{{0,2}}) ∪Ω(←ÐÐÐÐ{{1,2}}).

Therefore, I is not right completely monotone.

We now give an example of a right c-monotone π-institution that fails to
be left c-monotone. This will show that:

• The class of family c-monotone π-institutions is properly contained in
the class of right c-monotone π-institutions;

• The class of left c-monotone π-institutions is a proper subclass of the
class of system c-monotone π-institutions.

Example 189 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The structure of the lattice of theory families and the corresponding Leibniz
congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

Taking into account that
←ÐÐÐÐ{{1,2}} = {{2}}, we can see that I is right c-

monotone.
On the other hand, for T = {{1,2}} and T ′ = {{2}}, we have

←Ð
T ′ = {{2}} ≤

←Ð
T , but Ω(T ′) = {{{0,1},{2}}} /≤∆F = Ω(T ). Hence I is not left c-monotone.

As we saw in Theorem 179 for the various monotonicity properties, all
versions of complete monotonicity transfer from the theory families/systems
of a π-institution I = ⟨F,C⟩ to the I-filter families/systems on arbitrary
F-algebraic systems.

Theorem 190 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family c-monotone if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), T ′ ≤ ⋃T ∈T T implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

(b) I is left c-monotone if and only if, for every F-algebraic system A =
⟨A, ⟨F,α⟩⟩ and all T ∪{T ′} ⊆ FiFamI(A), ←ÐT ′ ≤ ⋃T ∈T

←Ð
T implies ΩA(T ′) ≤

⋃T ∈T ΩA(T ).
(c) I is right c-monotone if and only if, for every F-algebraic system A =
⟨A, ⟨F,α⟩⟩ and all T ∪{T ′} ⊆ FiFamI(A), T ′ ≤ ⋃T ∈T T implies ΩA(←ÐT ′) ≤
⋃T ∈T ΩA(←ÐT ).

(d) I is system c-monotone if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiSysI(A), T ′ ≤ ⋃T ∈T T implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).
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Proof: We shall prove Parts (b) and (c). Parts (a) and (d) follow along the
same lines and are slightly easier.

(b) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that ThFam(I) = FiFamI(F), by Lemma 51.

For the “only if”, suppose that I is left c-monotone and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A), such

that
←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Apply the inverse morphism ⟨F,α⟩ to get α−1(←ÐT ′) ≤

α−1(⋃T ∈T

←Ð
T ), or, equivalently, α−1(←ÐT ′) ≤ ⋃T ∈T α

−1(←ÐT ). Now apply

Lemma 6 to get
←ÐÐÐÐ
α−1(T ′) ≤ ⋃T ∈T

←ÐÐÐÐ
α−1(T ). But, by Lemma 51, {α−1(T ) ∶

T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I). Therefore, applying left c-mono-
tonicity, we get Ω(α−1(T ′)) ≤ ⋃T ∈T Ω(α−1(T )). Hence, by Proposition
24, α−1(ΩA(T ′)) ≤ ⋃T ∈T α

−1(ΩA(T )), i.e.,

α−1(ΩA(T ′)) ≤ α−1(⋃
T ∈T

ΩA(T )).
Finally, taking into account the surjectivity of ⟨F,α⟩, we conclude that
ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

(c) The “if” is obtained by considering the F-algebraic system F = ⟨F, ⟨I,
ι⟩⟩ and taking into account that ThFam(I) = FiFamI(F), by Lemma
51.

For the “only if”, suppose that I is right c-monotone and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A), such
that T ′ ≤ ⋃T ∈T T . Apply the inverse morphism ⟨F,α⟩ to get α−1(T ′) ≤
α−1(⋃T ∈T T ), or, equivalently, α−1(T ′) ≤ ⋃T ∈T α

−1(T ). By Lemma
51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I). Therefore, apply-

ing right c-monotonicity, we get Ω(←ÐÐÐÐα−1(T ′)) ≤ ⋃T ∈T Ω(←ÐÐÐÐα−1(T )). By

Lemma 6, Ω(α−1(←ÐT ′)) ≤ ⋃T ∈T Ω(α−1(←ÐT )). Hence, by Proposition 24,

α−1(ΩA(←ÐT ′)) ≤ ⋃T ∈T α
−1(ΩA(←ÐT )). This is equivalent to α−1(ΩA(←ÐT ′)) ≤

α−1(⋃T ∈T ΩA(←ÐT )). Finally, taking into account the surjectivity of

⟨F,α⟩, we conclude that ΩA(←ÐT ′) ≤ ⋃T ∈T ΩA(←ÐT ).
∎

Next we look at the relationships that hold between protoalgebraicity
and prealgebraicity, on the one hand, and the various c-monotonicity prop-
erties, on the other. More precisely, we show that left complete monotonic-
ity implies protoalgebraicity and that system complete monotonicity implies
prealgebraicity.

Theorem 191 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c-monotone, then it is protoalgebraic;
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(b) If I is system c-monotone, then it is prealgebraic.

Proof:

(a) Suppose I is left c-monotone and let T,T ′ ∈ ThFam(I), such that T ≤
T ′. Then, by Lemma 1, we get

←Ð
T ≤
←Ð
T ′. Thus, by left c-monotonicity,

Ω(T ) ≤ Ω(T ′). Hence I is protoalgebraic.

(b) Suppose that I is system c-monotone and let T,T ′ ∈ ThSys(I), such
that T ≤ T ′. Then we get right away from system c-monotonicity that
Ω(T ) ≤ Ω(T ′) and, therefore, I is prealgebraic.

∎

We have now established the following hierarchy of monotonicity and
complete monotonicity properties:

Family c-Monotone

✠�
�
� ❅

❅
❅❘

Left c-Monotone Right c-Monotone

✠�
�
� ❅

❅
❅❘ ✠�

�
�

Protoalgebraic System c-Monotone

❅
❅
❅❘ ✠�

�
�

Prealgebraic

Finally, we provide an example to show that the c-monotonicity classes
are proper subclasses of the monotonicity classes. Namely, we construct a
protoalgebraic π-institution that fails to be system c-monotone.

Example 192 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformation σ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 1
1 2
2 0
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
It is easy to see that the lattices of theory families and corresponding Leibniz
congruence systems are as given in the diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

From the diagram one can verify immediately that I is protoalgebraic, On
the other hand, we have {{0,1,2}} ≤ {{0,2}} ∪ {{1,2}}, but, obviously,
Ω({{0,1,2}}) /≤ Ω({{0,2}}) ∪ Ω({{1,2}}). Taking into account that I is
systemic, we conclude that I fails to be system c-monotone.

3.5 Complete ⋁-Monotonicity

We now define classes of π-institutions that are based on the corresponding
versions of the property of complete monotonicity using the join operation.
These properties are also strengthened versions of the monotonicity proper-
ties.

To define these complete monotonicity properties, let us introduce the
following notation. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system
and I = ⟨F,C⟩ a π-institution based on F. Denote by ⋁I T = ⋁IT ∈T T the join
of a collection T of theory families of I in the complete lattice ThFam(I)
of theory families of I . Analogously, denote by ⋁F Θ = ⋁F

θ∈Θ θ the join of a
collection Θ of congruence systems on F in the complete lattice ConSys(F)
of congruence systems on F.
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Definition 193 (Complete ⋁-Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is family completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThFam(I),
T ′ ≤

I

⋁
T ∈T

T implies Ω(T ′) ≤ F

⋁
T ∈T

Ω(T ).

• I is left completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThFam(I),
←Ð
T ′ ≤

I

⋁
T ∈T

←Ð
T implies Ω(T ′) ≤ F

⋁
T ∈T

Ω(T ).

• I is right completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThFam(I),
T ′ ≤

I

⋁
T ∈T

T implies Ω(←ÐT ′) ≤ F

⋁
T ∈T

Ω(←ÐT ).

• I is system completely ⋁-monotone if, for all T ∪{T ′} ⊆ ThSys(I),
T ′ ≤

I

⋁
T ∈T

T implies Ω(T ′) ≤ F

⋁
T ∈T

Ω(T ).

Sometimes we will use the abbreviated form c∨-monotonicity to refer
to complete ⋁-monotonicity.

We have seen in Lemma 170 that family monotonicity (protoalgebraicity)
implies stability. Since family complete monotonicity is a stronger property
than family monotonicity, we get Part (a) of the following:

Lemma 194 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family completely ⋁-monotone, then it is stable.

(b) If I is left completely ⋁-monotone, it is stable.

Proof:

(a) If I is family completely ⋁-monotone, then it is, a fortiori, family
monotone. Thus, the result follows from Lemma 170.

(b) Suppose that I is left c∨-monotone and let T ∈ ThFam(I). By Propo-

sition 42,
←Ð←Ð
T =
←Ð
T . Applying left c∨-monotonicity, we get that Ω(←ÐT ) =

Ω(T ). Hence I is stable.
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∎

Family completely ⋁-monotone π-institutions are both left and right com-
pletely ⋁-monotone. And, conversely, if a π-institution is both left and right
c∨-monotone, then it is family c∨-monotone. This parallels Proposition 186,
which concerned the case of c∪-monotonicity properties.

Proposition 195 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely ⋁-monotone if and
only if it is both left and right completely ⋁-monotone.

Proof: Suppose, first, that I is family completely ⋁-monotone.

• Let T ∪ {T ′} ⊆ ThFam(I), such that
←Ð
T ′ ≤ ⋁IT ∈T

←Ð
T . Applying family

c∨-monotonicity, we get Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). However, by Lemma 185,

I is stable. Hence we get Ω(T ′) ≤ ⋁F
T ∈T Ω(T ). We conclude that I is

left completely ⋁-monotone.

• Next, let T ∪{T ′} ⊆ ThFam(I), such that T ′ ≤ ⋁IT ∈T T . Applying family
c∨-monotonicity, we get Ω(T ′) ≤ ⋁F

T ∈T Ω(T ). Once more, by Lemma

185, I is stable. Hence we get Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). We conclude that

I is right completely ⋁-monotone.

Suppose, conversely, that I is both left and right completely ⋁-monotone
and let T ∪ {T ′} ⊆ ThFam(I), such that T ′ ≤ ⋁IT ∈T T . Then, by right c∨-

monotonicity, we get that Ω(←ÐT ′) ≤ ⋁F
T ∈T Ω(←ÐT ). But since I is left completely

⋁-monotone, by Lemma 185, it is stable, whence we get Ω(T ′) ≤ ⋁F
T ∈T Ω(T ).

Therefore, I is family completely ⋁-monotone. ∎

If a π-institution I is left or right completely ⋁-monotone, then it is also
system completely ⋁-monotone. This is an analog of Proposition 187, which
addressed the case of c∪-monotonicity.

Proposition 196 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c∨-monotone, then it is system c∨-monotone;

(b) If I is right c∨-monotone, then it is system c∨-monotone.

Proof:

(a) Suppose I is left c∨-monotone and let T ∪ {T ′} ⊆ ThSys(I), such that
T ′ ≤ ⋁IT ∈T T . Since T ∪ {T ′} is a collection of theory systems, we get
←Ð
T ′ ≤ ⋁IT ∈T

←Ð
T . Hence, applying left c∨-monotonicity, we get Ω(T ′) ≤

⋁F
T ∈T Ω(T ). Thus, I is system c∨-monotone.
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(b) Suppose I is right c∨-monotone and let T ∪ {T ′} ⊆ ThSys(I), such

that T ′ ≤ ⋁IT ∈T T . Applying right c∨-monotonicity, we get Ω(←ÐT ′) ≤
⋁F
T ∈T Ω(←ÐT ). Since T ∪ {T ′} is a collection of theory systems, we now

get Ω(T ′) ≤ ⋁F
T ∈T Ω(T ). Thus, I is system c∨-monotone.

∎

In terms of complete ⋁-monotonicity, we have established the following
hierarchy, which exactly mirrors the hierarchy of c∪-monotonicity classes:

Family c∨-Monotone

✠�
�
� ❅

❅
❅❘

Left c∨-Monotone Right c∨-Monotone

✠..
..

..
.. ❅

❅
❅❘ ✠�

�
�

Stable System c∨-Monotone

Now we give examples of π-institutions to show that the inclusions de-
picted in this diagram are proper. We first give an example of a π-institution
that is left c∨-monotone but not right c∨-monotone. This shows that:

• The class of family c∨-monotone π-institutions is properly contained in
the class of all left c∨-monotone π-institutions;

• The class of all system c∨-monotone π-institutions properly includes
the class of all right c∨-monotone π-institutions.

Example 197 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and six non-identity mor-
phisms f, g, g′, h, h′, t ∶ Σ → Σ, in which composition is defined by the
following table, whose entry in row k and column ℓ is the result of the
composition ℓ ○ k:

○ f g g′ h h′ t

f f h′ h g′ g t

g g′ g g′ t t t

g′ g t t g′ g t

h h′ t t h h′ t

h′ h h′ h t t t

t t t t t t t

• SEN♭ ∶ Sign♭ → Set is given, on objects, by SEN♭(Σ) = {0,1,2} and,
on morphisms, by the following table, whose entries in column k give
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the values of the function SEN♭(k) ∶ SEN♭(Σ)→ SEN♭(Σ):
x f g g′ h h′ t

0 1 2 2 0 1 2
1 0 1 0 2 2 2
2 2 2 2 2 2 2

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}



Voutsadakis CHAPTER 3. SEMANTIC HIERARCHY I 249

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ........................................✲ ∇F

�
�
�
� ❅

❅
❅
❅{0,2} {1,2}

❅
❅
❅
❅

.......................................q
�
�
�
�

................s{2} ............................................✲ ∆F

I has only two theory systems, Thm(I) = {{2}}, and SEN = {{0,1,2}}.
To show that I is left completely monotone, assume that, for some T ∪

{T ′} ⊆ ThFam(I), ←ÐT ′ ≤ ⋁IT ∈T ←ÐT .

• If ⋁IT ∈T
←Ð
T = {{0,1,2}}, then {{0,1,2}} ∈ T and, hence,

Ω(T ′) ≤ ∇F = Ω({{0,1,2}}) ≤ F

⋁
T ∈T

Ω(T );

• If ⋁IT ∈T
←Ð
T = {{2}}, then T ′ ≠ {{0,1,2}}, whence

Ω(T ′) =∆F ≤
F

⋁
T ∈T

Ω(T ).

Thus, in any case, Ω(T ′) ≤ ⋁F
T ∈T Ω(T ) and I is left completely ⋁-monotone.

On the other hand, we have

{{0,1,2}} ≤ {{0,2}} ∨I {{1,2}},
whereas

Ω(←ÐÐÐÐÐÐ{{0,1,2}}) = Ω({{0,1,2}}) = ∇F

≰ ∆F

= Ω({{2}}) ∨F Ω({{2}})
= Ω(←ÐÐÐÐ{{0,2}}) ∨F Ω(←ÐÐÐÐ{{1,2}}).

Therefore, I is not right completely ⋁-monotone.

We now give an example of a right c∨-monotone π-institution that fails
to be left c∨-monotone. This will show that:

• The class of family c∨-monotone π-institutions is properly contained in
the class of right c∨-monotone π-institutions;
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• The class of left c∨-monotone π-institutions is a proper subclass of the
class of system c∨-monotone π-institutions.

Example 198 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The structure of the lattice of theory families and the corresponding Leibniz
congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

Taking into account that
←ÐÐÐÐ{{1,2}} = {{2}}, we can see that I is right c∨-

monotone.
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On the other hand, for T = {{1,2}} and T ′ = {{2}}, we have
←Ð
T ′ =

{{2}} ≤ ←ÐT , but Ω(T ′) = {{{0,1},{2}}} /≤ ∆F = Ω(T ). Hence I is not left
c∨-monotone.

As we saw in Theorem 190, the various complete ⋃-monotonicity prop-
erties defined based on the union operation transfer from the theory fam-
ilies/systems of a π-institution I = ⟨F,C⟩ to the I-filter families/systems
on arbitrary F-algebraic systems. On the other hand, the ⋁-monotonicity
versions introduced in this section do not transfer in general. The prob-
lem appears to be that the commutativity of unions with inverse surjective
morphisms, i.e., ⋃T ∈T α

−1(T ) = α−1(⋃T ∈T T ), ceases to hold when unions are
replaced by joins. In that case, one has, in general, a proper inclusion in-
stead of an equality. To describe it, let us again introduce some notation. Let
F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-institution
based on F. Let, also A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. Denote by

⋁I,A T = ⋁I,AT ∈T T the join of a collection T of I-filter families of A in the
complete lattice FiFamI(A) of I-filter families of A. Analogously, denote
by ⋁AΘ = ⋁Aθ∈Θ θ the join of a collection Θ of congruence systems on A in
the complete lattice ConSys(A) of congruence systems on A. According to
this notation, we get, in general, that

I

⋁
T ∈T

α−1(T ) ≨ α−1 (I,A⋁
T ∈T

T) .
The following example showcases this proper inclusion.

Example 199 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2,3,4};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{4},{2,4},{3,4},{1,2,3,4},{0,1,2,3,4}}.
Next, consider the F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,

SEN,N⟩, defined as follows:

• The algebraic system A = ⟨Sign,SEN,N⟩ is specified by the following
data:

– Sign is the trivial category, with object Σ′;
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– SEN ∶ Sign→ Set is given by SEN(Σ′) = {a, b, c, d};
– N is the trivial clone.

• F ∶ Sign♭ → Sign is the trivial functor taking Σ to Σ′;

• α ∶ SEN♭ → SEN ○ F is determined by letting αΣ ∶ SEN♭(Σ) → SEN(Σ′)
be given by

x ∈ SEN♭(Σ) αΣ(x)
0 a

1 a

2 b

3 c

4 d

Based on Lemma 51, we get that

FiFamI(A) = {{{d}},{{b, d}},{{c, d}},{{a, b, c, d}}}.
Now we can easily verify that

α−1({{b, d}}) ∨I α−1({{c, d}}) = {{2,4}} ∨I {{3,4}} = {{1,2,3,4}},
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whereas

α−1({{b, d}} ∨I,A {{c, d}}) = α−1({{a, b, c, d}}) = {{0,1,2,3,4}}.
Thus, for T = {{{b, d}},{{c, d}}}, we get ⋁IT ∈T α−1(T ) ≨ α−1(⋁I,AT ∈T T ).

We may characterize family and system c∨-monotonicity in terms of the
complete order preservation of mappings from posets of theory families/ sys-
tems into posets of congruence systems. Given complete lattices P = ⟨P,≤⟩
and Q = ⟨Q,≼⟩, call a mapping f ∶ P → Q completely order preserving
if, for all {x} ∪ Y ⊆ P ,

x ≤
P

⋁
y∈Y

y implies f(x) ≼ Q

⋁
y∈Y

f(y).

Proposition 200 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family completely ⋁-monotone;

(b) Ω ∶ ThFam(I)→ ConSys(I) is completely order preserving.

Similarly, for system c-monotonicity, we have

Proposition 201 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system completely ⋁-monotone;

(b) Ω ∶ ThSys(I)→ ConSys(I) is completely order preserving.

Next we look at the relationships that hold between protoalgebraicity and
prealgebraicity, on the one hand, and the various c∨-monotonicity properties,
on the other. More precisely, we show that left complete ⋁-monotonicity
implies protoalgebraicity and that system complete ⋁-monotonicity implies
prealgebraicity. Once more, this theorem parallels Theorem 191, which dealt
with ⋃-monotonicity.

Theorem 202 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c∨-monotone, then it is protoalgebraic;

(b) If I is system c∨-monotone, then it is prealgebraic.

Proof:
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(a) Suppose I is left c∨-monotone and let T,T ′ ∈ ThFam(I), such that T ≤
T ′. Then, by Lemma 1, we get

←Ð
T ≤
←Ð
T ′. Thus, by left c∨-monotonicity,

Ω(T ) ≤ Ω(T ′). Hence I is protoalgebraic.

(b) Suppose that I is system c∨-monotone and let T,T ′ ∈ ThSys(I), such
that T ≤ T ′. Then we get right away from system c∨-monotonicity that
Ω(T ) ≤ Ω(T ′) and, therefore, I is prealgebraic.

∎

We have now established the following hierarchy of monotonicity and
complete ⋁-monotonicity properties, which also mirrors the combined
hierarchy of monotonicity and complete ⋃-monotonicity properties:

Family c∨-Monotone

✠�
�
� ❅

❅
❅❘

Left c∨-Monotone Right c∨-Monotone

✠�
�
� ❅

❅
❅❘ ✠�

�
�

Protoalgebraic System c∨-Monotone

❅
❅
❅❘ ✠�

�
�

Prealgebraic

We now provide an example to show that the c∨-monotonicity classes
are proper subclasses of the monotonicity classes. Namely, we construct a
protoalgebraic π-institution that fails to be system c∨-monotone.

Example 203 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformation σ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 1
1 2
2 0

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
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It is easy to see that the lattices of theory families and corresponding Leibniz
congruence systems are as given in the diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

From the diagram one can verify immediately that I is protoalgebraic, On
the other hand, we have {{0,1,2}} ≤ {{0,2}} ∨I {{1,2}}, but, obviously,
Ω({{0,1,2}}) /≤ Ω({{0,2}}) ∨F Ω({{1,2}}). Taking into account that I is
systemic, we conclude that I fails to be system c∨-monotone.

We conclude this section with two examples showing that the classes of
c∪-monotone and c∨-monotone π-institutions are incomparable. The first
example shows that there exists a c∪-monotone π-institution which is not
c∨-monotone.

Example 204 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5};
• N ♭ is the clone generated by the unary natural transformations ρ♭, σ♭, τ ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) ρ♭Σ(x) σ♭Σ(x) τ ♭Σ(x)
0 5 0 0
1 1 1 1
2 2 2 2
3 3 5 3
4 4 4 5
5 5 5 5
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{5},{3,5},{4,5},{1,2,3,4,5},{0,1,2,3,4,5}}.
The lattice of theory families and the corresponding Leibniz congruence sys-
tems (in block form) are given in the following diagram.

012345 ∇F

12345 0,12345

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

35 45 0,12,4,35 0,12,3,45

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

5 0,12,3,4,5

From the diagram one can verify that, for all T ∪ {T ′} ⊆ ThFam(I), T ′ ≤
⋃T ∈T T implies T ′ ≤ T , for some T ∈ T . Therefore, we get Ω(T ′) ≤ ⋃T ∈T Ω(T )
and, hence, I is c∪-monotone. On the other hand,

{{1,2, ,3,4,5}} ≤ {{3,5}} ∨I {{4,5}},
whereas

Ω({{1,2,3,4,5}}) = {{1,12345}}
≰ {{0,12,345}}
= {{0,12,4,35}} ∨F {{0,12,3,45}}
= Ω({{3,5}}) ∨F Ω({{4,5}}).

Thus, I is not c∨-monotone.

The second example exhibits a c∨-monotone π-institution which is not
c∪-monotone.
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Example 205 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformations σ♭, τ ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 2 0
1 1 2
2 2 2

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The lattice of theory families and the corresponding Leibniz congruence sys-
tems (in block form) are given in the following diagram.

012 ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

02 12 02,1 0,12

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

2 ∆F

Note that

{{0,1,2}} = {{0,2}} ∪ {{1,2}} = {{0,2}} ∨I {{1,2}}.
But, even though

Ω({{0,1,2}}) = ∇F

= {{02,1}} ∨F {{0,12}}
= Ω({{0,2}}) ∨F Ω({{1,2}}),
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we have
Ω({{0,1,2}}) = ∇F

≰ {{02,1}} ∪ {{0,12}}
= Ω({{0,2}}) ∪Ω({{1,2}}),

since ⟨0,1⟩ ∈ ∇F
Σ, whereas ⟨0,1⟩ ∉ {{02,1}} ∪ {{0,12}}. Thus, I is c∨-

monotone but not c∪-monotone.

3.6 Injectivity

In this section we study classes of π-institutions defined using injectivity
properties of the Leibniz operator.

Definition 206 (Injectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F.

• I is called family injective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies T = T ′.

• I is called left injective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies

←Ð
T =
←Ð
T ′.

• I is called right injective if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT ) = Ω(←ÐT ′) implies T = T ′.

• I is called system injective if, for all T,T ′ ∈ ThSys(I),
Ω(T ) = Ω(T ′) implies T = T ′.

First, we show that right injectivity is so strong that it implies systemicity
and, hence, a fortiori, stability.

Lemma 207 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is right injective, then it is systemic.

Proof: Suppose that I is right injective and let T ∈ ThFam(I). Then, we

have, by Proposition 42, that
←Ð←Ð
T =

←Ð
T . Therefore, we get Ω(←Ð←ÐT ) = Ω(←ÐT ).

Hence, by right injectivity, we get that
←Ð
T = T . Thus, T ∈ ThSys(I). This

proves that ThFam(I) = ThSys(I), whence I is systemic. ∎

Next we look into establishing the injectivity hierarchy of π-institutions.
The following relationships can be established between the four injectivity
classes.
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Proposition 208 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is right injective, then it is family injective;

(b) If I is family injective, then it is left injective;

(c) If I is left injective, then it is system injective.

Proof:

(a) Suppose that I is right injective and let T,T ′ ∈ ThFam(I), such that

Ω(T ) = Ω(T ′). By Lemma 207, I is systemic, whence
←Ð
T = T and

←Ð
T ′ = T ′. Thus, we get Ω(←ÐT ) = Ω(←ÐT ′). Now applying right injectivity,
we get T = T ′. This proves that I is family injective.

(b) Suppose that I is family injective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) = Ω(T ′). Then, by family injectivity, we get T = T ′, whence
←Ð
T =
←Ð
T ′. Therefore I is left injective.

(c) Suppose that I is left injective and let T,T ′ ∈ ThSys(I), such that

Ω(T ) = Ω(T ′). By left injectivity, we conclude that
←Ð
T =
←Ð
T ′. However,

since T,T ′ are theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′. Hence we

get T = T ′ and I is system injective.
∎

We have now established the following injectivity hierarchy of π-insti-
tutions.

Right Injective....................❥
Family Injective

❄
Systemic

Left Injective
❄

System Injective
❄

There are two additional properties that can be formulated concerning
the relationships between these classes. First, it turns out that the sepa-
rating property between system injectivity and right injectivity is exactly
systemicity.

Proposition 209 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is right injective if and only if it is
system injective and systemic.
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Proof: Suppose, first, that I is right injective. Then, by Lemma 207, it is
systemic and by Proposition 208 it is system injective.

Suppose conversely, that I is system injective and systemic and let T,T ′ ∈
ThFam(I), such that Ω(←ÐT ) = Ω(←ÐT ′). By system injectivity we get

←Ð
T =
←Ð
T ′.

Hence, by systemicity, T = T ′. Thus, I is right injective. ∎

Second, we show that system injectivity reinforced with stability implies
left injectivity.

Proposition 210 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is system injective and stable, then it
is left injective.

Proof: Suppose that I is system injective and stable and consider T,T ′ ∈
ThFam(I), such that Ω(T ) = Ω(T ′). Then, by stability Ω(←ÐT ) = Ω(←ÐT ′).
Hence, since

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), by system injectivity,

←Ð
T =

←Ð
T ′. This shows

that I is left injective. ∎

We now present three examples to show that all inclusions established
between injectivity classes and depicted in the diagram above are proper
inclusions. The first example will show that the class of right injective π-
institutions is a proper subclass of the class of family injective π-institutions.

Example 211 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

Since {{1,2}} is a theory family that is not a theory system, I is not systemic.
The lattice of theory families and that of the corresponding Leibniz con-

gruence systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

It is obvious from the diagram that I is family injective, since each of the
three theory families has a different Leibniz congruence system.

On the other hand, I is not right injective. This can be seen either by
applying Proposition 209 or directly. Take T = {{2}} and T ′ = {{1,2}}.
Then, we have

←Ð
T =

←Ð
T ′ = T , whence Ω(←ÐT ) = Ω(←ÐT ′), whereas, obviously,

T ≠ T ′.

The second example shows that the class of family injective π-institutions
is properly included in the class of left injective π-institutions.

Example 212 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The following table shows the action of ←Ð on theory families, where rows

correspond to TΣ and columns to TΣ′ and each entry is written as
←Ð
T Σ,
←Ð
T Σ′.

←Ð {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
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The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

Since the only two theory families that have the same Leibniz congruence
system are {{0,1},{b}} and {{1},{b}} and it holds that

←ÐÐÐÐÐÐÐ{{0,1},{b}} =←ÐÐÐÐÐÐ{{1},{b}} = {{1},{b}},
we conclude that I is left injective.

From the diagram, it is also clear that I is not family injective, since
the two theory families {{0,1},{b}} and {{1},{b}} have the same Leibniz
congruence system.

In conclusion we have shown that I is left injective but not family injec-
tive.

The next example shows that the class of left injective π-institutions is
properly included in the class of all system injective π-institutions.

Example 213 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the two object category with objects Σ,Σ′ and two (non-identity)
morphisms

Σ
f ✲✛
g

Σ′

such that g ○ f = iΣ and f ○ g = iΣ′;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) ={a, b, c} and

SEN♭(f)(0) = a, SEN♭(f)(1) = b, SEN♭(f)(2) = c;
SEN♭(g)(a) = 0, SEN♭(g)(b) = 1, SEN♭(g)(c) = 2;

• N ♭ is the clone on SEN♭ generated by the natural transformation σ♭ ∶
SEN♭ → SEN♭ specified by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 0
1 1
2 0

y ∈ SEN♭(Σ′) σ♭Σ′(y)
a a

b b

c a

Next, define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{c},{b, c},{a, b, c}}.
The table giving the action of ←Ð on theory families is shown below:

←Ð {c} {b, c} {a, b, c}{2} {2},{c} {2},{c} {2},{c}{1,2} {2},{c} {1,2},{b, c} {1,2},{b, c}{0,1,2} {2},{c} {1,2},{b, c} {0,1,2},{a, b, c}
The following table gives the Leibniz congruence systems associated with each
of the nine theory families of I, where we have denoted by θ the Leibniz
congruence system with θΣ = {{0,1},{2}} and θΣ′ = {{a, b},{c}}:

Ω({TΣ, TΣ′}) {c} {b, c} {a, b, c}{2} θ ∆F θ{1,2} ∆F ∆F ∆F

{0,1,2} θ ∆F ∇F
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Observe, first, that there are only three theory systems {{2},{c}}, {{1,2},{b, c}} and {{0,1,2},{a, b, c}}. To each of these corresponds a different Leib-
niz congruence system. It follows that I is system injective.

On the other hand, for T = {{2},{b, c}} and T ′ = {{1,2},{b, c}}, we have

Ω(T ) = Ω(T ′) =∆F, but
←Ð
T = {{2},{c}} ≠ {{1,2},{b, c}} = ←ÐT ′. Therefore I is

not left injective.

The injectivity properties transfer from the theory families/systems of a
π-institution I = ⟨F,C⟩ to the collections of all I-filter families/systems on
arbitrary F-algebraic systems.

Theorem 214 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family injective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies T = T ′.

(b) I is left injective if and only if, for every F-algebraic system A = ⟨A, ⟨F,
α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies

←Ð
T =
←Ð
T ′.

(c) I is right injective if and only if, for every F-algebraic system A = ⟨A,
⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(←ÐT ) = ΩA(←ÐT ′) implies T = T ′.

(d) I is system injective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A), ΩA(T ) = ΩA(T ′) implies T = T ′.

Proof: We will prove Parts (a) and (b) to establish the method.

(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that ThFam(I) = FiFamI(F), by Lemma 51.

For the “only if”, suppose that I is family injective and let A = ⟨A, ⟨F,
α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that ΩA(T ) =
ΩA(T ′). Then α−1(ΩA(T )) = α−1(ΩA(T ′)). So, by Proposition 24,
Ω(α−1(T )) = Ω(α−1(T ′)). Since, by Lemma 51, we have that α−1(T ),
α−1(T ′) ∈ ThFam(I), we get, by applying family injectivity, α−1(T ) =
α−1(T ′). Finally, the surjectivity of ⟨F,α⟩ yields that T = T ′.

(b) The “if” follows as in Part (a).

For the “only if”, suppose that I is left injective and let A = ⟨A, ⟨F, α⟩⟩
be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that ΩA(T ) =
ΩA(T ′). Then α−1(ΩA(T )) = α−1(ΩA(T ′)). So, by Proposition 24,
Ω(α−1(T )) = Ω(α−1(T ′)). Since, by Lemma 51, we have that α−1(T ),
α−1(T ′) ∈ ThFam(I), we get, by applying left injectivity,

←ÐÐÐÐ
α−1(T ) =

←ÐÐÐÐ
α−1(T ′). Thus, by Lemma 6, α−1(←ÐT ) = α−1(←ÐT ′). Finally, the surjectiv-

ity of ⟨F,α⟩ yields that
←Ð
T =
←Ð
T ′.
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∎

Finally, we may recast the injectivity classes in terms of the injectivity
of mappings from posets of theory or filter families/systems into posets of
congruence systems.

Given two posets P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, we call a mapping f ∶ P → Q

injective if it is injective as a set map, i.e., if, for all p1, p2 ∈ P ,

f(p1) = f(p2) implies p1 = p2.

Proposition 215 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family injective;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is injective;

(c) ΩA ∶ FiFamI(A) → ConSysI∗(A) is injective, for every F-algebraic
system A.

Similarly, for system injectivity, we have

Proposition 216 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system injective;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is injective;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is injective, for every F-algebraic sys-
tem A.

3.7 Reflectivity

In this section we look at classes of π-institutions defined using the order
reflectivity of the Leibniz operator.

Definition 217 (Reflectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F.

• I is family reflective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′.

• I is left reflective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies

←Ð
T ≤
←Ð
T ′.
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• I is right reflective if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT ) ≤ Ω(←ÐT ′) implies T ≤ T ′.

• I is system reflective if, for all T,T ′ ∈ ThSys(I),
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′.

We first establish the fact that both family and right reflectivity imply
systemicity.

Lemma 218 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,
C⟩ a π-institution based on F.

(a) If I is family reflective, then it is systemic;

(b) If I is right reflective, then it is systemic.

Proof:

(a) Suppose I is family reflective and let T ∈ ThFam(I). Then, we have,

by Proposition 20, Ω(T ) ≤ Ω(←ÐT ). Applying family reflectivity, we get

T ≤
←Ð
T . Since, by Proposition 42, it always holds that

←Ð
T ≤ T , we

get
←Ð
T = T . This shows that ThFam(I) = ThSys(I) and, thus, I is

systemic.

(b) Suppose I is right reflective and let T ∈ ThFam(I). Then, we have,

by Proposition 42,
←Ð←Ð
T =

←Ð
T . Thus, we get Ω(←Ð←ÐT ) = Ω(←ÐT ) and, hence

Ω(←ÐT ) ≤ Ω(←Ð←ÐT ). Applying right reflectivity, we get T ≤
←Ð
T . Since, by

Proposition 42, it always holds that
←Ð
T ≤ T , we get

←Ð
T = T . This shows

that ThFam(I) = ThSys(I) and, thus, I is systemic.
∎

Lemma 218 enables us to prove that family reflectivity and right reflec-
tivity are actually equivalent properties.

Proposition 219 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family reflective if and only if it is
right reflective.

Proof: Suppose, first, that I is family reflective. Then, by Lemma 218, it is
systemic, and, by Proposition 152, it is stable. To see that it is right reflective,

let T,T ′ ∈ ThFam(I), such that Ω(←ÐT ) ≤ Ω(←ÐT ′). Then, by stability, Ω(T ) ≤
Ω(T ′). Hence, by family reflectivity, T ≤ T ′. Thus, I is right reflective.



Voutsadakis CHAPTER 3. SEMANTIC HIERARCHY I 267

Suppose, conversely, that I is right reflective. Then, by Lemma 218, it is
systemic, and, by Proposition 152, it is stable. Let T,T ′ ∈ ThFam(I), such

that Ω(T ) ≤ Ω(T ′). Then by stability, we get Ω(←ÐT ) ≤ Ω(←ÐT ′). Now we use
right reflectivity to get T ≤ T ′. Thus, I is family reflective. ∎

Now we establish several relationships among the three reflectivity classes.
First, we show that, if a π-institution is family reflective, then it is left
reflective.

Proposition 220 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family reflective, then it is left
reflective.

Proof: Suppose I if family reflective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) ≤ Ω(T ′). By family reflectivity, T ≤ T ′. But, by Lemma 218, I is

systemic, whence we get
←Ð
T ≤
←Ð
T ′ and, hence, I is left reflective. ∎

Next, we show that left reflectivity implies system reflectivity and, more-
over system reflectivity supplied with stability implies left reflectivity.

Proposition 221 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left reflective, then it is system reflective;

(b) If I is system reflective and stable, then it is left reflective.

Proof:

(a) Suppose that I is left reflective and let T,T ′ ∈ ThSys(I), such that

Ω(T ) ≤ Ω(T ′). Then, by left reflectivity,
←Ð
T ≤

←Ð
T ′. But, as T,T ′ are

theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′, whence T ≤ T ′ and I is

system reflective.

(b) Suppose that I is system reflective and stable. Let T,T ′ ∈ ThFam(I),
such that Ω(T ) ≤ Ω(T ′). Then, by stability, Ω(←ÐT ) ≤ Ω(←ÐT ′). Since
←Ð
T ,
←Ð
T ′ ∈ ThSys(I), we apply system reflectivity to get

←Ð
T ≤
←Ð
T ′. Thus, I

is left reflective.
∎

Finally, we show that systemicity is exactly the separating property be-
tween family reflectivity and system reflectivity.

Proposition 222 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family reflective if and only if it is
system reflective and systemic.
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Proof: Suppose, first, that I is family reflective. Then, by Lemma 218, it
is systemic. Moreover, by hypothesis, for all T,T ′ ∈ ThSys(I), such that
Ω(T ) ≤ Ω(T ′), we get, T ≤ T ′. So I is also system reflective.

Suppose, conversely, that I is system reflective and systemic and let
T,T ′ ∈ ThFam(I), such that Ω(T ) ≤ Ω(T ′). By systemicity, T,T ′ ∈ ThSys(I),
whence, by hypothesis, we get T ≤ T ′. Thus, I is family reflective. ∎

We have now established the following reflectivity hierarchy:

Family/Right Reflective

Left Reflective
❄

System Reflective
❄

We present now some examples to show that the inclusions shown in the
diagram are indeed proper inclusions.

The first example showcases a π-institution which is left reflective, but
not systemic, and, hence, according to Proposition 220, not family reflective.

Example 223 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

Since {{1,2}} is a theory family that is not a theory system, I is not systemic.
The lattice of theory families and the corresponding Leibniz congruence

systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

By the diagram, keeping in mind that
←ÐÐÐÐ{{1,2}} = {{2}}, one can see that I

is left reflective. But, clearly, it is not family reflective, as Ω({{1,2}}) ≤
Ω({{2}}), whereas, obviously, {{1,2}} /≤ {{2}}.

The second example presents a π-institution which is system reflective,
but fails to be left reflective and, hence, by Proposition 221, is not stable.

Example 224 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1} and
SEN♭(f)(0) = 0, SEN♭(f)(a) = 1, SEN♭(f)(b) = 0 and SEN♭(f)(1) = 1;

• N ♭ is the category of natural transformations generated by the two bi-
nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧Σ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨Σ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1
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Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{1} {1}{a,1} {a,1}{b,1} {1}{a, b,1} {a,1}{0, a, b,1} {0, a, b,1}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

0ab1 ...........................✲ ∇F

ab1 0b, a1

�
�
� ❅

❅
❅

.....................❥......
......

......
......

......
....✶

a1 b1 .........✲ ∆F

❅
❅
❅ �

�
�

....
....

....
....

....
.✯

1

Since Ω(←ÐÐÐÐÐÐ{{a, b,1}}) = Ω({{a,1}}) = {{0, b},{a,1}} ≠ ∆F = Ω({{a, b,1}}), we
conclude that I is not stable.

Since {{1}}, {{a,1}} and SEN♭ are the only theory systems of I, it is
clear from the diagram above that I is system reflective. On the other hand,
we have

Ω({{a, b,1}}) =∆F = Ω({{b,1}}),
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but ←ÐÐÐÐÐÐ{{a, b,1}} = {{a,1}} ≰ {{1}} =←ÐÐÐÐ{{b,1}},
whence, I is not left reflective.

We turn now to transfer theorems regarding the reflectivity properties
studied in this section.

Theorem 225 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family reflective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′.

(b) I is left reflective if and only if, for every F-algebraic system A =
⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamA(A), ΩA(T ) ≤ ΩA(T ′) implies

←Ð
T ≤

←Ð
T ′.

(c) I is system reflective if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysA(A), ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′.

Proof: We prove Part (b).
The “if” is obtained by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩

and taking into account that FiFamI(F) = ThFam(I), by Lemma 51.
For the “only if” suppose that I is left reflective and let A = ⟨A, ⟨F,α⟩⟩ be

an F-algebraic system and T,T ′ ∈ FiFamI(A), such that ΩA(T ) ≤ ΩA(T ′).
Apply the inverse of ⟨F,α⟩ to get α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). Thus, by
Proposition 24, we get Ω(α−1(T )) ≤ Ω(α−1(T ′)). Take into account the fact
that, by Lemma 51, α−1(T ), α−1(T ′) ∈ ThFam(I) and apply left reflectivity

to get
←ÐÐÐÐ
α−1(T ) ≤ ←ÐÐÐÐα−1(T ′). Hence, by Lemma 6, we get α−1(←ÐT ) ≤ α−1(←ÐT ′).

Finally, by the surjectivity of ⟨F,α⟩, we conclude that
←Ð
T ≤
←Ð
T ′. ∎

Turning to characterizations in terms of mappings between posets, we
get the following characterizations of family and system reflectivity in terms
of the order reflectivity of mappings from posets of theory or filter fami-
lies/systems into posets of congruence systems. Given posets P = ⟨P,≤⟩ and
Q = ⟨Q,≼⟩, call a mapping f ∶ P → Q order reflecting if, for all p1, p2 ∈ P ,

f(p1) ≼ f(p2) implies p1 ≤ p2.

Proposition 226 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is family reflective;

(b) Ω ∶ ThFam(I)→ ConSys∗(I) is order reflecting;
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(c) ΩA ∶ FiFamI(A) → ConSysI∗(A) is order reflecting, for every F-al-
gebraic system A.

Similarly, for system reflectivity, we have

Proposition 227 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system reflective;

(b) Ω ∶ ThSys(I)→ ConSys∗(I) is order reflecting;

(c) ΩA ∶ FiSysI(A) → ConSysI∗(A) is order reflecting, for every F-al-
gebraic system A.

We continue our studies of reflectivity properties by looking at the re-
lationships governing classes defined using reflectivity with corresponding
classes defined using injectivity. We have the following result:

Proposition 228 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family/right reflective, then it is right injective;

(b) If I is left reflective, then it is left injective;

(c) If I is system reflective, then it is system injective.

Proof:

(a) Suppose I is right reflective and let T,T ′ ∈ ThFam(I), such that

Ω(←ÐT ) = Ω(←ÐT ′). Then, a fortiori, Ω(←ÐT ) ≤ Ω(←ÐT ′) and Ω(←ÐT ′) ≤ Ω(←ÐT ).
Thus, by right reflectivity, T ≤ T ′ and T ′ ≤ T . It follows that T = T ′.
Therefore, I is right injective.

(b),(c) Very similar to Part (a).

∎

Proposition 228 has established the following combined hierarchy of in-
jectivity and reflectivity properties.
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Family Reflective

✠�
�
�
�
�
�
�
� ❅

❅
❅❘

Right Injective

✠�
�
�

Left Reflective Family Injective

✠�
�
� ❅

❅
❅❘ ✠�

�
�

System Reflective Left Injective

❅
❅
❅❘ ✠�

�
�

System Injective

Now we turn to an example that will show that all three fresh inclu-
sions depicted in the diagram, i.e., those established in Proposition 228, are
actually proper inclusions.

Example 229 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor determined by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the natural transformation σ♭ ∶ SEN♭ →

SEN♭, defined by the following table:

x ∈ SEN♭(Σ) σ♭Σ(x)
0 0
1 0
2 2
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The π-institution I = ⟨F,C⟩ is defined by setting

CΣ = {{2},{1,2},{0,1,2}}.
Note that I is systemic, since the category Sign♭ is trivial. The lattice of
theory families and that of the corresponding Leibniz congruence systems are
shown in the diagram.

{0,1,2} ..................✲ ∇F

{1,2} {{0,1},{2}}
................s...

...
...

...
...

.✸

{2} ∆F

Since all three theory families/systems have distinct Leibniz congruence sys-
tems, I is right injective.

On the other hand, Ω({{1,2}}) ≤ Ω({{2}}), whereas, obviously, {{1,2}} /≤{{2}}, whence I is not system reflective.

We close this section on reflectivity by looking at the relationships be-
tween the various reflectivity classes and the classes in the loyalty hierarchy.

Proposition 230 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family reflective, then it is family loyal;

(b) If I is left reflective, then it is left loyal;

(c) If I is system reflective, then it is system loyal.

Proof:

(a) Suppose that I is family reflective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) > Ω(T ′). Then, a fortiori, Ω(T ) ≥ Ω(T ′). Therefore, by family
reflectivity, T ≥ T ′ and, hence T /< T ′. We conclude that I is family
loyal.

(b) Suppose that I is left reflective and let T,T ′ ∈ ThFam(I), such that
Ω(T ) > Ω(T ′). Then, a fortiori, Ω(T ) ≥ Ω(T ′). Hence, by left re-

flectivity,
←Ð
T ≥

←Ð
T ′. But this implies that

←Ð
T /< ←ÐT ′. Therefore, I is left

loyal.

(c) Very similar to Parts (a) and (b).
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∎

Proposition 230 establishes the following combined hierarchy of reflectiv-
ity and loyalty classes of π-institutions.

Family/Right Reflective

✠�
�
� ❅

❅
❅❘

Family Loyal Left Reflective

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Left Loyal System Reflective

❅
❅
❅❘ ✠�

�
�

System/Right Loyal

We reinforce the picture by constructing a π-institution that is family
loyal but fails to be system reflective. This demonstrates that all three in-
clusions established in Proposition 230 are proper.

Example 231 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the trivial category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor determined by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone of natural transformations generated by the three unary

natural transformations ρ♭, σ♭, τ ♭ ∶ SEN♭ → SEN♭, defined by the follow-
ing table:

x ∈ SEN♭(Σ) ρ♭Σ(x) σ♭Σ(x) τ ♭Σ(x)
0 0 0 1
1 2 0 1
2 2 2 2
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The π-institution I = ⟨F,C⟩ is defined by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that, since Sign♭ is trivial, all theory families are theory systems.

The lattice of theory families and the corresponding Leibniz congruence
systems are given in the following diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

From the diagram it is clear that there are no theory families T,T ′, such
that T < T ′ and Ω(T ) > Ω(T ′). Thus, I is family loyal.

On the other hand, setting T = {{0,2}} and T ′ = {{1,2}}, we have Ω(T ) ≤
Ω(T ′), whereas, obviously, T /≤ T ′. Therefore I is not system reflective.

3.8 Complete Reflectivity

In this section we define the classes arising by imposing the various versions
of the property of complete order reflectivity.

Definition 232 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is family completely reflective if, for all T ∪{T ′} ⊆ ThFam(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

• I is left completely reflective if, for all T ∪ {T ′} ⊆ ThFam(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′.

• I is right completely reflective if, for all T ∪ {T ′} ⊆ ThFam(I),
⋂
T ∈T

Ω(←ÐT ) ≤ Ω(←ÐT ′) implies ⋂
T ∈T

T ≤ T ′.
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• I is system completely reflective if, for all T ∪ {T ′} ⊆ ThSys(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

For the sake of brevity, we sometimes shorten “complete reflectivity” to
c-reflectivity.

Lemma 218 allows us to obtain easily the fact that both family c-reflecti-
vity and right c-reflectivity imply systemicity.

Lemma 233 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family completely reflective, then it is systemic;

(b) If I is right completely reflective, then it is systemic.

Proof: Note that, if I is family completely reflective, then it is family re-
flective and that, if I is right completely reflective, then it is right reflective.
Therefore, the conclusion is obtained by applying Lemma 218. ∎

Now we show in an analog of Proposition 219 for complete reflectivity
that family complete reflectivity and right complete reflectivity are equivalent
properties.

Proposition 234 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely reflective if and
only if it is right completely reflective.

Proof: Suppose, first, that I is family completely reflective and let T ∪

{T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). By Lemma 233, I is
systemic, whence we get ⋂T ∈T Ω(T ) ≤ Ω(T ′). This allows us to apply family
c-reflectivity to obtain ⋂T ≤ T ′. Hence I is right completely reflective.

Suppose, conversely, that I is right completely reflective and let T ∪{T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By Lemma 233, I is systemic,

whence, we get ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Applying right c-reflectivity, we get
that ⋂T ≤ T ′. Therefore, I is family completely reflective. ∎

We now look at the relationships that govern the three complete reflec-
tivity classes, which also parallel the ones established in Propositions 220,
221 and 222 for the various classes defined using reflectivity.

We show, first, that family complete reflectivity implies left complete
reflectivity.

Proposition 235 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family completely reflective then it
is left completely reflective.
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Proof: Suppose that I is family completely reflective and let T ∪ {T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By family complete reflectivity,

we get ⋂T ∈T T ≤ T ′, whence, by Lemma 233, ⋂T ∈T

←Ð
T ≤

←Ð
T ′. Thus, I is left

completely reflective. ∎

Next, we show that left complete reflectivity implies system complete
reflectivity and, moreover, system complete reflectivity, combined with sta-
bility, implies left complete reflectivity.

Proposition 236 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left completely reflective, then it is system completely reflective;

(b) If I is system completely reflective and stable, then it is left completely
reflective.

Proof:

(a) Suppose that I is left c-reflective and let T ∪ {T ′} ⊆ ThSys(I), such

that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by left c-reflectivity, ⋂T ∈T

←Ð
T ≤

←Ð
T ′.

But, as T ∪ {T ′} consists of theory systems, we get ⋂T ≤ T ′. So I is
system c-reflective.

(b) Suppose that I is system c-reflective and stable. Let T ∪ {T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by stability, we get

⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Since {←ÐT ∶ T ∈ T } ∪ {←ÐT ′} ∈ ThSys(I), we apply

system c-reflectivity to get ⋂T ∈T

←Ð
T ≤
←Ð
T ′. Thus, I is left c-reflective.

∎

Finally, it is not difficult to see that family complete reflectivity is tanta-
mount to system complete reflectivity plus systemicity.

Proposition 237 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family completely reflective if and
only if it is system completely reflective and systemic.

Proof: Suppose, first, that I is family completely reflective. Then, by
Lemma 233, it is systemic. Moreover, by Propositions 235 and 236, it is
system completely reflective.

Suppose, conversely, that I is system completely reflective and systemic
and let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Since, by sys-
temicity, we get T ∪{T ′} ⊆ ThSys(I), we get, by system complete reflectivity,

⋂T ∈T T ≤ T ′. Thus, I is family completely reflective. ∎
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We have now established the following complete reflectivity hierar-
chy:

Family/Right c-Reflective

Left c-Reflective
❄

System c-Reflective
❄

We now provide two examples to show that the inclusions depicted in the
diagram between the three complete reflectivity classes introduced in this
section are proper. The first example presents a π-institution which is left
completely reflective, but not systemic, and, hence, according to Proposition
237, not family completely reflective.

Example 238 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}
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Since {{1,2}} is a theory family that is not a theory system, I is not systemic.

The lattice of theory families and that of the corresponding Leibniz con-
gruence systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

By the diagram, keeping in mind that
←ÐÐÐÐ{{1,2}} = {{2}}, one can see that I

is left c-reflective. But, clearly, it is not family c-reflective, as Ω({{1,2}}) ≤
Ω({{2}}), whereas, obviously, {{1,2}} /≤ {{2}}, giving, as we have already
seen in Example 223, that I is not even family reflective.

The second example presents a π-institution which is system c-reflective,
but fails to be left c-reflective and, hence, by Proposition 236, is not stable.

Example 239 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1} and
SEN♭(f)(0) = 0, SEN♭(f)(a) = 1, SEN♭(f)(b) = 0 and SEN♭(f)(1) = 1;

• N ♭ is the category of natural transformations generated by the two bi-
nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧Σ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨Σ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{1} {1}{a,1} {a,1}{b,1} {1}{a, b,1} {a,1}{0, a, b,1} {0, a, b,1}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

0ab1 ...........................✲ ∇F

ab1 0b, a1

�
�
� ❅

❅
❅

.....................❥.....
......

......
......

......
.....✶

a1 b1 .........✲ ∆F

❅
❅
❅ �

�
�

....
....

....
....

....
.✯

1

Since Ω(←ÐÐÐÐÐÐ{{a, b,1}}) = Ω({{a,1}}) = {{0, b},{a,1}} ≠ ∆F = Ω({{a, b,1}}), we
conclude that I is not stable.

Note that, since {{1}}, {{a,1}} and SEN♭ are the only theory systems of
I, the Leibniz operator Ω ∶ ThSys(I)→ ConSys∗(I) is an order isomorphism.
Hence, I is system completely reflective. On the other hand, we have

Ω({{a, b,1}}) = ∆F = Ω({{b,1}}),
but ←ÐÐÐÐÐÐ{{a, b,1}} = {{a,1}} ≰ {{1}} =←ÐÐÐÐ{{b,1}},
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whence, I is not left reflective and, a fortiori, it is not left completely reflec-
tive either.

We turn now to transfer theorems regarding the reflectivity properties
studied in this section.

Theorem 240 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family completely reflective if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), ⋂T ∈T ΩA(T ) ≤
ΩA(T ′) implies ⋂T ≤ T ′.

(b) I is left completely reflective if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamA(A), ⋂T ∈T ΩA(T ) ≤ ΩA(T ′)
implies ⋂T ∈T

←Ð
T ≤
←Ð
T ′.

(c) I is system completely reflective if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiSysA(A), ⋂T ∈T ΩA(T ) ≤
ΩA(T ′) implies ⋂T ∈T T ≤ T ′.

Proof: We prove Part (b).
The “if” is obtained by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩

and taking into account that FiFamI(F) = ThFam(I), by Lemma 51.
For the “only if” suppose that I is left c-reflective and let A = ⟨A, ⟨F,α⟩⟩

be an F-algebraic system and T ∪{T ′} ⊆ FiFamI(A), such that ⋂T ∈T ΩA(T ) ≤
ΩA(T ′). Apply the inverse of ⟨F,α⟩ to get α−1(⋂T ∈T ΩA(T )) ≤ α−1(ΩA(T ′)).
This yields that ⋂T ∈T α

−1(ΩA(T )) ≤ α−1(ΩA(T ′)). Thus, by Proposition
24, we get ⋂T ∈T Ω(α−1(T )) ≤ Ω(α−1(T ′)). Take into account the fact that,
by Lemma 51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I) and apply left

c-reflectivity to get ⋂T ∈T

←ÐÐÐÐ
α−1(T ) ≤ ←ÐÐÐÐα−1(T ′). Hence, by Lemma 6, we get

⋂T ∈T α
−1(←ÐT ) ≤ α−1(←ÐT ′). Hence, α−1(⋂T ∈T

←Ð
T ) ≤ α−1(←ÐT ′). Finally, by the

surjectivity of ⟨F,α⟩, we conclude that ⋂T ∈T

←Ð
T ≤
←Ð
T ′. ∎

Next, we obtain characterizations of family and system c-reflectivity in
terms of the complete order reflectivity of mappings from posets of theory
or filter families/systems into posets of congruence systems. Given complete
lattices P = ⟨P,≤⟩ and Q = ⟨Q,≼⟩, call a mapping f ∶ P → Q completely
order reflecting if, for all X ∪ {y} ⊆ P ,

Q

⋀
x∈X

f(x) ≼ f(y) implies
P

⋀
x∈X

x ≤ y.

Proposition 241 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:
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(a) I is family completely reflective;

(b) Ω ∶ ThFam(I)→ ConSys(I) is completely order reflecting;

(c) ΩA ∶ FiFamI(A)→ ConSys(A) is completely order reflecting, for every
F-algebraic system A.

Similarly, for system c-reflectivity, we have

Proposition 242 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is system completely reflective;

(b) Ω ∶ ThSys(I)→ ConSys(I) is completely order reflecting;

(c) ΩA ∶ FiSysI(A) → ConSys(A) is completely order reflecting, for every
F-algebraic system A.

We look now at the relationships governing classes defined using complete
reflectivity with corresponding classes defined using reflectivity. We have
referred to this straightforward relationships already in the proof of Lemma
233.

Proposition 243 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family/right completely reflective, then it is family/right reflec-
tive;

(b) If I is left completely reflective, then it is left reflective;

(c) If I is system completely reflective, then it is system reflective.

Proof: All three parts are based on the observation that the reflectivity
conditions are specializations of the corresponding complete reflectivity con-
ditions to the special case of singleton collections of theory families/systems
on the left hand sides of the relevant inequalities. ∎

Proposition 243 has established the following combined hierarchy of in-
jectivity and reflectivity properties.
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Family/Right c-Reflective

✠�
�
� ❅

❅
❅❘

Left c-Reflective Family Reflective

✠�
�
� ❅

❅
❅❘ ✠�

�
�

System c-Reflective Left Reflective

❅
❅
❅❘ ✠�

�
�

System Reflective

Now we turn to an example that will show that all three inclusions estab-
lished in Proposition 243 and depicted in the diagram are proper. Namely,
we construct a family reflective π-institution that is not system completely
reflective.

Example 244 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category, with object Σ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2,3,4};
• N ♭ is the category of natural transformations generated by the two

unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭ defined by the fol-
lowing table:

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 2 0
1 2 0
2 2 0
3 1 2
4 2 0

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{4},{3,4},{1,3,4},{2,3,4},{0,1,2,3,4}}.
Clearly, since Sign♭ is trivial, I is systemic.

The lattice of theory families and the corresponding Leibniz congruence
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systems are shown in the diagram.

01234 ∇F

�
�
� ❅

❅
❅

✟✟✟✟✟✟✟✟

✁
✁
✁
✁
✁
✁
✁
✁

❍❍❍❍❍❍❍❍

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇

134 234 02,14,3 01,24,3

❅
❅
❅ �

�
�

34 012,34

4 0123,4

From the diagram, it is clear that, for all T,T ′ ∈ ThFam(I), Ω(T ) ≤
Ω(T ′) implies T ≤ T ′, i.e., I is family reflective. On the other hand, setting
T 1 = {{1,3,4}}, T 2 = {{2,3,4}} and T ′ = {{4}}, we get

Ω(T 1) ∩Ω(T 2) = {{02,14,3}} ∩ {{01,24,3}}
= ∆F

≤ {{0123,4}} = Ω(T ′),
whereas T 1 ∩ T 2 = {{3,4}} ≰ {{4}} = T ′. Hence, I is not system completely
reflective.
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4.1 Introduction

In this chapter, we study the classes of π-institutions that result when com-
bining monotonicity properties of the Leibniz operator with injectivity, re-
flectivity or complete reflectivity. As such, all those classes correspond, in the
categorical framework, to the class of weakly algebraizable sentential logics
[62], which is obtained by combining protoalgebraicity [28] (see, also, [26])
with truth equationality [77] (see, also, Section 6.4 of [86]). It should also
be mentioned that algebraizable logics, as introduced in [35] and general-
ized in [43, 53, 54], form subclasses of weakly algebraizable ones obtained by
strengthening protoalgebraicity to equivalentiality [19, 23, 24]. The analogs
of equivalentiality for π-institutions and the corresponding subclasses of al-
gebraizable π-institutions will be considered in Chapters 5 and 5.

In Section 4.2, we study the hierarchy that results when combining preal-
gebraicity, i.e., monotonicity of the Leibniz operator on theory systems (Sec-
tion 3.3) with each of the various flavors of injectivity (Section 3.6), reflectiv-
ity (Section 3.7) or complete reflectivity (Section 3.8). Since there are four
different flavors of injectivity, three of reflectivity and three of complete reflec-
tivity, we get, a priori, ten classes of weakly prealgebraizable π-institutions.
The qualifier “weakly” suggests the use of monotonicity rather than equiv-
alentiality, and the prefix “pre” in prealgebraizable that prealgebraicity, i.e.,
system monotonicity, rather than protoalgebraicity, i.e., family monotonicity,
is used in the definition of these ten classes. Since prealgebraicity is common
to all ten, the differentiating factor is the type of injectivity, reflectivity or
c-reflectivity being imposed. Accordingly, the following ten classes are ob-
tained, all named “weakly X prealgebraizable”, or “WX Prealgebraizable”
for short, where the string X stands for one of the following:

• SI for system injective, LI for left injective, FI for family injective, RI
for right injective; or

• SR for system reflective, LR for left reflective, FR for family reflective;
or

• SC for system c-reflective, LC for left c-reflective, FC for family c-
reflective.

A fundamental result is that, under prealgebraicity, all three system proper-
ties (SI, SR and SC) coincide. Thus, WSI, WSR and WSC prealgebraizability
are identical properties. We call π-institutions belonging to this class WS pre-
algebraizable. It is shown that WS prealgebraizability transfers. Moreover,
WS prealgebraizable π-institutions I = ⟨F,C⟩ are characterized by the prop-
erty that ΩA on I-filter systems is an order embedding, for every F-algebraic
system A. As prealgebraicity identifies also family reflectivity with family c-
reflectivity, the classes of WFR prealgebraizable and WFC prealgebraizable
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π-institutions coincide. Finally, both WFR and WRI prealgebraizability turn
out to be equivalent, as they are both equivalent to WFI prealgebraizability
plus systemicity. Hence, at the top of the weak prealgebraizability hierarchy,
only two of the four classes are potentially different. We refer to them as
WFR and WFI prealgebraizability. Both properties transfer. Moreover, both
have characterizations in terms of the Leibniz operator viewed as a mapping
between ordered sets. Namely, I = ⟨F,C⟩ is WFR prealgebraizable iff ΩA is
an order isomorphism and it is WFI prealgebraizable iff ΩA is a bijection on
I-filter families, which restricts to an order embedding on I-filter systems,
for every F-algebraic system A.

As no further identifications seem possible, one obtains the hierarchy

WFR Prealg

✠�
� ❙

❙
❙
❙
❙✇

WLC Prealg

WFI Prealg

WLR Prealg
❄

✴✓
✓
✓
✓
✓

❅
❅❘

WLI Prealg

WS Prealg
❄

Some specialized results reduce the hierarchy further under additional
provisos. First, under systemicity, the entire hierarchy collapses to a single
class. Second, it is shown that, under stability, the two family properties
coincide, as do all four remaining properties. Thus, under stability, the
hierarchy reduces to only two distinct classes.

The section focuses, next, to the three left properties. More precisely, it
is shown that all three of WLI, WLR and WLC prealgebraizability versions
transfer and that each is characterized via theorems perceiving the Leibniz
operator as a mapping from filter families to congruence systems over arbi-
trary algebraic systems. Briefly, given a π-institution I = ⟨F,C⟩, it turns
out that I is WLI (WLR, WLC, respectively) prealgebraizable iff, for ev-
ery F-algebraic system A, ΩA ∶ FiFamI(A) → ConSys(A) is a left injective
(left order reflecting, left completely order reflecting, respectively) surjection,
which restricts to an order embedding on filter systems.

In Section 4.3, we study those classes that are formed by combining pro-
toalgebraicity (family monotonicity) with each of the ten versions of injec-
tivity, reflectivity or complete reflectivity properties. So, once more, a pri-
ori, before any detailed study, one obtains ten potentially different classes
of weakly algebraizable π-institutions. However, since protoalgebraicity is
a stronger condition than prealgebraicity, one obtains immediately at least
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those identifications that apply to the weak prealgebraizability hierarchy. So,
e.g., we get that WFI, WRI, WFR and WFC algebraizable π-institutions co-
incide. We term the corresponding property WF algebraizability. It turns
out to be equivalent to the conjunction of WS prealgebraizability and sys-
temicity. WF algebraizability transfers and, moreover, it can be character-
ized by ΩA being an order isomorphism on every algebraic system A. It
follows that this class of π-institutions is actually identical to the class of
WFR prealgebraizable ones, i.e., those belonging to the top class in the weak
prealgebraizability hierarchy. What is a massive collapse, however, results
from showing that the lowest class in the weak algebraizability hierarchy,
WSI algebraizability, can be characterized as the conjunction of stability
with ΩA ∶ FiSysI(A) → ConSysI∗(A) being an order isomorphism. This
allows showing that all classes of WS, WLI, WLR, WLC and WFI algebraiz-
able π-institutions are identical. We term the corresponding property WS
algebraizability. It is shown that WS algebraizability also transfers.

Having reduced the weak algebraizability hierarchy down to two classes,
we conclude Section 4.3 (and Chapter 4) by merging it with the weak preal-
gebraizability hierarchy to obtain the following refinement of the classes that
correspond, in the categorical framework, to the class of weakly algebraizable
deductive systems.

WF Alg

❂✚✚
✚✚ ❏

❏
❏
❏
❏
❏
❏❫

WS Alg

WLC Prealg
❄

WFI Prealg

✢✡
✡
✡
✡
✡
✡
✡

WLR Prealg
❄

❩❩❩❩⑦
WLI Prealg

WS Prealg
❄

4.2 Weak PreAlgebraizability

We now shift attention to classes of π-institutions that are defined as a result
of interactions between the various kinds of injectivity, reflectivity and com-
plete reflectivity, on the one hand, and prealgebraicity and protoalgebraicity,
on the other.
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Recall that the hierarchy that was established in the preceding chapter
as regards the various versions of injectivity, reflectivity and complete reflec-
tivity has the following form:

Family c-Reflective

✠�
�
� ❅

❅
❅❘

Left c-Reflective Family Reflective

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

System c-Reflective Left Reflective Right Injective

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

Family Injective
�

System Reflective Left Injective

❅
❅
❅❘ ✠�

�
�

System Injective

Thus, a priori, based on the preceding hierarchy, and combining with
prealgebraicity, we obtain a mimicking hierarchy of ten classes which are
defined, and whose hierarchy is shown, below.

Definition 245 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system injective prealgebraizable or WSI Prealge-
braizable, for short, if it is system injective and prealgebraic.

• I is weakly left injective prealgebraizable or WLI Prealgebra-
izable, for short, if it is left injective and prealgebraic.

• I is weakly family injective prealgebraizable or WFI Prealge-
braizable, for short, if it is family injective and prealgebraic.

• I is weakly right injective prealgebraizable or WRI Prealge-
braizable, for short, if it is right injective and prealgebraic.

Definition 246 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system reflective prealgebraizable or WSR Preal-
gebraizable, for short, if it is system reflective and prealgebraic.
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• I is weakly left reflective prealgebraizable or WLR Prealge-
braizable, for short, if it is left reflective and prealgebraic.

• I is weakly family reflective prealgebraizable or WFR Preal-
gebraizable, for short, if it is family reflective and prealgebraic.

Definition 247 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system completely reflective prealgebraizable or
WSC Prealgebraizable, for short, if it is system completely reflective
and prealgebraic.

• I is weakly left completely reflective prealgebraizable or WLC
Prealgebraizable, for short, if it is left completely reflective and pre-
algebraic.

• I is weakly family completely reflective prealgebraizable or
WFC Prealgebraizable, for short, if it is family completely reflective
and prealgebraic.

WFC-Prealgebraizable

✠�
�
� ❅

❅
❅❘

WLC-Prealgebraizable WFR-Prealgebraizable

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

WSC-Prealgebraizable WLR-Prealgebraizable WRI-Prealgebraizable

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�
WFI-Prealgebraizable

�

WSR-Prealgebraizable WLI-Prealgebraizable

❅
❅
❅❘ ✠�

�
�

WSI-Prealgebraizable

A few words in the nomenclature used in this diagram are in order.

• W stands for “weakly” which refers to the fact that these classes are
defined using forms of monotonicity of the Leibniz operator without
any stipulation as to commutativity of the Leibniz operator with inverse
special endomorphisms (to be studied later in the chapter). If one adds
that condition (using essentially (pre)equivalentiality instead of pre- or
protoalgebraicity), then the letter is dropped.
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• The letters S for “system”, L for “left”, R for “right” and F for “family”
have obvious meanings referring to which of the four versions (family,
left, right or system) of injectivity (I), reflectivity (R) or complete re-
flectivity (C) conditions are used in the definition.

• Finally, the term “prealgebraizable” is associated with application of
monotonicity to theory systems only (as in “prealgebraic”), as opposed
to the term “algebraizable”, which stipulates monotonicity for all the-
ory families.

We start by proving that under prealgebraicity, system injectivity, sys-
tem reflectivity and system complete reflectivity turn out to be equivalent
properties.

Theorem 248 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is prealgebraic, then the following
statements are equivalent:

(a) I is system injective;

(b) I is system reflective;

(c) I is system completely reflective.

Proof:

(a)⇒(b) Suppose that I is system injective. Let T,T ′ ∈ ThSys(I), such that
Ω(T ) ≤ Ω(T ′). Then we get Ω(T ) = Ω(T ) ∩ Ω(T ′). Moreover, by
Lemma 23, Ω(T ) ∩ Ω(T ′) ≤ Ω(T ∩ T ′). On the other hand, by preal-
gebraicity, we have Ω(T ∩ T ′) ≤ Ω(T ) and Ω(T ∩ T ′) ≤ Ω(T ′), whence
Ω(T ∩ T ′) ≤ Ω(T ) ∩Ω(T ′). We conclude that

Ω(T ) = Ω(T ) ∩Ω(T ′) = Ω(T ∩ T ′).
Now we use system injectivity to get T = T ∩T ′. Therefore, T ≤ T ′. So
I is also system reflective.

(b)⇒(c) Suppose, next, that I is system reflective. Let T ∪ {T ′} ⊆ ThSys(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Since I is prealgebraic, i.e., Ω is mono-
tone on theory systems, we have, for all T ∈ T , Ω(⋂T ) ≤ Ω(T ). There-
fore, we get

Ω(⋂
T ∈T

T ) ≤ ⋂
T ∈T

Ω(T ) ≤ Ω(T ′).
Since, by hypothesis, I is system reflective, we get ⋂T ∈T T ≤ T ′. Thus,
I is system completely reflective.

(c)⇒(a) Suppose, finally, that I is system completely reflective. By Proposition
243, it is system reflective, and, then, by Proposition 228, it is system
injective.
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∎

Theorem 248 shows that three of the classes in the previous diagram
coincide.

Corollary 249 The classes of WSI prealgebraizable, WSR prealgebraizable,
and WSC prealgebraizable π-institutions coincide.

Taking advantage of Corollary 249 we define:

Definition 250 (WS Prealgebraizable) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F. I is called
weakly system prealgebraizable (or WS prealgebraizable for short) if
it is prealgebraic and system injective, i.e., if the Leibniz operator is monotone
and injective on theory systems: For all T,T ′ ∈ ThSys(I),

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);
Ω(T ) = Ω(T ′) implies T = T ′.

We present two examples of WS prealgebraizable π-institutions. They
are crafted to provide a sneak preview of the state of affairs in the case of
systemic and non-systemic π-institutions with regards to weak prealgebraiz-
ability. The reader will notice that, in both examples, there is an order
isomorphism between the lattice of theory systems of the π-institution and
that of the associated Leibniz congruence systems. On the other hand, for
this isomorphism to extend to an isomorphism between the lattice of all the-
ory families and the corresponding Leibniz congruence systems, the condition
of systemicity on the π-institution under consideration seems to be required
(and is, as we shall see later).

Example 251 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b = SEN♭(f)(1);

• N ♭ is the trivial clone.

Specify the π-institution I = ⟨F,C⟩ by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Notice that every theory family is a theory system, whence I is systemic.

The following diagrams show the lattices of theory families and of the
corresponding Leibniz congruence systems:
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{{0,1},{a, b}}
�
�
� ❅

❅
❅{{0,1},{b}} {{1},{a, b}}

❅
❅
❅ �

�
�

{{1},{b}}

∇F

�
�
� ❅

❅
❅{{0,1}},{{a},{b}} {{0},{1}},{{a, b}}

❅
❅
❅ �

�
�

∆F

Note that the π-institution I is WS prealgebraizable and that the two lattices
are clearly isomorphic.

Example 252 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is specified by setting SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b}, SEN♭(f)(0) = a and SEN♭(f)(1) = b;
• N ♭ is the trivial clone.

Specify the π-institution I = ⟨F,C⟩ by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
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Notice that the theory family T = {{0,1},{b}} is not a theory system, whence
I is not systemic. In fact, ←Ð ∶ ThFam(I) → ThSys(I) is given by the
following table: {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The next table gives the theory families and the associated Leibniz congruence
systems:

T Ω(T ){{1},{b}} {{0},{1}},{{a},{b}}{{0,1},{b}} {{0},{1}},{{a},{b}}{{1},{a, b}} {{0},{1}},{{a, b}}{{0,1},{a, b}} {{0,1}},{{a, b}}
So, even though the lattices of theory families and of the corresponding Leibniz
congruence systems are not isomorphic,

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

the lattices of theory systems and of the corresponding Leibniz congruence
systems are indeed isomorphic:

{{0,1},{a, b}} .............................✲ ∇F

{{1},{a, b}} ..............✲ {{0},{1}},{{a, b}}

{{1},{b}} .................................✲ ∆F

This π-institution is also WS prealgebraizable.

We present next examples to show that the class of weakly system prealge-
braizable π-institutions is properly included in both the class of prealgebraic
and that of system completely reflective π-institutions.
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Example 253 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone of natural transformations on SEN♭ generated by the

the two unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭, given by
the following table:

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 0 0
1 1 2
2 0 2

Define the π-institution I = ⟨F,C⟩, by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The lattice of the theory systems of I and that of the associated Leibniz
congruence systems are shown in the following diagrams

{{0,1,2}} ...............................................✲ ∇F

�
�
� ❅

❅
❅{{1,2}} {{0,2}} .................✲ {{0,2},{1}}...............................................③

❅
❅
❅ �

�
�

{{2}} ...................................................✲ ∆F

It is clear that the Leibniz operator is monotone. On the other hand, the
Leibniz operator is not injective on theory systems. Therefore, we conclude
that I is prealgebraic but that it fails to be WS prealgebraizable.
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Example 254 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a and SEN♭(f)(2) = b;

• N ♭ is the trivial clone.

We consider the π-institution I = ⟨F,C⟩ defined by

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{b},{a, b}}.
This π-institution has six theory families, but only four theory systems. The
lattice of theory systems and the associated congruence systems are shown
below.

{{0,1,2},{a, b}} ........................................✲ ∇F

�
�
� ❅

❅
❅{{1,2},{a, b}} ........✲ {{0},{1,2}},{{a, b}} {{0,1},{2}}{{a, b}}

.......
.......

.......
.......

.......
.......

.....✿

{{2},{a, b}}
{{0,1},{2}}{{a},{b}}

{{2},{b}} .......
.......

.......
......✿

It is clear from these that the Leibniz operator is completely order reflect-
ing on the theory systems of I, but it is not monotonic. It follows that I is
system c-reflective but not prealgebraic. Therefore, it is system c-reflective,
but fails to be weakly system prealgebraizable.
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The defining properties of weak system prealgebraizability transfer from
theory systems to filter systems over arbitrary algebraic systems. This result
follows naturally from corresponding constituent pieces that have already
been put in place when studying monotonicity and injectivity.

Theorem 255 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WS prealgebraizable if and only if,
for every F-algebraic system A, the Leibniz operator on A is monotone and
injective on the I-filter systems of A, i.e., for all T,T ′ ∈ FiSysI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
ΩA(T ) = ΩA(T ′) implies T = T ′.

Proof: Suppose, first, that the displayed implications hold for every F-
algebraic system A and all I-filter systems T,T ′ on A. By taking A = F =⟨F, ⟨I, ι⟩⟩ and keeping in mind Lemma 51, we conclude that the Leibniz
operator is monotone and injective on all theory systems of I . Thus, by
definition, I is WS prealgebraizable.

Suppose, conversely, that I is WS prealgebraizable. Then, by definition,
it is prealgebraic and system injective. Thus, by Theorems 179 and 214,
for every F-algebraic system A, the Leibniz operator ΩA is monotone and
injective on the I-filter systems of A. ∎

We finally establish the result that we alluded to before presenting Ex-
amples 251 and 252. Namely, we show that WS prealgebraizability can be
equivalently characterized by the fact that the Leibniz operator ΩA over an
arbitrary F-algebraic system A establishes an order embedding from the lat-
tice of filter systems on A into the poset of all relative congruence systems
on A with respect to the class AlgSys∗(I).

Consider an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution
I = ⟨F,C⟩ based on F. Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and let
T ∈ FiFamI(A). Then, observe that the I-matrix family ⟨AΩA(T ), T /ΩA(T )⟩
is Leibniz reduced. Hence, the F-algebraic system AΩA(T ) is in AlgSys∗(I).
Equivalently, we have that ΩA(T ) ∈ ConSysI∗(A). Thus, the Leibniz opera-
tor is always a well defined function

ΩA ∶ FiFamI(A)→ ConSysI∗(A).
In particular, it restricts to a well-defined function

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Additionally, by definition of AlgSys●(I), this may be perceived also as a
function

ΩA ∶ FiSysI(A)→ ConSysI●(A),
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where, we set

ConSysI●(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ AlgSys●(I)}.
We keep these remarks in mind in the formulation of several of the following
results.

Theorem 256 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WS prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding.

Proof: Suppose, first, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA

is an order embedding. In particular, because of Lemma 51,

Ω ∶ ThSys(I)→ ConSys∗(I)
is an order embedding. This implies that the Leibniz operator is monotone
and injective on theory systems. Thus I is WS prealgebraizable.

Suppose, conversely, that I is WS prealgebraizable. Let A be an F-
algebraic system. Consider the mapping

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
By Theorem 255, this mapping is monotone and injective. To show that it
is an order embedding, we must show that it is also order reflecting. By
Theorem 225, it suffices to show that I is system reflective. But this was
accomplished in Theorem 248. ∎

Corollary 257 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WS prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI●(A)
is an order isomorphism.

At this point in our studies we have the following hierarchy, which results
from the preceding one by the identification established in Corollary 249.
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WFC-Prealgebraizable

✠�
�
�
� ❅

❅
❅
❅❘

WLC-Prealgebraizable WFR-Prealgebraizable

❅
❅
❅
❅❘ ✠�

�
�
� ❅

❅
❅
❅❘

WLR-Prealgebraizable WRI-Prealgebraizable

❅
❅
❅
❅❘ ✠��

WFI-Prealgebraizable
��

WLI-Prealgebraizable

WS-Prealgebraizable

❄

We continue our study by showing that all three upper diagonal classes,
namely those of WFC, WFR and WRI prealgebraizable π-institutions also
coincide. To accomplish this for WFC and WFR prealgebraizability, we prove
a partial analog of Theorem 248 that under prealgebraicity, family reflectivity
and family complete reflectivity turn out to be equivalent properties. The
crucial observation is that, as shown in Lemma 218, family reflectivity implies
systemicity.

Theorem 258 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is prealgebraic and family reflective,
then it is family completely reflective.

Proof: Since I is family reflective, by Lemma 218, it is systemic. Since
it is prealgebraic and system reflective, by Theorem 248, it is also system
completely reflective. Hence, by systemicity, it is also family completely
reflective. ∎

Theorem 258 shows that two of the top classes in the previous diagram
coincide.

Corollary 259 The classes of WFR prealgebraizable and WFC prealgebraiz-
able π-institutions coincide.

Next we show that the classes of WFR and WRI prealgebraizable π-
institutions coincide. We do this indirectly by providing identical character-
izations of both classes involving WFI prealgebraizability and systemicity.
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First, we need a result which will also prove useful later in our investi-
gations. Namely, we look at an interesting and useful connection between
family injectivity and family reflectivity, by means of protoalgebraicity, that
forms a partial analog of Theorem 248, which related system injectivity with
system reflectivity in the presence of prealgebraicity.

Proposition 260 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. If I is protoalgebraic and fam-
ily injective, then it is family reflective.

Proof: Suppose that I is protoalgebraic and family injective. Let T,T ′ ∈
ThFam(I), such that Ω(T ) ≤ Ω(T ′). Then we get Ω(T ) = Ω(T ) ∩ Ω(T ′).
Moreover, by Lemma 23, Ω(T ) ∩Ω(T ′) ≤ Ω(T ∩ T ′). On the other hand, by
protoalgebraicity, we have Ω(T ∩T ′) ≤ Ω(T ) and Ω(T ∩T ′) ≤ Ω(T ′), whence
Ω(T ∩ T ′) ≤ Ω(T ) ∩Ω(T ′). We conclude that

Ω(T ) = Ω(T ) ∩Ω(T ′) = Ω(T ∩ T ′).
Now we use family injectivity to get T = T ∩ T ′. Therefore, T ≤ T ′. So I is
also family reflective. ∎

Now we characterize WFR prealgebraizability.

Theorem 261 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then I is WFR prealgebraizable if and
only if it is WFI prealgebraizable and systemic.

Proof: Suppose, first, that I is WFR prealgebraizable. Then it is, by defi-
nition, prealgebraic, it is, by Lemma 218, systemic and, by Proposition 228,
it is family injective. Thus, it is WFI prealgebraizable and systemic.

Suppose, conversely, that I is WFI prealgebraizable and systemic. Then,
it is, by definition, prealgebraic and family injective, which, by systemicity,
imply that it is protoalgebraic and family injective. Thus, by Proposition
260, it is protoalgebraic and family reflective. Hence, it is, a fortiori, WFR
prealgebraizable. ∎

But it is easy to show also that WRI prealgebraizability has exactly the
same characterization as WFR prealgebraizability.

Theorem 262 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then I is WRI prealgebraizable if and
only if it is WFI prealgebraizable and systemic.

Proof: This follows directly from Proposition 209. ∎

Corollary 263 The classes of WFR prealgebraizable and WRI prealgebraiz-
able π-institutions coincide.
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Proof: The conclusion follows from Theorems 261 and 262. ∎

Corollaries 259 and 263 show that, among the top four classes of the hi-
erarchy in the preceding diagram, only two may be (and are, as we show
in the following example) different. We keep the names WFR prealgebraiz-
able and WFI prealgebraizable for the π-institutions in each of these classes.
Thus, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution
I = ⟨F,C⟩ based on F:

• I is WFR prealgebraizable if it prealgebraic and family reflective (or,
equivalently, family c-reflective or right injective), i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′, for all T,T ′ ∈ ThFam(I);

• I is WFI prealgebraizable if it is prealgebraic and family injective, i.e.,
if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) = Ω(T ′) implies T = T ′, for all T,T ′ ∈ ThFam(I).

We provide an example to show that these two classes of π-institutions are
indeed different, i.e., we exhibit a WFI prealgebraizable π-institution which
is not WFR prealgebraizable.

Example 264 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The table giving the action of ←Ð on theory families is shown below. It is

clear that I is not systemic.

TΣ {2} {1,2} {0,1,2}
←Ð
T Σ {2} {2} {0,1,2}

The following diagram gives the lattice of theory families and the correspond-
ing Leibniz congruence systems.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

We can see that I is prealgebraic and family injective. Since it is not sys-
temic, by Theorem 261, it follows that it is not family reflective, a fact that
can also be directly verified by the diagram. We conclude that I is a WFI
prealgebraizable π-institution, which is not WFR prealgebraizable.

We now provide a theorem to the effect that both classes are character-
ized by theorems asserting that their properties transfer from theory sys-
tems/families to filter systems/families on arbitrary algebraic systems.

Theorem 265 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WFI prealgebraizable if and only
if, for every F-algebraic system A, the Leibniz operator on A is monotone
on I-filter systems and injective on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) = ΩA(T ′) implies T = T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WFI prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and family injective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 214, the Leibniz operator on the I-filter families
of A is injective. ∎
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Theorem 266 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WFR prealgebraizable if and only
if, for every F-algebraic system A, the Leibniz operator on A is monotone
on I-filter systems and order reflecting on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WFR prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and family reflective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 225, the Leibniz operator on the I-filter families
of A is injective. ∎

Next we give two important results, along the lines of the characterization
Theorem 256 for WS prealgebraizability, characterizing the classes of WFI
prealgebraizable and WFR prealgebraizable π-institutions.

Theorem 267 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is WFI prealgebraizable if and only
if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a bijection which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: Suppose, first, that I is WFI prealgebraizable. Then, it is a fortiori
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that it extends to a bijection
from FiFamI(A) onto ConSysI∗(A). Since I is family injective, this map-
ping is injective. It is also surjective: Given θ ∈ ConSysI∗(A), we have by
definition, Aθ ∈ AlgSys∗(I). Thus, there exists T ∈ FiFamI(Aθ), such that
ΩA

θ(T ) =∆A
θ
. Now applying the inverse of the canonical quotient morphism⟨I, πθ⟩ ∶ A → Aθ, we get πθ

−1(ΩAθ(T )) = πθ−1(∆Aθ), whence, by Proposition
24, ΩA(πθ−1(T )) = θ. Since, by Corollary 55, πθ

−1(T ) ∈ FiFamI(A), we get
that the Leibniz operator is also surjective.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)
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is a bijection which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. Thus, in particular, it
is prealgebraic. The fact that Ω ∶ ThFam(I) → ConSys∗(I) is a bijection
ensures that the Leibniz operator on ThFam(I) is injective. Thus I is also
family injective and, therefore, it is WFI prealgebraizable. ∎

And now an analogous characterization for WFR prealgebraizability.

Theorem 268 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WFR prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Suppose, first, that I is WFR prealgebraizable. Then, it is a fortiori
WFI prealgebraizable. So by Theorem 267

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding which extends to a bijection

ΩA ∶ FiFamI(A)→ ConSysI∗(A).
But, by Theorem 261, I is systemic. Therefore, we get an order isomorphism

ΩA ∶ FiFamI(A)→ ConSysI∗(A).
Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism. In particular, Ω ∶ ThFam(I)→ ConSysI∗(F) is an
order isomorphism. This ensures that the Leibniz operator is monotone on
theory families, hence on theory systems, and, moreover, that it is reflective
on theory families. Thus, I is prealgebraic and family reflective, i.e., it is a
WFR prealgebraizable π-institution. ∎

We take a break again to draw the hierarchy incorporating the informa-
tion that we have currently available.
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WFR-Prealgebraizable

✠�
�
� ❙

❙
❙
❙
❙
❙✇

WLC-Prealgebraizable

WFI-Prealgebraizable

WLR-Prealgebraizable
❄

✴✓
✓
✓
✓
✓
✓

❅
❅
❅❘

WLI-Prealgebraizable

WS-Prealgebraizable
❄

Recall again the formal definitions of the three classes that have not yet
been at the focus of our investigations, namely those of WLC, WLR and
WLI prealgebraizable π-institutions:

• I is WLI Prealgebraizable if it is prealgebraic and left injective, i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) = Ω(T ′) implies

←Ð
T =
←Ð
T ′, for all T,T ′ ∈ ThFam(I);

• I is WLR Prealgebraizable if it is prealgebraic and left reflective, i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
Ω(T ) ≤ Ω(T ′) implies

←Ð
T ≤
←Ð
T ′, for all T,T ′ ∈ ThFam(I);

• I is WLC Prealgebraizable if it is prealgebraic and left completely re-
flective, i.e., if

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′), for all T,T ′ ∈ ThSys(I);
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′, for all T ∪ {T ′} ⊆ ThFam(I).

We showed in Example 264 that the top right arrow in the preceding
diagram represents a proper inclusion. Moreover, we showed in Theorem
261 that the two classes are separated by systemicity. Now we study the
remaining five inclusions to reveal relationships between them and to verify
that they are also proper.

We look, first, at the top left arrow, i.e., at the inclusion of the class of
WFR prealgebraizable into that of WLC prealgebraizable π-institutions. We
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have the following extension of Theorem 261, which shows that systemicity
is actually the property that separates the top class from every other class
in this hierarchy.

Theorem 269 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WFR prealgebraizable if and only if
it is WLC, WLR, WFI, WLI or WS prealgebraizable and systemic.

Proof: Suppose that I is WFR prealgebraizable. We showed in Theorem 261
that it is systemic. Moreover, it belongs, a fortiori, to all other classes in the
hierarchy, since the conditions defining them are weaker than prealgebraicity
and family complete reflectivity (which was showed to be equivalent to family
reflectivity under prealgebraicity in Theorem 261).

Suppose, conversely, that I is WS prealgebraizable and systemic. This
implies, by definition, that it is prealgebraic and system completely reflective.
Thus, by systemicity, it is also family completely reflective. Therefore, since
it is prealgebraic and family completely reflective, it is, by definition, WFR
prealgebraizable. ∎

A more interesting, perhaps, view is the status of this hierarchy under
the milder assumption of stability. Even though systemicity leads to a total
collapse of the hierarchy into a single class, it turns out that stability allows
for a two-class hierarchy.

Proposition 270 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WFI prealgebraizable and stable,
then it is systemic.

Proof: Suppose that I is WFI prealgebraizable and stable and let T ∈
ThFam(I). Since I is stable, we have Ω(T ) = Ω(←ÐT ). Thus, using family

injectivity, we get T =
←Ð
T . It follows that T ∈ ThSys(I). We now conclude

that ThFam(I) = ThSys(I) and, therefore, I is systemic. ∎

Theorem 271 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WFR prealgebraizable if and only if
it is WFI prealgebraizable and stable.

Proof: If I is WFR prealgebraizable, then it is, a fortiori, WFI prealge-
braizable and, by Theorem 261, systemic and, therefore, stable. On the
other hand, if I is WFI prealgebraizable and stable, then, by Proposition
270, it is systemic and, hence, by Theorem 269, it is WFR prealgebraizable.
∎

Proposition 272 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WS prealgebraizable and stable,
then it is WLC prealgebraizable.
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Proof: Suppose that I is WS prealgebraizable and stable and consider T ∪{T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By stability, we get that

⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Since {←ÐT ∶ T ∈ T } ∪ {←ÐT ′} ⊆ ThSys(I), we get, by WS

prealgebraizability, that ⋂T ∈T
←Ð
T ≤
←Ð
T ′. This proves that I is left c-reflective

and, hence, that it is WLC prealgebraizable. ∎

Theorem 273 For stable π-institutions the weak prealgebraizability hierar-
chy collapses to the classes of weakly family prealgebraizable and weakly sys-
tem/left prealgebraizable classes that are related as follows

WF Prealgebraizable

WS Prealgebraizable
❄

Proof: This follows by Theorem 271 and Proposition 272. ∎

Now we look at an example to verify that WFR prealgebraizable π-
institutions form a proper subclass of WLC prealgberaizable π-institutions.

Example 274 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
It has three theory families T ∶= Thm(I), T ′ and T ′′ ∶= SEN, with TΣ ={2}, T ′Σ = {1,2} and T ′′Σ = {0,1,2}, but only two theory systems T and T ′′,
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since
←Ð
T ′ = T . A look at the lattice of theory families and the corresponding

Leibniz congruence systems shows that it is prealgebraic and left completely
reflective.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

On the other hand, it is not family reflective, since Ω(T ′) ≤ Ω(T ), but T ′ ≰ T .
So I it is WLC prealgebraizable, but not WFR prealgebraizable.

For WLC prealgebraizable π-institutions we have the following transfer
theorem.

Theorem 275 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLC prealgebraizable if and only if,
for every F-algebraic system A, the Leibniz operator on A is monotone on
I-filter systems and left completely order reflecting on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′, for all T ∪ {T ′} ⊆ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WLC prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and left completely
reflective. Thus, by Theorem 179, the Leibniz operator on the I-filter systems
of A is monotone and, by Theorem 240, the Leibniz operator on the I-filter
families of A is left completely order reflecting. ∎

Moreover, we obtain the following characterization theorem:

Theorem 276 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLC prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
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Proof: Suppose, first, that I is WLC prealgebraizable. Then, it is a fortiori
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that it extends to a left com-
pletely order reflecting surjection from FiFamI(A) onto ConSysI∗(A). Since
I is left completely order reflective, by Theorem 275, this mapping is left
completely order reflecting. That it is also surjective may be seen by the
same argument used in the proof of Theorem 267.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)

is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. Thus, in particular, it
is prealgebraic. The fact that Ω ∶ ThFam(I) → ConSysI∗(F) is left com-
pletely order reflecting ensures that the Leibniz operator on ThFam(I) is
left completely order reflecting. Thus I is also completely order reflective
and, therefore, it is WLC prealgebraizable. ∎

We switch to the left vertical arrow in the diagram. We present an exam-
ple to verify that WLC prealgebraizable π-institutions form a proper subclass
of WLR prealgebraizable π-institutions.

Example 277 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3,4,5}
and

SEN♭(f)(0) = SEN♭(f)(1) = SEN♭(f)(2) = 0,
SEN♭(f)(3) = SEN♭(f)(4) = SEN♭(f)(5) = 5;

• N ♭ is the category of natural transformations generated by the two
unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭, with

σ♭Σ, τ
♭
Σ ∶ SEN♭(Σ)→ SEN♭(Σ)

defined by

– σ♭Σ(3) = 1 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,4,5};
– σ♭Σ(4) = 2 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,3,5}.
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Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{5},{3,4,5},{1,3,4,5},{2,3,4,5},{0,1,2,3,4,5}}.
I has five theory families but only three theory systems. The action of ←Ð

on theory families is given by the following table.

T
←Ð
T{5} {5}{3,4,5} {3,4,5}{1,3,4,5} {3,4,5}{2,3,4,5} {3,4,5}{0,1,2,3,4,5} {0,1,2,3,4,5}

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

012345 ∇F

�
�
� ❅

❅
❅

1345 2345

❅
❅
❅ �

�
�

345 {012,345}
�
�
� ❅

❅
❅

5
{02,1,
3,45} {012,

34,5} {01,2,
35,4}

From the diagram, it is clear that I is prealgebraic, i.e., that, for all
T,T ′ ∈ ThSys(I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Moreover, for all T,T ′ ∈
ThFam(I), if Ω(T ) ≤ Ω(T ′), then

←Ð
T ≤
←Ð
T ′, i.e., I is left reflective. Therefore,
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I if WLR prealgebraizable. On the other hand, setting, T 1 = {{1,3,4,5}},
T 2 = {{2,3,4,5}} and T ′ = {{5}}, we get

Ω(T 1) ∩Ω(T 2) = {{02,1,3,45}} ∩ {{01,2,35,4}}
= ∆F

≤ {{012,34,5}} = Ω(T ′),
whereas

←Ð
T 1 ∩

←Ð
T 2 = {{3,4,5}} ∩ {{3,4,5}} = {{3,4,5}} ≰ {{5}} =←ÐT ′.

Hence, I is not left completely reflective and, thus, a fortiori, it fails to be
WLC prealgebraizable.

For WLR prealgebraizable π-institutions we have the following transfer
theorem.

Theorem 278 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLR prealgebraizable if and only
if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A
is monotone on I-filter systems and left order reflecting on I-filter families,
i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) ≤ ΩA(T ′) implies

←Ð
T ≤
←Ð
T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WLR prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and left reflective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 225, the Leibniz operator on the I-filter families
of A is left order reflecting. ∎

Moreover, we obtain the following characterization theorem:

Theorem 279 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLR prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left order reflecting surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
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Proof: Suppose, first, that I is WLR prealgebraizable. Then, it is, a fortiori,
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that it extends to a left order
reflecting surjection from FiFamI(A) onto ConSysI∗(A). Since I is left
reflective, by Theorem 278, this mapping is left order reflecting. That it
is also surjective may be seen by the same argument used in the proof of
Theorem 267.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)

is a left order reflecting surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. So, it is prealgebraic. The
fact that Ω ∶ ThFam(I) → ConSys∗(I) is left order reflecting ensures that
the Leibniz operator on ThFam(I) is left order reflecting. Thus I is also left
reflective and, hence, WLR prealgebraizable. ∎

We switch to the bottom left arrow in the diagram. We present an exam-
ple to verify that WLR prealgebraizable π-institutions form a proper subclass
of WLI prealgebraizable π-institutions.

Example 280 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3}
and

SEN♭(f)(0) = SEN♭(f)(1) = 0,
SEN♭(f)(2) = SEN♭(f)(3) = 3;

• N ♭ is the category of natural transformations generated by the single
unary natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by σ♭Σ(0) =
σ♭Σ(1) = σ♭Σ(3) = 0 and σ♭Σ(2) = 1.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
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I has four theory families but only three theory systems. The action of
←Ð on theory families is given by the following table.

T
←Ð
T{3} {3}{2,3} {2,3}{1,2,3} {2,3}{0,1,2,3} {0,1,2,3}

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

{0,1,2,3} ....................................✲ ∇F

{1,2,3} {01,23}
..............................⑦

......
......

......
......

......
....✶

{2,3} {01,2,3}

......
......

......
......

......
....✶

{3} ∆F

From the diagram, it is clear that I is prealgebraic, i.e., that, for all
T,T ′ ∈ ThSys(I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Moreover, for all T,T ′ ∈
ThFam(I), the implication Ω(T ) = Ω(T ′) implies

←Ð
T =

←Ð
T ′ holds trivially,

since no two different theory families share a common Leibniz congruence
system. Hence, I is left injective. We conclude that I if WLI prealgebraiz-
able. On the other hand, setting, T = {{1,2,3}} and T ′ = {{3}}, we get

Ω(T ) =∆F ≤ {{01,2,3}} = Ω(T ′),
whereas ←Ð

T = {{2,3}} ≰ {{3}} =←ÐT ′.
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Hence, I is not left reflective and, therefore, a fortiori, it is not WLR preal-
gebraizable.

For WLI prealgebraizable π-institutions we have the following transfer
theorem.

Theorem 281 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLI prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is
monotone on I-filter systems and left injective on I-filter families, i.e.,

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′), for all T,T ′ ∈ FiSysI(A);
ΩA(T ) = ΩA(T ′) implies

←Ð
T =
←Ð
T ′, for all T,T ′ ∈ FiFamI(A).

Proof: The “if” direction follows by specializing to F = ⟨F, ⟨I, ι⟩⟩ and taking
into account Lemma 51.

For the “only if” suppose that I is WLI prealgebraizable and let A be
an F-algebraic system. By definition, I is prealgebraic and left injective.
Thus, by Theorem 179, the Leibniz operator on the I-filter systems of A is
monotone and, by Theorem 214, the Leibniz operator on the I-filter families
of A is left injective. ∎

For WLI prealgebraizable π-institutions, we obtain the following charac-
terization theorem:

Theorem 282 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WLI prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left injective surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: Suppose, first, that I is WLI prealgebraizable. Then, it is, a fortiori,
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is a lattice embedding. So it suffices to show that it extends to a left injective
surjection from FiFamI(A) onto ConSysI∗(A). Since I is left injective, by
Theorem 281, this mapping is left injective. That it is also surjective may be
seen by the same argument used in the proof of Theorem 267.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiFamI(A)→ ConSysI∗(A)
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is a left injective surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Then, by Theorem 256, I is WS prealgebraizable. Thus, in particular, it
is prealgebraic. The fact that Ω ∶ ThFam(I) → ConSys∗(I) is left injective
ensures that the Leibniz operator on ThFam(I) is left injective. Thus I is
also left injective and, hence, WLI prealgebraizable. ∎

We turn next to the bottom right arrow in the diagram.
We know by Proposition 208 that WFI π-institutions form a subclass of

the class of WLI π-institutions. Moreover, we know by Theorem 269 that, if
I is WLI prealgebraizable and systemic, then it is WFI prealgebraizable. We
give now an example showing that the inclusion of the class of WFI prealge-
braizable π-institutions into the class of WLI prealgebraizable π-institutions
is proper.

Example 283 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The table yielding the action of ←Ð on theory families is shown below.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
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The accompanying diagram gives the structure of the lattice of theory families
and the corresponding Leibniz congruence systems.

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

From the diagram one can check that the Leibniz operator is monotone on
theory systems and left injective on theory families. Thus, the π-institution
is prealgebraic and left injective, i.e., WLI prealgebraizable.

On the other hand, letting T = {{1},{b}} and T ′ = {{0,1},{b}}, we have
Ω(T ) = Ω(T ′), but T ≠ T ′, whence I is not family injective and, therefore, it
is not WFI prealgebraizable.

We look now at the very bottom arrow of the diagram. By Theorem
273, if I is a WS prealgebraizble and stable π-institution, then it is WLI
prealgebraizable. We provide, next, an example to show that these two
classes are different, i.e., the class of WLI prealgebraizable π-institutions is
properly included in that of WS prealgebraizble π-institutions.

Example 284 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1} and
SEN♭(f)(0) = 0, SEN♭(f)(a) = 1, SEN♭(f)(b) = 0 and SEN♭(f)(1) = 1;

• N ♭ is the category of natural transformations generated by the two bi-
nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution, defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{1} {1}{a,1} {a,1}{b,1} {1}{a, b,1} {a,1}{0, a, b,1} {0, a, b,1}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

0ab1 ...........................✲ ∇F

ab1 0b, a1

�
�
� ❅

❅
❅

.....................❥......
......

......
......

......
....✶

a1 b1 .........✲ ∆F

❅
❅
❅ �

�
�

....
....

....
....

....
.✯

1

Since Ω(←ÐÐÐÐÐÐ{{a, b,1}}) = Ω({{a,1}}) = {{0, b},{a,1}} ≠ ∆F = Ω({{a, b,1}}), we
conclude that I is not stable.

Note that, since {{1}}, {{a,1}} and SEN♭ are the only theory systems
of I, the Leibniz operator Ω ∶ ThSys(I) → ConSys∗(I) is an order isomor-
phism. Hence, I is both prealgebraic and system injective, i.e., it is WS
prealgebraizable. On the other hand, we have

Ω({{a, b,1}}) = ∆F = Ω({{b,1}}),
but ←ÐÐÐÐÐÐ{{a, b,1}} = {{a,1}} ≠ {{1}} =←ÐÐÐÐ{{b,1}},
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whence, I is not left injective and, hence, it fails to be WLI prealgebraizable.

4.3 Weak Algebraizability

We now shift attention to classes of π-institutions that are defined as a re-
sult of interactions between the various kinds of injectivity, reflectivity and
complete reflectivity, on the one hand, and protoalgebraicity on the other. A
priori, based on the ordering of the various injectivity, reflectivity and com-
plete reflectivity properties, we have ten classes, which are defined below and
whose hierarchy is shown in the accompanying diagram.

Definition 285 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system injective algebraizable or WSI Algebraiz-
able, for short, if it is system injective and protoalgebraic.

• I is weakly left injective algebraizable or WLI Algebraizable,
for short, if it is left injective and protoalgebraic.

• I is weakly family injective algebraizable or WFI Algebraiz-
able, for short, if it is family injective and protoalgebraic.

• I is weakly right injective algebraizable or WRI Algebraizable,
for short, if it is right injective and protoalgebraic.

Definition 286 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system reflective algebraizable or WSR Algebraiz-
able, for short, if it is system reflective and protoalgebraic.

• I is weakly left reflective algebraizable or WLR Algebraizable,
for short, if it is left reflective and protoalgebraic.

• I is weakly family reflective algebraizable or WFR Algebraiz-
able, for short, if it is family reflective and protoalgebraic.

Definition 287 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is weakly system completely reflective algebraizable or WSC
Algebraizable, for short, if it is system completely reflective and pro-
toalgebraic.
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• I is weakly left completely reflective algebraizable or WLC
Algebraizable, for short, if it is left completely reflective and protoal-
gebraic.

• I is weakly family completely reflective algebraizable or WFC
Algebraizable, for short, if it is family completely reflective and pro-
toalgebraic.

WFC-Algebraizable

✠�
�
�
� ❅

❅
❅
❅❘

WLC-Algebraizable WFR-Algebraizable

✠�
�
�
� ❅

❅
❅
❅❘ ✠�

�
�
� ❅

❅
❅
❅❘

WSC-Algebraizable WLR-Algebraizable WRI-Algebraizable

❅
❅
❅
❅❘ ✠�

�
�
� ❅

❅
❅
❅❘ ✠��

WFI-Algebraizable
��

WSR-Algebraizable WLI-Algebraizable

❅
❅
❅
❅❘ ✠�

�
�
�

WSI-Algebraizable

In view of the remarks made about terminology at the beginning of Sec-
tion 4.2, the naming conventions here should be fairly obvious. The only
difference is that the term “prealgebraizable” has been replaced by the term
“algebraizable” to reflect the fact that the condition that the π-institution
be prealgebraic is being replaced in the definitions by that of being protoal-
gebraic.

Recall from Theorem 248 that, under prealgebraicity, the properties of
being system injective, system reflective and system completely reflective co-
incide. A similar result holds for the properties of family injectivity, right
injectivity, family reflectivity and family complete reflectivity under the as-
sumption of protoalgebraicity.

Theorem 288 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is protoalgebraic, then the following
statements are equivalent:

(a) I is family injective;

(b) I is family reflective;
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(c) I is family completely reflective;

(d) I is right injective.

Proof:

(a)⇒(b) Suppose that I is fanily injective. Let T,T ′ ∈ ThFam(I), such that
Ω(T ) ≤ Ω(T ′). Then we get Ω(T ) = Ω(T ) ∩ Ω(T ′). Moreover, by
Lemma 23, Ω(T )∩Ω(T ′) ≤ Ω(T ∩ T ′). On the other hand, by protoal-
gebraicity, we have Ω(T ∩ T ′) ≤ Ω(T ) and Ω(T ∩ T ′) ≤ Ω(T ′), whence
Ω(T ∩ T ′) ≤ Ω(T ) ∩Ω(T ′). We conclude that

Ω(T ) = Ω(T ) ∩Ω(T ′) = Ω(T ∩ T ′).
Now we use family injectivity to get T = T ∩ T ′. Therefore, T ≤ T ′. So
I is also family reflective.

(b)⇒(c) Suppose, next, that I is family reflective. Let T ∪ {T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Since I is protoalgebraic, i.e., Ω is
monotone on theory families, we have, for all T ∈ T , Ω(⋂T ) ≤ Ω(T ).
Therefore, we get

Ω(⋂
T ∈T

T ) ≤ ⋂
T ∈T

Ω(T ) ≤ Ω(T ′).
Since, by hypothesis, I is family reflective, we get ⋂T ∈T T ≤ T ′. Thus,
I is family completely reflective.

(c)⇒(d) Suppose that I is family completely reflective. By Proposition 243, it
is family reflective, and, then, by Proposition 228, it is right injective.

(d)⇒(a) Suppose, finally, that I is right injective. Then, by Proposition 208, it
is family injective.

∎

Theorem 288 shows that four of the classes in the previous diagram co-
incide.

Corollary 289 The classes of WFI, WRI, WFR and WFC algebraizable
π-institutions coincide.

Given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution
I = ⟨F,C⟩ based on F, we use the term weakly family algebraizable
(ot WF algebraizable for short) for I if it is protoalgebraic and family
injective (or, equivalently, right injective or family reflective or family com-
pletely reflective), i.e., if the Leibniz operator is monotone and injective on
theory families: For all T,T ′ ∈ ThFam(I),

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);
Ω(T ) = Ω(T ′) implies T = T ′.
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We revisit a previously constructed example to give a WF algebraizable
π-institution. Note that the π-institution in question is systemic. As we will
see in Theorem 291, this is no coincidence!

Example 290 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b = SEN♭(f)(1);

• N ♭ is the trivial clone.

Specify the π-institution I = ⟨F,C⟩ by setting

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Notice that every theory family is a theory system, whence I is systemic.

The following diagrams show the lattices of theory families and of the
corresponding Leibniz congruence systems:

{{0,1},{a, b}}
�
�
� ❅

❅
❅{{0,1},{b}} {{1},{a, b}}

❅
❅
❅ �

�
�

{{1},{b}}

∇F

�
�
� ❅

❅
❅{{0,1}},{{a},{b}} {{0},{1}},{{a, b}}

❅
❅
❅ �

�
�

∆F

I is protoalgebraic and family injective. Therefore, it is a WF algebraiz-
able π-institution.
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We show that a π-institution that is WF algebraizable is necessarily sys-
temic.

Theorem 291 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WF algebraizable, then it is sys-
temic.

Proof: Suppose that I is WF algebraizable. Let T ∈ ThFam(I). Then,

by Proposition 42, T,
←Ð
T ∈ ThFam(I), such that

←Ð
T ≤ T . Thus, by protoal-

gebraicity, we get Ω(←ÐT ) ≤ Ω(T ). But, by Proposition 20, it is always the

case that Ω(T ) ≤ Ω(←ÐT ). Therefore, we have Ω(←ÐT ) = Ω(T ). Thus, by family

injectivity, we conclude that
←Ð
T = T . Therefore T ∈ ThSys(I). We conclude

that ThFam(I) = ThSys(I) and, hence, I is systemic. ∎

An interesting consequence of Theorem 291 is an exact characterization
of those WS prealgebraizable π-institutions that are WF algebraizable.

Corollary 292 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then I is WF algebraizable if and only if
it is WS prealgebraizable and systemic.

Proof: Suppose I is WF algebraizable. Then, by Theorem 291, it is sys-
temic. Moreover, by definition, its Leibniz operator is monotone and injective
on theory families. Thus, it is also monotone and injective on theory systems.
So I is WS prealgebraizable.

Suppose conversely, that I is WS prealgebraizable and systemic. Then,
by definition, its Leibniz operator is monotone and injective on theory sys-
tems. But, by systemicity, the collection of theory systems coincides with
the collection of theory families. Therefore, the Leibniz operator is mono-
tone and injective on theory families. It follows, by definition, that I is WF
algebraizable. ∎

We pause to give an updated version of the hierarchical diagram regarding
weak algebraizability classes:
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WF-Algebraizable

WLC-Algebraizable

❄

✠�
�
� ❅

❅
❅❘

WSC-Algebraizable WLR-Algebraizable

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

WSR-Algebraizable WLI-Algebraizable

❅
❅
❅❘ ✠�

�
�

WSI-Algebraizable

We present examples to show that the class of weakly family algebraizable
π-institutions is properly included in both the class of protoalgebraic and that
of family completely reflective π-institutions.

Example 293 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone of natural transformations on SEN♭ generated by the

the two unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭ given by
the following table:

x ∈ SEN♭(Σ) σ♭Σ(x) τ ♭Σ(x)
0 0 0
1 1 2
2 0 2

Define the π-institution I = ⟨F,C⟩, by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
The lattice of theory families of I and the associated Leibniz congruence
systems are shown in the diagram.
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{{0,1,2}} ...............................................✲ ∇F

�
�
� ❅

❅
❅{{1,2}} {{0,2}} .................✲ {{0,2},{1}}...............................................③

❅
❅
❅ �

�
�

{{2}} ...................................................✲ ∆F

The Leibniz operator is monotone, but not injective on theory families. There-
fore, we conclude that I is protoalgebraic but that it fails to be WF algebraiz-
able.

Example 294 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1,2};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The lattice of theory families and the associated Leibniz congruence sys-
tems (in block form) are shown in the diagram.

{{0,1,2}}.....................③ ∇F

{{1,2}}
✱
✱
✱
✱ ❧

❧
❧
❧{{0,1},{2}} {{0},{1,2}}

{{2}}

..........................③

....
...✯

It is clear from these that the Leibniz operator is completely order reflect-
ing on the theory families of I, but it is not monotone. It follows that I
is family completely reflective but not protoalgebraic. Therefore, I is family
completely reflective, but fails to be WF algebraizable.

The properties defining weak family algebraizability transfer from theory
families to filter families over arbitrary algebraic systems.

Theorem 295 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WF algebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is
monotone and injective on I-filter families, i.e., for all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
ΩA(T ) = ΩA(T ′) implies T = T ′.

Proof: Suppose, first, that the displayed implications hold for every F-
algebraic system A and all I-filter families T,T ′ on A. By taking A = F =⟨F, ⟨I, ι⟩⟩ and keeping in mind Lemma 51, we conclude that the Leibniz
operator is monotone and injective on all theory families of I . Thus, by
definition, I is WF algebraizable.

Suppose, conversely, that I is WF algebraizable. Then, by Theorem 288,
it is protoalgebraic and family completely reflective. Thus, by Theorems
179 and 240, for every F-algebraic system A, the Leibniz operator ΩA is
monotone and completely order reflecting on the I-filter families of A. Thus,
by Propositions 243 and 228, the Leibniz operator is monotone and injective
on the I-filter families of A. ∎

We showed in Theorem 256 that WS prealgebraizability is equivalent to
the Leibniz operator ΩA over an arbitrary F-algebraic system A establishing
an order embedding from the lattice of I-filter systems on A into the poset
of all AlgSys∗(I)-congruence systems on A. We show, next, that WF alge-
braizability has a similar characterization. Namely, it can be characterized
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by the fact that the Leibniz operator ΩA over an arbitrary F-algebraic sys-
tem A establishes an order isomorphism from the lattice of I-filter families
of A into the lattice of all AlgSys∗(I)-congruence systems on A.

Recall the function

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
that we have introduced before Theorem 256, that restricts to a well-defined
function from FiSysI(A) into ConSysI∗(A).
Theorem 296 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WF algebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Suppose, first, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA

is an order isomorphism. Then, by Theorem 268, I is WFR prealgebraizable.
To show that it is WF algebraizable, it suffices, by Corollary 292, to show
that it is systemic. But, by Theorem 261, every WFR prealgebraizable π-
institution is systemic.

Suppose, conversely, that I is WF algebraizable. Then it is, a fortiori,
WFR prealgebraizable. Therefore, by Theorem 268, for every F-algebraic
system A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is an order isomorphism. ∎

We now have the following corollary to the effect that the classes of WF
algebraizable π-institutions and of WFR prealgebraizable π-institutions co-
incide.

Corollary 297 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WF algebraizable if and only if it is
WFR prealgebraizable.

Proof: By Theorems 268 and 296, membership in each of these two classes
is characterized by ΩA ∶ FiFamI(A) → ConSysI∗(A) being an order isomor-
phism, for every F-algebraic system A. ∎

In light of Corollary 297, we shall call both the class of WF algebraizable
π-institutions and the class of WFR prealgebraizable π-institutions by the
term weakly family algebraizable or WF algebraizable, for short.

We now work towards a sweeping contraction of the classes appearing in
the weak algebraizability hierarchy. To accomplish this, we provide, first, a
characterization of the class of WSI algebraizable π-institutions. Namely, we
show that a π-institution is WSI algebraizable if and only if it is stable and
ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism, for all F-algebraic
systems A.
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Theorem 298 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is WSI algebraizable if and only if I is
stable and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Suppose, first, that I is WSI algebraizable. Then it is, by definition,
protoalgebraic and, hence, by Lemma 170, it is stable. Also, it is, a fortiori,
WS prealgebraizable. Thus, by Theorem 256, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding. So it suffices to show that ΩA on I-filter systems
on A is surjective. To this end, consider θ ∈ ConSysI∗(A). Then Aθ ∈
AlgSys∗(I). Thus, there exists T ∈ FiFamI(Aθ), such that ΩA

θ(T ) = ∆A
θ
.

Applying the inverse of ⟨I, πθ⟩ ∶ A → Aθ, we get πθ
−1(ΩAθ(T )) = πθ−1(∆Aθ).

So, by Proposition 24, ΩA(πθ−1(T )) = θ. By stability and Theorem 154, we

get that ΩA(←ÐÐÐÐπθ
−1(T )) = θ. Hence, by Lemma 6, ΩA(πθ−1(←ÐT )) = θ. Now,

by Proposition 53 and Lemma 51, πθ
−1(←ÐT ) ∈ FiSysI(A). Therefore, ΩA ∶

FiSysI(A)→ ConSysI∗(A) is surjective, as was to be shown.

Suppose, conversely, that I is stable and for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism.
In particular, we have that Ω ∶ ThSys(I) → ConSys∗(I) is an order iso-
morphism. This yields immediately that the Leibniz operator is injective on
theory systems and, hence I is system injective. The isomorphism also yields
that the Leibniz operator is monotone on theory systems, i.e., that I is pre-
algebraic. So it suffices to show that it is monotone on all theory families. To

this end, let T,T ′ ∈ ThFam(I), such that T ≤ T ′. Then, by Lemma 1,
←Ð
T ≤
←Ð
T ′.

Thus, taking into account Proposition 42, by prealgebraicity, Ω(←ÐT ) ≤ Ω(←ÐT ′).
Now using the postulated stability of I , we get Ω(T ) ≤ Ω(T ′). Therefore, I
is protoalgebraic. ∎

Using this characterization of WSI algebraizable π-institutions, we now
show that the class of WSI algebraizable π-institutions and that of WLC
algebraizable π-institutions coincide. This causes a collapse of both squares
of the diagram describing the weak algebraizability hierarchy (i.e., of all six
bottom classes) into a single class.

Theorem 299 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is WSI algebraizable, then it is WLC
algebraizable.
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Proof: Suppose I is WSI algebraizable. Then it is, by definition, protoal-
gebraic. Moreover, by Theorem 298, it is stable and, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism. To see that it is WLC algebraizable, it suffices to
show that it is left completely reflective. So consider T ∪ {T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By protoalgebraicity, we get ⋂T ∈T Ω(T ) =
Ω(⋂T ∈T T ). Thus, Ω(⋂T ∈T T ) ≤ Ω(T ′). By stability, Ω(←ÐÐÐÐ⋂T ∈T T) ≤ Ω(←ÐT ′). By

Proposition 42 and the hypothesis,
←ÐÐÐÐ
⋂T ∈T T ≤

←Ð
T ′. By Lemma 3, ⋂T ∈T

←Ð
T ≤
←Ð
T ′.

We conclude that the Leibniz operator is left completely order reflecting on
theory families and, therefore, I is WLC algebraizable. ∎

Corollary 300 The classes of WLC, WSC, WLR, WSR, WLI and WSI
algebraizable π-institutions coincide.

Proof: According to Theorem 299 and because of the hierarchy of the defin-
ing properties, we get the following diagram, where the arrows denote inclu-
sions.

WSC Alg ✲ WSR Alg

✟✟✟✟✟✯

�
�
�
�
�✒

❍❍❍❍❍❥
WLC Alg WSI Alg ✲ WLC Alg

❍❍❍❍❍❥ ✟✟✟✟✟✯

WLR Alg ✲ WLI Alg

The conclusion readily follows. ∎

Because of Corollary 300, we shall call a π-institution belonging to any
of these six classes weakly (system) algebraizable, or W algebraizable
(sometimes WS algebraizable) for short.

We revisit an example showing that the inclusion of the class of WF
algebraizable π-institutions into the class of WS algebraizable π-institutions
is proper.

Example 301 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The table yielding the action of ←Ð on theory families is shown below.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The accompanying diagram gives the structure of the lattice of theory families
and the corresponding Leibniz congruence systems.

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

From the diagram one can check that the Leibniz operator is monotone on
theory families and left injective on theory families (or injective on theory
systems). Thus, the π-institution is protoalgebraic and system injective, i.e.,
WS algebraizable. On the other hand, I is, obviously, not family injective
and, therefore, it is not WF algebraizable.

As with other classes in the hierarchy, we have a number of transfer
theorems for weakly algebraizable π-institutions. We choose here to formalize
the result by providing the two most powerful implications:

Theorem 302 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then the following statements are equiv-
alent:
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(a) I is weakly system algebraizable;

(b) For every F-algebraic system A, the Leibniz operator on A is monotone
and left completely order reflecting on I-filter families, i.e., for all T ∪{T,T ′} ⊆ FiFamI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
⋂T ∈T ΩA(T ) ≤ ΩA(T ′) implies ⋂T ∈T

←Ð
T ≤
←Ð
T ′.

(c) For every F-algebraic system A, the Leibniz operator on A is monotone
on I-filter families and injective on I-filter systems.

Proof:

(a)⇒(b) Suppose that I is weakly system algebraizable. Then, by Theorem
300, it is protoalgebraic and family completely reflective. Thus, by
Theorems 179 and 240, for every F-algebraic system A, the Leibniz
operator ΩA is monotone and left completely order reflecting on I-filter
families.

(b)⇒(c) Let A be an F-algebraic system. By hypothesis, the Leibniz operator
is monotone and left completely order reflecting on the I-filter families
of A. By Propositions 243 and 228, the Leibniz operator is monotone
on the I-filter families and injective on the I-filter systems of A.

(c)⇒(a) Suppose that, for every F-algebraic system A, the Leibniz operator is
monotone on the I-filter families and injective on the I-filter systems
of A. By taking A = F = ⟨F, ⟨I, ι⟩⟩ and keeping in mind Lemma 51, we
conclude that the Leibniz operator is monotone on all theory families
and injective on all theory systems of I . Thus, by definition, I is weakly
system algebraizable.

∎

We are left now with a weak algebraizability hierarchy consisting of only
two classes as shown on the left below. On the right is reprinted the weak
prealgebraizability hierarchy, as revealed in the previous section.

WF Algebraizable

WS Algebraizable
❄

WFR-Prealgebraizable

❂✚✚
✚ ❅

❅
❅❘WLC-Prealgebraizable

WFC-Prealgebraizable

WLR-Prealgebraizable

❄

✠�
�
�

❩❩❩⑦
WLI-Prealgebraizable

WS-Prealgebraizable

❄
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Recalling that, by Corollary 297, the classes of WF algebraizable π-insti-
tutions and WFR prealgebraizable π-institutions coincide and noting that
the class of weakly algebraizable π-institutions (coinciding with WLC alge-
braizable π-institutions) is included in the class of WLC prealgebraizable
π-institutions, we get the following complete picture of weak (pre)algebra-
izability.

WF-Algebraizable

✙✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅❘

WS-Algebraizable

WLC-Prealgebraizable
❄

WFI-Prealgebraizable

✠�
�
�
�
�
�

WLR-Prealgebraizable
❄

❍❍❍❍❍❍❥
WLI-Prealgebraizable

WS-Prealgebraizable
❄

We close with an example that shows that the class of weakly system
algebraizable π-institutions is properly contained in the class of WLC preal-
gebraizable π-institutions.

Example 303 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}
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The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

I is prealgebraic, but not protoalgebraic. Moreover, it is left completely re-
flective. Thus, it is WLC prealgebraizable but not WS algebraizable.
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5.1 Introduction

Protoalgebraic sentential logics were introduced by Czelakowski in [26, 29]
and studied by Blok and Pigozzi [28]. Perhaps the best known among several
existing characterizations of protoalgebraicity is the property of monotonic-
ity of the Leibniz operator on the filters of a logic over arbitrary algebras (of
the same algebraic type). Equivalential logics were introduced by Prucnal
and Wroński [19] and studied by Czelakowski [22, 24]. A Leibniz characteri-
zation asserts that a sentential logic is equivalential iff, for every algebra, the
Leibniz operator on its filters is monotone and commutes with inverse endo-
morphisms. More details may be found in Section 3.4 of [69], Sections 6.1-6.3
of [86] and Chapters 1-3 of [64]. In addition, whereas protoalgebraicity, in
conjunction with injectivity of the Leibniz operator, is used to define weakly
algebraizable logics [62], the stronger condition of equivalentiality, coupled
with injectivity of the Leibniz operator, is used to define algebraizable logics
[35, 54]. Section 3.4 of [69], Sections 6.4 and 6.5 of [86] and Chapter 4 of [64]
provide detailed information about these classes of sentential logics.

In Section 3.3, we studied classes of π-institutions defined using mono-
tonicity properties of the Leibniz operator. In Chapter 4, we used mono-
tonicity to define the weak algebraizability hierarchy of π-institutions. The
present chapter introduces analogs of the property of equivalentiality for π-
institutions, strengthening monotonicity. Further, by replacing monotonicity
by equivalentiality, one obtains from the weak algebraizability hierarchy the
hierarchy of algebraizable π-institutions.

Strengthening protoalgebraicity to equivalentiality involves adding, on
top of monotonicity properties, some property that emulates (or forms an
analog of) the property of commutativity of the Leibniz operator with inverse
endomorphisms. This desideratum informs the structure of the current chap-
ter. In Sections 5.2 and 5.3, properties that can be used as analogs of com-
mutativity with inverse endomorphisms in the framework of π-institutions
are discussed and some of their interrelationships are explored. These are
combined with monotonicity in Section 5.4 to define equivalentiality. Fi-
nally, in Sections 5.5 and 5.6, we obtain the (pre)algebraizability hierarchy
of π-institutions, based on the weak (pre)algebraizability hierarchy, studied
in Chapter 4. More details, by section, follow.

In Section 5.2, we study extensionality. Recall that, given an algebraic
system F and a sentence family X of F, one may determine the subsystem⟨X⟩ of F generated by X . Moreover, given a π-institution I = ⟨F,C⟩ and a
subsystem F′ of F, F′ determines a π-subinstitution I ′ = ⟨F′,C ′⟩ of I which
is obtained by restricting the action of C on F′. For details on these con-
structions, see Section 2.12. A π-institution I = ⟨F,C⟩ is said to be family
extensional if, roughly speaking, the action of the Leibniz operator on theory
families of subinstitutions can be obtained as the restriction of the Leibniz
operator of I on the universe corresponding to the subinstitution. More
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precisely, I is family extensional if, for every sentence family X of F and
every theory family T of I , Ω⟨X⟩(T ∩ ⟨X⟩) = Ω(T ) ∩ ⟨X⟩2. System exten-
sionality is defined similarly, except that T is allowed to range over theory
systems only, instead of over arbitrary theory families. By definition, family
extensionality implies system extensionality. Further, system extensional-
ity, combined with stability, implies family extensionality. The significance
of extensionality stems, in part, from allowing important properties of a
π-institution to be inherited by its subinstitutions. Indicative of this phe-
nomenon are the facts that, under system extensionality, stability in inherited
and, under family (system, respectively) extensionality, prealgebraicity (pro-
toalgebraicity, respectively) is also inherited. Both versions of extensionality
transfer. A seemingly weaker version of extensionality is 2-extensionality.
Roughly speaking, 2-extensionality is extensionality restricted to universes
generated by two sentences over the same signature. More precisely, a π-
institution I = ⟨F,C⟩ is family 2-extensional if, for every signature Σ, all
Σ-sentences φ,ψ and every theory family T , ⟨φ,ψ⟩ ∈ ΩΣ(T ) if and only if

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). If T is quantified over theory systems, system

2-extensionality is obtained instead. Despite its apparent weakness in com-
parison to extensionality, it turns out that a π-institution is family/system
extensional if and only if it is family/system 2-extensional, respectively. Ex-
tensionality is one manifestation of the property that is used as an analog
of commutativity with inverse endomorphisms, employed in the sentential
framework to define equivalentiality. An alternative formalization, closer in
spirit to commutativity, is introduced in Section 5.3.

In Section 5.3, we study Leibniz commutativity or, simply, commutativ-
ity, a property closer in spirit to the original property used in the sentential
context to characterize equivalentiality. Let F be an algebraic system and
X a sentence family of F. Recall the subsystem ⟨X⟩ of F generated by X .
A morphism of the form ⟨I,α⟩ ∶ ⟨X⟩ → F, where I is the identity functor
on signatures, is called an extension. Recall also that, if F happens to be
the base algebraic system of a π-institution I = ⟨F,C⟩, then X induces a
π-subinstitution I ⟨X⟩ = ⟨⟨X⟩,C⟨X⟩⟩ of I based on ⟨X⟩, whose closure system
is essentially C restricted on ⟨X⟩ and whose theory families are obtained by
the theory families of I via restriction on ⟨X⟩. In this enriched context, an
extension ⟨I,α⟩ ∶ ⟨X⟩ → F is called logical, denoted by ⟨I,α⟩ ∶ I ⟨X⟩ → I ,
if it preserves the closure structure in the sense that, for all signatures Σ
and all Φ ⊆ ⟨X⟩Σ, αΣ(C⟨X⟩Σ (Φ)) ⊆ CΣ(αΣ(Φ)). This condition is tantamount
to preservation of theory families under α−1, i.e., to α−1(T ) being a theory
family of I ⟨X⟩, for every theory family T of I . Logical extensions lay the
groundwork for building the notion of (Leibniz) commutativity. We say that
a π-institution I = ⟨F,C⟩ is family commuting if, for all sentence families X
of F, all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all theory families T ′ of I ⟨X⟩,
α(Ω⟨X⟩(T ′)) ≤ Ω(C(α(T ′))). System commutativity applies the same condi-
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tion on theory systems only. A similar, but not identical in general, property
is inverse (Leibniz) commutativity. I = ⟨F,C⟩ is family inverse commut-
ing if, for every sentence family X , all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I
and all theory families T of I , α−1(Ω(T )) = Ω⟨X⟩(α−1(T )). System inverse
commutativity results by quantifying T over theory systems instead. It is el-
ementary to check, based on the definition of I ⟨X⟩, that injection morphisms⟨I, j⟩ ∶ I ⟨X⟩ → I qualify as logical extensions. This permits establishing that
family (system, repectively) inverse commutativity implies family (system,
respectively) extensionality. Also, since theory systems form a subclass of
theory families, it is obvious that family inverse commutativity is stronger
than the system version. In addition, it is shown that the system version,
coupled with stability, implies the family version. The last results of Section
5.3 are critical for our further investigations.

Since commutativity and inverse commutativity are used mainly in con-
junction with monotonicity properties to obtain equivalentiality, it is impor-
tant that, under system (family) monotonicity (i.e., pre- and protoalgebraic-
ity, respectively), system (family, respectively) commutativity and system
(family, respectively) inverse commutativity coincide. Further, in a result
that allows us to switch between commutativity properties and the exten-
sionality properties of Section 5.2, and which strengthens a previously men-
tioned implication, it is shown that system (family) inverse commutativity
is equivalent to system (family, respectively) extensionality. Based on these
equivalences and a transfer theorem from Section 5.2, it is also shown that
both versions of inverse commutativity transfer. Summarizing, the corre-
sponding (system or family) versions of extensionality and 2-extensionality
and of inverse commutativity are equivalent without proviso. On the other
hand, for these three to be equivalent to the corresponding commutativity
version, a sufficient condition is that the corresponding version of monotonic-
ity holds.

In Section 5.4, we define versions of equivalentiality, resulting by com-
bining monotonicity and extensionality properties. Since both come in two
flavors, we get, a priori, four potentially different equivalentiality classes. A
π-institution I = ⟨F,C⟩ is (family) equivalential if it is protoalgebraic and
family extensional. Weakening protoalgebraicity to prealgebraicity we get
family preequivalentiality. On the other hand, weakening family to system
extensionality, we get system equivalentiality. Finally, if both properties are
weakened in tandem, we get (system) preequivalentiality. Equivalentiality, as
opposed to preequivalentiality, incorporates protoalgebraicity, which implies
stability. But, under stability, the two versions of extensionality coincide.
This reasoning shows that family and system equivalentiality are identical
properties. So when referring to this property, we use the term equivalential-
ity, without qualification. It turns out to be equivalent to preequivalentiality
plus stability. All three distinct versions transfer. We also obtain characteri-
zations of both equivalentiality and preequivalentiality in terms of the Leibniz
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operator seeing as a mapping between lattices of filter families (systems) and
congruence systems over arbitrary algebraic systems.

In Section 5.5, we explore the hierarchy of prealgebraizable π-institutions.
Prealgebraizability results from weak prealgebraizability when prealgebraic-
ity is strengthened to either family or system preequivalentiality, i.e., when
either family or system extensionality is added into the mix. Accordingly, two
parallel hierarchies mimicking that of weakly prealgebraizable π-institutions,
detailed in Chapter 4, are formed depending on the version of preequivalen-
tiality used. If family preequivalentiality is postulated, we get the five classes
of XF prealgebraizable π-institutions, whereas, if (system) preequivalential-
ity is dictated, we get five corresponding X prealgebraizability classes, where
X is a string reflecting which injectivity, reflectivity or complete reflectivity
condition is coupled with preequivalentiality, i.e., X can be one of:

• LC for left complete reflectivity;

• LR for left reflectivity;

• FI for family injectivity;

• LI for left injectivity; and

• S for system (injectivity, reflectivity and complete reflectivity all being
equivalent under preequivalentiality).

Systemicity leads to a total collapse of the ten classes into a single class.
Stability results to FIF and FI prealgebraizable π-institutions being iden-
tified and to a collapse of all remaining eight classes into a single class.
Thus, it yields a 2-class hierarchy. After showing that all ten prealgebraiz-
ability properties transfer, the section is dedicated to obtaining character-
ization theorems for each of the classes in terms of the Leibniz operator
on arbitrary algebraic systems perceived as a mapping between ordered
sets. The ten characterizations can be divided into five pairs, each pair
addressing XF and X prealgebraizability for the same X in {LC, LR, FI,
LI, S}. Making a somewhat arbitrary choice here, we look at the cases of
LR and S to provide a flavor of these results. The interested reader is,
of course, referred to the main text for further details on all ten proper-
ties. A π-institution I = ⟨F,C⟩ is LRF prealgebraizable if and only if, for
every F-algebraic system A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a left or-
der reflecting surjection commuting with inverse logical extensions, which
restricts to an order embedding on filter systems. A subtle, but impor-
tant, change occurs in most pairs in passing from the XF to the X sibling.
I = ⟨F,C⟩ is LR prealgebraizable if and only if, for every F-algebraic system
A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left order reflecting surjection, which
restricts to an order embedding commuting with inverse logical extensions
on filter systems. Along similar lines, we get that I is SF prealgebraizable iff,
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for every F-algebraic system A, ΩA ∶ FiFamI(A) → ConSysI∗(A) commutes
with inverse logical extensions and restricts to an order embedding on filter
systems, whereas I is S prealgebraizable if and only if, for every F-algebraic
system A, ΩA ∶ FiSysI(A)→ ConSysI∗(A) is an order embedding commuting
with inverse logical extensions.

In Section 5.6, we examine algebraizability. This hierarchy results from
weak algebraizability when protoalgebraicity is replaced by equivalentiality.
Equivalently, it ensues from prealgebraizability when, instead of imposing
family or system preequivalentiality, we insist on the stronger condition of
equivalentiality. Exactly due to this strengthening, only two classes may be
distinguished here, family algebraizability, combining equivalentiality with
family injectivity, and (system) algebraizability, coupling equivalentiality
with system injectivity. The family version is equivalent to the system ver-
sion augmented by systemicity. Both flavors transfer. Finally, a π-institution
I = ⟨F,C⟩ is family algebraizable if and only if, for every F-algebraic system
A, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is an order isomorphism commuting with
inverse logical extensions, whereas it is system algebraizable if and only if it is
stable and, for every F-algebraic system A, ΩA ∶ FiSysI(A) → ConSysI∗(A)
is an order isomorphism commuting with inverse logical extensions.

5.2 Extensionality

The first two important ingredients in classifying π-institutions according to
their algebraic character were:

• the monotonicity properties of the Leibniz operator, which gave rise to
the classes of prealgebraic and protoalgebraic π-institutions, as well as
the various classes defined using versions of complete monotonicity;

• the various properties involving injectivity and reflectivity, varying from
the weakest, system injectivity, to the strongest, family complete re-
flectivity.

Two additional important properties are the extensionality of the Leibniz
operator and the commutativity of the Leibniz operator, which we now intro-
duce and study. The variants studied here will give rise to classes in the equiv-
alential hierarchy of π-institutions and, based on these, in the semantic hier-
archy of algebraizable π-institutions (as opposed to weak (pre)algebraizability,
studied in Chapter 4).

We first define two versions of the extensionality property and two corre-
sponding versions of 2-extensionality, which is an apparently relaxed version
of extensionality, but will be shown to be equivalent to extensionality.

Recall from Section 2.12 that, given an algebraic system F = ⟨Sign♭,
SEN♭,N ♭⟩ and a sentence family X ∈ SenFam(F), we denote by ⟨X⟩ =
{⟨X⟩Σ}Σ∈∣Sign♭∣ the universe of F generated by X , i.e., ⟨X⟩ = ν(Ð→X).
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Definition 304 (Extensionality) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F.

• I is called family extensional if, for all X ∈ SenFam(I) and all
T ∈ ThFam(I),

Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩);
• I is called system extensional if, for all X ∈ SenFam(I) and all
T ∈ ThSys(I),

Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).
Taking into account Proposition 89, one obtains the following equivalent

formulations.

Lemma 305 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) extensional if and
only if, for all X ∈ SenFam(I) and all T ∈ ThFam(I) (T ∈ ThSys(I), respec-
tively),

Ω⟨X⟩(T ∩ ⟨X⟩) ≤ Ω(T ) ∩ ⟨X⟩2.
Proof: Since, by Proposition 89, for all X ∈ SenFam(I) and T ∈ ThFam(I),
the inclusion

Ω(T ) ∩ ⟨X⟩2 ≤ Ω⟨X⟩(T ∩ ⟨X⟩)
always holds, we get the statement using the definition. ∎

Here is a simple example of a family extensional π-institution.

Example 306 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1} and
SEN♭(f)(0) = 1, SEN♭(f)(1) = 1;

• N ♭ is the trivial category of natural transformations, consisting of the
projections only.

Let I = ⟨F,C⟩ be the π-institution, defined by setting CΣ = {{1},{0,1}}.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F
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Note that the only universes are Thm(I) = {{1}} and SEN♭. For the second
one, Ω(T )∩⟨X⟩2 = Ω⟨X⟩(T ∩⟨X⟩) holds trivially for all T ∈ ThFam(I), since
both sides boil down to Ω(T ). For the first, we have

ΩThm(I)(Thm(I) ∩Thm(I)) = Thm(I)2 = Ω(Thm(I)) ∩Thm(I)2;
ΩThm(I)(SEN♭ ∩Thm(I)) = Thm(I)2 = Ω(SEN♭) ∩Thm(I)2.

So I is family extensional, that is, for all X ∈ SenFam(I) and all T ∈
ThFam(I), Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).

We present, now, two examples of π-institutions that are not system
extensional.

Example 307 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and
SEN♭(f)(x) = 2, for all x ∈ {0,1,2};

• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2
0 0 0 2
1 0 1 1
2 2 1 2

Let I = ⟨F,C⟩ be the π-institution defined by setting CΣ = {{1,2},{0,1,2}}.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

012 ..................✲ ∇F

12 ...................✲ ∆F
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For the universe X = {{1,2}} and the theory system T = {{1,2}}, we get

Ω(T ) ∩X2 = {{1},{2}} ≨ {{1,2}} = ΩX(T ∩X).
Therefore, I is not system extensional.

And here is a second example of a non-system extensional π-institution.

Example 308 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1};
• N ♭ is the category of natural transformations generated by the two bi-

nary natural transformations ∧ ∶ (SEN♭)2 → SEN♭ and ∨ ∶ (SEN♭)2 →
SEN♭ defined by the following tables:

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{a, b,1},{0, a, b,1}}.
The lattice of theory families and the corresponding Leibniz congruence
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systems are shown in the diagram.

0ab1 ...............................................✲ ∇F

�
�
� ❅

❅
❅

ab1 0b,1a 0a,1b

�
�
� ❅

❅
❅

..................................q......
......

......
......

......
....✶

❅
❅
❅

......
......

......
......

......
....✶

�
�
�

a1 b1 ∆F

❅
❅
❅ �

�
�

......
......

......
......

......
....✶

1

For the universe X = {{0, a,1}} and the theory system T = {{a, b,1}}, we get

Ω(T ) ∩X2 = {{0},{a},{1}} ≨ {{0},{a,1}} = ΩX(T ∩X).
Therefore, I is not system extensional and, a fortiori, not family extensional
either.

The following clarifies the relation between family and system extension-
ality.

Proposition 309 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family extensional, then it is system extensional.

(b) If I is system extensional and stable, then it is family extensional.

Proof:

(a) Since all theory systems are also theory families, it follows that every
family extensional π-institution is also system extensional.
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(b) Suppose that I is system extensional and stable. Let X ∈ SenFam(I)
and T ∈ ThFam(I). Then we have

Ω⟨X⟩(T ∩ ⟨X⟩) ≤ Ω⟨X⟩(←ÐÐÐÐT ∩ ⟨X⟩) (by Proposition 20)

= Ω⟨X⟩(←ÐT ∩ ⟨X⟩) (by Lemma 3)

= Ω(←ÐT ) ∩ ⟨X⟩2 (by system extensionality)
= Ω(T ) ∩ ⟨X⟩2. (by stability)

By Lemma 305, I is family extensional.
∎

According to Proposition 309 we have the following extensionality hi-
erarchy:

Family Extensional

System Extensional
❄

The reverse, however, does not hold in general, as the following example,
exhibiting a π-institution which is system but not family extensional, shows.

Example 310 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 1 and SEN♭(f)(2) = 1;

• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2
0 1 1 2
1 1 1 1
2 2 1 2

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {∅,{2},{0,1,2}}.
I has three theory families, ∅, T = {{2}} and SEN♭, but only ∅ and

SEN♭ are theory systems. The lattice of theory families and the corresponding
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Leibniz congruence systems are shown in the diagram.

012 ............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

2 .....................❥
∅ ∆F

Moreover, F has five universes {{0}}, {{1}}, {{0,1}}, {{1,2}} and {{0,1,2}}.
Since the only theory systems of I are ∅ and SEN♭, it is trivial to check that
I is system extensional.

For the universe X = {{0,1}} and the theory family T = {{2}}, we get

Ω(T ) ∩X2 = {{0},{1}} ≨ {{0,1}} = ΩX(T ∩X).
Therefore, I is not family extensional.

Moreover, as the following example shows, the converse of Part (b) of
Proposition 309 does not hold in general, i.e., stability is not necessary for
family extensionality.

Example 311 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
I has three theory families, Thm(I), T = {{1,2}} and SEN♭, but only

Thm(I) and SEN♭ are theory systems.
The lattice of theory families and the corresponding Leibniz congruence

systems are shown in the diagram.

{0,1,2} .....................✲ {{0,1,2}}

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} {{0},{1},{2}}

It is not difficult to check that I is family extensional, that is, for all X ∈
SenFam(I) and all T ∈ ThFam(I),

Ω(T ) ∩ ⟨X⟩2 = Ω⟨X⟩(T ∩ ⟨X⟩).
In fact, F has five universes {{0}}, {{2}}, {{0,1}}, {{0,2}} and {{0,1,2}},
only two of which are proper and non-singletons. I has three theory families,
two of which are different from SEN♭. Thus, there are only four cases to
check, shown below, adopting, for brevity, an obvious shorthand notation.

Ω(2) ∩ (01)2 = {{0,1}} = Ω01(2 ∩ 01),
Ω(12) ∩ (01)2 = {{0},{1}} = Ω01(12 ∩ 01),
Ω(2) ∩ (02)2 = {{0},{2}} = Ω02(2 ∩ 02),
Ω(12) ∩ (02)2 = {{0},{2}} = Ω02(12 ∩ 02).

Clearly, since for T ∈ ThFam(I)/ThSys(I),
Ω(T ) =∆F ≠ {{0,1},{2}} = Ω(Thm(I)) = Ω(←ÐT ),

I is not stable.
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A related result is that, under system extensionality, stability is inherited
by π-subinstitutions of a given π-institution.

Proposition 312 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a system extensional π-institution based on F and F′ = ⟨Sign♭,SEN′ ♭,
N ′ ♭⟩ ≤ F an algebraic subsystem of F. If I is stable, then I ′ = ⟨F′,C ′⟩ is also
stable.

Proof: Suppose that I is system extensional and stable. Let T ∈ ThFam(I).
Then we have

ΩF′(←ÐÐÐÐÐÐT ∩ SEN′ ♭) = ΩF′(←ÐT ∩ SEN′ ♭) (by Lemma 3)

= ΩF(←ÐT ) ∩ (SEN′ ♭)2 (by system extensionality)
= ΩF(T ) ∩ (SEN′ ♭)2 (by stability)
≤ ΩF′(T ∩ SEN′ ♭). (by Proposition 89)

Since, by Proposition 20, the reverse inclusion always holds, we conclude that
I ′ is also stable. ∎

A similar preservation result, under extensionality, may also be proven
with regards to pre- and protoalgebraicity. More precisely, we show that
if a π-institution is family extensional and protoalgebraic, then all its π-
subinstitutions are also protoalgebraic. Analogously, if a π-institution is
system extensional and prealgebraic, then prealgebraicity is inherited by all
its π-subinstitutions.

Proposition 313 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family extensional and protoalgebraic, then, for all F′ = ⟨Sign♭,
SEN′ ♭,N ′ ♭⟩ ≤ F, I ′ = ⟨F′,C ′⟩ is also protoalgebraic;

(b) If I is system extensional and prealgebraic, then, for all F′ = ⟨Sign♭,
SEN′ ♭,N ′ ♭⟩ ≤ F, I ′ = ⟨F′,C ′⟩ is also prealgebraic.

Proof: We only prove Part (a). Part (b) may be proven similarly. Suppose
that I is family extensional and protoalgebraic and let F′ ≤ F. If T,T ′ ∈
ThFam(I), such that T ≤ T ′, then, by protoalgebraicity, ΩF(T ) ≤ ΩF(T ′).
Thus, ΩF(T ) ∩ (SEN′ ♭)2 ≤ ΩF(T ′) ∩ (SEN′ ♭)2. Therefore, by family exten-
sionality, ΩF′(T ∩SEN′ ♭) ≤ ΩF′(T ′ ∩SEN′ ♭). By Proposition 87, we conclude
that I ′ is also protoalgebraic. ∎

There are transfer theorems that hold for both system and family exten-
sionality.
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Theorem 314 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family (system) extensional if and
only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all Y ∈ SenFam(A) and
all T ∈ FiFamI(A) (T ∈ FiSysI(A), respectively)

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
Proof: We present the proof for theory families. The case of theory systems
is similar.

The “if” direction follows by taking A = F = ⟨F, ⟨I, ι⟩⟩ and observing
that, in that case, the displayed condition reduces to the definition of family
extensionality.

For the “only if”, assume that I is family extensional and let A = ⟨A,⟨F,α⟩⟩ be an F-algebraic system, Y ∈ SenFam(A), T ∈ FiFamI(A), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

⟨αΣ(φ), αΣ(ψ)⟩ ∈ Ω
⟨Y ⟩

F (Σ)
(T ∩ ⟨Y ⟩).

Then we have

⟨φ,ψ⟩ ∈ α−1Σ (Ω⟨Y ⟩F (Σ)
(T ∩ ⟨Y ⟩)) (set theory)

= Ω
α−1(⟨Y ⟩)
Σ (α−1(T ) ∩ α−1(⟨Y ⟩)) (Corollary 92)

= ΩΣ(α−1(T )) ∩α−1Σ (⟨Y ⟩F (Σ))2 (hypothesis)
= α−1Σ (ΩAF (Σ)(T )) ∩α−1Σ (⟨Y ⟩F (Σ))2 (Proposition 24)

= α−1Σ (ΩAF (Σ)(T ) ∩ ⟨Y ⟩2F (Σ)). (set theory)

Therefore ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA
F (Σ)
(T )∩⟨Y ⟩2

F (Σ)
. Since, by Proposition 89, the

opposite inclusion always holds, we get, taking into account the surjectivity
of ⟨F,α⟩, that

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
The conclusion now follows. ∎

We define, next, the second property, a seemingly relaxed version of ex-
tensionality that we call 2-extensionality.

Definition 315 (2-Extensionality) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F.

• I is called family 2-extensional if, for all T ∈ ThFam(I), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩);

• I is called system 2-extensional if, for all T ∈ ThSys(I), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩).
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Taking into account Proposition 89, one obtains the following equivalent
formulations.

Lemma 316 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) 2-extensional if and
only if, for all T ∈ ThFam(I) (T ∈ ThSys(I), respectively), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩) implies ⟨φ,ψ⟩ ∈ ΩΣ(T ).

Proof: By Proposition 89, for all T ∈ ThFam(I), the inclusion

Ω(T ) ∩ ⟨φ,ψ⟩2 ≤ Ω⟨φ,ψ⟩(T ∩ ⟨φ,ψ⟩)
always holds. Since φ,ψ ∈ ⟨φ,ψ⟩Σ, if ⟨φ,ψ⟩ ∈ ΩΣ(T ), then ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩⟨φ,ψ⟩).

Thus, 2-extensionality is, by definition, equivalent to

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩) implies ⟨φ,ψ⟩ ∈ ΩΣ(T ).

∎

It turns out that the corresponding versions of extensionality and 2-
extensionality are equivalent. That extensionality implies 2-extensionality
is fairly straightforward.

Proposition 317 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family (system) extensional, then
it is family (system, respectively) 2-extensional.

Proof: We present the proof for theory families. The case of theory systems
is similar. Suppose I is family extensional and let T ∈ ThFam(I), Σ ∈
∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). Then, by

family extensionality, we get that ⟨φ,ψ⟩ ∈ ΩΣ(T )∩⟨φ,ψ⟩2Σ, which implies that⟨φ,ψ⟩ ∈ ΩΣ(T ). Thus, by Lemma 316, I is family 2-extensional. ∎

The full equivalence is given in the following

Theorem 318 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) extensional if and
only if it is family (system, respectively) 2-extensional.

Proof: Again we prove only the equivalence of the family versions of the
two properties, since the system versions can be proven similarly.

The “only if” was the content of Proposition 317. For the “if”, suppose
that I is family 2-extensional and let X ∈ SenFam(I), T ∈ ThFam(I), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∉ ΩΣ(T ) ∩ ⟨X⟩2Σ.

If ⟨φ,ψ⟩ ∉ ⟨X⟩2Σ, then, a fortiori, ⟨φ,ψ⟩ ∉ Ω
⟨X⟩
Σ (T ∩ ⟨X⟩), and we are done.
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If, on the other hand, ⟨φ,ψ⟩ ∈ ⟨X⟩2Σ, then, we have ⟨φ,ψ⟩ ∉ ΩΣ(T ). Thus,

by hypothesis, ⟨φ,ψ⟩ ∉ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩). So, by Theorem 19, there exist

σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ ⟨φ,ψ⟩Σ′ , such that (without
loss of generality)

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ ∩ ⟨φ,ψ⟩Σ′
but σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∉ TΣ′ ∩ ⟨φ,ψ⟩Σ′ .

Since φ,ψ ∈ ⟨X⟩Σ and χ⃗ ∈ ⟨φ,ψ⟩Σ′ , we get that

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ ∩ ⟨X⟩Σ′
but σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∉ TΣ′ ∩ ⟨X⟩Σ′ .

Thus, again by Theorem 19, we get ⟨φ,ψ⟩ ∉ Ω
⟨X⟩
Σ (T ∩ ⟨X⟩). Hence, Ω⟨X⟩(T ∩⟨X⟩) ≤ Ω(T ) ∩ ⟨X⟩2. We now conclude, using Lemma 305, that I is family

extensional. ∎

5.3 Leibniz Commutativity

Another important property is that of commutativity with a special type of
logical morphism, which we now introduce and study.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and X ∈ SenFam(F).
An algebraic system morphism of the form ⟨I,α⟩ ∶ ⟨X⟩ → F, where I ∶
Sign♭ → Sign♭ is the identity functor, will be called an extension.

Further, given a π-institution I = ⟨F,C⟩ based on F, an extension ⟨I,α⟩ ∶⟨X⟩ → F is said to be logical if it is a logical morphism ⟨I,α⟩ ∶ I ⟨X⟩ → I ,
where I ⟨X⟩ = ⟨⟨X⟩,C⟨X⟩⟩ is the π-subinstitution of I induced by ⟨X⟩. In
other words ⟨I,α⟩ ∶ ⟨X⟩ → F is a logical extension if, for all Σ ∈ ∣Sign♭∣ and
all Φ ⊆ ⟨X⟩Σ,

αΣ(C⟨X⟩Σ (Φ)) ⊆ CΣ(αΣ(Φ)).
This is abbreviated to α(C⟨X⟩(Φ)) ≤ C(α(Φ)).

Using Lemma 47, we get the following characterization:

Corollary 319 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, X ∈ SenFam(F) and ⟨I,α⟩ ∶ ⟨X⟩ → F an exten-
sion. ⟨I,α⟩ ∶ I ⟨X⟩ → I is a logical extension if and only if

α−1(T ) ∈ ThFam(I ⟨X⟩), for all T ∈ ThFam(I).
Proof: Immediate by Lemma 47. ∎

We now define the two notions of Leibniz commutativity that we wish to
study.
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Definition 320 (Leibniz Commutativity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called family (Leibniz) commuting if the Leibniz operator
on theory families commutes with logical extensions, i.e., if, for every
X ∈ SenFam(I), all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ′ ∈
ThFam(I ⟨X⟩),

α(Ω⟨X⟩(T ′)) ≤ Ω(C(α(T ′)));
• I is called system (Leibniz) commuting if the Leibniz operator

on theory systems commutes with logical extensions, i.e., if, for every
X ∈ SenFam(I), all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ′ ∈
ThSys(I ⟨X⟩),

α(Ω⟨X⟩(T ′)) ≤ Ω(C(α(T ′))).
We now give a useful characterization of those two properties, in the

case of protoalgebraic and of prealgebraic π-institutions, respectively. To do
this, however, we need some preliminary work. First, we note that injection
morphisms are logical extensions.

Lemma 321 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all X ∈ SenFam(I), ⟨I, j⟩ ∶ I ⟨X⟩ → I
is a logical extension, where ⟨I, j⟩ ∶ ⟨X⟩→ F is the injection morphism.

Proof: Let T ∈ ThFam(I). Then, we have

j−1(T ) = T ∩ ⟨X⟩ ∈ ThFam(I ⟨X⟩),
where the membership follows by Proposition 87. Therefore, by Corollary
319, ⟨I, j⟩ is a logical extension. ∎

Next we define two alternative versions of Leibniz commutativity, which
we term inverse Leibniz commutativity.

Definition 322 (Inverse (Leibniz) Commutativity) Let F = ⟨Sign♭,SEN♭,
N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is family inverse (Leibniz) commuting if, for all X ∈ SenFam(I),
all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThFam(I),

α−1(Ω(T )) = Ω⟨X⟩(α−1(T )); .
• I is system inverse (Leibniz) commuting if, for all X ∈ SenFam(I),

all logical extensions ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThSys(I),
α−1(Ω(T )) = Ω⟨X⟩(α−1(T )).
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We now show that inverse commutativity implies extensionality. Natu-
rally enough, we have two versions of this implication.

Proposition 323 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family (system) inverse commuting,
then it is family (system, respectively) extensional.

Proof: We show the family version. The system version is similar.
Assume that I is family inverse commuting and let X ∈ SenFam(I),

T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

⟨φ,ψ⟩ ∈ Ω
⟨X⟩
Σ (T ∩ ⟨X⟩).

Considering the injection morphism ⟨I, j⟩ ∶ I ⟨X⟩ → I , which is a logical exten-

sion by Lemma 321, the hypothesis can be rewritten as ⟨φ,ψ⟩ ∈ Ω
⟨X⟩
Σ (j−1(T )).

Thus, by inverse family commutativity, ⟨φ,ψ⟩ ∈ j−1Σ (ΩΣ(T )). But this is
equivalent to ⟨φ,ψ⟩ ∈ ΩΣ(T )∩ ⟨X⟩2Σ. We conclude, using Lemma 305, that I
is family extensional. ∎

It is clear that family inverse commutativity implies system inverse com-
mutativity. We show, next, that under stability, the system and the family
versions of inverse commutativity coincide.

Proposition 324 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family inverse commuting, then it is system inverse commuting;

(b) If I is system inverse commuting and stable, then it is also family
inverse commuting.

Proof: Family inverse commutativity always implies system inverse com-
mutativity. Conversely, assume that I is stable and system inverse com-
muting and let X ∈ SenFam(I), ⟨I,α⟩ ∶ I ⟨X⟩ → I a logical extension and
T ∈ ThFam(I). Then we have

α−1(Ω(T )) = α−1(Ω(←ÐT )) (stability)

= Ω⟨X⟩(α−1(←ÐT )) (system inverse commutativity)

= Ω⟨X⟩(←ÐÐÐÐα−1(T )) (Lemma 6)
= Ω⟨X⟩(α−1(T )). (Propositions 323 and 312)

Thus, I is family inverse commuting. ∎

Finally, the promised characterization that relates family (system) com-
mutativity with family (system) inverse commutativity under the hypothesis
of proto(pre)algebraicity. We present the two results separately for the sake
of clarity.
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Theorem 325 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a protoalgebraic π-institution based on F. I is family commuting
if and only if it is family inverse commuting.

Proof: Note, first, that, for all X ∈ SenFam(I), all logical extensions ⟨F,α⟩ ∶
I ⟨X⟩ → I and all T ∈ ThFam(I), α−1(Ω(T )) is a congruence system on ⟨X⟩
that is compatible with α−1(T ). Thus, by the maximality property of the
Leibniz congruence system, we have, regardless of commutativity, that, for
all X ∈ SenFam(I), all ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThFam(I),

α−1(Ω(T )) ≤ Ω⟨X⟩(α−1(T )).
Therefore, it suffices to show that I is family commuting if and only if, for
all X ∈ SenFam(I), all ⟨I,α⟩ ∶ I ⟨X⟩ → I and all T ∈ ThFam(I),

Ω⟨X⟩(α−1(T )) ≤ α−1(Ω(T )).
For the “only if” direction, assume that I is family commuting and let
X ∈ SenFam(I), ⟨I,α⟩ ∶ I ⟨X⟩ → I , T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈
SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ Ω

⟨X⟩
Σ (α−1(T )). Then we have

⟨αΣ(φ), αΣ(ψ)⟩ ∈ αΣ(Ω⟨X⟩Σ (α−1(T )))
⊆ ΩΣ(C(α(α−1(T )))) (commutativity)
⊆ ΩΣ(C(T )) (protoalgebraicity)
= ΩΣ(T ).

We conclude that ⟨φ,ψ⟩ ∈ α−1Σ (ΩΣ(T )). Therefore, I is family inverse com-
muting.

For the “if” direction, assume I is family inverse commuting and let
X ∈ SenFam(I), ⟨I,α⟩ ∶ I ⟨X⟩ → I and T ′ ∈ ThFam(I ⟨X⟩). Then we have

α(Ω⟨X⟩(T ′)) ≤ α(Ω⟨X⟩(α−1(C(α(T ′)))))
(Propositions 323 and 313)

= α(α−1(Ω(C(α(T ′)))))
(inverse commutativity)

≤ Ω(C(α(T ′))). (set theory)

Thus, I is family commuting. ∎

Similarly, we may obtain the following analog for the system versions of
the corresponding properties.

Theorem 326 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a prealgebraic π-institution based on F. I is system commuting if
and only if it is system inverse commuting.



Voutsadakis CHAPTER 5. SEMANTIC HIERARCHY III 355

Proof: Along the lines of the proof of Theorem 325. ∎

In Proposition 323 we saw that inverse commutativity implies extension-
ality. We now show that extensionality is in fact equivalent to inverse com-
mutativity.

Theorem 327 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (system) inverse commuting
if and only if it is family (system, respectively) extensional.

Proof: By Proposition 323, family inverse commutativity implies family
extensionality.

Suppose, conversely, that I is family extensional and let X ∈ SenFam(I),⟨I,α⟩ ∶ I ⟨X⟩ → I be a logical extension and T ∈ ThFam(I). We exploit the
epi-mono factorization of ⟨I,α⟩ provided in Proposition 81:

⟨X⟩ ⟨I,α⟩ ✲ F
❩
❩
❩
❩
❩⟨I,α′⟩ ⑦ ✚

✚
✚
✚
✚

⟨I, j⟩
❃

α(⟨X⟩)
We have

Ω⟨X⟩(α−1(T )) = Ω⟨X⟩(α′−1(j−1(T ))) (⟨I,α⟩ = ⟨I, j⟩ ○ ⟨I,α′⟩)
= Ω⟨X⟩(α′−1(T ∩ SEN♭α)) (definition of ⟨I, j⟩)
= α′−1(Ωα(⟨X⟩)(T ∩ SEN♭α)) (Proposition 24)
= α′−1(Ω(T ) ∩ (SEN♭α)2) (extensionality)
= α′−1(j−1(Ω(T ))) (definition of ⟨I, j⟩)
= α−1(Ω(T )). (⟨I,α⟩ = ⟨I, j⟩ ○ ⟨I,α′⟩)

Therefore, I is family inverse commuting.

The system version can be proven analogously. ∎

Finally, we have the following transfer theorem for inverse commutativity.

Theorem 328 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family (system) inverse commuting
if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the π-institution⟨A,CI,A⟩ is family (system, respectively) inverse commuting.

Proof: This follows by combining Theorem 327 with Theorem 314. ∎
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5.4 Equivalential π-Institutions

By combining prealgebraicity or protoalgebraicity, on the one hand, with
system or family extensionality, on the other, we obtain another hierarchy,
the hierarchy of equivalential π-institutions. The terminology is built by
abiding to the following guidelines:

• The qualification “system” or “family” refers to the version of exten-
sionality employed;

• “preequivalential” or “equivalential” is used depending on whether pre-
algebraicity or protoalgebraicity is assumed.

According to this nomenclature, we may define four classes of π-institu-
tions as follows:

Definition 329 ((Pre)Equivalentiality) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is (family) equivalential if it is protoalgebraic and family exten-
sional;

• I is system equivalential if it is protoalgebraic and system exten-
sional;

• I is family preequivalential if it is prealgebraic and family exten-
sional;

• I is (system) preequivalential if it is prealgebraic and system
extensional.

A priori, these four classes form the hierarchy depicted in the diagram.

(Family)

Equivalential

✠�
�
� ❅

❅
❅❘

System

Equivalential

Family

Preequivalential
❅
❅
❅❘ ✠�

�
�

(System)

Preequivalential

However, it is easy to show that family and system equivalentiality are
equivalent properties.
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Proposition 330 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family equivalential if and only if
it is system equivalential.

Proof: First, if I is family equivalential, then it is also system equivalential,
since family extensionality implies system extensionality.

Suppose, conversely, that I is system equivalential. Then, by Theorem
175, it is stable and, by definition, it is system extensional, whence, by
Proposition 309, it is also family extensional. Since it is protoalgebraic and
family extensional, it is family equivalential. ∎

Taking into account Proposition 330, we call I equivalential if it is
protoalgebraic and (family or system) extensional.

Using this terminology, the hierarchy depicted in the preceding diagram
reduces to the following linear equivalentiality hierarchy:

Equivalential

Family Preequivalential
❄

(System) Preequivalential
❄

It is easy to see that the separating property of the top level from the
bottom level in the hierarchy is exactly stability.

Proposition 331 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is equivalential if and only if it is system
preequivalential and stable.

Proof: If I is equivalential, then it is trivially system preequivalential. More-
over, it is protoalgebraic and, therefore, by Theorem 175, it is stable.

Suppose, conversely, that I is system prequivalential and stable. Then,
by definition, it is system extensional, prealgebraic and stable. Thus, again
by Theorem 175, it is system extensional and protoalgebraic and, hence, by
Proposition 330, equivalential. ∎

Examples are in order to show that the inclusions between the three
classes of the equivalentiality hierarchy are proper.

We revisit, first, a familiar example of a π-institution that turns out to
be family preequivalential but not equivalential.

Example 332 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The theory family {{1,2}} is not a theory system.
The structure of the lattice of theory families and the corresponding Leib-

niz congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

It is clear from the diagram that I is prealgebraic but not protoalgebraic.
So to see that it is family preequivalential but not equivalential, it suffices to
show that I is family extensional. We can easily see that F has two nontrivial
proper universes and three theory families:

Universes F01 = {{0,1}} F02 = {{0,2}}
Theory Families Thm(I) T = {{1,2}} SEN♭

For verification we perform the following calculations, since the case of SEN♭

is trivial:

ΩF01(Thm(I) ∩F01) = F2
01 = Ω(Thm(I)) ∩F2

01;
ΩF02(Thm(I) ∩F02) = ∆F02 = Ω(Thm(I)) ∩F2

02;
ΩF01(T ∩F01) = ∆F01 = Ω(T ) ∩F2

01;
ΩF02(T ∩F02) = ∆F02 = Ω(T ) ∩F2

02.
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We conclude that I is indeed family extensional. Thus, I is an example of a
family preequivalential π-institution, which is not equivalential.

Next we give an example of a π-institution that is system preequivalential
but not family preequivalential.

Example 333 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 1 and SEN♭(f)(2) = 1;

• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2
0 1 1 2
1 1 1 1
2 2 1 2

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {∅,{2},{0,1,2}}.
I has three theory families, ∅, T = {{2}} and SEN♭, but only ∅ and

SEN♭ are theory systems. The lattice of theory families and the corresponding
Leibniz congruence systems are shown in the diagram.

012 ............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

2 .....................❥
∅ ∆F
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From the diagram and the fact that T ∉ ThSys(I) it follows that I is preal-
gebraic.

F has five universes {{0}}, {{1}}, {{0,1}}, {{1,2}} and {{0,1,2}}.
Since the only theory systems of I are ∅ and SEN♭, it is trivial to check that
I is system extensional. Hence, being prealgebraic and system extensional, I
is preequivalential.

For the universe X = {{0,1}} and the theory family T = {{2}}, we get

Ω(T ) ∩X2 = {{0},{1}} ≨ {{0,1}} = ΩX(T ∩X).
This shows that I is not family extensional and, hence, I is not family pree-
quivalential.

Theorems 179 and 314 allow us to formulate transfer results for (pre)equi-
valential π-institutions.

Theorem 334 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is equivalential if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter families
and, for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
Proof: This follows from Theorems 179 and 314. ∎

Similarly, we have the following versions for the preequivalentiality prop-
erties:

Theorem 335 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is family (system) preequivalential if
and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone
on I-filter systems and, for all Y ∈ SenFam(A) and all T ∈ FiFamI(A)
(T ∈ FiSysI(A), respectively),

ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).
Proof: This follows from Theorems 179 and 314. ∎

The definitions of equivalentiality and of system preequivalentiality may
be recast in terms of properties of mappings between the lattice of theory
families/systems and congruence systems. We have the following

Theorem 336 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is equivalential if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩:

• The mapping Ω ∶ FiFamI(A)→ ConSysI(A) is monotone;
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• The following diagram commutes, for every Y ∈ SenFam(A).
FiFamI(A) Ω ✲ ConSysI(A)

FiFamI
α−1(⟨Y ⟩)(⟨Y ⟩)

− ∩ ⟨Y ⟩
❄

Ω⟨Y ⟩
✲ ConSysI

α−1(⟨Y ⟩)(⟨Y ⟩)
− ∩ ⟨Y ⟩2
❄

Proof: The “only if” follows from Theorem 334. The “if” follows by consid-
ering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. ∎

The version for system preequivalentiality has the following form.

Theorem 337 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is preequivalential if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩:

• The mapping Ω ∶ FiSysI(A)→ ConSysI(A) is monotone;

• The following diagram commutes, for every Y ∈ SenFam(A).
FiSysI(A) Ω ✲ ConSysI(A)

FiSysI
α
−1(⟨Y ⟩)(⟨Y ⟩)

− ∩ ⟨Y ⟩
❄

Ω⟨Y ⟩
✲ ConSysI

α
−1(⟨Y ⟩)(⟨Y ⟩)
− ∩ ⟨Y ⟩2
❄

Proof: Along the lines of Theorem 336, using Theorem 335. ∎

We now state formally some straightforward relationships between the
classes in the equivalential hierarchy and those in the monotonicity hierarchy.

Proposition 338 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) If I is equivalential, then it is protoalgebraic;

(b) If I is system preequivalential, then it is prealgebraic.

Proof: Both statements follow directly from the definitions of equivalential-
ity and system preequivalentiality. ∎
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Proposition 338 establishes the following hierarchy:

Equivalential

✠�
�
� ❅

❅
❅❘

Protoalgebraic
Family

Preequivalential
❅
❅
❅
❅
❅
❅
❅
❅❘

❅
❅
❅❘

Preequivalential

✠�
�
�

Prealgebraic

The next example shows that the two inclusions from the classes in the
equivalential hierarchy to the monotonicity hierarchy are proper inclusions.
More precisely, a π-institution is constructed that is protoalgebraic but fails
to be (system) preequivalential.

Example 339 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1};
• N ♭ is the category of natural transformations generated by the two bi-

nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables:

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{0, a, b,1}}.
I has four theory families, all of which are also theory systems.

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.
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0ab1

�
�
� ❅

❅
❅

a1 b1

❅
❅
❅ �

�
�

1

∇F

�
�
� ❅

❅
❅{0b, a1} {0a, b1}

❅
❅
❅ �

�
�

∆F

From the diagram, we can see that Ω ∶ ThFam(I) → ConSys∗(I) is an
order isomorphism, whence, I is, in particular, protoalgebraic.

On the other hand, for the universe X = {{0, a,1}} and the theory system
T = {{1}}, we get

Ω(T ) ∩X2 = {{0},{a},{1}} ≨ {{0, a},{1}} = ΩX(T ∩X).
Thus, I is not system extensional and, therefore, it fails to be (system) pree-
quivalential.

In our future work we will deal mostly with equivalential and system
preequivalential π-institutions, referring to them as equivalential and pree-
quivalential, respectively (as has already been suggested). So we focus mostly
on the following part of the hierarchy:

Equivalential

✠�
�
� ❅

❅
❅❘

Protoalgebraic Preequivalential

❅
❅
❅❘ ✠�

�
�

Prealgebraic

Whenever the need to refer to family preequivalential π-institutions arises,
the “family” qualification shall not be omitted to avoid confusion.
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5.5 PreAlgebraizability

We study now the hierarchy that results by taking the various classes of
weakly prealgebraizable π-institutions and adding to them family or system
extensionality. Equivalently, we may replace prealgebraicity by either family
or system preequivalentiality. Since, for every weak prealgebraizability class,
we have two strengthening (or replacement) options, we get a sort of a double
(or parallel) hierarchy whose classes are defined formally as follows and which
is depicted in the accompanying diagram.

Definition 340 (Family PreAlgebraizability) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is left completely reflective family prealgebraizable, or LCF
prealgebraizable for short, if it is family preequivalential and left
completely reflective, i.e., if it is system monotone, family extensional
and left completely reflective;

• I is left reflective family prealgebraizable, or LRF prealge-
braizable for short, if it is family preequivalential and left reflective,
i.e., if it is system monotone, family extensional and left reflective;

• I is family injective family prealgebraizable, or FIF prealge-
braizable for short, if it is family preequivalential and family injective,
i.e., if it is system monotone, family extensional and family injective;

• I is left injective family prealgebraizable, or LIF prealgebraiz-
able for short, if it is family preequivalential and left injective, i.e., if
it is system monotone, family extensional and left injective;

• I is system family prealgebraizable, or SF prealgebraizable for
short, if it is family preequivalential and system injective, i.e., if it is
system monotone, family extensional and system injective.

Definition 341 (PreAlgebraizability) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is left completely reflective prealgebraizable, or LC prealge-
braizable for short, if it is preequivalential and left completely reflec-
tive, i.e., if it is system monotone, system extensional and left com-
pletely reflective;

• I is left reflective prealgebraizable, or LR prealgebraizable for
short, if it is preequivalential and left reflective, i.e., if it is system
monotone, system extensional and left reflective;
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• I is family injective prealgebraizable, or FI prealgebraizable for
short, if it is preequivalential and family injective, i.e., if it is system
monotone, system extensional and family injective;

• I is left injective prealgebraizable, or LI prealgebraizable for
short, if it is preequivalential and left injective, i.e., if it is system
monotone, system extensional and left injective;

• I is system prealgebraizable, or S prealgebraizable for short, if
it is preequivalential and system injective, i.e., if it is system monotone,
system extensional and system injective.

LCF PreAlg
❍❍❍❍❍❍❥

LC PreAlg
❄

LRF PreAlg FIF PreAlg
❍❍❍❍❍❍❥

❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟

LR PreAlg
❄

LIF PreAlg FI PreAlg
❄

❍❍❍❍❍❍❥✙✟✟✟✟✟✟

✙✟✟✟✟✟✟

SF PreAlg LI PreAlg
❄

✙✟✟✟✟✟✟

S PreAlg
❄

The nomenclature here uses the term “prealgebraizable” to suggest that we
are applying prealgebraicity. The first two qualifying capitals reflect the
kind of injectivity, reflectivity or c-reflectivity that is applied and, finally,
the addition or omission of “F” conveys whether family or system exten-
sionality is applied, i.e., (together with prealgebraicity) whether family or
system preequivalentiality is postulated. For instance, a π-institution is LRF
prealgebraizable if it is

• prealgebraic;

• left reflective;

• family extensional,

i.e., if it is family preequivalential and left reflective or, equivalently, if it is
weakly LR prealgebraizable and family extensional.

Directly from corresponding theorems pertaining to weakly prealgebraiz-
able π-institutions, we obtain the following results that clarify the status of
this hierarchy under systemicity, on the one hand, and under the weaker
condition of stability, on the other.
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Theorem 342 For systemic π-institutions, all ten classes shown in the hi-
erarchical diagram coincide.

Proof: First, if I is systemic, then it is, a fortiori, stable. Therefore, by
Proposition 309, the properties of family and system extensionality coincide.
Thus, the two parallel hierarchies of the diagram collapse into one. Finally, by
Theorem 269, all these five classes coincide. Therefore, restricted to systemic
π-institutions, the entire hierarchy of the diagram collapses into a single class.
∎

Theorem 343 For stable π-institutions, the ten-class prealgebraizability hi-
erarchy shown in the diagram collapses to only two different classes, as shown
in the diagram below

F Prealgebraizable

S Prealgebraizable
❄

where F Prealgebraizable encompasses the classes of FIF and FI Prealgebraiz-
able π-institutions and S Prealgebraizable encompasses the remaining eight
classes in the original hierarchy.

Proof: Indeed, by Proposition 309, the properties of family and system
extensionality coincide under stability. Therefore, the five pairs of parallel
classes of the original hierarchy coincide, giving a 5-class hierarchy. But,
according to Theorem 273, under stability, these five classes reduce to only
two, as shown in the diagram of the statement. ∎

A few examples are now in order to separate the various classes of this
prealgebraizability hierarchy. The first example serves in separating each pair
of the two parallel hierarchies shown in the diagram. Namely, a π-institution
is constructed which is LC prealgebraizable and FI prealgebraizable and,
hence, belongs to all five levels of the lower hierarchy, but fails to be SF
prealgebraizable and, as a consequence, belongs to none of the five upper
levels of the hierarchy.

Example 344 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2 and SEN♭(f)(3) = 3;
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• N ♭ is the category of natural transformations generated by the binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by the following
table:

σ♭Σ 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 2 2
3 0 1 2 3

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{2,3},{1,2,3},{0,1,2,3}}.
I has three theory families, but only two theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

0123 ...........................✲ ∇F

123 01,23.....................❥....
....

....
....

....
.✯

23 ∆F

From the diagram, we can see that I is prealgebraic, i.e., that Ω is mono-
tone on ThSys(I), and, also, left c-reflective and family injective.

To see that I is system extensional, note that F has eleven universes,{{0}}, {{2}}, {{3}}, {{0,1}}, {{0,2}}, {{0,3}}, {{2,3}}, {{0,1,2}}, {{0,1,
3}}, {{0,2,3}} and {{0,1,2,3}}, seven of which are proper and non-singletons.
Moreover, I has two theory systems, only one of which is proper. Thus, we
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have seven cases to check, shown below adopting obvious shorthand notation:

Ω(23) ∩ {01}2 = {01} = Ω01(∅) = Ω01(23 ∩ 01);
Ω(23) ∩ {02}2 = {0,2} = Ω02(2) = Ω01(23 ∩ 02);
Ω(23) ∩ {03}2 = {0,3} = Ω03(3) = Ω01(23 ∩ 03);
Ω(23) ∩ {23}2 = {23} = Ω23(23) = Ω01(23 ∩ 23);
Ω(23) ∩ {012}2 = {01,2} = Ω012(2) = Ω01(23 ∩ 012);
Ω(23) ∩ {013}2 = {01,3} = Ω013(3) = Ω01(23 ∩ 013);
Ω(23) ∩ {023}2 = {0,23} = Ω023(23) = Ω01(23 ∩ 023).

On the other hand, for the universe X = {{0,2,3}} and the theory system
T = {{1,2,3}}, we get

Ω(T ) ∩X2 = {{0},{2},{3}} ≨ {{0},{2,3}} = ΩX(T ∩X).
Thus, I is not family extensional and, therefore, it fails to be SF prealge-
braizable.

We now present examples that separate each parallel step from the one
immediately below it. The first is an example of an LRF prealgebraizable
π-institution that fails to be LC prealgebraizable. This shows that LCF
prealgebraizable π-institutions form a proper subclass of the class of LRF
prealgebraizable ones and that the class of LC prealgebraizable π-institutions
is a proper subclass of the class of LR prealgebraizable π-institutions.

Example 345 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3,4,5}
and

SEN♭(f)(0) = SEN♭(f)(1) = SEN♭(f)(2) = 0,
SEN♭(f)(3) = SEN♭(f)(4) = SEN♭(f)(5) = 5;

• N ♭ is the category of natural transformations generated by the two
unary natural transformations σ♭, τ ♭ ∶ SEN♭ → SEN♭, with

σ♭Σ, τ
♭
Σ ∶ SEN♭(Σ) → SEN♭(Σ)

defined by

– σ♭Σ(3) = 1 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,4,5};
– σ♭Σ(4) = 2 and σ♭Σ(x) = 0, for all x ∈ {0,1,2,3,5}.



Voutsadakis CHAPTER 5. SEMANTIC HIERARCHY III 369

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{5},{3,4,5},{1,3,4,5},{2,3,4,5},{0,1,2,3,4,5}}.
I has five theory families but only three theory systems. The action of ←Ð

on theory families is given by the following table.

T
←Ð
T{5} {5}{3,4,5} {3,4,5}{1,3,4,5} {3,4,5}{2,3,4,5} {3,4,5}{0,1,2,3,4,5} {0,1,2,3,4,5}

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

012345 ∇F

�
�
� ❅

❅
❅

1345 2345

❅
❅
❅ �

�
�

345 {012,345}
�
�
� ❅

❅
❅

5
{02,1,
3,45} {012,

34,5} {01,2,
35,4}

From the diagram, it is clear that I is prealgebraic, i.e., that, for all
T,T ′ ∈ ThSys(I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). Moreover, for all T,T ′ ∈
ThFam(I), if Ω(T ) ≤ Ω(T ′), then

←Ð
T ≤
←Ð
T ′, i.e., I is left reflective. On the
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other hand, setting, T 1 = {{1,3,4,5}}, T 2 = {{2,3,4,5}} and T ′ = {{5}}, we
get

Ω(T 1) ∩Ω(T 2) = {{02,1,3,45}} ∩ {{01,2,35,4}}
= ∆F

≤ {{012,34,5}} = Ω(T ′),
whereas

←Ð
T 1 ∩

←Ð
T 2 = {{3,4,5}} ∩ {{3,4,5}} = {{3,4,5}} ≰ {{5}} =←ÐT ′.

Hence, I is not left completely reflective. Hence to see that I is LRF preal-
gebraizable but not LC prealgebraizable, it suffices to show that it is family
extensional. The verification is routine, but rather tedious. Note that F has
eleven proper and non-trivial universes, namely {{0,1}}, {{0,2}}, {{0,5}},{{0,1,2}}, {{0,1,5}}, {{0,2,5}}, {{0,1,2,5}}, {{0,1,3,5}}, {{0,2,4,5}},{{0,1,2,3,5}} and {{0,1,2,4,5}}. Moreover, it has four proper theory fam-
ilies, T 1 = {{5}}, T 2 = {{3,4,5}}, T 3 = {{1,3,4,5}} and T 4 = {{2,3,4,5}}.
So, one has to check forty-four cases in total which are summarized in the
following table, where each entry in the column labeled by universe F′ and
the row labeled by theory family T shows the congruence system Ω(T )∩F′2 =
ΩF′(T ∩F′) in shorthand block notation.

01 02 05 012 015 025 0125
5 01 02 0,5 012 01,5 02,5 012,5

345 01 02 0,5 012 01,5 02,5 012,5
1345 0,1 02 0,5 02,1 0,1,5 02,5 02,1,5
2345 01 0,2 0,5 01,2 01,5 0,2,5 01,2,5

0135 0245 01235 01245
5 01,3,5 02,4,5 012,3,5 012,4,5

345 01,35 02,45 012,35 012,45
1345 0,1,3,5 02,45 02,1,3,5 02,1,45
2345 01,35 0,2,4,5 01,2,35 01,2,4,5

The second example is an example of an LIF prealgebraizable π-institution
that fails to be LR prealgebraizable. This shows, on the one hand, that the
class of LRF prealgebraizable π-institutions is a proper subclass of the class
of LIF prealgebraizable π-institutions and, on the other, that the class of
LR prealgebraizable π-institutions is a proper subclass of the class of LI
prealgebraizable π-institutions.

Example 346 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 3 and SEN♭(f)(3) = 3;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by the following table:

x 0 1 2 3
σ♭Σ(x) 0 1 1 0

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
I has four theory families, but only three theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

0123 .............................✲ ∇F

123 01,23
.........................⑦

....
....

....
....

.✯

23 01,2,3

....
....

....
....

.✯

3 ∆F

From the diagram, we can see that I is prealgebraic, i.e., that Ω is mono-
tone on ThSys(I) and, also left injective. But I is not left reflective, since

Ω({1,2,3}) ≤ Ω({3}), whereas
←ÐÐÐÐ{1,2,3} = {2,3} ≰ {3} = ←Ð{3}. Therefore, to

see that I is LIF prealgebraizable but not LR prealgebraizable, it suffices to
show that it is family extensional.
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Note that F has three proper and non-singleton universes, {{0,1}}, {{0,3}}
and {{0,1,3}}. Moreover, I has three proper theory families. Thus, we only
have nine cases to check, shown in the following array, which in the row
labeled by theory family T and the column labeled by universe F′ shows the
congruence system Ω(T )∩F′2 = ΩF′(T ∩F′) in an obvious shorthand notation
in terms of blocks.

01 03 013
3 01 0,3 01,3

23 01 0,3 01,3
123 0,1 0,3 0,1,3

We conclude that I is LIF prealgebraizable but not LR prealgebraizable.

The third example is an example of an LIF prealgebraizable π-institution
that fails to be FI prealgebraizable. This shows that the class of FIF prealge-
braizable π-institutions is a proper subclass of the class of LIF prealgebraiz-
able π-institutions and that the class of FI prealgebraizable π-institutions is
a proper subclass of the class of LI prealgebraizable π-institutions.

Example 347 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and two (non-identity)
morphisms f, g ∶ Σ → Σ, such that f ○ f = f , f ○ g = g, g ○ f = f and
g ○ g = g;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2} and,
on morphisms SEN♭(f)(0) = 1, SEN♭(f)(1) = 1, SEN♭(f)(2) = 2 and
SEN♭(g)(0) = 2, SEN♭(g)(1) = 1 and SEN♭(g)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
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I has four theory families, but only three theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

012 ................................................✲ ∇F

�
�
� ❅

❅
❅

02 12 ............................✲ 0,12

❅
❅
❅

...............................................③
�
�
�

2 ..................................................✲ ∆F

From the diagram, we can see that I is prealgebraic and left injective.
But I is clearly not family injective, since the theory families {{2}} and{{0,2}} map to the same congruence system. Therefore, to see that I is
LIF prealgebraizable but not FI prealgebraizable, it suffices to show that it is
family extensional.

Note that F has only one proper and non-singleton universe, {{1,2}},
and three proper theory families {{2}}, {{0,2}} and {{1,2}}. Thus, we only
have three cases to check, shown below in a shorthand notation.

Ω(2) ∩ (12)2 = {1,2} = Ω12(2) = Ω12(2 ∩ 12);
Ω(02) ∩ (12)2 = {1,2} = Ω12(2) = Ω12(02 ∩ 12);
Ω(12) ∩ (12)2 = {12} = Ω12(12) = Ω12(12 ∩ 12).

We conclude that I is LIF prealgebraizable but not FI prealgebraizable.

The last example in this series is an example of an SF prealgebraizable
π-institution that fails to be LI prealgebraizable. This shows that LIF pre-
algebraizable π-institutions form a proper subclass of the class of SF preal-
gebraizable ones and that the class of LI prealgebraizable π-institutions is a
proper subclass of the class of S prealgebraizable ones.

Example 348 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0,1,2,3} and
SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 3 and SEN♭(f)(3) = 3;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by the following table:

x 0 1 2 3
σ♭Σ(x) 3 2 1 0
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Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{3},{2,3},{1,2,3},{0,1,2,3}}.
I has four theory families, but only three theory systems. The lattice of theory
families and the corresponding Leibniz congruence systems are shown in the
diagram.

0123 ...........................✲ ∇F

123 01,23.....................❥....
....

....
....

....
.✯

23 ∆F

....
....

....
....

....
.✯

3

From the diagram, we can see that I is prealgebraic, i.e., that Ω is mono-
tone on ThSys(I) and, also system injective, i.e., Ω is injective on theory
systems. But I is not left injective, since Ω({1,2,3}) = Ω({3}), whereas
←ÐÐÐÐ{1,2,3} = {2,3} ≠ {3} = ←Ð{3}. Therefore, to see that I is SF prealgebraizable
but not LI prealgebraizable, it suffices to show that it is family extensional.

Note that F has only one proper and non-singleton universe, {{0,3}}.
Moreover, I has three proper theory families. Thus, we have only three cases
to check, shown below in shorthand notation:

Ω(3) ∩ {03}2 = {0,3} = Ω03(3) = Ω03(3 ∩ 03);
Ω(23) ∩ {03}2 = {0,3} = Ω03(3) = Ω03(23 ∩ 03);
Ω(123) ∩ {03}2 = {0,3} = Ω03(3) = Ω03(123 ∩ 03).

We conclude that I is SF prealgebraizable but not LI prealgebraizable.
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We now turn to establishing transfer properties for the π-institutions be-
longing to the various classes of the preceding hierarchy. We do this by formu-
lating a comprehensive result encompassing the transference of all ten prop-
erties of the above hierarchy. It is hoped that, despite its all-encompassing
character, the formulation will be sufficiently clear.

Theorem 349 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I belongs to one of the ten prealgebraiz-
ability classes in the prealgebraizability hierarchy if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A, relative to I,
satisfies the properties defining the corresponding class.

For example, I is FIF prealgebraizable if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is monotone on I-filter
systems, injective on I-filter families and family extensional, i.e.,

• for all T,T ′ ∈ FiSysI(A), T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
• for all T,T ′ ∈ ThFamI(A), ΩA(T ) = ΩA(T ′) implies T = T ′;

• for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),
ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).

Proof: First, observe that the “if” is trivially satisfied, since, if the postu-
lated conditions hold for every F-algebraic system, then they hold, in partic-
ular, for F = ⟨F, ⟨I, ι⟩⟩ and this ensures that, by definition, I belongs to the
corresponding prealgebraizability class.

So we turn to the “only if”. First, in all cases I is prealgebraic, i.e., system
monotone, and this property transfers to all F-algebraic systems and I-filter
systems by Theorem 179. Then, depending on whether I belongs to one of
the classes in the upper or the lower hierarchy of the two parallel hierarchies,
it is family or system extensional, respectively. But, by Theorem 314, both
of these properties transfer. Finally, depending on the class I is postulated
to belong to, it satisfies one of the properties of system injectivity, family
injectivity, left injectivity, left reflectivity or left c-reflectivity. The first three
properties transfer by Theorem 214, the fourth transfers by Theorem 225 and
the last transfers by Theorem 240. Therefore, the conclusion holds for each
of the ten prealgebraizability classes in the prealgebraizability hierarchy. ∎

Finally, we turn to characterizations of the classes in the hierarchy in the
form of isomorphism theorems between lattices of theory families/systems
and lattices of congruence systems. We start, first with FIF prealgebraiz-
ability.
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Theorem 350 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is FIF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a bijection which commutes with inverse logical extensions and which re-
stricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 267, characterizing weak FI pre-
algebraizbility. We have that I is FIF prealgebraizable if and only if, by
definition, it is weakly FI prealgebraizable and family extensional if and
only if, by Theorem 267 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a bijection which com-
mutes with inverse logical extensions and which restricts to an order embed-
ding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

FI prealgebraizability is characterized in a similar way, the difference
being that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than being
valid for its operation on the entire collection of I-filter families.

Theorem 351 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is FI prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a bijection which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 350. ∎

We turn now to a similar characterization of SF prealgebraizability.

Theorem 352 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is SF prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A)
commutes with inverse logical extensions and restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
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Proof: The proof is based on Theorem 256, characterizing weak system
prealgebraizability. We have that I is SF prealgebraizable if and only if,
by definition, it is weakly system prealgebraizable and family extensional if
and only if, by Theorem 256 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) commutes with inverse
logical extensions and restricts to an order embedding ΩA ∶ FiSysI(A) →
ConSysI∗(A). ∎

S prealgebraizability is characterized in a similar way, the difference be-
ing that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than to
its operation on the entire collection of I-filter families.

Theorem 353 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is S prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding which commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 352. ∎

We continue with LCF prealgebraizability.

Theorem 354 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LCF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection, which commutes with inverse
logical extensions and which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 276, characterizing weak LC pre-
algebraizbility. We have that I is LCF prealgebraizable if and only if, by
definition, it is weakly LC prealgebraizable and family extensional, if and
only if, by Theorem 276 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a left completely or-
der reflecting surjection, which commutes with inverse logical extensions and
which restricts to an order embedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

LC prealgebraizability is characterized in a similar way, the difference
being that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than to
its operation on the entire collection of I-filter families.
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Theorem 355 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LC prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 354. ∎

A characterization of LRF prealgebraizability in the same spirit follows.

Theorem 356 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LRF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left order reflecting surjection which commutes with inverse logical ex-
tensions and which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 279, characterizing weak LR pre-
algebraizability. We have that I is LRF prealgebraizable if and only if, by
definition, it is weakly LR prealgebraizable and family extensional, if and
only if, by Theorem 279 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI∗(A) is a left order reflecting
surjection which commutes with inverse logical extensions and which restricts
to an order embedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

LR prealgebraizability is characterized in a similar way, the difference
being that commutativity with inverse logical extensions is restricted to the
application of the Leibniz operator on I-filter systems only, rather than to
its operation on the entire collection of I-filter families.

Theorem 357 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LR prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left order reflecting surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.
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Proof: Similar to the proof of Theorem 356. ∎

Finally, along the same lines we obtain a characterization of LIF prealge-
braizability.

Theorem 358 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LIF prealgebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left injective surjection which commutes with inverse logical extensions
and which restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: The proof is based on Theorem 282, characterizing weak LI pre-
algebraizability. We have that I is LIF prealgebraizable if and only if, by
definition, it is weakly LI prealgebraizable and family extensional, if and
only if, by Theorem 282 and Theorem 327, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A)→ ConSysI∗(A) is a left injective surjection
which commutes with inverse logical extensions and which restricts to an
order embedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

And, of course, LI prealgebraizability is characterized in a similar way,
the difference being that commutativity with inverse logical extensions is
restricted to the application of the Leibniz operator on I-filter systems only,
rather than to its operation on the entire collection of I-filter families.

Theorem 359 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is LI prealgebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left injective surjection that restricts to an order embedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
that commutes with inverse logical extensions.

Proof: Similar to the proof of Theorem 358. ∎
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5.6 Algebraizability

Since equivalentiality implies protoalgebraicity, the hierarchy of algebraiz-
able π-institutions, which results from the hierarchy of weakly algebraizable
π-institutions by replacing protoalgebraicity by equivalentiality, is simpler,
reflecting the simplicity of the weak algebraizability hierarchy.

Definition 360 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is family algebraizable, or F Algebraizable for short, if it is
equivalential and family injective, i.e., if it is protoalgebraic, family
extensional and family injective;

• I is (system) algebraizable if it is equivalential and system injective,
i.e., if it is protoalgebraic, family extensional and system injective.

These two classes form the following algebraizability hierarchy:

Family Algebraizable

(System) Algebraizable
❄

It is clear that these two classes are separated exactly by systemicity, as
is shown in the following proposition:

Proposition 361 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I
a π-institution based on F. I is family algebraizable if and only if it is
algebraizable and systemic.

Proof: We have that I is family algebraizable if and only if, by definition,
it is equivalential and family injective if and only if, by Theorem 291 it is
equivalential, systemic and system injective if and only if it is, by definition,
algebraizable and systemic. ∎

We next present an example to show that these two classes are differ-
ent. It consists of an algebraizable π-institution, which fails to be family
algebraizable.

Example 362 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The table yielding the action of ←Ð on theory families is shown below.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The accompanying diagram gives the structure of the lattice of theory families
and the corresponding Leibniz congruence systems.

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

From the diagram one can check that the Leibniz operator is monotone
on theory families and injective on theory systems. Thus, the π-institution is
protoalgebraic and system injective. Moreover, as is shown in the following
table, which summarizes the congruence systems of the form Ω(T ) ∩ ⟨X⟩2 =
Ω⟨X⟩(T ∩⟨X⟩) for the various combinations of nonempty universes and theory
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families, I is family extensional.

⟨X⟩/T 1 b 01 b 1 ab 01 ab
0 a 0 a 0 a 0 a 0 a

0 ab 0 a, b 0 a, b 0 ab 0 ab
1 b 1 b 1 b 1 b 1 b

1 ab 1 a, b 1 a, b 1 ab 1 ab
01 ab 0,1 a, b 0,1 a, b 0,1 ab 01 ab

Therefore, I is clearly equivalential and system injective, i.e., it is algebraiz-
able.

On the other hand, letting T = {{1},{b}} and T ′ = {{0,1},{b}}, we have
Ω(T ) = Ω(T ′), but T ≠ T ′, whence I is not family injective and, therefore, it
is not family algebraizable.

It is not difficult to show, based on preceding work, that both properties
transfer.

Theorem 363 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is algebraizable if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is monotone
on I-filter families, injective on I-filter systems and family extensional, i.e.,

• for all T,T ′ ∈ FiFamI(A), T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
• for all T,T ′ ∈ FiSysI(A), ΩA(T ) = ΩA(T ′) implies T = T ′;

• for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),
ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).

Proof: Suppose, first, that the three conditions hold. Consider the F-
algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is the identity mor-
phism. By hypothesis, Ω is monotone on theory families and family exten-
sional. Thus, I is equivalential. Also by hypothesis, Ω is injective on theory
systems. Therefore, by definition, I is algebraizable.

Assume, conversely, that I is algebraizable. Thus, it is equivalential and
system injective, i.e., its Leibniz operator is monotone on theory families, in-
jective on theory systems and family extensional. Now we use Theorems 179,
214 and 314, which guarantee that monotonicity, injectivity and extension-
ality, respectively, transfer, to conclude that, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator of A is monotone on I-filter families,
injective on I-filter systems and family extensional. ∎

And, similarly, for family algebraizability, we obtain
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Theorem 364 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family algebraizable if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator on A is
monotone and injective on I-filter families and family extensional, i.e.,

• for all T,T ′ ∈ FiFamI(A), T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
• for all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies T = T ′;

• for all Y ∈ SenFam(A) and all T ∈ FiFamI(A),
ΩA(T ) ∩ ⟨Y ⟩2 = Ω⟨Y ⟩(T ∩ ⟨Y ⟩).

Proof: The proof is similar to that given for Theorem 363. It suffices to
observe that family injectivity, like system injectivity, also transfers from the
theory families of a π-institution I to all I-filter families on an arbitrary
F-algebraic system. ∎

We turn now to characterizations of the classes in the algebraizability
hierarchy in terms of order isomorphisms between lattices of filter fami-
lies/systems and lattices of congruence systems that satisfy additional prop-
erties. For algebraizability we have the following characterization.

Theorem 365 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is algebraizable if and only if I is stable
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism that commutes with inverse logical extensions.

Proof: Suppose, first, that I is algebraizable. Then it is weakly algebraizable
and family extensional. Thus, by Theorem 298, I is stable and, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is a lattice isomorphism. Commutativity with inverse logical extensions fol-
lows by family extensionality and Theorems 327 and 328.

Assume, conversely, that I is stable and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A) → ConSysI∗(A) is an order isomorphism
that commutes with inverse logical extensions. Then, again by Theorem
298, we get that I is weakly algebraizable and, by Theorems 328 and 327,
that I is family extensional. It follows, by definition, that I is algebraizable.
∎

For family algebraizability, we get an analogous characterization.
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Theorem 366 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family algebraizable if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism that commutes with inverse logical extensions.

Proof: The proof follows along lines similar to the proof of Theorem 365,
except references to Theorem 298, characterizing weak algebraizability, must
be replaced by referring instead to Theorem 296, which provides a corre-
sponding characterization for weak family algebraizability. ∎

Finally, we note that the two classes sit on top of the prealgebraizability
hierarchy that was studied in the preceding section. Namely, we have the
hierarchy pictured below:

Family Algebraizable

✙✟✟✟✟✟✟
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❯

Algebraizable

✙✟✟✟✟✟✟

LCF PreAlg
❍❍❍❍❍❍❥

LC PreAlg
❄

LRF PreAlg FIF PreAlg
❍❍❍❍❍❍❥

❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟

LR PreAlg
❄

LIF PreAlg FI PreAlg
❄

❍❍❍❍❍❍❥✙✟✟✟✟✟✟

✙✟✟✟✟✟✟

SF PreAlg LI PreAlg
❄

✙✟✟✟✟✟✟

S PreAlg
❄

To separate the classes of the algebraizability from those of the prealge-
braizability hierarchy, we provide an additional example. It is an example
of an LCF and FIF prealgebraizable π-institution which is not algebraizable
and, hence, a fortiori, not family algebraizable either.

Example 367 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The theory family {{1,2}} is not a theory system.
The structure of the lattice of theory families and the corresponding Leib-

niz congruence systems are shown in the diagram.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}

....
....

....
....

....
...✯.......................❥{2} ∆F

Since I is not protoalgebraic, it is clear that I is not algebraizable and, a
fortiori, it is not family algebraizable either. On the other hand, I is pre-
algebraic and both left c-reflective and family injective. So, to see that it is
both LCF and FIF prealgebraizable, it suffices to show that it is also fam-
ily extensional. This is done by computing, for all T ∈ ThFam(I) and all
X ∈ SenFam(I) the congruence systems Ω(T )∩ ⟨X⟩2 and Ω⟨X⟩(T ∩ ⟨X⟩) and
verifying that they are identical. This is detailed in the table below:

⟨X⟩/T 2 12 012
0 0 0 0
2 2 2 2
01 01 0,1 01
02 0,2 0,2 02
012 01,2 0,1,2 012

We conclude that I is family extensional and, therefore, it is, indeed, both
LCF and FIF prealgebraizable.
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The last example shows that the hierarchy depicted in the preceding
diagram consists of pairwise distinct classes of π-institutions.

5.7 The Semantic Systemic Hierarchy

It is worth stopping momentarily to take a look at the semantic hierarchy that
we have studied so far. It has been the case invariably that at each level stud-
ied, all classes were identical if restricted to systemic π-institutions. There-
fore, considering only systemic π-institutions, one can construct a “skeleton”
of the entire hierarchy that is depicted in the accompanying diagram:

Algebraizable

✠�
�
� ❅

❅
❅❘

Equivalential Weakly Algebraizable

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Protoalgebraic c-Reflective

❅
❅
❅❘ ✠�

�
�

Loyal

It is, therefore, clear that, when restricted to systemic π-institutions, one
recovers the fundamental classes and the shape of the well-known Leibniz
hierarchy of propositional logics. We view this as a favorable omen that adds
credibility to our institutional hierarchical investigations and the hierarchies
established through them.
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6.1 Introduction

The study of some of the lowest classes in the Leibniz hierarchy of abstract
algebraic logic presupposes in a certain sense that the logics studied have
theorems. This occurs because the defining conditions of those classes do
not hold for nontrivial logics without theorems. Realizing this shortcoming,
Moraschini, in Chapter 3 of his Doctoral Dissertation [87] (see, also, [89])
introduced and studied weaker versions accommodating logics without the-
orems. Our investigations in this chapter have their origins in Moraschini’s
work, but are suitably adapted to cover logics formalized as π-institutions.
At the π-institution level, an injective, and, hence, a fortiori, a reflective or
completely reflective, π-institution I = ⟨F,C⟩ must have theorems. Other-
wise, both SEN♭ and ∅ are theory families, with Ω(SEN♭) = ∇F = Ω(∅) and
this contradicts injectivity. So, if one wishes to allow, in a context where
injectivity is enforced, π-institutions without theorems, the condition of in-
jectivity must be weakened to either exclude, or bypass in some other way,
theory families with empty components. In this chapter we present two such
attempts. The first is based on the notion of rough equivalence, under which
two theory families are identified if, at those signatures Σ where they dif-
fer, one has an empty and the other a SEN♭(Σ) component. The second,
more straightforward, approach disregards all theory families with at least
one empty component. The collection of theory families all of whose com-
ponents are nonempty is denoted by ThFam (I) and, similarly, ThSys (I)
stands for the collection of all theory systems all of whose components are
nonempty.

In Section 6.2, we introduce the notion of rough equivalence between the-
ory families of a π-institution. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic sys-
tem and I = ⟨F,C⟩ a π-institution based on F. Given a theory family T of I ,
we define its rough companion or associate T̃ to be the theory family resulting
from T by replacing each empty Σ-component by SEN♭(Σ). Then we say that
two theory families T , T ′ are roughly equivalent, written T ∼ T ′, if they have
the same rough companion, i.e., if T̃ = T̃ ′. Rough equivalence is an equiva-
lence relation on theory families. The equivalence class of T is denoted by[̃T ] and the collection of all rough equivalence classes by T̃hFam(I). When
restricted to theory systems, it is still an equivalence relation and the equiv-
alence class of a theory system T is denoted ⌊̃T ⌋, whereas the corresponding
collection of rough equivalence classes by T̃hSys(I). The key observation
making rough equivalence appropriate as a vehicle for defining classes at the
bottom of the Leibniz hierarchy is that, if two theory families are roughly
equivalent, then they have identical associated Leibniz congruence systems.
That is, the Leibniz operator is constant on rough equivalence classes and,
hence, may be viewed as an operator on T̃hFam(I) or on T̃hSys(I), depend-
ing on the context. The remainder of Section 6.2 deals with several technical
issues concerning rough equivalence. First, by definition, T̃ is the largest the-
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ory family in the class [̃T ]. On the other hand, even if T is a theory system,

T̃ may not be one. Nevertheless, ⌊̃T ⌋ still has a largest element, which, in
that case, is clearly different from T̃ . Another drawback is that, even when

T and T ′ are roughly equivalent, it may not be the case that
←Ð
T and

←Ð
T ′ are

roughly equivalent. This introduces some unexpected complications when
studying the Leibniz hierarchies based on roughness and narrowness. On
the positive side, given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and an I-filter

family T ∈ FiFamI(A), we have α̃−1(T ) = α−1(T̃ ). Form this it follows that,
for all T,T ′ ∈ FiFamI(A), if T and T ′ are roughly equivalent, then so are
α−1(T ) and α−1(T ′).

In Section 6.3, we introduce some weakened versions of systemicity ada-
pted to the study of roughness and narrowness. A π-institution is roughly

systemic if, for every theory family T ,
←Ð
T ∼ T . It is called narrowly systemic

if, for every theory family T , with all components nonempty, i.e., such that

T ∈ ThFam (I), ←ÐT = T . Finally, it is called exclusively systemic if, for all

T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I), we have

←Ð
T = T . Systemicity

implies both rough and narrow systemicity, and each of these two implies
exclusive systemicity. On the other hand, for π-institutions having theorems
all four properties become identical.

In Section 6.4, we turn to the study of rough injectivity properties. These
are obtained by combining injectivity with rough equivalence. A π-institution
I is roughly family injective if, for all theory families T and T ′, Ω(T ) = Ω(T ′)
implies T ∼ T ′. I is roughly left injective if the same condition holds, but in

the conclusion T , T ′ are replaced by
←Ð
T ,
←Ð
T ′, respectively. It is roughly right

injective if, similarly, the same condition holds, with T , T ′ in the hypothesis

replaced by
←Ð
T ,
←Ð
T ′, respectively. Finally, I is roughly system injective if the

implication defining rough family injectivity holds, but with T , T ′ allowed
to range over theory systems only, instead of over arbitrary theory fami-
lies. Rough right injectivity is strong enough to imply rough systemicity.
It also implies rough family injectivity, which implies rough system injectiv-
ity. Rough left injectivity also implies rough system injectivity. Moreover,
rough right injectivity is equivalent to rough system injectivity and rough
systemicity, whereas rough system injectivity, coupled with stability, implies
rough left injectivity. All four rough injectivity properties are equivalent to
the corresponding injectivity properties under availability of theorems. In
addition, all four rough injectivity properties transfer. Section 6.4 concludes
with characterizations of the family and system versions in terms of the
Leibniz operator Ω, viewed as a mapping from T̃hFam(I) and T̃hSys(I),
respectively, to ConSys∗(I).

In Section 6.5, we study narrow injectivity properties. These are defined
like the injectivity properties of Section 3.6, but only theory families with all
components nonempty are taken into account. Accordingly, a π-institution
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I is narrowly family injective if, for all theory families T,T ′ ∈ ThFam (I),
Ω(T ) = Ω(T ′) implies T = T ′. In the left version T and T ′ are replaced

in the conclusion by
←Ð
T and

←Ð
T ′, respectively. In the right version the same

replacement occurs in the hypothesis, whereas the system version results by
imposing the same condition as in the family version, but T , T ′ are allowed
to range only over ThSys (I). Narrow right injectivity implies exclusive
systemicity, but does not imply either rough or narrow systemicity. The
narrow injectivity hierarchy recovers the linearity of the injectivity hierarchy,
which was established in Section 3.6. Narrow right injectivity implies the
family version, which implies the left version, which, in turn, implies the
system version. The latter, coupled with narrow systemicity, implies narrow
right injectivity. A comparison is made between corresponding narrow and
rough injectivity properties. The family versions are identical. The left
versions are incomparable. For both right and system versions, the rough
properties imply the corresponding narrow properties. Each of the narrow
injectivity properties is identical to the corresponding injectivity property
in the presence of theorems. In addition, all four of them transfer. The
section concludes by formulating characterization theorems for the family
and system versions in terms of the Leibniz operator seen as a mapping from
ThFam (I) and ThSys (I), respectively, to ConSys∗(I).

In Sections 6.6 and 6.7, we undertake the study of rough and narrow reflec-
tivity properties, respectively, following the format of the study of rough and
narrow injectivity from Sections 6.4 and 6.5. Subsequently, Sections 6.8 and
6.9, still following the same paradigm, present an analogous study of rough
and narrow complete reflectivity properties. A π-institution I is roughly
family reflective if, for all theory families T , T ′, Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′

. Rough left and rough right reflectivity result by replacing T and T ′ in the

conclusion and in the hypothesis, respectively, by
←Ð
T and

←Ð
T ′. Rough system

reflectivity imposes the same condition as the family version, but applies it
only to theory systems. Rough right reflectivity implies rough systemicity.
Moreover, it implies rough family reflectivity, which implies rough system
reflectivity. The left version also implies the system version. Rough right
reflectivity is equivalent to the system version plus rough systemicity and,
furthermore, the system version, augmented by stability, implies rough left
reflectivity. Comparing with previously studied properties, it is fairly obvious
that each version of rough reflectivity implies the corresponding rough injec-
tivity version. In addition, each rough reflectivity version is equivalent to the
corresponding reflectivity version under the existence of theorems. All four
rough reflectivity properties transfer. Finally, characterizations are provided
of rough family and rough system reflectivity in terms of the Leibniz opera-
tor, perceived as a mapping from T̃hFam(I) and T̃hSys(I), respectively, to
ConSys∗(I).

In Section 6.7, we turn to narrow reflectivity. A π-institution I is nar-
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rowly family reflective if, for all theory families T , T ′, with all components
nonempty, Ω(T ) ≤ Ω(T ′) implies T ≤ T ′. As before, in the left version T and

T ′ are replaced in the conclusion by
←Ð
T and

←Ð
T ′, respectively, and, in the right

version the same change is applied in the hypothesis instead. Narrow system
reflectivity stipulates that the same condition as in the family version hold,
but applied only to theory systems with all components nonempty. Narrow
family reflectivity implies exclusive systemicity. In terms of the narrow re-
flectivity hierarchy, the right version is the strongest, followed by the family,
then the left and, finally, the system version. Narrow system reflectivity and
narrow systemicity imply narrow right reflectivity. Comparisons between
the rough reflectivity and the narrow reflectivity classes lead to conclusions
similar to those obtained in the injectivity case. The two family versions are
equivalent, the left versions are incomparable, whereas rough right and rough
system reflectivity imply, respectively, narrow right and narrow system re-
flectivity. Each narrow reflectivity property implies in a straightforward way
the corresponding narrow injectivity property and, moreover, gets identified
with the corresponding reflectivity property in the presence of theorems. All
four narrow reflectivity properties transfer. Finally, the family and system
versions may be characterized in terms of the Leibniz operator, viewed as a
mapping from ThFam (I) and ThSys (I), respectively, to ConSys∗(I).

Section 6.8 starts the study of complete reflectivity with the rough ver-
sions, continued in Section 6.9 with the narrow versions. A π-institution I is
roughly family c-reflective if, for every collection T ∪{T ′} of theory families,

⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ∈T T̃ ≤ T̃ ′. In the left version all theory families
in the conclusion appear in their arrow versions and, in the right version the
same happens in the hypothesis instead. Finally, the system version stipu-
lates that the same condition as in the family version hold, by T ∪{T ′} ranges
over collections of theory systems only. The hierarchy established here mim-
ics the one of rough reflectivity properties. Rough right c-reflectivity implies
the family version, which implies the system version, which is also implied by
rough left c-reflectivity. Rough system c-reflectivity and rough systemicity
together are equivalent to rough right c-reflectivity. Moreover, rough system
c-reflectivity, coupled with stability, implies the left version. It is clear that
each rough c-reflectivity property implies the corresponding rough reflectiv-
ity property and, further, each rough c-reflectivity property is equivalent to
the corresponding c-reflectivity property in the presence of theorems. All
four rough c-reflectivity properties transfer and, as previously, one may for-
mulate characterizations of rough family and rough system c-reflectivity in
terms of Ω, seen as a mapping from T̃hFam(I) and T̃hSys(I), respectively,
to ConSys∗(I).

Section 6.9 continues the study of complete reflectivity by looking at nar-
row c-reflectivity properties. A π-institution I is narrowly family c-reflective
if, for every collection T ∪ {T ′} ⊆ ThFam (I), ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies
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⋂T ≤ T ′. The left and right versions are obtained as before by replacing
all theory families in the conclusion and in the hypothesis, respectively, by
their arrow versions, whereas the system version imposes the condition above
for all T ∪ {T ′} ⊆ ThSys (I). Narrow family c-reflectivity implies exclusive
systemicity. The narrow c-reflectivity hierarchy reflects the structure of the
narrow reflectivity hierarchy. The right version is the strongest, followed by
the family version, then by the left version, while the system version is the
weakest of the four. Narrow system c-reflectivity and narrow systemicity im-
ply narrow right c-reflectivity. Comparisons between the rough and narrow
versions also follow along lines similar to those between rough and narrow
reflectivity properties. The family versions are equivalent, the left versions
are incomparable, whereas for both the right and the system versions, rough
c-reflectivity implies the corresponding narrow c-reflectivity version. Clearly,
each of the four narrow c-reflectivity properties implies the corresponding
narrow reflectivity property. As was the case in the rough setting, each nar-
row c-reflectivity property is identified with the corresponding c-reflectivity
property in the presence of theorems. The section concludes with transfer
theorems and with characterizations of narrow family and narrow system c-
reflectivity via Ω, perceived as a mapping from ThFam (I) and ThSys (I),
respectively, to ConSys∗(I).

As is clear from all features described, if one considers π-institutions
with theorems, the rough and narrow properties become identical to the
corresponding properties studied in Chapter 3. Consequently, presence or
absence of theorems is a critical characteristic underlying the considerations
and hierarchies established in Sections 6.2-6.9. In Section 6.10, the conclud-
ing section of the chapter, we turn to some conditions characterizing the
existence of theorems via the Frege equivalence family and the Lindenbaum
equivalence family operators, introduced in Section 2.11. More precisely, we
show that a π-institution I has theorems if and only if the Frege opera-
tor λ ∶ ThFam(I) → EqvFam(F) is injective. Other equivalent conditions
to the availability of theorems are the injectivity of the Lindenbaum opera-
tor λ̃I ∶ ThFam(I) → EqvFam(F) or, alternatively, its complete reflectivity.
Finally, a π-institution I = ⟨F,C⟩ has theorems if and only if, for every F-
algebraic system A, the induced π-institution ⟨A,CI,A⟩ has theorems. This
constitutes a sort of transfer theorem for the property of possessing theorems.

6.2 Rough Equivalence

Recall from Chapter 3 the injectivity hierarchy, depicted in the following
diagram, lying close to the bottom of the semantic Leibniz hierarchy.
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Right Injective

Family Injective
❄

Left Injective
❄

System Injective
❄

Our goal in this section is to add new classes to the semantic Leibniz
hierarchy that lie below those injectivity classes. We will eventually build
the following hierarchy:

Right Inj

✠�
�
� ❅

❅
❅❘

Family Inj Roughly Right Inj

✠�
�
� ❅

❅
❅❘ ✠�

�
�

Left Inj Roughly Family Inj

✠�
�
� ❅

❅
❅❘

☛✁
✁
✁
✁
✁
✁
✁
✁

System Inj
Roughly

Left Inj❍❍❍❍❍❍❍❍❥
Roughly System Inj

❄

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. Given a theory family T ∈ ThFam(I), the rough
companion or rough associate or rough representative of T , denoted
T̃ , is the theory family of I that results from T after replacing every empty
Σ-component by the corresponding universe SEN♭(Σ). More formally, we set

T̃ = {T̃Σ}Σ∈∣Sign♭∣,
where, for all Σ ∈ ∣Sign♭∣,

T̃Σ = { TΣ, if TΣ ≠ ∅
SEN♭(Σ), if TΣ = ∅

.

The operator ̃ ∶ ThFam(I)→ ThFam(I) is clearly idempotent:

Lemma 368 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =

⟨F,C⟩ be a π-institution based on F. Then, for all T ∈ ThFam(I), ̃̃T = T̃ .
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Proof: We have, by construction, for all Σ ∈ ∣Sign♭∣, T̃Σ ≠ ∅, whence, we

get, by definition,
̃̃
TΣ = T̃Σ. ∎

Define on ThFam(I) the relation ∼ ⊆ ThFam(I)2 of rough equivalence
by setting, for all T,T ′ ∈ ThFam(I),

T ∼ T ′ iff T̃ = T̃ ′.

It is not difficult to see that rough equivalence is indeed an equivalence
relation on the collection of theory families of I , since it is the relational
kernel of the mapping ̃ ∶ ThFam(I) → ThFam(I). We call two theories

T,T ′ ∈ ThFam(I) roughly equivalent if T ∼ T ′. We denote by [̃T ] the
rough equivalence class of a theory family T and let T̃hFam(I) be the col-
lection of all rough equivalence classes of theory families of I .

Since the collection of theory systems of I is a subcollection of the col-
lection of theory families of I , the rough equivalence relation restricts to an
equivalence relation, which we also term rough equivalence, on the collec-
tion ThSys(I). We denote by ⌊̃T ⌋ the rough equivalence class of a theory
system T and let T̃hSys(I) be the collection of all rough equivalence classes
of theory systems of I .

We now introduce a notation that will prove very handy in subsequent
considerations, especially in contexts where the π-institutions under scrutiny
may not have theorems. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system
and I = ⟨F,C⟩ a π-institution based on F. We define:

• ThFam (I) to be the collection of all theory families of I with all
components nonempty.

Note that

ThFam (I) = {T ∈ ThFam(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}
= {T ∈ ThFam(I) ∶ T̃ = T}.

Note, also, that, in case I has theorems, ThFam (I) = ThFam(I).
• ThSys (I) to be the collection of all theory systems of I with all com-

ponents nonempty.

Note that

ThSys (I) = {T ∈ ThSys(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}
= {T ∈ ThSys(I) ∶ T̃ = T}.

Note, again, that, in case I has theorems, ThSys (I) = ThSys(I).
A key result in our use of the rough equivalence relation to define the

semantic hierarchy classes “down under” is the realization that two roughly
equivalent theory families have the same Leibniz congruence family and,
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as a result, the Leibniz operator may be unambiguously applied on rough
equivalence classes of theory families. This follows from the fact that, for
every theory family T , T and T̃ share the same Leibniz congruence system.

Proposition 369 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam(I),
Ω(T ) = Ω(T̃ ).

Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ ΩΣ(T ) and
φ ∈ T̃Σ.

• If TΣ = ∅, then T̃Σ = SEN♭(Σ) and, hence, ψ ∈ T̃Σ;

• If TΣ ≠ ∅, then T̃Σ = TΣ and, hence, by the compatibility of Ω(T ) with
T , we get ψ ∈ TΣ = T̃Σ.

We conclude that Ω(T ) is compatible with T̃ and, hence, Ω(T ) ≤ Ω(T̃ ).
Suppose, conversely, that Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that⟨φ,ψ⟩ ∈ ΩΣ(T̃ ) and φ ∈ TΣ. Then TΣ ≠ ∅, whence T̃Σ = TΣ. Thus, φ ∈ T̃Σ and,

by the compatibility of Ω(T̃ ) with T̃ , we get that ψ ∈ T̃Σ = TΣ. Thus, Ω(T̃ )
is compatible with T and we get Ω(T̃ ) ≤ Ω(T ).

We conclude that, for all T ∈ ThFam(I), Ω(T̃ ) = Ω(T ). ∎

Theorem 370 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T,T ′ ∈ ThFam(I),
T ∼ T ′ implies Ω(T ) = Ω(T ′).

Proof: Let T,T ′ ∈ ThFam(I), such that T ∼ T ′. Then, by definition, T̃ = T̃ ′.
Thus, we get, by Proposition 369,

Ω(T ) = Ω(T̃ ) = Ω(T̃ ′) = Ω(T ′)
and T and T ′ have, indeed, the same Leibniz congruence system. ∎

We define, next, an ordering relation on the rough equivalence classes of
theory families of a π-institution I . But we start by looking at maximal
elements.

Proposition 371 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every T ∈ ThFam(I),
T̃ =max [̃T ].
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Proof: Let T ∈ ThFam(I) and consider T ′ ∈ [̃T ]. Then, clearly, T ′ ≤ T̃ ′ = T̃ .

Therefore, T̃ is a maximum element in [̃T ]. ∎

What is, perhaps, more surprising is that each rough equivalence class in
ThSys(I) also has a maximum element. First, we show that it has maxi-
mal elements and then prove that there cannot exist two different maximal
elements and, hence, that it has a maximum element.

Proposition 372 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =
⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThSys(I), ⌊̃T ⌋ has a
maximal element.

Proof: Let T ∈ ThSys(I). We show that every chain in ⌊̃T ⌋ has an up-

per bound in ⌊̃T ⌋. Then the conclusion follows by applying Zorn’s Lemma.

Assume that {T i ∶ i ∈ I} is a chain in ⌊̃T ⌋. We consider ⋃i∈I T i.

• ⋃i∈I T i ∈ ThFam(I): Let Σ ∈ ∣Sign♭∣. If, for some j ∈ I, T jΣ ≠ ∅ and
T
j
Σ ≠ SEN♭(Σ), then, since all members of {T i ∶ i ∈ I} are roughly

equivalent, we have ⋃i∈I T iΣ = T
j
Σ is a Σ-theory. If, on the other hand,

T iΣ = ∅, for all i ∈ I, then ⋃i∈I T iΣ = ∅ = T
i
Σ, which is again a Σ-theory.

Finally, if, for some i ∈ I, T i = SEN♭(Σ), then ⋃i∈I T iΣ = SEN♭(Σ), which
is again a Σ-theory. Therefore, we conclude that ⋃i∈I T i ∈ ThFam(I).

• ⋃i∈I T i ∈ ThSys(I): Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ ∈
SEN♭(Σ), such that φ ∈ ⋃i∈I T iΣ. Then, for some i ∈ I, φ ∈ T iΣ. Since
T i ∈ ThSys(I), we have SEN♭(f)(φ) ∈ T iΣ′ and, therefore, SEN♭(f)(φ) ∈
⋃i∈I T iΣ′ . We conclude that ⋃i∈I T i ∈ ThSys(I).

• ⋃i∈I T i ∼ T : Let Σ ∈ ∣Sign♭∣. If ⋃i∈I T iΣ = ∅, then T iΣ = ∅, for all i ∈ I,

and hence, T̃ iΣ = SEN♭(Σ). Therefore, ⋃̃i∈I T iΣ = SEN♭(Σ) = T̃ iΣ.

Suppose, next, that ⋃i∈I T iΣ ≠ ∅. Thus, there exists j ∈ I, such that
T
j
Σ ≠ ∅. If there exists i ∈ I, such that T iΣ = SEN♭(Σ), then ⋃i∈I T iΣ =

SEN♭(Σ), whence

(⋃̃
i∈I

T i)Σ = SEN♭(Σ) = T̃ iΣ.

So assume that T iΣ ≠ SEN♭(Σ), for all i ∈ I. Then, we conclude that
T
j
Σ ≠ ∅,SEN♭(Σ) and, therefore, since all T i’s are roughly equivalent,
T iΣ = T

j
Σ, for all i ∈ I. Then ⋃i∈I T iΣ = T

j
Σ and, therefore,

(⋃̃
i∈I

T i)Σ = T jΣ = T̃ jΣ.

Thus, ⋃̃i∈I T i = T̃ and we conclude that ⋃i∈I T i ∈ ⌊̃T ⌋.
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Therefore, ⋃i∈I T i is clearly an upper bound of {T i ∶ i ∈ I} in ⌊̃T ⌋. By Zorn’s

Lemma, we conclude that ⌊̃T ⌋ has a maximal element. ∎

Now we show that in a rough equivalence class in ThSys(I), there can-
not exist two different maximal elements and, therefore, that every rough
equivalence class in ThSys(I) has a maximum element.

Theorem 373 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =
⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThSys(I), ⌊̃T ⌋ has a
maximum element.

Proof: The proof is quite similar to the proof of Proposition 372. The key
is to show that, if T ′, T ′′ ∈ ThSys(I), such that T ′ ∼ T ′′, then T ′ ∪ T ′′ ∈
ThSys(I), such that T ′ ∪ T ′′ ∼ T . So, unless T ′ = T ′′, not both can be

maximal in ⌊̃T ⌋.
• T ′ ∪ T ′′ ∈ ThFam(I): Let Σ ∈ ∣Sign♭∣. If T ′Σ ≠ ∅,SEN♭(Σ) and T ′′Σ ≠
∅,SEN♭(Σ), then, since T ′ ∼ T ′′, T ′Σ = T ′′Σ . Thus, T ′Σ ∪ T

′′
Σ = T

′
Σ and,

hence, it is a Σ-theory. If T ′Σ = T
′′
Σ = ∅, then T ′Σ∪T

′′
Σ = ∅, which is again

a Σ-theory. Otherwise, T ′Σ ∪ T
′′
Σ = SEN♭(Σ), which is also a Σ-theory.

• T ′ ∪T ′′ ∈ ThSys(I): Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), φ ∈ SEN♭(Σ),
such that φ ∈ T ′Σ ∪ T ′′Σ . Then φ ∈ T ′Σ or φ ∈ T ′′Σ . In the first case,
SEN♭(f)(φ) ∈ T ′Σ′ and, in the second, SEN♭(f)(φ) ∈ T ′′Σ′ . In either case,
SEN♭(f)(φ) ∈ T ′Σ′ ∪ T ′′Σ′ . Thus, T ′ ∪ T ′′ ∈ ThSys(I).

• T ′ ∪ T ′′ ∼ T : Let Σ ∈ ∣Sign♭∣. If T ′Σ ∪ T
′′
Σ = ∅, then T ′Σ = T

′′
Σ = ∅. So

T̃ ′ ∪ T ′′Σ = SEN♭(Σ) = T̃ ′Σ = T̃Σ.

If T ′Σ ∪ T
′′
Σ ≠ ∅, then T ′Σ ≠ ∅ or T ′′Σ ≠ ∅, say, without loss of generality,

T ′Σ ≠ ∅. If T ′Σ ≠ SEN♭(Σ), then, since T ′ ∼ T ′′, T ′Σ = T ′′Σ and, hence

T ′Σ ∪ T
′′
Σ = T

′
Σ and we have T̃ ′ ∪ T ′′Σ = T ′Σ = T̃ ′Σ = T̃Σ. If, on the other

hand, T ′Σ = SEN♭(Σ), then T ′Σ ∪ T ′′Σ = SEN♭(Σ), whence T̃ ′ ∪ T ′′Σ =
SEN♭(Σ) = T̃ ′Σ = T̃Σ.

Therefore T ′∪T ′′ ∈ ThSys(I) and T ′∪T ′′ ∼ T . We conclude that all maximal

elements in ⌊̃T ⌋ must be equal, i.e., ⌊̃T ⌋ has a maximum element. ∎

It is worth noting, however, that the maximum element of a class ⌊̃T ⌋may

not be T̃ =max [̃T ], since this theory family may not be a theory system.

Example 374 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0}} and CΣ′ = {∅,{b},{a, b}}.
There are six theory families, but only four theory systems. The action

of ←Ð on theory families is given in the table below.

T
←Ð
T

∅,∅ ∅,∅
0,∅ ∅,∅
∅, b ∅, b
0, b ∅, b
∅, ab ∅, ab
0, ab 0, ab

The complete lattice of theory families is shown on the left:

0, ab 0, ab

�
�
� ❅

❅
❅

0, b ∅, ab ∅, ab

�
�
� ❅

❅
❅ �

�
�

0,∅ ∅, b ∅, b

❅
❅
❅ �

�
�

∅,∅ ∅,∅

That of the theory systems is shown on the right. Now note that

max ̃⌊{∅,{b}}⌋ = {∅,{b}},
whereas ̃{∅,{b}} = {{0},{b}} ∉ ThSys(I).
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For what follows, we also need to point out the fact that, roughly speak-
ing, the ∼ operator does not interact smoothly with the ←Ð operator. More
precisely, for arbitrary π-institutions, and theory families T,T ′,

the relation T ∼ T ′ does not imply, in general, that
←Ð
T ∼←ÐT ′.

We showcase the potential failure by giving a counterexample to the state-
ment, for all T,T ′ ∈ ThFam(I),

T ∼ T ′ implies
←Ð
T ∼ ←ÐT ′.

Example 375 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
There are nine theory families, but only five theory systems. The action

of ←Ð on theory families is given in the table below.

T
←Ð
T T

←Ð
T

∅,∅ ∅,∅ ∅, ab ∅, ab
1,∅ ∅,∅ 01, b ∅, b
∅, b ∅, b 1, ab 1, ab

01,∅ ∅,∅ 01, ab 01, ab
1, b ∅, b
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The lattice of theory families of I is shown in the diagram.

01, ab

�
� ❅

❅

01, b 1, ab

�
� ❅

❅ �
� ❅

❅

01,∅ 1, b ∅, ab

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, b

❅
❅ �

�

∅,∅

Consider T = {{1},{a, b}} and T ′ = {{1},∅}. We clearly have T̃ = T̃ ′ = T ,
whence T ∼ T ′. On the other hand,

←Ð
T = T ≁ {∅,∅} = ←ÐT ′.

Therefore, even though T ∼ T ′, it is not the case that
←Ð
T ∼←ÐT ′.

To establish some transfer theorems for the classes to be introduced
shortly, we need a few results pertaining to the interaction of rough equiv-
alence with inverse images. Key to these considerations is the following
technical lemma to the effect that a filter family has an empty component if
and only if its inverse theory family has a corresponding empty component.
This is a relatively easy consequence of the surjectivity of interpretation mor-
phisms.

Lemma 376 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). Then, for all Σ ∈ ∣Sign♭∣,

TF (Σ) = ∅ iff α−1Σ (TF (Σ)) = ∅.
Proof: Let T ∈ FiFamI(A) and Σ ∈ ∣Sign♭∣. If TF (Σ) = ∅, then, obviously,
α−1(TF (Σ)) = ∅. If, conversely, α−1Σ (TF (Σ)) = ∅, then, by surjectivity of ⟨F,α⟩,
TF (Σ) = αΣ(α−1Σ (TF (Σ))) = αΣ(∅) = ∅. ∎

We can now show that the maximum α̃−1(T ) of the rough equivalence
class of the theory family α−1(T ) in the π-institution I coincides with the
inverse image α−1(T̃ ) of the maximum T̃ of the rough equivalence class of
the I-filter family T of A in FiFamI(A).
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Theorem 377 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). Then

α̃−1(T ) = α−1(T̃ ).
Proof: Let T ∈ FiFamI(A) and Σ ∈ ∣Sign♭∣. We separate two cases depend-
ing on whether or not α−1Σ (TF (Σ)) = ∅.

• Suppose α−1Σ (TF (Σ)) = ∅. Then, by Lemma 376, we get TF (Σ) = ∅.
Thus, we get

α̃−1(T )Σ = SEN♭(Σ) = α−1Σ (SEN(F (Σ))) = α−1Σ (T̃F (Σ)).
• Suppose α−1Σ (TF (Σ)) ≠ ∅. Then, by Lemma 376, we get TF (Σ) ≠ ∅.

Thus, we get

α̃−1(T )Σ = α−1Σ (TF (Σ)) = α−1Σ (T̃F (Σ)).
In either case, we have α̃−1(T )Σ = α−1Σ (T̃F (Σ)). Therefore, we get α̃−1(T ) =
α−1(T̃ ). ∎

This implies that rough equivalence interacts smoothly with inverse im-
ages. More precisely, given two I-filter families T,T ′ ∈ FiFamI(A), T ∼ T ′ in
FiFamI(A) if and only if α−1(T ) ∼ α−1(T ′) in ThFam(I). Contrast this with
the rather rocky interaction between rough equivalence and the ←Ð operator,
as detailed before (and in) Example 375.

Corollary 378 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T,T ′ ∈
FiFamI(A). Then

T ∼ T ′ iff α−1(T ) ∼ α−1(T ′).
Proof: Let T,T ′ ∈ FiFamI(A). We get

α−1(T ) ∼ α−1(T ′) iff α̃−1(T ) = α̃−1(T ′) (Definition of ∼)
iff α−1(T̃ ) = α−1(T̃ ′) (Theorem 377)

iff T̃ = T̃ ′ (Surjectivity of ⟨F,α⟩)
iff T ∼ T ′. (Definition of ∼)

This establishes the conclusion. ∎
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6.3 Roughness and Systemicity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. Recall that I was called systemic if all its theory
families are theory systems. This can be expressed in symbols by writing
ThFam(I) = ThSys(I) or, alternatively, by the assertion that, for all T ∈
ThFam(I), ←ÐT = T .

We now introduce three other systemicity properties that are inspired
by the original, but avoid in some way the consideration of theory families
with empty components or take into account the rough equivalence relation
between theory families.

• We say that I is roughly systemic if, for all T ∈ ThFam(I), ←ÐT ∼ T ;

• We say that I is narrowly systemic if, for all T ∈ ThFam (I),←ÐT = T ;

• We say that I is exclusively systemic if, for all T ∈ ThFam (I),
such that

←Ð
T ∈ ThSys (I), ←ÐT = T .

The inclusions between these four classes are straightforward and re-
counted in the following

Proposition 379 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) If I is systemic, then it is both roughly and narrowly systemic;

(b) If I is roughly systemic, then it is exclusively systemic;

(c) If I is narrowly systemic, then it is exclusively systemic.

Proof:

(a) Suppose that I is systemic. If T ∈ ThFam(I), then T =
←Ð
T . Thus,

T̃ =
←̃Ð
T , i.e., T ∼ ←ÐT and, hence, I is roughly systemic. On the other

hand, if T ∈ ThFam (I), then, since ThFam (I) ⊆ ThFam(I), we get,

by hypothesis,
←Ð
T = T . Thus, I is also narrowly systemic.

(b) Suppose that I is roughly systemic. Let T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I). Since ThFam (I) ⊆ ThFam(I), we get, by hypoth-

esis,
←Ð
T ∼ T , i.e.,

←̃Ð
T = T̃ . However, since T ∈ ThFam (I) and

←Ð
T ∈

ThSys (I), we conclude that
←Ð
T =
←̃Ð
T = T̃ = T . Thus, I is exclusively

systemic.
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(c) Suppose I is narrowly systemic. Then, by hypothesis, for all T ∈
ThFam (I) and, therefore, a fortiori, for all such T , such that

←Ð
T ∈

ThSys (I), we get that
←Ð
T = T . Hence, I is exclusively systemic.

∎

Proposition 379 establishes the following hierarchy of roughness and sys-
temicity properties:

Systemic

✠�
�
� ❅

❅
❅❘

Roughly Systemic Narrowly Systemic

❅
❅
❅❘ ✠�

�
�

Exclusively Systemic

A related result, which partially explains the introduction of the roughness
and systemicity classes and which, in fact, forms the undercurrent of much
of the ideas underlying developments in the entire chapter, assures that all
three bottom properties actually coincide with systemicity itself, in case the
π-institution under consideration has theorems.

Proposition 380 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is exclusively systemic and has
theorems, then it is systemic.

Proof: Suppose I has theorems. Then ThFam (I) = ThFam(I), and

ThSys (I) = ThSys(I). Moreover, for all T ∈ ThFam(I), ←ÐT ∈ ThSys(I) =
ThSys (I). Therefore, the defining condition of exclusive systemicity is

equivalent to asserting that, for all T ∈ ThFam(I), ←ÐT = T , i.e., it is equivalent
to systemicity. ∎

We present two examples that will show that all four classes in the rough-
ness and systemicity hierarchy depicted above are indeed different. The first
example shows that the southwest arrows represent proper inclusions, i.e.,

• Systemic π-institutions form a proper subclass of roughly systemic π-
institutions;

• Exclusively systemic π-institutions form a proper subclass of narrowly
systemic π-institutions.

This is accomplished by presenting a π-institution which is roughly systemic
but fails to be narrowly systemic.

Example 381 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0}} and CΣ′ = {∅,{b},{a, b}}.
There are six theory families, but only four theory systems. The action

of ←Ð on theory families is given in the table below.

T
←Ð
T

∅,∅ ∅,∅
0,∅ ∅,∅
∅, b ∅, b
0, b ∅, b
∅, ab ∅, ab
0, ab 0, ab

The complete lattice of theory families is shown on the left, whereas that
of the theory systems is shown on the right.

0, ab 0, ab

�
�
� ❅

❅
❅

0, b ∅, ab ∅, ab

�
�
� ❅

❅
❅ �

�
�

0,∅ ∅, b ∅, b

❅
❅
❅ �

�
�

∅,∅ ∅,∅
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To check that this π-institution is roughly systemic, it is only necessary to

focus on theory families T for which
←Ð
T ≠ T . There are two such, namely

T = {{0},∅} and T = {{0},{b}}. We have (using obvious shorthand):

←̃ÐÐ
0,∅ = ∅̃,∅ = 0, ab = 0̃,∅;
←̃Ð
0, b = ∅̃, b = 0, b = 0̃, b.

Thus, I is indeed roughly systemic. On the other hand, for the theory T =
{{0},{b}} above, we have T ∈ ThFam (I) and, moreover,

←Ð
T = {∅,{b}} ≠ T .

Hence, I fails to be narrowly systemic.

The second example shows that the southeast arrows represent proper
inclusions, i.e.,

• The class of systemic π-institutions is a proper subclass of that of nar-
rowly systemic π-institutions;

• The class of roughly systemic π-institutions forms a proper subclass of
that of exclusively systemic π-institutions.

It exhibits a π-institution which is narrowly systemic but not roughly sys-
temic.

Example 382 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a}
and SEN♭(f)(0) = SEN♭(f)(1) = a;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{a}}.
Clearly, there are six theory families in ThFam(I), only four of which

are theory systems, and only two of which are in ThFam (I). The lattice of
theory families is shown in the diagram:

01, a

�
�
� ❅

❅
❅

01,∅ 1, a

❅
❅
❅ �

�
� ❅

❅
❅

1,∅ ∅, a

❅
❅
❅ �

�
�

∅,∅

Since ThFam (I) = {{1, a},{01, a}} and
←Ð
1, a = 1, a and

←ÐÐ
01, a = 01, a, we get

that I is narrowly systemic. On the other hand, consider T = {{1},∅}. We
have

←̃ÐÐ
1,∅ = ∅̃,∅ = 01, a ≠ 1, a = 1̃,∅,

whence,
←ÐÐ
1,∅ ≁ 1,∅ and, hence, I is not roughly systemic.

Finally, it is not difficult to show that rough systemicity implies stability.

Lemma 383 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly systemic, then it is stable.

Proof: Suppose I is roughly systemic and let T ∈ ThFam(I). Then, by

rough systemicity,
←Ð
T ∼ T , i.e.,

←̃Ð
T = T̃ . Therefore, using Proposition 369, we

get Ω(←ÐT ) = Ω(←̃ÐT ) = Ω(T̃ ) = Ω(T ). This shows that I is stable. ∎

6.4 Rough Injectivity

In this section we study classes of π-institutions defined using injectivity
properties of the Leibniz operator applied on rough equivalence classes.

Definition 384 (Rough Injectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an al-
gebraic system and I = ⟨F,C⟩ be a π-institution based on F.
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• I is called roughly family injective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies T ∼ T ′;

• I is called roughly left injective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies

←Ð
T ∼←ÐT ′.

• I is called roughly right injective if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT ) = Ω(←ÐT ′) implies T ∼ T ′.

• I is called roughly system injective if, for all T,T ′ ∈ ThSys(I),
Ω(T ) = Ω(T ′) implies T ∼ T ′.

Recall that, given a π-institution I = ⟨F,C⟩, based on an algebraic system
F = ⟨Sign♭,SEN♭,N ♭⟩, we say that I is roughly systemic if, for all T ∈
ThFam(I), ←ÐT ∼ T . In an analog of Lemma 207, we show that rough right
injectivity implies rough systemicity and, hence, by Theorem 370, stability.

Lemma 385 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly right injective, then it
is roughly systemic.

Proof: Suppose that I is roughly right injective and let T ∈ ThFam(I).
Then, we have, by Proposition 42, that

←Ð←Ð
T =
←Ð
T . Therefore, we get Ω(←Ð←ÐT ) =

Ω(←ÐT ). Hence, by rough right injectivity, we get that
←Ð
T ∼ T . Hence I is

roughly systemic. ∎

We give another example to show that the converse of Lemma 385 does
not hold in general. That is, that there exists a roughly systemic π-institution
that is not roughly right injective.

Example 386 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the three unary natural transformations
σ♭, τ ♭, ρ♭ ∶ SEN♭ → SEN♭ given by the following table:

x σ♭Σ(x) τ ♭Σ(x) ρ♭Σ(x)
0 0 0 0
1 2 1 0
2 2 1 2
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
I has theorems and, therefore, rough equivalence coincides with the iden-

tity relation on ThFam(I). Moreover, since Sign♭ is trivial, I is systemic.

These observations imply that, for all T ∈ ThFam(I), T ∼ ←ÐT and, hence, I
is roughly systemic.

On the other hand, the lattice of theory families of I and the corresponding
Leibniz congruence systems are given in the diagram.

012 ............................✲ ∇F

�
�
� ❅

❅
❅

02 12

❅
❅
❅

..................................q
�
�
�

.......❘
2 ..............................✲ ∆F

Since

Ω(←ÐÐÐÐ{{0,2}}) = Ω({{0,2}}) =∆F = Ω({{1,2}}) = Ω(←ÐÐÐÐ{{1,2}}),
whereas {{0,2}} ≁ {{1,2}}, we get that I is not roughly right injective.

Next we look into establishing the rough injectivity hierarchy of π-in-
stitutions. The following relationships can be established between the four
rough injectivity classes.

Proposition 387 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is roughly right injective, then it is roughly family injective;

(b) If I is roughly family injective, then it is roughly system injective;
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(c) If I is roughly left injective, then it is roughly system injective.

Proof:

(a) Suppose that I is roughly right injective and let T,T ′ ∈ ThFam(I),
such that Ω(T ) = Ω(T ′). By Lemma 385, I is roughly systemic, whence
←Ð
T ∼ T and

←Ð
T ′ ∼ T ′. Thus, by Theorem 370, we get

Ω(←ÐT ) = Ω(T ) = Ω(T ′) = Ω(←ÐT ′).
Now applying rough right injectivity gives T ∼ T ′. Hence, I is roughly
family injective.

(b) Suppose that I is roughly family injective and let T,T ′ ∈ ThSys(I),
such that Ω(T ) = Ω(T ′). Then, by rough family injectivity, we get
T ∼ T ′. Therefore, I is roughly system injective.

(c) Suppose that I is roughly left injective and let T,T ′ ∈ ThSys(I), such

that Ω(T ) = Ω(T ′). By rough left injectivity, we conclude that
←Ð
T ∼←ÐT ′.

However, since T,T ′ are theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′.

Hence we get T ∼ T ′ and I is roughly system injective.
∎

We have now established the following rough injectivity hierarchy of
π-institutions.

Roughly R Injective...........................❥
Roughly L Injective Roughly F Injective

❄
Roughly Systemic

❍❍❍❍❍❍❍❍❍❍❥
Roughly S Injective

❄

We formulate, next, two additional properties concerning the relation-
ships between rough injectivity classes. First, it turns out that the separat-
ing property between rough right injectivity and rough system injectivity is
exactly rough systemicity.

Proposition 388 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly right injective if and only if
it is roughly system injective and roughly systemic.
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Proof: Suppose, first, that I is roughly right injective. Then, by Lemma 385,
it is roughly systemic and by Proposition 387 it is roughly system injective.

Suppose conversely, that I is roughly system injective and roughly sys-

temic and let T,T ′ ∈ ThFam(I), such that Ω(←ÐT ) = Ω(←ÐT ′). By rough system

injectivity and Proposition 42, we get
←Ð
T ∼ ←ÐT ′. Hence, by rough systemicity,

T ∼←ÐT ∼←ÐT ′ ∼ T ′. Thus, I is roughly right injective. ∎

Second, we show that rough system injectivity together with stability
imply rough left injectivity.

Proposition 389 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system injective and stable,
then it is roughly left injective.

Proof: Suppose that I is roughly system injective and stable and consider

T,T ′ ∈ ThFam(I), such that Ω(T ) = Ω(T ′). Then, by stability, Ω(←ÐT ) =
Ω(←ÐT ′). Hence, since

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), by rough system injectivity,

←Ð
T ∼ ←ÐT ′.

This shows that I is roughly left injective. ∎

Even though rough left injectivity does imply rough system injectivity, as
was shown in Proposition 387, rough left injectivity does not imply stability
in general, as is shown in the following example, and, hence, the converse of
Proposition 389 fails in general.

Example 390 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅}, {{1}} and {{0,1}}, but only two the-

ory systems, {∅} and {{0,1}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

The only theory families for which Ω(T ) = Ω(T ′) are T = {{0,1}} and T ′ =
{∅}. For those, we get

←Ð
T = T ∼ T ′ =←ÐT ′. Therefore, I is roughly left injective.

On the other hand, we get Ω(←ÐÐÐ{{1}}) = Ω({∅}) = ∇F ≠ ∆F = Ω({{1}}).
Therefore, I is not a stable π-institution.

We now present three examples to show that all inclusions established be-
tween rough injectivity classes and depicted in the diagram above are proper
inclusions. The first example will show that the class of roughly right injec-
tive π-institutions is a proper subclass of the class of roughly family injective
π-institutions.

Example 391 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
Since I has theorems, rough equivalence on ThFam(I) coincides with the
identity relation.

The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}
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Since {{1,2}} is a theory family that is not a theory system, I is not systemic.
Thus, rough equivalence being the identity, I is not roughly systemic and,
hence, by Lemma 385, I is not roughly right injective.

The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

It is obvious from the diagram that I is family injective, and therefore, rough
equivalence being the identity, it is also roughly family injective.

Returning more explicitly to right rough injectivity, note that for T =
{{2}} and T ′ = {{1,2}}, we have

←Ð
T = T =

←Ð
T ′, whence Ω(←ÐT ) = Ω(←ÐT ′),

whereas, obviously, T ≠ T ′ and, hence, T ≁ T ′.

The second example shows that there exists a roughly left injective π-
institution that is not roughly family injective.

Example 392 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Again, since I has theorems, rough equivalence coincides with the identity
relation on ThFam(I).

The following table shows the action of ←Ð on theory families, where rows

correspond to TΣ and columns to TΣ′ and each entry is written as
←Ð
T Σ,
←Ð
T Σ′.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

Since the only two theory families that have the same Leibniz congruence
system are {{0,1},{b}} and {{1},{b}} and it holds that

←ÐÐÐÐÐÐÐ{{0,1},{b}} =←ÐÐÐÐÐÐ{{1},{b}} = {{1},{b}},
we conclude that I is left injective. Moreover, since rough equivalence coin-
cides with the identity, I is also roughly left injective.

From the diagram, it is also clear that I is not family injective, since
the two theory families {{0,1},{b}} and {{1},{b}} have the same Leibniz
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congruence system. The same counterexample, keeping in mind the fact that
rough equivalence coincides with the identity, showcases that I is not roughly
family injective either.

The third example shows that there exists a roughly family injective π-
institution that is not roughly left injective. Combined with the preceding
example, it has the effect of establishing the following facts:

• The classes of roughly family injective and roughly left injective π-
institutions are incomparable. Contrast this with the case of injectivity,
where family injectivity implies left injectivity.

• The class of roughly family injective π-institutions is properly contained
in the class of roughly system injective π-institutions.

• Similarly, the class of roughly left injective π-institutions is a proper
subclass of the class of roughly system injective π-institutions.

Example 393 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
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There are nine theory families, but only five theory systems. The action
of ←Ð on theory families is given in the table below.

T
←Ð
T T

←Ð
T

∅,∅ ∅,∅ ∅, ab ∅, ab
1,∅ ∅,∅ 01, b ∅, b
∅, b ∅, b 1, ab 1, ab

01,∅ ∅,∅ 01, ab 01, ab
1, b ∅, b

The lattice of theory families of I is shown in the diagram.

01, ab

�
� ❅

❅

01, b 1, ab

�
� ❅

❅ �
� ❅

❅

01,∅ 1, b ∅, ab

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, b

❅
❅ �

�

∅,∅

We show that I is roughly family injective. The following table summarizes
the theory families together with their associated Leibniz congruence systems.

T Ω(T ){∅,∅},{01,∅},{∅, ab},{01, ab} ∇F

{∅, b},{01, b} {∇F
Σ,∆

F
Σ′}{1,∅},{1, ab} {∆F

Σ,∇
F
Σ′}{1, b} ∆F

Since, every row on the left column of this table contains roughly equivalent
theory families, we conclude that I is roughly family injective.

On the other hand, consider T = {1, ab} and T ′ = {1,∅}. We have

←Ð
T = {1, ab} ≁ {∅,∅} =←ÐT ′,

but

Ω(T ) = Ω({1, ab}) = {∆F
Σ,∇

F
Σ′} = Ω({1,∅}) = Ω(T ′).

We conclude that I is not roughly left injective.
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We now clarify the connections between rough injectivity and injectivity
classes. It turns out that membership in an injectivity class implies mem-
bership in the corresponding rough injectivity class and, also, possession of
theorems. Conversely, membership in a rough injectivity class plus possession
of theorems entails membership in the corresponding injectivity class.

Theorem 394 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is right injective if and only if it is roughly right injective and has
theorems;

(b) I is family injective if and only if it is roughly family injective and has
theorems;

(c) I is left injective if and only if it is roughly left injective and has theo-
rems;

(d) I is system injective if and only if it is roughly system injective and
has theorems.

Proof:

(a) Suppose that I is right injective. First, note that Ω(←ÐÐÐSEN♭) = Ω(SEN♭) =
∇F = Ω(∅) = Ω(←Ð∅ ). Thus, if I does not have theorems, SEN♭ = ∅, a
contradiction. Therefore, I has theorems. Second, if T,T ′ ∈ ThFam(I),
such that Ω(←ÐT ) = Ω(←ÐT ′), then, by right injectivity, T = T ′ and, hence,
T ∼ T ′. Thus, I is roughly right injective.

Assume, conversely, that I is roughly right injective and has theorems.

Let T,T ′ ∈ ThFam(I), such that Ω(←ÐT ) = Ω(←ÐT ′). Then, by rough right
injectivity, we get T ∼ T ′. On the other hand, since I has theorems,
rough equivalence collapses to the identity relation, whence T = T ′.
Therefore, I is right injective.

(b) Suppose that I is family injective. First, note that Ω(SEN♭) = ∇F =
Ω(∅). Thus, if I does not have theorems, SEN♭ = ∅, a contradiction.
Therefore, I has theorems. Second, if T,T ′ ∈ ThFam(I), such that
Ω(T ) = Ω(T ′), then, by family injectivity, T = T ′ and, hence, T ∼ T ′.
Thus, I is roughly family injective.

Assume, conversely, that I is roughly family injective and has theorems.
Let T,T ′ ∈ ThFam(I), such that Ω(T ) = Ω(T ′). Then, by rough family
injectivity, we get T ∼ T ′. On the other hand, since I has theorems,
rough equivalence collapses to the identity relation, whence T = T ′.
Therefore, I is family injective.
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(c) Suppose that I is left injective. First, note that Ω(SEN♭) = ∇F =

Ω(∅). Thus, if I does not have theorems, SEN♭ =
←ÐÐÐ
SEN♭ = ←Ð∅ = ∅, a

contradiction. Therefore, I has theorems. Second, if T,T ′ ∈ ThFam(I),
such that Ω(T ) = Ω(T ′), then, by left injectivity,

←Ð
T =
←Ð
T ′ and, hence,

←Ð
T ∼ ←ÐT ′. Thus, I is roughly left injective.

Assume, conversely, that I is roughly left injective and has theorems.
Let T,T ′ ∈ ThFam(I), such that Ω(T ) = Ω(T ′). Then, by rough left

injectivity, we get
←Ð
T ∼ ←ÐT ′. On the other hand, since I has theorems,

rough equivalence collapses to the identity relation, whence
←Ð
T =

←Ð
T ′.

Therefore, I is left injective.

(d) Suppose that I is system injective. First, note that Ω(SEN♭) = ∇F =
Ω(∅). Thus, if I does not have theorems, SEN♭ = ∅, a contradiction.
Therefore, I has theorems. Second, if T,T ′ ∈ ThSys(I), such that
Ω(T ) = Ω(T ′), then, by system injectivity, T = T ′ and, hence, T ∼ T ′.
Thus, I is roughly system injective.

Assume, conversely, that I is roughly system injective and has theo-
rems. Let T,T ′ ∈ ThSys(I), such that Ω(T ) = Ω(T ′). Then, by rough
system injectivity, we get T ∼ T ′. On the other hand, since I has
theorems, rough equivalence collapses to the identity relation, whence
T = T ′. Therefore, I is system injective.

∎

The work in Section 3.6, together with the work done in the present
section and Theorem 394, reveal the following hierarchy of injectivity and
rough injectivity classes, which was previewed at the beginning of Section
6.2.

Right Inj

✠�
�
� ❅

❅
❅❘

Family Inj Roughly Right Inj

✠�
�
� ❅

❅
❅❘ ✠�

�
�

Left Inj Roughly Family Inj

✠�
�
� ❅

❅
❅❘

☛✁
✁
✁
✁
✁
✁
✁
✁
✁

System Inj
Roughly

Left Inj❍❍❍❍❍❍❍❍❥
Roughly System Inj

❄
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To complete the demonstration that all classes in the depicted hierarchy
are distinct we provide an example of a π-institution which belongs to all
steps in the rough injectivity hierarchy but possesses none of the four (gentle)
injectivity properties.

Example 395 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0}}.
I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

0 .....................❥
∆F = ∇F

....
....

....
....

....
.✯

∅

I is roughly system injective, since Ω(T ) = Ω(T ′) implies T ∼ T ′. Since I is
also systemic, it is, a fortiori, roughly systemic and stable. Now, by either
direct calculation or based on Propositions 388 and 389, we get that I is also
roughly right injective (and, hence, roughly family injective) and roughly left
injective, respectively.

On the other hand, since ∅ ≠ {0} but Ω(∅) = ∇F = Ω({0}), I is not
system injective and, hence, a fortiori, I has none of the four injectivity
properties.
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The rough injectivity properties transfer from the theory families/sys-
tems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems on arbitrary
F-algebraic systems.

Theorem 396 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is roughly right injective if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(←ÐT ) = ΩA(←ÐT ′) implies
T ∼ T ′;

(b) I is roughly family injective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies
T ∼ T ′;

(c) I is roughly left injective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) = ΩA(T ′) implies
←Ð
T ∼ ←ÐT ′;

(d) I is roughly system injective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A), ΩA(T ) = ΩA(T ′) implies
T ∼ T ′.

Proof:

(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that, by Lemma 51, ThFam(I) = FiFamI(F).
For the “only if”, suppose that I is roughly right injective and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that

ΩA(←ÐT ) = ΩA(←ÐT ′). Then α−1(ΩA(←ÐT )) = α−1(ΩA(←ÐT ′)). So, by Proposi-

tion 24, Ω(α−1(←ÐT )) = Ω(α−1(←ÐT ′)). Hence, by Lemma 6, Ω(←ÐÐÐÐα−1(T )) =
Ω(←ÐÐÐÐα−1(T ′)). Since, by Lemma 51, α−1(T ), α−1(T ′) ∈ ThFam(I), we
get, by applying rough right injectivity, α−1(T ) ∼ α−1(T ′). Thus, by
Corollary 378, T ∼ T ′.

(b) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly family injective and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that ΩA(T ) = ΩA(T ′). Then α−1(ΩA(T )) = α−1(ΩA(T ′)). So,
by Proposition 24, Ω(α−1(T )) = Ω(α−1(T ′)). Since, by Lemma 51,
α−1(T ), α−1(T ′) ∈ ThFam(I), we get, by applying rough family injec-
tivity, α−1(T ) ∼ α−1(T ′). Thus, by Corollary 378, T ∼ T ′.
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(c) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly left injective and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that ΩA(T ) = ΩA(T ′). Then α−1(ΩA(T )) = α−1(ΩA(T ′)). So,
by Proposition 24, Ω(α−1(T )) = Ω(α−1(T ′)). Since, by Lemma 51,
α−1(T ), α−1(T ′) ∈ ThFam(I), we get, by applying rough left injectiv-

ity,
←ÐÐÐÐ
α−1(T ) ∼ ←ÐÐÐÐα−1(T ′). Thus, by Lemma 6, α−1(←ÐT ) ∼ α−1(←ÐT ′). Hence,

by Corollary 378,
←Ð
T ∼←ÐT ′.

(d) Similar to Part (b).
∎

Finally, we may recast the rough injectivity classes in terms of the injec-
tivity of mappings from posets of classes of theory or filter families/systems
into posets of congruence systems.

Proposition 397 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly family injective;

(b) Ω ∶ T̃hFam(I)→ ConSys∗(I) is injective;

(c) ΩA ∶ F̃iFam
I(A) → ConSysI∗(A) is injective, for every F-algebraic

system A.

Similarly, for system injectivity, we have

Proposition 398 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly system injective;

(b) Ω ∶ T̃hSys(I)→ ConSys∗(I) is injective;

(c) ΩA ∶ F̃iSys
I(A) → ConSysI∗(A) is injective, for every F-algebraic sys-

tem A.

6.5 Narrow Injectivity

In this section we study classes of π-institutions defined using injectivity
properties of the Leibniz operator restricted to ThFam (I). We call those
narrow injectivity properties in analogy with the terminology adopted in
Section 6.3, differentiating rough systemicity and narrow systemicity, the
two strongest properties combining systemicity with rough equivalence.
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Definition 399 (Narrow Injectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an al-
gebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called narrowly family injective if, for all T,T ′ ∈ ThFam (I),
Ω(T ) = Ω(T ′) implies T = T ′;

• I is called narrowly left injective if, for all T,T ′ ∈ ThFam (I),
Ω(T ) = Ω(T ′) implies

←Ð
T =
←Ð
T ′.

• I is called narrowly right injective if, for all T,T ′ ∈ ThFam (I),
Ω(←ÐT ) = Ω(←ÐT ′) implies T = T ′.

• I is called narrowly system injective if, for all T,T ′ ∈ ThSys (I),
Ω(T ) = Ω(T ′) implies T = T ′.

These narrow injectivity properties have the following useful characteri-
zations.

Proposition 400 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) I is narrowly family injective if and only if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies T ∼ T ′;

(b) I is narrowly left injective if and only if, for all T,T ′ ∈ ThFam(I),
Ω(T ) = Ω(T ′) implies

←Ð
T̃ =
←Ð
T̃ ′;

(c) I is narrowly right injective if and only if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT̃ ) = Ω(←ÐT̃ ′) implies T ∼ T ′;

(d) I is narrowly system injective if and only if, for all T,T ′ ∈ ThSys(I),
such that T̃ , T̃ ′ ∈ ThSys(I), Ω(T ) = Ω(T ′) implies T ∼ T ′.

Proof:

(a) Suppose that I is narrowly family injective and let T,T ′ ∈ ThFam(I),
such that Ω(T ) = Ω(T ′). Consider T̃ , T̃ ′ ∈ ThFam (I). By Proposition
369, Ω(T̃ ) = Ω(T ) = Ω(T ′) = Ω(T̃ ′). Thus, by hypothesis, T̃ = T̃ ′, i.e.,
T ∼ T ′. Therefore, the asserted condition holds.

Assume, conversely, that the asserted condition holds and let T,T ′ ∈
ThFam (I), such that Ω(T ) = Ω(T ′). Then, since ThFam (I) ⊆
ThFam(I), we get, by hypothesis, T ∼ T ′, i.e., T̃ = T̃ ′. Since, how-
ever, T,T ′ ∈ ThFam (I), we get T = T̃ = T̃ ′ = T ′. Thus, I is narrowly
family injective.
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(b) Suppose that I is narrowly left injective and let T,T ′ ∈ ThFam(I),
such that Ω(T ) = Ω(T ′). Then T̃ , T̃ ′ ∈ ThFam (I) and, by Proposition

369, Ω(T̃ ) = Ω(T̃ ′). Thus, by hypothesis,
←Ð
T̃ =
←Ð
T̃ ′.

Assume, conversely, that the asserted condition holds and let T,T ′ ∈

ThFam (I), such that Ω(T ) = Ω(T ′). Then, by hypothesis,
←Ð
T̃ =

←Ð
T̃ ′.

Since, however, T,T ′ ∈ ThFam (I), we get
←Ð
T =
←Ð
T̃ =
←Ð
T̃ ′ =
←Ð
T ′. Therefore,

I is narrowly left injective.

(c) Suppose that I is narrowly right injective and let T,T ′ ∈ ThFam(I),
such that Ω(←ÐT̃ ) = Ω(←ÐT̃ ′). Since T̃ , T̃ ′ ∈ ThFam (I), we get, by hypoth-
esis, T̃ = T̃ ′, i.e., T ∼ T ′.
Assume, conversely, that the asserted condition holds and let T,T ′ ∈
ThFam (I), such that Ω(←ÐT ) = Ω(←ÐT ′). Then, since T,T ′ ∈ ThFam (I),
we get Ω(←ÐT̃ ) = Ω(←ÐT ) = Ω(←ÐT ′) = Ω(←ÐT̃ ′). Now, by hypothesis, T ∼ T ′,
i.e., T̃ = T̃ ′ and, therefore, T = T ′. We conclude that I is narrowly
right injective.

(d) Suppose I is narrowly system injective and let T,T ′ ∈ ThSys(I), such
that T̃ , T̃ ′ ∈ ThSys(I) and Ω(T ) = Ω(T ′). Then T̃ , T̃ ′ ∈ ThSys (I)
and, by Proposition 369, Ω(T̃ ) = Ω(T ) = Ω(T ′) = Ω(T̃ ′). Thus, by
hypothesis, T̃ = T̃ ′, i.e., T ∼ T ′.
Assume, conversely, that the asserted condition holds and let T,T ′ ∈
ThSys (I), such that Ω(T ) = Ω(T ′). Then, since T,T ′ ∈ ThSys (I),
we get T̃ = T, T̃ ′ = T ′ ∈ ThSys(I) and, therefore, by hypothesis, T ∼ T ′,
i.e., T̃ = T̃ ′. But this gives T = T̃ = T̃ ′ = T ′. Thus, I is narrowly system
injective.

∎

It will be shown, next, in an analog of Lemma 385, that narrow right
injectivity implies exclusive systemicity. Recall that, given a π-institution
I = ⟨F,C⟩, based on an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, we say that

I is exclusively systemic if, for all T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I),

←Ð
T = T .

Lemma 401 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is narrowly right injective, then it
is exclusively systemic.

Proof: Assume I is narrowly right injective and let T ∈ ThFam (I), such

that
←Ð
T ∈ ThSys (I). Then, since, by Proposition 2,

←Ð←Ð
T =

←Ð
T , we have

Ω(←Ð←ÐT ) = Ω(←ÐT ) and, hence, by narrow right injectivity,
←Ð
T = T . Therefore, I

is exclusively systemic. ∎
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However, as opposed to rough right injectivity, as the next examples
demonstrate, narrow right injectivity implies neither rough nor narrow sys-
temicity, in general. The first example showcases a π-institution which is
narrowly right injective, but fails to be roughly systemic.

Example 402 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
Clearly, there are only four theory families in ThFam (I), all of which are

theory systems. Their lattice together with the associated Leibniz congruence
systems are shown in the diagram:

01, ab ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

01, b 1, ab ∇F
Σ,∆

F
Σ′ ∆F

Σ,∇
F
Σ′

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

1, b ∆F

From this diagram and the fact that all theory families depicted are theory
systems, we can see that, for all T,T ′ ∈ ThFam (I),

Ω(←ÐT ) = Ω(←ÐT ′) implies T = T ′.
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Therefore, I is indeed narrowly right injective.
On the other hand, consider T = {{1},∅}. Then we have

←̃Ð
T = ∅̃ = SEN♭ ≠ {{1},{a, b}} = T̃ .

This shows that
←Ð
T ≁ T and, therefore, I is not roughly systemic.

The next example exhibits a π-institution which is also narrowly right
injective, but fails to be narrowly systemic.

Example 403 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0}} and CΣ′ = {∅,{b},{a, b}}.
There are six theory families, but only four theory systems. The action

of ←Ð on theory families is given in the table below.

T
←Ð
T

∅,∅ ∅,∅
0,∅ ∅,∅
∅, b ∅, b
0, b ∅, b
∅, ab ∅, ab
0, ab 0, ab
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The complete lattice of theory families is shown on the left.

0, ab 0, ab

�
�
� ❅

❅
❅

0, b ∅, ab ∅, ab

�
�
� ❅

❅
❅ �

�
�

0,∅ ∅, b ∅, b

❅
❅
❅ �

�
�

∅,∅ ∅,∅

That of the theory systems is shown on the right.
The only theory families in ThFam (I) are T = {{0},{b}} and SEN♭.

Since

Ω(←ÐT ) = Ω(∅, b) = ∇F
Σ,∆

F
Σ ≠ ∇

F = Ω(SEN♭) = Ω(←ÐÐÐSEN♭),
we conclude that I is narrowly right injective.

On the other hand, since
←Ð
T = {∅,{b}} ≠ T , I is not narrowly systemic.

The converse of Lemma 401 fails in general. That is, there exists a π-
institution which is exclusively systemic but is not narrowly right injective.

Example 404 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families, ∅, {{1}} and {{0,1}}, but only two theory

systems, ∅ and {{0,1}}. The lattice of theory families of I and the corre-
sponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

Since there exists only one theory family T in ThFam (I), such that
←Ð
T ∈

ThSys (I), namely T = SEN♭, and
←ÐÐÐ
SEN♭ = SEN♭, I is exclusively systemic.

On the other hand, {{1}},SEN♭ ∈ ThFam (I) and

Ω(←Ð1 ) = Ω(∅) = ∇F = Ω(SEN♭) = Ω(←ÐÐÐSEN♭),
but {{1}} ≠ SEN♭. Therefore, I fails to be narrowly right injective.

Following a similar vein, we establish a weakened analog of Lemma 207 for
narrow right injectivity. This will play a key role in some of the classifications
obtained in this and in subsequent sections.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is narrowly stable if, for all T ∈
ThFam (I), Ω(←ÐT ) = Ω(T ). We return to this notion and study it in more
detail in Section 7.2.

Lemma 405 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly right injective, then it is
narrowly stable.

Proof: Suppose that I is narrowly right injective. Let T ∈ ThFam (I). If

T ≠
←Ð
T ∈ ThFam (I), then, since

←Ð←Ð
T =
←Ð
T , we would get Ω(←Ð←ÐT ) = Ω(←ÐT ) and,

hence, by narrow right injectivity,
←Ð
T = T , a contradiction. Thus, we get that,

for all T ∈ ThFam (I),
←Ð
T = T or

←Ð
T ∉ ThFam (I).
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If T ∈ ThFam (I) is such that
←Ð
T = ∅, then we would have Ω(←ÐT ) = Ω(←ÐÐÐSEN♭) =

∇F, whence, by narrow right injectivity, T = SEN♭, giving ∅ =
←Ð
T =
←ÐÐÐ
SEN♭ =

SEN♭, a contradiction. Thus,
←Ð
T ≠ ∅. So, there exists P ∈ ∣Sign♭∣, such that

←Ð
T P ≠ ∅. If for such P ,

←Ð
T P ≠ TP , then, setting T ′ = {T ′Σ}Σ∈∣Sign♭∣, with T ′Σ =

{ TΣ, if Σ ≠ P
←Ð
T P , if Σ = P

, we would get T,T ′ ∈ ThFam (I), with
←Ð
T ′ =
←Ð
T and T ′ ≠ T ,

contradicting narrow right injectivity. Therefore, for all T ∈ ThFam (I) and
all Σ ∈ ∣Sign♭∣,

←Ð
T Σ = TΣ or

←Ð
T Σ = ∅.

Based on this fact, given T ∈ ThFam (I), we partition the signatures into

Part I, consisting of Σ ∈ ∣Sign♭∣, such that
←Ð
T Σ = TΣ, and Part II, consisting

of Σ ∈ ∣Sign♭∣, such that
←Ð
T Σ = ∅. Note that no morphism can have a domain

of Type I and a codomain of Type II. Thus, letting T ′ = {T ′Σ}Σ∈∣Sign♭∣, with

T ′Σ = { TΣ, if Σ is of Type I
SEN♭(Σ), if Σ is of Type II

,

we get
←Ð
T ′Σ =

←Ð
T Σ = TΣ, if Σ is of Type I, and, by the displayed condition

above,
←Ð
T ′Σ = ∅ or SEN♭(Σ), if Σ is of Type II. In either case, it follows

by Theorem 370 that Ω(←ÐT ) = Ω(←ÐT ′), whence, by narrow right injectivity,
T = T ′. We finally conclude that

Ω(←ÐT ) = Ω(←ÐT ′) (T = T ′)
= Ω(T ′) (Theorem 370)
= Ω(T ). (T = T ′)

Therefore, I is narrowly stable. ∎

We establish, next, the narrow injectivity hierarchy. The following propo-
sition forms an analog of Proposition 387, which established the rough injec-
tivity hierarchy.

Proposition 406 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is narrowly right injective, then it is narrowly family injective;

(b) If I is narrowly family injective, then it is narrowly left injective;

(c) If I is narrowly left injective, then it is narrowly system injective.

Proof:
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(a) Suppose that I is narrowly right injective and let T,T ′ ∈ ThFam (I),
such that Ω(T ) = Ω(T ′). By hypothesis and Lemma 405, Ω(←ÐT ) =
Ω(T ) = Ω(T ′) = Ω(←ÐT ′). By narrow right injectivity, we conclude that
T = T ′. Hence, I is narrowly family injective.

(b) Suppose that I is narrowly family injective and let T,T ′ ∈ ThFam (I),
such that Ω(T ) = Ω(T ′). Then, by hypothesis, T = T ′, whence,

←Ð
T =
←Ð
T ′.

Thus, I is narrowly left injective.

(c) Suppose that I is narrowly left injective and let T,T ′ ∈ ThSys (I), such

that Ω(T ) = Ω(T ′). Then, by hypothesis, we get
←Ð
T =

←Ð
T ′. Therefore,

since T,T ′ are theory systems, T = T ′ and, hence, I is narrowly system
injective.

∎

We have now established the following narrow injectivity hierarchy
of π-institutions.

Narrowly R Injective

Narrowly F Injective
❄

Narrowly L Injective
❄

Narrowly S Injective
❄

We give some additional relations governing the hierarchy of narrow injec-
tivity. The following proposition may be viewed as an analog of Propositions
388 and 389.

Proposition 407 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system injective and
narrowly systemic, then it is narrowly right injective.

Proof: Suppose I is narrowly system injective and narrowly systemic. Let

T,T ′ ∈ ThFam (I), such that Ω(←ÐT ) = Ω(←ÐT ′). By narrow systemicity, T =
←Ð
T

and T ′ =
←Ð
T ′. Hence, on the one hand, Ω(T ) = Ω(T ′) and, on the other,

T,T ′ ∈ ThSys (I). Thus, by narrow system injectivity, T = T ′. Thus, I is
narrowly right injective. ∎

It was shown in Example 403 that narrow right injectivity does not imply,
in general, narrow systemicity. Thus, the converse of Proposition 407 does
not hold in general.
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We present three examples to show that all inclusions established between
the narrow injectivity classes and shown in the preceding diagram are indeed
proper inclusions. The first example depicts a π-institution which is narrowly
family injective but not narrowly right injective. This shows that the class
of narrowly right injective π-institutions constitutes a proper subclass of the
class of narrowly family injective π-institutions.

Example 408 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families, ∅, {{1}} and {{0,1}}, but only two theory

systems, ∅ and {{0,1}}. The lattice of theory families of I and the corre-
sponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F
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Since there exists only two theory families in ThFam (I), {{0,1}} and {{1}},
and Ω({{0,1}}) ≠ Ω({{1}}), I is trivially narrowly family injective. On the
other hand, {{1}},{{0,1}} ∈ ThFam (I) and

Ω(←ÐÐÐ{{1}}) = Ω({∅}) = ∇F = Ω({{0,1}}) = Ω(←ÐÐÐÐ{{0,1}}),
but {{1}} ≠ {{0,1}}. Therefore, I fails to be narrowly right injective.

The next example depicts a π-institution which is narrowly left injective
but not narrowly family injective. This shows that the class of narrowly
family injective π-institutions constitutes a proper subclass of the class of
narrowly left injective π-institutions.

Example 409 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Since I has theorems, we get ThFam (I) = ThFam(I). Hence, both narrow
family injectivity and narrow left injectivity coincide with family injectivity
and left injectivity, respectively.

The following table shows the action of ←Ð on theory families, where rows

correspond to TΣ and columns to TΣ′ and each entry is written as
←Ð
T Σ,
←Ð
T Σ′.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
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The diagram shows the structure of the lattice of theory families on the left
and the structure of the corresponding Leibniz congruence systems (in terms
of blocks) on the right.

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

Since the only two theory families that have the same Leibniz congruence
system are {{0,1},{b}} and {{1},{b}} and it holds that

←ÐÐÐÐÐÐÐ{{0,1},{b}} =←ÐÐÐÐÐÐ{{1},{b}} = {{1},{b}},
we conclude that I is left injective. Therefore, taking into account the remark
above, we get that I is also narrowly left injective.

From the diagram, it is also clear that I is not family injective, since
the two theory families {{0,1},{b}} and {{1},{b}} have the same Leibniz
congruence system. The same counterexample shows that I is not narrowly
family injective either.

We finish the sequence of examples by presenting a narrowly system in-
jective π-institution which, however, fails to be narrowly left injective. This
example shows that narrowly left injective π-institutions form a proper sub-
class of the class of narrowly system injective π-institutions.

Example 410 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 1
and SEN♭(f)(1) = 1;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {∅,{0},{1},{0,1}}.
The following table gives the theory families and the theory systems of the

π-institution I.
T

←Ð
T

∅ ∅{0} ∅{1} {1}{0,1} {0,1}
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The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below.

01 .......................................✲ ∇F

✪
✪
✪
✪ ❡

❡
❡
❡

..
..

..
..

..
..

..
..

..
..

..
..✒

0 1

❡
❡
❡
❡

.......................................q✪
✪
✪
✪

..............⑦
∅ ∆F

It is obvious from the diagram that for no T,T ′ ∈ ThSys (I), such that T ≠ T ′

is it the case that Ω(T ) = Ω(T ′). Therefore, I is trivially narrowly system
injective. On the other hand, for T = {{0}}, T ′ = {{1}}, both members of

ThFam (I), we have Ω(T ) = Ω(T ′) = ∆F, whereas
←Ð
T = {∅} ≠ {{1}} = ←ÐT ′.

Therefore, I fails to be narrowly left injective.

We turn now to the relationships between corresponding classes of the
rough injectivity and the narrow injectivity hierarchies.

First, it is easy to see, using the characterization in Part (a) of Proposition
400 that the two types of family injectivity involved coincide.

Corollary 411 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly family injective if and only if
it is narrowly family injective.

Proof: Part (a) of Proposition 400. ∎

Unfortunately, the relationship between the remaining classes are not so
straightforward, due to the necessity of investigating the mode of interaction
between rough equivalence and the ←Ð operator. We look, next, at the two
classes of left injective π-institutions. We start by showing that the class of
narrow left injective π-institutions is not included in the class of roughly left
injective π-institutions. The next example exhibits a π-institution which is
narrowly left injective but not roughly left injective.
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Example 412 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a}
and SEN♭(f)(0) = SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{a}}.
Clearly, there are six theory families in ThFam(I), only four of which

are theory systems, and only two of which are in ThFam (I). The lattice of
theory families is shown in the diagram:

01, a

�
�
� ❅

❅
❅

01,∅ 1, a

❅
❅
❅ �

�
� ❅

❅
❅

1,∅ ∅, a

❅
❅
❅ �

�
�

∅,∅

Since ThFam (I) = {{1, a},{01, a}} and Ω(1, a) = {∆F
Σ,∇

F
Σ′} ≠ ∇F = Ω(01, a),

it follows that I is trivially narrowly left injective.
On the other hand, consider T = {1,∅} and T ′ = {1, a}. We have

Ω(1,∅) = {∆F
Σ,∇

F
Σ′} = Ω(1, a), but

←̃ÐÐ
1,∅ = ∅̃,∅ = 01, a ≠ 1, a = 1̃, a =

←̃Ð
1, a.

This proves that I is not roughly left injective.
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We now look at a π-institution that is roughly left injective, while it fails
to be narrowly left injective. Combined with Example 412, this will show
that the two left injectivity classes, rough and narrow, are incomparable from
the point of view of inclusion.

Example 413 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and three nonidentity mor-
phisms f ∶ Σ → Σ and g, h ∶ Σ → Σ′, such that f ○ f = f , g ○ f = h and
h ○ f = h;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b, c}, SEN♭(f)(0) = SEN♭(f)(1) = 0, SEN♭(g)(0) = b, SEN♭(g)(1) =
c and SEN♭(h)(0) = SEN♭(h)(1) = b;

• N ♭ is the clone generated by a single binarry natural transformation
σ♭ ∶ (SEN♭)2 → SEN♭, whose components are defined by the following
tables:

σ♭Σ 0 1
0 0 1
1 1 1

σ♭Σ′ a b c

a a a c

b a b c

c c c c

It is not difficult, albeit slightly tedious, to check that this is a well-defined
natural transformation. We summarize the checking in the accompanying
table.

f(σ♭Σ(x, y)) g(σ♭Σ(x, y)) h(σ♭Σ(x, y))(x, y) = σ♭Σ(f(x), f(y)) = σ♭Σ′(g(x), g(y)) = σ♭Σ′(h(x), h(y))(0,0) 0 = 0 b = b b = b(0,1) 0 = 0 c = c b = b(1,0) 0 = 0 c = c b = b(1,1) 0 = 0 c = c b = b
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b, c},{a, b, c}}.
Clearly, there are nine theory families in ThFam(I), five of which are

theory systems, and four of which are in ThFam (I). The lattice of theory
families is shown in the diagram:

01, abc

�
� ❅

❅

01, bc 1, abc

�
� ❅

❅ �
� ❅

❅

01,∅ 1, bc ∅, abc

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, bc

❅
❅ �

�

∅,∅

The action of ←Ð on theory families is given in the following table.

T
←Ð
T T

←Ð
T

01, abc 01, abc ∅, abc ∅, abc
01, bc 01, bc 1,∅ ∅,∅
1, abc ∅, abc ∅, bc ∅, bc
01,∅ ∅,∅ ∅,∅ ∅,∅
1, bc ∅, bc

The table below provides the Leibniz congruence systems associated with the
theory families of I.

T Ω(T ){01, abc},{01,∅},{∅, abc},{∅,∅} ∇F

{1, abc},{1,∅} {∆F
Σ,∇

F
Σ′}{01, bc},{1, bc},{∅, bc} ∆F

To see that I is roughly left injective, note that all elements in a single
row of the table have associated theory systems that are roughly equivalent.

←̃ÐÐÐÐÐ{01, abc} = ←̃ÐÐÐÐ{01,∅} = ←̃ÐÐÐÐ{∅, abc} = ←̃ÐÐÐ{∅,∅} = {01, abc};
←̃ÐÐÐÐ{1, abc} = ←̃ÐÐÐ{1,∅} = {01, abc};
←̃ÐÐÐÐ{01, bc} = ←̃ÐÐÐ{1, bc} = ←̃ÐÐÐÐ{∅, bc} = {01, bc}.

But I is not narrowly left injective. In fact, setting T = {1, bc} and T ′ =
{01, bc}, we get Ω(T ) = Ω(T ′) = ∆F, whereas

←Ð
T = {∅, bc} ≠ {01, bc} =←ÐT ′.
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We turn, next to the relationship between the two kinds of right in-
jectivity. We show, first, that rough right injectivity implies narrow right
injectivity.

Proposition 414 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly right injective, then it is
narrowly right injective.

Proof: Suppose I is roughly right injective and let T,T ′ ∈ ThFam (I), such

that Ω(←ÐT ) = Ω(←ÐT ′). By rough right injectivity, we get that T ∼ T ′, i.e.,
that T̃ = T̃ ′. Since, however, T,T ′ ∈ ThFam (I), we get T = T̃ = T̃ ′ = T ′.
Therefore, I is narrowly right injective. ∎

The converse, on the other hand, does not hold in general, as the following
example demonstrates.

Example 415 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a}
and SEN♭(f)(0) = SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{a}}.
Clearly, there are six theory families in ThFam(I), only four of which

are theory systems and only two of which are in ThFam (I). The lattice of
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theory families is shown in the diagram.

01, a

�
�
� ❅

❅
❅

01,∅ 1, a

❅
❅
❅ �

�
� ❅

❅
❅

1,∅ ∅, a

❅
❅
❅ �

�
�

∅,∅

The only theory families in ThFam (I) are {1, a} and {01, a}. Moreover,

Ω(←ÐÐÐ{1, a}) = Ω({1, a}) = {∆F
Σ,∇

F
Σ} ≠ ∇F = Ω({01, a}) = Ω(←ÐÐÐÐ{01, a}).

Thus, I is trivially narrowly right injective.
On the other hand, letting T = {1,∅} and T ′ = {01,∅}, we get

Ω(←ÐT ) = Ω({∅,∅}) = ∇F = Ω({∅,∅}) = Ω(←ÐT ′),
but, clearly, T̃ = {1, a} ≠ {01, a} = T̃ ′, i.e., T ≁ T ′. Therefore, I is not roughly
right injective.

Finally, we look at system injectivity. Again, it turns out that rough
system injectivity implies narrow system injectivity. However, the converse
fails in general.

Proposition 416 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system injective, then it is
narrowly system injective.

Proof: Suppose I is roughly system injective and let T,T ′ ∈ ThSys (I),
such that Ω(T ) = Ω(T ′). Then, by rough system injectivity, T ∼ T ′, i.e.,
T̃ = T̃ ′. However, since T,T ′ ∈ ThSys (I), we get T = T̃ = T̃ ′ = T ′. Therefore,
I is narrowly system injective. ∎

And now we present an example of a π-institution that is narrowly system
injective but not roughly system injective. This, combined with Proposition
416, shows that the class of narrowly system injective π-institutions properly
contains the class of roughly system injective π-institutions.

Example 417 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
There are only four theory families in ThFam (I), all of which except for{01, b} are theory systems. Their lattice together with the associated Leibniz

congruence systems are shown in the diagram:

01, ab ....................................✲ ∇F

�
�
� ❅

❅
❅

01, b 1, ab ............✲ ∆F
Σ,∇

F
Σ′

❅
❅
❅

..................................q
�
�
�

1, b ......................................✲ ∆F

From this diagram we see that for no T,T ′ ∈ ThSys (I), with T ≠ T ′ is it the
case that Ω(T ) = Ω(T ′). Therefore, I is trivially narrowly system injective.

On the other hand, consider T = {1, b}, T ′ = {∅, b} ∈ ThSys(I). Even
though T ≁ T ′, we have Ω(T ) = ∆F = Ω(T ′). Hence, I is not roughly system
injective.

The results obtained and the counterexamples presented, thus far, reveal
the following mixed hierarchy of rough and narrow injectivity classes of π-
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institutions.

Rough R Inj

Narrow R Inj
❄

Rough L Inj Rough F Inj
❄

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Rough S Inj Narrow L Inj

❅
❅
❅❘ ✠�

�
�

Narrow S Inj

A theorem, analogous to Theorem 394 asserts that ordinary injectivity is
equivalent to narrow injectivity in the presence of theorems. This holds for
all four injectivity classes.

Theorem 418 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is right injective if and only if it is narrowly right injective and has
theorems;

(b) I is family injective if and only if it is narrowly family injective and
has theorems;

(c) I is left injective if and only if it is narrowly left injective and has
theorems;

(d) I is system injective if and only if it is narrowly system injective and
has theorems.

Proof: By Theorem 394, if I has one of the four injectivity properties, then
it has theorems. Moreover, by the same theorem, an injectivity property
implies the corresponding rough injectivity property and, by Corollary 411,
Proposition 414 and Proposition 416, each implies the corresponding narrow
injectivity property except in the case of left injectivity, where (as actually
in all other cases, as well) one can easily see directly, that left injectivity
implies narrow left injectivity, since the defining condition of the latter is a
specialization of that of the former.

All converses are also easily verified, since, in the presence of theorems,
ThFam (I) = ThFam(I) and ThSys (I) = ThSys(I), which makes the four
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defining conditions for the narrow classes identical with the corresponding
conditions for the ordinary injectivity classes. ∎

We now have the following hierarchy.

R Inj

❂✚
✚
✚
✚

F Inj Rough R Inj
❄

❂✚
✚
✚
✚ ❏

❏
❏
❏
❏
❏
❏
❏❫

L Inj Narrow R Inj
❄

❂✚
✚
✚
✚ ❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

S Inj Rough L Inj
❄

Rough F Inj
❄

PPPPPPPPPPPPq

❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Rough S Inj Narrow L Inj
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

Narrow S Inj

The narrow injectivity properties transfer from the theory families/sys-
tems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems on arbitrary
F-algebraic systems. This result forms an analog of Theorem 396, which
applied to rough injectivity classes.

Theorem 419 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is narrowly right injective if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), ΩA(←ÐT ) = ΩA(←ÐT ′) implies
T = T ′;

(b) I is narrowly family injective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), ΩA(T ) = ΩA(T ′) implies
T = T ′;

(c) I is narrowly left injective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), ΩA(T ) = ΩA(T ′) implies
←Ð
T =
←Ð
T ′;

(d) I is narrowly system injective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI (A), ΩA(T ) = ΩA(T ′) implies
T = T ′.
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Proof: The proof follows the steps of the proofs of the various parts of
Theorem 214, but, in addition, it takes into account Lemma 376. We do
Part (a) in detail to give a flavor of what is involved.

The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩ and
taking into account that ThFam (I) = FiFamI (F), by Lemmas 51 and 376.

For the “only if”, suppose that I is narrowly right injective and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI (A), such that

ΩA(←ÐT ) = ΩA(←ÐT ′). Then α−1(ΩA(←ÐT )) = α−1(ΩA(←ÐT ′)). So, by Proposition 24,

Ω(α−1(←ÐT )) = Ω(α−1(←ÐT ′)). Hence, by Lemma 6, Ω(←ÐÐÐÐα−1(T )) = Ω(←ÐÐÐÐα−1(T ′)).
Since, by Lemmas 51 and 376, α−1(T ), α−1(T ′) ∈ ThFam (I), we get, by
applying narrow right injectivity, α−1(T ) = α−1(T ′). This yields, taking into
account the surjectivity of ⟨F,α⟩, T = T ′. ∎

We finally recast narrow injectivity in terms of the injectivity of mappings
from posets of theory or filter families/systems into posets of congruence
systems. The following results form, roughly, analogs of Propositions 397
and 398, respectively, except that special attention must be paid to the fact
that neither ThFam (I) nor FiFamI (A) is necessarily a lattice.

Proposition 420 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly family injective;

(b) Ω ∶ ThFam (I)→ ConSys∗(I) is injective;

(c) ΩA ∶ FiFamI (A) → ConSysI∗(A) is injective, for every F-algebraic
system A.

Similarly, for system injectivity, we have

Proposition 421 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly system injective;

(b) Ω ∶ ThSys (I)→ ConSys∗(I) is injective;

(c) ΩA ∶ FiSysI (A) → ConSysI∗(A) is injective, for every F-algebraic
system A.

6.6 Rough Reflectivity

In this section we study classes of π-institutions defined using reflectivity
properties of the Leibniz operator applied on rough equivalence classes.
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Definition 422 (Rough Reflectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an al-
gebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called roughly family reflective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′.

• I is called roughly left reflective if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies

←̃Ð
T ≤
←̃Ð
T ′.

• I is called roughly right reflective if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT ) ≤ Ω(←ÐT ′) implies T̃ ≤ T̃ ′.

• I is called roughly system reflective if, for all T,T ′ ∈ ThSys(I),
Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′.

In a partial analog of Lemma 218, we show that rough right reflectivity
implies rough systemicity and, hence, by Theorem 370, stability.

Lemma 423 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly right reflective, then it
is roughly systemic.

Proof: Suppose that I is roughly right reflective and let T ∈ ThFam(I).
Then, we have, by Proposition 42,

←Ð←Ð
T =
←Ð
T . Therefore, we get Ω(←Ð←ÐT ) = Ω(←ÐT ).

Hence, by rough right reflectivity, we get that
←̃Ð
T = T̃ , i.e.,

←Ð
T ∼ T . Hence I

is roughly systemic. ∎

Next we look into establishing the rough reflectivity hierarchy of π-in-
stitutions. The following relationships can be established between the four
rough reflectivity classes.

Proposition 424 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is roughly right reflective, then it is roughly family reflective;

(b) If I is roughly family reflective, then it is roughly system reflective;

(c) If I is roughly left reflective, then it is roughly system reflective.

Proof:
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(a) Suppose that I is roughly right reflective and let T,T ′ ∈ ThFam(I),
such that Ω(T ) ≤ Ω(T ′). By Lemma 423, I is roughly systemic, whence
←Ð
T ∼ T and

←Ð
T ′ ∼ T ′. Thus, by Theorem 370, we get

Ω(←ÐT ) = Ω(T ) ≤ Ω(T ′) = Ω(←ÐT ′).
Now applying rough right reflectivity, we get T̃ ≤ T̃ ′. This proves that
I is roughly family reflective.

(b) Suppose that I is roughly family reflective and let T,T ′ ∈ ThSys(I),
such that Ω(T ) ≤ Ω(T ′). Then, by rough family reflectivity, we get
T̃ ≤ T̃ ′, whence, I is roughly system reflective.

(c) Suppose that I is roughly left reflective and let T,T ′ ∈ ThSys(I), such

that Ω(T ) ≤ Ω(T ′). By rough left reflectivity, we conclude that
←̃Ð
T ≤
←̃Ð
T ′.

However, since T,T ′ are theory systems, we have
←Ð
T = T and

←Ð
T ′ = T ′.

Hence we get T̃ ≤ T̃ ′ and I is roughly system reflective.
∎

We have now established the following rough reflectivity hierarchy of
π-institutions.

Rough R Reflective
...................s

Rough L Refl Rough F Refl
❄

Rough Systemic
◗
◗
◗
◗
◗
◗
◗s

Rough System Reflective
❄

We formulate two additional properties concerning the relationships be-
tween rough reflectivity classes. First, rough right reflectivity turns out to
be equivalent to rough system reflectivity combined with rough systemicity.

Proposition 425 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly right reflective if and only if
it is roughly system reflective and roughly systemic.

Proof: Suppose, first, that I is roughly right reflective. Then, by Lemma
423, it is roughly systemic and by Proposition 424 it is roughly system re-
flective.

Suppose, conversely, that I is roughly system reflective and roughly sys-

temic and let T,T ′ ∈ ThFam(I), such that Ω(←ÐT ) ≤ Ω(←ÐT ′). By rough system



444 CHAPTER 6. SEMANTIC HIERARCHY IV Voutsadakis

reflectivity and Proposition 42, we get
←̃Ð
T ≤
←̃Ð
T ′. Hence, by rough systemicity,

T̃ =
←̃Ð
T ≤
←̃Ð
T ′ = T̃ ′. Thus, I is roughly right reflective. ∎

Second, we show that rough system reflectivity together with stability
imply rough left reflectivity.

Proposition 426 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system reflective and stable,
then it is roughly left reflective.

Proof: Suppose that I is roughly system reflective and stable and consider

T,T ′ ∈ ThFam(I), such that Ω(T ) ≤ Ω(T ′). Then, by stability Ω(←ÐT ) ≤
Ω(←ÐT ′). Hence, since

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), by rough system reflectivity,

←̃Ð
T ≤
←̃Ð
T ′.

This shows that I is roughly left reflective. ∎

We present three examples to show that all inclusions established between
rough reflectivity classes and depicted in the diagram above are proper inclu-
sions. The first example will show that the class of roughly right reflective
π-institutions is a proper subclass of the class of roughly family reflective
π-institutions.

Example 427 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (no-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
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I has three theory families {∅}, {{1}} and {{0,1}}, but only two the-
ory systems, {∅} and {{0,1}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

It is easy to see that I is roughly family reflective. Suppose that for T,T ′ ∈
ThFam(I), Ω(T ) ≤ Ω(T ′).

• If Ω(T ′) = ∆F, then Ω(T ) =∆F, whence T ′ = T = {{1}}. Thus, T̃ ≤ T̃ ′.

• If Ω(T ′) = ∇F, then T ′ = {∅} or T ′ = {{0,1}}. In either case, T̃ ≤{{0,1}} = T̃ ′.
On the other hand, for T = {{1}}, we get T̃ = {{1}} ≠ {{0,1}} = {̃∅} = ←̃ÐT ,

whence T ≁
←Ð
T and, hence, I is not roughly systemic. Therefore, by Lemma

423, I is not roughly right reflective.

The second example shows that there exists a roughly left reflective π-
institution that is not roughly family reflective.

Example 428 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Again, since I has theorems, rough equivalence coincides with the identity
relation on ThFam(I).
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The following table shows the action of ←Ð on theory families, where rows

correspond to TΣ and columns to TΣ′ and each entry is written as
←Ð
T Σ,
←Ð
T Σ′.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

To see that I is roughly left reflective, suppose T,T ′ ∈ ThFam(I), such
that Ω(T ) ≤ Ω(T ′).

• If Ω(T ′) = ∇F, then T ′ = {{0,1},{a, b}}, whence
←Ð
T ≤ {{0,1},{a, b}} =

←Ð
T ′ and, hence,

←̃Ð
T ≤
←̃Ð
T ′.

• If Ω(T ′) = {{{0},{1}},{{a, b}}}, then T ′ = {{1},{a, b}} and T = {{0,
1},{b}} or T = {{1},{b}}. In either case

←Ð
T = {{1},{b}} ≤ T ′ =←ÐT ′ and,

hence,
←̃Ð
T ≤
←̃Ð
T ′.

• If Ω(T ′) = ∆F, then both T and T ′ have to be either {{0,1},{b}} or

{{1},{b}}. Thus, we get
←Ð
T = {{1},{b}} =←ÐT ′ and, hence,

←̃Ð
T ≤
←̃Ð
T ′.
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On the other hand, we have Ω({{0,1},{b}}) ≤ Ω({{1},{b}}), but, clearly,{{0,1},{b}} ≰ {{1},{b}}. Thus, since rough equivalence is the identity on
ThFam(I), we conclude that I is not roughly family reflective.

The third example shows that there exists a roughly family reflective π-
institution that is not roughly left reflective. Combined with the preceding
example, it has the effect of establishing the following facts:

• The classes of roughly family reflective and roughly left reflective π-
institutions are incomparable.

• The class of roughly family reflective π-institutions is properly con-
tained in the class of roughly system reflective π-institutions.

• Similarly, the class of roughly left reflective π-institutions is a proper
subclass of the class of roughly system reflective π-institutions.

Example 429 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
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There are nine theory families, but only five theory systems. The action
of ←Ð on theory families is given in the table below.

T
←Ð
T T

←Ð
T

∅,∅ ∅,∅ ∅, ab ∅, ab
1,∅ ∅,∅ 01, b ∅, b
∅, b ∅, b 1, ab 1, ab

01,∅ ∅,∅ 01, ab 01, ab
1, b ∅, b

The lattice of theory families of I is shown in the diagram.

01, ab

�
� ❅

❅

01, b 1, ab

�
� ❅

❅ �
� ❅

❅

01,∅ 1, b ∅, ab

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, b

❅
❅ �

�

∅,∅

We show that I is roughly family reflective. The following table summarizes
the theory families together with their associated Leibniz congruence systems.

T Ω(T ){∅,∅},{01,∅},{∅, ab},{01, ab} ∇F

{∅, b},{01, b} {∇F
Σ,∆

F
Σ′}{1,∅},{1, ab} {∆F

Σ,∇
F
Σ′}{1, b} ∆F

Let T,T ′ ∈ ThFam(I), such that Ω(T ) ≤ Ω(T ′).
• If Ω(T ′) = ∇F, then T̃ ≤ {01, ab} = T̃ ′.
• If Ω(T ′) = {∆F

Σ,∇
F
Σ′}, then T̃ = {1, ab} or T̃ = {1, b} and, hence, T̃ ≤

{1, ab} = T̃ ′.
• If Ω(T ′) = {∇F

Σ,∆
F
Σ′}, then T̃ = {01, b} or T̃ = {1, b} and, hence, T̃ ≤

{01, b} = T̃ ′.
• If Ω(T ′) =∆F, then T̃ = {1, b} = T̃ ′.
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On the other hand, consider T = {1,∅} and T ′ = {1, ab}. We have

Ω(T ) = Ω({1,∅}) = {∆F
Σ,∇

F
Σ′} = Ω({1, ab}) = Ω(T ′),

whereas
←̃Ð
T = {̃∅,∅} = {01, ab} ≰ T ′ = T̃ ′ = ←̃ÐT ′.

Hence, I is not roughly left reflective.

We look, next, at the connections between rough reflectivity and rough
injectivity classes. It turns out that membership in a rough reflectivity class
implies membership in the corresponding rough injectivity class. We have
the following straightforward inclusions.

Theorem 430 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is roughly right reflective, then it is roughly right injective;

(b) If I is roughly family reflective, then it is roughly family injective;

(c) If I is roughly left reflective, then it is roughly left injective;

(d) If I is roughly system reflective, then it is roughly system injective.

Proof:

(a) Suppose that I is roughly right reflective and let T,T ′ ∈ ThFam(I),
such that Ω(←ÐT ) = Ω(←ÐT ′). Then, by hypothesis, T̃ ≤ T̃ ′ and T̃ ′ ≤ T̃ ,
whence T̃ = T̃ ′, i.e., T ∼ T ′. Therefore, I is roughly right injective.

(b) Suppose that I is roughly family reflective and let T,T ′ ∈ ThFam(I),
such that Ω(T ) = Ω(T ′). Then, by hypothesis, T̃ ≤ T̃ ′ and T̃ ′ ≤ T̃ ,
whence T̃ = T̃ ′, i.e., T ∼ T ′. Therefore, I is roughly family injective.

(c) Suppose that I is roughly left reflective and let T,T ′ ∈ ThFam(I), such

that Ω(T ) = Ω(T ′). Then, by hypothesis,
←̃Ð
T ≤
←̃Ð
T ′ and

←̃Ð
T ′ ≤

←̃Ð
T , whence

←̃Ð
T =
←̃Ð
T ′, i.e.,

←Ð
T ∼←ÐT ′. Therefore, I is roughly left injective.

(d) Similar to Part (b).
∎

Theorem 430 establishes the mixed rough hierarchy depicted in the dia-
gram.
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Rough R Refl

✰✑
✑
✑
✑
✑
✑

Rough L Refl Rough F Refl Rough R Inj
❄

◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

✰✑
✑
✑
✑
✑
✑

Rough L Inj
❄

Rough S Refl Rough F Inj
❄

◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

Rough S Inj
❄

To see that all classes in the hierarchy are different, we give an example
of a π-institution satisfying all four rough injectivity properties, which is not,
however, roughly system reflective and, therefore, a fortiori, belongs to none
of the four rough reflectivity classes.

Example 431 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the single unary operation σ ∶ SEN♭ → SEN♭

determined by the following table:

x 0 1 2
σ♭Σ(x) 0 0 2

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1},{0,1,2}}.
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I has three theory families {{2}} and {{1,2}} and {{0,1,2}}, all of which
are theory systems. Moreover, I has theorems. It follows that the action of ←Ð

is trivial and that rough equivalence in I coincides with the identity relation
on ThFam(I).

The lattice of theory families of I and the corresponding Leibniz congru-
ence systems are given in the diagram.

012 ............................✲ ∇F

12 {01,2}.....................❥....
....

....
....

....
.✯

2 ∆F

We show that I is both roughly right and roughly left injective and, hence,
belongs to all four classes in the rough injectivity hierarchy.

• Suppose Ω(←ÐT ) = Ω(←ÐT ′). Then Ω(T ) = Ω(T ′) and, hence, T = T ′, i.e.,
T ∼ T ′. Thus, I is rough right injective.

• Suppose Ω(T ) = Ω(T ′). Then T = T ′. This gives
←Ð
T =

←Ð
T ′, which, in

turn, implies
←Ð
T ∼ ←ÐT ′. Thus, I is roughly left injective.

On the other hand, we have Ω({{1,2}}) = ∆F ≤ {{0,1},{2}} = Ω({2}), but{{1,2}} ≰ {{2}}, whence I is not roughly system reflective.

We now clarify the connections between rough reflectivity and reflectivity
classes. It turns out that membership in a reflectivity class implies member-
ship in the corresponding rough reflectivity class and, also, possession of
theorems and, conversely, that membership in a rough reflectivity class plus
possession of theorems entails membership in the corresponding reflectivity
class.

Theorem 432 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is right/family reflective if and only if it is roughly right reflective
and has theorems;

(b) I is right/family reflective if and only if it is roughly family reflective
and has theorems;

(c) I is left reflective if and only if it is roughly left reflective and has
theorems;
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(d) I is system reflective if and only if it is roughly system reflective and
has theorems.

Proof:

(a) Suppose that I is right reflective. Then, by Proposition 228, it is
right injective. Hence, by Theorem 394, it has theorems. Let T,T ′ ∈
ThFam(I), such that Ω(←ÐT ) ≤ Ω(←ÐT ′). Then, by right reflectivity, T ≤
T ′. Since I has theorems, T̃ = T and T̃ ′ = T ′. Therefore, T̃ ≤ T̃ ′ and I
is roughly right reflective.

Assume, conversely, that I is roughly right reflective and has theorems.

Let T,T ′ ∈ ThFam(I), such that Ω(←ÐT ) ≤ Ω(←ÐT ′). Then, by rough right
reflectivity, we get T̃ ≤ T̃ ′. On the other hand, since I has theorems,
T̃ = T and T̃ ′ = T ′. Therefore, T ≤ T ′ and I is right reflective.

(b) Suppose that I is family reflective. Then, by Proposition 228, it is
family injective. Hence, by Theorem 394, it has theorems. Let T,T ′ ∈
ThFam(I), such that Ω(T ) ≤ Ω(T ′). Then, by family reflectivity, T ≤
T ′. Since I has theorems, T̃ = T and T̃ ′ = T ′. Therefore, T̃ ≤ T̃ ′ and I
is roughly family reflective.

Assume, conversely, that I is roughly family reflective and has the-
orems. Let T,T ′ ∈ ThFam(I), such that Ω(T ) ≤ Ω(T ′). Then, by
rough family reflectivity, we get T̃ ≤ T̃ ′. On the other hand, since I
has theorems, T̃ = T and T̃ ′ = T ′. Therefore, T ≤ T ′ and I is family
reflective.

(c) Suppose that I is left reflective. Then, by Proposition 228, it is left in-
jective. Hence, by Theorem 394, it has theorems. Let T,T ′ ∈ ThFam(I),
such that Ω(T ) ≤ Ω(T ′). Then, by left reflectivity,

←Ð
T ≤
←Ð
T ′. Since I has

theorems,
←̃Ð
T =
←Ð
T and

←̃Ð
T ′ =
←Ð
T ′. Therefore,

←̃Ð
T ≤
←̃Ð
T ′ and I is roughly left

reflective.

Assume, conversely, that I is roughly left reflective and has theorems.
Let T,T ′ ∈ ThFam(I), such that Ω(T ) ≤ Ω(T ′). Then, by rough left

reflectivity, we get
←̃Ð
T ≤
←̃Ð
T ′. On the other hand, since I has theorems,

←̃Ð
T =
←Ð
T and

←̃Ð
T ′ =
←Ð
T ′. Therefore,

←Ð
T ≤
←Ð
T ′ and I is left reflective.

(d) Similar to Part (b).
∎

The work in Chapter 3, together with the work done in the present section
and Theorem 432, reveal a hierarchy of reflectivity and rough reflectivity
classes shown in the accompanying diagram.
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Right/Family Refl

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

Left Refl Rough R Refl

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

System Refl Rough L Refl Rough F Refl
❄

PPPPPPPPPPPPq ✰✑
✑
✑
✑
✑

Rough S Refl
❄

To complete the demonstration that all classes in the depicted hierarchy
are distinct we provide an example of a π-institution which belongs to all
steps in the rough reflectivity hierarchy but possesses none of the four (gentle)
reflectivity properties.

Example 433 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0}}.
I is systemic and its lattice of theory families and corresponding Leibniz
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congruence systems are shown in the diagram.

0 .....................❥
∆F = ∇F

....
....

....
....

....
.✯

∅

Note that {̃{0}} = {̃∅} = {{0}}, whence, trivially, I is both roughly right and
roughly left reflective.

On the other hand, since Ω({{0}}) = ∇F = Ω({∅}), whereas {{0}} ≰ {∅},
I is not system reflective and, hence, a fortiori, I has none of the four
reflectivity properties.

The rough reflectivity properties transfer from the theory families/sys-
tems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems on arbitrary
F-algebraic systems.

Theorem 434 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is roughly right reflective if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(←ÐT ) ≤ ΩA(←ÐT ′) implies
T̃ ≤ T̃ ′;

(b) I is roughly family reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) ≤ ΩA(T ′) implies
T̃ ≤ T̃ ′;

(c) I is roughly left reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ΩA(T ) ≤ ΩA(T ′) implies
←̃Ð
T ≤
←̃Ð
T ′;

(d) I is roughly system reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A), ΩA(T ) ≤ ΩA(T ′) implies
T̃ ≤ T̃ ′.

Proof:

(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that, by Lemma 51, ThFam(I) = FiFamI(F).
For the “only if”, suppose that I is roughly right reflective and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that
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ΩA(←ÐT ) ≤ ΩA(←ÐT ′). Then α−1(ΩA(←ÐT )) ≤ α−1(ΩA(←ÐT ′)). So, by Proposi-

tion 24, Ω(α−1(←ÐT )) ≤ Ω(α−1(←ÐT ′)). Hence, by Lemma 6, Ω(←ÐÐÐÐα−1(T )) ≤
Ω(←ÐÐÐÐα−1(T ′)). Since, by Lemma 51, α−1(T ), α−1(T ′) ∈ ThFam(I), we

get, by applying rough right reflectivity, α̃−1(T ) ≤ α̃−1(T ′). Thus, by
Theorem 377, α−1(T̃ ) ≤ α−1(T̃ ′). Therefore, taking into account the
surjectivity of ⟨F,α⟩, we conclude that T̃ ≤ T̃ ′.

(b) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly family reflective and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that ΩA(T ) ≤ ΩA(T ′). Then α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). So,
by Proposition 24, Ω(α−1(T )) ≤ Ω(α−1(T ′)). Since, by Lemma 51,
α−1(T ), α−1(T ′) ∈ ThFam(I), we get, by applying rough family reflec-

tivity, α̃−1(T ) ≤ α̃−1(T ′). Thus, by Theorem 377, α−1(T̃ ) ≤ α−1(T̃ ′).
Therefore, taking into account the surjectivity of ⟨F,α⟩, we conclude
that T̃ ≤ T̃ ′.

(c) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly left reflective and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that ΩA(T ) ≤ ΩA(T ′). Then α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). So,
by Proposition 24, Ω(α−1(T )) ≤ Ω(α−1(T ′)). Since, by Lemma 51,
α−1(T ), α−1(T ′) ∈ ThFam(I), we get, by applying rough left reflectiv-

ity,
←̃ÐÐÐÐ
α−1(T ) ≤ ←̃ÐÐÐÐα−1(T ′). Thus, by Lemma 6, α̃−1(←ÐT ) ≤ α̃−1(←ÐT ′). Hence,

by Theorem 377, α−1(←̃ÐT ) ≤ α−1(←̃ÐT ′). Therefore, taking into account

the surjectivity of ⟨F,α⟩, we conclude that
←̃Ð
T ≤
←̃Ð
T ′.

(d) Similar to Part (b).
∎

Finally, we may recast the rough reflectivity classes in terms of the or-
der reflectivity of mappings from posets of classes of theory or filter fami-
lies/systems into posets of congruence systems.

Note for the following, that the collections T̃hFam(I) and T̃hSys(I) may
be ordered by setting, respectively, for all T,T ′ ∈ ThFam(I),

[̃T ] ≤ [̃T ′] iff T̃ ≤ T̃ ′

and, for all T,T ′ ∈ ThSys(I)
⌊̃T ⌋ ≤ ⌊̃T ′⌋ iff T̃ ≤ T̃ ′.

We denote by T̃hFam(I) = ⟨T̃hFam(I),≤⟩ and T̃hSys(I) = ⟨T̃hSys(I),≤⟩,
respectively, the corresponding ordered sets.
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Proposition 435 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly family reflective;

(b) Ω ∶ T̃hFam(I)→ConSys∗(I) is order reflecting;

(c) ΩA ∶ F̃iFam
I(A) → ConSysI∗(A) is order reflecting, for every F-

algebraic system A.

Similarly, for system reflectivity, we have

Proposition 436 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly system reflective;

(b) Ω ∶ T̃hSys(I)→ConSys∗(I) is order reflecting;

(c) ΩA ∶ F̃iSys
I(A) → ConSysI∗(A) is order reflecting, for every F-

algebraic system A.

6.7 Narrow Reflectivity

In this section we study classes of π-institutions defined using reflectivity
properties of the Leibniz operator restricted to ThFam (I). We call those
narrow reflectivity properties in analogy with the terminology adopted when
differentiating rough injectivity and narrow injectivity classes.

Definition 437 (Narrow Reflectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called narrowly family reflective if, for all T,T ′ ∈ ThFam (I),
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′;

• I is called narrowly left reflective if, for all T,T ′ ∈ ThFam (I),
Ω(T ) ≤ Ω(T ′) implies

←Ð
T ≤
←Ð
T ′.

• I is called narrowly right reflective if, for all T,T ′ ∈ ThFam (I),
Ω(←ÐT ) ≤ Ω(←ÐT ′) implies T ≤ T ′.

• I is called narrowly system reflective if, for all T,T ′ ∈ ThSys (I),
Ω(T ) ≤ Ω(T ′) implies T ≤ T ′.
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The narrow reflectivity properties have the following characterizations,
paralleling those given for the narrow injectivity classes in Proposition 400.

Proposition 438 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) I is narrowly family reflective if and only if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′;

(b) I is narrowly left reflective if and only if, for all T,T ′ ∈ ThFam(I),
Ω(T ) ≤ Ω(T ′) implies

←Ð
T̃ ≤
←Ð
T̃ ′;

(c) I is narrowly right reflective if and only if, for all T,T ′ ∈ ThFam(I),
Ω(←ÐT̃ ) ≤ Ω(←ÐT̃ ′) implies T̃ ≤ T̃ ′;

(d) I is narrowly system reflective if and only if, for all T,T ′ ∈ ThSys(I),
such that T̃ , T̃ ′ ∈ ThSys(I), Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′.

Proof:

(a) Suppose that I is narrowly family reflective and let T,T ′ ∈ ThFam(I),
such that Ω(T ) ≤ Ω(T ′). Consider T̃ , T̃ ′ ∈ ThFam (I). By Proposition
369, Ω(T̃ ) = Ω(T ) ≤ Ω(T ′) = Ω(T̃ ′). Thus, by hypothesis, T̃ ≤ T̃ ′.
Therefore, the asserted condition holds.

Assume, conversely, that the asserted condition holds and let T,T ′ ∈
ThFam (I), such that Ω(T ) ≤ Ω(T ′). Then, since ThFam (I) ⊆
ThFam(I), we get, by hypothesis, T̃ ≤ T̃ ′. Since, however, T,T ′ ∈
ThFam (I), we get T = T̃ ≤ T̃ ′ = T ′. Thus, I is narrowly family
reflective.

(b) Suppose that I is narrowly left reflective and let T,T ′ ∈ ThFam(I),
such that Ω(T ) ≤ Ω(T ′). Then T̃ , T̃ ′ ∈ ThFam (I) and, by Proposition

369, Ω(T̃ ) ≤ Ω(T̃ ′). Thus, by hypothesis,
←Ð
T̃ ≤
←Ð
T̃ ′.

Assume, conversely, that the asserted condition holds and let T,T ′ ∈

ThFam (I), such that Ω(T ) ≤ Ω(T ′). Then, by hypothesis,
←Ð
T̃ ≤

←Ð
T̃ ′.

Since, however, T,T ′ ∈ ThFam (I), we get
←Ð
T =
←Ð
T̃ ≤
←Ð
T̃ ′ =
←Ð
T ′. Therefore,

I is narrowly left reflective.

(c) Suppose that I is narrowly right reflective and let T,T ′ ∈ ThFam(I),
such that Ω(←ÐT̃ ) ≤ Ω(←ÐT̃ ′). Since T̃ , T̃ ′ ∈ ThFam (I), we get, by hypoth-
esis, T̃ ≤ T̃ ′.

Assume, conversely, that the asserted condition holds and let T,T ′ ∈
ThFam (I), such that Ω(←ÐT ) ≤ Ω(←ÐT ′). Then, since T,T ′ ∈ ThFam (I),
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we get Ω(←ÐT̃ ) = Ω(←ÐT ) ≤ Ω(←ÐT ′) = Ω(←ÐT̃ ′). Now, by hypothesis, T̃ ≤ T̃ ′

and, therefore, T ≤ T ′. We conclude that I is narrowly right reflective.

(d) Suppose I is narrowly system reflective and let T,T ′ ∈ ThSys(I), such
that T̃ , T̃ ′ ∈ ThSys(I) and Ω(T ) ≤ Ω(T ′). Then T̃ , T̃ ′ ∈ ThSys (I)
and, by Proposition 369, Ω(T̃ ) = Ω(T ) ≤ Ω(T ′) = Ω(T̃ ′). Thus, by
hypothesis, T̃ ≤ T̃ ′.

Assume, conversely, that the asserted condition holds and let T,T ′ ∈
ThSys (I), such that Ω(T ) ≤ Ω(T ′). Then, since T,T ′ ∈ ThSys (I),
we get T̃ = T, T̃ ′ = T ′ ∈ ThSys(I) and, therefore, by hypothesis, T̃ ≤ T̃ ′.
But this gives T = T̃ ≤ T̃ ′ = T ′. Thus, I is narrowly system reflective.

∎

As was shown in Lemma 401, narrow right injectivity implies exclusive
systemicity. In the next lemma, we show that narrow family reflectivity also
implies exclusive systemicity.

Lemma 439 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is narrowly family reflective, then
it is exclusively systemic.

Proof: Assume I is narrowly family reflective and let T ∈ ThFam (I), such

that
←Ð
T ∈ ThSys (I). By Proposition 20, Ω(T ) ≤ Ω(←ÐT ). Thus, by hypothesis,

T ≤
←Ð
T . Since, by Proposition 2, the reverse inclusion always holds, we get

←Ð
T = T . Thus, I is exclusively systemic. ∎

Lemma 405 also has the following direct consequence.

Corollary 440 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly right reflective, then it is
narrowly stable.

Proof: Since narrow right reflectivity implies narrow right injectivity, this
follows directly from Lemma 405. ∎

We establish, next the narrow reflectivity hierarchy. The following propo-
sition forms an analog of Proposition 406, which established the narrow in-
jectivity hierarchy.

Proposition 441 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is narrowly right reflective, then it is narrowly family reflective;

(b) If I is narrowly family reflective, then it is narrowly left reflective;

(c) If I is narrowly left reflective, then it is narrowly system reflective.
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Proof:

(a) Suppose that I is narrowly right reflective and let T,T ′ ∈ ThFam (I),
such that Ω(T ) ≤ Ω(T ′). By Corollary 440, I is narrowly stable. Now

we obtain Ω(←ÐT ) = Ω(T ) ≤ Ω(T ′) = Ω(←ÐT ′). Hence, by narrow right
reflectivity, T ≤ T ′. Hence, I is narrowly family reflective.

(b) Suppose that I is narrowly family reflective and let T,T ′ ∈ ThFam (I),
such that Ω(T ) ≤ Ω(T ′). Then, by hypothesis, T ≤ T ′, whence, by

Lemma 1,
←Ð
T ≤
←Ð
T ′. Thus, I is narrowly left reflective.

(c) Suppose that I is narrowly left reflective and let T,T ′ ∈ ThSys (I),
such that Ω(T ) ≤ Ω(T ′). Then, by hypothesis, we get

←Ð
T ≤
←Ð
T ′. There-

fore, since T,T ′ are theory systems, T ≤ T ′ and, hence, I is narrowly
system reflective.

∎

We have now established the following narrow reflectivity hierarchy
of π-institutions.

Narrowly R Reflective

Narrowly F Reflective
❄

Narrowly L Reflective
❄

Narrowly S Reflective
❄

We give an additional result pertaining to the hierarchy of narrow reflec-
tivity properties depicted in the diagram. The following proposition may be
viewed as an analog of Proposition 407.

Proposition 442 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system reflective and
narrowly systemic, then it is narrowly right reflective.

Proof: Suppose I is narrowly system reflective and narrowly systemic. Let

T,T ′ ∈ ThFam (I), such that Ω(←ÐT ) ≤ Ω(←ÐT ′). By narrow systemicity, T =
←Ð
T

and T ′ =
←Ð
T ′. Hence, on the one hand Ω(T ) ≤ Ω(T ′) and, on the other,

T,T ′ ∈ ThSys (I). Thus, by narrow system reflectivity, T ≤ T ′. Thus, I is
narrowly right reflective. ∎

We present three examples to show that all inclusions established between
the narrow reflectivity classes and shown in the preceding diagram are indeed
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proper inclusions. The first example depicts a π-institution which is narrowly
family reflective but not narrowly right reflective. This shows that the class
of narrowly right reflective π-institutions constitutes a proper subclass of the
class of narrowly family reflective π-institutions.

Example 443 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families, ∅, {{1}} and {{0,1}}, but only two theory

systems, ∅ and {{0,1}}. The lattice of theory families of I and the corre-
sponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

Since the Leibniz operator is an isomorphism on ThFam (I), I is narrowly
family reflective. On the other hand, {{1}},{{0,1}} ∈ ThFam (I) and

Ω(←ÐÐÐ{{1}}) = Ω({∅}) = ∇F = Ω({{0,1}}) = Ω(←ÐÐÐÐ{{0,1}}),
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but {{1}} ≠ {{0,1}}. Therefore, I is not narrowly right injective and, a
fortiori, it fails to be narrowly right reflective.

The next example depicts a π-institution which is narrowly left reflective
but not narrowly family reflective. This shows that the class of narrowly
family reflective π-institutions is a proper subclass of the class of narrowly
left reflective π-institutions.

Example 444 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(f)(0) =
SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families, but only three theory systems, namely ∅, {2}
and {0,1,2}. Moreover, clearly, ThFam (I) = {{2},{1,2},{0,1,2}}. The
following diagram shows the structure of the lattice of theory families on the
left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:
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{0,1,2} .......................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
✕

{1,2} {{0,1},{2}}
...................s...

...
...

...
...

...
.✸

{2} ∆F

∅

There are three pairs (T,T ′), with T,T ′ ∈ ThFam (I) and T ≠ T ′, such
that Ω(T ) ≤ Ω(T ′), namely,

({1,2},{0,1,2}), ({2},{0,1,2}), ({1,2},{2}).
For all three, we get

←Ð
T ≤
←Ð
T ′. Thus, I is narrowly left reflective. On the other

hand, for T = {1,2} and T ′ = {2}, even though Ω(T ) ≤ Ω(T ′), we get T ≰ T ′,
whence I fails to be narrowly family reflective.

We finish the sequence of examples by presenting a narrowly system re-
flective π-institution which fails to be narrowly left reflective. This example
shows that narrowly left reflective π-institutions form a proper subclass of
the class of narrowly system reflective π-institutions.

Example 445 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 1
and SEN♭(f)(1) = 1;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {∅,{0},{1},{0,1}}.
The following table gives the theory families and the theory systems of the

π-institution I.
T

←Ð
T

∅ ∅{0} ∅{1} {1}{0,1} {0,1}
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The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below.

01 .......................................✲ ∇F

✪
✪
✪
✪ ❡

❡
❡
❡

..
..

..
..

..
..

..
..

..
..

..
..✒

0 1

❡
❡
❡
❡

.......................................q✪
✪
✪
✪

..............⑦
∅ ∆F

It is obvious from the diagram that the Leibniz operator is an isomorphism
on ThSys (I). Therefore, I is narrowly system reflective. On the other
hand, for T = {{0}}, T ′ = {{1}}, both members of ThFam (I), we have

Ω(T ) = Ω(T ′) = ∆F, whereas
←Ð
T = {∅} ≠ {{1}} = ←ÐT ′. Therefore, I is not

narrowly left injective and, a fortiori, it fails to be narrowly left reflective.

We turn now to the relationships between corresponding classes of the
rough reflectivity and the narrow reflectivity hierarchies. These parallel the
ones already established between the rough injectivity and narrow injectivity
classes in Section 6.5.

Using the characterization in Part (a) of Proposition 438, we can imme-
diately see that the two types of family reflectivity coincide.

Corollary 446 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly family reflective if and only
if it is narrowly family reflective.

Proof: Part (a) of Proposition 438. ∎

As was the case with rough and narrow injectivity properties, the rela-
tionships between the remaining classes are not so straightforward, due to
the necessity of investigating the mode of interaction between rough equiv-
alence and the ←Ð operator. Starting with the two left reflectivity classes,
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we show that the class of narrow left reflective π-institutions is not included
in the class of roughly left reflective π-institutions. This is accomplished by
constructing a π-institution which is narrowly left reflective but not roughly
left reflective.

Example 447 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a}
and SEN♭(f)(0) = SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{a}}.
Clearly, there are six theory families in ThFam(I), only four of which

are theory systems, and only two of which are in ThFam (I). The lattice of
theory families is shown in the diagram:

01, a

�
�
� ❅

❅
❅

01,∅ 1, a

❅
❅
❅ �

�
� ❅

❅
❅

1,∅ ∅, a

❅
❅
❅ �

�
�

∅,∅
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The only pair (T,T ′), with T,T ′ ∈ ThFam (I), T ≠ T ′ and Ω(T ) ≤ Ω(T ′) is

({1, a}, {01, a}), Since,
←ÐÐÐ{1, a} = {1, a} ≤ {01, a} = ←ÐÐÐÐ{01, a}, it follows that I is

narrowly left reflective.
On the other hand, consider T = {1,∅} and T ′ = {1, a}. We have

Ω(1,∅) = {∆F
Σ,∇

F
Σ′} = Ω(1, a), but

←̃ÐÐ
1,∅ = ∅̃,∅ = {01, a} ≰ {1, a} = 1̃, a =

←̃Ð
1, a.

This proves that I is not roughly left reflective.

We exhibit, next a π-institution that is roughly left reflective, while it fails
to be narrowly left reflective. Combined with Example 447, this will show
that the two left reflectivity classes, rough and narrow, are incomparable
from the point of view of inclusion.

Example 448 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and three nonidentity mor-
phisms f ∶ Σ → Σ and g, h ∶ Σ → Σ′, such that f ○ f = f , g ○ f = h and
h ○ f = h;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b, c}, SEN♭(f)(0) = SEN♭(f)(1) = 0, SEN♭(g)(0) = b, SEN♭(g)(1) =
c and SEN♭(h)(0) = SEN♭(h)(1) = b;

• N ♭ is the clone generated by a single binarry natural transformation
σ♭ ∶ (SEN♭)2 → SEN♭, whose components are defined by the following
tables:

σ♭Σ 0 1
0 0 1
1 1 1

σ♭Σ′ a b c

a a a c

b a b c

c c c c
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It is not difficult, albeit slightly tedious, to check that this is a well-defined
natural transformation. We summarize the checking in the accompanying
table.

f(σ♭Σ(x, y)) g(σ♭Σ(x, y)) h(σ♭Σ(x, y))(x, y) = σ♭Σ(f(x), f(y)) = σ♭Σ′(g(x), g(y)) = σ♭Σ′(h(x), h(y))(0,0) 0 = 0 b = b b = b(0,1) 0 = 0 c = c b = b(1,0) 0 = 0 c = c b = b(1,1) 0 = 0 c = c b = b

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b, c},{a, b, c}}.
Clearly, there are nine theory families in ThFam(I), five of which are

theory systems, and four of which are in ThFam (I). The lattice of theory
families is shown in the diagram:

01, abc

�
� ❅

❅

01, bc 1, abc

�
� ❅

❅ �
� ❅

❅

01,∅ 1, bc ∅, abc

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, bc

❅
❅ �

�

∅,∅

The action of ←Ð on theory families is given in the following table.

T
←Ð
T T

←Ð
T

01, abc 01, abc ∅, abc ∅, abc
01, bc 01, bc 1,∅ ∅,∅
1, abc ∅, abc ∅, bc ∅, bc
01,∅ ∅,∅ ∅,∅ ∅,∅
1, bc ∅, bc

The table below provides the Leibniz congruence systems associated with the
theory families of I.

T Ω(T ){01, abc},{01,∅},{∅, abc},{∅,∅} ∇F

{1, abc},{1,∅} {∆F
Σ,∇

F
Σ′}{01, bc},{1, bc},{∅, bc} ∆F
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To see that I is roughly left reflective, suppose that Ω(T ) ≤ Ω(T ′). We
separate cases depending on Ω(T ′).

• If Ω(T ′) = ∆F, then T,T ′ ∈ {{01, bc},{1, bc},{∅, b}}, whence
←̃Ð
T =

{01, bc} = ←̃ÐT ′;
• If Ω(T ′) = {∆F

Σ,∇
F
Σ′} or Ω(T ′) = ∇F, then

←̃Ð
T ≤ {01, abc} = ←̃ÐT ′.

On the other hand, for T = {01, bc} and T ′ = {1, bc}, we get Ω(T ) = ∆F =
Ω(T ′), whereas

←Ð
T = {01, bc} ≰ {∅, bc} = ←ÐT ′. Therefore, I is not narrowly left

reflective.

We turn, next to the relationship between the two kinds of right re-
flectivity. We show, first, that rough right reflectivity implies narrow right
reflectivity.

Proposition 449 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly right reflective, then it is
narrowly right reflective.

Proof: Suppose I is roughly right reflective and let T,T ′ ∈ ThFam (I),
such that Ω(←ÐT ) ≤ Ω(←ÐT ′). By rough right reflectivity, we get that T̃ ≤ T̃ ′.
Since, however, T,T ′ ∈ ThFam (I), we get T = T̃ ≤ T̃ ′ = T ′. Therefore, I is
narrowly right reflective. ∎

The converse, on the other hand, does not hold in general, as the following
example demonstrates.

Example 450 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
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Clearly, there are only four theory families in ThFam (I), all of which are
theory systems. Their lattice together with the associated Leibniz congruence
systems are shown in the diagram:

01, ab ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

01, b 1, ab ∇F
Σ,∆

F
Σ′ ∆F

Σ,∇
F
Σ′

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

1, b ∆F

From this diagram and the fact that all theory families in ThFam (I) are
theory systems, we see that, for all T,T ′ ∈ ThFam (I),

Ω(←ÐT ) ≤ Ω(←ÐT ′) iff Ω(T ) ≤ Ω(T ′) iff T ≤ T ′.

Therefore, I is indeed narrowly right reflective.

On the other hand, consider T = {01, ab} and T ′ = {1,∅}. Then we have

Ω(←ÐT ) = Ω(01, ab) = ∇F = Ω(∅) = Ω(←ÐT ′),
whereas 0̃1, ab = {01, ab} ≰ {1, ab} = 1̃,∅. This shows that I is not roughly
right reflective.

Finally, we look at system reflectivity. We show that rough system reflec-
tivity implies narrow system reflectivity, but that the converse implication
fails in general.

Proposition 451 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system reflective, then it is
narrowly system reflective.
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Proof: Suppose I is roughly system reflective and let T,T ′ ∈ ThSys (I),
such that Ω(T ) ≤ Ω(T ′). Then, by rough system reflectivity, T̃ ≤ T̃ ′. How-
ever, since T,T ′ ∈ ThSys (I), we get T = T̃ ≤ T̃ ′ = T ′. Therefore, I is
narrowly system reflective. ∎

And now we present an example of a π-institution that is narrowly system
reflective but not roughly system reflective. This, combined with Proposition
451, shows that the class of narrowly system reflective π-institutions properly
contains the class of roughly system reflective π-institutions.

Example 452 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
There are only four theory families in ThFam (I), all of which except for{01, b} are theory systems. Their lattice together with the associated Leibniz

congruence systems are shown in the diagram:

01, ab ....................................✲ ∇F

�
�
� ❅

❅
❅

01, b 1, ab ............✲ ∆F
Σ,∇

F
Σ′

❅
❅
❅

..................................q
�
�
�

1, b ......................................✲ ∆F
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From this diagram we see that for all T,T ′ ∈ ThSys (I), we get Ω(T ) ≤ Ω(T ′)
if and only if T ≤ T ′. Therefore, I is narrowly system reflective.

On the other hand, consider T = {∅, b}, T ′ = {1, b} ∈ ThSys(I). Even
though T̃ = {01, b} ≰ {1, b} = T̃ ′, we have Ω(T ) = ∆F = Ω(T ′). Hence, I is
not roughly system reflective.

The results obtained and the counterexamples presented, thus far, reveal
the following mixed hierarchy of rough and narrow reflectivity classes of π-
institutions, paralleling the one presented for rough and narrow injectivity
properties.

Rough R Refl

Narrow R Refl
❄

Rough L Refl Rough F Refl
❄

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Rough S Refl Narrow L Refl

❅
❅
❅❘ ✠�

�
�

Narrow S Refl

As far as narrow injectivity versus narrow reflectivity properties, it is easy
to show that a narrow reflectivity property implies the corresponding narrow
injectivity property. (In fact, this observation, formalized in Proposition 453,
has already been used before, e.g., in the proof of Part (a) of Proposition 441.)

Proposition 453 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is narrowly family reflective, then it is narrowly family injective;

(b) If I is narrowly left reflective, then it is narrowly left injective;

(c) If I is narrowly right reflective, then it is narrowly right injective;

(d) If I is narrowly system reflective, then it is narrowly system injective.

Proof: We only deal with the family case, since the other three implications
are equally straightforward to prove.

Assume that I is narrowly family reflective and let T,T ′ ∈ ThFam (I),
such that Ω(T ) = Ω(T ′). Since this implies that Ω(T ) ≤ Ω(T ′) and that
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Ω(T ′) ≤ Ω(T ), we get, by applying narrow family reflectivity, that T ≤ T ′

and T ′ ≤ T . Therefore, T = T ′ and, hence, I is narrowly family injective. ∎

Turning to the relationships between narrow reflectivity classes and cor-
responding reflectivity classes, we prove a theorem, analogous to Theorem
418, asserting that ordinary reflectivity is equivalent to narrow reflectivity in
the presence of theorems.

Theorem 454 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family reflective if and only if it is narrowly family reflective and
has theorems;

(b) I is left reflective if and only if it is narrowly left reflective and has
theorems;

(c) I is right reflective if and only if it is narrowly right reflective and has
theorems;

(d) I is system reflective if and only if it is narrowly system reflective and
has theorems.

Proof: By Theorem 432, if I has one of the four reflectivity properties,
then it has theorems. Moreover, by the same theorem, a reflectivity property
implies the corresponding rough reflectivity property and, by Corollary 446,
Proposition 449 and Proposition 451, each implies the corresponding narrow
reflectivity property except in the case of left reflectivity, where (as actually
in all other cases, as well) one can easily see directly that left reflectivity
implies narrow left reflectivity, since the defining condition of the latter is a
special case of that of the former.

All converses are also easily verified, since, in the presence of theorems,
ThFam (I) = ThFam(I) and ThSys (I) = ThSys(I), which makes the four
defining conditions for the narrow classes identical with the corresponding
conditions for the ordinary reflectivity classes. ∎

We now have the following hierarchy.
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R Refl

❂✚
✚
✚
✚

F Refl Rough R Refl
❄

❂✚
✚
✚
✚ ❏

❏
❏
❏
❏
❏
❏
❏❫

L Refl Narrow R Refl
❄

❂✚
✚
✚
✚ ❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

S Refl Rough L Refl
❄

Rough F Refl
❄

PPPPPPPPPPPPq

❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Rough S Refl Narrow L Refl
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

Narrow S Refl

The narrow reflectivity properties transfer from the theory families/sys-
tems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems on arbitrary
F-algebraic systems. This result forms an analog of Theorem 419, which
applied to narrow injectivity classes.

Theorem 455 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is narrowly right reflective if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), ΩA(←ÐT ) ≤ ΩA(←ÐT ′) implies
T ≤ T ′;

(b) I is narrowly family reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), ΩA(T ) ≤ ΩA(T ′) implies
T ≤ T ′;

(c) I is narrowly left reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), ΩA(T ) ≤ ΩA(T ′) implies
←Ð
T ≤
←Ð
T ′;

(d) I is narrowly system reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI (A), ΩA(T ) ≤ ΩA(T ′) implies
T ≤ T ′.

Proof: The proof follows the steps of the proofs of the various parts of
Theorem 419. We do Part (a) in detail to give a flavor of what is involved.
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The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩ and
taking into account that ThFam (I) = FiFamI (F), by Lemmas 51 and 376.

For the “only if”, suppose that I is narrowly right reflective and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI (A), such that

ΩA(←ÐT ) ≤ ΩA(←ÐT ′). Then α−1(ΩA(←ÐT )) ≤ α−1(ΩA(←ÐT ′)). So, by Proposition 24,

Ω(α−1(←ÐT )) ≤ Ω(α−1(←ÐT ′)). Hence, by Lemma 6, Ω(←ÐÐÐÐα−1(T )) ≤ Ω(←ÐÐÐÐα−1(T ′)).
Since, by Lemmas 51 and 376, α−1(T ), α−1(T ′) ∈ ThFam (I), we get, by
applying narrow right reflectivity, α−1(T ) ≤ α−1(T ′). This yields, taking into
account the surjectivity of ⟨F,α⟩, T ≤ T ′. ∎

We finally recast narrow reflectivity in terms of the order reflectivity
of mappings from posets of theory or filter families/systems into posets of
congruence systems. The following results form analogs of Propositions 420
and 421, respectively, addressing reflectivity instead of injectivity properties.

Proposition 456 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly family reflective;

(b) Ω ∶ ThFam (I)→ ConSys∗(I) is order reflecting;

(c) ΩA ∶ FiFamI (A) → ConSysI∗(A) is order reflecting, for every F-
algebraic system A.

Similarly, for system reflectivity, we have

Proposition 457 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly system reflective;

(b) Ω ∶ ThSys (I)→ ConSys∗(I) is order reflecting;

(c) ΩA ∶ FiSysI (A) → ConSysI∗(A) is order reflecting, for every F-alge-
braic system A.

6.8 Rough Complete Reflectivity

In this section we study classes of π-institutions defined using complete re-
flectivity properties of the Leibniz operator applied on rough equivalence
classes.

Definition 458 (Rough c-Reflectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ be a π-institution based on F.
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• I is called roughly family completely reflective, or roughly fam-
ily c-reflective for short, if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T̃ ≤ T̃ ′.

• I is called roughly left completely reflective, or roughly left c-
reflective for short, if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←̃Ð
T ≤
←̃Ð
T ′.

• I is called roughly right completely reflective, or roughly right
c-reflective for short, if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(←ÐT ) ≤ Ω(←ÐT ′) implies ⋂
T ∈T

T̃ ≤ T̃ ′.

• I is called roughly system completely reflective, or roughly sys-
tem c-reflective for short, if, for all T ∪ {T ′} ⊆ ThSys(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T̃ ≤ T̃ ′.

As was shown to be the case with rough right reflectivity in Lemma 423,
we show that rough right c-reflectivity implies rough systemicity and, hence,
by Theorem 370, stability.

Lemma 459 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly right completely reflec-
tive, then it is roughly systemic.

Proof: This is a consequence of Lemma 423, since rough right c-reflectivity
implies trivially rough right reflectivity. ∎

Next we establish the rough c-reflectivity hierarchy of π-institutions.

Proposition 460 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is roughly right c-reflective, then it is roughly family c-reflective;

(b) If I is roughly family c-reflective, then it is roughly system c-reflective;

(c) If I is roughly left c-reflective, then it is roughly system c-reflective.

Proof:
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(a) Suppose I is roughly right c-reflective and let T ∪ {T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By Lemma 459, I is roughly systemic,

whence
←Ð
T ∼ T , for all T ∈ T , and

←Ð
T ′ ∼ T ′. Thus, by Theorem 370, we

get

⋂
T ∈T

Ω(←ÐT ) = ⋂
T ∈T

Ω(T ) ≤ Ω(T ′) = Ω(←ÐT ′).
Now applying rough right c-reflectivity, we get ⋂T ∈T T̃ ≤ T̃ ′. This proves
that I is roughly family c-reflective.

(b) Suppose I is roughly family c-reflective and let T ∪ {T ′} ⊆ ThSys(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by rough family c-reflectivity, we
get ⋂T ∈T T̃ ≤ T̃ ′, whence, I is roughly system c-reflective.

(c) Suppose I is roughly left c-reflective and let T ∪{T ′} ⊆ ThSys(I), such
that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By rough left c-reflectivity, we conclude that

⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′. However, since T ∪ {T ′} consists of theory systems, we

have
←Ð
T = T , for all T ∈ T , and

←Ð
T ′ = T ′. Hence we get ⋂T ∈T T̃ ≤ T̃ ′ and,

hence, I is roughly system reflective.
∎

We have now established the following rough complete reflectivity
hierarchy of π-institutions.

Rough R c-Reflective
...................s

Rough L c-Refl Rough F c-Refl
❄

Rough Systemic
◗
◗
◗
◗
◗
◗
◗s

Rough System c-Reflective
❄

We formulate two additional properties concerning the relationships be-
tween rough c-reflectivity classes. First, rough right c-reflectivity turns out to
be equivalent to rough system c-reflectivity combined with rough systemicity.

Proposition 461 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly right c-reflective if and only
if it is roughly system c-reflective and roughly systemic.

Proof: Suppose, first, that I is roughly right c-reflective. Then, by Lemma
459, it is roughly systemic and by Proposition 460 it is roughly system c-
reflective.

Suppose, conversely, that I is roughly system c-reflective and roughly

systemic and let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). By
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rough system c-reflectivity and Proposition 42, we get ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′. Hence,

by rough systemicity, ⋂T ∈T T̃ = ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′ = T̃ ′. Thus, I is roughly right

c-reflective. ∎

Second, we show that rough system c-reflectivity together with stability
imply rough left c-reflectivity.

Proposition 462 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system c-reflective and
stable, then it is roughly left c-reflective.

Proof: Suppose that I is roughly system c-reflective and stable and consider
T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by stability

⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Hence, since {←ÐT ∶ T ∈ T } ∪ {←ÐT ′} ⊆ ThSys(I), by

rough system c-reflectivity, ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′. This shows that I is roughly left

c-reflective. ∎

We present three examples to show that all inclusions established between
rough c-reflectivity classes and depicted in the diagram above are proper
inclusions. The first example will show that the class of roughly right c-
reflective π-institutions is a proper subclass of the class of roughly family
c-reflective π-institutions.

Example 463 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅}, {{1}} and {{0,1}}, but only two the-

ory systems, {∅} and {{0,1}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

It is easy to see that I is roughly family c-reflective. Suppose that for T ∪{T ′} ⊆ ThFam(I), ⋂T ∈T Ω(T ) ≤ Ω(T ′).
• If Ω(T ′) = ∆F, then ⋂T ∈T Ω(T ) = ∆F, whence T ′ = {{1}} and {{1}} ∈
T . Thus, ⋂T ∈T T̃ ≤ {{1}} = T̃ ′.

• If Ω(T ′) = ∇F, then T ′ = {∅} or T ′ = {{0,1}}. In either case, ⋂T ∈T T̃ ≤{{0,1}} = T̃ ′.
On the other hand, for T = {{1}}, we get T̃ = {{1}} ≠ {{0,1}} = {̃∅} = ←̃ÐT ,

whence T ≁
←Ð
T and, hence, I is not roughly systemic. Therefore, by Lemma

459, I is not roughly right c-reflective.

The second example shows that there exists a roughly left c-reflective
π-institution that is not roughly family c-reflective.

Example 464 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
Again, since I has theorems, rough equivalence coincides with the identity
relation on ThFam(I).

The following table shows the action of ←Ð on theory families.

T {1, b} {01, b} {1, ab} {01, ab}
←Ð
T {1, b} {1, b} {1, ab} {01, ab}

The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{0,1},{a, b} .............................................✲ ∇F

�
�
� ❅

❅
❅{0,1},{b} {1},{a, b} ...............✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1},{b} .................................................✲ ∆F

We show, first, that I is roughly left c-reflective. Suppose T ∪ {T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′).

• If Ω(T ′) = ∇F, then T ′ = {{0,1},{a, b}}, whence

⋂
T ∈T

←Ð
T ≤ {{0,1},{a, b}} =←ÐT ′

and, hence, ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′.
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• If Ω(T ′) = {{{0},{1}},{{a, b}}}, then T ′ = {{1},{a, b}} and one of{{0,1},{b}} or {{1},{a, b}} or {{1},{b}} must belong to T . In either
case

⋂
T ∈T

←Ð
T ≤ {{1},{a, b}} =←ÐT ′

and, hence, ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′.

• If Ω(T ′) = ∆F, then T ′ must be either {{0,1},{b}} or {{1},{b}} and,
moreover, {{0,1},{b}} or {{1},{b}} is in T . Thus, we get

⋂
T ∈T

←Ð
T ≤ {{1},{b}} =←ÐT ′

and, hence, ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′.

On the other hand, we have Ω({{0,1},{b}}) ≤ Ω({{1},{b}}), but, clearly,{{0,1},{b}} ≰ {{1},{b}}. Thus, since rough equivalence is the identity on
ThFam(I), we conclude that I is not roughly family c-reflective.

The third example shows that there exists a roughly family c-reflective π-
institution that is not roughly left c-reflective. Combined with the preceding
example, it has the effect of establishing the following facts:

• The classes of roughly family c-reflective and roughly left c-reflective
π-institutions are incomparable.

• The class of roughly family c-reflective π-institutions is properly con-
tained in the class of roughly system c-reflective π-institutions.

• Similarly, the class of roughly left c-reflective π-institutions is a proper
subclass of the class of roughly system c-reflective π-institutions.

Example 465 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
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There are nine theory families, but only five theory systems. The action
of ←Ð on theory families is given in the table below.

T
←Ð
T T

←Ð
T

∅,∅ ∅,∅ ∅, ab ∅, ab
1,∅ ∅,∅ 01, b ∅, b
∅, b ∅, b 1, ab 1, ab

01,∅ ∅,∅ 01, ab 01, ab
1, b ∅, b

The lattice of theory families of I is shown in the diagram.

01, ab

�
� ❅

❅

01, b 1, ab

�
� ❅

❅ �
� ❅

❅

01,∅ 1, b ∅, ab

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, b

❅
❅ �

�

∅,∅

We show that I is roughly family c-reflective. The following table summarizes
the theory families together with their associated Leibniz congruence systems.

T Ω(T ){∅,∅},{01,∅},{∅, ab},{01, ab} ∇F

{∅, b},{01, b} {∇F
Σ,∆

F
Σ′}{1,∅},{1, ab} {∆F

Σ,∇
F
Σ′}{1, b} ∆F

Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′).



Voutsadakis CHAPTER 6. SEMANTIC HIERARCHY IV 481

• If Ω(T ′) = ∇F, then ⋂T ∈T T̃ ≤ {01, ab} = T̃ ′.
• If Ω(T ′) = {∆F

Σ,∇
F
Σ′}, then T must include one of the theory families

{1,∅}, {1, ab}, {1, b}. Hence, ⋂T ∈T T̃ ≤ {1, ab} = T̃ ′.
• If Ω(T ′) = {∇F

Σ,∆
F
Σ′}, then T must include one of the theory families

{∅, b}, {01, b}, {1, b}. Hence, ⋂T ∈T T̃ ≤ {01, b} = T̃ ′.
• If Ω(T ′) =∆F, then ⋂T ∈T Ω(T ) =∆F and T̃ ′ = {̃1, b} = {1, b}.

– If {1, b} ∈ T , then ⋂T ∈T T̃ ≤ {1, b} = T̃ ′;
– If {1, b} ∉ T , then T must include at least one member of each of

the pairs {∅, b}, {01, b} and {1,∅}, {1, ab}.
Thus, ⋂T ∈T T̃ ≤ {01, b} ∩ {1, ab} = {1, b} = T̃ ′.

On the other hand, consider T = {1,∅} and T ′ = {1, ab}. We have

Ω(T ) = Ω({1,∅}) = {∆F
Σ,∇

F
Σ′} = Ω({1, ab}) = Ω(T ′),

whereas
←̃Ð
T = {̃∅,∅} = {01, ab} ≰ T ′ = T̃ ′ = ←̃ÐT ′.

hence, I is not roughly left c-reflective.

We look, next, at the connections between rough c-reflectivity and rough
reflectivity classes. Membership in a rough c-reflectivity class implies, in
a straightforward way, membership in the corresponding rough reflectivity
class.

Theorem 466 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is roughly right c-reflective, then it is roughly right reflective;

(b) If I is roughly family c-reflective, then it is roughly family reflective;

(c) If I is roughly left c-reflective, then it is roughly left reflective;

(d) If I is roughly system c-reflective, then it is roughly system reflective.

Proof: The property of being, e.g., roughly right reflective is a specialization
of the property of being roughly right c-reflective, where one replaces the class
T of theory families by the singleton {T}. The same holds for the remaining
three types of rough reflectivity and rough c-reflectivity, respectively. ∎

Theorem 466 establishes the mixed rough hierarchy depicted in the dia-
gram.
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Rough R c-Refl

✰✑
✑
✑
✑
✑
✑

Rough L c-Refl Rough F c-Refl Rough R Refl
❄

◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

✰✑
✑
✑
✑
✑
✑

Rough L Refl
❄

Rough S c-Refl Rough F Refl
❄

◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

Rough S Refl
❄

To see that all classes in the hierarchy are different, we give an example
of a π-institution satisfying all four rough reflectivity properties, which is
not, however, roughly system c-reflective and, therefore, a fortiori, belongs
to none of the four rough c-reflectivity classes.

Example 467 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2,3};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0},{3},{0,3},{1,3},{2,3},{0,1,2,3}}.
I has seven theory families all of which are theory systems. It follows that

the action of ←Ð is trivial. Moreover, the only non-singleton rough equivalence
class is the one consisting of {∅} and {{0,1,2,3}}.
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The lattice of theory families of I and the corresponding Leibniz congru-
ence systems are given in the diagram.

0123

✱
✱
✱
✱ ❧

❧
❧
❧

03 13 23

❧
❧
❧
❧ ✱

✱
✱
✱

0 3

❧
❧
❧
❧

∅

∇F

✑
✑
✑
✑
✑

✁
✁
✁
✁
✁
✁
✁
✁ ◗

◗
◗
◗
◗

❆
❆
❆
❆
❆
❆
❆
❆

03,12 02,13 01,23

0,123 012,3

We show that I is both roughly right and roughly left reflective and, hence,
belongs to all four classes in the rough reflectivity hierarchy. Note that, since
I is systemic, both rough reflectivity properties boil down to showing that, for
all T,T ′ ∈ ThFam(I),

Ω(T ) ≤ Ω(T ′) implies T̃ ≤ T̃ ′.

• If Ω(T ′) = ∇F, then T ′ = {∅} or T ′ = {{0,1,2,3}}. Therefore, T̃ ≤{{0,1,2,3}} = T̃ ′;
• If Ω(T ′) ≠ ∇F, then, since Ω(T ) ≤ Ω(T ′), we must have T = T ′ and,

hence, T̃ ≤ T̃ ′.

On the other hand, we have

Ω({03}) ∩Ω({3}) = {03,12} ∩ {012,3} = {0,12,3} ≤ {0,123} = Ω({{0}}),
whereas {̃03} ∩ {̃3} = {03} ∩ {3} = {3} ≰ {0} = {̃0}.
Hence, I is not roughly system c-reflective and, therefore, it belongs to none
of the four rough c-reflectivity classes.

We explore, next, the connections between rough c-reflectivity and c-
reflectivity classes. By analogy with the case of reflectivity and rough reflec-
tivity (Theorem 432), we get that membership in a c-reflectivity class implies
membership in the corresponding rough c-reflectivity class and, also, posses-
sion of theorems. Conversely, membership in a rough c-reflectivity class plus
possession of theorems entails membership in the corresponding c-reflectivity
class.

Theorem 468 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) I is right/family c-reflective if and only if it is roughly right c-reflective
and has theorems;

(b) I is right/family c-reflective if and only if it is roughly family c-reflective
and has theorems;

(c) I is left c-reflective if and only if it is roughly left c-reflective and has
theorems;

(d) I is system c-reflective if and only if it is roughly system c-reflective
and has theorems.

Proof:

(a) Suppose that I is right c-reflective. Then, by Proposition 243, it is right
reflective. Hence, by Theorem 432, it has theorems. Let T ∪ {T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Then, by right c-reflectivity,

⋂T ∈T T ≤ T ′. Since I has theorems, T̃ = T , for all T ∈ T , and T̃ ′ = T ′.
Therefore, ⋂T ∈T T̃ ≤ T̃ ′ and I is roughly right c-reflective.

Assume, conversely, that I is roughly right c-reflective and has theo-

rems. Let T ∪{T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). Then,
by rough right c-reflectivity, we get ⋂T ∈T T̃ ≤ T̃ ′. On the other hand,
since I has theorems, T̃ = T , for all T ∈ T , and T̃ ′ = T ′. Therefore,

⋂T ∈T T ≤ T ′ and I is right c-reflective.

(b) Suppose that I is family c-reflective. Then, by Proposition 243, it
is family reflective. Hence, by Theorem 432, it has theorems. Let
T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by family
c-reflectivity, ⋂T ∈T T ≤ T ′. Since I has theorems, T̃ = T , for all T ∈ T ,
and T̃ ′ = T ′. Therefore, ⋂T ∈T T̃ ≤ T̃ ′ and I is roughly family c-reflective.

Assume, conversely, that I is roughly family c-reflective and has theo-
rems. Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then,
by rough family c-reflectivity, we get ⋂T ∈T T̃ ≤ T̃ ′. On the other hand,
since I has theorems, T̃ = T , for all T ∈ T , and T̃ ′ = T ′. Therefore,

⋂T ∈T T ≤ T ′ and I is family c-reflective.

(c) Suppose that I is left c-reflective. Then, by Proposition 243, it is left
reflective. Hence, by Theorem 432, it has theorems. Let T ∪ {T ′} ⊆
ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by left reflectivity,

⋂T ∈T
←Ð
T ≤
←Ð
T ′. Since I has theorems,

←̃Ð
T =
←Ð
T , for all T ∈ T , and

←̃Ð
T ′ =
←Ð
T ′.

Therefore, ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′ and I is roughly left c-reflective.

Assume, conversely, that I is roughly left c-reflective and has theorems.
Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by

rough left c-reflectivity, we get ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′. On the other hand, since
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I has theorems,
←̃Ð
T =
←Ð
T , for all T ∈ T , and

←̃Ð
T ′ =
←Ð
T ′. Therefore, ⋂T ∈T

←Ð
T ≤

←Ð
T ′ and I is left c-reflective.

(d) Similar to Part (b).
∎

The work in Chapter 3, together with the work done in the present section
and Theorem 468, reveal a hierarchy of c-reflectivity and rough c-reflectivity
classes shown in the accompanying diagram.

Right/Family c-Refl

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥
Left c-Refl Rough R c-Refl

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥
System c-Refl Rough L c-Refl Rough F c-Refl

❄

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳③ ✙✟✟✟✟✟✟✟✟

Rough S c-Refl
❄

To complete the demonstration that all classes in the depicted hierarchy
are distinct we provide an example of a π-institution which belongs to all
steps in the rough c-reflectivity hierarchy but possesses none of the four
(gentle) c-reflectivity properties.

Example 469 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0};
• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0}}.
I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

0 .....................❥
∆F = ∇F

....
....

....
....

....
.✯

∅

Note that {̃{0}} = {̃∅} = {{0}}, whence, trivially, I is both roughly right and
roughly left c-reflective.

On the other hand, since Ω({{0}}) = ∇F = Ω({∅}), whereas {{0}} ≰ {∅},
I is not system c-reflective and, hence, a fortiori, I has none of the four
c-reflectivity properties.

As was shown to be the case with the rough reflectivity properties in
Theorem 434, the rough c-reflectivity properties transfer from the theory
families/systems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems
on arbitrary F-algebraic systems.

Theorem 470 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is roughly right c-reflective if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), ⋂T ∈T ΩA(←ÐT ) ≤ ΩA(←ÐT ′)
implies ⋂T ∈T T̃ ≤ T̃ ′;

(b) I is roughly family c-reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), ⋂T ∈T ΩA(T ) ≤ ΩA(T ′)
implies ⋂T ∈T T̃ ≤ T̃ ′;

(c) I is roughly left c-reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), ⋂T ∈T ΩA(T ) ≤ ΩA(T ′)
implies ⋂T ∈T

←̃Ð
T ≤
←̃Ð
T ′;

(d) I is roughly system c-reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ∈ FiSysI(A), ⋂T ∈T ΩA(T ) ≤ ΩA(T ′)
implies ⋂T ∈T T̃ ≤ T̃ ′.

Proof:
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(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that, by Lemma 51, ThFam(I) = FiFamI(F).
For the “only if”, suppose that I is roughly right c-reflective and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A), such

that ⋂T ∈T ΩA(←ÐT ) ≤ ΩA(←ÐT ′). Then α−1(⋂T ∈T ΩA(←ÐT )) ≤ α−1(ΩA(←ÐT ′)),
whence, ⋂T ∈T α−1(ΩA(←ÐT )) ≤ α−1(ΩA(←ÐT ′)). So, by Proposition 24,

⋂T ∈T Ω(α−1(←ÐT )) ≤ Ω(α−1(←ÐT ′)). By Lemma 6,

⋂
T ∈T

Ω(←ÐÐÐÐα−1(T )) ≤ Ω(←ÐÐÐÐα−1(T ′)).
Since, by Lemma 51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I), we
get, by applying rough right c-reflectivity,

⋂
T ∈T

α̃−1(T ) ≤ α̃−1(T ′).
Thus, by Theorem 377, ⋂T ∈T α−1(T̃ ) ≤ α−1(T̃ ′), i.e., α−1(⋂T ∈T T̃) ≤
α−1(T̃ ′). Therefore, taking into account the surjectivity of ⟨F,α⟩, we
conclude that ⋂T ∈T T̃ ≤ T̃ ′.

(b) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly family c-reflective and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A),
such that ⋂T ∈T ΩA(T ) ≤ ΩA(T ′). Then we get α−1(⋂T ∈T ΩA(T )) ≤
α−1(ΩA(T ′)), whence, ⋂T ∈T α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). So, by Propo-
sition 24, ⋂T ∈T Ω(α−1(T )) ≤ Ω(α−1(T ′)). Since, by Lemma 51,

{α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I),
we get, by applying rough family c-reflectivity, ⋂T ∈T α̃−1(T ) ≤ α̃−1(T ′).
Thus, by Theorem 377, ⋂T ∈T α−1(T̃ ) ≤ α−1(T̃ ′), i.e., α−1(⋂T ∈T T̃) ≤
α−1(T̃ ′). Therefore, taking into account the surjectivity of ⟨F,α⟩, we
conclude that ⋂T ∈T T̃ ≤ T̃ ′.

(c) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly left c-reflective and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A), such
that ⋂T ∈T ΩA(T ) ≤ ΩA(T ′). Then α−1(⋂T ∈T ΩA(T )) ≤ α−1(ΩA(T ′)),
whence, ⋂T ∈T α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). So, by Proposition 24,

⋂T ∈T Ω(α−1(T )) ≤ Ω(α−1(T ′)). Since, by Lemma 51,

{α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I),
we get, by applying rough left c-reflectivity, ⋂T ∈T

←̃ÐÐÐÐ
α−1(T ) ≤ ←̃ÐÐÐÐα−1(T ′).

Thus, by Lemma 6, ⋂T ∈T α̃−1(←ÐT ) ≤ α̃−1(←ÐT ′). Hence, by Theorem 377,
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⋂T ∈T α−1(←̃ÐT ) ≤ α−1(←̃ÐT ′), i.e., α−1(⋂T ∈T ←̃ÐT ) ≤ α−1(←̃ÐT ′). Therefore, taking

into account the surjectivity of ⟨F,α⟩, we conclude that ⋂T ∈T
←̃Ð
T ≤
←̃Ð
T ′.

(d) Similar to Part (b).
∎

Finally, we may recast the rough c-reflectivity classes in terms of com-
plete order reflectivity of mappings from posets of classes of theory or filter
families/systems into posets of congruence systems.

Recall that the collections T̃hFam(I) and T̃hSys(I) may be ordered by
setting, respectively, for all T,T ′ ∈ ThFam(I),

[̃T ] ≤ [̃T ′] iff T̃ ≤ T̃ ′

and, for all T,T ′ ∈ ThSys(I),
⌊̃T ⌋ ≤ ⌊̃T ′⌋ iff T̃ ≤ T̃ ′,

and that the corresponding ordered sets are denoted by T̃hFam(I) and
T̃hSys(I), respectively.

Proposition 471 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly family c-reflective;

(b) Ω ∶ T̃hFam(I)→ConSys∗(I) is completely order reflecting;

(c) ΩA ∶ F̃iFam
I(A) → ConSysI∗(A) is completely order reflecting, for

every F-algebraic system A.

Similarly, for system c-reflectivity, we have

Proposition 472 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly system c-reflective;

(b) Ω ∶ T̃hSys(I)→ConSys∗(I) is completely order reflecting;

(c) ΩA ∶ F̃iSys
I(A) → ConSysI∗(A) is completely order reflecting, for

every F-algebraic system A.
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6.9 Narrow Complete Reflectivity

In this section we study classes of π-institutions defined using complete re-
flectivity properties of the Leibniz operator restricted to ThFam (I). We
call those narrow complete reflectivity properties in analogy with the termi-
nology adopted when differentiating rough reflectivity and narrow reflectivity
classes.

Definition 473 (Narrow c-Reflectivity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called narrowly family completely reflective, or narrowly
family c-reflective for short, if, for all T ∪ {T ′} ⊆ ThFam (I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′;

• I is called narrowly left completely reflective, or narrowly left
c-reflective for short, if, for all T ∪ {T ′} ⊆ ThFam (I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′;

• I is called narrowly right completely reflective, or narrowly
right c-reflective for short, if, for all T ∪ {T ′} ⊆ ThFam (I),

⋂
T ∈T

Ω(←ÐT ) ≤ Ω(←ÐT ′) implies ⋂
T ∈T

T ≤ T ′;

• I is called narrowly system completely reflective, or narrowly
system c-reflective for short, if, for all T ∪ {T ′} ⊆ ThSys (I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

The narrow complete reflectivity properties have the following character-
izations, paralleling those given for the narrow reflectivity classes, given in
Proposition 438.

Proposition 474 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) I is narrowly family c-reflective if and only if, for all T ∪ {T ′} ⊆
ThFam(I), ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ∈T T̃ ≤ T̃ ′;

(b) I is narrowly left c-reflective if and only if, for all T ∪{T ′} ⊆ ThFam(I),
⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ∈T

←Ð
T̃ ≤
←Ð
T̃ ′;
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(c) I is narrowly right c-reflective if and only if, for all T ∪{T ′} ⊆ ThFam(I),
⋂T ∈T Ω(←ÐT̃ ) ≤ Ω(←ÐT̃ ′) implies ⋂T ∈T T̃ ≤ T̃ ′;

(d) I is narrowly system c-reflective if and only if, for all T ∪ {T ′} ⊆
ThSys(I), such that {T̃ ∶ T ∈ T }∪{T̃ ′} ⊆ ThSys(I), ⋂T ∈T Ω(T ) ≤ Ω(T ′)
implies ⋂T ∈T T̃ ≤ T̃ ′.

Proof: The proofs of the various parts mimic those of the corresponding
parts for the narrow reflectivity properties, presented in detail in Proposition
438. Thus, we only do Part (b) in detail here, trusting that the reader may
easily reproduce the other proofs.

Suppose that I is narrowly left c-reflective and let T ∪{T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then {T̃ ∶ T ∈ T } ∪ {T̃ ′} ⊆ ThFam (I) and,

by Proposition 369, ⋂T ∈T Ω(T̃ ) ≤ Ω(T̃ ′). Thus, by hypothesis, ⋂T ∈T
←Ð
T̃ ≤
←Ð
T̃ ′.

Assume, conversely, that the asserted condition holds and let T ∪ {T ′} ⊆
ThFam (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by hypothesis, ⋂T ∈T

←Ð
T̃ ≤

←Ð
T̃ ′. Since, however, T ∪ {T ′} ⊆ ThFam (I), we get

⋂
T ∈T

←Ð
T = ⋂

T ∈T

←Ð
T̃ ≤
←Ð
T̃ ′ =
←Ð
T ′.

Therefore, I is narrowly left c-reflective. ∎

As was shown in Lemma 439, narrow family reflectivity implies exclusive
systemicity. Since narrow family c-reflectivity implies narrow family reflec-
tivity, it follows that it also implies exclusive systemicity.

Corollary 475 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is narrowly family c-reflective,
then it is exclusively systemic.

Proof: If I is narrowly family c-reflective, then it is, a fortiori, narrow family
reflective, whence, by Lemma, 439, it is exclusively systemic. ∎

Similarly, the fact that narrow right c-reflectivity strengthens narrow right
reflectivity, implies immediately the following

Corollary 476 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly right c-reflective, then it
is narrowly stable.

Proof: Since narrow right c-reflectivity implies narrow right reflectivity, this
follows from Corollary 440. ∎

We establish, next the narrow c-reflectivity hierarchy. The following
proposition forms an analog of Proposition 441, which dealt with the narrow
reflectivity hierarchy.
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Proposition 477 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(c) If I is narrowly right c-reflective, then it is narrowly family c-reflective;

(b) If I is narrowly family c-reflective, then it is narrowly left c-reflective;

(c) If I is narrowly left c-reflective, then it is narrowly system c-reflective.

Proof:

(a) Suppose that I is narrowly right c-reflective and let T ∪{T ′} ⊆ ThFam (I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). By Corollary 476, I is narrowly stable.

Now we obtain ⋂T ∈T Ω(←ÐT ) = ⋂T ∈T Ω(T ) ≤ Ω(T ′) = Ω(←ÐT ′). Hence,
by narrow right c-reflectivity, ⋂T ≤ T ′. Hence, I is narrowly family
c-reflective.

(b) Suppose that I is narrowly family c-reflective and consider T ∪ {T ′} ⊆
ThFam (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by hypothesis,

⋂T ∈T T ≤ T ′, whence, by Lemma 1,
←ÐÐÐÐ
⋂T ∈T T ≤

←Ð
T ′. Thus, by Lemma

3, ⋂T ∈T
←Ð
T ≤
←Ð
T ′. Thus, I is narrowly left c-reflective.

(c) Suppose that I is narrowly left c-reflective and let T ∪{T ′} ⊆ ThSys (I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by hypothesis, we get ⋂T ∈T

←Ð
T ≤

←Ð
T ′. Therefore, since T ∪{T ′} is a collection of theory systems, ⋂T ∈T T ≤
T ′ and, hence, I is narrowly system c-reflective.

∎

We have now established the following narrow complete reflectivity
hierarchy of π-institutions.

Narrowly R c-Reflective

Narrowly F c-Reflective
❄

Narrowly L c-Reflective
❄

Narrowly S c-Reflective
❄

We give an additional result pertaining to the hierarchy of narrow com-
plete reflectivity properties depicted in the diagram. It forms an analog of
Proposition 442, establishing a similar result for the narrow reflectivity hier-
archy.
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Proposition 478 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system c-reflective and
narrowly systemic, then it is narrowly right c-reflective.

Proof: Suppose I is narrowly system c-reflective and narrowly systemic.

Let T ∪ {T ′} ⊆ ThFam (I), such that ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). By narrow

systemicity, T =
←Ð
T , for all T ∈ T , and T ′ =

←Ð
T ′. Hence, on the one hand,

⋂T ∈T Ω(T ) ≤ Ω(T ′) and, on the other, {T ∶ T ∈ T } ∪ {T ′} ⊆ ThSys (I).
Thus, by narrow system c-reflectivity, ⋂T ∈T T ≤ T ′. Thus, I is narrowly right
c-reflective. ∎

We present three examples to show that all inclusions established between
the narrow c-reflectivity classes and shown in the preceding diagram are
indeed proper inclusions. The first example depicts a π-institution which is
narrowly family c-reflective but not narrowly right c-reflective. This shows
that the class of narrowly right c-reflective π-institutions constitutes a proper
subclass of the class of narrowly family c-reflective π-institutions.

Example 479 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families, ∅, {{1}} and {{0,1}}, but only two theory

systems, ∅ and {{0,1}}. The lattice of theory families of I and the corre-
sponding Leibniz congruence systems are given in the diagram.
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01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

Since the Leibniz operator is an isomorphism on ThFam (I), I is narrowly
family c-reflective. On the other hand, {{1}},{{0,1}} ∈ ThFam (I) and

Ω(←ÐÐÐ{{1}}) = Ω({∅}) = ∇F = Ω({{0,1}}) = Ω(←ÐÐÐÐ{{0,1}}),
but {{1}} ≠ {{0,1}}. Therefore, I is not narrowly right injective and, a
fortiori, it fails to be narrowly right c-reflective.

The next example depicts a π-institution which is narrowly left c-reflective
but not narrowly family c-reflective. This shows that the class of narrowly
family c-reflective π-institutions is a proper subclass of the class of narrowly
left c-reflective π-institutions.

Example 480 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(f)(0) =
SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families, but only three theory systems, namely ∅, {2}
and {0,1,2}. Moreover, clearly, ThFam (I) = {{2},{1,2},{0,1,2}}. The
following diagram shows the structure of the lattice of theory families on the
left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{0,1,2} .......................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
✕

{1,2} {{0,1},{2}}
...................s...

...
...

...
...

...
.✸

{2} ∆F

∅

To show that I is narrowly left c-reflective, let T ∪ {T ′} ⊆ ThFam (I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). We distinguish the following cases, based on
the value of Ω(T ′):

• If Ω(T ′) = ∇F, then T ′ = SEN♭. Hence, we get

⋂
T ∈T

←Ð
T ≤ SEN♭ =

←ÐÐÐ
SEN♭ =

←Ð
T ′;

• If Ω(T ′) = {{0,1},{2}}, then T ′ = {2}. Then, by hypothesis, {2} ∈ T
or {1,2} ∈ T . Hence, in either case, ⋂T ∈T

←Ð
T ≤ {2} = T ′ =←ÐT ′;

• If Ω(T ′) = ∆F, then T ′ = {1,2} and, by hypothesis, {1,2} ∈ T . Hence,

in this case as well, ⋂T ∈T
←Ð
T ≤
←ÐÐÐ{1,2} = ←ÐT ′.

Thus, I is narrowly left c-reflective.

On the other hand, for T = {1,2} and T ′ = {2}, even though Ω(T ) ≤
Ω(T ′), we get T ≰ T ′, whence I fails to be narrowly family reflective and,
hence, a fortiori, it is not narrow family c-reflective.
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We finish the sequence of examples by presenting a narrowly system c-
reflective π-institution which fails to be narrowly left c-reflective. This exam-
ple shows that narrowly left c-reflective π-institutions form a proper subclass
of the class of narrowly system c-reflective π-institutions.

Example 481 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 1
and SEN♭(f)(1) = 1;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {∅,{0},{1},{0,1}}.
The following table gives the theory families and the theory systems of the

π-institution I.
T

←Ð
T

∅ ∅{0} ∅{1} {1}{0,1} {0,1}
The lattice of theory families and the corresponding Leibniz congruence

systems are depicted below.

01 .......................................✲ ∇F

✪
✪
✪
✪ ❡

❡
❡
❡

..
..

..
..

..
..

..
..

..
..

..
..✒

0 1

❡
❡
❡
❡

.......................................q✪
✪
✪
✪

..............⑦
∅ ∆F
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It is obvious from the diagram that the Leibniz operator is an isomorphism
on ThSys (I). Therefore, I is narrowly system c-reflective. On the other
hand, for T = {{0}}, T ′ = {{1}}, both members of ThFam (I), we have

Ω(T ) = Ω(T ′) = ∆F, whereas
←Ð
T = {∅} ≠ {{1}} = ←ÐT ′. Therefore, I is not

narrowly left injective and, a fortiori, it fails to be narrowly left c-reflective.

We turn now to the relationships between corresponding classes of the
rough complete reflectivity and the narrow complete reflectivity hierarchies.
These parallel the ones already established between the rough reflectivity
and narrow reflectivity classes.

Using the characterization in Part (a) of Proposition 474, we can imme-
diately see that the two types of family complete reflectivity coincide.

Corollary 482 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly family c-reflective if and only
if it is narrowly family c-reflective.

Proof: Part (a) of Proposition 474. ∎

As was the case with rough and narrow reflectivity properties, the re-
lationships between the remaining classes are more involved. Starting with
the two left complete reflectivity classes, we show that the class of narrowly
left c-reflective π-institutions is not included in the class of roughly left c-
reflective π-institutions. This is accomplished by constructing a π-institution
which is narrowly left c-reflective but not roughly left c-reflective.

Example 483 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a}
and SEN♭(f)(0) = SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{a}}.
Clearly, there are six theory families in ThFam(I), only four of which

are theory systems, and only two of which are in ThFam (I). The lattice of
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theory families is shown in the diagram:

01, a

�
�
� ❅

❅
❅

01,∅ 1, a

❅
❅
❅ �

�
� ❅

❅
❅

1,∅ ∅, a

❅
❅
❅ �

�
�

∅,∅

To see that I is narrowly left c-reflective, let T ∪ {T ′} ⊆ ThFam (I), such
that ⋂T ∈T Ω(T ) ≤ Ω(T ′). We reasons by cases, depending on the value of
Ω(T ′):

• If Ω(T ′) = ∇F, then T ′ = SEN♭. So we get ⋂T ∈T
←Ð
T ≤ SEN♭ =

←ÐÐÐ
SEN♭ =

←Ð
T ′;

• If Ω(T ′) = ∆F, then T ′ = {1, a} and, by hypothesis, we must have

T ′ ∈ T . Thus, ⋂T ∈T
←Ð
T ≤
←Ð
T ′.

We conclude that I is narrowly left c-reflective.
On the other hand, consider T = {1,∅} and T ′ = {1, a}. We have

Ω(1,∅) = {∆F
Σ,∇

F
Σ′} = Ω(1, a), but

←̃ÐÐ
1,∅ = ∅̃,∅ = {01, a} ≰ {1, a} = 1̃, a =

←̃Ð
1, a.

This proves that I is not roughly left reflective and, hence, a fortiori, it fails
to be roughly left c-reflective.

We exhibit, next a π-institution that is roughly left c-reflective, while it
fails to be narrowly left c-reflective. Combined with Example 483, this will
show that the two left complete reflectivity classes, rough and narrow, are
incomparable from the point of view of inclusion.
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Example 484 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and three nonidentity mor-
phisms f ∶ Σ → Σ and g, h ∶ Σ → Σ′, such that f ○ f = f , g ○ f = h and
h ○ f = h;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b, c}, SEN♭(f)(0) = SEN♭(f)(1) = 0, SEN♭(g)(0) = b, SEN♭(g)(1) =
c and SEN♭(h)(0) = SEN♭(h)(1) = b;

• N ♭ is the clone generated by a single binarry natural transformation
σ♭ ∶ (SEN♭)2 → SEN♭, whose components are defined by the following
tables:

σ♭Σ 0 1
0 0 1
1 1 1

σ♭Σ′ a b c

a a a c

b a b c

c c c c

It is not difficult, albeit slightly tedious, to check that this is a well-defined
natural transformation. We summarize the checking in the accompanying
table.

f(σ♭Σ(x, y)) g(σ♭Σ(x, y)) h(σ♭Σ(x, y))(x, y) = σ♭Σ(f(x), f(y)) = σ♭Σ′(g(x), g(y)) = σ♭Σ′(h(x), h(y))(0,0) 0 = 0 b = b b = b(0,1) 0 = 0 c = c b = b(1,0) 0 = 0 c = c b = b(1,1) 0 = 0 c = c b = b

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b, c},{a, b, c}}.
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Clearly, there are nine theory families in ThFam(I), five of which are
theory systems, and four of which are in ThFam (I). The lattice of theory
families is shown in the diagram:

01, abc

�
� ❅

❅

01, bc 1, abc

�
� ❅

❅ �
� ❅

❅

01,∅ 1, bc ∅, abc

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, bc

❅
❅ �

�

∅,∅

The action of ←Ð on theory families is given in the following table.

T
←Ð
T T

←Ð
T

01, abc 01, abc ∅, abc ∅, abc
01, bc 01, bc 1,∅ ∅,∅
1, abc ∅, abc ∅, bc ∅, bc
01,∅ ∅,∅ ∅,∅ ∅,∅
1, bc ∅, bc

The table below provides the Leibniz congruence systems associated with the
theory families of I.

T Ω(T ){01, abc},{01,∅},{∅, abc},{∅,∅} ∇F

{1, abc},{1,∅} {∆F
Σ,∇

F
Σ′}{01, bc},{1, bc},{∅, bc} ∆F

To see that I is roughly left c-reflective, suppose that T ∪{T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). We separate cases depending on Ω(T ′).

• If Ω(T ′) =∆F, then, by hypothesis, at least one among {01, bc}, {1, bc},
{∅, b} must be in T . But, then, we get ⋂T ∈T

←̃Ð
T ≤ {01, bc} = ←̃ÐT ′;

• If Ω(T ′) = {∆F
Σ,∇

F
Σ′} or Ω(T ′) = ∇F, then ⋂T ∈T

←̃Ð
T ≤ {01, abc} = ←̃ÐT ′.

On the other hand, for T = {01, bc} and T ′ = {1, bc}, we get Ω(T ) = ∆F =
Ω(T ′), whereas

←Ð
T = {01, bc} ≰ {∅, bc} = ←ÐT ′. Therefore, I is not narrowly left

c-reflective.
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We turn, next to the relationship between the two kinds of right c-
reflectivity. We show, first, that rough right c-reflectivity implies narrow
right c-reflectivity, a direct analog of Proposition 449, which established the
corresponding result for the two right reflectivity classes.

Proposition 485 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly right c-reflective, then it is
narrowly right c-reflective.

Proof: Suppose I is roughly right reflective and let T ∪ {T ′} ⊆ ThFam (I),
such that ⋂T ∈T Ω(←ÐT ) ≤ Ω(←ÐT ′). By rough right reflectivity, we get that

⋂T ∈T T̃ ≤ T̃ ′. Since, however, T ∪ {T ′} ⊆ ThFam (I), we get ⋂T ∈T T =
⋂T ∈T T̃ ≤ T̃ ′ = T ′. Therefore, I is narrowly right c-reflective. ∎

The converse, on the other hand, does not hold in general, as the following
example demonstrates.

Example 486 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
Clearly, there are only four theory families in ThFam (I), all of which are

theory systems. Their lattice together with the associated Leibniz congruence
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systems are shown in the diagram:

01, ab ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

01, b 1, ab ∇F
Σ,∆

F
Σ′ ∆F

Σ,∇
F
Σ′

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

1, b ∆F

From this diagram and the fact that all theory families in ThFam (I) are
theory systems, we see that, for all T,T ′ ∈ ThFam (I),

Ω(←ÐT ) ≤ Ω(←ÐT ′) iff Ω(T ) ≤ Ω(T ′) iff T ≤ T ′.

Therefore, I is indeed narrowly right c-reflective.
On the other hand, consider T = {01, ab} and T ′ = {1,∅}. Then we have

Ω(←ÐT ) = Ω(01, ab) = ∇F = Ω(∅) = Ω(←ÐT ′),
whereas 0̃1, ab = {01, ab} ≰ {1, ab} = 1̃,∅. This shows that I is not roughly
right reflective and, hence, a fortiori, it fails to be roughly right c-reflective.

Finally, we look at system complete reflectivity. We show that rough sys-
tem c-reflectivity implies narrow system c-reflectivity, but that the converse
implication fails in general.

Proposition 487 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system c-reflective, then it
is narrowly system c-reflective.

Proof: Suppose I is roughly system c-reflective and let T ∪{T ′} ⊆ ThSys (I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by rough system c-reflectivity, ⋂T ∈T T̃ ≤
T̃ ′. However, since T ∪ {T ′} ∈ ThSys (I), we get ⋂T ∈T T = ⋂T ∈T T̃ ≤ T̃ ′ = T ′.
Therefore, I is narrowly system c-reflective. ∎

We present an example of a π-institution that is narrowly system c-
reflective but not roughly system c-reflective. This, combined with Proposi-
tion 487, shows that the class of narrowly system c-reflective π-institutions
properly contains the class of roughly system c-reflective π-institutions.

Example 488 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
There are only four theory families in ThFam (I), all of which except for{01, b} are theory systems. Their lattice together with the associated Leibniz

congruence systems are shown in the diagram:

01, ab ....................................✲ ∇F

�
�
� ❅

❅
❅

01, b 1, ab ............✲ ∆F
Σ,∇

F
Σ′

❅
❅
❅

..................................q
�
�
�

1, b ......................................✲ ∆F

To see that I is narrowly system c-reflective, let T ∪{T ′} ⊆ ThSys (I), such
that ⋂T ∈T Ω(T ) ≤ Ω(T ′). We distinguish three cases, depending on the value
of Ω(T ′):

• If Ω(T ′) = ∇F, then T ′ = SEN♭. Hence, ⋂T ∈T T ≤ SEN♭ = T ′;

• If Ω(T ′) = {∆F
Σ,∇

F
Σ′}, then T ′ = {1, ab}, whence, by hypothesis, T ′ ∈ T

or {1, b} ∈ T . In either case, ⋂T ∈T T ≤ {1, ab} = T ′;
• If Ω(T ′) = ∆F, then T ′ = {1, b} and, hence, by hypothesis, T ′ ∈ T , which

shows that ⋂T ∈T T ≤ T ′.

On the other hand, consider T = {∅, b}, T ′ = {1, b} ∈ ThSys(I). Even
though T̃ = {01, b} ≰ {1, b} = T̃ ′, we have Ω(T ) = ∆F = Ω(T ′). Hence, I is
not roughly system reflective and, hence, a fortiori, it is not roughly system
c-reflective.
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The results obtained and the counterexamples presented, thus far, reveal
the following mixed hierarchy of rough and narrow c-reflectivity classes of π-
institutions, paralleling the one presented for rough and narrow reflectivity
properties.

Rough R c-Refl

Narrow R c-Refl
❄

Rough L c-Refl Rough F c-Refl
❄

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Rough S c-Refl Narrow L c-Refl

❅
❅
❅❘ ✠�

�
�

Narrow S c-Refl

We have already used in the context of the preceding examples the fact
that a narrow c-reflectivity property implies the corresponding narrow reflec-
tivity property, since the latter is a special case of the former in which T is
taken to be a singleton. These observations are formalized in the following

Proposition 489 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is narrowly family c-reflective, then it is narrowly family reflective;

(b) If I is narrowly left c-reflective, then it is narrowly left reflective;

(c) If I is narrowly right c-reflective, then it is narrowly right reflective;

(d) If I is narrowly system c-reflective, then it is narrowly system reflective.

Proof: All four reflectivity properties are special cases of the corresponding
c-reflectivity properties, in which T is taken to be a singleton collection of
theory families. ∎

Turning to the relationships between narrow c-reflectivity classes and cor-
responding c-reflectivity classes, we prove a theorem, analogous to Theorem
454, asserting that ordinary c-reflectivity is equivalent to narrow c-reflectivity
in the presence of theorems.

Theorem 490 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) I is family c-reflective if and only if it is narrowly family c-reflective
and has theorems;

(b) I is left c-reflective if and only if it is narrowly left c-reflective and has
theorems;

(c) I is right c-reflective if and only if it is narrowly right c-reflective and
has theorems;

(d) I is system c-reflective if and only if it is narrowly system c-reflective
and has theorems.

Proof: By Theorem 468, if I has one of the four complete reflectivity prop-
erties, then it has theorems. Moreover, by the same theorem, a complete
reflectivity property implies the corresponding rough complete reflectivity
property and, by Corollary 482, Proposition 485 and Proposition 487, each
implies the corresponding narrow complete reflectivity property except in
the case of left complete reflectivity, where (as actually in all other cases,
as well) one can easily see directly, that left c-reflectivity implies narrow left
c-reflectivity, since the defining condition of the latter is a special case of that
of the former.

All converses are also easily verified, since, in the presence of theorems,
ThFam (I) = ThFam(I) and ThSys (I) = ThSys(I), which makes the four
defining conditions for the narrow c-reflectivity classes identical with the
corresponding conditions for the ordinary c-reflectivity classes. ∎

We now have the following hierarchy, paralleling the mixed reflectivity
and narrow reflectivity hierarchy, given previously.

R c-Refl

❂✚
✚
✚
✚

F c-Refl Rough R c-Refl
❄

❂✚
✚
✚
✚ ❏

❏
❏
❏
❏
❏
❏
❏❫

L c-Refl Narrow R c-Refl
❄

❂✚
✚
✚
✚ ❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

S c-Refl Rough L c-Refl
❄

Rough F c-Refl
❄
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❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Rough S c-Refl Narrow L c-Refl
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

Narrow S c-Refl
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The narrow complete reflectivity properties transfer from the theory fa-
milies/systems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems
on arbitrary F-algebraic systems. This result forms an analog of Theorem
455, which applied to narrow reflectivity classes.

Theorem 491 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is narrowly right c-reflective if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T ∪{T ′} ⊆ FiFamI (A), ⋂T ∈T ΩA(←ÐT ) ≤ ΩA(←ÐT ′)
implies ⋂T ∈T T ≤ T ′;

(b) I is narrowly family c-reflective if and only if, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI (A), ⋂T ∈T ΩA(T ) ≤
ΩA(T ′) implies ⋂T ∈T T ≤ T ′;

(c) I is narrowly left c-reflective if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI (A), ⋂T ∈T ΩA(T ) ≤ ΩA(T ′)
implies ⋂T ∈T

←Ð
T ≤
←Ð
T ′;

(d) I is narrowly system c-reflective if and only if, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiSysI (A), ⋂T ∈T ΩA(T ) ≤
ΩA(T ′) implies ⋂T ∈T T ≤ T ′.

Proof: The proof follows the steps of the proofs of the various parts of
Theorem 455. We do Part (a) in detail to give a flavor of what is involved.

The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩ and
taking into account that ThFam (I) = FiFamI (F), by Lemmas 51 and 376.

For the “only if”, suppose that I is narrowly right c-reflective and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI (A), such

that ⋂T ∈T ΩA(←ÐT ) ≤ ΩA(←ÐT ′). Then α−1(⋂T ∈T ΩA(←ÐT )) ≤ α−1(ΩA(←ÐT ′)). Thus,

⋂T ∈T α−1(ΩA(←ÐT )) ≤ α−1(ΩA(←ÐT ′)). So, by Proposition 24, ⋂T ∈T Ω(α−1(←ÐT )) ≤
Ω(α−1(←ÐT ′)). Hence, by Lemma 6, ⋂T ∈T Ω(←ÐÐÐÐα−1(T )) ≤ Ω(←ÐÐÐÐα−1(T ′)). Since, by
Lemmas 51 and 376, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam (I), we get, by
applying narrow right c-reflectivity, ⋂T ∈T α−1(T ) ≤ α−1(T ′) or, equivalently,
α−1(⋂T ∈T T ) ≤ α−1(T ′). This yields, taking into account the surjectivity of⟨F,α⟩, ⋂T ∈T T ≤ T ′. ∎

We finally recast narrow complete reflectivity in terms of the complete
order reflectivity of mappings from posets of theory or filter families/systems
into posets of congruence systems. The following results form analogs of
Propositions 456 and 457, respectively, addressing complete reflectivity in-
stead of reflectivity properties.

Proposition 492 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:
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(a) I is narrowly family c-reflective;

(b) Ω ∶ ThFam (I)→ ConSys∗(I) is completely order reflecting;

(c) ΩA ∶ FiFamI (A) → ConSysI∗(A) is completely order reflecting, for
every F-algebraic system A.

Similarly, for system c-reflectivity, we have

Proposition 493 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly system c-reflective;

(b) Ω ∶ ThSys (I)→ ConSys∗(I) is completely order reflecting;

(c) ΩA ∶ FiSysI (A) → ConSysI∗(A) is completely order reflecting, for
every F-algebraic system A.

6.10 Availability of Theorems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that, by convention, if I has theorems, then,
for every Σ ∈ ∣Sign♭∣, I has a Σ-theorem, i.e., there exists φ ∈ SEN♭(Σ), such
that φ ∈ CΣ(∅).

Recall, also, from our work in the present chapter, that all levels of the
injectivity, reflectivity and complete reflectivity hierarchies imply the exis-
tence of theorems and that, moreover, any rough injectivity, rough reflectivity
or rough complete reflectivity property, complemented with the existence of
theorems, implies the corresponding (gentle) injectivity, reflectivity or com-
plete reflectivity property, respectively. In other words, insisting on existence
of theorems causes all pairs of rough and gentle properties to collapse to a
single class.

In this section, due to the importance of the property of “having theo-
rems”, we give a few more results characterizing that property.

It turns out that existence of theorems is tantamount to the injectivity
of the local Frege operator λ.

Theorem 494 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I has theorems if and only if λ is injective.

Proof: Suppose, first, that I has theorems. Let T,T ′ ∈ ThFam(I), such
that λ(T ) = λ(T ′). Let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Since
I has theorems, there exists t ∈ ThmΣ(I). Then t ∈ TΣ and, therefore,⟨φ, t⟩ ∈ λΣ(T ). By hypothesis, ⟨φ, t⟩ ∈ λΣ(T ′). But, clearly, t ∈ T ′Σ. Hence
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φ ∈ T ′Σ. We conclude that T ≤ T ′ and, by symmetry, T = T ′. Thus, λ is
injective.

Assume, conversely, that I does not have theorems. Then, we have
∅,SEN♭ ∈ ThFam(I), with ∅ ≠ SEN♭, whereas λ(∅) = λ(SEN♭) = ∇F. There-
fore, λ is not injective. ∎

It turns out that existence of theorems is also equivalent to both the
injectivity and the c-reflectivity of the local Lindenbaum operator λ̃I,A on all
F-algebraic systems.

Theorem 495 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I has theorems;

(ii) λ̃I,A is injective, for every F-algebraic system A;

(iii) λ̃I,A is completely reflective, for every F-algebraic system A.

Proof:

(i)⇒(iii) Assume that I has theorems and let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,
SEN,N⟩, be an F-algebraic system, T ∪ {T ′} ⊆ FiFamI(A), such that

⋂
T ∈T

λ̃I,A(T ) ≤ λ̃I,A(T ′).
Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ ⋂T ∈T TΣ. By hypothesis
and the surjectivity of ⟨F,α⟩, there exists t ∈ CI,AΣ (∅). Then, we have

C
I,A
Σ (⋂

T ∈T

TΣ, φ) = CI,AΣ (⋂
T ∈T

TΣ) = CI,AΣ (⋂
T ∈T

TΣ, t).
Thus, we get

⟨φ, t⟩ ∈ λ̃I,AΣ (⋂
T ∈T

T ) ≤ ⋂
T ∈T

λ̃
I,A
Σ (T ) ≤ λ̃I,AΣ (T ′).

We conclude that

φ ∈ C
I,A
Σ (T ′Σ, φ) (inflationarity)

= C
I,A
Σ (T ′Σ, t) (⟨φ, t⟩ ∈ λ̃I,AΣ (T ′))

= T ′Σ. (t ∈ CI,AΣ (∅))
Therefore, ⋂T ∈T T ≤ T ′ and λ̃I,A is completely reflective.

(iii)⇒(ii) Complete reflectivity implies injectivity.
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(ii)⇒(i) Finally, suppose that I does not have theorems. We let A = ⟨A, ⟨F,α⟩⟩
be the trivial F-algebraic system, with single signature object ∗ and
singleton SEN(∗) = {0}. Since I does not have theorems, both ∅ and
SEN are I-filter families of A. Now we have

λ̃I,A(∅) = λ̃I,A(SEN) = ∇A.
Hence, the Leibniz operator λ̃I,A is not injective.

∎

The property of having theorems clearly transfers from a π-institution to
all its gmatrix families.

Theorem 496 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I has theorems if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A), T ≠ ∅.

Proof: The right-to-left inclusion follows by considering the algebraic system
F = ⟨F, ⟨I, ι⟩⟩. For the converse, assume I has theorems and let A be an F-
algebraic system and T ∈ FiFamI(A). Let Σ ∈ ∣Sign♭∣. Then, there exists
t ∈ ThmΣ(I). By definition, αΣ(t) ∈ TF (Σ). Hence, T ≠ ∅. ∎

Note that an alterrnative way of expressing the assertion of Theorem 496
is to say that I has theorems if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, the π-institution ⟨A,CI,A⟩ has theorems.
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7.1 Introduction

In this chapter we continue the study of properties lying below properties in
the bottom half of the classical Leibniz hierarchy [64, 86]. The underlying
motivation is identical to that presented in the Introduction to, and governing
the studies presented in, Chapter 6. Briefly, we note that, when one studies
protoalgebraicity, no π-institution that is not almost inconsistent and does
not have theorems can be considered. This is because such a π-institution
has a theory family T ∈ ThFam (I), i.e., with all its components nonempty,
for which ∅ ≤ T , whereas Ω(T ) ≤ ∇F = Ω(∅). Consequently, to incorporate
nontrivial π-institutions without theorems in studies involving monotonicity
properties of the Leibniz operator, one would have to devise ways to bypass,
or otherwise suitably handle, theory families with one or more empty compo-
nents. For properties involving reflectivity, which were handled in Chapter 6,
this was done in the context of sentential logics in [87] (see, also, [89]). Here,
we undertake a study similar to that presented in Chapter 6, but, instead
of injectivity, reflectivity and complete reflectivity properties, we focus on
monotonicity and complete monotonicity (c-monotonicity) properties.

In Section 7.2, we introduce some weakened versions of stability which
serve in formalizing some of the properties studied later in the chapter. Recall
from Section 3.2 that a π-institution I is stable if, for every theory family T

of I , Ω(←ÐT ) = Ω(T ). A first weakening is obtained by restricting the scope
of the quantifier to theory families with all components nonempty. The
ensuing property is termed narrow stability. A further weakening applies
the condition only to those theory families T with all components nonempty

which, in addition, satisfy that
←Ð
T has all its components nonempty. The

resulting concept is termed exclusive stability. By definition, stability implies
narrow stability, which implies exclusive stability and, as it turns out, both
implications are actually strict.

In Section 7.3, we study rough monotonicity properties. These are the
product of combining monotonicity properties with rough equivalence, intro-
duced in Section 6.2. Rough equivalence formalizes an attempt at overcoming
the hurdle imposed by theory families with empty components. Recall that
two theory families are roughly equivalent if, whenever they differ at some
signature Σ, one has Σ-component ∅ and the other SEN♭(Σ). Recall, also,
that, given a theory family T , T̃ denotes its rough companion, which results
from T by replacing each of its empty Σ-components by SEN♭(Σ). Clearly T̃
is roughly equivalent to T and, moreover, it is the largest theory family in the
rough equivalence class [̃T ] of T . All roughly equivalent theory families have
identical Leibniz congruence systems. A π-institution I is called roughly
family monotone if, for all theory families T,T ′ ∈ ThFam(I), T̃ ≤ T̃ ′ implies
Ω(T ) ≤ Ω(T ′). Rough left monotonicity results by replacing T and T ′ in

the hypothesis by
←Ð
T and

←Ð
T ′, respectively. Rough right monotonicity is the
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result of the same replacement performed in the conclusion instead. Rough
system monotonicity stipulates that T̃ ≤ T̃ ′ implies Ω(T ) ≤ Ω(T ′) hold for
all theory systems T and T ′. Rough left monotonicity implies both rough
family and rough right monotonicity, and each of the latter two implies the
system version. Additionally, rough left monotonicity is equivalent to the
conjunction of rough system monotonicity and stability. Protoalgebraicity
(which, recall from Section 3.3, names the equivalent notions of left and fam-
ily monotonicity) implies rough left monotonicity. Prealgebraicity (naming
the equivalent notions of right and system monotonicity), on the other hand,
implies rough right monotonicity. But these interrelationships may be tied
further, subject to some additional mild hypotheses. Namely, for non-almost
inconsistent π-institutions, protoalgebraicity is equivalent to rough left or
rough family monotonicity, coupled with availability of theorems. Moreover,

for π-institutions possessing a theory family T ≠ SEN♭, with
←Ð
T ≠ ∅, preal-

gebraicity is equivalent to rough right or rough system monotonicity, couple
with availability of theorems. All four rough monotonicity properties trans-
fer. E.g., a π-institution I is roughly right monotone if and only if, for every
F-algebraic system A and all I-filter families T,T ′ ∈ FiFamI(A), T̃ ≤ T̃ ′ im-

plies ΩA(←ÐT ) ≤ ΩA(←ÐT ′). Finally, it is possible to recast rough family and rough
system monotonicity in terms of the Leibniz operator viewed as a mapping
from T̃hFam(I) and T̃hSys(I), respectively, to ConSys∗(I). The property

one imposes is monotonicity, where, for rough equivalence classes [̃T ], [̃T ′]
in T̃hFam(I), e.g., the order [̃T ] ≤ [̃T ′] is the one induced by comparing the
maximum elements T̃ ≤ T̃ ′ in the complete lattice of theory families of I .

In Section 7.4, we look at narrow monotonicity properties. Narrowness
is an alternative approach to roughness in dealing with theory families hav-
ing one or more empty components. It literally bypasses theory families
with empty components by altogether ignoring them and applying the rele-
vant monotonicity conditions on the collections ThFam (I) and ThSys (I)
of theory families and systems, respectively, all of whose components are
nonempty. Accordingly, we say that a π-institution I is narrowly family
monotone if, for all T,T ′ ∈ ThFam (I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). In

narrow left monotonicity T , T ′ in the hypothesis, are replaced by
←Ð
T ,
←Ð
T ′, re-

spectively, and the same substitution is applied in the conclusion, instead, for
narrow right monotonicity. Narrow system monotonicity imposes the same
condition as the family version, but restricts its scope to T,T ′ ∈ ThSys (I).
Narrow left monotonicity implies narrow family monotonicity, which, in turn,
implies narrow system monotonicity. The latter is also a consequence of
narrow right monotonicity. The left version also implies exclusive stability,
whereas the weakest version, i.e., narrow system monotonicity, supplemented
by narrow systemicity, introduced in Section 6.3, implies both the left and
right versions. Protoalgebraicity implies narrow left monotonicity and preal-
gebraicity implies narrow right monotonicity. As in the case of rough mono-
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tonicity properties, these connections may be strengthened under some fairly
mild hypotheses. More precisely, for non almost inconsistent π-institutions,
protoalgebraicity is equivalent to narrow left or narrow family monotonicity,
augmented by existence of theorems. Similarly, for π-institutions possessing
a theory system different from ∅ and SEN♭, prealgebraicity is equivalent to
narrow right or narrow system monotonicity, coupled with existence of the-
orems. Of course, having introduced two seemingly different approaches to
handling empty theory family components, it is of central importance to in-
vestigate the relations between rough monotonicity and narrow monotonicity
classes. Narrow family monotonicity turns out to be equivalent to rough fam-
ily monotonicity, whereas, with regards to the three remaining versions, each
of the rough properties implies the corresponding narrow property. All four
narrow monotonicity properties transfer. The section concludes with char-
acterizations of narrow family and narrow system monotonicity in terms of
the Leibniz operator viewed as a mapping from ThFam (I) and ThSys (I),
respectively, to ConSys∗(I).

In Section 7.5, we look at rough complete monotonicity (c-monotonicity)
properties. These concepts, in analogy with the extension of monotonicity
to the c-monotonicity properties of Section 3.4, extend rough monotonicity
properties by allowing arbitrary unions on the right-hand side of the relevant
inequalities. A π-institution I is called roughly family c-monotone if, for ev-
ery collection T ∪{T ′} ⊆ ThFam(I), T̃ ′ ≤ ⋃T ∈T T̃ implies Ω(T ′) ≤ ⋃T ∈T Ω(T ).
In rough left c-monotonicity the hypothesis is replaced by

←̃Ð
T ′ ≤ ⋃T ∈T

←̃Ð
T

and, in rough right c-monotonicity, the conclusion is replaced by Ω(←ÐT ′) ≤
⋃T ∈T Ω(←ÐT ). The system version imposes the same condition as the fam-
ily version, but restricts it on collections T ∪ {T ′} ⊆ ThSys(I). Here, the
only inclusions are those establishing that each of the rough left, family
and right c-monotonicity classes form a subclass of the class of roughly sys-
tem c-monotone π-institutions. Rough left c-monotonicity is equivalent to
rough system c-monotonicity plus stability. Under stability, rough family
c-monotonicity and rough right c-monotonicity are equivalent and, further-
more, under rough systemicity, the entire hierarchy collapses to a single class.
From the definitions, it is obvious that each version of rough c-monotonicity
implies the corresponding version of rough monotonicity, since, the defini-
tion of the latter specializes that of the former. Moreover, each version of
c-monotonicity implies the corresponding version of rough c-monotonicity.
As far as closer ties, analogous to those detailed for rough monotonicity
classes in Section 7.3, for non almost inconsistent π-institutions, I is family
(left, respectively) c-monotone if and only if it is rough;y family (left, respec-
tively) c-monotone and has theorems. Along similar lines, for I having a

theory family T ≠ SEN♭, such that
←Ð
T ≠ ∅, I is system (right, respectively) c-

monotone if and only if it is roughly system (right, respectively) c-monotone
and has theorems. All four rough c-monotonicity properties transfer and,
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as was the case with rough monotonicity, the family and system versions
have characterizations in terms of Ω seen as a mapping from T̃hFam(I) and
T̃hSys(I), respectively, to ConSys∗(I).

The same extension that led from rough monotonicity to rough c-mono-
tonicity properties may be applied to narrow monotonicity properties and
leads to narrow c-monotonicity properties, which constitute the objects of
study in Section 7.6. A π-institution I is called narrowly family c-monotone
if, for all T ∪ {T ′} ⊆ ThFam (I), T ′ ≤ ⋃T ∈T T implies Ω(T ′) ≤ ⋃T ∈T Ω(T ).
Once more, the left version results by replacing in the hypothesis all the-
ory families by their arrow counterparts, and, similarly for the right version,
except that the replacement is applied in the conclusion of the implication
instead. The system version applies the same condition as the family version,
but restricts its scope on collections of theory systems in ThSys (I). As was
the case with rough c-monotonicity in Section 7.5, the only three implications
assert that each of the narrow left, family and right c-monotonicity proper-
ties implies narrow system c-monotonicity. Each version of c-monotonicity
implies its narrow c-monotonicity counterpart. It turns out that rough family
c-monotonicity is equivalent to narrow family c-monotonicity. On the other
hand, for the remaining three versions, each rough c-monotonicity variant
implies the corresponding narrow c-monotonicity variant. Of course, due to
the specializations in the relevant definitions, each narrow c-monotonicity
property implies the corresponding narrow monotonicity property. All four
narrow c-monotonicity properties transfer. Finally, it is the case here as well,
that the family and the system versions can be characterized in terms of the
Leibniz operator viewed as a mapping from ThFam (I) and ThSys (I), re-
spectively, to ConSys∗(I).

7.2 Narrow and Exclusive Stability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that I is called stable if, for all T ∈ ThFam(I),

Ω(←ÐT ) = Ω(T ).
Recall, also, that, in Section 6.5, we defined narrow stability, a concept that
proved handy in demonstrating that the narrow right properties studied there
implied the corresponding narrow family properties. We recall that definition
and look at an additional concept weakening stability. These two notions aim
at bypassing theory families with empty components.

Definition 497 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is narrowly stable if, for all T ∈ ThFam (I),
Ω(←ÐT ) = Ω(T );
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• I is exclusively stable if, for all T ∈ ThFam (I), such that
←Ð
T ∈

ThSys (I),
Ω(←ÐT ) = Ω(T ).

It is clear that stability is the strongest of the three properties followed
by narrow stability and exclusive stability, which is the weakest of the three.

Proposition 498 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is stable, then it is narrowly stable;

(b) If I is narrowly stable, then it is exclusively stable.

Proof: It suffices to note that each property is a specialization of the one
immediately dominating it in strength. ∎

Thus, the following linear stability hierarchy is established.

Stable

Narrowly Stable
❄

Exclusively Stable
❄

It is not difficult to see that all three classes are different. The following
example provides a π-institution that is narrowly stable but not stable, show-
ing that stable π-institutions form a proper subclass of the class consisting
of the narrowly stable ones.

Example 499 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a}
and SEN♭(f)(0) = SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{a}}.
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Clearly, there are six theory families in ThFam(I), only four of which
are theory systems, and only two of which are in ThFam (I). The lattice of
theory families is shown in the diagram:

01, a

�
�
� ❅

❅
❅

01,∅ 1, a

❅
❅
❅ �

�
� ❅

❅
❅

1,∅ ∅, a

❅
❅
❅ �

�
�

∅,∅

Since ThFam (I) = {{1, a},{01, a}} and
←ÐÐÐ{1, a} = {1, a} and

←ÐÐÐÐ{01, a} = {01, a},
we get that I is narrowly systemic and, hence, a fortiori, also narrowly stable.
On the other hand, consider T = {{1},∅}. We have

Ω(←ÐÐÐ{1,∅}) = Ω(∅) = ∇F ≠ {∆F
Σ,∇

F
Σ′} = Ω({1,∅}),

whence I is not stable.

Finally, we give an example of an exclusively stable π-institution which,
however, fails to be narrowly stable. This shows that the inclusion of the
class of narrowly stable π-institutions into the class of exclusively stable ones
is also proper.

Example 500 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅}, {{1}} and {{0,1}}, but only two the-

ory systems, {∅} and {{0,1}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

The only theory family T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I) is {{0,1}}.

Moreover,
←ÐÐÐ{0,1} = {0,1}, whence we get that I is exclusively stable. On the

other hand, for {{1}} ∈ ThFam (I), we get

Ω(←Ð{1}) = Ω(∅) = ∇F ≠∆F = Ω({1}).
Therefore, I is not narrowly stable.

7.3 Rough Monotonicity

In this section we exploit the notion of rough equivalence, which was studied
in some detail in Section 6.2, to introduce and study classes of π-institutions
defined using monotonicity properties of the Leibniz operator applied on
rough equivalence classes.
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Definition 501 (Rough Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called roughly family monotone if, for all T,T ′ ∈ ThFam(I),
T̃ ≤ T̃ ′ implies Ω(T ) ≤ Ω(T ′).

• I is called roughly left monotone if, for all T,T ′ ∈ ThFam(I),
←̃Ð
T ≤
←̃Ð
T ′ implies Ω(T ) ≤ Ω(T ′).

• I is called roughly right monotone if, for all T,T ′ ∈ ThFam(I),
T̃ ≤ T̃ ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′).

• I is called roughly system monotone if, for all T,T ′ ∈ ThSys(I),
T̃ ≤ T̃ ′ implies Ω(T ) ≤ Ω(T ′).

Next we look into establishing the rough monotonicity hierarchy of π-in-
stitutions. We show, first, that rough left monotonicity implies stability.

Lemma 502 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left monotone, then it
is stable.

Proof: Suppose I is roughly left monotone and let T ∈ ThFam(I). Since
←Ð←Ð
T =
←Ð
T , we get that

←̃Ð←Ð
T =
←̃Ð
T . Thus, by rough left monotonicity, Ω(←ÐT ) = Ω(T ).

Hence, I is stable. ∎

Lemma 502 leads to the conclusion that, under rough left monotonicity,
the properties of rough family monotonicity and rough right monotonicity
are equivalent.

Corollary 503 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left monotone, then it is
roughly family monotone if and only if it is roughly right monotone.

Proof: Suppose I is roughly left monotone. Then, by Lemma 502, it is sta-
ble. Now note that rough family monotonicity is equivalent to the condition
that, for all T,T ′ ∈ ThFam(I),

T̃ ≤ T̃ ′ implies Ω(T ) ≤ Ω(T ′),
which, by stability, is equivalent to, for all T,T ′ ∈ ThFam(I),

T̃ ≤ T̃ ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′),
and this is equivalent, by definition, to rough right monotonicity. ∎

Next we show that rough left monotonicity implies rough family mono-
tonicity.
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Proposition 504 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left monotone, then it is
roughly family monotone.

Proof: Suppose I is roughly left monotone, i.e., for all T,T ′ ∈ ThFam(I),
←̃Ð
T ≤
←̃Ð
T ′ implies Ω(T ) ≤ Ω(T ′). Let X,Y ∈ ThFam(I), such that X̃ ≤ Ỹ . If

←̃Ð
X ≤

←̃Ð
Y , then, by rough left monotonicity, Ω(X) ≤ Ω(Y ). So, assume that

←̃Ð
X ≰

←̃Ð
Y , that is, that there exists P ∈ ∣Sign♭∣, such that

←̃Ð
XP ⊈

←̃Ð
Y P . At the

same time, since X̃ ≤ Ỹ , we have that X̃P ⊆ ỸP . This implies that XP ⊆ YP
or YP = ∅. However, if YP = ∅, then, we would also have

←Ð
Y P = ∅, whence

←̃Ð
XP ⊆ SEN♭(P ) = ←̃ÐY P , contradicting our assumption. Hence, we conclude

that XP ⊆ YP . Now, based on
←̃Ð
XP ⊈

←̃Ð
Y P , we distinguish two possibilities,

←Ð
XP ⊈

←Ð
Y P or

←Ð
XP = ∅.

• Suppose XP ⊆ YP and
←Ð
XP ⊈

←Ð
Y P . Then, there exists Q ∈ ∣Sign♭∣ and

P
f
→ Q, such that XQ ⊈ YQ. Since, however, X̃Q ⊆ ỸQ, we would have

YQ = ∅. This, combined with the fact that
←̃Ð
XP ⊈

←̃Ð
Y P implies that

←Ð
Y P ≠ ∅, yield that there cannot exist f ∶ P → Q, a contradiction.

• So it must be the case that XP ⊆ YP and
←Ð
XP = ∅. Since

←̃Ð
XP ⊈

←̃Ð
Y P , we

must have
←Ð
Y P ≠ ∅ and

←Ð
Y P ≠ SEN♭(P ). Note that it is not possible

to have both XP =
←Ð
XP and YP =

←Ð
Y P . If that had been the case,

we would have XP = ∅ and YP ≠ ∅ or SEN♭(P ), whence X̃P ⊈ ỸP ,

which contradicts the hypothesis. So, we must have ∅ =
←Ð
XP ⫋ XP or

←Ð
Y P ⫋ YP .

– Assume, first, that ∅ =
←Ð
XP ⫋ XP ⊆ YP ≠ SEN♭(P ). Define Z ={ZΣ}Σ∈∣Sign♭∣ by setting, for all Σ ∈ ∣Sign♭∣,

ZΣ = { ∅, if Σ ≠ P
XP , if Σ = P .

Then, we have Z ≤ X , whence
←Ð
Z ≤

←Ð
X and, hence,

←Ð
Z = ∅ =

←Ð
∅ .

So, whereas
←̃Ð
Z =
←̃Ð
∅ , Ω(Z) ≠ ∇F = Ω(∅). This contradicts rough

right monotonicity.

– Suppose, next, that ∅ =
←Ð
XP = XP and

←Ð
Y P ⫋ YP . We already

know that
←Ð
Y P ≠ ∅. Moreover, since X̃P ⊆ ỸP , we must have

YP = SEN♭(P ). Now we define Z = {ZΣ}Σ∈∣Sign♭∣ by setting

ZΣ = { ∅, if Σ ≠ P
←Ð
Y P , if Σ = P

.
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If there had been no morphism of the form P
f
→ Q, with Q ≠ P , in

Sign♭, then, since YP = SEN♭(P ), we would have
←Ð
Y P = SEN♭(P ),

contradicting our assumption. The existence of such a morphism

implies that
←Ð
Z = ∅ =

←Ð
∅ . However, Ω(Z) ≠ ∇F = Ω(∅), which

contradicts rough left monotonicity.

We conclude that I must be roughly family monotone. ∎

We now have a picture of the rough monotonicity hierarchy.

Proposition 505 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is roughly left monotone, then it is both roughly family and roughly
right monotone;

(b) If I is roughly family or roughly right monotone, then it is roughly
system monotone.

Proof:

(a) Suppose I is roughly left monotone. By Proposition 504, I is roughly
family monotone. Therefore, by Corollary 503, it is also roughly right
monotone.

(b) If I is roughly family monotone, then it is, a fortiori, roughly system
monotone, since the condition defining the latter notion is a special-
ization of that defining the former. So, suppose I is roughly right
monotone and let T,T ′ ∈ ThSys(I), such that T̃ ≤ T̃ ′. Then, by rough

right monotonicity, Ω(←ÐT ) ≤ Ω(←ÐT ′). Since T,T ′ are theory systems,
←Ð
T = T and

←Ð
T ′ = T ′, whence Ω(T ) ≤ Ω(T ′) and, hence, I is roughly

system monotone.
∎

We have now established the following rough monotonicity hierarchy
of π-institutions.

Rough Left Mon

✠�
�
� ❅

❅
❅❘

Rough Family Mon Rough Right Mon

❅
❅
❅❘ ✠�

�
�

Rough System Mon

It is not difficult to see that being roughly left monotone is equivalent to
being roughly system monotone and stable.
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Proposition 506 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left monotone if and only if
it is roughly system monotone and stable.

Proof: Suppose, first, that I is roughly left monotone. Then, by Proposition
505, it is roughly system monotone. Moreover, by Lemma 502, I is stable.

Assume, conversely, that I is stable and roughly system monotone. Let

T,T ′ ∈ ThFam(I), such that
←̃Ð
T ≤
←̃Ð
T ′. Then, since

←Ð
T ,
←Ð
T ′ ∈ ThSys(I), we get,

by rough system monotonicity, Ω(←ÐT ) ≤ Ω(←ÐT ′). Thus, by stability, Ω(T ) ≤
Ω(T ′). We conclude that I is roughly left monotone. ∎

By Proposition 506, under stability, the rough monotonicity hierarchy
collapses to a single class. Moreover, by Lemma 383, the same happens, a
fortiori, under rough systemicity.

We present two examples to show that all four rough monotonicity classes
depicted in the diagram above are different. The first example gives a roughly
family monotone π-institution that is not roughly right monotone. It shows
that the inclusions represented in the diagram by the two southwest pointing
arrows are proper inclusions.

Example 507 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = a;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
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There are nine theory families, but only five theory systems. The action
of ←Ð on theory families is given in the table below.

T
←Ð
T T

←Ð
T

∅,∅ ∅,∅ ∅, ab ∅, ab
1,∅ ∅,∅ 01, b ∅, b
∅, b ∅, b 1, ab 1, ab

01,∅ ∅,∅ 01, ab 01, ab
1, b ∅, b

The lattice of theory families of I is shown in the diagram.

01, ab

�
� ❅

❅

01, b 1, ab

�
� ❅

❅ �
� ❅

❅

01,∅ 1, b ∅, ab

❅
❅ �

� ❅
❅ �

�

1,∅ ∅, b

❅
❅ �

�

∅,∅

We show that I is roughly family monotone. To this end, suppose T̃ ≤ T̃ ′.

• If T̃ ′ = {01, ab}, then T ′ = {∅,∅} or {01,∅} or {∅, ab} or {01, ab}. In
all cases Ω(T ) ≤ ∇F = Ω(T ′);

• If T̃ ′ = {01, b}, then T ′ = {∅, b} or {01, b} and T̃ = T̃ ′ or T̃ = {1, b} = T ,
whence Ω(T ) ≤ {∇F

Σ,∆
F
Σ′} = Ω(T ′);

• If T̃ ′ = {1, ab}, then T ′ = {1,∅} or {1, ab} and T̃ = T̃ ′ or T̃ = {1, b} = T ,
whence Ω(T ) ≤ {∆F

Σ,∇
F
Σ′} = Ω(T ′);

• If T̃ ′ = {1, b}, then T̃ = {1, b}, whence T = T ′ = {1, b} and Ω(T ) = Ω(T ′).
Therefore, I is indeed roughly family monotone.

On the other hand, we have {̃1, b} = {1, b} ≤ {1, ab} = {̃1, ab}, whereas

Ω(←ÐÐÐ{1, b}) = Ω({∅, b}) = {∇F
Σ,∆

F
Σ′} ≰ {∆F

Σ,∇
F
Σ′} = Ω({1, ab}) = Ω(←ÐÐÐ{1, ab}).

Therefore, I is not roughly right monotone.

The second example shows that there exists a roughly right monotone
π-institution that is not roughly family monotone. This has the effect of
establishing that the inclusions represented by the two southeast arrows in
the hierarchy diagram are also proper inclusions.
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Example 508 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(f)(0) =
SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families, but only three theory systems, namely ∅, {{2}}
and {{0,1,2}}. The following diagram shows the structure of the lattice of
theory families on the left and the structure of the corresponding Leibniz
congruence systems (in terms of blocks) on the right:

012 ............................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..✼

12
.................❘

{01,2}
2 .......

.......
...✿

∅ ∆F

We show that I is roughly right monotone. Suppose T,T ′ ∈ ThFam(I),
such that T̃ ≤ T̃ ′.



Voutsadakis CHAPTER 7. SEMANTIC HIERARCHY V 523

• If T ′ = {∅} or T ′ = {{0,1,2}}, i.e., if T̃ ′ = {{0,1,2}}, Ω(←ÐT ) ≤ ∇F =
Ω(←ÐT ′);

• If T ′ = {{1,2}}, then T = {{2}} or T = {{1,2}}. So Ω(←ÐT ) = Ω({{2}}) =
Ω(←ÐT ′);

• If T ′ = {{2}}, i.e., if T̃ ′ = {1}, then T = {{2}}, and the conclusion is
trivial.

Thus, I is indeed roughly right monotone.
On the other hand, setting T = {{2}} and T ′ = {{1,2}}, we get T̃ ≤ T̃ ′,

but Ω(T ) = {{0,1},{2}} ≰ ∆F = Ω(T ′). Therefore, I is not roughly family
monotone.

We conclude, after these two examples, that the structure of the rough
monotonicity hierarchy is, in fact, exactly as depicted in the diagram and no
two classes are identical.

We look, next, at the connections between rough monotonicity and mono-
tonicity classes. It turns out that protoalgebraicity (i.e., family/left mono-
tonicity, by Proposition 171) is strong enough to ensure membership in all
classes of the rough monotonicity hierarchy, whereas prealgebraicity (i.e.,
system/right monotonicity, by Proposition 173) is only sufficiently strong to
yield corresponding rough monotonicity properties, i.e., implies rough right
monotonicity and, a fortiori, rough system monotonicity.

Theorem 509 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is protoalgebraic, then it is roughly left monotone;

(b) If I is prealgebraic, then it is roughly right monotone.

Proof:

(a) Suppose that I is protoalgebraic. By Lemma 170, this implies that I

is stable. Let T,T ′ ∈ ThFam(I), such that
←̃Ð
T ≤
←̃Ð
T ′. Then, by protoal-

gebraicity, Ω(←̃ÐT ) ≤ Ω(←̃ÐT ′). Hence, by Proposition 369, Ω(←ÐT ) ≤ Ω(←ÐT ′).
Thus, by stability, Ω(T ) ≤ Ω(T ′). Therefore, I is roughly left mono-
tone.

(b) Suppose that I is prealgebraic. If ThSys(I) consists of a single rough
equivalence class, then I is trivially roughly right monotone. Oth-
erwise, since I is prealgebraic and Ω(∅) = Ω(SEN♭) = ∇F, I must
have theorems. Therefore, rough equivalence is the identity relation
on ThFam(I). Thus, for T,T ′ ∈ ThFam(I), such that T̃ ≤ T̃ ′, we

get T ≤ T ′, whence, by Lemma 1,
←Ð
T ≤

←Ð
T ′. Thus, by prealgebraicity,

Ω(←ÐT ) ≤ Ω(←ÐT ′), showing that I is roughly right monotone.



524 CHAPTER 7. SEMANTIC HIERARCHY V Voutsadakis

∎

Moreover, the following additional relations hold.

Theorem 510 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a non-almost inconsistent π-institution based on F. I is protoalgebraic
if and only if it has theorems and is roughly family or roughly left monotone.

Proof: Suppose I is protoalgebraic. Since, by hypothesis, it is not almost
inconsistent, it must have theorems. Moreover, by Theorem 509 and Propo-
sition 505, it is both roughly left and roughly family monotone.

Assume, conversely, that I is roughly family or roughly left monotone and
has theorems. Let T,T ′ ∈ ThFam(I), such that T ≤ T ′. Then, by Lemma

1, we get
←Ð
T ≤

←Ð
T ′. Since I has theorems, rough equivalence coincides with

the identity relation on ThFam(I), whence, we get both T̃ ≤ T̃ ′ and
←̃Ð
T ≤
←̃Ð
T ′.

Using either rough family or rough left monotonicity, as the case requires,
we obtain Ω(T ) ≤ Ω(T ′). Therefore, I is protoalgebraic. ∎

Theorem 511 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F, that has a theory family T ≠ SEN♭ such

that
←Ð
T ≠ ∅. I is prealgebraic if and only if it has theorems and it is roughly

right or roughly system monotone.

Proof: Suppose I is prealgebraic. Since, by hypothesis, it has a theory

system
←Ð
T ≠ SEN♭,∅, it must have theorems. Moreover, by Theorem 509,

it is roughly right monotone and, hence, by Proposition 505, it is roughly
system monotone.

Assume, conversely, that I is roughly right or roughly system monotone
and has theorems. By Proposition 505, it is roughly system monotone and
has theorems. Let T,T ′ ∈ ThSys(I), such that T ≤ T ′. Since I has theorems,
rough equivalence coincides with the identity relation on ThFam(I), whence,
we get T̃ ≤ T̃ ′. By rough system monotonicity, we obtain Ω(T ) ≤ Ω(T ′).
Therefore, I is prealgebraic. ∎

Theorem 509, together with Theorem 175 and Proposition 505, establish
the mixed monotonicity and rough monotonicity hierarchy depicted in the
diagram.
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Protoalgebraic

✠�
�
� ❅

❅
❅❘

Rough Left Mon Prealgebraic

✠�
�
� ❅

❅
❅❘ ✠�

�
�

Rough Family Mon Rough Right Mon

❅
❅
❅❘ ✠�

�
�

Rough System Mon

To see that all classes in the hierarchy are different, we give an example
of a π-institution satisfying all four rough monotonicity properties, which is
not, however, prealgebraic and, therefore, a fortiori, it is not protoalgebraic
either.

Example 512 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅} and {{1}} and {{0,1}}, all of which are

theory systems.
The lattice of theory families of I and the corresponding Leibniz congru-

ence systems are given in the diagram.
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01 .............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

1 .....................❥
∅ ∆F

I belongs to all four classes of the rough monotonicity hierarchy. In-
deed, since it is systemic, all four rough monotonicity conditions boil down
to checking that, for all T,T ′ ∈ ThFam(I), T̃ ≤ T̃ ′ implies Ω(T ) ≤ Ω(T ′).

• If T̃ ′ = {{0,1}}, then T ′ = {∅} or T ′ = {{0,1}}, whence Ω(T ) ≤ ∇F =
Ω(T ′);

• If T̃ ′ = {{1}}, then T̃ = {{1}} and, hence, T = T ′ = {{1}}. Thus, the
implication holds trivially.

On the other hand, we have {∅} ≤ {{1}}, whereas Ω({∅}) ≰ Ω({{1}}),
whence I is not prealgebraic.

The rough monotonicity properties transfer from the theory families/ sys-
tems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems on arbitrary
F-algebraic systems.

Theorem 513 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is roughly family monotone if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), T̃ ≤ T̃ ′ implies ΩA(T ) ≤
ΩA(T ′);

(b) I is roughly left monotone if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), ←̃ÐT ≤ ←̃ÐT ′ implies ΩA(T ) ≤
ΩA(T ′);

(c) I is roughly right monotone if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), T̃ ≤ T̃ ′ implies ΩA(←ÐT ) ≤
ΩA(←ÐT ′);

(d) I is roughly system monotone if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI(A), T̃ ≤ T̃ ′ implies ΩA(T ) ≤
ΩA(T ′).

Proof:
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(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that, by Lemma 51, ThFam(I) = FiFamI(F).
For the “only if”, suppose that I is roughly family monotone and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that

T̃ ≤ T̃ ′. Then α−1(T̃ ) ≤ α−1(T̃ ′). By Theorem 377, α̃−1(T ) ≤ α̃−1(T ′).
Since, by Lemma 51, both α−1(T ) and α−1(T ′) are theory families of
I , we get, by rough family monotonicity, Ω(α−1(T )) ≤ Ω(α−1(T ′)).
Hence, by Proposition 24, α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). Taking into
account the surjectivity of ⟨F,α⟩, we conclude that ΩA(T ) ≤ ΩA(T ′).

(b) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly left monotone and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that
←̃Ð
T ≤
←̃Ð
T ′. Then α−1(←̃ÐT ) ≤ α−1(←̃ÐT ′). By Theorem 377, α̃−1(←ÐT ) ≤ α̃−1(←ÐT ′).

Hence, by Lemma 6,
←̃ÐÐÐÐ
α−1(T ) ≤ ←̃ÐÐÐÐα−1(T ′). Since, by Lemma 51, α−1(T )

and α−1(T ′) are theory families, we get, by rough left monotonicity,
Ω(α−1(T )) ≤ Ω(α−1(T ′)), whence, by Proposition 24, α−1(ΩA(T )) ≤
α−1(ΩA(T ′)). Thus, by the surjectivity of ⟨F,α⟩, ΩA(T ) ≤ ΩA(T ′).

(c) The “if” follows as in Part (a).

For the “only if”, suppose that I is roughly right monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI(A), such
that T̃ ≤ T̃ ′. Then α−1(T̃ ) ≤ α−1(T̃ ′) and, hence, by Theorem 377,

α̃−1(T ) ≤ α̃−1(T ′). Since, by Lemma 51, α−1(T ) and α−1(T ′) are theory

families, we get, by rough right monotonicity, Ω(←ÐÐÐÐα−1(T )) ≤ Ω(←ÐÐÐÐα−1(T ′)).
Thus, by Lemma 6, Ω(α−1(←ÐT )) ≤ Ω(α−1(←ÐT ′)). Now, by Proposition

24, we get α−1(ΩA(←ÐT )) ≤ α−1(ΩA(←ÐT ′)), whence, by the surjectivity of

⟨F,α⟩, ΩA(←ÐT ) ≤ ΩA(←ÐT ′).
(d) Similar to Part (a).

∎

Finally, we may recast the rough monotonicity classes in terms of the
monotonicity of mappings from posets of classes of theory or filter fami-
lies/systems into posets of congruence systems.

Recall the orderings of the collections T̃hFam(I) and T̃hSys(I): For all
T,T ′ ∈ ThFam(I),

[̃T ] ≤ [̃T ′] iff T̃ ≤ T̃ ′

and, for all T,T ′ ∈ ThSys(I),
⌊̃T ⌋ ≤ ⌊̃T ′⌋ iff T̃ ≤ T̃ ′

and the notation T̃hFam(I) = ⟨T̃hFam(I),≤⟩ and T̃hSys(I) = ⟨T̃hSys(I),
≤⟩ for the corresponding ordered sets.
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Proposition 514 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly family monotone;

(b) Ω ∶ T̃hFam(I)→ConSys∗(I) is monotone;

(c) ΩA ∶ F̃iFam
I(A) → ConSysI∗(A) is monotone, for every F-algebraic

system A.

Similarly, for rough system monotonicity, we have

Proposition 515 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly system monotone;

(b) Ω ∶ T̃hSys(I)→ConSys∗(I) is monotone;

(c) ΩA ∶ F̃iSys
I(A) → ConSysI∗(A) is monotone, for every F-algebraic

system A.

7.4 Narrow Monotonicity

We now introduce and study classes of π-institutions defined using, once
more, monotonicity properties of the Leibniz operator, but applied only on
theory families with all components nonempty. This is one of the ways used
already in Chapter 6 to bypass theory families with empty components that
may cause lack of monotonicity.

Definition 516 (Narrow Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an
algebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called narrowly family monotone if, for all T,T ′ ∈ ThFam (I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).

• I is called narrowly left monotone if, for all T,T ′ ∈ ThFam (I),
←Ð
T ≤
←Ð
T ′ implies Ω(T ) ≤ Ω(T ′).

• I is called narrowly right monotone if, for all T,T ′ ∈ ThFam (I),
T ≤ T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′).
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• I is called narrowly system monotone if, for all T,T ′ ∈ ThSys (I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).

We establish now the narrow monotonicity hierarchy of π-institutions.

Proposition 517 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is narrowly left monotone, then it is narrowly family monotone;

(b) If I is narrowly family monotone, then it is narrowly system monotone;

(c) If I is narrowly right monotone, then it is narrowly system monotone.

Proof:

(a) Suppose that I is narrowly left monotone and let T,T ′ ∈ ThFam (I),
such that T ≤ T ′. Then, by Lemma 1,

←Ð
T ≤
←Ð
T ′, whence, by narrow left

monotonicity, Ω(T ) ≤ Ω(T ′). Hence I is narrow family monotone.

(b) Suppose I is narrow family monotone. Then it is a fortiori narrow sys-
tem monotone, since the condition defining the latter is a specialization
of the one defining the former.

(c) Suppose I is narrowly right monotone and let T,T ′ ∈ ThSys (I), such

that T ≤ T ′. Then, by narrow right monotonicity, Ω(←ÐT ) ≤ Ω(←ÐT ′). Since

T,T ′ are theory systems,
←Ð
T = T and

←Ð
T ′ = T ′, whence Ω(T ) ≤ Ω(T ′)

and, hence, I is narrowly system monotone.
∎

We have now established the following narrow monotonicity hierar-
chy of π-institutions.

Narrow Left Mon

Narrow Family Mon
❄

Narrow Right Mon
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Narrow System Mon

Some additional relationships may be established between the narrow
monotonicity classes. More precisely, we show that narrow left monotonic-
ity implies exclusive stability, whereas narrow system monotonicity together
with narrow systemicity, yield both narrow left and narrow right monotonic-
ity.
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Proposition 518 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly left monotone, then it is
exclusively stable.

Proof: Suppose that I is narrowly left monotone and let T ∈ ThFam (I),
such that

←Ð
T ∈ ThSys (I). Since

←Ð←Ð
T =
←Ð
T and T,

←Ð
T ∈ ThFam (I), we get, by

narrow left monotonicity, Ω(←ÐT ) = Ω(T ). Thus, I is exclusively stable. ∎

Proposition 519 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system monotone and
narrowly systemic, then it is both narrowly left and narrowly right monotone.

Proof: Suppose that I is narrowly system monotone and narrowly systemic
and let T,T ′ ∈ ThFam (I).

• Assume that
←Ð
T ≤

←Ð
T ′. By narrow systemicity,

←Ð
T = T and

←Ð
T ′ = T ′,

whence T,T ′ ∈ ThSys (I). Thus, by narrow system monotonicity,
Ω(T ) ≤ Ω(T ′) and, therefore, I is narrowly left monotone.

• Assume that T ≤ T ′. Again, by narrow systemicity,
←Ð
T = T and

←Ð
T ′ = T ′,

which yields that
←Ð
T ,
←Ð
T ′ ∈ ThSys (I). Hence, by narrow system mono-

tonicity, Ω(←ÐT ) ≤ Ω(←ÐT ′), showing that I is narrowly right monotone.
∎

By Propositions 517 and 519, under narrow systemicity, the narrow mono-
tonicity hierarchy collapses to a single class.

We present three examples to show that all four narrow monotonicity
classes depicted in the diagram above are different. The first example gives a
narrowly family monotone π-institution which is not narrowly left monotone.
Thus, it shows that the class of narrowly left monotone π-institutions is
properly contained in the class of narrowly family monotone π-institutions.

Example 520 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and four non-identity
morphisms f, z, o, t ∶ Σ→ Σ, whose composition table is the following:

○ f z o t

f t o t t

z z z z z

o o o o o

t t t t t
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, with

SEN♭(f)(0) = 1, SEN♭(f)(1) = 2, SEN♭(f)(2) = 2,

whereas SEN♭(z)(x) = 0, SEN♭(o)(x) = 1 and SEN♭(t)(x) = 2, for all
x ∈ SEN♭(Σ);

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families ∅, {{2}}, {{1,2}} and {{0,1,2}}, but only two

theory systems, ∅ and {{0,1,2}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.

012 ......................................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
✼

12 .....................③ {0,12}
2 .....................❥
∅ ∆F

Since ThFam (I) = {{{2}},{{1,2}},SEN♭}, it is clear that I is narrowly
family monotone.

On the other hand, for T = {{1,2}} and T ′ = {{2}}, we get
←Ð
T = ∅ =

←Ð
T ′,

whereas Ω(T ) = {0,12} ≰ ∆F = Ω(T ′). Therefore, I is not narrowly left
monotone.
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The second example shows that there exists a narrowly family monotone
π-institution that is not narrowly right monotone, thus showing, on the one
hand, that the class of narrowly right monotone π institutions is properly
included in the class of narrowly system monotone π-institutions and, on the
other, that narrowly family monotone π-institutions do not form a subclass
of narrowly right monotone π-institutions.

Example 521 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and four non-identity
morphisms f, g, o, t ∶ Σ → Σ, whose composition table is the following:

○ f g o t

f t f t t

g o g o o

o o o o o

t t t t t

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, with

SEN♭(f)(0) = 1, SEN♭(f)(1) = 2, SEN♭(f)(2) = 2;
SEN♭(g)(0) = 0, SEN♭(g)(1) = 1, SEN♭(g)(2) = 1,

whereas SEN♭(o)(x) = 1 and SEN♭(t)(x) = 2, for all x ∈ SEN♭(Σ);
• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families ∅, {{2}}, {{1,2}} and {{0,1,2}}, but only three

theory systems, ∅, {{1,2}} and {{0,1,2}}. The lattice of theory families of I
and the corresponding Leibniz congruence systems are given in the diagram.
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012 ......................................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
✼

12 .....................③ {0,12}
2 .....................❥
∅ ∆F

Since ThFam (I) = {{{2}},{{1,2}},SEN♭}, it is clear that I is narrowly
family monotone.

On the other hand, for T = {{2}} and T ′ = {{1,2}}, we get T ≤ T ′,
whereas Ω(←ÐT ) = Ω(∅) = ∇F ≰ {0,12} = Ω(T ′) = Ω(←ÐT ′). Therefore, I is not
narrowly right monotone.

The third example shows that there exists a narrowly right monotone
π-institution that is not narrowly family monotone. Combined with the
preceding examples, it has the effect of establishing the following facts:

• The classes of narrowly family monotone and narrowly right monotone
π-institutions are pairwise incomparable.

• The class of narrowly family monotone π-institutions is properly con-
tained in the class of narrowly system monotone π-institutions.

Example 522 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(f)(0) =
SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families, but only three theory systems, namely ∅, {{2}}
and {{0,1,2}}. Moreover, clearly,

ThFam (I) = {{{2}},{{1,2}},{{0,1,2}}}.
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The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

012 ............................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
✕

12
.............................✇

{01,2}
2

......
......

......
.✶

∅ ∆F

We have
Ω(←Ð2 ) = Ω(2) = {01,2};
Ω(←Ð12) = Ω(2) = {01,2};

Ω(←Ð012) = Ω(012) = ∇F.

Thus, we get Ω(←Ð2 ) ≤ Ω(←Ð12) ≤ Ω(←Ð012) and, therefore, I is narrowly right
monotone.

On the other hand, for T = {{2}} and T ′ = {{1,2}}, we get T ≤ T ′,
whereas Ω(T ) = {01,2} ≰ ∆F = Ω(T ′). Thus, I is not narrowly family
monotone.

We conclude that the structure of the narrow monotonicity hierarchy is,
in fact, exactly as depicted in the diagram and no two classes are identical.

We look, next, at the connections between narrow monotonicity and
monotonicity classes. Once more, as was the case with monotonicity and
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rough monotonicity in Section 7.3, protoalgebraicity (i.e., family/left mono-
tonicity, by Proposition 171) is strong enough to ensure membership in all
classes of the narrow monotonicity hierarchy, whereas prealgebraicity (i.e.,
system/right monotonicity, by Proposition 173) is only sufficiently strong
to yield corresponding narrow monotonicity properties, i.e., implies narrow
right monotonicity and, a fortiori, narrow system monotonicity.

Theorem 523 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is protoalgebraic, then it is narrowly left monotone;

(b) If I is prealgebraic, then it is narrowly right monotone.

Proof:

(a) Suppose that I is protoalgebraic. By Proposition 171, it is left mono-
tone, whence, it is, a fortiori, narrowly left monotone, since the condi-
tion defining the latter is a specialization of that defining the former.

(b) Suppose that I is prealgebraic. By Proposition 173, it is right mono-
tone, whence, it is, a fortiori, narrowly right monotone, since the con-
dition defining the latter is a specialization of that defining the former.

∎

Thus, the following mixed monotonicity and narrow monotonicity hierar-
chy emerges.

Protoalgebraic

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

Narrow Left Mon Prealgebraic

Narrow Family Mon
❄

Narrow Right Mon
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

Narrow System Mon

We also have the following additional relations, paralleling the ones es-
tablished between monotonicity and rough monotonicity classes in Theorems
510 and 511.

Theorem 524 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a non-almost inconsistent π-institution based on F. I is protoalge-
braic if and only if it has theorems and is narrowly left or narrowly family
monotone.
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Proof: Suppose I is protoalgebraic. Since, by hypothesis, it is not almost
inconsistent, it must have theorems. Moreover, by Theorem 523 and Propo-
sition 517, it is both narrowly left and narrowly family monotone.

Assume, conversely, that I is narrowly left or narrowly family monotone
and has theorems. Let T,T ′ ∈ ThFam(I), such that T ≤ T ′. Then, since
I has theorems, T,T ′ ∈ ThFam (I) and, moreover, by Lemma 1, we get
←Ð
T ≤
←Ð
T ′. Using either narrow family or narrow left monotonicity, as the case

requires, we obtain Ω(T ) ≤ Ω(T ′). Therefore, I is protoalgebraic. ∎

Theorem 525 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F, that has a theory system T ≠ ∅,SEN♭. I is
prealgebraic if and only if it has theorems and it is narrowly right or narrowly
system monotone.

Proof: Suppose I is prealgebraic. Since, by hypothesis, it has a theory
system T ≠ ∅,SEN♭, it must have theorems. Moreover, by Theorem 523, it
is narrowly right monotone and, hence, by Proposition 517, it is narrowly
system monotone.

Assume, conversely, that I is narrowly right or narrowly system monotone
and has theorems. By Proposition 517, it is narrowly system monotone and
has theorems. Let T,T ′ ∈ ThSys(I), such that T ≤ T ′. Since I has theorems,
T,T ′ ∈ ThSys (I). By narrow system monotonicity, we obtain Ω(T ) ≤ Ω(T ′).
Therefore, I is prealgebraic. ∎

To see that all classes in the hierarchy are different, we give an example
of a π-institution satisfying all four narrow monotonicity properties, which is
not, however, prealgebraic and, therefore, a fortiori, it is not protoalgebraic
either.

Example 526 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅} and {{1}} and {{0,1}}, all of which are

theory systems.
The lattice of theory families of I and the corresponding Leibniz congru-

ence systems are given in the diagram.



Voutsadakis CHAPTER 7. SEMANTIC HIERARCHY V 537

01 .............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

1 .....................❥
∅ ∆F

I belongs to all four classes of the narrow monotonicity hierarchy. Indeed,
since it is systemic, all four narrow monotonicity conditions boil down to
checking that, for all T,T ′ ∈ ThFam (I), T ≤ T ′ implies Ω(T ) ≤ Ω(T ′). This
is obvious, since the only T,T ′ ∈ ThFam (I), with T ≨ T ′, are T = {{1}} and
T ′ = {{0,1}} and Ω(T ) = ∆F ≤ ∇F = Ω(T ′).

On the other hand, we have {∅} ≤ {{1}}, whereas Ω({∅}) ≰ Ω({{1}}),
whence I is not prealgebraic.

We look, next, at relationships between narrow monotonicity and rough
monotonicity classes. We show that the two family versions coincide and
that, for the remaining three properties, each of the rough versions implies
the corresponding narrow version.

Theorem 527 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I if roughly family monotone iff it is narrowly family monotone;

(b) If I is roughly left monotone, then it is narrowly left monotone;

(c) If I is roughly right monotone, then it is narrowly right monotone;

(d) If I is roughly system monotone, then it is narrowly system monotone.

Proof:
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(a) Suppose that I is roughly family monotone and let T,T ′ ∈ ThFam (I),
such that T ≤ T ′. Since T,T ′ ∈ ThFam (I), T̃ = T and T̃ ′ = T ′,
whence, by hypothesis, T̃ ≤ T̃ ′. Thus, by rough family monotonicity,
Ω(T ) ≤ Ω(T ′) and, therefore, I is narrowly family monotone. Sup-
pose, conversely, that I is narrowly family monotone and let T,T ′ ∈
ThFam(I), such that T̃ ≤ T̃ ′. Since T̃ , T̃ ′ ∈ ThFam (I), we get, by
narrow family monotonicity, Ω(T̃ ) ≤ Ω(T̃ ′). Therefore, by Proposition
369, Ω(T ) ≤ Ω(T ′) and, hence, I is roughly family monotone.

(b) Suppose that I is roughly left monotone, i.e., that, for all T,T ′ ∈

ThFam(I), ←̃ÐT ≤ ←̃ÐT ′ implies Ω(T ) ≤ Ω(T ′). Assume, for the sake of
obtaining a contradiction, that I is not narrowly left monotone. Then,

there exist X,Y ∈ ThFam (I), such that
←Ð
X ≤
←Ð
Y and Ω(X) ≰ Ω(Y ).

First, observe that, if there existed Z ∈ ThFam(I) and P ∈ ∣Sign♭∣,
such that ZP ≠ ∅ and

←Ð
Z P = ∅, then, setting Z ′ = {ZΣ}Σ∈∣Sign♭∣, with

Z ′Σ = { ∅, if Σ ≠ P
ZP , if Σ = P ,

we would have
←̃Ð
Z ′ =

←̃Ð
∅ , but Ω(Z ′) ≠ Ω(∅), which contradicts rough left

monotonicity. Thus, for all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣, TΣ ≠ ∅
implies

←Ð
T Σ ≠ ∅.

Continuing with the proof, by hypothesis,
←Ð
X ≤

←Ð
Y and Ω(X) ≰ Ω(Y ).

Hence, by rough left monotonicity,
←̃Ð
X ≰

←̃Ð
Y . Thus, there exists P ∈

∣Sign♭∣, such that
←̃Ð
XP ⊈

←̃Ð
Y P , whereas

←Ð
XP ⊆

←Ð
Y P . But this gives

←Ð
XP =

∅, whence, by the preceding observation, XP = ∅, which contradicts
X ∈ ThFam (I). Therefore, I must be narrowly left monotone.

(c) Suppose that I is roughly right monotone and let T,T ′ ∈ ThFam (I),
such that T ≤ T ′. Since T,T ′ ∈ ThFam (I), we get T̃ = T and T̃ ′ = T ′,
whence, by hypothesis, T̃ ≤ T̃ ′. By rough right monotonicity, Ω(←ÐT ) ≤
Ω(←ÐT ′), whence I is narrowly right monotone.

(d) Suppose that I is roughly system monotone and let T,T ′ ∈ ThSys (I),
such that T ≤ T ′. Since T,T ′ ∈ ThSys (I), T̃ = T and T̃ ′ = T ′, whence,
by hypothesis, T̃ ≤ T̃ ′. Thus, by rough system monotonicity, Ω(T ) ≤
Ω(T ′) and, therefore, I is narrowly system monotone.

∎

Thus, the following mixed rough monotonicity and narrow monotonicity
hierarchy emerges.
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Rough Left Mon

✠�
�
� ❅

❅
❅
❅
❅
❅
❅
❅❘

Narrow Left Mon

❅
❅
❅❘

Rough Family Mon Rough Right Mon

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Rough System Mon Narrow Right Mon

❅
❅
❅❘ ✠�

�
�

Narrow System Mon

To see that all classes in the hierarchy are different, we must find examples
that separate the class of rough monotone from the class of narrow monotone
π-institutions for each of the three allegedly distinct types, subject to the
inclusions established in Theorem 527.

First, we provide an example of a narrowly left monotone π-institution
that is not roughly left monotone. This proves that the class of roughly
left monotone π-institutions is a proper subclass of the class of narrowly left
monotone ones.

Example 528 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅}, {{1}} and {{0,1}}, but only two the-

ory systems, {∅} and {{0,1}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.
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01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

To see that I is narrowly left monotone, note that the only two different
theory families in ThFam (I) are {{1}} and {{0,1}} and we have

←ÐÐÐ{{1}} = {∅} ≤ {{0,1}} =←ÐÐÐÐ{{0,1}}
and Ω({{1}}) =∆F ≤ ∇F = Ω({{0,1}}).

On the other hand, I is not roughly left monotone, since
←̃ÐÐ{∅} = {{0,1}} =

←̃ÐÐÐ{{1}}, but Ω({∅}) ≰ Ω({{1}}).
Next we exhibit a narrowly right monotone but not roughly right mono-

tone π-institution, showing that the class of roughly right monotone π-
institutions is a proper subclass of that of the narrowly right monotone ones.

Example 529 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
There are only four theory families in ThFam (I), all of which except for{01, b} are theory systems. Their lattice together with the associated Leibniz

congruence systems are shown in the diagram:

01, ab ....................................✲ ∇F

�
�
� ❅

❅
❅

01, b 1, ab ............✲ ∆F
Σ,∇

F
Σ′

❅
❅
❅

..................................q
�
�
�

1, b ......................................✲ ∆F

To see that I is narrowly right monotone, we check all cases comparing theory
families in ThFam (I):

{1, b} ≤ {01, b}, Ω(←ÐÐÐ{1, b}) = Ω({1, b}) = Ω(←ÐÐÐ{01, b});
{1, b} ≤ {1, ab}, Ω(←ÐÐÐ{1, b}) = ∆F ≤ Ω(←ÐÐÐ{1, ab});
{01, b} ≤ {01, ab}, Ω(←ÐÐÐ{01, b}) ≤ ∇F = Ω(←ÐÐÐÐ{01, ab});
{1, ab} ≤ {01, ab}, Ω(←ÐÐÐ{1, ab}) ≤ ∇F = Ω(←ÐÐÐÐ{01, ab}).

On the other hand, since {̃1,∅} ≤ {̃1, ab}, but

Ω(←ÐÐÐ{1,∅}) = Ω({∅,∅}) ≰ Ω({1, ab}) = Ω(←ÐÐÐ{1, ab}),
I is not roughly right monotone.

Finally, we present an example of a narrowly system monotone π-ins-
titution which fails to be roughly system monotone, thereby establishing that
the class of roughly system monotone π-institutions is properly contained in
the class of narrowly system monotone ones.
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Example 530 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with two object Σ, Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b, c}, and SEN♭(f)(0) = a, SEN♭(f)(1) = b;
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{c},{b, c},{a, b, c}}.
I has twelve theory families, but only seven theory systems. These are

∅,{∅, c},{∅, bc},{∅, abc},{1, bc},{1, abc},{01, abc}.
The following diagram shows the structure of the lattice of theory families.

01, abc

✱
✱ ❧

❧
01, bc 1, abc

✱
✱ ❧

❧ ✱
✱ ❧

❧
01, c 1, bc ∅, abc

✱
✱ ❧

❧ ✱
✱ ❧

❧ ✱
✱

01,∅ 1, c ∅, bc
❧
❧ ✱

✱ ❧
❧ ✱

✱

1,∅ ∅, c
❧
❧ ✱

✱

∅,∅
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To see that I is narrow system monotone, note that there are only three
theory systems in ThSys (I), namely, {1, bc}, {1, abc} and {01, abc} and we
have {1, bc} ≤ {1, abc} ≤ {01, abc} and, also,

Ω({1, bc}) = {∆F
Σ,{a, bc}}

≤ Ω({1, abc}) = {∆F
Σ,∇

F
Σ′}

≤ Ω({01, abc}) = ∇F.

On the other hand, setting T = {∅, c} and T ′ = {∅, bc}, which are both
theory systems, we get

T̃ = {01, c} ≤ {01, bc} = T̃ ′,
whereas

Ω(T ) = {∇F
Σ,{ab, c}} ≰ {∆F

Σ,{a, bc}} = Ω(T ′).
Therefore, I is not roughly system monotone.

The narrow monotonicity properties transfer from the theory families/
systems of a π-institution I = ⟨F,C⟩ to all I-filter families/systems on arbi-
trary F-algebraic systems. Recall the notations FiFamI (A) and FiSysI (A)
for the collections of I-filter families and I-filter systems, respectively, of an
F-algebraic system A all of whose components are nonempty.

Theorem 531 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is narrowly family monotone if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), T ≤ T ′ implies ΩA(T ) ≤
ΩA(T ′);

(b) I is narrowly left monotone if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), ←ÐT ≤ ←ÐT ′ implies ΩA(T ) ≤
ΩA(T ′);

(c) I is narrowly right monotone if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI (A), T ≤ T ′ implies ΩA(←ÐT ) ≤
ΩA(←ÐT ′);

(d) I is narrowly system monotone if and only if, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiSysI (A), T ≤ T ′ implies ΩA(T ) ≤
ΩA(T ′).

Proof:
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(a) The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account that, by Lemma 51, ThFam(I) = FiFamI(F).
For the “only if”, suppose that I is narrowly family monotone and
let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI (A),
such that T ≤ T ′. Then α−1(T ) ≤ α−1(T ′). Since, by Lemmas 51 and
376, both α−1(T ) and α−1(T ′) are in ThFam (I), we get, by narrow
family monotonicity, Ω(α−1(T )) ≤ Ω(α−1(T ′)). Hence, by Proposition
24, α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). Taking into account the surjectivity
of ⟨F,α⟩, we conclude that ΩA(T ) ≤ ΩA(T ′).

(b) The “if” follows as in Part (a).

For the “only if”, suppose that I is narrowly left monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T,T ′ ∈ FiFamI (A), such

that
←Ð
T ≤
←Ð
T ′. Then α−1(←ÐT ) ≤ α−1(←ÐT ′). By Lemma 6,

←ÐÐÐÐ
α−1(T ) ≤←ÐÐÐÐα−1(T ′).

Since, by Lemmas 51 and 376, α−1(T ) and α−1(T ′) are in ThFam (I),
we get, by narrow left monotonicity, Ω(α−1(T )) ≤ Ω(α−1(T ′)), whence,
by Proposition 24, α−1(ΩA(T )) ≤ α−1(ΩA(T ′)). Thus, by the surjec-
tivity of ⟨F,α⟩, ΩA(T ) ≤ ΩA(T ′).

Parts (c) and (d) may be proved similarly. ∎

Finally, in analogs of Propositions 514 and 515, we recast the narrow
monotonicity properties in terms of the monotonicity of mappings from posets
of theory or filter families/systems into posets of congruence systems.

Proposition 532 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly family monotone;

(b) Ω ∶ ThFam (I)→ ConSys∗(I) is monotone;

(c) ΩA ∶ FiFamI (A)→ ConSysI∗(A) is monotone, for every F-algebraic
system A.

Similarly, for narrow system monotonicity, we have

Proposition 533 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly system monotone;

(b) Ω ∶ ThSys (I)→ConSys∗(I) is monotone;

(c) ΩA ∶ FiSysI (A) → ConSysI∗(A) is monotone, for every F-algebraic
system A.
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7.5 Rough Complete Monotonicity

In this section we study classes of π-institutions defined using complete
monotonicity properties of the Leibniz operator applied on rough equiva-
lence classes.

Definition 534 (Rough c-Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system and I = ⟨F,C⟩ be a π-institution based on F.

• I is called roughly family completely monotone, or roughly fam-
ily c-monotone for short, if, for all T ∪ {T ′} ⊆ ThFam(I),

T̃ ′ ≤ ⋃
T ∈T

T̃ implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).

• I is called roughly left completely monotone, or roughly left
c-monotone for short, if, for all T ∪ {T ′} ⊆ ThFam(I),

←̃Ð
T ′ ≤ ⋃

T ∈T

←̃Ð
T implies Ω(T ′) ≤ ⋃

T ∈T

Ω(T ).

• I is called roughly right completely monotone, or roughly right
c-monotone for short, if, for all T ∪ {T ′} ⊆ ThFam(I),

T̃ ′ ≤ ⋃
T ∈T

T̃ implies Ω(←ÐT ′) ≤ ⋃
T ∈T

Ω(←ÐT ).

• I is called roughly system completely monotone, or roughly
system c-monotone for short, if, for all T ∪ {T ′} ⊆ ThSys(I),

T̃ ′ ≤ ⋃
T ∈T

T̃ implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).

We start with an analog of Corollary 503 applying to rough complete
monotonicity properties.

Corollary 535 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left monotone, then it is
roughly family c-monotone if and only if it is roughly right c-monotone.

Proof: Suppose I is roughly left monotone. Then, by Lemma 502, it is sta-
ble. Now note that rough family c-monotonicity is equivalent to the condition
that, for all T ∪ {T ′} ⊆ ThFam(I),

T̃ ′ ≤ ⋃
T ∈T

T̃ implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ),
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which, by stability, is equivalent to, for all T ∪ {T ′} ⊆ ThFam(I),
T̃ ′ ≤ ⋃

T ∈T

T̃ implies Ω(←ÐT ′) ≤ ⋃
T ∈T

Ω(←ÐT ),
and this is equivalent, by definition, to rough right c-monotonicity. ∎

We establish a rough complete monotonicity hierarchy analogous to the
one obtained in Proposition 505 for rough monotonicity.

Proposition 536 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is roughly family c-monotone, then it is roughly system c-monotone;

(b) If I is roughly left c-monotone, then it is roughly system c-monotone;

(c) If I is roughly right c-monotone, then it is roughly system c-monotone.

Proof:

(a) The definition of rough system c-monotonicity is a specialization of that
of rough family c-monotonicity, in which the universal quantification is
restricted over theory systems.

(b) Suppose I is roughly left c-monotone and let T ∪{T ′} ⊆ ThSys(I), such

that T̃ ′ ≤ ⋃T ∈T T̃ ′. Since T ∪ {T ′} consists of theory systems,
←Ð
T = T ,

for all T ∈ T , and
←Ð
T ′ = T ′. Hence, we get

←̃Ð
T ′ ≤ ⋃T ∈T

←̃Ð
T . Thus, by rough

left monotonicity, we get Ω(T ′) ≤ ⋃T ∈T Ω(T ). Therefore, I is roughly
system c-monotone.

(c) Suppose I is roughly right monotone and let T ∪ {T ′} ⊆ ThSys(I),
such that T̃ ′ ≤ ⋃T ∈T T̃ . Then, by rough right monotonicity, Ω(←ÐT ′) ≤
⋃T ∈T Ω(←ÐT ). Since T ∪ {T ′} consists of theory systems,

←Ð
T = T , for all

T ∈ T , and
←Ð
T ′ = T ′, whence Ω(T ′) ≤ ⋃T ∈T Ω(T ) and, hence, I is roughly

system c-monotone.
∎

We have now established the following rough c-monotonicity hierar-
chy of π-institutions.

Rough Left c-Mon Rough Family c-Mon Rough Right c-Mon
❍❍❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟✟✟

Rough System c-Mon
❄

In an analog of Proposition 506, it is shown that being roughly left c-
monotone is equivalent to being roughly system c-monotone and stable.
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Proposition 537 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left c-monotone if and only
if it is roughly system c-monotone and stable.

Proof: Suppose, first, that I is roughly left c-monotone. Then, by Proposi-
tion 536, it is roughly system c-monotone. Moreover, it is, a fortiori, roughly
left monotone and, hence, by Lemma 502, it is stable.

Assume, conversely, that I is stable and roughly system c-monotone.

Let T ∪ {T ′} ⊆ ThFam(I), such that
←̃Ð
T ′ ≤ ⋃T ∈T

←̃Ð
T . Then, since {←ÐT ∶ T ∈

T } ∪ {←ÐT ′} ⊆ ThSys(I), we get, by rough system c-monotonicity, Ω(←ÐT ′) ≤
⋃T ∈T Ω(←ÐT ). Thus, by stability, Ω(T ′) ≤ ⋃T ∈T Ω(T ). We conclude that I is
roughly left c-monotone. ∎

We show, next, that the rough complete monotonicity hierarchy collapses
to two classes under stability and to a single class under rough systemicity.

Proposition 538 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is stable and roughly system c-monotone, then it is roughly left
c-monotone.

(b) If I is stable, then it is roughly family c-monotone if and only if it is
roughly right c-monotone.

Proof:

(a) By Proposition 537.

(b) Suppose that I is stable. Then, for all T ∪ {T ′} ⊆ ThFam(I), Ω(←ÐT ) =
Ω(T ), T ∈ T , and Ω(←ÐT ′) = Ω(T ′), whence the conditions defining rough
family c-monotonicity and rough right c-monotonicity become identi-
cal. Therefore, under stability, roughly family and roughly right c-
monotone π-institutions coincide.

∎

By Proposition 538, under stability, we get the reduced hierarchy

Rough Family/Right c-Monotonicity

Rough System/Left c-Monotonicity
❄

We also get that rough systemicity causes the further collapse of the entire
hierarchy into a single class.
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Proposition 539 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For roughly systemic π-institutions, all
four rough c-monotonicity classes coincide.

Proof: Since rough systemicity implies stability, by Proposition 538, it suf-
fices to show that, if I is roughly system c-monotone and roughly systemic,
then it is roughly family c-monotone. Let T ∪ {T ′} ⊆ ThFam(I), such that

T̃ ′ ≤ ⋃T ∈T T̃ . By rough systemicity,
←̃Ð
T = T̃ , for all T ∈ T , and

←̃Ð
T ′ = T̃ ′. There-

fore,
←̃Ð
T ′ ≤ ⋃T ∈T

←̃Ð
T . Thus, since {←ÐT ∶ T ∈ T }∪{←ÐT ′} consists of theory systems,

by rough system c-monotonicity, Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). Since rough systemic-

ity implies stability, Ω(←ÐT ) = Ω(T ), for all T ∈ T , and Ω(←ÐT ′) = Ω(T ′). Thus,
Ω(T ′) ≤ ⋃T ∈T Ω(T ). We conclude that I is roughly family c-monotone. ∎

We present several examples to show that all four rough complete mono-
tonicity classes depicted in the diagram above are different and that the
hierarchy is exactly as shown.

The first example gives a roughly left c-monotone π-institution which
is not roughly family c-monotone. Thus, it shows that the class of roughly
family c-monotone π-institutions is properly contained in the class of roughly
system c-monotone π-institutions and that, moreover, the class of roughly
left c-monotone π-institutions is not a subclass of the class of roughly family
c-monotone π-institutions.

Example 540 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and six non-identity mor-
phisms f, g, g′, h, h′, t ∶ Σ → Σ, in which composition is defined by the
following table, whose entry in row k and column ℓ is the result of the
composition ℓ ○ k:

○ f g g′ h h′ t

f f h′ h g′ g t

g g′ g g′ t t t

g′ g t t g′ g t

h h′ t t h h′ t

h′ h h′ h t t t

t t t t t t t

• SEN♭ ∶ Sign♭ → Set is given, on objects, by SEN♭(Σ) = {0,1,2} and,
on morphisms, by the following table, whose entries in column k give
the values of the function SEN♭(k) ∶ SEN♭(Σ)→ SEN♭(Σ):

x f g g′ h h′ t

0 1 2 2 0 1 2
1 0 1 0 2 2 2
2 2 2 2 2 2 2
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• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that since I has theorems, rough equivalence coincides with the identity
relation on ThFam(I).

The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}
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The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ........................................✲ ∇F

�
�
�
� ❅

❅
❅
❅{0,2} {1,2}

❅
❅
❅
❅

.......................................q
�
�
�
�

................s{2} ............................................✲ ∆F

I has only two theory systems, Thm(I) = {{2}}, and SEN = {{0,1,2}}.
To show that I is (roughly) left c-monotone, assume that, for some T ∪

{T ′} ⊆ ThFam(I), ←ÐT ′ ≤ ⋃T ∈T ←ÐT .

• If ⋃T ∈T
←Ð
T = {{0,1,2}}, then {{0,1,2}} ∈ T and, hence,

Ω(T ′) ≤ ∇F = Ω({{0,1,2}}) ≤ ⋃
T ∈T

Ω(T );

• If ⋃T ∈T
←Ð
T = {{2}}, then T ′ ≠ {{0,1,2}}, whence

Ω(T ′) = ∆F ≤ ⋃
T ∈T

Ω(T ).
Thus, in any case, Ω(T ′) ≤ ⋃T ∈T Ω(T ) and I is roughly left c-monotone.

On the other hand, we have

{{0,1,2}} ≤ {{0,2}} ∪ {{1,2}},
whereas

Ω({{0,1,2}}) = ∇F ≰ ∆F = Ω({{0,2}}) ∪Ω({{1,2}}).
Therefore, I is not roughly family c-monotone.

An additional conclusion obtained from Example 540, combined with
the statement of Corollary 535, is that the class of roughly left c-monotone
π-institutions is not a subclass of the class of roughly right c-monotone π-
institutions either, since that inclusion would imply that the former is also
a subclass of the class of roughly family c-monotone π-institutions, contra-
dicting Example 540.

The second example shows that there exists a roughly family c-monotone
π-institution that is not roughly right c-monotone, thus showing, on the one
hand, that the class of roughly right c-monotone π-institutions is properly
included in the class of roughly system c-monotone π-institutions and, on the
other, that roughly family c-monotone π-institutions do not form a subclass
of roughly right c-monotone π-institutions.
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Example 541 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
SEN♭(f)(1) = SEN♭(f)(2) = 1;

• N ♭ is the clone generated by the unary natural transformation σ♭ ∶
SEN♭ → SEN♭ specified by σ♭Σ(0) = 2, σ♭Σ(1) = 1 and σ♭Σ(2) = 2.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
There are four theory families, but only three theory systems. The action

of ←Ð on theory families is given in the table below.

T
←Ð
T{∅} {∅}{2} {∅}{12} {12}{012} {012}

The lattice of theory families of I together with the Leibniz congruence
systems are shown in the diagram.

012 ................................✲ ∇F

..
..

..
..

..
..

..
..

..
..

..
..

..
..✒

12 ...........................✲ {{0,12}}

2 ..................................✲ ∆F

∅
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We show that I is roughly family c-monotone. To this end, suppose T ∪{T ′} ⊆ ThFam(I), such that T̃ ′ ≤ ⋃T ∈T T̃ .

• If T̃ ′ = {012}, then we must have {∅} ∈ T or {012} ∈ T . Hence, we get
Ω(T ′) = ∇F = ⋃T ∈T Ω(T );

• If T̃ ′ = {12}, then T must include one of {12}, {∅} or {012}. Hence,
we get Ω(T ′) = {{0,12}} ≤ ⋃T ∈T Ω(T );

• If T̃ ′ = {2}, then T ′ = {2} and, hence, Ω(T ′) = ∆F ≤ ⋃T ∈T Ω(T ).
Therefore, I is indeed roughly family c-monotone.

On the other hand, we have {̃2} = {2} ≤ {12} = {̃12}, whereas

Ω(←Ð{2}) = Ω({∅}) = ∇F ≰ {{0,12}} = Ω({12}) = Ω(←ÐÐ{12}).
Therefore, I is not roughly right c-monotone.

An additional conclusion obtained from Example 541, combined with the
statement of Corollary 535, is that the class of roughly family c-monotone
π-institutions is not a subclass of the class of roughly left c-monotone π-
institutions. Otherwise, by Corollary 535, rough family c-monotonicity would
imply rough right c-monotonicity, contradicting Example 541.

The third example shows that there exists a roughly right c-monotone
π-institution that is not roughly left c-monotone. It establishes that the
class of roughly left c-monotone π-institutions is properly contained in the
class of roughly system c-monotone π-institutions and, also, that the class of
roughly right c-monotone π-institutions does not form a subclass of the class
consisting of the roughly left c-monotone ones.

Example 542 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families ∅, {{1}} and {{0,1}}, but only two theory

systems, ∅ and {{0,1}}. The lattice of theory families of I and the corre-
sponding Leibniz congruence systems are given in the diagram.
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01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

We show that I is roughly right c-monotone. Suppose T ∪{T ′} ⊆ ThFam(I),
such that T̃ ′ ≤ ⋃T ∈T T̃ . Since, for all T ∈ T , we have

←Ð
T = {∅} or

←Ð
T = {01},

we have, trivially,

Ω(←ÐT ′) ≤ ∇F = ⋃
T ∈T

Ω(←ÐT ).
Thus, I is indeed roughly right monotone.

On the other hand, we have
←̃ÐÐ{∅} = {01} = {̃∅} = ←̃Ð{1}, but Ω({∅}) ≰

Ω({1}). Therefore, I is not roughly left c-monotone.

The last example in this series depicts a roughly right c-monotone π-
institution, which is not roughly family c-monotone. This shows that the
class of roughly right c-monotone π-institutions does not form a subclass of
the class of roughly family c-monotone ones.

Example 543 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.



554 CHAPTER 7. SEMANTIC HIERARCHY V Voutsadakis

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
Since I has theorems, rough equivalence on ThFam(I) coincides with the
identity relation.

The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

We show that I is roughly right c-monotone. Suppose T ∪{T ′} ⊆ ThFam(I),
such that T̃ ′ ≤ ⋃T ∈T T̃ .

• If T ′ = {012}, then T ′ ∈ T , whence we get Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT );
• If T ′ = {12}, then {12} ∈ T or {012} ∈ T . In either case Ω(←ÐT ′) ≤
⋃T ∈T Ω(←ÐT );

• If T ′ = {2}, then T ≠ ∅ and, since
←ÐÐ{12} = {2}, we get Ω(←ÐT ′) ≤

⋃T ∈T Ω(←ÐT ).
Therefore, I is roughly right c-monotone. On the other hand, since {2} ≤{12}, but Ω({2}) = {{01,2}} ≰ ∆F = Ω({12}), I is not roughly family c-
monotone.
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We conclude, after these four examples, that the structure of the rough
complete monotonicity hierarchy is exactly as depicted in the diagram and
no two classes are identical.

We look, next at the connections between the classes in the rough mono-
tonicity and rough complete monotonicity hierarchies. We have a straight-
forward

Proposition 544 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly family (respectively, left,
right, system) c-monotone, then it is roughly family (respectively, left, right,
system) monotone.

Proof: The condition defining a rough monotonicity class is a special case of
the condition defining the respective rough c-monotonicity class, where the
collection T , in that definition, is taken to be a singleton. ∎

Proposition 544, in view of Propositions 505 and 536, establishes the
hierarchy depicted in the diagram (the dotted line and arrow represent jointly
a single arrow signifying the inclusion of the class of roughly left c-monotone
into the class of roughly system c-monotone π-institutions).

R L c-Mon

R F c-Mon R L Mon
❄

...........
R R c-Mon

❩
❩
❩
❩
❩⑦❂✚

✚
✚
✚
✚

❂✚
✚
✚
✚
✚❩

❩
❩
❩
❩⑦

R F Mon
❄

R S c-Mon
❄

...........
R R Mon

❄

❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

R S Mon
❄

We present an example to show that the two hierarchies are separated. It
shows a π-institution, which belongs to all steps of the rough monotonicity
hierarchy but to none of the four rough complete monotonicity classes.

Example 545 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
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• N ♭ is the clone generated by the unary natural transformation σ♭ ∶
SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 1
1 2
2 0

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
It is easy to see that the lattices of theory families and corresponding Leibniz
congruence systems are as given in the diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

Since Sign♭ is trivial, I is systemic and, since I has theorems, rough equiv-
alence is the identity relation on FiFam(I). We conclude that all four rough
monotonicity properties for I coincide and, moreover, they are identical with
both monotonicity properties, which they also coincide, due to systemicity.
The same holds for c-monotonicity. All four rough c-monotonicity properties
coincide and they, in turn, are identical with all c-monotonicity conditions.

From the diagram one can verify immediately that I is (roughly left, right
and family) monotone, On the other hand, we have {{0,1,2}} ≤ {{0,2}} ∪{{1,2}}, but, obviously, Ω({{0,1,2}}) /≤ Ω({{0,2}}) ∪ Ω({{1,2}}). Taking
into account that I is systemic, we conclude that I fails to be roughly system
c-monotone.
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We turn, next, our attention to the relations between the classes in the
rough c-monotonicity hierarchy and those in the c-monotonicity hierarchy.
We start by showing that possessing any type of c-monotonicity forces a π-
institution to either have theorems or, else, to have only one theory system
rough equivalence class.

Proposition 546 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c-monotone without theorems, then ∣T̃hFam(I)∣ = 1.

(b) If I is system c-monotone without theorems, then ∣T̃hSys(I)∣ = 1.

Proof:

(a) Suppose that I is left c-monotone and does not have theorems. If∣T̃hFam(I)∣ > 1, then there exists T ∈ ThFam(I), such that T̃ ≠ SEN♭.
Thus, we get

←Ð
∅ = ∅ ≤

←Ð
T and Ω(∅) ≰ Ω(T ).

Therefore, I is not left c-monotone, a contradiction. Thus, we must
have ∣T̃hFam(I)∣ = 1, as claimed.

(b) Suppose that I is system c-monotone and does not have theorems. If∣T̃hSys(I)∣ > 1, then there exists T ∈ ThSys(I), such that T̃ ≠ SEN♭.
Thus, we get

∅ < T and Ω(∅) ≰ Ω(T ).
Therefore, I is not system c-monotone, a contradiction. Thus, we must
have ∣T̃hSys(I)∣ = 1, as claimed.

∎

We can establish the following relations between c-monotonicity and rough
c-monotonicity classes.

Proposition 547 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is left c-monotone, then it is roughly left c-monotone;

(b) If I is family c-monotone, then it is roughly family c-monotone;

(c) If I is right c-monotone, then it is roughly right c-monotone;

(d) If I is system c-monotone, then it is roughly system c-monotone.

Proof:
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(a) Suppose that I is left c-monotone. Let T ∪{T ′} ⊆ ThFam(I), such that
←̃Ð
T ′ ≤ ⋃T ∈T

←̃Ð
T . If I has theorems, then

←̃Ð
T =
←Ð
T , for all T ∈ T , and

←̃Ð
T ′ =
←Ð
T ′,

whence
←Ð
T ′ ≤ ⋃t∈T

←Ð
T . Thus, by left c-monotonicity, Ω(T ′) ≤ ⋃T ∈T Ω(T ).

On the other hand, if I does not have theorems, then, by Proposition
546, ∣T̃hFam(I)∣ = 1, whence, by Theorem 370, Ω(T ′) = ⋃T ∈T Ω(T ).

(b) Suppose that I is family c-monotone. Let T ∪ {T ′} ⊆ ThFam(I), such
that T̃ ′ ≤ ⋃T ∈T T̃ . If I has theorems, then we get T̃ = T , for all T ∈
T , and T̃ ′ = T ′. Thus, T ′ ≤ ⋃T ∈T T . By family c-monotonicity, we
now get Ω(T ′) ≤ ⋃T ∈T Ω(T ). On the other hand, if I does not have
theorems, then, by Propositions 186 and 546, ∣T̃hFam(I)∣ = 1, whence,
by Theorem 370, Ω(T ′) = ⋃T ∈T Ω(T ).

(c) Suppose that I is right c-monotone. Let T ∪ {T ′} ⊆ ThFam(I), such
that T̃ ′ ≤ ⋃T ∈T T̃ . If I has theorems, then we get T̃ = T , for all T ∈ T ,
and T̃ ′ = T ′. Thus, T ′ ≤ ⋃T ∈T T . By right c-monotonicity, we now get

Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). On the other hand, if I does not have theorems,
then, by Propositions 187 and 546, ∣T̃hSys(I)∣ = 1, whence, by Theorem

370, Ω(←ÐT ′) = ⋃T ∈T Ω(←ÐT ).
(d) Suppose that I is system c-monotone. Let T ∪ {T ′} ⊆ ThSys(I), such

that T̃ ′ ≤ ⋃T ∈T T̃ . If I has theorems, then we get T̃ = T , for all T ∈ T ,
and T̃ ′ = T ′. Thus, T ′ ≤ ⋃T ∈T T . By system c-monotonicity, we now get
Ω(T ′) ≤ ⋃T ∈T Ω(T ). On the other hand, if I does not have theorems,
then, by Proposition 546, ∣T̃hSys(I)∣ = 1, whence, by Theorem 370,
Ω(T ′) = ⋃T ∈T Ω(T ).

∎

We can now prove the following additional, and more precise, relations.

Theorem 548 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a non-almost inconsistent π-institution based on F. I is family (left,
respectively) c-monotone if and only if it is roughly family (left, respectively)
c-monotone and has theorems.

Proof: Suppose I is family or left c-monotone. Since, by hypothesis, it is
not almost inconsistent, ∣T̃hFam(I)∣ > 1. Thus, by Proposition 546, I has
theorems. Moreover, by Theorem 547, it is roughly family or left c-monotone,
respectively.

Assume, conversely, that I is roughly family (or left c-monotone) and

has theorems. Let T ∪ {T ′} ⊆ ThFam(I), such that T ′ ≤ ⋃T ∈T T (or
←Ð
T ′ ≤

⋃T ∈T
←Ð
T , respectively). Since I has theorems, rough equivalence coincides

with the identity relation on ThFam(I), whence, we get T̃ ′ ≤ ⋃T ∈T T̃ (or
←̃Ð
T ′ ≤ ⋃T ∈T

←̃Ð
T ). Using rough family (or left, respectively) c-monotonicity, we

obtain Ω(T ′) ≤ ⋃T ∈T Ω(T ). Therefore, I is family (or left) c-monotone. ∎
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Analogously, for the cases of system and right c-monotonicity, we get the
following

Theorem 549 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F, that has a theory family T ≠ SEN♭ such

that
←Ð
T ≠ ∅. I is system (right, respectively) c-monotone if and only if it

roughly system (right, respectively) c-monotone and has theorems.

Proof: Suppose I is system or right c-monotone. Since, by hypothesis, it has

a theory system
←Ð
T ≠ SEN♭,∅, we get ∣T̃hSys(I)∣ > 1. Thus, by Proposition

546, I must have theorems. Moreover, by Theorem 547, it is roughly system
or right c-monotone, respectively.

Assume, conversely, that I is roughly system (or right) c-monotone and
has theorems. Let T ∪ {T ′} ⊆ ThSys(I) (or T ∪ {T ′} ⊆ ThFam(I), re-
spectively), such that T ′ ≤ ⋃T ∈T T . Since I has theorems, rough equiv-
alence coincides with the identity relation on ThFam(I), whence, we get
T̃ ′ ≤ ⋃T ∈T T̃ . By rough system (or right, respectively) c-monotonicity, we

obtain Ω(T ′) ≤ ⋃T ∈T Ω(T ) (or Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ), respectively). Therefore,
I is system (or right) c-monotone. ∎

The preceding propositions allow us to draw the following hierarchical di-
agram concerning the complete monotonicity and the rough complete mono-
tonicity classes.

F c-Mon

✰✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗s

L c-Mon Rough F c-Mon
❄

R c-Mon
◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

Rough L c-Mon
❄

S c-Mon

...........
Rough R c-Mon

❄

◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

Rough S c-Mon
❄❄

...........

To see that the rough c-monotonicity classes are separated from the c-
monotonicity classes, we give an example. A π-institution is presented which
belongs to all four rough c-monotonicity classes, but fails to be system c-
monotone and, therefore, belongs to none of the four c-monotonicity classes.
The secret lies, of course, in the absence of theorems.

Example 550 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅} and {{1}} and {{0,1}}, all of which are

theory systems.
The lattice of theory families of I and the corresponding Leibniz congru-

ence systems are given in the diagram.

01 .............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

1 .....................❥
∅ ∆F

I belongs to all four classes of the rough c-monotonicity hierarchy. In-
deed, since it is systemic, all four rough monotonicity conditions boil down
to checking that, for all T ∪ {T ′} ⊆ ThFam(I), T̃ ′ ≤ ⋃T ∈T T̃ implies Ω(T ′) ≤
⋃T ∈T Ω(T ).

• If ⋃T ∈T T̃ = {01}, then T must include {∅} or {01}, whence Ω(T ′) ≤
∇F = ⋃T ∈T Ω(T );

• If ⋃T ∈T T̃ = {1}, then T̃ ′ = {1} and, hence, T = {{1}} and T ′ = {1}.
Thus, the implication holds trivially.

Since ⋃T ∈T T̃ = {∅} cannot occur, we get that I is roughly family c-monotone.
On the other hand, we have {∅} ≤ {1}, whereas Ω({∅}) ≰ Ω({1}), whence

I is not system c-monotone.
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Next, we turn to transfer theorems for the rough c-monotonicity classes.

Theorem 551 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is roughly family c-monotone if and only if, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩ and all T ∪{T ′} ⊆ FiFamI(A), T̃ ′ ≤ ⋃T ∈T T̃ implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T );

(b) I is roughly left c-monotone if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), ←̃ÐT ′ ≤ ⋃T ∈T ←̃ÐT implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T );

(c) I is roughly right c-monotone if and only if, for all F-algebraic systems
A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI(A), T̃ ′ ≤ ⋃T ∈T T̃ implies

ΩA(←ÐT ′) ≤ ⋃T ∈T ΩA(←ÐT );
(d) I is roughly system c-monotone if and only if, for all F-algebraic sys-

tems A = ⟨A, ⟨F,α⟩⟩ and all T ∪{T ′} ⊆ FiSysI(A), T̃ ′ ≤ ⋃T ∈T T̃ implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

Proof:

(a) The “if” results by applying the hypothesis to the F-algebraic system
F = ⟨F, ⟨I, ι⟩⟩.
For the “only if”, suppose that I is roughly family c-monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A),
such that T̃ ′ ≤ ⋃T ∈T T̃ . Then we get α−1(T̃ ′) ≤ α−1(⋃T ∈T T̃), whence

α−1(T̃ ′) ≤ ⋃T ∈T α−1(T̃ ). Thus, by Theorem 377, α̃−1(T ′) ≤ ⋃T ∈T α̃−1(T ).
Since, by Lemma 51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I), we
get, by rough family c-monotonicity, Ω(α−1(T ′)) ≤ ⋃T ∈T Ω(α−1(T )).
Hence, by Proposition 24, we get α−1(ΩA(T ′)) ≤ ⋃T ∈T α−1(ΩA(T )),
i.e., α−1(ΩA(T ′)) ≤ α−1(⋃T ∈T ΩA(T )). Taking into account the surjec-
tivity of ⟨F,α⟩, we conclude that ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

(b) The “if” is obtained as in Part (a).

For the “only if”, suppose that I is roughly left c-monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A),
such that

←̃Ð
T ′ ≤ ⋃T ∈T

←̃Ð
T . Then we get α−1(←̃ÐT ′) ≤ α−1(⋃T ∈T ←̃ÐT ), whence

α−1(←̃ÐT ′) ≤ ⋃T ∈T α−1(←̃ÐT ). Thus, by Theorem 377, α̃−1(←ÐT ′) ≤ ⋃T ∈T α̃−1(←ÐT ).
Hence, by Lemma 6, we get

←̃ÐÐÐÐ
α−1(T ′) ≤ ⋃T ∈T ←̃ÐÐÐÐα−1(T ). Since, by Lemma

51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I), we get, by rough left
c-monotonicity, Ω(α−1(T ′)) ≤ ⋃T ∈T Ω(α−1(T )). Hence, by Proposi-
tion 24, we get α−1(ΩA(T ′)) ≤ ⋃T ∈T α−1(ΩA(T )), i.e., α−1(ΩA(T ′)) ≤
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α−1(⋃T ∈T ΩA(T )). Taking into account the surjectivity of ⟨F,α⟩, we
conclude that ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

(c) The “if” is obtained as in Part (a).

For the “only if”, suppose that I is roughly right c-monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFamI(A),
such that T̃ ′ ≤ ⋃T ∈T T̃ . Then we get α−1(T̃ ′) ≤ α−1(⋃T ∈T T̃ ), whence

α−1(T̃ ′) ≤ ⋃T ∈T α−1(T̃ ). Thus, by Theorem 377, α̃−1(T ′) ≤ ⋃T ∈T α̃−1(T ).
Since, by Lemma 51, {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆ ThFam(I),
we get, by rough right c-monotonicity, Ω(←ÐÐÐÐα−1(T ′)) ≤ ⋃T ∈T Ω(←ÐÐÐÐα−1(T )).
Thus, by Lemma 6, Ω(α−1(←ÐT ′)) ≤ ⋃T ∈T Ω(α−1(←ÐT )). Hence, by Propo-

sition 24, we get α−1(ΩA(←ÐT ′)) ≤ ⋃T ∈T α−1(ΩA(←ÐT )), i.e., α−1(ΩA(←ÐT ′)) ≤
α−1(⋃T ∈T ΩA(←ÐT )). Taking into account the surjectivity of ⟨F,α⟩, we

conclude that ΩA(←ÐT ′) ≤ ⋃T ∈T ΩA(←ÐT ).
(d) Similar to Part (a).

∎

We close this section by giving two characterizations concerning the rough
family and rough system c-monotonicity classes, based on mappings between
posets satisfying the complete monotonicity property.

Proposition 552 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly family c-monotone;

(b) Ω ∶ T̃hFam(I)→ConSys∗(I) is completely monotone;

(c) ΩA ∶ F̃iFam
I(A) → ConSysI∗(A) is completely monotone, for every

F-algebraic system A.

Proposition 553 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is roughly system c-monotone;

(b) Ω ∶ T̃hSys(I)→ConSys∗(I) is completely monotone;

(c) ΩA ∶ F̃iSys
I(A) → ConSysI∗(A) is completely monotone, for every

F-algebraic system A.
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7.6 Narrow Complete Monotonicity

In this section we revisit classes of π-institutions defined using complete
monotonicity properties of the Leibniz operator. However, complete mono-
tonicity is only applied on theory systems/families all of whose components
are nonempty.

Definition 554 (Narrow c-Monotonicity) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system and I = ⟨F,C⟩ a π-institution based on F.

• I is called narrowly family completely monotone, or narrowly
family c-monotone for short, if, for all T ∪ {T ′} ⊆ ThFam (I),

T ′ ≤ ⋃
T ∈T

T implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).
• I is called narrowly left completely monotone, or narrowly left

c-monotone for short, if, for all T ∪ {T ′} ⊆ ThFam (I),
←Ð
T ′ ≤ ⋃

T ∈T

←Ð
T implies Ω(T ′) ≤ ⋃

T ∈T

Ω(T ).
• I is called narrowly right completely monotone, or narrowly

right c-monotone for short, if, for all T ∪ {T ′} ⊆ ThFam (I),
T ′ ≤ ⋃

T ∈T

T implies Ω(←ÐT ′) ≤ ⋃
T ∈T

Ω(←ÐT ).
• I is called narrowly system completely monotone, or narrowly

system c-monotone for short, if, for all T ∪ {T ′} ⊆ ThSys (I),
T ′ ≤ ⋃

T ∈T

T implies Ω(T ′) ≤ ⋃
T ∈T

Ω(T ).
We establish a narrow complete monotonicity hierarchy analogous to the

one obtained in Proposition 536 for rough complete monotonicity.

Proposition 555 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is narrowly left c-monotone, then it is narrowly system c-mo-
notone;

(b) If I is narrowly family c-monotone, then it is narrowly system c-
monotone;

(c) If I is narrowly right c-monotone, then it is narrowly system c-mo-
notone.
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Proof: We sketch a proof that works for all three cases. Suppose that I
is narrowly left (family or right) c-monotone and let T ∪ {T ′} ⊆ ThSys (I),
such that T ′ ≤ ⋃T ∈T T . Since T ∪ {T ′} consists of theory systems, we have
←Ð
T = T , for all T ∈ T , and

←Ð
T ′ = T ′. Thus, by hypothesis,

←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Now

we apply narrow left (narrow family or narrow right) c-monotonicity to get

Ω(T ′) ≤ ⋃T ∈T Ω(T ) (Ω(T ′) ≤ ⋃T ∈T Ω(T ) or Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT )). However,
in all three cases, we conclude that Ω(T ′) ≤ ⋃T ∈T Ω(T ). Therefore, I is
narrowly system c-monotone. ∎

We have now established the following narrow c-monotonicity hier-
archy of π-institutions.

Narrow Left c-Mon Narrow Family c-Mon Narrow Right c-Mon
❍❍❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟✟✟

Narrow System c-Mon
❄

We may establish some additional relationships between those classes
once various types of stability and monotonicity are allowed into the mix.
First, we show that narrow left c-monotonicity implies exclusive stability
and that, under narrow stability, narrow family c-monotonicity and narrow
right c-monotonicity coincide.

Proposition 556 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is narrowly left c-monotone, then it is exclusively stable.

(b) If I is narrowly stable, then it is narrowly family c-monotone if and
only if it is narrowly right c-monotone.

Proof:

(a) Suppose I is narrowly left c-monotone. Let T ∈ ThFam (I), such that
←Ð
T ∈ ThSys (I). Then, since

←Ð←Ð
T =
←Ð
T , we get, by applying narrow left

c-monotonicity, Ω(←ÐT ) = Ω(T ). Thus, I is exclusively stable.

(b) Suppose I is narrowly stable. Then, for all T ∈ ThFam (I), we have

Ω(←ÐT ) = Ω(T ). Thus, for all T ∪ {T ′} ⊆ ThFam (I), the condition

Ω(T ′) ≤ ⋃T ∈T Ω(T ) is equivalent to the condition Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ).
Therefore, the condition defining narrow family c-monotonicity is iden-
tical to that defining narrow right c-monotonicity.

∎

Finally, under narrow systemicity, all four narrow complete monotonicity
classes collapse into a single class.
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Proposition 557 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly systemic and narrowly
system c-monotone, then it has all four narrow c-monotonicity properties.

Proof: Suppose that I is narrowly systemic and narrowly system c-monotone.

• Let T ∪ {T ′} ⊆ ThFam (I), such that
←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . By narrow sys-

temicity,
←Ð
T = T , for all T ∈ T , and

←Ð
T ′ = T ′, whence T ′ ≤ ⋃T ∈T T

and, moreover, T ∪ {T ′} ⊆ ThSys (I). Thus, by narrow system c-
monotonicity, Ω(T ′) ≤ ⋃T ∈T Ω(T ). This proves that I is narrowly left
c-monotone.

• Let T ∪{T ′} ⊆ ThFam (I), such that T ′ ≤ ⋃T ∈T T . By narrow systemic-
ity, T ∪ {T ′} ⊆ ThSys (I). Thus, by narrow system c-monotonicity,
Ω(T ′) ≤ ⋃T ∈T Ω(T ). This proves that I is narrowly family c-monotone.

• Let T ∪{T ′} ⊆ ThFam (I), such that T ′ ≤ ⋃T ∈T T . By narrow systemic-

ity,
←Ð
T = T , for all T ∈ T , and

←Ð
T ′ = T ′, and, thus, T ∪{T ′} ⊆ ThSys (I).

Thus, by narrow system c-monotonicity, Ω(T ′) ≤ ⋃T ∈T Ω(T ). But,

then, we get Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ), whence I is also narrowly right c-
monotone. ∎

We reuse some examples to show that all four rough complete monotonic-
ity classes depicted in the diagram above are different and that no inclusions
hold among the three top classes.

The first example gives a narrowly left c-monotone π-institution which is
neither narrowly family nor narrowly right c-monotone. Thus, it shows that
the classes of narrowly family and of narrowly right c-monotone π-institutions
are properly contained in the class of narrowly system c-monotone π-insti-
tutions and that, moreover, the class of narrowly left c-monotone π-insti-
tutions is not a subclass of either the class of narrowly family or the class of
narrowly right c-monotone π-institutions.

Example 558 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and six non-identity mor-
phisms f, g, g′, h, h′, t ∶ Σ → Σ, in which composition is defined by the
following table, whose entry in row k and column ℓ is the result of the
composition ℓ ○ k:

○ f g g′ h h′ t

f f h′ h g′ g t

g g′ g g′ t t t

g′ g t t g′ g t

h h′ t t h h′ t

h′ h h′ h t t t

t t t t t t t



566 CHAPTER 7. SEMANTIC HIERARCHY V Voutsadakis

• SEN♭ ∶ Sign♭ → Set is given, on objects, by SEN♭(Σ) = {0,1,2} and,
on morphisms, by the following table, whose entries in column k give
the values of the function SEN♭(k) ∶ SEN♭(Σ)→ SEN♭(Σ):

x f g g′ h h′ t

0 1 2 2 0 1 2
1 0 1 0 2 2 2
2 2 2 2 2 2 2

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{0,2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence sys-
tems are shown in the diagram.

{0,1,2} ........................................✲ ∇F

�
�
�
� ❅

❅
❅
❅{0,2} {1,2}

❅
❅
❅
❅

.......................................q
�
�
�
�

................s{2} ............................................✲ ∆F

I has only two theory systems, Thm(I) = {{2}}, and SEN = {{0,1,2}}.
Since I has theorems, narrow left c-monotonicity coincides with left c-

monotonicity. To show that I is left c-monotone, assume that, for some

T ∪ {T ′} ⊆ ThFam(I), ←ÐT ′ ≤ ⋃T ∈T ←ÐT .

• If ⋃T ∈T
←Ð
T = {{0,1,2}}, then {{0,1,2}} ∈ T and, hence,

Ω(T ′) ≤ ∇F = Ω({{0,1,2}}) ≤ ⋃
T ∈T

Ω(T );

• If ⋃T ∈T
←Ð
T = {{2}}, then T ′ ≠ {{0,1,2}}, whence

Ω(T ′) =∆F ≤ ⋃
T ∈T

Ω(T ).

Thus, in any case, Ω(T ′) ≤ ⋃T ∈T Ω(T ) and I is left completely monotone.
On the other hand, we have

{{0,1,2}} ≤ {{0,2}} ∪ {{1,2}},
whereas

Ω(←ÐÐÐÐÐÐ{{0,1,2}}) = Ω({{0,1,2}}) = ∇F

≰ ∆F

= Ω({{2}}) ∪Ω({{2}})
= Ω(←ÐÐÐÐ{{0,2}}) ∪Ω(←ÐÐÐÐ{{1,2}}).
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Therefore, I is not (narrowly) right c-monotone. Using the same theory
families, we also get {{0,1,2}} ≤ {{0,2}}∪{{1,2}}, whereas Ω({{0,1,2}}) =
∇F ≰ ∆F = Ω({{0,2}}) ∪ Ω({{1,2}}), whence I is not (narrowly) family
c-monotone either.

The second example shows that there exists a narrowly family c-monotone
π-institution that is not narrowly right c-monotone, thus showing that nar-
rowly family c-monotone π-institutions do not form a subclass of the class of
narrowly right c-monotone π-institutions.

Example 559 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and four non-identity
morphisms f, g, o, t ∶ Σ → Σ, whose composition table is the following:

○ f g o t

f t f t t

g o g o o

o o o o o

t t t t t

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, with

SEN♭(f)(0) = 1, SEN♭(f)(1) = 2, SEN♭(f)(2) = 2;
SEN♭(g)(0) = 0, SEN♭(g)(1) = 1, SEN♭(g)(2) = 1,

whereas SEN♭(o)(x) = 1 and SEN♭(t)(x) = 2, for all x ∈ SEN♭(Σ);
• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.



Voutsadakis CHAPTER 7. SEMANTIC HIERARCHY V 569

I has four theory families ∅, {{2}}, {{1,2}} and {{0,1,2}}, but only three
theory systems, ∅, {{1,2}} and {{0,1,2}}. The lattice of theory families of I
and the corresponding Leibniz congruence systems are given in the diagram.

012 ............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

..
..✒

12 ..............③ {0,12}
2 ........................q
∅ ∆F

Since, as shown in the diagram, Ω ∶ ThFam (I) → ConSys∗(I) is an
order isomorphism, I is narrowly family c-monotone.

On the other hand, for T = {{2}} and T ′ = {{1,2}}, we get T ≤ T ′,
whereas Ω(←ÐT ) = Ω(∅) = ∇F ≰ {0,12} = Ω(T ′) = Ω(←ÐT ′). Therefore, I is not
narrowly right c-monotone.

The third example gives a narrowly right c-monotone π-institution which
is neither narrowly family nor narrowly left c-monotone. Thus, it shows that
the classes of narrowly family and of narrowly left c-monotone π-institutions
are properly contained in the class of narrowly system c-monotone π-insti-
tutions and that, moreover, the class of narrowly right c-monotone π-insti-
tutions is not a subclass of either the class of narrowly family or the class of
narrowly left c-monotone π-institutions.

Example 560 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, SEN♭(f)(0) =
SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families, but only three theory systems, namely ∅, {{2}}
and {{0,1,2}}. Moreover, clearly,

ThFam (I) = {{{2}},{{1,2}},{{0,1,2}}}.
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The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

012 ............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

..
..✒

12
.....................⑦

{01,2}
2 .......

.......✿

∅ ∆F

To see that I is narrowly right c-monotone, suppose T ∪{T ′} ⊆ ThFam (I),
such that T ′ ≤ ⋃T ∈T T . Then,

• if T ′ = {{0,1,2}}, we must have {{0,1,2}} ∈ T , whence Ω(←ÐT ′) = ∇F =

⋃T ∈T Ω(←ÐT );
• if T ′ ≠ {{0,1,2}}, then Ω(←ÐT ′) ≤ {{01,2}} ≤ ⋃T ∈T Ω(←ÐT ).

Therefore, I is narrowly right c-monotone.
On the other hand, for T = {{2}} and T ′ = {{1,2}}, we get T ≤ T ′,

whereas Ω(T ) = {01,2} ≰ ∆F = Ω(T ′). Thus, I is not narrowly family c-

monotone. Moreover, for the same theory families,
←Ð
T = {{2}} = ←ÐT ′, whereas

Ω(T ) = {01,2} ≰ ∆F = Ω(T ′). Thus, I is not narrowly left c-monotone.

The last example shows that there exists a narrowly family c-monotone
π-institution that is not narrowly left c-monotone, thus showing that nar-
rowly family c-monotone π-institutions do not form a subclass of the class of
narrowly left c-monotone ones.

Example 561 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the category with the single object Σ and four non-identity
morphisms f, z, o, t ∶ Σ→ Σ, whose composition table is the following:

○ f z o t

f t o t t

z z z z z

o o o o o

t t t t t

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2}, with

SEN♭(f)(0) = 1, SEN♭(f)(1) = 2, SEN♭(f)(2) = 2,

whereas SEN♭(z)(x) = 0, SEN♭(o)(x) = 1 and SEN♭(t)(x) = 2, for all
x ∈ SEN♭(Σ);

• N ♭ is the trivial clone, consisting of the projections only.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{2},{1,2},{0,1,2}}.
I has four theory families ∅, {{2}}, {{1,2}} and {{0,1,2}}, but only two

theory systems, ∅ and {{0,1,2}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.

012 ............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

..
..✒

12 ..............③ {0,12}
2 ........................q
∅ ∆F
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Since Ω ∶ ThFam (I) → ConSys∗(I) is an order isomorphism, I is
narrowly family c-monotone. On the other hand, for T = {{1,2}} and

T ′ = {{2}}, we get
←Ð
T = ∅ =

←Ð
T ′, whereas Ω(T ) = {0,12} ≰ ∆F = Ω(T ′).

Therefore, I is not narrowly left c-monotone.

We conclude, after these examples, that the structure of the narrow com-
plete monotonicity hierarchy is, in fact, exactly as depicted in the diagram
and no two classes are identical.

Recall from Chapter 3 that we have the following complete monotonicity
hierarchy of π-institutions.

Family c-Monotone

✠�
�
� ❅

❅
❅❘

Left c-Monotone Right c-Monotone

❅
❅
❅❘ ✠�

�
�

System c-Monotone

We establish now a combined c-monotonicity and narrow c-monotonicity
hierarchy. It is not difficult to see that a c-monotonicity property implies
the corresponding narrow c-monotonicity property. Alternatively, these re-
lations can be derived by the relationships governing rough and narrow
c-monotonicity classes, on the one hand, and the ones governing rough c-
monotonicity and c-monotonicity classes on the other.

Proposition 562 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is family (left, right, system,
respectively) c-monotone, then it is narrowly family (narrowly left, narrow
right, narrowly system, respectively) c-monotone.

Proof: If I has a certain type of c-monotonicity, then it has, a fortiori, the
same type of narrow c-monotonicity, since the condition defining the latter is
a specialization of that defining the former, in which T ∪{T ′} are only allowed
to range over theory families or systems, as the case may be, in ThFam (I)
or ThSys (I), respectively. (An alternative way is to combine Proposition
547 with Theorem 566 that follows.) ∎

Analogously to Theorems 548 and 549, we also get more precise relation-
ships between c-monotonicity and narrow c-monotonicity classes.

Theorem 563 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a non-almost inconsistent π-institution based on F. I is family (left,
respectively) c-monotone if and only if it is narrowly family (left, respectively)
c-monotone and has theorems.
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Proof: Suppose I is family or left c-monotone. Since, by hypothesis, it
is not almost inconsistent, ∣T̃hFam(I)∣ > 1. Thus, by Proposition 546, I
has theorems. Moreover, by Proposition 562, it is narrowly family or left
c-monotone, respectively.

Assume, conversely, that I is narrowly family (or left c-monotone) and
has theorems. Then, since ThFam (I) = ThFam(I), the condition defining
narrow family (left) c-monotonicity coincides with the one defining family
(left, respectively) c-monotonicity. ∎

Analogously, for the cases of system and right c-monotonicity, we get the
following

Theorem 564 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F, that has a theory family T ≠ SEN♭ such

that
←Ð
T ≠ ∅. I is system (right, respectively) c-monotone if and only if it

roughly system (right, respectively) c-monotone and has theorems.

Proof: Suppose I is system or right c-monotone. Since, by hypothesis, it has

a theory system
←Ð
T ≠ SEN♭,∅, we get ∣T̃hSys(I)∣ > 1. Thus, by Proposition

546, I must have theorems. Moreover, by Proposition 562, it is narrowly
system or right c-monotone, respectively.

Assume, conversely, that I is narrowly system (or right) c-monotone
and has theorems. Then, since ThFam (I) = ThFam(I) and ThSys (I) =
ThSys(I), the condition defining narrow right (system) c-monotonicity co-
incides with the one defining right (system, respectively) c-monotonicity. ∎

Thus, we have the following mixed hierarchy of c-monotonicity and nar-
row c-monotonicity properties.

F c-Mon

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

L c-Mon Nar F c-Mon
❄

R c-Mon
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

Nar L c-Mon
❄

S c-Mon

.........
Nar R c-Mon

❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

Nar S c-Mon
❄❄

.........

We provide an example of a π-institution which has all four types of nar-
row c-monotonicity but fails to be system c-monotone and, as a consequence,
does not belong to any of the four c-monotonicity classes.

Example 565 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:
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• Sign♭ is the trivial category with the single object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1};
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅} and {{1}} and {{0,1}}, all of which are

theory systems.
The lattice of theory families of I and the corresponding Leibniz congru-

ence systems are given in the diagram.

01 .............................✲ ∇F

..
..

..
..

..
..

..
..

..
..

.
✒

1 .....................❥
∅ ∆F

I belongs to all four classes of the narrow c-monotonicity hierarchy. In-
deed, since it is systemic, all four narrow c-monotonicity conditions boil
down to checking that, for all T ∪ {T ′} ⊆ ThFam (I), T ′ ≤ ⋃T ∈T T implies
Ω(T ′) ≤ ⋃T ∈T Ω(T ).

• If T ′ = {{1}}, then Ω(T ′) =∆F ≤ ⋃T ∈T Ω(T );
• If T ′ = SEN♭, then SEN♭ ∈ T , whence Ω(T ′) ≤ ∇F = ⋃T ∈T Ω(T ).

On the other hand, we have {∅} ≤ {{1}}, whereas Ω({∅}) ≰ Ω({{1}}),
whence I is not system c-monotone.
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As far as connections between the rough c-monotonicity and narrow c-
monotonicity classes are concerned, we get the following analog of Theorem
527.

Theorem 566 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is roughly family c-monotone if and only if it is narrowly family c-
monotone;

(b) I is roughly left c-monotone, then it is narrowly left c-monotone;

(c) If I is roughly right c-monotone, then it is narrowly right c-monotone;

(d) If I is roughly system c-monotone, then it is narrowly system c-mo-
notone.

Proof:

(a) Suppose I is roughly family c-monotone and let T ∪{T ′} ⊆ ThFam (I),
such that T ′ ≤ ⋃T ∈T T . Then, by hypothesis, T̃ ′ ≤ ⋃T ∈T T̃ , whence, by
rough family c-monotonicity, Ω(T ′) ≤ ⋃T ∈T Ω(T ). Thus I is narrowly
family c-monotone.

Assume, conversely, that I is narrowly family c-monotone and let
T ∪ {T ′} ⊆ ThFam(I), such that T̃ ′ ≤ ⋃T ∈T T̃ . Since {T̃ ∶ T ∈ T } ∪{T̃ ′} ⊆ ThFam (I), we get, by narrow family c-monotonicity, Ω(T̃ ′) ≤
⋃T ∈T Ω(T̃ ). Thus, by Proposition 369, Ω(T ′) ≤ ⋃T ∈T Ω(T ), showing
that I is roughly family c-monotone.

(b) Suppose that I is roughly left c-monotone, i.e., that, for all T ∪ {T ′} ⊆
ThFam(I), ←̃ÐT ′ ≤ ⋃T ∈T ←̃ÐT implies Ω(T ′) ≤ ⋃T ∈T Ω(T ′). Assume, for
the sake of obtaining a contradiction, that I is not narrowly left c-

monotone. Then, there exist X ∪ {Y } ⊆ ThFam (I), such that
←Ð
Y ≤

⋃X∈X
←Ð
X and Ω(Y ) ≰ ⋃X∈X Ω(X).

First, observe that, if there existed Z ∈ ThFam(I) and P ∈ ∣Sign♭∣,
such that ZP ≠ ∅ and

←Ð
Z P = ∅, then, setting Z ′ = {ZΣ}Σ∈∣Sign♭∣, with

Z ′Σ = { ∅, if Σ ≠ P
ZP , if Σ = P ,

we would have
←̃Ð
Z ′ =

←̃Ð
∅ , but Ω(Z ′) ≠ Ω(∅), which contradicts rough left

c-monotonicity. Thus, for all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣, TΣ ≠ ∅
implies

←Ð
T Σ ≠ ∅.
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Continuing with the proof, by hypothesis,
←Ð
Y ≤ ⋃X∈X

←Ð
X and Ω(Y ) ≰

⋃X∈X Ω(X). Hence, by rough left c-monotonicity,
←̃Ð
Y ≰ ⋃X∈X

←̃Ð
X . Thus,

there exists P ∈ ∣Sign♭∣, such that
←̃Ð
Y P ⊈ ⋃X∈X

←̃Ð
XP , whereas

←Ð
Y P ⊆

⋃X∈X
←Ð
XP . But this gives

←Ð
Y P = ∅, whence, by the preceding observa-

tion, YP = ∅, which contradicts Y ∈ ThFam (I). Therefore, I must be
narrowly left c-monotone.

(c) Suppose I is roughly right c-monotone and let T ∪{T ′} ⊆ ThFam (I),
such that T ′ ≤ ⋃T ∈T T . By hypothesis, T̃ ′ ≤ ⋃T ∈T T̃ . Thus, by rough

right c-monotonicity, Ω(←ÐT ′) ≤ ⋃T ∈T Ω(←ÐT ). Thus, I is narrowly right
c-monotone.

(d) Suppose I is roughly system c-monotone and let T ∪{T ′} ⊆ ThSys (I),
such that T ′ ≤ ⋃T ∈T T . Then, by hypothesis, T̃ ′ ≤ ⋃T ∈T T̃ , whence, by
rough system c-monotonicity, Ω(T ′) ≤ ⋃T ∈T Ω(T ). Thus I is narrowly
system c-monotone.

∎

Theorem 566 gives rise to the following mixed rough and narrow c-mo-
notonicity hierarchy.

Rough L c-Mon Nar F c-Mon Rough R c-Mon
❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟

Nar L c-Mon
❄

Rough S c-Mon
❄

Nar R c-Mon
❄

❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟

Nar S c-Mon
❄

We insert, again, some examples to show that each of the three rough
c-monotonicity classes is different from its narrow counterpart.

The first example gives a narrowly left c-monotone π-institution which is
not roughly left c-monotone.

Example 567 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the trivial clone, consisting of the projections only.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families {∅}, {{1}} and {{0,1}}, but only two the-

ory systems, {∅} and {{0,1}}. The lattice of theory families of I and the
corresponding Leibniz congruence systems are given in the diagram.

01 ...................✲ ∇F

..
..
..
..
..
..
..
..
..
..
..✼

1
..............s

∅ ∆F

To see that I is narrowly left c-monotone, note that the only two different
theory families in ThFam (I) are {{1}} and {{0,1}} and we have

←ÐÐÐ{{1}} = {∅} ≤ {{0,1}} =←ÐÐÐÐ{{0,1}}
and Ω({{1}}) = ∆F ≤ ∇F = Ω({{0,1}}).

On the other hand, I is not roughly left c-monotone, since
←̃ÐÐ{∅} = {{0,1}} =

←̃ÐÐÐ{{1}}, but Ω({∅}) ≰ Ω({{1}}).
The second example shows that there exists a narrowly right c-monotone

π-institution that is not roughly right c-monotone.

Example 568 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique morphism
f ∶ Σ → Σ′;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = b, SEN♭(f)(1) = b;

• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{b},{a, b}}.
Clearly, there are only four theory families in ThFam (I), all of which are

theory systems. Their lattice together with the associated Leibniz congruence
systems are shown in the diagram:

01, ab ∇F

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅

01, b 1, ab ∇F
Σ,∆

F
Σ′ ∆F

Σ,∇
F
Σ′

❅
❅
❅ �

�
� ❅

❅
❅ �

�
�

1, b ∆F

From this diagram and the fact that all theory families depicted are theory
systems, we can see that, for all T,T ′ ∈ ThFam (I),

T ≤ T ′ iff Ω(←ÐT ) ≤ Ω(←ÐT ′).
Therefore, I is indeed narrowly right c-monotone.

On the other hand, consider T = {1,∅} and T ′ = {1, ab}. Then we have
T̃ = {1, ab} = T̃ ′, whereas

Ω(←ÐT ) = Ω(∅) = ∇F ≰ {∆F
Σ,∇

F
Σ′} = Ω({1, ab}) = Ω(←ÐT ′).

This shows that I is not roughly right c-monotone.

The last example gives a narrowly system c-monotone π-institution which
is not roughly system c-monotone.
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Example 569 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with two object Σ, Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b, c}, and SEN♭(f)(0) = a, SEN♭(f)(1) = b;
• N ♭ is the trivial clone.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}} and CΣ′ = {∅,{c},{b, c},{a, b, c}}.
I has twelve theory families, but only seven theory systems. These are

∅,{∅, c},{∅, bc},{∅, abc},{1, bc},{1, abc}, {01, abc}.
The following diagram shows the structure of the lattice of theory families.

01, abc

✱
✱ ❧

❧
01, bc 1, abc

✱
✱ ❧

❧ ✱
✱ ❧

❧
01, c 1, bc ∅, abc

✱
✱ ❧

❧ ✱
✱ ❧

❧ ✱
✱

01,∅ 1, c ∅, bc
❧
❧ ✱

✱ ❧
❧ ✱

✱

1,∅ ∅, c
❧
❧ ✱

✱

∅,∅
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To see that I is narrow system c-monotone, note that there are only three
theory systems in ThSys (I), namely, {1, bc}, {1, abc} and {01, abc} and we
have {1, bc} ≤ {1, abc} ≤ {01, abc} and, also,

Ω({1, bc}) = {∆F
Σ,{a, bc}}

≤ Ω({1, abc}) = {∆F
Σ,∇

F
Σ′}

≤ Ω({01, abc}) = ∇F.

On the other hand, setting T = {∅, c} and T ′ = {∅, bc}, which are both
theory systems, we get

T̃ = {01, c} ≤ {01, bc} = T̃ ′,
whereas

Ω(T ) = {∇F
Σ,{ab, c}} ≰ {∆F

Σ,{a, bc}} = Ω(T ′).
Therefore, I is not roughly system c-monotone.

We conclude, after these examples, that the structure of the joint rough
and narrow c-monotonicity hierarchy is as depicted in the diagram following
Theorem 566, with no two classes being identical.

Finally, we look at some straightforward connections between the classes
in the narrow monotonicity and narrow complete monotonicity hierarchies.
These follow directly by the definitions involved.

Proposition 570 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly family (respectively, left,
right, system) c-monotone, then it is narrowly family (respectively, left, right,
system) monotone.

Proof: The condition defining a narrow monotonicity class is a special case of
the condition defining the corresponding narrow c-monotonicity class, where
the collection T , in that definition, is taken to be a singleton. ∎

Proposition 570, in view of Propositions 517 and 555, establishes the
hierarchy depicted in the diagram.

Nar L c-Mon

❅
❅
❅
❅
❅
❅
❅
❅
❅❘

Nar L Mon
❄

Nar F c-Mon Nar R c-Mon

✙✟✟✟✟✟✟✟✟✟

✙✟✟✟✟✟✟✟✟✟

Nar F Mon
❄

Nar S c-Mon
❄

Nar R Mon
❄

❍❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟✟

Nar S Mon
❄
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We present an example to show that the two hierarchies are separated.
The showcased π-institution belongs to all steps of the narrow monotonicity
hierarchy but to none of the four narrow c-monotonicity classes.

Example 571 Define the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformation σ♭ ∶

SEN♭ → SEN♭, given by

x ∈ SEN♭(Σ) σ♭Σ(x)
0 1
1 2
2 0

Define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
It is easy to see that the lattices of theory families and corresponding Leibniz
congruence systems are as given in the diagram.

{0,1,2} ......................................✲ ∇F

�
�
� ❅

❅
❅{0,2} {1,2}

❅
❅
❅

......................................q
�
�
�

................s{2} ...........................................✲ ∆F

Since Sign♭ is trivial, I is systemic and, since I has theorems, FiFam (I) =
FiFam(I). We conclude that all four narrow monotonicity properties for
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I coincide and, moreover, they are identical with both monotonicity prop-
erties, which they also coincide, due to systemicity. The same holds for c-
monotonicity. All four narrow c-monotonicity properties coincide and they,
in turn, are identical with all c-monotonicity conditions.

From the diagram one can verify immediately that I is (narrowly left,
right and family) monotone, On the other hand, we have

{{0,1,2}} ≤ {{0,2}} ∪ {{1,2}},
but, obviously, Ω({{0,1,2}}) /≤ Ω({{0,2}}) ∪ Ω({{1,2}}). Taking into ac-
count that I is systemic, we conclude that I fails to be narrowly system
c-monotone.

Next, we turn to transfer theorems for the various narrow c-monotonicity
properties.

Theorem 572 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is narrowly family c-monotone if and only if, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI (A), T ′ ≤ ⋃T ∈T T
implies ΩA(T ′) ≤ ⋃T ∈T ΩA(T );

(b) I is narrowly left c-monotone if and only if, for all F-algebraic systems

A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI (A), ←ÐT ′ ≤ ⋃T ∈T ←ÐT implies
ΩA(T ′) ≤ ⋃T ∈T ΩA(T );

(c) I is narrowly right c-monotone if and only if, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiFamI (A), T ′ ≤ ⋃T ∈T T
implies ΩA(←ÐT ′) ≤ ⋃T ∈T ΩA(←ÐT );

(d) I is narrowly system c-monotone if and only if, for all F-algebraic
systems A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆ FiSysI (A), T ′ ≤ ⋃T ∈T T
implies ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

Proof:

(a) The “if” results by applying the hypothesis to the F-algebraic system
F = ⟨F, ⟨I, ι⟩⟩.
For the “only if”, suppose that I is narrowly family c-monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFam (I),
such that T ′ ≤ ⋃T ∈T T . Then we get α−1(T ′) ≤ α−1(⋃T ∈T T ), whence
α−1(T ′) ≤ ⋃T ∈T α−1(T ). Since, by Lemmas 51 and 376, {α−1(T ) ∶ T ∈
T }∪{α−1(T ′)} ⊆ ThFam (I), we get, by narrow family c-monotonicity,
Ω(α−1(T ′)) ≤ ⋃T ∈T Ω(α−1(T )). Hence, by Proposition 24, α−1(ΩA(T ′)) ≤
⋃T ∈T α−1(ΩA(T )), i.e., α−1(ΩA(T ′)) ≤ α−1(⋃T ∈T ΩA(T )). Taking into
account the surjectivity of ⟨F,α⟩, we conclude that ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).
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(b) The “if” is obtained as in Part (a).

For the “only if”, suppose that I is narrowly left c-monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFam (I),
such that

←Ð
T ′ ≤ ⋃T ∈T

←Ð
T . Then we get α−1(←ÐT ′) ≤ α−1(⋃T ∈T ←ÐT ), whence

α−1(←ÐT ′) ≤ ⋃T ∈T α−1(←ÐT ). By Lemma 6, we get
←ÐÐÐÐ
α−1(T ′) ≤ ⋃T ∈T ←ÐÐÐÐα−1(T ).

Since, by Lemmas 51 and 376, it holds {α−1(T ) ∶ T ∈ T } ∪ {α−1(T ′)} ⊆
ThFam (I), we get, by narrow left c-monotonicity, that Ω(α−1(T ′)) ≤
⋃T ∈T Ω(α−1(T )). Thus, by Proposition 24, we now get α−1(ΩA(T ′)) ≤
⋃T ∈T α−1(ΩA(T )), i.e., α−1(ΩA(T ′)) ≤ α−1(⋃T ∈T ΩA(T )). Taking into
account the surjectivity of ⟨F,α⟩, we obtain ΩA(T ′) ≤ ⋃T ∈T ΩA(T ).

(c) The “if” is obtained as in Part (a).

For the “only if”, suppose that I is narrowly right c-monotone and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∪ {T ′} ⊆ FiFam (I),
such that T ′ ≤ ⋃T ∈T T . Then we get α−1(T ′) ≤ α−1(⋃T ∈T T ), whence
α−1(T ′) ≤ ⋃T ∈T α−1(T ). Since, by Lemmas 51 and 376, {α−1(T ) ∶ T ∈
T } ∪ {α−1(T ′)} ⊆ ThFam (I), we get, by narrow right c-monotonicity,

Ω(←ÐÐÐÐα−1(T ′)) ≤ ⋃T ∈T Ω(←ÐÐÐÐα−1(T )). Thus, by Lemma 6, Ω(α−1(←ÐT ′)) ≤
⋃T ∈T Ω(α−1(←ÐT )). Hence, by Proposition 24, we get α−1(ΩA(←ÐT ′)) ≤
⋃T ∈T α−1(ΩA(←ÐT )), i.e., α−1(ΩA(←ÐT ′)) ≤ α−1(⋃T ∈T ΩA(←ÐT )). Taking into

account the surjectivity of ⟨F,α⟩, we obtain ΩA(←ÐT ′) ≤ ⋃T ∈T ΩA(←ÐT ).
(d) Similar to Part (a). ∎

We close this section by giving two characterizations concerning the nar-
row family and narrow system c-monotonicity classes, based on mappings
between posets satisfying the complete monotonicity property.

Proposition 573 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly family c-monotone;

(b) Ω ∶ ThFam (I)→ConSys∗(I) is completely monotone;

(c) ΩA ∶ FiFamI (A) → ConSysI∗(A) is completely monotone, for every
F-algebraic system A.

Proposition 574 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(a) I is narrowly system c-monotone;

(b) Ω ∶ ThSys (I)→ ConSys∗(I) is completely monotone;

(c) ΩA ∶ FiSysI (A) → ConSysI∗(A) is completely monotone, for every
F-algebraic system A.
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8.1 Introduction

The prototypical example of an algebraizable deductive system, classical
propositional calculus, has the additional distinctive feature of being 1-alge-
braizable or regularly algebraizable (see, e.g., Chapter 5 of [64], Chapter 3
(p. 66) of [52] and Section 3.4 of [86]). This means that any two theorems
are equivalent or, more generally, that any two sentences belonging to a the-
ory T are equivalent relative to T . In this chapter, we undertake the study
of regularity, a property that, when added to algebraizability, yields regular
algebraizability, featured among the topmost classes in the entire semantic
hierarchy discussed in this monograph.

In Section 8.2, we introduce and study the basic regularity properties,
which form the basis for developing the regular algebraizability classes in
Sections 8.4-8.7. A π-institution I is family regular if, for every theory
family T of I , all signatures Σ and all Σ-sentences φ and ψ, φ,ψ ∈ TΣ implies⟨φ,ψ⟩ ∈ ΩΣ(T ). It is left regular if it satisfies the same condition, but with T

in the hypothesis replaced by
←Ð
T , and right regular if T is replaced by

←Ð
T in the

conclusion instead. Finally, I is system regular if, in the implication defining
family regularity, T is restricted to range only over theory systems, instead of
being allowed to range over arbitrary theory families. These four properties
form a linear hierarchy, with family regularity being the strongest, followed
by right regularity, then by left regularity, with the system version being
the weakest of the four. Stability causes the collapse of this hierarchy into
two levels, since, under stability, system regularity implies left regularity and
right regularity implies family regularity. More transparently, systemicity
causes a total collapse of the hierarchy into a single class. The family, left
and system versions have characterizations involving the Suszko operator and
one of its variants. For a sneak preview, I is system regular if and only if

for every signature Σ and all Σ-sentences φ and ψ, ⟨φ,ψ⟩ ∈ Ω̂IΣ(Ð→C (φ,ψ)),
where

Ð→
C (φ,ψ) is the least theory system of I containing φ and ψ and Ω̂I ∶

ThSys(I) → ConSys(I) gives, for a given theory system T of I , the largest
congruence system Ω̂I(T ) compatible with every theory system including
T . All four regularity properties transfer, e.g., looking at right regularity,
it holds for a π-institution I if and only if, for every F-algebraic system
A, all I-filter families T of A, all signatures Σ of A and all Σ-sentences

φ, ψ, φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩAΣ(←ÐT ). Finally, the family and system
versions have natural characterizations in terms of the form of the filter
families/systems, respectively, of the reduced matric families/systems of I .
The condition here is that, if ⟨A, T ⟩ ∈ MatFam∗(I), then T is at most a
singleton, i.e., each of its components TΣ has at most one element.

In Section 8.3, we look at assertionality, which is the property ensuing
from regularity when existence of theorems is also postulated. Thus, a π-
institution I is family, right, left or system assertional if it is family, right,
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left or system regular, respectively, and has theorems. The hierarchy of reg-
ularity properties established in Section 8.2 immediately yields an a priori
linear assertionality hierarchy with four classes, the family version implying
the right, which, in turn, implies the left version, with the system being
the weakest of the four versions. However, it turns out that right asser-
tionality is strong enough to imply systemicity and, as a consequence, the
family and right versions are equivalent. Thus, the hierarchy consists of only
three distinct classes. The weakest property, system assertionality, coupled
with systemicity, is equivalent to the strongest, family assertionality. It is
straightforward by the definitions that each asertionality property implies
its regularity counterpart. More interestingly, each assertionality property
implies the corresponding complete reflectivity (c-reflectivity) property (see
Section 3.8). All three versions of assertionality transfer. This follows from
the fact that both regularity and existence of theorems transfer. Addition-
ally, based on the characterizations of family and system regularity in terms
of reduced matrix families/systems, one may obtain similar characterizations
of family/system assertionality. Again, for the sake of preview, the condition
characterizing family assertionality is that, for every reduced I-matrix family⟨A, T ⟩, T is a singleton, i.e., ∣TΣ∣ = 1, for all signatures Σ of A.

Having discussed, to some extent, the foundations in Sections 8.2 and 8.3,
we embark, in Section 8.4, on the study of algebraizability properties, start-
ing with regular weak prealgebraizability. The three classes defined here
reflect the type of asssertionality combined with prealgebraicity. Accord-
ingly, a π-institution I is regularly weakly family (RWF) prealgebraizable if
it is prealgebraic and family assertional. It is regularly weakly left (RWL)
prealgebraizable if it is prealgebraic and left assertional, and it is regularly
weakly system (RWS) prealgebraizable if it is prealgebraic and system asser-
tional. The hierarchy of assertionality properties of Section 8.3 yields that
RWF prealgebraizability implies RWL prealgebraizability, which, in turn,
implies RWS prealgebraizability. By definition, RWF/L/S prealgebraizabil-
ity implies, respectively, family/left/system assertionality. More noteworthy,
however, is the fact that, since each version of assertionality implies the
corresponding c-reflectivity version, RWF/L/S prealgebraizability implies,
respectively, WF/L/SC prealgebraizability (see Section 4.2). All three reg-
ular weak prealgebraizability properties transfer. This property stems from
the transferability of both prealgebraicity and assertionality. It is possible
to formulate characterizations of the regular weak prealgebraizability prop-
erties in terms of the Leibniz operator viewed as a mapping between ordered
sets. E.g., a π-institution I is RWF prealgebraizable if and only if, for every
F-algebraic system A, ΩA ∶ FiFamI(A) → ConSysI∗(A) is an order isomor-
phism, such that, for all T ∈ FiFamI(A), T /ΩA(T ) is a singleton. The other
two characterizations assume similar forms.

In Section 8.5, we switch from regular weak prealgebraizability to reg-
ular weak algebraizability properties. The former involve prealgebraicity,
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which, when strengthened to protoalgebraicity, yield the latter. In accor-
dance, a π-institution I is regularly weakly family (RWF) algebraizable if it
is protoalgebraic and family assertional. It is regularly weakly left (RWL)
algebraizable if it is protoalgebraic and left assertional, and it is regularly
weakly system (RWS) algebraizable if it is protoalgebraic and system asser-
tional. The strengthening of prealgebraicity to protoalgebraicity results in
the identification of the left and system versions. Thus, the regular weak
algebraizability hierarchy consists of only two distinct classes, that of regu-
larly weakly family algebraizable π-institutions and its proper superclass of
regularly weakly system algebraizable π-institutions. Further, in comparing
regular weak algebraizability with regular weak prealgebraizability proper-
ties, it is revealed that the strongest versions of each, i.e., RWF algebraizabil-
ity and RWF prealgebraizability, are actually equivalent. In contrast, RWS
algebraizability strictly implies RWL prealgebraizability. Again, based on
the fact that assertionality implies c-reflectivity, one infers that each regular
weak algebraizability property implies the corresponding weak algebraizabil-
ity property (see Section 4.3). Both regular weak algebraizability properties
transfer and both can be characterized in terms of the Leibniz operator seen
as a mapping between ordered sets. Clearly, since RWF algebraizability co-
incides with RWF prealgebraizability, the characterization, given previously,
regarding the latter applies to the former as well.

In Section 8.6, we turn to regular prealgebraizability properties, which
are obtained from the regular weak prealgebraizability properties of Section
8.4, not by strengthening prealgebraicity to protoalgebraicity, as was done
in Section 8.5, but, by adding, instead, system extensionality, i.e., by replac-
ing prealgebraicity by preequivalentiality. Consequently, a π-institution I is
regularly family (RF) prealgebraizable if it is preequivalential (prealgebraic
and system extensional) and family assertional. It is regularly left (RL) pre-
algebraizable if it is preequivalential and left assertional, and it is regularly
system (RS) prealgebraizable if it is preequivalential and system assertional.
RF prealgebraizability implies RL prealgebraizability, which implies RS pre-
algebraizability, based on the asertionality hierarchy of Section 8.3. Since
preequivalentiality implies prealgebraicity, each of the three regular prealge-
braizability properties implies the corresponding regular weak prealgebraiz-
ability property. Furthermore, since assertionality implies c-reflectivity, each
of the regular prealgebraizability properties implies its prealgebraizability
counterpart (see Section 5.5). All three regular prealgebraizability proper-
ties transfer. In addition, each can be characterized via the use of the Leibniz
operator perceived as a mapping between ordered sets. Roughly speaking,
these characterizations mimic the ones used in Section 8.4 for regular weak
prealgebraizability properties, while adding some form of commutativity with
inverse logical extensions, which, by Theorem 327, captures extensionality.

In Section 8.7, the last section of the chapter, we look at regular algebraiz-
ability properties, which are obtained from the regular prealgebraizability
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properties of Section 8.6 by strengthening preequivalentiality to equivalen-
tiality or, alternatively, from the regular weak algebraizability properties of
Section 8.5 by strengthening protoalgebraicity to equivalentiality. Either
point of view leads to defining a π-institution I being regularly family (RF)
algebraizable if it is equivalential and family assertional, regularly left (RL)
algebraizable if it is equivalential and left assertional, and regularly system
(RS) algebraizable if it is equivalential and system assertional. As transpired
with regular weak algebraizability in Section 8.5, the left and system versions
are equivalent, and this results in a two-class hierarchy, with RF algebraiz-
ability at the top, dominating RS algebraizability. The reasoning naturally
leading to the establishment of these classes, permits us to conclude, on
the one hand, that each regular algebraizability property implies the corre-
sponding regular prealgebraizability property and, on the other, that each
regular algebraizability property implies its regular weak counterpart. But,
in addition, in establishing the relations between regular algebraizability and
regular prealgebraizability properties, it is seen that the two family versions
coincide. A final comparison is made between regular algebraizability and
algebraizability (see Section 5.6). Since assertionality implies c-reflectivity,
one obtains that each of the two distinct regular algebraizability versions
implies the corresponding algebraizability version. Both regular algebraiz-
ability properties transfer. Finally, each possesses a characterization via the
Leibniz operator, viewed as a mapping between ordered sets, satisfying some
additional properties.

8.2 Semantic Regularity

In this chapter, we deal with π-institutions that have theorems and that,
in addition, satisfy some form of the semantic regularity property, which is
detailed in the following

Definition 575 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is family regular if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩΣ(T );
• I is left regular if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈
←Ð
T Σ implies ⟨φ,ψ⟩ ∈ ΩΣ(T );
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• I is right regular if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT );
• I is system regular if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩΣ(T ).
We establish a hierarchy of regularity properties by looking at the rela-

tionships that hold between the properties introduced in Definition 575.

Proposition 576 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family regular, then it is left regular;

(b) If I is family regular, then it is right regular;

(c) If I is left regular, then it is system regular;

(d) If I is right regular, then it is system regular.

Proof:

(a) Suppose that I is family regular and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈

←Ð
T Σ. Then, by Proposition 42,

φ,ψ ∈ TΣ. Thus, by family regularity, ⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, I is
left regular.

(b) Suppose that I is family regular and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Then, by family regularity,

⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, by Proposition 20, ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ). Thus,
I is right regular.

(c) Suppose that I is left regular and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Since T is a theory system,
←Ð
T = T , whence, φ,ψ ∈

←Ð
T Σ. Hence, by left regularity, ⟨φ,ψ⟩ ∈ ΩΣ(T ).

Therefore, I is system regular.

(d) Suppose that I is right regular and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Then, by right regularity, ⟨φ,ψ⟩ ∈
ΩΣ(←ÐT ). But T is a theory system, i.e.,

←Ð
T = T , whence ⟨φ,ψ⟩ ∈ ΩΣ(T ).

Thus, I is system regular.
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∎

We now show that, in fact, right regularity implies left regularity. This
is a more challenging result that requires a technical lemma.

Lemma 577 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is right regular and not systemic,

then, for all T ∈ ThFam(I)/ThSys(I) and all Σ ∈ ∣Sign♭∣, such that
←Ð
T Σ ⫋ TΣ,

←Ð
T Σ = ∅.

Proof: Suppose that I is right regular and not systemic and consider T ∈
ThFam(I)/ThSys(I) and Σ ∈ ∣Sign♭∣, such that

←Ð
T Σ ⫋ TΣ and

←Ð
T Σ ≠ ∅. Then,

on the one hand, there exists φ ∈ TΣ, such that φ ∉
←Ð
T Σ and, on the other,

there exists ψ ∈
←Ð
T Σ. Thus, by the compatibility of Ω(←ÐT ) with

←Ð
T , we get

that ⟨φ,ψ⟩ ∉ ΩΣ(←ÐT ), whereas, since
←Ð
T ≤ T , φ,ψ ∈ TΣ. Therefore, I is not

right regular, a contradiction. We conclude that
←Ð
T Σ = ∅. ∎

Theorem 578 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is right regular, then it is left regular.

Proof: Suppose I is right regular. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈
SEN♭(Σ), such that φ,ψ ∈

←Ð
T Σ. Then, also, φ,ψ ∈ TΣ.

• If I is systemic, then, by right regularity, ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ) = ΩΣ(T ),
whence I is left regular.

• Suppose, now, that I is not systemic, whence Lemma 577 applies.

Since φ,ψ ∈
←Ð
T Σ, by Lemma 577, we must have

←Ð
T Σ = TΣ. But then,

for all Σ′ ∈ ∣Sign♭∣ such that Sign♭(Σ,Σ′) ≠ ∅, we get
←Ð
T Σ′ ≠ ∅, whence

←Ð
T Σ′ = TΣ′ . Thus, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′)
and all χ⃗ ∈ SEN♭(Σ′), the condition

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ ←ÐT Σ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈←ÐT Σ′

is equivalent to the condition

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ TΣ′ .
Hence, ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ) = ΩΣ(T ).

We conclude that I is left regular. ∎

Proposition 576 and Theorem 578 establish the hierarchy depicted in the
diagram.
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Family Regular

Right Regular
❄

Left Regular
❄

System Regular
❄

We show, next, that, adding stability to system regularity and to right
regularity takes us, respectively, into the classes of left regular and family
regular π-institutions.

Proposition 579 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is system regular and stable, then it is left regular;

(b) If I is right regular and stable, then it is family regular.

Proof:

(a) Suppose I is system regular and stable. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈

←Ð
T Σ. Since, by Proposition 42,

←Ð
T ∈

ThSys(I), we may apply system regularity to conclude that ⟨φ,ψ⟩ ∈
ΩΣ(←ÐT ). Therefore, by stability, ⟨φ,ψ⟩ ∈ ΩΣ(T ). Thus, I is left regular.

(b) Suppose I is right regular and stable. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. By right regularity, we get

that ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ). Therefore, by stability, ⟨φ,ψ⟩ ∈ ΩΣ(T ). Thus, I
is family regular.

∎

Of course, if systemicity is assumed, then all four classes in the regularity
hierarchy collapse into a single class.

Proposition 580 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is system regular and systemic, then
it is family regular.
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Proof: Under systemicity, all theory families are also theory systems. Hence
the conditions defining family and system regularity are identical. ∎

To show that all four classes in the hierarchy above are different, we
must present some examples that separate them. The first example provides
an unstable π-institution which is left regular but not right regular. This
accomplishes two goals:

• It shows that the class of right regular π-institutions is a proper subclass
of the class of left regular ones;

• It shows that the converse of Part (a) of Proposition 579 does not hold
in general, as the π-institution constructed is left regular but fails to
be stable.

Example 581 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}
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The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

Since

Ω(←ÐÐÐÐ{{1,2}}) = Ω({{2}}) = {{{0,1},{2}}} ≠ ∆F = Ω({{1,2}}),
I is not stable.

We show that I is left regular, i.e., that, for all T ∈ ThFam(I) and all

φ,ψ ∈ SEN(Σ), if φ,ψ ∈
←Ð
T Σ, then ⟨φ,ψ⟩ ∈ ΩΣ(T ).

• If T = {{0,1,2}}, then, for all φ,ψ, ⟨φ,ψ⟩ ∈ ∇F
Σ = ΩΣ({{0,1,2}});

• If T ≠ {{0,1,2}}, then φ,ψ ∈
←Ð
T Σ implies φ = ψ = 2, whence, ⟨φ,ψ⟩ ∈

∆F
Σ ⊆ ΩΣ(T ).

On the other hand, for T = {{1,2}}, we have 1,2 ∈ TΣ, but

⟨1,2⟩ ∉ {{{0,1},{2}}} = ΩΣ({{2}}) = ΩΣ(←ÐT ).
Therefore, I is not right regular.

The second example presents a π-institution which is right regular, but
fails to be family regular.

Example 582 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2} and

SEN♭(f)(0) = 2, SEN♭(f)(1) = 2, SEN♭(f)(2) = 2;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ determined by

σ♭Σ(0) = 0, σ♭Σ(1) = 2, σ♭Σ(2) = 2.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0,1},{2},{0,1,2}}.
The following table shows the action of ←Ð on theory families.

T ∅ {0,1} {2} {0,1,2}
←Ð
T ∅ ∅ {2} {0,1,2}

The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{0,1,2} .................................................✲ ∇F

�
�
� ❅

❅
❅

...
...

...
...

...
...

...
...

...
...

...
...

..✸

{0,1} {2}
❅
❅
❅

.....................................................③
�
�
�

.......................❥
∅ ∆F

We show, first, that I is right regular, i.e., that it satisfies, for all T ∈
ThFam(I) and all φ,ψ ∈ SEN♭(Σ), φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ).

• If T = {∅}, then the conclusion is vacuously true;

• If T = {{0,1}}, then, since Ω(←ÐT ) = Ω({∅}) = ∇F, the conclusion is
trivial;

• If T = {{2}}, then φ,ψ ∈ TΣ implies φ = ψ = 2, whence ⟨φ,ψ⟩ ∈ ∆F
Σ ⊆

ΩΣ(←ÐT );
• If T = {{0,1,2}}, then, since Ω(←ÐT ) = Ω(T ) = ∇F, the conclusion is

trivial.
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On the other hand, for T = {{0,1}}, we have 0,1 ∈ TΣ, whereas ⟨0,1⟩ ∉ ∆F
Σ =

ΩΣ(T ). We conclude that I is not family regular.

The last example shows a system regular π-institution which fails to be
left regular.

Example 583 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2,3} and

SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2, SEN♭(f)(3) = 2;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ determined by

x 0 1 2 3
σ♭Σ(x) 0 1 0 1

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2,3},{1,2,3},{0,1,2,3}}.
The following table shows the action of ←Ð on theory families.

T {2,3} {1,2,3} {0,1,2,3}
←Ð
T {2,3} {2,3} {0,1,2,3}

The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
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terms of blocks) on the right:

0123 ...............................✲ ∇F

123 {01,23}.......................❥....
....

....
....

....
...✯

23 ∆F

We show, first, that I is system regular, i.e., that it satisfies, for all
T ∈ ThSys(I) and all φ,ψ ∈ SEN♭(Σ), φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩΣ(T ).

• If T = {{2,3}}, then, φ = ψ or {φ,ψ} = {2,3}. In either case ⟨φ,ψ⟩ ∈{{0,1},{2,3}} = ΩΣ(T );
• If T = {{0,1,2,3}}, then, since Ω(T ) = ∇F, the conclusion is trivial.

On the other hand, for T = {{1,2,3}}, we have 2,3 ∈ {2,3} = ←ÐT Σ, whereas⟨2,3⟩ ∉∆F
Σ = ΩΣ(T ). We conclude that I is not left regular.

We provide, next, characterizations of three of the four regularity classes
in terms of the Suszko operator acting on the theory families of a π-institution.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Given a theory system T ∈ ThSys(I), we set

Ω̂I(T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys(I)},
a system version of the Suszko operator on I .

Theorem 584 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family regular if and only if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ), ⟨φ,ψ⟩ ∈ Ω̃IΣ(C(φ,ψ));

(b) I is left regular if and only if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ Ω̃IΣ(Ð→C (φ,ψ));

(c) I is system regular if and only if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ Ω̂IΣ(Ð→C (φ,ψ)).
Proof:
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(a) Suppose I is family regular. Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ). Then, we
have, by family regularity, ⟨φ,ψ⟩ ∈ ΩΣ(T ), for all T ∈ ThFam(I), such
that φ,ψ ∈ TΣ. Therefore, by the definition of Ω̃I ,

⟨φ,ψ⟩ ∈ ⋂{ΩΣ(T ) ∶ T ∈ ThFam(I), φ,ψ ∈ TΣ}
= Ω̃IΣ(C(φ,ψ)).

Assume, conversely, that the displayed condition holds. To show family
regularity, let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such
that φ,ψ ∈ TΣ. Then, C(φ,ψ) ≤ T , whence, by the hypothesis and the
monotonicity of Ω̃I ,

⟨φ,ψ⟩ ∈ Ω̃IΣ(C(φ,ψ)) ⊆ Ω̃IΣ(T ) ⊆ ΩΣ(T ).
Hence, I is family regular.

(b) Suppose I is left regular. Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ). Then, we
have, by left regularity, ⟨φ,ψ⟩ ∈ ΩΣ(T ), for all T ∈ ThFam(I), such

that φ,ψ ∈
←Ð
T Σ. Therefore, by the definition of Ω̃I ,

⟨φ,ψ⟩ ∈ ⋂{ΩΣ(T ) ∶ T ∈ ThFam(I), φ,ψ ∈←ÐT Σ}
= ⋂{ΩΣ(T ) ∶ T ∈ ThFam(I),ÐÐÐ→{φ,ψ} ≤ T}
= Ω̃IΣ(Ð→C (φ,ψ)).

Assume, conversely, that the displayed condition holds. To show left
regularity, let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such

that φ,ψ ∈
←Ð
T Σ. Then,

ÐÐÐ→{φ,ψ} ≤ T , whence, by the hypothesis and the
monotonicity of Ω̃I ,

⟨φ,ψ⟩ ∈ Ω̃IΣ(Ð→C (φ,ψ)) ⊆ Ω̃IΣ(T ) ⊆ ΩΣ(T ).
Hence, I is left regular.

(c) Suppose I is system regular. Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ). Then,
we have, by system regularity, ⟨φ,ψ⟩ ∈ ΩΣ(T ), for all T ∈ ThSys(I),
such that φ,ψ ∈ TΣ. Therefore, by the definition of Ω̂I ,

⟨φ,ψ⟩ ∈ ⋂{ΩΣ(T ) ∶ T ∈ ThSys(I), φ,ψ ∈ TΣ}
= ⋂{ΩΣ(T ) ∶ T ∈ ThSys(I),ÐÐÐ→{φ,ψ} ≤ T}
= Ω̂IΣ(Ð→C (φ,ψ)).

Assume, conversely, that the displayed condition holds. To show system
regularity, let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such

that φ,ψ ∈ TΣ. Then,
ÐÐÐ→{φ,ψ} ≤ T , whence, by the hypothesis and the

monotonicity of Ω̂I ,

⟨φ,ψ⟩ ∈ Ω̂IΣ(Ð→C (φ,ψ)) ⊆ Ω̂IΣ(T ) ⊆ ΩΣ(T ).
Hence, I is system regular.
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∎

We show, next, that all four regularity properties transfer from theory
families/systems to I-filter families/systems over arbitrary F-algebraic sys-
tems.

Theorem 585 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family regular if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),
φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩAΣ(T );

(b) I is right regular if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),
φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩAΣ(←ÐT );

(c) I is left regular if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ,ψ ∈
←Ð
T Σ implies ⟨φ,ψ⟩ ∈ ΩAΣ(T );

(d) I is system regular if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, all T ∈ FiSysI(A), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),
φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩAΣ(T ).

Proof:

(a) The “if” follows easily by considering the F-algebraic system F =⟨F, ⟨I, ι⟩⟩ and recalling from Lemma 51 that FiFamI(F) = ThFam(I).
Assume, conversely, that I is family regular and let A = ⟨A, ⟨F,α⟩⟩ be
an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that αΣ(φ), αΣ(ψ) ∈ TF (Σ). Then, we get φ,ψ ∈ α−1Σ (TF (Σ)).
By Lemma 51, α−1(T ) ∈ ThFam(I), whence, by family regularity,
we get that ⟨φ,ψ⟩ ∈ ΩΣ(α−1(T )). Thus, by Proposition 24, we get⟨φ,ψ⟩ ∈ α−1Σ (ΩAF (Σ)(T )). Hence, ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA

F (Σ)
(T ). Tak-

ing into account the surjectivity of ⟨F,α⟩, we conclude that, for all
Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), if φ,ψ ∈ TΣ, then ⟨φ,ψ⟩ ∈ ΩAΣ(T ).

(b) The “if” follows as in Part (a).

Assume, conversely, that I is right regular and let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
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such that αΣ(φ), αΣ(ψ) ∈ TF (Σ). Then, we get φ,ψ ∈ α−1Σ (TF (Σ)). By
Lemma 51, α−1(T ) ∈ ThFam(I), whence, by right regularity, we get

that ⟨φ,ψ⟩ ∈ ΩΣ(←ÐÐÐÐα−1(T )). By Lemma 6, we get ⟨φ,ψ⟩ ∈ ΩΣ(α−1(←ÐT )).
Thus, by Proposition 24, we get ⟨φ,ψ⟩ ∈ α−1Σ (ΩAF (Σ)(←ÐT )). Hence,

⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA
F (Σ)
(←ÐT ). Taking into account the surjectivity of

⟨F,α⟩, we conclude that, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), if

φ,ψ ∈ TΣ, then ⟨φ,ψ⟩ ∈ ΩAΣ(←ÐT ).
(c) The “if” follows as in Part (a).

Assume, conversely, that I is left regular and let A = ⟨A, ⟨F,α⟩⟩ be an
F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that αΣ(φ), αΣ(ψ) ∈ ←ÐT F (Σ). Then, we get φ,ψ ∈ α−1Σ (←ÐT F (Σ)), i.e.,

by Lemma 6, φ,ψ ∈
←ÐÐÐÐ
α−1(T )Σ. By Lemma 51, α−1(T ) ∈ ThFam(I),

whence, by left regularity, we get that ⟨φ,ψ⟩ ∈ ΩΣ(α−1(T )). Thus, by
Proposition 24, we get ⟨φ,ψ⟩ ∈ α−1Σ (ΩAF (Σ)(T )). Hence, ⟨αΣ(φ), αΣ(ψ)⟩ ∈
ΩA
F (Σ)
(T ). Taking into account the surjectivity of ⟨F,α⟩, we conclude

that, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), if φ,ψ ∈
←Ð
T Σ, then⟨φ,ψ⟩ ∈ ΩAΣ(T ).

(d) Similar to Part (a).
∎

We also have the following characterizations in terms of reduced I-matrix
families and I-matrix systems.

Theorem 586 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family regular if and only if, for every ⟨A, T ⟩ ∈MatFam∗(I), with
A = ⟨A, ⟨F,α⟩⟩, A = ⟨Sign,SEN,N⟩, and all Σ ∈ ∣Sign∣, ∣TΣ∣ ≤ 1;

(b) I is system regular if and only if, for every ⟨A, T ⟩ ∈MatSys∗(I), with
A = ⟨A, ⟨F,α⟩⟩, A = ⟨Sign,SEN,N⟩, and all Σ ∈ ∣Sign∣, ∣TΣ∣ ≤ 1.

Proof:

(a) Suppose, first, that I is family regular. Let ⟨A, T ⟩ ∈ MatFam∗(I),
Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that φ,ψ ∈ TΣ. Then, we have,
using Theorem 585 and the fact that ⟨A, T ⟩ is reduced,

⟨φ,ψ⟩ ∈ ΩAΣ(T ) =∆AΣ ,

whence φ = ψ. Therefore, ∣TΣ∣ ≤ 1.

Suppose, conversely, that the given condition holds. Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Then, ⟨F/Ω(T ),
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T /Ω(T )⟩ is reduced and, moreover, φ/ΩΣ(T ), ψ/ΩΣ(T ) ∈ TΣ/ΩΣ(T ).
Hence, by hypothesis, φ/ΩΣ(T ) = ψ/ΩΣ(T ), i.e., ⟨φ,ψ⟩ ∈ ΩΣ(T ). We
conclude that I is family regular.

(b) Suppose, first, that I is system regular. Let ⟨A, T ⟩ ∈ MatSys∗(I),
Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that φ,ψ ∈ TΣ. Then, we have,
using Theorem 585 and the fact that ⟨A, T ⟩ is reduced,

⟨φ,ψ⟩ ∈ ΩAΣ(T ) = ∆AΣ ,

whence φ = ψ. Therefore, ∣TΣ∣ ≤ 1.

Suppose, conversely, that the given condition holds. Let T ∈ ThSys(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Then, ⟨F/Ω(T ),
T /Ω(T )⟩ is a reduced I-matrix system. Moreover, we have φ/ΩΣ(T ),
ψ/ΩΣ(T ) ∈ TΣ/ΩΣ(T ). Hence, by hypothesis, φ/ΩΣ(T ) = ψ/ΩΣ(T ),
i.e., ⟨φ,ψ⟩ ∈ ΩΣ(T ). We conclude that I is system regular.

∎

8.3 Assertionality

In this section, we introduce the assertionality hierarchy of π-institutions.
The properties defining this hierarchy are obtained simply by adding to the
various properties defining the regularity hierarchy the stipulation that I
have theorems.

Definition 587 (Assertionality) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F.

• I is family assertional if it is family regular and has theorems;

• I is left assertional if it is left regular and has theorems;

• I is right assertional if it is right regular and has theorems;

• I is system assertional if it is system regular and has theorems.

Definition 587 and Proposition 576 allow us to obtain the following a
priori assertionality hierarchy of π-institutions.
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Family Assertional

Right Assertional
❄

Left Assertional
❄

System Assertional
❄

However, using the characterizing properties included in the following
proposition, we shall see that right assertionality implies systemicity and,
hence, the classes of family assertional and right assertional π-institutions
coincide.

Proposition 588 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family assertional if and only if, for all T ∈ ThFam(I) and all
Σ ∈ ∣Sign♭∣, TΣ = tΣ/ΩΣ(T ), for some tΣ ∈ ThmΣ(I);

(b) I is right assertional if and only if, for all T ∈ ThFam(I) and all

Σ ∈ ∣Sign♭∣, TΣ = tΣ/ΩΣ(←ÐT ), for some tΣ ∈ ThmΣ(I);
(c) I is left assertional if and only if, for all T ∈ ThFam(I) and all Σ ∈
∣Sign♭∣, ←ÐT Σ = tΣ/ΩΣ(T ), for some tΣ ∈ ThmΣ(I);

(d) I is system assertional if and only if, for all T ∈ ThSys(I) and all
Σ ∈ ∣Sign♭∣, TΣ = tΣ/ΩΣ(T ), for some tΣ ∈ ThmΣ(I).

Proof: If, in a certain context, a π-institution I has theorems, we shall use
tΣ to denote an arbitrary Σ-theorem of I , Σ ∈ ∣Sign♭∣.

(a) Suppose that I is family assertional and let T ∈ ThFam(I) and Σ ∈∣Sign♭∣. If φ ∈ TΣ, then φ, tΣ ∈ TΣ, whence, by family regularity, ⟨φ, tΣ⟩ ∈
ΩΣ(T ), i.e., φ ∈ tΣ/ΩΣ(T ). On the other hand, if ⟨φ, tΣ⟩ ∈ ΩΣ(T ), then,
since tΣ ∈ TΣ, we get, by the compatibility of Ω(T ) with T , φ ∈ TΣ.

Suppose, conversely, that, for all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣,
TΣ = tΣ/ΩΣ(T ). Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that φ,ψ ∈ TΣ. Then, by hypothesis

φ ΩΣ(T ) tΣ ΩΣ(T ) ψ,
whence I is family regular.
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(b) Suppose that I is right assertional and let T ∈ ThFam(I) and Σ ∈∣Sign♭∣. If φ ∈ TΣ, then φ, tΣ ∈ TΣ, whence, by right regularity, ⟨φ, tΣ⟩ ∈
ΩΣ(←ÐT ), i.e., φ ∈ tΣ/ΩΣ(←ÐT ). On the other hand, if ⟨φ, tΣ⟩ ∈ ΩΣ(←ÐT ),
then, since tΣ ∈

←Ð
T Σ, we get, by the compatibility of Ω(←ÐT ) with

←Ð
T ,

φ ∈
←Ð
T Σ ⊆ TΣ.

Suppose, conversely, that, for all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣,
TΣ = tΣ/ΩΣ(←ÐT ). Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that φ,ψ ∈ TΣ. Then, by hypothesis

φ ΩΣ(←ÐT ) tΣ ΩΣ(←ÐT ) ψ,
whence I is right regular.

(c) Suppose that I is left assertional and let T ∈ ThFam(I) and Σ ∈ ∣Sign♭∣.
If φ ∈

←Ð
T Σ, then φ, tΣ ∈

←Ð
T Σ, whence, by left regularity, ⟨φ, tΣ⟩ ∈ ΩΣ(T ),

i.e., φ ∈ tΣ/ΩΣ(T ). On the other hand, if ⟨φ, tΣ⟩ ∈ ΩΣ(T ), then, since

Ω(T ) ≤ Ω(←ÐT ), we get ⟨φ, tΣ⟩ ∈ ΩΣ(←ÐT ). But tΣ ∈
←Ð
T Σ, whence, by the

compatibility of Ω(←ÐT ) with
←Ð
T , φ ∈

←Ð
T Σ.

Suppose, conversely, that, for all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣,
←Ð
T Σ = tΣ/ΩΣ(T ). Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that φ,ψ ∈

←Ð
T Σ. Then, by hypothesis

φ ΩΣ(T ) tΣ ΩΣ(T ) ψ,
whence I is left regular.

(d) Similar to Part (a).
∎

Using the characterizations in Proposition 588, we can show that right
assertionality implies systemicity.

Proposition 589 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is right assertional, then I is systemic.

Proof: Suppose that I is right assertional. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣
and φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Then, by right assertionality and Propo-

sition 588, ⟨φ, tΣ⟩ ∈ ΩΣ(←ÐT ), for some tΣ ∈ ThmΣ(I). But tΣ ∈
←Ð
T Σ, whence,

by compatibility of Ω(←ÐT ) with
←Ð
T , φ ∈

←Ð
T Σ. Therefore, T ≤

←Ð
T and, hence,

T ∈ ThSys(I). Thus, I is systemic. ∎

Proposition 590 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is right assertional if and only if I is
family assertional.
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Proof: If I is family assertional, then, by definition, it is family regular
and has theorems, whence, by Proposition 576, it is right regular and has
theorems and, therefore, by definition, it is right assertional.

Suppose, conversely, that I is right assertional. Then, by Proposition 589,
it is systemic and, hence, a fortiori, stable. Therefore, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ SEN♭(Σ), if φ,ψ ∈ TΣ,

then, by right assertionality, ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ) and, hence, by stability, ⟨φ,ψ⟩ ∈
ΩΣ(T ). Therefore, I is family regular and, hence, family assertional. ∎

We can also show easily that, in case I is systemic, the entire assertion-
ailty hierarchy collapses into a single class.

Proposition 591 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family assertional if and only if it is
system assertional and systemic.

Proof: If I is systemic, the conditions defining family assertionality and
system assertionality coincide.

On the other hand, if I is family assertional, then, by definition, it is
family regular and has theorems, whence, by Proposition 576, it is right
regular and has theorems. Thus, by definition, I is right assertional and,
hence, by Proposition 589, it is systemic. Moreover, using again Proposition
576, we conclude that I is also system assertional. ∎

Thus, we get, regarding the assertionality hierarchy the following

Proposition 592 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family/right assertional, then it is left assertional;

(b) If I is left assertional, then it is system assertional.

Proof: By Definition 587, Proposition 576 and Proposition 591. ∎

Proposition 592 establishes the assertionality hierarchy depicted in
the accompanying diagram.

Family/Right Assertional

Left Assertional
❄

System Assertional
❄

We show, next, that all three classes are different, by constructing two
examples to separate them. The first is an example of a left assertional
π-institution which fails to satisfy family assertionality.
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Example 593 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

Since I is not systemic, then, by Proposition 591, it fails to be family asser-
tional.

The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

Clearly, I has theorems. Thus, to show that it is left assertional, it suffices

to show, by Proposition 588, that, for all T ∈ ThFam(I), ←ÐT Σ = 2/ΩΣ(T ).
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•

←ÐÐÐ{{2}}Σ = {2} = 2/ΩΣ({{2}});
•

←ÐÐÐÐ{{1,2}}Σ = {2} = 2/ΩΣ({{1,2}});
•

←ÐÐÐÐÐÐ{{0,1,2}}Σ = {0,1,2} = 2/ΩΣ({{0,1,2}}).
The next example showcases a system assertional π-institution which is

not left assertional.

Example 594 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2,3} and

SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2, SEN♭(f)(3) = 2;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ determined by

x 0 1 2 3
σ♭Σ(x) 0 1 0 1

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2,3},{1,2,3},{0,1,2,3}}.
The following table shows the action of ←Ð on theory families.

T {2,3} {1,2,3} {0,1,2,3}
←Ð
T {2,3} {2,3} {0,1,2,3}
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The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

0123 ...............................✲ ∇F

123 {01,23}.......................❥....
....

....
....

....
...✯

23 ∆F

Clearly, I has theorems. To see that I is system assertional, it suffices
to show, by Proposition 588, that, for all T ∈ ThSys(I), TΣ = 2/ΩΣ(T ). We
do have indeed:

• {2,3} = 2/ΩΣ({{2,3}});
• {0,1,2,3} = 2/ΩΣ({{0,1,2,3}}).

On the other hand, for T = {{1,2,3}}, we have 2,3 ∈ {2,3} = ←ÐT Σ, whereas⟨2,3⟩ ∉ ∆F
Σ = ΩΣ(T ). We conclude that I is not left regular and, hence, a

fortiori, not left assertional either.

We proceed by exploring the relationships that hold between the various
classes of the assertionality hierarchy, introduced in the present section, with
the classes of the regularity hierarchy, which were introduced in Section 8.2.
We have the following straightforward implications, which follow directly
from the definitions involved.

Proposition 595 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family assertional, then it is family regular;

(b) If I is left assertional, then it is left regular;

(c) If I is system assertional, then it is system regular.

Proof: Directly from Definition 587. ∎

Thus, taking into account Propositions 576 and 592, we have the following
mixed assertionality and regularity hierarchy.
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Family Assertional

✠�
�
�
�
�
�
�
� ❅

❅
❅❘

Family Regular

✠�
�
�

Left Assertional Right Regular

✠�
�
� ❅

❅
❅❘ ✠�

�
�

System Assertional Left Regular

❅
❅
❅❘ ✠�

�
�

System Regular

An easy example shows that the three southeast arrows from the asser-
tionality classes to the corresponding regularity classes correspond to proper
inclusions.

Example 596 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0};
• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{0}}.
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I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

0 .....................❥
∆F = ∇F

....
....

....
....

....
.✯

∅

I is family regular, since, for all T ∈ ThFam(I), ⟨0,0⟩ ∈ ∇F
Σ = ΩΣ(T ).

On the other hand, since I does not have theorems, I does not belong to
any of the steps in the assertionality hierarchy.

We examine next, the relationships between the classes in the assertion-
ality hierarchy and those in the complete reflectivity hierarchy.

Theorem 597 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is family/right assertional, then it is family/right completely re-
flective;

(b) If I is left assertional, then it is left completely reflective;

(c) If I is system assertional, then it is system completely reflective.

Proof:

(a) Suppose that I is family assertional. Let T ∪ {T ′} ⊆ ThFam(I),
such that ⋂T ∈T Ω(T ) ≤ Ω(T ′), Σ ∈ ∣Sign♭∣ and φ ∈ ⋂T ∈T TΣ. By as-
sertionality, there exists tΣ ∈ ThmΣ(I), whence, φ, tΣ ∈ TΣ, for all
T ∈ T . Thus, by family regularity, ⟨φ, tΣ⟩ ∈ ΩΣ(T ), for all T ∈ T ,
i.e., ⟨φ, tΣ⟩ ∈ ⋂T ∈T ΩΣ(T ). By hypothesis, ⟨φ, tΣ⟩ ∈ ΩΣ(T ′). Therefore,
since tΣ ∈ T ′Σ, we get, by compatibility of Ω(T ′) with T ′, φ ∈ T ′Σ. We
conclude that ⋂T ∈T T ≤ T ′ and, hence, that I is family c-reflective.

(b) Suppose that I is left assertional. Let T ∪{T ′} ⊆ ThFam(I), such that

⋂T ∈T Ω(T ) ≤ Ω(T ′), Σ ∈ ∣Sign♭∣ and φ ∈ ⋂T ∈T
←Ð
T Σ. By assertionality,

there exists tΣ ∈ ThmΣ(I), whence, φ, tΣ ∈
←Ð
T Σ, for all T ∈ T . Thus, by

left regularity, ⟨φ, tΣ⟩ ∈ ΩΣ(T ), for all T ∈ T , i.e., ⟨φ, tΣ⟩ ∈ ⋂T ∈T ΩΣ(T ).
By hypothesis, ⟨φ, tΣ⟩ ∈ ΩΣ(T ′) ⊆ ΩΣ(←ÐT ′). Therefore, since tΣ ∈

←Ð
T ′Σ,

we get, by compatibility of Ω(←ÐT ′) with
←Ð
T ′, φ ∈

←Ð
T ′Σ. We conclude that

⋂T ∈T
←Ð
T ≤
←Ð
T ′ and, hence, that I is left c-reflective.
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(c) Similar to Part (a).
∎

Alternatively, Theorem 597 may be proven by employing the characteri-
zations provided in Proposition 588.

Based on the complete reflectivity hierarchy, which was established in
Section 3.8, on the assertionality hierarchy established in Proposition 592 and
on Theorem 597, we get the hierarchy relating assertionality with complete
reflectivity classes shown in the diagram.

Family Assertional

✠�
�
� ❅

❅
❅❘

Family c-Reflective Left Assertional

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Left c-Reflective System Assertional

❅
❅
❅❘ ✠�

�
�

System c-Reflective

To show that all southwest inclusion arrows, connecting the various as-
sertionality classes with the corresponding c-reflectivity classes, represent
proper inclusions we construct an example of a family completely reflective
π-institution which fails to be system assertional. Note that, since family
c-reflectivity implies family injectivity, any π-institution fulfilling these re-
quirements must have theorems. Therefore, the failure of assertionality must
be due to failure of family regularity rather than the absence of theorems.

Example 598 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the unary

natural transformation σ♭ ∶ SEN♭ → SEN♭, specified by σ♭Σ(0) = 0,
σ♭Σ(1) = 1 and σ♭Σ(2) = 0.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1,2},{0,1,2}}.
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I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

012 .....................✲ ∇F

12 ......................✲ ∆F

Since the lattice of theory families of I is order isomorphic with the lattice
of AlgSys∗(I)-congruence systems, I is family completely reflective.

On the other hand, for T = {{2,3}}, we have 2,3 ∈ TΣ, but ⟨2,3⟩ ∉ ∆F
Σ =

ΩΣ(T ), whence I is not system regular and, hence, a fortiori, belongs to none
of the three classes in the assertionality hierarchy.

We show, next, that all assertionality properties transfer from theory fam-
ilies/systems to I-filter families/systems over arbitrary F-algebraic systems.
This is a consequence of the facts that, by Theorem 585, all regularity prop-
erties transfer and, also, that the property of having theorems carries from
the collection of all theory families to the collections of all filter systems over
arbitrary algebraic systems, as seen in Lemma 376.

Theorem 599 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family (respectively, left, system)
assertional if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,⟨A,CI,A⟩ is family (respectively, left, system) assertional.

Proof: Directly from Lemma 376 and Theorem 585. ∎

We also have the following characterizations in terms of reduced I-matrix
families and I-matrix systems.

Theorem 600 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family assertional if and only if, for every ⟨A, T ⟩ ∈ MatFam∗(I),
with A = ⟨A, ⟨F,α⟩⟩, A = ⟨Sign,SEN,N⟩, and all Σ ∈ ∣Sign∣, ∣TΣ∣ = 1;
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(b) I is system assertional if and only if, for every ⟨A, T ⟩ ∈ MatSys∗(I),
with A = ⟨A, ⟨F,α⟩⟩, A = ⟨Sign,SEN,N⟩, and all Σ ∈ ∣Sign∣, ∣TΣ∣ = 1.

Proof:

(a) Suppose, first, that I is family assertional. Then, by definition, it is
family regular. Thus, by Theorem 586, for all ⟨A, T ⟩ ∈ MatFam∗(I)
and all Σ ∈ ∣Sign♭∣, ∣TΣ∣ ≤ 1. However, by family assertionality, I has
theorems, whence, by Lemma 376, ∣TΣ∣ = 1.

Suppose, conversely, that the given condition holds. Then I has theo-
rems and, by Lemma 586, it is family regular. Therefore, I is family
assertional.

(b) Similar to Part (a).
∎

8.4 Regular Weak Prealgebraizability

We look, next, at those classes of π-institutions that are formed by adding
prealgebraicity to the various levels of assertionality.

Definition 601 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is regularly weakly family prealgebraizable, or RWF preal-
gebraizable for short, if it is prealgebraic and family assertional;

• I is regularly weakly left prealgebraizable, or RWL prealge-
braizable for short, if it is prealgebraic and left assertional;

• I is regularly weakly system prealgebraizable, or RWS preal-
gebraizable for short, if it is prealgebraic and system assertional.

Based on the assertionality hierarchy established in Proposition 592, we
have the following

Proposition 602 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is regularly weakly family prealgebraizable, then it is regularly weakly
left prealgebraizable;

(b) If I is regularly weakly left prealgebraizable, then it is regularly weakly
system prealgebraizable.
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Proof: Straightforward by combining Definition 601 and Proposition 592.
∎

Proposition 602 establishes the regular weak prealgebraizability hi-
erarchy depicted in the following diagram.

Regular Weak Family Prealgebraizable

Regular Weak Left Prealgebraizable
❄

Regular Weak System Prealgebraizable
❄

We reuse two examples to show that all classes in this hierarchy are
different, i.e., that the arrows in the diagram represent proper inclusions. The
first describes a π-institution that is regularly weakly left prealgebraizable
but fails to be regularly weakly family prealgebraizable, thus showing that
the family class is properly included in the left class.

Example 603 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
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The following table gives the theory families and the theory systems of the
π-institution I:

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

Since I is not systemic, by Proposition 591, it fails to be family assertional
and, hence, it is not regularly weakly family prealgebraizable.

The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

Since the only theory systems of I are {{2}} and {{0,1,2}}, it is clear
that Ω is monotone on theory systems and, hence, I is prealgebraic. Clearly,
I has theorems. Thus, to complete the proof that it is regularly weakly left
prealgebraizable, it suffices to show that it is left assertional, i.e., by Propo-

sition 588, that, for all T ∈ ThFam(I), ←ÐT Σ = 2/ΩΣ(T ).
•

←ÐÐÐ{{2}}Σ = {2} = 2/ΩΣ({{2}});
•

←ÐÐÐÐ{{1,2}}Σ = {2} = 2/ΩΣ({{1,2}});
•

←ÐÐÐÐÐÐ{{0,1,2}}Σ = {0,1,2} = 2/ΩΣ({{0,1,2}}).
The second example presents a regularly weakly system prealgebraizable

π-institution that is not regularly weakly left prealgebraizable.

Example 604 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2,3} and

SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2, SEN♭(f)(3) = 2;
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• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ determined by

x 0 1 2 3
σ♭Σ(x) 0 1 0 1

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2,3},{1,2,3},{0,1,2,3}}.
The following table shows the action of ←Ð on theory families.

T {2,3} {1,2,3} {0,1,2,3}
←Ð
T {2,3} {2,3} {0,1,2,3}

The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

0123 ...............................✲ ∇F

123 {01,23}.......................❥....
....

....
....

....
...✯

23 ∆F

Since the only theory systems of I are {{2,3}} and {{0,1,2,3}}, it is obvi-
ous that Ω is monotone on theory systems and, hence, that I is prealgebraic.
Clearly, I has theorems. To see that I is regularly weakly system prealge-
braizable it suffices to show that it is system assertional, i.e., by Proposition
588, that, for all T ∈ ThSys(I), TΣ = 2/ΩΣ(T ). We do have indeed:
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• {2,3} = 2/ΩΣ({{2,3}});
• {0,1,2,3} = 2/ΩΣ({{0,1,2,3}}).

On the other hand, for T = {{1,2,3}}, we have 2,3 ∈ {2,3} = ←ÐT Σ, whereas⟨2,3⟩ ∉ ∆F
Σ = ΩΣ(T ). We conclude that I is not left regular and, hence, a

fortiori, it is not regularly weakly left prealgebraizable.

We investigate, next, the relationships that hold between the various
regular weak prealgebraizability classes, introduced in the present section,
and the corresponding assertional classes, that were introduced in Section
8.3.

Directly from the definitions involved, we get the following

Proposition 605 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is regularly weakly family prealgebraizable, then it is family asser-
tional;

(b) If I is regularly weakly left prealgebraizable, then it is left assertional;

(c) If I is regularly weakly system prealgebraizable, then it is system asser-
tional.

Proof: Directly from Definition 601. ∎

Therefore, we get the mixed regular weak prealgebraizability and asser-
tionality hierarchy depicted in the diagram.

RWF Prealgebraizable

✠�
�
� ❅

❅
❅❘

RWL Prealgebraizable Family Assertional

✠�
�
� ❅

❅
❅❘ ✠�

�
�

RWS Prealgebraizable Left Assertional

❅
❅
❅❘ ✠�

�
�

System Assertional

To show that all classes in this hierarchy are different, we provide an
example of a π-institution that is family assertional, and, thus, belongs to
all three assertionality classes, but fails to be regularly weakly system pre-
algebraizable, whence it belongs to none of three steps in the regular weak
prealgebraizability hierarchy. This example shows that all three southeast
arrows represent proper inclusions.
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Example 606 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2},{1,2},{0,1,2}}.
I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

012 ................................✲ ∇F

�
�
� ❅

❅
❅

12 .......✲ {0,12} {01,2}

......
......

......
......

......
......

..✶

2

I has theorems, whence to show that it is family assertional, it suffices to
show that, for all T ∈ ThFam(I), TΣ = 2/ΩΣ(T ). Indeed, we have:

• For T = {{2}}, {2} = 2/ΩΣ({{2}});
• For T = {{1,2}}, {1,2} = 2/ΩΣ({{1,2}});
• For T = {{0,1,2}}, {0,1,2} = 2/ΩΣ({{0,1,2}}).

On the other hand, since {{2}} ≤ {{1,2}}, but Ω({{2}}) ≰ Ω({{1,2}}), I is
not prealgebraic and, hence, fails to be regularly weakly system prealgebraiz-
able.
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Turning now to the relationship between the regular weak prealgebraiz-
ability hierarchy and the weak prealgebraizability hierarchy, we get the fol-
lowing

Proposition 607 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• If I is regularly weakly family prealgebraizable, then it is weakly family
(completely) reflective prealgebraizable;

• If I is regularly weakly left prealgebraizable, then it is weakly left com-
pletely reflective prealgebraizable;

• If I is regularly weakly system prealgebraizable, then it is weakly system
prealgebraizable.

Proof: We show Part (a) in detail. The remaining parts can be proved
similarly.

Suppose I is regularly weakly family prealgebraizable. Then, by defini-
tion, it is prealgebraic and family assertional. Hence, by Theorem 597, it
is prealgebraic and family completely reflective. Thus, by definition, it is
weakly family prealgebraizable. ∎

Thus, Proposition 607, together with Proposition 602 and the hierarchy
established in Section 4.2, point to the following hierarchy of regularly weakly
prealgebraizable and weakly prealgebraizable π-institutions.

RWF Prealgble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

RWL Prealgble WFR Prealgble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

RWS Prealgble WLC Prealgble WFI Prealgble

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❯

❂✚
✚
✚
✚

❂✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

WLR Prealgble
❩
❩
❩
❩⑦

WLI Prealgble

❂✚
✚
✚
✚

WS Prealgble
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Again it is not difficult to see that the classes in the regular weak pre-
algebraizability hierarchy are different from the classes of weakly prealge-
braizable π-institutions. This is accomplished by constructing an example of
a π-institution which is weakly family completely reflective prealgebraizable
but is not regularly weakly system prealgebraizable.

Example 608 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the unary

natural transformation σ♭ ∶ SEN♭ → SEN♭ specified by σ♭Σ(0) = 0, σ♭Σ(1) =
1 and σ♭Σ(2) = 0.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1,2},{0,1,2}}.
I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

012 .....................✲ ∇F

12 ......................✲ ∆F

Since the lattice of theory families of I is order isomorphic with the lattice of
AlgSys∗(I)-congruence systems, I is weakly family c-reflective prealgebraiz-
able.

On the other hand, for T = {{2,3}}, we have 2,3 ∈ TΣ, but ⟨2,3⟩ ∉ ∆F
Σ =

ΩΣ(T ), whence I is not system regular and, hence, a fortiori, it is not regu-
larly weakly system prealgebraizable either.
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Based on existing results, we can show that all three kinds of regular
weak prealgebraizability transfer from theory families/systems to filter fam-
ilies/systems over arbritrary F-algebraic systems.

Theorem 609 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is regularly weakly family prealgebraizable if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈
FiFamI(A), all T ′, T ′′ ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ′ ≤ T ′′ implies ΩA(T ′) ≤ ΩA(T ′′);
– ∣TΣ/ΩAΣ(T )∣ = 1;

(b) I is regularly weakly left prealgebraizable if and only if, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈
FiFamI(A), all T ′, T ′′ ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ′ ≤ T ′′ implies ΩA(T ′) ≤ ΩA(T ′′);
– ∣←ÐT Σ/ΩAΣ(T )∣ = 1;

(c) I is regularly weakly system prealgebraizable if and only if, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T,T ′ ∈
FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
– ∣TΣ/ΩAΣ(T )∣ = 1.

Proof: Combine Theorem 179 with Theorem 599. ∎

Finally, we may also adapt previously obtained results characterizing
weak prealgebraizability to obtain similar characterizations of regular weak
prealgebraizability in terms of mappings between posets of filter families/
systems (including theory families/systems) and congruence systems.

Theorem 610 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly weakly family prealgebraiz-
able if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism, such that, for all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣,∣TΣ/ΩAΣ(T )∣ = 1.
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Proof: Suppose, first, that I is regularly weakly family prealgebraizable.
Then it is, by definition, prealgebraic and, moreover, by definition, Propo-
sition 605 and Theorem 597, it is family c-reflective. Therefore, it is WFR
prealgebraizable. Thus, the required isomorphism is given by Theorem 268.
The expression for T is obtained by applying Theorem 609.

Assume, conversely, that the postulated condition holds. Then, the hy-
potheses of Theorem 609, Part (a), are satisfied and, therefore, I is regularly
weakly family prealgebraizable. ∎

Theorem 611 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly weakly left prealgebraizable
if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding, such that, for all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣,
∣←ÐT Σ/ΩAΣ(T )∣ = 1.

Proof: Suppose, first, that I is regularly weakly left prealgebraizable. Then
it is, by definition, prealgebraic and, moreover, by definition, Proposition 605
and Theorem 597, it is left c-reflective. Therefore, it is WLC prealgebraizable.
Thus, the required embedding is given by Theorem 276. The expression for
T is obtained by applying Theorem 609.

Assume, conversely, that the postulated condition holds. Then, the hy-
potheses of Theorem 609, Part (b), are satisfied and, therefore, I is regularly
weakly left prealgebraizable. ∎

Theorem 612 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is regularly weakly system prealge-
braizable if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding, such that, for all T ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,∣TΣ/ΩAΣ(T )∣ = 1.

Proof: Suppose, first, that I is regularly weakly system prealgebraizable.
Then it is, by definition, prealgebraic and, moreover, by definition, Propo-
sition 605 and Theorem 597, it is system c-reflective. Therefore, it is WS
prealgebraizable. Thus, the required embedding is given by Theorem 256.
The expression for T is obtained by applying Theorem 609.

Assume, conversely, that the postulated condition holds. Then, the hy-
potheses of Theorem 609, Part (c), are satisfied and, therefore, I is regularly
weakly system prealgebraizable. ∎
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8.5 Regular Weak Algebraizability

We look, next, at those classes of π-institutions that are formed by adding
protoalgebraicity to the various levels of assertionality.

Definition 613 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is regularly weakly family algebraizable, or RWF algebraiz-
able for short, if it is protoalgebraic and family assertional;

• I is regularly weakly left algebraizable, or RWL algebraizable
for short, if it is protoalgebraic and left assertional;

• I is regularly weakly system algebraizable, or RWS algebraiz-
able for short, if it is protoalgebraic and system assertional.

Even though there seem to be three classes in the regular weak algebraiz-
ability hierarchy, in reality there are only two, since it is easy to see that the
classes of regularly weakly left and of regularly weakly system π-institutions
coincide.

Proposition 614 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly weakly left algebraizable if
and only if it is regularly weakly system algebraizable.

Proof: The “only if” follows directly by the definition and Proposition 592.
For the “if”, suppose that I is regularly weakly system algebraizable. Then it
is, a fortiori, protoalgebraic, whence, by Lemma 170, it is stable. Therefore,
since I is system regular and stable, by Proposition 579, it is left regular.
We conclude that I is regularly weakly left algebraizable. ∎

The assertionality hierarchy, established in Proposition 592, and Propo-
sition 614 allow us to establish the following regular weak algebraizability
hierarchy.

Proposition 615 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is regularly weakly family algebraizable,
then it is regularly weakly system algebraizable.

Proof: Straightforward by combining Definition 601 and Proposition 592.
∎

The regular weak algebraizability hierarchy is depicted in the fol-
lowing diagram.
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Regular Weak Family Algebraizable

Regular Weak System Algebraizable
❄

We use an example to show that the two classes in this hierarchy are dif-
ferent. Namely, we construct a π-institution that is regularly weakly system
algebraizable but fails to be regularly weakly family algebraizable.

Example 616 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
The following table shows the action of ←Ð on theory families, where rows

correspond to TΣ and columns to TΣ′ and each entry is written as
←Ð
T Σ,
←Ð
T Σ′.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
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terms of blocks) on the right:

{01, ab} .................................................✲ ∇F

�
�
� ❅

❅
❅{01, b} {1, ab} ..................✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1, b} ....................................................✲ ∆F

The Leibniz operator is monotone on theory families, whence, I is pro-
toalgebraic. Moreover, Thm(I) = {{1},{b}} and, for every theory system T ,
TΣ = 1/ΩΣ(T ) and TΣ′ = b/ΩΣ′(T ). Therefore, I is system assertional. Thus,
I is regularly weakly system algebraizable.

On the other hand, for T = {{0,1},{b}} ∈ ThFam(I), we have 0,1 ∈ TΣ,
but ⟨0,1⟩ ∉ ΩΣ(T ). Therefore, I fails to be family regular and, hence, a
fortiori, it is not regularly weakly family algebraizable.

We investigate, next, the relationships that hold between the two regular
weak algebraizability classes, introduced in the present section, and the three
regular weak prealgebraizability classes, that were introduced in Section 8.4.
Since, by Theorem 175, protoalgebraicity implies prealgebraicity, we get, a
priori, the following mixed hierarchy.

RWF Algebraizable

✠�
�
� ❅

❅
❅❘

RWS Alg’ble RWF Prealg’ble

❅
❅
❅❘ ✠�

�
�

RWL Prealgebraizable

✠�
�
�

RWS Prealgebraizable

However, we can show that the two top classes of the hierarchies coincide.

Theorem 617 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly weakly family prealgebraiz-
able if and only if it is regularly weakly family algebraizable.

Proof: The “if” follows from the relevant definitions and the fact that, by
Theorem 175, protoalgebraicity implies prealgebraicity. For the “only if”,
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it suffices to show that, under family assertionality, prealgebraicity implies
protoalgebraicity. By Theorem 175, it suffices, in turn, to show that family
assertionality implies stability and, by Proposition 152, that family asser-
tionality implies systemicity. Indeed, by Theorem 597, family assertionality
implies family c-reflectivity and, by Proposition 237, we get that I is sys-
temic. ∎

Moreover, from the definitions involved, we get the following

Proposition 618 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is regularly weakly system al-
gebraizable, then it is regularly weakly left prealgebraizable.

Proof: Suppose I is regularly weakly system algebraizable. Equivalently,
by Proposition 614, it is regularly weakly left algebraizable. Then, by defi-
nition, it is protoalgebraic and left assertional. Thus, by Theorem 175, it is
prealgebraic and left assertional, i.e., by definition, it is regularly weakly left
prealgebraizable. ∎

Based on Theorem 617 and Proposition 618, we get the following updated
version of the mixed hierarchy shown in the preceding diagram.

RWF (Pre)Algebraizable

RWS/L Algebraizable
❄

RWL Prealgebraizable
❄

RWS Prealgebraizable
❄

To show that all classes in this hierarchy are different, we provide an exam-
ple of a π-institution that is regularly weakly left prealgebraizable, but fails
to be regularly weakly system algebraizable, i.e., an example that separates
the regular weak algebraizability from the regular weak prealgebraizability
classes.

Example 619 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I.

T
←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below.

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

Since the only theory systems of I are {{2}} and {{0,1,2}}, it is clear
that Ω is monotone on theory systems and, hence, I is prealgebraic. Clearly,
I has theorems. Thus, to complete the proof that it is regularly weakly left
prealgebraizable, it suffices to show that it is left assertional, i.e., by Propo-

sition 588, that, for all T ∈ ThFam(I), ←ÐT Σ = 2/ΩΣ(T ). Indeed, we get:

•

←ÐÐÐ{{2}}Σ = {2} = 2/ΩΣ({{2}});
•

←ÐÐÐÐ{{1,2}}Σ = {2} = 2/ΩΣ({{1,2}});
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•

←ÐÐÐÐÐÐ{{0,1,2}}Σ = {0,1,2} = 2/ΩΣ({{0,1,2}}).

On the other hand, since {{2}} ≤ {{1,2}}, but

Ω({{2}}) = {{{0,1},{2}}} ≰ ∆F = Ω({{1,2}}),
I is not protoalgebraic and, hence, it fails to be regularly weakly system alge-
braizable.

Turning now to the relationship between regular weak algebraizability
and weak algebraizability, we get, by definition

Proposition 620 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is regularly weakly family algebraizable, then it is weakly family
algebraizable;

(b) If I is regularly weakly system algebraizable, then it is weakly (sys-
tem/left) algebraizable.

Proof: For Part (a) note that, by Theorem 617, regular weak family alge-
braizability coincides with regular weak family prealgebraizability. In turn,
by Proposition 607, regular weak family prealgebraizability entails weak fam-
ily prealgebraizability. But, by Corollary 297, the latter property is identical
with weak family algebraizability.

For Part (b), if I is regularly weakly system algebraizable, then it is, by
definition, protoalgebraic and system assertional, whence, by Theorem 597,
it is protoalgebraic and system completely reflective. Therefore, it is, by
definition, weakly (system or, equivalently, left) algebraizable. ∎

Thus, Proposition 620, together with Propositions 607 and 618, point to
the following hierarchy of regularly weakly (pre)algebraizable π-institutions
and weakly (pre)algebraizable π-institutions.



628 CHAPTER 8. SEMANTIC HIERARCHY VI Voutsadakis

RWF Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

RWS Algble WF Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚

RWL Prealgble W Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚

RWS Prealgble WLC Prealgble WFI Prealgble
❄

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❯

❂✚
✚
✚
✚

❂✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

WLR Prealgble
❩
❩
❩
❩⑦

WLI Prealgble

❂✚
✚
✚
✚

WS Prealgble

Again it is not difficult to see that the classes in the regular weak alge-
braizability hierarchy are different from the classes in the weak algebraiz-
ability hierarchy. This is accomplished by constructing an example of a π-
institution which is weakly family algebraizable but is not regularly weakly
system prealgebraizable.

Example 621 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the unary

natural transformation σ♭ ∶ SEN♭ → SEN♭ specified by σ♭Σ(0) = 0, σ♭Σ(1) =
1 and σ♭Σ(2) = 0.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1,2},{0,1,2}}.
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I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

012 .....................✲ ∇F

12 ......................✲ ∆F

Since the lattice of theory families of I is order isomorphic with the lattice
of AlgSys∗(I)-congruence systems, I is weakly family algebraizable.

On the other hand, for T = {{2,3}}, we have 2,3 ∈ TΣ, but ⟨2,3⟩ ∉ ∆F
Σ =

ΩΣ(T ), whence I is not system regular. Hence, a fortiori, I is not regularly
weakly system prealgebraizable.

As was the case with regular weak prealgebraizability, we can show that
both kinds of regular weak algebraizability transfer from theory families/
systems to filter families/systems over arbritrary F-algebraic systems.

Theorem 622 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is regularly weakly family algebraizable if and only if, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T,T ′ ∈
FiFamI(A) and all Σ ∈ ∣Sign∣,

– T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
– ∣TΣ/ΩAΣ(T )∣ = 1;

(b) I is regularly weakly system algebraizable if and only if, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T,T ′ ∈
FiFamI(A), all T ′′ ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
– ∣T ′′Σ/ΩAΣ(T )∣ = 1.
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Proof: Combine Theorem 179 with Theorems 599 and 600. ∎

Finally, we may also adapt previously obtained results characterizing
weak algebraizability to obtain similar characterizations of regular weak al-
gebraizability in terms of mappings between posets of filter families/ systems
and congruence systems.

Corollary 623 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly weakly family algebraizable
if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism, such that, for all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣,∣TΣ/ΩAΣ(T )∣ = 1.

Proof: By Theorems 617 and 610. ∎

Theorem 624 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is regularly weakly system alge-
braizable if and only if it is stable and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism, such that, for all T ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,∣TΣ/ΩAΣ(T )∣ = 1.

Proof: Suppose, first, that I is regularly weakly system algebraizable. Then
it is, by definition, protoalgebraic and, thus, by Theorem 175, stable. More-
over, by Propositions 618 and 605 and Theorem 597, it is system c-reflective.
Therefore, it is weakly algebraizable. Thus, the required isomorphism is given
by Theorem 268. The expression for T is obtained by applying Theorem 609.

Assume, conversely, that the postulated condition holds. Consider the F-
algebraic system F = ⟨F, ⟨I, ι⟩⟩. Since Ω on the collection of theory systems
is an order isomorphism, it is monotone and, hence, I is prealgebraic. Thus,
by stability and Theorem 175, I is protoalgebraic. Moreover, by hypothesis
and Theorem 609, I is system assertional. Thus, by definition, I is regularly
weakly system algebraizable. ∎

8.6 Regular Prealgebraizability

We look, next, at those classes of π-institutions that are formed by adding
preequivalentiality to the various levels of assertionality.

Definition 625 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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• I is regularly family prealgebraizable, or RF prealgebraizable
for short, if it is preequivalential and family assertional;

• I is regularly left prealgebraizable, or RL prealgebraizable for
short, if it is preequivalential and left assertional;

• I is regularly system prealgebraizable, or RS prealgebraizable
for short, if it is preequivalential and system assertional.

Based on the assertionality hierarchy established in Proposition 592, we
have the following

Proposition 626 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is regularly family prealgebraizable, then it is regularly left prealge-
braizable;

(b) If I is regularly left prealgebraizable, then it is regularly system preal-
gebraizable.

Proof: Straightforward by combining Definition 625 and Proposition 592.
∎

Proposition 626 establishes the regular prealgebraizability hierarchy
depicted in the following diagram.

Regular Family Prealgebraizable

Regular Left Prealgebraizable
❄

Regular System Prealgebraizable
❄

We give again two examples to show that all classes in this hierarchy are
different, i.e., that the arrows in the diagram represent proper inclusions.
The first describes a π-institution that is regularly left prealgebraizable but
fails to be regularly family prealgebraizable, thus showing that the top arrow
stands for a proper inclusion.

Example 627 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I.
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}

Since I is not systemic, by Proposition 591, it fails to be family assertional
and, hence, it is not regularly family prealgebraizable.

The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

Since the only theory systems of I are {{2}} and {{0,1,2}}, it is clear
that Ω is monotone on theory systems and, hence, I is prealgebraic. To see
that it is preequivalential, we must also show that it is system extensional.
To simplify the process, we note that the only non-trivial proper universes of
F are X = {{0,1}} and Y = {{0,2}}, and the only proper theory system is
Thm(I) = {{2}}. Hence, there are only two cases to check, as shown below
(written, as done elsewhere, in shorthand):

• ΩX(2 ∩X) = ΩX(∅) = {01} = {01,2} ∩X2 = Ω(2) ∩X2;
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• ΩY(2 ∩Y) = ΩY(2) = {0,2} = {01,2} ∩Y2 = Ω(2) ∩Y2.

Clearly, I has theorems. Thus, to complete the proof that it is regularly
left prealgebraizable, it suffices to show that it is left assertional, i.e., by

Proposition 588, that, for all T ∈ ThFam(I), ←ÐT Σ = 2/ΩΣ(T ).
•

←ÐÐÐ{{2}}Σ = {2} = 2/ΩΣ({{2}});
•

←ÐÐÐÐ{{1,2}}Σ = {2} = 2/ΩΣ({{1,2}});
•

←ÐÐÐÐÐÐ{{0,1,2}}Σ = {0,1,2} = 2/ΩΣ({{0,1,2}}).
The second example gives a regularly system prealgebraizable π-insti-

tution that is not regularly left prealgebraizable.

Example 628 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a unique (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2,3} and

SEN♭(f)(0) = 0, SEN♭(f)(1) = 0, SEN♭(f)(2) = 2, SEN♭(f)(3) = 2;

• N ♭ is the category of natural transformations generated by the unary
natural transformation σ♭ ∶ SEN♭ → SEN♭ determined by

x 0 1 2 3
σ♭Σ(x) 0 1 0 1

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{2,3},{1,2,3},{0,1,2,3}}.
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The following table shows the action of ←Ð on theory families.

T {2,3} {1,2,3} {0,1,2,3}
←Ð
T {2,3} {2,3} {0,1,2,3}

The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right.

0123 ...............................✲ ∇F

123 {01,23}.......................❥....
....

....
....

....
...✯

23 ∆F

Since the only theory systems of I are {{2,3}} and {{0,1,2,3}}, it is
obvious that Ω is monotone on theory systems and, hence, that I is prealge-
braic. To see that it is preequivalential, it suffices, thus, to show that it is also
system extensional. To simplify the process, we note that the only non-trivial
proper universes of F are X = {{0,1}}, Y = {{0,2}} and Z = {{0,1,2}}, and
the only proper theory system is Thm(I) = {{2,3}}. Hence, there are three
cases to check, as shown below (written, as done elsewhere, in shorthand):

• ΩX(23 ∩X) = ΩX(∅) = {01} = {01,23} ∩X2 = Ω(23) ∩X2;

• ΩY(23 ∩Y) = ΩY(2) = {0,2} = {01,23} ∩Y2 = Ω(23) ∩Y2;

• ΩZ(23 ∩Z) = ΩZ(2) = {01,2} = {01,23} ∩Z2 = Ω(23) ∩Z2.

Clearly, I has theorems. To see that I is regularly system prealgebraizable
it suffices to show that it is system assertional, i.e., by Proposition 588, that,
for all T ∈ ThSys(I), TΣ = 2/ΩΣ(T ). We do have indeed:

• {2,3} = 2/ΩΣ({{2,3}});
• {0,1,2,3} = 2/ΩΣ({{0,1,2,3}}).

On the other hand, for T = {{1,2,3}}, we have 2,3 ∈ {2,3} = ←ÐT Σ, whereas⟨2,3⟩ ∉ ∆F
Σ = ΩΣ(T ). We conclude that I is not left regular and, hence, a

fortiori, it is not regularly left prealgebraizable.

We investigate, next, the relationships that hold between the various
regular prealgebraizability classes, introduced in the present section, and the
corresponding regular weak prealgebraizability classes, that were introduced
in Section 8.4.

Directly from the definitions involved, we get the following
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Proposition 629 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is regularly family prealgebraizable, then it is regularly weakly family
prealgebraizable;

(b) If I is regularly left prealgebraizable, then it is regularly weakly left
prealgebraizable;

(c) If I is regularly system prealgebraizable, then it is regularly weakly sys-
tem prealgebraizable.

Proof: If I is regularly family prealgebraizable, then, by definition, it is
preequivalential and family assertional. Hence, by Proposition 338, it is pre-
algebraic and family assertional. Thus, it is, by definition, regularly weakly
family prealgebraizable. Parts (b) and (c) can be proven similarly. ∎

Therefore, we get the mixed regular prealgebraizability and regular weak
prealgebraizability hierarchy depicted in the diagram.

RF Prealg’ble

✠�
�
� ❅

❅
❅❘

RL Prealg’ble RWF Prealg’ble

✠�
�
� ❅

❅
❅❘ ✠�

�
�

RS Prealg’ble RWL Prealg’ble

❅
❅
❅❘ ✠�

�
�

RWS Prealg’ble

To show that all classes in this hierarchy are different, we provide an
example of a π-institution that is regularly weakly family prealgebraizable,
and, thus, belongs to all three regular weak prealgebraizability classes, but
fails to be regularly system prealgebraizable, whence it belongs to none of
three steps in the regular prealgebraizability hierarchy. This example shows
that all three southeast arrows represent proper inclusions.

Example 630 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1};
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• N ♭ is the category of natural transformations generated by the two bi-
nary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭ defined by the
following tables.

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Let I = ⟨F,C⟩ be the π-institution defined by setting

CΣ = {{1},{a,1},{b,1},{0, a, b,1}}.
I has four theory families, all of which are also theory systems.

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

0ab1

�
�
� ❅

❅
❅

a1 b1

❅
❅
❅ �

�
�

1

∇F

�
�
� ❅

❅
❅{0b, a1} {0a, b1}

❅
❅
❅ �

�
�

∆F

From the diagram, we can see that Ω ∶ ThFam(I) → ConSys∗(I) is an
order isomorphism, whence, I is weakly family prealgebraizable. Since it has
theorems, to show that it is, also, family assertional, it suffices to show that
it satisfies, for all T ∈ ThFam(I), TΣ = 1/ΩΣ(T ). This is easily checked from
the diagram above, giving the Leibniz congruence systems corresponding to
the various theory families of I.
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On the other hand, for the universe X = {{0, a,1}} and the theory system
T = {{1}}, we get

Ω(T ) ∩X2 = {{0},{a},{1}} ≨ {{0},{a,1}} = ΩX(T ∩X).
Thus, I is not system extensional and, therefore, it fails to be (system) pree-
quivalential and, a fortiori, it also fails to be regularly system prealgebraizable.

Turning now to the relationship between the regular prealgebraizability
hierarchy and the prealgebraizability hierarchy, we get the following

Proposition 631 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• If I is regularly family prealgebraizable, then it is family (pre)algebraizable;

• If I is regularly left prealgebraizable, then it is left completely reflective
prealgebraizable;

• If I is regularly system prealgebraizable, then it is system prealgebraiz-
able.

Proof: We show Part (a) in detail. The remaining parts can be proved
similarly. Suppose I is regularly family prealgebraizable. Then, by definition,
it is preequivalential and family assertional. Hence, by Theorem 597, it is
preequivalential and family completely reflective. Thus, by definition, it is
weakly family (pre)algebraizable. ∎

Proposition 631, together with Proposition 626 and the hierarchy estab-
lished in Section 5.6, point to the following hierarchy of regularly prealge-
braizable and (pre)algebraizable π-institutions. Note that the complete hi-
erarchy is larger, but we only show those classes in the (pre)algebraizability
hierarchy that are directly related to those in the regular prealgebraizability
hierarchy via Theorem 631.

RF Prealg’ble

✠�
�
� ❅

❅
❅❘

RL Prealg’ble F Alg’ble

✠�
�
� ❅

❅
❅❘ ✠�

�
�

RS Prealg’ble LC Prealg’ble

❅
❅
❅❘ ✠�

�
�

S Prealg’ble
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Again it is not difficult to see that the classes in the regular preal-
gebraizability hierarchy are different from the classes of prealgebraizable
π-institutions. This is accomplished by constructing an example of a π-
institution which is family completely reflective prealgebraizable (equiva-
lently, family algebraizable), but is not regularly system prealgebraizable.

Example 632 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the unary

natural transformation σ♭ ∶ SEN♭ → SEN♭ specified by σ♭Σ(0) = 0, σ♭Σ(1) =
1 and σ♭Σ(2) = 0.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1,2},{0,1,2}}.
I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

012 .....................✲ ∇F

12 ......................✲ ∆F

Since the lattice of theory families of I is order isomorphic with the lattice of
AlgSys∗(I)-congruence systems, I is weakly family c-reflective prealgebraiz-
able. To see that it is family c-reflective prealgebraizable, it suffices to show
that it is also system extensional. The only nontrivial proper universes of
F are X = {{0,1}} and Y = {{0,2}} and the only proper theory system is{{1,2}}. Thus, we only need to check two cases:



Voutsadakis CHAPTER 8. SEMANTIC HIERARCHY VI 639

• ΩX(12 ∩X) = ΩX(1) = {0,1} =∆F ∩X2 = Ω(12) ∩X2;

• ΩY(12 ∩Y) = ΩY(2) = {0,2} = ∆F ∩Y2 = Ω(12) ∩Y2.

On the other hand, for T = {{1,2}}, we have 1,2 ∈ TΣ, but ⟨1,2⟩ ∉ ∆F
Σ =

ΩΣ(T ), whence I is not system regular and, hence, a fortiori, it is not regu-
larly system prealgebraizable.

Based on existing results, we can show that all three kinds of regular preal-
gebraizability transfer from theory families/systems to filter families/systems
over arbritrary F-algebraic systems.

Theorem 633 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is regularly family prealgebraizable if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, every universe X ≤
A, all T ∈ FiFamI(A), all T ′, T ′′ ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ′ ≤ T ′′ implies ΩA(T ′) ≤ ΩA(T ′′);
– ΩX(T ′ ∩X) ≤ ΩA(T ′) ∩X2;

– ∣TΣ/ΩAΣ(T )∣ = 1;

(b) I is regularly left prealgebraizable if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, every universe X ≤
A, all T ∈ FiFamI(A), all T ′, T ′′ ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ′ ≤ T ′′ implies ΩA(T ′) ≤ ΩA(T ′′);
– ΩX(T ′ ∩X) ≤ ΩA(T ′) ∩X2;

– ∣←ÐT Σ/ΩAΣ(T )∣ = 1;

(c) I is regularly weakly system prealgebraizable if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, every
universe X ≤A, all T,T ′ ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′);
– ΩX(T ∩X) ≤ ΩA(T ) ∩X2;

– ∣TΣ/ΩAΣ(T )∣ = 1.

Proof: Combine Theorems 179 and 314 with Theorem 599. ∎

Finally, we adapt previously obtained results characterizing prealgebraiz-
ability to obtain similar characterizations of regular prealgebraizability in
terms of mappings between posets of filter families/ systems (including the-
ory families/systems) and congruence systems.
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Theorem 634 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly family prealgebraizable if
and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism that commutes with inverse logical extensions, such
that, for all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣, ∣TΣ/ΩAΣ(T )∣ = 1.

Proof: Suppose, first, that I is regularly family prealgebraizable. Then it is,
by definition, preequivalential and, moreover, by definition, Proposition 629,
Proposition 605 and Theorem 597, it is family c-reflective. Therefore, it is
F (pre)algebraizable. Thus, the required isomorphism is given by Theorem
366. The expression for T is obtained by applying Theorem 600.

Assume, conversely, that the postulated condition holds. Consider the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. Since Ω is an order isomorphism, which
commutes with inverse logical extensions, I is preequivalential. Moreover,
by hypothesis and Theorem 600, I is family assertional. Thus, by definition,
I is regularly family prealgebraizable. ∎

Theorem 635 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly left prealgebraizable if and
only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding that commutes with inverse logical extensions, such

that, for all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣, ∣←ÐT Σ/ΩAΣ(T )∣ = 1.

Proof: Suppose, first, that I is regularly left prealgebraizable. Then it
is, by definition, preequivalential and, moreover, by definition, Propositions
629 and 605 and Theorem 597, it is left c-reflective. Therefore, it is LC
prealgebraizable. Thus, the required embedding is given by Theorem 355.
The expression for T is obtained by applying Theorem 600.

Assume, conversely, that the postulated condition holds. Consider the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. Since Ω on the collection of theory sys-
tems is an order embedding that commutes with inverse logical extensions,
I is preequivalential. Moreover, by hypothesis and Theorem 600, I is left
assertional. Thus, by definition, I is regularly left prealgebraizable. ∎

Theorem 636 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is regularly system prealgebraizable if
and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding that commutes with inverse logical extensions, such
that, for all T ∈ FiSysI(A) and all Σ ∈ ∣Sign∣, ∣TΣ/ΩAΣ(T )∣ = 1.
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Proof: Suppose, first, that I is regularly system prealgebraizable. Then it is,
by definition, preequivalential and, moreover, by definition, Propositions 629
and 605 and Theorem 597, it is system c-reflective. Therefore, it is system
prealgebraizable. Thus, the required embedding is given by Theorem 353.
The expression for T is obtained by applying Theorem 600.

Assume, conversely, that the postulated condition holds. Consider the F-
algebraic system F = ⟨F, ⟨I, ι⟩⟩. Since Ω on the collection of theory systems
is an order embedding that commutes with inverse logical extensions, I is
preequivalential. Moreover, by hypothesis and Theorem 600, I is system
assertional. Thus, by definition, I is regularly system prealgebraizable. ∎

8.7 Regular Algebraizability

We look, next, at those classes of π-institutions that are formed by adding
equivalentiality to the various levels of assertionality.

Definition 637 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is regularly family algebraizable, or RF algebraizable for short,
if it is equivalential and family assertional;

• I is regularly left algebraizable, or RL algebraizable for short,
if it is equivalential and left assertional;

• I is regularly system algebraizable, or RS algebraizable for
short, if it is equivalential and system assertional.

Even though, there are apparently three classes in the regular algebraiz-
ability hierarchy, in reality there are only two, since, as was the case with
regular weak algebraizability, the classes of regularly left and of regularly
system π-institutions coincide.

Proposition 638 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly left algebraizable if and only
if it is regularly system algebraizable.

Proof: The “only if” follows directly by the definition and Proposition 592.
For the “if”, suppose that I is regularly system algebraizable. Then it is, a
fortiori, equivalential and, hence, protoalgebraic. Thus, by Lemma 170, it is
stable. Therefore, since I is system regular and stable, by Proposition 579,
it is left regular. We conclude that I is regularly left algebraizable. ∎

The assertionality hierarchy, established in Proposition 592, and Proposi-
tion 638 allow us to establish the following regular algebraizability hierarchy.
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Proposition 639 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is regularly family algebraizable, then
it is regularly system algebraizable.

Proof: Straightforward by combining Definition 637 and Proposition 592,
and taking into account Proposition 638. ∎

The regular algebraizability hierarchy is depicted in the following
diagram.

Regular Family Algebraizable

Regular System Algebraizable
❄

We use an example to show that the two classes in this hierarchy are
different. Namely, we construct a π-institution that is regularly system alge-
braizable but fails to be regularly family algebraizable.

Example 640 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with objects Σ and Σ′ and a unique (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1}, SEN♭(Σ′) = {a, b}
and SEN♭(f)(0) = a, SEN♭(f)(1) = b;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1},{0,1}} and CΣ′ = {{b},{a, b}}.
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The following table shows the action of ←Ð on theory families, where rows

correspond to TΣ and columns to TΣ′ and each entry is written as
←Ð
T Σ,
←Ð
T Σ′.

← {b} {a, b}{1} {1},{b} {1},{a, b}{0,1} {1},{b} {0,1},{a, b}
The following diagram shows the structure of the lattice of theory families on
the left and the structure of the corresponding Leibniz congruence systems (in
terms of blocks) on the right:

{01, ab} .................................................✲ ∇F

�
�
� ❅

❅
❅{01, b} {1, ab} ..................✲ {{0},{1}},{{a, b}}

❅
❅
❅

.....................................................③
�
�
�

{1, b} ....................................................✲ ∆F

The Leibniz operator is monotone on theory families, whence, I is pro-
toalgebraic. To see that it is equivalential, we must show that it is family ex-
tensional. The only non-trivial proper subuniverses of F are X = {{0},{a, b}}
and Y = {{1},{a, b}}. Moreover, there are only three theory families different
from SEN♭. Thus, we have six cases to examine, accomplished below:

• ΩX({1, b} ∩X) = ΩX({∅, b}) = {∆X
Σ ,∇

X
Σ′} =∆F ∩X2 = Ω({1, b}) ∩X2;

• ΩX({01, b} ∩X) = ΩX({0, b}) =∆X =∆F ∩X2 = Ω({01, b}) ∩X2;

• ΩX({1, ab}∩X) = ΩX({∅, ab}) = ∇X = {∆F
Σ,∇

F
Σ′}∩X2 = Ω({1, ab})∩X2;

• ΩY({1, b} ∩Y) = ΩY({1, b}) =∆Y =∆F ∩Y2 = Ω({1, b}) ∩Y2;

• ΩY({01, b} ∩Y) = ΩY({1, b}) = ∆Y =∆F ∩Y2 = Ω({01, b}) ∩Y2;

• ΩY({1, ab}∩Y) = ΩY({1, ab}) = ∇Y = {∆F
Σ,∇

F
Σ′}∩Y2 = Ω({1, ab})∩Y2.

We showed that I is equivalential. We also have, Thm(I) = {{1},{b}} and,
for every theory system T , TΣ = 1/ΩΣ(T ) and TΣ′ = b/ΩΣ′(T ). Therefore, I
is system assertional. Thus, I is regularly system algebraizable.

On the other hand, for T = {{0,1},{b}} ∈ ThFam(I), we have 0,1 ∈ TΣ,
but ⟨0,1⟩ ∉ ΩΣ(T ). Therefore, I fails to be family regular and, hence, I is
not regularly family algebraizable.

We investigate, next, the relationships that hold between the two regular
algebraizability classes, introduced in the present section, and the three regu-
lar prealgebraizability classes, that were introduced in Section 8.6. Since, by
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Proposition 331, equivalentiality implies preequivalentiality, we get, a priori,
the following mixed hierarchy.

RF Algebraizable

✠�
�
� ❅

❅
❅❘

RS Algebraizable RF Prealgebraizable

❅
❅
❅❘ ✠�

�
�

RL Prealgebraizable

✠�
�
�

RS Prealgebraizable

As was the case with the corresponding weak classes, we can show that the
top classes of the regular prealgebraizability and the regular algebraizability
hierarchies coincide.

Theorem 641 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly family prealgebraizable if
and only if it is regularly family algebraizable.

Proof: The “if” follows from the relevant definitions and the fact that, by
Proposition 331, equivalentiality implies preequivalentiality. For the “only
if”, it suffices to show that, under family assertionality, preequivalentiality
implies equivalentiality. By Proposition 331, it suffices, in turn, to show that
family assertionality implies stability and, by Proposition 152, that family
assertionality implies systemicity. Indeed, by Theorem 597, family assertion-
ality implies family c-reflectivity and, by Proposition 237, we get that I is
systemic. ∎

Moreover, from the definitions involved, we get the following

Proposition 642 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is regularly system algebraizable, then
it is regularly left prealgebraizable.

Proof: Suppose I is regularly system algebraizable. Equivalently, by Propo-
sition 638, it is regularly left algebraizable. Then, by definition, it is equiv-
alential and left assertional. Thus, by Proposition 331, it is preequivalential
and left assertional, i.e., by definition, it is regularly left prealgebraizable. ∎

Based on Theorem 641 and Proposition 642, we get the following updated
version of the mixed hierarchy shown in the preceding diagram.
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RF (Pre)Algebraizable

RS Algebraizable
❄

RL Prealgebraizable
❄

RS Prealgebraizable
❄

To show that all classes in this hierarchy are different, we provide an
example of a π-institution that is regularly left prealgebraizable, but fails to
be regularly system algebraizable, i.e., an example that separates the regular
algebraizability from the regular prealgebraizability classes.

Example 643 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the category with a single object Σ and a single non-identity
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is given by SEN♭(Σ) = {0,1,2} and SEN♭(f)(0) =
0, SEN♭(f)(1) = 0 and SEN♭(f)(2) = 2;

• N ♭ is the trivial category of natural transformations.

Define the π-institution I = ⟨F,C⟩ by setting CΣ = {{2},{1,2},{0,1,2}}.
The following table gives the theory families and the theory systems of the

π-institution I:
T

←Ð
T{2} {2}{1,2} {2}{0,1,2} {0,1,2}
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The lattice of theory families and the corresponding Leibniz congruence
systems are depicted below:

{0,1,2} .......................✲ ∇F

{1,2} {{0,1},{2}}.....................❥....
....

....
....

....
.✯

{2} ∆F

Since the only theory systems of I are {{2}} and {{0,1,2}}, it is clear
that Ω is monotone on theory systems and, hence, I is prealgebraic. To see
that it is preequivalential, we must also show that it is system extensional.
To simplify the process, we note that the only non-trivial proper universes
of F are X = {{0,1}} and Y = {{0,2}} and the only proper theory system
is Thm(I) = {{2}}. Hence, there are two cases to check, as shown below
(written, as done elsewhere, in shorthand):

• ΩX(2 ∩X) = ΩX(∅) = {01} = {01,2} ∩X2 = Ω(2) ∩X2;

• ΩY(2 ∩Y) = ΩY(2) = {0,2} = {01,2} ∩Y2 = Ω(2) ∩Y2.

Clearly, I has theorems. Thus, to complete the proof that it is regularly
left prealgebraizable, it suffices to show that it is left assertional, i.e., by

Proposition 588, that, for all T ∈ ThFam(I), ←ÐT Σ = 2/ΩΣ(T ). Indeed, we get:

•

←ÐÐÐ{{2}}Σ = {2} = 2/ΩΣ({{2}});
•

←ÐÐÐÐ{{1,2}}Σ = {2} = 2/ΩΣ({{1,2}});
•

←ÐÐÐÐÐÐ{{0,1,2}}Σ = {0,1,2} = 2/ΩΣ({{0,1,2}}).
On the other hand, since {{2}} ≤ {{1,2}}, but

Ω({{2}}) = {{{0,1},{2}}} ≰∆F = Ω({{1,2}}),
I is not protoalgebraic and, hence, a fortioti, it is not equivalential. As a
consequence, it fails to be regularly system algebraizable.

Turning now to the relationship between regular (pre)algebraizability and
regular weak (pre)algebraizability, we complete the picture given in Section
8.6.

Proposition 644 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) If I is regularly family algebraizable, then it is regularly weakly family
algebraizable;

(b) If I is regularly system algebraizable, then it is regularly weakly system
algebraizable.

Proof: By Definition 329, equivalentiality implies protoalgebraicity. From
this fact, and Definitions 637 and 613, both implications follow directly. ∎

Thus, Proposition 644, together with Propositions 642 and 629, point
to the following hierarchy of regularly (pre)algebraizable π-institutions and
regularly weakly (pre)algebraizable π-institutions.

RF Algble

✠�
�
� ❅

❅
❅❘

RS Algble RWF Algble

✠�
�
� ❅

❅
❅❘ ✠�

�
�

RL Prealgble RWS Algble

✠�
�
� ❅

❅
❅❘ ✠�

�
�

RS Prealgble RWL Prealgble

❅
❅
❅❘ ✠�

�
�

RWS Prealgble

To see that all southeast arrows represent proper inclusions, we give an
example of a regularly weakly family algebraizable π-institution which fails
to be regularly system prealgebraizable.

Example 645 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = {0, a, b,1};
• N ♭ is the category of natural transformations, generated by the two

binary natural transformations ∧,∨ ∶ (SEN♭)2 → SEN♭, defined by the
following tables:

∧ 0 a b 1
0 0 0 0 0
a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1
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Let I = ⟨F,C⟩ be the π-institution, defined by setting

CΣ = {{1},{a,1},{b,1},{0, a, b,1}}.
I has four theory families, all of which are also theory systems.

The lattice of theory families and the corresponding Leibniz congruence
systems are shown in the diagram.

0ab1

�
�
� ❅

❅
❅

a1 b1

❅
❅
❅ �

�
�

1

∇F

�
�
� ❅

❅
❅{0b, a1} {0a, b1}

❅
❅
❅ �

�
�

∆F

From the diagram, we can see that Ω ∶ ThFam(I) → ConSys∗(I) is an
order isomorphism, whence, I is weakly family algebraizable. Since it has
theorems, to show that it is, also, family assertional, it suffices to show that
it satisfies, for all T ∈ Thfam(I), TΣ = 1/ΩΣ(T ). This is easily checked from
the diagram above, giving the Leibniz congruence systems corresponding to
the various theory families of I.

On the other hand, for the universe X = {{0, a,1}} and the theory system
T = {{1}}, we get

Ω(T ) ∩X2 = {{0},{a},{1}} ≨ {{0},{a,1}} = ΩX(T ∩X).
Thus, I is not system extensional and, therefore, it fails to be (system) pree-
quivalential and, a fortiori, it also fails to be regularly system prealgebraizable.

Turning now to the relationship between regular (pre)algebraizability and
(pre)algebraizability, we get, by definition,

Proposition 646 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) If I is regularly family algebraizable, then it is family algebraizable;

(b) If I is regularly system algebraizable, then it is (system) algebraizable.

Proof: For Part (a) note that, by definition, I is regularly family algebraiz-
able if and only if it is equivalential and family assertional. Thus, by Theorem
597, it is equivalential and family completely reflective. Thus, by Definition
360, it is family algebraizable. Part (b) follows along similar lines. ∎

Proposition 646 completes the picture given by Proposition 631 and Propo-
sition 642, establishing the following mixed regular (pre)algebraizability and
(pre)algebraizability hierarchies, where, on the prealgebraizability side, only
the classes immediately interacting with the regular prealgebraizability classes
are shown.

RF Algble

✠�
�
� ❅

❅
❅❘

RS Algble F Algble

✠�
�
� ❅

❅
❅❘ ✠�

�
�

RL Prealgble Algble

✠�
�
� ❅

❅
❅❘ ✠�

�
�

RS Prealgble LC Prealgble

❅
❅
❅❘ ✠�

�
�

S Prealgble

Again it is not difficult to see that the classes in the regular (pre)algebra-
izability hierarchy are different from the classes in the (pre)algebraizability
hierarchy. This is accomplished by constructing an example of a π-institution
which is family algebraizable but is not regularly system prealgebraizable.

Example 647 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the unary

natural transformation σ♭ ∶ SEN♭ → SEN♭ specified by σ♭Σ(0) = 0, σ♭Σ(1) =
1 and σ♭Σ(2) = 0.
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Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1,2},{0,1,2}}.
I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

012 .....................✲ ∇F

12 ......................✲ ∆F

Since the lattice of theory families of I is order isomorphic with the lattice of
AlgSys∗(I)-congruence systems, I is weakly family algebraizable. To see that
it is family algebraizable, it suffices to show that it is also family extensional.
The only nontrivial proper universes of F are X = {{0,1}} and Y = {{0,2}}
and the only proper theory family is {{1,2}}. Thus, we only need to check
two cases:

• ΩX(12 ∩X) = ΩX(1) = {0,1} =∆F ∩X2 = Ω(12) ∩X2;

• ΩY(12 ∩Y) = ΩY(2) = {0,2} =∆F ∩Y2 = Ω(12) ∩Y2.

On the other hand, for T = {{2,3}}, we have 2,3 ∈ TΣ, but ⟨2,3⟩ ∉ ∆F
Σ =

ΩΣ(T ), whence I is not system regular and, hence, a fortiori, it is not regu-
larly system prealgebraizable.

As was the case with regular weak algebraizability, we can show that
both kinds of regular algebraizability transfer from theory families/ systems
to filter families/systems over arbritrary F-algebraic systems.

Theorem 648 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is regularly family algebraizable if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all X ≤A, all T,T ′ ∈
FiFamI(A) and all Σ ∈ ∣Sign∣,
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– T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);
– ΩX(T ∩X) = Ω(T ) ∩X2;

– ∣TΣ/ΩΣ(T )∣ = 1;

(b) I is regularly system algebraizable if and only if, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all X ≤A, all T,T ′ ∈
FiFamI(A), all T ′′ ∈ FiSysI(A) and all Σ ∈ ∣Sign∣,

– T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);
– ΩX(T ∩X) = Ω(T ) ∩X2;

– ∣T ′′Σ/ΩΣ(T )∣ = 1.

Proof: Combine Theorem 334 with Theorem 599. ∎

Finally, we obtain characterizations of regular algebraizability in terms of
mappings between posets of filter families/ systems and congruence systems.

Corollary 649 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is regularly family algebraizable if and
only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism commuting with inverse logical extensions, such that,
for all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣, ∣TΣ/ΩAΣ(T )∣ = 1.

Proof: By Theorems 641 and 634. ∎

Theorem 650 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is regularly system algebraizable if
and only if it is stable and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism commuting with inverse logical extensions, such that,
for all T ∈ FiSysI(A) and all Σ ∈ ∣Sign∣, ∣TΣ/ΩAΣ(T )∣ = 1.

Proof: Suppose, first, that I is regularly system algebraizable. Then it is,
by definition, equivalential and, thus, by Proposition 331, stable. Moreover,
by Proposition 646, it is algebraizable, whence, the required isomorphism
is given by Theorem 365. The expression for T is obtained by applying
Theorem 600.

Assume, conversely, that the postulated condition holds. Consider the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. Since Ω is an order isomorphism that
commutes with inverse logical extensions and I is stable, I is, by Theorem
365, algebraizable. Hence, I is, a fortiori, equivalential. Moreover, by hy-
pothesis and Theorem 600, I is system assertional. Thus, by definition, I is
regularly system algebraizable. ∎
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9.1 Introduction

At the apex of the Leibniz hierarchy of sentential logics one finds the class
of algebraizable logics [35, 43] (see, also, Chapter 4 of [64] and Sections 3.2
and 6.5 of [86]). The concept was first introduced by Blok and Pigozzi in [35]
for finitary logics. It was later generalized to arbitrary sentential logics by
Herrmann [43]. Roughly speaking, a sentential logic is algebraizable when
there exist a class K of algebras, termed the equivalent algebraic semantics,
and two translations δ ≈ ε from formulas to equations, called defining equa-
tions, and ∆ from equations to formulas, called equivalence formulas, which
are interpretations, i.e., preserve and reflect the logical and the equational
closures and vice-versa and, in addition, are inverses of one another in a spe-
cific sense. For a detailed study of this framework, apart from the original
monograph by Blok and Pigozzi [35] and Herrmann’s Dissertation [43], one
may consult Chapter 4 of [64] and Sections 3.2 and 6.5 of [86]. Partly due to
the historical progression, but also due to the intrinsic importance and ubiq-
uity of finitarity, its key role in studies of classical logical systems and a host
of advantageous properties associated with it, the finitary aspects of alge-
braizability have been extensively studied and tight relations between them
have been established. A very illuminative and beautifully written summary
of these results, as pertaining to algebraizability, appears in Section 3.4 of
[86], which constitutes the inspiration and starting point of the investigations
presented here.

We first give a quick overview of the aforementioned work pertaining
to algebraizable sentential logics. We fix an algebraizable sentential logic
S = ⟨L,⊢S⟩, with equivalent algebraic semantics the generalized quasivariety
K, as witnessed by a set δ ≈ ε of defining equations and a set ∆ of equivalence
formulas. Lemma 3.36 of [86] asserts that, in case S is finitary and has a finite
set of equivalence formulas, then every set of equivalence formulas contains
a finite subset that also serves as a set of equivalence formulas. Dually, if the
equational logic SK = ⟨L,⊧K⟩ induced by the class K is finitary, i.e., if the class
K happens to be a quasivariety, and S has a finite set of defining equations,
then every set of defining equations has a finite subset that also serves in the
same capacity. Besides these conditional “finitarization” results, Theorem
3.37 of [86] details some important relationships between the following four
conditions: S finitary; SK finitary; δ ≈ ε finite; and ∆ finite. On the one
hand, if S is finitary, δ ≈ ε may be taken finite, and, dually, if SK is finitary,
then ∆ may be taken to be finite. Moreover, if S is finitary and has a finite
set ∆ of equivalence formulas, then SK is finitary also, and, dually, if SK is
finitary and S has a finite set δ ≈ ε of defining equations, then S is finitary
also. These implications lead to Corollary 3.38 of [86], which asserts the
following three conditional equivalences:

1. If δ ≈ ε and ∆ are both finite, then S is finitary iff SK is finitary.
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2. If S is finitary, then SK is finitary iff ∆ may be taken finite.

3. If SK is finitary, then S is finitary iff δ ≈ ε may be taken finite.

These lead to the hierarchy depicted in the diagram shown in Figure 3, p.
137 of [86] and duplicated below.

S ,SK finitary
E,∆ finite

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

SK finitary E,∆ finite
❄

S finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

∆ finite
❄

E finite
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

S algebraizable
via K,∆,E

After outlining the results that lead to the depicted hierarchy, Font gath-
ers pointers to three examples of sentential logics that serve to separate the
various classes in the hierarchy. Example 3.41 of [86] revisits  Lukasiewicz’s
infinite valued logic  L∞, which is not finitary, has a non-finitary equivalent
algebraic semantics, but is algebraized via finite sets of defining equations
and equivalence formulas. As a result, it serves to separate classes related
by the vertical arrows in the diagram. In Example 3.42 of [86], the so-called
Logic of Last Judgement LJ , introduced by Herrmann [53], is presented.
This is a finitary logic, algebraized by a non-finitary equational consequence,
via a single defining equation, but a necessarily infinite set of equivalence for-
mulas. So LJ serves in separating the logics related by the southeast arrows
in the diagram. Additional examples that can serve the same purpose were
presented by Dellunde [48] and by Lewin, Mikenberg and Schwartze [55].
Finally, in Example 3.43 of [86], Font presents a logic due to Raftery [82].
Raftery’s work was motivated by a question posed by Czelakowski in Note
4.5.2 (4) of [64], which was also implicit in Problem 3.18 of [43]. Raftery’s
logic is not finitary, but is algebraizable, with a finitary equivalent algebraic
semantics which is actually a variety, via an infinite set of defining equations
and a singleton set of equivalence formulas. It serves in separating the classes
of sentential logics connected via the southwest arrows of the diagram. In
Section 9.5, we revisit  Lukasiewicz’s logic and the logics of Dellunde and
Raftery in much more detail.

Our own goal in this chapter is to provide analogs of the classes in the
finitarity hierarchy of algebraizable sentential logics for logics formalized as
π-institutions. The finitarity conditions pertaining to π-institutions remain
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roughly unchanged. However, keeping in the spirit of dealing with semanti-
cally defined classes (i.e., relying on properties of the Leibniz operator) in this
part of the monograph, the finitarity conditions regarding δ ≈ ε and ∆ are
modified. They are recast as continuity properties of the Leibniz operator and
of its inverse. Subject to these modifications, the results obtained for seman-
tically defined finitarity properties pertaining to weakly family algebraizable
π-institutions reflect those outlined above for algebraizable sentential logics.

In Section 9.2, we introduce the concept of a π-structure, which abstracts
that of a π-institution by eliminating the requirement of structurality. That
is, a π-structure I consists of an algebraic system together with a collection
of closure operators, one on each of its sentence components, which are not
required to satisfy structurality. The finitary companion of a π-structure
I is the π-structure obtained by considering the closure family induced by
all finite consequences of I . As a consequence, it constitutes the largest
finitary π-structure included in I . In addition, it can be shown that it is
structural when the given π-structure satisfies structurality, i.e., when it is
a π-institution. Finitary companions may also be characterized via their
theory families. Namely, a sentence family of a π-institution I is a theory
family of its finitary companion if and only if it is the union of a directed
collection of locally finitely generated theory families of I .

In Section 9.3, we focus on some of the fundamental properties that de-
termine the classes in the semantic Leibniz hierarchy and investigate whether
they are transferred from a π-institution to its finitary companion and vice-
versa, and, if yes, under which conditions. In this vein, protoalgebraicity is
shown to hold for a π-institution I if its finitary companion is protoalge-
braic. A similar property holds for family reflectivity. As a consequence, a
π-institution is weakly family algebraizable if its finitary companion has the
same property. In the opposite direction, for properties of I to be inherited
by its finitary companion, additional provisos are needed. We say that the
Leibniz operator of a π-institution is continuous if, for every directed col-
lection {T i}i∈I of theory families, such that ⋃i∈I T i is also a theory family,
Ω(⋃i∈I T i) = ⋃i∈I Ω(T i). Continuity of the Leibniz operator is a stronger
property than, i.e., implies, protoalgebraicity. It turns out that it is also
sufficient for the finitary companion of I to be protoalgebraic, subject to
the category of signatures being finite. Along dual lines, we say that the
inverse Leibniz operator of a weakly family algebraizable π-institution I is
continuous if, for all directed collections {θi}i∈I of congruence systems in
ConSys∗(I), such that ⋃i∈I θi is also a congruence system in ConSys∗(I),
Ω−1(⋃i∈I θi) = ⋃i∈I Ω−1(θi). This condition, when supplementing continuity
of the Leibniz operator, ensures that weak family algberaizability of a π-
institution I , with a finite category of signatures, is inherited by its finitary
companion.

Section 9.4 is the main section of the chapter. Here, we establish the
semantic finitarity hierarchy of weakly family algebraizable π-institutions,
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which parallels the hierarchy of sentential logics studied in Section 3.4 of [86]
and summarized both in Subsection 1.3.8 and at the beginning of this Intro-
duction. Throughout, the object of study is a weakly family algebraizable
π-institution I . Moreover, we denote by K ∶= AlgSys(I) and by QK the equa-
tional π-structure induced by the class K. Note that I being weakly family
algebraizable ensures that the Leibniz operator Ω ∶ ThFam(I)→ ConSys∗(I)
is an isomorphism, whence the inverse Ω−1 is well-defined. It is shown, first,
that the finitarity of I ensures the continuity of the inverse Leibniz operator
on ConSys∗(I) and that, dually, the finitarity of QK guarantees that the
Leibniz operator itself is continuous on ThFam(I). Further, if to the finitar-
ity of I is added the continuity of the Leibniz operator, then the finitarity
of QK follows. Dually, if to the finitarity of QK is added the continuity of
the inverse Leibniz operator, then I is also finitary. These results are sum-
marized in three statements, which parallel those governing sentential logics,
stated in Corollary 3.38 of [86]. Namely, under continuity of both the Leibniz
operator and its inverse, finitarity of I is equivalent to finitarity of QK. Un-
der finitarity of I , finitarity of QK is equivalent to continuity of the Leibniz
operator and, dually, under finitarity of QK, finitarity of I is tantamount to
continuity of the inverse Leibniz operator.

In Section 9.5, we take a brief detour to present in detail three examples
of sentential logics, which serve to separate the classes in the finitarity hier-
archy of algebraizable sentential logics, presented in Section 3.4 of [86]. Even
though our focus here is not on sentential logics, we showed in Section 1.1
how a sentential logic gives rise to a π-institution in a rather straightforward
way. Accordingly, the purpose of presenting these three sentential logics is
to construct, based on them, corresponding π-institutions that will serve to
separate the classes in the finitarity hierarchy of weakly family algebraizable
π-institutions, studied in Section 9.4. The constructions of the π-institutions,
based on the sentential logics introduced here, and the separation properties
they help establish will be described in some detail in Section 9.6.

The first example is  Lukasiewicz’s infinite valued logic (see, e.g., Example
3.41 of [86]). It is a logic over a language with three binary connectives ∧,
∨, → and one unary connective ¬. It is semantically defined via a logical
matrix. It is shown that it is not finitary, but that it is algebraizable via a
singleton set of defining equations E(x) = {x ≈ ⊺}, where ⊺ ∶= x → x, and the
doubleton set of equivalence formulas ∆(x, y) = {x → y, y → x}. This logic
serves to separate the classes of sentential logics related by vertical arrows
in the finitarity hierarchy of algebraizable sentential logics, depicted in the
preceding diagram. The second example is a logic introduced by Dellunde in
[48]. It is a logic defined over a language with one binary connective ↔ and
one unary connective ◻. It is defined via a Hilbert calculus and, as a result,
it is finitary. It is shown that it is regularly algebraizable via the infinite
set of equivalence formulas ∆(x, y) = {◻nx ↔ ◻ny ∶ n ∈ ω}. According to
the general theory, regular algebraizability implies that the set of defining
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equations is the singleton E(x) = {x ≈ ⊺}, where ⊺ ∶= x ↔ x defines the
unique element in the filter of any reduced matrix of the logic. What is key
for our purposes is that there does not exist a finite subset ∆0 ⊆ ∆ that
also serves as a set of equivalence formulas for this logic. Consequently, this
example serves in separating those classes in the hierarchy of sentential logics
connected via southeast arrows in the diagram. The last example presented
in Section 9.5 is a logic introduced by Raftery [82]. It is a logic defined
over a language with one binary connective ↔ and three unary connectives
π1, π2 and ◊. It is semantically defined as a weakening of another logic,
which, in turn, is defined using a logical matrix. The weakening, roughly
speaking, is obtained by considering an entire variety of algebras to which
the underlying algebra of this logical matrix belongs. Raftery shows that
neither logic is finitary and that, in addition, the weaker logic, corresponding
to the variety, is algebraizable via an infinite set of defining equations and
a singleton set of equivalence formulas. As a result, Raftery’s logic serves
as an example separating the classes related by the southwest arrows in the
finitarity hierarchy depicted in the preceding diagram.

In Section 9.6, we use the framework outlined in Section 1.1 to formalize
the three sentential logics of Section 9.5 as π-institutions. The resulting
examples enable us to separate the classes in the semantic finitarity hierarchy
of weakly family algebraizable π-institutions, studied in Section 9.4, in a way
that parallels the separation of the classes in the hierarchy of algebraizable
sentential logics.

9.2 The Finitary Companion

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A π-structure I = ⟨F,D⟩,
based on F, is like a π-institution except that D is a closure family on F
instead of a closure system, i.e., the only requirement is that

DΣ ∶ PSEN♭(Σ)→ PSEN♭(Σ)
be a closure operator on SEN♭(Σ), for all Σ ∈ ∣Sign♭∣. On the other hand,
D is not required to be structural. A heavier use of π-structures will be
encountered in Chapter 12, where the concept will be defined anew and
more details given. D is called the closure family of the π-structure I .
Note that π-structures generalize π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,D⟩ be a
π-structure based on F. Define the family

Df = {Df
Σ}Σ∈∣Sign♭∣

by letting, for all Σ ∈ ∣Sign♭∣,
Df

Σ ∶ PSEN♭(Σ)→ PSEN♭(Σ)
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be given, for all Φ ⊆ SEN♭(Σ), by

D
f
Σ(Φ) =⋃{DΣ(Φ′) ∶ Φ′ ⊆f Φ},

where ⊆f denotes the finite subset relation.

It is not hard to show that Df is a finitary closure family on F and that,
moreover, it is a closure system (i.e., structural) in case D itself happens to
be structural.

Lemma 651 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,D⟩ a π-structure based on F. Then Df is a finitary closure family on
F. Further, if D is structural, i.e., if I is a π-institution, then Df is also
structural.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Φ. Then φ ∈
DΣ(φ) ⊆Df

Σ(Φ). Thus, Df is inflationary.

Let Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ), such that Φ ⊆ Ψ. If φ ∈ Df
Σ(Φ),

then there exists Φ′ ⊆f Φ, such that φ ∈ DΣ(Φ′). But Φ′ ⊆f Φ ⊆ Ψ, whence,

φ ∈Df
Σ(Ψ). Thus, Df

Σ(Φ) ⊆Df
Σ(Ψ) and Df is also monotone.

Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Df
Σ(Df

Σ(Φ)). Then,

there exists Φ′ ⊆f D
f
Σ(Φ), such that φ ∈ DΣ(Φ′). Since Φ′ ⊆ Df

Σ(Φ), for all
φ′ ∈ Φ′, there exists Φ′φ

′ ⊆f Φ, such that φ′ ∈DΣ(Φ′φ′). Hence, we get

φ ∈DΣ(Φ′) ⊆DΣ( ⋃
φ′∈Φ′

Φ′φ
′).

Since ⋃φ′∈Φ′ Φ′φ
′ ⊆f Φ, we get, by definition, φ ∈ Df

Σ(Φ). Thus, Df is also
idempotent.

Finally, to show finitarity, let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that
φ ∈ Df

Σ(Φ). Thus, there exists Φ′ ⊆f Φ, such that φ ∈ DΣ(Φ′). Then, by

definition, φ ∈ Df
Σ(Φ′). Thus, Df

Σ(Φ) = ⋃Φ′⊆fΦD
f
Σ(Φ′) and, hence, Df is a

finitary closure family on F.

To prove the last statement concerning structurality, assume that D is
structural. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), Φ ∪ {φ} ⊆ SEN♭(Σ), such
that φ ∈ Df

Σ(Φ). Then, there exists Φ′ ⊆f Φ, such that φ ∈DΣ(Φ′). Since D is
assumed structural, we get SEN♭(f)(φ) ∈ DΣ′(SEN♭(f)(Φ′)). But Φ′ being
a finite subset of Φ, SEN♭(f)(Φ′) is a finite subset of SEN♭(f)(Φ), whence,
SEN♭(f)(φ) ∈ Df

Σ′(SEN♭(f)(Φ)). This shows that Df is also structural. ∎

The following proposition provides a characterization of Df .

Proposition 652 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,D⟩ a π-structure based on F. Then Df is the largest finitary closure
family on F lying below D in the ≤ ordering.
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Proof: By Lemma 651, Df is a finitary closure family. By its definition
and the monotonicity of D, it is clear that Df ≤ D. To complete the proof,
suppose D′ is a finitary closure family on F, such that D′ ≤ D. Let Σ ∈∣Sign♭∣, Φ∪{φ} ⊆ SEN♭(Σ), such that φ ∈D′Σ(Φ). Since, by hypothesis, D′ is
finitary, there exists Φ′ ⊆f Φ, such that φ ∈ D′Σ(Φ′). Since, also by hypothesis,
D′ ≤ D, we get φ ∈DΣ(Φ′). Thus, since Φ′ ⊆f Φ, we get, by definition of Df ,

φ ∈ Df
Σ(Φ). Thus, D′ ≤ Df and, therefore, Df is the largest finitary closure

family below D. ∎

Corollary 653 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then Cf is the largest finitary closure
system on F lying below C in the ≤ ordering.

Proof: By Proposition 652, Cf is the largest finitary closure family lying
below C. But, by Lemma 651, it is a closure system on F. Hence, it is the
largest finitary closure system lying below C. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,D⟩ be a π-
structure based on F. We call Df the finitary companion of D. Moreover,
we set If = ⟨F,Df ⟩ and call it the finitary companion of I . Of course,
these terms apply, in particular, to the case of π-institutions.

We would like to provide an alternative characterization of the finitary
companion that is also very useful in various applications of the notion. With
an eye towards this goal, we make the following definitions.

Definition 654 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and T ∪ {T} ⊆ ThFam(I).

• T is called locally finitely generated if, for all Σ ∈ ∣Sign♭∣, there
exists ΦΣ ⊆f TΣ, such that TΣ = CΣ(ΦΣ).

• T is locally finitely generated if all its theory families are locally
finitely generated.

The following proposition provides a characterization of those sentence
families of a π-institution I that are theory families of its finitary companion.

Proposition 655 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and T ∈ SenFam(F). Then T ∈ ThFam(If)
if and only if, there exists a directed locally finitely generated collection {T i ∶
i ∈ I} ⊆ ThFam(I), such that

T =⋃
i∈I

T i.
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Proof: Let {T i ∶ i ∈ I} ⊆ ThFam(I) be a directed locally finitely generated
collection. Since it is locally finitely generated, we have, by definition, T i ∈
ThFam(If), for all i ∈ I. But, by Lemma 651, If is finitary. Thus, by
Proposition 112, it is continuous. Hence ⋃i∈I T i ∈ ThFam(If).

Suppose, conversely, that T ∈ ThFam(If). Set

T = {C(X) ∶X ≤lf T},
where ≤lf denotes the locally finite subfamily relation. It is clear, by its
definition, that T is locally finitely generated. Suppose C(X),C(Y ) ∈ T .
Then C(X ∪ Y ) ∈ T and, moreover, C(X),C(Y ) ≤ C(X ∪ Y ). Hence, T
is also directed. Finally, it is not difficult to see that T = ⋃T . Thus, the
declared characterization holds. ∎

9.3 π-Institutions & Companions: Hierarchy

In this section, we study how some of the properties that have been used to
build hierarchies of π-institutions are inherited by the finitary companion of
a π-institution from the π-institution itself and vice-versa. In some instances
the inheritance is immediate, but, in others, additional conditions need to
be imposed. We focus on the property of weak family algebraizability. That
is the reason of selecting the few properties studied here versus some of the
remaining properties introduced previously.

First, we show that protoalgebraicity is passed up to I from its finitary
companion If .

Lemma 656 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If = ⟨F,Cf ⟩ is protoalgebraic, then
so is I.

Proof: Suppose If is protoalgebraic. Then, by definition, the Leibniz op-
erator Ω ∶ ThFam(If) → ConSys∗(If) is monotone. Since Cf ≤ C, we have
ThFam(I) ⊆ ThFam(If). Therefore, the Leibniz operator Ω ∶ ThFam(I) →
ConSys∗(I) is also monotone. We conclude that I is protoalgebraic. ∎

Similarly, if If is family reflective, then so is I .

Lemma 657 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If = ⟨F,Cf ⟩ is family reflective, then
so is I.

Proof: Suppose If is family reflective. Then, by definition, the Leibniz
operator Ω ∶ ThFam(If) → ConSys∗(If) is order reflecting. Since Cf ≤ C,
we have ThFam(I) ⊆ ThFam(If). Therefore, a fortiori, the Leibniz operator
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Ω ∶ ThFam(I) → ConSys∗(I) is also order reflecting. We conclude that I is
family reflective. ∎

Combining Lemmas 656 and 657, we get that weak family algebraizability
for a π-institution is obtained, provided that its finitary companion has the
same property.

Proposition 658 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If If = ⟨F,Cf ⟩ is weakly family
algebraizable, then so is I.

Proof: Suppose If is weakly family algebraizable. Then it is protoalgebraic
and family reflective. Thus, by Lemmas 656 and 657, respectively, I is also
protoalgebraic and family reflective. Hence, by definition, I is weakly family
algebraizable. ∎

Now we turn to the question of the same properties passing down to
If from I . In this direction, additional conditions are needed to ensure
inheritance.

Given a directed family {T i ∶ i ∈ I} ⊆ ThFam(I) it is not, in general, the
case that ⋃i∈I T i is a theory family of I . However, as we saw in Proposition
112, this is always the case when I is a finitary π-institution.

Motivated by this consideration, we define the following property of the
Leibniz operator:

Definition 659 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Leibniz operator

Ω ∶ ThFam(I)→ ConSys∗(I)
is continuous if, for every directed family {T i ∶ i ∈ I} ⊆ ThFam(I), such
that ⋃i∈I T i ∈ ThFam(I),

Ω(⋃
i∈I

T i) =⋃
i∈I

Ω(T i).
It is easy to see that continuity implies protoalgebraicity.

Lemma 660 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If Ω ∶ ThFam(I)→ ConSys∗(I) is contin-
uous, then I is protoalgebraic.

Proof: Suppose Ω is continuous and let T,T ′ ∈ ThFam(I), such that T ≤ T ′.
Then T ′ = T ∪ T ′ and we get

Ω(T ) ∪Ω(T ′) = Ω(T ∪ T ′) = Ω(T ′).
Hence, Ω(T ) ≤ Ω(T ′) and I is protoalgebraic. ∎
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We saw in Lemma 656 that protoalgebraicity of the finitary companion
If of a π-institution I ensures that I is also protoalgebraic. We now see that
working over finite signature categories and imposing the stronger property
of continuity of the Leibniz operator on I ensure that If is protoalgebraic.

Lemma 661 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭

finite, and I = ⟨F,C⟩ a π-institution based on F. If Ω ∶ ThFam(I) →
ConSys∗(I) is continuous, then If is protoalgebraic.

Proof: Suppose that Ω is continuous on ThFam(I). Then, by Lemma 660, I
is protoalgebraic. To show that If is protoalgebraic, let T,T ′ ∈ ThFam(If),
such that T ≤ T ′. By Proposition 655, there exist directed locally finitely
generated collections {T i ∶ i ∈ I} ⊆ ThFam(I) and {T ′j ∶ j ∈ J} ⊆ ThFam(I),
such that

T =⋃
i∈I

T i and T ′ = ⋃
j∈J

T ′j.

Since, by hypothesis, T ≤ T ′, we get, for all i ∈ I, T i ≤ ⋃j∈J T ′j. Since Sign♭

is finite, T i is locally finitely generated and {T ′j ∶ j ∈ J} is directed, there
exists ji ∈ J , such that T i ≤ T ′ji, for all i ∈ I. Now we get

Ω(T ) = Ω(⋃i∈I T i) (T = ⋃i∈I T i)
= ⋃i∈I Ω(T i) (Ω continuous)
≤ ⋃i∈I Ω(T ′ji) (T i ≤ T ′ji and protoalgebraicity)
≤ ⋃j∈J Ω(T ′j) (Set Theory)
= Ω(⋃j∈J T ′j) (Ω continuous)
= Ω(T ′). (T ′ = ⋃j∈J T ′j)

Thus, If is protoalgebraic. ∎

Lemma 661 allows us to prove the following result, giving sufficient con-
ditions for weak family algebraizability to be inherited by the finitary com-
panion If from a π-institution I .

Definition 662 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a weakly family algebraizable π-institution based on F. The inverse
Ω−1 ∶ ConSys∗(I) → ThFam(I) of the Leibniz operator is continuous if,
for every directed family {θi ∶ i ∈ I} ⊆ ConSys∗(I), such that ⋃i∈I θi ∈
ConSys∗(I),

Ω−1(⋃
i∈I

θi) =⋃
i∈I

Ω−1(θi).
Theorem 663 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭

finite, and I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F.
If

ThFam(I) Ω✲✛
Ω−1

ConSys∗(I)
are continuous, then If is also weakly family algebraizable.
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Proof: By Lemma 661, If is protoalgebraic. Thus, it suffices to show that If

is also family injective. To this end, let T,T ′ ∈ ThFam(If), such that Ω(T ) =
Ω(T ′). By Proposition 655, there exist directed locally finitely generated
collections {T i ∶ i ∈ I} ⊆ ThFam(I) and {T ′j ∶ j ∈ J} ⊆ ThFam(I), such that

T =⋃
i∈I

T i and T ′ = ⋃
j∈J

T ′j.

Now we work as follows:

T = ⋃i∈I T i

= ⋃i∈I Ω−1(Ω(T i))
= Ω−1(⋃i∈I Ω(T i))

(⋃i∈I Ω(T i) ∈ ConSys∗(I) and Ω−1 continuous)
= Ω−1(Ω(⋃i∈I T i))

(⋃i∈I T i ∈ ThFam(I) and Ω continuous)
= Ω−1(Ω(⋃j∈J T ′j)) (Ω(T ) = Ω(T ′))
= Ω−1(⋃j∈J Ω(T ′j))

(⋃j∈J T ′j ∈ ThFam(I) and Ω continuous)
= ⋃j∈J Ω−1(Ω(T ′j))

(⋃j∈J Ω(T ′j) ∈ ConSys∗(I) and Ω−1 continuous)
= ⋃j∈J T ′j

= T ′.

Hence, If is family injective and, thus, weakly family algebraizable. ∎

9.4 Finitarity and Continuity

In this section, we establish some results pertaining to the finitarity of weakly
family algebraizable π-institutions. We stay with semantic notions, using the
Leibniz operator, and aim at establishing relations between various aspects
of finitarity.

We begin by showing that the finitarity of a weakly family algebraizable
π-institution I entails the continuity of the inverse Leibniz operator on the
I∗-congruence systems on F .

Proposition 664 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a weakly family algebraizable π-institution based on F. If I is finitary,
then Ω−1 ∶ ConSys∗(I)→ ThFam(I) is continuous.

Proof: Suppose that {θi ∶ i ∈ I} ⊆ ConSys∗(I) is directed, such that ⋃i∈I θi ∈
ConSys∗(I). Since {θi ∶ i ∈ I} ⊆ ConSys∗(I), there exist T i ∈ ThFam(I),
such that θi = Ω(T i), for all i ∈ I. Note that, since, by Theorem 296, Ω is an
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order isomorphism, {T i ∶ i ∈ I} is also directed. Moreover, since I is finitary,
we have, by Proposition 112, ⋁i∈I T i = ⋃i∈I T i. Hence, we get

⋃i∈I θi = ⋁i∈I θi (⋃i∈I θi ∈ ConSys∗(I))
= ⋁i∈I Ω(T i) (θi = Ω(T i))
= Ω(⋁i∈I T i) (Ω order isomorphism)
= Ω(⋃i∈I T i). (I finitary)

From this, we get
Ω−1(⋃

i∈I

θi) =⋃
i∈I

T i =⋃
i∈I

Ω−1(θi).
Hence Ω−1 is indeed continuous. ∎

Next, we show that the finitarity of the π-structure QK = ⟨F,DK⟩, where
K = AlgSys(I), for a weakly family algebraizable π-institution I , entails the
continuity of the Leibniz operator on the collection of theory families of I .

Proposition 665 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F. If QK

is finitary, for K = AlgSys(I), then Ω ∶ ThFam(I)→ ConSys∗(I) is continu-
ous.

Proof: Suppose that {T i ∶ i ∈ I} ⊆ ThFam(I) is directed, such that ⋃i∈I T i ∈
ThFam(I). Since {T i ∶ i ∈ I} ⊆ ThFam(I), Ω(T i) ∈ ThFam(QK), where
K = AlgSys(I). Moreover, since, by Theorem 296, Ω is an order isomorphism,{Ω(T i) ∶ i ∈ I} is also directed. Hence, since QK is finitary, by Proposition
112, we have ⋁i∈I Ω(T i) = ⋃i∈I Ω(T i). Hence, we get

Ω(⋃i∈I T i) = Ω(⋁i∈I T i) (⋃i∈I T i ∈ ThFam(I))
= ⋁i∈I Ω(T i) (Ω order isomorphism)
= ⋃i∈I Ω(T i). (QK finitary)

Hence, Ω is continuous. ∎

We saw in Proposition 664 that finitarity of a weakly family algebraizable
π-institution I entails the continuity of the inverse Leibniz operator. If, to
the finitarity of I , we add continuity of the Leibniz operator Ω, then finitarity
of QK is ensured, where K = AlgSys(I).
Proposition 666 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F. If I is
finitary, and Ω ∶ ThFam(I) → ConSys∗(I) is continuous, then QK, where
K = AlgSys(I), is also finitary.

Proof: Assume that I is a finitary, weakly family algebraizable π-institution
and that Ω is continuous. Let {θi ∶ i ∈ I} ⊆ ConSys∗(I) be a directed family
of congruence systems. Then, there exist {T i ∶ i ∈ I} ⊆ ThFam(I), such that
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Ω(T i) = θi, for all i ∈ I. Moreover, since {θi ∶ i ∈ I} is directed and Ω is,
by Theorem 296, an order isomorphism, {T i ∶ i ∈ I} is also directed. Hence,
since I is finitary, by Proposition 112, ⋁i∈I T i = ⋃i∈I T i. Now we have

⋁i∈I θi = ⋁i∈I Ω(T i) (Ω(T i) = θi)
= Ω(⋁i∈I T i) (Ω order isomorphism)
= Ω(⋃i∈I T i) (I finitary)
= ⋃i∈I Ω(T i) (Ω continuous)
= ⋃i∈I θi. (Ω(T i) = θi)

Thus, ConSys∗(I) is closed under directed unions and, therefore, by Propo-
sition 112, QK is finitary. ∎

Dually, we have seen in Proposition 665 that if QK is finitary, where
K = AlgSys(I), then Ω is continuous. If, to the finitarity of QK, we add the
continuity of Ω−1, then, finitarity of I is ensured.

Proposition 667 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a weakly family algebraizable π-institution based on F. If QK

is finitary, where K = AlgSys∗(I), and Ω−1 ∶ ConSys∗(I) → ThFam(I) is
continuous, then I is also finitary.

Proof: Assume that I is a weakly family algebraizable π-institution, such
that QK, K = AlgSys(I), is finitary, and that Ω−1 is continuous. Let {T i ∶ i ∈
I} ⊆ ThFam(I) be a directed collection of theory families. Then, since, by
Theorem 296, Ω is an order isomorphism, {Ω(T i) ∶ i ∈ I} is a directed family
of congruence systems. Since QK is finitary, by Proposition 112, ⋁i∈I Ω(T i) =
⋃i∈I Ω(T i). Now we have

⋁i∈I T i = Ω−1(Ω(⋁i∈I T i)) (Ω isomorphism)
= Ω−1(⋁i∈I Ω(T i)) (Ω order isomorphism)
= Ω−1(⋃i∈I Ω(T i)) (QK finitary)
= ⋃i∈I Ω−1(Ω(T i)) (Ω−1 continuous)
= ⋃i∈I T i. (Ω isomorphism)

Thus, ThFam(I) is closed under directed unions and, hence, by Proposition
112, I is finitary. ∎

Gathering together all conclusions drawn during the studies undertaken
in this section, we get the following

Corollary 668 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a weakly family algebraizable π-institution based on F and set K = AlgSys(I).

(a) If both Ω and Ω−1 are continuous, then I is finitary if and only if QK

is finitary.
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(b) If I is finitary, then QK is finitary if and only if Ω ∶ ThFam(I) →
ConSys∗(I) is continuous.

(c) If QK is finitary, then I is finitary if and only if Ω−1 ∶ ConSys∗(I) →
ThFam(I) is continuous.

In each of (a)-(c), if the two equivalent conditions hold, then all four finitarity
conditions hold.

Proof:

(a) Suppose Ω and Ω−1 are continuous. Then, if I is finitary, QK is fini-
tary, by Proposition 666, and if QK is finitary, then I is finitary, by
Proposition 667.

(b) Suppose that I is finitary. Then, by Proposition 664, Ω−1 is continuous.
If QK is finitary, then Ω is continuous, by Proposition 665. On the other
hand, if Ω is continuous, then QK is finitary, by Proposition 666.

(c) Suppose that QK is finitary. Then, by Proposition 665, Ω is continuous.
If I is finitary, then Ω−1 is continuous, by Proposition 664. On the other
hand, if Ω−1 is continuous, then I is finitary, by Proposition 667.

We turn to the last statement. For Part (a), assume that I and QK are
finitary. Then, we get, by Propositions 664 and 665, that Ω and Ω−1 are
continuous. For Part (b), if I is finitary, QK is finitary and Ω ∶ ThFam(I)→
ConSys∗(I) is continuous, then, by Proposition 664, Ω−1 is continuous. A
similar reasoning applies to Part (c). ∎

We summarize our conclusions in the accompanying diagram. At the
bottom is situated the underlying assumption (holding at all levels) that I
is weakly family algebraizable. The top consists of the situation in which
all four finitarity conditions hold, i.e., both I and QK, for K = AlgSys(I),
are finitary and both Ω and Ω−1 are continuous. The intermediate classes
constitute the various different intermediate possibilities that were detailed
previously.

I ,QK finitary
Ω,Ω−1 continuous

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

QK finitary
Ω and Ω−1

continuous

❄

I finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

Ω continuous
❄

Ω−1 continuous
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

I weakly family
algebraizable
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This diagram is a modified version of the one shown in Figure 3 of Section 3.4
of [86]. Instead of dealing with sentential logics, it concerns the more general
case of π-institutions and, instead of being expressed in terms of syntactic
constructs (which in the case of sentential logics turn out to be equivalent),
it relies entirely on corresponding properties of the Leibniz operator and its
inverse. These analogies and similarities will be exploited in the remainder
of the chapter to obtain examples that separate the various classes involved
in this hierarchy by adapting appropriate examples that serve an analogous
purpose in the framework of sentential logics.

9.5 The Case of Sentential Logics

In the Introduction and, briefly, in concluding Section 9.4, we pointed out
that the semantic finitarity hierarchy of π-institutions reflects the finitarity
hierarchy presented in Section 3.4 of [86], which is duplicated below.

S ,SK finitary
E,∆ finite

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

SK finitary E,∆ finite
❄

S finitary

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

∆ finite
❄

E finite
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

S algebraizable
via K,∆,E

In [86], Font presents examples of sentential logics to separate the classes in
this hierarchy. In this section, we revisit some of them in detail and, then,
rely on them in Section 9.6 to separate the classes of π-institutions shown
in the hierarchy of Section 9.4. We provide, now, a brief overview of the
examples chosen and what each accomplishes, before describing them in full
detail.

The first example we present is  Lukasiewicz’s infinite valued logic  L∞.
This logic is introduced in Example 1.12 of Section 1.2 of [86]. In Example
1.15, in the same section, in conjunction with Exercise 1.26 of [86], it is shown
that it is not finitary. On the other hand, in Example 3.41 of Section 3.4
of [86], it is shown that it is finitely algebraizable, with defining equations
E(x) = {x ≈ ⊺} and equivalence formulas ∆(x, y) = {x → y, y → x}, both
finite. Thus,  L∞ serves in showing that the three vertical arrows in the
preceding diagram represent proper inclusions. As Font points out in [86],
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more information about  L∞ and similar logics may be found in specialized
references, such as [61, 65, 56] and Chapters 1, 2 and 6 of [83].

The second example that Font presents in Section 3.4 of [86] is Her-
rmann’s Last Judgement Logic LJ [53]. This is a finitary logic which is
syntactically defined and which is algebraizable with a single defining equa-
tion E(x) = {¬x ≈ ¬(x → x)} and an infinite set of equivalence formulas
∆(x, y) = {◻n(x → y) ≈ ◻n(y → x) ∶ n ≥ 0}. So this logic serves to separate
all classes related by southeast arrows in the diagram. The same separations
may be attained by a logic introduced by Dellunde in [48]. Dellunde’s logic
is actually the logic we opt to present as our second example. Here, we shall
name it Dellunde’s Logic D.

The last example, presented in Section 3.4 of [86] is a logic introduced
by Raftery in [82]. This is a semantically defined logic which is not finitary
but is algebraizable via a finitary equational consequence, with an infinite set
of defining equations and a single equivalence formula. So this logic, which
we shall refer to as Raftery’s Logic R, shows that all southwest arrows in
the diagram represent proper inclusions. This will be the third, and last
example, presented in detail in this section.

9.5.1  Lukasiewicz’s Infinite Valued Logic

We begin with  Lukasiewicz’s infinite valued logic  L∞. Define an algebra
A = ⟨A,∧,∨,→,¬⟩ as follows:

• The universe A is the unit interval A = [0,1].
• The operations are defined, for all a, b ∈ A, by:

– a ∧ b = min {a, b};
– a ∨ b = max{a, b};
– a→ b =min {1,1 − a + b} = { 1, if a ≤ b

1 − a + b, if a > b
;

– ¬a = 1 − a.

 Lukasiewicz’s infinite valued logic  L∞ = ⟨L,⊢∞⟩ is the sentential logic
over the language L = {∧,∨,→,¬} defined, for all Γ ∪ {ϕ} ⊆ FmL(V ), by

Γ ⊢∞ ϕ iff for every homomorphism h ∶ FmL(V )→A,
h(Γ) ⊆ {1} implies h(ϕ) = 1.

Over the same language L, we define the derived binary connective ⊕ by
setting

x⊕ y ∶= ¬x → y.

This operation satisfies some key properties.
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Lemma 669 For all a, b ∈ A,

a⊕ b = { 1, if a + b ≥ 1,
a + b, if a + b < 1

.

Proof: Let a, b ∈ A. We perform a straightforward calculation using the
definitions of the operations in A.

a⊕ b = ¬a → b = (1 − a)→ b

= { 1, if 1 − a ≤ b
1 − (1 − a) + b, if 1 − a > b

} = { 1, if a + b ≥ 1
a + b, if a + b < 1

.

∎

Lemma 669 helps us establish the following

Lemma 670 For all a ∈ A and all n ≥ 2,

a⊕⋯⊕ a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

= { 1, if a ≥ 1
n

na, if a < 1
n

.

Proof: We use induction on n. Lemma 669 guarantees that the formula
holds for n = 2. Assume that the formula holds for some n ≥ 2. Then, we get

a⊕⋯⊕ a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1

= (a⊕⋯⊕ a)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

⊕a = { 1⊕ a, if a ≥ 1
n(na)⊕ a, if a < 1
n

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if a ≥ 1

n

1, if (n + 1)a ≥ 1(n + 1)a, if (n + 1)a < 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= { 1, if a ≥ 1

n+1(n + 1)a, if a < 1
n+1

.

∎

We now show that  L∞ is not finitary.

Theorem 671  Lukasiewicz’s infinite valued logic  L∞ is not finitary.

Proof: We set

Φ = {(x⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y ∶ n ≥ 2} ∪ {¬x → y}.

We show that Φ ⊢∞ y, but Φ0 /⊢∞ y, for any finite Φ0 ⊆ Φ.
Suppose h ∶ FmL(V )→A is such that

h(¬y → x) = 1 and h((x ⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y) = 1, for all n ≥ 2.

By definition, these imply that h(x) + h(y) ≥ 1 and h(x⊕⋯⊕ x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

) ≤ h(y), for

all n ≥ 2.
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• If h(x) = 0, then, by the first inequality, h(y) = 1.

• If h(x) ≠ 0, then h(x) ≥ 1
n
, for some n > 0. In this case, h(x⊕⋯⊕ x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

) =
1, whence, by the second inequality, h(y) = 1.

Since, in either case, h(y) = 1, we get that Φ ⊢∞ y.
To refute finitarity, assume, towards obtaining a contradiction, that, for

some finite Φ0 ⊆ Φ, Φ0 ⊢∞ y. Then, there exists k ≥ 2, such that

{(x⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y ∶ 2 ≤ n ≤ k} ∪ {¬x→ y} ⊢∞ y.

Consider a homomorphism h ∶ FmL(V )→A, such that

h(x) = 1

k + 1
and h(y) = k

k + 1
.

Then, we have

h(¬x → y) = (1 − h(x))→ y = k
k+1 →

k
k+1 = 1;

h((x ⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

→ y) = h((x ⊕⋯⊕ x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

)→ h(y) n<k+1= n
k+1 →

k
k+1

n≤k= 1.

On the other hand, h(y) = k
k+1 ≠ 1. Therefore, Φ0 /⊢∞ y, contrary to hypoth-

esis. We conclude that  L∞ is not a finitary sentential logic. ∎

Our final result pertaining to this logic is that it is algebraizable, via
the class {A}, with defining equation E(x) = {x ≈ ⊺}, where ⊺ ∶= x → x

(interpreted as 1), and equivalence formulas ∆(x, y) = {x → y, y → x}. In
the proof, we will rely on the general theory of algebraizable logics (see, e.g.,
Sections 3.2 and 6.5 of [86] or Section 4.5 of [64]).

Theorem 672  Lukasiewicz’s infinite value logic  L∞ is algebraizable via the
class {A}, with defining equations E(x) = {x ≈ ⊺} and equivalence formulas
∆(x, y) = {x→ y, y → x}.
Proof: According to the general theory of algebraizability, it suffices to show
that, for all Γ ∪ {ϕ,ψ} ⊆ FmL(V ),

Γ ⊢∞ ϕ iff {γ ≈ ⊺ ∶ γ ∈ Γ} ⊧A ϕ ≈ ⊺,
ϕ ≈ ψ â⊧A {ϕ→ ψ ≈ ⊺, ψ → ϕ ≈ ⊺}.

For the first, note that

Γ ⊢∞ ϕ iff (∀h ∶ FmL(V )→A)(h(Γ) ⊆ {1} implies h(ϕ) = 1)
iff (∀h ∶ FmL(V )→A)((∀γ ∈ Γ)(h(γ) = 1) implies h(ϕ) = 1)
iff {γ ≈ ⊺ ∶ γ ∈ Γ} ⊧A ϕ ≈ ⊺.
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Finally, noting that, for all h ∶ FmL(V ) → A, we have h(ϕ → ψ) = 1 iff
h(ϕ) ≤ h(ψ), we get

h(ϕ) = h(ψ) iff h(ϕ→ ψ) = h(ψ → ϕ) = 1,

whence ϕ ≈ ψ â⊧A {ϕ→ ψ ≈ ⊺, ψ → ϕ ≈ ⊺}. The conclusion now follows. ∎

9.5.2 Dellunde’s Logic

We switch to the second example of the section, a logic due to Dellunde [48].

Let L = {↔,◻} be the algebraic language consisting of a binary operation
↔ and a unary operation ◻. Dellunde’s logic D = ⟨L,⊢D⟩ is the logic over
the language L defined by the following Hilbert style calculus, where x, y and
x1, y1, x2, y2 denote distinct variables:

(1) ⊢D x↔ x;

(2) x,x↔ y ⊢D y;

(3) x, y ⊢D ◻nx↔ ◻ny, for all n ∈ ω;

(4) x1 ↔ y1, x2 ↔ y2 ⊢D ◻n(x1 ↔ x2)↔ ◻n(y1 ↔ y2), for all n ∈ ω.

Since D is defined via a Hilbert calculus, it is finitary. We further define

∆(x, y) = {◻nx↔ ◻ny ∶ n ∈ ω}.
Dellunde shows that D is 1-equivalential, which implies that it is regularly
algebraizable [53].

Theorem 673 Dellunde’s logic D = ⟨L,⊢D⟩ is regularly algebraizable.

Proof: It suffices to show that, for distinct variables x, y, x1, y1, x2, y2, the
following hold:

(R) ⊢D ∆(x,x);
(MP) x,∆(x, y) ⊢D y;

(RP) ∆(x, y) ⊢D ∆(◻x,◻y) and

∆(x1, y1),∆(x2, y2) ⊢D ∆(x1 ↔ x2, y1↔ y2);
(RG) x, y ⊢D ∆(x, y).
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By (1), we have ⊢D x ↔ x. By structurality, ⊢D ◻nx ↔ ◻nx, for all n ∈ ω.
That is, ⊢D ∆(x,x). So (R) holds.

Rule (2) assures that x,x ↔ y ⊢D y. Now, note that x ↔ y ∈ ∆(x, y)
and apply monotonicity of entailment to get x,∆(x, y) ⊢D y. That is, (MP)
holds.

The first rule in (RP) is a consequence of monotonicity, since

∆(◻x,◻y) = {◻n ◻ x↔ ◻n ◻ y ∶ n ∈ ω}
= {◻nx↔ ◻ny ∶ n ≥ 1}
⊆ {◻nx↔ ◻ny ∶ n ∈ ω}
= ∆(x, y).

For the second rule in (RP), note that (4) gives x1 ↔ y1, x2 ↔ y2 ⊢D ∆(x1 ↔
x2, y1 ↔ y2). On the other hand, x1 ↔ y1 ∈∆(x1, y1) and x2 ↔ y2 ∈ ∆(x2, y2).
Therefore, we conclude that ∆(x1, y1),∆(x2, y2) ⊢D ∆(x1 ↔ x2, y1 ↔ y2),
whence (RP) holds.

Finally, note that, by (3), (RG) holds.
We conclude that D is regularly algebraizable, with a singleton set of

defining equations E(x) = {x ≈ ⊺}, where ⊺ ∶= x ↔ x is a unary term inter-
preted as the unique element of the D-filter of any reduced D-matrix, and
set of equivalence formulas ∆(x, y). ∎

Finally, Dellunde shows that D is not finitely equivalential, i.e., that there
does not exist a finite subset ∆0 ⊆ ∆ that can also serve as a set of equivalence
formulas. In relation to this, see Lemma 3.36 in Section 3.4 of [86].

Theorem 674 Dellunde’s logic D = ⟨L,⊢D⟩ is not finitely equivalential, i.e.,
there exists no finite ∆0 ⊆ ∆ which is also a set of equivalence formulas for
D.

Proof: Assume, towards a contradiction, that there exists finite ∆0 ⊆ ∆,
which serves as a set of equivalence formulas for D. Then, there exists a
maximum m ∈ ω, such that ◻mx↔ ◻my ∈ ∆0. To obtain a contradiction, we
construct a D-matrix A = ⟨A, F ⟩ and choose elements c, d ∈ A, such that

∆A
0 (c, d) ⊆ F but ⟨c, d⟩ ∉ ΩA(F ).

As a preparatory step in defining the L-algebra A, we define on ω × ω the
following equivalence relation:

R = Idω×ω ∪ {⟨⟨i, j⟩, ⟨k, ℓ⟩⟩ ∶ i = k, i < j, k < ℓ}.
The algebra A = ⟨A,↔A,◻A⟩ is defined as follows:

• A = ω × ω;

• The operations are defined, for all i, j ∈ ω and all a, b ∈ ω × ω,



674 CHAPTER 9. SEMANTIC HIERARCHY VII Voutsadakis

– ◻A(⟨i, j⟩) = ⟨i + 1, j⟩;
– ↔A (a, b) = { ⟨1,0⟩, if ⟨a, b⟩ ∈ R⟨0,0⟩, if ⟨a, b⟩ ∉ R .

The filter F = {⟨1,0⟩} and the elements c, d ∈ A are chosen as c = ⟨0,m+1⟩ and
d = ⟨0,m + 2⟩, where, recall that, m = max{k ∶ ◻kx↔ ◻ky ∈∆0}. It suffices,
now, to show the following:

(a) A = ⟨A, F ⟩ is a D-matrix, i.e., F is closed under all D-rules;

(b) ∆A
0 (c, d) ⊆ F ;

(c) ⟨c, d⟩ ∉ ΩA(F ).
For (a), let h ∶ FmL(V )→A be arbitrary. Then:

• For all n ∈ ω, h(◻nx↔ ◻nx) = h(◻nx)↔A h(◻nx) = ⟨1,0⟩ ∈ F .

• Suppose h(x) = ⟨1,0⟩ and h(x ↔ y) = ⟨1,0⟩. So h(x) = ⟨1,0⟩ and
h(x) ↔A h(y) = ⟨1,0⟩. Since h(x) = ⟨1,0⟩ and 1 /< 0, we get h(x) =
h(y). So, h(y) = ⟨1,0⟩ ∈ F .

• If h(x) = h(y) = ⟨1,0⟩, then h(◻nx) = ◻An
h(x) = ◻An

h(y) = h(◻ny),
whence, h(◻nx↔ ◻ny) = h(◻nx)↔A h(◻ny) = ⟨1,0⟩ ∈ F .

• If h(x1 ↔ y1) = h(x2 ↔ y2) = ⟨1,0⟩, then, since R is an equivalence
relation, it follows from

h(x1) R h(y1)

h(x2)
R....

....

R h(y2)
R....

....

that ⟨h(x1), h(x2)⟩ ∈ R iff ⟨h(y1), h(y2)⟩ ∈ R, i.e., that

h(x1 ↔ x2) = h(y1 ↔ y2) = { ⟨1,0⟩, if ⟨h(x1), h(x2)⟩ ∈ R⟨0,0⟩, if ⟨h(x1), h(x2)⟩ ∉ R .

Then, we obtain, for all n ∈ ω, h(◻n(x1 ↔ x2)) = h(◻n(y1 ↔ y2)),
which yields that h(◻n(x1 ↔ x2)↔ ◻n(y1 ↔ y2)) = ⟨1,0⟩.

Thus, A is indeed a D-matrix.
For (b), suppose ◻kx↔ ◻ky ∈ ∆0, i.e., k ≤m. Then, we have

◻Ak
c↔A ◻Ak

d = ◻Ak⟨0,m + 1⟩↔A ◻Ak⟨0,m + 2⟩
= ⟨k,m + 1⟩↔A ⟨k,m + 2⟩
= ⟨1,0⟩.
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So, ∆A
0 (c, d) ⊆ F .

Finally, for (c), observe that

◻Am+1
c↔A ◻Am+1

d = ◻Am+1⟨0,m + 1⟩↔A ◻Am+1⟨0,m + 2⟩
= ⟨m + 1,m + 1⟩↔A ⟨m + 1,m + 2⟩
= ⟨0,0⟩ ∉ F.

Therefore, by Theorem 673 and the general theory of algebraizability, ⟨c, d⟩ ∉
ΩA(F ).

The conjunction of assertions (a), (b) and (c) shows that ∆0 is not a
set of equivalence formulas for D and, consequently, taking into account the
finitarity of D and Lemma 3.36 of Section 3.4 of [86], D does not possess a
finite set of equivalence formulas. ∎

9.5.3 Raftery’s Logic

Finally, we turn to a detailed description of Raftery’s logic [82].
The construction unfolds in several stages. It starts with the set

B = {0,1} ∪ ({0,1} × {0,1})ω
consisting of the bits 0 and 1 and of infinite sequences of pairs of bits. On
this set B, three unary operations π1, π2 and ◊ are defined by setting, for all
b ∈ {0,1} and all ⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩ ∈ ({0,1} × {0,1})ω,

π1(b) = b, π1(⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩) = b0;
π2(b) = b, π2(⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩) = b′0;

◊b = b, ◊(⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩) = ⟨⟨b1, b′1⟩, ⟨b2, b′2⟩, . . .⟩.
In the next stage, Raftery constructs the universe A of the algebra A that
forms the algebraic reduct of the logical matrix used to define Raftery’s logic.
This is accomplished by closing under the formation of ordered pairs.

B[1] = B;
B[n] = (⋃0<m<nB

[m]) × (⋃0<m<nB
[m]), n > 1;

and, finally,

A = ⋃
0<n∈ω

B[n].

First, observe that no element of B is an ordered pair and that every element
of A −B is an ordered pair.

To define the algebra A, the operations introduced previously on B are
extended on A. We set, for all ⟨a, a′⟩ ∈ A −B,

π1(⟨a, a′⟩) = a, π2(⟨a, a′⟩) = a′, ◊⟨a, a′⟩ = ⟨a, a′⟩.
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To complete the specification of A, we add a “pair forming” binary operation
↔, defined, for all a, a′ ∈ A, by

a↔ a′ = ⟨a, a′⟩.
So the algebra used to specify Raftery’s logic is A = ⟨A,↔, π1, π2,◊⟩. It is
easy to check that A satisfies the equations

π1(x↔ y) ≈ x,

π2(x↔ y) ≈ y,

◊(x↔ y) ≈ x↔ y.

We now define two logical systems semantically. The first is defined via a
logical matrix with underlying algebra A. We define the matrix A = ⟨A,D⟩,
where D is the set of so-called “diagonal elements” of A, i.e., the elements

• 0 and 1;

• ⟨⟨b0, b0⟩, ⟨b1, b1⟩, . . .⟩, for b0, b1, . . . ∈ {0,1};
• ⟨a, a⟩, for a ∈ A.

This matrix A specifies the logic SA = ⟨L,⊢A⟩ in the standard way, i.e., for
all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢A ϕ iff for every h ∶ FmL(V )→A,
h(Γ) ⊆D implies h(ϕ) ∈D.

The second logical system is defined using a variety V of L-algebras, for
L = {↔, π1, π2,◊}, namely the variety axiomatized by the three equations

π1(x↔ y) ≈ x,

π2(x↔ y) ≈ y,

◊(x↔ y) ≈ x↔ y.

We set δi(x) = π1(◊ix) and εi(x) = π2(◊ix) and define Raftery’s logic
R = ⟨L,⊢R⟩ by setting, for all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢R ϕ iff (δ ≈ ε)(Γ) ⊧V (δ ≈ ε)(φ),
i.e., Γ ⊢R ϕ iff, for every A ∈ V , all h ∶ FmL(V )→A and all j ∈ ω,

δAi (h(γ)) = εAi (h(γ)), for all i ∈ ω, γ ∈ Γ,
implies δAj (h(ϕ)) = εAj (h(ϕ)).

The first result relating the logics SA and R asserts that the latter is a
weakening of the former.

Lemma 675 Raftery’s logic R = ⟨L,⊢R⟩ is a weakening of SA = ⟨L,⊢A⟩.



Voutsadakis CHAPTER 9. SEMANTIC HIERARCHY VII 677

Proof: Since, as remarked previously, A satisfies the three equations axiom-
atizing the variety V , we get that A ∈ V . Consequently, it suffices to show
that for all a ∈ A,

a ∈D iff δAi (a) = ǫAi (a), for all i ∈ ω.

Suppose, first, that a ∈D.

• If a ∈ {0,1}, then δAi (a) = πA
1 (a)(◊Ai

a) = πA
1 (a) = a = πA

2 (a) =
πA
2 (a)(◊Ai

a) = εAi (a).
• If a = ⟨⟨b0, b0⟩, ⟨b1, b1⟩, . . .⟩, then

δAi (a) = πA
1 (◊Ai

a) = πA
1 (⟨⟨bi, bi⟩, ⟨bi+1, bi+1⟩, . . .⟩) = bi

= πA
2 (⟨⟨bi, bi⟩, ⟨bi+1, bi+1⟩, . . .⟩) = πA

2 (◊Ai
a) = εAi (a).

• If a = ⟨a′, a′⟩, with a′ ∈ A, then

δAi (⟨a′, a′⟩) = πA
1 (◊Ai⟨a′, a′⟩) = πA

1 (⟨a′, a′⟩) = a′
= πA

2 (⟨a′, a′⟩) = πA
2 (◊Ai⟨a′, a′⟩) = εAi (⟨a′, a′⟩).

Assume, conversely, that δAi (a) = εAi (a), for all i ∈ ω. This means πA
1 (◊Ai

a) =
πA
2 (◊Ai

a), for all i ∈ ω. if a = 0 or a = 1, there is nothing to prove. If
a = ⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩, then the i-th equation gives bi = b′i. So we conclude
that a ∈ D. Finally, if a = ⟨a′, a′′⟩, for some a′, a′′ ∈ A, then the equations
ensure that a′ = a′′ and, therefore, a = ⟨a′, a′′⟩ ∈ D. ∎

To verify that Raftery’s logic accomplishes its mission, one has to establish
that it is not finitary, but that it is algebraizable with the variety V as its
equivalent algebraic semantics. Then, by Theorem 3.37 and Corollary 3.38
of Section 3.4 of [86], it becomes clear that the algebraization of R is carried
out by a necessarily infinite set of defining equations and a set of equivalence
formulas that may be taken to be finite. We formalize the second statement
first.

Theorem 676 (Fact 9 of [82]) Raftery’s logic R = ⟨L,⊢R⟩ is algebraizable
with equivalent algebraic semantics V via the set of defining equations δ(x) ≈
ε(x) = {δi(x) ≈ εi(x) ∶ i ∈ ω} and the equivalence formula ∆(x, y) = {x↔ y}.
Proof: By the definition of ⊢R, for all Γ ∪ {ϕ} ⊆ FmL(V ),

Γ ⊢R ϕ iff (δ ≈ ε)(Γ) ⊧V (δ ≈ ε)(ϕ).
Moreover, for all ϕ,ψ ∈ FmL(V ),

(δ ≈ ε)(ϕ↔ ψ) = π1(◊i(ϕ↔ ψ)) ≈ π2(◊i(ϕ↔ ψ)), i ∈ I
â⊧V π1(ϕ↔ ψ) ≈ π2(ϕ↔ ψ)

(since V ⊧ ◊(x↔ y) ≈ x↔ y)
â⊧V ϕ ≈ ψ

(since V ⊧ π1(x↔ y) ≈ x
and V ⊧ π2(x↔ y) ≈ y).
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By the general theory of algebraizable logics, these two conditions suffice to
guarantee the conclusion. ∎

And, finally, we show that R is not finitary.

Theorem 677 (Fact 10 of [82]) The logics SA = ⟨L,⊢A⟩ and R = ⟨L,⊢R⟩
are not finitary.

Proof: Note that the two conditions established in the proof of Theorem
676, which suffice to establish algebraizability, imply, by the general theory
of algebraizability (see, e.g., Exercise 39 of Section 3.2 of [86]), that

{δi(x)↔ εi(x) ∶ i ∈ ω} ⊢R x
also holds. In addition, since, by Lemma 675, R ≤ SA,

{δi(x)↔ εi(x) ∶ i ∈ ω} ⊢A x.
So to prove that SA and R are not finitary, it suffices to show that, for no
finite K ⊆ ω is it the case that {δk(x)↔ εk(x) ∶ k ∈K} ⊢A x.

Let j ∈ ω −K and consider a = ⟨⟨b0, b′0⟩, ⟨b1, b′1⟩, . . .⟩ ∈ B − {0,1}, such that
bk = b′k, for all k ∈K, but bj ≠ b′j . Now, we compute

δAi (a)↔A εAi (a) = πA
1 (◊Ai

a)↔A πA
2 (◊Ai

a) = bi↔A b′i,

whence, (δk ↔ εk)A(a) ∈ D, for all k ∈K, whereas, since (δj ↔ εj)A(a) ∉ D,
by what was proven in Lemma 675, a ∉D. This shows that {δk(x)↔ εk(x) ∶
k ∈K} /⊢A x. Hence SA and, a fortiori, R are not finitary. ∎

So, the logic R does indeed attain the goal of discovering a non-finitary
logic that is elementarily algebraizable (i.e., has a finitary equivalent algebraic
semantics).

9.6 Separating Classes of π-Institutions

Using the framework detailed in Section 1.1, we recast the three sentential
logics introduced in Section 9.5 as π-institutions and show that they provide
examples that serve to separate the classes of π-institutions appearing in the
steps of the finitarity hierarchy studied in Section 9.4.

In the first example, we recast  Lukasiewicz’s infinite valued logic as a
π-institution.

Example 678 Consider the algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ defined
as follows:

• Sign♭ is the trivial category with object Σ;
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• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = FmL(V ),
where L = {∧,∨,→,¬} is the language of  Lukasiewicz’s infinite valued
logic;

• N ♭ is the category of natural transformations generated by the binary
operations ∧,∨,→ ∶ (SEN♭)2 → SEN♭ and the unary operation ¬ ∶ SEN♭ →
SEN♭, defined as usual on the absolutely free algebra of formulas.

Now define the π-institution I = ⟨F,C⟩, where, for all Γ ∪ {ϕ} ⊆ SEN♭(Σ),
ϕ ∈ CΣ(Γ) iff Γ ⊢∞ ϕ.

By Theorem 671, I is not finitary. By Theorem 672 and the general theory
of algebraizable logics, for all T ∈ ThFam(I) and θ = ConSys∗(I),

ΩΣ(T ) = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ ϕ→ ψ,ψ → ϕ ∈ TΣ};

Ω−1Σ (θ) = {ϕ ∈ FmL(V ) ∶ ⟨ϕ,⊺⟩ ∈ θΣ}.
We show that the Leibniz operator Ω ∶ ThFam(I) → ConSys∗(I) and its
inverse Ω−1 ∶ ConSys∗(I) → ThFam(I) are continuous. Suppose {T i}i∈I ⊆
ThFam(I) is directed and that ⋃i∈I T i ∈ ThFam(I). Then we get, for all
ϕ,ψ ∈ FmL(V ),

⟨ϕ,ψ⟩ ∈ ΩΣ(⋃i∈I T i) iff ϕ→ ψ,ψ → ϕ ∈ ⋃i∈I T iΣ
iff ϕ→ ψ ∈ T iΣ, ψ → ϕ ∈ T jΣ, for some i, j ∈ I,
iff ϕ→ ψ,ψ → ϕ ∈ T kΣ, for some k ∈ I,
iff ⟨ϕ,ψ⟩ ∈ ΩΣ(T k), for some k ∈ I,
iff ⟨ϕ,ψ⟩ ∈ ⋃i∈I ΩΣ(T i).

The proof for Ω−1 is similar.
This π-institution serves to separate the classes connected by the three

vertical arrows in the diagram concluding Section 9.4.

The second example revisits Dellunde’s logic in a similar way.

Example 679 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = FmL(V ), where
L = {↔,◻} is the language of Dellunde’s logic;

• N ♭ is the category of natural transformations generated by the binary
operation ↔ ∶ (SEN♭)2 → SEN♭ and the unary operation ◻ ∶ SEN♭ →
SEN♭ defined as usual on the absolutely free algebra of formulas.
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Define the π-institution I = ⟨F,C⟩, by setting, for all Γ ∪ {ϕ} ⊆ FmL(V ),
ϕ ∈ CΣ(Γ) iff Γ ⊢D ϕ.

Since, as remarked in Section 9.5, Dellunde’s logic D is finitary, so is the
π-institution I. Moreover, by Theorem 673 and the general theory of alge-
braizable logics, for all T ∈ ThFam(I) and all θ ∈ ConSys∗(I), we have

ΩΣ(T ) = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ ◻nϕ↔ ◻nψ ∈ TΣ, for all n ∈ ω};

Ω−1Σ (θ) = {ϕ ∈ FmL(V ) ∶ ⟨ϕ,⊺⟩ ∈ θΣ}.
We show that Ω ∶ ThFam(I) → ConSys∗(I) is not continuous. Assume to
the contrary, and define, for all i ∈ ω, T i = {T iΣ}Σ∈∣Sign♭∣ by setting

T iΣ = CΣ({◻kx↔ ◻ky ∶ k ≤ i}).
Note the following:

(1) {T i}∞i=0 is directed;

(2) ⋃∞i=0 T i ∈ ThFam(I), since I is finitary;

(3) ⟨x, y⟩ ∈ ΩΣ(⋃∞i=0 T i), since ◻nx↔ ◻ny ∈ ⋃∞i=0 T iΣ, for all n ∈ ω.

By the hypothesized continuity of Ω, since ⟨x, y⟩ ∈ ⋃∞i=0 ΩΣ(T i), there exists
m ∈ ω, such that ⟨x, y⟩ ∈ ΩΣ(Tm). But this implies that, for all n >m,

◻nx↔ ◻ny ∈ CΣ({◻kx↔ ◻ky ∶ k ≤m}),
which contradicts what was shown in Theorem 674.

The π-institution I, constructed here, serves to separate the classes con-
nected by the southeast arrows in the finitarity hierarchy of π-institutions,
shown at the end of Section 9.4.

Finally, we formulate an example that employs Raftery’s logic R.

Example 680 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined as
follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is the functor specified by SEN♭(Σ) = FmL(V ),
where L = {↔, π1, π2,◊} is the language of Raftery’s logic;

• N ♭ is the category of natural transformations generated by the binary
operation ↔ ∶ (SEN♭)2 → SEN♭ and the unary operations π1, π2,◊ ∶
SEN♭ → SEN♭ defined as usual on the absolutely free algebra of formu-
las.
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Define the π-institution I = ⟨F,C⟩ by setting, for all Γ ∪ {ϕ} ⊆ FmL(V ),
ϕ ∈ CΣ(Γ) iff Γ ⊢R ϕ.

By Theorem 677, I is not finitary. By Theorem 676 and the general theory
of algberaizable logics, for all T ∈ ThFam(I) and all θ ∈ ConSys∗(I),

ΩΣ(T ) = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ ϕ↔ ψ ∈ TΣ};

Ω−1Σ (θ) = {ϕ ∈ FmL(V ) ∶ ⟨π1(◻iϕ), π2(◻iϕ)⟩ ∈ θΣ, for all i ∈ ω}.
We may now show that Ω ∶ ThFam(I) → ConSys∗(I) is continuous, but
Ω−1 ∶ ConSys∗(I)→ ThFam(I) is not continuous.

To show continuity of Ω, assume {T i}i∈I ⊆ ThFam(I) is directed, such
that ⋃i∈I T i ∈ ThFam(I). Let ⟨ϕ,ψ⟩ ∈ ΩΣ(⋃i∈I T i). This holds iff ϕ ↔
ψ ∈ ⋃i∈I T iΣ, i.e., iff, for some i ∈ I, ϕ ↔ ψ ∈ T i. This is equivalent to⟨ϕ,ψ⟩ ∈ ΩΣ(T i), for some i ∈ I, showing that Ω(⋃i∈I T i) = ⋃i∈I Ω(T i).

To show that Ω−1 is not continuous, let, for all i ∈ ω, θi = {θiΣ}Σ∈∣Sign♭∣ ∈
ConSys∗(I) be defined by

θiΣ = {⟨ϕ,ψ⟩ ∈ Fm2
L(V ) ∶ {δk(x) ≈ εk(x) ∶ k ≤ i} ⊧V ϕ ≈ ψ},

where, as before, for all i ∈ ω,

δi(x) = π1(◊ix) and εi(x) = π2(◊ix).
Note that

(1) {θi}∞i=0 is directed;

(2) ⋃∞i=0 θi ∈ ConSys∗(I), since ⊧V is finitary;

(3) x ∈ Ω−1Σ (⋃∞i=0 θi), since δ(x) ≈ ε(x) ⊆ ⋃∞i=0 θiΣ.

If Ω−1 were continuous, there would exist m ∈ ω, such that x ∈ Ω−1Σ (θm). But,
this would imply that

{δk(x) ≈ εk(x) ∶ k ≤m} ⊧V δ(x) ≈ ε(x),
which yields {δk(x)↔ εk(x) ∶ k ≤m} ⊢R x, contradicting Theorem 677.

The π-institution I, constructed in this example, separates the classes
of π-institutions related by the southwest arrows in the finitarity hierarchy
shown at the end of Section 9.4.
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10.1 Natural Transformations and Parame-

ters

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Consider a set

I♭ ∶ (SEN♭)ω → SEN♭

of natural transformations in N ♭. Of course, by definition, each σ♭ ∈ I♭ ⊆ N ♭

is finitary, but the arities in the collection may be unbounded, whence the
notation becomes handy.

Recall that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)ω ,

I♭Σ(φ⃗) = {σ♭Σ(φ0, . . . , φk−1) ∶ σ♭ ∶ (SEN♭)k → SEN♭ ∈ I♭}.
Moreover, we may view the first n of the arguments in the input sequence

as distinguished and the remaining as parameters or parametric argu-
ments. In that case, for all Σ ∈ ∣Sign♭∣ and all φ⃗ = ⟨φ0, . . . , φn−1⟩ ∈ SEN♭(Σ),
we define

I♭Σ[φ⃗] = {I♭Σ,Σ′[φ⃗]}Σ′∈∣Sign♭∣,
where, for all Σ′ ∈ ∣Sign♭∣,

I♭Σ,Σ′[φ⃗] =⋃{I♭Σ′(SEN♭(f)(φ⃗), χ⃗) ∶ f ∈ Sign♭(Σ,Σ′), χ⃗ ∈ SEN♭(Σ′)}.
The following diagram illustrates where the various sentences and compo-

nents sit as we move from inputs to outputs in this construct.

SEN♭(Σ) SEN♭(f)✲ SEN♭(Σ′)
φ⃗ ✲ SEN♭(f)(φ⃗), χ⃗

I♭Σ′(SEN♭(f)(φ⃗), χ⃗)
❄

Suppose that in I♭ we take n = 2, i.e., we consider only the first two arguments
as distinguished and the remaining as parameters. Then, we define for σ ∶(SEN♭)k → SEN♭ ∈ N ♭, the natural transformation σ ∶ (SEN♭)k → SEN♭, by
setting, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), χ⃗ ∈ SEN♭(Σ),

σΣ(φ,ψ, χ⃗) = σΣ(ψ,φ, χ⃗).
Further, we set

I♭ = {σ ∶ σ ∈ I♭}
and

↔

I♭ = I♭ ∪ I♭.

It is not difficult to see that, given I♭ ⊆ N ♭, the collections I♭ and
↔

I♭ both
consist of natural transformations in N ♭.
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Lemma 681 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let I♭ ∶(SEN♭)ω → SEN♭ be a collection of natural transformations in N ♭. Then

I♭,
↔

I♭ ⊆ N ♭.

Proof: The inclusion I♭ ⊆ N ♭ follows from Proposition 11. Then the second

inclusion follows directly from the definition of
↔

I♭. ∎

Finally, recall that, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, a
collection I♭ ⊆ N ♭, with two distinguished arguments, and T ∈ SenFam(F),
we define I♭(T ) = {I♭Σ(T )}Σ∈∣Sign♭∣, by setting, for all Σ ∈ ∣Sign♭∣ and all

φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ I♭Σ(T ) iff I♭Σ[φ,ψ] ≤ T.

It was shown in Lemma 93 that I♭(T ) is a relation system on F, i.e., invariant
under signature morphisms.

In what follows we explore some properties that collections of natural
transformations may or may not satisfy in π-institutions based on the alge-
braic systems on which they are defined.

10.2 Reflexivity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-
tution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transformations
in N ♭, with two distinguished arguments. Taking into account Proposition
103, we say that I♭ is reflexive in I if, for all Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈
SEN♭(Σ),

I♭Σ(φ,φ, χ⃗) ⊆ ThmΣ(I) ∶= CΣ(∅).
Example 682 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0};
• N ♭ is the trivial category of natural transformations consisting only of

the projections.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{0}} and I ′ = ⟨F,C ′⟩
be the π-institution determined by C′Σ = {∅,{0}}.

Consider the set I♭ = {p2,0}, with p2,0 ∶ (SEN♭)2 → SEN♭ be the 2-argument
projection function projecting onto the first argument.

In this case, it is easy to verify that I♭ is reflexive in I but I♭ is not
reflexive in I ′.
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As was the case with the various properties of the Leibniz operator that
gave rise to the various classes of the semantic hierarchy of π-institutions,
the surjectivity of the morphism components in interpreted algebraic systems
affords transferring the properties that give rise to the syntactic hierarchy
studied in the present chapter from the theory families of a π-institution to
the filter families over arbitrary algebraic systems. The key in proving these
tranfer properties is Lemma 95, which will be used repeatedly in the proofs
throughout the chapter.

The first of this type of transfer properties is the transfer property for re-
flexivity. In formulating the property it is convenient to adopt the following
terminology. We consider, as is usual in this context, a base algebraic system
F = ⟨Sign♭,SEN♭,N ♭⟩ and a set I♭ ∶ (SEN♭)ω → SEN♭ of natural transforma-
tions in N ♭. Given a π-institution I = ⟨F,C⟩, based on F, and an F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, we say that I is reflexive
in A if the collection I ∶ SENω → SEN of natural transformations in N , that
are images of those in I♭, is reflexive in the π-institution ⟨A,CI,A⟩, CI,A
being the closure (operator) system whose closed set families are the I-filter
families on A.

We use similar terminology for all other properties that we study in this
chapter, pertaining to subsets I♭ of N ♭. In particular, such terminology will
be used in all transfer results for these properties.

Proposition 683 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ ⊆ N ♭

a collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ and I = ⟨F,C⟩ a
π-institution based on F. I♭ is reflexive in I if and only if, for every algebraic
system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I is reflexive in A.

Proof: First, note that if reflexivity of I in A is assumed, for all A, then it
holds, in particular, for A = F = ⟨F, ⟨I, ι⟩⟩. Moreover ⟨F,CI,F⟩ = I . Thus,
we conclude that I♭ is reflexive in I .

Suppose, conversely, that I♭ is reflexive in I . By the surjectivity of ⟨F,α⟩,
it suffices to show that, for all σ ∶ (SEN♭)k → SEN♭ ∈ I♭, all Σ ∈ ∣Sign♭∣, all
φ ∈ SEN♭(Σ) and all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′),

σF (Σ′)(SEN(F (f))(αΣ(φ)),SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ CI,AF (Σ′)(∅).
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To this end, let σ ∶ (SEN♭)k → SEN♭ ∈ I♭, Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ) and
Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) χ⃗ ∈ SEN♭(Σ′). Since CI,A(∅) is, by definition,
an I-filter family on A, by Lemma 51, α−1(CI,A(∅)) ∈ ThFam(I). Hence,
since I♭ is reflexive in I , we get

σ♭Σ′(SEN♭(f)(φ),SEN♭(f)(φ), χ⃗) ∈ α−1Σ′ (CI,AF (Σ′)(∅)).
This is equivalent to

αΣ′(σ♭Σ′(SEN♭(f)(φ),SEN♭(f)(φ), χ⃗)) ∈ CI,A
F (Σ′)
(∅),

which is, in turn, equivalent to

σF (Σ′)(αΣ′(SEN♭(f)(φ)), αΣ′(SEN♭(f)(φ)), αΣ′(χ⃗)) ∈ CI,AF (Σ′)(∅).
Finally, by the naturality of α, we get the conclusion. Therefore, I is indeed
reflexive in A. ∎

10.3 Symmetry

We look now at various versions of the symmetry property, taking into ac-
count both the duality between local versus global membership and the differ-
ence between considering all theory families versus restricting only to theory
systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family symmetry in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ),
implies that I♭Σ(ψ,φ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the local system symmetry in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ),
implies that I♭Σ(ψ,φ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family symmetry in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T implies I♭Σ[ψ,φ] ≤ T ;

• I♭ has the global system symmetry in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T implies I♭Σ[ψ,φ] ≤ T .

The following proposition establishes a hierarchy of symmetry properties.

Proposition 684 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.
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(a) If I♭ has the local family symmetry, then it has the local system sym-
metry in I;

(b) If I♭ has the local system symmetry, then it has the global family sym-
metry in I;

(c) I♭ has the global family symmetry if and only if it has the global system
symmetry in I.

Proof: Parts (a) and one of the implications in Part (c) follow directly from
the fact that every theory system of I is also a theory family of I .

For Part (b), suppose that I♭ has the local system symmetry in I . Let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T . Then by
Lemma 93, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

I♭Σ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ≤ T.
This implies, by Lemma 99, that, for all ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆←ÐT Σ′ .

Since I♭ has the local system symmetry and, by Proposition 42,
←Ð
T ∈ ThSys(I),

we get that I♭Σ′(SEN♭(f)(ψ),SEN♭(f)(φ), ξ⃗) ⊆ ←ÐT Σ′ ⊆ TΣ′ . Since this holds

for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and ξ⃗ ∈ SEN♭(Σ′), we conclude that
I♭Σ[ψ,φ] ≤ T . Therefore I♭ has the global family symmetry in I .

Suppose, finally, that I♭ has the global system symmetry in I and let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T .

By Lemma 99, we get that I♭Σ[φ,ψ] ≤ ←ÐT . Since I♭ has the global system

symmetry and, by Proposition 42,
←Ð
T ∈ ThSys(I), we get that I♭Σ[ψ,φ] ≤ ←ÐT .

Using again Lemma 99, we conclude that I♭Σ[ψ,φ] ≤ T . Therefore, I♭ has the
global family symmetry in I . ∎

Proposition 684 has established the following hierarchy of symmetry prop-
erties:

Local Family Symmetry

Local System Symmetry
❄

Global Symmetry
❄

We look, next, at some natural sufficient conditions under which some of
these three symmetry properties coincide.
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Proposition 685 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the local family and the local system symmetry
coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system symmetry and the global symmetry coincide.

Proof: If I is systemic, then all theory families are theory systems and,
hence, the local family and local system symmetries coincide.

Suppose, next that I♭ is parameter free and has the global system sym-
metry in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
I♭Σ(φ,ψ) ⊆ TΣ. Then, by Proposition 99, I♭[φ,ψ] ≤ T . Thus, by the global
system property, I♭Σ[ψ,φ] ≤ T , which implies that I♭Σ(ψ,φ) ⊆ TΣ. Therefore,
I♭ has the local system symmetry in I . ∎

So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local Symmetry Local Family Symmetry

Global Symmetry
❄

Local System/Global Symmetry
❄

Finally, for a systemic π-institution with a parameter-free set of natural
transformations all four symmetry properties collapse to a single one.

We provide some examples to show that the implications of Proposition
684 are not equivalences in general, i.e., in the 3-class hierarchy all inclusions
of classes of π-institutions with a set of natural transformations satisfying
the corresponding symmetry properties are proper inclusions.

We first present an example to show that there exists a π-institution I ,
with a set of natural transformations that have the local system symmetry
but not the local family symmetry in I .

Example 686 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;
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• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) = { 1, if (x, y) = (0,1)
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system symmetry in I, but
it does not have the local family symmetry in I.

For the local system symmetry note that, if T = SEN♭, then the defining
implication is trivially true, whereas, if T = Thm(I), then, since, for all
φ,ψ ∈ SEN♭(Σ), σ♭Σ(φ,ψ) ≠ 2, the defining implication is vacuously true. So
I♭ has the local system symmetry in I.

On the other hand, for T = {{1,2}} ∈ ThFam(I), we have σ♭Σ(0,1) = 1 ∈
TΣ, but σ♭Σ(1,0) = 0 ∉ TΣ. Therefore, the implication defining local family
symmetry fails for T = {{1,2}}. So I♭ is not locally family symmetric in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that have the global family symmetry but not
the local system symmetry in I .

Example 687 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;
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• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1} and SEN♭(f) ∶{0,1}→ {0,1} given by 0↦ 1 and 1↦ 1;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(x, y, z) = { 0, if (x, z) = (1,0)
1, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. Note
that both theory families, Thm(I) and SEN♭, are also theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family symmetry in I,
but it does not have the local system symmetry in I.

For the global family symmetry note that, if T = SEN♭, then the defining
implication is trivially true, whereas, if T = Thm(I), then, since, for all
φ,ψ ∈ SEN♭(Σ),

σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ),0) = σ♭Σ(1,1,0) = 0,

the defining implication is vacuously true. So I♭ has the global family sym-
metry in I.

On the other hand, we have σ♭Σ(0,1, ξ) = 1, for all ξ ∈ SEN♭(Σ), but
σ♭Σ(1,0,0) = 0 ∉ {1}. Therefore, the implication defining local system symme-
try fails for Thm(I). So I♭ is not locally system symmetric in I.

To close the study of symmetry properties, we prove that all three sym-
metry properties transfer from π-institutions to their models.

Proposition 688 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has a
symmetry property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding symmetry
property in A.
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Proof: If I has a symmetry property in A, for all A, then it has the same
symmetry in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that I♭ has the
corresponding symmetry in I .

Suppose, conversely, that I♭ has a symmetry in I . We look at each of the
three properties in turn.

(a) Suppose I♭ has the local family symmetry in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ). Since this is equivalent to αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ),
we get that I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ). But, by
hypothesis, I♭ has the local family symmetry in I and, by Lemma 51,
α−1(T ) ∈ ThFam(I). Therefore, we get that I♭Σ(ψ,φ, ξ⃗) ⊆ α−1Σ (TF (Σ)).
This now gives αΣ(I♭Σ(ψ,φ, ξ⃗)) ⊆ TF (Σ), or, equivalently,

IF (Σ)(αΣ(ψ), αΣ(φ), αΣ(ξ⃗)) ⊆ TF (Σ).
We conclude that I has the local family symmetry in A.

(b) The case of the local system symmetry can be proven similarly, taking
into account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose that I♭ has the global (family) symmetry in I and let A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
Then, we have, by Lemma 95, I♭Σ[φ,ψ] ≤ α−1(T ). Now, since, by
hypothesis, I♭ has the global family symmetry in I and, by Lemma 51,
α−1(T ) ∈ ThFam(I), we get that I♭Σ[ψ,φ] ≤ α−1(T ), or, equivalently,
by Lemma 95, IF (Σ)[αΣ(ψ), αΣ(φ)] ≤ T . Thus, I has the global family
symmetry in A.

∎

10.4 Transitivity

We study next various versions of the transitivity property, taking into ac-
count, again, both the duality between local versus global membership and
the difference between considering all theory families versus restricting only
to theory systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:
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• I♭ has the local family transitivity in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ and I♭Σ(ψ,χ, ξ⃗) ⊆
TΣ, for all ξ⃗ ∈ SEN♭(Σ), imply that I♭Σ(φ,χ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the local system transitivity in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ and I♭Σ(ψ,χ, ξ⃗) ⊆
TΣ, for all ξ⃗ ∈ SEN♭(Σ), imply that I♭Σ(φ,χ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family transitivity in I if, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T and I♭Σ[ψ,χ] ≤ T
imply I♭Σ[φ,χ] ≤ T ;

• I♭ has the global system transitivity in I if, for all T ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ T and I♭Σ[ψ,χ] ≤ T
imply I♭Σ[φ,χ] ≤ T .

The following proposition establishes the hierarchy of transitivity prop-
erties.

Proposition 689 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I♭ has the local family transitivity, then it has the local system tran-
sitivity in I;

(b) If I♭ has the local system transitivity, then it has the global family tran-
sitivity in I;

(c) I♭ has the global family transitivity if and only if it has the global system
transitivity in I.

Proof: The statement in Part (a) as well as one of the two implications of
Part (c) follow from the fact that every theory system is also a theory family
of I .

For Part (b), suppose that I♭ has the local system transitivity and let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T
and I♭Σ[ψ,χ] ≤ T . By Lemma 93, we get that, for all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′),
I♭Σ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ≤ T, I♭Σ′[SEN♭(f)(ψ),SEN♭(f)(χ)] ≤ T.

So, by Proposition 99, we get, for all ξ⃗ ∈ SEN♭(Σ′),
I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆←ÐT Σ′ ,

I♭Σ′(SEN♭(f)(ψ),SEN♭(f)(χ), ξ⃗) ⊆←ÐT Σ′ .
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By local system transitivity, we obtain I♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗) ⊆
←Ð
T Σ′ , Since this holds for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈
SEN♭(Σ′), we conclude that I♭Σ′[φ,χ] ≤ T , Therefore, I♭ has the global family
transitivity in I .

Finally, suppose that I♭ has the global system transitivity in I and let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T
and I♭Σ[ψ,χ] ≤ T . By Proposition 99, we get I♭Σ[φ,ψ] ≤←ÐT and I♭Σ[ψ,χ] ≤←ÐT .

Hence, by global system transitivity, I♭Σ[φ,χ] ≤ ←ÐT . Now, using Proposition
99 again, we conclude that I♭Σ[φ,χ] ≤ T . Therefore, I♭ has the global family
transitivity in I . ∎

Proposition 689 has established the following hierarchy of transitivity
properties:

Local Family Transitivity

Local System Transitivity
❄

Global Transitivity
❄

We also have the following result regarding natural sufficient conditions
under which some of these three transitivity properties coincide.

Proposition 690 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the local family and the local system transitivity
coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system transitivity and the global transitivity properties coincide.

Proof: If I is systemic, then all theory families are theory systems and the
local family and local system transitivity properties collapse.

Suppose that I♭ is parameter-free and that I♭ has the global (family)
transitivity in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such
that I♭Σ(φ,ψ) ⊆ TΣ and I♭Σ(ψ,χ) ⊆ TΣ. By Proposition 99, I♭Σ[φ,ψ] ≤ T and
I♭Σ[ψ,χ] ≤ T . Thus, by the global family transitivity property, I♭Σ[φ,χ] ≤ T ,
which implies that I♭Σ(φ,χ) ⊆ TΣ. We conclude that I♭ has the local system
transitivity in I . ∎
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So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local Transitivity Local Family Transitivity

Global Transitivity
❄

Local System/Global Transitivity
❄

Finally, for a systemic π-institution with a parameter-free set of natural
transformations all four transitivity properties collapse to a single one.

We provide some examples to show that the implications of Proposition
689 are not equivalences in general, i.e., in the 3-class transitivity hierarchy
all inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding transitivity properties are proper inclusions.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the local system transitivity
but not the local family transitivity in I .

Example 691 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) = { 1, if (x, y) = (0,1) or (1,2)
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system transitivity in I,
but it does not have the local family transitivity in I.

For the local system transitivity note that, if T = SEN♭, then the defining
implication is trivially true, whereas, if T = Thm(I), then, since, for all
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φ,ψ ∈ SEN♭(Σ), σ♭Σ(φ,ψ) ≠ 2, the defining implication is vacuously true. So
I♭ has the local system transitivity in I.

On the other hand, for T = {{1,2}} ∈ ThFam(I), we have σ♭Σ(0,1) =
σ♭Σ(1,2) = 1 ∈ TΣ, but σ♭Σ(0,2) = 0 ∉ TΣ. Therefore, the implication defining
local family transitivity fails for T = {{1,2}}. So I♭ is not locally family
transitive in I.

We now present an example to show that there is π-institution I , with a
set of natural transformations that has the global family transitivity but not
the local system transitivity in I .

Example 692 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 2, 1↦ 2 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}3 → {0,1,2} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if x = y = 0 or x = y = 1
2, if {x, y} = {0,1} or x = y = z = 2
z, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that all four theory families, Thm(I), T = {{0,2}}, T ′ = {{1,2}} and
SEN♭, are also theory systems.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family transitivity in I,
but it does not have the local system transitivity in I.

For the global family transitivity note that, because, for all φ,ψ ∈ SEN♭(Σ),
σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ),0) = 0 and σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ),1) =
1, the implication of the defining condition is vacuously true for Thm(I), T
and T ′ and trivially true for SEN♭. Therefore, we get that I♭ has the global
family transitivity in I.

On the other hand, we have σ♭Σ(0,1, ξ) = σ♭Σ(1,0, ξ) = 2, for all ξ ∈
SEN♭(Σ), but σ♭Σ(0,0,0) = 0 ∉ {2}. Therefore, the implication defining lo-
cal system transitivity fails for Thm(I). So I♭ does not have the local system
transitivity in I.

We close the study of transitivity by providing, again, a transfer property
for transitivity.

Proposition 693 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a transitivity property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding transitivity
property in A.

Proof: If I has a transitivity property in A, for all A, then it has the same
transitivity in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that I♭ has
the corresponding transitivity in I .

Suppose, conversely, that I♭ has a transitivity property in I . We look at
each of the three properties in turn.

(a) Suppose I♭ has the local family transitivity in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that, for all ξ⃗ ∈ SEN♭(Σ),

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ),
IF (Σ)(αΣ(ψ), αΣ(χ), αΣ(ξ⃗)) ⊆ TF (Σ).
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These are equivalent, respectively, to

αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ), αΣ(I♭Σ(ψ,χ, ξ⃗)) ⊆ TF (Σ),
i.e., to I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)) and I♭Σ(ψ,χ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all
χ⃗ ∈ SEN♭(Σ). But, by hypothesis, I♭ has the local family transitivity
in I and, by Lemma 51, α−1(T ) ∈ ThFam(I). Therefore, we get that
I♭Σ(φ,χ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all χ⃗ ∈ SEN♭(Σ). Thus, αΣ(I♭Σ(φ,χ, ξ⃗)) ⊆
TF (Σ) and, hence, IF (Σ)(αΣ(φ), αΣ(χ), αΣ(ξ⃗)) ⊆ TF (Σ). This, combined
with the surjectivity of ⟨F,α⟩, proves that I has the local family tran-
sitivity in A.

(b) The case of the local system transitivity may be proven similarly, taking
into account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose that I♭ has the global (family) transitivity in I and let A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T and IF (Σ)[αΣ(ψ), αΣ(χ)] ≤ T.
Then, we have, by Lemma 95, I♭Σ[φ,ψ] ≤ α−1(T ) and I♭Σ[ψ,χ] ≤ α−1(T ).
Since, by hypothesis, I♭ has the global family transitivity in I and, by
Lemma 51, α−1(T ) ∈ ThFam(I), we get that I♭Σ[φ,χ] ≤ α−1(T ), or,
equivalently, using again Lemma 95, IF (Σ)[αΣ(φ), αΣ(χ)] ≤ T . Thus, I
has the global family transitivity in A.

∎

10.5 Equivalence

We look now at sets of natural transformations I♭, with two distinguished
arguments, that define (modulo theory families) equivalence relation families
on the underlying algebraic system of a π-institution I . We assume that I♭

has the reflexivity property and study combinations of possible symmetry and
transitivity properties that the set of connectives may or may not possess.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transfor-
mations in N ♭, with two distinguished arguments. Let X,Y ∈ {LF,LS,GB},
where LF stands for “Local Family”, LS stands for “Local System” and GB
stands for “GloBal”. We say that I♭ has the XY -equivalence property in
I if it has

(a) reflexivity in I ;

(b) X symmetry in I and
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(c) Y transitivity in I .

Recall the following hierarchies of symmetry and transitivity properties
that we established previously:

Local Family Symmetry Local Family Transitivity

Local System Symmetry
❄

Local System Transitivity
❄

Global Symmetry
❄

Global Transitivity
❄

From these, we can infer the following hierarchy of equivalence properties:

Corollary 694 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. The nine equivalence
properties constitute the hierarchy depicted in the accompanying diagram.

Proof: The statement is a direct consequence of Propositions 684 and 689.
∎

LFLF Equivalence

✠�
�
� ❅

❅
❅❘

LFLS Equivalence LSLF Equivalence

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

LFGB Equivalence LSLS Equivalence GBLF Equivalence

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

LSGB Equivalence GBLS Equivalence

❅
❅
❅❘ ✠�

�
�

GBGB Equivalence

Based on the analysis performed on symmetry and transitivity, we have
the following result regarding natural sufficient conditions under which some
of the nine equivalence properties above coincide. We let LC stand for “Lo-
Cal” to summarize the case when the local family and the local system version
of a property coincide.
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Corollary 695 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the equivalence hierarchy collapses to the one
depicted below;

LCLC Equivalence

✠�
�
�
� ❅

❅
❅
❅❘

LCGB Equivalence GBLC Equivalence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Equivalence

(b) If I♭ has only two arguments (i.e., is parameter free), then the equiv-
alence hierarchy collapses to the one depicted below, where the local
system versions coincide with (and, hence, are incorporated into) the
global versions.

LFLF Equivalence

✠�
�
�
� ❅

❅
❅
❅❘

LFGB Equivalence GBLF Equivalence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Equivalence

Proof: The statement follows directly from Propositions 685 and 690. ∎

For a systemic π-institution with a parameter-free set of natural transfor-
mations, there is only one equivalence property, since all versions of symmetry
and all versions of transitivity collapse to a single property.

We provide some examples to show that the implications of Proposition
694 are not equivalences in general, i.e., that the nine classes of the equiva-
lence hierarchy are all distinct.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LSLF equivalence, but not
the LFGB equivalence in I .

Example 696 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:
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• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ 0 1 2
0 2 1 1
1 0 2 0
2 0 1 2

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Note that there are four theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LSLF equivalence in I, but it
does not have the LFGB equivalence in I.

Note, first, that reflexivity is obvious, since, by definition σ♭Σ(x,x) = 2 ∈
ThmΣ(I), for all x ∈ SEN♭(Σ). Local system symmetry is also obvious, since
the only theory systems in I are Thm(I) and SEN♭. Local family transitivity
is a little more challenging to verify, but it suffices to observe that the pairs
that are related modulo T = {{0,2}} are as shown on the left below and the
pairs that are related modulo T ′ = {{1,2}} are as on the right below. We
conclude that I♭ has the LSLF equivalence in I.

On the other hand, for T = {{0,2}} ∈ ThFam(I), we have σ♭Σ(1,0) = 0 ∈
TΣ, but σ♭Σ(0,1) = 1 ∉ TΣ. Therefore, the implication defining local family
symmetry fails for T = {{0,2}}. So I♭ is not locally family symmetric, and,
hence, a fortiori, does not have the LFGB equivalence property in I.
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We now present an example to show that there is π-institution I with a
set of natural transformations that has the GBLF equivalence but not the
LSGB equivalence in I .

Example 697 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
I has two theory families, Thm(I) and SEN♭, both of which are also theory
systems. So it is a systemic π-institution.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the GBLF equivalence in I, but it
does not have the LSGB equivalence in I.

First, note that σ♭Σ(φ,φ,ψ) = 2 ∈ ThmΣ(I), for all φ,ψ ∈ SEN♭(Σ). Thus,
I♭ is reflexive in I. For global symmetry, the case of T = SEN♭ is trivial,
whereas, for T = Thm(I), observe that, for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is
it the case that σ♭Σ[φ,ψ] ≤ T . Thus, the defining condition holds trivially for
Thm(I). So I♭ has the global symmetry in I. For local family transitivity,
the case of T = SEN♭ is also trivial and for T = Thm(I), the only pair⟨φ,ψ⟩ ∈ SEN♭(Σ), with φ ≠ ψ, for which σ♭Σ(φ,ψ, ξ) ⊆ ThmΣ(I), for all
ξ ∈ SEN♭(Σ), is the pair (φ,ψ) = (0,1). So the defining condition holds for
Thm(I) also. Thus I♭ has the local family transitivity. We conclude that I♭

has the GBLF equivalence in I.
On the other hand, we have σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈

SEN♭(Σ), but σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I). So the implication defining lo-
cal system symmetry fails for Thm(I). Therefore, I♭ does not have the local
system symmetry in I.

Next, we present an example to show that there is π-institution I with
a set of natural transformations that has the LFLS equivalence but not the
GBLF equivalence in I .

Example 698 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by the following table:

σ♭Σ 0 1 2
0 2 2 0
1 2 2 1
2 0 1 2

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that I has three theory families, but only Thm(I) and SEN♭ are theory
systems. So I is not systemic.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LFLS equivalence in I, but it
does not have the GBLF equivalence in I.

First, since σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ SEN♭(Σ), I♭ is re-
flexive in I. Next, observe from the table that, for all φ,ψ ∈ SEN♭(Σ),
σ♭Σ(φ,ψ) = σ♭Σ(ψ,φ). Therefore, a fortiori, for all T ∈ ThFam(I), and all
φ,ψ ∈ SEN♭(Σ), if σ♭Σ(φ,ψ) ∈ TΣ, then σ♭Σ(ψ,φ) ∈ TΣ, showing that I♭ has
the local family symmetry in I. For the local system transitivity, the defining
implication is trivial in the case of SEN♭, whereas in the case of Thm(I),
it is straightforward to check based on the table defining σ♭Σ. Thus, I♭ has
indeed the LFLS equivalence in I.

On the other hand, consider the theory family T = {{1,2}}. We have
σ♭Σ(0,1) = 2 and σ♭Σ(1,2) = 1, i.e., σ♭Σ(0,1), σ♭Σ(1,2) ∈ TΣ, whereas σ♭Σ(0,2) =
0 ∉ TΣ. Therefore, I♭ does not have the local family transitivity and, hence, a
fortiori, does not satisfy the GBLF equivalence property in I.

Finally, we present an example to show that there is π-institution I with
a set of natural transformations that has the LFGB equivalence but not the
GBLS equivalence in I .

Example 699 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5} and
SEN♭(f) ∶ {0,1,2,3,4,5} → {0,1,2,3,4,5} given by 0↦ 3, 1↦ 4, 2↦ 5,
3↦ 3, 4↦ 4 and 5↦ 5;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2,3,4,5}3 → {0,1,2,3,4,5} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3, if x = y or {x, y} = {0,1} or {x, y} = {1,2}
or z = 3 or z = 4 or z = 5

0, otherwise
.
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Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{3,4,5},{0,1,2,3,4,5}}.
I has two theory families, Thm(I) and SEN♭, both of which are also theory
systems. So it is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LFGB equivalence in I, but it
does not have the GBLS equivalence in I.

First, note that σ♭Σ(φ,φ,ψ) = 3 ∈ ThmΣ(I), for all φ,ψ ∈ SEN♭(Σ). Thus,
I♭ is reflexive in I. For local family symmetry, the case of T = SEN♭ is trivial,
whereas, for T = Thm(I), observe that, if φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, are
such that σ♭Σ(φ,ψ, ξ) ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), then {x, y} = {0,1} or{x, y} = {1,2}. Thus, I♭ is local family symmetric. For global transitivity,
the case of T = SEN♭ is also trivial and for T = Thm(I), there is no pair⟨φ,ψ⟩ ∈ SEN♭(Σ), with φ ≠ ψ, for which σ♭Σ[φ,ψ] ⊆ Thm(I). So the defining
condition holds trivially for Thm(I) also. Thus I♭ has the global transitivity.
We conclude that I♭ has the LFGB equivalence in I.

On the other hand, we have σ♭Σ(0,1, ξ) = 3 ∈ ThmΣ(I) and σ♭Σ(1,2, ξ) =
3 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), but σ♭Σ(0,2,0) = 0 ∉ ThmΣ(I). So the
implication defining local system transitivity fails for Thm(I). Therefore, I♭

does not have the local system transitivity in I.

We close the study of equivalence by providing, again, a transfer property.

Corollary 700 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭

has a transitivity property in I if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding transitiv-
ity property in A.

Proof: This follows directly from Propositions 688 and 693. ∎
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10.6 Antisymmetry

We look next at the antisymmetry property.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local antisymmetry in I if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ ThmΣ(I) and I♭Σ(ψ,φ, ξ⃗) ⊆ ThmΣ(I), for

all ξ⃗ ∈ SEN♭(Σ), imply φ = ψ;

• I♭ has the global antisymmetry in I if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), I♭Σ[φ,ψ] ≤ Thm(I) and I♭Σ[ψ,φ] ≤ Thm(I) imply
φ = ψ.

The antisymmetry properties stratify in the following hierarchy.

Proposition 701 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments. If I♭ has the local
antisymmetry in I, then it has the global antisymmetry in I.

Proof: Suppose that I♭ has the local antisymmetry and let Σ ∈ ∣Sign♭∣,
φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ Thm(I) and I♭Σ[ψ,φ] ≤ Thm(I). Then

we get, in particular, that, for all ξ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, ξ⃗) ⊆ ThmΣ(I) and
I♭Σ(ψ,φ, ξ) ⊆ ThmΣ(I). Thus, by local antisymmetry, we obtain φ = ψ. We
conclude that I♭ has the global antisymmetry in I . ∎

Proposition 701 has established the following hierarchy of antisymmetry
properties:

Local Antisymmetry

Global Antisymmetry
❄

We look, next, at a natural sufficient condition under which the antisym-
metry properties coincide.

Proposition 702 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of
natural transformations in N ♭, with two distinguished arguments. If I♭ has
only two arguments (i.e., is parameter free), then the local antisymmetry and
the global antisymmetry properties coincide.



Voutsadakis CHAPTER 10. ELEMENTS OF SYNTAX 707

Proof: Suppose that I♭ is parameter free and has the global antisymmetry
in I . Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that I♭Σ(φ,ψ) ⊆ ThmΣ(I) and
I♭Σ(ψ,φ) ⊆ ThmΣ(I). Then, by Proposition 99, I♭Σ[φ,ψ] ≤ Thm(I) and
I♭Σ[ψ,φ] ≤ Thm(I). Thus, by global antisymmetry, φ = ψ. Therefore, I♭ has
the local antisymmetry in I . ∎

So in the case of a parameter-free set of natural transformations we have
a single antisymmetry property.

We provide an example to show that the implication of Proposition 701
is not an equivalence in general. That is, we provide an example of a π-
institution I with a set I♭ of natural transformations, with two distinguished
arguments, that has the global antisymmetry but not the local antisymmetry
in I .

Example 703 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1} and SEN♭(f) ∶{0,1}→ {0,1} given by 0↦ 1 and 1↦ 1;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(x, y, z) = { 0, if (x, y, z) = (1,1,0)
1, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. Note that
there are two theory families, Thm(I) and SEN♭, both of which are theory
systems.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global antisymmetry in I, but it
does not have the local antisymmetry in I.

To see that I♭ has the global antisymmetry in I, it suffices to notice that,
for no φ,ψ ∈ SEN♭(Σ) is it the case that I♭Σ[φ,ψ] ≤ Thm(Σ). Therefore, the
defining condition holds vacuously, for all φ,ψ ∈ SEN♭(Σ).

On the other hand, for 0 ≠ 1, we have σ♭Σ(0,1, ξ) = σ♭Σ(1,0, ξ) = 1 ∈
ThmΣ(I), for all ξ ∈ {0,1}. So I♭ is not locally antisymmetric in I.

To close the study of antisymmetry properties, we show that they do not
transfer from π-institutions to their models. This is to be expected, since the
inverse image α−1(T ) of the minimum I filter family of a π-institution I on
an algebraic system A may not coincide with the theorem system of I .

Example 704 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by σ♭Σ(x, y) = 0, for all x, y ∈ SEN♭(Σ).

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-

guished arguments. We show that I♭ has the local antisymmetry in I, but that
there exists an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
such that I does not have the local antisymmetry in A.

Let A = ⟨Sign,SEN,N⟩ be the algebraic system determined as follows:
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• Sign is the trivial category with a single object A;

• SEN ∶ Sign → Set is specified by SEN(A) = {a, b};
• N is the category of natural transformations generated by the single

binary natural transformation σ ∶ SEN2 → SEN defined by letting: σA ∶{a, b}2 → {a, b} be given by σA(x, y) = a, for all x, y ∈ SEN(A).
A is an N ♭-algebraic system, as can be seen by sending σ♭ ↦ σ and extending
to categories by composition.

Now let ⟨F,α⟩ ∶ F→A be the morphism defined as follows:

• F ∶ Sign♭ → Sign is the obvious functor between trivial categories;

• α ∶ SEN♭ → SEN ○ F is defined by setting αΣ(0) = a, αΣ(1) = a and
αΣ(2) = b.

Our goal is to show that I♭ has the local antisymmetry in I but that I does
not have the local antisymmetry in A. We have, for all φ,ψ ∈ SEN(Σ),
σ♭Σ(φ,ψ) ∉ ThmΣ(I) and σ♭Σ(ψ,φ) ∉ ThmΣ(I), whence the defining condition
of local antisymmetry for I♭ is vacuously true. So I♭ is locally antisymmetric
in I.

On the other hand, note that the least I-filter system on A is SEN. More-
over, we have σA(a, b) = σA(b, a) = a ∈ SEN(A), with a ≠ b. Thus I = {σ}
does not have local antisymmetry in A.

10.7 Order

We look next at sets of natural transformations I♭, with two distinguished
arguments, that define (modulo theory families) partial order families on the
underlying algebraic system of a π-institution I . We assume that I♭ has the
reflexivity property and study combinations of possible antisymmetry and
transitivity properties that the set of connectives may or may not possess.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. Let X ∈ {LC,GB},
where LC and GB stand for “LoCal” and “GloBal”, respectively, and let
Y ∈ {LF,LS,GB}, where LF stands for “Local Family” and LS for “Local
System”. We say that I♭ has the XY poset property in I if it has

(a) reflexivity in I ;

(b) X antisymmetry in I and

(c) Y transitivity in I .

Recall, again, the following hierarchies of antisymmetry and of transitivity
properties:

Local Antisymmetry Local Family Transitivity

Global Antisymmetry
❄

Local System Transitivity
❄

Global Transitivity
❄

From these, we can infer the following hierarchy of equivalence properties:

Corollary 705 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. The six poset properties
of I♭ satisfy the hierarchy depicted in the accompanying diagram.

Proof: The statement is a direct consequence of Propositions 701 and 689.
∎

LCLF Poset

✠�
�
� ❅

❅
❅❘

GBLF Poset LCLS Poset

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

GBLS Poset LCGB Poset

❅
❅
❅❘ ✠�

�
�

GBGB Poset

Based on the analyses performed on antisymmetry and transitivity, we
have the following result regarding natural sufficient conditions under which
some of these poset properties coincide.
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Corollary 706 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the equivalence hierarchy collapses to the one
depicted on the left of the accompanying diagram;

(b) If I♭ has only two arguments (i.e., is parameter free), then the equiva-
lence hierarchy collapses to the one depicted on the right of the diagram,
where, since there is only one antisymmetry property, the qualifications
refer to the type of transitivity that holds.

Proof: The statement follows directly from Propositions 690 and 702. ∎

LCLC Poset LF Poset

✠�
�
� ❅

❅
❅❘

GBLC Poset LCGB Poset

❅
❅
❅❘ ✠�

�
�

GBGB Poset LS/GB Poset
❄

For a systemic π-institution with a parameter-free set of natural transfor-
mations, there is only one poset property, since the two versions of antisym-
metry and all three versions of transitivity collapse, respectively, to a single
property.

We provide some examples to show that the implications of Corollary 705
are not equivalences, i.e., the six classes of the poset hierarchy are all distinct
in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the GBLF poset property, but
not the LCGB poset property in I .

Example 707 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
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σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or (x, y) = (0,1) or (x, y) = (1,0)
or z = 2 or z = 3

0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the GBLF poset property in I, but
it does not have the LCGB poset property in I.

Note, first, that reflexivity is obvious, since, by definition, for all φ ∈
SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ). For global an-
tisymmetry, note that if, for some φ,ψ ∈ SEN♭(Σ), σ♭Σ[φ,ψ] ≤ Thm(I) and
σ♭Σ[ψ,φ] ≤ Thm(I), then we must have φ = ψ. Finally, for local family transi-
tivity, the defining equation holds trivially for T = SEN♭, whereas, if for some
φ,ψ,χ ∈ SEN♭(Σ), with φ ≠ χ, σ♭Σ(φ,ψ, ξ) ∈ {2,3} and σ♭Σ(ψ,χ, ξ) ∈ {2,3},
for all ξ ∈ SEN♭(Σ), we must have φ = ψ or ψ = χ, whence the condition is
satisfied in this case as well. Thus, I♭ is also locally family transitive in I
and, therefore, has the GBLF poset property in I.

On the other hand, since σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I) and σ♭Σ(1,0, ξ) =
2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), I♭ does not have the local antisymmetry
property. A fortiori, I♭ does not have the LCGB poset property in I.

Next, we present an example to show that there is a π-institution I with
a set of natural transformations that has the LCLS poset property but not
the GBLF poset property in I .

Example 708 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:
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• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if (x, y) = (0,1) or (x, y) = (1,2)
1, if (x, y) = (1,0) or (x, y) = (0,2)
2, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
I has four theory families, but only Thm(I) and SEN♭ are theory systems.
So I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LCLS poset property but it does
not have the GBLF poset property in I.

First, note that σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ SEN♭(Σ). Thus, I♭ is
reflexive in I. For the local antisymmetry, note that for no φ,ψ ∈ SEN♭(Σ),
with φ ≠ ψ is it the case that both σ♭Σ(φ,ψ) = σ♭Σ(ψ,φ) = 2. Finally, for the
local system transitivity, the defining condition is trivially satisfied for SEN♭,
whereas the pairs related modulo Thm(I) are as in the following diagram, an
examination of which verifies transitivity. Therefore I♭ is also locally system
transitive in I and, hence has the LCLS poset property in I.

On the other hand, for T = {{0,2}} ∈ ThFam(I), we have σ♭Σ(0,1) =
σ♭Σ(1,2) = 0 ∈ TΣ, whereas σ♭Σ(0,2) = 1 ∉ TΣ. So the implication defining local
family transitivity fails for T . Therefore, I♭ does not have the local family
transitivity and, a fortiori, does not have the GBLF poset property in I.
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Finally, we look at an example that shows that there is π-institution I
with a set of natural transformations that has the LCGB poset property but
not the GBLS poset property in I .

Example 709 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, with f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5} and
SEN♭(f) ∶ {0,1,2,3,4,5} → {0,1,2,3,4,5} given by 0↦ 3, 1↦ 4, 2↦ 5,
3↦ 3, 4↦ 4 and 5↦ 5;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2,3,4,5}3 → {0,1,2,3,4,5} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3, if x = y or (x, y) = (0,1) or (x, y) = (1,2)
or z = 3 or z = 4 or z = 5

0, otherwise
.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{3,4,5},{0,1,2,3,4,5}}.
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I has two theory families, Thm(I) and SEN♭, both of which are also theory
systems. So it is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the LCGB poset property in I, but
not the GBLS poset property in I.

First, note that, for all φ ∈ SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 3 ∈ ThmΣ(I), for
all ξ ∈ SEN♭(Σ). Thus, I♭ is reflexive in I. For local antisymmetry, it
suffices to observe that, for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is it the case
that σ♭Σ(φ,ψ, ξ) ∈ ThmΣ(I) and σ♭Σ(ψ,φ, ξ) ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ).
For global transitivity, the defining condition holds trivially for T = SEN♭,
whereas for T = Thm(I), it suffices to note that, for no φ,ψ ∈ SEN♭(Σ), with
φ ≠ ψ, is it the case that σ♭Σ[φ,ψ] ≤ Thm(I). We conclude that I♭ has the
LCGB poset property in I.

On the other hand, we have σ♭Σ(0,1, ξ) = 3 ∈ ThmΣ(I) and σ♭Σ(1,2, ξ) =
3 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), but σ♭Σ(0,2,0) = 0 ∉ ThmΣ(I). So the
implication defining local system transitivity fails for Thm(I). Therefore, I♭

does not have the local system transitivity in I and, hence, a fortiori, it does
not have the GBLS poset property in I.

Because of the non-transference of antisymmetry, which was shown in
Example 704, it is to be expected that none of the poset properties transfers
from a π-institution to its models. We provide an example that showcases
a π-institution I , with a set I♭ of natural transformations having two dis-
tinguished arguments, that has the LCLF poset property, but one of whose
models does not have the GBGB poset property.

Example 710 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 1, if x = y
0, if x ≠ y .

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two dis-

tinguished arguments. We show that I♭ has the LCLF poset property in
I, but that there exists an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A =⟨Sign,SEN,N⟩, such that I does not have the GBGB poset property in A.

Let A = ⟨Sign,SEN,N⟩ be the algebraic system determined as follows:
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• Sign is the trivial category with a single object A;

• SEN ∶ Sign → Set is specified by SEN(A) = {a, b};
• N is the category of natural transformations generated by the single

binary natural transformation σ ∶ SEN2 → SEN defined by letting: σA ∶{a, b}2 → {a, b} be given, for all x, y ∈ SEN(A), by

σA(x, y) = a.
A is an N ♭-algebraic system, as can be seen by sending σ♭ ↦ σ and extending
to categories by composition.

Now let ⟨F,α⟩ ∶ F→A be the morphism defined as follows:

• F ∶ Sign♭ → Sign is the obvious functor between trivial categories;

• α ∶ SEN♭ → SEN ○ F is defined by setting αΣ(0) = a, αΣ(1) = a and
αΣ(2) = b.

We show that I♭ has the LCLF poset property in I but that I does not have
the GBGB poset property in A.
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First, since σ♭Σ(φ,φ) = 1 ∈ ThmΣ(I), we have that I♭ is reflexive in I.
Second, if σ♭Σ(φ,ψ) = 1 = σ♭Σ(ψ,φ), then φ = ψ. So I♭ has the local an-
tisymmetry in I. Finally, local family transitivity is obvious, since for no
φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ is it the case that σ♭Σ(φ,ψ) = 1. We conclude that
I♭ has the LCLF poset property in I.

On the other hand, note that the least I-filter system on A is SEN and
since σA(a, b) = σA(b, a) = a ∈ SEN(A), with a ≠ b, I = {σ} does not have the
global antisymmetry in A. So, a fortiori, it does not have the GBGB poset
property in A.

10.8 Compatibility

We look next at various versions of the compatibility property, taking again
into account both the duality between local versus global membership and
the difference between considering all theory families versus restricting only
to theory systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family compatibility in I if, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈
SEN♭(Σ), implies

I♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ⊆ TΣ′ ,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗, ξ⃗ ∈ SEN♭(Σ′);

• I♭ has the local system compatibility in I if, for all T ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈
SEN♭(Σ), implies

I♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ⊆ TΣ′ ,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗, ξ⃗ ∈ SEN♭(Σ′);

• I♭ has the global family compatibility in I if, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ[φ,ψ] ≤ T implies

I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′);
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• I♭ has the global system compatibility in I if, for all T ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ↔

I♭Σ[φ,ψ] ≤ T implies

I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T,
for all σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′).

The following proposition establishes a hierarchy of compatibility prop-
erties.

Proposition 711 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I♭ has the local family compatibility, then it has the local system
compatibility in I;

(b) If I♭ has the local system compatibility, then it has the global family
compatibility in I;

(c) I♭ has the global family compatibility in I if and only if it has the global
system compatibility in I.

Proof: Part (a) and one of the implications in Part (c) follow directly from
the fact that every theory system of I is also a theory family of I .

For Part (b), suppose that I♭ has the local system compatibility in I . Let

T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
↔

I♭Σ[φ,ψ] ≤ T . Then
by Lemma 93, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

↔

I♭Σ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ≤ T.
This implies, by Lemma 99, that, for all ξ⃗ ∈ SEN♭(Σ′),

↔

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆←ÐT Σ′ .

Since I♭ has the local system compatibility and, by Proposition 42,
←Ð
T ∈

ThSys(I), we get that, for all σ♭ ∈ N ♭, all Σ′′ ∈ ∣Sign♭∣, all g ∈ Sign♭(Σ′,Σ′′)
Σ

f ✲ Σ′
g ✲ Σ′′

and all χ⃗ ∈ SEN♭(Σ′) and ξ⃗ ∈ SEN♭(Σ′′),
I♭Σ′′(σ♭Σ′′(SEN♭(gf)(φ),SEN♭(g)(χ⃗)),

σ♭Σ′′(SEN♭(gf)(ψ),SEN♭(g)(χ⃗)), ξ⃗) ⊆ TΣ′′ ,
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or, equivalently,

I♭Σ′′(SEN♭(g)(σ♭Σ′(SEN♭(f)(φ), χ⃗)),
SEN♭(g)(σ♭Σ′(SEN♭(f)(ψ), χ⃗)), ξ⃗) ⊆ TΣ′′ .

Since this holds for all Σ′′ ∈ ∣Sign♭∣, g ∈ Sign♭(Σ′,Σ′′) and ξ⃗ ∈ SEN♭(Σ′′), we
conclude that I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T . Therefore
I♭ has the global family compatibility in I .

Suppose, finally, that I♭ has the global system compatibility in I and let

T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that
↔

I♭Σ[φ,ψ] ≤ T .

By Lemma 99, we get that
↔

I♭Σ[φ,ψ] ≤ ←ÐT . Since I♭ has the global sys-

tem compatibility and, by Proposition 42,
←Ð
T ∈ ThSys(I), we get that,

for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and χ⃗ ∈ SEN♭(Σ′),
I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ ←ÐT . Using again Lemma 99,
we conclude that I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T . There-
fore, I♭ has the global family compatibility in I . ∎

Proposition 711 has established the following hierarchy of compatibility
properties:

Local Family Compatibility

Local System Compatibility
❄

Global Compatibility
❄

We look, next, at some natural sufficient conditions under which some of
these three compatibility properties coincide.

Proposition 712 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the local family and the local system compatibility
coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system compatibility and the global compatibility coincide.

Proof: If I is systemic, then all theory families are theory systems and,
hence, the local family and local system compatibility properties coincide.

Suppose, next that I♭ is parameter free and has the global system com-
patibility in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
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↔

I♭Σ(φ,ψ) ⊆ TΣ. Then, by Proposition 99,
↔

I♭Σ[φ,ψ] ≤ T . Thus, by the global
system compatibility, for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and
all χ⃗ ∈ SEN♭(Σ′), I♭Σ′[σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T , which
implies that, for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
χ⃗ ∈ SEN♭(Σ′), I♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)) ⊆ TΣ′ . There-
fore, I♭ has the local system compatibility in I . ∎

So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local Compatibility Local Family Compatibility

Global Compatibility
❄

Local System/Global Compatibility
❄

Of course, for a systemic π-institution with a parameter-free set of natural
transformations all four compatibility properties coincide.

We provide some examples to show that the implications of Proposition
711 are not equivalences in general, i.e., in the 3-class hierarchy all inclusions
of classes of π-institutions with a set of natural transformations satisfying
the corresponding compatibility properties are proper inclusions.

We first present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the local system compatibility
but not the local family compatibility in I .

Example 713 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single objects Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by two binary
natural transformations:

– σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be
given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = 2 or y = 2
1, if {x, y} = {0,1}
0, otherwise

– λ♭ ∶ (SEN♭)2 → SEN♭ defined by letting λ♭Σ ∶ {0,1,2}2 → {0,1,2} be
given by

λ♭Σ(x, y) = { 2, if x = 2 or y = 2
0, otherwise
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Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system compatibility in I,
but it does not have the local family compatibility in I.

For the local system compatibility note that, if T = SEN♭, then the defin-
ing implication is trivially true. If, on the other hand, T = Thm(I), then
σ♭Σ(φ,ψ) = 2 if and only if φ = 2 or ψ = 2. But then we get, for all
χ ∈ SEN♭(Σ),

σ♭Σ(σ♭Σ(φ,χ), σ♭Σ(ψ,χ)) = 2,
σ♭Σ(λ♭Σ(φ,χ), λ♭Σ(ψ,χ)) = 2.

So I♭ has the local system compatibility in I.
To see that I♭ does not have the local family compatibility in I, consider

the theory family T = {{1,2}}. We have σ♭Σ(0,1) = σ♭Σ(1,0) = 1 ∈ TΣ, but

σ♭Σ(λ♭Σ(1,0), λ♭Σ(0,0)) = σ♭Σ(0,0) = 0 ∉ TΣ.

Therefore, the implication defining local family compatibility fails for T ={{1,2}}. So I♭ does not have locally family compatibility in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that has the global (family) compatibility but
not the local system compatibility in I .

Example 714 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with two objects Σ,Σ′ and a single (non-identity)
morphism f ∶ Σ→ Σ′;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1}, SEN♭(Σ′) ={a, b, c} and SEN♭(f) ∶ {0,1}→ {a, b, c} given by 0↦ b, 1↦ c;
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• N ♭ is the category of natural transformations generated by one ternary
natural transformation σ♭ ∶ (SEN♭)3 → SEN♭, defined as follows:

– σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(x, y, z) = 0, for all x, y, z ∈ {0,1};
– σ♭Σ′ ∶ {a, b, c}3 → {a, b, c} be given by

σ♭Σ′(x, y, z) = { a, if a ∈ {x, y, z}
b, otherise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{1},{0,1}}, CΣ′ = {{c},{b, c},{a, b, c}}.
Thm(I) has six theory families all of which, except {{0,1},{c}}, are theory
systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family compatibility in I,
but it does not have the local system compatibility in I.

For the global compatibility note that, if, for some x, y ∈ SEN♭(Σ), we
have σ♭Σ[x, y] ≤ T , then T = SEN♭. Similarly, if, for some x, y ∈ SEN♭(Σ′),
σ♭Σ′[x, y] ≤ T , then TΣ′ = {a, b, c}. In both cases, the conclusion of the defining
implication is trivially true. So I♭ has the global compatibility in I.

On the other hand, consider the theory system T = {{0,1},{b, c}}. Let
φ = 0 and ψ = 1. Then, we have, for all z ∈ {0,1},

σ♭Σ(0,1, z) = σ♭Σ(1,0, z) = 0 ∈ TΣ.

On the contrary,

σ♭Σ′(σ♭Σ′(SEN♭(f)(0), c, c), σ♭Σ′(SEN♭(f)(1), c, c), a) = a ∉ TΣ′ .
Therefore, the implication defining local system compatibility fails for T . So
I♭ does not have the local system compatibility in I.
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We close by proving that all three compatibility properties transfer from
π-institutions to their models.

Proposition 715 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has a
compatibility property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding compatibility
property in A.

Proof: If I has a compatibility property in A, for all A, then it has the same
compatibility property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude
that I♭ has the corresponding compatibility in I .

Suppose, conversely, that I♭ has a compatibility property in I . We look
at each of the three properties in turn.

(a) Suppose I♭ has the local family compatibility in I and let A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, let T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

↔

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ). Since this is equivalent to αΣ(↔I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ),
we get that

↔

I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ). But, by
hypothesis, I♭ has the local family compatibility in I and, by Lemma
51, α−1(T ) ∈ ThFam(I). Therefore, we get that, for all λ♭ ∈ N ♭, all
Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗, ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(λ♭Σ′(SEN♭(f)(φ), χ⃗), λ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ⊆ α−1Σ′ (TF (Σ′)).
This now gives

αΣ′(I♭Σ′(λ♭Σ′(SEN♭(f)(φ), χ⃗), λ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗)) ⊆ TF (Σ′),
or, equivalently,

IF (Σ′)(λF (Σ′)(SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)),
λF (Σ′)(SEN(F (f))(αΣ(ψ)), αΣ′(χ⃗)), αΣ′(ξ⃗)) ⊆ TF (Σ′).

Taking into account the surjectivity of ⟨F,α⟩, we conclude that I has
the local family compatibility in A.

(b) The case of the local system compatibility can be proven similarly,
taking into account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).
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(c) Suppose that I♭ has the global (family) compatibility in I and let A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈
FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

↔

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
Then, we have, by Lemma 95,

↔

I♭Σ[φ,ψ] ≤ α−1(T ). Now, since, by
hypothesis, I♭ has the global family compatibility in I and, by Lemma
51, α−1(T ) ∈ ThFam(I), we get that, for all λ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

I♭Σ′[λ♭Σ′(SEN♭(f)(φ), χ⃗), λ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ α−1(T ),
or, equivalently, by Lemma 95,

IF (Σ′)[αΣ′(λ♭Σ′(SEN♭(f)(φ), χ⃗)), αΣ′(λ♭Σ′(SEN♭(f)(ψ), χ⃗))] ≤ T.
But this amounts to

IF (Σ′)[λF (Σ′)(SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)),
λF (Σ′)(SEN(F (f))(αΣ(ψ)), αΣ′(χ⃗))] ≤ T.

Thus, I has the global family compatibility in A.
∎

10.9 Congruence

In this section we focus on the three uniform equivalence properties, i.e.,
on LFLF equivalence, LSLS equivalence and GBGB equivalence, and we add
to those versions of the compatibility property to obtain several versions of
the congruence property.

To fix some terminology, we say that a set I♭ of natural transformations
in a π-institution I has:

• the local family equivalence in I if it has the LFLF equivalence in
I ;

• the local system equivalence in I if it has the LSLS equivalence in
I ;

• the global equivalence in I if it has the GBGB equivalence in I .

By previous work, we know that these three uniform equivalence properties
are stratified in the linear hierarchy shown on the left below.



Voutsadakis CHAPTER 10. ELEMENTS OF SYNTAX 725

Local Family Equivalence Local Family Compatibility

Local System Equivalence
❄

Local System Compatibility
❄

Global Equivalence
❄

Global Compatibility
❄

Moreover, by our study of the compatibility properties, we know that they
also fall into a similar linear hierarchy, as shown on the right of the diagram.

By combining equivalence with compatibility properties, we obtain nine
congruence properties as follows. Let X,Y ∈ {LF,LS,GB}, where, as before,
LF stands for “Local Family”, LS stands for “Local System” and GB stands
for “GloBal”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transfor-
mations in N ♭, with two distinguished arguments. We say that I♭ has the
XY-congruence in I if it has

• the X (uniform) equivalence in I ;

• the Y compatibility in I .

Based on the hierarchies of the equivalence and compatibility properties,
we obtain the following hierarchical structure for the various flavors of the
congruence property.

Corollary 716 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭, with two distinguished arguments. The nine congruence
properties form the hierarchy shown on the accompanying diagram.

Proof: This follows directly from Corollary 694 and Proposition 711. ∎
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LFLF Congruence

✠�
�
� ❅

❅
❅❘

LSLF Congruence LFLS Congruence

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

GBLF Congruence LSLS Congruence LFGB Congruence

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

GBLS Congruence LSGB Congruence

❅
❅
❅❘ ✠�

�
�

GBGB Congruence

Based on the analysis performed on symmetry and transitivity, we have
the following result regarding natural sufficient conditions under which some
of the nine congruence properties above coincide.

Corollary 717 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the congruence hierarchy collapses to the one
depicted below, where LC (for LoCal) is used to incorporate the LF and
LS properties, which coincide;

LCLC Congruence

✠�
�
�
� ❅

❅
❅
❅❘

LCGB Congruence GBLC Congruence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Congruence

(b) If I♭ has only two arguments (i.e., is parameter free), then the con-
gruence hierarchy collapses to the one depicted below, where the Local
System versions coincide with (and, thus, are incorporated into) the
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GloBal versions.

LFLF Congruence

✠�
�
�
� ❅

❅
❅
❅❘

LFGB Congruence GBLF Congruence

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB Congruence

Proof: The statement follows from Corollary 695 and Proposition 712. ∎

For a systemic π-institution with a parameter-free set of natural trans-
formations, there is only one congruence property, since all versions of equiv-
alence and all versions of compatibility collapse to a single property.

Instead of studying this entire hierarchy in detail, we refocus, once again,
to the uniformly defined classes. So we define LF congruence, LS congru-
ence and GB congruence to mean, respectively, LFLF congruence, LSLS
congruence and GBGB congruence. These are the three diagonal classes in
the original diagram that form, according to Corollary 716, the subhierarchy
depicted below.

LF Congruence

LS Congruence
❄

GB Congruence
❄

And, of course, according to Corollary 717, this reduces to the hierarchy
depicted on the left below for a systemic π-institution and to the one depicted
on the right below for a parameter free set of natural transformations.

LF/LS Congruence LF Congruence

GB Congruence
❄

LS/GB Congruence
❄

We provide examples to show that the three uniform classes of the con-
gruence hierarchy are distinct in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS congruence, but not
the LF congruence property in I .
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Example 718 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a single bi-
nary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if (x, y) = (1,2)
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system congruence in I,
but it does not have the local family congruence in I.

First note that σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ {0,1,2}, whence I♭ is
reflexive in I. Next note that the condition defining local system symmetry
holds trivially for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) ∈ ThmΣ(I), for
some φ ≠ ψ, then {φ,ψ} = {0,1}, whence σ♭Σ(ψ,φ) ∈ ThmΣ(I). So I♭ is
locally system symmetric in I. For local system transitivity, the defining
condition holds, again, trivially for SEN♭, whereas for Thm(I), it holds due
to the fact that σ♭Σ(φ,ψ) ∈ ThmΣ(I) for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, other
than (φ,ψ) = (0,1) or (1,0). Thus, I♭ is also locally system transitive in
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I. Finally, note that the condition defining local system compatibility is also
trivial for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) = 2 and σ♭Σ(ψ,φ) = 2, with
φ ≠ ψ, then {φ,ψ} = {0,1} and, in that case,

σ♭Σ(σ♭Σ(SEN♭(h)(φ), χ), σ♭Σ(SEN♭(h)(ψ), χ)) = 2

and

σ♭Σ(σ♭Σ(χ,SEN♭(h)(φ)), σ♭Σ(χ,SEN♭(h)(ψ))) = 2,

for all h ∈ Sign♭(Σ,Σ) and all χ ∈ {0,1,2}. Thus, I♭ has the local system
compatibility in I and, therefore, has the local system congruence in I.

On the other hand, note that σ♭Σ(1,2) = 1 ∈ {1,2}, but σ♭Σ(2,1) = 0 ∉ {1,2}.
Thus, the local family symmetry condition fails for T = {{1,2}} ∈ ThFam(I).
Hence, I♭ is not locally family symmetric in I and, therefore, a fortiori, it
fails to satisfy the local family congruence in I.

Finally, we present an example to show that there is a π-institution I
with a set of natural transformations that has the GB congruence but not
the LS congruence in I .

Example 719 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the GB congruence in I, but it does
not have the LS congruence in I.
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Note, first, that reflexivity is obvious, since, by definition, for all φ ∈
SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ). For global sym-
metry, note that if, for some φ,ψ ∈ SEN♭(Σ), σ♭Σ[φ,ψ] ≤ Thm(I), then we
must have φ = ψ, whence σ♭Σ[ψ,φ] ≤ Thm(I) holds. For global transiti-
vity, note again that for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is it the case that
σ♭Σ[φ,ψ] ≤ Thm(I), whence the condition is satisfied in this case as well. Fi-
nally, the same observation leads to the conclusion that I♭ satisfies the global
compatibility property in I. We conclude that I♭ has the GB congruence in
I.

On the other hand, since σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ),
but σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I), I♭ does not have the local system symmetry.
A fortiori, I♭ does not have the LS congruence in I.

And here is a transfer property for the congruence properties that we
have focused on in this section.

Corollary 720 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭

has a congruence property in I if and only if, for every F-algebraic sys-
tem A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding con-
grunece property in A.

Proof: This follows directly from Corollary 700 and Proposition 715. ∎

10.10 Modus Ponens

We turn now to the study of various versions of the modus ponens prop-
erty, taking again into account both the duality between local versus global
membership and the difference between considering all theory families versus
restricting only to theory systems.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family modus ponens (local family MP) in I if,
for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ imply ψ ∈ TΣ;

• I♭ has the local system modus ponens (local system MP) in I
if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ imply ψ ∈ TΣ;

• I♭ has the global family modus ponens (global family MP) in I
if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T imply ψ ∈ TΣ;

• I♭ has the global system modus ponens (global system MP) in
I if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T imply ψ ∈ TΣ.

The following proposition establishes the hierarchy of modus ponens rules.

Proposition 721 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the local family MP, then it has both the global family MP in
I and the local system MP in I;

(b) If I♭ has the global family MP, then it has the global system MP in I;

(c) If I♭ has the local system MP, then it has the global system MP in I.

Proof:

(a) Suppose that I♭ has the local family MP in I . Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T .
Then, we have, in particular, that, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ.
But then, since φ ∈ TΣ and, for all χ⃗ ∈ SEN♭(Σ), I♭Σ(φ,ψ, χ⃗) ⊆ TΣ, we
get by the local family MP that ψ ∈ TΣ. We conclude that I♭ has the
global family MP in I .

If I♭ has the local family MP in I , then it has a fortiori the local system
MP in I due to the fact that every theory system of I is also a theory
family.
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(b) This follows, similarly to the second part of (a), from the fact that
every theory system of I is also a theory family.

(c) We repeat the argument used in the proof of the first part of (a) ex-
cept reasoning exclusively in terms of theory systems rather than using
arbitrary theory families. ∎

Proposition 721 has established the following hierarchy of modus ponens
properties, where the southwest arrows are based on the family-system du-
ality whereas the southeast arrows on the local-global duality.

Local Family MP

✠�
�
� ❅

❅
❅❘

Local System MP Global Family MP

❅
❅
❅❘ ✠�

�
�

Global System MP

We also note the following regarding natural sufficient conditions under
which some of these four classes coincide.

Proposition 722 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the local (global) family and the local (global)
system MP coincide;

(b) If I♭ has only two arguments (i.e., is parameter free), then the local
system MP and the global system MP coincide;

(c) If I is systemic and I♭ is parameter-free, then the local family MP and
the global family MP also coincide.

Proof:

(a) If I is systemic, then all theory families are theory systems and the
family and system properties collapse.

(b) Suppose that I♭ is parameter-free and that I♭ has the global system
MP in I . Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that
I♭Σ(φ,ψ) ⊆ TΣ. Since T is a theory system, we have, for all Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ)) = SEN♭(f)(I♭Σ(φ,ψ)) ⊆ TΣ′ .
Equivalently, I♭Σ[φ,ψ] ≤ T . Thus, by the global system MP, we get that
ψ ∈ TΣ. Thus, I♭ has the local system MP.
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(c) This follows from Parts (a) and (b).
∎

So in the case of a systemic π-institution I , we have the hierarchy pic-
tured on the left, whereas in the case of a parameter-free set of natural
transformations we have the hierarchy on the right.

Local MP Local Family MP

Global MP
❄

Global Family MP
❄

System MP
❄

Finally, for a systemic π-institution with a parameter-free set of natural
transformations all four MP properties collapse to a single one.

We provide some examples to show that the implications of Proposition
721 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding modus ponens properties are proper inclusions.

We first present an example to show that there is π-institution I with a
set of natural transformations that have the global family MP but not the
local system MP in I .

Example 723 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1} and SEN♭(f) ∶{0,1}→ {0,1} given by 0↦ 1 and 1↦ 1;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}3 → {0,1} be given by

σ♭Σ(a, b, c) = { 0, if (a, b, c) = (1,1,0)
1, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-

guished arguments.
Clearly, both Thm(I) and SEN, which are the only theory families, are

also theory systems. We show that I♭ has the global family MP in I, but it
does not have the local system MP in I.
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For the global family MP notice that we only need to check the case with
T = Thm(I), φ = 1 and ψ = 0. Since σ♭Σ(SEN♭(f)(1),SEN♭(f)(0),0) =
σ♭Σ(1,1,0) = 0, we have that I♭Σ[φ,ψ] ≰ T , whence the condition is vacuously
satisfied. Therefore, we get that I♭ has the global family MP in I.

On the other hand, we have σ♭Σ(1,0,0) = σ♭Σ(1,0,1) = 1 ∈ ThmΣ(I) and
1 ∈ ThmΣ(I), but 0 ∉ ThmΣ(I), which shows that I♭ does not have the local
system MP in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that have the local system MP but not
the global family MP in I .

Example 724 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all a, b ∈ SEN♭(Σ), by

σ♭Σ(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if (a, b) = (2,0)
0, if (a, b) = (2,1)
2, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}.
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I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and SEN♭,
but only two theory systems Thm(I) and SEN♭. We show that I♭ has the
local system MP in I, but it does not have the global family MP in I.

For the local system MP notice that we only need to check the case for
Thm(I), φ = 2 and ψ = 0 or ψ = 1. Since σ♭Σ(2,0) = 1 ∉ ThmΣ(I) and
σ♭Σ(2,1) = 0 ∉ ThmΣ(I), we conclude that I♭ has the local system MP in I.

On the other hand, for the theory family T and for φ = 0 and ψ = 1, we
get that φ = 0 ∈ TΣ and σ♭Σ(φ,ψ) = σ♭Σ(0,1) = 2 and

σ♭Σ(SEN♭(f)(φ),SEN♭(f)(ψ)) = σ♭Σ(1,0) = 2,

whence σ♭Σ[0,1] ≤ T . But clearly 1 ∉ TΣ. Therefore I♭ does not have the global
family MP in I.

We prove next a transfer property for modus ponens.

Proposition 725 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a modus ponens property in I if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding modus
ponens property in A.

Proof: If I has a modus ponens property in A, for all A, then it has the
same modus ponens in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that
I♭ has the corresponding modus ponens in I .

Suppose, conversely, that I♭ has a modus ponens in I . We look at each
of the four properties in turn.

(a) Suppose I♭ has the local family MP in I and let A = ⟨A, ⟨F,α⟩⟩, with
A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(φ) ∈ TF (Σ) and

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(χ⃗)) ⊆ TF (Σ),
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for all χ⃗ ∈ SEN♭(Σ). Since the latter is equivalent to αΣ(I♭Σ(φ,ψ, χ⃗)) ⊆
TF (Σ), we get that φ ∈ α−1Σ (TF (Σ)) and I♭Σ(φ,ψ, χ⃗) ⊆ α−1Σ (TF (Σ)), for
all χ⃗ ∈ SEN♭(Σ). But, by hypothesis, I♭ has the local family MP in
I and, by Lemma 51, α−1(T ) ∈ ThFam(I). Therefore, we get that
ψ ∈ α−1Σ (TF (Σ)), or, equivalently, αΣ(ψ) ∈ TF (Σ). This proves that I has
the local family MP in A.

(b) The case of the local system MP can be proven similarly, taking into
account that, if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose that I♭ has the global family MP in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

αΣ(φ) and IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
Then, we have φ ∈ α−1Σ (TF (Σ)) and, by Lemma 95, I♭Σ[φ,ψ] ≤ α−1(T ).
Now, since, by hypothesis, I♭ has the global family MP in I and, by
Lemma 51, α−1(T ) ∈ ThFam(I), we get that ψ ∈ α−1Σ (TF (Σ)), or, equiv-
alently, αΣ(ψ) ∈ TF (Σ). Thus, I has the global family MP in A.

(d) Similar to (c).
∎

10.11 Syntactic Protoalgebraicity

In this section we focus on the three uniform congruence properties,
i.e., on LF congruence, LS congruence and GB congruence, and we add to
those versions of the modus ponens property to obtain several versions of the
syntactic protoalgebraicity property.

By previous work, we know that the three uniform congruence properties
are stratified in the linear hierarchy shown on the left below.

Local Family Congruence Local Family MP

✠�
�
� ❅

❅
❅❘

Local System Congruence
❄

Local System MP Global Family MP

❅
❅
❅❘ ✠�

�
�

Global Congruence
❄

Global System MP

Moreover, by our study of the modus ponens, we know that they fall into
the hierarchy shown on the right of the diagram.

By combining equivalence with compatibility properties, we obtain twelve
syntactic protoalgebraicity properties as follows. Let X ∈ {LF,LS,GB} and
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Y ∈ {LF,LS,GF,GS}, where, as before, LF stands for “Local Family”, LS
stands for “Local System”, GF stands for “Global Family”, GS stands for
“Global System” and GB stands for “GloBal”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that I♭ has the XY
syntactic protoalgebraicity in I (XY SPA in I) if it has

• the X congruence in I ;

• the Y modus ponens in I .

Based on the hierarchies of the congruence and MP properties, we obtain
the following hierarchical structure for the various flavors of the syntactic
protoalgebraicity property.

Corollary 726 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The twelve syntactic
protoalgebraicity properties form the hierarchy shown on the accompanying
diagram.

Proof: This follows directly from Corollary 716 and Proposition 721. ∎

LFLF SPA

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥
LFLS SPA LSLF SPA

❄
LFGF SPA

❙
❙
❙
❙
❙
❙
❙
❙
❙✇

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥

✴✓
✓
✓
✓
✓
✓
✓
✓
✓

LSLS SPA
❄

GBLF SPA
❄

LSGF SPA
❄

❙
❙
❙
❙
❙
❙
❙
❙
❙✇

✙✟✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❍❥

✴✓
✓
✓
✓
✓
✓
✓
✓
✓

GBLS SPA
❄

LFGS SPA GBGF SPA
❄

❙
❙
❙
❙
❙
❙
❙
❙
❙✇ ✴✓

✓
✓
✓
✓
✓
✓
✓
✓

LSGS SPA
❄

GBGS SPA
❄

Based on the analysis performed on congruence and modus ponens, we
have the following result regarding natural sufficient conditions under which
some of the twelve syntactic protoalgebraicity properties above coincide.
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Corollary 727 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the syntactic protoalgebraicity hierarchy collapses
to the one depicted below;

LCLC SPA

✠�
�
�
� ❅

❅
❅
❅❘

LCGB SPA GBLC SPA

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB SPA

(b) If I♭ has only two arguments (i.e., is parameter free), then the syn-
tactic protoalgebraicity hierarchy collapses to the one depicted below,
where the Local System versions of congruence coincide with (and are
incorporated into) the global versions and the Local and Global System
versions of MP also coincide and are denoted by SYS.

LFLF SPA
◗
◗
◗
◗
◗s

GBLF SPA
❄

LFGF SPA
◗
◗
◗
◗
◗s

◗
◗
◗
◗
◗s

GBGF SPA
❄

LFSYS SPA
◗
◗
◗
◗
◗s

GBSYS SPA
❄

Proof: The statement follows from Corollary 717 and Proposition 722. ∎

For a systemic π-institution with a parameter-free set of natural trans-
formations, there is only one syntactic protoalgebraicity property, since all
versions of congruence and all versions of modus ponens collapse to a single
property.

Instead of studying this entire hierarchy in detail, we refocus, once again,
on the uniformly defined classes. So we define LF SPA, LS SPA, GF SPA
and GS SPA to mean, respectively, LFLF syntactic, LSLS syntactic, GFGF
syntactic and GSGS syntactic protoalgebraicity. These classes form,
according to the diagram above, based on Corollary 726, the sub hierarchy
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depicted below.

LF SPA

✠��
� ❅❅❅❘

LS SPA GF SPA

❅❅❅❘ ✠��
�

GS SPA

Moreover, according to Corollary 727, this reduces to the hierarchy depicted
on the left below for a systemic π-institution and to the one depicted on the
right below for a parameter free set of natural transformations.

LC SPA LF SPA

GB SPA
❄

GF SPA
❄

SYS SPA
❄

We provide examples to show that the four uniform classes of the syntactic
protoalgebraicity hierarchy are distinct in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS syntactic protoalge-
braicity, but not the GF syntactic protoalgebraicity in I .

Example 728 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a single bi-
nary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {1,2}
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
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Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system syntactic protoalge-
braicity in I, but it does not have the global family syntactic protoalgebraicity
in I.

First note that σ♭Σ(φ,φ) = 2 ∈ ThmΣ(I), for all φ ∈ {0,1,2}, whence I♭ is
reflexive in I.

Next, note that the condition defining local system symmetry holds triv-
ially for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) ∈ ThmΣ(I), for some φ ≠ ψ,
then {φ,ψ} = {0,1}, whence σ♭Σ(ψ,φ) ∈ ThmΣ(I). So I♭ is local system
symmetric in I.

For local system transitivity, the defining condition holds, again, triv-
ially for SEN♭, whereas for Thm(I), it holds due to the fact that σ♭Σ(φ,ψ) ∈
ThmΣ(I) for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, other than (φ,ψ) = (0,1) or(1,0). Thus, I♭ is also local system transitive in I.

Next, note that the condition defining local system compatibility is also
trivial for SEN♭, whereas for Thm(I), if σ♭Σ(φ,ψ) = 2 and σ♭Σ(ψ,φ) = 2, with
φ ≠ ψ, then {φ,ψ} = {0,1} and, in that case,

σ♭Σ(σ♭Σ(SEN♭(h)(φ), χ), σ♭Σ(SEN♭(h)(ψ), χ)) = 2

and

σ♭Σ(σ♭Σ(χ,SEN♭(h)(φ)), σ♭Σ(χ,SEN♭(h)(ψ))) = 2,

for all h ∈ Sign♭(Σ,Σ) and all χ ∈ {0,1,2}. Thus, I♭ has the local system
compatibility in I and, therefore, has the local system congruence in I.

To finish up, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such
that σ♭Σ(φ,ψ) ∈ ThmΣ(I) are (0,1) and (1,0) and for neither of these is
φ ∈ ThmΣ(I), I♭ has the local system modus ponens in I and, therefore, it
has the local system syntactic protoalgebraicity in I as well.

On the other hand, 1 ∈ {1,2} and σ♭Σ[1,0] ≤ {{1,2}}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the global family modus ponens in I and, hence,
a fortiori, it does not have the global family syntactic protoalgebraicity in I.
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Next, we present an example to show that there is π-institution I with
a set of natural transformations that has the GF syntactic protoalgebraicity
but not the LS syntactic protoalgebraicity in I .

Example 729 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two distin-
guished arguments. We show that I♭ has the global family syntactic protoalge-
braicity in I, but it does not have the local system syntactic protoalgebraicity
in I.

Note, first, that reflexivity is obvious, since, by definition, for all φ ∈
SEN♭(Σ), σ♭Σ(φ,φ, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ). For global sym-
metry, note that if, for some φ,ψ ∈ SEN♭(Σ), σ♭Σ[φ,ψ] ≤ Thm(I), then we
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must have φ = ψ, whence σ♭Σ[ψ,φ] ≤ Thm(I) holds. For global transiti-
vity, note again that for no φ,ψ ∈ SEN♭(Σ), with φ ≠ ψ, is it the case that
σ♭Σ[φ,ψ] ≤ Thm(I), whence the condition is satisfied in this case as well. Fi-
nally, the same observation leads to the conclusion that I♭ satisfies both the
global compatibility property in I and the global modus ponens. We conclude
that I♭ has the global family syntactic protoalgebtaicity in I.

On the other hand, since σ♭Σ(0,1, ξ) = 2 ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ),
but σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I), I♭ does not have the local system symmetry.
A fortiori, I♭ does not have the local system congruence and, hence, does not
have the local system syntactic protoalgebraicity in I either.

And here is a transfer property for the syntactic protoalgebraicity prop-
erties that we have focused on in this section.

Corollary 730 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a (uniform) syntactic protoalgebraicity property in I if and only if, for ev-
ery algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the
corresponding syntactic protoalgebraicity property in A.

Proof: This follows directly from Corollary 720 and Proposition 1440. ∎

10.12 Invertibility

We study, next, various versions of the invertibility property, once again
based on the local versus global and the theory family versus theory system
dualities.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that:

• I♭ has the local family invertibility in I if there exists a set τ ∶
SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ(τΣ(φ), ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
• I♭ has the local system invertibility in I if there exists a set τ ∶

SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ(τΣ(φ), ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
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• I♭ has the global family invertibility in I if there exists a set τ ∶
SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ[τΣ(φ)] ≤ T ;

• I♭ has the global system invertibility in I if there exists a set
τ ∶ SEN♭ → (SEN♭)2 of natural transformations in N ♭, such that, for all
T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff
↔

I♭Σ[τΣ(φ)] ≤ T.
We look at the hierarchy of invertibility properties.

Proposition 731 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the local (global) family invertibility, then it has the local
(global) system invertibility in I.

(b) If I♭ has the local system invertibility, then it has the global system
invertibility in I.

Proof: Since every theory system of I is a theory family, if I♭ has the local
(global) family invertibility in I , then it has, a fortiori, the local (global)
system invertibility in I , with the same witnessing set τ of natural transfor-
mations in N ♭.

Suppose, next, that I♭ has the local system invertibility in I , with wit-
nessing set of natural transformations τ , and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣
and φ ∈ SEN♭(Σ).

• If φ ∈ TΣ, then, since T ∈ ThSys(I), for all Σ′ ∈ ∣Sign♭∣ and all f ∈
Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ TΣ′ . Thus, by the local family invertibility,

I♭Σ′(τΣ′(SEN♭(f)(φ)), ξ⃗) ⊆ TΣ′ , for all ξ⃗ ∈ SEN♭(Σ′).
This is equivalent to I♭Σ′(SEN♭(f)(τΣ(φ)), ξ⃗) ⊆ TΣ′ . Since Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and ξ⃗ ∈ SEN♭(Σ′) were arbitrary, we conclude that
I♭Σ[τΣ(φ)] ≤ T .

• Suppose, conversely, that I♭Σ[τΣ(φ)] ≤ T . This implies I♭Σ(τΣ(φ), ξ⃗) ⊆
TΣ, for all ξ ∈ SEN♭(Σ). Thus, by the local family invertibility, φ ∈ TΣ.
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We conclude that φ ∈ TΣ if and only if I♭Σ[τΣ(φ)] ≤ T , whence I♭ has the
global system invertibility in I . ∎

Proposition 731 has established the following hierarchy of invertibility
properties:

Local Family Invertible

Local System Invertible
❄

Global Family Invertible
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

Global System Invertible

The following holds regarding natural sufficient conditions under which
some of these properties coincide.

Proposition 732 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the local (global) family invertibility and the local
(global) system invertibility properties coincide;

(b) If I♭ is parameter-free, then the local system invertibility and the global
system invertibility properties coincide.

Proof: If I is systemic, then the local (global) system invertibility property
coincides with the local (global) family invertibility property because of the
fact that every theory family in I is also a theory system.

Suppose, next, that I♭ is parameter-free and that I♭ has the global sys-
tem invertibility with witnessing set of natural transformations τ ∶ SEN♭ →(SEN♭)2. Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).

• If φ ∈ TΣ, then, by the global system invertibility, I♭Σ[τΣ(φ)] ≤ T . In
particular, I♭Σ(τΣ(φ)) ⊆ TΣ.

• If, conversely, I♭Σ(τΣ(φ)) ⊆ TΣ, then, since T ∈ ThSys(I), we get that,
for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), I♭Σ′(SEN♭(f)(τΣ(φ))) ⊆ TΣ′ .
Hence, I♭Σ[τΣ(φ)] ≤ T . Using the global system invertibility, we now
conclude that φ ∈ TΣ.

Thus, the global system invertibility implies the local system invertibility
property and, therefore that, provided I♭ is parameter-free, the local and
global system invertibility properties coincide. ∎

So, in the case of a systemic π-institution I , the hierarchy of invertibility
properties reduces to the one depicted on the left below, whereas in the case
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of a parameter-free set of natural transformations I♭, we get the hierarchy
depicted on the right.

Local Invertible
Local Family

Invertible
Global Family

Invertible
❅
❅
❅❘ ✠�

�
�

Global Invertible
❄

System Invertible

Finally, for a systemic π-institution and a parameter-free set of natural trans-
formations, all four invertibility properties coincide.

We provide some examples to show that the implications of Proposition
731 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding invertibility properties are proper inclusions.

We first present an example to show that there is π-institution I with a
set of natural transformations that has the local family invertibility but not
the global family invertibility in I .

Example 733 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with two objects Σ and Σ′ and a single (non-
identity) morphism f ∶ Σ → Σ′;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) ={a, b, c} and SEN♭(f) ∶ {0,1,2} → {a, b, c} given by 0 ↦ a, 1 ↦ a and
2↦ c;

• N ♭ is the trivial category of natural transformations consisting of the
projections only.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{c},{b, c},{a, b, c}}.
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Consider the set I♭ = {p2,0}, with p2,0 ∶ (SEN♭)2 → SEN♭ being the pro-
jection binary natural transformation (onto the first coordinate), viewed as
having two distinguished arguments.

I has nine theory families, but only five of those are theory systems.
So it is not a systemic π-institution. We show that I♭ has the local family
invertibility in I, but it does not have the global family invertibility in I.

For the local family invertibility, let τ ≡ {ι ≈ ι}, where ι ∶ SEN♭ → SEN♭

is the identity (or unary first coordinate projection) natural transformation.
Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

↔

I♭Σ(ιΣ(φ), ιΣ(φ)) ∈ TΣ iff φ ∈ TΣ.

Thus, I♭ has the local family invertibility in I.
On the other hand, for T = {{1,2},{b, c}} ∈ ThFam(I), we have 1 ∈ TΣ,

but

p
2,0
Σ′ (SEN♭(f)(1),SEN♭(f)(1)) = p2,0Σ′ (a, a) = a ∉ TΣ′ .

Therefore I♭ does not have the global family invertibility in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the global family invertibility
but not the local system invertibility in I .

Example 734 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 1 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}3 → {0,1,2} be given, for all x, y, z ∈ SEN♭(Σ), by

σ♭Σ(x, y, z) = { 1, if (x, y, z) = (1,1,2)
2, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{2},{0,1,2}}. Con-
sider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.

I has two theory families Thm(I), SEN♭ both of which are also theory
systems. So I is systemic. We show that I♭ has the global family invertibility
in I, but it does not have the local system invertibility in I.
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For the global family invertibility, consider τ = {ι ≈ ι}, where ι ∶ SEN♭ →
SEN♭ is the identity natural transformation. The case of SEN♭ is trivial,
whereas for Thm(I), we have, for all Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),

φ = 2 iff
↔

I♭Σ[φ,φ] ≤ {{2}},
which holds, for all φ ∈ {0,1,2}, as can be checked on a case-by-case basis.

On the other hand, for the local system invertibility, note that 0 ∉ {2},
but σ♭Σ(τΣ(0), ψ) = 2 ∈ {2}, for every set of unary natural transformations
τ ∶ SEN♭ → (SEN♭)2 in N ♭. We conclude that I♭ does not have the local
system invertibility in I.

Finally, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the local system invertibility
but not the local family invertibility in I .

Example 735 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if (x, y) = (2,2)
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
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Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.

I has three theory families, but only Thm(I), SEN♭ are theory systems.
So I is not systemic. We show that I♭ has the local system invertibility in I,
but it does not have the local family invertibility in I.

For the local system invertibility, consider τ = {ι ≈ ι}, where ι ∶ SEN♭ →
SEN♭ is the identity natural transformation. The case of SEN♭ is trivial,
whereas for Thm(I), we have to verify that, for all Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ),

φ = 2 iff
↔

I♭Σ(φ,φ) ⊆ {{2}}.
But this obviously holds, by the definition of I♭.

On the other hand, for the local family invertibility, note that 1 ∈ {1,2},
but

σ♭Σ(τΣ(1)) = 0 ∉ {1,2},
for every set of unary natural transformations τ ∶ SEN♭ → (SEN♭)2 in N ♭.
We conclude that I♭ does not have the local family invertibility in I.

We now prove a transfer property for invertibility.

Proposition 736 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
an invertibility property in I if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corresponding invertibility
property in A.

Proof: If I has an invertibility property in A, for all A, then it has the same
invertibility property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that
I♭ has the corresponding invertibility property in I .

Suppose, conversely, that I♭ has an invertibility property in I , with wit-
nessing set of natural transformations τ ∶ SEN♭ → (SEN♭)2 in N ♭. We look
at each of the four properties in turn.
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(a) Suppose I♭ has the global family invertibility in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). We then have

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff

↔

I♭Σ[τΣ(φ)] ≤ α−1(T )
iff

↔

IF (Σ)[αΣ(τΣ(φ))] ≤ T
iff

↔

IF (Σ)[τF (Σ)(αΣ(φ))] ≤ T.
Taking into account the surjetivity of ⟨F,α⟩, we conclude that I has
the global family invertibility in A.

(b) The global system invertibility follows analogously, taking into account
the fact that if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

(c) Suppose I♭ has the local family invertibility in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff

↔

I♭Σ(τΣ(φ), ξ⃗) ⊆ α−1Σ (TF (Σ)),
for all ξ⃗ ∈ SEN♭(Σ),

iff αΣ(↔I♭Σ(τΣ(φ), ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ),

iff
↔

IF (Σ)(τF (Σ)(αΣ(φ)), αΣ(ξ⃗)) ⊆ TF (Σ),
for all ξ⃗ ∈ SEN♭(Σ),

Taking into account the surjectivity of ⟨F,α⟩, we conclude that I has
the local family invertibility in A.

(d) The local system invertibility follows along the same lines, taking again
into account the fact that if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I).

∎

10.13 Syntactic Algebraizability

In this section we focus on the four uniform syntactic protoalgebraicity
properties, i.e., on LF SPA, LS SPA and GF SPA and GS SPA, and we
add to those versions of the invertibility property to obtain several versions
of the syntactic algebraizability property.

By previous work, we know that the four uniform SPA properties consti-
tute the hierarchy shown on the left below.
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LF SPA LF Invertibility

✠�
�
� ❅

❅
❅❘

LS SPA GF SPA LS Invertibility
❄

GF Invertibility

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

GS SPA GS Invertibility

Moreover, by our study of invertibility, we know that the various versions of
invertibility fall into the hierarchy shown on the right of the diagram.

By combining syntactic protoalgebraicity with invertibility properties, we
obtain sixteen syntactic algebraizability properties as follows. Let X,Y ∈{LF,LS,GF,GS}, where LF stands for “Local Family”, LS stands for “Local
System”, GF stands for “Global Family” and GS stands for “Global System”.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that I♭ has the XY
syntactic algebraizability in I (XY SA in I) if it has

• the X syntactic protoalgebraicity in I ;

• the Y invertibility in I .

Based on the hierarchies of the syntactic protoalgebraicity and invertibil-
ity properties, we obtain the following hierarchical structure for the various
flavors of the syntactic algebraizability property.

Corollary 737 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The sixteen syntactic
algebraizability properties form the hierarchy shown on the accompanying di-
agram.

Proof: This follows directly from Corollary 726 and Proposition 731. ∎
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LFLF SA

❂✚✚✚✚✚ ❩❩❩❩❩⑦
LSLF SA LFLS SA

❄
GFLF SA LFGF SA

❩❩❩❩❩⑦❂✚✚✚✚✚ ❩❩❩❩❩⑦❂✚✚✚✚✚❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟

❂✚✚✚✚✚ ❩❩❩❩❩⑦
LSLS SA

❄
GSLF SA GFLS SA

❄
LFGS SA LSGF SA GFGF SA

❩❩❩❩❩⑦

❍❍❍❍❍❍❍❍❥❂✚✚✚✚✚

❂✚✚✚✚✚❍❍❍❍❍❍❍❍❥

❩❩❩❩❩⑦✙✟✟✟✟✟✟✟✟ ❩❩❩❩❩⑦✙✟✟✟✟✟✟✟✟

❂✚✚✚✚✚

GSLS SA
❄

LSGS SA GFGS SA GSGF SA
❍❍❍❍❍❍❍❍❥

❩❩❩❩❩⑦ ❂✚✚✚✚✚

✙✟✟✟✟✟✟✟✟

GSGS SA

Based on the analysis performed on SPA and Invertibility, we have the fol-
lowing result regarding sufficient conditions under which some of the sixteen
syntactic algebraizability properties coincide.

Corollary 738 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I is systemic, then the syntactic algebraizability hierarchy collapses
to the one depicted below;

LCLC SA

✠�
�
�
� ❅

❅
❅
❅❘

LCGB SA GBLC SA

❅
❅
❅
❅❘ ✠�

�
�
�

GBGB SA

(b) If I♭ has only two arguments (i.e., is parameter free), then the syntactic
algebraizability hierarchy collapses to the one depicted below, where the
system versions of both the SPA and the invertibility properties are
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grouped together under the label SYS.

LFLF SA LFGF SA
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

GFLF SA
❄

LFSYS SA GFGF SA
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

SYSLF SA
❄

GFSYS SA SYSGF SA
❄

◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑

SYSSYS SA
❄

Proof: The statement follows from Corollary 727 and Proposition 732. ∎

For a systemic π-institution with a parameter-free set of natural trans-
formations, there is only one syntactic protoalgebraicity property, since all
versions of syntactic protoalgebraicity and all versions of invertibility collapse
to a single property.

Instead of studying this entire hierarchy in detail, we refocus, once again,
on the uniformly defined classes. So we define LF SA, LS SA, GF SA
and GS SA to mean, respectively, LFLF syntactic, LSLS syntactic, GFGF
syntactic and GSGS syntactic algebraizability. These classes form the
subhierarchy depicted below.

LF SA

LS SA
❄

GF SA

❅
❅❘ ✠�

�

GS SA

Moreover, according to Corollary 738, this reduces to the hierarchy depicted
on the left below for a systemic π-institution and to the one depicted on the
right below for a parameter free set of natural transformations.

LC SA LF SA GF SA

❅
❅
❅❘ ✠�

�
�

GB SA
❄

SYS SA

We provide examples to show that the inclusions between the four uniform
classes of the syntactic algebraizability hierarchy are proper in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS syntactic algebraizabil-
ity, but not the LF syntactic algebraizability in I .
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Example 739 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by
letting λ♭Σ ∶ {0,1,2} → {0,1,2} be given by λ♭Σ(x) = 2, for all
x ∈ {0,1,2};

– a binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by
letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {1,2}
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems. So I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system syntactic algebraiz-
ability in I, but it does not have the local family syntactic algebraizability in
I.

First, we look at local system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
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of SEN♭(Σ) are related in local system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the local system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1)),(σ♭Σ(0, φ), σ♭Σ(1, φ)) and (λ♭Σ(0), λ♭Σ(1)) are related via I♭ modulo Thm(I).
Thus, I♭ has the local system congruence in I.

Next, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ(φ,ψ) ∈
ThmΣ(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭
has the local system modus ponens in I.

Finally, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural transformations
in N ♭, given by τ = {ι ≈ λ♭}, where ι ∶ SEN♭ → SEN♭ is the identity natural
transformation. Since, for every φ ∈ SEN♭(Σ), we have

φ ∈ ThmΣ(I) iff
↔

IΣ(φ,λ♭Σ(φ)) ⊆ ThmΣ(I),
we also get that I♭ has the local system invertibility in I and, therefore, we
conclude that I♭ has the local system algebraizability in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ(1,0) = 2 ∈ {1,2}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the local family modus ponens in I and, hence,
a fortiori, it does not have the local family syntactic algebraizability in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that has the GS syntactic algebraizability but
not the GF syntactic algebraizability in I .

Example 740 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by
letting λ♭Σ ∶ {0,1,2} → {0,1,2} be given by λ♭Σ(x) = 2, for all
x ∈ {0,1,2};
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– a single binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ de-
fined by letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if (x, y) = (0,2) or (x, y) = (2,0)
0, if (x, y) = (1,2) or (x, y) = (2,1) .

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and SEN♭, but
only two theory systems Thm(I) and SEN♭. In particular, I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ having both arguments distinguished.
We show that I♭ has the global system syntactic algebraizability in I, but it
does not have the global family syntactic algebraizability in I.

First, we look at global system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
of SEN♭(Σ) are related in global system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the global system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1)),(σ♭Σ(0, φ), σ♭Σ(1, φ)) and (λ♭Σ(0), λ♭Σ(1)) are related via I♭ modulo Thm(I).
Thus, I♭ has the global system congruence in I.
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Next, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ[φ,ψ] ≤
Thm(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭ has
the global system modus ponens in I.

Finally, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural transformations
in N ♭, given by τ = {ι ≈ λ♭}, where ι ∶ SEN♭ → SEN♭ is the identity natural
transformation. Since, for every φ ∈ SEN♭(Σ), we have

φ ∈ ThmΣ(I) iff
↔

IΣ[φ,λ♭Σ(φ)] ≤ Thm(I),
we also get that I♭ has the global system invertibility in I and, therefore, we
conclude that I♭ has the global system algebraizability in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ[1,0] ≤ {{1,2}}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the global family modus ponens in I and, hence,
a fortiori, it does not have the global family syntactic algebraizability in I.

Note that the preceding example also shows that there is π-institution I
with a set of natural transformations that has the GS syntactic algebraiz-
ability but not the LF syntactic algebraizability in I . We present also an
additional example depicting a π-institution I with a set of natural trans-
formations I♭, with two distinguished arguments, that has the GS syntactic
algebraizability but not the LS syntactic algebraizability in I .

Example 741 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3} and SEN♭(f) ∶{0,1,2,3}→ {0,1,2,3} given by 0↦ 2, 1↦ 3, 2↦ 2 and 3↦ 3;

• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by let-
ting λ♭Σ ∶ {0,1,2,3} → {0,1,2,3} be given by 0 ↦ 2, 1 ↦ 3, 2 ↦ 2
and 3↦ 3;

– a ternary natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by
letting σ♭Σ ∶ {0,1,2,3}3 → {0,1,2,3} be given by

σ♭Σ(x, y, z) = { 2, if x = y or (x, y) = (0,1) or z = 2 or z = 3
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2,3},{0,1,2,3}}.
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Note that both theory families, Thm(I) and SEN♭, are also theory systems.
So I is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two dis-
tinguished arguments. We show that I♭ has the global (family or system)
syntactic algebraizability in I, but it does not have the local (family or sys-
tem) syntactic algebraizability in I.

Concerning global equivalence, the defining conditions for reflexivity, sym-
metry and transitivity of I♭ in I are all trivially satisfied for SEN♭. For the
theory system Thm(I), it suffices to observe that the relation of global equiv-
alence modulo Thm(I) is the identity relation. Therefore, I♭ has the global
system equivalence in I. Because of that, the global compatibility and the
global modus ponens are trivially satisfied.

Finally, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural transformations
in N ♭, given by τ = {ι ≈ λ♭}, where ι ∶ SEN♭ → SEN♭ is the identity natural
transformation. Since, for every φ ∈ SEN♭(Σ), we have

φ ∈ ThmΣ(I) iff
↔

IΣ[φ,λ♭Σ(φ)] ≤ Thm(I),
we also get that I♭ has the global system invertibility in I and, therefore, we
conclude that I♭ has the global system algebraizability in I.

On the other hand, σ♭Σ(0,1, ξ) ∈ ThmΣ(I), for all ξ ∈ SEN♭(Σ), but
σ♭Σ(1,0,0) = 0 ∉ ThmΣ(I), whence I♭ does not have the local symmetry in
I and, therefore, a fortiori, fails to satisfy the local syntactic algebraizability
in I.

We close with a transfer property for the syntactic algebraizability prop-
erties that we have focused on in this section.

Corollary 742 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a (uniform) syntactic algebraizability property in I if and only if, for ev-
ery F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the
corresponding syntactic algebraizability property in A.
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Proof: This follows directly from Corollary 730 and Proposition 736. ∎

10.14 Regularity

We turn now to the study of various versions of the regularity property,
based on the local versus global and the theory family versus theory system
dualities.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭, with two distinguished arguments. We say that:

• I♭ has the local family regularity in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ imply I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
• I♭ has the local system regularity in I if, for all T ∈ ThSys(I), all

Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ,ψ ∈ TΣ imply I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family regularity in I if, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ imply I♭Σ[φ,ψ] ≤ T ;

• I♭ has the global system regularity in I if, for all T ∈ ThSys(I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ imply I♭Σ[φ,ψ] ≤ T.
We give now the hierarchy of regularity properties.

Proposition 743 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the global family regularity, then it has the local family regu-
larity in I;

(b) If I♭ has the local family regularity, then it has the local system regularity
in I;

(c) I♭ has the global system regularity if and only if it has the local system
regularity in I.
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Proof:

(a) Suppose that I♭ has the global family regularity in I . Consider T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Then,
we have, by hypothesis, I♭Σ[φ,ψ] ≤ T . But this implies that I♭Σ(φ,ψ, ξ⃗) ⊆
TΣ, for all ξ⃗ ∈ SEN♭(Σ). Thus, I♭ has the local family regularity in I .

(b) The conclusion follows directly from the fact that every theory system
is a theory family of I .

(c) For the “only if” direction, we repeat the argument used in the proof of
Part (a) except reasoning exclusively in terms of theory systems rather
than using arbitrary theory families.

Suppose, conversely, that I♭ has the local system regularity in I . Let
T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ.
Since T ∈ ThSys(I), for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(φ),SEN♭(f)(ψ) ∈ TΣ′ .
Thus, by the local system regularity, for all ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆ TΣ′ .
Since this holds for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈
SEN♭(Σ′), we get that I♭Σ[φ,ψ] ≤ T , Therefore, I♭ has the global system
regularity in I .

∎

Proposition 743 has established the following hierarchy of regularity prop-
erties:

Global Family Regular

Local Family Regular
❄

System Regular
❄

We also note the following regarding natural sufficient conditions under
which some of these properties coincide.

Proposition 744 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments. If I is systemic,
then all three regularity properties coincide.



760 CHAPTER 10. ELEMENTS OF SYNTAX Voutsadakis

Proof: If I is systemic, then the (global) system regularity property coin-
cides with the family regularity property and this causes the collapsing of
the hierarchy. ∎

So in the case of a systemic π-institution I , there is only one possible
regularity property.

We provide some examples to show that the implications of Proposition
743 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding regularity properties are proper inclusions.

We first present an example to show that there is π-institution I with a
set of natural transformations that has the local family regularity but not
the global family regularity in I .

Example 745 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = 2 or y = 2
1, if (x, y) = (1,1)
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-

guished arguments.
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I has three theory families, but only Thm(I) and SEN are theory systems.
We show that I♭ has the local family regularity in I, but it does not have the
global family regularity in I.

For the local family regularity note, first, that σ♭Σ(2,2) = 2, which takes
care of Thm(I) and that the case of SEN♭ is trivial. So we only need to
check the case with T = {{1,2}}. Since σ♭Σ(2,2) = σ♭Σ(1,2) = σ♭Σ(2,1) = 2 and
σ♭Σ(1,1) = 1, the defining condition for local family regularity is also satisfied
for T = {{1,2}}. Therefore, I♭ has the local family regularity in I.

On the other hand, we have 1 ∈ {1,2} but σ♭Σ(SEN♭(f)(1),SEN♭(f)(1)) =
σ♭Σ(0,0) = 0 ∉ {1,2}. Thus, 1 ∈ T , but σ♭Σ[1,1] ≰ T , which shows that I♭ does
not have the global family regularity in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the system regularity but not
the local family regularity in I .

Example 746 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all a, b ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if x = 2 or y = 2
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
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I has three theory families Thm(I), T = {{1,2}} and SEN♭, but only two
theory systems Thm(I) and SEN♭. We show that I♭ has the (local) system
regularity in I, but it does not have the local family regularity in I.

For the local system regularity note that σ♭Σ(2,2) = 2, which takes care of
Thm(I), and that the case of SEN♭ is trivial.

On the other hand, for the local family regularity, note that 1 ∈ TΣ = {1,2},
but σ♭Σ(1,1) = 0 ∉ TΣ. Therefore I♭ does not have the local family regularity
in I.

We now prove a transfer property for regularity.

Proposition 747 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two dis-
tinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has a reg-
ularity property in I if and only if, for every algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, I has the corresponding regularity property in A.

Proof: If I has a regularity property in A, for all A, then it has the same
regularity property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CF ⟩ = I , we conclude that I♭

has the corresponding regularity property in I .
Suppose, conversely, that I♭ has a regularity property in I . We look at

each of the three properties in turn.

(a) Suppose I♭ has the global family regularity in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(φ) ∈ TF (Σ) and αΣ(ψ) ∈
TF (Σ). Then φ ∈ α−1Σ (TF (Σ)) and ψ ∈ α−1Σ (TF (Σ)). Since, by Lemma
51, α−1(T ) ∈ ThFam(I), we get by global family regularity, I♭Σ[φ,ψ] ≤
α−1(T ). Thus, by Lemma 95, IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T . We conclude
that I has the global family regularity in A.

(b) Suppose I♭ has the local family regularity in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(φ) ∈ TF (Σ) and αΣ(ψ) ∈
TF (Σ). Then φ ∈ α−1(TF (Σ)) and ψ ∈ α−1Σ (TF (Σ)). Since α−1(T ) ∈
ThFam(I), we get by local family regularity, that

I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ).
Thus, αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ) or, equivalently,

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ), for all ξ⃗ ∈ SEN♭(Σ).
It follows, taking into account the surjectivity of ⟨F,α⟩, that I has the
local family regularity in A.

(c) The system regularity follows analogously, taking into account the fact
that if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I). ∎
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10.15 Syntactic Regularity

In this section we focus on the four uniform syntactic protoalgebraicity prop-
erties, LF SPA, LS SPA, GF SPA and GS SPA, and we add to those versions
of the regularity property to obtain several versions of the syntactic regularity
property.

By previous work, we know that the four uniform SPA properties consti-
tute the hierarchy shown on the left below.

LF SPA GF Regularity

✠�
�
� ❅

❅
❅❘

LS SPA GF SPA LF Regularity
❄

❅
❅
❅❘ ✠�

�
�

GS SPA SYS Regularity
❄

Moreover, by our study of regularity, we know that the various versions of
regularity fall into the linear hierarchy shown on the right of the diagram.

By combining syntactic protoalgebraicity with regularity properties, we
obtain twelve syntactic regularity properties as follows. Let X ∈ {LF,LS,
GF,GS} and Y ∈ {LF,GF,SYS}, where LF stands for “Local Family”, LS
stands for “Local System”, GF stands for “Global Family”, GS stands for
“Global System” and SYS stands for “SYStem”, abbreviating both the local
and the global system properties, in case they are identical.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that I♭ has the XY
syntactic regularity in I (XY SR in I) if it has

• the X syntactic protoalgebraicity in I ;

• the Y regularity in I .

Based on the hierarchies of the syntactic protoalgebraicity and regular-
ity properties, we obtain the following hierarchical structure for the various
flavors of the syntactic regularity property.

Corollary 748 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The twelve syntactic
regularity properties form the hierarchy shown on the accompanying diagram.

Proof: This follows directly from Corollary 726 and Proposition 743. ∎
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LFGF SR

✰✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗s

LSGF SR LFLF SR
❄

GFGF SR

✰✑
✑
✑
✑
✑❙

❙
❙
❙
❙
❙
❙
❙✇

◗
◗
◗
◗
◗s

✴✓
✓
✓
✓
✓
✓
✓
✓

LSLF SR
❄

LFSYS SR
❄

GFLF SR
❄

✰✑
✑
✑
✑
✑❙

❙
❙
❙
❙
❙
❙
❙✇

◗
◗
◗
◗
◗s

✴✓
✓
✓
✓
✓
✓
✓
✓

LSSYS SR
❄

GSGF SR GFSYS SR
❄

❙
❙
❙
❙
❙
❙
❙
❙✇ ✴✓

✓
✓
✓
✓
✓
✓
✓

GSLF SR
❄

GSSYS SR
❄

Based on the analysis performed on SPA and regularity, we have the
following result regarding sufficient conditions under which some of the twelve
syntactic regularity properties coincide.

Corollary 749 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭, with two distinguished arguments.

(a) If I is systemic, then the syntactic regularity hierarchy collapses to the
one depicted below;

LC Regularity

GB Regularity
❄

(b) If I♭ has only two arguments (i.e., is parameter free), then the syn-
tactic regularity hierarchy collapses to the one depicted below, where
the System versions of both the SPA and the invertibility properties are
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grouped together under the label SYS.

LFGF SR

✠�
� ❅

❅❘

LFLF SR GFGF SR

✠�
� ❅

❅❘ ✠�
� ❅

❅❘

LFSYS SR GFLF SR SYSGF SR

❅
❅❘ ✠�

� ❅
❅❘ ✠�

�

GFSYS SR SYSLF SR

❅
❅❘ ✠�

�

SYSSYS SR

Proof: The statement follows from Corollary 727 and Proposition 743. ∎

For a systemic π-institution with a parameter-free set of natural transfor-
mations, there is only one syntactic regularity property, since all versions of
syntactic protoalgebraicity and all versions of regularity collapse to a single
property.

Instead of studying this entire hierarchy in detail, we concentrate again
on the uniformly defined classes. So we define LF SR, LS SR, GF SR and
GS SR to mean, respectively, LFLF syntactic, LSLS syntactic, GFGF
syntactic and GSGS syntactic regularity. These classes form, according to
Corollary 748, the sub hierarchy depicted below.

LF SR

LS SR
❄

GF SR

❅
❅❘ ✠�

�

GS SR

Moreover, according to Corollary 749, this reduces to the hierarchy depicted
on the left below for a systemic π-institution and to the one depicted on the
right below for a parameter free set of natural transformations.

LC SR LF SR GF SR

❅
❅
❅❘ ✠�

�
�

GB SR
❄

SYS SR

We provide examples to show that the inclusions between these four uni-
form classes of the syntactic regularity hierarchy are proper in general.

First, we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the LS syntactic regularity,
but not the LF syntactic regularity in I .
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Example 750 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a binary
natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting σ♭Σ ∶{0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {1,2}
0, otherwise

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Note that there are three theory families, but only Thm(I) and SEN♭ are
theory systems. So I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-
guished arguments. We show that I♭ has the local system syntactic regularity
in I, but it does not have the local family syntactic regularity in I.

First, we look at local system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
of SEN♭(Σ) are related in local system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the local system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1)) and(σ♭Σ(0, φ), σ♭Σ(1, φ)) are related via I♭ modulo Thm(I). Thus, I♭ has the local
system congruence in I.
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Next, note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ(φ,ψ) ∈
ThmΣ(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭
has the local system modus ponens in I.

Finally, for local system regularity, note that the defining condition is
trivially satisfied for SEN♭, whereas, for Thm(I), we clearly have that, if
φ,ψ ∈ ThmΣ(I), then φ = ψ = 2, whence σ♭Σ(φ,ψ) = 2 ∈ ThmΣ(I). Therefore
I♭ has the local system regularity in I and, therefore, we conclude that I♭ has
the local system syntactic regularity in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ(1,0) = 2 ∈ {1,2}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the local family modus ponens in I and, hence,
a fortiori, it does not have the local family syntactic regularity in I.

Next, we present an example to show that there is π-institution I with a
set of natural transformations that has the GS syntactic regularity but not
the GF syntactic regularity in I .

Example 751 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by a single bi-
nary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = y or {x, y} = {0,1}
1, if {x, y} = {0,2}
0, if {x, y} = {1,2}

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
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I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and SEN♭, but
only Thm(I) and SEN♭ are theory systems. In particular, I is not systemic.

Consider the set I♭ = {σ♭}, with σ♭ having both arguments distinguished.
We show that I♭ has the global system syntactic regularity in I, but it does
not have the global family syntactic regularity in I.

First, we look at global system equivalence. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that the elements
of SEN♭(Σ) are related in global system equivalence modulo Thm(I) as shown
in the diagram. Therefore, I♭ has the global system equivalence in I.

Next, observe that, for all φ ∈ SEN♭(Σ), the pairs (σ♭Σ(φ,0), σ♭Σ(φ,1))
and (σ♭Σ(0, φ), σ♭Σ(1, φ)) are related via I♭ modulo Thm(I). Thus, I♭ has the
global system congruence in I.

Now note that, since the only pairs (φ,ψ), with φ ≠ ψ, such that σ♭Σ[φ,ψ] ≤
Thm(I) are (0,1) and (1,0) and for neither of these is φ ∈ ThmΣ(I), I♭ has
the global system modus ponens in I.

For the global system regularity, note that the defining condition is satis-
fied trivially for SEN♭, whereas for Thm(I), if φ,ψ ∈ ThmΣ(I), then φ,ψ = 2,
whence we get σ♭Σ[φ,φ] ≤ Thm(I). Therefore, we conclude that I♭ has the
global system syntactic regularity in I.

On the other hand, 1 ∈ {1,2} and σ♭Σ[1,0] ≤ {{1,2}}, but 0 ∉ {1,2}.
Therefore, I♭ does not have the global family modus ponens in I and, hence,
a fortiori, it does not have the global family syntactic regularity in I.
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Finally, we present an example of a π-institution I with a set of natu-
ral transformations I♭, with two distinguished arguments, that has the GS
syntactic regularity but not the LS syntactic regularity in I .

Example 752 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with a single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2,3,4,5} and
SEN♭(f) ∶ {0,1,2,3,4,5} → {0,1,2,3,4,5} given by 0↦ 0, 1↦ 1, 2↦ 4,
3↦ 5, 4↦ 4 and 5↦ 5;

• N ♭ is the category of natural transformations generated by a ternary
natural transformation σ♭ ∶ (SEN♭)3 → SEN♭ defined by letting σ♭Σ ∶{0,1,2,3,4,5}3 → {0,1,2,3,4,5} be given by

σ♭Σ(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4, if x = y or {x, y} = {4,5}
or ((x, y) = (1,4) and z = 0,1,4,5)
or ((x, y) = (1,5) and z = 0,1,4,5)

2, else if {x, y} ⊆ {2,3,4,5}
or (x, y) = (1,2) or (x, y) = (1,3)

0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{4,5},{2,3,4,5},{0,1,2,3,4,5}}.
Note that all three theory families, Thm(I), T = {{2,3,4,5}} and SEN♭, are
also theory systems. So I is a systemic π-institution.
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Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)3 → SEN♭ having two dis-
tinguished arguments. We show that I♭ has the global (family or system)
syntactic regularity in I, but it does not have the local (family or system)
syntactic regularity in I.

Concerning global equivalence, the defining conditions for reflexivity, sym-
metry and transitivity of I♭ in I are all trivially satisfied for SEN♭. For the
theory system Thm(I), it suffices to observe that the relation of global equiv-
alence modulo Thm(I) is the binary relation on SEN♭(Σ) depicted on the
left graph in the figure. Moreover, the relation of global equivalence modulo

T is the binary relation on SEN♭(Σ) depicted on the right graph in the figure.
Therefore, I♭ has the global system equivalence in I.

Looking at these two graphs and taking into account the definition of σ♭,
we can see that the defining conditions of the global compatibility and the
global modus ponens are also satisfied for all three theory systems.

For global regularity, note again that the defining condition is trivially sat-
isfied for SEN♭, that σ♭Σ[φ,ψ] ≤ Thm(I), if φ,ψ ∈ {4,5}, and that σ♭Σ[φ,ψ] ≤
T , if φ,ψ ∈ {2,3,4,5}. Thus, we conclude that I♭ has the global regularity in
I and, therefore, I♭ has the global system syntactic regularity in I.

On the other hand, σ♭Σ(1,2, ξ) = 2 ∈ TΣ, for all ξ ∈ SEN♭(Σ), whereas
σ♭Σ(2,1,0) = 0 ∉ TΣ, whence I♭ does not have the local system symmetry in I
and, therefore, a fortiori, fails to satisfy the local system syntactic regularity
in I.

We close with a transfer property for the (uniform) syntactic regularity
properties that we have studied in this section.

Corollary 753 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has
a (uniform) syntactic regularity property in I if and only if, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the corre-
sponding syntactic regularity property in A.

Proof: This follows directly from Corollary 730 and Proposition 747. ∎
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10.16 Modus Fortis

We conclude with the study of versions of the modus fortis (also known as
the Wójcicki or the Rasiowa) property. In the next setion, we call Rasiowa
property the combination of syntactic protoalgebraicity with the modus for-
tis.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that:

• I♭ has the local family modus fortis (local family MF) in I if,
for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

ψ ∈ TΣ implies I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);
• I♭ has the local system modus fortis (local system MF) in I if,

for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
ψ ∈ TΣ implies I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all ξ⃗ ∈ SEN♭(Σ);

• I♭ has the global family modus fortis (global family MF) in I
if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

ψ ∈ TΣ implies I♭Σ[φ,ψ] ≤ T ;

• I♭ has the global system modus fortis (global system MF) in I
if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

ψ ∈ TΣ implies I♭Σ[φ,ψ] ≤ T.
We give now the hierarchy of modus fortis properties.

Proposition 754 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the global family MF, then it has the local family MF in I;

(b) If I♭ has the local family MF, then it has the local system MF in I;

(c) I♭ has the global system MF if and only if it has the local system MF
in I.

Proof:
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(a) Suppose that I♭ has the global family MF in I . Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ψ ∈ TΣ. Then, we have,
by hypothesis, I♭Σ[φ,ψ] ≤ T . This implies that I♭Σ(φ,ψ, ξ⃗) ⊆ TΣ, for all

ξ⃗ ∈ SEN♭(Σ). Thus, I♭ has the local family MF in I .

(b) The conclusion follows directly from the fact that every theory system
is a theory family of I .

(c) For the “only if” direction, we repeat the argument used in the proof of
Part (a) except reasoning exclusively in terms of theory systems rather
than using arbitrary theory families.

Suppose, conversely, that I♭ has the local system MF in I . Let T ∈
ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ψ ∈ TΣ. Since T ∈
ThSys(I), for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), SEN♭(f)(ψ) ∈
TΣ′ . Thus, by the local system MF, for all ξ⃗ ∈ SEN♭(Σ′),

I♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗) ⊆ TΣ′ .
Since this holds, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈
SEN♭(Σ′), we get that I♭Σ[φ,ψ] ≤ T , Therefore, I♭ has the global system
MF in I .

∎

Proposition 754 has established the following hierarchy of Modus Fortis
properties:

Global Family MF

Local Family MF
❄

System MF
❄

We also note the following regarding natural sufficient conditions under
which some of these properties coincide.

Proposition 755 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments. If I is systemic,
then all three modus fortis properties coincide.

Proof: If I is systemic, then the (global) system MF coincides with the
family MF property and this causes the collapsing of the hierarchy. ∎

So in the case of a systemic π-institution I , there is only one possible
modus fortis property.
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We provide some examples to show that the implications of Proposition
754 are not equivalences in general, i.e., in the hierarchy shown above all
inclusions of classes of π-institutions with a set of natural transformations
satisfying the corresponding modus fortis properties are proper inclusions.

We first present an example to show that there is π-institution I with
a set of natural transformations that has the local family MF but not the
global family MF in I .

Example 756 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = 2 or y = 2
1, if x ≠ 2 and y = 1
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ ∶ (SEN♭)2 → SEN♭ having two distin-

guished arguments.
I has three theory families, but only Thm(I) and SEN♭ are theory sys-

tems. We show that I♭ has the local family modus fortis, but it does not have
the global family modus fortis in I.
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For the local family MF note, first, that, for all x ∈ SEN♭(Σ), σ♭Σ(x,2) = 2,
which takes care of Thm(I), and that the case of SEN♭ is trivial. So we
only need to check the case with T = {{1,2}}. Since, for all x ∈ SEN♭(Σ),
σ♭Σ(x,2) = 2 and, also, σ♭Σ(0,1) = σ♭Σ(1,1) = 1 and σ♭Σ(2,1) = 2, the defining
condition for local family MF is also satisfied for T = {{1,2}}. Therefore, I♭

has the local family MF in I.
On the other hand, we have 1 ∈ {1,2} but σ♭Σ(SEN♭(f)(0),SEN♭(f)(1)) =

σ♭Σ(0,0) = 0 ∉ {1,2}. Thus, 1 ∈ T , but σ♭Σ[0,1] ≰ T , which shows that I♭ does
not have the global family MF in I.

Next we present an example to show that there exists a π-institution I ,
with a set of natural transformations that has the system modus fortis but
not the local family modus fortis in I .

Example 757 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all a, b ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if x = 2 or y = 2
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
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I has three theory families Thm(I), T = {{1,2}} and SEN♭, but only two
theory systems Thm(I) and SEN♭. We show that I♭ has the (local) system
MF in I, but it does not have the local family MF in I.

For the local system MF note that, for all x ∈ SEN♭(Σ), σ♭Σ(x,2) = 2,
which takes care of Thm(I), and that the case of SEN♭ is trivial.

On the other hand, for the local family MF, note that 1 ∈ TΣ = {1,2}, but
σ♭Σ(0,1) = 0 ∉ TΣ. Therefore, I♭ does not have the local family MF in I.

We finally prove a transfer property for modus fortis.

Proposition 758 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a
collection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭ has an
MF property in I if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, I has the corresponding MF property in A.

Proof: If I has an MF property in A, for all A, then it has the same
property in F = ⟨F, ⟨I, ι⟩⟩. Since ⟨F,CI,F⟩ = I , we conclude that I♭ has the
corresponding MF property in I .

Suppose, conversely, that I♭ has an MF property in I . We look at each
of the three properties in turn.

(a) Suppose I♭ has the global family MF in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(ψ) ∈ TF (Σ). Then ψ ∈
α−1Σ (TF (Σ)). Since, by Lemma 51, α−1(T ) ∈ ThFam(I), we get by global
family MF, I♭Σ[φ,ψ] ≤ α−1(T ). Thus, by Lemma 95,

IF (Σ)[αΣ(φ), αΣ(ψ)] ≤ T.
We conclude that I has the global family MF in A.

(b) Suppose I♭ has the local family MF in I and let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that αΣ(ψ) ∈ TF (Σ). Then
ψ ∈ α−1Σ (TF (Σ)). Since α−1(T ) ∈ ThFam(I), we get by local family
MF, that

I♭Σ(φ,ψ, ξ⃗) ⊆ α−1Σ (TF (Σ)), for all ξ⃗ ∈ SEN♭(Σ).
Thus, αΣ(I♭Σ(φ,ψ, ξ⃗)) ⊆ TF (Σ) or, equivalently,

IF (Σ)(αΣ(φ), αΣ(ψ), αΣ(ξ⃗)) ⊆ TF (Σ), for all ξ⃗ ∈ SEN♭(Σ).
It follows, taking into account the surjectivity of ⟨F,α⟩, that I has the
local family MF in A.

(c) The system MF follows analogously, taking into account the fact that
if T ∈ FiSysI(A), then α−1(T ) ∈ ThSys(I). ∎



776 CHAPTER 10. ELEMENTS OF SYNTAX Voutsadakis

10.17 The Rasiowa Property

In this section we focus again on the four uniform syntactic protoalgebraicity
properties, LF SPA, LS SPA, GF SPA and GS SPA, and we add to those
versions of the modus fortis property to obtain several versions of the Rasiowa
property.

By previous work, we know that the four uniform SPA properties consti-
tute the hierarchy shown on the left below.

LF SPA GF Modus Fortis

✠�
�
� ❅

❅
❅❘

LS SPA GF SPA LF Modus Fortis
❄

❅
❅
❅❘ ✠�

�
�

GS SPA SYS Modus Fortis
❄

Moreover, by our study of modus fortis, we know that the various versions
of modus fortis (MF) fall into the linear hierarchy shown on the right of the
diagram.

By combining syntactic protoalgebraicity with MF properties, we obtain
twelve Rasiowa properties as follows. Let X ∈ {LF,LS,GF,GS} and Y ∈{LF,GF,SYS}, where LF stands for “Local Family”, LS stands for “Local
System”, GF stands for “Global Family”, GS stands for “Global System”
and SYS stands for “SYStem”, abbreviating both the local and the global
system properties, when they are identical.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural transforma-
tions in N ♭ having two distinguished arguments. We say that I♭ has the XY
Rasiowa property in I (XY RW in I), or that I♭ is XY Rasiowan in
I , if it has

• the X syntactic protoalgebraicity in I ;

• the Y modus fortis in I .

Based on the hierarchies of the syntactic protoalgebraicity and MF prop-
erties, we obtain the following a priori hierarchical structure for the various
flavors of the Rasiowa property.

Corollary 759 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. The twelve Rasiowa
properties form the hierarchy shown on the accompanying diagram.
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Proof: This follows directly from Corollary 726 and Proposition 754. ∎

LFGF RW

✙✟✟✟✟✟✟✟ ❍❍❍❍❍❍❍❥
LSGF RW LFLF RW

❄
GFGF RW

✙✟✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅
❅❘

❍❍❍❍❍❍❍❥

✠�
�
�
�
�
�
�

LSLF RW
❄

LFSYS RW
❄

GFLF RW
❄

✙✟✟✟✟✟✟✟
❅
❅
❅
❅
❅
❅
❅❘

❍❍❍❍❍❍❍❥

✠�
�
�
�
�
�
�

LSSYS RW
❄

GSGF RW GFSYS RW
❄

❅
❅
❅
❅
❅
❅
❅❘ ✠�

�
�
�
�
�
�

GSLF RW
❄

GSSYS RW
❄

It turns out that all these classes collapse to a single class! Indeed, as
we show next, the only π-institutions, with a set of natural transformations
having two distinguished arguments, satisfying the global system syntactic
protoalgebraicity and the system modus fortis are the inconsistent ones. As
a consequence, they also satisfy the local family syntactic protoalgebraicity
and the global family modus fortis.

Proposition 760 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of
natural transformations in N ♭ having two distinguished arguments. If I♭ has
the GSSYS Rasiowa property in I, then I is inconsistent.

Proof: Let Σ ∈ ∣Sign♭∣. Since I♭ is reflexive, I♭Σ(φ,φ, ξ⃗) ⊆ ThmΣ(I), for

all φ, ξ⃗ ∈ SEN♭(Σ). Thus, ThmΣ(I) ≠ ∅. Fix t ∈ ThmΣ(I). Then, for all
φ ∈ SEN♭(Σ), we get, using the SYS Rasiowa property, I♭Σ[φ, t] ≤ Thm(I).
Then, by GS symmetry, I♭Σ[t, φ] ≤ Thm(I). Thus, by GS modus ponens, we
get φ ∈ ThmΣ(I). Since this holds for all φ ∈ SEN♭(Σ), we conclude that
Thm(I) = SEN♭ and, therefore, I is inconsistent. ∎

So the hierarchy of Corollary 759 consists actually of a single property,
which we call the Rasiowa property, and the only π-institutions satisfying
that property are the inconsistent ones.

The Rasiowa property also transfers.

Corollary 761 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I♭ a col-
lection of natural transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two
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distinguished arguments, and I = ⟨F,C⟩ a π-institution based on F. I♭

has the Rasiowa property in I if and only if, for every algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, I has the Rasiowa property in
A.

Proof: This follows directly from Corollary 730 and Proposition 758. ∎

10.18 Modus Fortis and Regularity

Recall the hierarchies of the regularity and modus fortis properties that we
have introduced previously. These are depicted again below.

GF Regularity GF MF

LF Regularity
❄

LF MF
❄

SYS Regularity
❄

SYS MF
❄

The various versions of these three properties are not independent. In
fact the modus fortis properties imply the corresponding regularity prop-
erties. We prove these straightforward dependencies in the following two
propositions.

Proposition 762 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments.

(a) If I♭ has the global family MF, then it has the global family regularity
in I;

(b) If I♭ has the local family MF, then it has the local family regularity in
I;

(c) If I♭ has the system MF, then it has the system regularity in I.

Proof: We only provide a proof for Part (a), since Parts (b) and (c) can be
proved in essentially the same way. So suppose that I♭ has the global family
modus fortis in I and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that φ,ψ ∈ TΣ. Since ψ ∈ TΣ and I♭ has the global family modus fortis
in I , we get that I♭Σ[φ,ψ] ≤ T . This show that I♭ has the global family
regularity in I . ∎
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Proposition 762 together with the previously established hierarchies of
regularity and modus fortis properties, establish the following combined hi-
erarchy of these properties.

GF MF

✠�
�
� ❅

❅
❅❘

LF MF GF Regular

✠�
�
� ❅

❅
❅❘ ✠�

�
�

SYS MF LF Regular

❅
❅
❅❘ ✠�

�
�

SYS Regular

Recall, now that, if I is systemic, all three versions of regularity and
modus fortis are identified. Therefore, in the case of a systemic π-institution
I with a set I♭ of natural transformations having two distinguished argu-
ments, the hierarchy above reduces to simply

Modus Fortis

Regular
❄

On the other hand, since the property of being parameter-free does not
affect either the regularity or the Modus Fortis hierarchies, it has no effect
on the mixed hierarchy either.

We present an example of a π-institution I , with a set I♭ of natural trans-
formations, having two distinguished variables, that has the global family
regularity property in I , but does not have the system modus fortis property
in I .

Example 763 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 1, if x = y
0, if x ≠ y .
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Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. Consider
the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.

I has two theory families Thm(I) and SEN♭, both of which are theory
systems. So it is a systemic π-institution. We show that I♭ has the global
family regularity in I, but it does not have the system modus fortis in I.

For the global family regularity, note that the condition is trivial when
T = SEN♭, whereas for T = Thm(I), if φ = ψ = 1 ∈ ThmΣ(I), we have
σ♭Σ(1,1) = 1, which gives σ♭Σ[1,1] ≤ Thm(I). Thus, I♭ is indeed global family
regular in I.

On the other hand, note that 1 ∈ ThmΣ(I), but σ♭Σ(0,1) = 0 ∉ ThmΣ(I).
Therefore, I♭ does not have the system MF in I.

10.19 Regularity and Invertibility

Recall the hierarchies that we have introduced previously based on invert-
ibility and regularity. These are depicted again below.

LF Invertibility GF Regularity

LS Invertibility
❄

GF Invertibility LF Regularity
❄

❅
❅
❅❘ ✠�

�
�

GS Invertibility SYS Regularity
❄

Connecting the regularity with the invertibility conditions requires ad-
ditional hypotheses. Namely, we will suppose that the π-institution under
consideration has natural theorems and satisfies some form of the modus
ponens property.

Proposition 764 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, having natural theorems, and I♭ ∶
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(SEN♭)ω → SEN♭ a set of natural transformations in N ♭ having two dis-
tinguished arguments.

(a) If I♭ has the global family modus ponens and the global family regularity,
then it has the global family invertibility in I;

(b) If I♭ has the local family modus ponens and the local family regularity,
then it has the local family invertibility in I;

(c) If I♭ has the local system modus ponens and the system regularity, then
it has the local system invertibility in I;

(d) If I♭ has the global system modus ponens and the system regularity, then
it has the global system invertibility in I.

Proof: We only provide a proof for Part (a), since Parts (b)-(d) can be
proved in essentially the same way. Let ⊺♭ ∶ SEN♭ → SEN♭ be a natural
theorem and suppose that I♭ has the global family modus ponens and the
global family regularity in I . Consider the singleton τ ♭ ∶ SEN♭ → (SEN♭)2 of
natural transformations in N ♭, given by

τ ♭ = {⊺♭ ≈ ι},
where ι ∶ SEN♭ → SEN♭ is the identity natural transformation. Let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).

• If φ ∈ TΣ, then, since ⊺♭Σ(φ) ∈ ThmΣ(I) ⊆ TΣ, we get, by global family
regularity, I♭Σ[⊺♭Σ(φ), φ] ≤ T , i.e., I♭Σ[τ ♭Σ(φ)] ≤ T .

• Suppose, conversely, that I♭Σ[τ ♭Σ(φ)] ≤ T . Then I♭Σ[⊺♭Σ(φ), φ] ≤ T . Since
⊺♭Σ(φ) ∈ TΣ, we get, by global family modus ponens, φ ∈ TΣ.

We conclude that φ ∈ TΣ if and only if I♭Σ[τ ♭Σ(φ)] ≤ T . Thus, I♭ has the global
family invertibility in I , with witnessing set of natural transformations τ ♭.
∎

10.20 The Algebraic Hierarchy

Recall the three hierarchies that we have introduced previously based on
uniform combinations of the syntactic protoalgebraizability properties and
the invertibility, regularity and modus fortis properties. These formed the
hierarchies of syntactically algebraizable (SA), syntactically regular (SR) and
Rasiowa properties, respectively. The first two are depicted again below,
whereas the last consists of a single property, which, as we saw in Proposition
760, is characteristic of inconsistent π-institutions.
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LF SA LF SR

LS SA
❄

GF SA LS SR
❄

GF SR

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
�

GS SA GS SR

The various versions of these three properties are not independent. Since,
as was shown in Proposition 762, the modus fortis properties imply the corre-
sponding regularity properties and, as was shown in Proposition 764, regular-
ity properties, fortified with some form of the modus ponens, imply the cor-
responding invertibility properties, we obtain ensuing relationships between
the Rasiowa, syntactic regularity and syntactic algebraizability properties.

Corollary 765 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural
transformations in N ♭ having two distinguished arguments. If I♭ has the
Rasiowa property, then it has all four syntactic regularity properties.

Proof: Directly from the definitions and Proposition 762. ∎

Corollary 766 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a set of natural trans-
formations in N ♭ having two distinguished arguments. If I♭ has a syntactic
regularity property, then it has the corresponding syntactic algebraizability
property in I.

Proof: We present in detail the reasoning for the global family versions.
Suppose that I♭ is a set of natural transformations, with two distinguished
arguments, having the global family syntactic regularity in I . Note that,
by global family syntactic protoalgebraicity, for all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ), I♭Σ[φ,φ] ≤ Thm(I). Thus, I has natural theorems. Moreover, by
the definition of global family syntactic regularity, I♭ has both the global
family modus ponens and the global family regularity in I . It follows now,
by Proposition 764, that I♭ has the global family invertibility in I . Thus, it
also has the global family syntactic algebraizability in I . ∎

Corollaries 765 and 766 together with the previously established hierar-
chies of syntactic algebraizability, syntactic regularity and Rasiowa proper-
ties, establish the following combined hierarchy of these properties.
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RW

✮✏✏✏✏✏✏✏✏✏✏
❏
❏
❏
❏
❏
❏
❏❫

LF SR
❩❩❩❩⑦

LF SA
❄

LS SR GF SR
❩❩❩❩⑦

❩❩❩❩⑦ ❂✚✚
✚✚

LS SA
❄

GS SR GF SA
❄

❩❩❩❩⑦ ❂✚✚
✚✚

GS SA
❄

Recall, now that, if I is systemic, then the two local versions and the two
global versions of syntactic algebraizability become identified and that the
same holds for syntactic regularity. Therefore, in the case of a systemic π-
institution I with a set I♭ of natural transformations having two distinguished
arguments, the hierarchy above reduces to the simpler hierarchy shown on
the left below.

RW RW

❂✚✚
✚✚ ❩❩❩❩⑦

LC SR
❄

LF SR GF SR
❩❩❩❩⑦

❩❩❩❩⑦ ❂✚✚
✚✚

GB SR
❄

LC SA LF SA
❄

SYS SR GF SA
❄

❩❩❩❩⑦

❩❩❩❩⑦ ❂✚✚
✚✚

GB SA
❄

SYS SA
❄

Furthermore, the property of being parameter-free has the effect of col-
lapsing the two versions of system syntactic algebraizability and the two
versions of system syntactic regularity properties. Thus, the hierarchy of the
three properties for parameter-free sets of natural transformations I♭ in I is
given by the diagram shown on the right above.

We present some examples to show that all inclusions in the diagram of
the hierarchy of Rasiowa, syntactic regularity and syntactic algebraizablity
properties are proper in general.

We first present an example of a π-institution I , with a set I♭ of natural
transformations, with two distinguished arguments, that has the local and
global family syntactic regularity properties in I , but does not have the
Rasiowa property in I .
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Example 767 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1}2 → {0,1} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 1, if x = y
0, if x ≠ y .

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. I has
two theory families Thm(I) and SEN♭, both of which are theory systems. So
it is a systemic π-institution.

Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
We show that I♭ has (all kinds of) the syntactic regularity in I, but it does
not have the Rasiowa property in I.

First, we look at the equivalence property. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that equivalence
modulo Thm(I) coincides with the identity relation on SEN♭(Σ). Therefore,
I♭ has the local system equivalence in I.

The fact that equivalence modulo Thm(I) is the identity relation immedi-
ately implies that I♭ also has the compatibility property and the modus ponens
in I.

Finally, for regularity, note that the defining condition is trivially satisfied
for SEN♭, whereas, for Thm(I), we clearly have that, if φ,ψ ∈ ThmΣ(I), then
φ = ψ = 1, whence σ♭Σ(φ,ψ) = 1 ∈ ThmΣ(I). Therefore I♭ has the regularity
property in I and, therefore, we conclude that I♭ has the syntactic regularity
in I.
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On the other hand, since I is not an inconsistent π-institution, I♭ does
not have the Rasiowa property in I.

Next, we look at an example of a π-institution I , with a set I♭ of natural
transformations, with two distinguished arguments, that has the local and
global family syntactic algebraizability properties in I , but does not possess
the global system syntactic regularity in I .

Example 768 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by

– a unary natural transformation λ♭ ∶ SEN♭ → SEN♭ defined by let-
ting λ♭Σ ∶ {0,1,2}→ {0,1,2} be given, for all x ∈ SEN♭(Σ), by

λ♭Σ(x) = { 2, if x = 2
1, otherwise

;

– a binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by
letting σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all x, y ∈ SEN♭(Σ),
by

σ♭Σ(x, y) = { 2, if x = y
0, if x ≠ y .

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1,2},{0,1,2}}. I
has two theory families Thm(I) and SEN♭, both of which are theory systems.
So it is a systemic π-institution.
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Consider the set I♭ = {σ♭}, with σ♭ having two distinguished arguments.
We show that I♭ has (all kinds of) the syntactic algebraizability in I, but it
does not have (any kind of) the syntactic regularity in I.

First, we look at the equivalence property. The defining conditions for
reflexivity, symmetry and transitivity of I♭ in I are all trivially satisfied for
SEN♭. For the theory system Thm(I), it suffices to observe that equivalence
modulo Thm(I) coincides with the identity relation on SEN♭(Σ). Therefore,
I♭ has the local system equivalence in I.

The fact that equivalence modulo Thm(I) is the identity relation immedi-
ately implies that I♭ also has the compatibility property and the modus ponens
in I.

Finally, for invertibility, consider the set τ ∶ SEN♭ → (SEN♭)2 of natural
transformations in N ♭, defined by τ = {ι ≈ λ♭}. Note that the defining con-
dition is trivially satisfied for SEN♭, whereas, for Thm(I), we clearly have
that,

φ ∈ ThmΣ(I) iff σ♭Σ(φ,λ♭Σ(φ)) ∈ ThmΣ(I).
Therefore, I♭ has the invertibility and, hence, the syntactic algebraizability
property in I.

On the other hand, we have 1,2 ∈ ThmΣ(I), but σ♭Σ(1,2) = 0 ∉ ThmΣ(I).
Therefore, I♭ fails to have the regularity property and, hence, a fortiori, does
not have the syntactic regularity property in I.
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11.1 Syntactic Prealgebraicity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

Recall that I is prealgebraic if, for all T,T ′ ∈ ThSys(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).

We say that I is syntactically prealgebraic if there exists I♭ ⊆ N ♭, with
two distinguished arguments, such that I♭ has:

• reflexivity;

• global system transitivity;

• global system compatibility; and

• global system modus ponens.

In that case, we call I♭ a set of witnessing natural transformations, or,
more simply, witnessing transformations (of the syntactic prealgebraicity
of I).

It turns out that, if I is a syntactically prealgebraic π-institution, with

witnessing transformations I♭, then
↔

I♭(T ) is a congruence system on F com-
patible with T , for all T ∈ ThSys(I). As a consequence, using Corollary 98,
we may conclude that, for all T ∈ ThSys(I),

↔

I♭(T ) = Ω(T ).
Proposition 769 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically prealgebraic,

with witnessing transformations I♭, then, for all T ∈ ThSys(I), ↔

I♭(T ) is a
congruence system on F compatible with T .

Proof: Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ).
Since I♭ is reflexive in I , we get that I♭Σ[φ,φ] ≤ Thm(I) ≤ T . Therefore,

↔

I♭Σ[φ,φ] ≤ T , which shows that ⟨φ,φ⟩ ∈ ↔I♭Σ(T ).
Suppose, next, that ⟨φ,ψ⟩ ∈ ↔I♭Σ(T ). Thus,

↔

I♭Σ[φ,ψ] ≤ T . By the defini-

tion of
↔

I♭, we get
↔

I♭Σ[ψ,φ] ≤ T and, hence, ⟨ψ,φ⟩ ∈ ↔I♭Σ(T ).
Next, assume that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ ↔

I♭Σ(T ). Then we get ⟨φ,ψ⟩, ⟨ψ,χ⟩,⟨ψ,φ⟩, ⟨χ,ψ⟩ ∈ I♭Σ(T ). Since I♭ is globally system transitive in I , we conclude

that ⟨φ,χ⟩, ⟨χ,φ⟩ ∈ I♭Σ(T ) and, therefore, ⟨φ,χ⟩ ∈ ↔I♭Σ(T ).
To show the congruence property, assume that σ♭ ∶ (SEN♭)k → SEN♭ is a

natural transformation in N ♭ and that ⟨φi, ψi⟩ ∈ ↔I♭Σ(T ), for all i < k. Thus,
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since I♭ has the global system compatibility in I , we get that ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈
I♭Σ(T ). By symmetry, we also get ⟨σ♭Σ(ψ⃗), σ♭Σ(φ⃗)⟩ ∈ I♭Σ(T ) and, hence, that

⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ ↔I♭Σ(T ).
Finally, since by Lemma 93,

↔

I♭(T ) is a relation system on F, we conclude

that
↔

I♭(T ) is a congruence system on F.

To conclude the proof, note that, if φ ∈ TΣ and ⟨φ,ψ⟩ ∈ ↔

I♭Σ(T ), then
ψ ∈ TΣ by the global system modus ponens of I♭ in I and the fact that

I♭ ⊆
↔

I♭. ∎

Based on Proposition 769, we can conclude that
↔

I♭ defines the Leibniz
congruence systems of the theory systems of I .

Corollary 770 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically prealgebraic, with wit-
nessing transformations I♭, if and only if, for all T ∈ ThSys(I),

↔

I♭(T ) = Ω(T ).
Proof: The only if is by Proposition 769 and Corollary 98. The if is obvious,

since the displayed equations immediately implies the four properties of
↔

I♭

defining syntactic prealgebraicity. ∎

Corollary 770 has as an immediate consequence the important fact that
syntactic prealgebraicity implies (semantic) prealgebraicity.

Theorem 771 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically prealgebraic, then it
is prealgebraic.

Proof: Suppose that I is syntactically prealgebraic with witnessing trans-
formations I♭. Let T,T ′ ∈ ThSys(I), such that T ≤ T ′. Then

Ω(T ) = ↔

I♭(T ) (by Corollary 770)

≤
↔

I♭(T ′) (by Lemma 94)
= Ω(T ′). (by Corollary 770)

Thus, I is prealgebraic. ∎

The following example shows that the inclusion of Theorem 771 is proper.

Example 772 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;
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• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) = 1, for all x, y ∈ {0,1}.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, which are also theory sys-

tems. Clearly, Thm(I) ≤ SEN♭. Moreover, Ω(Thm(I)) =∆F and Ω(SEN♭) =
∇F. Since Ω(Thm(I)) ≤ Ω(SEN♭), I is prealgebraic.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

On the other hand, there does not exist I♭ ⊆ N ♭, such that I♭ has the
required properties to constitute a witnessing set of transformations in I.
Any set containing projections cannot satisfy reflexivity and the set consisting
only of σ♭ does not satisfy the modus ponens property. We conclude that I
is not syntactically prealgebraic.

We provide, next, a characterization of syntactic prealgebraicity in terms
of the global system modus ponens property of a subset of natural trans-
formations intrinsically associated with the π-institution. Later, we use
this characterization to provide an exact description of those prealgebraic
π-institutions which are syntactically prealgebraic.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. We define the reflexive core of I to be the
collection

RI = {ρ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ Thm(I))}.
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Note that the defining condition is equivalent to asserting that, for all Σ ∈∣Sign♭∣ and all φ, χ⃗ ∈ SEN♭(Σ),
ρ♭Σ(φ,φ, χ⃗) ∈ ThmΣ(I).

It is clear that RI(T ) is a reflexive relation system on F, for every theory
family T of I .

Lemma 773 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam(I), RI(T )
is a reflexive relation system on F.

Proof: Let T ∈ ThFam(I). That RI(T ) is a relation system follows from
Lemma 93. For reflexivity, it is required that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ), ⟨φ,φ⟩ ∈ RIΣ(T ). But this is equivalent to RIΣ[φ,φ] ≤ T , which
certainly holds, since, by definition of RI , RIΣ[φ,φ] ≤ Thm(I) ≤ T . ∎

Now, using Proposition 97, we draw a useful conclusion about the role of
the reflexive core in determining the Leibniz congruence system associated
with a given theory family.

Proposition 774 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam(I),
Ω(T ) ≤ RI(T ).

Proof: By Lemma 773 and Proposition 97. ∎

We next show that, for every theory family T of I , RI(T ) is also a
symmetric relation system on F.

Lemma 775 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam(I), RI(T )
is a symmetric relation system on F.

Proof: Let T ∈ ThFam(I). That RI(T ) is a relation system follows from
Lemma 93. To show that it is symmetric, let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that ⟨φ,ψ⟩ ∈ RIΣ(T ). Equivalently, RIΣ[φ,ψ] ≤ T . Now consider any

ρ♭ ∈ RI . By the definition of RI , we get that ρ♭ ∈ RI . Therefore, by the
hypothesis, ρ♭Σ[φ,ψ] ≤ T . But this gives ρ♭Σ[ψ,φ] ≤ T . Since this holds
for all ρ♭ ∈ RI , we conclude that RIΣ[ψ,φ] ≤ T . Hence, ⟨ψ,φ⟩ ∈ RIΣ(T ).
Therefore, RI(T ) is a symmetric relation system on F. ∎

We turn, next, to the congruence compatibility property. More precisely,
we show that, for all theory families T of I , RI(T ) has the compatibility
property in F.
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Lemma 776 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam(I), RI(T )
has the compatibility property in F.

Proof: Let T ∈ ThFam(I). Note that, because of Corollary 12, it suffices
to show that, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣, and all
φ,ψ, χ⃗ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ RIΣ(T ) implies ⟨σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)⟩ ∈ RIΣ(T ).
Suppose, σ♭ ∶ (SEN♭)k → SEN♭ is in N ♭, Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such
that ⟨φ,ψ⟩ ∈ RIΣ(T ) or, equivalently, RIΣ[φ,ψ] ≤ T . Let ρ♭ ∶ (SEN♭)n → SEN♭

be arbitrary in RI . We consider the natural transformation ρ′ ♭ ∶ (SEN♭)n+k →
SEN♭, defined, for all Σ ∈ ∣Sign♭∣ and all ζ, η, χ⃗, ξ⃗ ∈ SEN♭(Σ), by

ρ′ ♭Σ(ζ, η, χ⃗, ξ⃗) = ρ♭Σ(σ♭Σ(ζ, χ⃗), σ♭Σ(η, χ⃗), ξ⃗).
Now note that, since σ♭ ∈ N ♭, ρ♭ ∈ N ♭ and

ρ′ ♭ = ρ♭ ○ ⟨σ♭ ○ ⟨pn+k,0, pn+k,2, . . . , pn+k,k⟩, σ♭ ○ ⟨pn+k,1, pn+k,2, . . . , pn+k,k⟩,
pn+k,k+1, . . . , pn+k,n+k−1⟩,

we get, by the definition of a category of natural transformations, that ρ′ ♭ ∈
N ♭.

Next, note that, for all Σ ∈ ∣Sign♭∣, ζ, χ⃗, ξ⃗ ∈ SEN♭(Σ),
ρ′ ♭Σ(ζ, ζ, χ⃗, ξ⃗) = ρ♭Σ(σ♭Σ(ζ, χ⃗), σ♭Σ(ζ, χ⃗), ξ⃗) (by definition of ρ′ ♭)

∈ ThmΣ(I). (since ρ♭ ∈ RI).

Thus, by the definition of the reflexive core, we get that ρ′ ♭ ∈ RI .
Now since ρ′ ♭ ∈ RI and, by hypothesis, RIΣ[φ,ψ] ≤ T , we get, in particular,

that, for all Σ′ ∈ ∣Sign♭∣, and f ∈ Sign♭(Σ,Σ′) and all χ⃗, ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ∈ TΣ′ .

Hence, a fortiori, for all χ⃗ ∈ SEN♭(Σ), ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(SEN♭(f)(σ♭Σ(φ, χ⃗)),SEN♭(f)(σ♭Σ(ψ, χ⃗)), ξ⃗) ∈ TΣ′ .

This proves that
ρ♭Σ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T.

Since this holds for all ρ♭ ∈ RI , we get that RIΣ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T
or, equivalently, ⟨σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)⟩ ∈ RIΣ(T ). Therefore, RI(T ) has the
congruence compatibility property in F. ∎

It is possible, but not necessary, that the reflexive core of a π-institution
has the global system modus ponens. To see this, we present two examples.
In the first example, we look at a π-institution I whose reflexive core RI

does have the global system modus ponens in I .
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Example 777 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) = { 0, if (x, y) = (1,0)
1, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. The only
theory families, Thm(I) and SEN♭, are also theory systems.

Note that σ♭ ∈ RI, since, for all φ ∈ SEN♭(Σ), σ♭Σ(φ,φ) = 1 ∈ ThmΣ(I).
On the other hand, no projection natural transformation can be in the reflex-
ive core.

To see that RI satisfies the global system modus ponens in I, note that
it does so trivially for the theory system SEN♭, whereas for Thm(I), it is
possible that σ♭Σ(φ,ψ) = 1 ∈ ThmΣ(I) and φ = 1 ∈ ThmΣ(I) only if ψ = 1.
Thus, RI has the global system MP in I, as claimed.

Next, we present an example of a π-institution I whose reflexive core RI

does not have the global system modus ponens in I .

Example 778 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
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• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) = 1, for all x, y ∈ {0,1}.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}. So its
two theory families, Thm(I) and SEN♭, are also theory systems.

Note that σ♭ ∈ RI , since, for all φ ∈ SEN♭(Σ), σ♭Σ(φ,φ) = 1 ∈ ThmΣ(I).
On the other hand, no projection natural transformation can be in the reflex-
ive core.

To see that RI does not satisfy the global system modus ponens in I, note
that 1 ∈ ThmΣ(I) and that σ♭Σ(1,0) = 1 ∈ ThmΣ(I), but 0 ∉ ThmΣ(I). Thus,
RI does not have the global system MP in I.

It turns out that possession of the global system modus ponens by the
reflexive core intrinsically characterizes syntactic prealgebraicity. We can
show, at the outset, that the reflexive core having the global system modus
ponens is necessary for syntactic prealgebraicity.

Theorem 779 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically prealgebraic, then RI

has the global system modus ponens.

Proof: Suppose that I is syntactically prealgebraic with witnessing transfor-
mations I♭. Thus, I♭ has reflexivity, global system transitivity, global system
compatibility and the global system modus ponens in I . Since I♭ is reflexive
in I , we get, by the definition of the reflexive core, that I♭ ⊆ RI . But, then,
since, by hypothesis, I♭ has the global system modus ponens, it follows that,
a fortiori, RI has the global system modus ponens in I . ∎

In proving the reverse implication, we now show that having the global
system modus ponens implies the global system transitivity property of the
reflexive core.



Voutsadakis CHAPTER 11. SYNTACTIC HIERARCHY I 795

Proposition 780 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the global system modus ponens,
then it also has the global system transitivity in I.

Proof: Suppose that RI has the global system modus ponens in I and let
T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈
RIΣ(T ). This means that RIΣ[φ,ψ] ≤ T and RIΣ[ψ,χ] ≤ T . Then, by Lemma
776, we get that, for all ρ♭ ∈ RI , and all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and
all ξ⃗ ∈ SEN♭(Σ′),

RIΣ′[ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗),
ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗)] ≤ T.

Since RIΣ[φ,ψ] ≤ T , we get by the global system MP of RI that, for all

ρ♭ ∈ RI , all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗) ⊆ TΣ′ .

Thus, RIΣ[φ,χ] ≤ T , whence ⟨φ,χ⟩ ∈ RIΣ(T ). Therefore RI has the global
system transitivity in I . ∎

Proposition 780 closes a line of work that was started with the definition
of a reflexive core and with Lemma 773.

Theorem 781 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the global system modus ponens,
then I is syntactically prealgebraic, with witnessing transformations RI .

Proof: By Lemma 773, RI is reflexive in I . By Lemma 775, I is globally
family symmetric in I . By hypothesis and Proposition 780, it is globally
system transitive in I . By Lemma 776 it has the global family compatibility
property in I . Finally, by hypothesis, it has the global system modus po-
nens in I . We conclude that I is syntactically prealgebraic with witnessing
transformations RI . ∎

Theorems 779 and 781 provide the promised characterization of syntactic
prealgebraicity in terms of the global system modus ponens of the reflexive
core.

I is Syntactically Prealgebraic ←→ RI has Global System MP.

Theorem 782 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically prealgebraic if and only
if RI has the global system modus ponens in I.
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Proof: Theorem 779 gives the “only if” and the “if” is by Theorem 781. ∎

If I is syntactically prealgebraic, then RI defines Leibniz congruence sys-
tems of theory systems in I . This proposition may be viewed as a special
case of Corollary 770, since RI forms a set of witnessing transformations
that, in addition, has the global family symmetry in I .

Proposition 783 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the global system modus ponens,
then, for all T ∈ ThSys(I),

Ω(T ) = RI(T ).
Proof: Let T ∈ ThSys(I). If RI has the global system modus ponens, then,
by Lemma 773, Lemma 775, Lemma 776, the hypothesis and Proposition
780, RI(T ) is a congruence system that is compatible with T . Therefore, by
Corollary 98, we get that Ω(T ) = RI(T ). ∎

We also get another related characterization of syntactic prealgebraicity.

I is Syntactically Prealgebraic
←→ RI Defines Leibniz Congruence Systems

of Theory Systems in I .

Theorem 784 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically prealgebraic if and only
if, for all T ∈ ThSys(I),

Ω(T ) = RI(T ).
Proof: If I is syntactically prealgebraic, then, by Theorem 782, RI has
the global system modus ponens in I . Thus, by Proposition 783, for all
T ∈ ThSys(I), Ω(T ) = RI(T ).

Conversely, if, for all T ∈ ThSys(I), RI(T ) = Ω(T ), then, RI is reflexive,
globally system transitive, has the global family compatibility and the global
system modus ponens. Thus, RI is a set of witnessing transformations and
I is syntactically prealgebraic. ∎

We finally show that the property that separates prealgebraicity from
syntactic prealgebraicity is exactly the Leibniz compatibility property with
respect to the theory system generated by the reflexive core.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that RI is Leibniz if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).

We show that, if RI has the global system modus ponens, then it is
Leibniz.
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Proposition 785 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If RI has the global system modus
ponens, then it is Leibniz.

Proof: Suppose RI has the global system modus ponens. Let Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ). To show that ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])), we use the criterion
for membership given in Theorem 19. To this end, let σ♭ ∶ (SEN♭)k → SEN♭

be in N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and ξ⃗ ∈ SEN♭(Σ′), such that

σ♭Σ′(SEN♭(f)(φ), ξ⃗) ∈ CΣ′(RIΣ[φ,ψ]).
By Lemma 776,

RIΣ′[σ♭Σ′(SEN♭(f)(φ), ξ⃗), σ♭Σ′(SEN♭(f)(ψ), ξ⃗)] ≤ C(RIΣ[φ,ψ]).
Since, by hypothesis, RI has the global system modus ponens, we obtain
that σ♭Σ′(SEN♭(f)(ψ), ξ⃗) ∈ CΣ′(RIΣ[φ,ψ]). By symmetry, we now have that

σ♭Σ′(SEN♭(f)(φ), ξ⃗) ∈ CΣ′(RIΣ[φ,ψ])
iff σ♭Σ′(SEN♭(f)(ψ), ξ⃗) ∈ CΣ′(RIΣ[φ,ψ]).

Therefore, by Theorem 19, we conclude that ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])), and,
hence, RI is Leibniz. ∎

Here is an example of a π-institution I , with a Leibniz reflexive core not
having the global system modus ponens.

Example 786 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all x, y ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if x = y or {x, y} = {0,1}
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
I has three theory families Thm(I), T = {{1,2}} and SEN♭, all of which are
theory systems.
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Note that RI = {σ♭}. We show that RI is Leibniz, but does not have the
global system modus ponens.

To verify the Leibniz property, note that, if φ = ψ the conclusion is
trivial. If φ ≠ ψ, then, if {φ,ψ} ≠ {0,1}, then RIΣ[φ,ψ] = {{0}}, whence
C(RIΣ[φ,ψ]) = SEN♭ and, therefore,

Ω(C(RIΣ[φ,ψ])) = ∇F

and the conclusion follows. Otherwise, if {φ,ψ} = {0,1}, then C(RIΣ[φ,ψ]) =
Thm(I), whence

Ω(C(RIΣ[φ,ψ])) = {{0,1},{2}}
and the conclusion follows. Therefore, RI is Leibniz.

On the other hand, we have 1 ∈ {1,2} and RIΣ[1,0] ≤ {{1,2}}, whereas
0 ∉ {1,2}. Therefore, RI fails to have the global system modus ponens in I.

We note, with a nod to what is to follow, that I is not prealgebraic, since,
as is clear by the poset diagrams of theory systems and associated Leibniz
congruence systems, the Leibniz operator is not monotonic on theory systems
(here θ = {{0},{1,2}} and θ′ = {{0,1},{2}}).

SEN♭ ....................................✲ ∇F

�
�
� ❅

❅
❅

T ......................✲ θ θ′

......
......

......
......

......
....✶

Thm(I)
In the opposite direction, and on the positive side, in a prealgebraic π-

institution I , if the reflexive core is Leibniz, then it does have the global
system modus ponens in I .

Proposition 787 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a prealgebraic π-institution based on F. If RI is Leibniz, then it has
the global system modus ponens in I.
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Proof: Suppose that I is prealgebraic and that RI is Leibniz. Let T ∈
ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and RIΣ[φ,ψ] ≤
T . Now we have

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])) (since RI is Leibniz)
⊆ ΩΣ(T ). (since RIΣ[φ,ψ] ≤ T and I is prealgebraic)

Therefore, since φ ∈ TΣ, we get, by the compatibility of Ω(T ) with T , that
ψ ∈ TΣ. We conclude that RI has the global system modus ponens in I . ∎

We now show that a π-institution is syntactically prealgebraic if and only
if it is prealgebraic and it has a Leibniz reflexive core.

Syntactic Prealgebraicity = RI has Global System MP
= RI Defines Leibniz Congruence Systems

of Theorem Systems in I
= Prealgebraicity +RI is Leibniz

Theorem 788 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically prealgebraic if and only
if it is prealgebraic and has a Leibniz reflexive core.

Proof: Suppose, first, that I is syntactically prealgebraic. Then it is preal-
gebraic by Theorem 771. Moreover, its reflexive core has the global family
modus ponens by Theorem 782 and, hence, by Proposition 785, its reflexive
core is Leibniz.

Suppose, conversely, that I is prealgebraic with a Leibniz reflexive core.
Then, by Proposition 787, its reflexive core has the global system modus
ponens and, therefore, by Theorem 782, I is syntactically prealgebraic. ∎

It is not difficult to see that syntactic prealgebraicity transfers from a
π-institution I to all its generalized matrix families.

Theorem 789 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically prealgebraic, with wit-
nessing transformations I♭, if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, the generalized matrix family ⟨A,CI,A⟩ is syntactically prealge-
braic, with witnessing transformations IA.

Proof: The “if” follows by considering the algebraic system F = ⟨F, ⟨I, ι⟩⟩.
For the “only if”, assume that I is syntactically prealgebraic, with witnessing
transformations I♭, and let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an
F-algebraic system, T ∈ FiSysI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). We have

⟨αΣ(φ), αΣ(ψ)⟩ ∈ TF (Σ) iff ⟨φ,ψ⟩ ∈ α−1Σ (TF (Σ))
iff I♭Σ[φ,ψ] ≤ α−1(T )
iff IA

F (Σ)
[αΣ(φ), αΣ(ψ)] ≤ T.

Taking into account the surjectivity of ⟨F,α⟩, we conclude that ⟨A,CI,A⟩ is
syntactically prealgebraic, with witnessing transformations IA. ∎
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11.2 Syntactic Protoalgebraicity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F.

Recall that I is protoalgebraic if, for all T,T ′ ∈ ThFam(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).

We say that I is syntactically protoalgebraic if there exists I♭ ⊆ N ♭, with
two distinguished arguments, such that I♭ has:

• reflexivity;

• global family transitivity;

• global family compatibility; and

• global family modus ponens.

In that case, we call I♭ a set of witnessing natural transformations,
or, more simply, witnessing transformations (of the syntactic proto-

algebraicity of I).
It turns out that, if I is a syntactically protoalgebraic π-institution, with

witnessing transformations I♭, then
↔

I♭(T ) is a congruence system on F com-
patible with T , for all T ∈ ThFam(I). As a consequence, using Corollary 98,
we may conclude that, for all T ∈ ThFam(I),

↔

I♭(T ) = Ω(T ).
Proposition 790 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically protoalgebraic,

with witnessing transformations I♭, then, for all T ∈ ThFam(I), ↔

I♭(T ) is a
congruence system on F compatible with T .

Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ).
Since I♭ is reflexive in I , we get that I♭Σ[φ,φ] ≤ Thm(I) ≤ T . Therefore,

↔

I♭Σ[φ,φ] ≤ T , which shows that ⟨φ,φ⟩ ∈ ↔I♭Σ(T ).
Suppose, next, that ⟨φ,ψ⟩ ∈ ↔I♭Σ(T ). Thus,

↔

I♭Σ[φ,ψ] ≤ T . By the defini-

tion of
↔

I♭, we then get
↔

I♭Σ[ψ,φ] ≤ T and, hence, ⟨ψ,φ⟩ ∈ ↔I♭Σ(T ).
Next, assume that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ ↔

I♭Σ(T ). Then we get ⟨φ,ψ⟩, ⟨ψ,χ⟩,⟨ψ,φ⟩, ⟨χ,ψ⟩ ∈ I♭Σ(T ). Since I♭ is transitive in I , we conclude that ⟨φ,χ⟩,
⟨χ,φ⟩ ∈ I♭Σ(T ) and, therefore, ⟨φ,χ⟩ ∈ ↔I♭Σ(T ).

To show the congruence property, assume that σ♭ ∶ (SEN♭)k → SEN♭ is a

natural transformation in N ♭ and that ⟨φi, ψi⟩ ∈ ↔I♭Σ(T ), for all i < k. Thus,



Voutsadakis CHAPTER 11. SYNTACTIC HIERARCHY I 801

since I♭ has the compatibility property in I , we get that ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈
I♭Σ(T ). By symmetry, we also get ⟨σ♭Σ(ψ⃗), σ♭Σ(φ⃗)⟩ ∈ I♭Σ(T ) and, hence, that

⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ ↔I♭Σ(T ).
Finally, since by Lemma 93,

↔

I♭(T ) is a relation system on F, we conclude

that
↔

I♭(T ) is a congruence system on F.

To conclude the proof, note that, if φ ∈ TΣ and ⟨φ,ψ⟩ ∈ ↔

I♭Σ(T ), then

ψ ∈ TΣ by the global family modus ponens of I♭ in I and the fact that I♭ ⊆
↔

I♭.
∎

Based on Proposition 790, we can conclude that
↔

I♭ defines the Leibniz
congruence systems of the theory families of I .

Corollary 791 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic, with
witnessing transformations I♭, if and only if, for all T ∈ ThFam(I),

↔

I♭(T ) = Ω(T ).
Proof: The “only if” is by Proposition 790 and Corollary 98. The “if” is
again obvious, as in Corollary 770. ∎

Corollary 791 has as an immediate consequence the important fact that
syntactic protoalgebraicity implies (semantic) protoalgebraicity.

Theorem 792 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically protoalgebraic, then
it is protoalgebraic.

Proof: Suppose that I is syntactically protoalgebraic with witnessing trans-
formations I♭. Let T,T ′ ∈ ThFam(I), such that T ≤ T ′. Then

Ω(T ) = ↔

I♭(T ) (by Corollary 791)

≤
↔

I♭(T ′) (by Lemma 94)
= Ω(T ′). (by Corollary 791)

Thus, I is protoalgebraic. ∎

The following example shows that the inclusion of Theorem 792 is proper.

Example 793 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
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• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) = 1, for all x, y ∈ {0,1}.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, such that Thm(I) ≤ SEN♭.

Moreover, Ω(Thm(I)) = ∆F and Ω(SEN♭) = ∇F. Since Ω(Thm(I)) ≤
Ω(SEN♭), I is protoalgebraic.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

On the other hand, there does not exist I♭ ⊆ N ♭, such that I♭ has the
required properties to constitute a witnessing set of transformations in I.
Any set containing projections cannot satisfy reflexivity and the set consisting
only of σ♭ does nor satisfy the modus ponens property. We conclude that I
is not syntactically protoalgebraic.

We now work towards a dual goal. We first provide a characterization of
syntactic protoalgebraicity in terms of the global family modus ponens prop-
erty of the reflexive core of the π-institution. Then, we use this characteri-
zation to provide an exact description of those protoalgebraic π-institutions
which are syntactically protoalgebraic.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that the reflexive core of I is the collection

RI = {ρ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ Thm(I))}.
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It is possible, but not necessary, that the reflexive core of a π-institution
has the global family modus ponens. To see this, we present two examples.
In the first example, we look at a π-institution I whose reflexive core RI

does have the global family modus ponens in I .

Example 794 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) = { 0, if (x, y) = (1,0)
1, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
Note that σ♭ ∈ RI, since, for all φ ∈ SEN♭(Σ), σ♭Σ(φ,φ) = 1 ∈ ThmΣ(I).

On the other hand, no projection natural transformation can be in the reflex-
ive core.

To see that RI satisfies the modus ponens in I, note that it does so triv-
ially for the theory family SEN♭, whereas for Thm(I), it is possible that
σ♭Σ(φ,ψ) = 1 ∈ ThmΣ(I) and φ = 1 ∈ ThmΣ(I) only if ψ = 1. Thus, RI has
the global family MP in I, as claimed.

Next, we present an example of a π-institution I whose reflexive core RI

does not have the global family modus ponens in I .

Example 795 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:
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• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the category of natural transformations generated by the single

binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting:
σ♭Σ ∶ {0,1}2 → {0,1} be given by

σ♭Σ(x, y) = 1, for all x, y ∈ {0,1}.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
Note that σ♭ ∈ RI , since, for all φ ∈ SEN♭(Σ), σ♭Σ(φ,φ) = 1 ∈ ThmΣ(I).

On the other hand, no projection natural transformation can be in the reflex-
ive core.

To see that RI does not satisfy the modus ponens in I, note that 1 ∈
ThmΣ(I) and that σ♭Σ(1,0) = 1 ∈ ThmΣ(I), but 0 ∉ ThmΣ(I). Thus, RI

does not have the global family MP in I.

It turns out that possession of the global family modus ponens by the
reflexive core intrinsically characterizes syntactic protoalgebraicity. We can
show, at the outset, that the reflexive core having the global family modus po-
nens is necessary for syntactic protoalgebraicity. Thus, there is no point in ex-
ploring syntactic protoalgebraicity unless the π-institution I under scrutiny
is such that RI has the global family MP.

Theorem 796 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically protoalgebraic, then
RI has the global family modus ponens.

Proof: Suppose that I is syntactically protoalgebraic with witnessing trans-
formations I♭. Thus, I♭ has reflexivity, global family transitivity, global fam-
ily compatibility and the global family modus ponens in I . Since I♭ is re-
flexive in I , we get, by the definition of the reflexive core, that I♭ ⊆ RI . But,
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then, since, by hypothesis, I♭ has the global family modus ponens, it follows
that, a fortiori, RI has the global family modus ponens in I . ∎

To prove the reverse implication, we show, first, that having the global
family modus ponens implies the global family transitivity property of the
reflexive core.

Proposition 797 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the global family modus ponens,
then it also has the global family transitivity in I.

Proof: Suppose that RI has the global family modus ponens in I and let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈
RIΣ(T ). This means that RIΣ[φ,ψ] ≤ T and RIΣ[ψ,χ] ≤ T . Then, by Lemma
776, we get that, for all ρ♭ ∈ RI , and all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and
all ξ⃗ ∈ SEN♭(Σ′),

RIΣ′[ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗),
ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗)] ≤ T.

Since RIΣ[φ,ψ] ≤ T , we get by the global family MP of RI that, for all ρ♭ ∈ RI ,
and all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈ SEN♭(Σ′),

ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗) ⊆ TΣ′ .
Thus, RIΣ[φ,χ] ≤ T , whence ⟨φ,χ⟩ ∈ RIΣ(T ). Therefore RI is globally family
transitive in I . ∎

Proposition 797 closes a line of work that was started with the definition
of a reflexive core and goes back to Lemma 773.

Theorem 798 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the global family modus ponens,
then I is syntactically protoalgebraic, with witnessing transformations RI .

Proof: By Lemma 773, RI is reflexive in I . By Lemma 775, I is globally
family symmetric in I . By hypothesis and Proposition 797, it is globally
family transitive in I . By Lemma 776 it has the global family compatibility
property in I . Finally, by hypothesis, it has the global family modus ponens
in I . We conclude that I is syntactically protoalgebraic with witnessing
transformations RI . ∎

Theorems 796 and 798 provide the promised characterization of syntactic
protoalgebraicity in terms of the global family modus ponens of the reflexive
core.

I is Syntactically Protoalgebraic ←→ RI has Global Family MP.
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Theorem 799 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic if and
only if RI has the global family modus ponens in I.

Proof: Theorem 796 gives the “only if” and the “if” is by Theorem 798. ∎

If I is syntactically protoalgebraic, then RI defines Leibniz congruence
systems in I . This proposition may be viewed as a special case of Corollary
791, since RI forms a set of witnessing transformations that, in addition, has
the global family symmetry in I .

Proposition 800 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the global family modus ponens,
then, for all T ∈ ThFam(I),

Ω(T ) = RI(T ).
Proof: If RI has the global family modus ponens, then, by Lemma 773,
Lemma 775, Lemma 776, the hypothesis and Proposition 797, RI(T ) is a
congruence system that is compatible with T . Therefore, by Corollary 98,
we get that Ω(T ) = RI(T ). ∎

We also get (almost) for free another related characterization of syntactic
protoalgebraicity.

I is Syntactically Protoalgebraic
←→ RI Defines Leibniz Congruence Systems.

Theorem 801 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic if and
only if, for all T ∈ ThFam(I),

Ω(T ) = RI(T ).
Proof: If I is syntactically protoalgebraic, then, by Theorem 799, RI has the
family modus ponens in I . Thus, by Proposition 800, for all T ∈ ThFam(I),
Ω(T ) = RI(T ).

Conversely, if, for all T ∈ ThFam(I), RI(T ) = Ω(T ), then, RI is reflexive,
globally family transitive, has the global family compatibility and the global
family modus ponens. Thus, RI is a set of witnessing transformations and I
is syntactically protoalgebraic. ∎

We finally show that the property that separates protoalgebraicity from
syntactic protoalgebraicity is exactly the Leibniz compatibility property with
respect to the theory family generated by the reflexive core.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that RI is Leibniz if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).

We have shown in Proposition 785 that, if RI has the global system
modus ponens, then it is Leibniz.

Corollary 802 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the global family modus ponens,
then it is Leibniz.

Proof: Directly from Proposition 785 ∎

Here is an example of a π-institution I , with a Leibniz reflexive core not
having the global family modus ponens.

Example 803 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
binary natural transformation σ♭ ∶ (SEN♭)2 → SEN♭ defined by letting
σ♭Σ ∶ {0,1,2}2 → {0,1,2} be given, for all a, b ∈ SEN♭(Σ), by

σ♭Σ(x, y) = { 2, if x = y or {x, y} = {0,1}
0, otherwise

.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
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I has three theory families Thm(I), T = {{1,2}} and SEN♭, but only two
theory systems Thm(I) and SEN♭.

Note that RI = {σ♭}. We show that RI is Leibniz, but does not have the
global family modus ponens.

To verify the Leibniz property, note that, if φ = ψ the conclusion is trivial
and, if {φ,ψ} ≠ {0,1}, then CΣ(RIΣ[φ,ψ]) = SEN♭(Σ), whence

Ω(C(RIΣ[φ,ψ])) = ∇F

and the conclusion follows. Finally, if {φ,ψ} = {0,1}, then CΣ(RIΣ[φ,ψ]) ={2}, whence ΩΣ(C(RIΣ[φ,ψ])) = {{0,1},{2}} and, therefore,

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])),
as required. We conclude that RI is Leibniz.

On the other hand, we have 1 ∈ {1,2} and RIΣ[1,0] ≤ {{1,2}}, whereas
0 ∉ {1,2}. Therefore, RI fails to have the global family modus ponens in I.

In the opposite direction, and on the positive side, in a protoalgebraic
π-institution I , if the reflexive core is Leibniz, then it has the global family
modus ponens in I .

Proposition 804 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. If RI is Leibniz, then it has
the global family modus ponens in I.

Proof: Suppose that I is protoalgebraic and that RI is Leibniz. Let Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and RIΣ[φ,ψ] ≤ T . Now we
have

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])) (since RI is Leibniz)
⊆ ΩΣ(T ). (since RIΣ[φ,ψ] ≤ T and I is protoalgebraic)

Therefore, since φ ∈ TΣ, we get, by the compatibility of Ω(T ) with T , that
ψ ∈ TΣ. We conclude that RI has the global family modus ponens in I . ∎

We now show that a π-institution is syntactically protoalgebraic if and
only if it is protoalgebraic and has a Leibniz reflexive core.

Syntactic Protoalgebraicity = RI has Global Family MP
= RI Defines Leibniz Congruence Systems
= Protoalgebraicity +RI is Leibniz

Theorem 805 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic if and
only if it is protoalgebraic and has a Leibniz reflexive core.
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Proof: Suppose, first, that I is syntactically protoalgebraic. Then it is
protoalgebraic by Theorem 792. Moreover, its reflexive core has the global
family modus ponens by Theorem 799 and, hence, by Corollary 802, its
reflexive core is Leibniz.

Suppose, conversely, that I is protoalgebraic with a Leibniz reflexive core.
Then, by Proposition 804, its reflexive core has the global family modus
ponens and, therefore, by Theorem 799, I is syntactically protoalgebraic. ∎

We have now established the following hierarchy of properties:

Syntactically Protoalgebraic

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Syntactically Prealgebraic Protoalgebraic

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Leibniz Reflexive Core Prealgebraic Stable

(on theory systems)

In fact, it turns out that many of the given characterizations of syntactic
protoalgebraicity can be recast in terms of the corresponding ones concerning
syntactic prealgebraicity by adding stability. The main result that allows this
connection is the one corresponding to Theorem 175, but concerning syntactic
protoalgebraicity and syntactic prealgebraicity rather than their respective
semantic versions.

Theorem 806 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic if and
only if it is syntactically prealgebraic and stable.

Proof: Suppose, first, that I is syntactically protoalgebraic. Then, it is, a
fortiori, syntactically prealgebraic. Moreover, by Theorem 792, it is protoal-
gebraic. Therefore, by Theorem 175, it is stable.

Suppose, conversely, that I is syntactically prealgebraic and stable. Con-
sider T ∈ ThFam(I). Then we have

Ω(T ) = Ω(←ÐT ) (stability)

= RI(←ÐT ) (syntactic prealgebraicity and Theorem 784)
= RI(T ). (Proposition 99)

By Theorem 801, we conclude that I is syntactically protoalgebraic. ∎

Now we obtain, almost for free, the following corollaries, which contain
the promised characterizations involving stability.
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Corollary 807 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic if and
only if it is stable and RI has the global system modus ponens.

Proof: We have that I is syntactically protoalgebraic if and only if, by
Theorem 806, it is syntactically prealgebraic and stable, if and only if, by
Theorem 782, it is stable and RI has the global system modus ponens. ∎

Corollary 808 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic if and only
if it is stable and RI defines Leibniz congruence systems of theory systems of
I, i.e., for all T ∈ ThSys(I), Ω(T ) = RI(T ).
Proof: We have that I is syntactically protoalgebraic if and only if, by
Theorem 806, it is syntactically prealgebraic and stable, if and only if, by
Theorem 784, it is stable and RI defines Leibniz congruence systems of theory
systems in I . ∎

Corollary 809 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic if and
only if it is prealgebraic, stable and RI is Leibniz.

Proof: We have that I is syntactically protoalgebraic if and only if, by
Theorem 806, it is syntactically prealgebraic and stable, if and only if, by
Theorem 788, it is prealgebraic, stable and RI is Leibniz. ∎

Finally, it is not difficult to see, in this case as well, that syntactic pro-
toalgebraicity transfers from a π-institution I to all its generalized matrix
families.

Theorem 810 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically protoalgebraic, with
witnessing transformations I♭, if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, the generalized matrix family ⟨A,CI,A⟩ is syntactically pro-
toalgebraic, with witnessing transformations IA.

Proof: The proof mimics the proof of Theorem 789. ∎

11.3 Matrix Semantics

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that an I-matrix family is a pair A =⟨A, T ⟩, where A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system and T ∈ FiFamI(A)
is an I-filter family on A. The class of all I-matrix families is denoted
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by MatFam(I). I-matrix families on F = ⟨F, ⟨I, ι⟩⟩, i.e., pairs of the form⟨F , T ⟩, where T ∈ ThFam(I), are called Lindenbaum I-matrix fami-
lies. The collection of all Lindenbaum I-matrix families is denoted by
LMatFam(I).

Four subclasses of MatFam(I) are distinguished and will be of particular
interest to us in the upcoming sections. These are:

• The class LMatFam∗(I) of all reduced Lindenbaum I-matrix fam-
ilies:

LMatFam∗(I) = {⟨F/Ω(T ), T /Ω(T )⟩ ∶ T ∈ ThFam(I)};
• The class LMatFamSu(I) of all Suszko reduced Lindenbaum I-

matrix families:

MatFamSu(I) = {⟨F/Ω̃I(T ), T /Ω̃I(T )⟩ ∶ T ∈ ThFam(I)};
• The class MatFam∗(I) of all reduced I-matrix families:

LMatFam∗(I) = {⟨A, T ⟩ ∈MatFam(I) ∶ ΩA(T ) =∆A};
• The class MatFamSu(I) of all Suszko reduced I-matrix families:

MatFamSu(I) = {⟨A, T ⟩ ∈MatFam(I) ∶ Ω̃I,A(T ) =∆A}.
The following characterizations of the last two classes are well-known and

very useful in practice.

Proposition 811 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then the following equalities hold (where
the classes are perceived as being closed under isomorphism):

(a) MatFam∗(I) = {⟨A/ΩA(T ), T /ΩA(T )⟩ ∶ T ∈ FiFamI(A)};
(b) MatFamSu(I) = {⟨F/Ω̃I,A(T ), T /Ω̃I,A(T )⟩ ∶ T ∈ FiFamI(A)}.

Proof: We prove Part (a). Part (b) can be proven similarly. First, if ⟨A, T ⟩ ∈
MatFam∗(I), then, since, by definition, ΩA(T ) = ∆A, we get that ⟨A, T ⟩ ≅⟨A/ΩA(T ), T /ΩA(T )⟩. For the reverse inclusion, it suffices to observe that,
given an F-algebraic system A and T ∈ FiFamI(A), we have, essentially due
to the definition of the Leibniz congruence system, that

ΩA/Ω
A(T )(T /ΩA(T )) =∆A/Ω

A(T ).

Therefore, ⟨A/ΩA(T ), T /ΩA(T )⟩ ∈MatFam∗(I). ∎
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It turns out that all four classes of I-matrix families defined above form
matrix family semantics for the π-institution I . More precisely, given an
algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution I = ⟨F,C⟩, a
class M of I-matrix families is called a matrix (family) semantics for I
if C = CM, i.e., for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ), φ ∈ CΣ(Φ)
if and only if, for all ⟨A, T ⟩ ∈ M, with A = ⟨A, ⟨F,α⟩⟩, all Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).
Proposition 812 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on I. The four classes

LMatFam∗(I),LMatFamSu(I),MatFam∗(I) and MatFamSu(I)
are all matrix semantics for I.

Proof: Let M be any of these four matrix family classes. Since M consists
of I-matrix families, we have that C ≤ CM.

For the converse, note that the following inclusions hold:

LMatFamSu(I)PPPPPPPq
MatFamSu(I)

✏✏✏✏✏✏✏✶

LMatFam∗(I) ✲ MatFam∗(I)
Therefore, we have, by definition, the inclusions

CLMatFamSu(I)

✏✏✏✏✏✏✏✶

CMatFamSu(I)
PPPPPPPq

CMatFam∗(I) ✲ CLMatFam∗(I)

It follows that it suffices to show that the two reduced Lindenbaum matrix
family classes satisfy CLMatFamSu(I) ≤ C and CLMatFam∗(I) ≤ C. We show the
first inclusion, since the second can be proven similarly.

Suppose Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that

φ ∈ CLMatFamSu(I)
Σ (Φ).

Let T ∈ ThFam(I), such that Φ ⊆ TΣ. Then, Φ/Ω̃IΣ(T ) ⊆ TΣ/Ω̃IΣ(T ). Since

⟨F/Ω̃I(T ), T /Ω̃I(T )⟩ ∈ LMatFamSu(I), we get, by hypothesis, φ/Ω̃IΣ(T ) ∈
TΣ/Ω̃IΣ(T ). Thus, using the compatibility of Ω̃I(T ) with T , we get that
φ ∈ TΣ. Since T ∈ ThFam(I) was arbitrary, we conclude that φ ∈ CΣ(Φ). ∎
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We denote the classes of the underlying F-algebraic systems of the matrix
families in LMatFam∗(I), LMatFamSu(I), MatFam∗(I) and MatFamSu(I),
respectively, by

LAlgSys∗(I),LAlgSysSu(I),AlgSys∗(I) and AlgSysSu(I).
So we have

LAlgSys∗(I) = {F/Ω(T ) ∶ T ∈ ThFam(I)};
LAlgSysSu(I) = {F/Ω̃I(T ) ∶ T ∈ ThFam(I)};

AlgSys∗(I) = {A ∶ (∃T ∈ FiFamI(A))(ΩA(T ) =∆A)};
AlgSysSu(I) = {A ∶ (∃T ∈ FiFamI(A))(Ω̃I,A(T ) =∆A)}.

We clearly have the following inclusion relationships between those four
classes of F-algebraic systems:

LAlgSysSu(I)PPPPPPPq
AlgSysSu(I)

✏✏✏✏✏✏✏✶

LAlgSys∗(I) ✲ AlgSys∗(I)
11.4 Algebraic Semantics

In the study of logical systems formalized as π-institutions and, more specif-
ically, as related to their algebraic properties, the notions of an algebraic
semantics and that of equational definability of truth are paramount. We
introduce and study these two notions in this section.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Consider a class K of F-algebraic systems. We define
the closure system CK ∶ P(SEN♭)2 → P(SEN♭)2, by letting, for all Σ ∈ ∣Sign♭∣,
CK

Σ ∶ P(SEN♭(Σ)2)→ P(SEN♭(Σ)2) be given, for all E∪{φ ≈ ψ} ⊆ SEN♭(Σ)2,
by

φ ≈ ψ ∈ CK
Σ (E) iff for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

αΣ(E) ⊆∆A
F (Σ)

implies αΣ(φ) = αΣ(ψ).
Given a set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natural transformations in N ♭,

with a single distinguished argument, we say that the class K of F-algebraic
systems is a τ ♭-algebraic semantics for I , or, more simply, a τ ♭-semantics
for I , if, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) iff τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-

institution, based on F, and M a class of I-matrix families. Given a set
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natural transformations in N ♭, we say that
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truth is τ ♭-equationally definable in M, or, more simply, that truth
is τ ♭-definable in M if, for all ⟨A, T ⟩ ∈ M, with A = ⟨A, ⟨F,α⟩⟩ and
A = ⟨Sign,SEN,N⟩, all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤∆A.

It turns out that classes of algebraic systems forming τ ♭-semantics for a
π-institution and classes of matrix families in which truth is τ ♭-definable are
closely interrelated. To express this connection, we first formulate a technical
lemma.

Lemma 813 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let τ ♭ ∶(SEN♭)ω → (SEN♭)2 be a set of natural transformations in N ♭. Suppose
A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign,SEN,N⟩, is an F-matrix
family in which truth is τ ♭-definable. Then, for all Σ ∈ ∣Sign♭∣ and all Φ ∪{φ} ⊆ SEN♭(Σ),

φ ∈ CA
Σ(Φ) iff τ ♭Σ[φ] ≤ CA(τ ♭Σ[Φ]).

Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Then we have the following
sequence of equivalent statements:

φ ∈ CA
Σ(Φ) iff, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′)
implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′)

iff, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
τA
F (Σ′)
[αΣ′(SEN♭(f)(Φ))] ≤∆A

implies τA
F (Σ′)
[αΣ′(SEN♭(f)(φ))] ≤ ∆A

iff, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
τA
F (Σ′)
[SEN(F (f))(αΣ(Φ))] ≤∆A

implies τA
F (Σ′)
[SEN(F (f))(αΣ(φ))] ≤ ∆A

iff, by Lemma 93,
τA
F (Σ)
[αΣ(Φ)] ≤∆A implies τA

F (Σ)
[αΣ(φ)] ≤∆A

iff, by surjectivity of ⟨F,α⟩,
α(τ ♭Σ[Φ]) ≤∆A implies α(τ ♭Σ[φ]) ≤∆A

iff τ ♭Σ[φ] ≤ CA(τ ♭Σ[Φ]). ∎

Now we establish the promised relationship between algebraic semantics
and matrix semantics.

Theorem 814 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a set of natural
transformation in N ♭. A class K of F-algebraic systems is a τ ♭-semantics
for I if and only if it is the class of underlying algebraic systems of some
matrix semantics M for I in which truth is τ ♭-definable.
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Proof: Suppose, first, that M is a matrix semantics for I in which truth is
τ ♭-definable and let K be the class of its underlying algebraic systems. Then
we have, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) iff φ ∈ CM
Σ (Φ) (M a matrix semantics)

iff (∀A ∈M)(φ ∈ CA
Σ(Φ)) (by definition)

iff (∀A ∈ K)(τ ♭Σ[φ] ≤ CA(τ ♭Σ[Φ])) (by Lemma 813)
iff τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]). (by definition)

Thus, K is a τ ♭-semantics for I .
Suppose, conversely, that K is a τ ♭-semantics for I . Let A = ⟨A, ⟨F,α⟩⟩ ∈

K, with A = ⟨Sign,SEN,N⟩. Define, for all Σ ∈ ∣Sign∣,
T
A,τ
Σ = {φ ∈ SEN(Σ) ∶ τAΣ [φ] ≤∆A},

and set TA,τ = {TA,τΣ }Σ∈∣Sign∣. Then, let

M = {⟨A, TA,τ ⟩ ∶ A ∈ K}.
Note that K is the class of all underlying algebraic systems of the matrix
systems in M and, also, that, for all A ∈ K, truth is τ ♭-definable in ⟨A, TA,τ ⟩
by the definition of TA,τ . Thus, we have, for all Σ ∈ ∣Sign♭∣ and all Φ∪ {φ} ⊆
SEN♭(Σ),

φ ∈ CΣ(Φ) iff τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]) (K a τ ♭-semantics)
iff (∀A ∈ K)(τ ♭Σ[φ] ≤ CA(τ ♭Σ[Φ])) (by definition)
iff (∀A ∈M)(φ ∈ CA

Σ(Φ)) (by Lemma 813)
iff φ ∈ CM

Σ (Φ). (by definition)

We conclude that M is a matrix semantics for I . ∎

Corollary 815 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution, based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a set of natural
transformation in N ♭. If truth is τ ♭-definable in any of the classes

LMatFam∗(I),LMatFamSu(I),MatFam∗(I) or MatFamSu(I),
then, the corresponding class

LAlgSys∗(I),LAlgSysSu(I),AlgSys∗(I) or AlgSysSu(I)
is a τ ♭-semantics for I.

Proof: This follows from Theorem 814, since the four displayed classes of
I-matrix families are matrix semantics for I and the four displayed classes
of algebraic systems are the respective classes of their underlying algebraic
systems. ∎
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11.5 Truth Equationality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is:

• Leibniz truth equational if there exists τ ♭ ⊆ N ♭, with a single distin-
guished argument, such that truth is τ ♭-definable in LMatFam∗(I), i.e.,
such that, for all ⟨F/Ω(T ), T /Ω(T )⟩ ∈ LMatFam∗(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

φ/ΩΣ(T ) ∈ TΣ/ΩΣ(T ) iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤ ∆F/Ω(T );

• Universally Leibniz truth equational if there exists τ ♭ ⊆ N ♭, with
a single distinguished argument, such that truth is τ ♭-definable in the
class MatFam∗(I), i.e., such that, for all ⟨A, T ⟩ ∈ MatFam∗(I), all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤∆A;

• Suszko truth equational if there exists τ ♭ ⊆ N ♭, with a single dis-
tinguished argument, such that truth is τ ♭-definable in LMatFamSu(I),
i.e., such that, for all ⟨F/Ω̃I(T ), T /Ω̃I(T )⟩ ∈ LMatFamSu(I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ/Ω̃IΣ(T ) ∈ TΣ/Ω̃IΣ(T ) iff τ
F/Ω̃I(T )
Σ [φ/Ω̃IΣ(T )] ≤ ∆F/Ω̃

I(T );

• Universally Suszko truth equational if there exists τ ♭ ⊆ N ♭, with
a single distinguished argument, such that truth is τ ♭-definable in the
class MatFamSu(I), i.e., such that, for all ⟨A, T ⟩ ∈ MatFamSu(I), all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤∆A.

The set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ will be called a set of witnessing
equations (of/for the corresponding truth equationality property).

The following proposition provides alternative conditions for testing whe-
ther a given π-institution is truth equational with respect to any of the four
classes of matrix families considered above.

Proposition 816 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ⊆ N ♭ having a single distinguished
argument.

(a) I is Leibniz truth equational with witnessing equations τ ♭ iff, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T );
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(b) I is universally Leibniz truth equational if and only if, for every F-
algebraic system A, all T ∈ FiFamA(I), all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T );
(c) I is Suszko truth equational with witnessing equations τ ♭ iff, for all

T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω̃I(T );

(d) I is universally Suszko truth equational if and only if, for every F-
algebraic system A, all T ∈ FiFamA(I), all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤ Ω̃I,A(T ).
Proof:

(a) Suppose, first, that I is Leibniz truth equational and let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ TΣ iff φ/ΩΣ(T ) ∈ TΣ/ΩΣ(T ) (by compatibility)
iff τF/Ω(T )[φ/ΩΣ(T )] ≤∆F/Ω(T ) (by hypothesis)
iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T ) (by definition)
iff τ ♭Σ[φ] ≤ Ω(T ).

Assume, conversely, that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if τ ♭Σ[φ] ≤ Ω(T ). Let ⟨F/Ω(T ),
T /Ω(T )⟩ ∈ LMatFam∗(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ/ΩΣ(T ) ∈ TΣ/ΩΣ(T ) iff φ ∈ TΣ (by compatibility)
iff τ ♭Σ[φ] ≤ Ω(T ) (by hypothesis)
iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T ) (by definition)

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ).

(b) Suppose, first, that I is universally Leibniz truth equational and let
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic system,
T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then

φ ∈ TΣ iff φ/ΩAΣ(T ) ∈ TΣ/ΩAΣ(T ) (by compatibility)

iff τA/Ω
A(T )[φ/ΩAΣ(T )] ≤ ∆A/Ω

A(T ) (by hypothesis)

iff τAΣ [φ]/ΩA(T ) ≤∆A/Ω
A(T ) (by definition)

iff τAΣ [φ] ≤ ΩA(T ).
Assume, conversely, that, for every F-algebraic system A, all T ∈
FiFamI(A), all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), φ ∈ TΣ if and only if
τAΣ [φ] ≤ ΩA(T ). Let ⟨A, T ⟩ ∈MatFam∗(I), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ).
Then

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T ) (by hypothesis)
iff τAΣ [φ] ≤∆A. (ΩA(T ) =∆A)
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Parts (c) and (d) follow along similar lines. ∎

We investigate next the relationships between the various types of truth
equationality. Our first result is that Leibniz truth equationality and univer-
sal Leibniz truth equationality coincide.

Proposition 817 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is Leibniz truth equational if and only
if it is universally Leibniz truth equational.

Proof: First, note that, since LMatFam∗(I) ⊆MatFam∗(I), universal Leib-
niz truth equationality trivially implies Leibniz truth equationality. Suppose,
conversely, that I is Leibniz truth equational, with witnessing equations
τ ♭ ⊆ N ♭. Let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-algebraic
system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, we have

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ)) (set theory)
iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (Proposition 816)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff α(τ ♭Σ[φ]) ≤ ΩA(T ) (set theory)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 96)

Taking into account the surjectivity of ⟨F,α⟩ and Proposition 816, we con-
clude that I is universally Leibniz truth equational. ∎

In the next proposition, we show that (universal) Leibniz truth equation-
ality and universal Suszko truth equationality are also identical properties.

Theorem 818 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is universally Leibniz truth equational
if and only if it is universally Suszko truth equational.

Proof: Since MatFam∗(I) ⊆MatFamSu(I), it follows that universal Suszko
truth equationality implies universal Leibniz truth equationality. Suppose,
conversely, that I is universally Leibniz truth equational, with witnessing
equations τ ♭. Let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an F-
algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). By Proposi-
tion 816, it suffices to show that

φ ∈ TΣ iff τAΣ [φ] ≤ Ω̃I,A(T ).
If φ ∈ TΣ, then φ ∈ T ′Σ, for all T ≤ T ′ ∈ FiFamI(A). Thus, by hypothesis,
τAΣ [φ] ≤ ΩA(T ′). But then we have

τAΣ [φ] ≤ ⋂
T≤T ′∈FiFamI(A)

ΩA(T ′) = Ω̃I,A(T ).
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Suppose, conversely, that τAΣ [φ] ≤ Ω̃I,A(T ). Then, since Ω̃I,A(T ) ≤ ΩA(T ),
we get that τA[φ] ≤ ΩA(T ), whence, by hypothesis, φ ∈ TΣ.

Using Proposition 816, we conclude that I is universally Suszko truth
equational. ∎

Since, for any π-institution I , LMatFamSu(I) ⊆ MatFamSu(I), we have,
trivially, that universal Suszko truth equationality implies Suszko truth equa-
tionality. Therefore, we get the following picture involving implications be-
tween the various truth equationality properties:

Universal Leibniz ✲✛ Leibniz ✲✛ Universal Suszko
❍❍❍❍❍❍❍❍❥ ✙✟✟✟✟✟✟✟✟

Suszko
❄

Next, we present an example showing that the top-to-bottom implica-
tion is not an equivalence in general. I.e., we construct an example of a
π-institution, which is Suszko truth equational but not Leibniz truth equa-
tional.

Example 819 EXAMPLE NOT FOUND YET!

We call a π-institution that is (universally) Leibniz truth equational, or
equivalently, universally Suszko truth equational, a family truth-equational
π-institution, or more simply, a truth equational π-institution.

Combining these results with Corollary 815, we get the following

Corollary 820 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. If I is truth equational
with witnessing equations τ ♭, then the three classes LAlgSys∗(I), AlgSys∗(I)
and AlgSysSu(I) are τ ♭-semantics for I.

Proof: By the definition of truth equationality and Corollary 815. ∎

11.6 More on Truth Equationality

We start this section by looking closely at a property similar to the one
defining truth equationality.

Lemma 821 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a set of natural
transformations in N ♭. The following statements are equivalent:

(a) For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), τ ♭Σ[φ] ≤ Ω̃I(C(φ));



820 CHAPTER 11. SYNTACTIC HIERARCHY I Voutsadakis

(b) For all T ∈ ThFam(I), τ ♭[T ] ≤ Ω̃I(T ).
Proof: For (a)⇒(b), assume that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
τ ♭Σ[φ] ≤ Ω̃I(C(φ)), and let T ∈ ThFam(I). Then, we have, for all Σ ∈ ∣Sign♭∣
and all φ ∈ TΣ,

τ ♭Σ[φ] ≤ Ω̃I(C(φ)) (hypothesis)

≤ Ω̃I(T ). (monotonicity of Ω̃I)

Therefore, τ ♭[T ] ≤ Ω̃I(T ).
For (b)⇒(a), assume that, for all T ∈ ThFam(I), τ ♭[T ] ≤ Ω̃I(T ), and let

Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, by hypothesis,

τ ♭Σ[φ] ≤ τ ♭[C(φ)] ≤ Ω̃I(C(φ)).
∎

A very similar property holds replacing theory families by theory systems
and using the arrow operators.

Lemma 822 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a set of natural
transformations in N ♭. The following statements are equivalent:

(a) For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), τ ♭Σ[φ] ≤ Ω̃I(C(Ð→φ ));
(b) For all T ∈ ThSys(I), τ ♭[T ] ≤ Ω̃I(T ).

Proof: For (a)⇒(b), assume that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
τ ♭Σ[φ] ≤ Ω̃I(C(Ð→φ )), and let T ∈ ThSys(I). Then, we have, for all Σ ∈ ∣Sign♭∣
and all φ ∈ TΣ, C(Ð→φ ) ≤ T and, hence,

τ ♭Σ[φ] ≤ Ω̃I(C(Ð→φ )) (hypothesis)

≤ Ω̃I(T ). (monotonicity of Ω̃I)

Therefore, τ ♭[T ] ≤ Ω̃I(T ).
For (b)⇒(a), assume that, for all T ∈ ThSys(I), τ ♭[T ] ≤ Ω̃I(T ), and let

Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, by hypothesis,

τ ♭Σ[φ] ≤ τ ♭[C(Ð→φ )] ≤ Ω̃I(C(Ð→φ )).
∎

The property studied in Lemma 821 is one that is satisfied by every π-
institution possessing a τ ♭-semantics.

Proposition 823 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a set of natural
transformations in N ♭. If I has a τ ♭-semantics, then, for all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ),

τ ♭Σ[φ] ≤ Ω̃I(C(φ)).
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Proof: Suppose that K is a τ ♭-semantics for I and let δ♭ ≈ ǫ♭ be an arbitrary
equation in τ ♭, Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Our goal is to show that, for
all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

⟨δ♭Σ′(SEN♭(f)(φ), χ⃗), ǫ♭Σ′(SEN♭(f)(φ), χ⃗)⟩ ∈ Ω̃IΣ′(C(φ)).
By the characterization theorem for membership in the Suszko congruence
system, and using symmetry, it suffices to show that, for all σ♭ ∈ N ♭, all
Σ′′ ∈ ∣Sign♭∣, all g ∈ Sign♭(Σ′,Σ′′) and all ξ⃗ ∈ SEN♭(Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

φ ↦ SEN♭(φ) ↦ SEN♭(gf)(φ)
χ⃗ ↦ SEN♭(g)(χ⃗)

ξ⃗

σ♭Σ′′(SEN♭(g)(ǫ♭Σ′(SEN♭(f)(φ), χ⃗)), ξ⃗)
∈ CΣ′′(φ,σ♭Σ′′(SEN♭(g)(δ♭Σ′(SEN♭(f)(φ), χ⃗)), ξ⃗)).

This is equivalent to showing

σ♭Σ′′(ǫ♭Σ′′(SEN♭(gf)(φ),SEN♭(g)(χ⃗)), ξ⃗)
∈ CΣ′′(φ,σ♭Σ′′(δ♭Σ′′(SEN♭(gf)(φ),SEN♭(g)(χ⃗)), ξ⃗)).

To show this, however, it suffices to show that, for all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗, ξ⃗ ∈ SEN♭(Σ′),

σ♭Σ′(ǫ♭Σ′(SEN♭(f)(φ), χ⃗), ξ⃗) ∈ CΣ′(φ,σ♭Σ′(δ♭Σ′(SEN♭(f)(φ), χ⃗), ξ⃗)).
This, now, follows from the fact that K is a τ ♭-semantics for I and that,
obviously,

τ ♭Σ′[σ♭Σ′(ǫ♭Σ′(SEN♭(f)(φ), χ⃗), ξ⃗)]
≤ CK(τ ♭Σ[φ], τ ♭Σ′[σ♭Σ′(δ♭Σ′(SEN♭(f)(φ), χ⃗), ξ⃗)]).

∎

Now we obtain the following consequence:

Corollary 824 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a set of natural
transformations in N ♭. If I has a τ ♭-semantics, then. for all T ∈ ThFam(I),

τ ♭[T ] ≤ Ω̃I(T ).
Proof: By Proposition 823 and Lemma 821. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. We say that the Suszko operator:
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• is universally family injective if, for every F-algebraic system A,
and all T,T ′ ∈ FiFamI(A),

Ω̃I,A(T ) = Ω̃I,A(T ′) implies T = T ′;

• has the universal family minimality property if, for every F-alge-
braic system A, and every T ∈ FiFamI(A), T /Ω̃I,A(T ) is the least
theory family of A/Ω̃I,A(T ).

Universal family injectivity and universal family minimality of the Suszko
operator turn out to be equivalent properties.

Theorem 825 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Suszko operator is universally family
injective if and only if it has the universal family minimality property.

Proof: Suppose, first, that the Suszko operator has the universal family
minimality property. Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and
T,T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) = Ω̃I,A(T ′). Then both T /Ω̃I,A(T )
and T ′/Ω̃I,A(T ′) are I-filter families on the F-algebraic system A/Ω̃I,A(T ) =
A/Ω̃I,A(T ′). Thus, by the universal family minimality property, T /Ω̃I,A(T ) =
T ′/Ω̃I,A(T ′). Since Ω̃I,A(T ) = Ω̃I,A(T ′), we get that T = T ′. So Ω̃I,A is uni-
versally family injective.

Suppose, conversely, that the Suszko operator is universally family injec-
tive. Consider an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and T ∈ FiFamI(A).
Let T ′ be the least I-filter family on A/Ω̃I,A(T ). Since we have T /Ω̃I,A(T ) ∈
ThFamI(A/Ω̃I,A(T )), we get, by minimality, that T ′ ≤ T /Ω̃I,A(T ). But
then, by the monotonicity of the Suszko operator, we get that

Ω̃I,A/Ω̃
I,A(T )(T ′) ≤ Ω̃I,A/Ω̃

I,A(T )(T /Ω̃I,A(T )) = ∆A/Ω̃
I,A(T )

and, therefore,

Ω̃I,A/Ω̃
I,A(T )(T ′) = Ω̃I,A/Ω̃

I,A(T )(T /Ω̃I,A(T ))(= ∆A/Ω̃
I,A(T )).

Hence, by universal family injectivity, T ′ = T /Ω̃I,A(T ), which proves that the
Suszko operator has the universal family minimality property. ∎

Finally, recall that a π-institution I = ⟨F,C⟩ is called family c-reflective
if, for every T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂T ≤ T ′.

Also recall that, by the Transfer Theorem ??, I is family c-reflective if and
only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∪ {T ′} ⊆
FiFamI(A),

⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′) implies ⋂T ≤ T ′.
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We may call this latter property universal family complete reflectivity
or universal family c-reflectivity.

Our goal, in closing this section is to show that the family injectivity
of the Suszko operator (and, hence, by Theorem 825, its universal family
minimality) is equivalent to the (universal) family c-reflecitvity of I .

We provide, first, an alternative characterization of universal family c-
reflectivity involving both the Suszko and the Leibniz congruence systems.

Lemma 826 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is (universally) family c-reflective if
and only if, for every F-algebraic system A and all T,T ′ ∈ FiFamI(A),

Ω̃I,A(T ) ≤ ΩA(T ′) implies T ≤ T ′.

Proof: Assume, first, that I is universally family c-reflective and let A be
an F-algebraic system and T,T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) ≤ ΩA(T ′).
Thus, by the definition of the Suszko operator,

⋂{ΩA(T ′′) ∶ T ≤ T ′′ ∈ FiFamI(A)} ≤ ΩA(T ′).
Using universal family c-reflectivity, we get that

⋂{T ′′ ∶ T ≤ T ′′ ∈ FiFamI(A)} ≤ T ′.
Hence, T ≤ T ′, as required.

Suppose, conversely, that, for every F-algebraic system A and all T,T ′ ∈
FiFamI(A), Ω̃I,A(T ) ≤ ΩA(T ′) implies T ≤ T ′. Let A be an F-algebraic
system and T ∪ {T ′} ⊆ FiFamI(A), such that ⋂T ∈T ΩA(T ) ≤ ΩA(T ′). Then
we have

Ω̃I,A(⋂T ∈T T ) ≤ ⋂T ∈T Ω̃I,A(T ) (monotonicity of Ω̃I,A)

≤ ⋂T ∈T ΩA(T ) (since Ω̃I,A(T ) ≤ ΩA(T ))
≤ ΩA(T ′). (by hypothesis)

Using the hypothesis, we conclude that ⋂T ≤ T ′. Therefore, I is family
c-reflective. ∎

Finally, we show that family c-reflectivity is identical with the universal
family injectivity of the Suszko operator.

Theorem 827 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is (universally) family c-reflective if
and only if the Suszko operator is universally family injective.

Proof: Suppose, first, that the Suszko operator is universally family injec-
tive. To show that I is family c-reflective, we use Lemma 826. Let A be
an F-algebraic system and T,T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) ≤ ΩA(T ′).
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This implies that Ω̃I,A(T ) is compatible with T ′. We consider the natural
transformation ⟨I, γ⟩ ∶ A/Ω̃I,A(T )→ A/ΩA(T ′).
Since T ′/ΩA(T ′) ∈ FiFamI(A/ΩA(T ′)), we get

γ−1(T ′/ΩA(T ′)) ∈ FiFamI(A/Ω̃I,A(T )),
i.e., T ′/Ω̃I,A(T ) ∈ FiFamI(A/Ω̃I,A(T )). By universal family injectivity of
the Suszko operator and Theorem 825, we get that T /Ω̃I,A(T ) ≤ T ′/Ω̃I,A(T ).
Taking into account the compatibility of Ω̃I,A(T ) with T ′, pointed out above,
we get that T ≤ T ′.

Assume, conversely, that I is (universally) family c-reflective. Let A be an
F-algebraic system and T,T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) = Ω̃I,A(T ′).
Then, we have Ω̃I,A(T ) ≤ ΩA(T ′) and Ω̃I,A(T ′) ≤ ΩA(T ), whence, by hy-
pothesis and Lemma 826, T ≤ T ′ and T ′ ≤ T , showing that T = T ′. Thus, the
Suszko operator is universally family injective. ∎

In a nutshell we have the following three equivalent properties, given in
Theorems 825 and 827.

Suszko is Universally Family Injective

Suszko has Universal Family Minimality
❄

✻

I is (Universally) Family c-Reflective
❄

✻

11.7 Truth Equationality and c-Reflectivity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. Recall that I was called family c-reflective if, for all
T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

Family c-reflectivity implies family reflectivity, i.e., the property that, for all
T,T ′ ∈ ThFam(I), Ω(T ) ≤ Ω(T ′) implies T ≤ T ′. Finally, family c-reflectivity
is a property strong enough to imply systemicity. Therefore, a π-institution
is family c-reflective if and only if it is system c-reflective and systemic.

Recall, also, that I was called (family) truth equational if there exists
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished argument, such
that, for every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
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In that case, τ ♭ is termed a set of witnessing equations (of/for the truth
equationality of I).

Note again that truth equationality implies systemicity. In fact, if I is
truth equational with witnessing equations τ ♭, then, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), we get

τ ♭Σ[φ] ≤ Ω(←ÐT ) iff φ ∈
←Ð
T Σ

implies φ ∈ TΣ
iff τ ♭Σ[φ] ≤ Ω(T )

implies τ ♭Σ[φ] ≤ Ω(←ÐT ).
So all statements above are equivalent showing that

←Ð
T = T . Thus, I is

systemic.
It turns out that, if I is a truth equational π-institution, with witnessing

equations τ ♭, then τ ♭(Ω(T )) is exactly equal to T , i.e., that the witnessing
equations reflect theory families.

Proposition 828 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is truth equational, with witnessing
equations τ ♭, then, for all T ∈ ThFam(I),

τ ♭(Ω(T )) = T.
Proof: Let T ∈ ThFam(I). Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)
iff φ ∈ TΣ. (truth equationality)

∎

Proposition 828 has as an immediate consequence the important fact that
truth equationality implies family c-reflectivity.

Theorem 829 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. If I is truth equational, then it is
family c-reflective.

Proof: Suppose that I is truth equational with witnessing equations τ ♭. Let
T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then

⋂T ∈T T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 828)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis and Lemma 94)
= T ′. (Proposition 828)

Thus, I is family c-reflective. ∎

The following example shows that the inclusion of Theorem 829 is proper.
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Example 830 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the trivial category of natural transformations consisting of the

projections only.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, which are also theory sys-

tems. Clearly, Thm(I) ≤ SEN♭. Moreover, Ω(Thm(I)) =∆F and Ω(SEN♭) =
∇F. I is clearly family c-reflective.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

On the other hand, there does not exist τ ♭ ⊆ N ♭, such that I♭ has the
required properties to constitute a witnessing set of equations for the truth
equationality in I. Any set consisting of projections only cannot satisfy the
required condition since τ ♭(Ω(T )) can only be SEN♭ or ∅.

We now work towards a dual goal. We first provide a characterization
of truth equationality in terms of the solubility property of the Suszko core
of the π-institution. Then, we provide an exact description of those family
c-reflective π-institutions which are truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. We define the Suszko core SI of I to be the
collection

SI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[T ] ≤ Ω̃I(T ))}.
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By Lemma 821, this definition is equivalent to setting

SI = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(σ♭Σ[φ] ≤ Ω̃I(C(φ)))}.
The Suszko core has a list of interesting properties:

Proposition 831 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) ι ≈ ι ∈ SI, where ι ∶ SEN♭ → SEN♭ denotes the identity;

(b) If δ♭ ≈ ǫ♭ ∈ SI, then ǫ♭ ≈ δ♭ ∈ SI;

(c) If δ♭ ≈ ǫ♭, ǫ♭ ≈ ζ ♭ ∈ SI , then δ♭ ≈ ζ ♭ ∈ SI;

(d) If δ♭ ≈ ǫ♭ ∈ SI, then, for all σ♭ ∈ N ♭,

σ♭ ○ ⟨δ♭(p⃗), q⃗⟩ ≈ σ♭ ○ ⟨ǫ♭(p⃗), q⃗⟩ ∈ SI ,
where p⃗, q⃗ denote vectors of projections

p⃗ = ⟨pk+n−1,0, . . . , pk+n−1,k−1⟩, q⃗ = ⟨pk+n−1,k, . . . , pk+n−1,k+n−2⟩,
with k the maximum arity between δ♭ and ǫ♭, and n the arity of σ♭.

Proof:

(a) Since, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ TΣ,

(ι ≈ ι)Σ[φ] ≤∆F ≤ Ω̃I(T ),
we get, by definition, ι ≈ ι ∈ SI .

(b) Suppose that δ♭ ≈ ǫ♭ ∈ SI . Then, by definition, for all T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ ∈ TΣ, (δ♭ ≈ ǫ♭)Σ[φ] ≤ Ω̃I(T ). By the symmetry
property of the Suszko congruence system Ω̃I(T ), we conclude that,
for all T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ TΣ, (ǫ♭ ≈ δ♭)Σ[φ] ≤ Ω̃I(T ).
Therefore, ǫ♭ ≈ δ♭ ∈ SI .

(c) This follows along the lines of Part (b), using the transitivity of the
Suszko congruence system Ω̃I(T ) instead of its symmetry.

(d) Suppose that δ♭ ≈ ǫ♭ ∈ SI and σ♭ ∈ N ♭. Then, by definition of SI , for
all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ TΣ, (δ♭ ≈ ǫ♭)Σ[φ] ≤ Ω̃I(T ).
Thus, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

⟨δ♭Σ′(SEN♭(f)(φ), χ⃗), ǫ♭Σ′(SEN♭(f)(φ), χ⃗)⟩ ∈ Ω̃IΣ′(T ).
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But, then, by the congruence compatibility property of Ω̃I(T ), we get
that, for all ξ⃗ ∈ SEN♭(Σ′),
⟨σ♭Σ′(δ♭Σ′(SEN♭(f)(φ), χ⃗), ξ⃗), σ♭Σ′(ǫ♭Σ′(SEN♭(f)(φ), χ⃗), ξ⃗)⟩ ∈ Ω̃IΣ′(T ).

Since Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and χ⃗, ξ⃗ ∈ SEN♭(Σ′) were arbitrary,
we get (σ♭ ○ ⟨δ♭(p⃗), q⃗⟩ ≈ σ♭ ○ ⟨ǫ♭(p⃗), q⃗⟩)Σ[φ] ≤ Ω̃I(T ).
Finally, since T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ TΣ were arbitrary, we
conclude that

σ♭ ○ ⟨δ♭(p⃗), q⃗⟩ ≈ σ♭ ○ ⟨ǫ♭(p⃗), q⃗⟩ ∈ SI .
∎

It is clear, by the definitions involved, that the Suszko core of a π-
institution satisfies the following property:

Proposition 832 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every T ∈ ThFam(I),
T ≤ SI(Ω(T )).

Proof: Let T ∈ ThFam(I). Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ TΣ implies SIΣ[φ] ≤ Ω̃I(T ) (definition of SI)

implies SIΣ[φ] ≤ Ω(T ). (Ω̃I(T ) ≤ Ω(T ))
Thus, we get that T ≤ SI(Ω(T )). ∎

It is possible, but not necessary, that the Suszko core of a π-institution
satisfies the reverse inclusion. We call this property solubility.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the Suszko core of I is soluble if, for
all T ∈ ThFam(I),

SI(Ω(T )) ≤ T.
In other words, SI is soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

SIΣ[φ] ≤ Ω(T ) implies φ ∈ TΣ.

We present two examples to showcase the possibilities. In the first exam-
ple, we look at a π-institution I whose Suszko core SI is soluble.

Example 833 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
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• N ♭ is the category of natural transformations generated by the single
unary natural transformations σ♭ ∶ SEN♭ → SEN♭, specified by setting
σ♭Σ(x) = 1, for all x ∈ SEN♭(Σ).

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, which are also theory sys-

tems. Moreover, the structure of its posets of theory families and of their
associated Leibniz congruence systems is given below.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

One can see that the Suszko core of I is given by

SI = {ι ≈ ι, ι ≈ σ♭, σ♭ ≈ ι, σ♭ ≈ σ♭}.
Since the implication

SIΣ[φ] ≤ T implies φ ∈ TΣ

holds universally, we conclude that the Suszko core of I is soluble.

Next, we present an example of a π-institution I whose Suszko core SI

is not soluble.

Example 834 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
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• N ♭ is the trivial category of natural transformations consisting of the
projections only.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, which are also theory sys-

tems. Moreover, the structure of its posets of theory families and of their
associated Leibniz congruence systems is given below.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

One can see that the Suszko core of I is given by

SI = {ι ≈ ι}.
We, thus, have that

SIΣ[0] ≤ ∆F = Ω(Thm(I)) but 0 ∉ ThmΣ(I).
Therefore SI is not soluble.

It turns out that possession of the solubility property by the Suszko core
intrinsically characterizes truth equationality. We can show, at the outset,
that the Suszko core being soluble is necessary for truth equationality. Thus,
there is no point in trying to discover witnessing equations unless the Suszko
core of the π-institution I under scrutiny is soluble.

To show this, observe, first, that, in case a π-institution is truth equa-
tional, the witnessing equations form a subset of the Suszko core.

Lemma 835 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is truth equational, with witness-
ing equations τ ♭ ⊆ N ♭, then τ ♭ ⊆ SI.
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Proof: By truth equationality, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
Thus, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff (∀T ≤ T ′ ∈ ThFam(I))(φ ∈ T ′Σ)
iff (∀T ≤ T ′ ∈ ThFam(I))(τ ♭Σ[φ] ≤ Ω(T ′))
iff τ ♭Σ[φ] ≤ ⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam(I)}
iff τ ♭Σ[φ] ≤ Ω̃I(T ).

We conclude, by the definition of SI , that τ ♭ ⊆ SI . ∎

Now we prove the necessity of solubility for truth equationality.

Theorem 836 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is truth equational, then SI is soluble.

Proof: Suppose that I is truth equational, with witnessing equations τ ♭.
Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

SIΣ[φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ) (Lemma 835)
iff φ ∈ TΣ. (truth equationality)

Thus, SI is soluble. ∎

The reverse implication, which also holds and completes the promised
characterization of truth equationality in terms of the Suszko core, is pre-
sented in the following result.

Theorem 837 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI is soluble, then I is truth equational,
with witnessing equations SI.

Proof: It suffices to show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ TΣ iff SIΣ[φ] ≤ Ω(T ).
The left-to-right implication is given in Proposition 832, whereas the converse
is ensured by the postulated solubility of SI . ∎

Theorems 836 and 837 provide the promised characterization of truth
equationality in terms of the solubility of the Suszko core.

I is Truth Equational ←→ SI is Soluble.

Theorem 838 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is truth equational if and only if SI is
soluble.
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Proof: Theorem 836 gives the “only if” and the “if” is by Theorem 837. ∎

If I is truth equational, then the Suszko core defines theory families in
I in terms of their Leibniz congruence systems. This proposition may be
viewed as a special case of Proposition 828, since SI forms a maximal set of
witnessing equations for the truth equationality of I .

Proposition 839 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If SI is soluble, then, for all T ∈
ThFam(I),

T = SI(Ω(T )).
Proof: If SI is soluble, then, by Theorem 837, SI forms a set of witnessing
equations for the truth equationality of I . Therefore, by Proposition 828, we
get that, for every T ∈ ThFam(I), T = SI(Ω(T )). ∎

In fact, this property may also be restated as another characterization of
truth equationality. Let us say that SI defines theory families if, for all
T ∈ ThFam(I), T = SI(Ω(T )). Then we have:

I is Truth Equational ←→ SI Defines Theory Families.

Theorem 840 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is truth equational if and only if, for all
T ∈ ThFam(I),

T = SI(Ω(T )).
Proof: If I is truth equational, then, by Theorem 838, SI is soluble. Thus,
by Proposition 839, for all T ∈ ThFam(I), T = SI(Ω(T )).

Conversely, if, for all T ∈ ThFam(I), T = SI(Ω(T )), then SI is soluble.
Thus, again by Theorem 838, SI is a set of witnessing equations and I is
truth equational. ∎

We finally show that the property that separates family complete re-
flectivity from truth equationality is exactly the adequacy property of the
Suszko core. Roughly speaking, this property ensures that the Suszko core
is rich enough to define Suszko congruence systems in terms of the Leibniz
congruence systems of theory families that it selects via inclusion.

We have the following relationship connecting the Suszko core with both
Leibniz and Suszko congruence systems.

Proposition 841 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )} ≤ Ω̃I(C(φ)).
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Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I),
φ ∈ TΣ implies SIΣ[φ] ≤ Ω̃I(T ) (definition of the Suszko core)

implies SIΣ[φ] ≤ Ω(T ). (Ω̃I(T ) ≤ Ω(T ))
Therefore, we have

⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )} ≤ ⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω̃I(T )}
≤ ⋂{Ω(T ) ∶ φ ∈ TΣ}
= Ω̃I(C(φ)). ∎

We provide an example, next, that shows that the inclusion proven in
Proposition 841 is proper, in general. I.e., there exist π-institutions I in
which, for some signature Σ and some Σ-sentence φ,

⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )} ≨ Ω̃I(C(φ)).
Example 842 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the trivial category of natural transformations, consisting of the

projections only.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
I has three theory families Thm(I), T = {{1,2}} and SEN♭, all of which are
theory systems.

Note that SI = {ι ≈ ι}. Note, also, the structure of the posets of Leibniz
congruence systems and of Suszko congruence systems, that are provided in
the left and right sides, respectively, of the following diagram, where

T = {{1,2}}, θ = {{0},{1,2}}, θ′ = {{0,1},{2}}.
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∇F ✛.................................... SEN♭ ...........✲ ∇F

★
★
★
★ ❝

❝
❝
❝

θ′ θ ✛................. T .................✲ θ②...............................................Thm(I) ........✲ ∆F

Taking this into account, it is not difficult to see that

⋂{Ω(T ) ∶ SIΣ[1] ≤ Ω(T )} = ∆F ≨ θ = Ω̃I(C(1)).
We also give an example of a π-institution I whose Suszko core SI is such

that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
Ω̃I(C(φ)) =⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )}.

Example 843 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the single

unary natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by letting σ♭Σ ∶{0,1,2}→ {0,1,2} be given, for all x ∈ SEN♭(Σ), by

σ♭Σ(x) = 2.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
I has three theory families Thm(I), T = {{1,2}} and SEN♭, all of which are
theory systems.
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Note that SI = {ι ≈ ι, ι ≈ σ♭, σ♭ ≈ ι, σ♭ ≈ σ♭}. Note, also, the structure of
the posets of Leibniz congruence systems and of Suszko congruence systems,
that are provided in the left and right sides, respectively, of the following
diagram, where

T = {{1,2}}, θ = {{0},{1,2}}, θ′ = {{0,1},{2}}.
∇F ✛.................................... SEN♭ ...........✲ ∇F

★
★
★
★ ❝

❝
❝
❝

θ′ θ ✛................. T .................✲ θ②...............................................Thm(I) ........✲ ∆F

Now we can check:

Ω̃I(C(0)) = ∇F = Ω(SEN♭)
= ⋂{Ω(T ) ∶ SIΣ[0] ≤ Ω(T )};

Ω̃I(C(1)) = θ = Ω(SEN♭) ∩Ω(T )
= ⋂{Ω(T ) ∶ SIΣ[1] ≤ Ω(T )};

Ω̃I(C(2)) = ∆F = Ω(SEN♭) ∩Ω(T ) ∩Ω(Thm(I))
= ⋂{Ω(T ) ∶ SIΣ[2] ≤ Ω(T )}.

We have seen, therefore, through examples, that it is possible, but not
necessary, that the Suszko core of a π-institution satisfies, for every Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ), the reverse inclusion of that given in Proposition
841:

Ω̃I(C(φ)) ≤⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )}.
Intuitively speaking, this means that the Suszko core SI is rich enough to
allow, for every signature Σ and every Σ-sentence φ, the determination of
those theory families whose Leibniz congruence systems form a covering of
the Suszko congruence system of C(φ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. We say that the Suszko core SI of I is adequate
if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) =⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )}.
Based on our preceding work, it is not difficult to see that, if SI is soluble,

then it is adequate.

Corollary 844 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI is soluble, then it is adequate.
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Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

Ω̃I(C(φ)) = ⋂{Ω(T ) ∶ φ ∈ TΣ} (definition of Ω̃I(C(φ)))
= ⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )}.

(solubility of SI and Proposition 839)

We conclude that SI is adequate. ∎

Here is an example of a π-institution I , with an adequate but not soluble
Suszko core.

Example 845 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = iΣ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 1, 1↦ 0 and 2↦ 2;

• N ♭ is the trivial category of natural transformations (consisting of the
projections only).

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and

SEN♭, but only two theory systems Thm(I) and SEN♭. Therefore, being
non-systemic, it can be neither family c-reflective nor truth-equational. The
fact that it is not truth equational, together with Theorem 838, reveal that the
Suszko core SI is not soluble.

To verify that SI is adequate, we look at the posets of theory families
(left), Leibniz congruence systems (right) and Suszko congruence systems
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(right, identical with the Leibniz congruence systems, since the π-institution
is protoalgebraic).

SEN♭ ....................................✲ ∇F

�
�
� ❅

❅
❅

T T ′

❅
❅
❅

...........................................③�
�
�

..............s
Thm(I) .................................✲ ∆F

Since SI = {ι ≈ ι}, we verify adequacy of SI by the following calculation,
holding for all φ ∈ SEN♭(Σ):

Ω̃I(C(φ)) =∆F = ⋂
T ∈ThFam(I)

Ω(T ) =⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )}.
Thus, SI is in fact adequate but not soluble.

In the opposite direction, and on the positive side, in a family c-reflective
π-institution I , if the Suszko core is adequate, then it is also soluble.

Proposition 846 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family c-reflective π-institution based on F. If SI is adequate, then
it is soluble.

Proof: Suppose that I is family c-reflective and that SI is adequate. We
must show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff SIΣ[φ] ≤ Ω(T ).
The implication left-to-right is always satisfied by Proposition 832. For the
converse, assume that SIΣ[φ] ≤ Ω(T ). Then, by the adequacy of SI , we get

that Ω̃I(C(φ)) ≤ Ω(T ). Thus, by family c-reflectivity and Lemma 826, we
conclude that C(φ) ≤ T , which gives φ ∈ TΣ. ∎

We finally show that a π-institution is truth equational if and only if it
is family c-reflective and has an adequate Suszko core.

Truth Equationality = SI Soluble
= SI Defines Theory Families
= Family c-Reflectivity + SI Adequate

Theorem 847 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is truth equational if and only if it is
family c-reflective and has an adequate Suszko core.
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Proof: Suppose, first, that I is truth equational. Then it is family c-
reflective by Theorem 829. Moreover, its Suszko core is soluble by Theorem
838 and, hence, by Corollary 844, its Suszko core is adequate.

Suppose, conversely, that I is family c-reflective with an adequate Suszko
core. Then, by Proposition 846, its Suszko core is soluble and, therefore, by
Theorem 838, I is truth equational. ∎

Finally, it is not difficult to see that, in some sense, truth equationality
transfers from a π-institution to all I-matrix families.

Theorem 848 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is truth equational, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, and all T ∈ FiFamI(A), T = τA(ΩA(T )).
Proof: Suppose I is truth equational, with witnessing transformations τ ♭ ∶(SEN♭)ω → (SEN♭)2 and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and
T ∈ FiFamI(A). Then, by Lemma 51, α−1(T ) ∈ ThFam(I), whence, by
hypothesis, α−1(T ) = τ ♭(Ω(α−1(T ))). Hence, by Proposition 24, α−1(T ) =
τ ♭(α−1(ΩA(T ))). Therefore, for all Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), we get

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff τ ♭Σ[φ] ≤ α−1(ΩA(T ))
iff α(τ ♭Σ[φ]) ≤ ΩA(T )
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (⟨F,α⟩ surjective)

Taking again into account the surjectivity of ⟨F,α⟩, we conclude that, for all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), φ ∈ TΣ if and only if τAΣ [φ] ≤ ΩA(T ), i.e.,
T = τA(ΩA(T )). ∎

11.8 Left Truth Equationality

In this section, we look at versions of truth equationality and c-reflectivity
that can still be applied to general theory families but do not force the π-
institutions to be systemic. In the next section we will also look at system
truth equationality, i.e., truth equationality applied only to theory systems,
and at system c-reflectivity. In this section we take the “leftist” approach,
“left” having the meaning attributed to it in Chapter 3.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F.

Recall that I is left c-reflective if, for all T ∪ {T ′} ⊆ ThFam(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′.
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Left c-reflectivity is not strong enough to imply systemicity. Moreover, left
c-reflectivity is a property intermediate between family c-reflectivity and sys-
tem c-reflectivity.

We say that the π-institution I is left truth equational if there exists
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished argument, such
that, for every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ).

In that case, we call τ ♭ a set of witnessing equations (of/for the left truth
equationality of I).

If I is a left truth equational π-institution, with witnessing equations τ ♭,

then τ ♭(Ω(T )) is exactly equal to
←Ð
T , i.e., the witnessing equations reflect

theory families only “up to arrow”.

Proposition 849 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is left truth equational, with witnessing
equations τ ♭, then, for all T ∈ ThFam(I),

τ ♭(Ω(T )) =←ÐT .
Proof: Let T ∈ ThFam(I). Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)

iff φ ∈
←Ð
T Σ. (left truth equationality)

∎

Proposition 849 has as an immediate consequence the important fact that
left truth equationality implies left c-reflectivity.

Theorem 850 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is left truth equational, then it is left
c-reflective.

Proof: Suppose that I is left truth equational with witnessing equations τ ♭.
Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then

⋂T ∈T
←Ð
T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 849)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis and Lemma 94)

=
←Ð
T ′. (Proposition 849)

Thus, I is left c-reflective. ∎

The following example shows that the inclusion of Theorem 850 is proper.
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Example 851 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the trivial category of natural transformations consisting of the

projections only.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, which are also theory

systems. In other words,
←ÐÐÐÐÐ
Thm(I) = Thm(I) and

←ÐÐÐ
SEN♭ = SEN♭. Clearly,

Thm(I) ≤ SEN♭. Moreover, Ω(Thm(I)) = ∆F and Ω(SEN♭) = ∇F. I is
clearly left c-reflective.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

On the other hand, there does not exist τ ♭ ⊆ N ♭, such that I♭ has the
required properties to constitute a witnessing set of equations for the left truth
equationality in I. Any set consisting of projections only cannot satisfy the
required condition since τ ♭(Ω(T )) can only be SEN♭ or ∅.

We provide, next, a characterization of left truth equationality in terms of
the left solubility property of the left Suszko core of the π-institution. Then,
we provide an exact description of those left c-reflective π-institutions which
are left truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The left Suszko core of I is the collection

LI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[←ÐT ] ≤ Ω̃I(T )}.



Voutsadakis CHAPTER 11. SYNTACTIC HIERARCHY I 841

There is an alternative way to define the left Suszko core of a π-institution,
which may be also viewed as justifying the alternative terminology system
Suszko core for it, which we state in the form of a property.

Proposition 852 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

LI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys(I))(σ♭[T ] ≤ Ω̃I(T )}.
Proof: Let I = ⟨F,C⟩ be a π-institution and set

MI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys(I))(σ♭[T ] ≤ Ω̃I(T )}.
Our goal is to show that MI = LI .

Suppose, first, that σ♭ ∈ LI and let T ∈ ThSys(I). Then, we have

σ♭[T ] = σ♭[←ÐT ] (T ∈ ThSys(I))
≤ Ω̃I(T ). (σ♭ ∈ LI)

Therefore σ♭ ∈MI .
Suppose, conversely, that σ♭ ∈MI and let T ∈ ThFam(I). Then, we have

σ♭[←ÐT ] ≤ Ω̃I(←ÐT ) (σ♭ ∈MI and
←Ð
T ∈ ThSys(I))

≤ Ω̃I(T ). (
←Ð
T ≤ T and monotonicity of Ω̃I)

We conclude that σ♭ ∈ LI and, therefore, MI = LI . ∎

Note that, since, for every T ∈ ThFam(I), ←ÐT ≤ T , we get that SI ⊆ LI ,
which implies that, for all T ∈ ThFam(I), LI(Ω(T )) ≤ SI(Ω(T )).

Note, also, that for systemic π-institutions the left Suszko core and the
Suszko core are identical.

The left Suszko core of a π-institution satisfies the following property
relating to the arrow operator:

Proposition 853 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every T ∈ ThFam(I),
←Ð
T ≤ LI(Ω(T )).

Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈
←Ð
T Σ implies LIΣ[φ] ≤ Ω̃I(T ) (by definition of LI)

implies LIΣ[φ] ≤ Ω(T ) (Ω̃I(T ) ≤ Ω(T ))
iff φ ∈ LI(Ω(T )). (by definition)

∎
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It is possible, but not necessary, that the left Suszko core of a π-institution
satisfies the reverse inclusion. We call this property left solubility.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the left Suszko core of I is left soluble
if, for all T ∈ ThFam(I),

LI(Ω(T )) ≤←ÐT .
In other words, LI is left soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ),

LIΣ[φ] ≤ Ω(T ) implies φ ∈
←Ð
T Σ.

We show that this property has an alternative characterization in terms
of theory systems.

Proposition 854 Let I = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. The left Suszko core LI of I is left
soluble if and only if, for all T ∈ ThSys(I), LI(Ω(T )) = T .

Proof: For the “only if”, assume that LI is left soluble and let T ∈ ThSys(I).
Then

LI(Ω(T )) = ←ÐT (Left Solubility of LI)
= T. (T ∈ ThSys(I))

Conversely, assume that, for all T ∈ ThSys(I), LI(Ω(T )) = T and let
T ∈ ThFam(I). Then, we have

LI(Ω(T )) ≤ LI(Ω(←ÐT )) (Proposition 20 and Lemma 94)

=
←Ð
T . (by hypothesis)

Thus, LI is left soluble. ∎

Note that for systemic π-institutions, since the left Suszko core coincides
with the Suszko core, left solubility of the left Suszko core coincides with the
solubility of the Suszko core. These two properties are, however, different in
general and, as the following proposition and example show, solubility of the
Suszko core is a stronger property than left solubility of the left Suszko core.

Proposition 855 Let I = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If the Suszko core SI of I is soluble, then
the left Suszko core LI of I is left soluble.

Proof: Suppose that SI is soluble, i.e., for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

SIΣ[φ] ≤ Ω(T ) implies φ ∈ TΣ.

Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that LIΣ[φ] ≤ Ω(T ).
Then, since SI ⊆ LI , we get that SI[φ] ≤ Ω(T ). Moreover, since Ω(T ) ≤
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Ω(←ÐT ), we get that SI[φ] ≤ Ω(←ÐT ). Thus, by the solubility of SI , we get that

φ ∈
←Ð
T Σ. We conclude that LI is left soluble. ∎

The implication of Proposition 855 is proper in general.

Example 856 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the category with single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2} and SEN♭(f) ∶{0,1,2}→ {0,1,2} given by 0↦ 0, 1↦ 0 and 2↦ 2;

• N ♭ is the category of natural transformations generated by the single
unary natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by letting σ♭Σ ∶{0,1,2}→ {0,1,2} be given, for all x ∈ SEN♭(Σ), by

σ♭Σ(x) = 2.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
I has three theory families Thm(I), T = {{1,2}} and SEN♭, but only two
theory systems Thm(I) and SEN♭. So it is not a systemic π-institution.

The posets of theory families and associated Leibniz congruence systems
are shown in the following figure (where T ∈ {{1,2}} and θ = {{0,1},{2}}):

SEN♭ .....................✲ ∇F

T θ.................❥....
....

....
....

.✯

Thm(I) ∆F
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Note that
SI = {ι ≈ ι, σ♭ ≈ σ♭},

whereas
LI = {ι ≈ ι, ι ≈ σ♭, σ♭ ≈ ι, σ♭ ≈ σ♭}.

We show that LI is left soluble, but that SI is not soluble.
The left solubility of LI can be seen by looking at the defining implication

on a case-by-case basis. The case of the theory family SEN♭ is trivial as is
the case for φ = 2. For φ = 0 or 1 and for the theory families T or ThFam(I),
we have:

• LIΣ[0] ≤ Ω(T ) is false;

• LIΣ[1] ≤ Ω(T ) is false;

• LIΣ[0] ≤ Ω(Thm(I)) is false;

• LIΣ[1] ≤ Ω(Thm(I)) is false.

So in every other case the defining condition is vacuously satisfied.
On the other hand, SIΣ[0] ≤ Ω(T ), but 0 ∉ TΣ, which shows that SI is not

soluble.

It turns out that possession of left solubility by the left Suszko core in-
trinsically characterizes left truth equationality. We show, first, that the
left Suszko core being left soluble is necessary for left truth equationality.
To demonstrate this, observe, first, that, in case a π-institution is left truth
equational, the witnessing equations form a subset of the left Suszko core.

Lemma 857 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is left truth equational, with wit-
nessing equations τ ♭ ⊆ N ♭, then τ ♭ ⊆ LI .

Proof: By left truth equationality, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ).

Thus, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈
←Ð
T Σ iff (∀T ≤ T ′ ∈ ThFam(I))(φ ∈ ←ÐT ′Σ)

(by Lemma 1)
iff (∀T ≤ T ′ ∈ ThFam(I))(τ ♭Σ[φ] ≤ Ω(T ′))

(left truth equationality; displayed formula above)
iff τ ♭Σ[φ] ≤ ⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam(I)}

(set theoretically)

iff τ ♭Σ[φ] ≤ Ω̃I(T ).
(by definition of Ω̃I)
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We conclude, by the definition of LI , that τ ♭ ⊆ LI . ∎

Now we prove the necessity of left solubility of the left Suszko core for
left truth equationality.

Theorem 858 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is left truth equational, then LI is left
soluble.

Proof: Suppose that I is left truth equational, with witnessing equations
τ ♭. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

LIΣ[φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ) (Lemma 857)

iff φ ∈
←Ð
T Σ. (left truth equationality)

Thus, LI is left soluble. ∎

The reverse implication also holds and completes the promised character-
ization of left truth equationality in terms of the left Suszko core.

Theorem 859 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If LI is left soluble, then I is left truth
equational, with witnessing equations LI .

Proof: It suffices to show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ iff LIΣ[φ] ≤ Ω(T ).

The left-to-right implication is given in Proposition 853, whereas the converse
is ensured by the postulated left solubility of LI . ∎

Theorems 858 and 859 provide the promised characterization of left truth
equationality in terms of the left solubility of the left Suszko core.

I is Left Truth Equational ←→ LI is Left Soluble.

Theorem 860 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is left truth equational if and only if LI

is left soluble.

Proof: Theorem 858 gives the “only if” and the “if” is by Theorem 859. ∎

If I is left truth equational, then the left Suszko core defines theory
families in I “up to arrow” in terms of their Leibniz congruence systems.
This proposition may be viewed as a special case of Proposition 849, since
LI forms a maximal set of witnessing equations of the left truth equationality
of I .
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Proposition 861 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If LI is left soluble, then, for all T ∈
ThFam(I),

←Ð
T = LI(Ω(T )).

Proof: If LI is left soluble, then, by Theorem 859, LI forms a set of witness-
ing equations for the left truth equationality of I . Therefore, by Proposition

849, we get that, for every T ∈ ThFam(I), ←ÐT = LI(Ω(T )). ∎

This property may be restated as another characterization of left truth
equationality. We say that LI defines theory families up to arrow if, for

all T ∈ ThFam(I), ←ÐT = LI(Ω(T )). Then we have:

I is Left Truth Equational
←→ LI Defines Theory Families Up to Arrow.

Theorem 862 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is left truth equational if and only if,
for all T ∈ ThFam(I),

←Ð
T = LI(Ω(T )).

Proof: If I is left truth equational, then, by Theorem 860, LI is left soluble.

Thus, by Proposition 861, for all T ∈ ThFam(I), ←ÐT = LI(Ω(T )).
Conversely, if, for all T ∈ ThFam(I), ←ÐT = LI(Ω(T )), then, LI is left

soluble. Thus, again by Theorem 860, LI is a set of witnessing equations
and I is left truth equational. ∎

We finally show that the property that separates left complete reflectivity
from left truth equationality is a property of the left Suszko core, analogous
to the adequacy property introduced previously for the Suszko core, that we
call left adequacy. Similarly to adequacy, informally speaking, this property
ensures that the left Suszko core is rich enough to define Suszko congruence
systems in terms of the Leibniz congruence systems of theory families that
it selects via inclusion.

The following relationship connects the left Suszko core with both Leibniz
and Suszko congruence systems.

Recall that given a π-institution I = ⟨F,C⟩, based on an algebraic system
F = ⟨Sign♭,SEN♭,N ♭⟩, and a sentence family T ∈ SenFam(I), we denote by
Ð→
T the least sentence system of I that includes T . Because of the structurality

of C, it is not difficult to see that C(Ð→T ) = ÐÐÐ→C(T ), for any sentence family T

of I .

Proposition 863 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )} ≤ Ω̃I(C(Ð→φ )).
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Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I),
φ ∈
←Ð
T Σ implies LIΣ[φ] ≤ Ω̃I(T ) (definition of the left Suszko core)

implies LIΣ[φ] ≤ Ω(T ). (Ω̃I(T ) ≤ Ω(T ))
Therefore, we have

⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )} ≤ ⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω̃I(T )}
≤ ⋂{Ω(T ) ∶ φ ∈←ÐT Σ}
= ⋂{Ω(T ) ∶Ð→φ ≤ T}
= Ω̃I(C(Ð→φ )). ∎

We provide an example, next, that shows that the inclusion proven in
Proposition 863 is proper, in general. I.e., there exist π-institutions I in
which, for some signature Σ and some Σ-sentence φ,

⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )} ≨ Ω̃I(C(Ð→φ )).
Of course, it is convenient that in a systemic π-institution LI = SI and,

moreover, for every Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), C(Ð→φ ) = ÐÐÐ→C(φ) = C(φ),
whence Example 842, used to prove proper inclusion following Proposition
841, may be reused.

Example 864 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the trivial category of natural transformations, consisting of the

projections only.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
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I has three theory families Thm(I), T = {{1,2}} and SEN♭, all of which are
theory systems. So I is systemic.

We have LI = SI = {ι ≈ ι}. Furthermore, the structure of the posets of
Leibniz congruence systems and of Suszko congruence systems are provided
in the left and right sides, respectively, of the following diagram, where

T = {{1,2}}, θ = {{0},{1,2}}, θ′ = {{0,1},{2}}.
∇F ✛.................................... SEN♭ ...........✲ ∇F

★
★
★
★ ❝

❝
❝
❝

θ′ θ ✛................. T .................✲ θ②...............................................Thm(I) ........✲ ∆F

Taking this into account, it is not difficult to see that

⋂{Ω(T ) ∶ LIΣ[1] ≤ Ω(T )} =∆F ≨ θ = Ω̃I(C(1)) = Ω̃I(C(Ð→1 )).
We also give an example of a π-institution I whose left Suszko core LI is

such that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
Ω̃I(C(Ð→φ )) =⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )}.

This again takes after Example 843, since the π-institution used there was
systemic.

Example 865 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by the single

unary natural transformation σ♭ ∶ SEN♭ → SEN♭ defined by letting σ♭Σ ∶{0,1,2}→ {0,1,2} be given, for all x ∈ SEN♭(Σ), by

σ♭Σ(x) = 2.

Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{1,2},{0,1,2}}.
I has three theory families Thm(I), T = {{1,2}} and SEN♭, all of which are
theory systems. So I is systemic.
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Note that LI = SI = {ι ≈ ι, ι ≈ σ♭, σ♭ ≈ ι, σ♭ ≈ σ♭}. Note, also, the structure
of the posets of Leibniz congruence systems and of Suszko congruence sys-
tems, that are provided in the left and right sides, respectively, of the following
diagram, where

T = {{1,2}}, θ = {{0},{1,2}}, θ′ = {{0,1},{2}}.
∇F ✛.................................... SEN♭ ...........✲ ∇F

★
★
★
★ ❝

❝
❝
❝

θ′ θ ✛................. T .................✲ θ②...............................................Thm(I) ........✲ ∆F

Now we can check:

Ω̃I(C(Ð→0 )) = Ω̃I(C(0)) = ∇F = Ω(SEN♭)
= ⋂{Ω(T ) ∶ LIΣ[0] ≤ Ω(T )};

Ω̃I(C(Ð→1 )) = Ω̃I(C(1)) = θ = Ω(SEN♭) ∩Ω(T )
= ⋂{Ω(T ) ∶ LIΣ[1] ≤ Ω(T )};

Ω̃I(C(Ð→2 )) =I Ω̃(C(2)) = ∆F = Ω(SEN♭) ∩Ω(T ) ∩Ω(Thm(I))
= ⋂{Ω(T ) ∶ LIΣ[2] ≤ Ω(T )}.

We have seen, therefore, through examples, that it is possible, but not
necessary, that the left Suszko core of a π-institution satisfies, for every Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ), the reverse inclusion of that given in Proposition
863:

Ω̃I(C(Ð→φ )) ≤⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )}.
Intuitively speaking, this means that the left Suszko core LI is rich enough
to allow, for every signature Σ and every Σ-sentence φ, the determination of
those theory families whose Leibniz congruence systems form a covering of

the Suszko congruence system of C(Ð→φ ).
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the left Suszko core LI of I is left
adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I(C(Ð→φ )) =⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )}.
Based on our preceding work, it is not difficult to see that, if LI is left

soluble, then it is left adequate.

Corollary 866 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If LI is left soluble, then it is left adequate.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

Ω̃I(C(Ð→φ )) = ⋂{Ω(T ) ∶Ð→φ ≤ T} (definition of Ω̃I(C(Ð→φ )))
= ⋂{Ω(T ) ∶ φ ∈←ÐT Σ} (definition of

Ð→
φ and

←Ð
T )

= ⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )}.
(left solubility of LI and Proposition 861)

We conclude that LI is left adequate. ∎

Here is an example of a π-institution I , with a left adequate but not left
soluble left Suszko core.

Example 867 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1,2};
• N ♭ is the category of natural transformations generated by two unary

natural transformations:

– ρ♭ ∶ SEN♭ → SEN♭ defined by letting ρ♭Σ ∶ {0,1,2} → {0,1,2} be
given, for all x ∈ SEN♭(Σ), by

ρ♭Σ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if x = 0
0, if x = 1
2, if x = 2

.

– σ♭ ∶ SEN♭ → SEN♭ defined by letting σ♭Σ ∶ {0,1,2} → {0,1,2} be
given, for all x ∈ SEN♭(Σ), by

σ♭Σ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, if x = 0
1, if x = 1
2, if x = 2

.
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Let I = ⟨F,C⟩ be the π-institution determined by

CΣ = {{2},{0,2},{1,2},{0,1,2}}.
I has four theory families Thm(I), T = {{0,2}}, T ′ = {{1,2}} and SEN♭, all
of which are theory systems. So it is a systemic π-institution.

The posets of theory families (center), associated Leibniz congruence sys-
tems (right) and associate Suszko congruence systems (right, identical with
Leibniz congruence systems, since I is protoalgebraic) are shown in the fol-
lowing figure:

SEN♭ ..........................✲ ∇F

�
�
� ❅

❅
❅

T T ′

❅
❅
❅

..................................q
�
�
�

.......❘
Thm(I) .......................✲ ∆F

Note that LI = {ι ≈ ι}. We show that LI is left adequate, but not left soluble.
We are omitting arrows from the notation is the following verifications since,
as I is based on F with trivial Sign♭, they play no role in this context.

For left adequacy, we have

Ω̃I(C(0)) = Ω̃I(T ) = ∆F = ⋂{Ω(T ′′) ∶ T ′′ ∈ ThFam(I)};
Ω̃I(C(1)) = Ω̃I(T ′) =∆F = ⋂{Ω(T ′′) ∶ T ′′ ∈ ThFam(I)};
Ω̃I(C(2)) = Ω̃I(Thm(I)) = ∆F = ⋂{Ω(T ′′) ∶ T ′′ ∈ ThFam(I)}.

As for left solubility, note that LIΣ[0] ≤ Ω(T ′), but that 0 ∉ T ′Σ. Thus, LI

is not left soluble.

In the opposite direction, and on the positive side, in a left c-reflective
π-institution I , if the left Suszko core is left adequate, then it is also left
soluble.
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First, we note that the following variant of Lemma 826, giving an alter-
native characterization of left c-reflectivity in terms of both the Suszko and
the Leibniz operators, holds.

Lemma 868 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is left c-reflective if and only if, for
every T,T ′ ∈ ThFam(I),

Ω̃I(T ) ≤ Ω(T ′) implies
←Ð
T ≤
←Ð
T ′.

Proof: Assume, first, that I is left c-reflective and let T,T ′ ∈ ThFam(I),
such that Ω̃I(T ) ≤ Ω(T ′). By the definition of the Suszko operator,

⋂{Ω(T ′′) ∶ T ≤ T ′′ ∈ ThFam(I)} ≤ Ω(T ′).
Using left c-reflectivity, we get that

⋂{←ÐT ′′ ∶ T ≤ T ′′ ∈ ThFam(I)} ≤←ÐT ′.
Hence, using Lemma 1,

←Ð
T ≤
←Ð
T ′, as required.

Suppose, conversely, that, for all T,T ′ ∈ ThFam(I), Ω̃I(T ) ≤ Ω(T ′) im-

plies
←Ð
T ≤
←Ð
T ′. Let T ∪{T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then

we have

Ω̃I(⋂T ∈T T ) ≤ ⋂T ∈T Ω̃I(T ) (monotonicity of Ω̃I)

≤ ⋂T ∈T Ω(T ) (since Ω̃I(T ) ≤ Ω(T ))
≤ Ω(T ′). (by hypothesis)

Using the hypothesis, we conclude that
←ÐÐÐÐ
⋂T ∈T T ≤

←Ð
T ′. Thus, by Lemma 3,

⋂T ∈T
←Ð
T ≤
←Ð
T ′. Therefore, I is left c-reflective. ∎

And now for the promised result showing that in a left c-reflective π-
institution I , if the left Suszko core is left adequate, then it is also left
soluble.

Proposition 869 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a left c-reflective π-institution based on F. If LI is left adequate, then
it is left soluble.

Proof: Suppose that I is left c-reflective and that LI is left adequate. We
must show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ)

φ ∈
←Ð
T Σ iff LIΣ[φ] ≤ Ω(T ).

The implication left-to-right is always satisfied by Proposition 853. For the
converse, assume that LIΣ[φ] ≤ Ω(T ). Then, by the left adequacy of LI , we
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get that Ω̃I(C(Ð→φ )) ≤ Ω(T ). Thus, by left c-reflectivity and Lemma 868, we

conclude that
←ÐÐÐ
C(Ð→φ ) ≤ ←ÐT , which gives φ ∈

←Ð
T Σ. ∎

We finally show that a π-institution is left truth equational if and only if
it is left c-reflective and its left Suszko core is left adequate.

Left Truth Equationality = LI Left Soluble
= LI Defines Theory Families Up to Arrow
= Left c-Reflectivity +LI Left Adequate

Theorem 870 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is left truth equational if and only if it
is left c-reflective and has a left adequate left Suszko core.

Proof: Suppose, first, that I is left truth equational. Then it is left c-
reflective by Theorem 850. Moreover, its left Suszko core is left soluble
by Theorem 860 and, hence, by Corollary 866, its left Suszko core is left
adequate.

Suppose, conversely, that I is left c-reflective with a left adequate left
Suszko core. Then, by Proposition 869, its left Suszko core is left soluble
and, therefore, by Theorem 860, I is left truth equational. ∎

We have now established the following hierarchy of properties:

Family Truth Equational

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Left Truth Equational Family c-Reflective

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦Left Adequate

Left Suszko Core
Left c-Reflective Systemic

11.9 System Truth Equationality

In this section, we look at system truth equationality and system c-reflectivity,
which can also be applied to a π-institution without forcing it to be systemic.
Recall that, by Proposition ??, system c-reflectivity is a weaker property
than left c-reflectivity, i.e., left c-reflectivity, which was used in the charac-
terization of left truth equationality in the preceding section, implies system
c-reflectivity.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.
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Recall that I is system c-reflective if, for all T ∪ {T ′} ⊆ ThSys(I),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

Since left c-reflectivity is not strong enough to imply systemicity, system
c-reflectivity has, a fortiori, the same property.

We say that the π-institution I is system truth equational if there
exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ having a single distinguished argument,
such that, for every T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
In that case, we call τ ♭ a set of witnessing equations (of/for the system
truth equationality of I).

If I is a system truth equational π-institution, with witnessing equations
τ ♭, then, for T ∈ ThSys(I), τ ♭(Ω(T )) is exactly equal to T , i.e., the witnessing
equations reflect theory systems.

Proposition 871 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is system truth equational, with
witnessing equations τ ♭, then, for all T ∈ ThSys(I),

τ ♭(Ω(T )) = T.
Proof: Let T ∈ ThSys(I). Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)
iff φ ∈ TΣ. (system truth equationality)

∎

Proposition 871 has as an immediate consequence the important fact that
system truth equationality implies system c-reflectivity.

Theorem 872 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is system truth equational, then it is
system c-reflective.

Proof: Suppose that I is system truth equational with witnessing equations
τ ♭. Let T ∪ {T ′} ⊆ ThSys(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then

⋂T ∈T T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 871)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis and Lemma 94)
= T ′. (Proposition 871)

Thus, I is system c-reflective. ∎

The following example shows that the inclusion of Theorem 872 is proper.
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Example 873 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system determined
as follows:

• Sign♭ is the trivial category with single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the trivial category of natural transformations.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, which are also theory sys-

tems. Clearly, Thm(I) ≤ SEN♭. Moreover, Ω(Thm(I)) = ∆F and Ω(SEN♭) =
∇F. I is clearly system c-reflective.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

On the other hand, there does not exist τ ♭ ⊆ N ♭, such that I♭ has the
required properties to constitute a witnessing set of equations for the system
truth equationality in I. Any set consisting of projections only cannot satisfy
the required condition since τ ♭(Ω(T )) can only be SEN♭ or ∅.

We provide, next, a characterization of system truth equationality in
terms of the solubility property of the system core of the π-institution. Then,
we provide an exact description of those system c-reflective π-institutions
which are system truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. First, for T ∈ ThSys(I), we introduce the notation

Ω̂I(T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys(I)}.
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We now define the system core of I to be the collection

ZI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys(I))(σ♭[T ] ≤ Ω̂I(T )}.
The following proposition clarifies the relation between the Suszko core,

the left Suszko core and the system core of a π-institution I .

Proposition 874 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) SI ⊆ LI ⊆ ZI;

(b) For every relation family θ on F, ZI(θ) ≤ LI(θ) ≤ SI(θ).
Proof: For Part (a), SI ⊆ LI has been shown after Proposition 852. For the
second inclusion, assume that σ♭ ∈ LI and let T ∈ ThSys(I). Then we have

σ♭[T ] = σ♭[←ÐT ] (T ∈ ThSys(I))
≤ Ω̃I(T ) (σ♭ ∈ LI)
≤ Ω̂I(T ). (Ω̃I(T ) ≤ Ω̂I(T ))

Thus σ♭ ∈ Z♭ and LI ⊆ ZI . Part (b) follows form Part (a) and the relevant
definitions. ∎

The system core of a π-institution satisfies the following property related
to the Leibniz congruence systems of the theory systems of the π-institution:

Proposition 875 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every T ∈ ThSys(I),
T ≤ ZI(Ω(T )).

Proof: Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ TΣ implies ZIΣ[φ] ≤ Ω̂I(T ) (by definition of ZI)

implies ZIΣ[φ] ≤ Ω(T ) (Ω̂I(T ) ≤ Ω(T ))
iff φ ∈ ZI(Ω(T )). (by definition) ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the system core ZI of I is soluble if
the converse inclusion to that proven in Proposition 875 holds, i.e., if, for all
T ∈ ThSys(I)

ZI(Ω(T )) ≤ T.
Equivalently, ZI is soluble if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

ZIΣ[φ] ≤ Ω(T ) implies φ ∈ TΣ.

We show that left solubility of the left Suszko core implies solubility of the
system core of a π-institution.
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Proposition 876 Let I = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If the left Suszko core LI of I is left
soluble, then the system core ZI of I is soluble.

Proof: Suppose that LI is left soluble and let T ∈ ThSys(I). Then we have

ZI(Ω(T )) ≤ LI(Ω(T )) (Proposition 874)
= T. (hypothesis and Proposition 854)

Therefore, ZI is soluble. ∎

It turns out that the property of solubility of the system core intrinsically
characterizes system truth equationality. We show, first, that the system
core being soluble is necessary for system truth equationality. Observe that,
in case a π-institution is system truth equational, the witnessing equations
form a subset of the system core.

Lemma 877 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is system truth equational, with wit-
nessing equations τ ♭ ⊆ N ♭, then τ ♭ ⊆ ZI.

Proof: By system truth equationality, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
Thus, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff (∀T ≤ T ′ ∈ ThSys(I))(φ ∈ T ′Σ)
iff (∀T ≤ T ′ ∈ ThSys(I))(τ ♭Σ[φ] ≤ Ω(T ′))
iff τ ♭Σ[φ] ≤ ⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys(I)}
iff τ ♭Σ[φ] ≤ Ω̂I(T ).

We conclude, by the definition of ZI , that τ ♭ ⊆ ZI . ∎

Now we prove the necessity of the solubility of the system core for system
truth equationality.

Theorem 878 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is system truth equational, then ZI

is soluble.

Proof: Suppose that I is system truth equational, with witnessing equations
τ ♭. Then, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

ZIΣ[φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ) (Lemma 877)
iff φ ∈ TΣ. (system truth equationality)

Thus, ZI is soluble. ∎

The reverse implication completes the promised characterization of sys-
tem truth equationality in terms of the system core.
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Theorem 879 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ZI is soluble, then I is system truth
equational, with witnessing equations ZI.

Proof: It suffices to show that, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ TΣ iff ZIΣ[φ] ≤ Ω(T ).
The left-to-right implication is given in Proposition 875, whereas the converse
is ensured by the postulated solubility of ZI . ∎

Theorems 878 and 879 provide the promised characterization of system
truth equationality in terms of the solubility of the system core.

I is System Truth Equational ←→ ZI is Soluble.

Theorem 880 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system truth equational if and only if
ZI is soluble.

Proof: Theorem 878 gives the “only if” and the “if” is by Theorem 879. ∎

If I is system truth equational, then the system core defines theory sys-
tems in I in terms of their Leibniz congruence systems. This proposition may
be viewed as a special case of Proposition 871, since ZI forms a maximal set
of witnessing equations of the system truth equationality of I .

Proposition 881 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ZI is soluble, then, for all T ∈ ThSys(I),
T = ZI(Ω(T )).

Proof: If ZI is soluble, then, by Theorem 879, ZI forms a set of witnessing
equations for the system truth equationality of I . Therefore, by Proposition
871, we get that, for every T ∈ ThSys(I), T = ZI(Ω(T )). ∎

This property may be restated as another characterization of system truth
equationality. We say that ZI defines theory systems if, for all T ∈
ThSys(I), T = ZI(Ω(T )). Then we have:

I is System Truth Equational ←→ ZI Defines Theory Systems.

Theorem 882 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system truth equational if and only
if, for all T ∈ ThSys(I),

T = ZI(Ω(T )).
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Proof: If I is system truth equational, then, by Theorem 990, ZI is soluble.
Thus, by Proposition 881, for all T ∈ ThSys(I), T = ZI(Ω(T )).

Conversely, if, for all T ∈ ThSys(I), T = ZI(Ω(T )), then, ZI is soluble.
Thus, again by Theorem 990, ZI is a set of witnessing equations and I is
system truth equational. ∎

We finally show that the property that separates system complete reflec-
tivity from system truth equationality is a property of the system core that
we call adequacy. In analogy to the adequacy of the Suszko core and to the
left adequacy of the left Suszko core, this property ensures that the system
core is rich enough to define the congruence system Ω̂I(T ) of a theory system
T in terms of the Leibniz congruence systems of collections of theory systems
that it selects via inclusion.

Recall, once more, that given a π-institution I = ⟨F,C⟩, based on an al-
gebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, and a sentence family T ∈ SenFam(I),
we denote by

Ð→
T the least sentence system of I that includes T (see Propo-

sition 2).

Proposition 883 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )} ≤ Ω̂I(C(Ð→φ )).

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThSys(I),
φ ∈ TΣ implies ZIΣ[φ] ≤ Ω̂I(T ) (definition of the system core)

implies ZIΣ[φ] ≤ Ω(T ). (Ω̂I(T ) ≤ Ω(T ))
Therefore, we have

⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω̂I(T )}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ TΣ}
= ⋂{Ω(T ) ∶ T ∈ ThSys(I) and

Ð→
φ ≤ T}

= Ω̂I(C(Ð→φ )).
Therefore, the displayed inclusion always holds. ∎

It is possible, but not necessary, that the system core of a π-institution
satisfies, for every Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), the reverse inclusion of
that given in Proposition 883:

Ω̂I(C(Ð→φ )) ≤⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )}.
Intuitively speaking, this means that the system core ZI is rich enough to
allow, for every Σ-sentence φ, the determination of those theory systems
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whose Leibniz congruence systems form a covering of the congruence system

Ω̂I(C(Ð→φ )) associated with C(Ð→φ ).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-

institution based on F. We say that the system core ZI of I is adequate if,
for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̂I(C(Ð→φ )) =⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )}.
Based on our preceding work, it is not difficult to see that, if ZI is soluble,

then it is adequate.

Corollary 884 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ZI is soluble, then it is adequate.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

Ω̂I(C(Ð→φ )) = ⋂{Ω(T ) ∶ T ∈ ThSys(I) and
Ð→
φ ≤ T}

(definition of Ω̂I(C(Ð→φ )))
= ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T}

(T ∈ ThSys(I))
= ⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )}.

(solubility of ZI and Proposition 881)

We conclude that ZI is adequate. ∎

As a partial converse, in a system c-reflective π-institution I , if the system
core is adequate, then it is also soluble.

First, we prove the following variant of Lemma 826, giving an alternative
characterization of system c-reflectivity in terms of both Ω̂I and the Leibniz
operator.

Lemma 885 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system c-reflective if and only if,
for every T,T ′ ∈ ThSys(I),

Ω̂I(T ) ≤ Ω(T ′) implies T ≤ T ′.

Proof: Assume, first, that I is system c-reflective and let T,T ′ ∈ ThSys(I),
such that Ω̂I(T ) ≤ Ω(T ′). By the definition of the hat operator,

⋂{Ω(T ′′) ∶ T ≤ T ′′ ∈ ThSys(I)} ≤ Ω(T ′).
Using system c-reflectivity, we get that

⋂{T ′′ ∶ T ≤ T ′′ ∈ ThSys(I)} ≤ T ′.
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Hence, we conclude T ≤ T ′, as required.
Suppose, conversely, that, for all T,T ′ ∈ ThSys(I), Ω̂I(T ) ≤ Ω(T ′) implies

T ≤ T ′. Let T ∪ {T ′} ⊆ ThSys(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we
have

Ω̂I(⋂T ∈T T ) ≤ ⋂T ∈T Ω̂I(T ) (monotonicity of Ω̂I)

≤ ⋂T ∈T Ω(T ) (since Ω̂I(T ) ≤ Ω(T ))
≤ Ω(T ′). (by hypothesis)

Using the hypothesis, we conclude that ⋂T ∈T T ≤ T ′. Therefore, I is system
c-reflective. ∎

And now for the promised result showing that in a system c-reflective
π-institution I , if the system core is adequate, then it is also soluble.

Proposition 886 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a system c-reflective π-institution based on F. If the system core ZI

is adequate, then it is soluble.

Proof: Suppose that I is system c-reflective and that ZI is adequate. We
must show that, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff ZIΣ[φ] ≤ Ω(T ).
The implication left-to-right is always satisfied by Proposition 875. For the
converse, assume that ZIΣ[φ] ≤ Ω(T ). Then, by the adequacy of ZI , we get

that Ω̂I(C(Ð→φ )) ≤ Ω(T ). Thus, by system c-reflectivity and Lemma 885, we

conclude that C(Ð→φ ) ≤ T , which gives φ ∈ TΣ. ∎

We finally show that a π-institution is system truth equational if and only
if it is system c-reflective and its system core is adequate.

System Truth Equationality = ZI Left Soluble
= ZI Defines Theory Systems
= System c-Reflectivity +ZI Adequate

Theorem 887 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system truth equational if and only if
it is system c-reflective and has an adequate system core.

Proof: Suppose, first, that I is system truth equational. Then it is system
c-reflective by Theorem 872. Moreover, its system core is soluble by Theorem
990 and, hence, by Corollary 884, its system core is adequate.

Suppose, conversely, that I is system c-reflective with an adequate system
core. Then, by Proposition 886, its system core is soluble and, therefore, by
Theorem 990, I is system truth equational. ∎



862 CHAPTER 11. SYNTACTIC HIERARCHY I Voutsadakis

We have now established the following hierarchy of properties:

Family Truth Equational

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Left Truth Equational Family c-Reflective

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

System Truth Equational Left c-Reflective Systemic

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚

Adequate System Core System c-Reflective
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12.1 Translations

In this section we discuss translations, interpretations and equivalence that
will be used later in the context of algebraizable π-institutions. In the context
of algebraizability, the algebraic counterparts of π-institutions may consist
of algebraic closure families that lack the property of structurality, i.e., they
are not closure systems, as introduced previously. Since these closure families
are not structural in general, the corresponding algebraic structures do not
constitute π-institutions. To accommodate these, we deal with more general
structures that include all π-institutions, but also pairs of algebraic systems
and closure families that are non-structural. We call these π-structures.

Definition 888 A π-structure K = ⟨K,D⟩ is a pair consisting of:

• an algebraic system K = ⟨Sign,SEN,N⟩;
• a ∣Sign∣-indexed family D = {DΣ}Σ∈∣Sign∣ of closure operators DΣ ∶
PSEN(Σ)→ PSEN(Σ), Σ ∈ ∣Sign∣.

Such a family D is called a closure family on K.

Let K = ⟨Sign,SEN,N⟩ and K′ = ⟨Sign′,SEN′,N ′⟩ be two algebraic
systems. A translation α ∶ K→K′ is a collection

α = {αΣ}Σ∈∣Sign∣,
where, for all Σ ∈ ∣Sign∣,

αΣ ∶ SEN(Σ)→ SenFam(K′)
assigns to each Σ-sentence φ of K a sentence family

αΣ[φ] = {αΣ,Σ′[φ]}Σ′∈∣Sign′∣.

For Σ ∈ ∣Sign∣, Φ ⊆ SEN(Σ), we set

αΣ[Φ] =⋃{αΣ[φ] ∶ φ ∈ Φ},
where the union is, as usual, taken signature-wise and, hence, αΣ[Φ] ∈

SenFam(K′). More generally, for T ∈ SenFam(K), we set

α[T ] =⋃{αΣ[TΣ] ∶ Σ ∈ ∣Sign∣}.
Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and

K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K,K′, respectively. An
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interpretation α ∶ K → K′ is a translation α ∶ K → K′, such that, for all
Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ DΣ(Φ) iff αΣ[φ] ≤D′(αΣ[Φ]).
If such an interpretation exists, then K is said to be interpretable in K′.

Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and
K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respectively. Let,
also,

α ∶ K → K′ and β ∶ K′ → K

be interpretations from K to K′ and from K′ to K, respectively. α and β are
said to be inverses of each other and the pair (α,β) ∶ K ⇄ K′ is referred to
as a conjugate pair if:

• for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
D(φ) =D(β[αΣ[φ]]);

• for all Σ′ ∈ ∣Sign′∣ and all ψ ∈ SEN′(Σ′),
D′(ψ) =D′(α[βΣ′[ψ]]).

The π-structures K and K′ are called equivalent if there exists a conjugate

pair K
(α,β)
⇄ K′.

Lemma 889 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and α ∶ K→K′, β ∶ K′ →K translations. The following are equivalent:

(i) α ∶ K → K′ is an interpretation and, for all Σ′ ∈ ∣Sign′∣, ψ ∈ SEN′(Σ′),
D′(ψ) = D′(α[βΣ′[ψ]]);

(ii) β ∶ K′ → K is an interpretation and, for all Σ ∈ ∣Sign∣, φ ∈ SEN(Σ),
D(φ) = D(β[αΣ[φ]]).

Proof: By symmetry, it suffices to show (i)⇒(ii).
Suppose, first, that Σ′ ∈ ∣Sign′∣ and Ψ ∪ {ψ} ⊆ SEN′(Σ′). Then, we have

ψ ∈ D′Σ′(Ψ) iff D′(ψ) ≤D′(Ψ)
iff D′(α[βΣ′[ψ]]) ≤D′(α[βΣ′[Ψ]])
iff α[βΣ′[ψ]] ≤D′(α[βΣ′[Ψ]])
iff βΣ′[ψ] ≤ D(βΣ′[Ψ]).

So β ∶ K′ → K is an interpretation.
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Assume, next, that Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then, by the hypothesis
applied to αΣ[φ] ∈ SenFam(K′), we have

D′(α[β[αΣ[φ]]]) =D′(αΣ[φ]).
Hence, we get that

αΣ[φ] ≤D′(α[β[αΣ[φ]]]) and α[β[αΣ[φ]]] ≤D′(αΣ[φ]).
Therefore, by the fact that α is an interpretation,

φ ∈ DΣ(β[αΣ[φ]]) and β[αΣ[φ]] ≤ D(φ).
So we conclude that D(φ) = D(β[αΣ[φ]]). ∎

Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and
α ∶ K→K′ a translation. Define the residual α∗ of the translation α,

α∗ ∶ SenFam(K′)→ SenFam(K)
by letting, for all T ′ ∈ SenFam(K′),

α∗(T ′) = {α∗Σ(T ′)}Σ∈∣Sign∣
be given, for all Σ ∈ ∣Sign∣, by

α∗Σ(T ′) = {φ ∈ SEN(Σ) ∶ αΣ[φ] ≤ T ′}.
The following proposition shows that, when applied to interpretations

between π-structures the star operator restricts to mappings from theory
families to theory families.

Proposition 890 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be al-
gebraic systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′,
respectively, and α ∶ K → K′ an interpretation. Then, for all T ′ ∈ ThFam(K′),
α∗(T ′) ∈ ThFam(K).
Proof: Suppose T ′ ∈ ThFam(K′) and let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such
that φ ∈DΣ(α∗Σ(T ′)). Then, since α ∶ K → K′ is an interpretation, we have

αΣ[φ] ≤D′(α[α∗Σ(T ′)]) ≤D′(T ′) = T ′.
Hence φ ∈ α∗Σ(T ′). Since Σ ∈ ∣Sign∣ was arbitrary, we conclude that α∗Σ(T ′) ∈
ThFam(K). ∎

In addition, we show that, when (α,β) ∶ K ⇄ K′ form a conjugate pair,
then β∗ ∶ ThFam(K) → ThFam(K′) and α∗ ∶ ThFam(K′) → ThFam(K) are
inverse mappings.
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Lemma 891 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and (α,β) ∶ K ⇄ K′ a conjugate pair. Then, for all T ∈ ThFam(K),

α∗(β∗(T )) = T.
Proof: Suppose (α,β) ∶ K ⇄ K′ is a conjugate pair, T ∈ ThFam(K) and let
Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then we have

φ ∈ α∗Σ(β∗(T )) iff αΣ[φ] ≤ β∗(T )
iff β[αΣ[φ]] ≤ T
iff D(β[αΣ[φ]]) ≤ T
iff DΣ(φ) ≤ TΣ
iff φ ∈ TΣ.

Thus, we conclude that α∗(β∗(T )) = T . ∎

Based on Lemma 891, we can show that β∗ ∶ ThFam(K) → ThFam(K′)
and α∗ ∶ ThFam(K′)→ ThFam(K) are bijections.

Lemma 892 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, re-
spectively, and (α,β) ∶ K ⇄ K′ a conjugate pair. Then α∗ ∶ ThFam(K′) →
ThFam(K) is a bijection.

Proof: Let (α,β) ∶ K ⇄ K′ be a conjugate pair. First, by Proposition 890,
α∗ ∶ ThFam(K′) → ThFam(K) is well-defined. To see that it is surjective,
let T ∈ ThFam(K). Then, by Proposition 890, β∗(T ) ∈ ThFam(K′) and, by
Lemma 891, α∗(β∗(T )) = T . Thus, α∗ is indeed surjective. For injectivity,
assume S′, T ′ ∈ ThFam(K′), such that α∗(S′) = α∗(T ′). Then, by surjec-
tivity, there exist S,T ∈ ThFam(K), such that β∗(S) = S′ and β∗(T ) = T ′.
Therefore, we get

S = α∗(β∗(S)) = α∗(S′) = α∗(T ′) = α∗(β∗(T )) = T.
But then we get S′ = β∗(S) = β∗(T ) = T ′. we conclude that α∗ is also
injective and, hence, it is a bijection. ∎

In the main theorem of this section, it is shown that if K and K′ are equiva-
lent π-structures via a conjugate pair (α,β) ∶ K ⇄ K′, then β∗ ∶ ThFam(K)→
ThFam(K′) and α∗ ∶ ThFam(K′)→ ThFam(K) form a pair of mutually in-
verse order isomorphisms between the complete lattices of the corresponding
theory families.

Recall that, given a π-institution I , we denote by

ThFam(I) = ⟨ThFam(I),≤⟩
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the complete lattice of theory families of I ordered by signature-wise in-
clusion. We extend the notation to the collections of theory families of π-
structures. Thus, given a π-structure K = ⟨K,D⟩, we define

ThFam(K) = ⟨ThFam(K),≤⟩.
Theorem 893 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and (α,β) ∶ K ⇄ K′ a conjugate pair. Then

β∗ ∶ ThFam(K)→ ThFam(K′) and α∗ ∶ ThFam(K′)→ ThFam(K)
are mutually inverse order isomorphisms.

Proof: We know, by Lemma 892, that β∗ and α∗ are mutually inverse
bijections. Moreover, by definition, they are both order preserving. Thus,
each is also order-reflecting, since, e.g., for all S′, T ′ ∈ ThFam(K′),

α∗(S′) ≤ α∗(T ′) implies β∗(α∗(S′)) ≤ β∗(α∗(T ′))
implies S′ ≤ T ′,

the latter implication following by Lemma 891. ∎

Conversely, it is true that given mutually inverse order isomorphisms
between the complete lattices of two π-structures, one may define a conjugate
pair between the two that establishes this order-isomorphism via the process
that was described above. We provide, next, more details on this inverse
process.

Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems,
K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respectively, and

h ∶ ThFam(K′)→ ThFam(K)
an order isomorphism between the corresponding complete lattices of theory
families.

Define
Ð→
h = {Ð→h Σ}Σ∈∣Sign∣ by letting, for all Σ ∈ ∣Sign∣,

Ð→
h Σ ∶ SEN(Σ) → SenFam(K′)

be given, for all φ ∈ SEN(Σ), by

Ð→
h Σ[φ] = h−1(D(φ)).

Further, define
←Ð
h = {←Ðh Σ′}Σ′∈∣Sign′∣ by letting, for all Σ′ ∈ ∣Sign′∣,

←Ð
h Σ′ ∶ SEN′(Σ′)→ SenFam(K)
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be given, for all ψ ∈ SEN′(Σ′), by

←Ð
h Σ′[ψ] = h(D′(ψ)).

We show that, the two translations
Ð→
h ∶ K→K′ and

←Ð
h ∶ K′ →K, defined

above, constitute interpretations between the corresponding π-structures.

Lemma 894 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and h ∶ ThFam(K′) → ThFam(K) an order isomorphism. Then
←Ð
h ∶ K′ → K is an interpretation.

Proof: Suppose h ∶ ThFam(K′)→ ThFam(K) is an order isomorphism and
let Σ′ ∈ ∣Sign′∣ and Ψ ∪ {ψ} ⊆ SEN′(Σ′). Then we have

ψ ∈D′Σ′(Ψ) iff D′(ψ) ≤D′(Ψ)
iff h(D′(ψ)) ≤ h(D′(Ψ))
iff h(D′(ψ)) ≤ h(⋁{D′(χ) ∶ χ ∈ Ψ})
iff h(D′(ψ)) ≤ ⋁{h(D′(χ)) ∶ χ ∈ Ψ}
iff
←Ð
h Σ′[ψ] ≤ ⋁{←Ðh Σ′[χ] ∶ χ ∈ Ψ}

iff
←Ð
h Σ′[ψ] ≤D(←Ðh Σ′[Ψ]).

Thus,
←Ð
h ∶ K′ → K is indeed an interpretation. ∎

We now know (by symmetry, based on Lemma 894) that
Ð→
h ∶ K → K′ and

←Ð
h ∶ K′ → K are interpretations. It is, in fact, the case that (Ð→h ,←Ðh ) ∶ K ⇄ K′

form a conjugate pair, as is shown next.

Lemma 895 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and h ∶ ThFam(K′) → ThFam(K) an order isomorphism. Then

(Ð→h ,←Ðh ) ∶ K ⇄ K′ is a conjugate pair.

Proof: By Lemma 889, it suffices to show that
←Ð
h ∶ K′ → K is an interpreta-

tion and that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), D(φ) = D(←Ðh [Ð→h Σ[φ]]).
The former has been shown in Lemma 894. So it suffices to show the latter.
To this end, let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then we have

D(←Ðh [Ð→h Σ[φ]]) = D(←Ðh [h−1(D(φ))])
= D(⋃{←Ðh [χ] ∶ χ ∈ h−1(D(φ))})
= ⋁{h(D′(χ)) ∶ χ ∈ h−1(D(φ))}
= h(⋁{D′(χ) ∶ χ ∈ h−1(D(φ))})
= h(h−1(D(φ)))
= D(φ).
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We conclude that (Ð→h ,←Ðh ) ∶ K ⇄ K′ is a conjugate pair. ∎

Based on Lemma 895, we can now formulate one of the main theorems of
this section to the effect that every order isomorphism between the complete
lattices of theory families of two π-structures gives rise to a conjugate pair
of interpretations that induce the isomorphism via the star construction.

Theorem 896 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, respec-
tively, and h ∶ ThFam(K′) → ThFam(K) an order isomorphism. Then

(Ð→h ,←Ðh ) ∶ K ⇄ K′ is a conjugate pair, such that
Ð→
h
∗

= h and
←Ð
h
∗

= h−1.

Proof: By Lemma 895, we know that (Ð→h ,←Ðh ) ∶ K ⇄ K′ form a conjugate

pair. We show that
Ð→
h
∗

= h. The equality
←Ð
h
∗

= h−1 may be proved similarly.
To this end, let T ′ ∈ ThFam(K′). Then we have

Ð→
h
∗

Σ(T ′) = {φ ∈ SEN(Σ) ∶Ð→h Σ[φ] ≤ T ′}
= {φ ∈ SEN(Σ) ∶ h−1(D(φ)) ≤ T ′}
= DΣ({φ ∈ SEN(Σ) ∶ h−1(D(φ)) ≤ T ′})
= DΣ({φ ∈ SEN(Σ) ∶D(φ) ≤ h(T ′)})
= DΣ({φ ∈ SEN(Σ) ∶ φ ∈ hΣ(T ′)})
= DΣ(hΣ(T ′))
= hΣ(T ′).

Similarly,
←Ð
h
∗

= h−1. ∎

12.2 Transformations

Let K = ⟨Sign,SEN,N⟩ be an algebraic system and k ≥ 1 be an integer.
Then a power algebraic system

Kk = ⟨Sign,SENk,Nk⟩
is the algebraic system whose sentence functor SENk ∶ Sign → Set is the
k-th direct power of SEN and whose category Nk of natural transformations
consists of k-tuples of natural transformations having the same arity in N .

Let k, ℓ ≥ 1 be integers. A translation α ∶ Kk → Kℓ is called a transfor-
mation if there exists a set

τ ∶ SENω → SENℓ,

in N , with k distinguished arguments, such that, for all Σ ∈ ∣Sign∣ and all
φ⃗ ∈ SEN(Σ)k,

αΣ[φ⃗] = τΣ[φ⃗].
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Moreover a translation α ∶ Kk →Kℓ is called a natural transformation
if it is a parameter-free transformation, i.e., if there exists τ ∶ SENk → SENℓ

in N , such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k,
αΣ[φ⃗] = τΣ[φ⃗].

Based on the results obtained in Section 12.1, we may formulate some
propositions concerning interpretability and equivalence based on transfor-
mations.

Proposition 897 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Fk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is interpretable in K′ via
a transformation if and only if there exists a set τ ∶ SENω → SENℓ, with
k distinguished arguments, such that, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ⃗} ⊆
SEN(Σ)k,

φ⃗ ∈DΣ(Φ) iff τΣ[φ⃗] ≤D′(τΣ[Φ]).
If K is interpretable in K′ as above, then it is equivalent to K′ via a conjugate
pair (τ, I) ∶ K ⇄ K′ of transformations if and only if, for all Σ ∈ ∣Sign∣, all
φ⃗ ∈ SEN(Σ)k and all Ψ ∪ {ψ⃗} ⊆ SEN(Σ)ℓ,

• ψ⃗ ∈D′Σ(Ψ) iff IΣ[ψ⃗] ≤ D(IΣ[Ψ]);
• D′(ψ⃗) = D′(τ[IΣ[ψ⃗]]);
• D(φ⃗) = D(I[τΣ[φ⃗]]).

Proof: This is a restatement of the definition of interpretability under the
additional hypothesis that the corresponding interpretations are transforma-
tions. ∎

Proposition 898 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Kk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is equivalent to K′ via a
conjugate pair (τ, I) ∶ K ⇄ K′ of transformations if and only if one of the
following equivalent conditions hold:

(a) τ ∶ K → K′ is an interpretation and, for all Σ ∈ ∣Sign∣ and all ψ⃗ ∈
SEN(Σ)ℓ, D′(ψ⃗) =D′(τ[IΣ[ψ⃗]]);

(b) I ∶ K′ → K is an interpretation and, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈
SEN(Σ)k, D(φ⃗) = D(I[τΣ[φ⃗]]).

Proof: Directly by Lemma 889. ∎

Taking the point of view of order isomorphisms between lattices of theory
families, we would like to have a concept ensuring that such an isomorphism
is induced not merely by a conjugate pair of translations, as is asserted by
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Theorem 896, but, more emphatically, by a conjugate pair of transformations.
We focus on this task next.

Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K = ⟨Kk,D⟩, K′ =⟨Kℓ,D′⟩ be two π-structures based on Kk, Kℓ, respectively. An order isomor-
phism h ∶ ThFam(K′) → ThFam(K) is called transformational if there
exist sets

• τ ∶ SENω → SENℓ in N , with k distinguished arguments;

• I ∶ SENω → SENk in N , with ℓ distinguished arguments,

such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k and all ψ⃗ ∈ SEN(Σ)ℓ,
Ð→
h Σ[φ⃗] =D′(τΣ[φ⃗]) and

←Ð
h Σ[ψ⃗] =D(IΣ[ψ⃗]).

These conditions are, by definition, equivalent, respectively, to the conditions

h−1(D(φ⃗)) =D′(τΣ[φ⃗]) and h(D′(ψ⃗)) = D(IΣ[ψ⃗]).
In this case, we say that h is induced by (τ, I) ∶ K ⇄ K′. (Note that, since
we will be able to show that (τ, I) is a conjugate pair of transformations,
this notation makes sense.)

In fact, the defining conditions yield some crucial relations between theory
families, as in shown in the following lemma.

Lemma 899 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then, for all
Σ ∈ ∣Sign∣, all Φ ⊆ SEN(Σ)k and all Ψ ⊆ SEN(Σ)ℓ,

h−1(D(Φ)) =D′(τΣ[Φ]) and h(D′(Ψ)) =D(IΣ[Ψ]).
Proof: By symmetry, it suffices to show the first equation. We have, for all
Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ)k,

h−1(D(Φ)) = h−1(⋁φ∈ΦD(φ)) (join in ThFam(K))
= ⋁φ∈Φ h−1(D(φ)) (h−1 order isomorphism)

= ⋁φ∈ΦD′(τΣ[φ]) (h−1(D(φ)) =Ð→h Σ[φ])
= D′(⋃φ∈Φ τΣ[φ]) (join in ThFam(K′))
= D′(τΣ[Φ]). (by definition)

The second equation now follows by symmetry. ∎

Now we are in a position to show that a transformational order isomor-
phism between the lattices of theory families of two π-structures is induced
by a conjugate pair of transformations between the two π-structures and, as
a consequence, gives rise to an equivalence (τ, I) ∶ K ⇄ K′ via a conjugate
pair of transformations.
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Theorem 900 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then (τ, I) ∶
K ⇄ K′ is a conjugate pair of transformations.

Proof: We use Proposition 898. Let Σ ∈ ∣Sign∣, Φ ∪ {φ⃗} ⊆ SEN(Σ)k and
ψ⃗ ∈ SEN(Σ)ℓ. We then have:

φ⃗ ∈ DΣ(Φ) iff DΣ(φ⃗) ≤DΣ(Φ)
iff h−1(D(φ⃗)) ≤ h−1(D(Φ)) (h order isomorphism)

iff D′(τΣ[φ⃗]) ≤ D′(τΣ[Φ]) (Lemma 899)

iff τΣ[φ⃗] ≤D′(τΣ[Φ]).
Thus, τ ∶ K → K′ is an interpretation. Moreover, we have:

D′(ψ⃗) = h−1(h(D′(ψ⃗))) (h order isomorphism)

= h−1(D(IΣ[ψ⃗])) (h transformational)

= D′(τ[IΣ[ψ⃗]]). (Lemma 899)

We conclude by Proposition 898, that (τ, I) ∶ K ⇄ K′ is a conjugate pair of
transformations. ∎

As a consequence, we have the following

Theorem 901 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then the
π-structures K and K′ are equivalent via the conjugate pair (τ, I) ∶ K ⇄ K′ of
transformations.

Proof: This follows directly by Theorem 900. ∎

Similarly, for interpretability and equivalence based on natural transfor-
mations, we have the following corresponding propositions.

Proposition 902 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Kk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is interpretable in K′ via a
natural transformation if and only if there exists a set τ ∶ SENk → SENℓ in
N , such that, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ⃗} ⊆ SEN(Σ)k,

φ⃗ ∈DΣ(Φ) iff τΣ[φ⃗] ≤D′(τΣ[Φ]).
If K is interpretable in K′ as above, then it is equivalent to K′ via a conjugate
pair (τ, I) ∶ K ⇄ K′ of natural transformations if and only if, for all Σ ∈∣Sign∣, all φ⃗ ∈ SEN(Σ)k and all Ψ ∪ {ψ⃗} ⊆ SEN(Σ)ℓ,

• ψ⃗ ∈D′Σ(Ψ) iff IΣ[ψ⃗] ≤ D(IΣ[Ψ]);
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• D′(ψ⃗) =D′(τ[IΣ[ψ⃗]]);
• D(φ⃗) =D(I[τΣ[φ⃗]]).

Proof: This is a restatement of the definition of interpretability under the ad-
ditional hypothesis that the corresponding interpretations are natural trans-
formations. ∎

Proposition 903 Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K =⟨Kk,D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures. K is equivalent to K′ via a
conjugate pair (τ, I) ∶ K ⇄ K′ of natural transformations if and only if one
of the following equivalent conditions hold:

(a) τ ∶ K → K′ is an interpretation and, for all Σ ∈ ∣Sign∣ and all ψ⃗ ∈
SEN(Σ)ℓ, D′(ψ⃗) = D′(τ[IΣ[ψ⃗]]);

(b) I ∶ K′ → K is an interpretation and, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈
SEN(Σ)k, D(φ⃗) =D(I[τΣ[φ⃗]]).

Proof: Directly by Lemma 889. ∎

In terms of order isomorphisms between lattices of theory families, we
have analogs of preceding results that allow us to work with isomorphisms
that are induced by conjugate pairs of natural transformations.

Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K = ⟨Kk,D⟩, K′ =⟨Kℓ,D′⟩ be two π-structures based on Kk, Kℓ, respectively. An order iso-
morphism h ∶ ThFam(K′) → ThFam(K) is called natural if there exist
sets

• τ ∶ SENk → SENℓ in N ;

• I ∶ SENℓ → SENk in N ,

such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k and ψ⃗ ∈ SEN(Σ)ℓ,
Ð→
h Σ[φ⃗] =D′(τΣ[φ⃗]) and

←Ð
h Σ[ψ⃗] =D(IΣ[ψ⃗]).

In this case, we say that h is induced by the pair of natural transformations(τ, I) ∶ K ⇄ K′.
Similarly, with the case of a transformational isomorphism, we can show

that a natural order isomorphism between the lattices of theory families of
two π-structures is induced by a conjugate pair of natural transformations
between the two π-structures.

Theorem 904 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
natural order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then (τ, I) ∶ K ⇄ K′

is a conjugate pair of natural transformations.
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Proof: This follows from Theorem 900. ∎

As a consequence, we have the following analog of Theorem 901.

Theorem 905 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
natural order isomorphism induced by (τ, I) ∶ K ⇄ K′. Then the π-structures
K and K′ are equivalent via the conjugate pair (τ, I) ∶ K ⇄ K′ of natural
transformations.

Proof: This follows directly by Theorem 904. ∎

We now revert to the case of a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩
and a π-institution I = ⟨F,C⟩ based on F. Our focus, in this standard con-
text, will be on F itself, on the one hand, and on F2, on the other. In the con-
text of F2, given Σ ∈ ∣Sign♭∣, we sometimes denote a pair ⟨φ,ψ⟩ ∈ SEN♭(Σ)2
in the equational form

φ ≈ ψ.

Given a π-structure Q = ⟨F2,D⟩, we say that Q is equational if the
following five axioms hold:

(R) φ ≈ φ ∈DΣ(∅), for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ);
(S) ψ ≈ φ ∈DΣ(φ ≈ ψ), for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ);
(T) φ ≈ χ ∈ DΣ(φ ≈ ψ,ψ ≈ χ), for all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ);
(C) σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ DΣ({φi ≈ ψi ∶ i < k}), for all σ♭ ∈ N ♭, all Σ ∈ ∣Sign♭∣

and all φi, ψi ∈ SEN♭(Σ), i < k;

(I) SEN♭(f)(φ) ≈ SEN♭(f)(ψ) ∈ DΣ′(φ ≈ ψ), for all Σ,Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′) and all φ,ψ ∈ SEN♭(Σ).

Note that according to the relevant definitions introduced in Chapter 2, the
meaning of (I) is that the Σ′-component of the least theory family including
φ ≈ ψ in its Σ-component includes SEN♭(f)(φ) ≈ SEN♭(f)(ψ).

These properties are termed reflexivity, symmetry, transitivity, com-
patibility and invariance, respectively. The first three ensure that, for
all E ∈ SenFam(F2), D(E) is an equivalence family. The fourth one ensures
that D(E) is a congruence family and the last that it is a congruence system,
i.e., invariant under the action of signature morphisms. In fact, the following
characterization theorem holds, showing that a π-structure is equational if
and only if it is structural and all its closure families are congruence systems
on F if and only if it is the equational π-structure relative to a class K of
F-algebraic systems according to the definition given in Section 2.17.

Theorem 906 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Q =⟨F2,D⟩ a π-structure. The following statements are equivalent:



876 CHAPTER 12. SYNTACTIC HIERARCHY II Voutsadakis

(i) Q is equational;

(ii) For all θ ∈ SenFam(Q), D(θ) ∈ ConSys(F);
(iii) For some class K of F-algebraic systems, D =DK.

Proof:

(i)⇒(ii) Suppose Q is equational and let θ ∈ SenFam(Q). We must show that
D(θ) = {DΣ(θ)}Σ∈∣Sign♭∣ is a congruence system on F. To this end,

let Σ ∈ ∣Sign♭∣, φ,ψ,χ ∈ SEN♭(Σ). Since Q is equational, we have
φ ≈ φ ∈DΣ(∅) ⊆DΣ(θ). So DΣ(θ) is reflexive. Suppose, next, that φ ≈
ψ ∈ DΣ(θ). Since Q is equational, we get ψ ≈ φ ∈ DΣ(φ ≈ ψ) ⊆ DΣ(θ).
Hence, DΣ(θ) is also symmetric. Further, if φ ≈ ψ,ψ ≈ χ ∈ DΣ(θ),
then, since Q is equational, we get φ ≈ χ ∈ DΣ(φ ≈ ψ,ψ ≈ χ) ⊆ DΣ(θ).
Thus, DΣ(θ) is also transitive and, hence, an equivalence relation on
SEN♭(Σ).
Suppose, now, that σ♭ ∈ N ♭, φi, ψi ∈ SEN♭(Σ), for i < k, such that φi ≈
ψi ∈ DΣ(θ), for all i < k. Since Q is equational, we get σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈
DΣ({φi ≈ ψi ∶ i < k}) ⊆ DΣ(θ). Hence, DΣ(θ) is a congruence family on
F. Finally, if Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ,ψ ∈ SEN♭(Σ), such
that φ ≈ ψ ∈ DΣ(θ), then, again based on the fact that Q is equational,
we obtain SEN♭(f)(φ) ≈ SEN♭(f)(ψ) ∈ DΣ′(φ ≈ ψ) ⊆ DΣ′(θ), whence
D(θ) is a congruence system on F, as was to be shown.

(ii)⇒(iii) Suppose D satisfies (ii). We construct a class K of F-algebraic systems
as follows. For θ ∈ SenFam(Q), define

F θ = ⟨Fθ, ⟨I, πθ⟩⟩ ∶= ⟨F/D(θ), ⟨I, πD(θ)⟩⟩
and set

K = {F θ ∶ θ ∈ SenFam(Q)}.
Note that the definition of F θ makes sense, since, by hypothesis, D(θ) ∈
ConSys(F), for all θ ∈ SenFam(Q). Our task now is to show that
D = DK. To this end, let Σ ∈ ∣Sign♭∣, θ ∪ {φ ≈ ψ} ⊆ SEN♭(Σ)2.
Suppose, first, that φ ≈ ψ ∈ DΣ(θ) and let θ′ ∈ SenFam(Q), such that

πθ
′

Σ(θ) ⊆ ∆
F/D(θ′)
Σ . This is equivalent to θΣ ⊆DΣ(θ′Σ). Hence, we obtain

φ ≈ ψ ∈ DΣ(θ) ⊆ DΣ(θ′). Thus, πθ
′

Σ (φ) = πθ′Σ (ψ). We conclude that
φ ≈ ψ ∈DK

Σ(θ). Hence, D ≤DK.

Assume, conversely, that φ ≈ ψ ∉ DΣ(θ). Then, clearly, for F θ ∈ K, we

get πθΣ(DΣ(θ)) ⊆ ∆
F/D(θ)
Σ , but πθΣ(φ) ≠ πθΣ(ψ). Hence, φ ≈ ψ ∉ DK

Σ(θ).
Therefore, DK ≤ D and, hence, D =DK.
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(iii)⇒(i) This implication was shown in Proposition 115, which was proven by
appealing to the implication (iii)⇒(ii), which was, in turn, the content
of Proposition 30.

∎

We have the following useful technical lemma, where, for Σ ∈ ∣Sign♭∣ and
φ⃗, ψ⃗ ∈ SEN♭(Σ), we use the abbreviation

φ⃗ ≈ ψ⃗ = {φi ≈ ψi ∶ i < k}.
Lemma 907 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Q =⟨F2,D⟩ an equational π-structure. Then, for all δ♭, ǫ♭ ∶ (SEN♭)ω → SEN♭ in
N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

δ♭Σ(ψ⃗) ≈ ǫ♭Σ(ψ⃗) ∈ DΣ(φ⃗ ≈ ψ⃗, δ♭Σ(φ⃗) ≈ ǫ♭Σ(φ⃗)).
Proof: We have, for all δ♭, ǫ♭ ∶ (SEN♭)ω → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all
φ⃗, ψ⃗ ∈ SEN♭(Σ),

δ♭Σ(ψ⃗) ≈ ǫ♭Σ(ψ⃗) ∈ DΣ(δ♭Σ(ψ⃗) ≈ δ♭Σ(φ⃗), δ♭Σ(φ⃗) ≈ ǫ♭Σ(φ⃗), ǫ♭Σ(φ⃗) ≈ ǫ♭Σ(ψ⃗))
(by transitivity)

⊆ DΣ(φ⃗ ≈ ψ⃗, δ♭Σ(φ⃗) ≈ ǫ♭Σ(φ⃗)).
(by symmetry and compatibility)

This proves the lemma. ∎

Lemma 907 has the following corollary:

Corollary 908 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Q =⟨F2,D⟩ an equational π-structure. Then, for all τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in
N ♭, with k distinguished arguments, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

τ ♭Σ[ψ⃗] ≤ D(φ⃗ ≈ ψ⃗, τ ♭Σ[φ⃗]).
Proof: This follows from Lemma 907, using the reflexivity and the invariance
of the closure family D. ∎

We next show that, if a π-institution I , based on an algebraic system F,
happens to be equivalent to an equational π-structure Q, based on F2, via
a conjugate pair (τ, I) ∶ I ⇄ Q of transformations, then I is syntactically
protoalgebraic with set of witnessing transformations I.

Theorem 909 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and Q = ⟨F2,D⟩ an equational π-structure. If I is
equivalent to Q via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of transformations, then
I is syntactically protoalgebraic with witnessing transformations I♭.
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Proof: By definition, it suffices to show that I♭ ∶ SENω → SEN, with two
distinguished arguments, is reflexive, globally family transitive and has the
global family compatibility and the global family modus ponens in I . To
this end, let Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ). Then we have, in turn:

• By reflexivity of Q, φ ≈ φ ∈ DΣ(∅). Hence, by interpretability, we get
I♭Σ[φ,φ] ≤ C(∅). Therefore, I♭ is reflexive in I ;

• By transitivity of Q, φ ≈ χ ∈DΣ(φ ≈ ψ,ψ ≈ χ). Hence, by interpretabil-
ity, we get I♭Σ[φ,χ] ≤ C(I♭Σ[φ,ψ], I♭Σ[ψ,χ]). Therefore, I♭ is globally
family transitive in I ;

• By the reflexivity and compatibility ofQ, we have, for all σ♭ ∶ (SEN♭)k →
SEN♭ in N and all χ⃗ ∈ SEN♭(Σ), that σ♭Σ(φ, χ⃗) ≈ σ♭Σ(ψ, χ⃗) ∈ DΣ(φ ≈ ψ).
Hence, by interpretability,

I♭Σ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ C(I♭Σ[φ,ψ]).
Therefore, I♭ has the global family compatibility in I ;

• Finally, for global family MP, we have

C(ψ) = C(I♭[τ ♭Σ[ψ]]) (by equivalence)
≤ C(I♭Σ[φ,ψ], I♭[τ ♭Σ[φ]])

(by Lemma 907 and interpretability)
= C(I♭Σ[φ,ψ], φ). (by equivalence)

Thus, for all T ∈ ThFam(I), if φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T , then ψ ∈ TΣ,
i.e., I♭ has the global family modus ponens in I .

We conclude that I is syntactically protoalgebraic with witnessing transfor-
mations I♭. ∎

As a consequence of Theorem 909, we obtain

Corollary 910 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and Q = ⟨F2,D⟩ an equational π-structure. If I
is equivalent to Q via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of natural transfor-
mations, then I is syntactically equivalential with witnessing transformations
I♭.

Proof: By Theorem 909, I is syntactically protoalgebraic with witnessing
transformations I♭. Since I♭ ∶ (SEN♭)2 → SEN♭ is parameter free, we conclude
that I is syntactically equivalential with witnessing transformations I♭. ∎

Using Theorem 909, we can also show that, if a π-institution I , based on
an algebraic system F, happens to be equivalent to an equational π-structure
Q, based on F2, via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of transformations, then
I is family truth equational, with witnessing equations τ ♭.
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Theorem 911 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and Q = ⟨F2,D⟩ an equational π-structure. If I is
equivalent to Q via a conjugate pair (τ ♭, I♭) ∶ I ⇄ Q of transformations, then
I is family truth equational, with witnessing equations τ ♭.

Proof: By definition, it suffices to show that, for all T ∈ ThFam(I), all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
We, indeed, have, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff I♭[τΣ[φ]] ≤ T ((τ ♭, I♭) ∶ I ⇄ Q an equivalence)
iff τ ♭Σ[φ] ≤ Ω(T ). (by Theorem 909 and Corollary 791)

Therefore, I is family truth equational, with witnessing equations τ ♭. ∎

We close the section by showing that equivalence between a given π-
institution and an equational π-structure established via conjugate pairs of
transformations is essentially unique in the sense that both the closure family
on F2 must be unique and the closures of the translations used must be
identical. More precisely, we have the following

Theorem 912 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Suppose that Q1 = ⟨F2,D1⟩ and Q2 =⟨F2,D2⟩ are equational π-structures that are equivalent to I via the conjugate
pairs ⟨τ 1, I1⟩ ∶ I ⇄ Q1 and ⟨τ 2, I2⟩ ∶ I ⇄ Q2, respectively, of transformations.
Then, we have:

(a) D1 = D2 (=∶ D) and, hence, Q1 = Q2 (=∶ Q);
(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), C(I1Σ[φ,ψ]) = C(I2Σ[φ,ψ]);
(c) For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), D(τ 1Σ[φ]) = D(τ 2Σ[φ]).

Proof: By Theorem 909, we know that both I1 and I2 are witnessing the syn-
tactic protoalgebraicity of I . Thus, by Corollary 791, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

I1Σ[φ,ψ] ≤ T iff ⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I2Σ[φ,ψ] ≤ T.
We conclude that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), C(I1Σ[φ,ψ]) =
C(I2Σ[φ,ψ]), which proves Part (b).

For Part (a), suppose that Σ ∈ ∣Sign♭∣ and E∪{φ ≈ ψ} ⊆ SEN♭(Σ)2. Then,
we have

φ ≈ ψ ∈D1
Σ(E) iff I1Σ[φ,ψ] ≤ C(I1Σ[E]) (interpretability)

iff C(I1Σ[φ,ψ]) ≤ C(I1Σ[E])
iff C(I2Σ[φ,ψ]) ≤ C(I2Σ[E]) (Part (b))
iff I2Σ[φ,ψ] ≤ C(I2Σ[E])
iff φ ≈ ψ ∈ D2

Σ(E). (interpretability)
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Therefore, we get that D1 = D2. This justifies using D ∶= D1 = D2 and since
the π-structures Q1 and Q2, which are both based on F2, have the same
closure families, we obtain Q ∶= Q1 = Q2.

Finally, for Part (c), suppose that Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then,
we have

D(τ 1Σ[φ]) ≤ D(τ 2Σ[φ]) iff τ 1Σ[φ] ≤ D(τ 2Σ[φ])
iff I2[τ 1Σ[φ]] ≤ C(I2[τ 2Σ[φ]]) (interpretability)
iff I2[τ 1Σ[φ]] ≤ C(φ) (equivalence)
iff I1[τ 1Σ[φ]] ≤ C(φ) (Part (b))
iff φ ∈ CΣ(φ). (equivalence)

By symmetry, we have, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), D(τ 1Σ[φ]) =
D(τ 2Σ[φ]). This proves Part (c) and concludes the proof of the theorem. ∎

12.3 Syntactic Weak Family Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. We say that:

• I is RISI-(syntactically) fortified if RI is Leibniz and SI is ade-
quate;

• I is RIṠI-(syntactically) fortified if RI is Leibniz and ṠI is ade-
quate;

• I is R̈ISI-(syntactically) fortified if R̈I is Leibniz and SI is ade-
quate;

• I is R̈IṠI-(syntactically) fortified if R̈I is Leibniz and ṠI is ade-
quate.

Recall that, by Proposition 997, if ṠI is adequate, then SI is adequate.
Moreover, since, by Proposition 952, R̈I ⊆ RI , it follows that, under the
assumption of prealgebraicity, if R̈I is Leibniz, then RI is Leibniz. Thus, we
have the following syntactic fortification hierarchy (in which the dotted
arrows hold under prealgebraicity):

R̈I ṠI-Fortified

✠�
�
�
�

..........❘
R̈ISI-Fortified RIṠI-Fortified

..........❘ ✠�
�
�
�

RISI-Fortified



Voutsadakis CHAPTER 12. SYNTACTIC HIERARCHY II 881

I is syntactically weakly family algebraizable (abbreviated to syn-
tactically WF algebraizable) if:

• I is RISI-fortified;

• I is protoalgebraic;

• I is family injective.

By Theorem 288, under protoalgebraicity, the properties of family in-
jectivity, family reflectivity and family c-reflectivity coincide. This enables
us to formulate the following alternative characterization of syntactic WF
algebraizability.

Theorem 913 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if it is syntactically protoalgebraic and family truth equational.

Proof: Assume that I is syntactically WF algebraizable. Then, on the one
hand, it is protoalgebraic and has a Leibniz reflexive core. Thus, by Theorem
805, it is syntactically protoalgebraic. On the other, it is, by Theorem 288,
family c-reflective and has an adequate Suszko core. Therefore, by Theorem
847, it is family truth equational.

Assume, conversely, that I is syntactically protoalgebraic and family
truth equational. Then, by Theorem 805, it is protoalgebraic and has a
Leibniz reflexive core, and, by Theorem 847, it is family c-reflective and has
an adequate Suszko core. Therefore, I is syntactically WF algebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic WF algebraizability classes of π-insti-
tutions.

Theorem 914 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if I is WF algebraizable and RISI-fortified.

Proof: I is syntactically WF algebraizable if and only if, by definition, it is
RISI-fortified, protoalgebraic and family injective, i.e., iff it is, by definition,
RISI-fortified and WF algebraizable. ∎

Previous results, put together, also allow us to provide an alternative
characterization of syntactic weak family algebraizability in terms of isomor-
phisms between complete lattices of theory families.

Theorem 915 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if it is RISI-fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism.
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Proof: We have that I is syntacticaly WF algebraizable if and only if, by
Theorem 914, it is RISI-fortified and WF algebraizable, if and only if, by
Theorem 296, it it RISI-fortified and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is an order isomorphism. ∎

Next, we show that syntactic WF algebraizability may also be charac-
terized by the existence of an equivalence between the π-institution and its
algebraic π-structure counterpart via a pair of conjugate transformations.

We embark on the path by defining first the algebraic π-structure QI∗

associated with a given π-institution I . We recall some concepts that we
have already introduced previously which culminate in the definition of QI∗.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall the definition of the class AlgSys∗(I) of all
reduced F-algebraic systems:

AlgSys∗(I) = {A ∶ (∃T ∈ FiFamI(A))(ΩA(T ) =∆A)}.
Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we define the class of I∗-con-
gruence systems on A by

ConSysI∗(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ AlgSys∗(I)}.
It turns out that congruence systems in ConSysI∗(A) have a straightforward
characterization.

Proposition 916 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩,
ConSysI∗(A) = {θ ∈ ConSys(A) ∶ (∃T ∈ FiFamI(A))(ΩA(T ) = θ)}.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a
π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system.

Suppose, first, that θ ∈ ConSysI∗(A). By definition, A/θ ∈ AlgSys∗(I).
Thus, there exists T ′ ∈ FiFamI(A/θ), such that

ΩA/θ(T ′) =∆A/θ.

By applying the inverse of the quotient morphism ⟨I, πθ⟩ ∶ A→ A/θ, we get

(πθ)−1(ΩA/θ(T ′)) = (πθ)−1(∆A/θ).
Since ⟨I, πθ⟩ is surjective, we get by Proposition 24 and by Corollary 55, that(πθ)−1(T ′) ∈ FiFamI(A) and

ΩA((πθ)−1(T ′)) = θ.
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Therefore, there exists T ∈ FiFamI(A), such that ΩA(T ) = θ.
Suppose, conversely, that θ ∈ ConSys(A), with ΩA(T ) = θ, for some T ∈

FiFamI(A). Then, we have ΩA/θ(T /θ) = ∆A/θ and, therefore, by definition,
A/θ ∈ AlgSys∗(I), implying that θ ∈ ConSysI∗(A). ∎

In general, given a π-institution I = ⟨F,C⟩ and an F-algebraic system A,
the family ConSysI∗(A) of I∗-congruence systems on A need not be closed
under signature-wise intersections, i.e., may not form a closure family on A2.
However, we can show that, if I is protoalgebraic, this is always the case.

Proposition 917 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, ConSysI∗(A) is closed under arbitrary intersections
and, therefore, forms a closure family on A2.

Proof: First, note that ConSysI∗(A) has a top element ∇A. To see this,
observe that A/∇A is a trivial algebraic system, which is always a member
of AlgSys∗(I).

It suffices now to show that ConSysI∗(A) is closed under arbitrary inter-
sections. To this end, suppose θi ∈ ConSysI∗(A), for i ∈ I. By Proposition
916, for all i ∈ I, there exists T i ∈ FiFamI(A), such that ΩA(T i) = θi. But,
by Lemma 23 and protoalgebraicity, we get that

ΩA(⋂
i∈I

T i) =⋂
i∈I

ΩA(T i) =⋂
i∈I

θi.

Now, again by Proposition 916, we conclude that ⋂i∈I θi ∈ ConSysI∗(A). ∎

Applying Proposition 917 to the algebraic system F = ⟨F, ⟨I, ι⟩⟩, where⟨I, ι⟩ ∶ F→ F is the identity morphism, we get the following

Corollary 918 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, ConSysI∗(F) is
closed under arbitrary intersections and, therefore, forms a closure family
on F2.

Proof: This is a special case of Proposition 917. ∎

Let I = ⟨F,C⟩ be a protoalgebraic π-institution. We define, in accordance
with Corollary 918, the algebraic π-structure QI∗ associated with I to
be the π-structure

QI∗ = ⟨F2,DI∗⟩,
where DI∗ is the closure (operator) family corresponding to the closure family
ConSysI∗(F).

Our first result in connecting syntactic WF algebraizability with the as-
sociated algebraic π-structure shows that, if a π-institution is syntactically
WF algebraizable, then it is equivalent to its associated algebraic π-structure
via a conjugate pair of transformations.
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Theorem 919 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically WF algebraizable π-institution based on F. Then I is

equivalent to QI∗ via a conjugate pair (τ ♭, ↔I♭) ∶ I ⇄ QI∗ of transformations.
More precisely:

• I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, is a set
of witnessing transformations of the syntactic protoalgebraicity of I;

• τ ♭ ∶ (SEN♭)ω → (SEN♭)2, with a single distinguished argument, is a set
of witnessing equations for the family truth equationality of I.

Proof: Suppose that I is syntactically WF algebraizable. Then, by defini-
tion, I is syntactically protoalgebraic and family truth equational. There-
fore, there exist a set I♭ ∶ (SEN♭)ω → SEN♭ of natural transformations in N ♭,
with two distinguished arguments, witnessing the syntactic protoalgebraicity
of I , and a set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natural transformations in N ♭,
with a single distinguished argument, witnessing family truth equationality.
To verify the conclusion, observe, first, that τ ♭Σ ∶ SEN♭(Σ) → SenFam(F2),
defined, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), as the sentence family

τ ♭Σ[φ] and
↔

I♭Σ ∶ SEN♭(Σ)2 → SenFam(F), defined, for all Σ ∈ ∣Sign♭∣ and all

φ,ψ ∈ SEN♭(Σ), as the sentence family
↔

I♭Σ[φ,ψ] are as required. Therefore,
by Proposition 898, it suffices to show that:

(a) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CΣ(Φ) iff τ ♭Σ[φ] ≤DI∗(τ ♭Σ[Φ]);

(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
DI∗(φ ≈ ψ) = DI∗(τ ♭[↔I♭Σ[φ,ψ]]).

For (a), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Note that, for all T ∈
ThFam(I), we have, by family truth equationality,

Φ ⊆ TΣ iff τ ♭Σ[Φ] ≤ Ω(T );
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).

Therefore, φ ∈ CΣ(Φ) if and only if, for all T ∈ ThFam(I), Φ ⊆ TΣ implies φ ∈
TΣ, if and only if, for all T ∈ ThFam(I), τ ♭Σ[Φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ),
if and only if, by Proposition 916, τ ♭Σ[φ] ≤DI∗(τ ♭Σ[Φ]).

For (b), let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have, for all T ∈
ThFam(I),

φ ≈ ψ ∈ ΩΣ(T ) iff
↔

I♭Σ[φ,ψ] ≤ T (Corollary 791)

iff τ ♭[↔I♭Σ[φ,ψ]] ≤ Ω(T ). (truth equationality)
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Using again Proposition 916, we conclude that

DI∗(φ ≈ ψ) =DI∗(τ ♭[↔I♭Σ[φ,ψ]]).
Therefore I is equivalent to QI∗ via (τ ♭, ↔I♭) ∶ I ⇄ QI∗. ∎

Putting together Theorems 909, 911 and 919, we get the following fun-
damental result to the effect that syntactic WF algebraizability boils down
to the equivalence of a π-institution with its associated algebraic π-structure
via a conjugate pair of transformations.

Theorem 920 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if
and only if it is equivalent to QI∗ via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QI∗ of
transformations.

Proof: If I is equivalent to QI∗ via a conjugate pair of transformations,
then, by Theorem 909, it is syntactically protoalgebraic and, by Theorem
911, it is family truth equational. Therefore, by definition, it is syntactically
WF algebraizable.

If, conversely, I is syntactically WF algebraizable, then, by Theorem 919,
it is equivalent to QI∗ via a conjugate pair of transformations. ∎

We close the section by slightly generalizing the preceding characteriza-
tion. Namely, we show that existence of an equivalence with an algebraic
π-structure induced by conjugate transformations is sufficient to yield syn-
tactic WF algebraizability.

Theorem 921 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if and
only if it is equivalent to an algebraic π-structure via a conjugate pair of
transformations.

Proof: If I is syntactically WF algebraizable, then the conclusion follows
from Theorem 920. Conversely, if I is equivalent to an algebraic π-structure
via a conjugate pair of transformations, then it is syntactically protoalgebraic
by Theorem 909 and family truth equational by Theorem 911, whence it is
syntactically WF algebraizable. ∎

Taking into account Theorem 901, we have the following alternative char-
acterization of syntactically WF algebraizable π-institutions:

Theorem 922 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WF algebraizable if
and only if there is a transformational order isomorphism h ∶ ThFam(I) →
ThFam(Q), where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 921 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 921. ∎
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12.4 Syntactic Weak Algebraizability

Syntactic WF algebraizability determines one of the highest levels of the
main algebraic hierarchy of π-institutions. Since every syntactically WF al-
gebraizable π-institution is, in particular, family reflective, it follows that
every syntactically WF algebraizable π-institution is systemic. To avoid sys-
temicity, one has to weaken the hypothesis of family reflectivity. In this
section we follow this line of thought by keeping the assumption of syntactic
protoalgebraicity, but insisting only that the π-institution is system truth
equational, rather than family truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that:

• I is RILI-(syntactically) fortified if RI is Leibniz and LI is left
adequate;

• I is RIL̇I-(syntactically) fortified if RI is Leibniz and L̇I is left
adequate;

• I is R̈ILI-(syntactically) fortified if R̈I is Leibniz and LI is left
adequate;

• I is R̈IL̇I-(syntactically) fortified if R̈I is Leibniz and L̇I is left
adequate.

Similarly with the Suszko core, it can be seen that, if L̇I is left adequate,
then LI is left adequate. Moreover, since, by Proposition 952, R̈I ⊆ RI , it
follows that, under the assumption of prealgebraicity, if R̈I is Leibniz, then
RI is Leibniz. Thus, we have the following syntactic left fortification
hierarchy (in which the dotted arrows hold under prealgebraicity):

R̈IL̇I-Fortified

✠�
�
�
�

..........❘
R̈ILI-Fortified RIL̇I-Fortified

..........❘ ✠�
�
�
�

RILI-Fortified

I is syntactically weakly algebraizable (abbreviated to syntacti-
cally W algebraizable) if:

• I is RILI-fortified;

• I is protoalgebraic;
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• I is system injective.

By Corollary 300, under protoalgebraicity, the six properties of system
injectivity, left injectivity, system reflectivity, left reflectivity, system com-
plete reflectivity and left complete reflectivity coincide. This enables us to
formulate the following alternative characterization of syntactic weak alge-
braizability.

Theorem 923 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is syntactically protoalgebraic and system (or, equivalently, left)
truth equational.

Proof: Assume that I is syntactically weakly algebraizable. Then, on the
one hand, it is protoalgebraic and has a Leibniz reflexive core. Thus, by The-
orem 805, it is syntactically protoalgebraic. On the other, it is, by Theorem
300, left c-reflective and has a left adequate left Suszko core. Therefore, by
Theorem ??, it is left truth equational.

Assume, conversely, that I is syntactically protoalgebraic and left truth
equational. Then, by Theorem 805, it is protoalgebraic and has a Leibniz
reflexive core, and, by Theorem 870, it is left c-reflective and has a left
adequate left Suszko core. Therefore, by definition, I is syntactically weakly
algebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic weak algebraizability classes of π-insti-
tutions.

Theorem 924 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if I is weakly algebraizable and RILI-fortified.

Proof: I is syntactically weakly algebraizable if and only if, by definition,
it is RILI-fortified, protoalgebraic and system injective, i.e., iff it is, by
definition, RILI-fortified and weakly algebraizable. ∎

Previous results, put together, also allow us to provide an alternative
characterization of syntactic weak algebraizability in terms of isomorphisms
between complete lattices of theory systems.

Theorem 925 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable
if and only if it is RILI-fortified, stable and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism.
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Proof: We have that I is syntactically weakly algebraizable if and only if,
by Theorem 924, it is RILI-fortified and weakly algebraizable, if and only
if, by Theorem 298, it it RILI-fortified, stable and, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order isomorphism. ∎

Next, we show that syntactic weak algebraizability may also be character-
ized by stability in conjunction with the existence of an equivalence between
the systemic skeleton of a π-institution and its algebraic π-structure counter-
part via a pair of conjugate transformations. To start, we define the systemic
skeleton of a given π-institution.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that ThSys(I) forms a complete lattice
ThSys(I) = ⟨ThSys(I),≤⟩ under signature wise inclusion. Therefore, we
are justified in defining the π-structure

KI = ⟨F,KI⟩
of I by stipulating that KI ∶ PSEN → PSEN is the closure family on F

corresponding to the closed set family ThSys(I). We call KI the systemic
skeleton of I .

We give an example to show that, in general, KI is not a π-institution,
since KI ∶ PSEN → PSEN may not satisfy structurality.

Example 926 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be defined as follows:

• Sign♭ is the category with objects Σ,Σ′ and, except the identities, a
morphism f ∶ Σ → Σ and two morphisms g, h ∶ Σ → Σ′, satisfying the
following composition rules:

f ○ f = f, gf = h, hf = h.

• SEN♭ ∶ Sign♭ → Set is defined by setting SEN♭(Σ) = {0,1,2}, SEN♭(Σ′) ={a, b, c} and

x ∈ SEN♭(Σ) SEN♭(f)(x) SEN♭(g)(x) SEN♭(h)(x)
0 0 a a

1 0 b a

2 2 c c

• Finally, N ♭ is the trivial category of natural transformations (consisting
of the projections only).
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Next define the π-institution I = ⟨F,C⟩ by setting

CΣ = {{2},{1,2},{0,1,2}} and CΣ′ = {{b, c},{a, b, c}}.
This π-institution has six theory families, having the lattice structure shown
on the left below. It has, however, only three theory systems, whose lattice
structure is given on the right.

SEN♭

�
�
� ❅

❅
❅

12 abc 012 bc
❍❍❍❍❍❍❍❍

2 abc 12 bc

❅
❅
❅ �

�
�

2 bc

SEN♭

2 abc

2 bc

The theory systems of I are the theory families of the systemic skeleton
KI = ⟨F,KI⟩. We can see that KI is not a π-institution by considering
Φ = {1} ⊆ SEN♭(Σ). We have

SEN♭(g)(KIΣ({1})) = SEN♭(g)(⋂{TΣ ∶ {{1},∅} ≤ T ∈ ThSys(I)})
= SEN♭(g)({0,1,2})
= {a, b, c}.

On the other hand,

KIΣ′(SEN♭(g)({1})) = KIΣ′({b})
= ⋂{TΣ′ ∶ {∅,{b}} ≤ T ∈ ThSys(I)}
= {b, c}.
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Therefore

SEN♭(g)(KIΣ({1})) ⊈KIΣ′(SEN♭(g)({1}))
showing that KI is not structural and, hence, KI = ⟨F,KI⟩ is a π-structure,
but not a π-institution.

We now resume our work on the characterization of syntactic weak al-
gebraizability. We will again make use of the algebraic π-structure QI∗ =⟨F2,DI∗⟩ associated with a protoalgebraic π-institution I . Recall that this
is the π-structure whose closure family is the one corresponding to the closure
set family ConSysI∗(F).

Our first result connecting syntactic weak algebraizability of a π-insti-
tution with the associated algebraic π-structure shows that, if a π-institution
is syntactically weakly algebraizable, then its systemic skeleton KI is equiva-
lent to its associated algebraic π-structure QI∗ via a conjugate pair of trans-
formations.

Theorem 927 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically weakly algebraizable π-institution based on F. Then

KI is equivalent to QI∗ via a conjugate pair (τ ♭, ↔I♭) ∶ KI ⇄ QI∗ of transfor-
mations. More precisely:

• I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, is a set
of witnessing transformations of the syntactic protoalgebraicity of I;

• τ ♭ ∶ (SEN♭)ω → (SEN♭)2, with a single distinguished argument, is a set
of witnessing equations for the left truth equationality of I.

Proof: Suppose that I is syntactically weakly algebraizable. Then, by defi-
nition, I is syntactically protoalgebraic and left truth equational. Therefore,
there exist a set I♭ ∶ (SEN♭)ω → SEN♭ of natural transformations in N ♭,
with two distinguished arguments, witnessing the syntactic protoalgebraic-
ity of I , and a set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natural transformations in
N ♭, with a single distinguished argument, witnessing left truth equationality.
To verify the conclusion, observe, first, that τ ♭Σ ∶ SEN♭(Σ) → SenFam(F2),
defined, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), as the sentence family

τ ♭Σ[φ] and
↔

I♭Σ ∶ SEN♭(Σ)2 → SenFam(F), defined, for all Σ ∈ ∣Sign♭∣ and all

φ,ψ ∈ SEN♭(Σ), as the sentence family
↔

I♭Σ[φ,ψ] are as required. Therefore,
by Proposition 898, it suffices to show that:

(a) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈KIΣ(Φ) iff τ ♭Σ[φ] ≤DI∗(τ ♭Σ[Φ]);
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(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
DI∗(φ ≈ ψ) =DI∗(τ ♭[↔I♭Σ[φ,ψ]]).

For (a), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Note that, for all T ∈
ThSys(I), we have

Φ ⊆ TΣ iff Φ ⊆
←Ð
T Σ (T ∈ ThSys(I))

iff τ ♭Σ[Φ] ≤ Ω(T ) (left truth equationality)

and, similarly,
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).

Therefore, φ ∈ KIΣ(Φ) if and only if, for all T ∈ ThSys(I), Φ ⊆ TΣ implies
φ ∈ TΣ, if and only if, for all T ∈ ThSys(I), τ ♭Σ[Φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤
Ω(T ), if and only if, by stability, for all T ∈ ThFam(I), τ ♭Σ[Φ] ≤ Ω(T ) implies
τ ♭Σ[φ] ≤ Ω(T ), if and only if, by Proposition 916, τ ♭Σ[φ] ≤ DI∗(τ ♭Σ[Φ]).

For (b), let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have, for all T ∈
ThSys(I),

φ ≈ ψ ∈ ΩΣ(T ) iff
↔

I♭Σ[φ,ψ] ≤ T (Corollary 791)

iff
↔

I♭Σ[φ,ψ] ≤←ÐT (T ∈ ThSys(I))
iff τ ♭[↔I♭Σ[φ,ψ]] ≤ Ω(T ). (left truth equationality)

Using again Proposition 916 and stability, we conclude that

DI∗(φ ≈ ψ) =DI∗(τ ♭[↔I♭Σ[φ,ψ]]).
Therefore KI is equivalent to QI∗ via (τ ♭, ↔I♭) ∶ KI ⇄ QI∗. ∎

Towards the converse, we show, first, that, if a π-institution I = ⟨F,C⟩ is
such that there exists an equivalence (τ ♭, I♭) ∶ KI ⇄ Q, via a conjugate pair of
transformations, between its systemic skeleton and an algebraic π-structure
Q, then I♭ defines Leibniz congruence systems of theory systems of I .

Recall that for a π-institution I = ⟨F,C⟩, based on an algebraic sys-
tem F = ⟨Sign♭,SEN♭,N ♭⟩, and a set I♭ ∶ (SEN♭)ω → SEN♭ of natural
transformations in N ♭, with two distinguished arguments, we define, for all
T ∈ SenFam(I), I♭(T ) = {I♭Σ(T )}Σ∈∣Sign♭∣ by setting, for all Σ ∈ ∣Sign♭∣,

I♭Σ(T ) = {⟨φ,ψ⟩ ∈ SEN♭(Σ)2 ∶ I♭Σ[φ,ψ] ≤ T}.
Proposition 928 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If KI = ⟨F,KI⟩ is equivalent to
an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄Q of transfor-
mations, then, for all T ∈ ThSys(I), Ω(T ) = I♭(T ).
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Proof: Let T ∈ ThSys(I). It suffices to show, by Corollary 98, that I♭(T ) is
a congruence system on F compatible with T . We know by Lemma 93 that
it is a relation system on F.

Suppose Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Since Q = ⟨F2,D⟩ is algebraic,
we have φ ≈ φ ∈ DΣ(∅). Therefore, by interpretability, I♭Σ[φ,φ] ≤ KI(∅) =
C(∅) ≤ T . Hence, ⟨φ,φ⟩ ∈ I♭Σ(T ) and I♭(T ) is reflexive.

Suppose, now, that Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Since Q is algebraic,
we have that ψ ≈ φ ∈ DΣ(φ ≈ ψ). Therefore, by interpretability, I♭Σ[ψ,φ] ≤
KI(I♭Σ[φ,ψ]). Since T ∈ ThSys(I), this implies that, if I♭Σ[φ,ψ] ≤ T , then
I♭Σ[ψ,φ] ≤ T . In other words ⟨φ,ψ⟩ ∈ I♭Σ(T ) implies ⟨ψ,φ⟩ ∈ I♭Σ(T ). Therefore,
I♭(T ) is also symmetric.

Suppose, next, that Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ). Since Q is al-
gebraic, we have that φ ≈ χ ∈ DΣ(φ ≈ ψ,ψ ≈ χ). Therefore, by inter-
pretability, I♭Σ[φ,χ] ≤ KI(I♭Σ[φ,ψ], I♭Σ[ψ,χ]). Since T ∈ ThSys(I), this
implies that, if I♭Σ[φ,ψ], I♭Σ[ψ,χ] ≤ T , then I♭Σ[φ,χ] ≤ T . In other words,⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ I♭Σ(T ) imply ⟨φ,χ⟩ ∈ I♭Σ(T ). Therefore, I♭(T ) is transitive.

We have now shown that I♭(T ) is an equivalence system on F. It remains
to show that it satisfies the congruence property and that it is compatible
with T .

Suppose that σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ). Since Q is alge-
braic, we have that σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ DΣ(φ⃗ ≈ ψ⃗) (recall that φ⃗ ≈ ψ⃗ means{φi ≈ ψi ∶ i < k}). Therefore, by interpretability,

I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤KI(⋃{I♭Σ[φi, ψi] ∶ i < k}).
Since T ∈ ThSys(I), this implies that, if, for all i < k, I♭Σ[φi, ψi] ≤ T , then

I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤ T . In other words ⟨φi, ψi⟩ ∈ I♭Σ(T ), for all i < k, imply

⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ I♭Σ(T ). Therefore, I♭(T ) satisfies the congruence property.
Finally, to see that I♭(T ) is compatible with T , suppose that Σ ∈ ∣Sign♭∣

and φ,ψ ∈ SEN♭(Σ). Since Q is algebraic and τ ♭ ∈ N ♭, we have, by Lemma
907,

τ ♭Σ[ψ] ≤D(τ ♭Σ[φ], φ ≈ ψ).
By interpretability, this yields

I♭[τ ♭Σ[ψ]] ≤KI(I♭[τ ♭Σ[φ]], I♭Σ[φ,ψ]).
Since (τ ♭, I♭) is a conjugate pair, the latter is equivalent to

ψ ∈KIΣ(φ, I♭Σ[φ,ψ]).
In other words, for all T ∈ ThSys(I),

φ ∈ TΣ and ⟨φ,ψ⟩ ∈ I♭Σ(T ) imply ψ ∈ TΣ.

Hence I♭(T ) is compatible with T . ∎
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Using Proposition 928, we can show that stability and the existence of
an equivalence between the systemic skeleton and an algebraic π-structure
ensure syntactic protoalgebraicity.

Theorem 929 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is stable and its systemic skeleton
KI = ⟨F,KI⟩ is equivalent to an algebraic π-structure Q via a conjugate pair(τ ♭, I♭) ∶ KI ⇄ Q of transformations, then I is syntactically protoalgebraic,
with witnessing transformations I♭.

Proof: Suppose that I is stable and its systemic skeleton KI = ⟨F,KI⟩ is
equivalent to an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄Q
of transformations. Then, we have, for all T ∈ ThFam(I),

Ω(T ) = Ω(←ÐT ) (by stability)

= I♭(←ÐT ) (by Proposition 928)
= I♭(T ). (by Proposition 99)

Therefore, I is syntactically protoalgebraic with witnessing transformations
I♭. ∎

Finally, before the main theorem, we show that stability and the exis-
tence of a transformational equivalence between the systemic skeleton and
an algebraic π-structure ensure left truth equationality.

Theorem 930 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is stable and its systemic skeleton
KI = ⟨F,KI⟩ is equivalent to an algebraic π-structure Q via a conjugate pair(τ ♭, I♭) ∶ KI ⇄ Q of transformations, then I is left truth equational, with
witnessing equations τ ♭.

Proof: We have, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈
←Ð
T Σ iff I♭[τ ♭Σ[φ]] ≤←ÐT ((τ ♭, I♭) an equivalence)

iff I♭[τ ♭Σ[φ]] ≤ T (by Proposition 99)
iff τ ♭Σ[φ] ≤ Ω(T ). (by Theorem 929)

Therefore, I is left truth equational, with witnessing equations τ ♭. ∎

Putting together Theorems 929, 930 and 927, we get the following fun-
damental result to the effect that syntactic weak algebraizability boils down
to stability, together with the equivalence of the systemic skeleton of a π-
institution with its associated algebraic π-structure via a conjugate pair of
transformations.
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Theorem 931 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is stable and its systemic skeleton KI is equivalent to QI∗ via
a conjugate pair (τ ♭, I♭) ∶ KI ⇄ QI∗ of transformations.

Proof: Suppose, first, that I is stable and that KI is equivalent to QI∗ via a
conjugate pair of transformations. Then, by Theorem 929, it is syntactically
protoalgebraic and, by Theorem 930, it is left truth equational. Therefore,
by definition, it is syntactically weakly algebraizable.

If, conversely, I is syntactically weakly algebraizable, then, on the one
hand, it is protoalgebraic and, therefore, stable, and, on the other, by The-
orem 927, it is equivalent to QI∗ via a conjugate pair of transformations.
∎

Generalizing again, we show that stability together with the existence
of an equivalence of the systemic skeleton with an algebraic π-structure,
induced by conjugate transformations, is sufficient to yield syntactic weak
algebraizability.

Theorem 932 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is stable and its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair of transformations.

Proof: If I is syntactically weakly algebraizable, then the conclusion follows
from Theorem 931. Conversely, if KI is equivalent to an algebraic π-structure
via a conjugate pair of transformations, then I is syntactically protoalgebraic
by Theorem 929 and left truth equational by Theorem 930, whence it is
syntactically weakly algebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following alternative characterization of syntactically weakly
algebraizable π-institutions:

Theorem 933 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly algebraizable if
and only if it is stable and there exists a transformational order isomorphism
h ∶ ThFam(KI)→ ThFam(Q), where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 932 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 932. ∎

Let us give, in closing the section, the picture of the weak algebraiz-
ability hierarchy that we have established, consisting of both semantic and
syntactic classes of π-institutions.
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Syntactic WF Alg’ble

�
�
�
� ❅

❅
❅
❅

Syntactic W Alg’ble WF Alg’ble

❅
❅
❅
❅ �

�
�
�

W Alg’ble

12.5 Syntactic WS PreAlgebraizability

Syntactic WS prealgebraizability, requires, like syntactic WF algebraizability,
the monotonicity of the Leibniz operator on theory systems and the injectiv-
ity of the Leibniz operator on theory systems but, unlike WF algebraizability,
it requires these two properties only on theory systems and not on the entire
complete lattice of theory families. As a consequence of this weakened re-
quirement, syntactic WS prealgebraizability implies neither systemicity (as
does syntactic WF algebraizability) nor the even weaker condition of stabil-
ity (as do both kinds of syntactic algebraizability). Thus, as other conditions
that were under our scrutiny previously, it allows us to consider for member-
ship π-institutions that are not necessarily stable.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that:

• I is RIZI-(syntactically) fortified if RI is Leibniz and ZI is ade-
quate;

• I is RIŻI-(syntactically) fortified if RI is Leibniz and ŻI is ade-
quate;

• I is R̈IZI-(syntactically) fortified if R̈I is Leibniz and ZI is ade-
quate;

• I is R̈IŻI-(syntactically) fortified if R̈I is Leibniz and ŻI is ade-
quate.

Similarly with the Suszko core, it can be seen that, if ŻI is adequate, then ZI

is adequate. Moreover, since, by Proposition 952, R̈I ⊆ RI , it follows that,
under the assumption of prealgebraicity, if R̈I is Leibniz, then RI is Leibniz.
Thus, we have the following syntactic system fortification hierarchy (in
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which the dotted arrows hold under prealgebraicity):

R̈IŻI-Fortified

✠�
�
�
�

..........❘
R̈IZI-Fortified RIŻI-Fortified

..........❘ ✠�
�
�
�

RIZI-Fortified

I is syntactically weakly system prealgebraizable (abbreviated to
syntactically WS prealgebraizable) if:

• I is RIZI-fortified;

• I is prealgebraic;

• I is system injective.

By Theorem 248, under prealgebraicity, the properties of system injectiv-
ity, system reflectivity and system complete reflectivity coincide. As a result,
we have the following alternative characterization of syntactic weak system
prealgebraizability.

Theorem 934 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system preal-
gebraizable if and only if it is syntactically prealgebraic and system truth
equational.

Proof: Assume that I is syntactically weakly system prealgebraizable. Then,
on the one hand, it is prealgebraic and has a Leibniz reflexive core. Thus, by
Theorem 788, it is syntactically prealgebraic. On the other, it is, by Theo-
rem 248, system c-reflective and has an adequate system core. Therefore, by
Theorem 887, it is system truth equational.

Assume, conversely, that I is syntactically prealgebraic and system truth
equational. Then, by Theorem 788, it is prealgebraic and has a Leibniz
reflexive core, and, by Theorem 887, it is system c-reflective and has an
adequate system core. Therefore, by definition, I is syntactically weakly
system prealgebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic weak system prealgebraizability classes
of π-institutions.
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Theorem 935 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system prealge-
braizable if and only if I is weakly system prealgebraizable and RIZI-fortified.

Proof: I is syntactically weakly system prealgebraizable if and only if, by
definition, it is RIZI-fortified, prealgebraic and system injective, i.e., iff it
is, by definition, RIZI-fortified and weakly system prealgebraizable. ∎

Previous results, put together, also allow us to provide an alternative
characterization of syntactic weak system prealgebraizability in terms of mor-
phisms between complete lattices of theory systems.

Theorem 936 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system prealge-
braizable if and only if it is RIZI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding.

Proof: We have that I is syntactically weakly system prealgebraizable if
and only if, by Theorem 935, it is RIZI-fortified and weakly system prealge-
braizable, if and only if, by Theorem 256, it it RIZI-fortified and, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI∗(A)
is an order embedding ∎

Next, we show that syntactic weak system prealgebraizability may also
be characterized by the existence of an equivalence between the systemic
skeleton of a π-institution and an algebraic π-structure associated with the
π-institution (different, in general, than QI∗) via a pair of conjugate trans-
formations.

We embark on the path by defining first the algebraic π-structure QI●

associated with a given π-institution I .
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-

institution based on F. Recall the definition of the class AlgSys●(I) of all
F-algebraic systems reduced with respect to I-filter systems:

AlgSys●(I) = {A ∶ (∃T ∈ FiSysI(A))(ΩA(T ) =∆A)}.
Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, we define the class of I●-
congruence systems on A by

ConSysI●(A) = {θ ∈ ConSys(A) ∶ A/θ ∈ AlgSys●(I)}.
It turns out that congruence systems in ConSysI●(A) have a straightforward
characterization.
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Proposition 937 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ConSysI●(A) = {θ ∈ ConSys(A) ∶ (∃T ∈ FiSysI(A))(ΩA(T ) = θ)}.
Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a
π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system.

Suppose, first, that θ ∈ ConSysI●(A). By definition, A/θ ∈ AlgSys●(I).
Thus, there exists T ′ ∈ FiSysI(A/θ), such that

ΩA/θ(T ′) =∆A/θ.

By applying the inverse of the quotient morphism ⟨I, πθ⟩ ∶ A→ A/θ, we get

(πθ)−1(ΩA/θ(T ′)) = (πθ)−1(∆A/θ).
Since ⟨I, πθ⟩ is surjective, we get by Proposition 24 and Corollary 55, that(πθ)−1(T ′) ∈ FiSysI(A) and

ΩA((πθ)−1(T ′)) = θ.
Therefore, there exists T ∈ FiSysI(A), such that ΩA(T ) = θ.

Suppose, conversely, that θ ∈ ConSys(A), with ΩA(T ) = θ, for some T ∈
FiSysI(A). Then, we have ΩA/θ(T /θ) = ∆A/θ and, therefore, by definition,
A/θ ∈ AlgSys●(I), implying that θ ∈ ConSysI●(A). ∎

In general, given a π-institution I = ⟨F,C⟩ and an F-algebraic system A,
the family ConSysI●(A) of systemic I-congruence systems on A need not be
closed under signature-wise intersections, i.e., may not form a closure family
on A2. However, we can show that, if I is prealgebraic, this is always the
case.

Proposition 938 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a prealgebraic π-institution based on F. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, ConSysI●(A) is closed under arbitrary intersections
and, therefore, forms a closure family on A2.

Proof: First, note that ConSysI●(A) has a top element ∇A. To see this,
observe that A/∇A is a trivial algebraic system, which is always a member
of AlgSys●(I).

It suffices now to show that ConSysI●(A) is closed under arbitrary inter-
sections. To this end, suppose θi ∈ ConSysI●(A), for i ∈ I. By Proposition
937, for all i ∈ I, there exists T i ∈ FiSysI(A/θi), such that ΩA(T i) = θi. But,
by Lemma 23 and prealgebraicity, we get that

ΩA(⋂
i∈I

T i) =⋂
i∈I

ΩA(T i) =⋂
i∈I

θi.
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Now, again by Proposition 937, we conclude that ⋂i∈I θi ∈ ConSysI●(A). ∎

Applying Proposition 938 to the algebraic system F = ⟨F, ⟨I, ι⟩⟩, where⟨I, ι⟩ ∶ F→ F is the identity morphism, we get the following

Corollary 939 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, ConSysI●(F) is
closed under arbitrary intersections and, therefore, forms a closure family
on F2.

Proof: This is a special case of Proposition 938. ∎

Let I = ⟨F,C⟩ be a prealgebraic π-institution. We define, in accordance
with Corollary 939, the systemic algebraic π-structure QI● associated
with I to be the π-structure QI● = ⟨F2,DI●⟩, where DI● is the closure
(operator) family corresponding to the closure family ConSysI●(F).

We recall, also, the defining of the systemic skeleton of I , i.e., of the
π-structure

KI = ⟨F,KI⟩
of I , where KI ∶ PSEN → PSEN is the closure family on F corresponding to
the closet set family ThSys(I).

Now we have the components needed to resume work on the characteriza-
tion of syntactic weak system prealgebraizability. Our first result connecting
syntactic weak system prealgebraizability of a π-institution with the asso-
ciated systemic algebraic π-structure shows that, if a π-institution is syn-
tactically weakly system prealgebraizable, then its systemic skeleton KI is
equivalent to its associated systemic algebraic π-structure QI● via a conju-
gate pair of transformations.

Theorem 940 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically weakly system prealgebraizable π-institution based on

F. Then KI is equivalent to QI● via a conjugate pair (τ ♭, ↔I♭) ∶ KI ⇄ QI● of
transformations. More precisely:

• I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, is a set
of witnessing transformations of the syntactic prealgebraicity of I;

• τ ♭ ∶ (SEN♭)ω → (SEN♭)2, with a single distinguished argument, is a set
of witnessing equations for the system truth equationality of I.

Proof: Suppose that I is syntactically weakly system prealgebraizable.
Then, by definition, I is syntactically prealgebraic and system truth equa-
tional. Therefore, there exist a set I♭ ∶ (SEN♭)ω → SEN♭ of natural trans-
formations in N ♭, with two distinguished arguments, witnessing the syn-
tactic prealgebraicity of I , and a set τ ♭ ∶ (SEN♭)ω → (SEN♭)2 of natu-
ral transformations in N ♭, with a single distinguished argument, witness-
ing system truth equationality. To verify the conclusion, observe, first, that
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τ ♭Σ ∶ SEN♭(Σ)→ SenFam(F2), defined, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
as the sentence family τ ♭Σ[φ], and

↔

I♭Σ ∶ SEN♭(Σ)2 → SenFam(F), defined, for

all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), as the sentence family
↔

I♭Σ[φ,ψ], are
as required. Therefore, by Proposition 898, it suffices to show that:

(a) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈KIΣ(Φ) iff τ ♭Σ[φ] ≤ DI●(τ ♭Σ[Φ]);

(b) For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
DI●(φ ≈ ψ) = DI●(τ ♭[↔I♭Σ[φ,ψ]]).

For (a), let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Note that, for all T ∈
ThSys(I), we have, by system truth equationality,

Φ ⊆ TΣ iff τ ♭Σ[Φ] ≤ Ω(T )
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).

Therefore, φ ∈KIΣ(Φ) if and only if, for all T ∈ ThSys(I), Φ ⊆ TΣ implies φ ∈
TΣ, if and only if, for all T ∈ ThSys(I), τ ♭Σ[Φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ),
if and only if, by Proposition 937, τ ♭Σ[φ] ≤DI●(τ ♭Σ[Φ]).

For (b), let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have, for all T ∈
ThSys(I),

φ ≈ ψ ∈ ΩΣ(T ) iff
↔

I♭Σ[φ,ψ] ≤ T (Corollary 770)

iff τ ♭[↔I♭Σ[φ,ψ]] ≤ Ω(T ).
(system truth equationality)

Using again Proposition 937, we conclude that

DI●(φ ≈ ψ) = DI●(τ ♭[↔I♭Σ[φ,ψ]]).
Therefore KI is equivalent to QI● via (τ ♭, ↔I♭) ∶ KI ⇄ QI●. ∎

We show, next that the existence of an equivalence between the systemic
skeleton of a given π-institution and an algebraic π-structure ensures syntac-
tic prealgebraicity.

Theorem 941 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If the systemic skeleton KI = ⟨F,KI⟩ of I
is equivalent to an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄
Q of transformations, then I is syntactically prealgebraic, with witnessing
transformations I♭.
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Proof: Suppose that KI = ⟨F,KI⟩ is equivalent to an algebraic π-structure
Q via a conjugate pair (τ ♭, I♭) ∶ KI ⇄ Q of transformations. Then, we have,
by Proposition 928, that, for all T ∈ ThSys(I), Ω(T ) = I♭(T ). Therefore, I
is syntactically prealgebraic with witnessing transformations I♭. ∎

Finally, as a last step before the main theorem, we show that the existence
of a transformational equivalence between the systemic skeleton of a given
π-institution and an algebraic π-structure ensures system truth equationality.

Theorem 942 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If the systemic skeleton KI = ⟨F,KI⟩ of
I is equivalent to an algebraic π-structure Q via a conjugate pair (τ ♭, I♭) ∶
KI ⇄Q of transformations, then I is system truth equational, with witnessing
equations τ ♭.

Proof: We have, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ TΣ iff I♭[τ ♭Σ[φ]] ≤ T ((τ ♭, I♭) an equivalence)

iff τ ♭Σ[φ] ≤ Ω(T ). (by Theorem 941)

Therefore, I is system truth equational, with witnessing equations τ ♭. ∎

Putting together Theorems 941, 942 and 940, we get the following fun-
damental result to the effect that syntactic weak system prealgebraizability
boils down to the existence of an equivalence of the systemic skeleton of a π-
institution with its associated systemic algebraic π-structure via a conjugate
pair of transformations.

Theorem 943 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system prealge-
braizable if and only if its systemic skeleton KI is equivalent to QI● via a
conjugate pair (τ ♭, I♭) ∶ KI ⇄QI● of transformations.

Proof: Suppose, first, that KI is equivalent to QI● via a conjugate pair of
transformations. Then, by Theorem 941, it is syntactically prealgebraic and,
by Theorem 942, it is system truth equational. Therefore, by definition, it is
syntactically weakly system prealgebraizable. If, conversely, I is syntactically
weakly system prealgebraizable, then, by Theorem 940, it is equivalent to QI●

via a conjugate pair of transformations. ∎

It turns out that the existence of an equivalence of the systemic skele-
ton with an algebraic π-structure, induced by conjugate transformations, is
sufficient to yield syntactic weak system prealgebraizability.

Theorem 944 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system preal-
gebraizable if and only if its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair of transformations.
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Proof: If I is syntactically weakly system prealgebraizable, then the conclu-
sion follows from Theorem 943. Conversely, if KI is equivalent to an algebraic
π-structure via a conjugate pair of transformations, then I is syntactically
prealgebraic by Theorem 941 and system truth equational by Theorem 942,
whence it is syntactically weakly system prealgebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices, we
have the following alternative characterization of syntactically weakly system
prealgebraizable π-institutions:

Theorem 945 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically weakly system preal-
gebraizable if and only if there exists a transformational order isomorphism
h ∶ ThFam(KI)→ ThFam(Q), where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 944 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 944. ∎

12.6 Syntactic WLC PreAlgebraizability

Between syntactic WS prealgebraizability and syntactic weak algebraizability
we find the class of syntactic weakly left c-reflective prealgebraizability. This
strengthens WS prealgebraizability by replacing system c-reflectivity by the
stronger condition of left c-reflectivity. Alternatively, it weakens syntactic
weak algebraizability by replacing ptotoalgebraicity by prealgebraicity.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is syntactically weakly left c-reflectively pre-
algebraizable (abbreviated to syntactically WLC prealgebraizable) if:

• I is RILI-fortified;

• I is prealgebraic;

• I is left c-reflective.

We have the following alternative characterization of syntactic WLC pre-
algebraizability.

Theorem 946 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if it is syntactically prealgebraic and left truth equational.

Proof: Assume that I is syntactically WLC prealgebraizable. Then, on
the one hand, it is prealgebraic and has a Leibniz reflexive core. Thus, by



Voutsadakis CHAPTER 12. SYNTACTIC HIERARCHY II 903

Theorem 788, it is syntactically prealgebraic. On the other, it is left c-
reflective and has a left adequate left Suszko core. Therefore, by Theorem
870, it is left truth equational.

Assume, conversely, that I is syntactically prealgebraic and left truth
equational. Then, by Theorem 788, it is prealgebraic and has a Leibniz
reflexive core, and, by Theorem 870, it is left c-reflective and has a left
adequate left Suszko core. Therefore, by definition, I is syntactically WLC
prealgebraizable. ∎

Directly from the definitions, we may derive the following relationship
between the semantic and syntactic WLC prealgebraizability classes of π-
institutions.

Theorem 947 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if I is WLC prealgebraizable and RILI-fortified.

Proof: I is syntactically WLC prealgebraizable if and only if, by defini-
tion, it is RILI-fortified, prealgebraic and left c-reflective, i.e., iff it is, by
definition, RILI-fortified and WLC prealgebraizable. ∎

For an alternative characterization of syntactic WLC prealgebraizabil-
ity, we take advantage of the corresponding characterization of WLC pre-
algebraizability in terms of morphisms between complete lattices of theory
systems.

Theorem 948 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable
if and only if it is RILI-fortified and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI∗(A).
Proof: We have that I is syntactically WLC prealgebraizable if and only if,
by Theorem 947, it is RILI-fortified and WLC prealgebraizable, if and only
if, by Theorem 276, it it RILI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI∗(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding ΩA ∶ FiSysI(A)→ ConSysI∗(A). ∎

Recall that syntactic weak system prealgebraizability was characterized
by the existence of an equivalence between the systemic skeleton KI of a
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π-institution I and the systemic algebraic π-structure QI● associated with
the π-institution, via a pair of conjugate transformations. To adapt this
characterization to capture syntactic WLC prealgebraizability, we need to
postulate alongside this equivalence the property of left truth equationality
of the π-institution.

Theorem 949 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if it is left truth equational and its systemic skeleton KI is equivalent
to QI● via a conjugate pair (τ ♭, I♭) ∶ KI ⇄QI● of transformations.

Proof: Suppose, first, that I is left truth equational and KI is equiva-
lent to QI● via a conjugate pair of transformations. Then, I is left truth
equational and, by Theorem 941, it is syntactically prealgebraic. Therefore,
by definition, it is syntactically WLC prealgebraizable. If, conversely, I is
syntactically WLC prealgebraizable, then, by Theorem 946, it is left truth
equational and it is weakly system prealgebraizable. Thus, by Theorem 940,
it is equivalent to QI● via a conjugate pair of transformations. ∎

Because of Theorem 944, left truth equationality and the existence of an
equivalence of the systemic skeleton with an algebraic π-structure, induced
by conjugate transformations, is sufficient to yield syntactic WLC prealge-
braizability.

Theorem 950 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable if
and only if it is left truth equational and its systemic skeleton is equivalent
to an algebraic π-structure via a conjugate pair of transformations.

Proof: If I is syntactically WLC prealgebraizable, then the conclusion fol-
lows from Theorem 949. Conversely, if KI is equivalent to an algebraic
π-structure via a conjugate pair of transformations, then I is syntactically
prealgebraic by Theorem 941. Since, by hypothesis, it is also left truth equa-
tional, it is syntactically WLC prealgebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following alternative characterization of syntactically WLC pre-
algebraizable π-institutions:

Theorem 951 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically WLC prealgebraizable
if and only if it is left truth equational and there exists a transformational
order isomorphism h ∶ ThFam(KI) → ThFam(Q), where Q is an algebraic
π-structure.
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Proof: The “only if” follows by Theorem 950 and Theorem 893. The “if” is
given by Theorem 901 and Theorem 950. ∎

Let us give, in closing the section, the picture of the weak prealgebraiz-
ability hierarchy that we have established, consisting of both semantic and
syntactic classes of π-institutions.
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13.1 The Binary Reflexive Core

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that the reflexive core of I is the collection

RI = {ρ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ Thm(I))}
= {ρ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ, χ⃗ ∈ SEN♭(Σ))(ρ♭Σ(φ,φ, χ⃗) ⊆ ThmΣ(I))}.

We define the binary reflexive core of I as the collection

BI ∶ (SEN♭)2 → SEN♭

of binary natural transformations in N ♭ given by:

BI = {ρ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ Thm(I))}
= {ρ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ(φ,φ) ⊆ ThmΣ(I))}.

It turns out that the binary reflexive core of I coincides with the collection
R̈I .

Proposition 952 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then BI = R̈I .

Proof: By Theorem 107. ∎

In view of Proposition 952, we drop the notation BI and denote the
binary reflexive core of I by the symbol R̈I , without fear of ambiguity.

13.2 Syntactic PreEquivalentiality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. Recall that I is preequivalential if it is prealgebraic
and system extensional, i.e., if:

• For all T,T ′ ∈ ThSys(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);

• For all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩).

We say that I is syntactically preequivalential if there exists I♭ ∶(SEN♭)2 → SEN♭ in N ♭, without parameters, such that I♭ has:

• reflexivity;
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• global system transitivity;

• global system compatibility; and

• global system modus ponens.

Note that because all these conditions are imposed on theory systems and
because I♭ is parameter-free, they are all equivalent to the corresponding
local properties. Therefore, an equivalent definition would require reflexivity,
local system transitivity, local system compatibility and local system modus
ponens. Because of this, we sometimes omit the global/local specification
and simply say “system” in qualifying the corresponding property.

In case I is syntactically preequivalential, we call I♭ a set of witnessing
natural transformations, or, more simply, witnessing transformations
(of/for the syntactic preequivalentiality of I).

An interesting first observation, that will prove handy later, is that syn-
tactic preequivalentiality is inherited by all π-subinstitutions of a syntacti-
cally preequivalential π-institution.

Theorem 953 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I ′ = ⟨F′,C ′⟩ a π-subinstitution of I induced
by the algebraic subsystem F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ ≤ F. If I is syntacti-
cally preequivalential with witnessing transformations I♭ ⊆ N ♭, then I ′ is also
syntactically preequivalential, with witnessing transformations I ′ ♭ ∈ N ′ ♭.

Proof: Suppose that I is syntactically preequivalential with witnessing
transformations I♭ ∶ (SEN♭)2 → SEN♭. To prove the conclusion, it suffices
to show that I ′ ♭ is reflexive, system transitive and has both the system com-
patibility and the system modus ponens in I ′.

Let, first, Σ ∈ ∣Sign♭∣ and φ ∈ SEN′ ♭(Σ). Then, clearly, I ′ ♭Σ [φ,φ] ≤ SEN′ ♭

and I ′ ♭Σ [φ,φ] = I♭Σ[φ,φ] ≤ Thm(I). So we get that

I ′ ♭Σ [φ,φ] ≤ Thm(I) ∩ SEN′ ♭ = Thm(I ′).
It follows that I ′ ♭ is reflexive in I ′.

Suppose, next, that T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN′ ♭(Σ),
such that

I ′ ♭Σ [φ,ψ] ≤ T ∩ SEN′ ♭ and I ′ ♭Σ [ψ,χ] ≤ T ∩ SEN′ ♭.

Then I♭Σ[φ,ψ] ≤ T and I♭Σ[ψ,χ] ≤ T , whence, by the global system transitivity
of I♭ in I , we get that I♭Σ[φ,χ] ≤ T . Since, by hypothesis, φ,χ ∈ SEN′ ♭(Σ),
we get that I ′ ♭Σ [φ,χ] ≤ T ∩ SEN′ ♭. This shows that I ′ ♭ is globally system
transitive in I ′.

For system compatibility, let T ∈ ThSys(I), σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣ and

φ,ψ, χ⃗ ∈ SEN′ ♭(Σ), such that
↔

I ′ ♭Σ[φ,ψ] ≤ T ∩ SEN′ ♭. Then we get that
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↔

I♭Σ[φ,ψ] ≤ T , whence, we obtain I♭Σ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T . Since σ♭ ∈ N ♭

and φ,ψ, χ⃗ ∈ SEN′ ♭(Σ), this yields that

I ′ ♭Σ [σ′ ♭Σ (φ, χ⃗), σ′ ♭Σ (ψ, χ⃗)] ≤ T ∩ SEN′ ♭.

Therefore, I ′ ♭ has the system compatibility in I ′.
For the system MP, assume that T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈

SEN′ ♭(Σ), such that φ ∈ TΣ ∩ SEN′ ♭(Σ) and I ′ ♭Σ [φ,ψ] ≤ T ∩ SEN′ ♭. Then
φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T , whence we get that ψ ∈ TΣ. Since, by hypothesis,
ψ ∈ SEN′ ♭(Σ), we get that ψ ∈ TΣ ∩ SEN′ ♭(Σ). Therefore, I ′ ♭ has the system
MP in I ′.

We conclude that I ′ is also syntactically preequivalential with witnessing
transformations I ′ ♭. ∎

Since I♭ is, a fortiori, a set of witnessing transformations for the syntactic
prealgebraicity of I , we get the following result, based on Corollary 770.

Corollary 954 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically preequivalential, with
witnessing transformations I♭, if and only if, for all T ∈ ThSys(I),

↔

I♭(T ) = Ω(T ).
Proof: The “only if” is by Corollary 770. The “if” is clear, since the given

condition implies that
↔

I♭ satisfies reflexivity, global system transitivity, global
system compatibility and global system modus ponens. ∎

Based on Corollary 954, it is easy to see that syntactic preequivalentiality
transfers from a π-institution to all its gmatrix families.

Theorem 955 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically preequivalential, with
witnessing transformations I♭, if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, the I-gmatrix family ⟨A,CI,A⟩ is syntactically preequivalential.

Proof: The “if” follows by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩.
For the “only if”, assume that I is syntactically preequivalential, with wit-
nessing transformations I♭, and let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
be an F-algebraic system, T ∈ FiSysI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ).
Then, we have

⟨αΣ(φ), αΣ(ψ)⟩ ∈ ↔IAF (Σ)(T ) iff
↔

I
A

F (Σ)[αΣ(φ), αΣ(ψ)] ≤ T
iff

↔

I♭Σ[φ,ψ] ≤ α−1(T )
iff ⟨φ,ψ⟩ ∈ ΩΣ(α−1(T ))
iff ⟨φ,ψ⟩ ∈ α−1Σ (ΩAF (Σ)(T ))
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA

F (Σ)
(T ).
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Taking into account the surjectivity of ⟨F,α⟩, it follows, by Corollary 954,
that ⟨A,CI,A⟩ is also syntactically preequivalential, with witnessing trans-
formations IA. ∎

It turns out that syntactic preequivalentiality implies preequivalentiality.

Theorem 956 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically preequivalential, then
it is preequivalential.

Proof: Suppose that I is syntactically preequivalential, with witnessing
transformations I♭ ∶ (SEN♭)2 → SEN♭. Then, it is a fortiori syntactically
prealgebraic and, hence, by Theorem 771, prealgebraic. Thus, the Leibniz
operator is monotone on theory systems. It suffices, therefore, to show that
I is system extensional. To this end, let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ), such that

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩).

Thus, by Theorem 953 and Corollary 954,

↔

I ′ ♭Σ[φ,ψ] ≤ T ∩ ⟨φ,ψ⟩.
Therefore,

↔

I♭Σ[φ,ψ] ≤ T , which, again by Corollary 954, implies that ⟨φ,ψ⟩ ∈
ΩΣ(T ). Since, by Proposition 89, the reverse inclusion always holds, I is also
system extensional and, hence, preequivalential. ∎

Apart from the definability of Leibniz congruence systems of theory sys-
tems, syntactic preequivalentiality has some additional important conse-
quences. Namely, it implies that the binary reflexive core has the system
modus ponens and that it also has the extensionality property. Before we
look at those results more closely, we give a key lemma to the effect that in
a syntactically preequivalential π-institution, any set of witnessing transfor-
mations is included in the binary reflexive core of the π-institution.

Lemma 957 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically preequivalential π-institution, with witnessing trans-
formations I♭ ∶ (SEN♭)2 → SEN♭. Then I♭ ⊆ R̈I .

Proof: Since I♭ is parameter free and reflexive in I , we get, by definition of
BI and Proposition 952, that I♭ ⊆ BI = R̈I . ∎

Now we formalize the fact that syntactic preequivalentiality implies the
system modus ponens property for the binary reflexive core.

Proposition 958 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically preequivalential, then
R̈I has the system modus ponens in I.
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Proof: Suppose that I is syntactically preequivalential and let T ∈ ThSys(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and R̈IΣ[φ,ψ] ≤ T . Then
φ ∈ TΣ and, by Lemma 957, I♭Σ[φ,ψ] ≤ T . Since I♭ has the system MP in I ,

we conclude that ψ ∈ TΣ. Therefore, R̈I has the system MP in I . ∎

The next property that is implied by syntactic preequivalentiality is the
extensionality of the binary reflexive core. Before introducing the concept,
we take a look at a technical lemma that will serve to justify its formulation.

Lemma 959 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and X,Y ∈ SenSys(I). Then the following condi-
tions are equivalent:

(a) For all T ∈ ThFam(I), X ≤ T if and only if Y ≤ T ;

(b) For all T ∈ ThSys(I), X ≤ T if and only if Y ≤ T .

Proof: That (a)⇒(b) is obvious, since every theory system of I is also a
theory family. For (b)⇒(a), assume that (b) holds and let T ∈ ThFam(I),
such that X ≤ T . Then, by Lemma 1,

←Ð
X ≤

←Ð
T . Since X ∈ SenSys(I), by

Proposition 2, we get that X ≤
←Ð
T . Therefore, by hypothesis, since

←Ð
T ∈

ThSys(I), we obtain Y ≤
←Ð
T ≤ T . By symmetry, we conclude that, for all

T ∈ ThFam(I), X ≤ T if and only if Y ≤ T . ∎

Due to Lemma 959 and the fact that both the reflexive core and the
binary reflexive core yield sentence systems of I under substitution, we make
the following definition (without the need for distinguishing between a family
versus system version):

Definition 960 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. The binary reflexive core R̈I is exten-
sional in I if and only if, for all T ∈ ThSys(I) (or equivalently, by Lemma
959, for all T ∈ ThFam(I)), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

R̈IΣ[φ,ψ] ≤ T if and only if RIΣ[φ,ψ] ≤ T.
Note that, since, by Lemma 104, R̈IΣ[φ,ψ] ≤ RIΣ[φ,ψ], for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ), the right-to-left implication in Definition 960 always
holds. Therefore one has, equivalently, that R̈I is extensional if and only if,
for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

R̈IΣ[φ,ψ] ≤ T implies RIΣ[φ,ψ] ≤ T.
This can be taken to justify the name chosen for this property.

As mentioned previously, and shown in the next proposition, syntactic
preequivalentiality implies the extensionality of the binary reflexive core:
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Proposition 961 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically preequivalential, then
R̈I is extensional.

Proof: Suppose I is a syntactically preequivalential π-institution, with wit-
nessing transformations I♭ ∶ (SEN♭)2 → SEN♭ in N ♭. Let T ∈ ThSys(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that R̈IΣ[φ,ψ] ≤ T . Then, by Lemma

957, we get that
↔

I♭Σ[φ,ψ] ≤ T . Thus, by Corollary 954, we get that ⟨φ,ψ⟩ ∈
ΩΣ(T ). Since I is syntactically preequivalential, it is a fortiori syntactically
prealgebraic, whence, by Theorems 781 and 782, we get that RI is a set of
witnessing transformations for the prealgebraicity of I and, hence, by The-
orems 782 and 783, RIΣ[φ,ψ] ≤ T . Since the reverse inclusion always holds,

we conclude that R̈I is indeed extensional in I . ∎

As a result of preceding work we obtain the following

Theorem 962 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically preequivalential, then
R̈I has the system modus ponens and is extensional in I.

Proof: By Propositions 958 and 961. ∎

We provide, next, a characterization of syntactic preequivalentiality in
terms of the preceding two properties of the binary reflexive core of the π-
institution, namely system modus ponens and extensionality. Later, we use
this characterization to provide an exact description of those preequivalential
π-institutions which are syntactically preequivalential.

In proving the reverse implication of that included in Theorem 962, we
now show that, if R̈I has the system modus ponens and is extensional in I ,
then I is syntactically preequivalential.

Theorem 963 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If R̈I has the system modus ponens and
is extensional in I, then I is syntactically preequivalential, with witnessing
transformations R̈I .

Proof: If R̈I has the system MP, then, by Lemma 104, RI has a fortiori the
global system MP. Thus, by Theorem 781, I is syntactically prealgebraic with
witnessing transformations RI . Thus, RI is globally system reflexive, glob-
ally system transitive, has the global system compatibility property and the
global system MP. Moreover, by the extensionality of R̈I , all these properties
transfer from RI to R̈I . We conclude that I is syntactically preequivalential
with witnessing transformations R̈I . ∎
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Theorems 962 and 963 provide the promised characterization of syntactic
preequivalentiality in terms of the system modus ponens and the extension-
ality of the binary reflexive core.

I is Syntactically Preequivalential ←→ R̈I has System MP

+ R̈I is Extensional.

Theorem 964 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically preequivalential if and
only if R̈I has the system modus ponens and is extensional in I.

Proof: Theorem 962 gives the “only if” and the “if” is by Theorem 963. ∎

If I is syntactically preequivalential, then R̈I defines Leibniz congruence
systems of theory systems in I . This proposition may be viewed as a special
case of Corollary 954, since R̈I forms a set of witnessing transformations.

Proposition 965 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If R̈I has system modus ponens and is
extensional in I, then, for all T ∈ ThSys(I),

Ω(T ) = R̈I(T ).
Proof: Let T ∈ ThSys(I). If R̈I has the system modus ponens and is
extensional, then, by Theorem 963, I is syntactically preequivalential with
witnessing transformations R̈I . Therefore, by Corollary 954, for all T ∈
ThSys(I), Ω(T ) = R̈I(T ). ∎

We also get another related characterization of syntactic preequivalen-
tiality.

I is Syntactically Preequivalential

←→ R̈I Defines Leibniz Congruence Systems
of Theory Systems in I .

Theorem 966 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically preequivalential if and
only if, for all T ∈ ThSys(I),

Ω(T ) = R̈I(T ).
Proof: If I is syntactically preequivalential, then, by Theorem 962, R̈I has
the system modus ponens and is extensional in I . Thus, by Proposition 965,
for all T ∈ ThSys(I), Ω(T ) = R̈I(T ).

Conversely, if, for all T ∈ ThSys(I), R̈I(T ) = Ω(T ), then, R̈I is reflex-
ive, system transitive, has the system compatibility and the system modus
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ponens. Thus, I is syntactically preequivalential with witnessing transfor-
mations R̈I . ∎

We finally show that the property that separates preequivalentiality from
syntactic preequivalentiality is exactly a sort of a local Leibniz compatibility
property with respect to the theory system generated by the binary reflexive
core.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that RI is Leibniz if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).
Similarly, we say that R̈I is Leibniz if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (C(R̈IΣ[φ,ψ]) ∩ ⟨φ,ψ⟩).

We show next that, if R̈I has the system modus ponens and is extensional
in I , then R̈I is Leibniz.

Proposition 967 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If R̈I has the system modus ponens and
is extensional in I, then R̈I is Leibniz.

Proof: Suppose that R̈I has the system MP and is extensional and let
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). By Theorem 963, I is syntactically preequiv-
alential, with witnessing transformations R̈I . Hence, it is a fortiori syntac-
tically prealgebraic, with witnessing transformations R̈I . Thus, by Theorem
788, we get

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).
Then, by Theorem 89, we get

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (C(RIΣ[φ,ψ]) ∩ ⟨φ,ψ⟩).

By hypothesis (more precisely the extensionality of R̈I), we get C(RIΣ[φ,ψ]) =
C(R̈IΣ[φ,ψ]). Therefore, we conclude that ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (C(R̈IΣ[φ,ψ]) ∩⟨φ,ψ⟩). So R̈I is Leibniz. ∎

In the opposite direction, in a preequivalential π-institution I , if the
binary reflexive core is Leibniz, then it has the system modus ponens and is
extensional in I .

Proposition 968 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a preequivalential π-institution based on F. If R̈I is Leibniz, then R̈I

has the system modus ponens and is extensional in I.
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Proof: Suppose that I is preequivalential and that R̈I is Leibniz.
For the system MP, suppose that T ∈ ThSys(I), Σ ∈ ∣Sign♭∣, and φ,ψ ∈

SEN♭(Σ), such that φ ∈ TΣ, R̈IΣ[φ,ψ] ≤ T . Then, since R̈I is Leibniz,

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (C(R̈IΣ[φ,ψ]) ∩ ⟨φ,ψ⟩).

Thus, since I is system extensional,

⟨φ,ψ⟩ ∈ ΩΣ(C(R̈IΣ[φ,ψ])).
By hypothesis, C(R̈IΣ[φ,ψ]) ≤ T , whence, by preequivalentiality,

Ω(C(R̈IΣ[φ,ψ])) ≤ Ω(T ).
We, thus, get that ⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, by compatibility of Ω(T ) with
T , we obtain ψ ∈ TΣ, showing that R̈I has the system MP in I .

For extensionality, assume that T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈
SEN♭(Σ), such that R̈IΣ[φ,ψ] ≤ T . Following the initial argument of the
preceding paragraph mutatis mutandis we obtain that ⟨φ,ψ⟩ ∈ ΩΣ(T ). But
since R̈I has the system MP, a fortiori RI has the global system MP, whence,
by Proposition 783, RIΣ[φ,ψ] ≤ T . Since the reverse inclusion always holds,

we conclude that R̈I is extensional. ∎

We now show that a π-institution is syntactically preequivalential if and
only if it is preequivalential and it has a Leibniz binary reflexive core.

Syntactic Preequivalentiality

= R̈I has System MP + R̈I is Extensional

= R̈I Defines Leibniz Congruence Systems
of Theory Systems in I

= Preequivalentiality + R̈I is Leibniz

Theorem 969 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically preequivalential if and
only if it is preequivalential and has a Leibniz binary reflexive core.

Proof: Suppose, first, that I is syntactically preequivalential. Then it is
preequivalential by Theorem 956. Moreover, its binary reflexive core has the
system modus ponens and is extensional, by Theorem 964, and, hence, by
Proposition 967, its binary reflexive core is Leibniz.

Suppose, conversely, that I is preequivalential with a Leibniz binary re-
flexive core. Then, by Proposition 968, its binary reflexive core has the
system MP and is extensional. Therefore, by Theorem 964, I is syntactically
preequivalential. ∎
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We have the following part of a hierarchy:

Syntactic Preequivalentiality

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳③
Syntactic Prealgebraicity Preequivalentiality R̈I Extensional

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

RI Leibniz Prealgebraicity System Extensionality

13.3 Syntactic Equivalentiality

We now define the class of syntactically equivalential π-institutions. The
difference between equivalentiality and preequivalentiality is that the system
versions of the properties defining the latter are replaced by their correspond-
ing family versions. Otherwise, the developments are exactly parallel.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F.

Recall that I is equivalential if it is protoalgebraic and family exten-
sional, i.e., if:

• For all T,T ′ ∈ ThFam(I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′);

• For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ Ω

⟨φ,ψ⟩
Σ (T ∩ ⟨φ,ψ⟩).

Recall, also, that protoalgebraicity implies stability. If a π-institution is
stable, then it is family extensional if and only if it is system extensional.
Thus, under protoalgebraicity, system and family extensionality coincide,
and, therefore, I being equivalential is equivalent to I being protoalgebraic
and system extensional.

We say that I is syntactically equivalential if there exists I♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, without parameters, such that I♭ has:

• reflexivity;

• global family transitivity;

• global family compatibility; and

• global family modus ponens.
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We emphasize that, in opposition to the case of the corresponding system
properties, in this case, the latter three conditions are not equivalent to the
corresponding local properties. So one cannot dispense with the qualification
“global” in the defining conditions.

In case I is syntactically equivalential, we call I♭ a set of witnessing
natural transformations, or, more simply, witnessing transformations
(of the syntactic equivalentiality of I).

As was the case with syntactic preequivalentiality, syntactic equivalen-
tiality is inherited by all π-subinstitutions of a syntactically equivalential
π-institution.

Theorem 970 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I ′ = ⟨F′,C ′⟩ a π-subinstitution of I induced
by the algebraic subsystem F′ = ⟨Sign♭,SEN′ ♭,N ′ ♭⟩ ≤ F. If I is syntacti-
cally equivalential with witnessing transformations I♭ ⊆ N ♭, then I ′ is also
syntactically equivalential, with witnessing transformations I ′ ♭ ∈ N ′ ♭.

Proof: Suppose that I is syntactically equivalential with witnessing trans-
formations I♭ ∶ (SEN♭)2 → SEN♭. To prove the conclusion, it suffices to show
that I ′ ♭ is reflexive, globally family transitive and has both the global family
compatibility and the global family modus ponens in I ′.

Let, first, Σ ∈ ∣Sign♭∣ and φ ∈ SEN′ ♭(Σ). Then, clearly, I ′ ♭Σ [φ,φ] ≤ SEN′ ♭

and I ′ ♭Σ [φ,φ] = I♭Σ[φ,φ] ≤ Thm(I). So we get that

I ′ ♭Σ [φ,φ] ≤ Thm(I) ∩ SEN′ ♭ = Thm(I ′).
It follows that I ′ ♭ is reflexive in I ′.

Suppose, next, that T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN′ ♭(Σ),
such that

I ′ ♭Σ [φ,ψ] ≤ T ∩ SEN′ ♭ and I ′ ♭Σ [ψ,χ] ≤ T ∩ SEN′ ♭.

Then I♭Σ[φ,ψ] ≤ T and I♭Σ[ψ,χ] ≤ T , whence by the global family transitivity
of I♭ in I , we get that I♭Σ[φ,χ] ≤ T . Since, by hypothesis, φ,χ ∈ SEN′ ♭(Σ),
we get that I ′ ♭Σ [φ,χ] ≤ T ∩ SEN′ ♭. This shows that I ′ ♭ is globally family
transitive in I ′.

For global family compatibility, let T ∈ ThFam(I), σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣
and φ,ψ, χ⃗ ∈ SEN′ ♭(Σ), such that

↔

I ′ ♭Σ[φ,ψ] ≤ T ∩ SEN′ ♭. Then we get that
↔

I♭Σ[φ,ψ] ≤ T , whence, we obtain I♭Σ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T . Since σ♭ ∈ N ♭

and φ,ψ, χ⃗ ∈ SEN′ ♭(Σ), this yields that

I ′ ♭Σ [σ′ ♭Σ (φ, χ⃗), σ′ ♭Σ (ψ, χ⃗)] ≤ T ∩ SEN′ ♭.

Therefore, I ′ ♭ has the global family compatibility in I ′.
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For the global family MP, assume that T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN′ ♭(Σ), such that φ ∈ TΣ∩SEN′ ♭(Σ) and I ′ ♭Σ [φ,ψ] ≤ T ∩SEN′ ♭. Then
φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T , whence we get that ψ ∈ TΣ. Since, by hypothesis,
ψ ∈ SEN′ ♭(Σ), we get that ψ ∈ TΣ ∩ SEN′ ♭(Σ). Therefore, I ′ ♭ has the global
family MP in I ′.

We conclude that I ′ is also syntactically equivalential with witnessing
transformations I ′ ♭. ∎

Since I♭ is, a fortiori, a set of witnessing transformations for the syntactic
protoalgebraicity of I , we get the following result, based on Corollary 791.

Corollary 971 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically equivalential, with wit-
nessing transformations I♭, if and only if, for all T ∈ ThFam(I),

↔

I♭(T ) = Ω(T ).
Proof: The “only if” is by Corollary 791. The “if” is clear, since the given

condition implies that
↔

I♭ satisfies reflexivity, global family transitivity, global
family compatibility and global family modus ponens. ∎

Based on Corollary 971, it is easy to see that syntactic equivalentiality
also transfers from a π-institution to all its gmatrix families.

Theorem 972 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically equivalential, with
witnessing transformations I♭, if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, the I-gmatrix family ⟨A,CI,A⟩ is syntactically equivalential.

Proof: Analogous to the proof of Theorem 955. ∎

Syntactic equivalentiality implies equivalentiality.

Theorem 973 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically equivalential, then it
is equivalential.

Proof: Suppose that I is syntactically equivalential, with witnessing trans-
formations I♭ ∶ (SEN♭)2 → SEN♭. Then, it is a fortiori syntactically pro-
toalgebraic and, hence, by Theorem 792, protoalgebraic. Thus, the Leibniz
operator is monotone on theory families. Since syntactical equivalentiality
implies syntactical preequivalentiality, by Theorem 956, we get that I is also
system extensional. ∎

In analogy with syntactic preequivalentiality, syntactic equivalentiality
implies that the binary reflexive core has the global family modus ponens
and that it also has the extensionality property.

We first formalize the fact that syntactic equivalentiality implies the
global family modus ponens property of the binary reflexive core.
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Proposition 974 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically equivalential, then R̈I

has the global family modus ponens in I.

Proof: Suppose that I is syntactically equivalential, with witnessing trans-
formations I♭, and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such
that φ ∈ TΣ and R̈IΣ[φ,ψ] ≤ T . Then φ ∈ TΣ and, by Lemma 957, I♭Σ[φ,ψ] ≤ T .
Since I♭ has the global family MP in I , we conclude that ψ ∈ TΣ. Therefore,
R̈I also has the global family MP in I . ∎

We now show that syntactic equivalentiality implies the extensionality of
the binary reflexive core.

Corollary 975 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically equivalential, then R̈I

is extensional.

Proof: Since syntactic equivalentiality implies syntactic preequivalentiality,
we get the conclusion by applying Proposition 961. ∎

We summarize these two important consequences of syntactic equivalen-
tiality in the following

Theorem 976 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically equivalential, then R̈I

has the global family modus ponens and is extensional in I.

Proof: By Propositions 974 and 975. ∎

We provide, next, a characterization of syntactic equivalentiality in terms
of the preceding two properties of the binary reflexive core of the π-institution,
namely global family modus ponens and extensionality. As with preequiv-
alentiality, we use this characterization to provide an exact description of
those equivalential π-institutions which are syntactically equivalential.

In proving the reverse implication of that included in Theorem 976, we
show that, if R̈I has the global family modus ponens and is extensional in
I , then I is syntactically equivalential.

Theorem 977 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If R̈I has the global family modus ponens
and is extensional in I, then I is syntactically equivalential, with witnessing
transformations R̈I.

Proof: If R̈I has the global family MP, then, by Lemma 104, RI has a fortiori
the global family MP. Thus, by Theorem 798, I is syntactically protoalgebraic
with witnessing transformations RI . Thus, RI is reflexive, globally family
transitive, has the global family compatibility property and the global family
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MP. Moreover, by the extensionality of R̈I , all these properties transfer from
RI to R̈I . We conclude that I is syntactically equivalential with witnessing
transformations R̈I . ∎

Theorems 976 and 977 provide the promised characterization of syntactic
equivalentiality in terms of the global family modus ponens and the exten-
sionality of the binary reflexive core.

I is Syntactically Equivalential ←→ R̈I has Global Family MP

+ R̈I is Extensional.

Theorem 978 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically equivalential if and only
if R̈I has the global family modus ponens and is extensional in I.

Proof: Theorem 976 gives the “only if” and the “if” is by Theorem 977. ∎

If I is syntactically equivalential, then R̈I defines Leibniz congruence
systems of theory families in I . This proposition may be viewed as a special
case of Corollary 971, since R̈I forms a set of witnessing transformations.

Proposition 979 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If R̈I has the global family modus ponens
and is extensional in I, then, for all T ∈ ThFam(I),

Ω(T ) = R̈I(T ).
Proof: Let T ∈ ThFam(I). If R̈I has the global family modus ponens
and is extensional, then, by Theorem 977, I is syntactically equivalential
with witnessing transformations R̈I . Therefore, by Corollary 971, for all
T ∈ ThFam(I), Ω(T ) = R̈I(T ). ∎

We also get another related characterization of syntactic equivalentiality.

I is Syntactically Equivalential

←→ R̈I Defines Leibniz Congruence Systems
of Theory Families in I .

Theorem 980 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically equivalential if and only
if, for all T ∈ ThFam(I),

Ω(T ) = R̈I(T ).
Proof: If I is syntactically equivalential, then, by Theorem 976, R̈I has the
global family modus ponens and is extensional in I . Thus, by Proposition
979, for all T ∈ ThFam(I), Ω(T ) = R̈I(T ).
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Conversely, if, for all T ∈ ThFam(I), R̈I(T ) = Ω(T ), then, R̈I is reflex-
ive, globally family transitive and has the global family compatibility and
the global family modus ponens. Thus, I is syntactically equivalential with
witnessing transformations R̈I . ∎

We finally show that the property that separates equivalentiality from
syntactic equivalentiality is the Leibniz property of the binary reflexive core.

We show first that, if R̈I has the global family modus ponens and is
extensional in I , then R̈I is Leibniz.

Corollary 981 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If R̈I has the global family modus ponens
and is extensional in I, then R̈I is Leibniz.

Proof: Since R̈I having the global family MP is stronger than having the
system MP, the conclusion follows from Proposition 967. ∎

In the opposite direction, in an equivalential π-institution I , if the binary
reflexive core is Leibniz, then it has the global family modus ponens and is
extensional in I .

Proposition 982 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ an equivalential π-institution based on F. If R̈I is Leibniz, then R̈I

has the global family modus ponens and is extensional in I.

Proof: Suppose that I is equivalential and that R̈I is Leibniz.
For the global family MP, suppose that T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, and

φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ, R̈IΣ[φ,ψ] ≤ T . Then, since R̈I is Leibniz,

⟨φ,ψ⟩ ∈ Ω
⟨φ,ψ⟩
Σ (C(R̈IΣ[φ,ψ]) ∩ ⟨φ,ψ⟩).

Thus, since I is system extensional,

⟨φ,ψ⟩ ∈ ΩΣ(C(R̈IΣ[φ,ψ])).
By hypothesis, C(R̈IΣ[φ,ψ]) ≤ T , whence, by equivalentiality,

Ω(C(R̈IΣ[φ,ψ])) ≤ Ω(T ).
We, thus, get that ⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, by compatibility of Ω(T ) with
T , we obtain ψ ∈ TΣ, showing that R̈I has the global family MP in I .

Since equivalentiality implies preequivalentiality, the extensionality of R̈I

follows from Proposition 968. ∎

We now show that a π-institution is syntactically equivalential if and only
if it is equivalential and has a Leibniz binary reflexive core.
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Syntactic Equivalentiality

= R̈I has Global Family MP + R̈I is Extensional

= R̈I Defines Leibniz Congruence Systems
of Theory Families in I

= Equivalentiality + R̈I is Leibniz

Theorem 983 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically equivalential if and only
if it is equivalential and has a Leibniz binary reflexive core.

Proof: Suppose, first, that I is syntactically equivalential. Then it is equiv-
alential by Theorem 973. Moreover, its binary reflexive core has the global
family modus ponens and is extensional, by Theorem 978, and, hence, by
Corollary 981, its binary reflexive core is Leibniz.

Suppose, conversely, that I is equivalential with a Leibniz binary reflexive
core. Then, by Proposition 982, its binary reflexive core has the global
family MP and is extensional. Therefore, by Theorem 978, I is syntactically
equivalential. ∎

We have now established the following hierarchy of properties:

Syntactically

Equivalential

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
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❄
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✑
✑
✑
✑
✑◗

◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑
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◗
◗
◗
◗
◗
◗s

R̈I Extensional
Syntactically

Prealgebraic

❄
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❄
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✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
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◗
◗
◗
◗
◗
◗s

◗
◗
◗
◗
◗
◗
◗s

RI Leibniz Prealgebraic

❄
System Extensional Stable

13.4 Strong Truth Equationality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is strongly (family) truth equational if there
exists a set τ ♭ ∶ SEN♭ → (SEN♭)2 in N ♭ (with a single distinguished argument),
such that, for every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
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In that case, we call τ ♭ a set of witnessing equations (of/for the strong
truth equationality of I).

Note that, since τ ♭ is parameter-free and Ω(T ) is invariant under signature
morphisms, strong truth equationality may be defined equivalently by the
condition, for every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ(φ) ⊆ ΩΣ(T ).
Since truth equationality implies systemicity, we get, a fortiori, that

strong truth equationality implies systemicity.
We introduce next the unary Suszko core of a π-institution. Analogously

with the Suszko core, the unary Suszko core enables one to obtain:

• A characterization of strong truth equationality in terms of the solu-
bility property of the unary Suszko core of the π-institution.

• An exact description of those family c-reflective π-institutions which
are strongly truth equational.

• A characterization of those truth equational π-institutions which are
strongly truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. The unary Suszko core of I is the collection

ṠI = {σ♭ ∶ SEN♭ → (SEN♭)2 ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[T ] ≤ Ω̃I(T )}.
By Lemma 821, this definition is equivalent to setting

ṠI = {σ♭ ∶ SEN♭ → (SEN♭)2 ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)
(∀φ ∈ SEN♭(Σ))(σ♭Σ(φ) ∈ Ω̃IΣ(C(φ))}.

Note that the unary Suszko core of a π-institution is included in the
Suszko core, i.e., we have

Lemma 984 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then ṠI ⊆ SI.

Proof: Every pair of unary natural transformations in N ♭ that satisfies the
membership criterion for ṠI also satisfies the condition for membership in
SI . ∎

Lemma 984 yields immediately the following consequence.

Corollary 985 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I), we have

SI(Ω(T )) ≤ ṠI(Ω(T )).
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Proof: We have, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ SIΣ(Ω(T )) iff SIΣ[φ] ≤ Ω(T ) (definition)

implies ṠI[φ] ≤ Ω(T ) (Lemma 984)

iff φ ∈ ṠIΣ(Ω(T )). (definition)

Therefore, SI(Ω(T )) ≤ ṠI(Ω(T )). ∎

Either directly by the definition or using Proposition 832 together with
Corollary 985, we get the following

Proposition 986 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every T ∈ ThFam(I),
T ≤ ṠI(Ω(T )).

Proof: We have T ≤ SI(Ω(T )) ≤ ṠI(Ω(T )), where the first inclusion is by
Lemma 832 and the second by Corollary 985. ∎

Similarly with the Suszko core, the unary Suszko core of a π-institution
may or may not satisfy the reverse inclusion of Proposition 986, a property
that was called solubility.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the unary Suszko core of I is soluble
if, for all T ∈ ThFam(I),

ṠI(Ω(T )) ≤ T.
Note that ṠI is soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

ṠIΣ(φ) ⊆ ΩΣ(T ) implies φ ∈ TΣ.

It turns out that possession of the solubility property by the unary Suszko
core intrinsically characterizes strong truth equationality. To show the neces-
sity of solubility observe, first, that, in case a π-institution is strongly truth
equational, the witnessing equations form a subset of the unary Suszko core.

Lemma 987 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly truth equational, with
witnessing equations τ ♭ ∶ SEN♭ → (SEN♭)2 ⊆ N ♭, then τ ♭ ⊆ ṠI.

Proof: Suppose that I is strongly truth equational with witnessing equa-
tions τ ♭. Then, I is, a fortiori, truth equational, with the same witnessing
equations. It follows, by Lemma 835, that τ ♭ ⊆ SI . Since τ ♭ consists of unary
equations and they satisfy the membership criterion for SI , it follows that
they also satisfy the condition for membership in ṠI . Therefore, we get that
τ ♭ ⊆ ṠI . ∎

Now we prove the necessity of the solubility of the unary Suszko core for
strong truth equationality.
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Theorem 988 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly truth equational, then ṠI

is soluble.

Proof: Suppose that I is strongly truth equational, with witnessing equa-
tions τ ♭ ∶ SEN♭ → (SEN♭)2. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ),

ṠIΣ[φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ) (Lemma 987)
iff φ ∈ TΣ. (strong truth equationality)

Thus, ṠI is soluble. ∎

The reverse implication also holds and completes the promised character-
ization of strong truth equationality in terms of the solubility of the unary
Suszko core.

Theorem 989 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ṠI is soluble, then I is strongly truth
equational, with witnessing equations ṠI.

Proof: It suffices to show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ TΣ iff ṠIΣ[φ] ≤ Ω(T ).
The left-to-right implication is given in Proposition 986, whereas the converse
is ensured by the postulated solubility of ṠI . ∎

Theorems 988 and 989 provide the promised characterization of strong
truth equationality in terms of the solubility of the unary Suszko core.

I is Strongly Truth Equational ←→ ṠI is Soluble.

Theorem 990 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly truth equational if and only
if ṠI is soluble.

Proof: Theorem 988 gives the “only if” and the “if” is by Theorem 989. ∎

If I is strongly truth equational, then the unary Suszko core defines theory
families in I in terms of their Leibniz congruence systems. This proposition
may be viewed as a special case of Proposition 828, since ṠI forms a maximal
set of witnessing equations of the strong truth equationality of I .

Proposition 991 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If ṠI is soluble, then, for all T ∈
ThFam(I),

T = ṠI(Ω(T )).
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Proof: If ṠI is soluble, then, by Theorem 989, ṠI forms a set of witnessing
equations for the strong truth equationality of I . Therefore, by Proposition
828, we get that, for every T ∈ ThFam(I), T = ṠI(Ω(T )). ∎

This property provides another characterization of strong truth equation-
ality. We say that ṠI defines theory families if, for all T ∈ ThFam(I),
T = ṠI(Ω(T )). Then we have:

I is Strongly Truth Equational ←→ ṠI Defines Theory Families.

Theorem 992 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly truth equational if and only
if, for all T ∈ ThFam(I),

T = ṠI(Ω(T )).
Proof: If I is truth equational, then, by Theorem 990, ṠI is soluble. Thus,
by Proposition 991, for all T ∈ ThFam(I), T = ṠI(Ω(T )).

Conversely, if, for all T ∈ ThFam(I), T = ṠI(Ω(T )), then, ṠI is soluble.
Thus, again by Theorem 990, ṠI is a set of witnessing equations and I is
strongly truth equational. ∎

It turns out that the property that separates family complete reflectivity
from strong truth equationality is exactly the adequacy property of the unary
Suszko core. Roughly speaking, this property ensures that the unary Suszko
core is rich enough to define Suszko congruence systems in terms of the
Leibniz congruence systems of theory families that it selects via inclusion.

We have the following relationship connecting the unary Suszko core with
both Leibniz and Suszko congruence systems.

Proposition 993 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
⋂{Ω(T ) ∶ ṠIΣ[φ] ≤ Ω(T )} ≤ Ω̃I(C(φ)).

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I), we
have, using Lemma 984,

SIΣ[φ] ≤ Ω(T ) implies ṠIΣ[φ] ≤ Ω(T ).
Therefore, {Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )} ⊆ {Ω(T ) ∶ ṠIΣ[φ] ≤ Ω(T )}. We conclude
that

⋂{Ω(T ) ∶ ṠIΣ[φ] ≤ Ω(T )} ≤⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )} ≤ Ω̃I(C(φ)),
where the last inclusion is based on Proposition 841. ∎



928 CHAPTER 13. SYNTACTIC HIERARCHY III Voutsadakis

Again it is possible, but not necessary, that the unary Suszko core of a
π-institution satisfies, for every Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), the reverse
inclusion of that given in Proposition 993:

Ω̃I(C(φ)) ≤⋂{Ω(T ) ∶ ṠIΣ[φ] ≤ Ω(T )}.
Intuitively speaking, this means that the unary Suszko core ṠI is rich enough
to allow, for every Σ-sentence φ, the determination of those theory families
whose Leibniz congruence systems form a covering of the Suszko congruence
system of C(φ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the unary Suszko core ṠI of I is ade-
quate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) =⋂{Ω(T ) ∶ ṠIΣ[φ] ≤ Ω(T )}.
Based on our preceding work, it is not difficult to see that, if ṠI is soluble,

then it is adequate.

Corollary 994 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ṠI is soluble, then it is adequate.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

Ω̃I(C(φ)) = ⋂{Ω(T ) ∶ φ ∈ TΣ} (definition of Ω̃I(C(φ)))
= ⋂{Ω(T ) ∶ ṠIΣ[φ] ≤ Ω(T )}.

(solubility of ṠI and Proposition 991)

We conclude that ṠI is adequate. ∎

In the opposite direction, in a family c-reflective π-institution I , if the
unary Suszko core is adequate, then it is also soluble.

Proposition 995 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family c-reflective π-institution based on F. If ṠI is adequate, then
it is soluble.

Proof: Suppose that I is family c-reflective and that ṠI is adequate. We
must show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ)

φ ∈ TΣ iff ṠIΣ[φ] ≤ Ω(T ).
The implication left-to-right is always satisfied by Proposition 986. For the
converse, assume that ṠIΣ[φ] ≤ Ω(T ). Then, by the adequacy of ṠI , we get

that Ω̃I(C(φ)) ≤ Ω(T ). Thus, by family c-reflectivity and Lemma 826, we
conclude that C(φ) ≤ T , which gives φ ∈ TΣ. ∎
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We finally show that a π-institution is strongly truth equational if and
only if it is family c-reflective and has an adequate unary Suszko core.

Strong Truth Equationality = ṠI Soluble

= ṠI Defines Theory Families

= Family c-Reflectivity + ṠI Adequate

Theorem 996 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly truth equational if and only
if it is family c-reflective and has an adequate unary Suszko core.

Proof: Suppose, first, that I is strongly truth equational. Then it is family
c-reflective by Theorem 829. Moreover, its unary Suszko core is soluble by
Theorem 990 and, hence, by Corollary 994, its unary Suszko core is adequate.

Suppose, conversely, that I is family c-reflective with an adequate unary
Suszko core. Then, by Proposition 995, its unary Suszko core is soluble and,
therefore, by Theorem 990, I is strongly truth equational. ∎

We close the section with a result relating the unary Suszko core with
the Suszko core. More precisely, we show that adequacy of the unary Suszko
core implies adequacy of the Suszko core.

Proposition 997 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ṠI is adequate, then SI is adequate.

Proof: Suppose that ṠI is adequate. Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then we have

Ω̃I(C(φ)) ≤ ⋂{Ω(T ) ∶ ṠIΣ[φ] ≤ Ω(T )} (ṠI adequate)

≤ ⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )} (ṠI ⊆ SI)
≤ Ω̃I(C(φ)). (Proposition 841)

Hence, Ω̃I(C(φ)) = ⋂{Ω(T ) ∶ SIΣ[φ] ≤ Ω(T )}, and SI is adequate. ∎

13.5 Strong Left Truth Equationality

We now undertake the study of strong left truth equationality. This com-
bines, in a certain sense, the study of left truth equationality with that of
strong truth equationality. Strong left truth equationality has the same rela-
tion to left truth equationality as strong truth equationality has to (family)
truth equationality. After this study, we will have the following hierarchy
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of truth equationality properties, which will be further augmented in the
following section by adjoining strong system truth equationality:

Strong Truth Equationality
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System Truth Equationality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. I is strongly left truth equational if there exists
a set τ ♭ ∶ SEN♭ → (SEN♭)2 in N ♭ (with a single distinguished argument), such
that, for every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ).

In that case, we call τ ♭ a set of witnessing equations (of the strong left
truth equationality of I).

Note that, similarly to strong truth equationality, since τ ♭ is parameter-
free and Ω(T ) is invariant under signature morphisms, strong left truth
equationality may be defined equivalently by the condition, for every T ∈
ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ iff τ ♭Σ(φ) ⊆ ΩΣ(T ).

Recall that strong truth equationality implies systemicity. Therefore, if
a π-institution I is strongly truth equational, we get, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ iff φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ),

whence I is also strongly left truth equational.
We introduce next the unary left Suszko core of a π-institution. Analo-

gously with the left Suszko core and the unary Suszko core, the unary left
Suszko core enables one to obtain:

• A characterization of strong left truth equationality in terms of the
solubility property of the unary left Suszko core of the π-institution.
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• An exact description of those left c-reflective π-institutions which are
strongly left truth equational.

• A characterization of those left truth equational π-institutions which
are strongly left truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The unary left Suszko core of I is the collection

L̇I = {σ♭ ∶ SEN♭ → (SEN♭)2 ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[←ÐT ] ≤ Ω̃I(T )}.
There are a couple of different possible characterizations of the unary

left Suszko core that can be given. One is in terms of theory systems in
place of theory families and another uses theory systems generated by single
sentences.

Proposition 998 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

L̇I = {σ♭ ∶ SEN♭ → (SEN♭)2 ∈ N ♭ ∶ (∀T ∈ ThSys(I))(σ♭[T ] ≤ Ω̃I(T )}.
Proof: By Proposition 852, we have that

LI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys(I))(σ♭[T ] ≤ Ω̃I(T )}.
Thus, the conclusion follows by applying the ˙ operator on both sides, i.e.,
by intersecting both sides with the set of all pairs of unary natural transfor-
mations in N ♭. ∎

With Proposition 998 at hand, the second characterization follows from
Lemma 822.

Corollary 999 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

L̇I = {σ♭ ∶ SEN♭ → (SEN♭)2 ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)
(∀φ ∈ SEN♭(Σ))(σ♭Σ(φ) ∈ Ω̃IΣ(C(Ð→φ ))}.

Proof: By combining Proposition 998 with Lemma 822. ∎

Note that the unary left Suszko core of a π-institution is included in the
left Suszko core, i.e., we have

Lemma 1000 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then L̇I ⊆ LI.
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Proof: Every pair of unary natural transformations in N ♭ that satisfies the
membership criterion for L̇I also satisfies the condition for membership in
LI . ∎

Lemma 1000 yields immediately the following consequence.

Corollary 1001 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I), we have

LI(Ω(T )) ≤ L̇I(Ω(T )).
Proof: By Theorem 107 and Corollary 105. ∎

Either directly by the definition or using Proposition 853 together with
Corollary 1001, we get the following

Proposition 1002 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every T ∈ ThFam(I),

←Ð
T ≤ L̇I(Ω(T )).

Proof: We have
←Ð
T ≤ LI(Ω(T )) ≤ L̇I(Ω(T )), where the first inclusion is by

Lemma 853 and the second by Corollary 1001. ∎

Similarly with the left Suszko core, the unary left Suszko core of a π-
institution may or may not satisfy the reverse inclusion of Proposition 1002,
a property that was called left solubility.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the unary left Suszko core of I is left
soluble if, for all T ∈ ThFam(I),

L̇I(Ω(T )) ≤←ÐT .
Note that L̇I is left soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

L̇IΣ(φ) ⊆ ΩΣ(T ) implies φ ∈
←Ð
T Σ.

It turns out that possession of left solubility by the unary left Suszko core
intrinsically characterizes strong left truth equationality. To show the neces-
sity of left solubility observe, first, that, in case a π-institution is strongly
left truth equational, the witnessing equations form a subset of the unary
left Suszko core.

Lemma 1003 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly truth equational, with
witnessing equations τ ♭ ∶ SEN♭ → (SEN♭)2 ⊆ N ♭, then τ ♭ ⊆ L̇I .
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Proof: Suppose that I is strongly left truth equational with witnessing
equations τ ♭. Then, I is, a fortiori, left truth equational, with the same
witnessing equations. It follows, by Lemma 857, that τ ♭ ⊆ LI . Since τ ♭

consists of unary equations and they satisfy the membership criterion for
LI , it follows that they also satisfy the condition for membership in L̇I .
Therefore, we get that τ ♭ ⊆ L̇I . ∎

Now we prove the necessity of the left solubility of the unary left Suszko
core for strong left truth equationality.

Theorem 1004 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly left truth equational, then
L̇I is left soluble.

Proof: Suppose that I is strongly left truth equational, with witnessing
equations τ ♭ ∶ SEN♭ → (SEN♭)2. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

L̇IΣ[φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ) (Lemma 1003)

iff φ ∈
←Ð
T Σ. (strong left truth equationality)

Thus, L̇I is left soluble. ∎

The reverse implication also holds and provides the characterization of
strong left truth equationality in terms of the left solubility of the unary left
Suszko core.

Theorem 1005 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If L̇I is left soluble, then I is strongly left
truth equational, with witnessing equations L̇I .

Proof: It suffices to show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ iff L̇IΣ[φ] ≤ Ω(T ).

The left-to-right implication is given in Proposition 1002, whereas the con-
verse is ensured by the postulated left solubility of L̇I . ∎

Theorems 1004 and 1005 provide the promised characterization of strong
left truth equationality in terms of the left solubility of the unary left Suszko
core.

I is Strongly Left Truth Equational ←→ L̇I is Left Soluble.

Theorem 1006 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly left truth equational if and
only if L̇I is left soluble.
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Proof: Theorem 1004 gives the “only if” and the “if” is by Theorem 1005.
∎

If I is strongly left truth equational, then the unary left Suszko core
defines theory families in I , up to arrow, in terms of their Leibniz congruence
systems. So, analogously to preceding situations, L̇I forms a maximal set of
witnessing equations of the strong left truth equationality of I .

Proposition 1007 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If L̇I is left soluble, then, for all
T ∈ ThFam(I),

←Ð
T = L̇I(Ω(T )).

Proof: If L̇I is left soluble, then, by Theorem 1005, L̇I forms a set of
witnessing equations for the strong left truth equationality of I . Therefore,

by Proposition 849, we get that, for every T ∈ ThFam(I), ←ÐT = L̇I(Ω(T )).
∎

This property provides another characterization of strong left truth equa-
tionality. We say that L̇I defines theory families up to arrow if, for all

T ∈ ThFam(I), ←ÐT = L̇I(Ω(T )). Then we have:

I is Strongly Left Truth Equational

←→ L̇I Defines Theory Families Up to Arrow.

Theorem 1008 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly left truth equational if and
only if, for all T ∈ ThFam(I),

←Ð
T = L̇I(Ω(T )).

Proof: If I is strongly left truth equational, then, by Theorem 1006, L̇I is left

soluble. Thus, by Proposition 1007, for all T ∈ ThFam(I), ←ÐT = L̇I(Ω(T )).
Conversely, if, for all T ∈ ThFam(I), ←ÐT = L̇I(Ω(T )), then, L̇I is left

soluble. Thus, again by Theorem 1006, L̇I is a set of witnessing equations
and I is strongly left truth equational. ∎

In analogy with strong truth equationality and family c-reflectivity, the
property that separates left complete reflectivity from strong left truth equa-
tionality is exactly the left adequacy of the unary left Suszko core. Roughly
speaking, this property ensures that the unary left Suszko core is rich enough
to define Suszko congruence systems in terms of the Leibniz congruence sys-
tems of theory families that it selects via inclusion.

We have the following relationship connecting the unary left Suszko core
with both Leibniz and Suszko congruence systems.
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Proposition 1009 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ L̇IΣ[φ] ≤ Ω(T )} ≤ Ω̃I(C(Ð→φ )).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I), we
have, using Lemma 1000,

LIΣ[φ] ≤ Ω(T ) implies L̇IΣ[φ] ≤ Ω(T ).
Therefore, {Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )} ⊆ {Ω(T ) ∶ L̇IΣ[φ] ≤ Ω(T )}. We conclude
that

⋂{Ω(T ) ∶ L̇IΣ[φ] ≤ Ω(T )} ≤⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )} ≤ Ω̃I(C(Ð→φ )),
where the last inclusion is based on Proposition 863. ∎

Again it is possible, but not necessary, that the unary left Suszko core of
a π-institution satisfies, for every Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), the reverse
inclusion of that given in Proposition 1009:

Ω̃I(C(Ð→φ )) ≤⋂{Ω(T ) ∶ L̇IΣ[φ] ≤ Ω(T )}.
Intuitively speaking, this means that the unary left Suszko core L̇I is rich
enough to allow, for every signature Σ and for every Σ-sentence φ, the de-
termination of those theory families whose Leibniz congruence systems form

a covering of the Suszko congruence system of C(Ð→φ ).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-

institution based on F. We say that the unary left Suszko core L̇I of I is
left adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I(C(Ð→φ )) =⋂{Ω(T ) ∶ L̇IΣ[φ] ≤ Ω(T )}.
Based on our preceding work, it is not difficult to see that, if L̇I is left

soluble, then it is left adequate.

Corollary 1010 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If L̇I is left soluble, then it is left adequate.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

Ω̃I(C(Ð→φ )) = ⋂{Ω(T ) ∶Ð→φ ≤ T} (definition of Ω̃I(C(Ð→φ )))
= ⋂{Ω(T ) ∶ φ ∈←ÐT Σ} (definition of

←Ð
T )

= ⋂{Ω(T ) ∶ L̇IΣ[φ] ≤ Ω(T )}.
(left solubility of L̇I and Proposition 1007)

We conclude that L̇I is left adequate. ∎

In the opposite direction, in a left c-reflective π-institution I , if the unary
left Suszko core is left adequate, then it is also left soluble.



936 CHAPTER 13. SYNTACTIC HIERARCHY III Voutsadakis

Proposition 1011 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a left c-reflective π-institution based on F. If L̇I is left adequate,
then it is left soluble.

Proof: Suppose that I is left c-reflective and that L̇I is left adequate. We
must show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ)

φ ∈
←Ð
T Σ iff L̇IΣ[φ] ≤ Ω(T ).

The implication left-to-right is always satisfied by Proposition 1002. For the
converse, assume that L̇IΣ[φ] ≤ Ω(T ). Then, by the left adequacy of L̇I , we

get that Ω̃I(C(Ð→φ )) ≤ Ω(T ). Thus, by left c-reflectivity and Lemma 868, we

conclude that
←ÐÐÐ
C(Ð→φ ) ≤←ÐT . This implies φ ∈

←Ð
T Σ. ∎

We finally show that a π-institution is strongly left truth equational if
and only if it is left c-reflective and has a left adequate unary left Suszko
core.

Strong Left Truth Equationality

= L̇I Left Soluble

= L̇I Defines Theory Families Up to Arrow

= Left c-Reflectivity + L̇I Left Adequate

Theorem 1012 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly left truth equational if and
only if it is left c-reflective and has a left adequate unary left Suszko core.

Proof: Suppose, first, that I is strongly left truth equational. Then it is
left c-reflective by Theorem 850. Moreover, its unary left Suszko core is left
soluble by Theorem 1006 and, hence, by Corollary 1010, its unary left Suszko
core is left adequate.

Suppose, conversely, that I is family c-reflective with a left adequate
unary left Suszko core. Then, by Proposition 1011, its unary left Suszko core
is left soluble. Hence, by Theorem 1006, I is strongly left truth equational.
∎

We close the section with a result relating the unary left Suszko core with
the left Suszko core. More precisely, we show that left adequacy of the unary
left Suszko core implies left adequacy of the left Suszko core.

Proposition 1013 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If L̇I is left adequate, then LI is left
adequate.



Voutsadakis CHAPTER 13. SYNTACTIC HIERARCHY III 937

Proof: Suppose that L̇I is left adequate. Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then we have

Ω̃I(C(Ð→φ )) ≤ ⋂{Ω(T ) ∶ L̇IΣ[φ] ≤ Ω(T )} (L̇I left adequate)

≤ ⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )} (L̇I ⊆ LI)

≤ Ω̃I(C(Ð→φ )). (Proposition 863)

Hence, Ω̃I(C(Ð→φ )) = ⋂{Ω(T ) ∶ LIΣ[φ] ≤ Ω(T )}, and LI is left adequate. ∎

13.6 Strong System Truth Equationality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is strongly system truth equational if there
exists a set τ ♭ ∶ SEN♭ → (SEN♭)2 in N ♭ (with a single distinguished argument),
such that, for every T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
In that case, we call τ ♭ a set of witnessing equations (of/for the strong
system truth equationality of I).

Again, since τ ♭ is parameter-free and Ω(T ) is invariant under signature
morphisms, strong system truth equationality may be defined equivalently
by the condition, for every T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ(φ) ⊆ ΩΣ(T ).
We introduce next the unary system core of a π-institution. Analogously

with the system core, the unary system core enables one to obtain:

• A characterization of strong system truth equationality in terms of the
solubility property of the unary system core of the π-institution.

• An exact description of those system c-reflective π-institutions which
are strongly system truth equational.

• A characterization of those system truth equational π-institutions which
are strongly system truth equational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that, for T ∈ ThSys(I), we have introduced
the notation

Ω̂I(T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys(I)}.
This is a variant of the Suszko operator, allowing one to zoom in on the
theory system structure of the π-institution under consideration, which forms
naturally the focus in the present section.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The unary system core of I is the collection

ŻI = {σ♭ ∶ SEN♭ → (SEN♭)2 ∈ N ♭ ∶ (∀T ∈ ThSys(I))(σ♭[T ] ≤ Ω̂I(T ))}.
Note that the unary system core of a π-institution is included in the

system core, i.e., we have

Lemma 1014 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then ŻI ⊆ ZI.

Proof: Every pair of unary natural transformations in N ♭ that satisfies the
membership criterion for ŻI also satisfies the condition for membership in
ZI . ∎

Moreover, we have the following relationship between the sentence fami-
lies defined via the Leibniz congruence systems by the system and the unary
system core.

Corollary 1015 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I), we have

ZI(Ω(T )) ≤ ŻI(Ω(T )).
Proof: By Theorem 107 and Corollary 105. ∎

The relation between the unary Suszko core, the unary left Suszko core
and the unary system core of a π-institution I is given in the following
proposition, forming an analog of Proposition 874, concerning the general
(non-unary) analogs of these sets.

Proposition 1016 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) ṠI ⊆ L̇I ⊆ ŻI;

(b) For every relation family θ on F, ŻI(θ) ≤ L̇I(θ) ≤ ṠI(θ).
Proof: From Proposition 874, we have that SI ⊆ LI ⊆ ZI . Thus, Part
(a) follows by applying the ˙ operator (which is monotone) to this chain of
inclusions. Part (b) follows form Part (a) and the relevant definitions. ∎

Either directly by the definition or using Proposition 875 together with
Corollary 1015, we get the following

Proposition 1017 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every T ∈ ThSys(I),

T ≤ ŻI(Ω(T )).
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Proof: We have T ≤ ZI(Ω(T )) ≤ ŻI(Ω(T )), where the first inclusion is by
Lemma 875 and the second by Corollary 1015. ∎

The unary system core of a π-institution may or may not satisfy the
reverse inclusion of Proposition 1017, a property that was called previously,
in similar contexts, solubility.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the unary system core of I is soluble
if, for all T ∈ ThSys(I),

ŻI(Ω(T )) ≤ T.
Note that ŻI is soluble if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

ŻIΣ(φ) ⊆ ΩΣ(T ) implies φ ∈ TΣ.

It turns out that possession of the solubility property by the unary system
core intrinsically characterizes strong system truth equationality. To show
the necessity of solubility, we observe, once again, that, in case a π-institution
is strongly system truth equational, the witnessing equations form a subset
of the unary system core.

Lemma 1018 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly system truth equational,
with witnessing equations τ ♭ ∶ SEN♭ → (SEN♭)2 ⊆ N ♭, then τ ♭ ⊆ ŻI .

Proof: Suppose that I is strongly system truth equational with witnessing
equations τ ♭. Then, I is, a fortiori, system truth equational, with the same
witnessing equations. It follows, by Lemma 877, that τ ♭ ⊆ ZI . Since τ ♭

consists of unary equations and they satisfy the membership criterion for
ZI , it follows that they also satisfy the condition for membership in ŻI .
Therefore, we get that τ ♭ ⊆ ŻI . ∎

Now we prove the necessity of the solubility of the unary system core for
strong system truth equationality.

Theorem 1019 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly system truth equational,
then ŻI is soluble.

Proof: Suppose that I is strongly system truth equational, with witnessing
equations τ ♭ ∶ SEN♭ → (SEN♭)2. Then, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

ŻIΣ[φ] ≤ Ω(T ) implies τ ♭Σ[φ] ≤ Ω(T ) (Lemma 1018)
iff φ ∈ TΣ,

where the last equivalence is based on the postulated strong system truth
equationality of I . Thus, ŻI is soluble. ∎
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The reverse implication completes the promised characterization of strong
system truth equationality in terms of the solubility of the unary system core.

Theorem 1020 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ŻI is soluble, then I is strongly system
truth equational, with witnessing equations ŻI.

Proof: It suffices to show that, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ TΣ iff ŻIΣ[φ] ≤ Ω(T ).
The left-to-right implication is given in Proposition 1017, whereas the con-
verse is ensured by the postulated solubility of ŻI . ∎

Theorems 1019 and 1020 provide the promised characterization of strong
system truth equationality in terms of the solubility of the unary system
core.

I is Strongly System Truth Equational ←→ ŻI is Soluble.

Theorem 1021 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly system truth equational if
and only if ŻI is soluble.

Proof: Theorem 1019 gives the “only if” and the “if” is by Theorem 1020.
∎

If I is strongly system truth equational, then the unary system core
defines theory systems in I in terms of their Leibniz congruence systems.
This proposition may be viewed as a special case of Proposition 871, since
ŻI forms a maximal set of witnessing equations of the strong system truth
equationality of I .

Proposition 1022 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If ŻI is soluble, then, for all T ∈
ThSys(I),

T = ŻI(Ω(T )).
Proof: If ŻI is soluble, then, by Theorem 1020, ŻI forms a set of witness-
ing equations for the strong system truth equationality of I . Therefore, by
Proposition 871, we get that, for every T ∈ ThSys(I), T = ŻI(Ω(T )). ∎

This property provides another characterization of strong system truth
equationality. We say that ŻI defines theory systems if, for all T ∈
ThSys(I), T = ŻI(Ω(T )). Then we have:

I is Strongly System Truth Equational

←→ ŻI Defines Theory Systems.
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Theorem 1023 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly system truth equational if
and only if, for all T ∈ ThSys(I),

T = ŻI(Ω(T )).
Proof: If I is strongly system truth equational, then, by Theorem 1021, ŻI

is soluble. Thus, by Proposition 1022, for all T ∈ ThSys(I), T = ŻI(Ω(T )).
Conversely, if, for all T ∈ ThSys(I), T = ŻI(Ω(T )), then, ŻI is soluble.

Thus, again by Theorem 1021, ŻI is a set of witnessing equations and I is
strongly system truth equational. ∎

It turns out that the property that separates system complete reflectivity
from strong system truth equationality is exactly the adequacy property of
the unary system core. Roughly speaking, this property ensures that the
unary system core is rich enough to define the congruence system Ω̂I(T )
of a theory system T in terms of the Leibniz congruence systems of theory
systems that it selects via inclusion.

Proposition 1024 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ T ∈ ThSys(I) and ŻIΣ[φ] ≤ Ω(T )} ≤ Ω̂I(C(Ð→φ )).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThSys(I), we
have, using Lemma 1014,

ZIΣ[φ] ≤ Ω(T ) implies ŻIΣ[φ] ≤ Ω(T ).
Therefore,

{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )}
⊆ {Ω(T ) ∶ T ∈ ThSys(I) and ŻIΣ[φ] ≤ Ω(T )}.

We conclude that

⋂{Ω(T ) ∶ T ∈ ThSys(I) and ŻIΣ[φ] ≤ Ω(T )}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )} ≤ Ω̂I(C(Ð→φ )),

where the last inclusion is based on Proposition 883. ∎

It is possible, but not necessary, that the unary system core of a π-
institution satisfies, for every Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), the reverse
inclusion of that given in Proposition 1024:

Ω̂I(C(Ð→φ )) ≤⋂{Ω(T ) ∶ T ∈ ThSys(I) and ŻIΣ[φ] ≤ Ω(T )}.
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Intuitively speaking, this means that the unary system core ŻI is rich enough
to allow, for every signature Σ and every Σ-sentence φ, the determination of
those theory systems whose Leibniz congruence systems form a covering of

Ω̂I(C(Ð→φ )).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-

institution based on F. We say that the unary system core ŻI of I is ade-
quate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̂I(C(Ð→φ )) =⋂{Ω(T ) ∶ T ∈ ThSys(I) and ŻIΣ[φ] ≤ Ω(T )}.
Based on our preceding work, it is not difficult to see that, if ŻI is soluble,

then it is adequate.

Corollary 1025 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ŻI is soluble, then it is adequate.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

Ω̂I(C(Ð→φ )) = ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ TΣ}
(definition of Ω̂I(C(Ð→φ )))

= ⋂{Ω(T ) ∶ T ∈ ThSys(I) and ŻIΣ[φ] ≤ Ω(T )}.
(solubility of ŻI and Proposition 1022)

We conclude that ŻI is adequate. ∎

In the opposite direction, in a system c-reflective π-institution I , if the
unary system core is adequate, then it is also soluble.

Proposition 1026 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a system c-reflective π-institution based on F. If ŻI is adequate,
then it is soluble.

Proof: Suppose that I is system c-reflective and that ŻI is adequate. We
must show that, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff ŻIΣ[φ] ≤ Ω(T ).
The implication left-to-right is always satisfied by Proposition 1017. For the
converse, assume that ŻIΣ[φ] ≤ Ω(T ). Then, by the adequacy of ŻI , we get

that Ω̂I(C(Ð→φ )) ≤ Ω(T ). Thus, by system c-reflectivity and Lemma 885, we

conclude that C(Ð→φ ) ≤ T , which gives φ ∈ TΣ. ∎

We finally show that a π-institution is strongly system truth equational
if and only if it is system c-reflective and has an adequate unary system core.

Strong System Truth Equationality

= ŻI Soluble

= ŻI Defines Theory Systems

= System c-Reflectivity + ŻI Adequate
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Theorem 1027 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is strongly system truth equational if
and only if it is system c-reflective and has an adequate unary system core.

Proof: Suppose, first, that I is strongly system truth equational. Then it
is system c-reflective by Theorem 872. Moreover, its unary system core is
soluble by Theorem 1021 and, hence, by Corollary 1025, its unary system
core is adequate.

Suppose, conversely, that I is system c-reflective with an adequate unary
system core. Then, by Proposition 1026, its unary system core is soluble
and, therefore, by Theorem 1021, I is strongly system truth equational. ∎

We close the section with a result relating the unary system core with
the system core. More precisely, we show that adequacy of the unary system
core implies adequacy of the system core.

Proposition 1028 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If ŻI is adequate, then ZI is adequate.

Proof: Suppose that ŻI is adequate. Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then we have

Ω̂I(C(Ð→φ )) ≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and ŻIΣ[φ] ≤ Ω(T )}
(ŻI adequate)

≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )}
(ŻI ⊆ ZI)

≤ Ω̂I(C(Ð→φ )). (Proposition 883)

Hence, Ω̂I(C(Ð→φ )) = ⋂{Ω(T ) ∶ T ∈ ThSys(I) and ZIΣ[φ] ≤ Ω(T )}, and ZI is
adequate. ∎

13.7 Syntactic Left PreAlgebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution. Recall that I belongs to one of the classes of the prealgebraiz-
ability hierarchy when its Leibniz operator is monotone on theory systems
and it has a certain kind of extensionality and a certain kind of injectivity
or reflectivity or complete reflectivity property. We now turn to correspond-
ing properties defined via “syntactic” means. Keeping a level of consistency,
we will call syntactically prealgebraizable any π-institution whose Leibniz
operator on theory systems is definable via a set of binary natural transfor-
mations in N ♭, i.e., a parameter free set of natural transformations in N ♭,
and, additionally, has a certain kind of definability property of truth, via a,
possibly, parameter free set of equations in N ♭. If the situation is reversed
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and definability of truth is required to be via a parameter free set of equa-
tions, but that is not demanded of the definability of Leibniz congruence
systems, then we obtain the classes of anti-prealgebraizable π-institutions, a
term concocted here to convey a kind of chiral symmetry in applying “param-
eterlessness”. The hierarchy we aim for consists of the six classes depicted
in the following diagram.

Synt Strong Left PreAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Left PreAlg
Synt Strong

System PreAlg

❄

Synt Left AntiPreAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt System PreAlg
❄

Synt System AntiPreAlg
❄

Membership in the classes of the central column imposes parameter free
definability of both the Leibniz operator on theory systems and a kind of
parameter free definability of truth. Membership in the classes in the left
column insists only on parameter free definability of the Leibniz operator,
whereas, symmetrically, membership in the classes of the right column pos-
tulates only a kind of parameter free definability of truth.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. In agreement with preestablished nomenclature, we
say that I is R̈IL̇I-fortified if it has

• a Leibniz binary reflexive core and

• a left adequate unary left Suszko core.

We say that I is syntactically strongly left prealgebraizable if it is

• R̈IL̇I-fortified;

• preequivalential (i.e., prealgebraic and system extensional);

• left c-reflective.

Our preceding work in this chapter has paved the way for the following
important characterization of syntactic strong left prealgebraizability.

Theorem 1029 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly left prealgebraiz-
able if and only if it is syntactically preequivalential and strongly left truth
equational.
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Proof: We have that I is syntactically strongly left prealgebraizable if and
only if, by definition, it is

• preequivalential and has a Leibniz binary reflexive core;

• left c-reflective and has a left adequate unary left Suszko core;

if and only if, by Theorems 969 and 1012, is it syntactically preequivalential
and strongly left truth equational. ∎

An alternative characterization along similar lines relates the syntactic
with the corresponding semantic notions introduced in the context of preal-
gebraizability.

Theorem 1030 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly left prealgebraiz-
able if and only if it is LC prealgebraizable and R̈IL̇I-fortified.

Proof: We have that I is syntactically strongly left prealgebraizable if and
only if, by definition,

• it is preequivalential and left c-reflective;

• it has a Leibniz binary reflexive core and a left adequate unary left
Suszko core;

if and only if, by definition, it is LC prealgebraizable and R̈IL̇I-fortified. ∎

This characterization in terms of semantic properties and preceding work
on transference of properties from theory families/systems to filter fami-
lies/systems on arbitrary algebraic systems yield yet another characteriza-
tion of syntactic strong left prealgebraizability, which may also be viewed as
a kind of transfer property for this class in its own right.

Theorem 1031 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly left prealge-
braizable if and only if it is R̈IL̇I-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter systems, system extensional and
left c-reflective.

Proof: We have that I is syntactically strongly left prealgebraizable if and
only if, by Theorem 1030, it is R̈IL̇I-fortified and LC prealgebraizable if and
only if, by Theorem 349, it is R̈IL̇I-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter systems, system extensional and
left c-reflective. ∎

Turning now to characterizations involving property preserving mappings
between posets of filter families and congruence systems, we have the follow-
ing result:
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Theorem 1032 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly left prealge-
braizable if and only if it is R̈IL̇I-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI(A)
is a left completely order reflecting surjection that restricts to an order em-
bedding

ΩA ∶ FiSysI(A)→ ConSysI(A)
that commutes with inverse logical extensions.

Proof: We have that I is syntactically strongly left prealgebraizable if and
only if, by Theorem 1030, it is R̈IL̇I-fortified and LC prealgebraizable if and
only if, by Theorem 355 it is R̈IL̇I-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) → ConSysI(A) is a left completely order
reflecting surjection that restricts to an order embedding ΩA ∶ FiSysI(A) →
ConSysI(A) that commutes with inverse logical extensions. ∎

Finally, in terms of conjugate pairs of transformations, we get the follow-
ing analog of Theorem 949.

Theorem 1033 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly left prealgebraiz-
able if and only if it is strongly left truth equational and its systemic skeleton
KI is equivalent to QI● via a conjugate pair (τ ♭, I♭) ∶ KI ⇄ QI● of natural
transformations.

Proof: Suppose, first, that I is strongly left truth equational and KI is
equivalent to QI● via a conjugate pair of natural transformations. Then
it is strongly left truth equational and, by Theorem 941, it is syntactically
preequivalential. Thus, by Theorem 1029, it is syntactically strongly left
prealgebraizable.

Suppose, conversely, that I is syntactically strongly left prealgebraizable.
Then, by Theorem 1029, it is strongly left truth equational and syntactically
preequivalential. Hence, by Theorem 934, it is syntactically WS prealge-
braizable. Now it follows by Theorem 940 that KI is equivalent to QI● via a

pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic preequivalentiality and τ ♭ the
syntactic strong left truth equationality of I , and, hence, by definition, they
constitute a conjugate pair of natural transformations. ∎

Again, the equivalence of the systemic skeleton with some algebraic π-
structure via a conjugate pair of natural transformations, coupled with strong
left truth equationality, is sufficient to ensure syntactic strong left prealge-
braizability.
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Theorem 1034 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly left prealgebraiz-
able if and only if it is strongly left truth equational and its systemic skeleton
is equivalent to an algebraic π-structure via a conjugate pair of natural trans-
formations.

Proof: If I is syntactically strongly left prealgebraizable, then, by Theorem
1033, it is strongly left truth equational and its systemic skeleton is equivalent
to an algebraic π-structure via a conjugate pair of natural transformations.
Suppose, conversely, that I is strongly left truth equational and its systemic
skeleton is equivalent to an algebraic π-structure via a conjugate pair of
natural transformations. Then, it is strongly left truth equational and, by
Proposition 928, it is syntactically preequivalential. Therefore, by Theorem
1029, it is syntactically strongly left prealgebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following alternative characterization of syntactically strongly
left prealgebraizable π-institutions:

Theorem 1035 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly left prealge-
braizable if and only if it is strongly left truth equational and there exists
a transformational order isomorphism h ∶ ThFam(KI) → ThFam(Q), in-
duced by a conjugate pair (τ ♭, I♭) of natural transformations, where Q is an
algebraic π-structure.

Proof: The “only if” follows by Theorem 1034 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1034. ∎

Flanking the class of syntactically strongly left prealgebraizable π-ins-
titutions are the classes of syntactically left prealgebraizable and syntacti-
cally left antiprealgebraizable π-institutions. These two classes are defined
formally now.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is syntactically left prealgebraizable if it is:

– R̈ILI-fortified;

– preequivalential;

– left c-reflective;

• I is syntactically left antiprealgebraizable if it is:

– RIL̇I-fortified;

– prealgebraic;
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– left c-reflective.

For both of these classes we have analogs of many of the results proven
above for syntactic strong left prealgebraizability. Before formulating them,
let us observe that, since:

• preequivalentiality is stronger than prealgebraicity;

• under prealgebraicity, R̈I Leibniz implies RI Leibniz; and

• L̇I left adequate implies LI left adequate,

we get, immediately from the definitions, the following hierarchical relations
between the upper three classes in the echelon formation of the preceding
diagram.

Synt Strong Left PreAlg

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Left PreAlg Synt Left AntiPreAlg

We now provide examples to show that the two inclusions are proper.
The first is an example of a π-institution which is syntactically left prealge-
braizable but not syntactically strongly left prealgebraizable.

Example 1036 EXAMPLE NOT FOUND YET!!

Next, we give an example of a syntactically left antiprealgebraizable π-
institution which fails to be syntactically strongly left prealgebraizable.

Example 1037 EXAMPLE NOT FOUND YET!!

The following analog of Theorem 1029 relates these two chiral types of
syntactic left prealgebraizability with various classes introduced previously,
providing some important characterizations.

Theorem 1038 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically left prealgebraizable if and only if it is syntactically
preequivalential and left truth equational.

(b) I is syntactically left antiprealgebraizable if and only if it is syntactically
prealgebraic and strongly left truth equational.

Proof:
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(a) We have that I is syntactically left prealgebraizable if and only if, by
definition, it is preequivalential, with a Leibniz binary reflexive core,
and left c-reflective, with a left adequate left Suszko core, if and only if,
by Theorems 969 and 870, is it syntactically preequivalential and left
truth equational.

(b) Similarly, I is syntactically left antiprealgebraizable if and only if, by
definition, it is prealgebraic, with a Leibniz reflexive core, and left c-
reflective, with a left adequate unary left Suszko core, if and only if, by
Theorems 788 and 1012, is it syntactically prealgebraic and strongly
left truth equational.

∎

An alternative characterization, analogous to that of Theorem 1030, re-
lates the syntactic with the corresponding semantic notions.

Theorem 1039 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically left prealgebraizable if and only if it is LC prealge-
braizable and R̈ILI-fortified.

(b) I is syntactically left antiprealgebraizable if and only if it is weakly LC
prealgebraizable and RIL̇I-fortified.

Proof:

(a) We have that I is syntactically left prealgebraizable if and only if, by
definition, it is preequivalential and left c-reflective and, moreover, it
has a Leibniz binary reflexive core and a left adequate left Suszko core.
This happens if and only if, by definition, it is LC prealgebraizable and
R̈ILI-fortified.

(b) Similarly, I is syntactically left antiprealgebraizable if and only if, by
definition, it is prealgebraic and left c-reflective and, moreover, it has a
Leibniz reflexive core and a left adequate unary left Suszko core. This
happens if and only if, by definition, it is weakly LC prealgebraizable
and RIL̇I-fortified.

∎

This characterization in terms of semantic properties and preceding work
on transference of properties from theory families/systems to filter fami-
lies/systems on arbitrary algebraic systems yield a kind of transfer property
for syntactic left (anti)prealgebraizability.

Theorem 1040 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) I is syntactically left prealgebraizable if and only if it is R̈ILI-fortified
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on
I-filter systems, system extensional and left c-reflective.

(b) I is syntactically left antiprealgebraizable if and only if it is RIL̇I-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is mono-
tone on I-filter systems and left c-reflective.

Proof: We prove only Part (a), since Part (b) is similar. We have that I
is syntactically left prealgebraizable if and only if, by Theorem 1039, it is
R̈ILI-fortified and LC prealgebraizable if and only if, by Theorem 349, it
is R̈ILI-fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is
monotone on I-filter systems, system extensional and left c-reflective. ∎

Turning now to characterizations involving property preserving mappings
between posets of filter families and of congruence systems, we have the
following result:

Theorem 1041 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically left prealgebraizable if and only if it is R̈ILI-fortified
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI(A)
is a left completely order reflecting surjection that restricts to an order
embedding ΩA ∶ FiSysI(A) → ConSysI(A) that commutes with inverse
logical extensions.

(b) I is syntactically left antiprealgebraizable if and only if it is RIL̇I-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI(A)
is a left completely order reflecting surjection that restricts to an order
embedding ΩA ∶ FiSysI(A)→ ConSysI(A).

Proof: Again we show only Part (a). Part (b) is similar. We have that
I is syntactically left prealgebraizable if and only if, by Theorem 1039, it
is R̈ILI-fortified and LC prealgebraizable if and only if, by Theorem 355
it is R̈ILI-fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶
FiFamI(A) → ConSysI(A) is a left completely order reflecting surjection
that restricts to an order embedding ΩA ∶ FiSysI(A) → ConSysI(A) that
commutes with inverse logical extensions. ∎

Finally, in terms of conjugate pairs of transformations, we get the follow-
ing analog of Theorem 1033.
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Theorem 1042 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically left prealgebraizable if and only if it is left truth equa-
tional and its systemic skeleton KI is equivalent to QI● via a conjugate
pair (τ ♭, I♭) ∶ KI ⇄ QI● of transformations, with I♭ natural.

(b) I is syntactically left antiprealgebraizable if and only if it is strongly left
truth equational and its systemic skeleton KI is equivalent to QI● via a
conjugate pair (τ ♭, I♭) ∶ KI ⇄QI● of transformations, with τ ♭ natural.

Proof:

(a) Suppose, first, that I is left truth equational and KI is equivalent to
QI● via a conjugate pair (τ ♭, I♭) of transformations, with I♭ natural.
Then it is left truth equational and, by Theorem 941, it is syntacti-
cally preequivalential. Thus, by Theorem 1038, it is syntactically left
prealgebraizable.

Suppose, conversely, that I is syntactically left prealgebraizable. Then,
by Theorem 1038, it is left truth equational and syntactically preequiv-
alential. Hence, by Theorem 934, it is syntactically WS prealgebraiz-
able. Now it follows by Theorem 940 that KI is equivalent to QI●

via a pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic preequivalentiality
and τ ♭ the left truth equationality of I , and, hence, by definition, they
constitute a conjugate pair of transformations, with I♭ natural.

(b) Suppose, first, that I is strongly left truth equational and KI is equiv-
alent to QI● via a conjugate pair (τ ♭, I♭) of transformations, with τ ♭

natural. Then it is strongly left truth equational and, by Theorem 941,
it is syntactically prealgebraic. Thus, by Theorem 1038, it is syntacti-
cally left antiprealgebraizable.

Suppose, conversely, that I is syntactically left antiprealgebraizable.
Then, by Theorem 1038, it is strongly left truth equational and syn-
tactically prealgebraic. Hence, by Theorem 934, it is syntactically WS
prealgebraizable. Now it follows by Theorem 940 that KI is equivalent

to QI● via a pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic prealge-
braicity and τ ♭ the strong left truth equationality of I , and, hence, by
definition, they constitute a conjugate pair of transformations, with τ ♭

natural.
∎

The equivalence of the systemic skeleton with some algebraic π-structure
via a conjugate pair of transformations, exhibiting the required one-sided
naturality condition, coupled with either left truth equationality or strong
left truth equationality, depending on the case considered, is sufficient to
ensure syntactic left (anti)prealgebraizability.
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Theorem 1043 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically left prealgebraizable if and only if it is left truth equa-
tional and its systemic skeleton is equivalent to an algebraic π-structure
via a conjugate pair (τ ♭, I♭) of transformations, with I♭ natural.

(b) I is syntactically left antiprealgebraizable if and only if it is strongly left
truth equational and its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair (τ ♭, I♭) of transformations, with τ ♭

natural.

Proof:

(a) If I is syntactically left prealgebraizable, then, by Theorem 1042, it
is left truth equational and its systemic skeleton is equivalent to an
algebraic π-structure via a conjugate pair (τ ♭, I♭) of transformations
with I♭ natural. Suppose, conversely, that I is left truth equational
and its systemic skeleton is equivalent to an algebraic π-structure via
a conjugate pair (τ ♭, I♭) of transformations, with I♭ natural. Then,
it is left truth equational and, by Proposition 928, it is syntactically
preequivalential. Therefore, by Theorem 1038, it is syntactically left
prealgebraizable.

(b) If I is syntactically left antiprealgebraizable, then, by Theorem 1042, it
is strongly left truth equational and its systemic skeleton is equivalent
to an algebraic π-structure via a conjugate pair (τ ♭, I♭) of transfor-
mations, with τ ♭ natural. Suppose, conversely, that I is strongly left
truth equational and its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair (τ ♭, I♭) of transformations, with τ ♭

natural. Then, it is strongly left truth equational and, by Proposition
928, it is syntactically prealgebraic. Therefore, by Theorem 1038, it is
syntactically left antiprealgebraizable.

∎

Finally, in terms of order isomorphisms between theory family lattices, we
have the following alternative characterization of syntactically left (anti)pre-
algebraizable π-institutions:

Theorem 1044 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically left prealgebraizable if and only if it is left truth
equational and there exists a transformational order isomorphism h ∶
ThFam(KI) → ThFam(Q), induced by a conjugate pair (τ ♭, I♭) of
transformations, where Q is an algebraic π-structure and I♭ is natural.
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(b) I is syntactically left antiprealgebraizable if and only if it is strongly left
truth equational and there exists a transformational order isomorphism
h ∶ ThFam(KI)→ ThFam(Q), induced by a conjugate pair (τ ♭, I♭) of
transformations, where Q is an algebraic π-structure and τ ♭ is natural.

Proof: The “only if” follows by Theorem 1043 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1043. ∎

In this section we have introduced the three syntactic left prealgebraiz-
ability classes

Synt Strong Left PreAlg

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Left PreAlg Synt Left AntiPreAlg

In the next section, we shall introduce, following a similar path, the remain-
ing three syntactic prealgebraizability classes, namely those of the system
prealgebraizable π-institutions, in order to complete the syntactic prealge-
braizability hierarchy that was described at the beginning of the section:

Synt Strong Left PreAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Left PreAlg
Synt Strong

System PreAlg

❄

Synt Left AntiPreAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt System PreAlg
❄

Synt System AntiPreAlg
❄

13.8 Syntactic System PreAlgebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is R̈IŻI-fortified if it has

• a Leibniz binary reflexive core; and

• an adequate unary system core.

We say that I is syntactically strongly system prealgebraizable if it
is

• R̈IŻI-fortified;

• preequivalential (i.e., prealgebraic and system extensional);
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• system c-reflective.

An analog of Theorem 1029 provides an important characterization of
syntactic strong system prealgebraizability in terms of lower classes in the
syntactic hierarchy.

Theorem 1045 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly system prealge-
braizable if and only if it is syntactically preequivalential and strongly system
truth equational.

Proof: We have that I is syntactically strongly system prealgebraizable if
and only if, by definition, it is

• preequivalential and has a Leibniz binary reflexive core;

• system c-reflective and has an adequate unary system core;

if and only if, by Theorems 969 and 1027, is it syntactically preequivalential
and strongly system truth equational. ∎

An analog of Theorem 1030 gives an alternative characterization of the
syntactic notion in terms of the corresponding semantic notions.

Theorem 1046 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly system prealge-
braizable if and only if it is system prealgebraizable and R̈IŻI-fortified.

Proof: We have that I is syntactically strongly system prealgebraizable if
and only if, by definition,

• it is preequivalential and system c-reflective;

• it has a Leibniz binary reflexive core and an adequate unary system
core;

if and only if, by definition, it is system prealgebraizable and, also, R̈IŻI-
fortified. ∎

This characterization in terms of semantic properties and preceding work
on transference of properties from theory systems to filter systems on arbi-
trary algebraic systems yield yet another characterization of syntactic strong
system prealgebraizability analogous to that of Theorem 1031, which may
also be viewed as a kind of transfer property for this class.

Theorem 1047 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly system prealge-
braizable if and only if it is R̈IŻI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on theory systems, system extensional and
system c-reflective.
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Proof: We have that I is syntactically strongly system prealgebraizable if
and only if, by Theorem 1046, it is R̈IŻI-fortified and system prealgebraiz-
able if and only if, by Theorem 349, it is R̈IŻI-fortified and, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter systems, system
extensional and system c-reflective. ∎

Turning now to characterizations involving property preserving mappings
between posets of filter families and of congruence systems, we have the
following result:

Theorem 1048 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly system prealge-
braizable if and only if it is R̈IŻI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI(A)
is an order embedding which commutes with inverse logical extensions.

Proof: We have that I is syntactically strongly system prealgebraizable
if and only if, by Theorem 1046, it is R̈IŻI-fortified and system prealge-
braizable if and only if, by Theorem 353, it is R̈IŻI-fortified and, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A) → ConSysI(A) is an
order embedding which commutes with inverse logical extensions. ∎

Finally, in an analog of Theorem 1033, using conjugate pairs of transfor-
mations, we get

Theorem 1049 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly system preal-
gebraizable if and only if its systemic skeleton KI is equivalent to QI● via a
conjugate pair (τ ♭, I♭) ∶ KI ⇄QI● of natural transformations.

Proof: Suppose, first, that KI is equivalent to QI● via a conjugate pair of
natural transformations. Then, by Theorem 942, it is strongly system truth
equational and, by Theorem 941, it is syntactically preequivalential. Thus,
by Theorem 1045, it is syntactically strongly system prealgebraizable.

Suppose, conversely, that I is syntactically strongly system prealgebraiz-
able. Then, by Theorem 1045, it is strongly system truth equational and
syntactically preequivalential. Hence, by Theorem 934, it is syntactically
WS prealgebraizable. Now it follows by Theorem 940 that KI is equivalent

to QI● via a pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic preequivalentiality
and τ ♭ the syntactic strong system truth equationality of I , and, hence, by
definition, they constitute a conjugate pair of natural transformations. ∎

Analogously with Theorem 1034, the equivalence of the systemic skeleton
with some algebraic π-structure via a conjugate pair of natural transforma-
tions suffices to ensure syntactic strong system prealgebraizability.
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Theorem 1050 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly system preal-
gebraizable if and only if its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair of natural transformations.

Proof: If I is syntactically strongly system prealgebraizable, then, by The-
orem 1049, its systemic skeleton is equivalent to an algebraic π-structure via
a conjugate pair of natural transformations. Suppose, conversely, that the
systemic skeleton KI is equivalent to an algebraic π-structure via a conjugate
pair of natural transformations. Then, by Proposition 928, it is syntactically
preequivalential and, by Theorem 942, it is strongly system truth equational.
Therefore, by Theorem 1045, it is syntactically strongly system prealgebraiz-
able. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following analog of Theorem 1035, providing an alternative char-
acterization of syntactically strongly system prealgebraizable π-institutions.

Theorem 1051 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly system preal-
gebraizable if and only if there exists a transformational order isomorphism
h ∶ ThFam(KI) → ThFam(Q), induced by a conjugate pair (τ ♭, I♭) of nat-
ural transformations, where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 1050 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1050. ∎

In the case of syntactic strong left prealgebraizability, studied in the pre-
ceding section, below that class sat two wider classes obtained by weakening
the naturality requirement either on the side of the witnesses of prealge-
braicity or on the side of the witnesses of truth equationality. Similarly
here, we get below the class of syntactically strongly system prealgebraizable
π-institutions the classes of syntactically system prealgbebraizable and syn-
tactically system antiprealgebraizable π-institutions. These two classes are
defined formally now.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is syntactically system prealgebraizable if it is:

– R̈IZI-fortified;

– preequivalential;

– system c-reflective;

• I is syntactically system antiprealgebraizable if it is:
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– RIŻI-fortified;

– prealgebraic;

– system c-reflective.

For both of these classes we have analogs of many of the results proven
above for syntactic strong system prealgebraizability. Again, since:

• preequivalentiality is stronger than prealgebraicity;

• under prealgebraicity, R̈I Leibniz implies RI Leibniz; and

• ŻI adequate implies ZI adequate,

we get, immediately from the definitions the following hierarchical relations
between the upper three classes in the echelon formation of the preceding
diagram.

Synt Strong System PreAlg

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt System PreAlg Synt System AntiPreAlg

We now provide examples to show that the two inclusions are proper.
The first is an example of a π-institution which is syntactically system pre-
algebraizable but not syntactically strongly system prealgebraizable.

Example 1052 EXAMPLE NOT FOUND YET!!

Next, we give an example of a syntactically system antiprealgebraizable
π-institution which fails to be syntactically strongly system prealgebraizable.

Example 1053 EXAMPLE NOT FOUND YET!!

The following analog of Theorem 1038 relates these two chiral types of
syntactic system prealgebraizability with various classes introduced previ-
ously, providing some important characterizations.

Theorem 1054 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically system prealgebraizable if and only if it is syntactically
preequivalential and system truth equational.

(b) I is syntactically system antiprealgebraizable if and only if it is syntac-
tically prealgebraic and strongly system truth equational.

Proof:
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(a) We have that I is syntactically system prealgebraizable if and only if,
by definition, it is preequivalential, with a Leibniz binary reflexive core,
and system c-reflective, with an adequate system core, if and only if, by
Theorems 969 and 887, is it syntactically preequivalential and system
truth equational.

(b) We have that I is syntactically system antiprealgebraizable if and only
if, by definition, it is prealgebraic, with a Leibniz reflexive core, and
system c-reflective, with an adequate unary system core, if and only if,
by Theorems 788 and 1027, is it syntactically prealgebraic and strongly
system truth equational.

∎

An alternative characterization, analogous to that of Theorem 1039, re-
lates the syntactic with the corresponding semantic notions.

Theorem 1055 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically system prealgebraizable if and only if it is system
prealgebraizable and R̈IZI-fortified.

(b) I is syntactically system antiprealgebraizable if and only if it is weakly
system prealgebraizable and RIŻI-fortified.

Proof:

(a) We have that I is syntactically system prealgebraizable if and only if, by
definition, it is preequivalential and system c-reflective and, moreover,
it has a Leibniz binary reflexive core and an adequate system core. This
happens if and only if, by definition, it is system prealgebraizable and
R̈IZI-fortified.

(b) Similarly, I is syntactically system antiprealgebraizable if and only if,
by definition, it is prealgebraic and system c-reflective and, moreover,
it has a Leibniz reflexive core and an adequate unary system core. This
happens if and only if, by definition, it is weakly system prealgebraiz-
able and RIŻI-fortified.

∎

As far as transferring the properties defining syntactic system (anti)pre-
algebraizability from theory systems to filter systems on arbitrary algebraic
systems, we get the following transfer theorem.

Theorem 1056 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) I is syntactically system prealgebraizable if and only if it is R̈IZI-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is mono-
tone on I-filter systems, system extensional and system c-reflective.

(b) I is syntactically system antiprealgebraizable if and only if it is RIŻI-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is mono-
tone on I-filter systems and system c-reflective.

Proof: We prove only Part (a). The proof of Part (b) follows along similar
lines. We have that I is syntactically system prealgebraizable if and only
if, by Theorem 1055, it is R̈IZI-fortified and system prealgebraizable if and
only if, by Theorem 349, it is R̈IZI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter systems, system extensional and
system c-reflective. ∎

As far as characterizations involving property preserving mappings be-
tween posets of filter families and of congruence systems, we have the follow-
ing analog of Theorem 1041.

Theorem 1057 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically system prealgebraizable if and only if it is R̈IZI-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI(A)
is an order embedding which commutes with inverse logical extensions.

(b) I is syntactically system antiprealgebraizable if and only if it is RIŻI-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI(A)
is an order embedding.

Proof: Again we show only Part (a), since Part (b) follows similar reasoning.
We have that I is syntactically system prealgebraizable if and only if, by
Theorem 1055, it is R̈IZI-fortified and system prealgebraizable if and only
if, by Theorem 353 it is R̈IZI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A)→ ConSysI(A) is an order embedding which
commutes with inverse logical extensions. ∎

Finally, in terms of conjugate pairs of transformations, we get the follow-
ing analog of Theorem 1042.

Theorem 1058 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.
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(a) I is syntactically system prealgebraizable if and only if its systemic
skeleton KI is equivalent to QI● via a conjugate pair (τ ♭, I♭) ∶ KI ⇄QI●

of transformations, with I♭ natural.

(b) I is syntactically system antiprealgebraizable if and only if its systemic
skeleton KI is equivalent to QI● via a conjugate pair (τ ♭, I♭) ∶ KI ⇄QI●

of transformations, with τ ♭ natural.

Proof:

(a) Suppose, first, that KI is equivalent to QI● via a conjugate pair (τ ♭, I♭)
of transformations, with I♭ natural. Then, by Theorem 941, it is syn-
tactically preequivalential and, by Theorem 942, it is system truth
equational. Thus, by Theorem 1054, it is syntactically system pre-
algebraizable.

Suppose, conversely, that I is syntactically system prealgebraizable.
Then, by Theorem 1054, it is syntactically preequivalential and system
truth equational. Hence, by Theorem 934, it is syntactically WS pre-
algebraizable. Now it follows by Theorem 940 that KI is equivalent

to QI● via a pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic preequiv-
alentiality and τ ♭ the system truth equationality of I , and, hence, by
definition, they constitute a conjugate pair of transformations, with I♭

natural.

(b) Suppose, first, KI is equivalent to QI● via a conjugate pair (τ ♭, I♭) of
transformations, with τ ♭ natural. Then, by Theorem 941, it is syntac-
tically prealgebraic and, by Theorem 942, it is strongly system truth
equational. Thus, by Theorem 1054, it is syntactically system an-
tiprealgebraizable.

Suppose, conversely, that I is syntactically system antiprealgebraiz-
able. Then, by Theorem 1054, it is syntactically prealgebraic and
strongly system truth equational. Hence, by Theorem 934, it is syntac-
tically WS prealgebraizable. Now it follows by Theorem 940 that KI

is equivalent to QI● via a pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic
prealgebraicity and τ ♭ the strong system truth equationality of I , and,
hence, by definition, they constitute a conjugate pair of transforma-
tions, with τ ♭ natural.

∎

The equivalence of the systemic skeleton with some algebraic π-structure
via a conjugate pair of transformations, exhibiting the required one-sided
naturality condition, is sufficient to ensure syntactic system (anti)prealge-
braizability. This constitutes an analog of Theorem 1043.

Theorem 1059 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.



Voutsadakis CHAPTER 13. SYNTACTIC HIERARCHY III 961

(a) I is syntactically system prealgebraizable if and only if its systemic
skeleton is equivalent to an algebraic π-structure via a conjugate pair(τ ♭, I♭) of transformations, with I♭ natural.

(b) I is syntactically system antiprealgebraizable if and only if its systemic
skeleton is equivalent to an algebraic π-structure via a conjugate pair(τ ♭, I♭) of transformations, with τ ♭ natural.

Proof:

(a) If I is syntactically system prealgebraizable, then, by Theorem 1058,
its systemic skeleton is equivalent to an algebraic π-structure via a
conjugate pair (τ ♭, I♭) of transformations with I♭ natural. Suppose,
conversely, that the systemic skeleton KI is equivalent to an algebraic
π-structure via a conjugate pair (τ ♭, I♭) of transformations, with I♭

natural. Then, by Proposition 928, it is syntactically preequivalential
and, by Theorem 942, it is system truth equational. Therefore, by
Theorem 1054, it is syntactically system prealgebraizable.

(b) If I is syntactically system antiprealgebraizable, then, by Theorem
1058, its systemic skeleton is equivalent to an algebraic π-structure
via a conjugate pair (τ ♭, I♭) of transformations, with τ ♭ natural. Sup-
pose, conversely, that KI is equivalent to an algebraic π-structure via
a conjugate pair (τ ♭, I♭) of transformations, with τ ♭ natural. Then, by
Proposition 928, it is syntactically prealgebraic and, by Theorem 942,
it is strongly system truth equational. Therefore, by Theorem 1054, it
is syntactically system antiprealgebraizable.

∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following analog of Theorem 1044, giving an alternative charac-
terization of syntactically system (anti)prealgebraizable π-institutions:

Theorem 1060 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically system prealgebraizable if and only if there exists a
transformational order isomorphism h ∶ ThFam(KI) → ThFam(Q),
induced by a conjugate pair (τ ♭, I♭) of transformations, where Q is an
algebraic π-structure and I♭ is natural.

(b) I is syntactically system antiprealgebraizable if and only if there exists
a transformational order isomorphism h ∶ ThFam(KI)→ ThFam(Q),
induced by a conjugate pair (τ ♭, I♭) of transformations, where Q is an
algebraic π-structure and τ ♭ is natural.
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Proof: The “only if” follows by Theorem 1059 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1059. ∎

Finally, since we have now described in detail the six classes of the syn-
tactic prealgebraizability hierarchy, it is only appropriate to pause and look
for examples that separate the left prealgebraizability from the system pre-
algebraizability classes, i.e., examples showing that the vertical arrows in the
following 6-class diagram

Synt Strong Left PreAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Left PreAlg
Synt Strong

System PreAlg

❄

Synt Left AntiPreAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt System PreAlg
❄

Synt System AntiPreAlg
❄

represent, in fact, proper inclusions. We can do this in one swoop by exhibit-
ing an example of a syntactically strong system prealgebraizable π-institution
which is neither syntactically left prealgebraizable nor syntactically left an-
tiprealgebraizable.

Example 1061 EXAMPLE NOT FOUND YET!

13.9 Syntactic Family Algebraizability

We now preview the full hierarchy of syntactically prealgebraizable π-insti-
tutions that will be established in this section. The bottom six classes are
the ones established in the preceding two sections, where prealgebraizability
refers to the fact that monotonicity is only applied to theory systems. The top
six classes concern syntactic algebraizability, where monotonicity is applied
to all theory families. The bottom row of this upper tier consists of those
π-institutions, where c-reflectivity is postulated only for theory systems. The
very top row above it refers to applying left c-reflectivity to theory families.
In the second from top class, system (or, equivalently, left c-reflectivity) is
postulated in conjunction with family monotonicity and at the very top row
family c-reflectivity is combined with family monotonicity. Finally, as far
as columns go, they incorporate meanings similar to the ones described for
the cohorts of classes introduced in the preceding sections. The left column
applies parameter freeness only to the equivalence natural transformations
witnessing syntactic protoalgebraicity. The right column insists on param-
eter freeness for the defining equations that witness the truth equationality
of the π-institution, whereas the middle column is combing those properties
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and consists of those classes of π-institutions that are syntactically protoalge-
braic and syntactic truth equational, with both properties having parameter
free witnessing transformations and witnessing equations, respectively. The
complete picture that emerges at the end of this and the next section adds to
the six-class diagram concluding the previous section six more classes, those
positioned at the top two rows.

Synt Strong F Alg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt F Alg
Synt Strong

Alg

❄

Synt F AntiAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Alg
❄

Synt AntiAlg
❄

Synt Strong Left PreAlg
❄

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Left PreAlg
❄ Synt Strong

System PreAlg

❄

Synt Left AntiPreAlg
❄

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt System PreAlg
❄

Synt System AntiPreAlg
❄

We start by defining the class at the apex of the diagram. Let F =⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-institution based
on F. We say that I is R̈I ṠI-fortified if it has

• a Leibniz binary reflexive core; and

• an adequate unary Suszko core.

We say that I is syntactically strongly family algebraizable if it is

• R̈I ṠI-fortified;

• equivalential (i.e., protoalgebraic and family extensional);

• family c-reflective.

Based on previous work, we can formulate the following important char-
acterization of syntactic strong family algebraizability.
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Theorem 1062 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly family alge-
braizable if and only if it is syntactically equivalential and strongly truth
equational.

Proof: We have that I is syntactically strongly family algebraizable if and
only if, by definition, it is

• equivalential and has a Leibniz binary reflexive core;

• family c-reflective and has an adequate unary Suszko core;

if and only if, by Theorems 983 and 996, is it syntactically preequivalential
and strongly left truth equational. ∎

An alternative characterization along similar lines relates the syntactic
with the corresponding semantic notions introduced in the context of alge-
braizability.

Theorem 1063 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly family alge-
braizable if and only if it is family algebraizable and R̈I ṠI-fortified.

Proof: We have that I is syntactically strongly family algebraizable if and
only if, by definition,

• it is equivalential and family c-reflective;

• it has a Leibniz binary reflexive core and an adequate unary Suszko
core;

if and only if, by definition, it is family algebraizable (recall that family injec-
tivity and family c-reflectivity coincide under protoalgebraicity) and R̈I ṠI-
fortified. ∎

This characterization in terms of semantic properties and preceding work
on transference of properties from theory families to filter families on arbi-
trary algebraic systems yields another characterization of syntactic strong
family algebraizability, which may also be viewed as a kind of transfer prop-
erty in its own right.

Theorem 1064 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly family alge-
braizable if and only if it is R̈I ṠI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter families, family extensional and
family c-reflective.
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Proof: We have that I is syntactically strongly family algebraizable if and
only if, by Theorem 1063, it is R̈I ṠI-fortified and family algebraizable if and
only if, by Theorem 364, it is R̈IṠI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone and injective (equivalently c-reflective) on
I-filter families and family extensional. ∎

Turning now to characterizations involving property preserving mappings
between posets of filter families and of congruence systems, we have the
following result:

Theorem 1065 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly family alge-
braizable if and only if it is R̈IṠI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI(A)
is an order isomorphism that commutes with inverse logical extensions.

Proof: We have that I is syntactically strongly family algebraizable if and
only if, by Theorem 1063, it is R̈I ṠI-fortified and family algebraizable if and
only if, by Theorem 366 it is R̈IṠI-fortified and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A)→ ConSysI(A) is an order isomorphism that
commutes with inverse logical extensions. ∎

Finally, in terms of conjugate pairs of transformations, we get the follow-
ing analog of Theorem 949.

Theorem 1066 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly family alge-
braizable if and only if it is equivalent to its associated algebraic π-structure
QI∗ via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QI∗ of natural transformations.

Proof: Suppose, first, that I is equivalent to QI∗ via a conjugate pair of
natural transformations. Then it is syntactically equivalential by Corollary
910 and it is family truth equational by Theorem 911. Thus, by Theorem
1062, it is syntactically strongly family algebraizable.

Suppose, conversely, that I is syntactically strongly family algebraizable.
Then, by Theorem 1062, it is strongly family truth equational and syntacti-
cally equivalential. Hence, by Theorem 913, it is syntactically WF algebraiz-
able. Now it follows by Theorem 919 that I is equivalent to QI∗ via a pair

(τ ♭, ↔I♭), where I♭ witnesses the syntactic equivalentiality and τ ♭ the syntactic
strong truth equationality of I , and, hence, by definition, they constitute a
conjugate pair of natural transformations. ∎

It turns out, in this case also, that the equivalence of the π-institution with
some algebraic π-structure via a conjugate pair of natural transformations is
sufficient to ensure syntactic strong family algebraizability.
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Theorem 1067 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly family algebraiz-
able if and only if it is equivalent to an algebraic π-structure via a conjugate
pair of natural transformations.

Proof: If I is syntactically strongly family algebraizable, then, by Theorem
1066, it is equivalent to an algebraic π-structure via a conjugate pair of
natural transformations. Suppose, conversely, that I is equivalent to an
algebraic π-structure via a conjugate pair of natural transformations. Then,
it is syntactically equivalential by Corollary 910 and it is strongly family truth
equational by Theorem 911. Therefore, by Theorem 1062, it is syntactically
strongly family algebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following alternative characterization of syntactically strongly
family algebraizable π-institutions:

Theorem 1068 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly family alge-
braizable if and only if there exists a transformational order isomorphism
h ∶ ThFam(I)→ ThFam(Q), induced by a conjugate pair (τ ♭, I♭) of natural
transformations, where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 1067 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1067. ∎

Lying just underneath the class of syntactically strongly family algebraiz-
able π-institutions are the classes of syntactically family algebraizable and
syntactically family antialgebraizable π-institutions. These two classes are
defined formally now.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is syntactically family algebraizable if it is:

– R̈ISI-fortified;

– equivalential;

– family c-reflective;

• I is syntactically family antialgebraizable if it is:

– RI ṠI-fortified;

– protoalgebraic;

– family c-reflective.
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We formulate analogs of many of the results proven previously for the
various kinds of syntactic prealgebraizability properties. Observe, first, that,
since:

• equivalentiality is stronger than protoalgebraicity;

• under prealgebraicity, R̈I Leibniz implies RI Leibniz; and

• ṠI adequate implies SI adequate,

we get, immediately from the definitions the following hierarchical relations
between the three topmost classes in the syntactic algebraizability hierarchy.

Synt Strong Family Alg

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Family Alg Synt Family AntiAlg

We now provide examples to show that the two inclusions are proper.
The first is an example of a π-institution which is syntactically family alge-
braizable but not syntactically strongly family algebraizable.

Example 1069 EXAMPLE NOT FOUND YET!!

Next, we give an example of a syntactically family antialgebraizable π-
institution which fails to be syntactically strongly family algebraizable.

Example 1070 EXAMPLE NOT FOUND YET!!

The following analog of Theorem 1062 relates these two chiral sorts of
syntactic family (anti)algebraizability with various classes introduced previ-
ously, providing some important characterizations.

Theorem 1071 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically family algebraizable if and only if it is syntactically
equivalential and family truth equational.

(b) I is syntactically family antialgebraizable if and only if it is syntactically
protoalgebraic and strongly family truth equational.

Proof:

(a) We have that I is syntactically family algebraizable if and only if,
by definition, it is equivalential, with a Leibniz binary reflexive core,
and family c-reflective, with an adequate Suszko core, if and only if,
by Theorems 983 and 847, is it syntactically equivalential and family
truth equational.
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(b) We have that I is syntactically family antialgebraizable if and only if,
by definition, it is protoalgebraic, with a Leibniz reflexive core, and
family c-reflective, with an adequate unary Suszko core, if and only
if, by Theorems 805 and 996, is it syntactically protoalgebraic and
strongly family truth equational.

∎

An alternative characterization, analogous to that of Theorem 1063, re-
lates the syntactic with the corresponding semantic notions.

Theorem 1072 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically family algebraizable if and only if it is family alge-
braizable and R̈ISI-fortified.

(b) I is syntactically family antialgebraizable if and only if it is family
algebraizable and RI ṠI-fortified.

Proof:

(a) We have that I is syntactically family algebraizable if and only if, by
definition, it is equivalential and family c-reflective and, moreover, it
has a Leibniz binary reflexive core and an adequate Suszko core. This
happens if and only if, by definition, it is family algebraizable and
R̈ISI-fortified.

(b) Similarly, I is syntactically family antialgebraizable if and only if, by
definition, it is equivalential and family c-reflective and, moreover, it
has a Leibniz reflexive core and an adequate unary Suszko core. This
happens if and only if, by definition, it is family algebraizable and
RIṠI-fortified.

∎

The characterization in terms of semantic properties and preceding work
on transference of properties from theory families to filter families on arbi-
trary algebraic systems yield a transfer property for syntactic family (anti)-
prealgebraizability.

Theorem 1073 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F.

(a) I is syntactically family algebraizable if and only if it is R̈ISI-fortified
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on
I-filter families, family extensional and family c-reflective.

(b) I is syntactically family antialgebraizable if and only if it is RIṠI-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is mono-
tone on I-filter families and family c-reflective.
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Proof: We prove only Part (a), since Part (b) is similar. We have that I
is syntactically family algebraizable if and only if, by Theorem 1072, it is
R̈ISI-fortified and family algebraizable if and only if, by Theorem 349, it
is R̈ISI-fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is
monotone on I-filter families, family extensional and family c-reflective. ∎

Turning now to characterizations involving property preserving mappings
between posets of filter families and of congruence systems, we have the
following result:

Theorem 1074 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically family algebraizable if and only if it is R̈ISI-fortified
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI(A)
is an order isomorphism that commutes with inverse logical extensions.

(b) I is syntactically family antialgebraizable if and only if it is RI ṠI-
fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI(A)→ ConSysI(A)
is an order isomorphism.

Proof: Again we show only Part (a). Part (b) is similar. We have that
I is syntactically family algebraizable if and only if, by Theorem 1072, it
is R̈ISI-fortified and family algebraizable if and only if, by Theorem 366
it is R̈ISI-fortified and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶
FiFamI(A) → ConSysI(A) is an order isomorphism that commutes with
inverse logical extensions. ∎

In terms of conjugate pairs of transformations, we get the following analog
of Theorem 1066.

Theorem 1075 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically family algebraizable if and only if it is equivalent to
QI∗ via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QI∗ of transformations, with I♭

natural.

(b) I is syntactically family antialgebraizable if and only if it is equivalent
to QI∗ via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QI∗ of transformations, with
τ ♭ natural.
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Proof:

(a) Suppose, first, that I is equivalent to QI∗ via a conjugate pair (τ ♭, I♭) of
transformations, with I♭ natural. Then, by Corollary 910, it is syntac-
tically equivalential and, by Theorem 911, it is family truth equational.
Thus, by Theorem 1071, it is syntactically family algebraizable.

Suppose, conversely, that I is syntactically family algebraizable. Then,
by Theorem 1071, it is left truth equational and syntactically equivalen-
tial. Hence, by Theorem 913, it is syntactically WF prealgebraizable.
Now it follows by Theorem 919 that I is equivalent to QI∗ via a pair

(τ ♭, ↔I♭), where I♭ witnesses the syntactic equivalentiality and τ ♭ the
syntactic family truth equationality of I , and, hence, by definition,
they constitute a conjugate pair of transformations, with I♭ natural.

(b) Suppose, first, that I is equivalent to QI∗ via a conjugate pair (τ ♭, I♭)
of transformations, with τ ♭ natural. Then, by Theorem 909, it is syn-
tactically protoalgebraic and, by Theorem 911, it is strongly family
truth equational. Thus, by Theorem 1071, it is syntactically family
antialgebraizable.

Suppose, conversely, that I is syntactically family antialgebraizable.
Then, by Theorem 1071, it is strongly left truth equational and syntac-
tically protoalgebraic. Hence, by Theorem 913, it is syntactically WF
prealgebraizable. Now it follows by Theorem 919 that I is equivalent

to QI∗ via a pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic protoalge-
braicity and τ ♭ the strong family truth equationality of I , and, hence,
by definition, they constitute a conjugate pair of transformations, with
τ ♭ natural.

∎

The equivalence of the π-institution with some algebraic π-structure via a
conjugate pair of transformations exhibiting the required one-sided naturality
condition suffices to ensure syntactic family (anti)algebraizability.

Theorem 1076 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically family algebraizable if and only if is equivalent to an
algebraic π-structure via a conjugate pair (τ ♭, I♭) of transformations,
with I♭ natural.

(b) I is syntactically family antialgebraizable if and only if it is equivalent to
an algebraic π-structure via a conjugate pair (τ ♭, I♭) of transformations,
with τ ♭ natural.

Proof:
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(a) If I is syntactically family algebraizable, then, by Theorem 1075, it is
equivalent to an algebraic π-structure via a conjugate pair (τ ♭, I♭) of
transformations with I♭ natural. Suppose, conversely, that I is equiv-
alent to an algebraic π-structure via a conjugate pair (τ ♭, I♭) of trans-
formations, with I♭ natural. Then, by Theorem 909, it is syntactically
equivalential and, by Theorem 911, it is family truth equational. There-
fore, by Theorem 1071, it is syntactically family algebraizable.

(b) If I is syntactically family antialgebraizable, then, by Theorem 1075,
it is equivalent to an algebraic π-structure via a conjugate pair (τ ♭, I♭)
of transformations, with τ ♭ natural. Suppose, conversely, that I is
equivalent to an algebraic π-structure via a conjugate pair (τ ♭, I♭) of
transformations, with τ ♭ natural. Then, by Theorem 909, it is syntac-
tically protoalgebraic and by Theorem 911, it is strongly family truth
equational. Therefore, by Theorem 1071, it is syntactically family an-
tialgebraizable.

∎

Finally, in terms of order isomorphisms between theory family lattices, we
have the following alternative characterization of syntactic family (anti)al-
gebraizability:

Theorem 1077 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically family algebraizable if and only if there exists a trans-
formational order isomorphism h ∶ ThFam(I)→ ThFam(Q), induced
by a conjugate pair (τ ♭, I♭) of transformations, where Q is an algebraic
π-structure and I♭ is natural.

(b) I is syntactically family antialgebraizable if and only if there exists a
transformational order isomorphism h ∶ ThFam(I) → ThFam(Q),
induced by a conjugate pair (τ ♭, I♭) of transformations, where Q is an
algebraic π-structure and τ ♭ is natural.

Proof: The “only if” follows by Theorem 1076 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1076. ∎

In this section we have introduced the three syntactic family algebraiz-
ability classes

Synt Strong Family Alg

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Family Alg Synt Family AntiAlg
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In the next section, we shall introduce the remaining three syntactic alge-
braizability classes, namely those of the syntactically algebraizable π-ins-
titutions, in order to complete the syntactic algebraizability hierarchy that
was described at the beginning of the section:

Synt Strong F Alg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt F Alg
Synt Strong

Alg

❄

Synt F AntiAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Alg
❄

Synt AntiAlg
❄

13.10 Syntactic Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that I is R̈IŻI-fortified if it has a Leibniz
binary reflexive core and an adequate unary system core. We say that I is
syntactically strongly algebraizable if it is

• R̈IŻI-fortified;

• equivalential (i.e., protoalgebraic and family extensional);

• system c-reflective.

An analog of Theorem 1062 provides an important characterization of
syntactic strong algebraizability in terms of lower classes in the syntactic
hierarchy.

Theorem 1078 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly algebraizable if
and only if it is syntactically equivalential and strongly system truth equa-
tional.

Proof: We have that I is syntactically strongly algebraizable if and only if,
by definition, it is

• equivalential and has a Leibniz binary reflexive core;

• system c-reflective and has an adequate unary system core;

if and only if, by Theorems 983 and 1027, is it syntactically preequivalential
and strongly system truth equational. ∎

An analog of Theorem 1063 gives an alternative characterization of the
syntactic notion in terms of the corresponding semantic notions.
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Theorem 1079 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly algebraizable if
and only if it is (system) algebraizable and R̈IŻI-fortified.

Proof: We have that I is syntactically strongly algebraizable if and only if,
by definition,

• it is equivalential and system c-reflective;

• it has a Leibniz binary reflexive core and an adequate unary system
core;

if and only if, by definition, it is algebraizable and R̈IŻI-fortified. ∎

This characterization in terms of semantic properties and preceding work
on transference of properties from theory families/systems to filter fami-
lies/systems on arbitrary algebraic systems yield another characterization of
syntactic strong algebraizability analogous to that of Theorem 1064, which
may also be viewed as a kind of transfer property for syntactically strongly
algebraizable π-institutions.

Theorem 1080 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly algebraizable
if and only if it is R̈IŻI-fortified and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter families, family extensional and sys-
tem c-reflective.

Proof: We have that I is syntactically strongly algebraizable if and only
if, by Theorem 1079, it is R̈IŻI-fortified and algebraizable if and only if,
by Theorem 349, it is R̈IŻI-fortified and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter families, family extensional and sys-
tem c-reflective. ∎

Turning now to characterizations involving property preserving mappings
between posets of filter families and of congruence systems, we have the
following analog of Theorem 1065.

Theorem 1081 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly algebraizable
if and only if it is R̈IŻI-fortified, stable and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI(A)
is an order isomorphism that commutes with inverse logical extensions.
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Proof: We have that I is syntactically strongly (system) algebraizable if and
only if, by Theorem 1079, it is R̈IŻI-fortified and algebraizable if and only if,
by Theorem 365, it is R̈IŻI-fortified, stable and, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A)→ ConSysI(A) is an order isomorphism that
commutes with inverse logical extensions. ∎

Finally, in an analog of Theorem 1066, using conjugate pairs of transfor-
mations, we get

Theorem 1082 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly algebraizable if
and only if it is stable and its systemic skeleton KI is equivalent to QI∗ via
a conjugate pair (τ ♭, I♭) ∶ KI ⇄ QI∗ of natural transformations.

Proof: Suppose, first, that I is stable and KI is equivalent to QI∗ via
a conjugate pair of natural transformations. Then, by Theorem 929, it is
syntactically equivalential and, by Theorem 941, it is strongly system truth
equational. Thus, by Theorem 1078, it is syntactically strongly algebraizable.

Suppose, conversely, that I is syntactically strongly algebraizable. Then,
by Theorem 1078, it is syntactically equivalential and strongly system truth
equational. Hence, by Theorem 923, it is syntactically weakly algebraizable.
Now it follows by Theorem 927 that KI is equivalent to QI∗ via a pair

(τ ♭, ↔I♭), where I♭ witnesses the syntactic equivalentiality and τ ♭ the strong
system truth equationality of I , and, hence, by definition, they constitute a
conjugate pair of natural transformations. ∎

Analogously with Theorem 1067, the equivalence of the systemic skeleton
with some algebraic π-structure via a conjugate pair of natural transforma-
tions, coupled with stability, suffices to ensure syntactic strong algebraizabil-
ity.

Theorem 1083 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly algebraizable if
and only if it is stable and its systemic skeleton is equivalent to an algebraic
π-structure via a conjugate pair of natural transformations.

Proof: If I is syntactically strongly algebraizable, then, by Theorem 1082,
it is stable and its systemic skeleton is equivalent to an algebraic π-structure
via a conjugate pair of natural transformations. Suppose, conversely, that
I is stable and that its systemic skeleton KI is equivalent to an algebraic
π-structure via a conjugate pair of natural transformations. Then, by Theo-
rem 929, it is syntactically equivalential and, by Theorem 930, it is strongly
system truth equational. Therefore, by Theorem 1078, it is syntactically
strongly algebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following analog of Theorem 1065, providing an alternative char-
acterization of syntactic strong algebraizability.
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Theorem 1084 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically strongly algebraizable
if and only if it is stable and there exists a transformational order isomor-
phism h ∶ ThFam(KI) → ThFam(Q), induced by a conjugate pair (τ ♭, I♭)
of natural transformations, where Q is an algebraic π-structure.

Proof: The “only if” follows by Theorem 1083 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1083. ∎

As with all other strong (pre)algebraizability classes, studied before, be-
low the class of syntactically strongly algebraizable π-institutions sit two
wider classes obtained by weakening the naturality requirement either on
the side of the witnesses of prealgebraicity or on the side of the witnesses
of truth equationality, namely the classes of syntactically algebraizable and
syntactically antialgebraizable π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is syntactically algebraizable if it is:

– R̈IZI-fortified;

– equivalential;

– system c-reflective;

• I is syntactically antialgebraizable if it is:

– RIŻI-fortified;

– protoalgebraic;

– system c-reflective.

We now conclude the chapter by formulating analogs of many of the
results proven above for syntactic strong algebraizability for these two new
classes of π-institutions.

Firs, observe, once more, that, since:

• equivalentiality implies protoalgebraicity;

• under protoalgebraicity, R̈I Leibniz implies RI Leibniz; and

• ŻI adequate implies ZI adequate,

we get the following hierarchical relations between the three classes in the
second-from-top tier of the syntactic algebraizability hierarchy.

Synt Strong Alg

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Alg Synt AntiAlg
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Examples are in order to show that the two inclusions are proper. The
first is an example of a π-institution which is syntactically algebraizable but
not syntactically strongly algebraizable.

Example 1085 EXAMPLE NOT FOUND YET!!

Next, we give an example of a syntactically antialgebraizable π-institution
which fails to be syntactically strongly algebraizable.

Example 1086 EXAMPLE NOT FOUND YET!!

The following analog of Theorem 1078 relates the two chiral types of syn-
tactic algebraizability with various classes introduced previously, providing
some important characterizations.

Theorem 1087 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically algebraizable if and only if it is syntactically equiv-
alential and system truth equational.

(b) I is syntactically antialgebraizable if and only if it is syntactically pro-
toalgebraic and strongly system truth equational.

Proof:

(a) We have that I is syntactically algebraizable if and only if, by definition,
it is equivalential, with a Leibniz binary reflexive core, and system c-
reflective, with an adequate system core, if and only if, by Theorems 983
and 887, is it syntactically equivalential and system truth equational.

(b) We have that I is syntactically antialgebraizable if and only if, by
definition, it is protoalgebraic, with a Leibniz reflexive core, and system
c-reflective, with an adequate unary system core, if and only if, by
Theorems 805 and 1027, is it syntactically protoalgebraic and strongly
system truth equational.

∎

An alternative characterization, analogous to that of Theorem 1079, re-
lates the syntactic with the corresponding semantic notions.

Theorem 1088 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically algebraizable if and only if it is algebraizable and
R̈IZI-fortified.

(b) I is syntactically antialgebraizable if and only if it is weakly algebraiz-
able and RIŻI-fortified.
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Proof:

(a) We have that I is syntactically algebraizable if and only if, by definition,
it is equivalential and system c-reflective and, moreover, it has a Leibniz
binary reflexive core and an adequate system core. This happens if and
only if, by definition, it is algebraizable and R̈IZI-fortified.

(b) Similarly, I is syntactically antialgebraizable if and only if, by defi-
nition, it is protoalgebraic and system c-reflective and, moreover, it
has a Leibniz reflexive core and an adequate unary system core. This
happens if and only if, by definition, it is weakly algebraizable and
RIŻI-fortified.

∎

The properties defining syntactic (anti)algebraizability transfer from the-
ory families/systems to filter families/systems on arbitrary algebraic systems.
More precisely, we obtain the following analog of Theorem 1080.

Theorem 1089 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically algebraizable if and only if it is R̈IZI-fortified and, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter
families, family extensional and system c-reflective.

(b) I is syntactically antialgebraizable if and only if it is RIŻI-fortified
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on
I-filter families and system c-reflective.

Proof: We prove only Part (a). Part (b) is similar. We have that I is syn-
tactically algebraizable if and only if, by Theorem 1088, it is R̈IZI-fortified
and algebraizable if and only if, by Theorem 363, it is R̈IZI-fortified and, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone on I-filter families,
family extensional and system c-reflective. ∎

Turning now to characterizations involving property preserving mappings
between posets of filter families and of congruence systems, we have the
following analog of Theorem 1081.

Theorem 1090 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically algebraizable if and only if it is R̈IZI-fortified, stable
and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI(A)
is an order isomorphism that commutes with inverse logical extensions.
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(b) I is syntactically antialgebraizable if and only if it is RIŻI-fortified,
stable and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiSysI(A)→ ConSysI(A)
is an order isomorphism.

Proof:

(a) I is syntactically algebraizable if and only if, by Theorem 1088, it is
R̈IZI-fortified and algebraizable if and only if, by Theorem 365 it is
R̈IZI-fortified, stable and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
ΩA ∶ FiSysI(A)→ ConSysI(A) is an order isomorphism that commutes
with inverse logical extensions.

(b) I is syntactically antialgebraizable if and only if, by Theorem 1088, it
is RIŻI-fortified and weakly algebraizable if and only if, by Theorem
298 it is RIŻI-fortified, stable and, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, ΩA ∶ FiSysI(A)→ ConSysI(A) is an order isomorphism.

∎

Finally, in terms of conjugate pairs of transformations, we get the follow-
ing analog of Theorem 1082.

Theorem 1091 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically algebraizable if and only if it is stable and its systemic
skeleton KI is equivalent to QI via a conjugate pair (τ ♭, I♭) ∶ KI ⇄ QI

of transformations, with I♭ natural.

(b) I is syntactically antialgebraizable if and only if it is stable and its
systemic skeleton KI is equivalent to QI via a conjugate pair (τ ♭, I♭) ∶
KI ⇄QI of transformations, with τ ♭ natural.

Proof:

(a) Suppose, first, that I is stable and that KI is equivalent to QI via a
conjugate pair (τ ♭, I♭) of transformations, with I♭ natural. Then, by
Theorem 929, it is syntactically equivalential and, by Theorem 930, it
is system truth equational. Thus, by Theorem 1087, it is syntactically
algebraizable.

Suppose, conversely, that I is syntactically algebraizable. Then, by
Theorem 1087, it is syntactically equivalential and system truth equa-
tional. Hence, by Theorem 923, it is syntactically weakly algebraizable.
Now it follows by Theorem 927 that KI is equivalent to QI via a pair

(τ ♭, ↔I♭), where I♭ witnesses the syntactic equivalentiality and τ ♭ the sys-
tem truth equationality of I , and, hence, by definition, they constitute
a conjugate pair of transformations, with I♭ natural.
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(b) Suppose, first, that I is stable and that KI is equivalent to QI via a
conjugate pair (τ ♭, I♭) of transformations, with τ ♭ natural. Then, by
Theorem 929, it is syntactically protoalgebraic and, by Theorem 930,
it is strongly system truth equational. Thus, by Theorem 1087, it is
syntactically antialgebraizable.

Suppose, conversely, that I is syntactically antialgebraizable. Then, by
Theorem 1087, it is syntactically protoalgebraic and strongly system
truth equational. Hence, by Theorem 923, it is syntactically weakly
algebraizable. Now it follows by Theorem 927 that KI is equivalent to

QI via a pair (τ ♭, ↔I♭), where I♭ witnesses the syntactic protoalgebraic-
ity and τ ♭ the strong system truth equationality of I , and, hence, by
definition, they constitute a conjugate pair of transformations, with τ ♭

natural.
∎

The equivalence of the systemic skeleton with some algebraic π-structure
via a conjugate pair of transformations, exhibiting the required one-sided
naturality condition, is sufficient to ensure syntactic system (anti)algebrai-
zability. This constitutes an analog of Theorem 1083.

Theorem 1092 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically algebraizable if and only if it is stable and its systemic
skeleton is equivalent to an algebraic π-structure via a conjugate pair(τ ♭, I♭) of transformations, with I♭ natural.

(b) I is syntactically antialgebraizable if and only if it is stable and its sys-
temic skeleton is equivalent to an algebraic π-structure via a conjugate
pair (τ ♭, I♭) of transformations, with τ ♭ natural.

Proof:

(a) If I is syntactically algebraizable, then, by Theorem 1091, it is sta-
ble and its systemic skeleton is equivalent to an algebraic π-structure
via a conjugate pair (τ ♭, I♭) of transformations with I♭ natural. Sup-
pose, conversely, that I is stable and that its systemic skeleton KI is
equivalent to an algebraic π-structure via a conjugate pair (τ ♭, I♭) of
transformations, with I♭ natural. Then, by Proposition 929, it is syn-
tactically equivalential and, by Theorem 930, it is system truth equa-
tional. Therefore, by Theorem 1087, it is syntactically algebraizable.

(b) If I is syntactically antialgebraizable, then, by Theorem 1091, it is sta-
ble and its systemic skeleton is equivalent to an algebraic π-structure
via a conjugate pair (τ ♭, I♭) of transformations, with τ ♭ natural. Sup-
pose, conversely, that I is stable and that KI is equivalent to an alge-
braic π-structure via a conjugate pair (τ ♭, I♭) of transformations, with
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τ ♭ natural. Then, by Proposition 929, it is syntactically protoalgebraic
and, by Theorem 930, it is strongly system truth equational. Therefore,
by Theorem 1087, it is syntactically antialgebraizable. ∎

Finally, in terms of order isomorphisms between theory family lattices,
we have the following analog of Theorem 1084, giving an alternative charac-
terization of syntactically (anti)algebraizable π-institutions:

Theorem 1093 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically algebraizable if and only if it is stable and there exists
a transformational order isomorphism h ∶ ThFam(KI)→ ThFam(Q),
induced by a conjugate pair (τ ♭, I♭) of transformations, where Q is an
algebraic π-structure and I♭ is natural.

(b) I is syntactically antialgebraizable if and only if it is stable and there
exists a transformational order isomorphism

h ∶ ThFam(KI)→ ThFam(Q),
induced by a conjugate pair (τ ♭, I♭) of transformations, where Q is an
algebraic π-structure and τ ♭ is natural.

Proof: The “only if” follows by Theorem 1092 and Theorem 893. The “if”
is given by Theorem 901 and Theorem 1092. ∎

To close the chapter, we have some class separating work to do. First
of all, since we have now described in detail the six classes of the syntac-
tic algebraizability hierarchy, it is only appropriate to pause and look for
examples that separate the family algebraizability classes, i.e., those in the
top-most tier, from the algebraizability classes, that is those immediately
below them. In other words, we are looking for examples that show that the
vertical arrows in the accompanying diagram

Synt Strong F Alg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt F Alg
Synt Strong

Alg

❄

Synt F AntiAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Alg
❄

Synt AntiAlg
❄

represent, in fact, proper inclusions. We can do this all at once by exhibiting
an example of a syntactically strongly algebraizable π-institution which is
neither syntactically family algebraizable nor syntactically family antialge-
braizable.
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Example 1094 EXAMPLE NOT FOUND YET!

Last, since the syntactic algebraizability classes, shown in the bottom
row of the preceding diagram, dominate the syntactic left prealgebraizability
classes in the 12-class hierarchy, we also need examples to separate syntac-
tically algebraizable from syntactically left prealgebraizable π-institutions,
i.e., examples showing that the longish vertical arrows in the diagram

Synt Strong F Alg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt F Alg
Synt Strong

Alg

❄

Synt F AntiAlg

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Alg
❄

Synt AntiAlg
❄

Synt Strong Left PreAlg
❄

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt Left PreAlg
❄ Synt Strong

System PreAlg

❄

Synt Left AntiPreAlg
❄

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

Synt System PreAlg
❄

Synt System AntiPreAlg
❄

represent proper inclusions. Again, in a single strike, this can be accom-
plished by providing an example of a syntactically strongly left prealgebraiz-
able π-institution which is neither syntactically algebraizable nor syntacti-
cally antialgebraizable.

Example 1095 EXAMPLE NOT FOUND YET!
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14.1 Rough/Narrow Truth Equationality

In this section, we study rough/narrow truth equationality, the syntactic
analog of rough c-reflectivity, which, recalling Corollary 482, coincides with
narrow c-reflectivty. It has the same relation to truth equationality as rough
c-reflectivity has to c-reflectivity. In other words, it mimics truth equation-
ality, but it is applied only to theory families of a π-institution all of whose
components are nonempty.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is roughly or narrowly (family)
truth equational if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with
a single distinguished argument, such that, for all T ∈ ThFam(I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ).

Recall that, by Proposition 369, for every T ∈ ThFam(I), Ω(T̃ ) = Ω(T ).
Thus, Ω(T ) is compatible with T̃ and, hence, the preceding definition makes
sense. The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of
witnessing equations (of/for the rough/narrow truth equationality of I).

Paralleling Proposition 816, we get the following alternative characteri-
zation.

Proposition 1096 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
roughly truth equational, with witnessing equations τ ♭, if and only if, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ T̃Σ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose I is roughly truth equational and let T ∈ ThFam(I), Σ ∈∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ T̃Σ iff φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) (Proposition 369 and compatibility)

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ) (rough truth equationality)

iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T ) (by definition)
iff τ ♭Σ[φ] ≤ Ω(T ).

Suppose, conversely, that the given condition holds. Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff φ ∈ T̃Σ (Proposition 369 and compatibility)
iff τ ♭Σ[φ] ≤ Ω(T ) (by hypothesis)
iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T )

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ). (definition)
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Therefore, I is roughly truth equational. ∎

It is not difficult to see that an alternative way to express rough truth
equationality is to assert the same condition that defines truth equationality,
excluding, however, those theory families with at least one empty component.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall from Chapter 6 that we denote by ThFam (I)
the collection of all theory families T of I , such that TΣ ≠ ∅, for all Σ ∈ ∣Sign♭∣:

ThFam (I) = {T ∈ ThFam(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}.
Recall, also, that, if I has theorems, then ThFam (I) = ThFam(I). In
particular, this is the case if I happens to be truth equational.

Proposition 1097 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
roughly truth equational, with witnessing equations τ ♭, if and only if, for all
T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then T̃ = T , whence, by
Proposition 1096, φ ∈ TΣ if and only if τ ♭Σ[φ] ≤ Ω(T ).

Suppose, conversely, that the displayed condition holds. Consider T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, since, by definition of
T̃ , we have T̃ ∈ ThFam (I), we get, by hypothesis, φ ∈ T̃Σ if and only if
τ ♭Σ[φ] ≤ Ω(T̃ ), whence, using Proposition 369, we conclude that φ ∈ T̃Σ if and
only if τ ♭Σ[φ] ≤ Ω(T ). Therefore, I is roughly truth equational. ∎

As a corollary, we obtain the following key relationship between rough
truth equationality and truth equationality.

Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Roughly Truth

Equational

Corollary 1098 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is truth equational if and only if it is
roughly truth equational and has theorems.
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Proof: Suppose, first, that I is roughly truth equational, with witnessing
equations τ ♭, and that it has theorems. Availability of theorems implies that
ThFam (I) = ThFam(I). Thus, by Proposition 1097, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if τ ♭Σ[φ] ≤ Ω(T ). Thus,
I is truth equational, with the same witnessing equations τ ♭.

Assume, conversely, that I is truth equational, with witnessing equations
τ ♭. Then, for all T ∈ ThFam(I), and, hence, a fortiori, for all T ∈ ThFam (I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if τ ♭Σ[φ] ≤ Ω(T ).
Hence, again by Proposition 1097, I is roughly truth equational. Finally, by
Theorem 829, I is family c-reflective and, by Proposition 243, it is family
reflective and, hence, family injective. Thus, it must have theorems. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 838, of truth equationality in terms of the solubility of the Suszko
core for rough truth equationality.

Rough truth equationality allows the following expression for all theory
families with nonempty components, forming an analog of Proposition 828.

Proposition 1099 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is roughly truth equational, with witnessing equations τ ♭;

(ii) For all T ∈ ThFam(I), τ ♭(Ω(T )) = T̃ ;

(iii) For all T ∈ ThFam (I), τ ♭(Ω(T )) = T .

Proof:

(i)⇒(ii) Suppose I is roughly truth equational, with witnessing equations τ ♭,
and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)

iff φ ∈ T̃Σ. (rough truth equationality)

(ii)⇒(iii) Suppose Condition (ii) holds. Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Since T ∈ ThFam (I), T = T̃ , whence, by hypothesis,
T = τ ♭(Ω(T )).

(iii)⇒(i) If, conversely, for all T ∈ ThFam (I), T = τ ♭(Ω(T )), then, by Propo-
sition 1097, I is roughly truth equational, with witnessing equations
τ ♭.

∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
roughly family c-reflective if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T̃ ≤ T̃ ′.
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We are now able to show that rough truth equationality implies rough
family c-reflectivity. This is an analog of Theorem 829.

Theorem 1100 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly truth equational, then it is
roughly family c-reflective.

Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we have

⋂T ∈T T̃ = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1099)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

= T̃ ′. (Proposition 1099)

Thus, I is roughly family c-reflective. ∎

In the context of rough truth equationality, the notion paralleling the
Suszko core is the rough Suszko core, a modification of the original which is
defined, naturally enough and as, perhaps, was to be expected, by circum-
venting theory families with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough Suszko core SI of I is the collection

SI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[T̃ ] ≤ Ω̃I(T̃ ))}.
As before, an alternative characterization avoids ̃ at the expense of restrict-
ing quantification over ThFam (I).
Proposition 1101 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then

SI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(σ♭[T ] ≤ Ω̃I(T ))}.
Proof: Inside this proof we set

MI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(σ♭[T ] ≤ Ω̃I(T ))}.
Our goal is to show that SI = MI . Suppose, first, that σ♭ ∈ SI and let
T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Since
T ∈ ThFam (I), we get T̃ = T . Hence, by hypothesis, φ ∈ T̃Σ. Thus, since
σ♭ ∈ SI , we get

σ♭Σ[φ] ≤ Ω̃I(T̃ ) = Ω̃I(T ).
This proves that σ♭ ∈ MI . Assume, conversely, that σ♭ ∈ MI and let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ T̃Σ. Since T̃ ∈
ThFam (I) and σ♭ ∈ MI , we get σ♭Σ[φ] ≤ Ω̃I(T̃ ), whence, σ♭ ∈ SI . This
proves that SI =MI . ∎

From the definition, it is not difficult to see that any theory family T with
all its components nonempty is always included in SI (Ω(T )). This forms
an analog in the rough context of Proposition 832.
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Proposition 1102 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam (I),

T ≤ SI (Ω(T )).
Proof: Suppose T ∈ ThFam (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ,
and σ♭ ∈ SI . Then, by Proposition 1101, σ♭Σ[φ] ≤ Ω̃I(T ) ≤ Ω(T ). Hence,

S
I 
Σ [φ] ≤ Ω(T ). By definition, then, φ ∈ SI Σ (Ω(T )). Since Σ and φ ∈ TΣ were

arbitrary, we conclude that T ≤ SI (Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThFam (I), we say that the rough Suszko core of I is soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough Suszko core SI of I is said to be soluble
if, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

SI Σ [φ] ≤ Ω(T ) implies φ ∈ TΣ.

An alternative way to express solubility is to again expand the view to
all theory families at the balancing expense of adding rough equivalence
representatives.

Lemma 1103 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. SI is soluble if and only if, for all T ∈
ThFam(I),

T̃ = SI (Ω(T )).
Proof: SI is soluble if and only if, by definition and Proposition 1102, for
all T ∈ ThFam (I), T = SI (Ω(T )), if and only if, for all T ∈ ThFam(I),
T̃ = SI (Ω(T̃ )), if and only if, by Proposition 369, for all T ∈ ThFam(I),
T̃ = SI (Ω(T )). ∎

As was the case with truth equationality (see Lemma 835), it turns out
that, if a given π-institution is roughly truth equational, then any collection
of witnessing equations must be included in the rough Suszko core of I .
Differently put, in case of rough truth equationality, the rough Suszko core
is a candidate for the largest set of witnessing equations.

Lemma 1104 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly truth equational, with
witnessing equations τ ♭, then τ ♭ ⊆ SI .

Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Then, for
all T ≤ T ′ ∈ ThFam(I), we have T ′ ∈ ThFam (I) and φ ∈ T ′Σ. Thus, by rough
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truth equationality, and Proposition 1097, τ ♭Σ[φ] ≤ Ω(T ′). Since T ′, with the
postulated properties was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ′) ∶ T ≤ T ′} = Ω̃I(T ).
We conclude, using Proposition 1101, that τ ♭ ⊆ SI . ∎

We are now ready to prove the equivalence between rough truth equa-
tionality and the solubility of the rough Suszko core. In the next theorem,
we show that truth equationality implies the solubility of the rough Suszko
core. This forms a rough analog of Theorem 836.

Theorem 1105 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly truth equational, then SI 

is soluble.

Proof: Suppose I is roughly truth equational, with witnessing equations τ ♭.
Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that SI Σ [φ] ≤ Ω(T ).
Then, by rough truth equationality and Lemma 1104, τ ♭Σ[φ] ≤ Ω(T ). Again,
using rough truth equationality and Proposition 1097, we conclude that φ ∈
TΣ. This shows that SI is soluble. ∎

Conversely, in a rough analog of Theorem 837, we show that the solubility
of the rough Suszko core of a π-institution implies rough truth equationality.

Theorem 1106 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI is soluble, then I is roughly truth
equational, with witnessing equations SI .

Proof: Assume SI is soluble and let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). By Proposition 1097, it suffices to show that

φ ∈ TΣ iff SI Σ [φ] ≤ Ω(T ).
If φ ∈ TΣ, then, by Proposition 1102, φ ∈ SI Σ (Ω(T )), i.e., SI Σ [φ] ≤ Ω(T ). On
the other hand, the reverse inclusion is guaranteed by the solubility of SI .
Thus, I is roughly truth equational, with witnessing equations SI . ∎

Theorems 1105 and 1106 provide the first characterization of rough truth
equationality in terms of the solubility of the rough Suszko core. This par-
allels Theorem 838, which asserted a similar characterization for truth equa-
tionality in terms of the solubility of the Suszko core of a π-institution.

I Roughly Truth Equational ←→ SI Soluble

Theorem 1107 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational if and only
if SI is soluble.
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Proof: The “if” is by Theorem 1106. The “only if” by Theorem 1105. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough Suszko core SI of I roughly
defines theory families if, for al T ∈ ThFam (I),

T = SI (Ω(T )).
Another characterization of rough truth equationality, along the lines of

Theorem 840, asserts that it is equivalent to the rough definability of the
theory families by the rough Suszko core.

I Roughly Truth Equational
←→ SI Roughly Defines Theory Families

Theorem 1108 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational if and only
if SI roughly defines theory families in I.

Proof: Suppose I is roughly truth equational. By Theorem 1107, SI is
soluble. Hence, by definition, for all T ∈ ThFam (I), SI (Ω(T )) ≤ T . Since,
by Proposition 1102, the reverse always holds, we get, for all T ∈ ThFam (I),
T = SI (Ω(T )). Thus, SI roughly defines theory families in I . Conversely,
if, for all T ∈ ThFam (I), T = SI (Ω(T )), then SI is soluble and, therefore,
by Theorem 1107, I is roughly truth equational. ∎

We embark, next, in the process of establishing a connection between
rough truth equationality and rough family c-reflectivity by means of the
Suszko operator. We start by showing that, in every π-institution I , T ≤
SI (Ω(T )) actually holds for every theory family of I and not only for those
theory families in ThFam (I).
Lemma 1109 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ),

φ ∈ TΣ implies S
I 
Σ [φ] ≤ Ω(T ).

Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ TΣ implies φ ∈ T̃Σ (T ≤ T̃ )

implies S
I 
Σ [φ] ≤ Ω̃I(T̃ ) (definition of SI )

implies S
I 
Σ [φ] ≤ Ω(T̃ ) (Ω̃I ≤ Ω)

iff S
I 
Σ [φ] ≤ Ω(T ). (Proposition 369)

This establishes the displayed implication. ∎

In the sequel, in dealing with intersections of Leibniz congruence systems,
as, e.g., when computing a Suszko congruence system, we shall have the need
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to switch between arbitrary collections of theory families and collections of
theory families having all components nonempty. In all those situations, the
following straightforward technical lemma is quite useful.

Lemma 1110 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, X ∈ SenFam(F) and θ ∈ SenFam(F2).

(a) {Ω(T ) ∶X ≤ T ∈ ThFam(I)} = {Ω(T ) ∶X ≤ T ∈ ThFam (I)};
(b) {Ω(T ) ∶ X ≤ T ∈ ThFam(I) and θ ≤ Ω(T )} = {Ω(T ) ∶ X ≤ T ∈

ThFam (I) and θ ≤ Ω(T )}.
Proof:

(a) Since ThFam (I) ⊆ ThFam(I), it is clear that

{Ω(T ) ∶ X ≤ T ∈ ThFam (I)} ⊆ {Ω(T ) ∶X ≤ T ∈ ThFam(I)}.
To prove the reverse inclusion, let T ∈ ThFam(I), such that X ≤ T .
Consider T̃ ∈ ThFam (I). We get X ≤ T ≤ T̃ and, moreover, by
Proposition 369, Ω(T̃ ) = Ω(T ). This proves that {Ω(T ) ∶ X ≤ T ∈
ThFam(I)} ⊆ {Ω(T ) ∶ X ≤ T ∈ ThFam (I)}.

(b) As in Part (a), the right-to-left inclusion is obvious. For the reverse,
consider T ∈ ThFam(I), such that X ≤ T and θ ≤ Ω(T ). Then, again,
T̃ ∈ ThFam (I), such that both X ≤ T ≤ T̃ and θ ≤ Ω(T ) = Ω(T̃ ). This
shows that the left-to-right inclusion also holds.

∎

As a corollary, we obtain, for instance, an alternative expression for the
Suszko congruence system associated with a given theory family of a π-
institution I .

Corollary 1111 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I),
Ω̃I(T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam (I)}.

Proof: Immediate by the definition of Ω̃I and Lemma 1110. ∎

Based on Lemma 1109, we may show that, for every theory family T ,
T ≤ SI (Ω̃I(T )).
Proposition 1112 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

φ ∈ TΣ implies S
I 
Σ [φ] ≤ Ω̃I(T ).
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Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ TΣ implies φ ∈ T ′Σ, for all T ≤ T ′ ∈ ThFam(I)
implies SI Σ [φ] ≤ Ω(T ′), for all T ≤ T ′ ∈ ThFam(I)

(by Lemma 1109)

iff S
I 
Σ [φ] ≤ Ω̃I(T ). (definition of Ω̃I)

∎

In analogy with the case of rough truth equationality, we may intro-
duce the notion of adequacy of the rough Suszko core, which will help in
characterizing the relationship between rough truth equationality and rough
c-reflectivity. The following proposition, a rough analog of Proposition 841,
partially justifies the notion of adequacy that will follow.

Proposition 1113 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω(T )} ≤ Ω̃I(C(φ)).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I),

φ ∈ TΣ implies S
I 
Σ [φ] ≤ Ω̃I(T ) (Proposition 1112)

implies S
I 
Σ [φ] ≤ Ω(T ). (Ω̃I ≤ Ω)

Hence,

⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω(T )} ≤ ⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω̃I(T )}
≤ ⋂{Ω(T ) ∶ φ ∈ TΣ}
= Ω̃I(C(φ)).

This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1113 holds, then we
say that the rough Suszko core of I is adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough Suszko core SI of I is
adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) ≤⋂{Ω(T ) ∶ SI Σ [φ] ≤ Ω(T )}.
We can show right away that solubility of the rough Suszko core implies

adequacy.

Corollary 1114 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI is soluble, then it is adequate.
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Proof: Suppose SI is soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then

Ω̃I(C(φ)) = ⋂{Ω(T ) ∶ T ∈ ThFam(I) and φ ∈ TΣ}
(definition of Ω̃I)

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈ TΣ}
(Lemma 1110)

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and S
I 
Σ [φ] ≤ Ω(T )}

(solubility of SI )

= ⋂{Ω(T ) ∶ T ∈ ThFam(I) and S
I 
Σ [φ] ≤ Ω(T )}.

(Lemma 1110)

Thus, SI is adequate. ∎

We prove, next, the converse of Corollary 1114, under the additional
assumption that the π-institution I under consideration is roughly family
c-reflective. This constitutes an analog of Proposition 846.

Proposition 1115 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a roughly family c-reflective π-institution based on F. If SI is
adequate, then it is soluble.

Proof: Suppose I is roughly family c-reflective and SI is adequate. Let
T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that SI Σ [φ] ≤ Ω(T ). By

the adequacy of SI , we get that Ω̃I(C(φ)) ≤ Ω(T ). By Lemma 1110,

⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈ TΣ} ≤ Ω(T ).
By rough family c-reflectivity, ⋂{T ∈ ThFam (I) and φ ∈ TΣ} ≤ T . Hence,
φ ∈ TΣ. We conclude that SI is soluble. ∎

We are now in a position to prove the main characterization theorem
relating rough truth equationality with rough family c-reflectivity, an analog
of Theorem 847, which characterized truth equationality in terms of family
c-reflectivity and the adequacy of the Suszko core.

Rough Truth Equationality = SI Soluble
= SI Roughly Defines Theory Families
= Rough Family c-Reflectivity

+ SI Adequate

Theorem 1116 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational if and only
if it is roughly family c-reflective and has an adequate rough Suszko core.
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Proof: Suppose, first, that I is roughly truth equational. By Theorem 1100,
it is roughly family c-reflective. By Theorem 1105, its rough Suszko core is
soluble. Thus, by Corollary 1114, its rough Suszko core is also adequate.

Assume, conversely, that I is roughly family c-reflective and has an ade-
quate rough Suszko core. Then, by Proposition 1115, its rough Suszko core
is also soluble. Hence, by Theorem 1107, I is roughly truth equational. ∎

Even though Theorem 847 formed the inspiration for the formulation of
Theorem 1116, we show that it can be obtained as a corollary of the latter.
This also exhibits the close connection between the two results which should
have been anticipated, given the fact that the work done here is intended to
mimic the former, while circumventing potential obstacles due to the absence
of theorems.

Corollary 1117 (Theorem 847) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is truth equational
if and only if it is family c-reflective and has an adequate Suszko core.

Proof: I is truth equational if and only if, by Corollary 1098, it is roughly
truth equational and has theorems if and only if, by Theorem 1116, it is
roughly family c-reflective, has theorems and has an adequate rough Suszko
core if and only if, by Theorem 468 and the definitions of the Suszko core,
the rough Suszko core and their adequacy properties, I is family c-reflective
and its Suszko core is adequate. ∎

We close the section by looking at a couple of results that may be per-
ceived either as alternative characterizations of rough truth equationality,
involving arbitrary F-algebraic systems, or as transfer theorems.

Theorem 1118 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational, with witness-
ing equations τ ♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

φ ∈ T̃Σ iff τAΣ [φ] ≤ ΩA(T ).
Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is roughly
truth equational.

Suppose, conversely, that I is roughly truth equational and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). Then we have

αΣ(φ) ∈ T̃F (Σ) iff φ ∈ α−1Σ (T̃F (Σ))
iff φ ∈ ̃α−1Σ (TF (Σ)) (Theorem 377)
iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)
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Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

In analogy with the notation ThFam (I), we introduce the following for
filter families over arbitrary F-algebraic systems all of whose components are
nonempty.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-
algebraic system. Define FiFamI (A) to be the collection of all I-filter fam-
ilies T on A, such that TΣ ≠ ∅, for all Σ ∈ ∣Sign∣:

FiFamI (A) = {T ∈ FiFamI(A) ∶ (∀Σ ∈ ∣Sign∣)(TΣ ≠ ∅)}.
We now get immediately the following corollary.

Corollary 1119 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly truth equational, with witness-
ing equations τ ♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI (A), all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T ).
Proof: Suppose that I is roughly truth equational. Then, if A is an F-
algebraic system and T ∈ FiFamI (A), we get

T = T̃ (T ∈ FiFamI (A))
= τA(ΩA(T )). (Theorem 1118)

Suppose, conversely, that the displayed condition holds. Then, if A is an
F-algebraic system and T ∈ FiFamI(A), we get, taking into account that
T̃ ∈ FiFamI (A),

T̃ = τA(ΩA(T̃ )) (hypothesis)
= τA(ΩA(T )). (Proposition 369)

This establishes the claimed equivalence. ∎

14.2 Rough Left Truth Equationality

We now turn to rough left truth equationality. As the terminology suggests:

• It is in the same relation to rough left c-reflectivity as rough truth
equationality is to rough c-reflectivity;

• It is in the same relation to rough truth equationality as left truth
equationality is to truth equationality.
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Roughly speaking (in both senses), rough left truth equationality is defined
analogously to left truth equationality, but it is applied to rough representa-
tives of theory families so as to avoid theory families with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is roughly left truth equational
if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished

argument, such that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

φ ∈
←̃Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ).

The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of wit-
nessing equations (of/for the rough left truth equationality of I).

The following relationship between rough left truth equationality and
left truth equationality, an analog of the relationship between rough truth
equationality and truth equationality, presented in Corollary 1098, holds.

Left Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Roughly Left

Truth Equational

Proposition 1120 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is left truth equational if and only
if it is roughly left truth equational and has theorems.

Proof: Suppose, first, that I is roughly left truth equational, with witnessing
equations τ ♭, and that it has theorems. Availability of theorems implies that
ThFam (I) = ThFam(I). Thus, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and

all φ ∈ SEN♭(Σ), φ ∈ ←ÐT Σ if and only if φ ∈
←̃Ð
T Σ if and only if τ ♭Σ[φ] ≤ Ω(T ).

Thus, I is left truth equational, with the same witnessing equations τ ♭.
Assume, conversely, that I is left truth equational, with witnessing equa-

tions τ ♭. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ). This clearly implies that I has theorems, since,

otherwise, given that Ω(∅) = ∇F = Ω(SEN♭), we would get SEN♭ =
←ÐÐÐ
SEN♭ =

←Ð
∅ = ∅, a contradiction. Moreover, due to the availability of theorems, we

get, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ ←̃ÐT Σ if

and only if φ ∈
←Ð
T Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Thus, I is roughly left truth

equational. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 860, of left truth equationality in terms of the left solubility of the
left Suszko core for rough left truth equationality.
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Rough left truth equationality allows an expression for
←̃Ð
T , for all theory

families T , in terms of the Leibniz congruence system of T . The following
proposition forms an analog of Proposition 1099.

Proposition 1121 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is roughly left truth equational, with

witnessing equations τ ♭, if and only if, for all T ∈ ThFam(I), ←̃ÐT = τ ♭(Ω(T )).
Proof: I is roughly left truth equational, with witnessing equations τ ♭, if

and only if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ ←̃ÐT Σ

iff τ ♭Σ[φ] ≤ Ω(T ), if and only if, for all T ∈ ThFam(I), ←̃ÐT = τ ♭(Ω(T )). ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
roughly left c-reflective if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←̃Ð
T ≤
←̃Ð
T ′.

We are now able to show that rough left truth equationality implies rough
left c-reflectivity. This is an analog of Theorem 1100.

Theorem 1122 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left truth equational, then
it is roughly left c-reflective.

Proof: Suppose I is roughly left truth equational, with witnessing equations
τ ♭. Let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we have

⋂T ∈T
←̃Ð
T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1121)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

=
←̃Ð
T ′. (Proposition 1121)

Thus, I is roughly left c-reflective. ∎

In the context of rough left truth equationality, the notion paralleling the
left Suszko core is the rough left Suszko core, a modification of the original,
which is defined below.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough left Suszko core L̃I of I is the collection

L̃I = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))
(σ♭Σ[φ] ≤ ⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ})}.

From the definition, it is not difficult to see that, for any theory family

T ,
←̃Ð
T is always included in L̃I(Ω(T )). This forms an analog in the rough

left context of Proposition 1102.
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Proposition 1123 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam(I),

←̃Ð
T ≤ L̃I(Ω(T )).

Proof: Suppose T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈
←̃Ð
T Σ,

and σ♭ ∈ L̃I . Then, by the definition of L̃I , σ♭Σ[φ] ≤ Ω(T ). Hence, L̃IΣ[φ] ≤
Ω(T ). Thus, by definition of L̃I(Ω(T )), φ ∈ L̃IΣ(Ω(T )). Since Σ and φ ∈

←̃Ð
T Σ

were arbitrary, we conclude that
←̃Ð
T ≤ L̃I(Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThFam(I), we say that the rough left Suszko core of I is left soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough left Suszko core L̃I of I is said to be left
soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

L̃IΣ[φ] ≤ Ω(T ) implies φ ∈
←̃Ð
T Σ.

As was the case with rough truth equationality (see Lemma 1104), it turns
out that, if a given π-institution is roughly left truth equational, then any
collection of witnessing equations must be included in the rough left Suszko
core of I . In other words, in case of rough left truth equationality, the rough
left Suszko core forms a candidate for the largest collection of witnessing
equations.

Lemma 1124 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left truth equational, with
witnessing equations τ ♭, then τ ♭ ⊆ L̃I .

Proof: Suppose I is roughly left truth equational, with witnessing equations

τ ♭. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈
←̃Ð
T Σ. Then,

by rough left truth equationality, τ ♭Σ[φ] ≤ Ω(T ). Since T was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ}.
Hence, since Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ) were arbitrary, we conclude that
τ ♭ ⊆ L̃I . ∎

We are now ready to prove the equivalence between rough left truth
equationality and the left solubility of the rough left Suszko core. In the
next theorem, we show that rough left truth equationality implies the left
solubility of the rough left Suszko core. This forms an analog of Theorem
1105.
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Theorem 1125 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly left truth equational, then
L̃I is left soluble.

Proof: Suppose I is roughly left truth equational, with witnessing equations
τ ♭. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that L̃IΣ[φ] ≤ Ω(T ).
Then, by rough left truth equationality and Lemma 1124, τ ♭Σ[φ] ≤ Ω(T ).
Again, using rough left truth equationality, we conclude that φ ∈

←̃Ð
T Σ. This

shows that L̃I is left soluble. ∎

Conversely, in an analog of Theorem 1106, we show that the left solubil-
ity of the rough left Suszko core of a π-institution implies rough left truth
equationality.

Theorem 1126 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If L̃I is left soluble, then I is roughly left
truth equational, with witnessing equations L̃I .

Proof: Assume L̃I is left soluble and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). We must show that

φ ∈
←̃Ð
T Σ iff L̃IΣ[φ] ≤ Ω(T ).

If φ ∈
←̃Ð
T Σ, then, by Proposition ??, φ ∈ L̃IΣ(Ω(T )), i.e., L̃IΣ[φ] ≤ Ω(T ).

On the other hand, the reverse inclusion is guaranteed by the postulated
left solubility of L̃I . Thus, I is indeed roughly left truth equational, with
witnessing equations L̃I . ∎

Theorems 1125 and 1126 provide the first characterization of rough left
truth equationality in terms of the left solubility of the rough left Suszko
core. This parallels Theorem 1107, which asserted a similar characterization
for rough truth equationality in terms of the solubility of the rough Suszko
core of a π-institution.

I Roughly Left Truth Equational ←→ L̃I Left Soluble

Theorem 1127 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational if and
only if L̃I is left soluble.

Proof: The “if” is by Theorem 1126. The “only if” by Theorem 1125. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough left Suszko core L̃I of I
roughly defines theory families up to arrow if, for al T ∈ ThFam(I),

←̃Ð
T = L̃I(Ω(T )).
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Another characterization of rough left truth equationality, along the lines
of Theorem 1108, asserts that it is equivalent to the rough definability up to
arrow of the theory families by the rough left Suszko core.

I Roughly Left Truth Equational

←→ L̃I Roughly Defines Theory Families Up to Arrow

Theorem 1128 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational if and
only if L̃I roughly defines theory families in I up to arrow.

Proof: Suppose I is roughly left truth equational. By Theorem 1125, L̃I

is left soluble. Hence, by definition, for all T ∈ ThFam(I), L̃I(Ω(T )) ≤ ←̃ÐT .
Since, by Proposition 1123, the reverse always holds, we get, for all T ∈

ThFam(I), ←̃ÐT = L̃I(Ω(T )). Thus, L̃I roughly defines theory families in I up

to arrow. Conversely, if, for all T ∈ ThFam(I), ←̃ÐT = L̃I(Ω(T )), then L̃I is left
soluble and, therefore, by Theorem 1126, I is roughly left truth equational.
∎

We establish, next, a connection between rough left truth equationality
and rough left c-reflectivity by means of the rough left Suszko core. To help
us is this task, in analogy with the case of rough truth equationality, we
introduce the notion of left adequacy of the rough left Suszko core. The
following proposition, a “left” analog of Proposition 1113, motivates and,
in a sense, justifies, the notion of left adequacy that will follow. Its role
parallels that of Proposition 1113 in motivating the definition of adequacy of
the rough Suszko core.

Proposition 1129 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )} ≤⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ}.
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I),

φ ∈
←̃Ð
T Σ implies L̃IΣ[φ] ≤ Ω(T ). (Definition of L̃I)

Hence,

⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )} ≤ ⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ}.
This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1129 holds, then we
say that the rough left Suszko core of I is left adequate.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough left Suszko core L̃I of I is
left adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ} ≤⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )}.
We can show, in analogy with Corollary 1114, that the left solubility of

the rough left Suszko core implies left adequacy.

Corollary 1130 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If L̃I is left soluble, then it is left adequate.

Proof: Suppose L̃I is left soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then,

by left solubility and Proposition 1123, for all T ∈ ThFam(I), φ ∈ ←̃ÐT Σ if and
only if L̃IΣ[φ] ≤ Ω(T ). Therefore,

⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ} = ⋂{Ω(T ) ∶ L̃IΣ[φ] ≤ Ω(T )}.
Thus, L̃I is left adequate. ∎

We prove, next, the converse of Corollary 1130, under the additional
assumption that the π-institution I under consideration is roughly left c-
reflective. This constitutes an analog of Proposition 1115.

Proposition 1131 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a roughly left c-reflective π-institution based on F. If L̃I is left
adequate, then it is left soluble.

Proof: Suppose I is roughly left c-reflective and L̃I is left adequate. Let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that L̃IΣ[φ] ≤ Ω(T ). By

the postulated left adequacy of L̃I , we get that ⋂{Ω(T ) ∶ φ ∈ ←̃ÐT Σ} ≤ Ω(T ).
By rough left truth equationality, ⋂{←̃ÐT ∶ φ ∈

←̃Ð
T Σ} ≤ ←̃ÐT . Therefore, φ ∈

←̃Ð
T Σ.

We conclude that L̃I is left soluble. ∎

We are now in a position to prove the main characterization theorem
relating rough left truth equationality with rough left c-reflectivity, an analog
of Theorem 1116, which characterized rough truth equationality in terms of
rough family c-reflectivity and the adequacy of the rough Suszko core.

Rough Left Truth Equationality = L̃I Left Soluble

= L̃I Roughly Defines Theory
Families Up to Arrow

= Rough Left c-Reflectivity

+ L̃I Left Adequate
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Theorem 1132 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational if and
only if it is roughly left c-reflective and has a left adequate rough left Suszko
core.

Proof: Suppose, first, that I is roughly left truth equational. By Theorem
1122, it is roughly left c-reflective. By Theorem 1125, its rough left Suszko
core is left soluble. Thus, by Corollary 1130, its rough left Suszko core is also
left adequate.

Assume, conversely, that I is roughly left c-reflective and has a left ad-
equate rough left Suszko core. Then, by Proposition 1131, its rough left
Suszko core is also left soluble. Hence, by Theorem 1126, I is roughly left
truth equational. ∎

Based on Proposition 1120 and Theorem 468, it is not difficult to show, in
an analog of Corollary 1117, that the characterization theorem, Theorem 870,
of left truth equationality in terms of left c-reflectivity and the left adequacy
of the left Suszko core, can be inferred from Theorem 1132.

Corollary 1133 (Theorem 870) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is left truth
equational if and only if it is left c-reflective and has a left adequate left
Suszko core.

Proof: I is left truth equational if and only if, by Proposition 1120, it is
roughly left truth equational and has theorems, if and only if, by Theorem
1132, it is roughly left c-reflective, with a left adequate rough left Suszko core
and has theorems, if and only if, by Theorem 468 and the definitions of left
Suszko core and rough left Suszko core, it is left c-reflective and has a left
adequate left Suszko core. ∎

We close the section by looking at a result, an analog of Theorem 1118,
which may be perceived either as an alternative characterization of rough left
truth equationality, involving arbitrary F-algebraic systems, or as a transfer
theorem.

Theorem 1134 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly left truth equational, with
witnessing equations τ ♭, if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

φ ∈
←̃Ð
T Σ iff τAΣ [φ] ≤ ΩA(T ).

Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is roughly
left truth equational.
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Suppose, conversely, that I is roughly left truth equational and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). Then we have

αΣ(φ) ∈ ←̃ÐT F (Σ) iff φ ∈ α−1Σ (←̃ÐT F (Σ))
iff φ ∈

̃
α−1Σ (←ÐT F (Σ)) (Theorem 377)

iff φ ∈
̃←ÐÐÐÐÐÐ

α−1Σ (TF (Σ)) (Lemma 6)
iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

14.3 Narrow Left Truth Equationality

We now turn to narrow left truth equationality. As the terminology suggests:

• It is in the same relation to narrow left c-reflectivity as rough left truth
equationality is to rough left c-reflectivity;

• It is in the same relation to rough/narrow truth equationality as left
truth equationality is to truth equationality.

In a nutshell, narrow left truth equationality is defined analogously to left
truth equationality, but care is taken to bypass theory families with empty
components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is narrowly left truth equational
if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished

argument, such that, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ).

The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of wit-
nessing equations (of/for the narrow left truth equationality of I).

An alternative characterization quantifies the relevant condition over all
theory families, but it does so at the expense of using the rough operator on
one side (and implicitly also on the other).

Lemma 1135 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈
←Ð
T̃ Σ iff τ ♭Σ[φ] ≤ Ω(T ).
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Proof: Suppose, first, that I is narrowly left truth equational, with wit-
nessing equations τ ♭, and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then, since T̃ ∈ ThFam (I), we get, by hypothesis, φ ∈

←Ð
T̃ Σ if and only

if τ ♭Σ[φ] ≤ Ω(T̃ ). Therefore, by Proposition 369, φ ∈
←Ð
T̃ Σ if and only if

τ ♭Σ[φ] ≤ Ω(T ).
Suppose, conversely, that the displayed equivalence holds and let T ∈

ThFam (I). Then T̃ = T . Thus, by hypothesis, for all Σ ∈ ∣Sign♭∣ and all

φ ∈ SEN♭(Σ), φ ∈ ←ÐT Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Therefore, I is narrowly
left truth equational. ∎

The following relationship between rough left truth equationality and left
truth equationality, an analog of the relationship between rough truth equa-
tionality and truth equationality, presented in Corollary 1098, holds. Note
that narrow left truth equationality is in the same relationship to left truth
equationality as rough left truth equationality is to left truth equationality,
as detailed in Proposition 1120.

Left Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Narrowly Left

Truth Equational

Proposition 1136 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is left truth equational if and only
if it is narrowly left truth equational and has theorems.

Proof: Suppose, first, that I is narrowly left truth equational, with witness-
ing equations τ ♭, and that it has theorems. Availability of theorems implies
that ThFam (I) = ThFam(I). Thus, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ), φ ∈ ←ÐT Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Thus, I is left
truth equational, with the same witnessing equations τ ♭.

Assume, conversely, that I is left truth equational, with witnessing equa-
tions τ ♭. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈
←Ð
T Σ iff τ ♭Σ[φ] ≤ Ω(T ). This clearly implies that I has theorems, since,

otherwise, given that Ω(∅) = ∇F = Ω(SEN♭), we would get SEN♭ =
←ÐÐÐ
SEN♭ =

←Ð
∅ = ∅, a contradiction. Moreover, since ThFam (I) ⊆ ThFam(I), left truth
equationality implies trivially narrow left truth equationality. ∎

Our next goal is to prove an analog of the characterizations, Theorem
860 and Proposition 1121, of left truth equationality and rough left truth
equationality, respectively, for narrow left truth equationality.
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Narrow left truth equationality allows an expression for
←Ð
T , for all theory

families T without empty components, or alternatively, for
←Ð
T̃ , for all theory

families T , in terms of the Leibniz congruence system of T . The following
proposition forms an analog of Proposition 1121.

Proposition 1137 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then the following statements are
equivalent:

(i) I is narrowly left truth equational, with witnessing equations τ ♭;

(ii) For all T ∈ ThFam (I), ←ÐT = τ ♭(Ω(T ));
(iii) For all T ∈ ThFam(I), ←ÐT̃ = τ ♭(Ω(T )).
Proof: Suppose, first, that I is narrowly left truth equational, with witnes-
sing equations τ ♭, and let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)

iff φ ∈
←Ð
T Σ. (hypothesis)

Suppose, next, that Condition (ii) holds and let T ∈ ThFam(I). Then T̃ ∈

ThFam (I), whence, by hypothesis,
←Ð
T̃ = τ ♭(Ω(T̃ )) = τ ♭(Ω(T )), where the

last equality holds by Proposition 369. Finally, suppose that Condition (iii)
holds and let T ∈ ThFam (I). Then T̃ = T , whence, we get, by hypothesis,
←Ð
T = τ ♭(Ω(T )), showing that I is narrowly left truth equational. ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
narrowly left c-reflective if, for all T ∪ {T ′} ⊆ ThFam (I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

←Ð
T ≤
←Ð
T ′.

We are now able to show that narrow left truth equationality implies
narrow left c-reflectivity. This is an analog of Theorem 1122.

Theorem 1138 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly left truth equational, then
it is narrowly left c-reflective.

Proof: Suppose I is narrowly left truth equational, with witnessing equa-
tions τ ♭. Let T ∪ {T ′} ⊆ ThFam (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then
we have

⋂T ∈T
←Ð
T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1137)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

=
←Ð
T ′. (Proposition 1137)
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Thus, I is narrowly left c-reflective. ∎

In the context of narrow left truth equationality, the notion paralleling
the left Suszko core is the narrow left Suszko core, a modification of the
original, which is defined below.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow left Suszko core LI of I is the
collection

LI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(σ♭[←ÐT ] ≤ Ω̃I(T ))}.

From the definition, it is not difficult to see that, for any theory family

T , with all components nonempty,
←Ð
T is always included in LI (Ω(T )). This

forms an analog in the narrow left context of Propositions 1102 and 1123.

Proposition 1139 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThFam (I),

←Ð
T ≤ LI (Ω(T )).

Proof: Suppose T ∈ ThFam (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈
←Ð
T Σ, and σ♭ ∈ LI . Then, by the definition of LI , σ♭Σ[φ] ≤ Ω̃I(T ) ≤ Ω(T ).
Hence, LI Σ [φ] ≤ Ω(T ). Thus, by definition of LI (Ω(T )), φ ∈ LI Σ (Ω(T )).
Since Σ and φ ∈

←Ð
T Σ were arbitrary, we conclude that

←Ð
T ≤ LI (Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThFam (I), we say that the narrow left Suszko core of I is left soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow left Suszko core LI of I is said to be
left soluble if, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

LI Σ [φ] ≤ Ω(T ) implies φ ∈
←Ð
T Σ.

As was the case with rough left truth equationality (see Lemma 1124), it
turns out that, if a given π-institution is narrowly left truth equational, then
any collection of witnessing equations must be included in the narrow left
Suszko core of I ; differently put, in case of narrow left truth equationality,
the narrow left Suszko core forms a candidate for the largest collection of
witnessing equations.

Lemma 1140 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly left truth equational, with
witnessing equations τ ♭, then τ ♭ ⊆ LI .
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Proof: Suppose I is narrowly left truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that

φ ∈
←Ð
T Σ. Then, for all T ≤ T ′ ∈ ThFam(I), φ ∈ ←ÐT ′Σ, whence, by narrow left

truth equationality, τ ♭Σ[φ] ≤ Ω(T ′). Since T ′, with the postulated properties
was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam(I)} = Ω̃I(T ).
Hence, τ ♭[←ÐT ] ≤ Ω̃I(T ). Since T ∈ ThFam (I) was arbitrary, we conclude
that τ ♭ ⊆ LI . ∎

We are now ready to prove the equivalence between narrow left truth
equationality and the left solubility of the narrow left Suszko core. In the
next theorem, we show that narrow left truth equationality implies the left
solubility of the narrow left Suszko core. This forms an analog of Theorem
1125.

Theorem 1141 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly left truth equational, then
LI is left soluble.

Proof: Suppose I is narrowly left truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that
L
I 
Σ [φ] ≤ Ω(T ). Then, by narrow left truth equationality and Lemma 1140,

τ ♭Σ[φ] ≤ Ω(T ). Again, using narow left truth equationality, we conclude that

φ ∈
←Ð
T Σ. This shows that LI is left soluble. ∎

Conversely, in an analog of Theorem 1126, we show that the left solubility
of the narrow left Suszko core of a π-institution implies narrow left truth
equationality.

Theorem 1142 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If LI is left soluble, then I is narrowly
left truth equational, with witnessing equations LI .

Proof: Assume LI is left soluble and let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). We must show that

φ ∈
←Ð
T Σ iff L

I 
Σ [φ] ≤ Ω(T ).

If φ ∈
←Ð
T Σ, then, by Proposition 1139, φ ∈ LI Σ (Ω(T )), i.e., LI Σ [φ] ≤ Ω(T ).

On the other hand, the reverse inclusion is guaranteed by the postulated
left solubility of LI . Thus, I is indeed narrowly left truth equational, with
witnessing equations LI . ∎

Theorems 1141 and 1142 provide the first characterization of narrow left
truth equationality in terms of the left solubility of the narrow left Suszko
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core. This parallels Theorem 1127, which asserted a similar characterization
for rough left truth equationality in terms of the left solubility of the rough
left Suszko core of a π-institution.

I Narrowly Left Truth Equational ←→ LI Left Soluble

Theorem 1143 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if LI is left soluble.

Proof: The “if” is by Theorem 1142. The “only if” by Theorem 1141. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow left Suszko core LI of I
narrowly defines theory families up to arrow if, for al T ∈ ThFam (I),

←Ð
T = LI (Ω(T )).

Another characterization of narrow left truth equationality, along the
lines of Theorem 1128, asserts that it is equivalent to the narrow definability
up to arrow of the theory families by the narrow left Suszko core.

I Narrowly Left Truth Equational
←→ LI Narrowly Defines Theory

Families Up to Arrow

Theorem 1144 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if LI narrowly defines theory families in I up to arrow.

Proof: Suppose I is narrowly left truth equational. By Theorem 1141, LI 

is left soluble. Hence, by definition, for all T ∈ ThFam (I), LI (Ω(T )) ≤←ÐT .
Since, by Proposition 1139, the reverse always holds, we get, for all T ∈
ThFam (I), ←ÐT = LI (Ω(T )). Thus, LI narrowly defines theory families in

I up to arrow. Conversely, if, for all T ∈ ThFam (I), ←ÐT = LI (Ω(T )), then
LI is left soluble and, therefore, by Theorem 1142, I is narrowly left truth
equational. ∎

We would like, next to establish a connection between narrow left truth
equationality and narrow left c-reflectivity by means of the narrow left Suszko
core. To accomplish this, we introduce an apparently modified version of the
Suszko operator, which, however, is identical to the Suszko operator itself.
This modified version is convenient for the purpose of handling proofs in a
more straightforward and efficient way.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define the narrow Suszko operator Ω̃I by
setting, for all T ∈ ThFam(I),

Ω̃I (T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThFam (I)}.
By Corollary 1111, we have, for all T ∈ ThFam(I), Ω̃I (T ) = Ω̃I(T ). So
this is indeed an apparent and not a substantial change and one can think,
without any loss, of Ω̃I as the Suszko operator.

In analogy with the case of rough truth equationality and rough left truth
equationality, we may introduce the notion of left adequacy of the narrow
left Suszko core, which will help in characterizing the relationship between
narrow left truth equationality and narrow left c-reflectivity. The following
proposition, a “left” analog of Proposition 1113 and an analog of Proposition
1129, justifies the notion of left adequacy that will follow.

Proposition 1145 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )} ≤ Ω̃I (C(Ð→φ )).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam (I),

φ ∈
←Ð
T Σ implies L

I 
Σ [φ] ≤ Ω̃I(T ) (Definition of LI )

implies L
I 
Σ [φ] ≤ Ω(T ). (Ω̃I ≤ Ω)

Hence,

⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )}
= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and L

I 
Σ [φ] ≤ Ω(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThFam (I) and L
I 
Σ [φ] ≤ Ω̃I(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈
←Ð
T Σ}

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and
Ð→
φ ≤ T}

= Ω̃I (C(Ð→φ )).
This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1145 holds, then we
say that the narrow left Suszko core of I is left adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow left Suszko core LI of I is
left adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̃I (C(Ð→φ )) ≤⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )}.
We can show, in analogy with Corollary 1130, that the left solubility of

the narrow left Suszko core implies left adequacy.
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Corollary 1146 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If LI is left soluble, then it is left ade-
quate.

Proof: Suppose LI is left soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then

Ω̃I (C(Ð→φ )) = ⋂{Ω(T ) ∶ T ∈ ThFam (I) and
Ð→
φ ≤ T}

(definition of Ω̃I )

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and φ ∈
←Ð
T Σ}

(Definition of
Ð→
φ and

←Ð
T )

= ⋂{Ω(T ) ∶ T ∈ ThFam (I) and L
I 
Σ [φ] ≤ Ω(T )}

(Left solubility of LI )

= ⋂{Ω(T ) ∶ LI Σ [φ] ≤ Ω(T )}. (Lemma 1110)

Thus, LI is left adequate. ∎

In order to prove a partial converse of Corollary 1146, we will employ the
following characterization of narrow left c-reflectivity.

Lemma 1147 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left c-reflective if and only
if, for all T ∈ ThFam(I) and all T ′ ∈ ThFam (I),

Ω̃I (T ) ≤ Ω(T ′) implies
←Ð
T ≤
←Ð
T ′.

Proof: Suppose, first, that I is narrowly left c-reflective and let T ∈ ThFam(I)
and T ′ ∈ ThFam (I), such that Ω̃I (T ) ≤ Ω(T ′). Then, by definition,

⋂{Ω(T ′′) ∶ T ≤ T ′′ ∈ ThFam (I)} ≤ Ω(T ′).
Hence, by narrow left c-reflectivity, ⋂{←ÐT ′′ ∶ T ≤ T ′′ ∈ ThFam (I)} ≤ ←ÐT ′.
However, T ≤ T ′′ implies that

←Ð
T ≤
←Ð
T ′′. Hence, we obtain

←Ð
T ≤
←Ð
T ′.

Suppose, conversely, that the displayed condition in the statement holds
and let T ∪ {T ′} ⊆ ThFam (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, since
T ⊆ ThFam (I), we get that

⋂{Ω(T ′′) ∶⋂T ≤ T ′′ ∈ ThFam (I)} ≤ Ω(T ′).
By definition, then, Ω̃I (⋂T ) ≤ Ω(T ′), whence, by hypothesis,

←ÐÐ
⋂T ≤

←Ð
T ′.

Therefore, ⋂T ∈T
←Ð
T ≤
←Ð
T ′. This shows that I is narrowly left c-reflective. ∎

We prove, next, the converse of Corollary 1146, under the additional
assumption that the π-institution I under consideration is narrowly left c-
reflective. This constitutes an analog of Proposition 1131.
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Proposition 1148 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a narrowly left c-reflective π-institution based on F. If LI is left
adequate, then it is left soluble.

Proof: Suppose I is narrowly left c-reflective and LI is left adequate. Let
T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that LI Σ [φ] ≤ Ω(T ).
By the postulated left adequacy of LI , we get that Ω̃I (C(Ð→φ )) ≤ Ω(T ).
By narrow left truth equationality and Lemma 1147,

←ÐÐÐ
C(Ð→φ ) ≤ ←ÐT . Therefore,

φ ∈
←Ð
T Σ. We conclude that LI is left soluble. ∎

We are now in a position to prove the main characterization theorem
relating narrow left truth equationality with narrow left c-reflectivity, an
analog of Theorem 1132, which characterized rough left truth equationality
in terms of rough left c-reflectivity and the adequacy of the rough left Suszko
core.

Narrow Left Truth Equationality = LI Left Soluble
= LI Narrowly Defines Theory

Families Up to Arrow
= Narrow Left c-Reflectivity

+ LI Left Adequate

Theorem 1149 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational if and
only if it is narrowly left c-reflective and has a left adequate narrow left Suszko
core.

Proof: Suppose, first, that I is narrowly left truth equational. By Theorem
1138, it is narrowly left c-reflective. By Theorem 1141, its narrow left Suszko
core is left soluble. Thus, by Corollary 1146, its narrow left Suszko core is
also left adequate.

Assume, conversely, that I is narrowly left c-reflective and has a left
adequate narrow left Suszko core. Then, by Proposition 1148, its narrow left
Suszko core is also left soluble. Hence, by Theorem 1142, I is narrowly left
truth equational. ∎

Based on Proposition 1136 and Theorem 468, it is not difficult to show, in
an analog of Corollary 1133, that the characterization theorem, Theorem 870,
of left truth equationality in terms of left c-reflectivity and the left adequacy
of the left Suszko core, can be inferred from Theorem 1149.

Corollary 1150 (Theorem 870) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is left truth
equational if and only if it is left c-reflective and has a left adequate left
Suszko core.
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Proof: I is left truth equational if and only if, by Proposition 1136, it is
narrowly left truth equational and has theorems, if and only if, by Theorem
1149, it is narrowly left c-reflective, with a left adequate narrow left Suszko
core and has theorems, if and only if, by Theorem 468 and the definitions of
left Suszko core and narrow left Suszko core, it is left c-reflective and has a
left adequate left Suszko core. ∎

We close the section by looking at a result, an analog of Theorem 1134,
which may be perceived either as an alternative characterization of narrow
left truth equationality, involving arbitrary F-algebraic systems, or as a trans-
fer theorem.

Theorem 1151 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly left truth equational, with
witnessing equations τ ♭, if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiFamI (A), all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

φ ∈
←Ð
T Σ iff τAΣ [φ] ≤ ΩA(T ).

Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is narrowly
left truth equational.

Suppose, conversely, that I is narrowly left truth equational and let A =⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiFamI (A), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). Then we have

αΣ(φ) ∈←ÐT F (Σ) iff φ ∈ α−1Σ (←ÐT F (Σ))
iff φ ∈

←ÐÐÐÐÐÐ
α−1Σ (TF (Σ)) (Lemma 6)

iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

14.4 Rough System Truth Equationality

We now turn to rough system truth equationality. As the terminology sug-
gests:

• It is in the same relation to rough system c-reflectivity as rough left
truth equationality is to rough left c-reflectivity;

• It is in the same relation to rough left truth equationality as system
truth equationality is to left truth equationality.
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Roughly speaking, rough system truth equationality is defined analogously
to system truth equationality, but it is applied to rough representatives of
theory systems so as to avoid theory systems with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is roughly system truth equational
if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distinguished ar-

gument, such that, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ T̃Σ iff τ ♭Σ[φ] ≤ Ω(T ).

The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of wit-
nessing equations (of/for the rough system truth equationality of I).

The following relationship between rough system truth equationality and
system truth equationality, an analog of the relationship between rough truth
equationality and truth equationality, presented in Corollary 1098, holds.

System Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Roughly System
Truth Equational

Proposition 1152 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is system truth equational if and
only if it is roughly system truth equational and has theorems.

Proof: Suppose, first, that I is roughly system truth equational, with wit-
nessing equations τ ♭, and that it has theorems. Availability of theorems im-
plies that ThSys (I) = ThSys(I). Thus, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if φ ∈ T̃Σ if and only if τ ♭Σ[φ] ≤ Ω(T ).
Thus, I is system truth equational, with the same witnessing equations τ ♭.

Assume, conversely, that I is system truth equational, with witnessing
equations τ ♭. Then, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ). This clearly implies that I has theorems. Moreover,
due to the availability of theorems, we get, for all T ∈ ThSys(I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ T̃Σ if and only if φ ∈ TΣ if and only if
τ ♭Σ[φ] ≤ Ω(T ). Thus, I is roughly system truth equational. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 1127, of rough left truth equationality in terms of the left solubility
of the rough left Suszko core for rough system truth equationality.

Rough system truth equationality allows an expression for T̃ , for all the-
ory systems T , in terms of the Leibniz congruence system of T . The following
proposition forms an analog of Proposition 1121.
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Proposition 1153 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is roughly system truth equa-
tional, with witnessing equations τ ♭, if and only if, for all T ∈ ThSys(I),
T̃ = τ ♭(Ω(T )).
Proof: I is roughly system truth equational, with witnessing equations τ ♭, if
and only if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ T̃Σ
iff τ ♭Σ[φ] ≤ Ω(T ), if and only if, for all T ∈ ThSys(I), T̃ = τ ♭(Ω(T )). ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
roughly system c-reflective if, for all T ∪ {T ′} ⊆ ThSys(I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T̃ ≤ T̃ ′.

We are now able to show that rough system truth equationality implies
rough system c-reflectivity. This is an analog of Theorem 1122.

Theorem 1154 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system truth equational,
then it is roughly system c-reflective.

Proof: Suppose I is roughly system truth equational, with witnessing equa-
tions τ ♭. Let T ∪ {T ′} ⊆ ThSys(I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we
have

⋂T ∈T T̃ = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1153)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)

= T̃ ′. (Proposition 1153)

Thus, I is roughly system c-reflective. ∎

In the context of rough system truth equationality, the notion paralleling
the rough left Suszko core is the rough system core, a modification of the
system core, which is defined below.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough system core Z̃I of I is the collection

Z̃I = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))
(σ♭Σ[φ] ≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ})}.

From the definition, it is not difficult to see that, for any theory system
T , T̃ is always included in Z̃I(Ω(T )). This forms an analog in the rough left
context of Proposition 1123.

Proposition 1155 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThSys(I),

T̃ ≤ Z̃I(Ω(T )).
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Proof: Suppose T ∈ ThSys(I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ T̃Σ,
and σ♭ ∈ Z̃I . Then, by the definition of Z̃I , σ♭Σ[φ] ≤ Ω(T ). Hence, Z̃IΣ[φ] ≤
Ω(T ). Thus, by definition of Z̃I(Ω(T )), φ ∈ Z̃IΣ(Ω(T )). Since Σ and φ ∈ T̃Σ
were arbitrary, we conclude that T̃ ≤ Z̃I(Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThSys(I), we say that the rough system core of I is soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The rough system core Z̃I of I is said to be soluble
if, for all T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Z̃IΣ[φ] ≤ Ω(T ) implies φ ∈ T̃Σ.

As was the case with rough left truth equationality (see Lemma 1124), if
a given π-institution is roughly system truth equational, then any collection
of witnessing equations must be included in the rough system core of I . In
other words, in case of rough system truth equationality, the rough system
core forms a candidate for the largest collection of witnessing equations.

Lemma 1156 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system truth equational,
with witnessing equations τ ♭, then τ ♭ ⊆ Z̃I.

Proof: Suppose I is roughly system truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ T̃Σ.
Then, by rough system truth equationality, τ ♭Σ[φ] ≤ Ω(T ). Since T was
arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}.
Hence, since Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ) were arbitrary, we conclude that
τ ♭ ⊆ Z̃I . ∎

We are now ready to prove the equivalence between rough system truth
equationality and the solubility of the rough system core. In the next theo-
rem, we show that rough system truth equationality implies the solubility of
the rough system core. This forms an analog of Theorem 1125.

Theorem 1157 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is roughly system truth equational,
then Z̃I is soluble.

Proof: Suppose I is roughly system truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that
Z̃IΣ[φ] ≤ Ω(T ). Then, by rough system truth equationality and Lemma 1156,
τ ♭Σ[φ] ≤ Ω(T ). Again, using rough system truth equationality, we conclude

that φ ∈ T̃Σ. This shows that Z̃I is soluble. ∎
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Conversely, in an analog of Theorem 1126, we show that the solubility
of the rough system core of a π-institution implies rough system truth equa-
tionality.

Theorem 1158 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If Z̃I is soluble, then I is roughly system
truth equational, with witnessing equations Z̃I.

Proof: Assume Z̃I is soluble and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈
SEN♭(Σ). We must show that

φ ∈ T̃Σ iff Z̃IΣ[φ] ≤ Ω(T ).
If φ ∈ T̃Σ, then, by Proposition 1155, φ ∈ Z̃IΣ(Ω(T )), i.e., Z̃IΣ[φ] ≤ Ω(T ).
On the other hand, the reverse inclusion is guaranteed by the postulated
solubility of Z̃I . Thus, I is indeed roughly system truth equational, with
witnessing equations Z̃I . ∎

Theorems 1157 and 1158 provide the first characterization of rough sys-
tem truth equationality in terms of the solubility of the rough system core.
This parallels Theorem 1127, which asserted a similar characterization for
rough left truth equationality in terms of the left solubility of the rough left
Suszko core of a π-institution.

I Roughly System Truth Equational ←→ Z̃I Soluble

Theorem 1159 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational if and
only if Z̃I is left soluble.

Proof: The “if” is by Theorem 1158. The “only if” by Theorem 1157. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough system core Z̃I of I roughly
defines theory systems if, for al T ∈ ThSys(I),

T̃ = Z̃I(Ω(T )).
Another characterization of rough system truth equationality, along the

lines of Theorem 1128, asserts that it is equivalent to the rough definability
of the theory systems by the rough system core.

I Roughly System Truth Equational

←→ Z̃I Roughly Defines Theory Systems

Theorem 1160 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational if and
only if Z̃I roughly defines theory systems in I.
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Proof: Suppose I is roughly system truth equational. By Theorem 1157,
Z̃I is soluble. Hence, by definition, for all T ∈ ThSys(I), Z̃I(Ω(T )) ≤ T̃ .
Since, by Proposition 1155, the reverse inclusion always holds, we get, for all
T ∈ ThSys(I), T̃ = Z̃I(Ω(T )). Thus, Z̃I roughly defines theory systems in
I . Conversely, if, for all T ∈ ThSys(I), T̃ = Z̃I(Ω(T )), then Z̃I is soluble
and, therefore, by Theorem 1158, I is roughly system truth equational. ∎

We establish, next, a connection between rough system truth equation-
ality and rough system c-reflectivity by means of the rough system core. In
analogy with the case of rough left truth equationality, we introduce, first,
the notion of adequacy of the rough system core. The following proposition,
a system analog of Proposition 1129, motivates the notion of adequacy that
will follow.

Proposition 1161 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThSys(I),
φ ∈ T̃Σ implies Z̃IΣ[φ] ≤ Ω(T ). (Definition of Z̃I)

Hence,

⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}.

This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1161 holds, then we
say that the rough system core of I is adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the rough system core Z̃I of I is ade-
quate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}
≤ ⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}.

We can show, in analogy with Corollary 1130, that the solubility of the
rough system core implies its adequacy.

Corollary 1162 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If Z̃I is soluble, then it is adequate.
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Proof: Suppose Z̃I is soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then, by
solubility and Proposition 1155, for all T ∈ ThSys(I), φ ∈ T̃Σ if and only if
Z̃IΣ[φ] ≤ Ω(T ). Therefore,

⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ}
= ⋂{Ω(T ) ∶ T ∈ ThSys(I) and Z̃IΣ[φ] ≤ Ω(T )}.

Thus, Z̃I is adequate. ∎

We prove, next, the converse of Corollary 1162, under the additional
assumption that the π-institution I under consideration is roughly system
c-reflective. This constitutes an analog of Proposition 1131.

Proposition 1163 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a roughly system c-reflective π-institution based on F. If Z̃I is
adequate, then it is soluble.

Proof: Suppose I is roughly system c-reflective and Z̃I is adequate. Let
T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that Z̃IΣ[φ] ≤ Ω(T ). By the

postulated adequacy of Z̃I , we get that ⋂{Ω(T ) ∶ T ∈ ThSys(I) and φ ∈ T̃Σ} ≤
Ω(T ). By rough system truth equationality, ⋂{T̃ ∶ T ∈ ThSys(I) and φ ∈
T̃Σ} ≤ T̃ . Therefore, φ ∈ T̃Σ. We conclude that Z̃I is soluble. ∎

We are now in a position to prove the main characterization theorem
relating rough system truth equationality with rough system c-reflectivity, an
analog of Theorem 1132, which characterized rough left truth equationality
in terms of rough left c-reflectivity and the left adequacy of the rough left
Suszko core.

Rough System Truth Equationality

= Z̃I Soluble

= Z̃I Roughly Defines Theory Systems

= Rough System c-Reflectivity + Z̃I Adequate

Theorem 1164 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational if
and only if it is roughly system c-reflective and has an adequate rough system
core.

Proof: Suppose, first, that I is roughly system truth equational. By The-
orem 1154, it is roughly system c-reflective. By Theorem 1157, its rough
system core is soluble. Thus, by Corollary 1162, its rough system core is also
adequate.

Assume, conversely, that I is roughly system c-reflective and has an ade-
quate rough system core. Then, by Proposition 1163, its rough system core is
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also soluble. Hence, by Theorem 1158, I is roughly system truth equational.
∎

Based on Proposition 1152 and Theorem 468, it is not difficult to show,
in an analog of Corollary 1133, that the characterization theorem, Theorem
887, of system truth equationality in terms of system c-reflectivity and the
adequacy of the system core, can be inferred from Theorem 1164.

Corollary 1165 (Theorem 887) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is system truth
equational if and only if it is system c-reflective and has an adequate system
core.

Proof: I is system truth equational if and only if, by Proposition 1152, it is
roughly system truth equational and has theorems, if and only if, by Theorem
1164, it is roughly system c-reflective, with an adequate rough system core
and has theorems, if and only if, by Theorem 468 and the definitions of system
core and rough system core, it is system c-reflective and has an adequate
system core. ∎

We close the section by looking at a result, an analog of Theorem 1134,
which may be perceived either as an alternative characterization of rough
system truth equationality, involving arbitrary F-algebraic systems, or as a
transfer theorem.

Theorem 1166 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is roughly system truth equational,
with witnessing equations τ ♭, if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiSysI(A), all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

φ ∈ T̃Σ iff τAΣ [φ] ≤ ΩA(T ).
Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is roughly
system truth equational.

Suppose, conversely, that I is roughly system truth equational and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiSysI(A), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Then we have

αΣ(φ) ∈ T̃F (Σ) iff φ ∈ α−1Σ (T̃F (Σ))
iff φ ∈ ̃α−1Σ (TF (Σ)) (Theorem 377)
iff τ ♭Σ[φ] ≤ Ω(α−1(T )) (hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎
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14.5 Narrow System Truth Equationality

Finally, we discuss narrow system truth equationality, the weakest of all
rough/narrow truth equationality conditions. As the terminology suggests:

• It is in the same relation to narrow system c-reflectivity as rough system
truth equationality is to rough system c-reflectivity;

• It is in the same relation to narrow truth equationality and narrow
left truth equationality as rough system truth equationality is to rough
truth equationality and rough left truth equationality, respectively.

In a nutshell, narrow system truth equationality is defined analogously to
system truth equationality, but care is taken to bypass theory systems with
empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that I is narrowly system truth equa-
tional if there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single distin-
guished argument, such that, for all T ∈ ThSys(I), such that T̃ ∈ ThSys(I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ).

Once more, since, by Proposition 369, for every T ∈ ThFam(I), Ω(T̃ ) =
Ω(T ), Ω(T ) is compatible with T̃ and, hence, the preceding definition makes
sense. The collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ is referred to as a set of
witnessing equations (of/for the narrow system truth equationality of I).

As in Proposition 1096, we get the following alternative characterization.

Proposition 1167 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
narrowly system truth equational, with witnessing equations τ ♭, if and only
if, for all T ∈ ThSys(I), such that T̃ ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ T̃Σ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose that I is narrowly truth equational and let T ∈ ThSys(I),
such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ ∈ T̃Σ iff φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) (Proposition 369 and compatibility)

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ) (by hypothesis)

iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T ) (by definition)
iff τ ♭Σ[φ] ≤ Ω(T ).
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Suppose, conversely, that the displayed condition holds. Let T ∈ ThSys(I),
such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then

φ/ΩΣ(T ) ∈ T̃Σ/ΩΣ(T ) iff φ ∈ T̃Σ (Proposition 369 and compatibility)
iff τ ♭Σ[φ] ≤ Ω(T ) (by hypothesis)
iff τ ♭Σ[φ]/Ω(T ) ≤∆F/Ω(T )

iff τ
F/Ω(T )
Σ [φ/ΩΣ(T )] ≤ ∆F/Ω(T ). (definition)

Therefore, I is narrowly system truth equational. ∎

It is not difficult to see that an alternative way to express narrow system
truth equationality is to assert the same condition that defines system truth
equationality, excluding, however, those theory systems with at least one
empty component.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall from Chapter 6 that we denote by ThSys (I)
the collection of all theory systems T of I , such that TΣ ≠ ∅, for all Σ ∈ ∣Sign♭∣:

ThSys (I) = {T ∈ ThSys(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}.
Recall, also, that, if I has theorems, then ThSys (I) = ThSys(I). In partic-
ular, this is case if I happens to be system truth equational.

Proposition 1168 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 a collection
of natural transformations in N ♭, with a single distinguished argument. I is
narrowly system truth equational, with witnessing equations τ ♭, if and only
if, for all T ∈ ThSys (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ Ω(T ).
Proof: Suppose I is narrowly system truth equational, with witnessing
equations τ ♭. Let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then
T̃ = T ∈ ThSys(I), whence, taking into account Proposition 1167, φ ∈ TΣ if
and only if τ ♭Σ[φ] ≤ Ω(T ).

Suppose, conversely, that the displayed condition holds. Consider T ∈
ThSys(I), such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then,
since, by definition of T̃ , we have T̃ ∈ ThSys (I), we get, by hypothesis, φ ∈
T̃Σ if and only if τ ♭Σ[φ] ≤ Ω(T̃ ), whence, using Proposition 369, we conclude

that φ ∈ T̃Σ if and only if τ ♭Σ[φ] ≤ Ω(T ). Therefore, I is narrowly system
truth equational. ∎

As a corollary, we obtain the following key relationship between narrow
system truth equationality and system truth equationality, paralleling the
one established between system truth equationality and rough system truth
equationality in Corollary 1152.
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System Truth Equational

✠�
�
� ❅

❅
❅❘

Has Theorems
Narrowly System
Truth Equational

Corollary 1169 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is system truth equational if and only if
it is narrowly system truth equational with theorems.

Proof: Suppose, first, that I is narrowly system truth equational, with
witnessing equations τ ♭, and that it has theorems. Availability of theorems
implies that ThSys (I) = ThSys(I). Thus, by Proposition 1168, for all
T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only if
τ ♭Σ[φ] ≤ Ω(T ). Thus, I is system truth equational, with the same witnessing
equations τ ♭.

Assume, conversely, that I is system truth equational, with witnessing
equations τ ♭. Then, for all T ∈ ThSys(I), and, hence, a fortiori, for all
T ∈ ThSys (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ∈ TΣ if and only
if τ ♭Σ[φ] ≤ Ω(T ). Hence, again by Proposition 1168, I is narrowly system
truth equational. Finally, by Theorem 872, I is system c-reflective and, by
Proposition 243, it is system reflective and, therefore, system injective. Thus,
it must have theorems. ∎

Our next goal is to prove an analog of the characterization theorem,
Theorem 1159, of rough system truth equationality in terms of the solubility
of the rough system core for the case of narrow system truth equationality.

Narrow system truth equationality allows the following expression for all
theory systems with nonempty components, forming an analog of Proposition
1153.

Proposition 1170 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is narrowly system truth equational, with witnessing equations τ ♭;

(ii) For all T ∈ ThSys(I), such that T̃ ∈ ThSys(I), T̃ = τ ♭(Ω(T ));
(iii) For all T ∈ ThSys (I), T = τ ♭(Ω(T )).
Proof: Suppose I is narrowly system truth equational, with witnessing equa-
tions τ ♭, and let T ∈ ThSys(I), such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Then

φ ∈ τ ♭Σ(Ω(T )) iff τ ♭Σ[φ] ≤ Ω(T ) (definition)

iff φ ∈ T̃Σ. (hypothesis and Proposition 1167)
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This proves Condition (ii). If Condition (ii) holds and T ∈ ThSys (I), then
T̃ = T ∈ ThSys(I), whence, by hypothesis, T = T̃ = τ ♭(Ω(T )). Thus, Condi-
tion (iii) holds. Finally, assume Condition (iii) holds. Then, by Proposition
??, I is narrowly system truth equational, with witnessing equations τ ♭. ∎

Recall from Chapter 6 that, given a π-institution I = ⟨F,C⟩, I is called
narrowly system c-reflective if, for all T ∪ {T ′} ⊆ ThSys (I),

⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

We are now able to show that narrow system truth equationality implies
narrow system c-reflectivity. This is an analog of Theorem 1154.

Theorem 1171 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system truth equational,
then it is narrowly system c-reflective.

Proof: Suppose I is narrowly system truth equational, with witnessing equa-
tions τ ♭. Let T ∪ {T ′} ⊆ ThSys (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we
have

⋂T ∈T T = ⋂T ∈T τ ♭(Ω(T )) (Proposition 1170)
= τ ♭(⋂T ∈T Ω(T )) (set theory)
≤ τ ♭(Ω(T ′)) (hypothesis)
= T ′. (Proposition 1170)

Thus, I is narrowly system c-reflective. ∎

In the context of narrow system truth equationality, the notion paralleling
the rough system core, introduced in Section 14.3, is the narrow system core,
a modification of the original definition of the system core from Chapter 11,
which is defined by circumventing theory systems with empty components.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow system core ZI of I is the collection

ZI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys(I))(T̃ ∈ ThSys(I)⇒ σ♭[T̃ ] ≤ Ω̂I(T̃ ))}.
As before, an alternative characterization avoids ̃ at the expense of restrict-
ing quantification over ThSys (I).
Proposition 1172 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then

ZI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys (I))(σ♭[T ] ≤ Ω̂I(T ))}.
Proof: Inside this proof we set

MI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThSys (I))(σ♭[T ] ≤ Ω̂I(T ))}.
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Our goal is to show that ZI = MI . Suppose, first, that σ♭ ∈ ZI and
let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Since
T ∈ ThSys (I), we get T̃ = T . Thus, on the one hand, T̃ ∈ ThSys(I) and, on
the other, by hypothesis, φ ∈ T̃Σ. Thus, since σ♭ ∈ ZI , we get

σ♭Σ[φ] ≤ Ω̂I(T̃ ) = Ω̂I(T ).
This proves that σ♭ ∈ MI . Assume, conversely, that σ♭ ∈ MI and let
T ∈ ThSys(I), such that T̃ ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such
that φ ∈ T̃Σ. Since T̃ ∈ ThSys (I) and σ♭ ∈ MI , we get σ♭Σ[φ] ≤ Ω̂I(T̃ ),
whence, σ♭ ∈ ZI . This proves that ZI =MI . ∎

From the definition, it is not difficult to see that any theory system T

with all its components nonempty is always included in ZI (Ω(T )). This
forms an analog in the rough system context of Proposition 1155.

Proposition 1173 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all T ∈ ThSys (I),

T ≤ ZI (Ω(T )).
Proof: Suppose T ∈ ThSys (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ,
and σ♭ ∈ ZI . Then, by Proposition ??, σ♭Σ[φ] ≤ Ω̂I(T ) ≤ Ω(T ). Hence,

ZI Σ [φ] ≤ Ω(T ). By definition, then, φ ∈ ZI Σ (Ω(T )). Since Σ and φ ∈ TΣ
were arbitrary, we conclude that T ≤ ZI (Ω(T )). ∎

The reverse inclusion may or may not hold. If it does, for all T ∈
ThSys (I), we say that the narrow system core ZI of I is soluble.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow system core ZI of I is said to be
soluble if, for all T ∈ ThSys (I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

ZI Σ [φ] ≤ Ω(T ) implies φ ∈ TΣ.

An alternative way to express solubility is to again expand the view to
all theory systems, with nonempty components, at the balancing expense
of adding rough equivalence representatives. We obtain, thus, an analog of
Lemma 1103.

Lemma 1174 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. ZI is soluble if and only if, for all T ∈
ThSys(I), such that T̃ ∈ ThSys(I),

T̃ = ZI (Ω(T )).
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Proof: ZI is soluble if and only if, by definition and Proposition 1173,
for all T ∈ ThSys (I), T = ZI (Ω(T )). It is easy to see that this holds if
and only if, for all T ∈ ThSys(I), such that T̃ ∈ ThSys(I), T̃ = ZI (Ω(T̃ )).
And this is equivalent, by Proposition 369, to the statement that, for all
T ∈ ThSys(I), such that T̃ ∈ ThSys(I), T̃ = ZI (Ω(T )). ∎

As was the case with rough system truth equationality (see Lemma 1156),
it turns out that, if a given π-institution is narrowly system truth equational,
then any collection of witnessing equations must be included in the narrow
system core of I . That is, in case of narrow system truth equationality, the
narrow system core is a candidate for the largest set of witnessing equations.

Lemma 1175 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system truth equational,
with witnessing equations τ ♭, then τ ♭ ⊆ ZI .

Proof: Suppose I is narrowly system truth equational, with witnessing equa-
tions τ ♭. Let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that φ ∈ TΣ.
Then, for all T ≤ T ′ ∈ ThSys(I), we have T ′ ∈ ThSys (I) and φ ∈ T ′Σ. Thus,
by narrow system truth equationality and Proposition 1168, τ ♭Σ[φ] ≤ Ω(T ′).
Since T ′, with the postulated properties was arbitrary,

τ ♭Σ[φ] ≤⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys(I)} = Ω̂I(T ).
We conclude, using Proposition 1172, that τ ♭ ⊆ ZI . ∎

We are now ready to prove the equivalence between narrow system truth
equationality and the solubility of the narrow system core, an analog of
Theorem 1159. First, we show that narrow system truth equationality implies
the solubility of the narrow system core. This forms an analog of Theorem
1157.

Theorem 1176 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is narrowly system truth equational,
then ZI is soluble.

Proof: Suppose I is narrowly system truth equational, with witnessing
equations τ ♭. Let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that
ZI Σ [φ] ≤ Ω(T ). Then, by narrow system truth equationality and Lemma
1175, τ ♭Σ[φ] ≤ Ω(T ). Again, using narrow system truth equationality and
Proposition 1168, we conclude that φ ∈ TΣ. This shows that ZI is soluble.
∎

Conversely, the solubility of the narrow system core of a π-institution
implies narrow system truth equationality.
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Theorem 1177 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ZI is soluble, then I is narrowly system
truth equational, with witnessing equations ZI .

Proof: Assume ZI is soluble and let T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). By Proposition 1168, it suffices to show that

φ ∈ TΣ iff Z
I 
Σ [φ] ≤ Ω(T ).

If φ ∈ TΣ, then, by Proposition 1173, φ ∈ ZI Σ (Ω(T )), i.e., ZI Σ [φ] ≤ Ω(T ).
On the other hand, the reverse inclusion is guaranteed by the postulated
solubility of ZI . Thus, I is indeed narrowly system truth equational, with
witnessing equations ZI . ∎

Theorems 1176 and 1177 provide the first characterization of narrow sys-
tem truth equationality in terms of the solubility of the narrow system core.
This parallels Theorem 1159, which asserted a similar characterization for
rough system truth equationality in terms of the solubility of the rough sys-
tem core of a π-institution.

I Narrowly System Truth Equational ←→ ZI Soluble

Theorem 1178 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational if
and only if ZI is soluble.

Proof: The “if” is by Theorem 1177. The “only if” by Theorem 1176. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow system core ZI of I nar-
rowly defines theory systems if, for al T ∈ ThSys (I),

T = ZI (Ω(T )).
Another characterization of narrow system truth equationality, along the

lines of Theorem 1160, asserts that it is equivalent to the narrow definability
of the theory systems by the narrow system core.

I Narrowly System Truth Equational
←→ ZI Narrowly Defines Theory Systems

Theorem 1179 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational if
and only if ZI narrowly defines theory systems in I.
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Proof: Suppose I is narrowly system truth equational. By Theorem 1176,
ZI is soluble. Hence, by definition, for all T ∈ ThSys (I), ZI (Ω(T )) ≤ T .
Since, by Proposition 1173, the reverse inclusion always holds, we get, for
all T ∈ ThSys (I), T = ZI (Ω(T )). Thus, ZI narrowly defines theory
systems in I . Conversely, if, for all T ∈ ThSys (I), T = ZI (Ω(T )), then
ZI is soluble and, therefore, by Theorem 1178, I is narrowly system truth
equational. ∎

We establish, next, a connection between narrow system truth equation-
ality and narrow system c-reflectivity by means of a variant of the systemic
Suszko operator. This variant of the systemic Suszko operator, denoted Ω̂I ,
is not necessarily identical to the systemic Suszko operator Ω̂I itself, unlike
the version of the Suszko operator Ω̃I , defined in the preceding section,
which was introduced only for convenience, but was actually shown to be
equivalent to the original version Ω̃I .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define the narrow systemic Suszko operator
Ω̃I by setting, for all T ∈ ThSys(I),

Ω̂I (T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys (I)}.
Note that Lemma 1110 and, hence, a hypothetical analog of Corollary 1111,
are not applicable in the case of theory systems, since, given T ∈ ThSys(I), it
may not be the case that T̃ ∈ ThSys(I). On the other hand, as the following
lemma shows, for all T ∈ ThSys (I), Ω̂I (T ) = Ω̂I(T ). So, for the case of
theory systems, all of whose components are nonempty, the two operators do
coincide.

Lemma 1180 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For all T ∈ ThSys (I),
Ω̂I(T ) =⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys (I)}.

Proof: Since {T ′ ∈ ThSys (I) ∶ T ≤ T ′} ⊆ {T ′ ∈ ThSys(I) ∶ T ≤ T ′}, we get

Ω̂I(T ) ≤⋂{Ω(T ′) ∶ T ≤ T ′ ∈ ThSys (I)}.
But, if T ∈ ThSys (I), then, for all T ′ ∈ ThSys(I), such that T ≤ T ′, we have
T ′ ∈ ThSys (I). Thus, in this particular case, the two collections above are
identical and, therefore, equality holds between the two sides in the displayed
formula, which proves the lemma. ∎

In analogy with the case of rough system truth equationality, we may
introduce the notion of adequacy of the narrow system core, which will help
in characterizing the relationship between narrow system truth equational-
ity and narrow system c-reflectivity. The following proposition, a “narrow”
analog of Proposition 1161, justifies the notion of adequacy that will follow.
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Proposition 1181 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

⋂{Ω(T ) ∶ T ∈ ThSys (I) and ZI Σ [φ] ≤ Ω(T )} ≤ Ω̂I (C(Ð→φ )).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThSys (I),

φ ∈ TΣ implies Z
I 
Σ [φ] ≤ Ω̂I(T ) (Definition of ZI )

implies ZI Σ [φ] ≤ Ω(T ). (T ∈ ThSys (I))
Hence,

⋂{Ω(T ) ∶ T ∈ ThSys (I) and Z
I 
Σ [φ] ≤ Ω(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThSys (I) and Z
I 
Σ [φ] ≤ Ω̂I(T )}

≤ ⋂{Ω(T ) ∶ T ∈ ThSys (I) and φ ∈ TΣ}
= ⋂{Ω(T ) ∶ T ∈ ThSys (I) and

Ð→
φ ≤ T}

= Ω̃I (C(Ð→φ )).
This is the displayed formula in the statement. ∎

If the reverse inclusion of that proven in Proposition 1181 holds, then we
say that the narrow system core of I is adequate.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow system core ZI of I is
adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

Ω̂I (C(Ð→φ )) ≤⋂{Ω(T ) ∶ T ∈ ThSys (I) and Z
I 
Σ [φ] ≤ Ω(T )}.

We can show, in analogy with Corollary 1162, that the solubility of the
narrow system core implies its adequacy.

Corollary 1182 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ZI is soluble, then it is adequate.

Proof: Suppose ZI is soluble and let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ). Then

Ω̂I (C(Ð→φ )) = ⋂{Ω(T ) ∶ T ∈ ThSys (I) and
Ð→
φ ≤ T}

(definition of Ω̂I )

= ⋂{Ω(T ) ∶ T ∈ ThSys (I) and φ ∈ TΣ}
(T ∈ ThSys(I))

= ⋂{Ω(T ) ∶ T ∈ ThSys (I) and ZI Σ [φ] ≤ Ω(T )}.
(Solubility of ZI )

Thus, ZI is adequate. ∎

In order to prove a partial converse of Corollary 1182, we will employ the
following characterization of narrow system c-reflectivity.
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Lemma 1183 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system c-reflective if and
only if, for all T ∈ ThSys(I) and all T ′ ∈ ThSys (I),

Ω̂I (T ) ≤ Ω(T ′) implies T ≤ T ′.

Proof: Suppose, first, that I is narrowly system c-reflective and let T ∈
ThSys(I) and T ′ ∈ ThSys (I), such that Ω̂I (T ) ≤ Ω(T ′). Then, by defini-
tion,

⋂{Ω(T ′′) ∶ T ≤ T ′′ ∈ ThSys (I)} ≤ Ω(T ′).
By narrow system c-reflectivity, ⋂{T ′′ ∶ T ≤ T ′′ ∈ ThSys (I)} ≤ T ′. Thus,
T ≤ T ′.

Suppose, conversely, that the displayed condition in the statement holds
and let T ∪ {T ′} ⊆ ThSys (I), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, since
T ⊆ ThSys (I), we get that

⋂{Ω(T ) ∶⋂T ≤ T ′′ ∈ ThSys (I)} ≤ Ω(T ′).
By definition, then, Ω̂I (⋂T ) ≤ Ω(T ′), whence, by hypothesis, ⋂T ≤ T ′.
This shows that I is narrowly system c-reflective. ∎

We prove, next, a partial converse of Corollary 1182, under the additional
assumption that the π-institution I under consideration is narrowly system
c-reflective. This constitutes an analog of Proposition 1163.

Proposition 1184 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a narrowly system c-reflective π-institution based on F. If ZI is
adequate, then it is soluble.

Proof: Suppose I is narrowly system c-reflective and ZI is adequate. Let
T ∈ ThSys (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that ZI Σ [φ] ≤ Ω(T ). By

the postulated adequacy of ZI , we get that Ω̂I (C(Ð→φ )) ≤ Ω(T ). By narrow

system truth equationality and Lemma 1183, C(Ð→φ ) ≤ T . Therefore, φ ∈ TΣ.
We conclude that ZI is soluble. ∎

We are now in a position to prove the main characterization theorem re-
lating narrow system truth equationality with narrow system c-reflectivity,
an analog of Theorem 1164, which characterized rough system truth equa-
tionality in terms of rough system c-reflectivity and the adequacy of the
rough system core.

Narrow System Truth Equationality
= ZI Soluble
= ZI Narrowly Defines Theory Systems
= Narrow System c-Reflectivity
+ ZI Adequate
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Theorem 1185 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational if
and only if it is narrowly system c-reflective and has an adequate narrow
system core.

Proof: Suppose, first, that I is narrowly system truth equational. By The-
orem 1171, it is narrowly system c-reflective. By Theorem 1176, its narrow
system core is soluble. Thus, by Corollary 1182, its narrow system core is
also adequate.

Assume, conversely, that I is narrowly system c-reflective and has an
adequate narrow system core. Then, by Proposition 1184, its narrow sys-
tem core is soluble. Hence, by Theorem 1177, I is narrowly system truth
equational. ∎

Based on Proposition 1152 and Theorem 468, it is not difficult to show,
in an analog of Corollary 1165, that the characterization theorem, Theorem
887, of system truth equationality in terms of system c-reflectivity and the
adequacy of the system core, can be inferred from Theorem 1185.

Corollary 1186 (Theorem 887) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. I is system truth
equational if and only if it is system c-reflective and has an adequate system
core.

Proof: I is system truth equational if and only if, by Proposition 1152, it is
narrowly system truth equational and has theorems, if and only if, by Theo-
rem 1185, it is narrowly system c-reflective, with an adequate narrow system
core and has theorems, if and only if, by Theorem 468 and the definitions
of system core and narrow system core, it is system c-reflective and has an
adequate system core. ∎

Finally, we prove an analog of Theorem 1166, which may be perceived
either as an alternative characterization of narrow system truth equationality,
involving arbitrary F-algebraic systems, or as a transfer theorem.

Theorem 1187 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is narrowly system truth equational,
with witnessing equations τ ♭, if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, all T ∈ FiSysI (A), all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T ).
Proof: If the postulated condition holds, then it holds, in particular, for the
F-algebraic system F = ⟨F, ⟨I, ι⟩⟩. This yields immediately that I is narrowly
system truth equational.
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Suppose, conversely, that I is narrowly system truth equational and let
A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈ FiSysI (A), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ). Then we have

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff τ ♭Σ[φ] ≤ Ω(α−1(T ))

(Lemma 6 and hypothesis)
iff τ ♭Σ[φ] ≤ α−1(ΩA(T )) (Proposition 24)
iff τA

F (Σ)
[αΣ(φ)] ≤ ΩA(T ). (Lemma 95)

Hence, taking into account the surjectivity of ⟨F,α⟩, we conclude that the
displayed condition holds. ∎

14.6 Availability of Natural Theorems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that, by convention, if I has theorems, then,
for every Σ ∈ ∣Sign♭∣, I has a Σ-theorem, i.e., there exists φ ∈ SEN♭(Σ), such
that φ ∈ CΣ(∅).

On the other hand, recall from Section 2.6 that we say that a π-institution
I has natural theorems if there exists a ϑ♭ ∶ (SEN♭)k → SEN♭ in N ♭, such
that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ)k,

ϑ♭Σ(φ⃗) ∈ CΣ(∅).
Furthermore, recall that we denote by NThm(I) the collection of natural
theorems of I .

It is straightforward that having natural theorems is a stronger property
than having theorems.

Lemma 1188 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I has natural theorems, then it has
theorems.

Proof: Suppose ϑ♭ ∶ (SEN♭)k → SEN♭ in N ♭ is a natural theorem. Let
Σ ∈ ∣Sign♭∣. By convention SEN♭(Σ) ≠ ∅. Let φ⃗ ∈ SEN♭(Σ). Then, we get
ϑ♭Σ(φ⃗) ∈ ThmΣ(I). This shows that I has theorems. ∎

On the other hand, it is easy to find examples of π-institutions with theo-
rems that do not possess natural theorems. For example, every π-institution
with at least one non-trivial set of sentences SEN♭(Σ), containing both a Σ-
theorem and a Σ-non theorem, and with a trivial category of natural trans-
formations, cannot have natural theorems. This follows from the fact that,
under these circumstances, no projection natural transformation can be a
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natural theorem and projection natural transformations are the only ones
available because of the triviality of N ♭.

Another useful observation is that every π-institution with natural theo-
rems has at least one at-most-unary natural theorem.

Lemma 1189 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I has natural theorems, then it has at
least one at-most-unary natural theorem.

Proof: Suppose I has natural theorems and let ϑ♭ ∶ (SEN♭)k → SEN♭ be
a natural theorem in N ♭. If k = 0 or 1, then there is nothing to prove. If
k > 1, then we define ϑ′ ♭ ∶ SEN♭ → SEN♭ by setting, for all Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ),

ϑ′ ♭Σ(φ) = ϑ♭Σ(φ,φ, . . . , φ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

).

Since ϑ′ ♭ = ϑ ○ ⟨p1,0, p1,0, . . . , p1,0⟩ and ϑ♭ is in N ♭, we get that ϑ′ ♭ is in N ♭

also. Moreover, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
ϑ′ ♭Σ(φ) = ϑ♭Σ(φ, . . . , φ) ∈ ThmΣ(I).

Hence ϑ′ ♭ is a unary natural theorem. ∎

We have the following characterization of natural theorems involving the
local Frege operator.

Theorem 1190 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and ϑ♭ ∶ (SEN♭)k → SEN♭ a natural transforma-
tion in N ♭. Then the following conditions are equivalent:

(i) ϑ♭ ∶ (SEN♭)k → SEN♭ is a natural theorem;

(ii) For every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈ SEN♭(Σ),
φ ∈ TΣ iff ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(T );

(iii) For every Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈ SEN♭(Σ),
φ ∈ ThmΣ(I) iff ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(Thm(I)).

Proof:

(i)⇒(ii) Assume that ϑ♭ ∶ (SEN♭)k → SEN♭ is a natural theorem. Let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ, χ⃗ ∈ SEN♭(Σ).

– Suppose φ ∈ TΣ. Then, since ϑ♭Σ(χ⃗) ∈ ThmΣ(I) ⊆ TΣ, we get, by
definition of λ(T ), ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(T ).
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– On the other hand, assume ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(T ). Since ϑ♭Σ(χ⃗) ∈
ThmΣ(I) ⊆ TΣ, we get, by the definition of λ(T ), φ ∈ TΣ.

(ii)⇒(iii) Trivial.

(iii)⇒(i) Suppose that (iii) holds. Let Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ) and χ⃗ ∈
SEN♭(Σ).

– If φ ∈ ThmΣ(I), then, by hypothesis, ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ λΣ(Thm(I)),
whence, ϑ♭Σ(χ⃗) ∈ ThmΣ(I).

– If φ ∉ ThmΣ(I), then, by hypothesis, ⟨φ,ϑ♭Σ(χ⃗)⟩ ∉ λΣ(Thm(I)).
Thus, θ♭Σ(χ⃗) ∈ ThmΣ(I).

We conclude that, for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ), ϑ♭Σ(χ⃗) ∈
ThmΣ(I). Therefore, ϑ♭ is a natural theorem.

∎

We provide two additional equivalent conditions in the theorem following
the next lemma.

Lemma 1191 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and ϑ♭ ∶ (SEN♭)k → SEN♭ a natural transformation
in N ♭. If ϑ♭ is a natural theorem, then, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ), ϑΣ(χ⃗) ∈ CI,AΣ (∅), i.e., ϑ is a
natural theorem of ⟨A,CI,A⟩.
Proof: Since ϑ♭ is a natural theorem, for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

ϑF (Σ)(αΣ(χ⃗)) = αΣ(ϑ♭Σ(χ⃗)) ∈ αΣ(ThmΣ(I)) ⊆ CI,AF (Σ)(∅).
By the surjectivity of ⟨F,α⟩ the conclusion follows. ∎

Theorem 1192 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and ϑ♭ ∶ (SEN♭)k → SEN♭ a natural transforma-
tion in N ♭. Then the following conditions are equivalent:

(i) ϑ♭ ∶ (SEN♭)k → SEN♭ is a natural theorem;

(ii) For every F-algebraic system A, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

φ ∈ TΣ iff (∀χ⃗ ∈ SEN(Σ))(⟨φ,ϑΣ(χ⃗)⟩ ∈ λ̃I,AΣ (T ));
(iii) For every F-algebraic system A, all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ CI,AΣ (∅) iff (∀χ⃗ ∈ SEN(Σ))(⟨φ,ϑΣ(χ⃗)⟩ ∈ λ̃I,AΣ (CI,A(∅))).
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Proof:

(i)⇒(ii) Assume that ϑ♭ ∶ SEN♭ → SEN♭ is a natural theorem and let T ∈
FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). By Lemma 1191, for all
χ⃗ ∈ SEN(Σ), ϑ♭Σ(χ⃗) ∈ CI,AΣ (∅).

– If φ ∈ TΣ, then, clearly, for all χ⃗ ∈ SEN(Σ), and all T ≤ T ′ ∈
FiFamI(A), we have φ ∈ T ′Σ and ϑΣ(χ⃗) ∈ T ′Σ. Hence, ⟨φ,ϑΣ(χ⃗)⟩ ∈
λ̃I,AΣ (T ).

– If, for all χ⃗ ∈ SEN(Σ), ⟨φ,ϑΣ(χ⃗)⟩ ∈ λ̃I,AΣ (T ), then, in particular,
for all χ⃗ ∈ SEN(Σ), ⟨φ,ϑΣ(χ⃗)⟩ ∈ λAΣ(T ). Since ϑΣ(χ⃗) ∈ TΣ, we
conclude that φ ∈ TΣ.

(ii)⇒(iii) Trivial.

(iii)⇒(iv) Suppose that (iii) holds. Consider, first, the trivial algebraic sys-
tem A = ⟨A, ⟨F,α⟩⟩, with the single signature object ∗ and such that
SEN(∗) = {0}. Then, we have ⟨0, ϑΣ(0⃗)⟩ = ⟨0,0⟩ ∈ {⟨0,0⟩} = λ̃I,A∗ (∅).
If ∅ ∈ FiFamI(A), then this would imply, by hypothesis, that 0 ∈ ∅, a
contradiction. Thus, ∅ ∉ ThFamI(A). This shows that I has theorems.

Let, now, Σ ∈ ∣Sign♭∣ and χ⃗ ∈ SEN(Σ). Take a theorem t ∈ ThmΣ(I).
Then, by hypothesis, ⟨t, ϑ♭Σ(χ⃗)⟩ ∈ λ̃IΣ(Thm(I)) ⊆ λΣ(Thm(I)). Thus,
since t ∈ ThmΣ(I), we must have ϑ♭Σ(χ⃗) ∈ ThmΣ(I). But Σ ∈ ∣Sign♭∣
and χ⃗ ∈ SEN♭(Σ) were arbitrary, whence, we conclude that ϑ♭ is a
natural theorem. ∎

We saw that availability of natural theorems is a strictly stronger con-
dition that availability of theorems. We have the following theorem, which
follows from preceding results.

Theorem 1193 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an F-algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I has natural theorems, then there exists τ ∶ (SEN♭)k → (SEN♭)2 in
N ♭, such that, for all F-algebraic systems A, all T ∈ FiFamI(A), all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ TΣ iff, for all χ⃗ ∈ SEN(Σ), τΣ(φ, χ⃗) ⊆ λ̃I,AΣ (T );
(b) If the condition in the conclusion of (a) holds, then I has theorems.

Proof:

(a) Suppose I has natural theorems and let ϑ♭ ∶ (SEN♭)k → SEN♭ be a
natural theorem. Then, we define τ ♭ ∶ (SEN♭)k+1 → (SEN♭)2, by setting

τ ♭ ∶= {pk+1,0 ≈ ϑ♭ ○ ⟨pk+1,1, . . . , pk+1,k⟩}.
Then the conclusion follows from Theorem 1192.
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(b) Suppose that the conclusion of Part (a) holds. Consider the triv-
ial algebraic system A = ⟨A, ⟨F,α⟩⟩, with the single signature ob-
ject ∗ and such that SEN(∗) = {0}. If I does not have theorems,
then ∅ ∈ FiFamI(A). Since 0 ∉ ∅, we must have, by hypothesis,⟨0,0⟩ = ⟨0, ϑΣ(0⃗)⟩ ∉ λ̃I,A∗ (∅) = {⟨0,0⟩}, a contradiction. Therefore,
I has theorems.

∎

We may think of a π-institution that has theorems, but not natural theo-
rems, as having a syntactic deficiency, i.e., not having enough natural trans-
formations in its category of natural transformations to express theoremhood.
So in an analogous way with the one used to formulate similar properties
through the Leibniz property of the reflexive core and the adequacy of the
Suszko core, we make the following definition, taking cue from Theorem 1190.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The Frege core F I of I is defined by

F I = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(∀Σ ∈ ∣Sign♭∣)(∀χ⃗ ∈ SEN♭(Σ))
(TΣ ≈ σ♭Σ(χ⃗) ⊆ λ̃IΣ(T ))}.

It is not difficult to show that, in case I has theorems, F I = NThm(I).
Proposition 1194 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I has theorems, then F I = NThm(I).
Proof: Suppose that I has theorems.

Assume σ♭ ∈ F I and let Σ ∈ ∣Sign♭∣, χ⃗ ∈ SEN♭(Σ). Since I has theorems,
there exists t ∈ ThmΣ(I). Then, by hypothesis and the definition of F I ,

⟨t, σ♭Σ(χ⃗)⟩ ∈ λ̃IΣ(Thm(I)) ⊆ λΣ(Thm(I)).
Thus, since t ∈ ThmΣ(I), σ♭Σ(χ⃗) ∈ ThmΣ(I). Since Σ ∈ ∣Sign♭∣ and χ⃗ ∈
SEN♭(Σ) were arbitrary, σ♭ ∈ NThm(I). Therefore, we get that F I ⊆
NThm(I).

Suppose, conversely, that σ♭ ∈ NThm(I). Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣,
φ, χ⃗ ∈ SEN♭(Σ), such that φ ∈ TΣ and T ≤ T ′ ∈ ThFam(I). Then, we get
φ ∈ T ′Σ and σ♭Σ(χ⃗) ∈ T ′Σ, whence

φ ∈ T ′Σ iff σ♭Σ(χ⃗) ∈ T ′Σ.
That is, for all T ≤ T ′ ∈ ThFam(I), ⟨φ,σ♭Σ(χ⃗)⟩ ∈ λΣ(T ). Hence, ⟨φ,σ♭Σ(χ⃗)⟩ ∈
λ̃IΣ(T ). This shows that σ♭ ∈ F I , whence NThm(I) ⊆ F I . ∎

In the remainder of the section, we show that a property analogous to
adequacy, coupled with possession of theorems, guarantees the existence of
natural theorems. The following lemma partly justifies the definition of ad-
equacy.
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Proposition 1195 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))} ≤ λ̃I(C(φ)).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). By the definition of the Frege core,
for all T ∈ ThFam(I) and for all χ⃗ ∈ SEN♭(Σ),

φ ∈ TΣ implies φ ≈ F IΣ(χ⃗) ⊆ λ̃IΣ(T ) ⊆ λΣ(T ).
Therefore, we get

{T ∈ ThFam(I) ∶ φ ∈ TΣ}
⊆ {T ∈ ThFam(I) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}.

This, now, yields

⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))} ≤ λ̃I(C(φ)),
i.e., the displayed formula in the statement. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the Frege core F I is adequate if the
reverse inclusion of the one proved in Proposition 1195 holds, i.e., if, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

λ̃(C(φ)) ≤⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}.
Theorem 1196 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I has natural theorems if and only if it
has theorems and its Frege core is adequate.

Proof: If I has natural theorems, then, by Lemma 1188, it has theorems.
Moreover, by Proposition 1194, F I = NThm(I). Now consider τ ♭ ∈ NThm(I)
and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), such that, for all χ⃗ ∈
SEN♭(Σ), φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ). Since F I = NThm(I), we get F IΣ(χ⃗) ⊆
ThmΣ(I) ⊆ TΣ. Thus, φ ∈ TΣ. This shows that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

{T ∈ ThFam(I) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}
≤ {T ∈ ThFam(I) ∶ φ ∈ TΣ}.

This proves that F I is adequate.
Assume, conversely, that I has theorems and F I is adequate.
Note that, if Thm(I) = SEN♭, then p1,0 ∶ SEN♭ → SEN♭ is a natural

theorem. So we may assume that ∅ ≨ Thm(I) ≨ SEN♭. Let Σ ∈ ∣Sign♭∣,
t ∈ ThmΣ(I) and φ ∈ SEN♭(Σ)/ThmΣ(I). Then, we get

⟨φ, t⟩ ∈ λΣ(C(φ)) but ⟨φ, t⟩ ∉ λΣ(Thm(I)).
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Thus, if F I = ∅, then

Thm(I) ∈ {T ∈ ThFam(I) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}.
So ⟨φ, t⟩ ∉ ⋂{λΣ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))}. Since ⟨φ, t⟩ ∈
⋂{λΣ(T ) ∶ φ ∈ TΣ}, we get that

λ̃(C(φ)) ≰⋂{λ(T ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(φ ≈ F IΣ(χ⃗) ⊆ λΣ(T ))},
contrary to the postulated adequacy of F I . ∎

We close the section by showing that having natural theorems is a prop-
erty that transfers from a π-institution to all I-gmatrix families.

Theorem 1197 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I has natural theorems if and only if,
for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, the
I-gmatrix ⟨A,CI,A⟩ has natural theorems.

Proof: The “if” is clear by considering the F-algebraic system F = ⟨F, ⟨I, ι⟩⟩
and taking into account the fact that CI,F = C. The “only if” was proven in
Lemma 1191. ∎
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15.1 Syntactic Narrow Family Monotonicity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

Recall that I is roughly/narrowly family monotone if, for all T,T ′ ∈
ThFam (I),

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).
In this section we introduce and study a syntactic analog of this concept.

First, we relativize family reflexivity, family symmetry, family transitivity,
family compatibility and family modus ponens to ThFam (I).

Let, as above, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Moreover, suppose that I♭ ⊆ N ♭ is a col-
lection of natural transformations in N ♭, with two distinguished arguments.

• I♭ is roughly family reflexive if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

I♭Σ[φ,φ] ≤ T̃ ;

• I♭ is narrowly family reflexive if, for all T ∈ ThFam (I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ),
I♭Σ[φ,φ] ≤ T.

As the following lemma establishes rough and narrow family reflexivity are
identical properties.

Lemma 1198 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I♭ ⊆ N ♭ a family of natural transformations
in N ♭, with two distinguished arguments. I♭ is roughly family reflexive if and
only if it is narrowly family reflexive.

Proof: Suppose, first, that I♭ is roughly family reflexive and consider T ∈
ThFam (I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Since T ∈ ThFam (I), we have
T̃ = T , whence, by rough family reflexivity, I♭Σ[φ,φ] ≤ T̃ = T . Thus, I♭ is
narrowly family reflexive.

Suppose, conversely, that I♭ is narrowly family reflexive and let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Since T̃ ∈ ThFam (I), we get,
by narrow family reflexivity, I♭Σ[φ,φ] ≤ T̃ . Thus, I♭ is roughly family reflex-
ive. ∎

Let, again, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a
π-institution based on F and I♭ ⊆ N ♭ a collection of natural transformations
in N ♭, with two distinguished arguments.



Voutsadakis CHAPTER 15. SYNTACTIC HIERARCHY V 1041

• I♭ is roughly family symmetric if, for all T ∈ ThFam(I), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
I♭Σ[φ,ψ] ≤ T̃ implies I♭Σ[ψ,φ] ≤ T̃ ;

• I♭ is narrowly family symmetric if, for all T ∈ ThFam (I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

I♭Σ[φ,ψ] ≤ T implies I♭Σ[ψ,φ] ≤ T.
Similarly to rough and narrow family reflexivity, rough and narrow family
symmetry coincide.

Lemma 1199 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I♭ ⊆ N ♭ a family of natural transformations
in N ♭, with two distinguished arguments. I♭ is roughly family symmetric if
and only if it is narrowly family symmetric.

Proof: Suppose, first, that I♭ is roughly family symmetric and consider
T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T .

Since T ∈ ThFam (I), we have T̃ = T , whence, by hypothesis, I♭Σ[φ,ψ] ≤ T̃ .

Applying rough family symmetry, we get I♭Σ[ψ,φ] ≤ T̃ = T . Thus, I♭ is
narrowly family symmetric.

Suppose, conversely, that I♭ is narrowly family symmetric and let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that I♭Σ[φ,ψ] ≤ T̃ . Since

T̃ ∈ ThFam (I), we get, by narrow family symmetry, I♭Σ[ψ,φ] ≤ T̃ . Thus, I♭

is roughly family symmetric. ∎

Let, once more, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I♭ ⊆ N ♭ a collection of natural transformations
in N ♭, with two distinguished arguments.

• I♭ is roughly family transitive if, for all T ∈ ThFam(I), all Σ ∈∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),
I♭Σ[φ,ψ] ∪ I♭Σ[ψ,χ] ≤ T̃ implies I♭Σ[φ,χ] ≤ T̃ ;

• I♭ is narrowly family transitive if, for all T ∈ ThFam (I), all Σ ∈∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),
I♭Σ[φ,ψ] ∪ I♭Σ[ψ,χ] ≤ T implies I♭Σ[φ,χ] ≤ T.

Rough and narrow family transitivity also coincide.

Lemma 1200 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I♭ ⊆ N ♭ a family of natural transformations in
N ♭, with two distinguished arguments. I♭ is roughly family transitive if and
only if it is narrowly family transitive.
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Proof: Similar to the proof of Lemma 1199. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and I♭ ⊆ N ♭ a collection of natural transformations in N ♭,
with two distinguished arguments.

• I♭ is roughly family compatible if, for all T ∈ ThFam(I), all σ♭ ∈ N ♭,
all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

⋃
i<k

↔

I♭Σ[φi, ψi] ≤ T̃ implies I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤ T̃ ;

• I♭ is narrowly family compatible if, for all T ∈ ThFam (I), all
σ♭ ∈ N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

⋃
i<k

↔

I♭Σ[φi, ψi] ≤ T implies I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤ T.
Rough and narrow family transitivity also coincide.

Lemma 1201 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I♭ ⊆ N ♭ a family of natural transformations
in N ♭, with two distinguished arguments. I♭ is roughly family compatible if
and only if it is narrowly family compatible.

Proof: Similar to the proof of Lemma 1199. ∎

Finally, we define the property of possessing the rough and the narrow
family modus ponens. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system,
I = ⟨F,C⟩ a π-institution based on F and I♭ ⊆ N ♭ a collection of natural
transformations in N ♭, with two distinguished arguments.

• I♭ has the rough family MP if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

φ ∈ T̃Σ and I♭Σ[φ,ψ] ≤ T̃ imply ψ ∈ T̃Σ;

• I♭ has the narrow family MP if, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T imply ψ ∈ TΣ.

As with all preceding properties, the rough and narrow family MP turn out
to be identical properties.

Lemma 1202 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and I♭ ⊆ N ♭ a family of natural transformations
in N ♭, with two distinguished arguments. I♭ has the rough family MP if and
only if it has the narrow family MP.
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Proof: The proof again follows the lines of the proof of Lemma 1199, but
we describe it also in detail.

Suppose, first, that I♭ has the rough family MP and let T ∈ ThFam (I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T . Again, by

hypothesis, T̃ = T , whence, we get φ ∈ T̃Σ and I♭Σ[φ,ψ] ≤ T̃ . Thus, by rough

family MP, we get that ψ ∈ T̃Σ, i.e., ψ ∈ TΣ. Thus, I♭ has the narrow family
MP.

Assume, conversely, that I♭ has the narrow family MP and consider T ∈
ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ T̃Σ and I♭Σ[φ,ψ] ≤
T̃ . Since T̃ ∈ ThFam (I), we may apply narrow family MP to conclude that
ψ ∈ T̃Σ. This proves that I♭ has the rough family MP. ∎

We say that I is syntactically roughly/narrowly family monotone
if there exists I♭ ⊆ N ♭, with two distinguished arguments, such that I♭

satisfies:

• narrow family reflexivity;

• narrow family transitivity;

• narrow family compatibility; and

• narrow family MP.

In that case, we call I♭ a set of witnessing natural transformations, or,
more simply, witnessing transformations (of the syntactic rough/narrow
family monotonicity of I).

It turns out that, if I is a syntactically narrowly family monotone π-

institution, with witnessing transformations I♭, then
↔

I♭(T ) is a congruence
system on F compatible with T , for all T ∈ ThFam (I). This forms a “nar-
row” analog of Proposition 790.

Proposition 1203 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly family
monotone, with witnessing transformations I♭, then, for all T ∈ ThFam (I),
↔

I♭(T ) is a congruence system on F compatible with T .

Proof: The proof follows along the lines of the proof of Proposition 790. So
we give an outline. Let T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ).
The narrow family reflexivity of I♭ ensures that ⟨φ,φ⟩ ∈ ↔

I♭Σ(T ). The fact

that
↔

I♭ is the symmetrization of I♭ ensures that ⟨φ,ψ⟩ ∈ ↔

I♭Σ(T ) implies

that ⟨ψ,φ⟩ ∈ ↔

I♭Σ(T ). The narrow family transitivity of I♭ guarantees that

⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ ↔I♭Σ(T ) imply ⟨φ,χ⟩ ∈ ↔I♭Σ(T ).
Suppose, next, that σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ). Then, the narrow family

compatibility of I♭ ensures that, if, for all i < k, ⟨φi, ψi⟩ ∈ ↔

I♭Σ(T ), then
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⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ I♭Σ(T ). Thus,
↔

I♭(T ) is a congruence family on F. However,

by Lemma 93,
↔

I♭(T ) is a relation system on F. Hence,
↔

I♭(T ) is a congruence
system on F.

It only remains to show that
↔

I♭(T ) is compatible with T . Assume that

φ ∈ TΣ and ⟨φ,ψ⟩ ∈ ↔I♭Σ(T ). Since I♭ ⊆
↔

I♭, we get, by the narrow family MP

of I♭, that ψ ∈ TΣ. Thus,
↔

I♭(T ) is also compatible with T . ∎

Proposition 1203 shows that
↔

I♭ defines Leibniz congruence systems of the-
ory families in ThFam (I). Following similar terminology adopted in Chap-
ter 14, we say that I♭ roughly or narrowly defines Leibniz congruence
systems of theory families in I if, for all T ∈ ThFam (I),

↔

I♭(T ) = Ω(T ).
Then, in what is an analog of Corollary 791, we obtain

Corollary 1204 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly family mono-
tone, with witnessing transformations I♭, then I♭ narrowly defines Leibniz
congruence systems of theory families in I.

Proof: By Proposition 1203 and Corollary 98. ∎

Corollary 1204 allows establishing the fact that syntactic narrow family
monotonicity implies (semantic) narrow family monotonicity. This forms an
analog of Theorem 792.

Theorem 1205 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly family mono-
tone, then it is narrowly family monotone.

Proof: Suppose that I is syntactically narrowly family monotone with wit-
nessing transformations I♭. Let T,T ′ ∈ ThFam (I), such that T ≤ T ′. Then

Ω(T ) = ↔

I♭(T ) (by Corollary 1204)

≤
↔

I♭(T ′) (by Lemma 94)
= Ω(T ′). (by Corollary 1204)

Thus, I is narrowly family monotone. ∎

We now introduce the notion of the rough/narrow reflexive core of a π-
institution I in a way analogous to the reflexive core, which was introduced
in Chapter 11. Its introduction will enable us to provide a characterization
of the syntactical narrow family monotonicity property and to establish a
relationship between this property and its semantic counterpart.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.
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• The rough reflexive core of I is the collection

R̃I = {ρ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(∀Σ ∈ ∣Sign♭∣)
(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ T̃ )};

• The narrow reflexive core of I is the collection

RI = {ρ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ T )}.
These two notions are identical, as shown in the following proposition,

and this justifies the usage of the terms rough and narrow reflexive core
interchangeably in this context.

Proposition 1206 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then R̃I = RI .

Proof: On the one hand, if ρ♭ ∈ R̃I , T ∈ ThFam (I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ), then, by the definition of the rough reflexive core, ρ♭Σ[φ,φ] ≤
T̃ = T , where the equality follows from the assumption that T ∈ ThFam (I).
This shows that ρ♭ ∈ RI . On the other hand, if ρ♭ ∈ RI , T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), then, since T̃ ∈ ThFam (I), we get by the
definition of RI , ρ♭Σ[φ,φ] ≤ T̃ . This shows that ρ♭ ∈ R̃I . ∎

Given any theory family in ThFam (I), the relation system RI (T ) is a
reflexive relation system on F. This forms an analog of Lemma 773.

Lemma 1207 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam (I), RI (T ) is
a reflexive relation system on F.

Proof: Let T ∈ ThFam (I). By Lemma 93, RI (T ) is a relation system on
F. For reflexivity, let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). By the definition of the
narrow reflexive core, RI Σ [φ,φ] ≤ T . Thus, ⟨φ,φ⟩ ∈ RI Σ (T ) and, therefore,
RI (T ) is reflexive. ∎

As in Lemma 775, it may also be established that RI (T ) is a symmetric
relation system on F, for all T ∈ ThFam (I).
Lemma 1208 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam (I), RI (T ) is
a symmetric relation system on F.

Proof: Let T ∈ ThFam (I). Again, Lemma 93 shows that RI (T ) is a rela-
tion system. Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ RI Σ (T ).
Equivalently, RI Σ [φ,ψ] ≤ T . Consider any ρ♭ ∈ RI . By the definition of
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RI , we get that ρ♭ ∈ RI . Therefore, by the hypothesis, ρ♭Σ[φ,ψ] ≤ T . But
this gives ρ♭Σ[ψ,φ] ≤ T . Since this holds for all ρ♭ ∈ RI , we conclude that

R
I 
Σ [ψ,φ] ≤ T . Hence, ⟨ψ,φ⟩ ∈ RI Σ (T ). Therefore, RI (T ) is a symmetric

relation system on F. ∎

Continuing the study of sequence of properties of RI (T ), we show that,
for all theory families T ∈ ThFam (I), RI (T ) has the compatibility property
in F.

Lemma 1209 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThFam (I), RI (T )
has the compatibility property in F.

Proof: Let T ∈ ThFam (I). We rely on Corollary 12. Let σ♭ ∶ (SEN♭)k →
SEN♭ is in N ♭, Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ RI Σ (T ) or,

equivalently, RI Σ [φ,ψ] ≤ T . Let ρ♭ ∶ (SEN♭)n → SEN♭ be arbitrary in RI .
We consider the natural transformation ρ′ ♭ ∶ (SEN♭)n+k → SEN♭, defined, for
all Σ ∈ ∣Sign♭∣ and all ζ, η, χ⃗, ξ⃗ ∈ SEN♭(Σ), by

ρ′ ♭Σ(ζ, η, χ⃗, ξ⃗) = ρ♭Σ(σ♭Σ(ζ, χ⃗), σ♭Σ(η, χ⃗), ξ⃗).
Note that, since σ♭ ∈ N ♭, ρ♭ ∈ N ♭ and

ρ′ ♭ = ρ♭ ○ ⟨σ♭ ○ ⟨pn+k,0, pn+k,2, . . . , pn+k,k⟩, σ♭ ○ ⟨pn+k,1, pn+k,2, . . . , pn+k,k⟩,
pn+k,k+1, . . . , pn+k,n+k−1⟩,

we get that ρ′ ♭ ∈ N ♭. Moreover, for all T ′ ∈ ThFam (I), Σ ∈ ∣Sign♭∣, ζ, χ⃗, ξ⃗ ∈
SEN♭(Σ),

ρ′ ♭Σ(ζ, ζ, χ⃗, ξ⃗) = ρ♭Σ(σ♭Σ(ζ, χ⃗), σ♭Σ(ζ, χ⃗), ξ⃗) (by definition of ρ′ ♭)
∈ T ′Σ. (since ρ♭ ∈ RI ).

Thus, by the definition of the narrow reflexive core, we get that ρ′ ♭ ∈ RI .
Now since ρ′ ♭ ∈ RI and, by hypothesis, RI Σ [φ,ψ] ≤ T , we get, in partic-

ular, that, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗, ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ∈ TΣ′ .

Hence, a fortiori, for all χ⃗ ∈ SEN♭(Σ), ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(SEN♭(f)(σ♭Σ(φ, χ⃗)),SEN♭(f)(σ♭Σ(ψ, χ⃗)), ξ⃗) ∈ TΣ′ .

This proves that
ρ♭Σ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T.

Since this holds for all ρ♭ ∈ RI , we get that RI Σ [σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T
or, equivalently, ⟨σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)⟩ ∈ RI Σ (T ). Therefore, RI (T ) has the
congruence compatibility property in F. ∎
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We now show, in an analog of Theorem 799, that possession of the narrow
family modus ponens by the narrow reflexive core intrinsically characterizes
syntactic narrow family monotonicity. We start by showing that possession of
the narrow family MP by the narrow reflexive core is necessary for syntactic
narrow family monotonicity. This forms an analog of Theorem 796.

Theorem 1210 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly family mono-
tone, then RI has the narrow family MP.

Proof: Suppose that I is syntactically narrowly family monotone with wit-
nessing transformations I♭. Since, by definition, I♭ is narrowly family reflex-
ive, we get, by definition of RI , I♭ ⊆ RI . Thus, since I♭ has narrow family
MP in I , we get that, a fortiori, RI also satisfies the narrow family MP. ∎

Possession of narrow family MP by RI implies that RI has the narrow
family transitivity in I . This proposition forms an analog of Proposition 797.

Proposition 1211 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If RI has the narrow family MP,
then it also has the narrow family transitivity in I.

Proof: Suppose that RI has the narrow family MP and let T ∈ ThFam (I),
Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ RI Σ (T ). This

means that RI Σ [φ,ψ] ≤ T and RI Σ [ψ,χ] ≤ T . Then, by Lemma 1209, we
get that, for all ρ♭ ∈ RI , and all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
ξ⃗ ∈ SEN♭(Σ′),

R
I 
Σ′ [ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗),

ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗)] ≤ T.
But, by hypothesis, RI Σ [φ,ψ] ≤ T and RI has the narrow family MP. There-

fore, for all ρ♭ ∈ RI , all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗) ⊆ TΣ′ ,

i.e., RI Σ [φ,χ] ≤ T . This shows ⟨φ,χ⟩ ∈ RI Σ (T ) and, hence, RI is narrowly
family transitive in I . ∎

We are now ready to show a converse of Theorem 1210, i.e., that pos-
session of the narrow family MP by RI suffices to establish the syntactic
narrow family monotonicity of I , since, in that case, RI serves as a family of
witnessing transformations. The following constitutes an analog of Theorem
798.
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Theorem 1212 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the narrow family MP, then I
is syntactically narrowly family monotone, with witnessing transformations
RI .

Proof: By Lemma 1207, RI is narrowly family reflexive in I . By Lemma
1208, RI is narrowly family symmetric in I . By hypothesis and Proposi-
tion 1211, it is narrowly family transitive in I . By Lemma 1209 it has the
narrow family compatibility property in I . Finally, by hypothesis, it has the
narrow family MP in I . We conclude that I is syntactically narrowly family
monotone, with witnessing transformations RI . ∎

Theorems 1210 and 1212 provide the promised characterization of syn-
tactic narrow family monotonicity in terms of the narrow family MP of the
narrow reflexive core.

I is Syntactically Narrow
Family Monotone

←→
RI has Narrow Family

Modus Ponens
.

Theorem 1213 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically narrowly family mono-
tone if and only if RI has the narrow family MP in I.

Proof: Theorem 1210 gives the “only if” and the “if” is by Theorem 1212.
∎

A related alternative characterization asserts that syntactic narrow fam-
ily monotonicity amounts to the narrow definability of Leibniz congruence
systems of theory families by the narrow reflexive core. This result forms an
analog of Theorem 801.

I is Syntactically Narrow
Family Monotone

←→
RI Defines Leibniz Congruence

Systems of Theory Families
.

Theorem 1214 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically narrowly family mono-
tone if and only if, for all T ∈ ThFam (I),

Ω(T ) = RI (T ).
Proof: If I is syntactically narrowly family monotone, then, by Theorem
1210, RI has the narrow family MP in I . Thus, by Theorem 1212, RI 

is a family of witnessing transformations for the syntactic narrow family
monotonicity of I . Thus, by Corollary 1204, for all T ∈ ThFam (I), Ω(T ) =
RI (T ).
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Suppose, conversely, that the displayed condition holds. Then RI is nar-
rowly family reflexive, narrowly family transitive and has the narrow fam-
ily compatibility property and the narrow family MP. Hence, it constitutes
a collection of witnessing transformations and, therefore, I is syntactically
narrowly family monotone. ∎

In the case of syntactic protoalgebraicity, in Chapter 11, it was shown that
the property that separates syntactic protoalgebraicity from protoalgebraic-
ity is the Leibniz compatibility property with respect to the theory family
generated by the reflexive core, i.e., the property that, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).
The task of characterizing those π-institutions that are syntactically narrowly
family monotone among those that are narrowly family monotone is more
involved. The additional complications arise from the fact that the class of
theory families ThFam (I) may not be, in general, closed under (signature-
wise) intersections and, hence, may not possess a least element. Therefore,
to pinpoint syntactic narrow family monotonicity inside the class of narrow
family monotone π-institutions, we need to devise a suitable analog of the
Leibniz compatibility property with respect to the theory family generated
by the narrow reflexive core.

To introduce this analog and to understand how it comes about and how
it extends the Leibniz property, we interject a small discussion. Recall that a
π-institution I is protoalgebraic if its Leibniz operator is monotone on theory
families. Recall, also, that its reflexive core RI is said to be Leibniz if, for
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).
If a π-institution is protoalgebraic and has a Leibniz reflexive core, then it
satisfies the global family modus ponens. This was shown in Chapter 11
using the following method. Considering Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that φ ∈ TΣ and RIΣ[φ,ψ] ≤ T , we get

• ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])) first, by applying the Leibniz property;

• Ω(C(RIΣ[φ,ψ])) ≤ Ω(T ), by applying the hypothesis that RIΣ[φ,ψ] ≤ T
and the postulated protoalgebraicity of I .

However, in case of narrow family monotonicity, the plausibility of RI Σ [φ,ψ]
having some empty components makes it likely that, in the second stage,
narrow family monotonicity may not be applicable to ensure the inclusion
Ω(C(RI Σ [φ,ψ])) ≤ Ω(T ).

An obvious remedy is to restrict attention to those π-institutions in which
C(RI Σ [φ,ψ]) ∈ ThFam (I), for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), and
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leave the Leibniz property unaltered. A more relaxed approach is to assume
that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), the poset

[RI Σ [φ,ψ]) ∶= {T ∈ ThFam (I) ∶ RI Σ [φ,ψ] ≤ T}
satisfies the descending chain condition and to postulate that every minimal
element T ∈ [RI Σ [φ,ψ]) satisfies ⟨φ,ψ⟩ ∈ ΩΣ(T ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• For Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), define

[RI Σ [φ,ψ]) ∶= {T ∈ ThFam (I) ∶ RI Σ [φ,ψ] ≤ T};
• For Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), I is called ⟨Σ, φ,ψ⟩-reflexively

covered if, for every theory family T ∈ [RI Σ [φ,ψ]), there exists mini-

mal T ′ ∈ [RI Σ [φ,ψ]), such that T ′ ≤ T ;

• I is called reflexively covered if it is ⟨Σ, φ,ψ⟩-reflexively covered, for
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ).

Given Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), we write

min [RI Σ [φ,ψ])
for the collection of minimal elements in [RI Σ [φ,ψ]).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow reflexive core RI of I is
Leibniz if, for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈min [RI Σ [φ,ψ]),

⟨φ,ψ⟩ ∈ ΩΣ(T ).
We show, in an analog of Proposition 785, that, if RI has the narrow

family MP, then it is Leibniz. In fact, the proof demonstrates that, under the
narrow family MP, a stronger property than that of being Leibniz holds; more
concretely, that for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈ [RI Σ [φ,ψ]),

⟨φ,ψ⟩ ∈ ΩΣ(T ).
Proposition 1215 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If RI has the narrow family MP, then
for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈ [RI Σ [φ,ψ]), ⟨φ,ψ⟩ ∈ ΩΣ(T ).
Proof: Suppose RI has the narrow family MP and let T ∈ ThFam (I), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that RI Σ [φ,ψ] ≤ T . To verify that ⟨φ,ψ⟩ ∈
ΩΣ(T ), we use Theorem 19. Let σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and
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χ⃗ ∈ SEN♭(Σ′), such that σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ . Since T ∈ ThFam (I),
by Lemma 1209,

RI Σ′ [σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T.
Thus, since, by hypothesis, RI has the narrow family MP, we obtain

σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ TΣ′ .
By symmetry, we conclude that, for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ TΣ′ .
Hence, by Theorem 19, ⟨φ,ψ⟩ ∈ ΩΣ(T ) and, therefore, RI is Leibniz. ∎

Corollary 1216 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the narrow family MP, then it
is Leibniz.

Proof: Directly by Proposition 1215. ∎

In the opposite direction, when dealing with reflexively covered π-in-
stitutions, we may show that narrow family monotonicity combined with the
Leibniz property of the narrow reflexive core imply that the narrow reflexive
core has the narrow family modus ponens in I .

Proposition 1217 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a reflexively covered, narrowly family monotone π-institution based
on F. If RI is Leibniz, then it has the narrow family MP in I.

Proof: Let I be a reflexively covered π-institution. Suppose that I is
narrowly family monotone and that RI is Leibniz. Let T ∈ ThFam (I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and RI Σ [φ,ψ] ≤ T . Since

I is reflexively covered, there exists T ′ ∈ min [RI Σ [φ,ψ]), such that T ′ ≤ T .
Now we have

⟨φ,ψ⟩ ∈ ΩΣ(T ′) (since RI is Leibniz and T ′ ∈min [RI Σ [φ,ψ]))
⊆ ΩΣ(T ). (since T ′ ≤ T and I is narrowly family monotone)

Therefore, since φ ∈ TΣ, we get, by the compatibility of Ω(T ) with T , that
ψ ∈ TΣ. We conclude that RI has the narrow family MP in I . ∎

Thus, at least for reflexively covered π-institutions, it is possible to show
that the class of syntactically narrowly monotone ones inside the class of the
narrowly monotone ones can be characterized exactly by the Leibniz property
of the narrow reflexive core. This forms a partial analog of Theorem 805 in
the narrow context.
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Theorem 1218 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a reflexively covered π-institution based on F. I is syntactically nar-
rowly family monotone if and only if it is narrowly family monotone and has
a Leibniz narrow reflexive core.

Proof: Let I be a reflexively covered π-institution.
Suppose, first, that I is syntactically narrowly family monotone. Then

it is narrowly family monotone by Theorem 1205. Moreover, its narrow
reflexive core has the narrow family MP by Theorem 1210 and, hence, by
Corollary 1216, its narrow reflexive core is Leibniz.

Suppose, conversely, that I is narrowly family monotone with a Leibniz
narrow reflexive core. Then, by Proposition 1217, its narrow reflexive core
has the narrow family MP and, therefore, by Theorem 1212, I is syntactically
narrowly family monotone, with witnessing transformations RI . ∎

15.2 Syntactic Narrow System Monotonicity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

Recall that I is narrowly system monotone if, for all T,T ′ ∈ ThSys (I),
T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).

In this section, in analogy with Section 15.1, we introduce and study a syn-
tactic analog of this concept.

First, the concepts of narrow family reflexivity, narrow family symmetry,
narrow family transitivity, narrow family compatibility and narrow family
modus ponens can all be relativized to ThSys (I).

Let, as above, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Moreover, suppose that I♭ ⊆ N ♭ is a col-
lection of natural transformations in N ♭, with two distinguished arguments.

• I♭ is narrowly system reflexive if, for all T ∈ ThSys (I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ),
I♭Σ[φ,φ] ≤ T ;

• I♭ is narrowly system symmetric if, for all T ∈ ThSys (I), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

I♭Σ[φ,ψ] ≤ T implies I♭Σ[ψ,φ] ≤ T ;

• I♭ is narrowly system transitive if, for all T ∈ ThSys (I), all Σ ∈∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),
I♭Σ[φ,ψ] ∪ I♭Σ[ψ,χ] ≤ T implies I♭Σ[φ,χ] ≤ T ;
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• I♭ is narrowly system compatible if, for all T ∈ ThSys (I), all
σ♭ ∈ N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

⋃
i<k

↔

I♭Σ[φi, ψi] ≤ T implies I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤ T ;

• I♭ has the narrow system MP if, for all T ∈ ThSys (I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

φ ∈ TΣ and I♭Σ[φ,ψ] ≤ T imply ψ ∈ TΣ.

We say that I is syntactically narrowly system monotone if there
exists I♭ ⊆ N ♭, with two distinguished arguments, such that I♭ satisfies:

• narrow system reflexivity;

• narrow system transitivity;

• narrow system compatibility; and

• narrow system MP.

In that case, we call I♭ a set of witnessing natural transformations, or,
more simply, witnessing transformations (of the syntactic narrow system
monotonicity of I).

It turns out that, if I is a syntactically narrowly system monotone π-

institution, with witnessing transformations I♭, then
↔

I♭(T ) is a congruence
system on F compatible with T , for all T ∈ ThSys (I). This forms a system
analog of Proposition 1203.

Proposition 1219 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly system
monotone, with witnessing transformations I♭, then, for all T ∈ ThSys (I),
↔

I♭(T ) is a congruence system on F compatible with T .

Proof: The proof is similar to that of Proposition 1203. Let T ∈ ThSys (I),
Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ). The narrow system reflexivity of I♭ ensures

that ⟨φ,φ⟩ ∈ ↔I♭Σ(T ). The fact that
↔

I♭ is the symmetrization of I♭ ensures that

⟨φ,ψ⟩ ∈ ↔I♭Σ(T ) implies that ⟨ψ,φ⟩ ∈ ↔I♭Σ(T ). The narrow system transitivity

of I♭ guarantees that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ ↔I♭Σ(T ) imply ⟨φ,χ⟩ ∈ ↔I♭Σ(T ).
Suppose, next, that σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ). Then, the narrow system

compatibility of I♭ ensures that, if, for all i < k, ⟨φi, ψi⟩ ∈ ↔

I♭Σ(T ), then

⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ I♭Σ(T ). Thus,
↔

I♭(T ) is a congruence family on F. However,
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by Lemma 93,
↔

I♭(T ) is a relation system on F. Hence,
↔

I♭(T ) is a congruence
system on F.

It only remains to show that
↔

I♭(T ) is compatible with T . Assume that

φ ∈ TΣ and ⟨φ,ψ⟩ ∈ ↔I♭Σ(T ). Since I♭ ⊆
↔

I♭, we get, by the narrow system MP

of I♭, that ψ ∈ TΣ. Thus,
↔

I♭(T ) is also compatible with T . ∎

Proposition 1219 shows that
↔

I♭ defines Leibniz congruence systems of the-
ory systems in ThSys (I). Again, following terminology adopted in Section
15.1, we say that I♭ narrowly defines Leibniz congruence systems of
theory systems in I if, for all T ∈ ThSys (I),

↔

I♭(T ) = Ω(T ).
Then, in what is an analog of Corollary 1204, we obtain

Corollary 1220 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly system mono-
tone, with witnessing transformations I♭, then I♭ narrowly defines Leibniz
congruence systems of theory systems in I.

Proof: By Proposition 1219 and Corollary 98. ∎

Corollary 1220 shows that syntactic narrow system monotonicity implies
(semantic) narrow system monotonicity. This forms an analog of Theorem
1205.

Theorem 1221 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly system mono-
tone, then it is narrowly system monotone.

Proof: Suppose that I is syntactically narrowly system monotone with wit-
nessing transformations I♭. Let T,T ′ ∈ ThSys (I), such that T ≤ T ′. Then

Ω(T ) = ↔

I♭(T ) (by Corollary 1220)

≤
↔

I♭(T ′) (by Lemma 94)
= Ω(T ′). (by Corollary 1220)

Thus, I is narrowly system monotone. ∎

We now introduce the notion of the narrow reflexive system core of a
π-institution I in a way analogous to the narrow reflexive core, which was
introduced in Section 15.1. Its introduction will enable us to provide a char-
acterization of the syntactical narrow system monotonicity property and to
establish a relationship between this property and its semantic counterpart.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. The narrow reflexive system core of I is the
collection

RIs = {ρ♭ ∈ N ♭ ∶ (∀T ∈ ThSys (I))(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ T )}.
Given any theory system in ThSys (I), the relation system RIs(T ) is a

reflexive relation system on F. This forms an analog of Lemma 1207.

Lemma 1222 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThSys (I), RIs(T ) is a
reflexive relation system on F.

Proof: Let T ∈ ThSys (I). By Lemma 93, RIs(T ) is a relation system on
F. For reflexivity, let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). By the definition of
the narrow reflexive system core, RIsΣ [φ,φ] ≤ T . Thus, ⟨φ,φ⟩ ∈ RIsΣ (T ) and,
therefore, RIs(T ) is reflexive. ∎

As in Lemma 1208, we establish that RIs(T ) is a symmetric relation
system on F, for all T ∈ ThSys (I).
Lemma 1223 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThSys (I), RIs(T ) is a
symmetric relation system on F.

Proof: Let T ∈ ThSys (I). Again, Lemma 93 shows that RIs(T ) is a rela-
tion system. Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ RIsΣ (T ).
Equivalently, RIsΣ [φ,ψ] ≤ T . Consider any ρ♭ ∈ RIs. By the definition of

RIs, we get that ρ♭ ∈ RIs. Therefore, by the hypothesis, ρ♭Σ[φ,ψ] ≤ T . But
this gives ρ♭Σ[ψ,φ] ≤ T . Since this holds for all ρ♭ ∈ RIs, we conclude that
RIsΣ [ψ,φ] ≤ T . Hence, ⟨ψ,φ⟩ ∈ RIsΣ (T ). Therefore, RIs(T ) is a symmetric
relation system on F. ∎

We now show that, for all theory systems T ∈ ThSys (I), RIs(T ) has the
compatibility property in F. This forms an analog of Lemma 1209.

Lemma 1224 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then, for all T ∈ ThSys (I), RIs(T ) has
the compatibility property in F.

Proof: Let T ∈ ThSys (I). We rely on Corollary 12. Let σ♭ ∶ (SEN♭)k →
SEN♭ is in N ♭, Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ RIsΣ (T ) or,
equivalently, RIsΣ [φ,ψ] ≤ T . Let ρ♭ ∶ (SEN♭)n → SEN♭ be arbitrary in RIs.
We consider the natural transformation ρ′ ♭ ∶ (SEN♭)n+k → SEN♭, defined, for
all Σ ∈ ∣Sign♭∣ and all ζ, η, χ⃗, ξ⃗ ∈ SEN♭(Σ), by

ρ′ ♭Σ(ζ, η, χ⃗, ξ⃗) = ρ♭Σ(σ♭Σ(ζ, χ⃗), σ♭Σ(η, χ⃗), ξ⃗).
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Note that, since σ♭ ∈ N ♭, ρ♭ ∈ N ♭ and

ρ′ ♭ = ρ♭ ○ ⟨σ♭ ○ ⟨pn+k,0, pn+k,2, . . . , pn+k,k⟩, σ♭ ○ ⟨pn+k,1, pn+k,2, . . . , pn+k,k⟩,
pn+k,k+1, . . . , pn+k,n+k−1⟩,

we get that ρ′ ♭ ∈ N ♭. Moreover, for all T ′ ∈ ThSys (I), Σ ∈ ∣Sign♭∣, ζ, χ⃗, ξ⃗ ∈
SEN♭(Σ),

ρ′ ♭Σ(ζ, ζ, χ⃗, ξ⃗) = ρ♭Σ(σ♭Σ(ζ, χ⃗), σ♭Σ(ζ, χ⃗), ξ⃗) (by definition of ρ′ ♭)
∈ T ′Σ. (since ρ♭ ∈ RIs).

Thus, by the definition of the narrow reflexive system core, we get that
ρ′ ♭ ∈ RIs.

Now since ρ′ ♭ ∈ RIs and, by hypothesis, RIsΣ [φ,ψ] ≤ T , we get, in partic-

ular, that, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗, ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗), ξ⃗) ∈ TΣ′ .

Hence, a fortiori, for all χ⃗ ∈ SEN♭(Σ), ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(SEN♭(f)(σ♭Σ(φ, χ⃗)),SEN♭(f)(σ♭Σ(ψ, χ⃗)), ξ⃗) ∈ TΣ′ .

This proves that
ρ♭Σ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T.

Since this holds for all ρ♭ ∈ RIs, we get that RIsΣ [σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ T
or, equivalently, ⟨σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)⟩ ∈ RIsΣ (T ). Therefore, RIs(T ) has the
congruence compatibility property in F. ∎

We now show, in an analog of Theorem 1213, that possession of the
narrow system modus ponens by the narrow reflexive system core intrinsically
characterizes syntactic narrow system monotonicity. We start by showing
that possession of the narrow system MP by the narrow reflexive core is
necessary for syntactic narrow system monotonicity. This forms an analog
of Theorem 1210.

Theorem 1225 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly system mono-
tone, then RIs has the narrow system MP.

Proof: Suppose that I is syntactically narrowly system monotone with wit-
nessing transformations I♭. Since, by definition, I♭ is narrowly system re-
flexive, we get, by definition of RIs, I♭ ⊆ RIs. Thus, since I♭ has the narrow
system MP in I , we get that, a fortiori, RIs also satisfies the narrow system
MP. ∎

If RIs has the narrow system MP, then it has the narrow system transi-
tivity in I . This proposition forms an analog of Proposition 1211.
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Proposition 1226 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If RIs has the narrow system MP,
then it also has the narrow system transitivity in I.

Proof: Suppose that RIs has the narrow system MP and let T ∈ ThSys (I),
Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ RIsΣ (T ). This
means that RIsΣ [φ,ψ] ≤ T and RIsΣ [ψ,χ] ≤ T . Then, by Lemma 1224, we
get that, for all ρ♭ ∈ RIs, and all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
ξ⃗ ∈ SEN♭(Σ′),

RIsΣ′ [ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗),
ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗)] ≤ T.

But, by hypothesis, RIsΣ [φ,ψ] ≤ T and RIs has the narrow system MP. There-

fore, for all ρ♭ ∈ RIs, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗) ⊆ TΣ′ ,

i.e., RIsΣ [φ,χ] ≤ T . This shows ⟨φ,χ⟩ ∈ RIsΣ (T ) and, hence, RIs is narrowly
system transitive in I . ∎

We are now ready to show a converse of Theorem 1225, i.e., that pos-
session of the narrow system MP by RIs suffices to establish the syntactic
narrow system monotonicity of I , since, in that case, RIs serves as a family of
witnessing transformations. The following constitutes an analog of Theorem
1212.

Theorem 1227 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RIs has the narrow system MP, then I
is syntactically narrowly system monotone, with witnessing transformations
RIs.

Proof: By Lemma 1222, RIs is narrowly system reflexive in I . By Lemma
1223, RIs is narrowly system symmetric in I . By hypothesis and Proposition
1226, it is narrowly system transitive in I . By Lemma 1224 it has the
narrow system compatibility property in I . Finally, by hypothesis, it has
the narrow system MP in I . We conclude that I is syntactically narrowly
system monotone, with witnessing transformations RIs. ∎

Theorems 1225 and 1227 provide the promised characterization of syn-
tactic narrow system monotonicity in terms of the narrow system MP of the
narrow reflexive system core.

I is Syntactically Narrow
System Monotone

←→
RIs has Narrow System

Modus Ponens
.
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Theorem 1228 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically narrowly system mono-
tone if and only if RIs has the narrow system MP in I.

Proof: Theorem 1225 gives the “only if” and the “if” is by Theorem 1227.
∎

A related alternative characterization asserts that syntactic narrow sys-
tem monotonicity amounts to the narrow definability of Leibniz congruence
systems of theory systems by the narrow reflexive system core. This result
forms an analog of Theorem 1214.

I is Syntactically Narrow
System Monotone

←→
RIs Defines Leibniz Congruence

Systems of Theory Systems
.

Theorem 1229 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically narrowly system mono-
tone if and only if, for all T ∈ ThSys (I),

Ω(T ) = RIs(T ).
Proof: If I is syntactically narrowly system monotone, then, by Theorem
1225, RIs has the narrow system MP in I . Thus, by Theorem 1227, RIs

is a family of witnessing transformations for the syntactic narrow system
monotonicity of I . Thus, by Corollary 1220, for all T ∈ ThSys (I), Ω(T ) =
RIs(T ).

Suppose, conversely, that the displayed condition holds. Then RIs is nar-
rowly system reflexive, narrowly system transitive and has the narrow system
compatibility property and the narrow system MP. Hence, it constitutes a
collection of witnessing transformations and, therefore, I is syntactically nar-
rowly system monotone. ∎

To prove an analog of Theorem 1218, which, in a certain restricted sense
characterizes syntactic narrow family monotonicity inside the class of narrow
family monotone π-institutions, we create a suitable analog of the Leibniz
compatibility property with respect to the theory family generated by the
narrow reflexive system core. Once more, the difficulty in this case, similarly
with that described in some detail in Section 15.1, arises from the fact that
ThSys (I) may not be, in general, closed under signature-wise intersections.

To introduce this analog and to understand how it comes about and how it
extends the Leibniz property, we elaborate further on the relevant discussion
initiated in Section 15.1. Recall that a π-institution I is prealgebraic if its
Leibniz operator is monotone on theory systems. Recall, also, once more,
that its reflexive core RI is said to be Leibniz if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).
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If a π-institution is prealgebraic and has a Leibniz reflexive core, then it
satisfies the global system modus ponens. This was shown in Chapter 11
using the following method. Considering T ∈ ThSys(I), Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and RIΣ[φ,ψ] ≤ T , we get

• ⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])) first, by applying the Leibniz property;

• Ω(C(RIΣ[φ,ψ])) ≤ Ω(T ), by applying the hypothesis that RIΣ[φ,ψ] ≤ T
and the postulated prealgebraicity of I and observing at the same time
that C(RIΣ[φ,ψ]) ∈ ThSys(I), since RIΣ[φ,ψ] is a sentence system.

However, in case of narrow system monotonicity, the plausibility of RIsΣ [φ,ψ]
having some empty components makes it likely that, in the second stage,
narrow system monotonicity may not be applicable to ensure the inclusion
Ω(C(RIsΣ [φ,ψ])) ≤ Ω(T ). To deal with this plausibility, we assume, in a
similar way as before, that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), the
poset [RIsΣ [φ,ψ]) ∶= {T ∈ ThSys (I) ∶ RIsΣ [φ,ψ] ≤ T}
satisfies the descending chain condition and to postulate that every minimal
element T ∈ [RIsΣ [φ,ψ]) satisfies ⟨φ,ψ⟩ ∈ ΩΣ(T ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• For Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), define

[RIsΣ [φ,ψ]) ∶= {T ∈ ThSys (I) ∶ RIsΣ [φ,ψ] ≤ T};
• For Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), I is called ⟨Σ, φ,ψ⟩-reflexively

system covered if, for every theory system T ∈ [RIsΣ [φ,ψ]), there
exists minimal T ′ ∈ [RIsΣ [φ,ψ]), such that T ′ ≤ T ;

• I is called reflexively system covered if it is ⟨Σ, φ,ψ⟩-reflexively
system covered, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ).

Given Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), we write

min [RIsΣ [φ,ψ])
for the collection of minimal elements in [RIsΣ [φ,ψ]).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a
π-institution based on F. We say that the narrow reflexive system core
RIs of I is Leibniz if, for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all
T ∈min [RIsΣ [φ,ψ]), ⟨φ,ψ⟩ ∈ ΩΣ(T ).

We show, in an analog of Proposition 1215, that, if RIs has the narrow
system MP, then it is Leibniz. In fact, the proof demonstrates that, under
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the narrow system MP, a stronger property than that of being Leibniz holds;
more concretely, that for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈[RIsΣ [φ,ψ]) (and not only for T ∈min [RIsΣ [φ,ψ])),

⟨φ,ψ⟩ ∈ ΩΣ(T ).
Proposition 1230 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If RIs has the narrow system MP, then
for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈ [RIsΣ [φ,ψ]), ⟨φ,ψ⟩ ∈ ΩΣ(T ).
Proof: Suppose RIs has the narrow system MP and let T ∈ ThSys (I), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that RIsΣ [φ,ψ] ≤ T . To verify that ⟨φ,ψ⟩ ∈
ΩΣ(T ), we use Theorem 19. Let σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and
χ⃗ ∈ SEN♭(Σ′), such that σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ . Since T ∈ ThSys (I), by
Lemma 1224,

RIsΣ′ [σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T.
Thus, since, by hypothesis, RIs has the narrow system MP, we obtain

σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ TΣ′ .
By symmetry, we conclude that, for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ TΣ′ .
Hence, by Theorem 19, ⟨φ,ψ⟩ ∈ ΩΣ(T ). ∎

Corollary 1231 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RIs has the narrow system MP, then it
is Leibniz.

Proof: Directly by Proposition 1230. ∎

In the opposite direction, when dealing with reflexively system covered
π-institutions, we may show that narrow system monotonicity combined with
the Leibniz property of the narrow reflexive system core imply that the nar-
row reflexive system core has the narrow system modus ponens in I . The
following proposition forms an analog of Proposition 1217 in the system con-
text.

Proposition 1232 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a reflexively system covered, narrowly system monotone π-institution
based on F. If RIs is Leibniz, then it has the narrow system MP in I.
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Proof: Let I be a reflexively system covered π-institution. Suppose that I
is narrowly system monotone and that RIs is Leibniz. Let T ∈ ThSys (I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and RIsΣ [φ,ψ] ≤ T . Since
I is reflexively system covered, there exists T ′ ∈ min [RIsΣ [φ,ψ]), such that
T ′ ≤ T . Now we have

⟨φ,ψ⟩ ∈ ΩΣ(T ′) (since RIs is Leibniz and T ′ ∈min [RIsΣ [φ,ψ]))
⊆ ΩΣ(T ). (since T ′ ≤ T and I is narrowly system monotone)

Therefore, since φ ∈ TΣ, we get, by the compatibility of Ω(T ) with T , that
ψ ∈ TΣ. We conclude that RIs has the narrow system MP in I . ∎

Thus, at least for reflexively system covered π-institutions, it is possible
to show that the class of syntactically narrowly system monotone ones inside
the class of the narrowly system monotone ones can be characterized exactly
by the Leibniz property of the narrow reflexive system core. This forms a
partial analog of Theorem 1218.

Theorem 1233 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a reflexively system covered π-institution based on F. I is syntactically
narrowly system monotone if and only if it is narrowly system monotone and
has a Leibniz narrow reflexive system core.

Proof: Let I be a reflexively system covered π-institution.
Suppose, first, that I is syntactically narrowly system monotone. Then

it is narrowly system monotone by Theorem 1221. Moreover, its narrow
reflexive system core has the narrow system MP by Theorem 1225 and, hence,
by Corollary 1231, its narrow reflexive system core is Leibniz.

Suppose, conversely, that I is narrowly system monotone with a Leibniz
narrow reflexive system core. Then, by Proposition 1232, its narrow reflexive
system core has the narrow system MP and, therefore, by Theorem 1227, I
is syntactically narrowly system monotone, with witnessing transformations
RIs. ∎

15.3 Syntactic Narrow Right Monotonicity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I♭ ⊆ N ♭ a collection
of natural transformations in N ♭, with two distinguished arguments. Recall
from Proposition 99, that, for all T ∈ SenFam(F), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

I♭Σ[φ,ψ] ≤ T iff I♭Σ[φ,ψ] ≤ ←ÐT . (15.1)

Let, now, I = ⟨F,C⟩ be a π-institution based on F. We may attempt to
define “syntactic narrow left monotonicity” as the existence of a collection
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I♭ ⊆ N ♭, with two distinguished arguments, such that, for all T ∈ ThFam (I),
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

I♭Σ[φ,ψ] ≤←ÐT iff ⟨φ,ψ⟩ ∈ ΩΣ(T ).
Because of the the preceding remark, however, this condition would amount
exactly to defining syntactic narrow family monotonicity. On the other hand,
syntactic narrow system monotonicity is equivalent, again based on the re-
mark above, to asserting the existence of I♭ ⊆ N ♭, with two distinguished

arguments, such that, for all T ∈ ThFam (I), with
←Ð
T ∈ ThSys (I), for all

Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
I♭Σ[φ,ψ] ≤ T iff ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ).

If we drop the restriction that
←Ð
T be in ThSys (I), thus allowing the condition

above to be imposed on the wider class of all T ∈ ThFam (I), we obtain a
concept slightly more general that syntactic narrow system monotonicity,
which we term syntactic narrow right monotonicity. We study this notion in
more detail in this section, following the study of syntactic narrow family (and
system) monotonicity, carried out in the preceding sections of the chapter.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that I is narrowly right monotone if, for
all T,T ′ ∈ ThFam (I),

T ≤ T ′ implies Ω(←ÐT ) ≤ Ω(←ÐT ′).
In this section, following the work on syntactic narrow family monotonicity
of Section 15.1, we introduce and study a syntactic analog of narrow right
monotonicity.

First, the concepts of narrow system reflexivity, narrow system symmetry,
narrow system transitivity, narrow system compatibility and narrow system
modus ponens are recast to accommodate theory systems that arise by ap-
plying the arrow operator ←Ð on theory families in ThFam (I). Note that
such theory systems include, of course, all theory systems in ThSys (I),
since these arise by applying the arrow operator on themselves.

Let, as above, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Moreover, suppose that I♭ ⊆ N ♭ is a col-
lection of natural transformations in N ♭, with two distinguished arguments.

• I♭ is narrowly right reflexive if, for all T ∈ ThFam (I), all Σ ∈∣Sign♭∣ and all φ ∈ SEN♭(Σ),
I♭Σ[φ,φ] ≤ ←ÐT ;



Voutsadakis CHAPTER 15. SYNTACTIC HIERARCHY V 1063

• I♭ is narrowly right symmetric if, for all T ∈ ThFam (I), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
I♭Σ[φ,ψ] ≤←ÐT implies I♭Σ[ψ,φ] ≤←ÐT ;

• I♭ is narrowly right transitive if, for all T ∈ ThFam (I), all Σ ∈∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),
I♭Σ[φ,ψ] ∪ I♭Σ[ψ,χ] ≤ ←ÐT implies I♭Σ[φ,χ] ≤←ÐT ;

• I♭ is narrowly right compatible if, for all T ∈ ThFam (I), all σ♭ ∈
N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ),

⋃
i<k

↔

I♭Σ[φi, ψi] ≤←ÐT implies I♭Σ[σ♭Σ(φ⃗), σ♭Σ(ψ⃗)] ≤←ÐT ;

• I♭ has the narrow right MP if, for all T ∈ ThFam (I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

φ ∈
←Ð
T Σ and I♭Σ[φ,ψ] ≤←ÐT imply ψ ∈

←Ð
T Σ.

Note that, because of Equivalence (15.1), narrow right reflexivity, narrow
right symmetry, narrow right transitivity and narrow right compatibility are
equivalent, respectively, to narrow family reflexivity, narrow family symme-
try, narrow family transitivity and narrow family compatibility. They are
simply recast involving the arrow operator, but the change is inessential. On
the other hand, narrow right modus ponens is an essentially different property
than narrow family modus ponens and it is the critical property that differ-
entiates syntactic narrow right monotonicity from syntactic narrow family
monotonicity.

Note, also, that, based on Equivalence (15.1), for all T ∈ ThFam (I),
I♭(T ) = I♭(←ÐT ).

We say that I is syntactically narrowly right monotone if there
exists I♭ ⊆ N ♭, with two distinguished arguments, such that I♭ satisfies:

• narrow right reflexivity;

• narrow right transitivity;

• narrow right compatibility; and

• narrow right MP.
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In that case, we call I♭ a set of witnessing natural transformations, or,
more simply, witnessing transformations (of the syntactic narrow right
monotonicity of I).

It turns out that, if I is a syntactically narrowly right monotone π-

institution, with witnessing transformations I♭, then
↔

I♭(T ) (∶=
↔

I♭(←ÐT )) is a

congruence system on F compatible with
←Ð
T , for all T ∈ ThFam (I). This

forms a system analog of Proposition 1203.

Proposition 1234 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly right
monotone, with witnessing transformations I♭, then, for all T ∈ ThFam (I),
↔

I♭(T ) is a congruence system on F compatible with
←Ð
T .

Proof: The proof is similar to that of Proposition 1203. Let T ∈ ThFam (I),
Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ). The narrow right reflexivity of I♭ ensures

that ⟨φ,φ⟩ ∈ ↔I♭Σ(T ). The fact that
↔

I♭ is the symmetrization of I♭ ensures that

⟨φ,ψ⟩ ∈ ↔I♭Σ(T ) implies that ⟨ψ,φ⟩ ∈ ↔I♭Σ(T ). The narrow right transitivity of

I♭ guarantees that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ ↔I♭Σ(T ) imply ⟨φ,χ⟩ ∈ ↔I♭Σ(T ).
Suppose, next, that σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ). Then, the narrow right

compatibility of I♭ ensures that, if, for all i < k, ⟨φi, ψi⟩ ∈ ↔

I♭Σ(T ), then

⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ I♭Σ(T ). Thus,
↔

I♭(T ) is a congruence family on F. However,

by Lemma 93,
↔

I♭(T ) is a relation system on F. Hence,
↔

I♭(T ) is a congruence
system on F.

It only remains to show that
↔

I♭(T ) is compatible with
←Ð
T . Assume that

φ ∈
←Ð
T Σ and ⟨φ,ψ⟩ ∈ ↔I♭Σ(T ). Since I♭ ⊆

↔

I♭, we get, by the narrow right MP of

I♭, that ψ ∈
←Ð
T Σ. Thus,

↔

I♭(T ) is also compatible with
←Ð
T . ∎

Proposition 1234 shows that
↔

I♭ defines Leibniz congruence systems of

those theory systems of the form
←Ð
T , for T ∈ ThFam (I). We say that I♭

narrowly defines Leibniz congruence systems of theory families in I
up to arrow if, for all T ∈ ThFam (I),

↔

I♭(T ) = Ω(←ÐT ).
Then, in what is an analog of Corollary 1204, we obtain

Corollary 1235 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly right mono-
tone, with witnessing transformations I♭, then I♭ narrowly defines Leibniz
congruence systems of theory families in I up to arrow.



Voutsadakis CHAPTER 15. SYNTACTIC HIERARCHY V 1065

Proof: By Proposition 1219 and Corollary 98. ∎

This corollary has as immediate consequence the fact that syntactic nar-
row right monotonicity implies (semantic) narrow right monotonicity. This
forms an analog of Theorem 1205.

Theorem 1236 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly right mono-
tone, then it is narrowly right monotone.

Proof: Suppose that I is syntactically narrowly right monotone with wit-
nessing transformations I♭. Let T,T ′ ∈ ThFam (I), such that T ≤ T ′. Then

Ω(←ÐT ) = ↔

I♭(T ) (by Corollary 1235)

≤
↔

I♭(T ′) (by Lemma 94)

= Ω(←ÐT ′). (by Corollary 1235)

Thus, I is narrowly right monotone. ∎

We now introduce the notion of the narrow reflexive system core of a
π-institution I in a way analogous to the narrow reflexive core, which was
introduced in Section 15.1. Its introduction will enable us to provide a char-
acterization of the syntactical narrow system monotonicity property and to
establish a relationship between this property and its semantic counterpart.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall from Section 15.1 that the narrow reflexive
core of I is the collection

RI = {ρ♭ ∈ N ♭ ∶ (∀T ∈ ThFam (I))(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(ρ♭Σ[φ,φ] ≤ T )}.
Recall, also, from Lemmas 1207, 1208 and 1209, that, given any theory

family in ThFam (I), the relation system RI (T ) is a reflexive and symmet-
ric relation system on F that has the congruence compatibility property in
F.

We now show, in an analog of Theorem 1213, that possession of the narrow
right modus ponens by the narrow reflexive core intrinsically characterizes
syntactic narrow right monotonicity. We start by showing that possession of
the narrow right MP by the narrow reflexive core is necessary for syntactic
narrow right monotonicity. This forms an analog of Theorem 1210.

Theorem 1237 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically narrowly right mono-
tone, then RI has the narrow right MP.
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Proof: Suppose that I is syntactically narrowly right monotone with wit-
nessing transformations I♭. Since, by definition, I♭ is narrowly right reflexive,
which is equivalent to being narrowly family reflexive, we get, by definition
of RI , I♭ ⊆ RI . Thus, since I♭ has the narrow right MP in I , we get that,
a fortiori, RI also satisfies the narrow right MP. ∎

If RI has the narrow right MP, then it has the narrow right transitivity
in I . This proposition forms an analog of Proposition 1211.

Proposition 1238 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If RI has the narrow right MP, then
it also has the narrow right transitivity in I.

Proof: Suppose that RI has the narrow right MP and let T ∈ ThFam (I),
Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ RI Σ (T ). This

means that RI Σ [φ,ψ] ≤ T and RI Σ [ψ,χ] ≤ T . Then, by Lemma 1224, we
get that, for all ρ♭ ∈ RI , and all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
ξ⃗ ∈ SEN♭(Σ′),

R
I 
Σ′ [ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(ψ), ξ⃗),

ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗)] ≤ T.
But, by hypothesis, RI Σ [φ,ψ] ≤ T and RI has the narrow right MP. There-

fore, for all ρ♭ ∈ RI , all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all ξ⃗ ∈ SEN♭(Σ′),
ρ♭Σ′(SEN♭(f)(φ),SEN♭(f)(χ), ξ⃗) ⊆ TΣ′ ,

i.e., RI Σ [φ,χ] ≤ T . This shows ⟨φ,χ⟩ ∈ RI Σ (T ) and, hence, RI is narrowly
right transitive in I . ∎

We are now ready to show a converse of Theorem 1237, i.e., that pos-
session of the narrow right MP by RI suffices to establish the syntactic
narrow right monotonicity of I , since, in that case, RI serves as a family of
witnessing transformations. The following constitutes an analog of Theorem
1212.

Theorem 1239 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the narrow right MP, then I is
syntactically narrowly right monotone, with witnessing transformations RI .

Proof: By Lemma 1207, RI is narrowly right reflexive in I . By Lemma
1208, RI is narrowly right symmetric in I . By hypothesis and Proposition
1238, it is narrowly right transitive in I . By Lemma 1209 it has the narrow
right compatibility property in I . Finally, by hypothesis, it has the narrow
right MP in I . We conclude that I is syntactically narrowly right monotone,
with witnessing transformations RI . ∎
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Theorems 1237 and 1239 provide the promised characterization of syntac-
tic narrow right monotonicity in terms of the narrow right MP of the narrow
reflexive core.

I is Syntactically Narrow
Right Monotone

←→
RI has Narrow Right

Modus Ponens
.

Theorem 1240 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically narrowly right monotone
if and only if RI has the narrow right MP in I.

Proof: Theorem 1237 gives the “only if” and the “if” is by Theorem 1239.
∎

A related alternative characterization asserts that syntactic narrow right
monotonicity amounts to the narrow definability of Leibniz congruence sys-
tems of theory families up to arrow by the narrow reflexive core. This result
forms an analog of Theorem 1214.

I is Syntactically Narrow
Right Monotone

←→
RI Defines Leibniz Congruence Systems

of Theory Families up to Arrow

Theorem 1241 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically narrowly right monotone
if and only if, for all T ∈ ThFam (I),

Ω(←ÐT ) = RI (T ).
Proof: If I is syntactically narrowly right monotone, then, by Theorem 1237,
RI has the narrow right MP in I . Thus, by Theorem 1239, RI is a family
of witnessing transformations for the syntactic narrow right monotonicity of

I . Thus, by Corollary 1235, for all T ∈ ThFam (I), Ω(←ÐT ) = RI (T ).
Suppose, conversely, that the displayed condition holds. Then RI is

narrowly right reflexive, narrowly right transitive and has the narrow right
compatibility property and the narrow right MP. Hence, it constitutes a col-
lection of witnessing transformations and, therefore, I is syntactically nar-
rowly right monotone. ∎

To prove an analog of Theorem 1218, which, in a sense analogous to that
seen for syntactic narrow family monotonicity, characterizes syntactic narrow
right monotonicity inside the class of narrow right monotone π-institutions,
we create a suitable analog of the Leibniz compatibility property with respect
to the theory family generated by the narrow reflexive core. Once more, the
difficulty in this case, similarly with that described in some detail in Section
15.1, arises from the fact that ThFam (I) may not be, in general, closed
under signature-wise intersections.
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To introduce this analog and to understand how it comes about and how
it extends the Leibniz property, we reembark, once more, on a discussion
initiated in Section 15.1 and revisit some of the points with relevance in
treating the “right” case.

Recall, again, the definition of prealgebraicity and the Leibniz property of
the reflexive core of a π-institution. Also recall the method employed to show
that, if a π-institution is prealgebraic and has a Leibniz reflexive core, then it
satisfies the global system modus ponens, which is done by first applying the
Leibniz property and then prealgebraicity. However, in case of narrow right
monotonicity, the plausibility of RI Σ [φ,ψ] having some empty components
makes it likely that, when one attempts to apply narrow right monotonicity
in place of prealgebraicity in the second stage of the argument outlined above,

its application in order to derive the inclusion Ω(C(RI Σ [φ,ψ])) ≤ Ω(←ÐT ) may
not be possible. To deal with this plausibility, we assume, in a similar way
as before, that the π-institution under consideration is reflexively covered
and postulate that every minimal element T ∈ [RI Σ [φ,ψ]) satisfies ⟨φ,ψ⟩ ∈
ΩΣ(T ), for every Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. For Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), recall the
notation

[RI Σ [φ,ψ]) ∶= {T ∈ ThFam (I) ∶ RI Σ [φ,ψ] ≤ T}.
Recall, also that I is said to be reflexively covered if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), it is ⟨Σ, φ,ψ⟩-reflexively covered, i.e., for every theory family
T ∈ [RI Σ [φ,ψ]), there exists minimal T ′ ∈ [RI Σ [φ,ψ]), such that T ′ ≤ T .
Recall, furthermore, that, given Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), we write
min [RI Σ [φ,ψ]) for the collection of minimal elements in [RI Σ [φ,ψ]).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We say that the narrow reflexive coreRI of I is right
Leibniz if, for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈min [RI Σ [φ,ψ]),

⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ).
We show, in an analog of Proposition 1215, that, if RI has the narrow

right MP, then it is right Leibniz. In fact, the proof demonstrates that, under
the narrow right MP, a stronger property than that of being right Leibniz
holds; more concretely, that for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all

T ∈ [RI Σ [φ,ψ]) (not only for T ∈min [RI Σ [φ,ψ])), ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ).
Proposition 1242 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If RI has the narrow right MP,
then for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈ [RI Σ [φ,ψ]), ⟨φ,ψ⟩ ∈
ΩΣ(←ÐT ).
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Proof: Suppose RI has the narrow right MP and let T ∈ ThFam (I), Σ ∈∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that RI Σ [φ,ψ] ≤ T . To verify that ⟨φ,ψ⟩ ∈
ΩΣ(←ÐT ), we use Theorem 19. Let σ♭ ∈ N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and

χ⃗ ∈ SEN♭(Σ′), such that σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ ←ÐT Σ′ . Since T ∈ ThFam (I),
by Lemma 1209,

R
I 
Σ′ [σ♭Σ′(SEN♭(f)(φ), χ⃗), σ♭Σ′(SEN♭(f)(ψ), χ⃗)] ≤ T.

Thus, since, by hypothesis, RI has the narrow right MP, we obtain

σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ ←ÐT Σ′ .

By symmetry, we conclude that, for all σ♭ ∈ N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈←ÐT Σ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈←ÐT Σ′ .

Hence, by Theorem 19, ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ). ∎

Corollary 1243 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI has the narrow right MP, then it
is right Leibniz.

Proof: Directly by Proposition 1242. ∎

To prove a converse, we restrict attention to reflexively covered π-institutions.
Inside this class, we may show that narrow right monotonicity combined with
the right Leibniz property of the narrow reflexive core imply that the nar-
row reflexive core has the narrow right modus ponens in I . The following
proposition forms an analog of Propositions 1217 and 1232 in the “right”
context.

Proposition 1244 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a reflexively covered, narrowly right monotone π-institution based
on F. If RI is right Leibniz, then it has the narrow right MP in I.

Proof: Let I be a reflexively covered π-institution. Suppose that I is nar-
rowly right monotone and that RI is right Leibniz. Let T ∈ ThFam (I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈

←Ð
T Σ and R

I 
Σ [φ,ψ] ≤ T . Since

I is reflexively covered, there exists T ′ ∈ min [RI Σ [φ,ψ]), such that T ′ ≤ T .
Now we have

⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ′) (since RI is right Leibniz and T ′ ∈min [RI Σ [φ,ψ]))
⊆ ΩΣ(←ÐT ). (since T ′ ≤ T and I is narrowly right monotone)
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Therefore, since φ ∈
←Ð
T Σ, we get, by the compatibility of Ω(←ÐT ) with

←Ð
T , that

ψ ∈
←Ð
T Σ. We conclude that RI has the narrow right MP in I . ∎

Thus, at least for reflexively covered π-institutions, it is possible to show
that the class of syntactically narrowly right monotone ones inside the class
of the narrowly right monotone ones can be characterized exactly by the right
Leibniz property of the narrow reflexive core. This forms a partial analog of
Theorems 1218 and 1233.

Theorem 1245 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a reflexively covered π-institution based on F. I is syntactically nar-
rowly right monotone if and only if it is narrowly right monotone and has a
right Leibniz narrow reflexive core.

Proof: Let I be a reflexively covered π-institution.
Suppose, first, that I is syntactically narrowly right monotone. Then it

is narrowly right monotone by Theorem 1236. Moreover, its narrow reflexive
core has the narrow right MP by Theorem 1237 and, hence, by Corollary
1243, its narrow reflexive core is right Leibniz.

Suppose, conversely, that I is narrowly right monotone with a right Leib-
niz narrow reflexive core. Then, by Proposition 1244, its narrow reflexive core
has the narrow right MP and, therefore, by Theorem 1239, I is syntactically
narrowly right monotone, with witnessing transformations RI . ∎
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16.1 Introduction

In this chapter our goal is to develop a hierarchy analogous to the one devel-
oped in Chapter 8, but on the syntactic side. The key on the semantic side,
developed in Chapter 8, was the property of regularity of a π-institution. The
family version of the property asserts that, given a π-institution I = ⟨F,C⟩,
based on an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, I is family regular if,
for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ implies ⟨φ,ψ⟩ ∈ ΩΣ(T ).
By combining this property with pre- or proto-algebraicity, on the one hand,
and with the existence of theorems, on the other, which subsumes complete
reflectivity, one obtains various classes in the regular (weak) (pre)algebra-
izability hierarchy, which were studied in some detail in Chapter 8.

In this chapter, as our interest shifts to the syntactic side, the role played
by of pre- and proto-algebraicity is assumed by syntactic pre- and proto-
algebraicity, respectively, and the existence of theorems is replaced by the
existence of natural theorems. By adding these features to regularity, one ob-
tains the classes of the syntactically regularly (weakly) (pre)algebraizable π-
institutions, which dominate, in general, the corresponding semantic classes.
Roughly speaking, the hierarchy that we are aiming for here has the gen-
eral shape depicted in the accompanying diagram. Of course various classes
are present at each level, since the properties shown have various flavors, or
versions, that may be used at each of the combinations depicted.

Synt Reg Algble

✠�
�
� ❅

❅
❅❘

Synt Reg Equiv Synt Reg Weak Algble

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

Synt Equiv Synt Reg Proto Synt Assrt

✠�
�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘ ✠�

�
� ❅

❅
❅❘

Ext Synt Proto Regular Nat Thms

16.2 Regularity of Transformations

To prepare us for the main developments, we start by looking closely at the
various versions of the regularity property of a family of natural transforma-
tions in a given π-institution.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Moreover, let I♭ ∶ (SEN♭)ω → SEN♭ be a collection
of natural transformations in N ♭, having two distinguished arguments. We
define the following properties:

• I♭ has the family regularity in I , or is family regular in I , if, for
all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ implies I♭Σ[φ,ψ] ≤ T ;

• I♭ has the left regularity in I , or is left regular in I , if, for all
T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈
←Ð
T Σ implies I♭Σ[φ,ψ] ≤ T ;

• I♭ has the right regularity in I , or is right regular in I , if, for all
T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ implies I♭Σ[φ,ψ] ≤←ÐT ;

• I♭ has the system regularity in I , or is system regular in I , if,
for all T ∈ ThSys(I) and all Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ),

φ,ψ ∈ TΣ implies I♭Σ[φ,ψ] ≤ T.
Recalling that, by Proposition 99, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣

and all φ,ψ ∈ SEN♭(Σ), we have

I♭Σ[φ,ψ] ≤ T iff I♭Σ[φ,ψ] ≤ ←ÐT ,
it is easy to see that the four properties defined above collapse in pairs and,
therefore, there are only two distinct ones. This is detailed in the following:

Proposition 1246 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a collection of
natural transformations in N ♭, with two distinguished arguments.

(a) I♭ is family regular in I if and only if it is right regular in I;

(b) I♭ is system regular in I if and only if it is left regular in I.

Proof: By Proposition 99, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), we have

I♭Σ[φ,ψ] ≤ T iff I♭Σ[φ,ψ] ≤ ←ÐT .
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Thus, taking into account the definitions of family and right regularity, the
equivalence of Part (a) becomes clear. We turn now to Part (b).

Assume, first, that I♭ is left regular in I and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Since T ∈ ThSys(I), ←ÐT = T ,

whence, by hypothesis, φ,ψ ∈
←Ð
T Σ. Thus, by left regularity, I♭Σ[φ,ψ] ≤ T .

This shows that I♭ has the system regularity in I .
Suppose, conversely, that I♭ is system regular in I and let T ∈ ThFam(I),

Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈
←Ð
T Σ. Since

←Ð
T ∈ ThSys(I),

we get, by system regularity, I♭Σ[φ,ψ] ≤ ←ÐT . Therefore, by Proposition 99,
I♭Σ[φ,ψ] ≤ T , showing that I♭ has the left regularity in I . ∎

Based on Proposition 1246, we use the term family regular to refer to
family/right regularity and the term system regular for system/left reg-
ularity. As far as the relation between these two distinct properties, it is
straightforward to see that, as is typical with almost all properties studied
in the monograph, system regularity is weaker than family regularity.

Proposition 1247 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a collection of
natural transformations in N ♭, having two distinguished arguments. If I♭ is
family regular in I, then it is system regular in I.

Proof: This is clear from the definitions, since the condition defining system
regularity is a specialization of that defining family regularity, where T is
allowed to range over theory systems only. ∎

Thus, the following hierarchy of regularity properties emerges.

I♭ Family/Right Regular

I♭ System/Left Regular
❄

It is also easy to see that, in case I is systemic, the two properties of
being family and system regular are identified.

Proposition 1248 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a collection of
natural transformations in N ♭. If I is systemic, then I♭ is system regular if
and only if it is family regular in I.

Proof: If I is systemic, then ThFam(I) = ThSys(I), whence the two con-
ditions defining family and system regularity are identical. ∎

And it is not difficult to show that this hierarchy does not collapse, in
general.
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Example 1249 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined
as follows:

• Sign♭ is the category with the single object Σ and a single (non-identity)
morphism f ∶ Σ→ Σ, such that f ○ f = f ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1} and SEN♭(f)(0) = 0,
SEN♭(f)(1) = 0;

• N ♭ is the clone of natural transformations generated by the binary nat-
ural transformation σ♭ ∶ (SEN♭)2 → SEN♭, specified by

σ♭Σ(x, y) = 0, for all x, y ∈ SEN♭(Σ).

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {∅,{1},{0,1}}.
I has three theory families ∅, {{1}} and SEN♭, but only two theory sys-

tems, ∅ and SEN♭. Consider I♭ = {σ♭}. Since, the only theory systems are ∅
and SEN♭, I♭ is trivially system regular. On the other hand, for T = {{1}},
we get, 1 ∈ TΣ, but I♭Σ[1,1] = {{0}} ≰ {{1}}, whence I♭ is not family regular
in I.

We close the section by showing that the two versions of regularity transfer
from the family I♭ to IA, for all F-algebraic systems A.

Proposition 1250 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a collection of
natural transformations in N ♭, with two distinguished arguments.

(a) I♭ is family regular in I if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, IA is family regular in ⟨A,CI,A⟩;

(b) I♭ is system regular in I if and only if, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, IA is system regular in ⟨A,CI,A⟩.
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Proof:

(a) The “if” follows easily by considering the F-algebraic system F =⟨F, ⟨I, ι⟩⟩ and recalling from Lemma 51 that FiFamI(F) = ThFam(I).
Assume, conversely, that I♭ is family regular in I and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈
SEN♭(Σ), such that αΣ(φ), αΣ(ψ) ∈ TF (Σ). Then, φ,ψ ∈ α−1Σ (TF (Σ)).
By Lemma 51, α−1(T ) ∈ ThFam(I), whence, by the postulated family
regularity of I♭ in I , we get that I♭Σ[φ,ψ] ≤ α−1(T ). Thus, by Lemma
95, we get IA

F (Σ)
[αΣ(φ), αΣ(ψ)] ≤ T . Taking into account the surjec-

tivity of ⟨F,α⟩, we conclude that, for all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ), if φ,ψ ∈ TΣ, then IAΣ [φ,ψ] ≤ T . Therefore, IA is
family regular in ⟨A,CI,A⟩.

(b) This follows along very similar lines.
∎

16.3 Syntactic Regular PreAlgebraicity

In the next result, we connect the property of regularity of a collection of nat-
ural transformations with the property of regularity of a π-institution I , stud-
ied in Chapter 8. More specifically, we show that, in case the π-institution
under consideration is syntactically pre- (proto-)algebraic with I♭ a collection
of witnessing transformations, then family (system) regularity of I♭ is equiv-
alent to I being family (system) regular. Since the combination of syntactic
pre- and proto-algebraicity with regularity turns out to be an important prop-
erty in its own right, we give it a name, partly inspired by the results that
follow. Recall that there are two kinds of syntactic monotonicity, namely
syntactic prealgebraicity and syntactic protoalgebraicity, and two kinds of
regularity properties of collections of natural transformations, namely family
regularity and system regularity. Thus, by combining syntactic monotonicity
properties with regularity properties, we obtain, a priori, four versions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is said to be syntactically family regularly protoalgebraic if it
is syntactically protoalgebraic, with a witnessing collection I♭ of trans-
formations, which is family regular in I ;

• I is said to be syntactically system regularly protoalgebraic
if it is syntactically protoalgebraic, with a witnessing collection I♭ of
transformations, which is system regular in I ;
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• I is said to be syntactically family regularly prealgebraic if it is
syntactically prealgebraic, with a witnessing collection I♭ of transfor-
mations, which is family regular in I ;

• I is said to be syntactically system regularly prealgebraic if it
is syntactically prealgebraic, with a witnessing collection I♭ of trans-
formations, which is system regular in I .

The definitions are partially justified by the following propositions that
relate them to the semantical notions of family, right, left and system regu-
larity.

Proposition 1251 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a syntactically protoalgebraic π-institution based on F, with wit-
nessing transformations I♭ ∶ (SEN♭)ω → SEN♭.

(a) I is family regular if and only if I♭ is family regular in I;

(b) I is left regular if and only if I♭ is system regular in I.

Proof: Let I be a syntactically protoalgebraic π-institution, with witnessing
transformations I♭.

(a) This part is easy to see, since, by syntactic protoalgebraicity, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I♭Σ[φ,ψ] ≤ T.
(b) Suppose, first, that I is left regular and let T ∈ ThSys(I), Σ ∈ ∣Sign♭∣

and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Since T ∈ ThSys(I), φ,ψ ∈
←Ð
T Σ. By the left regularity of I , we get ⟨φ,ψ⟩ ∈ ΩΣ(T ), whence, by
syntactic protoalgebraicity, I♭Σ[φ,ψ] ≤ T . This shows that I♭ is system
regular in I .

Assume, conversely, that I♭ is system regular in I and let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈

←Ð
T Σ. Then, since

←Ð
T ∈ ThSys(I), by the system regularity of I♭, I♭Σ[φ,ψ] ≤ ←ÐT ≤ T ,
whence, by syntactic protoalgebraicity, ⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, I is
left regular.

∎

Proposition 1252 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a syntactically prealgebraic π-institution based on F, with wit-
nessing transformations I♭ ∶ (SEN♭)ω → SEN♭.

(a) I is right regular if and only if I♭ is family regular in I;
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(b) I is system regular if and only if I♭ is system regular in I.

Proof: Let I be a syntactically prealgebraic π-institution, with witnessing
transformations I♭.

(a) Suppose, first, that I is right regular and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣
and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. By the right regularity of I , we

get ⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ), whence, since
←Ð
T ∈ ThSys(I), we get, by syntactic

prealgebraicity, I♭Σ[φ,ψ] ≤ ←ÐT ≤ T . This shows that I♭ is family regular
in I .

Assume, conversely, that I♭ is family regular in I and let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ,ψ ∈ TΣ. Then, by the
family regularity of I♭, I♭Σ[φ,ψ] ≤ T . Hence, by Proposition 99, we

get I♭Σ[φ,ψ] ≤ ←ÐT . Since
←Ð
T ∈ ThSys(I), by syntactic prealgebraicity,

⟨φ,ψ⟩ ∈ ΩΣ(←ÐT ). Therefore, I is right regular.

(b) This part is straightforward, since, by syntactic prealgebraicity, for all
T ∈ ThSys(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), ⟨φ,ψ⟩ ∈ ΩΣ(T ) if
and only if I♭Σ[φ,ψ] ≤ T .

∎

Propositions 1251 and 1252 may be viewed as partial justifications for the
definitions of syntactic regular pre- and proto-algebraicity Moreover, recall-
ing the following hierarchies of syntactic pre- and protoalgebraicity, of the
regularity properties of I♭ and of semantic regularity,

Family Regular

Synt ProtoAlgic I♭ Family Reg Right Regular
❄

Synt PreAlgic
❄

I♭ System Reg
❄

Left Regular
❄

System Regular
❄

the following hierarchy of syntactic classes of regularly pre- and protoalge-
braic π-institutions emerges.
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Synt Fam Reg ProtoAlgic

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Fam Reg PreAlgic Synt Sys Reg ProtoAlgic
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt Sys Reg PreAlgic

Furthermore, these four classes relate with their immediate subordinate
properties on the syntactic side, as shown in the following diagram

Synt Fam Reg ProtoAlgic

✰✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗s

Synt Sys Reg ProtoAlgic Synt Fam Reg PreAlgic
◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

Synt ProtoAlgic
❄ Synt Sys

Reg PreAlgic
I♭ Fam Reg

❄

✰✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗s

Synt PreAlgic
❄

I♭ Sys Reg
❄

and with the four semantic regularity classes, as revealed by Propositions
1251 and 1252, as shown in the following diagram.

Synt Fam Reg ProtoAlgic

✰✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗sSynt Sys

Reg ProtoAlgic
Synt Fam

Reg PreAlgic

❄

Fam Reg

✰✑
✑
✑
✑
✑
✑◗

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗s

◗
◗
◗
◗
◗
◗s

Synt Sys Reg PreAlgic
❄

Right Reg
❄

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗
◗s

Left Reg
❄

Sys Reg
❄
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Theorem 584, which provided a characterization of both family and of
system regularity in terms of the Suszko operator and of a system version of
the Suszko operator, respectively, gives rise to the following characterizations
of family and system regularity of witnessing collections of natural transfor-
mations for the proto- and pre-algebraicity, respectively, of a π-institution.

Corollary 1253 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and I♭ ∶ (SEN♭)ω → SEN♭ a collection
of natural transformations in N ♭, with two distinguished arguments.

(a) If I is syntactically protoalgebraic, with witnessing transformations I♭,
then I♭ is family regular in I if and only if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), ⟨φ,ψ⟩ ∈ Ω̃IΣ(C(φ,ψ));

(ba) If I is syntactically prealgebraic, with witnessing transformations I♭,
then I♭ is system regular in I if and only if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ Ω̂IΣ(Ð→C (φ,ψ)).
Proof: Part (a) follows by combining Part (a) of Proposition 1251 with the
characterization of family regularity given in Theorem 584. Similarly, Part
(b) follows by combing Part (b) of Proposition 1252 with the characterization
of system regularity given in Theorem 584. ∎

The next results form transfer theorems, asserting that all four types
of syntactic regularity, studied here, transfer from a π-institution to all its
generalized matrix families/systems. We start with the two types obtained
by strengthening syntactic protoalgebraicity.

Theorem 1254 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically family (system, respec-
tively) regularly protoalgebraic, with witnessing transformations I♭ ∶ (SEN♭)ω →
SEN♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with
A = ⟨Sign, SEN,N⟩, all T ∈ FiFamI(A) (and all T ′ ∈ FiSysI(A), respec-
tively), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

• ⟨φ,ψ⟩ ∈ ΩAΣ(T ) iff IAΣ [φ,ψ] ≤ T ;

• φ,ψ ∈ TΣ implies IAΣ [φ,ψ] ≤ T (φ,ψ ∈ T ′Σ implies IAΣ [φ,ψ] ≤ T ′, respec-
tively).

Proof: I is syntactically regularly protoalgebraic if and only if, by definition,
it is syntactically protoalgebraic, with witnessing transformations I♭, which
are family regular, if and only if, by Theorem 810 and Proposition 1250, for
every F-algebraic system A, ⟨A,CI,A⟩ is syntactically protoalgebraic, with



Voutsadakis CHAPTER 16. SYNTACTIC HIERARCHY VI 1081

witnessing transformations IA, which are family regular in ⟨A,CI,A⟩, if and
only if, for every F-algebraic system A, the two conditions asserted in the
statement hold.

The case of system regularity may be treated similarly. ∎

We close with the two types that only require syntactic prealgebraicity.

Theorem 1255 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically family (system, respec-
tively) regularly prealgebraic with witnessing transformations I♭ ∶ (SEN♭)ω →
SEN♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with
A = ⟨Sign, SEN,N⟩, all T ∈ FiFamI(A) and T ′ ∈ FiSysI(A), all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ),

• ⟨φ,ψ⟩ ∈ ΩAΣ(T ′) iff IAΣ [φ,ψ] ≤ T ′;
• φ,ψ ∈ TΣ implies IAΣ [φ,ψ] ≤ T (φ,ψ ∈ T ′Σ implies IAΣ [φ,ψ] ≤ T ′, respec-

tively).

Proof: Similar to the proof of Theorem 1254. ∎

16.4 Syntactic Regular (Pre-)Equivalentiality

Syntactic regular pre- and proto-algebraicity were defined by combining syn-
tactic pre- and proto-algebraicity, respectively, with versions of regularity. If
we upgrade syntactic pre- and proto-algebraicity to syntactic preequivalen-
tiality and equivalentiality, respectively, then we obtain, analogously, versions
of syntactic regular preequivalentiality and syntactic regular equivalentiality,
respectively.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is said to be syntactically family regularly equivalential if it is
syntactically equivalential, with a witnessing collection I♭ of transfor-
mations, which is family regular in I ;

• I is said to be syntactically system regularly equivalential if it
is syntactically equivalential, with a witnessing collection I♭ of trans-
formations, which is system regular in I ;

• I is said to be syntactically family regularly preequivalential
if it is syntactically preequivalential, with a witnessing collection I♭ of
transformations, which is family regular in I ;

• I is said to be syntactically system regularly preequivalential
if it is syntactically preequivalential, with a witnessing collection I♭ of
transformations, which is system regular in I .
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Analogs of Propositions 1251 and 1252 may be proven. They follow the
same lines of proof, the only difference being that the witnessing collections
of transformations we are dealing with in this case, as opposed to the cases
of syntactic pre- and proto-algebraicity, are parameter free.

Corollary 1256 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically equivalential π-institution based on F, with witnessing
transformations I♭ ∶ (SEN♭)2 → SEN♭.

(a) I is family regular if and only if I♭ is family regular in I;

(b) I is left regular if and only if I♭ is system regular in I.

Proof: By Proposition 1251, taking into account the fact that syntactic
equivalentiality is equivalent to syntactic protoalgebraicity via a parameter
free collection of transformations. ∎

Corollary 1257 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically preequivalential π-institution based on F, with witness-
ing transformations I♭ ∶ (SEN♭)2 → SEN♭.

(a) I is right regular if and only if I♭ is family regular in I;

(b) I is system regular if and only if I♭ is system regular in I.

Proof: By Proposition 1252, taking into account the fact that syntactic
preequivalentiality is equivalent to syntactic prealgebraicity via a parameter
free collection of transformations. ∎

Recalling the following hierarchies of syntactic (pre)equivalentiality, of
the regularity properties of I♭ and of semantic regularity,

Family Regular

Synt Equiv I♭ Family Reg Right Regular
❄

Synt PreEquiv
❄

I♭ System Reg
❄

Left Regular
❄

System Regular
❄

the following hierarchy of syntactic classes of regularly (pre)equivalential π-
institutions arises.



Voutsadakis CHAPTER 16. SYNTACTIC HIERARCHY VI 1083

Synt Fam Reg Equiv

❂✚
✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩
❩⑦

Synt Fam Reg PreEquiv Synt Sys Reg Equiv
❩
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚
✚

Synt Sys Reg PreEquiv

Furthermore, these four classes relate to their immediate subordinate
properties on the syntactic side, as shown in the following diagram

Synt Fam Reg Equiv

✰✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗s

Synt Sys Reg Equiv Synt Fam Reg PreEquiv
◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑

Synt Equiv
❄ Synt Sys

Reg PreEquiv
I♭ Fam Reg

❄

✰✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗s

Synt PreEquiv
❄

I♭ Sys Reg
❄

Moreover, from the fact that syntactic equivalentiality is equivalent to
syntactic protoalgebraicity, with a parameter free witnessing collection of
transformations, and, similarly for preequivalentiality and prealgebraicity,
we get, immediately from the definitions. the following hierarchy of classes
of π-institutions involving syntactic regular pre- and proto-algebraicity and
syntactic regular (pre)equivalentiality.
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Synt Fam Reg Equiv

✰✑
✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗
◗sSynt Fam

Reg PreEquiv
Synt Fam

Reg ProtoAlgic

❄
Synt Sys

Reg Equiv◗
◗
◗
◗
◗
◗
◗
◗s✰✑

✑
✑
✑
✑
✑
✑
✑

✰✑
✑
✑
✑
✑
✑
✑
✑◗

◗
◗
◗
◗
◗
◗
◗sSynt Fam

Reg PreAlgic

❄
Synt Sys

Reg PreEquiv
Synt Sys

Reg ProtoAlgic

❄

◗
◗
◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑
✑
✑

Synt Sys Reg PreAlgic
❄

An analog to Corollary 1253 adjusts its contents to address the special
case in which the collection I♭ witnessing syntactic pre- or proto-algebraicity
is parameter free, thus giving rise, instead, to syntactic preequivalentiality
or equivalentiality, respectively.

Corollary 1258 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and I♭ ∶ (SEN♭)2 → SEN♭ a collection
of natural transformations in N ♭ (with both arguments distinguished).

(a) If I is syntactically equivalential, with witnessing transformations I♭,
then I♭ is family regular in I if and only if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ), ⟨φ,ψ⟩ ∈ Ω̃IΣ(C(φ,ψ));

(b) If I is syntactically preequivalential, with witnessing transformations
I♭, then I♭ is system regular in I if and only if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ Ω̂IΣ(Ð→C (φ,ψ)).
Proof: Each part is a consequence of the corresponding part of Corollary
1253 and the fact that I♭ is assumed to be parameter free. ∎

Finally, the transfer theorems for syntactic regular pre- and proto-alge-
braicity, Theorems 1254 and 1255, may also be easily adapted to provide
analogous transfer theorems for syntactic regular equivalentiality and pree-
quivalentiality, respectively.

Corollary 1259 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically family (system, respec-
tively) regularly equivalential, with witnessing transformations I♭ ∶ (SEN♭)2 →
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SEN♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with
A = ⟨Sign, SEN,N⟩, all T ∈ FiFamI(A) (and all T ′ ∈ FiSysI(A), respec-
tively), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

• ⟨φ,ψ⟩ ∈ ΩAΣ(T ) iff IAΣ [φ,ψ] ≤ T ;

• φ,ψ ∈ TΣ implies IAΣ [φ,ψ] ≤ T (φ,ψ ∈ T ′Σ implies IAΣ [φ,ψ] ≤ T ′, respec-
tively).

Proof: Directly from Theorem 1254. ∎

We close with the two types that only require syntactic preequivalential-
ity.

Corollary 1260 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically family (system, re-
spectively) regularly pre-equivalential with witnessing transformations I♭ ∶(SEN♭)2 → SEN♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign, SEN,N⟩, all T ∈ FiFamI(A) and T ′ ∈ FiSysI(A), all
Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

• ⟨φ,ψ⟩ ∈ ΩAΣ(T ′) iff IAΣ [φ,ψ] ≤ T ′;
• φ,ψ ∈ TΣ implies IAΣ [φ,ψ] ≤ T (φ,ψ ∈ T ′Σ implies IAΣ [φ,ψ] ≤ T ′, respec-

tively).

Proof: Follows from Theorem 1255. ∎

16.5 Syntactic Assertionality

In this section, we study some of the consequences of adding to the various
versions of semantic regularity, studied in detail in Section 8.2, the property
of having natural theorems.

Recall, first, from Section 8.2, that there are four distinct types of seman-
tic regularity, namely, family, right, left and system, which form the hierarchy
depicted in the left diagram (obtained in Section 8.2).

Family Regular Family/Right Assertional

Right Regular
❄

Left Regular
❄

Left Assertional
❄

System Regular
❄

System Assertional
❄
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If to the various regularity conditions, one adds the existence of theorems,
then one obtains the semantic assertionality classes, which were studied in
detail in Section 8.3, where it was shown that they form the hierarchy de-
picted in the diagram on the right.

Additionally, it was shown in Section 8.3 that these three assertionality
classes dominate, respectively, the three corresponding complete reflectivity
classes. This is shown in the third diagram, reproduced here from Section
8.3.

Family Assertional

✠�
�
� ❅

❅
❅❘

Family c-Reflective Left Assertional

❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

Left c-Reflective System Assertional

❅
❅
❅❘ ✠�

�
�

System c-Reflective

In this section, we study the classes arising by adding to the various flavors
of semantic regularity the property of possessing natural theorems. Since
the property of possessing natural theorems is strictly stronger that having
theorems, there are, in accordance with the results recalled from Section
8.3 above, only three potentially different classes of π-institutions arising.
These, of course, dominate the corresponding assertionality classes. The
π-institution members of these classes are termed syntactically assertional.
A strong motivation for introducing these three classes lies in the fact that
lifting the possession of theorems to that of the existence of natural theorems,
in tandem with semantic regularity, is enough to allow passing from the
semantic classes of completely reflective π-institutions to the corresponding
syntactic classes of truth equational π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is syntactically family assertional if it is family regular and has
natural theorems;

• I is syntactically left assertional if it is left regular and has natural
theorems;

• I is syntactically right assertional if it is right regular and has
natural theorems;
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• I is syntactically system assertional if it is system regular and has
natural theorems.

First, it is easy to see that syntactic family and syntactic right assertion-
ality coincide.

Proposition 1261 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is syntactically family assertional if
and only if it is syntactically right assertional.

Proof: I is syntactically family assertional iff, by definition, it is family
assertional and has natural theorems iff, by Proposition 591, it is right as-
sertional and has natural theorems iff, by definition, it is syntactically right
assertional. ∎

Given Proposition 1261, asserting that syntactic family and syntactic
right assertionality coincide, we may establish the hierarchy of syntactic as-
sertionality classes.

Proposition 1262 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically family/right assertional, then it is syntactically left
assertional;

(b) If I is syntactically left assertional, then it is syntactically system as-
sertional.

Proof: If I is syntactically family assertional, then it is, by definition, fam-
ily assertional and has natural theorems, whence, by Proposition 592, it is
left assertional and has natural theorems, i.e., it is syntactically left asser-
tional. Similarly, if I is syntactically left assertional, then it is, by definition,
left assertional and has natural theorems, whence, by Proposition 592, it is
system assertional and has natural theorems, i.e., it is syntactically system
assertional. ∎

Proposition 1262 establishes the following hierarchy of syntactic asser-
tionality classes, paralleling the corresponding semantic hierarchy estab-
lished in Section 8.3.

Syntactically Family/Right Assertional

Syntactically Left Assertional
❄

Syntactically System Assertional
❄
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It is not difficult to see that the bottom classes of the hierarchy collapse,
if restricted to stable π-institutions, and that the entire hierarchy collapses
when considering only systemic π-institutions.

Proposition 1263 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is stable and syntactically system assertional, then it is syntacti-
cally left assertional;

(b) If I is systemic and syntactically system assertional, then it is syntac-
tically family assertional.

Proof: The first statement follows directly from Proposition 579, whereas
the second implication is a consequence of Proposition 580. ∎

We formalize, next, a result, which is straightforward, establishing the
close interrelationships between the syntactic and semantic assertionality
classes.

Proposition 1264 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is syntactically family (respectively
left, system) assertional if and only if it is family (respectively left, system)
assertional and has natural theorems.

Proof: These equivalences follow by the definitions involved, since existence
of natural theorems implies having theorems, as was shown in Lemma 1188.
∎

Thus, Proposition 1264 establishes the following relationships between
the semantic assertionality and the corresponding syntactic assertionality
classes.

Synt Family Assrt

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Synt Left Assrt Family Assrt

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚

Synt System Assrt Left Assrt
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

System Assrt

It is not difficult to show, by providing an example, that the syntactic
classes are properly included in the semantic ones. More precisely, we pro-
vide an example of a π-institution which is family assertional but fails to
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be syntactically system assertional. Thus, it belongs to all three semantic
assertionality classes but in none of the three syntactic assertionality steps
of the hierarchy.

Example 1265 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system deter-
mined as follows:

• Sign♭ is the trivial category with a single object Σ;

• SEN♭ ∶ Sign♭ → Set is specified by SEN♭(Σ) = {0,1};
• N ♭ is the trivial category of natural transformations.

Let I = ⟨F,C⟩ be the π-institution determined by CΣ = {{1},{0,1}}.
I has two theory families, Thm(I) and SEN♭, which are also theory sys-

tems. Moreover, Ω(Thm(I)) = ∆F and Ω(SEN♭) = ∇F.

SEN♭ ..........................✲ ∇F

Thm(I) .......................✲ ∆F

Clearly, I is family regular, i.e., for all T ∈ ThFam(I), and all x, y ∈ {0,1},
if x, y ∈ TΣ, then ⟨x, y⟩ ∈ ΩΣ(T ). Further, obviously, I has theorems. Fi-
nally, since there are no nontrivial natural transformations in N ♭, I does
not have natural theorems. Therefore, I is family assertional but it fails to
be syntactically system assertional.

A corollary of the connections established in Proposition 1264 and the
characterizations of semantic assertionality classes, given in Proposition 588,
provides similar characterizations of the three syntactic assertionality classes.

Corollary 1266 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution having natural theorems and τ ∶ SEN♭ → SEN♭ a natural
theorem.
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(a) I is syntactically family assertional if and only if, for all T ∈ ThFam(I),
T = τ/Ω(T );

(b) I is syntactically left assertional if and only if, for all T ∈ ThFam(I),
←Ð
T = τ/Ω(T );

(c) I is syntactically system assertional if and only if, for all T ∈ ThSys(I),
T = τ/Ω(T ).

Proof: By combining Propositions 1264 and 588. ∎

We conclude the section by establishing the relationships between the
three syntactic assertionality classes and the three truth equationality classes,
introduced and studied in detail in Chapter 11.

Theorem 1267 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically family assertional, with a natural theorem τ ∶
SEN♭ → SEN♭, then it is family truth equational, with witnessing equa-
tion ι ≈ τ ;

(b) If I is syntactically left assertional, with a natural theorem τ ∶ SEN♭ →
SEN♭, then it is left truth equational, with witnessing equation ι ≈ τ ;

(c) If I is syntactically system assertional, with a natural theorem τ ∶
SEN♭ → SEN♭, then it is system truth equational, with witnessing equa-
tion ι ≈ τ .

Proof: We prove Part (a). The other parts can be proven similarly. Suppose
that I is syntactically family assertional, with τ ∶ SEN♭ → SEN♭ a natural
theorem. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). To show that I
is family truth equational, with witnessing equation ι ≈ τ , we must establish
the equivalence

φ ∈ TΣ iff (ι ≈ τ)Σ[φ] ≤ Ω(T ).
Suppose, first, that φ ∈ TΣ. Since τ is a natural theorem, we also have
τΣ(φ) ∈ TΣ. Thus, by family regularity (part of syntactic family assertion-
ality), ⟨φ, τΣ(φ)⟩ ∈ ΩΣ(T ). But Ω(T ) is a congruence system on F, whence,
for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

⟨SEN♭(f)(φ), τΣ′(SEN♭(f)(φ))⟩ ∈ ΩΣ′(T ),
i.e., (ι ≈ τ)Σ[φ] ≤ Ω(T ).

Assume, conversely, that (ι ≈ τ)Σ[φ] ≤ Ω(T ). In particular, ⟨φ, τΣ(φ)⟩ ∈
ΩΣ(T ). However, since τ is a natural theorem, τΣ(φ) ∈ TΣ. Therefore, by the
compatibility of Ω(T ) with T , we get that φ ∈ TΣ. ∎
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Theorem 1267 establishes the following mixed hierarchy of syntactic as-
sertionality and truth equationality classes.

Synt Family Assrt

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Synt Left Assrt Family TEq

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦ ❂✚

✚
✚
✚

Synt System Assrt Left TEq
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

System TEq

It is not difficult to see that the syntactic assertionality classes are prop-
erly included in the corresponding truth equationality classes. This is accom-
plished by exhibiting a π-institution which is family truth equational but fails
to be syntactically system assertional.

Example 1268 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be the algebraic system defined
as follows:

• Sign♭ is the trivial category with object Σ;

• SEN♭ ∶ Sign♭ → Set is defined by SEN♭(Σ) = {0,1,2};
• N ♭ is the clone generated by the unary natural transformations σ♭ ∶

SEN♭ → SEN♭, specified by

σ♭Σ(0) = 0, σ♭Σ(1) = 1, σ♭Σ(2) = 0,

and τ ♭ ∶ SEN♭ → SEN♭, given by

τ ♭Σ(0) = 2, τ ♭Σ(1) = 1, τ ♭Σ(2) = 2.

Define the π-institution I = ⟨F,C⟩ by stipulating that

CΣ = {{1,2},{0,1,2}}.
I is systemic and its lattice of theory families and corresponding Leibniz
congruence systems are shown in the diagram.

012 .....................✲ ∇F

12 ......................✲ ∆F
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It is not difficult to check that I is family truth equational, with witnessing
equation ι ≈ τ ♭.

On the other hand, I is not system regular, since, for T = {{1,2}}, we
have 1,2 ∈ TΣ, but ⟨1,2⟩ ∉∆F

Σ = ΩΣ(T ).
Thus, I belongs to all three truth equationality classes, but does not satisfy

any of the three regularity conditions and, hence, belongs to none of the three
syntactic assertionality classes.

Finally, if we add the corresponding semantic classes of those depicted in
the preceding diagram, we get a bigger view of the hierarchy consisting of as-
sertionality (semantic and syntactic) and of complete reflectivity (semantic)
and truth equationality (syntactic) classes.

Synt Family Assrt

❂✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩⑦

Synt Left Asst
❄

❂✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩⑦

Family Assrt Synt System Assrt
❄

Family TEq

❂✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚❩

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩⑦

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩⑦❂✚

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

Left Assrt
❄

Left TEq
❄

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

System Assrt
❄

Family c-Ref System TEq
❄

❩
❩
❩
❩
❩
❩
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

Left c-Ref
❄

System c-Ref
❄
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Finally, based on previously established results, we can easily show that
the three types of syntactic assertionality transfer from a π-institution to all
its generalized matrix families. This constitutes an analog of Theorem 599
in the syntactic context.

Theorem 1269 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically family (respectively,
left, system) assertional if and only if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, ⟨A,CI,A⟩ is syntactically family (respectively, left, system) as-
sertional.

Proof: This follows by putting together Theorem 585, asserting that regu-
larity transfers, and Theorem 1197, asserting that the existence of natural
theorems transfers. ∎

16.6 Syntactic RW Prealgebraizability

In this section, we deal with three versions of syntactic regular weak preal-
gebraizability. These arise by combining syntactic prealgebraicity with each
of the three versions of syntactic assertionality.

Definition 1270 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is syntactically regularly weakly family prealgebraizable, or
syntactically RWF prealgebraizable for short, if it is syntacti-
cally prealgebraic and syntactically family assertional;

• I is syntactically regularly weakly left prealgebraizable, or syn-
tactically RWL prealgebraizable for short, if it is syntactically
prealgebraic and syntactically left assertional;

• I is syntactically regularly weakly system prealgebraizable, or
syntactically RWS prealgebraizable for short, if it is syntactically
prealgebraic and syntactically system assertional.

Based on the syntactic assertionality hierarchy established in Proposition
1262, we have the following

Proposition 1271 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically regularly weakly family prealgebraizable, then it is
syntactically regularly weakly left prealgebraizable;
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(b) If I is syntactically regularly weakly left prealgebraizable, then it is syn-
tactically regularly weakly system prealgebraizable.

Proof: Straightforward by combining Definition 1270 and Proposition 1262.
∎

Proposition 1271 establishes the syntactic regular weak prealgebraizabil-
ity hierarchy depicted in the following diagram.

Syntactic Regular Weak Family Prealgebraizable

Syntactic Regular Weak Left Prealgebraizable
❄

Syntactic Regular Weak System Prealgebraizable
❄

Being very close to the apex of the Leibniz hierarchy, just below the other
classes that are studied in detail in the remaining sections of the present
chapter, it compares favorably (meaning is stronger) to many of the other
classes, semantic and syntactic introduced so far.

First, we look at the extant relationships between syntactic regular weak
prealgebraizability classes and the four syntactic regular prealgebraicity clas-
ses of Section 16.3. It turns out that syntactic regular weak family prealge-
braizability implies syntactic family regular protoalgebraicity and that syn-
tactically regular weak system prealgebraizability implies syntactic system
regular prealgebraicity. The only implication one can draw from the middle
class of syntactically regular weak left prealgebraizability is the trivial one
of being syntactically prealgebraic and left regular, which, strictly speaking,
lies outside the syntactic hierarchy of Section 16.3.

Proposition 1272 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically RWF prealgebraizable, then it is syntactically family
regularly protoalgebraic;

(b) If I is syntactically RWS prealgebraizable, then it is syntactically system
regularly prealgebraic.

Proof:

(a) Suppose that I is syntactically RWF prealgebraizable. Note that, by
definition, I is syntactically family assertional, i.e., it is family regular
and has natural theorems. Thus, by Theorem 1267, it is family truth
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equational. Thus, by Theorem 829, it is family c-reflective, whence,
by Proposition 237, it is systemic. Thus, since, by definition, it is
syntactically prealgebraic, it must be syntactically protoalgebraic. This
proves that it is syntactically family regularly protoalgebraic.

(b) By definition I is syntactically system assertional, whence it is system
regular. And it is syntactically prealgebraic, also by definition. Thus,
it is syntactically system regularly prealgebraic.

∎

Thus, according to Proposition 1272, we get the mixed hierarchy depicted
in the diagram.

Synt RWF PreAlgble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Fam Reg ProtoAlgic Synt RWL PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦Synt PreAlgic

+Left Regular
Synt RWS PreAlgble

❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt Sys Reg PreAlgic

As far as relationships between the syntactic regular weak prealgebraiz-
ability hierarchy and the syntactic assertionality hierarchy are concerned, we
have, directly by definition, the following inclusions.

Proposition 1273 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically regularly weakly
family (left, system, respectively) prealgebraizable, then it is syntactically fam-
ily (left, system, respectively) assertional.

Proof: Directly from Definition 1270. ∎
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Synt RWF PreAlgble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt RWL PreAlgble Synt Family Assrt

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt RWS PreAlgble Synt Left Assrt
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt System Assrt

Finally we look at closer relationships with other classes that are placed
relatively high in the Leibniz hierarchy. Still staying with syntactically de-
fined classes, we have the following relationships between the classes in the
syntactic regular weak prealgebraizability hierarchy and the classes in the
syntactic weak prealgebraizability hierarchy, which were defined in Chapter
12.

Proposition 1274 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically regularly weakly family prealgebraizable, then it is
syntactically weakly family algebraizable;

(b) If I is syntactically regularly weakly left prealgebraizable, then it is syn-
tactically weakly left c-reflective prealgebraizable;

(c) If I is syntactically regularly weakly system prealgebraizable, then it is
syntactically weakly system prealgebraizable.

Proof: We only prove Part (a). Parts (b) and (c) can be proven similarly
and are easier. Suppose I is syntactically regularly weakly family prealge-
braizable. Then, it is, by definition syntactically family assertional. Thus, by
Theorem 1267, it is family truth equational and, therefore, systemic. Thus,
on the one hand, I is syntactically prealgebraic, and, hence, by systemicity,
syntactically protoalgebraic, and, on the other, it is family truth equational.
Therefore, it is syntactically weakly family algebraizable. ∎

Proposition 1274, establishes the following hierarchy of syntactically reg-
ularly weakly prealgebraizable and syntactically weakly prealgebraizable π-
institutions.
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Synt RWF PreAlgble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt WF Algble Synt RWL PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt WLC PreAlgble Synt RWS PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt WS PreAlgble

Finally, we reach across to bridge the gap between syntactically and se-
mantically defined prealgebraizability classes. We establish relationaships
that govern the syntactic regular weak prealgebraizability classes and the
regular weak prealgebraizability classes that were defined in Chapter 8.

Proposition 1275 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically regularly weakly family prealgebraizable, then it is
regularly weakly family algebraizable;

(b) If I is syntactically regularly weakly left prealgebraizable, then it is reg-
ularly weakly left prealgebraizable;

(c) If I is syntactically regularly weakly system prealgebraizable, then it is
regularly weakly system prealgebraizable.

Proof: This follows from the facts that, on the one hand, syntactic prealge-
braicity implies prealgebraicity and, on the other hand, syntactic family (left,
system, respectively) assertionality implies family (left, system, respectively)
assertionality. ∎

Proposition 1275 gives rise to the following mixed, semantic and syntactic,
hierarchy of regularly weakly prealgebraizable π-institutions.
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Synt RWF PreAlgble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

RWF Algble Synt RWL PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

RWL PreAlgble Synt RWS PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

RWS PreAlgble

Based on existing results, we can show that all three kinds of syntactic reg-
ular weak prealgebraizability transfer from theory families/systems to filter
families/systems over arbritrary F-algebraic systems. This is the syntactic
analog of Theorem 609, which asserted that regular weak prealgebraizability
properties transfer from a π-institution to all its generalized matrix families.

Theorem 1276 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically regularly weakly fam-
ily (left, system, respectively) prealgebraizable if and only if, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, the I-gmatrix family ⟨A,CI,A⟩ is syntacti-
cally regularly weakly family (left, system, respectively) prealgebraizable.

Proof: By Theorem 789, syntactic prealgebraicity transfers. By Theorem
585, the three regularity properties transfer. Finally, by Theorem 1197, the
property of possessing natural theorems also transfers. Thus, the properties
of being syntactically regularly weakly family, left and system prealgebraiz-
able all transfer from I to ⟨A,CI,A⟩, for all F-algebraic systems A. ∎

Finally, we adapt previously obtained results characterizing regular weak
prealgebraizability to obtain similar characterizations of syntactic regular
weak prealgebraizability in terms of mappings between posets of filter fam-
ilies/systems (including theory families/systems) and congruence systems.
Essentially, to the characterizations obtained in Theorems 610, 611 and 612,
we add the conditions of having enough natural transformations so that syn-
tactic prealgebraicity is ensured and also the existence of natural theorems
so that truth equationality is obtained, rather than having only complete
reflectivity.

Theorem 1277 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly weakly family prealgebraizable;
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(ii) Ω ∶ ThFam(I)→ ConSys∗(I) is an order isomorphism, I has a Leibniz
reflexive core and a natural theorem τ ∶ SEN♭ → SEN♭, such that, for
all T ∈ ThFam(I), T = τ/Ω(T );

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
π-institution ⟨A.CI,A⟩.

Proof: By Theorem 1299, I is syntactically regularly weakly family preal-
gebraizable if and only if, for every F-algebraic system A, the π-institution⟨A,CI,A⟩ is also syntactically regularly weakly family prealgebraizable. Thus,
to prove the statement, it suffices to consider the equivalence (i)⇔(ii).

Suppose, first, that I is syntactically regularly weakly family prealge-
braizable. Then it is, by definition, syntactically prealgebraic. Moreover,
it is, by definition, syntactically family assertional. Thus, it has a natural
theorem τ and it is, by Theorem 1267, family truth equational. Thus, by
Theorem 829, it is family c-reflective and, hence, by Proposition 237, sys-
temic. This implies that it is syntactically protoalgebraic and family truth
equational. Using Theorem 610, we conclude that Ω is an order isomorphism.
By Theorem 788, it has a Leibniz reflexive core and, by Corollary 1266, for
all T ∈ ThFam(I), T = τ/Ω(T ).

Assume, conversely, that the postulated conditions hold. By Proposition
1275, I is regularly weakly family prealgebraizable. Hence it is protoalge-
braic, which, together with the postulated Leibniz property of the reflexive
core, gives, by Corollary 809, that it is syntactically protoalgebraic. Further,
by hypothesis and Corollary 1266, it is syntactically family assertional. Thus,
by definition, it is syntactically regularly weakly family prealgebraizable. ∎

Analogous characterization theorems may be provided for syntactical reg-
ular weak left and system prealgebraizability. The proofs are analogous and
are omitted.

Theorem 1278 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly weakly left prealgebraizable;

(ii) Ω ∶ ThSys(I) → ConSys∗(I) is an order embedding, I has a Leibniz
reflexive core and a natural theorem τ ∶ SEN♭ → SEN♭, such that, for

all T ∈ ThFam(I), ←ÐT = τ/Ω(T );
(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the

π-institution ⟨A.CI,A⟩.
Theorem 1279 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly weakly system prealgebraizable;
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(ii) Ω ∶ ThSys(I) → ConSys∗(I) is an order embedding, I has a Leibniz
reflexive core and a natural theorem τ ∶ SEN♭ → SEN♭, such that, for
all T ∈ ThSys(I), T = τ/Ω(T );

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
π-institution ⟨A.CI,A⟩.

16.7 Syntactic RW Algebraizability

In this section, we deal with three versions of syntactic regular weak alge-
braizability. These arise by combining syntactic protoalgebraicity with each
of the three versions of syntactic assertionality.

Definition 1280 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is syntactically regularly weakly family algebraizable, or syn-
tactically RWF algebraizable for short, if it is syntactically pro-
toalgebraic and syntactically family assertional;

• I is syntactically regularly weakly left algebraizable, or syn-
tactically RWL algebraizable for short, if it is syntactically pro-
toalgebraic and syntactically left assertional;

• I is syntactically regularly weakly system algebraizable, or
syntactically RWS algebraizable for short, if it is syntactically
protoalgebraic and syntactically system assertional.

One of the immediate consequences of family assertionality is that the
π-institution under consideration must be systemic and, therefore, that pre-
and protoalgebraicity coincide. This reasoning has been applied a few times
already in the preceding section. It shows that syntactic regular weak family
algebraizability coincides with syntactic weak family prealgebraizability.

Proposition 1281 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is syntactically regularly weakly
family algebraizable if and only if it is syntactically regularly weakly family
prealgebraizable.

Proof: Suppose I is syntactically regularly weakly family prealgebraizable.
Then, by definition, it is family assertional. Thus, by Theorem 1267, it is
family truth equational. Hence, by Theorem 829, it is family completely re-
flective and, hence, by Proposition 237, it is systemic. Since, by definition,
it is syntactically prealgebraic, it is, by systemicity, syntactically protoalge-
braic. Therefore, being syntactically protoalgebraic and syntactically family
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assertional, it is syntactically regularly weakly family algebraizable. The
reverse implication is trivial. So, equivalence of the two conditions is estab-
lished. ∎

The second important observation that one can make is that syntactic
regular weak left and system algebraizability coincide. This is due to the
fact that protoalgebraicity implies stability.

Proposition 1282 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is syntactically regularly weakly left
algebraizable if and only if it is syntactically regularly weakly system alge-
braizable.

Proof: It is easy to see that the left version implies the system version. This
follows directly from the fact that syntactic left assertionality implies syntac-
tic system assertionality, established in Proposition 1262. For the converse,
assume that I is syntactically regularly weakly system algebraizable. Then
it is, by definition, syntactically protoalgebraic. This implies, by Theorem
805, that it is protoalgebraic. Hence, by Theorem 175, it is stable. Now, also
by definition, I is syntactically system assertional. Thus, by Proposition
1263, it is syntactically left assertional. Being syntactically protoalgebraic
and syntactically left assertional, I is, by definition, syntactically regularly
weakly left algebraizable. ∎

Based on the syntactic assertionality hierarchy established in Proposition
1262, we have the following

Corollary 1283 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically regularly weakly family
algebraizable, then it is syntactically regularly weakly system algebraizable.

Proof: Straightforward by combining Definition 1280 and Proposition 1262.
∎

Proposition 1283 establishes the syntactic regular weak algebraizability
hierarchy depicted in the following diagram.

Syntactic Regular Weak Family Algebraizable

Syntactic Regular Weak System Algebraizable
❄

It is easy to see how the two classes introduced in this section fit within a
mixed syntactic regular weak (pre)algebraizability hierarchy. Given Propo-
sition 1281, which showed that the top classes in each of the two hierarchies
coincide, the picture is completed by the following easy consequence of the
definitions involved.
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Proposition 1284 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically regularly weakly
system algebraizable, then it is syntactically regularly weakly left prealgebraiz-
able.

Proof: If I is syntactically regularly weakly system algebraizable, then,
by Proposition 1282, it is syntactically regularly weakly left algebraizable,
whence, since syntactic protoalgebraicity implies syntactic prealgebraicity,
we conclude that I is syntactically regularly weakly left algebraizable. ∎

Thus, the following diagram presents the complete picture consisting of
the four syntactic regular weak (pre)algebraizability classes of π-institutions.
Compare this with the identical hierarchy revealed on the semantic side in
Section 8.5.

Syntactic RWF (Pre)Algebraizable

Syntactic RWS Algebraizable
❄

Syntactic RWL Prealgebraizable
❄

Syntactic RWS Prealgebraizable
❄

To complete the puzzle of the relationships between syntactic regular
weak prealgebraizability and syntactic regular pre- and protoalgebraicity
classes, it suffices to observe that syntactic regular weak system algebraiz-
ability implies, rather trivially, syntactic system regular protoalgebraicity.

Proposition 1285 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically RWS algebraizable,
then it is syntactically system regularly protoalgebraic.

Proof: Suppose that I is syntactically RWS algebraizable. Note that, by
definition, I is syntactically system assertional, and syntactically protoalge-
braic. Hence, it is syntactically system regularly protoalgebraic. ∎

Thus, according to both Proposition 1272 and Proposition 1285, we get
the following hierarchy, which completes the diagram given in the preceding
section after Proposition 1272.
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Synt RWF Algble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Fam Reg ProtoAlgic Synt RWS Algble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt Sys Reg ProtoAlgic Synt RWL PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦Synt PreAlgic

+Left Regular
Synt RWS PreAlgble

❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt Sys Reg PreAlgic

As far as relationships between the syntactic regular weak prealgebraiz-
ability hierarchy and the syntactic assertionality hierarchy are concerned,
the picture is completed by realizing that syntactic regular weak system al-
gebraizability implies syntactic left assertionality.

Corollary 1286 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is syntactically RWS algebraizable,
then it is syntactically left assertional.

Proof: The conclusion follows directly by Proposition 1282. ∎

Thus, according to Corollary 1286, and the hierarchy obtained in the
preceding section, the interactions with syntactic assertionality properties
are as shown in the diagram.
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Synt RWF Algble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt RWS Algble Synt Family Assrt

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt RWL PreAlgble Synt Left Assrt

❂✚
✚
✚
✚
✚

❂✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚
✚

Synt RWS PreAlgble
❩
❩
❩
❩
❩⑦

Synt System Assrt

Finally we look at completing the hierarchy diagrams examining the re-
lationships with other classes that are placed relatively high in the Leibniz
hierarchy. Staying with syntactically defined classes, we have the following
extra relationship between syntactically regularly weakly system algebraiz-
able π-institutions and syntactically weakly (system) algebraizable ones.

Proposition 1287 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically regularly weakly
system algebraizable, then it is syntactically weakly (system) algebraizable.

Proof: Suppose I is syntactically regularly weakly system algebraizable.
Then, it is, by definition syntactically protoalgebraic and system assertional.
Thus, by Theorem 1267, it is syntactically protoalgebraic and system truth
equational. Therefore, it is, by definition, syntactically weakly (system) al-
gebraizable. ∎

Proposition 1287, in conjunction with Proposition 1274, completes the hi-
erarchy of syntactically regularly weakly (pre)algebraizable and syntactically
weakly (pre)algebraizable π-institutions, part of which was shown following
Proposition 1274.
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Synt RWF Algble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt WF Algble Synt RWS Algble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt W Algble Synt RWL PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

Synt WLC PreAlgble Synt RWS PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

Synt WS PreAlgble

Finally, we revisit the relationships between syntactically and semanti-
cally defined (pre)algebraizability classes. We show that syntactic regular
weak system algebraizability implies regular weak system algebraizability.
This completes the picture established in Proposition 1275.

Proposition 1288 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is syntactically regularly weakly
system algebraizable, then it is regularly weakly system algebraizable.

Proof: This follows from the facts that, on the one hand, by Theorem
805, syntactic protoalgebraicity implies protoalgebraicity and, on the other
hand, by Proposition 1264, syntactic system assertionality implies system
assertionality. ∎

Propositions 1275 and 1288 give rise to the following mixed, semantic
and syntactic, hierarchy of regularly weakly (pre)algebraizable π-institutions,
which completes the hierarchy shown after Proposition 1275.
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Synt RWF Algble

❂✚
✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

RWF Algble Synt RWS Algble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

RWS Algble Synt RWL PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚ ❩

❩
❩
❩
❩⑦

RWL PreAlgble Synt RWS PreAlgble
❩
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚
✚

RWS PreAlgble

As was the case with the three syntactic regular weak prealgebraizability
classes, we may show that syntactic regular weak system algebraizability
also transfers from theory families/systems to filter families/systems over
arbritrary F-algebraic systems. This completes Transfer Theorem 1276.

Theorem 1289 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is syntactically regularly weakly system
algebraizable if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the
I-gmatrix family ⟨A,CI,A⟩ is syntactically regularly weakly system algebraiz-
able.

Proof: By Theorem 810, syntactic protoalgebraicity transfers. By Theorem
585, system regularity transfers. Finally, by Theorem 1197, the property of
possessing natural theorems also transfers. Thus, syntactic regular weak sys-
tem algebraizability transfers from I to ⟨A,CI,A⟩, for all F-algebraic systems
A. This establishes the theorem. ∎

Finally, we adapt previously obtained results characterizing syntactic reg-
ular weak prealgebraizability to obtain a similar characterization of syntactic
regular weak system algebraizability in terms of mappings between posets of
filter families/ systems (including theory families/systems) and congruence
systems. This completes Theorem 1277.

Theorem 1290 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly weakly system algebraizable;
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(ii) I is stable, Ω ∶ ThSys(I) → ConSys∗(I) is an order isomorphism, I
has a Leibniz reflexive core and a natural theorem τ ∶ SEN♭ → SEN♭,
such that, for all T ∈ ThSys(I), T = τ/Ω(T );

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
π-institution ⟨A.CI,A⟩.

Proof: By Theorem 1289, I is syntactically regularly weakly system alge-
braizable if and only if, for every F-algebraic system A, the π-institution⟨A,CI,A⟩ is also syntactically regularly weakly system algebraizable. Thus,
to prove the statement, it suffices to consider the equivalence (i)⇔(ii).

Suppose, first, that I is syntactically regularly weakly system algebraiz-
able. Then, it is, in particular, by Proposition 1288, regularly weakly system
algebraizable, and, by definition, syntactically protoalgebraic and syntacti-
cally system assertional. By Theorem 624, I is stable, Ω ∶ ThSys(I) →
ConSys∗(I) is an order isomorphism and, for all T ∈ ThSys(I), T = τ/Ω(T ),
where τ is a natural theorem, whose existence is guaranteed by syntactic
assertionality. Finally, syntactic protoalgebraicity implies, by Theorem 805,
that I has a Leibniz reflexive core.

Assume, conversely, that the postulated conditions hold. By Theorem
624, I is regularly weakly system algebraizable. Hence it is protoalgebraic,
which, together with the postulated Leibniz property of the reflexive core,
gives, by Theorem 805, that it is syntactically protoalgebraic. Further, since
it is regularly weakly system algebraizable, it is, in particular, system regular
and, by hypothesis, has natural theorems. Thus, it is syntactically system
assertional. Hence, being syntactically protoalgebraic and syntactically sys-
tem assertional, it is, by definition, syntactically regularly weakly system
algebraizable. ∎

16.8 Syntactic Regular (Pre)Algebraizability

In this section, we deal with the four versions of syntactic regular (pre)al-
gebraizability, corresponding to the four versions of syntactic regular weak
(pre)algebraizability that were studied in the preceding two sections. These
arise by combining syntactic (pre)equivalentiality with each of the three ver-
sions of syntactic assertionality. They give rise to a four-element linear hier-
archy that parallels that of syntactically regularly weakly (pre)algebraizable
π-institutions and lies directly above it. The four classes, introduced and
studied in the present section, lie at the very apex of the Leibniz hierarchies
that were studied in detail in the monograph, and which form the backbone
of the field of categorical abstract algebraic logic.

A priori, one may define six different classes of syntactically regularly
(pre)algebraizable π-institutions. Three of these classes use syntactic pree-
quivalentiality.
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Definition 1291 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is syntactically regularly family prealgebraizable, or syntac-
tically RF prealgebraizable for short, if it is syntactically pree-
quivalential and syntactically family assertional;

• I is syntactically regularly left prealgebraizable, or syntacti-
cally RL prealgebraizable for short, if it is syntactically preequiv-
alential and syntactically left assertional;

• I is syntactically regularly system prealgebraizable, or syntac-
tically RS prealgebraizable for short, if it is syntactically pree-
quivalential and syntactically system assertional.

Three more classes use syntactic equivalentiality.

Definition 1292 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

• I is syntactically regularly family algebraizable, or syntacti-
cally RF algebraizable for short, if it is syntactically equivalential
and syntactically family assertional;

• I is syntactically regularly left algebraizable, or syntactically
RL algebraizable for short, if it is syntactically equivalential and
syntactically left assertional;

• I is syntactically regularly system algebraizable, or syntacti-
cally RS algebraizable for short, if it is syntactically equivalential
and syntactically system assertional.

We can show that similar relationships to those holding between the syn-
tactic regular weak (pre)algebraizability classes are valid in this case also,
leading to the collapsing of the six-class hierarchy (which, a priori, would
look as in the accompanying figure)

Synt RF Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Synt RF PreAlgble Synt RL Algble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Synt RL PreAlgble Synt RS Algble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

Synt RS PreAlgble
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to only four classes forming a linear hierarchy.
The top classes of syntactically regularly family prealgebraizable and al-

gebraizable π-institutions coincide. Moreover, in the algebraizability case,
syntactic regular left algebraizability turns out to be identical with syntactic
regular system algebraizability. These relationships are presented formally
in the following proposition.

Proposition 1293 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) I is syntactically regularly family prealgebraizable if and only if it is
syntactically regularly family algebraizable;

(b) I is syntactically regularly left algebraizable if and only if it is syntac-
tically regularly system algebraizable.

Proof:

(a) Of course the right-to-left implication is trivial, since, by definition
(see Section 13.2 and 13.3), syntactic equivalentiality implies syntactic
preequivalentiality. On the other hand, by Theorem 1267, syntactic
family assertionality implies family truth equationality, which, in turn,
implies, by Theorem 829, family c-reflectivity and, hence, by Lemma
233, systemicity. Thus, under the given hypothesis, syntactic preequiv-
alentiality coincides with syntactic equivalentiality.

(b) Again, since it is obvious that syntactical regular left algebraizability
implies syntactical system algebraizability, in view of the fact (Proposi-
tion 1262) that syntactical left assertionality implies syntactical system
assertionality, one must focus on the reverse implication. However, syn-
tactic system algebraizability entails syntactic protoalgebraicity, which
implies, by Theorem 792, protoalgebraicity, which, in turn, by Lemma
170, implies stability. And under stability, by Proposition 1263, syn-
tactic left assertionality and syntactic system assertionality coincide.

∎

Now the following implications are straightforward and establish the hi-
erarchy obtained from the preceding diagram, if one takes into account the
pairwise identification of classes proven in Proposition 1293.

Proposition 1294 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically regularly family (pre)algebraizable, then it is syn-
tactically regularly system (left) algebraizable;

(b) If I is syntactically regularly system (left) algebraizable, then it is syn-
tactically regularly left prealgebraizable;
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(c) If I is syntactically regularly left prealgebraizable, then it is syntactically
regularly system prealgebraizable.

Proof: Part (a) relies on the fact that, by Proposition 1262, syntactic family
assertionality is stronger than syntactic system assertionality. Part (b) relies
on the fact that syntactic equivalentiality implies syntactic preequivalential-
ity. Finally, Part (c) is a direct consequence of syntactic system assertionality
being dominated by syntactic left assertionality (Proposition 1262). ∎

Proposition 1294, which takes into account the identifications of Propo-
sition 1293, establishes the syntactic regular (pre)algebraizability hierarchy
depicted in the following diagram.

Syntactic Regular Family Algebraizable

Syntactic Regular System Algebraizable
❄

Syntactic Regular Left Prealgebraizable
❄

Syntactic Regular System Prealgebraizable
❄

We look, next, at the relationships between syntactic regular (pre)alge-
braizability classes and the four syntactic regular (pre)equivalentiality classes
of Section 16.4. Syntactic regular family algebraizability implies syntactic
family regular equivalentiality, syntactic regular system algebraizability im-
plies syntactic system regular equivalentiality and syntactic regular system
prealgebraizability implies syntactic system regular preequivalentiality. How-
ever, from syntactic regular left prealgebraizability we can only make the
trivial deduction of syntactic preequivalentiality and left regularity. Strictly
speaking, the combination of these two properties does not form a class in
the syntactic hierarchy of Section 16.4.

Proposition 1295 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically RF algebraizable, then it is syntactically family
regularly equivalential;

(b) If I is syntactically RS algebraizable, then it is syntactically system
regularly equivalential;
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(c) If I is syntactically RS prealgebraizable, then it is syntactically system
regularly preequivalential.

Proof: For Part (a) observe that, by definition, I is syntactically equiv-
alential and syntactically family assertional, which implies that it is family
regular. Thus, it is syntactically family regularly equivalential. Similarly,
for Part (b), I is, by definition, syntactically equivalential and syntactically
system assertional, which implies system regularity. Thus, it is syntactically
system regularly equivalential. Finally, in Part (c), I is, by definition, syn-
tactically preequivalential and syntactically system assertional, whence, once
more, it is also syntactically system regular. Hence, it is syntactically system
regularly preequivalential. ∎

Thus, according to Proposition 1295, we get the mixed hierarchy depicted
in the diagram.

Synt RF Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Synt Fam Reg Equiv Synt RS Algble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Synt Sys Reg Equiv Synt RL PreAlgble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦Synt PreEquiv

+Left Regular
Synt RS PreAlgble

❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

Synt Sys Reg PreEquiv

We do not dwell on relationships between the syntactic regular (pre)al-
gebraizability classes and the syntactic assertionlity classes, since those are
direct consequences of the relationships, already established in the preceding
section, between syntactic regular weak (pre)algebraizability classes and the
syntactic assertionality classes, once the following, also easily obtainable,
relations between syntactic regular (pre)algebraizability classes and syntactic
regular weak (pre)algebraizability classes are established.

Proposition 1296 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically regularly family (system, respectively) algebraizable,
then it is syntactically regularly weakly family (system, respectively)
algebraizable;
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(b) If I is syntactically regularly left (system, respectively) prealgebraiz-
able, then it is syntactically regularly weakly left (system, respectively)
prealgebraizable.

Proof: Directly from the definitions involved. ∎

Thus, we get a comprehensive picture of the syntactic regular prealge-
braizability hierarchy, including both weak and “strong” (meaning non-weak)
classes.

Synt RF Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Synt RWF Algble Synt RS Algble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Synt RWS Algble Synt RL PreAlgble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Synt RWL PreAlgble Synt RS PreAlgble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

Synt RWS PreAlgble

Finally we look at the relationships with other classes that are placed
just below syntactically regularly (pre)algebraizable π-institutions, namely,
the classes in the syntactic (pre)algebraizablity hierarchy and those in the
(semantic) regular (pre)algebraizability hierarchy. The former hierarchy was
studied in detail in Chapter 12, whereas the latter was studied in Chapter 8.
Starting with the relationships between the syntactic regular (pre)algebra-
izability and the syntactic (pre)algebraizability classes, we get the following

Proposition 1297 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically regularly family (system, respectively) algebraizable,
then it is syntactically family (system, respectively) algebraizable;

(b) If I is syntactically regularly left (system, respectively) prealgebraizable,
then it is syntactically left (system, respectively) prealgebraizable.

Proof: Part (a) follows from the fact that syntactic family and system asser-
tionality imply, respectively, family and system truth equationality. Part (b),
similarly, follows from the fact that syntactic left and system assertionality
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imply, respectively, left and system truth equationality. All the aforemen-
tioned implications, forming the key to the inclusions in the statement, are
the subject of Theorem 1267. ∎

Proposition 1297, establishes the following mixed hierarchy of syntacti-
cally regularly (pre)algebraizable and syntactically (pre)algebraizable π-insti-
tutions.

Synt RF Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

Synt F Algble Synt RS Algble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Synt S Algble Synt RL PreAlgble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

Synt L PreAlgble Synt RS PreAlgble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

Synt S PreAlgble

We close with the relationships between syntactically and semantically
defined regular (pre)algebraizability classes.

Proposition 1298 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If I is syntactically regularly family (system, respectively) algebraizable,
then it is regularly family (system, respectively) algebraizable;

(b) If I is syntactically regularly left (system, respectively) prealgebraizable,
then it is regularly left (system, respectively) prealgebraizable.

Proof: This follows from the facts that, on the one hand, syntactic pre- and
protoalgebraicity imply respectively pre- and protoalgebraicity, and, on the
other hand, syntactic family (left, system, respectively) assertionality implies
family (left, system, respectively) assertionality. The former implications are
established in Theorems 771 and 792. The latter are by Proposition 1264.
∎

Proposition 1298 gives rise to the following mixed, semantic and syntactic,
hierarchy of regularly (pre)algebraizable π-institutions.
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Synt RF Algble

❂✚
✚
✚
✚ ❩

❩
❩
❩⑦

RF Algble Synt RS Algble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

RS Algble Synt RL PreAlgble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚ ❩

❩
❩
❩⑦

RL PreAlgble Synt RS PreAlgble
❩
❩
❩
❩⑦ ❂✚

✚
✚
✚

RS PreAlgble

As was the case with syntactic regular weak (pre)algebraizability, all
four flavors of syntactic regular (pre)algebraizability transfer from theory
families/systems to filter families/systems over arbritrary F-algebraic sys-
tems. This is a “strong” analog of Theorems 1276 and 1289, which asserted
that syntactic regular weak (pre)algebraizability properties transfer from a
π-institution to all its generalized matrix families.

Theorem 1299 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is syntactically regularly family (system, respectively) algebraizable if
and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the I-gmatrix
family ⟨A,CI,A⟩ is syntactically regularly family (system, respectively)
algebraizable;

(b) I is syntactically regularly left (system, respectively) prealgebraizable if
and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the I-gmatrix
family ⟨A,CI,A⟩ is syntactically regularly left (system, respectively) pre-
algebraizable.

Proof: By Theorems 955 and 972, syntactic preequivalentiality and syntac-
tic equivalentiality transfer. By Theorem 585, the three regularity properties
transfer. Finally, by Theorem 1197, the property of possessing natural the-
orems also transfers. Thus, all four syntactic regular (pre)algebraizability
properties transfer from I to ⟨A,CI,A⟩, for all F-algebraic systems A. ∎

Finally, we obtain characterizations of syntactically regular (pre)alge-
braizability in terms of mappings between posets of filter families/ systems
(including theory families/systems) and congruence systems.
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Theorem 1300 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly family algebraizable;

(ii) Ω ∶ ThFam(I)→ ConSys∗(I) is an order isomorphism commuting with
inverse logical extensions, I has a Leibniz binary reflexive core and a
natural theorem τ ∶ SEN♭ → SEN♭, such that, for all T ∈ ThFam(I),
T = τ/Ω(T );

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
π-institution ⟨A.CI,A⟩.

Proof: By Theorem 1299, I is syntactically regularly family algebraizable if
and only if, for every F-algebraic system A, the π-institution ⟨A,CI,A⟩ is also
syntactically regularly family algebraizable. Thus, to prove the statement, it
suffices to consider the equivalence (i)⇔(ii).

Suppose, first, that I is syntactically regularly family algebraizable. Then
it is, by definition, syntactically equivalential and syntactically family asser-
tional. Thus, it has a natural theorem τ , it is family regular and it is, by
Theorem 1267, family truth equational. Using Corollary 649, we conclude
that Ω is an order isomorphism commuting with inverse logical extensions,
by Theorem 983, that it has a Leibniz binary reflexive core and, by Corollary
1266, that, for all T ∈ ThFam(I), T = τ/Ω(T ).

Assume, conversely, that the postulated conditions hold. By Corollary
649, I is regularly family algebraizable. Hence it is equivalential, whence,
together with the postulated Leibniz property of the binary reflexive core, we
obtain, by Corollary 983, that it is syntactically equivalential. Further, by
hypothesis and Corollary 1266, it is syntactically family assertional. Thus,
by definition, it is syntactically regularly family algebraizable. ∎

Theorem 1301 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly system algebraizable;

(ii) I is stable, Ω ∶ ThSys(I)→ ConSys∗(I) is an order isomorphism com-
muting with inverse logical extensions, I has a Leibniz binary reflex-
ive core and a natural theorem τ ∶ SEN♭ → SEN♭, such that, for all
T ∈ ThSys(I), T = τ/Ω(T );

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
π-institution ⟨A.CI,A⟩.
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Proof: Similar to that of Theorem 1300. ∎

Analogous characterization theorems may be provided for the syntactic
regular prealgebraizability properties. The proofs are also similar and are,
therefore, omitted.

Theorem 1302 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly left prealgebraizable;

(ii) Ω ∶ ThSys(I) → ConSys∗(I) is an order embedding commuting with
inverse logical extensions, I has a Leibniz binary reflexive core and a
natural theorem τ ∶ SEN♭ → SEN♭, such that, for all T ∈ ThFam(I),
←Ð
T = τ/Ω(T );

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
π-institution ⟨A.CI,A⟩.

Theorem 1303 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is syntactically regularly system prealgebraizable;

(ii) Ω ∶ ThSys(I) → ConSys∗(I) is an order embedding commuting with
inverse logical extensions, I has a Leibniz binary reflexive core and a
natural theorem τ ∶ SEN♭ → SEN♭, such that, for all T ∈ ThSys(I),
T = τ/Ω(T );

(iii) For every F-algebraic system A, the clauses of Part (ii) hold for the
π-institution ⟨A.CI,A⟩.
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17.1 Finitary Companions Revisited

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall from Chapter 9 the construction of the finitary
companion If = ⟨F,Cf ⟩ of I . It is defined, by setting, for all Σin∣Sign♭∣ and
all Φ ⊆ SEN♭(Σ),

C
f
Σ(Φ) =⋃{CΣ(Φ′) ∶ Φ′ ⊆f Φ},

where ⊆f denotes the finite subset relation. It was shown in Corollary 653
that If is the largest finitary π-institution based on F that lies below I is
the ≤ ordering. Furthermore, even though it is obvious, based on If ≤ I ,
that ThFam(I) ⊆ ThFam(If), Proposition 655 provided a characterization
of those sentence families of F that are theory families of If . More concretely,
it asserted that T ∈ ThFam(If) if and only if it is the union of a directed
locally finitely generated collection of theory families of I .

Turning now to the Leibniz hierarchy, some of the semantic aspects of
which, in relation to finitarity, were studied in some detail in Chapter 9,
it was proven in Lemma 656 that protoalgebraicity is inherited by I from
If , i.e., if If is protoalgebraic, then so is I itself. This is a rather simple
consequence of the fact that ThFam(I) ⊆ ThFam(If).

Recall from Chapter 11 the definition of the reflexive core RI of a π-
institution I . It consists of all natural transformations ρ♭ in N ♭, with two
distinguished arguments, having the property that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

ρ♭Σ[φ,φ] ≤ Thm(I).
It is not very difficult to show that the reflexive core of the finitary companion
If of a π-institution I is included in that of I .

Lemma 1304 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

RI
f

⊆ RI .

Proof: Suppose ρ♭ ∈ RIf and consider Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). We
have

ρ♭Σ[φ,φ] ≤ Thm(If) (ρ♭ ∈ RIf )
≤ Thm(I). (Thm(I) ∈ ThFam(If))

Thus, by definition, ρ♭ ∈ RI . It follows that RI
f ⊆ RI . ∎

Recall that the reflexive core RI is said to be Leibniz if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(C(RIΣ[φ,ψ])).
From the fact that RI

f ⊆ RI it follows at once that, if If is protoalgebraic
and RI

f
is Leibniz in If , then RI is Leibniz in I .
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Proposition 1305 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If If is protoalgebraic and RI

f
is

Leibniz in If , then so is RI in I.

Proof: Suppose that If is protoalgebraic and RI
f

is Leibniz in If . Let
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). We then have

⟨φ,ψ⟩ ∈ ΩΣ(Cf(RIfΣ [φ,ψ])) (RI
f

Leibniz in If)
⊆ ΩΣ(Cf(RIΣ[φ,ψ])) (Lemma 1304 and hypothesis)
⊆ ΩΣ(C(RIΣ[φ,ψ])). (Corollary 653 and hypothesis)

Therefore, RI is Leibniz in I . ∎

We can now show that syntactic protoalgebraicity is inherited by a π-
institution I from its finitary companion If . This forms an analog in the
syntactic context of Lemma 656.

Theorem 1306 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is syntactically protoalgebraic, then
so is I.

Proof: Suppose If is syntactically protoalgebraic. By Theorem 805, it is
protoalgebraic and its reflexive core RI

f
is Leibniz in If . Therefore, by

Lemma 656, I is protoalgebraic and, by Proposition 1305, RI is Leibniz in
I . Therefore, again by Theorem 805, I is syntactically protoalgebraic. ∎

Recalling Theorem 799, which characterizes syntactic protoalgebraicity
in terms of the global family modus ponens property of the reflexive core, we
derive the following

Corollary 1307 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If RI
f

has the global family MP in If ,
then RI has the global family MP in I.

Proof: If RI
f

has the global family MP in If , then, by Theorem 799, If is
syntactically protoalgebraic. Thus, by Theorem 1306, I is syntactically pro-
toalgebraic, whence, again by Theorem 799, applied in the opposite direction,
RI has the global family MP in I . ∎

Alternatively, instead of deriving the implication in Corollary 1307 by
applying Theorem 1306, we may prove it first and then use Theorem 799 to
establish that syntactic protoalgebraicity of If implies the syntactic protoal-
gebraicity of I . We outline this reasoning also, at the expense of having to
repeat Corollary 1307 and Theorem 1306.

Lemma 1308 (Corollary 1307) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F. If RI

f
has the global family

MP in If , then RI has the global family MP in I.
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Proof: Suppose RI
f

has the global family MP in If . Let T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

φ ∈ TΣ and RIΣ[φ,ψ] ≤ T.
By Lemma 1304, we get

φ ∈ TΣ and RI
f

Σ [φ,ψ] ≤ T.
But ThFam(I) ⊆ ThFam(If) and RI

f
is assumed to have the global family

MP in If . Thus, ψ ∈ TΣ. This proves that RI has the global family MP in
I . ∎

Corollary 1309 (Theorem 1306) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. If If is syntactically
protoalgebraic, then so is I.

Proof: Suppose If is syntactically protoalgebraic. Then, by Theorem 799,
RI

f
has the global family MP in If . Thus, by Lemma 1308, RI has the

global family MP in I . Hence, again by applying Theorem 799, only now in
the reverse direction, I is syntactically protoalgebraic. ∎

A similar work can be undertaken concerning truth equationality, based
on an analog of Lemma 657, but referring to family c-reflectivity, which can
be proved in a similar fashion as Lemma 657. We now provide the details.

It is straightforward to see, first of all, that family complete reflectivity
is also inherited by I itself by its finitary companion.

Lemma 1310 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is family c-reflective, then so is I.

Proof: If If is family c-reflective, then, for all T ∪ {T ′} ⊆ ThFam(If),
⋂
T ∈T

Ω(T ) ≤ Ω(T ′) implies ⋂
T ∈T

T ≤ T ′.

In particular, the condition holds if quantification is restricted over the col-
lection ThFam(I) ⊆ ThFam(If). Therefore, I is family c-reflective. ∎

It is not very hard either to see that the the Suszko core of the finitary
companion If of a π-institution I is contained in the Suszko core of I itself,
just as was the case with the reflexive core. Recall that the Suszko core SI

of a π-institution I consists of those natural transformations σ♭ in N ♭, with
a single distinguished argument, such that, for all T ∈ ThFam(I),

σ♭[T ] ≤ Ω̃I(T ).
This means, of course, that, for all T ∈ ThFam(I) and all Σ ∈ ∣Sign♭∣, φ ∈
SEN♭(Σ),

φ ∈ TΣ implies σ♭Σ[φ] ≤ Ω̃I(T ).
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Lemma 1311 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

SI
f

⊆ SI .

Proof: Suppose that σ♭ ∈ SIf and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ), such that φ ∈ TΣ. Then, since σ♭ ∈ SIf and T ∈ ThFam(I) ⊆
ThFam(If), we get σ♭Σ[φ] ≤ Ω̃I

f (T ) ≤ Ω̃I(T ), where the second inclusion
follows from the fact that ThFam(I) ⊆ ThFam(If). Therefore, we conclude
that σ♭ ∈ SI . Hence, SI

f ⊆ SI . ∎

With this result available, we can see that, if If is family c-reflective and
its Suszko core is adequate, then the Suszko core of I is also adequate. Recall
that adequacy of the Suszko core SI means that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) =⋂{Ω(T ) ∶ T ∈ ThFam(I) and SIΣ[φ] ≤ Ω(T )}.
Recall also, that the right-to-left inclusion always holds. So the definition is
tantamount to the assertion that the left-to-right inclusion also holds.

Proposition 1312 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If If is family c-reflective and SI

f
is

adequate in If , then so is SI in I.

Proof: Suppose If is family c-reflective and that SI
f

is adequate. Then,
by Theorem 847, If is truth equational, whence, by Theorem 840, for all
T ∈ ThFam(If),

φ ∈ TΣ iff SI
f

Σ [φ] ≤ Ω(T ).
Consider Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). We have

Ω̃I(C(φ)) = ⋂{Ω(T ) ∶ T ∈ ThFam(I) and φ ∈ TΣ}
(Definition of Ω̃I)

= ⋂{Ω(T ) ∶ T ∈ ThFam(I) and SI
f

Σ [φ] ≤ Ω(T )}
(ThFam(I) ⊆ ThFam(If) and displayed equivalence)

≤ ⋂{Ω(T ) ∶ T ∈ ThFam(I) and SIΣ[φ] ≤ Ω(T )}.
(Lemma 1311)

Thus, by definition, SI is also adequate in I . ∎

We can now show that truth equationality is inherited by a π-institution
I from its finitary companion If . This forms an analog of Lemma 1306.

Theorem 1313 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is truth equational, then so is I.
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Proof: Suppose If is truth equational. By Theorem 847, it is family c-
reflective and its Suszko core SI

f
is adequate in If . Therefore, by Lemma

1310, I is family c-reflective and, by Proposition 1312, SI is adequate in I .
Therefore, again by Theorem 847, I is truth equational. ∎

Theorem 840 characterized truth equationality in terms of the solubility
property of the Suszko core. In fact, the solubility of the Suszko core is
the condition asserting that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

SIΣ[φ] ≤ Ω(T ) implies φ ∈ TΣ.

Since the reverse implication always holds, the condition is equivalent to the
assertion that, for all T ∈ ThFam(I),

φ ∈ TΣ iff SIΣ[φ] ≤ Ω(T ).
Corollary 1314 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If SI

f
is soluble in If , then SI is soluble

in I.

Proof: If SI
f

is soluble in If , then, by Theorem 838, If is truth equa-
tional. Thus, by Theorem 1313, I is also truth equational, whence, again by
Theorem 838, applied in the opposite direction, SI is soluble in I . ∎

Once more, as was the case with syntactic protoalgebraicity, instead of
deriving the implication in Corollary 1314 by applying Theorem 1313, we may
prove it first and then use Theorem 838 to establish that truth equationality
of If implies truth equationality of I .

Lemma 1315 (Corollary 1314) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic
system and I = ⟨F,C⟩ a π-institution based on F. If SI

f
is soluble in If ,

then SI is soluble in I.

Proof: Suppose SI
f

is soluble in If . Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ), such that SIΣ[φ] ≤ Ω(T ). hence, by Lemma 1311, we get

SI
f

Σ [φ] ≤ Ω(T ). But ThFam(I) ⊆ ThFam(If) and SI
f

is assumed to be
soluble in If . Thus, φ ∈ TΣ. This proves that SI is soluble in I . ∎

Corollary 1316 (Theorem 1313) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an alge-
braic system and I = ⟨F,C⟩ a π-institution based on F. If If is truth equa-
tional, then so is I.

Proof: Suppose If is truth equational. Then, by Theorem 838, SI
f

is soluble
in If . Thus, by Lemma 1315, SI is soluble in I . Hence, again by applying
Theorem 838, only now in the reverse direction, I is truth equational. ∎

We conclude the section by synthesizing Theorems 1306 and 1313. Recall
that a π-institution I = ⟨F,C⟩ is syntactically weakly family algebraizable if
it is
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• protoalgebraic;

• family c-reflective;

• RISI-fortified, i.e., has a Leibniz reflexive core and an adequate Suszko
core.

By Theorem 913, I is syntactically weakly family algebraizable if and only if
it is syntactically protoalgebraic and family truth equational. Thus, we get

Theorem 1317 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If If is syntactically weakly family alge-
braizable, then so is I.

Proof: If If is syntactically weakly family algebraizable, then, by Theorem
913, it is syntactically protoalgebraic and family truth equational. Hence,
by Theorems 1306 and 1313, I possesses the same properties. Therefore,
applying again Theorem 913 in the reverse direction, we conclude that I is
also syntactically weakly family algebraizable. ∎

In Section 9.4, we saw that the continuity of the Leibniz operator is one of
the key properties when studying finitarity conditions. Lemma 660 showed
that, if Ω ∶ ThFam(I)→ ConSys∗(I) is continuous, then I is protoalgebraic.
That is asserting the continuity of the Leibniz operator strengthens protoal-
gebraicity. Additionally, it was proven in Lemma 661 that, if Sign♭ is finite,
then continuity of Ω also ensures that the finitary companion If of I is also
protoalgebraic.

We begin, here, our parallel treatment on the syntactic side by showing
that, maintaining the finiteness of Sign♭, the condition that I be syntac-
tically protoalgebraic, with a finite collection of parameter-free witnessing
transformations I♭ ∶ (SEN♭)2 → SEN♭, constitutes an additional strengthen-
ing on protoalgebraicity, on top of the continuity of Ω.

Proposition 1318 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a π-institution based on F. If I is syntactically
protoalgebraic, with a finite parameter-free collection I♭ ∶ (SEN♭)2 → SEN♭ of
witnessing transformations, then Ω ∶ ThFam(I)→ ConSys∗(I) is continuous.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ finite,
and I = ⟨F,C⟩ a syntactically protoalgebraic π-institution based on F, with
a finite parameter-free collection I♭ ∶ (SEN♭)2 → SEN♭ of witnessing trans-
formations. Suppose {T i ∶ i ∈ I} is a directed collection of theory families of
I , such that ⋃i∈I T i ∈ ThFam(I). Then, we have, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(⋃i∈I T i) iff I♭Σ[φ,ψ] ≤ ⋃i∈I T i
iff I♭Σ[φ,ψ] ≤ T i, some i ∈ I,
iff ⟨φ,ψ⟩ ∈ ΩΣ(T i), some i ∈ I,
iff ⟨φ,ψ⟩ ∈ ⋃i∈I ΩΣ(T i).
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Note that the second equivalence employs both the fact that Sign♭ is fi-
nite and the fact that I♭ is finite and parameter-free. Thus, Ω(⋃i∈I T i) =
⋃i∈I Ω(T i) and, hence, Ω is indeed continuous. ∎

We next see that this stronger condition than the continuity of the Leib-
niz operator suffices to ensure that If is also syntactically protoalgebraic,
with the same collection of witnessing transformations. Thus, the following
proposition may be viewed as a syntactic analog of Lemma 661.

Proposition 1319 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a π-institution based on F. If I is syntactically
protoalgebraic, with a finite and parameter-free collection I♭ of witnessing
transformations, then If is also syntactically protoalgebraic, with the same
collection of witnessing transformations.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ fi-
nite, and I = ⟨F,C⟩ a syntactically protoalgebraic π-institution, with a
finite and parameter-free collection I♭ of witnessing transformations. Let
T ∈ ThFam(If). Then, by Proposition 655, there exists a directed locally
finitely generated collection {T i ∶ i ∈ I} ⊆ ThFam(I), such that T = ⋃i∈I T i.
Now we have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ ΩΣ(⋃i∈I T i)
iff ⟨φ,ψ⟩ ∈ ⋃i∈I ΩΣ(T i) (Proposition 1318)
iff ⟨φ,ψ⟩ ∈ ΩΣ(T i), some i ∈ I,

iff
↔

I♭Σ[φ,ψ] ≤ T i, some i ∈ I,

iff
↔

I♭Σ[φ,ψ] ≤ ⋃i∈I T i
iff

↔

I♭Σ[φ,ψ] ≤ T.
Again, note that the one-before-the-last equivalence employs both the fact
that Sign♭ is finite and the fact that I♭ is finite and parameter-free. There-
fore, by Corollary 791, If is also syntactically protoalgebraic, with the same
collection I♭ of witnessing transformations. ∎

Suppose, now, that Sign♭ is finite and I is weakly family algebraizable,
so that Ω−1 ∶ ConSys∗(I)→ ThFam(I) be defined. An analog of Proposition
1318 asserts that, if I is truth equational, with a finite and parameter-free
witnessing family τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then the inverse Leibniz
operator Ω−1 is continuous. Thus, under these hypotheses, the truth equa-
tionality of I via a finite, parameter-free collection of witnessing equations
is stronger than the continuity of Ω−1.

Proposition 1320 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a weakly family algebraizable π-institution based
on F. If I is truth equational, with a finite parameter-free collection τ ♭ ∶
SEN♭ → (SEN♭)2 of witnessing equations, then Ω−1 ∶ ConSys∗(I)→ ThFam(I)
is continuous.
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Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ finite,
and I = ⟨F,C⟩ a weakly family algebraizable π-institution, which is, in ad-
dition, truth equational, with a finite parameter-free collection τ ♭ ∶ SEN♭ →(SEN♭)2 of witnessing equations. Let {θi ∶ i ∈ I} be a directed collection of
I∗-congruence systems, such that ⋃i∈I θi ∈ ConSys∗(I). Now we get, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ Ω−1Σ (⋃i∈I θi) iff τ ♭Σ[φ] ≤ ⋃i∈I θi
iff τ ♭Σ[φ] ≤ θi, some i ∈ I,
iff φ ∈ Ω−1Σ (θi), some i ∈ I,
iff φ ∈ ⋃i∈I Ω−1Σ (θi).

Thus, Ω−1 is indeed continuous. ∎

Recall from Theorem 663 that given a weakly family algebraizable π-
institution I = ⟨F,C⟩, based on an algebraic system F over a finite cate-
gory of signatures, the continuity of both Ω ∶ ThFam(I) → ConSys∗(I) and
Ω−1 ∶ ConSys∗(I)→ ThFam(I) are sufficient to ensure that If is also weakly
family algebraizable. In Propositions 1318 and 1320, by comparison, it was
shown that the continuities of Ω and Ω−1 are strengthened by assuming, re-
spectively, that I is syntactically protoalgebraic, with a finite, parameter-free
witnessing family of transformations, and that I is family truth equational,
with a finite, parameter-free witnessing family of equations. We show, next,
in an analog of Theorem 663, that imposing these two stronger conditions
on I suffices to ensure that syntactic strong algebraizability transfers from I
to its finitary companion If .

Proposition 1321 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically protoalgebraic π-institution, with
a finite parameter-free collection I♭ ∶ (SEN♭)2 → SEN♭ of witnessing trans-
formations. If I is family truth equational, with a finite and parameter-free
collection τ ♭ of witnessing equations, then If is also family truth equational,
with the same collection of witnessing equations.

Proof: Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with Sign♭ finite,
and I = ⟨F,C⟩ a weakly family algebraizable π-institution, which is family
truth equational, with a finite and parameter-free collection I♭ of witnessing
equations. Let T ∈ ThFam(If). Then, by Proposition 655, there exists a
directed locally finitely generated collection {T i ∶ i ∈ I} ⊆ ThFam(I), such
that T = ⋃i∈I T i. Now we have, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff φ ∈ ⋃i∈I T iΣ
iff φ ∈ T iΣ, some i ∈ I,
iff τ ♭Σ[φ] ≤ Ω(T i), some i ∈ I,
iff τ ♭Σ[φ] ≤ ⋃i∈I Ω(T i)
iff τ ♭Σ[φ] ≤ Ω(⋃i∈I T i) (Proposition 1318)
iff τ ♭Σ[φ] ≤ Ω(T ).
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Again, note that the fourth equivalence employs both the fact that Sign♭

is finite and the fact that τ ♭ is finite and parameter-free. We conclude that
If is also family truth equational, with the same collection τ ♭ of witnessing
equations. ∎

Putting together Propositions we finally obtain the promised analog of
Theorem 663.

Theorem 1322 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QK consisting of finite and
parameter-free collections of transformations. Then If is also syntactically
strongly family algebraizable, via the same conjugate pair of transformations.

Proof: We simply put together Propositions 1319 and 1321. ∎

17.2 Natural Finitarity

This section deals with concepts analogous to those studied in Section 9.4,
but in the syntactic, rather than in the semantic, context. In the seman-
tic context, the four key ingredients of our study were the finitarity of the
π-institutions involved as well as the continuity of the Leibniz operator and
its inverse. Recall that for the inverse to be defined in the context under
consideration, the general underlying hypothesis that the π-institution I be
weakly family algebraizable was adhered to. In the present, syntactic, con-
text, we assume that I is syntactically strongly family algebraizable, that
is, syntactically family algebraizable via a conjugate pair (τ ♭, I♭) ∶ I ⇄ QK,
where both τ ♭ ∶ SEN♭ → (SEN♭)2 and I♭ ∶ (SEN♭)2 → SEN♭ are parameter-
free witnessing collections of equations and of transformations, respectively.
The four notions involved are the properties of I and QK being naturally
finitary, a strengthening of finitarity, and those of τ ♭ and I♭ being finite, also
strengthening the continuity of the Leibniz operator and its inverse operator.
But let us embark on the developments so as to clarify these introductory
remarks and to make the concepts and the details involved precise.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that I is finitary if, for all Σ ∈ ∣Sign♭∣ and
all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ), there exists Φ′ ⊆f Φ, such
that φ ∈ CΣ(Φ′). Equivalently, I is finitary if, for all Σ ∈ ∣Sign♭∣ and all
Φ ⊆ SEN♭(Σ),

CΣ(Φ) =⋃{CΣ(Φ′) ∶ Φ′ ⊆f Φ}.
We say that I is naturally finitary if it is finitary and, in addition, the
following condition holds:
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(NATFIN) If, for some collections µ, ν ∶ (SEN♭)ω → SEN♭ of natural transforma-
tions in N ♭, such that ∣µ∣ <∞, it holds that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(νΣ[φ⃗]),
then, there exists a finite subset ν′ ⊆ ν, such that, for all Σ ∈ ∣Sign♭∣
and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(ν′Σ[φ⃗]).
It is not difficult to see that, if I is naturally finitary, the implication

resulting from (NATFIN) by replacing the two inclusions by equalities of
closure families also holds.

Lemma 1323 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is naturally finitary, then, for all
µ, ν ∶ (SEN♭)ω → SEN♭ in N ♭, with ∣µ∣ <∞, such that, for all Σ ∈ ∣Sign♭∣ and
all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) = C(νΣ[φ⃗]), there exists a finite ν′ ⊆ ν, such that,
for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) = C(ν′Σ[φ⃗]).
Proof: Suppose I is naturally finitary and let µ, ν ∶ (SEN♭)ω → SEN♭ in N ♭,
with ∣µ∣ <∞, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) =
C(νΣ[φ⃗]). Then, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), µΣ[φ⃗] ≤ C(νΣ[φ⃗]).
Thus, by natural finitarity, there exists a finite subset ν′ ⊆ ν, such that, for
all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), µΣ[φ⃗] ≤ C(ν′Σ[φ⃗]). But, then, we obtain,

for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),
C(νΣ[φ⃗]) = C(µΣ[φ⃗]) ≤ C(ν′Σ[φ⃗]) ≤ C(νΣ[φ⃗]).

We conclude that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), C(µΣ[φ⃗]) =
C(ν′Σ[φ⃗]). ∎

Starting to take advantage of natural finitarity, we show that it allows
to draw the conclusion that, in case of syntactic family algebraizability, the
existence of a finite witnessing family of transformations ensures that every
witnessing family possesses a finite witnessing subfamily. More precisely, we
have

Lemma 1324 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a naturally finitary π-institution based on F. Suppose I is syntacti-
cally family algebraizable, with equivalent guasivariety K. If I has a finite
witnessing family I♭ ∶ (SEN♭)2 → SEN♭ of transformations, then every wit-
nessing family J ♭ ∶ (SEN♭)2 → SEN♭ possesses a finite witnessing subfamily
J ′ ♭.

Proof: Suppose that I is naturally finitary and syntactically family alge-
braizable, with equivalent guasivariety K. Let I♭ ∶ (SEN♭)2 → SEN♭ be a
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finite set of witnessing transformations and J ♭ ∶ (SEN♭)2 → SEN♭ a family of
witnessing transformations. By Theorem 912, we get that, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

C(I♭Σ[φ,ψ]) = C(J ♭Σ[φ,ψ]).
Since I is naturally finitary and, by hypothesis, ∣I♭∣ <∞, we get, by Lemma
1323, that there exists finite J ′ ♭ ⊆ J ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

C(J ′ ♭Σ [φ,ψ]) = C(I♭Σ[φ,ψ]).
Thus, applying Proposition 903, we conclude that J ′ ♭ is also a witnessing
family of transformations. ∎

Dually, we may also prove a corresponding result concerning the witness-
ing equations for the truth equationality of I .

Lemma 1325 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically strongly family algebraizable π-institution based on F,
with equivalent guasivariety K. If QK is naturally finitary and I has a finite
witnessing family τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then every witnessing
family ρ♭ ∶ SEN♭ → (SEN♭)2 of equations possesses a finite witnessing sub-
family ρ′ ♭.

Proof: Follows along the lines of the proof of Lemma 1324. Suppose that
I is syntactically strongly family algebraizable, with equivalent guasivariety
K, such that QK is naturally finitary. Let τ ♭ ∶ SEN♭ → (SEN♭)2 be a finite
set of witnessing equations and ρ♭ ∶ SEN♭ → (SEN♭)2 a family of witnessing
equations. By Theorem 912, we get that, for all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

DK(τ ♭Σ[φ]) =DK(ρ♭Σ[φ]).
Since QK is naturally finitary and, by hypothesis, ∣τ ♭∣ <∞, we get, by Lemma
1323, that there exists finite ρ′ ♭ ⊆ ρ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

DK(ρ′ ♭Σ [φ]) =DK(τ ♭Σ[φ]).
Thus, applying Proposition 903, we conclude that ρ′ ♭ is also a witnessing
family of equations. ∎

We now establish a theorem to the effect that, under natural finitarity and
syntactic strong family algebraizability, every witnessing family of equations
contains a finite witnessing subfamily. This is the first main result in a series
of finitarity results that we aim to prove in the present section, with the
ultimate goal of obtaining a hierarchy on the syntactic side, analogous to
that obtained on the semantic side at the end of Section 9.4.
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Theorem 1326 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a naturally finitary, syntactically strongly family algebraizable π-ins-
titution, with equivalent guasivariety K. Then every witnessing collection
τ ♭ ∶ SEN♭ → (SEN♭)2 of equations contains a finite subcollection τ ′ ♭ ∶ SEN♭ →(SEN♭)2, which is also a witnessing collection.

Proof: Suppose I is naturally finitary and syntactically strongly family
algebraizable, with equivalent guasivariety K. Let τ ♭ ∶ SEN♭ → (SEN♭)2
be a collection of witnessing equations. Then, by definition, there exists a
collection I♭ ∶ (SEN♭)2 → SEN♭ in N ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

C(ιΣ[φ]) = C(φ) = C(I♭[τ ♭Σ[φ]]).
Since I is naturally finitary, there exist finite I ′ ♭ ⊆ I♭ and τ ′ ♭ ⊆ τ ♭, such that,
for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

C(φ) = C(I ′ ♭[τ ′ ♭Σ [φ]]).
Thus, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

C(φ) = C(I♭[τ ′ ♭Σ [φ]]).
Thus, since, by the properties of (τ ♭, I♭) ∶ I ⇄ QK, for all Σ ∈ ∣Sign♭∣ and all
E ∪ {φ ≈ ψ} ⊆ EqΣ(F),

φ ≈ ψ ∈ DK
Σ(E) iff I♭Σ[φ,ψ] ≤ C(I♭Σ[E]),

we get, by Proposition 903, that τ ′ ♭ is a witnessing family of equations. ∎

Dually, we may prove that, under syntactic strong family algebraizability
and natural finitarity of the algebraic counterpart QK, every witnessing family
of transformations contains a finite witnessing subfamily.

Theorem 1327 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically strongly family algebraizable π-institution, with equiva-
lent guasivariety K, such that QK is naturally finitary. Then every witnessing
collection I♭ ∶ (SEN♭)2 → SEN♭ of transformations contains a finite subcollec-
tion I ′ ♭ ∶ (SEN♭)2 → SEN♭, which is also a witnessing collection.

Proof: Suppose I is syntactically strongly family algebraizable, with equiv-
alent guasivariety K, such that QK is naturally finitary. Let I♭ ∶ (SEN♭)2 →
SEN♭ be a collection of witnessing transformations. Then, by definition, there
exists a collection τ ♭ ∶ SEN♭ → (SEN♭)2 in N ♭, such that, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

DK(⟨p2,0, p2,1⟩Σ[φ,ψ]) = DK(φ ≈ ψ) = DK(τ ♭[I♭Σ[φ,ψ]]).
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Since I is naturally finitary, there exist finite I ′ ♭ ⊆ I♭ and τ ′ ♭ ⊆ τ ♭, such that,
for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

DK(φ ≈ ψ) =DK(τ ′ ♭[I ′ ♭Σ [φ,ψ]]).
Thus, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

DK(φ ≈ ψ) =DK(τ ♭[I ′ ♭Σ [φ,ψ]]).
Thus, since, by the properties of (τ ♭, I♭) ∶ I ⇄ QK, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) iff τ ♭Σ[φ] ≤DK(τ ♭Σ[Φ]),
we get, by Proposition 903, that I ′ ♭ is also a witnessing family of transfor-
mations. ∎

The following proposition asserts that, under similar hypotheses, but
adding finiteness of the signature category, the finitarity of I and of the
witnessing collection I♭ imply the finitarity of the algebraic counterpart QK.

Proposition 1328 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a finitary, syntactically family algebraizable π-
institution, with equivalent guasivariety K. If I has a finite witnessing set
I♭ ∶ (SEN♭)2 → SEN♭ of transformations, then its algebraic counterpart QK is
also finitary.

Proof: Suppose I is a finitary π-institution based on an algebraic system F
over a finite category of signatures. Assume that I is syntactically family al-
gebraizable, with equivalent guasivariety K and that it has a finite witnessing
collection I♭ of transformations. Let Σ ∈ ∣Sign♭∣ and E ∪ {φ ≈ ψ} ⊆ EqΣ(F),
such that

φ ≈ ψ ∈ DK
Σ(E).

Since I♭ is a witnessing collection of transformations,

I♭Σ[φ,ψ] ≤ C(I♭Σ[E]).
Since Sign♭ is finite and I♭ is finite, we get, by the finitarity of I that there
exists finite E′ ⊆ E, such that I♭Σ[φ,ψ] ≤ C(I♭Σ[E′]). Thus, again by the fact
that I♭ is a set of witnessing transformations, we obtain φ ≈ ψ ∈ DK

Σ(E′).
Thus, QK is indeed finitary. ∎

A similar result can also be established when focus is shifted from fini-
tarity to natural finitarity.

Proposition 1329 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a naturally finitary, syntactically family al-
gebraizable π-institution, with equivalent guasivariety K. If I has a finite
witnessing set I♭ ∶ (SEN♭)2 → SEN♭ of transformations, then its algebraic
counterpart QK is also naturally finitary.
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Proof: Suppose I is a naturally finitary π-institution based on an algebraic
system F over a finite category of signatures. Assume that I is syntactically
family algebraizable, with equivalent guasivariety K and that it has a finite
witnessing collection I♭ of transformations. By Proposition 1328, we know
that QK is finitary. Let µ, ν ∶ (SEN♭)ω → (SEN♭)2 be collections of natural
transformations in N ♭, with ∣µ∣ < ∞, such that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ DK(νΣ[φ⃗]).
Since I♭ is a witnessing collection of transformations, we get, for all Σ ∈ ∣Sign♭∣
and all φ⃗ ∈ SEN♭(Σ),

I♭[µΣ[φ⃗]] ≤ C(I♭[νΣ[φ⃗]]).
But both µ and I♭ are finite and, also, Sign♭ is assumed to be finite. Hence,
since I is naturally finitary, there exists finite ν′ ⊆ ν, such that, for all
Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

I♭[µΣ[φ⃗]] ≤ C(I♭[ν′Σ[φ⃗]]).
Therefore, again by the fact that I♭ is a set of witnessing transformations,
we obtain, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ DK(ν′Σ[φ⃗]).
Thus, QK is indeed naturally finitary. ∎

We turn, next, to results dual to those established in Propositions 1328
and 1329. We start with a dual to Proposition 1328 to the effect that, if QK

is finitarty and I has a finite witnessing collection of equations, then I is
itself finitary.

Proposition 1330 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, with equivalent guasivariety K. If QK is finitary and I has a finite
witnessing set τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then I is also finitary.

Proof: Suppose I is a π-institution based on an algebraic system F over a
finite category of signatures. Assume that I is syntactically strongly family
algebraizable, with equivalent guasivariety K, such that QK is finitary, and
that it has a finite witnessing collection τ ♭ of equations. Let Σ ∈ ∣Sign♭∣ and
Φ ∪ {φ} ⊆ SEN♭(Σ), such that

φ ∈ CΣ(Φ).
Since τ ♭ is a witnessing collection of equations,

τ ♭Σ[φ] ≤DK(τ ♭Σ[Φ]).
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Since Sign♭ is finite and τ ♭ is finite, we get, by the finitarity of QK that there
exists finite Φ′ ⊆ Φ, such that τ ♭Σ[φ] ≤ DK(τ ♭Σ[Φ′]). Thus, again by the fact
that τ ♭ is a set of witnessing equations, we obtain φ ∈ CΣ(Φ′). Thus, I is
indeed finitary. ∎

A dual of Proposition 1329 addresses the case of natural finitarity.

Proposition 1331 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, with equivalent guasivariety K. If QK is naturally finitary and I
has a finite witnessing set τ ♭ ∶ SEN♭ → (SEN♭)2 of equations, then I is also
naturally finitary.

Proof: Suppose I is a π-institution based on an algebraic system F over a
finite category of signatures. Assume that I is syntactically strongly fam-
ily algebraizable, with equivalent guasivariety K, such that QK is naturally
finitary, and that it has a finite witnessing collection τ ♭ of equations. Let
µ, ν ∶ (SEN♭)ω → SEN♭ be collections of natural transformations in N ♭, with∣µ∣ <∞, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(νΣ[φ⃗]).
Since τ ♭ is a witnessing collection of equations, we get, for all Σ ∈ ∣Sign♭∣ and
all φ⃗ ∈ SEN♭(Σ),

τ ♭[µΣ[φ⃗]] ≤DK(τ ♭[νΣ[φ⃗]]).
But both µ and τ ♭ are finite and, also, Sign♭ is assumed to be finite. Hence,
since QK is naturally finitary, there exists finite ν′ ⊆ ν, such that, for all
Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

τ ♭[µΣ[φ⃗]] ≤DK(τ ♭[ν′Σ[φ⃗]]).
Therefore, again by the fact that τ ♭ is a set of witnessing equations, we
obtain, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

µΣ[φ⃗] ≤ C(ν′Σ[φ⃗]).
Thus, I is naturally finitary. ∎

Finally, we present a syntactic analog of Corollary 668, which summarizes
the conclusions drawn from the study of the various finitarity properties, at
the center of the investigations carried out in the present chapter.

Corollary 1332 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
Sign♭ finite, and I = ⟨F,C⟩ a syntactically strongly family algebraizable π-
institution, via the conjugate pair (τ ♭, I♭) ∶ I ⇄ QK.

(a) If both τ ♭ and I♭ are finite, then I is naturally finitary if and only if
QK is naturally finitary;
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(b) If I is naturally finitary, then QK is naturally finitary if and only if I♭

can be taken to be finite;

(c) If QK is naturally finitary, then I is naturally finitary if and only if τ ♭

can be taken to be finite.

In each case, if the equivalent alternatives hold, then all four “finitarity”
conditions hold.

Proof:

(a) Suppose both τ ♭ and I♭ are finite. If I is naturally finitary, then,
by Proposition 1329, QK is also naturally finitary. If, on the other
hand, QK is naturally finitary, then, by Proposition 1331, I is naturally
finitary.

(b) Assume that I is naturally finitary. If QK is naturally finitary, then,
by Theorem 1327, I♭ may be taken to be finite. If, on trhe other hand,
I♭ can be taken to be finite, then, by Proposition 1329, QK is naturally
finitary.

(c) Assume QK is naturally finitary. If I is naturally finitary, then, by
Theorem 1326, τ ♭ may be taken to be finite. If, on the other hand,
τ ♭ may be taken to be finite, then, by Proposition 1331, I is naturally
finitary. ∎

In summary, Corollary 1332 establishes the hierarchy depicted below,
which parallels in the syntactic context the hierarchy pictured at the end of
Chapter 9, concerning the semantic side.

I ,QK naturally finitary
τ ♭, I♭ finite

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

QK naturally
finitary

τ ♭, I♭ finite
❄

I naturally
finitary

✰✑
✑
✑
✑
✑
✑
✑ ◗

◗
◗
◗
◗
◗
◗s

I♭ finite
❄

τ ♭ finite
❄

◗
◗
◗
◗
◗
◗
◗s ✰✑

✑
✑
✑
✑
✑
✑

I , with finite Sign♭,
syntactically strongly
family algebraizable
via (τ ♭, I♭) ∶ I ⇄ QK
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18.1 Protoalgebraic π-Institutions

18.1.1 The Correspondence Theorem

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

Recall that I is protoalgebraic if the Leibniz operator is monotone on
theory families, i.e., if, for all T,T ′ ∈ ThFam(I),

T ≤ T ′ implies Ω(T ) ≤ Ω(T ′).
Recall, also, that, by Theorem 175, every protoalgebraic π-institution is sta-
ble and that, moreover, by Theorem 179, I is protoalgebraic if and only if,
for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies ΩA(T ) ≤ ΩA(T ′).
The π-institution I has the compatibility property if, for every F-

algebraic system A = ⟨A, ⟨F,α⟩⟩, all T,T ′ ∈ FiFamI(A), with T ≤ T ′, and all
θ ∈ ConSys(A),

θ compatible with T implies θ compatible with T ′.

The π-institution I = ⟨F,C⟩ has the filter correspondence property
if, for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, and surjective
morphism ⟨H,γ⟩ ∶ A→ B, with H ∶ Sign → Sign′ an isomorphism,

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

and all T ∈ FiFamI(A) and T ′ ∈ FiFamI(B),
γ−1(γ̂(T ) ∨ T ′) = T ∨ γ−1(T ′),

where γ̂(T ) = CI,B(γ(T )) is the least I-filter family on B that includes γ(T ).
Our goal is to show that both the compatibility property and the filter

correspondence property characterize protoalgebraic π-institutions. We start
with a lemma to the effect that, for every I-filter family T of A, if the kernel
of ⟨H,γ⟩ happens to be compatible with T , then γ(T ) is already an I-filter
family of B and, therefore, γ̂(T ) = γ(T ).
Lemma 1333 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems, and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H ∶ Sign → Sign′ an
isomorphism. If T ∈ FiFamI(A), such that Ker(⟨H,γ⟩) is compatible with
T , then γ̂(T ) = γ(T ).
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Proof: By definition, γ(T ) ≤ γ̂(T ) always holds. To show the reverse in-
equality, it suffices to show that γ(T ), under the hypothesis of the com-
patibility of Ker(⟨H,γ⟩) with T , is an I-filter family of B. So assume
Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ), and let Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′), such that

βΣ′(SEN♭(f)(Φ)) ⊆ γF (Σ′)(TF (Σ′)).
This gives

γF (Σ′)(αΣ′(SEN♭(f)(Φ))) ⊆ γF (Σ′)(TF (Σ′)).
By the postulated compatibility of Ker(⟨H,γ⟩) with T , we obtain

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′).
Since φ ∈ CΣ(Φ) and T ∈ FiFamI(A), we get that

αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).
Thus, γF (Σ′)(αΣ′(SEN♭(f)(φ))) ∈ γF (Σ′)(TF (Σ′)), and, therefore,

βΣ′(SEN♭(f)(φ)) ∈ γF (Σ′)(TF (Σ′)).
This shows that γ(T ) ∈ FiFamI(B) and, hence, γ̂(T ) = γ(T ). ∎

Next, we give an equivalent formulation of the Filter Correspondence
Property.

Proposition 1334 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I has the filter correspondence property
iff

for all I-matrix families A = ⟨A′, T ′⟩, A′′ = ⟨A′′, T ′′⟩ and strict surjec-
tive matrix morphism ⟨H,γ⟩ ∶ A′ → A′′, with H ∶ Sign′ → Sign′′ an
isomorphism,

F

❂✚
✚
✚
✚
✚⟨F ′, α′⟩ ❩

❩
❩
❩
❩

⟨F ′′, α′′⟩
⑦

A′ ⟨H,γ⟩ ✲ A′′

T = γ−1(γ(T )), for all T ′ ≤ T ∈ FiFamI(A′).
Proof: Suppose, first, that I has the Filter Correspondence Property and
consider I-matrix families A = ⟨A′, T ′⟩, A′′ = ⟨A′′, T ′′⟩, a strict surjective
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matrix morphism ⟨H,γ⟩ ∶ A′ → A′′, with H ∶ Sign′ → Sign′′ an isomorphism,
and T ′ ≤ T ∈ FiFamI(A′). Then we have

γ−1(γ(T )) ≤ γ−1(γ̂(T ) ∨ T ′′) (γ(T ) ≤ γ̂(T ))
= T ∨ γ−1(T ′′) (Filter Correspondence)
= T ∨ T ′ (⟨H,γ⟩ strict)
= T. (T ′ ≤ T by hypothesis)

Thus, the displayed property holds. Assume, conversely, that the displayed
property holds. We must show that I has the Filter Correspondence Prop-
erty. So suppose that A = ⟨A′, ⟨F ′, α′⟩⟩, A′′ = ⟨A′′, ⟨F ′′, α′′⟩⟩ are F-algebraic
systems, ⟨H,γ⟩ ∶ A′ → A′′ a surjective morphism, with H ∶ Sign′ → Sign′′ an
isomorphism, and let T ′ ∈ FiFamI(A′) and T ′′ ∈ FiFamI(A′′). Our goal is to
show that

γ−1(γ̂(T ′) ∨ T ′′) = T ′ ∨ γ−1(T ′′).
Notice that ⟨H,γ⟩ ∶ ⟨A′, γ−1(T ′′)⟩→ ⟨A′′, T ′′⟩ is a strict surjective morphism,
with H an isomorphism, and γ−1(T ′′) ≤ T ′ ∨ γ−1(T ′′). Thus, we fit the setup
of the hypothesis, which allows us to conclude that

γ−1(γ(T ′ ∨ γ−1(T ′′))) = T ′ ∨ γ−1(T ′′).
So, it suffices, in turn, to show that γ̂(T ′)∨T ′′ = γ(T ′ ∨ γ−1(T ′′)) and, since,
Ker(⟨H,γ⟩) is compatible with T ′ (having γ−1(γ(T ′)) = T ′, by hypothesis),
it suffices, by Lemma 1333, to show that

γ(T ′) ∨ T ′′ = γ(T ′ ∨ γ−1(T ′′)).
The left to right inclusion is obvious, since γ(T ′), T ′′ ≤ γ(T ′ ∨ γ−1(T ′′)).
Conversely, note that, taking into account the hypothesis, T ′, γ−1(T ′′) ≤
γ−1(γ(T ′) ∨ T ′′). Therefore, T ′ ∨ γ−1(T ′′) ≤ γ−1(γ(T ′) ∨ T ′′) and, therefore,
γ(T ′∨γ−1(T ′′)) ≤ γ(T ′)∨T ′′ and, hence, the right to left inclusion also holds.
Thus, the Filter Correspondence Property holds. ∎

Now we proceed with the formulation and proof of the main theorem.

Theorem 1335 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following statements are equivalent:

(i) I is protoalgebraic;

(ii) I has the compatibility property;

(iii) I has the filter correspondence property.

Proof:
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(i)⇒(ii) Suppose I is protoalgebraic and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic
system, T,T ′ ∈ FiFamI(A), with T ≤ T ′, and θ ∈ ConSys(A), such that
θ is compatible with T . Then we have

θ ≤ Ω(T ) (by the compatibility of θ with T )
≤ Ω(T ′). (by protoalgebraicity)

We conclude that θ is also compatible with T ′ and, hence, I has the
compatibility property.

(ii)⇒(i) Suppose that I has the compatibility property and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system and T,T ′ ∈ ThFamI(A), such that T ≤ T ′.
Then Ω(T ) ∈ ConSys(A) and, by the definition of a Leibniz congruence
system, it is compatible with T . Now it follows by the compatibility
property, that Ω(T ) is also compatible with T ′. Hence Ω(T ) ≤ Ω(T ′).
We conclude that I is protoalgebraic.

(ii)⇒(iii) Suppose that I has the compatibility property and consider F-algebraic
systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, a commutative triangle

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

with H ∶ Sign → Sign′ an isomorphism, and T ∈ FiFamI(A), T ′ ∈
FiFamI(B). Note that it is always the case that

T ∨ γ−1(T ′) ≤ γ−1(γ̂(T ) ∨ T ′).
Thus, it suffices to show that, under the hypothesis of compatibility,
the reverse inclusion also holds.

Consider, temporarily, X ∈ FiFamI(A), such that γ−1(T ′) ≤ X . Since
Ker(⟨H,γ⟩) is compatible with γ−1(T ′), by the postulated compati-
bility property, it is also compatible with X . Thus, by Lemma 1333,
γ̂(X) = γ(X). Moreover, we have T ′ ≤ γ(X) = γ̂(X).
Now set X = T ∨ γ−1(T ′) and reason as follows:

γ−1(γ̂(T ) ∨ T ′) ≤ γ−1(γ̂(X) ∨ T ′) (T ≤ X)
= γ−1(γ̂(X)) (T ′ ≤ γ̂(X))
= γ−1(γ(X)) (γ̂(X) = γ(X))
= X. (Ker(⟨H,γ⟩) compatible with X)

So we get γ−1(γ̂(T ) ∨ T ′) = T ∨ γ−1(T ′) and I has the correspondence
property.
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(iii)⇒(ii) Suppose that I has the correspondence property and let A = ⟨A, ⟨F,α⟩⟩
be an F-algebraic system, T,T ′ ∈ FiFamI(A), with T ≤ T ′, and θ ∈
ConSys(A), such that θ is compatible with T . We look at the commu-
tative diagram

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F,πθα⟩
⑦

A ⟨I, πθ⟩ ✲ Aθ

and calculate

(πθ)−1(π̂θ(T ′)) = (πθ)−1(π̂θ(T ′) ∨ π̂θ(T )) (T ≤ T ′)
= T ′ ∨ (πθ)−1(π̂θ(T )) (correspondence property)
≤ T ′ ∨ T (θ compatible with T )
= T ′. (T ≤ T ′)

Thus, θ is also compatible with T ′ and I has the compatibility property.
∎

As a consequence we obtain the Correspondence Theorem, which asserts
that, under the same hypothesis, ⟨H,γ⟩ induces an order isomorphism be-
tween the principal filter of the lattice FiFamI(A) generated by γ−1(T ′) and
the principal filter of the lattice FiFamI(B) generated by T ′.

Theorem 1336 (Correspondence Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ a protoalgebraic π-institution based
on F. Let, also, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic systems and⟨H,γ⟩ ∶ A → B a surjective morphism, with H ∶ Sign → Sign′ an isomor-
phism, and T ′ ∈ FiFamI(B). Then, Y ↦ γ−1(Y ), T ′ ≤ Y ∈ FiFamI(B),
defines an order isomorphism FiFamI(B)T ′ ≅ FiFamI(A)γ−1(T ′).
Proof: γ−1 ∶ FiFamI(B)T ′ → FiFamI(A)γ−1(T ′) is well defined by Corol-
lary 55 and it is clearly monotone. Furthermore, γ̂ ∶ FiFamI(A)γ−1(T ′) →
FiFamI(B)T ′ is also well-defined and monotone. So it suffices to show that,
for all T ′ ≤ Y ∈ FiFamI(B), γ̂(γ−1(Y )) = Y and that, for all γ−1(T ′) ≤ X ∈
FiFamI(A), γ−1(γ̂(X)) =X .

First, for T ′ ≤ Y ∈ FiFamI(B), since ⟨H,γ⟩ is surjective, γ(γ−1(Y )) = Y
and, therefore, γ̂(γ−1(Y )) = Y , since Y ∈ FiFamI(B). For the other equation,
if γ−1(T ′) ≤X ∈ FiFamI(A), we have,

γ−1(γ̂(X)) = γ−1(γ̂(X) ∨ T ′) (γ−1(T ′) ≤X ⇒ T ′ ≤ γ̂(X))
= X ∨ γ−1(T ′) (correspondence property)
= X. (γ−1(T ′) ≤ X)

So γ−1 ∶ FiFamI(B)T ′ ≅ FiFamI(A)γ−1(T ′). ∎
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18.1.2 The Homomorphism Theorem

We show that, in the case of protoalgebraic π-institutions I , every surjective
morphism of I-matrix families gives rise to a corresponding surjective mor-
phism between their reductions. This establishes a “reduction” functor and,
moreover, gives rise to a version of the Homomorphism Theorem of Universal
Algebra.

Recall that, given a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and an
F-matrix family A = ⟨A, T ⟩, we denote by A∗ the reduction of A, i.e.,

A∗ = ⟨A/ΩA(T ), T /ΩA(T )⟩.
Moreover, extending this notation, given Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), we set

φ∗ = φ/ΩAΣ(T ) ∈ SEN∗(Σ).
Theorem 1337 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Further, let A = ⟨A, ⟨F,α⟩⟩,
A′ = ⟨A′, ⟨F ′, α′⟩⟩, with A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩, be F-al-
gebraic systems, A = ⟨A, T ⟩ and A′ = ⟨A′, T ′⟩ be I-matrix families and ⟨H,γ⟩ ∶
A → A′ a surjective morphism. Then, there exists a surjective morphism⟨H,γ∗⟩ ∶ A∗ → A′∗, given, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

γ∗Σ(φ∗) = γΣ(φ)∗.
Proof: First, we show that, for all Σ ∈ ∣Sign∣, γ∗Σ ∶ SEN∗(Σ) → SEN′∗(H(Σ))
is well-defined. Indeed, suppose Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that
φ∗ = ψ∗, i.e., ⟨φ,ψ⟩ ∈ ΩAΣ(T ). Then, since T ≤ γ−1(T ′), we get, by pro-
toalgebraicity, ⟨φ,ψ⟩ ∈ ΩAΣ(γ−1(T ′)), whence, by Proposition 24, ⟨φ,ψ⟩ ∈
γ−1Σ (ΩA′H(Σ)(T ′)), and, hence, ⟨γΣ(φ), γΣ(ψ)⟩ ∈ ΩA

′

H(Σ)
(T ′), or, equivalently,

γΣ(φ)∗ = γΣ(ψ)∗.
Next we see that γ∗ ∶ SEN∗ → SEN′∗ ○H is a natural transformation. To

this end, let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ ∈ SEN(Σ). Then we have

SEN∗(Σ) γ∗Σ ✲ SEN′∗(H(Σ))

SEN∗(Σ′)
SEN∗(f)

❄

γ∗Σ′
✲ SEN′∗(H(Σ′))

SEN′∗(H(f))
❄

SEN′∗(H(f))(γ∗Σ(φ∗)) = SEN′∗(H(f))(γΣ(φ)∗)
= SEN′(H(f))(γΣ(φ))∗
= γΣ′(SEN(f)(φ))∗
= γ∗Σ′(SEN(f)(φ)∗)
= γ∗Σ′(SEN∗(f)(φ∗)).
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Surjectivity of ⟨H,γ∗⟩ ∶ A∗ → A′∗ follows from the fact that ⟨H,γ⟩ ∶ A→ A′ is
surjective. So it suffices to show that ⟨F ′, πα′⟩ = ⟨H,γ∗⟩ ○ ⟨F,π,α⟩ and that⟨H,γ∗⟩ ∶ A∗ → A′∗ is a matrix family morphism. The first equation follows
from the fact that the upper triangle of the diagram commutes by hypothesis
and the rectangle commutes by the definition of ⟨H,γ∗⟩.

F

❂✚
✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨H,γ⟩ ✲ A′

A∗

⟨I, π⟩
❄

⟨H,γ∗⟩ ✲ A′∗

⟨I, π⟩
❄

To finish the proof, we calculate, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
φ∗ ∈ TΣ/ΩAΣ(T ) if and only if, by compatibility, φ ∈ TΣ implies, by hypothesis,
φ ∈ γ−1Σ (T ′H(Σ)) if and only if γΣ(φ) ∈ T ′H(Σ) if and only if, by compatibility,

γΣ(φ)∗ ∈ T ′H(Σ)/ΩA′H(Σ)(T ′) if and only if, by the definition of γ∗, γ∗Σ(φ∗) ∈
T ′
H(Σ)
/ΩA′

H(Σ)
(T ′) if and only if φ∗ ∈ (γ∗Σ)−1(T ′H(Σ)/ΩA′H(Σ)(T ′)). ∎

We also have the following construction.

Corollary 1338 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Let, also A = ⟨A, ⟨F,α⟩⟩,
A′ = ⟨A′, ⟨F ′, α′⟩⟩, with A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩, be F-
algebraic systems, A = ⟨A, T ⟩ an I-matrix family and A′ = ⟨A′, T ′⟩ a reduced
I-matrix family and ⟨H,γ⟩ ∶ A→ A′ a surjective morphism.

A
⟨I, π⟩ ✲ A∗

❩
❩
❩
❩
❩
❩
❩

⟨H,γ⟩
⑦

A′

⟨H,γ∗⟩
❄

There exists a unique surjective morphism ⟨H,γ∗⟩ ∶ A∗ → A′ that makes the
triangle commute.

Proof: By Theorem 1337, there exists a surjective matrix morphism ⟨H,γ∗⟩ ∶
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A∗ → A′∗, such that the following rectangle commutes:

A
⟨I, π⟩ ✲ A∗

A′

⟨H,γ⟩
❄

⟨I, π⟩ ✲ A′∗

⟨H,γ∗⟩
❄

But, by hypothesis, A′ is reduced, whence A′∗ = A′ and ⟨I, π⟩ = ⟨I, ι⟩ ∶ A′ →
A′∗ is the identity morphism. We now obtain the triangle depicted in the
diagram of the statement. ∎

Let us denote by MatFam(I) the category of I-matrix families with
surjective matrix morphisms between them and, similarly, MatFam∗(I) the
category of reduced I-matrix families with surjective matrix morphisms be-
tween them. Then, based on Theorem 1337, we obtain the following functor.

Theorem 1339 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

∗ ∶ MatFam(I)→MatFam∗(I)
is a functor. The subcategory MatFam∗(I) is a reflective subcategory of
MatFam(I) with ∗ a reflector from MatFam(I) to MatFam∗(I).
Proof: Given A ∈ MatFam(I), it is easy to see that ⟨I, ι∗⟩ ∶ A∗ → A∗ is
the identity matrix morphism. For the composition property, assume A,
A′, A′′ ∈ MathFam(I), and ⟨G,β⟩ ∶ A → A′, ⟨H,γ⟩ ∶ A′ → A′′ be matrix
morphisms. Then, we have, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

(γG(Σ) ○ βΣ)∗(φ∗) = γG(Σ)(βΣ(φ))∗
= γ∗

G(Σ)
(βΣ(φ)∗)

= γ∗
G(Σ)
(β∗Σ(φ∗)).

Thus, (⟨H,γ⟩ ○ ⟨G,β⟩)∗ = ⟨H,γ⟩∗ ○ ⟨G,β⟩∗. Therefore, ∗ ∶ MatFam(I) →
MatFam∗(I) is a functor.

As far a s reflectivity is concerned, for every A ∈ MatFam∗(I), we con-
sider the natural quotient morphism ⟨I, π⟩ ∶ A → A∗. Given reduced B ∈
MatFam∗(I) and a surjective morphism ⟨H,γ⟩ ∶ A →B, the surjective mor-
phism ⟨H,γ∗⟩ ∶ A∗ →B of Corollary 1338 is the unique surjective morphism
such that the following diagram commutes.

A
⟨I, π⟩ ✲ A∗

❩
❩
❩
❩
❩
❩
❩

⟨H,γ⟩
⑦

B

⟨H,γ∗⟩
❄
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Thus, MatFam∗(I) is a reflective subcategory of MatFam(I) with ∗ a
reflector from MatFam(I) to MatFam∗(I). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a π-
institution based on F. Given an I-matrix family A = ⟨A, T ⟩, we denote by
FiFamI(A) the principal filter of the complete lattice FiFamI(A) generated
by the I-filter family T :

FiFamI(A) = {T ′ ∈ FiFamI(A) ∶ T ≤ T ′}.
Recall that this set is also denoted by FiFamI(A)T , without explicit reference
to the matrix family A = ⟨A, T ⟩.

The Correspondence Theorem allows us to prove the following.

Theorem 1340 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a protoalgebraic π-institution based on F. For every I-matrix family
A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩,

FiFamI(A) ≅ FiFamI(A∗).
Proof: By The Correspondence Theorem 1336, with B = A/ΩA(T ), ⟨H,γ⟩ =⟨I, π⟩ ∶ A→ A/ΩA(T ) and T ′ = T /ΩA(T ), we get

FiFamI(A/ΩA(T ))T /ΩA(T ) ≅ FiFamI(A)π−1(T /ΩA(T )).
But this amounts to FiFamI(A∗) ≅ FiFam(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Consider F-matrix families A = ⟨A, T ⟩ and B =⟨B, T ′⟩ and a surjective matrix morphism ⟨H,γ⟩ ∶ A → B. By definition,
we have T ≤ γ−1(T ′). We call γ−1(T ′) the filter kernel of ⟨H,γ⟩. By the
inclusion relation above, we can see that, if B ∈MatFam(I), then γ−1(T ′) ∈
FiFamI(A).

Given A = ⟨A, T ⟩ and X ∈ SenFam(A), such that T ≤X , we define

A/X ∶= ⟨A,X⟩∗ = ⟨A/ΩA(X),X/ΩA(X)⟩.
We call A/X the quotient of A by X . We note that, if A ∈ MatFam(I),
then

X ∈ FiFamI(A) iff A/X ∈MatFam∗(I).
The following is an analog in the context of I-matrix families of the

Homomorphism Theorem of Universal Algebra.

Theorem 1341 (Homomorphism Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and I = ⟨F,C⟩ be a protoalgebraic π-institution based
on F. Let also A = ⟨A, T ⟩, A′ = ⟨A′, T ′⟩ ∈MatFam(I) and ⟨H,γ⟩ ∶ A → A′ a
surjective morphism.
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(i) There exists a strict surjective morphism ⟨H,γ′⟩ ∶ A/γ−1(T ′)→ A′∗ with
isomorphic components;

(ii) If X ∈ FiFamI(A) and X ≤ γ−1(T ′), then, there exists a surjective
morphism ⟨H,γX⟩ ∶ A/X → A′∗, such that

A
⟨H,γ⟩ ✲ A′

A/X
⟨I, πX⟩

❄

⟨H,γX⟩ ✲ A′∗

⟨I, π⟩
❄

⟨H,γX⟩ ○ ⟨I, πX⟩ = ⟨I, π⟩ ○ ⟨H,γ⟩.
Proof:

(i) First, note that γ−1(T ′) ≤ γ−1(T ′), whence, ⟨H,γ⟩ ∶ ⟨A, γ−1(T ′)⟩ → A′

is also a surjective matrix morphism. Thus, taking into account that
T ≤ γ−1(T ′), we get, by Theorem 1337, a surjective matrix morphism⟨H,γ∗⟩ ∶ A/γ−1(T ′)→ A′∗, such that the following diagram commutes.

⟨A, γ−1(T ′)⟩ ⟨H,γ⟩ ✲ A′

A/γ−1(T ′)
⟨I, π⟩

❄

⟨H,γ∗⟩ ✲ A′∗

⟨I, π⟩
❄

It remains to show that, for every Σ ∈ ∣Sign∣,
γ∗Σ ∶ SENγ−1(T ′)(Σ)→ SEN′∗(H(Σ))

is a bijection and that ⟨H,γ∗⟩ is strict. To see that γ∗Σ is a bijection,
let φ,ψ ∈ SEN(Σ), such that

γ∗Σ(φ/ΩAΣ(γ−1(T ′))) = γ∗Σ(ψ/ΩAΣ(γ−1(T ′))).
Then, by the commutativity of the rectangle,

γΣ(φ)/ΩA′H(Σ)(T ′) = γΣ(ψ)/ΩA′H(Σ)(T ′).
This gives that ⟨φ,ψ⟩ ∈ γ−1Σ (ΩA′H(Σ)(T ′)). Thus, ⟨φ,ψ⟩ ∈ ΩAΣ(γ−1(T ′))
and, hence,

φ/ΩAΣ(γ−1(T ′)) = φ/ΩAΣ(γ−1(T ′)).
Therefore, γ∗Σ ∶ SENγ−1(T ′)(Σ) → SEN′∗(H(Σ)) is a bijection, for all
Σ ∈ ∣Sign∣.
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To prove strictness, assume Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that
φ/ΩAΣ(γ−1(T ′)) ∈ γ∗−1Σ (T ′H(Σ)/ΩA′H(Σ)(T ′)). Then γ∗Σ(φ/ΩAΣ(γ−1(T ′))) ∈
T ′
H(Σ)
/ΩA′

H(Σ)
(T ′). Hence, by the definition of γ∗, we get γΣ(φ)∗ ∈

T ′
H(Σ)
/ΩA′

H(Σ)
(T ′). By compatibility, we obtain γΣ(φ) ∈ T ′H(Σ), whence

φ ∈ γ−1Σ (T ′H(Σ)). This, finally, yields

φ/ΩAΣ(γ−1(T ′)) ∈ γ−1Σ (T ′H(Σ))/ΩAΣ(γ−1(T ′)),
proving strictness.

(ii) This part is proven by the following diagram chase:

A
⟨H,γ⟩ ✲ A′

A/X
⟨I, πX⟩

❄

⟨I, π⟩✲ A/γ−1(T ′) ⟨H,γ′⟩✲ A′∗

⟨I, π⟩
❄

where ⟨I, π⟩ ∶ A/X → A/γ−1(T ′) is the canonical projection morphism,
defined because of the hypothesis X ≤ γ−1(T ′) and protoalgebraicity,
and ⟨H,γ′⟩ ∶ A/γ−1(T ′)→ A′∗

is the morphism obtained in Part (i).
∎

18.2 Pointed Classes of Algebraic Systems

Proposition 1342 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic π-institution based on F, having theorems. Then
the following conditions are equivalent:

(i) I is family regular;

(ii) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ TΣ, TΣ = φ/ΩΣ(T );
(iii) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all t ∈ ThmΣ(I), TΣ =

t/ΩΣ(T );
(iv) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and some φ ∈ TΣ, TΣ = φ/ΩΣ(T );
(v) For all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and some t ∈ ThmΣ(I), TΣ =

t/ΩΣ(T ).
Proof:
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(i)⇒(ii) Suppose I is family regular and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and
φ ∈ TΣ. Then, we have, for all ψ ∈ SEN♭(Σ),
ψ ∈ TΣ iff φ,ψ ∈ TΣ (φ ∈ TΣ)

iff C(φ,ψ) ≤ T (definition of C(φ,ψ))
implies ΩΣ(C(φ,ψ)) ≤ ΩΣ(T ) (I protoalgebraic)
implies ⟨φ,ψ⟩ ∈ ΩΣ(T ) (I family regular)

iff ψ ∈ φ/ΩΣ(T ). (definition of φ/ΩΣ(T ))
On the other hand, if ψ ∈ φ/ΩΣ(T ), then, since φ ∈ TΣ, by the compat-
ibility of Ω(T ) with T , ψ ∈ TΣ. Thus, we conclude that TΣ = φ/ΩΣ(T ).

(ii)⇒(iii) Suppose (ii) holds and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and t ∈ ThmΣ(I).
Then, since Thm(I) ≤ T , we get that t ∈ TΣ and, hence, by hypothesis,
TΣ = t/ΩΣ(T ).

(iii)⇒(iv) Assume (iii) holds and let T ∈ ThFam(I) and Σ ∈ ∣Sign♭∣. Since I has
theorems, there exists t ∈ ThmΣ(I). Then, t ∈ TΣ and, by hypothesis,
TΣ = t/ΩΣ(T ).

(iv)⇒(v) Assume (iv) holds and let T ∈ ThFam(I) and Σ ∈ ∣Sign♭∣. Then, by
hypothesis, there exists φ ∈ TΣ, such that TΣ = φ/ΩΣ(T ). Moreover,
I has theorems, whence, there exists t ∈ ThmΣ(I). Then, we have t ∈
TΣ = φ/ΩΣ(T ), whence ⟨φ, t⟩ ∈ ΩΣ(T ) and, therefore, TΣ = φ/ΩΣ(T ) =
t/ΩΣ(T ).

(v)⇒(i) Assume that (v) holds and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈
TΣ. By hypothesis, for some t ∈ ThmΣ(I), TΣ = t/ΩΣ(T ). Hence,
φ,ψ ∈ t/ΩΣ(T ), i.e., ⟨φ, t⟩ ∈ ΩΣ(T ) and ⟨t,ψ⟩ ∈ ΩΣ(T ). By transitivity,⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, I is family regular.

∎

We show now that a protoalgebraic family assertional π-institution I is
weakly family algebraizable.

Theorem 1343 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. If I is family assertional,
then it is weakly family algebraizable.

Proof: By Definition 613, protoalgebraicity and family assertionality are
equivalent to regular weak family algebraizability. By Proposition 620, this
entails weak family algebraizability.

More directly, assume I is family assertional. Since it is protoalgebraic,
by hypothesis, it suffices to show that I is family injective. To this end, let
T,T ′ ∈ ThFam(I), such that Ω(T ) = Ω(T ′). Then, we have, for all Σ ∈ ∣Sign♭∣
and all t ∈ ThmΣ(I),

TΣ = t/ΩΣ(T ) = t/ΩΣ(T ′) = T ′Σ.
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Therefore T = T ′. Hence I is family injective and, therefore, it is weakly
family algebraizable. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭, and K a class of F-algebraic systems. We say that K is ⊺♭-
pointed if, for allA = ⟨A, ⟨F,α⟩⟩ ∈ K, with A = ⟨Sign,SEN,N⟩, all Σ ∈ ∣Sign∣
and all φ⃗, ψ⃗ ∈ SEN(Σ),

⊺AΣ(φ⃗) = ⊺AΣ(ψ⃗).
K is called pointed if it is ⊺♭-pointed with respect to some ⊺♭ in N ♭.

If a class K is pointed, then, for every A ∈ K, we write ⊺A = {⊺AΣ}Σ∈∣Sign∣,
where ⊺AΣ ∶= ⊺AΣ(φ⃗), for some φ⃗ ∈ SEN(Σ), this value being independent of

the choice of φ⃗ ∈ SEN(Σ).
We focus now on protoalgebraic, family regular π-institutions that have

natural theorems. Recall that this means that there exists a natural trans-
formation ⊺♭ in N ♭, such that ⊺♭ is evaluated to a theorem in every signature
and at all tuples of sentences. Of course, by definition, all π-institutions
that fit this description are regularly weakly family algebraizable. We show
that for such π-institutions, the class AlgSys∗(I) of their reduced algebraic
systems is a pointed class of F-algebraic systems, where any natural theorem
may serve as the “point”.

Proposition 1344 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic family regular π-institution based on F, having
natural theorems. Then, the class AlgSys∗(I) is a pointed class of F-algebraic
systems.

Proof: Suppose I is protoalgebraic and family regular, with a natural
theorem ⊺♭ ∶ (SEN♭)k → SEN♭, i.e., such that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ), ⊺♭Σ(φ⃗) ∈ ThmΣ(I). By family regularity, we have, for all

Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ), ⟨⊺♭Σ(φ⃗),⊺♭Σ(ψ⃗)⟩ ∈ ΩΣ(Thm(I)). Now, let
A ∈ AlgSys∗(I). Thus, there exists T ∈ FiFamI(A), such that ΩA(T ) = ∆A.
Therefore, for all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ), we get, by what
was shown above and protoalgebraicity, and taking into account Lemma 51,⟨⊺♭Σ(φ⃗),⊺♭Σ(ψ⃗)⟩ ∈ ΩΣ(α−1(T )), whence, by Proposition 24, ⟨⊺♭Σ(φ⃗),⊺♭Σ(ψ⃗)⟩ ∈
α−1Σ (ΩAF (Σ)(T )). Thus,

⟨αΣ(⊺♭Σ(φ⃗)), αΣ(⊺♭Σ(ψ⃗))⟩ ∈ ΩAF (Σ)(T ) =∆AF (Σ),

i.e., since ⊺♭ is a natural transformation, ⊺A
F (Σ)
(αΣ(φ⃗)) = ⊺AF (Σ)(αΣ(ψ⃗)). Tak-

ing into account the surjectivity of ⟨F,α⟩, we conclude that AlgSys∗(I) is
a pointed class of F-algebraic systems, with any natural theorem serving as
the “point” natural transformation. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭ and K a ⊺♭-pointed class of F-algebraic systems. We say that K
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is relatively point regular if, for every θ, θ′ ∈ ConSysK(F),
⊺♭/θ = ⊺♭/θ′ implies θ = θ′.

It is not difficult to show that the defining property transfers from K-
congruence systems on F to K-congruence systems on every F-algebraic sys-
tem, under the proviso that K be an abstract class.

Lemma 1345 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶(SEN♭)k → SEN♭ a natural transformation in N ♭, and K a ⊺♭-pointed abstract
class of F-algebraic systems. If K is relatively point regular, then, for every
F-algebraic system A and all θ, θ′ ∈ ConSysK(A),

⊺A/θ = ⊺A/θ′ implies θ = θ′.

Proof: Suppose A is an F-algebraic system, θ, θ′ ∈ ConSysK(A), such that
⊺A/θ = ⊺A/θ′. Then, for all Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),

⟨φ,⊺♭Σ⟩ ∈ α−1Σ (θF (Σ)) iff ⟨αΣ(φ), αΣ(⊺♭Σ)⟩ ∈ θF (Σ)
iff ⟨αΣ(φ),⊺AF (Σ)⟩ ∈ θF (Σ)
iff ⟨αΣ(φ),⊺AF (Σ)⟩ ∈ θ′F (Σ)
iff ⟨αΣ(φ), αΣ(⊺♭Σ)⟩ ∈ θ′F (Σ)
iff ⟨φ,⊺♭Σ⟩ ∈ α−1Σ (θ′F (Σ)).

Thus, ⊺♭/α−1(θ) = ⊺♭/α−1(θ′). Since K is abstract and A/θ,A/θ′ ∈ K, we get
that F/α−1(θ),F/α−1(θ′) ∈ K. It follows that α−1(θ), α−1(θ′) ∈ ConSysK(F).
Since K is relatively point regular, by definition, α−1(θ) = α−1(θ′). Therefore,
by surjectivity of ⟨F,α⟩, θ = θ′. ∎

Moreover, we can show that, for a protoalgebraic family regular π-insti-
tution I , having natural theorems, the associated class AlgSys∗(I) of its
reduced algebraic systems is a relatively point regular class.

Proposition 1346 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic family regular π-institution based on F, having
natural theorems. Then, the class AlgSys∗(I) is a relatively point regular
class of F-algebraic systems.

Proof: We know, by Proposition 1344, that AlgSys∗(I) is pointed, with any
natural theorem ⊺♭ serving as a “point”. Consider θ, θ′ ∈ ConSys∗(I), such
that ⊺♭/θ = ⊺♭/θ′. Since θ, θ′ ∈ ConSys∗(I), there exist T,T ′ ∈ ThFam(I),
such that θ = Ω(T ) and θ′ = Ω(T ′). But then, since I is protoalgebraic and
family regular, with theorems, we get, by Proposition 1342,

θ = Ω(T )
= Ω(⊺♭/Ω(T )) (Proposition 1342)
= Ω(⊺♭/θ)
= Ω(⊺♭/θ′) (hypothesis)
= Ω(⊺♭/Ω(T ′))
= Ω(T ′) (Proposition 1342)
= θ′.
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Hence AlgSys∗(I) is indeed relatively point regular. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭, and K a ⊺♭-pointed class of F-algebraic systems. Define on F
the family CK,⊺ = {CK,⊺

Σ }Σ∈∣Sign♭∣, by letting, for all Σ ∈ ∣Sign♭∣,
C

K,⊺
Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)),

be given, for all Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ CK,⊺
Σ (Φ) iff φ ≈ ⊺♭Σ ∈ C

K
Σ(Φ ≈ ⊺♭Σ),

i.e., φ ∈ CK,⊺
Σ (Φ) if and only if, for all A = ⟨A, ⟨F,α⟩⟩ ∈ K, all Σ′ ∈ ∣Sign♭∣ and

all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(φ)) = ⊺AF (Σ′).

In the next proposition, it is shown that CK,⊺ is a closure system on F.
In this way the pointed class K of F-algebraic systems defines a bona fide
π-institution based on F.

Proposition 1347 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed class of F-algebraic systems.
CK,⊺ is a closure system on F.

Proof: Let Σ ∈ ∣Sign♭∣. It is obvious from the definition that

C
K,⊺
Σ ∶ P(SEN♭(Σ))→ P(SEN♭(Σ))

is inflationary and monotone. To show that it is also idempotent, let Φ∪{φ} ⊆
SEN♭(Σ), such that φ ∈ CK,⊺

Σ (CK,⊺
Σ (Φ)). Thus, we have, by definition, for all

A ∈ K, all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(CK,⊺

Σ (Φ))) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(φ)) = ⊺AF (Σ′).
But, also by definition, we have, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(CK,⊺

Σ (Φ))) ⊆ {⊺AF (Σ′)}.
Therefore, we get that, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ {⊺AF (Σ′)} implies αΣ′(SEN♭(f)(φ)) = ⊺AF (Σ′),
showing that φ ∈ CK,⊺

Σ (Φ).
It remains, finally, to show that CK,⊺ is structural. Let Σ,Σ′ ∈ ∣Sign♭∣,

f ∈ Sign♭(Σ,Σ′) and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CK,⊺
Σ (Φ). Consider

A ∈ K, such that, for all Σ′′ ∈ ∣Sign♭∣ and all g ∈ Sign♭(Σ′,Σ′′),
Σ

f ✲ Σ′
g ✲ Σ′′
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αΣ′′(SEN♭(g)(SEN♭(f)(Φ))) ⊆ {⊺A
F (Σ′′)

}. This gives αΣ′′(SEN♭(gf)(Φ)) ⊆
{⊺A

F (Σ′′)
}, whence, by hypothesis, αΣ′′(SEN♭(gf)(φ)) = ⊺A

F (Σ′′)
. Thus, for all

Σ′′ ∈ ∣Sign♭∣ and all g ∈ Sign♭(Σ′,Σ′′), αΣ′′(SEN♭(g)(SEN♭(f)(φ))) = ⊺A
F (Σ′′)

.

We conclude that SEN♭(f)(φ) ∈ CK,⊺
Σ′ (SEN♭(f)(Φ)) and, therefore, CK,⊺ is

also structural. ∎

Based on Proposition 1347, it makes sense, given an algebraic system
F = ⟨Sign♭,SEN♭,N ♭⟩, with ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed
class of F-algebraic systems, to define the assertional π-institution of K
as the pair

IK,⊺ = ⟨F,CK,⊺⟩.
We have seen in Proposition 1346 that, if I = ⟨F,C⟩ is a protoalge-

braic and family regular π-institution, having natural theorems, then its class
AlgSys∗(I) of reduced F-algebraic systems is a relatively point regular class.
We show next, in a form of converse, that if K is a relatively point regular
guasivariety of F-algebraic systems, then the assertional π-institution IK,⊺,
associated with K, is a protoalgebraic family regular π-institution that has
natural theorems.

First, we establish possession of natural theorems, under the assumption
that K is pointed.

Proposition 1348 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a pointed class of F-algebraic systems.
Then IK,⊺ has natural theorems.

Proof: Let K be a pointed class of F-algebraic systems. Since K is pointed,
there exists ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, such that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ), all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

⊺AF (Σ′)(αΣ′(SEN♭(f)(φ⃗))) = ⊺AF (Σ′).
This implies that αΣ′(⊺♭Σ′(SEN♭(f)(φ⃗))) = ⊺A

F (Σ′)
and, hence, we obtain

αΣ′(SEN♭(f)(⊺♭Σ(φ⃗))) = ⊺AF (Σ′). Thus, by definition, ⊺♭Σ(φ⃗) ∈ CK,⊺
Σ (∅) and,

therefore, ⊺♭ is a natural theorem. ∎

Next, we turn to proving family regularity, again under the assumption
of pointedness.

Proposition 1349 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a pointed class of F-algebraic systems.
Then IK,⊺ is a family regular π-institution.

Proof: Let K be a pointed class of F-algebraic systems. We know, by
Proposition 1348, that IK,⊺ has a natural theorem ⊺♭, where ⊺♭ is a point
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in K. We show that IK,⊺ is family regular. To this end, let Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ). Then, for all Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′), we have

SEN♭(f)(φ) ≈ ⊺♭Σ′ ,SEN♭(f)(ψ) ≈ ⊺♭Σ′ ∈ CK
Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ).

This implies that, for all σ♭ in N ♭ and all χ⃗ ∈ SEN♭(Σ′),
σ♭Σ′(SEN♭(f)(φ), χ⃗) ≈ σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ CK

Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ).
Now we get

σ♭Σ′(SEN♭(f)(φ), χ⃗) ≈ ⊺♭Σ′ ∈ CK
Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ)

iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ≈ ⊺♭Σ′ ∈ CK
Σ′(φ ≈ ⊺♭Σ, ψ ≈ ⊺♭Σ).

Hence, by definition,

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ CK,⊺
Σ′ (φ,ψ)

iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ CK,⊺
Σ′ (φ,ψ).

Therefore, by Theorem 19, ⟨φ,ψ⟩ ∈ ΩΣ(C(φ,ψ)). ∎

Before establishing protoalgebraicity, we need a couple of lemmas. We
show, first, that, if K is a pointed class, then all theory families of IK,⊺ are
fully determined by the corresponding Leibniz class of the point.

Lemma 1350 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a nat-
ural transformation ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a pointed class of
F-algebraic systems. Then, for all T ∈ ThFam(IK,⊺),

T = ⊺♭/Ω(T ).
Proof: Let K be a pointed class of F-algebraic systems, T ∈ ThFam(IK,⊺),
Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).

• Suppose φ ∈ ⊺♭Σ/ΩΣ(T ). This means that ⟨φ,⊺♭Σ⟩ ∈ ΩΣ(T ). But, by def-
inition, ⊺♭Σ ∈ ThmΣ(IK,⊺) ⊆ TΣ, whence, by the compatibility property
of Ω(T ) with T , we get that φ ∈ TΣ.

• Suppose φ ∈ TΣ. Then φ ≈ ⊺♭Σ ∈ C
K
Σ(T ≈ ⊺♭). This implies that, for all

σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), and all χ⃗ ∈ SEN♭(Σ′),
σ♭Σ′(SEN♭(f)(φ), χ⃗) ≈ ⊺♭Σ′ ∈ CK

Σ′(T ≈ ⊺♭)
iff σ♭Σ′(SEN♭(f)(⊺♭Σ), χ⃗) ≈ ⊺♭Σ′ ∈ CK

Σ′(T ≈ ⊺♭).
This is, by definition, equivalent to the statement that, for all σ♭ in N ♭,
all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), and all χ⃗ ∈ SEN♭(Σ′),
σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ CK,⊺

Σ′ (T ) iff σ♭Σ′(SEN♭(f)(⊺♭Σ), χ⃗) ∈ CK,⊺
Σ′ (T ).

We conclude that ⟨φ,⊺♭Σ⟩ ∈ ΩΣ(T ), i.e., that φ ∈ ⊺♭Σ/ΩΣ(T ).
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Thus, we get that T = ⊺♭/Ω(T ). ∎

Next, we show that, if K is a relatively point regular guasivariety, then,
for every theory family of IK,⊺, the quotient of F by the Leibniz congruence
system of T , belongs to K and, therefore, for every theory family T of IK,⊺,
the Leibniz congruence system Ω(T ) is a K-congruence system on F .

Lemma 1351 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a nat-
ural transformation ⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a relatively point
regular guasivariety of F-algebraic systems. Then, for all T ∈ ThFam(IK,⊺),
F/Ω(T ) ∈ K.

Proof: Suppose that K is a relatively point regular guasivariety of F-algebraic
systems and let Σ ∈ ∣Sign♭∣, φi, ψi ∈ SEN♭(Σ), i ∈ I, φ,ψ ∈ SEN♭(Σ), such that

⟨{φi ≈ ψi ∶ i ∈ I}, φ ≈ ψ⟩ ∈ GEqΣ(K).
This is equivalent to the statement ⟨φ,ψ⟩ ∈ ΘK,F

Σ ({⟨φi, ψi⟩ ∶ i ∈ I}). Since
ΘK,F({⟨φi, ψi⟩ ∶ i ∈ I}) ∈ ConSysK(F) and K is relatively point regular,
ΘK,F({⟨φi, ψi⟩ ∶ i ∈ I}) is completely determined by its ⊺♭-equivalence class.
So it suffices to consider guasiequations of the form

⟨{φi ≈ ⊺♭Σ ∶ i ∈ I}, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K).
Now, let T ∈ ThFam(IK,⊺), such that ⟨φi,⊺♭Σ⟩ ∈ ΩΣ(T ), for all i ∈ I. Then,
taking into account Lemma 1350, φi ∈ ⊺♭Σ/ΩΣ(T ) = TΣ, for all i ∈ I. Therefore,
by definition, φi ≈ ⊺♭Σ ∈ C

K
Σ(T ≈ ⊺♭), for all i ∈ I. Since, by hypothesis, ⟨{φi ≈

⊺♭Σ ∶ i ∈ I}, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K), we get φ ≈ ⊺♭Σ ∈ C
K
Σ(T ≈ ⊺♭), i.e., φ ∈ CK,⊺

Σ (T ).
Since T ∈ ThFam(IK,⊺), φ ∈ TΣ = ⊺♭Σ/ΩΣ(T ). Therefore, ⟨φ,⊺♭Σ⟩ ∈ ΩΣ(T ). We
conclude that F/Ω(T ) satisfies all guasiequations of K and, hence, since K is
a guasivariety, F/Ω(T ) ∈ K. ∎

Finally, we establish protoalgebraicity of IK,⊺, under the hypotheses that
K is a relatively point regular guasivariety of F-algebraic systems.

Proposition 1352 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a relatively point regular guasivariety of
F-algebraic systems. Then IK,⊺ is a protoalgebraic π-institution.

Proof: Let K be a relatively point regular guasivariety of F-algebraic sys-
tems. We know, by Proposition 1348, that IK,⊺ has a natural theorem ⊺♭,
where ⊺♭ is a point in K, and, by Proposition 1349, that IK,⊺ is a family
regular π-institution.

Now we show that IK,⊺ is protoalgebraic. Suppose that T,T ′ ∈ ThFam(I),
such that T ≤ T ′. Then, by Lemma 1350, we get ⊺♭/Ω(T ) ≤ ⊺♭/Ω(T ′). Since,
by Lemma 1351, Ω(T ) and Ω(T ′) are K-congruence systems on F and K is
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relatively point regular, they are completely determined (generated) by their
⊺♭-classes and, hence, we get Ω(T ) ≤ Ω(T ′). Thus, IK,⊺ is protoalgebraic. ∎

We show, next, that, for a protoalgebraic family regular π-institution I ,
having natural theorems, the assertional π-institution of its class AlgSys∗(I)
of reduced F-algebraic systems coincides with I .

Theorem 1353 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family regular protoalgebraic π-institution based on F, having a nat-
ural theorem ⊺. Then

IAlgSys∗(I),⊺ = I .

Proof: Set, for brevity in the course of this proof, K ∶= AlgSys∗(I). Let
Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Then

φ ∈ CK,⊺
Σ (Φ) iff φ ≈ ⊺♭Σ ∈ C

K
Σ(Φ ≈ ⊺♭Σ)

iff for all T ∈ ThFam(I),Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
SEN♭(f)(Φ) ≈ ⊺♭Σ′ ∈ ΩΣ′(T )

implies SEN♭(f)(φ) ≈ ⊺♭Σ′ ∈ ΩΣ′(T )
iff for all T ∈ ThFam(I),Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(Φ) ∈ TΣ′ implies SEN♭(f)(φ) ∈ TΣ′
iff φ ∈ CΣ(Φ).

We conclude that CK,⊺ = C and, therefore, IAlgSys∗(I),⊺ = I . ∎

Moreover, starting with a relatively point regular guasivariety of F-alge-
braic systems, the class of all reduced F-algebraic systems of its assertional
π-institution coincides with the original class.

Theorem 1354 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶(SEN♭)k → SEN♭ in N ♭, and K a relatively point regular guasivariety of F-
algebraic systems. Then

AlgSys∗(IK,⊺) = K.
Proof: Let K be a relatively point regular guasivariety of F-algebraic sys-
tems. Assume that A ∈ K and consider {⊺A} ∶= {⊺AΣ}Σ∈∣Sign∣ ∈ SenFam(A).
Then, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CK,⊺

Σ (Φ) and
αΣ(Φ) ⊆ {⊺AF (Σ)}, we get, by the definition of CK,⊺, αΣ(φ) = ⊺AF (Σ). Therefore,

{⊺A} ∈ ThFam(IK,⊺). Moreover, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
⟨φ,⊺AΣ⟩ ∈ ΩAΣ({⊺A}) iff φ = ⊺AΣ (Lemma 1350)

iff ⟨φ,⊺AΣ⟩ ∈ ∆AΣ .

Thus, ⊺A/ΩA({⊺A}) = ⊺A/∆A. Therefore, by relative point regularity, we
obtain ΩA({⊺A}) = ∆A. This yields A ∈ AlgSys∗(IK,⊺).
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Assume, conversely, that A ∈ AlgSys∗(IK,⊺). Then, by definition, there

exists T ∈ FiFamI
K,⊺(A), such that ΩA(T ) = ∆A. Suppose that Σ ∈ ∣Sign♭∣,

Φ ∪ {φ} ⊆ SEN♭(Σ), such that

⟨Φ ≈ ⊺♭Σ, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K)
and αΣ(Φ) ⊆ {⊺AF (Σ)}. Then, since T ∈ FiFamI

K,⊺(A), αΣ(Φ) ⊆ TF (Σ).

Hence, Φ ⊆ α−1Σ (TF (Σ)). Since T ∈ ThFamI
K,⊺(A), by Lemma 51, α−1(T ) ∈

ThFam(IK,⊺), whence, by Lemma 1350, α−1(T ) = ⊺♭/Ω(α−1(T )). Thus, we
get Φ ⊆ ⊺♭Σ/ΩΣ(α−1(T )). Hence, Φ ≈ ⊺♭Σ ∈ ΩΣ(α−1(T )). By Lemma 1351,
Ω(α−1(T )) ∈ ConSysK(F), whence, since ⟨Φ ≈ ⊺♭Σ, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(K),
φ ≈ ⊺♭Σ ∈ ΩΣ(α−1(T )). By Proposition 24, φ ≈ ⊺♭Σ ∈ α

−1
Σ (ΩAF (Σ)(T )), i.e.,

αΣ(φ) ≈ ⊺AF (Σ) ∈ ΩA
F (Σ)
(T ) = ∆A

F (Σ)
. Thus, αΣ(φ) = ⊺AF (Σ). We conclude

that ⟨Φ ≈ ⊺♭Σ, φ ≈ ⊺♭Σ⟩ ∈ GEqΣ(A). Since A satisfies all guasiequations in
GEq(K) and K is, by hypothesis, a guasivariety, we get that A ∈ K. There-
fore, AlgSys∗(IK,⊺) = K. ∎

Now we can formulate the main theorems of the section.

Theorem 1355 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic family regular, with
natural theorems, if and only if it is the assertional π-institution of a relatively
point regular guasivariety of F-algebraic systems.

More precisely, I is protoalgebraic family regular, with natural theorems,
if and only if AlgSys∗(I) is a relatively point regular guasivariety and I =
IAlgSys∗(I),⊺, where ⊺♭ is any natural theorem.

Proof: Suppose I is protoalgebraic family regular, with natural theorems.
Then, by Proposition 1346, AlgSys∗(I) is a relatively point regular class of
F-algebraic systems and, by protoalgebraicity, Proposition 68 and Theorem
??, it is a guasivariety. Moreover, by Theorem 1353, I = IAlgSys∗(I),⊺.

Assume, conversely, that IK,⊺ is the assertional π-institution of a relatively
point regular guasivariety K of F-algebraic systems. Then, by Proposition
1349, it is family regular, by Proposition 1352, it is protoalgebraic and, by
Proposition 1348, it has natural theorems. ∎

Theorem 1356 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭. Then, there exists a one to one correspondence
between relatively point regular guasivarieties, with point ⊺♭, and family reg-
ular protoalgebraic π-institutions, with a natural theorem ⊺♭.

Every relatively point regular guasivariety with point ⊺♭ determines a
unique family regular protoalgebraic π-institution with natural theorems, its
assertional π-institution.
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Every family regular protoalgebraic π-institution with natural theorems is
the assertional π-institution of a unique relatively point regular guasivariety,
the guasivariety AlgSys∗(I) of all its reduced F-algebraic systems.

For each family regular protoalgebraic π-institution, with a natural theo-
rem ⊺♭, we have I = IAlgSys∗(I),⊺ and, conversely, for every relatively point
regular guasivariety K, with point ⊺♭, we have K = AlgSys∗(IK,⊺).
Proof: This is a recap of Theorems 1353 and 1354. ∎



Chapter 19

Full Models of π-Institutions
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19.1 π-Structures Revisited

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. An N ♭-structure is
a pair IL = ⟨A,D⟩, where A = ⟨Sign,SEN,N⟩ is an N ♭-algebraic system and
D ∶ PSEN → PSEN is a closure (operator) family (not necessarily a system,
i.e., not necessarily structural) on A. An F-structure is a pair IL = ⟨A,D⟩,
where A = ⟨A, ⟨F,α⟩⟩ is an F-algebraic system and D ∶ PSEN → PSEN is a
closure family on A.

We give a condition pinpointing exactly when a closure family is a closure
system and, as a consequence, when a π-structure becomes a π-institution.

Proposition 1357 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and D ∶
PSEN → PSEN a closure family on SEN. Then D is a closure system, if and
only if, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), SEN(f)−1(DΣ′) ⊆ DΣ.

Proof: Suppose, first, that D is structural and let Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′), X ′ ⊆ SEN(Σ′), such that DΣ′(X ′) =X ′. Then we have

SEN(f)(DΣ(SEN(f)−1(X ′))) ⊆ DΣ′(SEN(f)(SEN(f)−1(X ′)))
⊆ DΣ′(X ′)
= X ′.

So DΣ(SEN(f)−1(X ′)) ⊆ SEN(f)−1(X ′) and SEN(f)−1(X ′) ∈ DΣ.
Suppose, conversely, that, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)−1(DΣ′) ⊆ DΣ. Let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and Φ ∪ {φ} ⊆
SEN(Σ), such that φ ∈ DΣ(Φ). Let T ′ ∈ DΣ′ , such that SEN(f)(Φ) ⊆ T ′.
Thus, Φ ⊆ SEN(f)−1(T ′). By hypothesis, SEN(f)−1(T ′) ∈ DΣ, whence, since
φ ∈DΣ(Φ) and Φ ⊆ SEN(f)−1(T ′), we get that φ ∈ SEN(f)−1(T ′) and, there-
fore, SEN(f)(φ) ∈ T ′. We conclude that SEN(f)(φ) ∈ DΣ′(SEN(f)(Φ)).
Thus, D is a structural closure family on SEN. ∎

Let IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic
system morphism ⟨F,α⟩ ∶ A→A′. We say that

⟨F,α⟩ is a logical morphism from IL to IL′ , denoted ⟨F,α⟩ ∶ IL⟩−IL′,
if, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) implies αΣ(φ) ∈D′F (Σ)(αΣ(Φ)),
or, equivalently, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),

αΣ(DΣ(Φ)) ⊆D′F (Σ)(αΣ(Φ)).
Proposition 1358 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic system morphism⟨F,α⟩ ∶ A→A′. ⟨F,α⟩ ∶ IL⟩−IL′ is a logical morphism if and only if, for every
T ′ ∈ ThFam(IL′), α−1(T ′) ∈ ThFam(IL).
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Proof: Suppose, first, that ⟨F,α⟩ ∶ IL⟩−IL′ is a logical morphism and let
T ′ ∈ ThFam(IL′), Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ DΣ(α−1Σ (T ′F (Σ))).
Then, we have

αΣ(φ) ∈ αΣ(DΣ(α−1Σ (T ′F (Σ))))
⊆ D′

F (Σ)
(αΣ(α−1Σ (T ′F (Σ))))

⊆ D′
F (Σ)
(T ′

F (Σ)
)

= T ′
F (Σ)

.

Therefore, φ ∈ α−1Σ (T ′F (Σ)) and we conclude that α−1(T ′) ∈ ThFam(IL).
Suppose, conversely, that, for every T ′ ∈ ThFam(IL′), we have α−1(T ′) ∈

ThFam(IL) and let Σ ∈ ∣Sign∣, Φ∪{φ} ⊆ SEN(Σ), such that φ ∈DΣ(Φ). Then,
for all T ′ ∈ ThFam(IL′), such that αΣ(Φ) ⊆ T ′F (Σ), we get Φ ⊆ α−1Σ (T ′F (Σ)).
Since φ ∈ DΣ(Φ) and, by hypothesis, α−1(T ) ∈ ThFam(IL), we get φ ∈
α−1Σ (T ′F (Σ)). Hence, αΣ(φ) ∈ T ′F (Σ). Since T ′ ∈ ThFam(IL′) was arbitrary,

we conclude that αΣ(φ) ∈ D′F (Σ)(αΣ(Φ)). Thus, ⟨F,α⟩ ∶ IL⟩−IL′ is a logical
morphism. ∎

Let IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic
system morphism ⟨F,α⟩ ∶ A→A′. We say that

⟨F,α⟩ is a bilogical morphism from IL to IL′ , denoted ⟨F,α⟩ ∶ IL ⊢
IL′, if ⟨F,α⟩ ∶ A → A′ is surjective and, for all Σ ∈ ∣Sign∣ and all
Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ)),
or, equivalently, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),

αΣ(DΣ(Φ)) = D′F (Σ)(αΣ(Φ)).
Proposition 1359 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩, and consider a surjective N ♭-algebraic system
morphism ⟨F,α⟩ ∶ A → A′. ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism if and
only if ThFam(IL) = α−1(ThFam(IL′)).
Proof: Suppose, first, that ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism. Then,
by Proposition 1358, if T ′ ∈ ThFam(IL′), then α−1(T ′) ∈ ThFam(IL), whence
α−1(ThFam(IL′)) ⊆ ThFam(IL). To show the converse, suppose that T ∈
ThFam(IL). For every Σ′ ∈ ∣Sign′∣, choose Σ ∈ ∣Sign∣, such that F (Σ) = Σ′

and let T ′Σ′ =D
′
Σ′(αΣ(TΣ)). Then set

T ′ = {T ′Σ′}Σ′∈∣Sign′∣.
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Clearly, T ′ ∈ ThFam(IL′) and, since ⟨F,α⟩ is a bilogical morphism, α−1(T ′) ∈
ThFam(IL). But we also have. for all Σ ∈ ∣Sign∣,

α−1Σ (T ′F (Σ)) = α−1Σ (D′F (Σ)(αΣ(TΣ))) = DΣ(TΣ) = TΣ.
Therefore, we conclude that ThFam(IL) ⊆ α−1(ThFam(IL′)).

Suppose, conversely, that ThFam(IL) = α−1(ThFam(IL′)) and let Σ ∈∣Sign∣, Φ ∪ {φ} ⊆ SEN(Σ). We have φ ∈ DΣ(Φ) iff, for all T ∈ ThFam(IL),
Φ ⊆ TΣ implies φ ∈ TΣ,

iff, for all T ′ ∈ ThFam(IL′),
Φ ⊆ α−1Σ (T ′F (Σ)) implies φ ∈ α−1Σ (T ′F (Σ)),

iff, for all T ′ ∈ ThFam(IL′),
αΣ(Φ) ⊆ T ′F (Σ) implies αΣ(φ) ∈ T ′F (Σ),

iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ)). Therefore, ⟨F,α⟩ is a bilogical morphism. ∎

Let IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩, and consider an N ♭-algebraic
system morphism ⟨F,α⟩ ∶ A→A′. We say that

⟨F,α⟩ is an α-isomorphism from IL to IL′ , denoted ⟨F,α⟩ ∶ IL ⊢α IL′,
if it is a bilogical morphism ⟨F,α⟩ ∶ IL ⊢ IL′, such that, for all Σ ∈ ∣Sign∣,
αΣ ∶ SEN(Σ)→ SEN′(F (Σ)) is a bijection.

Finally, ⟨F,α⟩ ∶ IL → IL′ is an isomorphism, denoted ⟨F,α⟩ ∶ IL ≅ IL′, if it is
an α-isomorphism and F ∶ Sign→ Sign′ is also an isomorphism.

In most instances, when a result holds for F ∶ Sign → Sign′ an isomor-
phism, we will formulate it, for simplicity, for the identity functor ISign ∶
Sign → Sign, which will be sufficient for most of our purposes.

The following is an important characterization result for bilogical mor-
phisms containing many equivalent formulations.

Given an N ♭-structure IL = ⟨A,D⟩, a congruence system θ ∈ ConSys(A)
is called a logical congruence system of IL if it is compatible with every
theory family of IL, i.e., if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ θΣ implies DΣ(φ) = DΣ(ψ).
If this is the case, we write θ ∈ ConSys(IL).
Proposition 1360 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩, and consider a surjective N ♭-algebraic system
morphism ⟨F,α⟩ ∶ A→A′. Then the following are equivalent:
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(i) ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism;

(ii) For all Σ ∈ ∣Sign∣, Φ ⊆ SEN(Σ), DΣ(Φ) = α−1Σ (D′F (Σ)(αΣ(Φ)));
(iii) For all Σ ∈ ∣Sign∣, Φ ⊆ SEN(Σ), αΣ(DΣ(Φ)) = D′F (Σ)(αΣ(Φ)) and

Ker(⟨F,α⟩) ∈ ConSys(IL);
(iv) For all Σ ∈ ∣Sign∣, Ψ ⊆ SEN′(F (Σ)), D′

F (Σ)
(Ψ) = αΣ(DΣ(α−1Σ (Ψ))) and

Ker(⟨F,α⟩) ∈ ConSys(IL);
(v) For all Σ ∈ ∣Sign∣, ThF (Σ)(IL′) = αΣ(ThΣ(IL)) and, also, Ker(⟨F,α⟩) ∈

ConSys(IL);
(vi) ThFam(IL) = α−1(ThFam(IL′)).

Proof:

(i)⇒(ii) Suppose ⟨F,α⟩ ∶ IL ⊢ IL′ and let Σ ∈ ∣Sign∣, Φ ∪ {φ} ⊆ SEN(Σ). Then,
we have

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ))
iff φ ∈ α−1Σ (D′F (Σ)(αΣ(Φ))).

We conclude that DΣ(Φ) = α−1Σ (D′F (Σ)(αΣ(Φ))).
(ii)⇒(iii) Let Σ ∈ ∣Sign∣ and Φ ⊆ SEN(Σ). Then, by the hypothesis (ii), DΣ(Φ) =

α−1Σ (D′F (Σ)(αΣ(Φ))), whence, by surjectivity of ⟨F,α⟩, αΣ(DΣ(Φ)) =
D′
F (Σ)
(αΣ(Φ)). For the second claim, suppose Σ ∈ ∣Sign∣ and φ,ψ ∈

SEN(Σ), such that αΣ(φ) = αΣ(ψ). Then

α−1Σ (D′F (Σ)(αΣ(φ))) = α−1Σ (D′F (Σ)(αΣ(ψ))).
Thus, by hypothesis, DΣ(φ) = DΣ(ψ). It follows that Ker(⟨F,α⟩) is a
logical congruence system of IL.

(iii)⇒(iv) Let Σ ∈ ∣Sign∣ and Ψ ∈ SEN′(F (Σ)). Then we have

D′
F (Σ)
(Ψ) = D′

F (Σ)
(αΣ(α−1Σ (Ψ)))

= αΣ(DΣ(α−1Σ (Ψ))).
(iv)⇒(v) Let Σ ∈ ∣Sign∣ and assume, first, that T ′ ∈ ThF (Σ)(IL′). Then, we have

T ′ =D′F (Σ)(T ′) = αΣ(DΣ(α−1Σ (T ′))) ∈ αΣ(ThΣ(IL)).
Suppose, conversely, that T ∈ ThΣ(IL). Then, we have

D′
F (Σ)
(αΣ(T )) = αΣ(DΣ(α−1Σ (αΣ(T ))))

= αΣ(DΣ(T ))
= αΣ(T ).

Therefore, αΣ(T ) ∈ ThF (Σ)(IL′).
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(v)⇒(vi) It suffices to show that, for all Σ ∈ ∣Sign∣, ThΣ(IL) = α−1Σ (ThF (Σ)(IL′)).
Suppose, first, T ∈ ThΣ(IL). Then, by hypothesis, αΣ(T ) ∈ ThF (Σ)(IL′).
But, since Ker(⟨F,α⟩) ∈ ConSys(IL), we now get

T = α−1Σ (αΣ(T )) ∈ α−1Σ (ThF (Σ)(IL′)).
Therefore, ThΣ(IL) ⊆ α−1Σ (ThF (Σ)(IL′)).
Suppose, conversely, T ′ ∈ ThF (Σ)(IL′). Then, by hypothesis, there ex-
ists T ∈ ThΣ(IL), such that T ′ = αΣ(T ). Thus, since Ker(⟨F,α⟩) ∈
ConSys(IL), we now get

α−1Σ (T ′) = α−1Σ (αΣ(T )) = T ∈ ThΣ(IL).
We conclude that α−1Σ (ThF (Σ)(IL′)) ⊆ ThΣ(IL) and, hence, ThFam(IL) =
α−1(ThFam(IL′)).

(vi)⇒(i) This is one part of Proposition 1359.
∎

A consequence of the preceding characterization is that, when the cate-
gories of signatures of the N ♭-structures that are connected via a bilogical
morphism are isomorphic, then the complete lattices of their theory families
are order isomorphic.

Proposition 1361 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩ and consider a surjective N ♭-algebraic system
morphism ⟨F,α⟩ ∶ A → A′. Then ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism
if and only if, for all Σ ∈ ∣Sign∣, αΣ ∶ ThΣ(IL) → ThF (Σ)(IL′) is an order
isomorphism.

Proof: First, by Part (v) of Proposition 1360, α is a well defined surjection
from ThΣ(IL) onto ThF (Σ)(IL′). Second, by Part (ii) of Proposition 1360, it
is an injection. Therefore, it is a bijection, whose inverse, also by Part (ii)
of Proposition 1360, is α−1Σ . That both αΣ and α−1Σ are order preserving is
straightforward.

Conversely, note that Part (vi) of Proposition 1360 is automatically sat-
isfied in case αΣ ∶ ThΣ(IL) → ThF (Σ)(IL′) is an order isomorphism, for all
Σ ∈ ∣Sign∣. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and consider an N ♭-
algebraic system A = ⟨Sign,SEN,N⟩. Extending the concept and notation
from the framework of closure systems and π-institutions, given two closure
families D and D′ on A and corresponding N ♭-structures IL = ⟨A,D⟩ and
IL′ = ⟨A,D′⟩, we write D ≤ D′ and IL ≤ IL′ to signify that, for all Σ ∈ ∣Sign∣
and all Φ ⊆ SEN(Σ),

DΣ(Φ) ⊆ D′Σ(Φ).
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Under this ordering, the collection of all closure families on the algebraic
system A forms a complete lattice, which will be denoted by

ClFam(A) = ⟨ClFam(A),≤⟩.
Given D ∈ ClFam(A) and corresponding N ♭-structure IL = ⟨A,D⟩, we write
ClFam(IL) = ClFamD(A) to denote the principal filter of ClFam(A) gener-
ated by D, i.e., we set

ClFam(IL) = {D′ ∈ ClFam(A) ∶ D ≤ D′}.
Then, we have the following corollary, expressed partially in terms of the

closed set families corresponding in the standard way with closure operator
families.

Corollary 1362 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, IL =⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩ and
A′ = ⟨Sign,SEN′,N ′⟩. If ⟨I,α⟩ ∶ IL ⊢ IL′, where I ∶ Sign → Sign is the
identity functor, is a bilogical morphism, then

T ↦ α(T ) ∶= {α(T ) ∶ T ∈ T }
is an isomorphism between ClFam(IL) and ClFam(IL′).
Proof: Directly from Proposition 1361. ∎

Recall that given an algebraic system A = ⟨Sign,SEN,N⟩ and a clo-
sure family D on A, with corresponding N ♭-structure IL = ⟨A,D⟩, and
T ∈ ThFam(IL), we denote by ILT = ⟨A,DT ⟩ the N ♭-structure whose the-
ory families are those closure families of IL that contain T . Moreover, we
denote by Ω̃(ILT ) or Ω̃A(DT ) the Tarski congruence system of ILT , i.e., the
large congruence system on A compatible with all theory families in DT .

Connecting Tarski congruence systems and bilogical morphisms, we ob-
tain the following:

Proposition 1363 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩
and A′ = ⟨Sign′,SEN′,N ′⟩. If ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, then,
for all T ′ ∈ ThFam(IL′),

α−1(Ω̃(IL′T ′)) = Ω̃(ILα−1(T ′)).
Proof: We have

α−1(Ω̃(IL′T ′)) = α−1(⋂{ΩA′(T ′′) ∶ T ′ ≤ T ′′ ∈ ThFam(IL′)})
= ⋂{α−1(ΩA′(T ′′)) ∶ T ′ ≤ T ′′ ∈ ThFam(IL′)})
= ⋂{ΩA(α−1(T ′′)) ∶ T ′ ≤ T ′′ ∈ ThFam(IL′)})
= ⋂{ΩA(T ) ∶ α−1(T ′) ≤ T ∈ ThFam(IL)})
= Ω̃(ILα−1(T ′)).

∎

In particular, we obtain
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Corollary 1364 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, IL =⟨A,D⟩ and IL′ = ⟨A′,D′⟩ be two N ♭-structures, with A = ⟨Sign,SEN,N⟩ and
A′ = ⟨Sign′,SEN′,N ′⟩. If ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, then

α−1(Ω̃(IL′)) = Ω̃(IL).
Proof: By Proposition 1361, we have that α−1(Thm(IL′)) = Thm(IL). So
the result follows by applying Proposition 1363 with T ′ = Thm(IL′). ∎

We close the section by proving that two important properties of N ♭-
structures are preserved under bilogical morphisms.

First, we show that finitarity is preserved across bilogical morphisms.
Given a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, an N ♭-algebraic system
A = ⟨Sign,SEN,N⟩ and an N ♭-structure IL = ⟨A,D⟩, we say that IL is
finitary if, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),

DΣ(Φ) =⋃{DΣ(Ψ) ∶ Ψ ⊆f Φ},
where ⊆f denoted the finite subset relation.

Proposition 1365 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ N ♭-structures, based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′

a bilogical morphism. Then IL is finitary if and only if IL′ is finitary.

Proof: Since ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, it is surjective and, for
all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ)).
Now we have IL finitary iff, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ DΣ(Φ) implies φ ∈ DΣ(Ψ), some Ψ ⊆f Φ,

iff, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),
αΣ(φ) ⊆D′F (Σ)(αΣ(Φ)) implies αΣ(φ) ∈D′F (Σ)(αΣ(Ψ)), some Ψ ⊆f Φ,

which, taking into account the surjectivity of ⟨F,α⟩, is equivalent to IL′ being
finitary. ∎

Finally, we show that structurality is also preserved by bilogical mor-
phisms.

Proposition 1366 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ N ♭-structures, based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′

a bilogical morphism. Then D is structural if and only if D′ is structural.
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Proof: Suppose, first, that D is structural. We will use Proposition 1357.
Consider Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and T ′ ∈ D′

F (Σ′)
. Then we have

D′
F (Σ)
(SEN′(F (f))−1(T ′)) = αΣ(DΣ(α−1Σ (SEN′(F (f))−1(T ′))))

(Proposition 1360)

SEN(Σ) αΣ ✲ SEN′(F (Σ))

SEN(Σ′)
SEN(f)

❄

αΣ′

✲ SEN′(F (Σ′))
SEN′(F (f))
❄

= αΣ(DΣ(SEN(f)−1(α−1Σ′ (T ′))))
(Commutativity of Rectangle)

= αΣ(SEN(f)−1(α−1Σ′ (T ′)))
(Propositions 1360 and 1357)

= αΣ(α−1Σ′ (SEN′(F (f))−1(T ′)))
(Commutativity of Rectangle)

= SEN′(F (f))−1(T ′).
(Surjectivity of ⟨F,α⟩)

By Proposition 1357 and taking into account the surjectivity of ⟨F,α⟩, we
conclude that D′ is structural.

Assume, conversely, thatD′ is structural. Let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′)
and T ∈ DΣ′ . Then, there exists, by Proposition 1360, T ′ ∈ D′

F (Σ′)
, such that

T = α−1Σ′ (T ′). So we have

DΣ(SEN(f)−1(T )) = DΣ(SEN(f)−1(α−1Σ′ (T ′)))
= DΣ(α−1Σ (SEN′(F (f))−1(T ′)))

(Commutativity of Rectangle)
= α−1Σ (SEN′(F (f))−1(T ′))

(Propositions 1357 and 1360)
= SEN(f)−1(α−1Σ′ (T ′))

(Commutativity of Rectangle)
= SEN(f)−1(T ).

We conclude, using Proposition 1357, that D is structural. ∎

19.2 Quotients and Morphisms

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A = ⟨Sign,SEN,N⟩
be an N ♭-algebraic system. Given a congruence system θ ∈ ConSys(A),
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we may define the quotient Aθ ∶= A/θ and the quotient morphism ⟨I, πθ⟩ ∶
A → Aθ. Moreover, given an N ♭-structure IL = ⟨A,D⟩, we define on the
quotient Aθ the closure family Dθ ∶ PSENθ → PSENθ by stipulating that its
corresponding closure family Dθ ⊆ PSENθ is given by

Dθ ∶= {T ∈ SenFam(Aθ) ∶ (πθ)−1(T ) ∈ D}.
It is not difficult to see that Dθ is indeed a closure family on Aθ. Indeed, for
all T i ∈ Dθ, i ∈ I, we have

(πθ)−1(⋂
i∈I

T i) =⋂
i∈I

(πθ)−1(T i) ∈ D,
since D is, by hypothesis, a closure family on A. The N ♭-structure ILθ =⟨Aθ,Dθ⟩ is called the quotient of IL by θ.

Consider, again, the quotient morphism ⟨I, πθ⟩ ∶ A→Aθ. It is not difficult
to see either that ⟨I, πθ⟩ ∶ IL⟩−ILθ is a logical morphism. This simply follows
from the definition of ILθ and the characterization in Proposition 1358. This
logical morphism is also termed the quotient morphism from IL onto ILθ.

Suppose, now, that, in addition to being a congruence system on A, θ is a
logical congruence system of IL, θ ∈ ConSys(IL). An equivalent formalization
is to say that θ ≤ Ω̃(IL). This hypothesis ensures that Dθ = πθ(D) and
that, moreover, Ker(⟨I, πθ⟩) = θ ∈ ConSys(IL). Therefore, by Part (v) of
Proposition 1360, the quotient morphism ⟨I, πθ⟩ ∶ IL→ ILθ becomes a bilogical
morphism.

Having behind us this short introduction, we proceed to formulate and
prove the Morphism Theorems, which correspond for N ♭-structures to the
Homomorphism, Second Isomorphism and Correspondence Theorems of Uni-
versal Algebra in forms reminiscent of the versions applicable in the context
of abstract logics of abstract algebraic logic.

Theorem 1367 (Morphism Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a
base algebraic system, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ two N ♭-
algebraic systems, and IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ two N ♭-structures. If⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, with θ = Ker(⟨F,α⟩), then there ex-
ists an α-isomorphism ⟨F,β⟩ ∶ ILθ ⊢α IL′, that makes the following diagram
commute

IL
⟨F,α⟩ ✲ IL′

❩
❩
❩
❩
❩⟨I, πθ⟩ ⑦ ✚

✚
✚
✚
✚

⟨F,β⟩
❃

ILθ

Proof: Since ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, we get that θ =
Ker(⟨F,α⟩) is a congruence system of IL. Thus, ⟨I, πθ⟩ ∶ IL ⊢ ILθ is also a
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bilogical morphism. Define ⟨F,β⟩ ∶ Aθ →A′ by setting, for all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

βΣ(φ/θΣ) = αΣ(φ).
First, ⟨F,β⟩ is well-defined: This is straightforward, since, if ⟨φ,ψ⟩ ∈ θΣ =

KerΣ(⟨F,α⟩), then, by definition, αΣ(φ) = αΣ(ψ).
Second, β ∶ SENθ → SEN′ ○ F is natural: We have, for all Σ,Σ′ ∈ ∣Sign∣,

all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),
SENθ(Σ) βΣ✲ SEN′(F (Σ))

SENθ(Σ′)
SENθ(f)

❄

βΣ′
✲ SEN′(F (Σ′))

SEN′(F (f))
❄

SEN′(F (f))(βΣ(φ/θΣ)) = SEN′(F (f))(αΣ(φ))
= αΣ′(SEN(f)(φ))
= βΣ′(SEN(f)(φ)/θΣ′)
= βΣ′(SENθ(f)(φ/θΣ)).

Third, ⟨F,β⟩ ∶ Aθ →A′ is surjective: This is also clear, based on the fact
that ⟨F,α⟩ ∶ A→A′ is surjective.

Fourth, ⟨F,β⟩ ∶ ILθ ⊢ IL′ is bilogical: Since surjectivity was pointed out
above, we only have to show Part (iii) of Proposition 1360. First, note
that Ker(⟨F,β⟩) ∈ ConSys(ILθ), since, for all Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
if ⟨φ/θΣ, ψ/θΣ⟩ ∈ KerΣ(⟨F,β⟩), then βΣ(φ/θΣ) = βΣ(ψ/θΣ), whence αΣ(φ) =
αΣ(ψ). Thus, since Ker(⟨F,α⟩) ∈ ConSys(IL), DΣ(φ) = DΣ(ψ) and, hence,
Dθ

Σ(φ/θΣ) =Dθ
Σ(ψ/θΣ). This proves that Ker(⟨F,β⟩) ∈ ConSys(ILθ). Finally,

we have, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),
βΣ(Dθ

Σ(Φ/θΣ)) = βΣ(DΣ(Φ)/θΣ)
= αΣ(DΣ(Φ))
= D′

F (Σ)
(αΣ(Φ))

= D′
F (Σ)
(βΣ(Φ/θΣ)).

This shows that both conditions in Part (iii) of Proposition 1360 are satisfied
and, hence, ⟨F,β⟩ ∶ ILθ ⊢ IL′ is a bilogical morphism.

Fifth, for all Σ ∈ ∣Sign∣ βΣ ∶ SENθ(Σ) → SEN′(F (Σ)) is injective. If
φ,ψ ∈ SEN(Σ), such that βΣ(φ/θΣ) = βΣ(ψ/θΣ), then αΣ(φ) = βΣ(φ), whence
φ/θΣ = ψ/θΣ. We now conclude that ⟨F,β⟩ ∶ ILθ ⊢α IL′ is an α-isomorphism.

Finally, the triangle commutes: This is clear, since, for all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ), βΣ(πθΣ(φ)) = βΣ(φ/θΣ) = αΣ(φ). ∎



1168 CHAPTER 19. FULL MODELS Voutsadakis

Theorem 1368 (Isomorphism Theorem) Suppose F = ⟨Sign♭,SEN♭,N ♭⟩
is a base algebraic system and A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system.
If IL = ⟨A,D⟩ is an N ♭-structure and θ, θ′ ∈ ConSys(IL), such that θ ≤ θ′,
then θ′/θ ∈ ConSys(ILθ) and (ILθ)θ′/θ ≅ ILθ

′

.

Proof: First, we show that θ′/θ ∈ ConSys(ILθ). To this end, let Σ ∈ ∣Sign∣
and φ,ψ ∈ SEN(Σ), such that ⟨φ/θΣ, ψ/θΣ⟩ ∈ θ′Σ/θΣ. Then ⟨φ,ψ⟩ ∈ θ′Σ, whence,
since θ′ ∈ ConSys(IL), DΣ(φ) = DΣ(ψ). Hence, Dθ

Σ(φ/θΣ) = Dθ
Σ(ψ/θΣ). So

θ′/θ ∈ ConSys(ILθ).
To finish the proof, we define ⟨I,α⟩ ∶ ILθ ⊢ ILθ

′

, by setting, for all Σ ∈∣Sign∣, φ ∈ SEN(Σ),
αΣ(φ/θΣ) = φ/θ′Σ.

If we show that ⟨I,α⟩ ∶ ILθ ⊢ ILθ
′

is a bilogical morphism, then, by noting
that Ker(⟨I,α⟩) = θ′/θ and applying Theorem 1367,

ILθ
⟨I,α⟩ ✲ ILθ

′

❩
❩
❩
❩
❩⟨I, πθ′/θ⟩ ⑦ ✚

✚
✚
✚
✚

⟨I, β⟩
❃

(ILθ)θ′/θ
we will have the sought after isomorphism ⟨I, β⟩ ∶ (ILθ)θ′/θ ≅ ILθ

′

.

First, ⟨I,α⟩ ∶ SENθ → SENθ′ is well-defined, since, for all Σ ∈ ∣Sign∣,
φ,ψ ∈ SEN(Σ), if ⟨φ,ψ⟩ ∈ θΣ, then, by hypothesis, ⟨φ,ψ⟩ ∈ θ′Σ, showing that
αΣ(φ/θΣ) = αΣ(ψ/θΣ).

Second, α ∶ SENθ → SENθ′ is natural, since, for all Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′) and all φ ∈ SEN(Σ),

SENθ(Σ) αΣ ✲ SENθ′(Σ)

SENθ(Σ′)
SENθ(f)

❄

αΣ′

✲ SENθ′(Σ′)
SENθ′(f)
❄

SENθ′(f)(αΣ(φ/θΣ)) = SENθ′(f)(φ/θ′Σ)
= SEN(f)(φ)/θ′Σ′
= αΣ′(SEN(f)(φ)/θΣ′)
= αΣ′(SENθ(φ/θΣ)).

Third, it is clear that ⟨I,α⟩ ∶ Aθ → Aθ′ is surjective. So it suffices now
to show that the conditions in Part (iii) of Proposition 1360 are satisfied.
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First, Ker(⟨I,α⟩) = θ′/θ ∈ ConSys(ILθ), as was shown above. Finally, for all
Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ), we have

αΣ(Dθ
Σ(Φ/θΣ)) = αΣ(DΣ(Φ)/θΣ)

= DΣ(Φ)/θ′Σ
= Dθ′

Σ(Φ/θ′Σ)
= Dθ′

Σ(αΣ(Φ/θΣ)).
Therefore, ⟨I,α⟩ ∶ ILθ ⊢ ILθ

′

is indeed a bilogical morphism. ∎

Theorem 1369 (Correspondence Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be a base algebraic system, A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system, IL =⟨A,D⟩ an N ♭-structure and θ ∈ ConSys(IL). Then θ′ ↦ θ′/θ defines an order
isomorphism between the principal filter [θ, Ω̃(IL)] in ConSys(IL) and the
complete lattice ConSys(ILθ).
Proof: By Theorem 1368, the mapping θ′ ↦ θ′/θ is a well defined mapping
from [θ, Ω̃(IL)] into ConSys(ILθ). The mapping is also one-to-one. To see
this, assume θ′/θ = θ′′/θ and let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ θ′Σ. Then ⟨φ/θΣ, ψ/θΣ⟩ ∈ θ′Σ/θΣ = θ′′Σ/θΣ and, therefore, ⟨φ,ψ⟩ ∈
θ′′Σ. Thus, θ′ ≤ θ′′ and, hence, by symmetry, θ′ = θ′′. The mapping is also
surjective. To prove surjectivity, Let η ∈ ConSys(ILθ). Define θ′ = {θ′Σ}Σ∈∣Sign∣
by setting, for all Σ ∈ ∣Sign∣,

θ′Σ = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ ⟨φ/θΣ, ψ/θΣ⟩ ∈ ηΣ}.
It is easy to see that θ′ is a congruence system on A. It is also easy to
see that θ ≤ θ′. Furthermore, θ′ is a congruence system of IL, since, if Σ ∈∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θ′Σ, we get ⟨φ/θΣ, ψ/θΣ⟩ ∈ ηΣ ∈
ConSys(ILθ), whence Dθ

Σ(φ/θΣ) = Dθ
Σ(ψ/θΣ), i.e., DΣ(φ)/θΣ = DΣ(ψ)/θΣ

and, since θ ∈ ConSys(IL), DΣ(φ) = DΣ(ψ). Since θ′ ↦ θ′/θ = η, it follows
that the mapping is also surjective. Finally, it is obvious that both it and its
inverse are monotone, which establishes that it is an order isomorphism. ∎

The Correspondence Theorem implies immediately a relation between
the quotient of a Tarski congruence system and the Tarski system of the
corresponding quotient structure.

Corollary 1370 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩ an N ♭-algebraic system, IL = ⟨A,D⟩ an N ♭-structure and
θ ∈ ConSys(IL). Then

Ω̃(ILθ) = Ω̃(IL)/θ.
Proof: We take θ′ = Ω̃(IL) and apply the Correspondence Theorem 1369.
∎
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Corollary 1370 allows us also to conclude that the quotient of any N ♭-
structure by its Tarski congruence system has an identity Tarski congruence
system. More precisely,

Ω̃(ILΩ̃(IL)) = Ω̃(IL)/Ω̃(IL) =∆A/Ω̃(IL).

This leads to the definition of a reduced N ♭-structure and of the reduction
of an N ♭-structure.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨Sign,SEN,N⟩
an N ♭-algebraic system and IL = ⟨A,D⟩ an N ♭-structure. We call IL reduced

if Ω̃(IL) =∆A. More generally, we set IL∗ = ILΩ̃(IL) and call IL∗ the reduction
of IL. Moreover, for a class L of N ♭-structures, we set

L∗ = {IL∗ ∶ IL ∈ L}.
By the comments following Corollary 1370, IL∗ is reduced for any N ♭-structure
IL. In case IL is reduced to start with, then IL∗ ≅ IL and, in this case, IL∗ will
be identified with IL.

Another important consequence of the Correspondence Theorem is that
reducing a quotient of a structure results in a reduced structure that is iso-
morphic (and, thus, can be identified) with the reduction of the originally
given structure.

Proposition 1371 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system, IL = ⟨A,D⟩ an N ♭-structure
and θ ∈ ConSys(IL). Then (ILθ)∗ ≅ IL∗.

Proof: We have

(ILθ)∗ = (ILθ)Ω̃(ILθ) (Definition of Reduction)

= (ILθ)Ω̃(IL)/θ (Corollary 1370)

≅ ILΩ̃(IL) (Theorem 1368)
= IL∗. (Definition of Reduction)

∎

Generalizing Proposition 1371, we can show that a similar relation holds
between the reductions of two N ♭-structures that are related via a bilogical
morphism.

Proposition 1372 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,
A = ⟨Sign,SEN,N⟩ and A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems and
IL = ⟨A,D⟩ and IL′ = ⟨A,D′⟩ N ♭-structures, based on A and A′, respectively.
If there exists a bilogical morphism ⟨F,α⟩ ∶ IL ⊢ IL′, then there exists an
α-isomorphism

IL∗ ⊢α IL′∗.
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Proof: We define ⟨F,β⟩ ∶ A∗ → A′∗ by setting, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

βΣ(φ/Ω̃Σ(IL)) = αΣ(φ)/Ω̃F (Σ)(IL′),
i.e., ⟨F,β⟩ is the morphism that makes the following rectangle commute

A
⟨F,α⟩ ✲ A′

A∗

⟨I, πΩ̃(IL)⟩
❄

⟨F,β⟩ ✲ A′∗

⟨I, πΩ̃(IL′)⟩
❄

First, ⟨I, β⟩ is well-defined: In fact, if Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such
that ⟨φ,ψ⟩ ∈ Ω̃Σ(IL), then, since, by Corollary 1364, Ω(IL) = α−1(Ω̃(IL′)), we
get that ⟨αΣ(φ), αΣ(ψ)⟩ ∈ Ω̃F (Σ)(IL′).

Second β ∶ SENΩ̃(IL) → SEN′Ω̃(IL
′) ○ F is a natural transformation: Let

Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ ∈ SEN(Σ). We have

SENΩ̃(IL)(Σ) βΣ ✲ SEN′Ω̃(IL
′)(F (Σ))

SENΩ̃(IL)(Σ′)
SENΩ̃(IL)(f)

❄

βΣ′
✲ SEN′Ω̃(IL

′)(F (Σ′))
SEN′Ω̃(IL

′)(F (f))
❄

SEN′Ω̃(IL
′)(F (f))(βΣ(φ/Ω̃Σ(IL)))

= SEN′Ω̃(IL
′)(F (f))(αΣ(φ)/Ω̃F (Σ)(IL′))

= SEN′(F (f))(αΣ(φ))/Ω̃F (Σ′)(IL′)
= αΣ′(SEN(f)(φ))/Ω̃F (Σ′)(IL′)
= βΣ′(SEN(f)(φ)/Ω̃Σ′(IL))
= βΣ′(SENΩ̃(IL)(f)(φ/Ω̃Σ(IL)).

Third, for every Σ ∈ ∣Sign∣, βΣ ∶ SENΩ̃(IL)(Σ) → SEN′Ω̃(IL
′)(F (Σ)) is

a bijection. Surjectivity is immediate and follows from the fat that both⟨F,α⟩ and ⟨I, πΩ̃(IL′)⟩ are surjective. For injectivity, if Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that βΣ(φ/Ω̃Σ(IL)) = βΣ(ψ/Ω̃Σ(IL)), then αΣ(φ)/Ω̃F (Σ)(IL′) =
αΣ(ψ)/Ω̃F (Σ)(IL′), whence

⟨φ,ψ⟩ ∈ α−1Σ (Ω̃F (Σ)(IL′)) = Ω̃Σ(IL).
This proves that βΣ is indeed a bijection.

Finally, we use Part (iii) of Proposition 1360 to show that it is a bi-
logical morphism. Of course, since ⟨F,β⟩ has injective components, we get
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Ker(⟨F,β⟩) = ∆A∗ and, hence it is a congruence system of IL∗. Finally, if
Σ ∈ ∣Sign∣ and Φ ⊆ SEN(Σ), we have

βΣ(D∗Σ(Φ/Ω̃Σ(IL))) = βΣ(DΣ(Φ)/Ω̃Σ(IL))
= αΣ(DΣ(Φ))/Ω̃F (Σ)(IL′)
= D′

F (Σ)
(αΣ(Φ))/Ω̃F (Σ)(IL′)

= D′∗
F (Σ)
(αΣ(Φ)/Ω̃F (Σ)(IL′))

= D′∗
F (Σ)
(βΣ(Φ/Ω̃Σ(IL)).

Thus, ⟨F,β⟩ ∶ IL∗ ⊢α IL′∗ is an α-isomorphism, as claimed. ∎

In case Sign′ = Sign and ⟨I,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, with
I ∶ Sign → Sign the identity functor, then we obtain

Corollary 1373 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨Sign,SEN,N⟩ and A′ = ⟨Sign,SEN′,N ′⟩ N ♭-algebraic systems and IL =⟨A,D⟩ and IL′ = ⟨A,D′⟩ N ♭-structures, based on A and A′, respectively. If
there exists a bilogical morphism ⟨I,α⟩ ∶ IL ⊢ IL′, then

IL∗ ≅ IL′∗.

Proof: Immediate by Proposition 1372. ∎

The next result is a “fill-in” lemma that provides sufficient conditions
under which one can find a morphism that “fills-in” the third side of a com-
mutative triangle, given arrows emanating from one of its vertices.

Proposition 1374 (Fill-In Lemma) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base
algebraic system, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ and A′′ =⟨Sign, SEN′′,N ′′⟩ N ♭-algebraic systems and IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ and
IL′′ = ⟨A′′,D′′⟩ N ♭-structures, based on A, A′ and A′′, respectively. Given
a logical morphism ⟨F,α⟩ ∶ IL⟩−IL′ and a bilogical morphism ⟨I, β⟩ ∶ IL ⊢ IL′′,
such that ker(⟨I, β⟩) ≤ Ker(⟨F,α⟩),

IL
⟨F,α⟩ ✲ IL′

❩
❩
❩
❩
❩⟨I, β⟩ ⑦ ...

...
...

...
..

⟨F,γ⟩
❃

IL′′

there exists a unique logical morphism ⟨F,γ⟩ ∶ IL′′⟩−IL′, such that the triangle
commutes. Moreover, ⟨F,γ⟩ is bilogical if and only if ⟨F,α⟩ is bilogical.

Proof: Define, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN′′(Σ),
γΣ(φ) = αΣ(ψ),
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where ψ ∈ SEN(Σ), such that βΣ(ψ) = φ.
First, since, for all Σ ∈ ∣Sign∣, ψ,ψ′ ∈ SEN(Σ), such that βΣ(ψ) = βΣ(ψ′),

we have, by hypothesis, αΣ(ψ) = αΣ(ψ′), this definition is sound.
Second, γ ∶ SEN′′ → SEN′ ○ F is a natural transformation: For all Σ,Σ′ ∈∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN′′(Σ), such that φ = βΣ(ψ), for

some ψ ∈ SEN(Σ), we have

SEN′′(Σ) γΣ✲ SEN′(F (Σ))

SEN′′(Σ′)
SEN′′(f)

❄

γΣ′
✲ SEN′(F (Σ′))

SEN′(F (f))
❄

SEN′(F (f))(γΣ(φ)) = SEN′(F (f))(αΣ(ψ))
= αΣ′(SEN(f)(ψ))
= γΣ′(SEN′′(f)(φ)),

where the last equality follows from

βΣ′(SEN(f)(ψ)) = SEN′′(f)(βΣ(ψ)) = SEN′′(f)(φ)
and the definition of γΣ′ .

Now it is clear that the triangle of the diagram commutes. Moreover, for
all T ′ ∈ ThFam(IL′), since ⟨F,α⟩ is a logical morphism, α−1(T ′) ∈ ThFam(IL)
and, hence, by commutativity, β−1(γ−1(T ′)) ∈ ThFam(IL). Hence, since⟨I, β⟩ is a bilogical morphism, γ−1(T ′) ∈ ThFam(IL′′). This proves that ⟨F,γ⟩
is also a logical morphism.

Finally, for the last statement, note that ⟨F,γ⟩ is surjective if and only
if ⟨F,α⟩ is surjective, and, furthermore, ThFam(IL′′) = γ−1(ThFam(IL′)) if
and only if β−1(ThFam(IL′′)) = α−1(ThFam(IL′)) if and only if ThFam(IL) =
α−1(ThFam(IL′)). We conclude, taking into account Part (vi) of Proposition
1360, that ⟨F,γ⟩ is bilogical if and only if ⟨F,α⟩ is. ∎

19.3 Filter Families and π-Structures

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I = ⟨F,C⟩ a π-
institution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩ an
F-algebraic system. We have seen that the collection FiFamI(A) of I-filter
families on A forms a complete lattice FiFamI(A) = ⟨FiFamI(A),≤⟩ un-
der signature-wise inclusion. Therefore, the pair ⟨A,FiFamI(A)⟩ constitutes
an F-structure. This F-structure will also be denoted interchangeably by⟨A,CI,A⟩ or ⟨A,CI,A⟩, with reference to the closure (operator) family or the
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closed set family corresponding to FiFamI(A). Such pairs will play an im-
portant role in this chapter, since they will be used as models of I that
provide a semantics for the logical system formalized by I .

It is clear that the closure families of F-structures of this form are struc-
tural and, hence, F-structures of this form are actually π-institutions.

Proposition 1375 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,
SEN,N⟩, an F-algebraic system. Then CI,A ∶ PSEN → PSEN is a structural
closure operator on SEN.

Proof: We use Proposition 1357. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
T ∈ CI,A

F (Σ′)
. Then, by Lemma 51, α−1Σ′ (T ) ∈ CΣ′ . Since C is structural, by

Proposition 1357, SEN(f)−1(α−1Σ′ (T )) ∈ CΣ. By the naturality of α ∶ SEN♭ →
SEN ○ F , we get α−1Σ (SEN(F (f))−1(T )) ∈ CΣ, whence, again by Lemma 51,

SEN(F (f))−1(T ) ∈ CI,AΣ . Using the surjectivity of ⟨F,α⟩ and Proposition
1357, we conclude that CI,A is structural. ∎

Our next result characterizes bilogical morphisms between F-structures
of the form ⟨A,FiFamI(A)⟩.
Proposition 1376 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists a surjective ⟨G,γ⟩ ∶ A→A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩ ○ ⟨F,α⟩ = ⟨F ′, α′⟩. Then the following statements are equivalent:

(i) ⟨G,γ⟩ ∶ ⟨A,CI,A⟩ ⊢ ⟨A′,CI,A′⟩ is a bilogical morphism;

(ii) For every Σ ∈ ∣Sign∣, γΣ ∶ CI,AΣ → CI,A
′

G(Σ)
is an order isomorphism;

(iii) For every Σ ∈ ∣Sign∣, and all T ∈ CI,AΣ , γΣ(T ) ∈ CI,A′G(Σ)
and, in addition,

we have Ker(⟨G,γ⟩) ∈ ConSys(⟨A,CI,A⟩).
Proof:

(i)⇒(ii) This is a special case of Proposition 1361.
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(ii)⇒(iii) The first assertion is obvious. For the second, if Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that γΣ(φ) = γΣ(ψ), then, for every T ′ ∈ ThFamI(A′),

γΣ(φ) ∈ T ′G(Σ) iff γΣ(ψ) ∈ T ′G(Σ).
Hence, for every T ′ ∈ ThFamI(A′),

φ ∈ γ−1Σ (T ′G(Σ)) iff φ ∈ γ−1Σ (T ′G(Σ)).
Therefore, by hypothesis, for all T ∈ FiFamI(A),

φ ∈ TΣ iff ψ ∈ TΣ.

It now follows that Ker(⟨I, γ⟩) ∈ ConSys(⟨A,CI,A⟩).
(iii)⇒(i) By hypothesis, we get γ(CI,AΣ ) ⊆ CI,A

′

G(Σ)
and also that Ker(⟨I, γ⟩) ∈

ConSys(⟨A,CI,A⟩). Therefore, by Part (v) of Proposition 1360, it suf-

fices to show that CI,A
′

G(Σ)
⊆ γ(CI,AΣ ). But this follows from the fact that,

if T ′ ∈ CI,A
′

G(Σ)
, then by Corollary 55, γ−1Σ (T ′) ∈ CI,AΣ and, then, by surjec-

tivity, T ′ = γΣ(γ−1Σ (T ′)). ∎

We also have the following related result that, roughly speaking, forces
the closure family of a structure that is the bilogical morphism image of a
structure whose closure family consists of all filter families to also consist of
the entirely of filter families.

Proposition 1377 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists a surjective ⟨G,γ⟩ ∶ A→A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩○⟨F,α⟩ = ⟨F ′, α′⟩. If ⟨G,γ⟩ ∶ ⟨A,CI,A⟩ ⊢ ⟨A′,C′⟩ is a bilogical morphism,
then C′ = CI,A′.

Proof: First, since ⟨G,γ⟩ is a bilogical morphism, for all T ′ ∈ C′, we have
γ−1(T ′) ∈ CI,A. Thus, by Corollary 55, T ′ ∈ CI,A′ . This proves that C′ ⊆ CI,A′ .
Suppose, conversely, that T ′ ∈ CI,A′ . Then, again by Corollary 55, γ−1(T ′) ∈
CI,A. Therefore, since ⟨G,γ⟩ is a bilogical morphism, T ′ = γ(γ−1(T ′)) ∈ C′.
We conclude that C′ = CI,A′. ∎

This result has the following immediate corollaries, one addressing reduc-
tions and the other isomorphisms.
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Corollary 1378 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
an F-algebraic system. Then (FiFamI(A))∗ = FiFamI(A∗).
Proof: Let IL = ⟨A,CI,A⟩ and apply Proposition 1377 to the special config-
uration of morphisms depicted in the diagram:

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F,πΩ̃(IL) ○ α⟩
⑦

A ⟨I, πΩ̃(IL)⟩ ✲ A∗

∎

Corollary 1379 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists an isomorphism ⟨G,γ⟩ ∶ A ≅A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩ ○ ⟨F,α⟩ = ⟨F ′, α′⟩. If ⟨G,γ⟩ ∶ ⟨A,D⟩ ⊢ ⟨A′,D′⟩ is a bilogical morphism,
then D = CI,A if and only if D′ = CI,A′.

Proof: We apply Proposition 1377 twice; once using ⟨G,γ⟩ ∶ A → A′ and
once using ⟨G,γ⟩−1 ∶ A′ → A. ∎

Corollary 1379 can be strengthened slightly but, to accomplish this, we
need the following proposition, which is a sort of symmetric to Proposition
1377.

Proposition 1380 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ two
F-algebraic systems.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

If ⟨G,γ⟩ ∶ ⟨A,D⟩ ⊢α ⟨A′,CI,A′⟩ is an α-isomorphism, then D = CI,A.
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Proof: We show, first, that D ⊆ CI,A. Suppose T ∈ D. Then, since ⟨G,γ⟩ is
an α-isomorphism, there exists, by Proposition 1360, T ′ ∈ FiFamI(A′), such
that T = γ−1(T ′). Now, by Corollary 55, T ∈ FiFamI(A). Hence, D ⊆ CI,A.

Suppose, conversely, that T ∈ FiFamI(A). Since ⟨G,γ⟩ is an α-isomor-
phism, there exists a unique T ′ ∈ SenFam(A′), such that T = γ−1(T ′). Thus,
we have

α′−1(T ′) = α−1(γ−1(T ′)) = α−1(T ) ∈ ThFam(I).
Hence, T ′ ∈ FiFamI(A′) and, since ⟨G,γ⟩ is a bilogical morphism, T =
γ−1(T ′) ∈ D. We conclude that CI,A ⊆ D and equality follows. ∎

A generalization of Corollary 1379 relaxes the requirement that there
exists an isomorphism between F-algebraic systems to the requirement that
there exists an α-isomorphism.

Corollary 1381 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ with
A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ F-algebraic systems, such that,
there exists a surjective morphism ⟨G,γ⟩ ∶ A ≅A′, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,γ⟩ ✲ A′

⟨G,γ⟩ ○ ⟨F,α⟩ = ⟨F ′, α′⟩. If ⟨G,γ⟩ ∶ ⟨A,D⟩ ⊢α ⟨A′,D′⟩ is an α-isomorphism,
then D = CI,A if and only if D′ = CI,A′.

Proof: We put together Proposition 1377 and Proposition 1380. ∎

19.4 I-Structures

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩, with
A = ⟨Sign,SEN,N⟩, an F-algebraic system and IL = ⟨A,D⟩ an F-structure.
Define CIL = {CIL

Σ }Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
CIL

Σ ∶ PSEN♭ → PSEN♭

be defined, for all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CIL

Σ (Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(φ)) ⊆ DF (Σ′)(αΣ′(SEN♭(f)(Φ))).

More generally, given a class L of F-structures, we set

CL =⋂{CIL ∶ IL ∈ L}.
We show that CL is a closure system on F and, as a result, IL = ⟨F,CL⟩

qualifies as a π-institution.



1178 CHAPTER 19. FULL MODELS Voutsadakis

Proposition 1382 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and L

a class of F-structures. The collection CL ∶ PSEN♭ → PSEN♭ is a closure
system on F.

Proof: Inflationarity, monotonicity and idempotency of CL follow immedi-
ately from the corresponding properties of each of the operators of the F-
structures in L. We show structurality in more detail. Suppose Σ,Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CL

Σ(Φ). Then, for all⟨A,D⟩ ∈ L, all Σ′′ ∈ ∣Sign♭∣ and all g ∈ Sign♭(Σ,Σ′′),
αΣ′′(SEN♭(g)(φ)) ∈DF (Σ′′)(αΣ′′(SEN♭(g)(Φ))).

Σ
f ✲ Σ′

❩
❩
❩
❩
❩g ⑦ ❂✚

✚
✚
✚
✚

h

Σ′′

Thus, for all ⟨A,D⟩ ∈ L, all Σ′′ ∈ ∣Sign♭∣ and all h ∈ Sign♭(Σ′,Σ′′),
αΣ′′(SEN♭(h)(SEN♭(f)(φ))) ∈DF (Σ′′)(αΣ′′(SEN♭(h)(SEN♭(f)(Φ)))).

This proves that SEN♭(f)(φ) ∈ CL
Σ′(SEN♭(f)(Φ)), and, hence, that CL is

structural. ∎

CL is termed the closure system on F generated by L and we denote
by IL = ⟨F,CL⟩ the π-institution corresponding to CL.

Next, it is shown that F-structures related by bilogical morphism generate
identical closure systems.

Proposition 1383 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ two F-algebraic systems, IL = ⟨A,D⟩, IL′ =⟨A′,D′⟩ two F-structures and ⟨G,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism, such that⟨F ′, α′⟩ = ⟨G,γ⟩ ○ ⟨F,α⟩. Then CIL = CIL′.

Proof: We have, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
φ ∈ CIL

Σ (Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′)
αΣ′(SEN♭(f)(φ)) ⊆ DF (Σ′)(αΣ′(SEN♭(f)(Φ)))

iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′)
γF (Σ′)(αΣ′(SEN♭(f)(φ)))

⊆ D′
G(F (Σ′))

(γF (Σ′)(αΣ′(SEN♭(f)(Φ))))
iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′)

α′Σ′(SEN♭(f)(φ)) ⊆ D′
F ′(Σ′)

(α′Σ′(SEN♭(f)(Φ)))
iff φ ∈ CIL′

Σ (Φ).
We conclude that CIL = CIL′ . ∎
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As a special case of Proposition 1383, we get that both an F-structure
and its reduction generate the same closure system on the base algebraic
system F.

Corollary 1384 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A,⟨F,α⟩⟩ an F-algebraic system and IL = ⟨A,D⟩ an F-structure. Then CIL =
CIL∗.

Proof: This is obtained directly by Proposition 1383 once we recall that,
since Ω̃(IL) is a congruence system of IL, ⟨I, πΩ̃(IL)⟩ ∶ IL → IL∗ is a bilogical
morphism.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F,πΩ̃(IL)α⟩
⑦

A ⟨I, πΩ̃(IL)⟩ ✲ A∗

And this gives the configuration of the diagram that matches the setup in
the hypothesis of Proposition 1383. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I = ⟨F,C⟩ a π-
institution based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-
algebraic system and IL = ⟨A,D⟩ an F-structure. We say that IL is an I-
structure or a model of I if C ≤ CIL, i.e., if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) implies φ ∈ CIL
Σ (Φ).

Of course, C ≤ CIL requires that, for all T ∈ ThFam(IL), all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′) and all Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′),
i.e., that T ∈ FiFamI(A). Therefore, we obtain the following characteriza-
tion:

Proposition 1385 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
an F-algebraic system and IL = ⟨A,D⟩ an F-structure. IL is an I-structure
if and only if, for all T ∈ ThFam(IL), T ∈ FiFamI(A), i.e., if and only if
ThFam(IL) ⊆ FiFamI(A).

Again, the defining condition of an I-structure may be simplified due to
the structurality of I . More precisely, based on Lemma 50, we have:
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Lemma 1386 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
an F-algebraic system and IL = ⟨A,D⟩ an F-structure. Then, the following
conditions are equivalent:

(a) IL is an I-structure;

(b) For all T ∈ ThFam(IL), all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ), such
that φ ∈ CΣ(Φ),

αΣ(Φ) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ);
(c) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ), αΣ(φ) ∈DF (Σ)(αΣ(Φ)).

Proof: Condition (a) clearly implies (b) and (b) and (c) are equivalent. So
it remains to show that (b) implies (a). But, if Condition (b) holds, then, by
Lemma 50, ThFam(IL) ⊆ FiFamI(A), whence, by Proposition 1385, IL is an
I-structure. ∎

We denote by Str(I) the class of all I-structures and let

Str∗(I) = (Str(I))∗
be the class of all reduced I-structures.

Since we know that IL ∈ Str(I) is and only if ThFam(IL) ⊆ FiFamI(A),
it follows that, given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ⟨A,FiFamI(A)⟩
is the weakest I-structure of A, i.e., the one with the finest closure family.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and I = ⟨F,C⟩ a
π-institution based on F. We say that I is complete with respect to a
given class L of F-structures if C = CL, i.e., if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CΣ(Φ) iff φ ∈ CL
Σ(Φ).

As consequences of Proposition 1383 and of its Corollary 1384, we have
the following results about models of π-institutions and about classes of struc-
tures with respect to which a π-institution is complete.

Proposition 1387 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If ⟨A,D⟩, IL′ = ⟨A′,D′⟩ are F-structures and ⟨G,γ⟩ ∶ IL ⊢ IL′ a bilogical
morphism, the IL is an I-structure if and only if IL′ is an I-structure.

(b) If IL = ⟨A,D⟩ is an F-structure, then IL is an I-structure if and only if
IL∗ is an I-structure.

(c) If I is complete with respect to a class L of F-structures, then it is also
complete with respect to L∗.



Voutsadakis CHAPTER 19. FULL MODELS 1181

Proof: the first part is a consequence of Proposition 1383, whereas Parts
(b) and (c) follow directly from Corollary 1384. ∎

Proposition 1388 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and L a class of I-structures. If L includes⟨F ,C⟩ or ⟨F ,C⟩∗, then I is complete with respect to both L and L∗. In
particular I is complete with respect to both Str(I) and Str∗(I).
Proof: The key here is to notice that C = C⟨F ,C⟩ = C⟨F ,C⟩∗ . Then, the rest
is easy because we have

C ≤ CL = CL∗ ≤ C⟨F ,C⟩ = C⟨F ,C⟩
∗

= C.

Therefore, we conclude C = CL = CL∗ and, hence, I is complete with respect
to both L and L∗. ∎

19.5 Full I-Structures

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and IL = ⟨A,D⟩ an F-
structure. IL is a full I-structure or a full model of I if

IL∗ = ⟨A∗,FiFamI(A∗)⟩,
i.e., if the closure family of the reduction of IL consists of all I-filter families
on the F-algebraic system A/Ω̃(IL).

We denote the class of all full I-structures by FStr(I) and the class of
all reduced full I-structures by FStr∗(I). We also write FStrI(A) for the
collection of all full I-structures on the F-algebraic system A = ⟨A, ⟨F,α⟩⟩.

We show that full I-structures are fully deserving of the name I-structures.

Proposition 1389 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ a full I-structure.

(a) D is structural;

(b) IL is an I-structure;

(c) IL has theorems if and only if I has theorems.

Proof:

(a) By Proposition 1375, D∗ is structural. Therefore, by Proposition 1366,
D is also structural.
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(b) Suppose IL ∈ FStr(I). Then, by definition, ThFam(IL∗) = FiFamI(A∗).
Thus, by Proposition 1385, IL∗ ∈ Str(I). Therefore, by Proposition
1387, IL ∈ Str(I).

(c) If I does not have theorems, then ∅ ∈ FiFamI(A∗). Therefore, by
the definition of a full I-structure, ∅ ∈ ThFam(IL∗) and, hence ∅ ∈
ThFam(IL). Conversely, if ∅ ∉ ThFam(I), then ∅ ∉ FiFamI(A) and,
hence, ∅ ∉ ThFam(IL).

∎

We now show that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the
pair ⟨A,FiFamI(A)⟩ is always a full I-structure and, thus, the weakest such
structure on A.

Proposition 1390 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. For every F-algebraic system A =⟨A, ⟨F,α⟩⟩, ⟨A,FiFamI(A)⟩ is the weakest full I-structure on A.

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. Then, by Corollary
1378,

(FiFamI(A))∗ = FiFamI(A∗).
So ⟨A,FiFamI(A)⟩ is a full I-structure. Moreover, since, by Proposition
1389, every full I-structure is an I-structure, by Proposition 1385, FiFamI(A)
is the largest possible set of theory families of a full I-structure. So ⟨A,FiFamI(A)⟩
is the weakest full I-structure. ∎

Specializing to the algebraic system F = ⟨F, ⟨I, ι⟩⟩, where ⟨I, ι⟩ ∶ F → F is
the identity morphism, we get

Corollary 1391 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Then ⟨F ,C⟩ is the weakest full I-
structure on F = ⟨F, ⟨I, ι⟩⟩.
Proof: By taking A = F in Proposition 1390. ∎

Next, we see that bilogical morphisms between F-structures preserve the
property of being a full model in both directions.

Proposition 1392 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ two
F-algebraic systems and IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ two F-structures. If there
exists a bilogical morphism ⟨G,β⟩ ∶ IL ⊢ IL′, then IL is a full I-structure if
and only if IL′ is a full I-structure.
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Proof: Suppose IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩ are two F-structures and let⟨G,β⟩ ∶ IL ⊢ IL′ be a bilogical morphism. Then, by Proposition 1372, there
exists an α-isomorphism ⟨G,γ⟩ ∶ IL∗ ⊢α IL′∗, such that the following diagram
commutes.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨G,β⟩ ✲ A′

A∗

⟨I, π⟩
❄

⟨G,γ⟩ ✲ A′∗

⟨I ′, π′⟩
❄

where ⟨I, π⟩ ∶ A→A/Ω̃(IL) and ⟨I ′, π′⟩ ∶ A′ →A′/Ω̃(IL′) denote the quotient
morphisms. If IL is a full I-structure, then, by definition, D∗ = FiFamI(A∗).
Thus, by Proposition 1377, D∗ = FiFamI(A′∗). This shows that IL′ is a full
I-structure. If, conversely, IL′ is a full I-structure, then, by definition D′∗ =
FiFamI(A′∗). Thus, by Proposition 1380, D = FiFamI(A∗) and, therefore,
IL is a full I-structure, by definition. ∎

Proposition 1392 allows the formulation of a characterizing property of
full I-structures in terms of bilogical morphisms and weakest full I-structures.

Corollary 1393 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and IL = ⟨A,D⟩ an F-structure. IL is a full I-structure if and only if
there exists a bilogical morphism from IL onto an F-structure of the form⟨A′,FiFamI(A′)⟩, for some F-algebraic system A′ = ⟨A′, ⟨F ′, α′⟩⟩.
Proof: The “only if” is clear, since, if IL = ⟨A,D⟩ is a full I-structure, then⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical morphism and, moreover, by the definition of
fullness, IL∗ = ⟨A∗,FiFamI(A∗)⟩.

Assume, conversely, that ⟨H,γ⟩ ∶ IL ⊢ ⟨A′,FiFamI(A′)⟩ is a bilogical
morphism. By Proposition 1390, ⟨A′,FiFamI(A′)⟩ ∈ FStr(I). Therefore, by
Proposition 1392, IL ∈ FStr(I), as well. ∎

We now formulate a result that can be used to show that a property of
F-structures for every full I-structure of a π-institution I based on F. It
characterizes FStr(I) as the smallest class of F-structures containing all F-
structures of the form ⟨A,FiFamI(A)⟩, with A ranging over all F-algebraic
systems, and closed under bilogical morphisms. It follows that to prove that a
property holds for all members of FStr(I) it suffices to show that it holds for
all F-structures of the specific form ⟨A,FiFamI(A)⟩ and that it is preserved
under bilogical morphisms.
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Corollary 1394 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. FStr(I) is the smallest class containing⟨A,FiFamI(A)⟩, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and closed
under both images and preimages under bilogical morphisms.

Proof: By Proposition 1390, for every F-algebraic system A, the pair ⟨A,
FiFamI(A)⟩ ∈ FStr(I). Moreover, by Proposition 1392, FStr(I) is closed
under both images and preimages under bilogical morphisms. On the other
hand, let L be a class satisfying these properties and let ⟨A,D⟩ ∈ FStr(I).
By Corollary 1393, there exists an F-algebraic system A′ and a bilogical
morphism ⟨H,γ⟩ ∶ ⟨A,D⟩ ⊢ ⟨A′,FiFamI(A′)⟩.
By hypothesis, ⟨A′,FiFamI(A′)⟩ ∈ L and, again by hypothesis, ⟨A,D⟩ ∈ L.
Thus, we conclude that FStr(I) ⊆ L. This proves that FStr(I) is indeed the
smallest class satisfying the given properties. ∎

An alternative characterization of full I-structures uses both the Leibniz
and the Tarski operators.

Theorem 1395 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and IL =⟨A,D⟩ an F-structure. Then IL is a full I-structure if and only if

D = {T ∈ FiFamI(A) ∶ Ω̃(IL) ≤ ΩA(T )}.
Proof: Let IL be an F-structure and set

T = {T ∈ FiFamI(A) ∶ Ω̃(IL) ≤ ΩA(T )}.
Suppose, first, that IL = ⟨A,D⟩ ∈ FStr(I). We must show D = T . To this
end, let T ∈ FiFamI(A). Then, by Proposition 1385, T ∈ FIFamI(A) and,
by the definition of the Tarski congruence system, Ω̃(IL) ≤ ΩA(T ). Thus,
D ⊆ T . Conversely, if T ∈ FiFamI(A), such that Ω̃(IL) ≤ ΩA(T ), then Ω̃(IL)
is compatible with T . Setting T ′ = T /Ω̃(IL), we have, by Corollary 56, that
T ′ ∈ FiFamI(A/Ω̃(IL)) and T = π−1(T ′), where ⟨I, π⟩ ∶ A → A/Ω̃(IL) is
the quotient morphism, which is also a bilogical morphism ⟨I, π⟩ ∶ IL ⊢ IL∗.
Since, by hypothesis IL is full, we get that D∗ = FiFamI(A/Ω̃(IL)), whence,
T = π−1(T ′) ∈ π−1(D∗) = D. We conclude that T ⊆ D.

Assume, conversely, that D = {T ∈ FiFamI(A) ∶ Ω̃(IL) ≤ ΩA(T )}. Then,
by Proposition 1360,

⟨I, π⟩ ∶ IL ⊢ ⟨A/Ω̃(IL),FiFamI(A/Ω̃(IL))⟩
is a bilogical morphism. Therefore, D∗ = FiFamI(A/Ω̃(IL)), showing that
IL ∈ FStr(I). ∎
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19.6 I-Algebraic Systems

Since ⟨A,D⟩ is a full I-structure if and only if D∗ = FiFamI(A∗), we conclude
that the reduced full I-structures are exactly those structures of the form⟨A,FiFamI(A)⟩, which are reduced.

Definition 1396 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. An F-algebraic system A = ⟨A, ⟨F,α⟩⟩
if an I-algebraic system if and only if the F-structure ⟨A,FiFamI(A)⟩
is reduced, i.e., if A is the underlying F-algebraic system of a reduced full
I-structure.

We denote by AlgSys(I) the class of all I-algebraic systems.

Since I-algebraic systems are determined based on reduced full I-struc-
tures, the following characterization is useful in this context.

Proposition 1397 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ an F-structure. Then the following are equivalent:

(i) IL is a reduced full I-structure;

(ii) IL is reduced and D = FiFamI(A);
(iii) A ∈ AlgSys(I) and D = FiFamI(A).
Proof:

(i)⇒(ii) Suppose that IL = ⟨A,D⟩ is a reduced full I-structure. Since IL is
full, IL∗ = ⟨A∗,FiFamI(A∗)⟩. Since IL is reduced, IL∗ = IL. Thus,
D = FiFamI(A).

(ii)⇒(ii) Assume IL = ⟨A,D⟩ is reduced and D = FiFamI(A). Since IL is reduced,
IL∗ = IL = ⟨A,FiFamI(A)⟩. Therefore, IL is also full and, consequently,
A ∈ AlgSys(I).

(iii)⇒(i) Let IL = ⟨A,D⟩, with A ∈ AlgSys(I) and D = FiFamI(A). Since A ∈
AlgSys(I), there exists a closure family D′ on A, such that ⟨A,D′⟩ is
a reduced full I-structure. Since ⟨A,D′⟩ is full and reduced, we have
D′ = FiFamI(A). Since, by hypothesis, D = FiFamI(A), we get that
D′ = D. Hence, IL = ⟨A,D⟩ = ⟨A,D′⟩ is a reduced full I-structure.

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Let, also, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. We
denote by ConSysI(A) the collection of all congruence systems θ on A, such
that the quotient algebraic system Aθ is in AlgSys(I):

ConSysI(A) = {θ ∈ ConSys(A) ∶ Aθ ∈ AlgSys(I)}.
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A congruence system θ ∈ ConSysI(A) is called an I-congruence system
on A.

It turns out that the Tarski congruence systems of full I-structures are
all I-congruence systems.

Proposition 1398 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ an F-structure. If IL is full, then A∗ ∈ AlgSys(I) and, therefore,
Ω̃(IL) ∈ ConSysI(A).
Proof: Suppose that IL = ⟨A,D⟩ is a full I-structure. Then, by definition,
IL∗ = ⟨A∗,D∗⟩ = ⟨A∗,FiFamI(A∗)⟩ is a reduced full I-structure. Hence A∗ ∈
AlgSys(I) and, therefore, by definition, Ω̃(IL) ∈ ConSysI(A). ∎

Even though, according to the definition, I-algebraic systems are deter-
mined as the F-algebraic system reducts of reduced full I-structures, they
can also be characterized without reference to fullness.

Proposition 1399 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. AlgSys(I) is the class of all underlying
F-algebraic systems of all reduced I-structures:

AlgSys(I) = {A ∶ (∃⟨A,D⟩ ∈ StrI(A))(Ω̃A(D) =∆A)}.
Proof: If A ∈ AlgSys(I), then, by Proposition 1397, ⟨A,FiFamI(A)⟩ is a
reduced full I-structure. Conversely, if IL = ⟨A,D⟩ is a reduced I-structure,
then D ⊆ FiFamI(A) and, therefore,

Ω̃(⟨A,FiFamI(A)⟩) ≤ Ω̃(IL) = ∆A.

Thus, ⟨A,FiFamI(A)⟩ is a reduced full I-structure and A ∈ AlgSys(I). ∎

The class of all I-algebraic systems is closed under isomorphisms.

Proposition 1400 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. AlgSys(I) is closed under isomor-
phisms.

Proof: Assume A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ ∈ AlgSys(I) and let ⟨H,γ⟩ ∶
A→ B be an isomorphism.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B
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Then, we have that FiFamI(A) = γ−1(FiFamI(B)), which shows that

⟨H,γ⟩ ∶ ⟨A,FiFamI(A)⟩ ≅ ⟨B,FiFamI(B)⟩.
Now we can use Proposition 1363 to see that ⟨A,FiFamI(A)⟩ is reduced if
and only if ⟨B,FiFamI(B)⟩ is reduced and, therefore, by Proposition 1399,
A ∈ AlgSys(I) if and only if B ∈ AlgSys(I). ∎

Proposition 1397 gave characterizing conditions for reduced full I-structures.
An analog for full I-structures is the following:

Proposition 1401 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
IL = ⟨A,D⟩ an F-structure. Then the following are equivalent:

(i) IL is a full I-structure;

(ii) A∗ ∈ AlgSys(I) and D∗ = FiFamI(A∗);
(iii) There exists a bilogical morphism ⟨H,γ⟩ ∶ IL ⊢ ⟨A′,D′⟩, such that A′ ∈

AlgSys(I) and D′ = FiFamI(A′).
Proof:

(i)⇒(ii) Suppose IL = ⟨A,D⟩ is a full I-structure. Then, by definition, IL∗ =⟨A∗,FiFamI(A∗)⟩. Thus, A∈AlgSys(I) and D∗ = FiFamI(A∗).
(ii)⇒(iii) Obvious, since ⟨H,γ⟩ ∶ IL ⊢ IL∗ is a bilogical morphism.

(iii)⇒(i) Assume that ⟨H,γ⟩ ∶ IL → ⟨A′,D′⟩ is a bilogical morphism, such that
A′ ∈ AlgSys(I) and D′ = FifamI(A′). Then, by Proposition 1372, there
exists an α-isomorphism IL∗ ⊢α ⟨A′∗,D′∗⟩. Since A′ ∈ AlgSys(I) and
D′ = FiFamI(A′), it follows, by Proposition 1397, that ⟨A′,D′⟩ is a
reduced full I-structure. So we have

⟨A′∗,D′∗⟩ = ⟨A′,D′⟩ = ⟨A′,FiFam(A′)⟩.
Hence, by Proposition 1380, IL∗ = ⟨A∗,FiFamI(A∗)⟩ and, therefore, IL
is a full I-structure.

∎

It turns out that, given a π-institution I , the class of all full I-structures,
the class of all F-structures of the form ⟨A,FiFamI(A)⟩, where A ranges over
all F-algebraic systems, as well as the class of all reduced full I-structures
are complete F-structure semantics for I .

Theorem 1402 (Completeness Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system and I = ⟨F,C⟩ a π-institution based on F. I is complete
with respect to the following classes of F-structures:
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(i) The class of all full I-structures;

(ii) The class of all F-structures of the form ⟨A,FiFamI(A)⟩;
(iii) The class of all reduced full I-structures, i.e., structures of the form⟨A,FiFamI(A)⟩, with A ∈ AlgSys(I).
Proof: Note that all three classes of F-structures consist of I-structures and
include ⟨F ,C⟩∗. Therefore, by Proposition 1388, I is complete with respect
to each one of them. ∎

Let I = ⟨F,C⟩ be a π-institution. To I we have associated (among others)
two classes of F-algebraic systems. One is the class AlgSys∗(I) of underly-
ing F-algebraic systems of reduced I-matrix families. The other is the class
AlgSys(I) of underlying F-algebraic systems of reduced I-structures (ac-
cording to Proposition 1399). To explore an important relationship between
these two classes, we introduce an operator on F-algebraic systems, which is
related to an operator on F-matrix families, given the same name.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider F-algebraic
systems A = ⟨A, ⟨F,α⟩⟩ and Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, and a system of surjec-
tive morphisms

⟨H i, γi⟩ ∶ A → Ai, i ∈ I.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F i, αi⟩
⑦

A ⟨H i, γi⟩ ✲ Ai

We say {⟨H i, γi⟩ ∶ i ∈ I} is a subdirect intersection (system) and call the⟨H i, γi⟩ subdirect intersection morphisms if

⋂
i∈I

Ker(⟨H i, γi⟩) =∆A.

If such a system exists, we say that A is a subdirect intersection of the
F-algebraic systems {Ai ∶ i ∈ I}. Given a class K of F-algebraic systems and
an F-algebraic system A, we write

A ∈
⊲

IΠ(K)
to signify that A is a subdirect intersection of a collection {Ai ∶ i ∈ I}, with
Ai ∈ K, for all i ∈ I.

We can show that the operator
⊲

IΠ is a closure operator on classes of
F-algebraic systems.
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Proposition 1403 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

⊲

IΠ ∶ P(AlgSys(F))→ P(AlgSys(F))
is a closure operator.

Proof: Suppose, first, that K ⊆ AlgSys(F) and A ∈ K. Since the identity

morphism ⟨I, ι⟩ ∶ A → A is a subdirect intersection, we get that A ∈
⊲

IΠ(K).
Thus,

⊲

IΠ is inflationary.

Suppose, next, that K ⊆ K′ ⊆ AlgSys(F) and A ∈
⊲

IΠ(K). Thus, A is a
subdirect intersection of a collection {Ai ∶ i ∈ I} ⊆ K. Then A is a subdirect

intersection of {Ai ∶ i ∈ I} ⊆ K′. Hence,
⊲

IΠ(K) ⊆ ⊲

IΠ(K′) and, therefore,
⊲

IΠ is
also monotone.

Assume, finally, that K ⊆ AlgSys(F) and let A ∈
⊲

IΠ( ⊲IΠ(K)). Thus, there
exists a subdirect intersection system

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

where Ai ∈
⊲

IΠ(K), for all i ∈ I. Consequently, for all i ∈ I, there exists a
subdirect intersection system

⟨H ij, γij⟩ ∶ Ai → Aij, j ∈ Ji,

where Aij ∈ K, for all i ∈ I, j ∈ Ji. We consider the collection

⟨H ij, γij⟩ ○ ⟨H i, γi⟩ ∶ A→ Aij , i ∈ I, j ∈ Ji.

We have

⋂i∈I ⋂j∈Ji Ker(⟨H ij , γij⟩ ○ ⟨H i, γi⟩) = ⋂i∈I ⋂j∈Ji(γi)−1(Ker(⟨H ij, γij⟩))
= ⋂i∈I(γi)−1(⋂j∈Ji(Ker(⟨H ij, γij⟩))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A.

Thus, the system {⟨H ij, γij⟩○⟨H i, γo⟩ ∶ i ∈ I, j ∈ Ji} is a subdirect intersection

system, showing that A ∈
⊲

IΠ(K). We conclude that
⊲

IΠ is also idempotent. ∎

Using subdirect intersections, we can give the exact relationship between
the classes AlgSys(I) and AlgSys∗(I). Namely, we show that the former is
the class of all subdirect intersections of collections of algebraic systems in
the latter class. In particular AlgSys∗(I) ⊆ AlgSys(I).
Theorem 1404 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

AlgSys(I) = ⊲IΠ(AlgSys∗(I)).
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Proof: Assume, first, that A ∈ AlgSys(I). Then, we have

⋂{ΩA(T ) ∶ T ∈ FiFamI(A)} = Ω̃A(FiFamI(A)) =∆A.

Now, consider the collection

⟨I, πΩA(T )⟩ ∶ A→ A/ΩA(T ), T ∈ FiFamI(A).
By the preceding equation, this collection constitutes a subdirect intersec-
tion. Moreover, for all T ∈ FiFamI(A), we have ⟨A/ΩA(T ), T /ΩA(T )⟩ ∈
MatFam∗(I) and, hence, A/ΩA(T ) ∈ AlgSys∗(I). Therefore, we get that

A ∈
⊲

IΠ(AlgSys∗(I)).
Suppose, conversely, that A ∈

⊲

IΠ(AlgSys∗(I)). Thus, there exists a sub-
direct intersection ⟨H iγi⟩ ∶ A→ Ai, i ∈ I,

with Ai ∈ AlgSys∗(I), for all i ∈ I. Thus, for all i ∈ I, there exists T i ∈
FiFamI(Ai), such that ΩA

i(T i) =∆A
i
. Now, we calculate:

Ω̃A(FiFamI(A)) = ⋂{ΩA(T ) ∶ T ∈ ThFamI(A)}
⊆ ⋂i∈I ΩA((γi)−1(T i))
= ⋂i∈I(γi)−1(ΩAi(T i))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A.

We conclude that A ∈ AlgSys(I). Thus, AlgSys(I) ⊆ ⊲IΠ(AlgSys∗(I)). ∎

Corollary 1405 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then AlgSys∗(I) ⊆ AlgSys(I) and, more-
over, ALgSys∗(I) = AlgSys(I) if and only if AlgSys∗(I) is closed under
subdirect intersections.

Proof: We have

AlgSys∗(I) ⊆ ⊲

IΠ(AlgSys∗(I)) (by Proposition 1403)
= AlgSys(I). (by Theorem 1404)

If AlgSys∗(I) is closed under subdirect intersections,

AlgSys(I) = ⊲IΠ(AlgSys∗(I)) ⊆ AlgSys∗(I).
Conversely, if AlgSys∗(I) = AlgSys(I), then

⊲

IΠ(AlgSys∗(I)) = AlgSys(I) =
AlgSys∗(I). ∎
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Finally, we give a relation between the classes of algebraic systems as-
sociated in this way with π-institutions based on the same algebraic system
that are related by ≤. Recall that, given I = ⟨F,C⟩ and I ′ = ⟨F,C ′⟩, we write
C ≤ C ′ if, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ), CΣ(Φ) ⊆ C ′Σ(Φ). If this is
the case, we also write I ≤ I ′ and say that I ′ is stronger than I and that I is
weaker than I ′. Recall, also, that, I ≤ I ′ if and only if, for every F-algebraic
system A, FiFamI

′(A) ⊆ FiFamI(A).
Proposition 1406 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ be two π-institutions based on F. If I ≤ I ′, then

AlgSys(I ′) ⊆ AlgSys(I) and AlgSys∗(I ′) ⊆ AlgSys∗(I).
Proof: If A ∈ AlgSys∗(I ′), then, there exists T ′ ∈ FiFamI

′(A), such that
ΩA(T ′) = ∆A. But, since I ≤ I ′, we have T ′ ∈ FiFamI(A). Therefore
A ∈ AlgSys∗(I). We now conclude that AlgSys∗(I ′) ⊆ AlgSys∗(I).

For the second inclusion, we get

AlgSys(I ′) = ⊲

IΠ(AlgSys∗(I)) (Theorem 1404)

⊆
⊲

IΠ(AlgSys∗(I)) (Proposition 1403)
= AlgSys(I). (Theorem 1404)

∎

19.7 Lattice of Full I-Structures

In this section we show that, given a π-institution I = ⟨F,C⟩ and an F-
algebraic system A = ⟨F, ⟨F,α⟩⟩, the poset ⟨FStrI(A),≤⟩ of full I-structures
on A and the poset ⟨ConSysI(A),≤⟩ of I-congruence systems on A are iso-
morphic through the Tarski operator

⟨A,D⟩ ↦ Ω̃A(D).
We start by defining an operator which will turn out to be the inverse of the
Tarski operator.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Given
θ ∈ ConSys(A), define

H̃A(θ) = ⟨A,Dθ⟩,
by setting

Dθ = (πθ)−1(FiFamI(Aθ)),
where ⟨I, πθ⟩ ∶ A→ Aθ is the quotient morphism.

Note that, by definition of H̃A(θ), the morphism

⟨I, πθ⟩ ∶ H̃A(θ)→ ⟨Aθ,FiFamI(Aθ)⟩
is a bilogical morphism.

We have the following properties concerning the operator H̃ .
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Lemma 1407 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

(a) For every θ ∈ ConSys(A),
(i) θ ∈ ConSys(H̃A(θ));

(ii) H̃A(θ)/θ = ⟨Aθ,FiFamI(Aθ)⟩;
(iii) H̃A(θ) ∈ FStrI(A);

(b) θ ↦ H̃A(θ) is order preserving, i.e., for all θ, θ′ ∈ ConSys(A), θ ≤ θ′
implies H̃A(θ) ≤ H̃A(θ′).

Proof:

(a) For Part (i) we must show that, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),⟨φ,ψ⟩ ∈ θΣ implies that Dθ
Σ(φ) = Dθ

Σ(ψ). Suppose, to this end, that
Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ. Then, we have

C
I,Aθ

Σ (φ/θΣ) = CI,AθΣ (ψ/θΣ),
i.e., CI,A

θ

Σ (πθΣ(φ)) = CI,AθΣ (πθΣ(ψ)). This gives that

(πθΣ)−1(CI,AθΣ (πθΣ(φ))) = (πθΣ)−1(CI,AθΣ (πθΣ(ψ))).
Since ⟨I, πθ⟩ ∶ H̃A(θ) → ⟨Aθ,CI,A

θ⟩ is a bilogical morphism, we get by
Proposition 1360, Dθ

Σ(φ) = Dθ
Σ(ψ). We conclude that θ ∈ ConSys(H̃A(θ)).

For Part (ii), we have

πθ(Dθ) = πθ((πθ)−1(FiFamI(Aθ))) = FiFamA(Aθ),
where the last equality follows from the fact that ⟨I, πθ⟩ is a bilogical
morphism, by applying Proposition 1360.

Part (iii) follows from the fact that the morphism ⟨I, πθ⟩ ∶ H̃A(θ) →⟨Aθ,FiFamI(Aθ)⟩ is a bilogical morphism and Corollary 1393.

(b) Suppose θ, θ′ ∈ ConSys(A), such that θ ≤ θ′. Then we have the following
commutative diagram of F-algebraic systems.

A
⟨I, πθ⟩ ✲ Aθ

◗
◗
◗
◗
◗
◗
◗

⟨I, πθ′⟩
s

Aθ′

⟨I, π⟩
❄

where, ⟨I, π⟩ ∶ Aθ → Aθ′ is defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
by

πΣ(φ/θΣ) = φ/θ′Σ.
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Taking this diagram into account, we have

Dθ′ = (πθ′)−1(FiFamI(Aθ′)) (Definition of Dθ′)

= (πθ)−1(π−1(FiFamI(Aθ′))) (π ○ πθ = πθ′)
⊆ (πθ)−1(FiFamI(Aθ)) (Corollary 55)
= Dθ. (Definition of Dθ)

Thus, we get H̃A(θ) ≤ H̃A(θ′). ∎

We are ready now for the main isomorphism theorem that was promised
at the beginning of the section.

Theorem 1408 (Isomorphism Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩ be
an algebraic system, I = ⟨F,C⟩ a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, an F-algebraic system. Then

Ω̃A ∶ ⟨FStrI(A),≤⟩→ ⟨ConSysI(A),≤⟩
is an order isomorphism, with inverse

H̃A ∶ ⟨ConSysI(A),≤⟩→ ⟨FStrI(A),≤⟩.
Proof: By Proposition 1398, if IL ∈ FStrI(A), then Ω̃A(IL) ∈ ConSysI(A).
Moreover, by Lemma 1407, if θ ∈ ConSysI(A), then H̃A(θ) ∈ FStrI(A). So,
both Ω̃A and H̃A are well-defined, with domains and codomains as indicated.

We show, next, that they are mutually inverse mappings.
Suppose, first, that IL = ⟨A,D⟩ ∈ FStrI(A). Then, by Proposition 1398,

A∗ ∈ AlgSysI(A) and Ω̃A(IL) ∈ ConSysI(A). By fullness, D = π−1(FiFamI(A∗)),
where ⟨I, π⟩ ∶ IL ⊢ IL∗ is the quotient bilogical morphism. Then, by definition
of H̃A, we get that H̃A(Ω̃A(IL)) = IL.

Suppose, on the other hand, that θ ∈ ConSysI(A). By definition, Aθ ∈
AlgSys(I). Thus, by definition,

⟨Aθ,FiFamI(Aθ)⟩ ∈ FStr(I) and Ω̃A
θ(FiFamI(Aθ)) =∆A

θ

.

Now, we get

Ω̃A(H̃A(θ)) = Ω̃A((πθ)−1(FiFamI(Aθ))) (Definition of H̃A(θ))
= (πθ)−1(Ω̃Aθ(FiFamI(Aθ))) (Corollary 1364)

= (πθ)−1(∆Aθ) (Hypothesis)
= θ. (Set Theory)

Since, by definition Ω̃A is order preserving and, by Lemma 1407, H̃A is also
order preserving, we conclude that Ω̃A is an order isomorphism with inverse
H̃A. ∎

We show next that the poset of I-congruence systems on an F-algebraic
system A is a complete lattice with infimum given by signature-wise inter-
section. In conjunction with the Isomorphism Theorem, this will yield that
the poset of full I-structures on A is also a complete lattice.
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Theorem 1409 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, the poset ⟨ConSysI(A),≤⟩ is a complete
lattice with infimum given by signature-wise intersection.

Proof: First, note that ∇A ∈ ConSysI(A), since Ω̃A(FiFamI(A/∇A)) =
∆A/∇

A
and, hence, A/∇A ∈ AlgSys(I). So ConSysI(A) has a largest element.

Assume, next, that, for all i ∈ I, θi ∈ ConSysI(A). We must show that

⋂i∈I θi ∈ ConSysI(A). To this end, set θ ∶= ⋂i∈I θi and consider the projection
morphisms ⟨I, πi⟩ ∶ Aθ → Aθi , i ∈ I,

which are bilogical morphisms

⟨I, πi⟩ ∶ ⟨Aθ,FiFamI(Aθ)⟩ ⊢ ⟨Aθi ,FiFamI(Aθi)⟩, i ∈ I.

By hypothesis, ⟨Aθi,FiFamI(Aθi)⟩ is reduced, i.e.,

Ω̃A
θi (FiFamI(Aθi)) =∆A

θi

, i ∈ I.

Now we have, for all i ∈ I,

Ω̃A
θ(FiFamI(Aθ)) ≤ Ω̃A

θ((πi)−1(FiFamI(Aθi)))
= (πi)−1(Ω̃Aθi (FiFamI(Aθi)))
= (πi)−1(∆Aθi )
= θi/θ.

Thus, we get

Ω̃A
θ(FiFamI(Aθ)) ≤⋂

i∈I

(θi/θ) = (⋂
i∈I

θi)/θ = θ/θ =∆A
θ

.

We conclude that ⟨Aθ,FiFamI(Aθ)⟩ is reduced and, hence, Aθ ∈ AlgSys(I),
giving that θ ∈ ConSysI(A).

The conclusion of the theorem now follows. ∎

As a consequence of the Isomorphism Theorem 1408 and Theorem 1409,
we get

Corollary 1410 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, ⟨FStrI(A),≤⟩ is a complete lattice and

Ω̃A ∶ ⟨FStrI(A),≤⟩→ ⟨ConSysI(A),≤⟩
is a lattice isomorphism.
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Proof: By Theorems 1408 and 1409. ∎

It follows from the preceding results that, given a collection {ILi ∶ i ∈
I} ⊆ FStrI(A), with ILi = ⟨A,Di⟩, i ∈ I, its infimum in ⟨FStrI(A),≤⟩ is the
I-structure ⟨A, (πθ)−1(FiFamI(Aθ)⟩,
where θ = ⋂i∈I Ω̃A(ILi), and ⟨I, πθ⟩ ∶ A → Aθ is the quotient morphism. It
is not necessarily the case, however, that this system be the signature-wise
intersection of the ILi’s. In other words, ⟨FStrI(A),≤⟩ is not, in general, a
sublattice of the complete lattice of all I-structures on A.

It turns out that bilogical morphisms with isomorphic functor compo-
nents induce isomorphisms between principal ideals of the corresponding full
structure lattices and, similarly isomorphisms between principal ideals of the
corresponding lattices of congruence systems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. Let also A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩,
be an F-algebraic system. Consider the complete lattice ⟨FStrI(A),≤⟩ and
let IL = ⟨A,D⟩ ∈ FStrI(A). Recall that the ordering ≤ reflects the ordering
of the closure operators on A, which is dual to the inclusion ordering of
the corresponding closure set systems. So, when we refer to an ideal in⟨FStrI(A),≤⟩ we mean in the form of closure (operator) families and this
translates to a filter, when one views structures in the form of their theory
families. Keeping this in mind, we introduce the notation FStrI(IL) to refer
to the principal ideal of all full I-structures on A generated by IL. These are
full I-structures whose collection of theory families include D.

FStrI(⟨A,D⟩) = {⟨A,D′⟩ ∈ FStrI(A) ∶D′ ≤D}
= {⟨A,D′⟩ ∈ FStrI(A) ∶ D ≤ D′}.

Then we have the following.

Proposition 1411 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. Let also A = ⟨Sign,SEN,N⟩,
A′ = ⟨Sign,SEN′,N ′⟩ be N ♭-algebraic systems, over the same category of sig-
natures, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ F-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ full I-structures and ⟨I, γ⟩ ∶ IL ⊢ IL′ a bilogical morphism. Then

⟨A,X ⟩↦ ⟨A′, γ(X )⟩
is an isomorphism from FStrI(IL) to FStrI(IL′).

Moreover, the principal ideals of ConSysI(A) and of ConSysI(A′), gen-
erated by Ω̃A(IL) and Ω̃A

′(IL′), respectively, are isomorphic.

Proof: By Corollary 1362, the displayed mapping is an isomorphism between
ClFam(IL) and ClFam(IL′). Proposition 1392 gives the statement, since
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⟨I, γ⟩ induces bilogical morphisms between the corresponding elements in
ClFam(IL) and ClFam(IL′). The second statement now follows by applying
the Isomorphism Theorem 1408. ∎

Corollary 1412 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. Let also A = ⟨Sign,SEN,N⟩, A′ =⟨Sign,SEN′,N ′⟩ be N ♭-algebraic systems, over the same category of signa-
tures, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ F-algebraic systems and ⟨I, γ⟩ ∶ A→
A′ a surjective morphism, such that

⟨I, γ⟩ ∶ ⟨A,FiFamI(A)⟩ ⊢ ⟨A′,FiFamI(A′)⟩
is a bilogical morphism. Then ⟨A,X ⟩ ↦ ⟨A′, γ(X )⟩ is an isomorphism from
FStrI(A) to FStrI(A′). Moreover, ConSysI(A) ≅ConSysI(A′).
Proof: This follows by Proposition 1411, since, by Proposition 1390, the
I-structures ⟨A,FiFamI(A)⟩ and ⟨A′,FiFamI(A′)⟩ are the weakest full I-
structures on A and A′, respectively. The last isomorphism follows by the
second statement of Proposition 1411. ∎

We close the section by looking at some functors that relate the cate-
gories having as objects the structures that we have focused upon and with
surjective homomorphism running between them.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We describe three categories related to I .

• The category FStr(I):
– The objects are full I-structures IL = ⟨A,D⟩;
– Given objects IL = ⟨A,D⟩ and IL′ = ⟨A′,D′⟩, a morphism in

FStr(I) ⟨H,γ⟩ ∶ IL→ IL′

is a surjective morphism ⟨H,γ⟩ ∶ A → A′, which is also a logical
morphism ⟨H,γ⟩ ∶ IL⟩−IL′.

It is not difficult to verify that these two clauses specify indeed a cate-
gory, with composition being ordinary composition of morphisms.

• The category FStr∗(I):
This is the full subcategory of FStr(I), with objects all full I-
structures.

• The category AlgSys(I):
– The objects are I-algebraic systems A = ⟨A, ⟨F,α⟩⟩;
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– Given objects A = ⟨A, ⟨F,α⟩⟩ and A′ = ⟨A′, ⟨F ′, α′⟩⟩, a morphism
in AlgSys(I) ⟨H,γ⟩ ∶ A→ A′

is a surjective F-algebraic system morphism.

It is not difficult in this case either to verify that these two clauses
specify indeed a category, with composition being ordinary composition
of morphisms.

The following picture gives an overview of the relationships that hold
between these categories and will be established shortly. The categories
AlgSys(I) and FStr∗(I) are isomorphic through an isomorphism

Φ ∶ AlgSys(I) ≅ FStr∗(I),
which will be defined in the upcoming Theorem 1413. Moreover, the category
FStr∗(I) is a reflective subcategory of the category FStr(I), with reflector
the reduction functor ∗ ∶ FStr(I) → FStr∗(I) that will be visited in detail
in the last Theorem 1414 of the section.

AlgSys(I) Φ ✲✛
Φ−1

FStr∗(I) ⊂ J ✲✛
∗

FStr(I)
Theorem 1413 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then the categories AlgSys(I) and
FStr∗(I) are isomorphic.

Proof: We define the functor

Φ ∶ AlgSys(I)→ FStr∗(I)
by setting:

• For all A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(I),
Φ(A) = ⟨A,FiFamI(A)⟩;

• For all ⟨H,γ⟩ ∶ A → A′ in AlgSys(I),
Φ(⟨H,γ⟩) = ⟨H,γ⟩ ∶ ⟨A,FiFamI(A)⟩⟩−⟨A′,FiFamI(A′)⟩.

First, observe that, by Proposition 1397, if A ∈ AlgSys(I), then ⟨A,FiFamI(A)⟩
is a reduced full I-structure. So Φ is correctly defined. Moreover, if ⟨A,D⟩ ∈
FStr∗(I), then, again by Proposition 1397, D = FiFamI(A) and A ∈ AlgSys(I).
Thus, Φ is a bijection on objects.
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Finally, by Corollary 55, if ⟨H,γ⟩ ∶ A → A′ is a surjective morphism,
then, for all T ′ ∈ FiFamI(A′), γ−1(T ′) ∈ FiFamI(A). Therefore, Φ(⟨H,γ⟩) is
a well-defined logical morphism, by Proposition 1358. Since it is clear that
Φ is bijective on morphisms as well, we get that Φ ∶ AlgSys(I)→ FStr∗(I)
is indeed an isomorphism of categories. ∎

Finally, for the reflection:

Theorem 1414 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then FStr∗(I) is a full reflective subcate-
gory of FStr(I) with reflector the reduction functor ∗ ∶ FStr(I)→ FStr∗(I).
Proof: It is obvious that FStr∗(I) is a full subcategory of FStr(I). We
must show that, given IL = ⟨A,D⟩ ∈ FStr(I), the pair ⟨IL∗, ⟨I, π⟩ ∶ IL → IL∗⟩
is a reflector, i.e., that, given IL′ = ⟨A′,D′⟩ ∈ FStr∗(I) and ⟨H,γ⟩ ∶ IL→ IL′ in
FStr(I), there exists a unique ⟨H,γ∗⟩ ∶ IL∗ → IL′ in FStr∗(I), such that the
following diagram commutes.

IL
⟨H,γ⟩ ✲ IL′

◗
◗
◗
◗
◗
◗
◗
◗

⟨I, π⟩
s

IL∗

⟨H,γ∗⟩
✻

Consider ILγ ∶= ⟨A, γ−1(D′)⟩. Clearly, since, by hypothesis and Proposition
1358, γ−1(D′) ⊆ D, we have that IL ≤ ILγ . Now we have

Ker(⟨I, π⟩) = Ω̃A(IL) (Set Theory)

≤ Ω̃A(ILγ) (IL ≤ ILγ)

= γ−1(Ω̃A′(IL′)) (Corollary 1364)
= γ−1(∆A′) (IL′ ∈ FStr∗(I))
= Ker(⟨H,γ⟩). (Set Theory)

By the Fill-in Lemma (Proposition 1374), there exists a unique logical mor-
phism ⟨H,γ∗⟩ ∶ IL∗ → IL′, such that the displayed diagram commutes, which,
in addition, is surjective by the commutativity of the triangle. ∎

19.8 Frege Relations Revisited

We revisit here in more detail the types of Frege relations and Frege operators
one may consider in conjunction with π-institutions or π-structures, more
generally.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T ∈ SenFam(A).
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• The local Frege relation family λA(T ) = {λAΣ (T )}Σ∈∣Sign∣ of T on
A is defined by setting, for all Σ ∈ ∣Sign∣,

λAΣ (T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ φ ∈ TΣ iff ψ ∈ TΣ}.
• The global Frege relation family ΛA(T ) = {ΛA

Σ (T )}Σ∈∣Sign∣ of T on
A is defined by setting, for all Σ ∈ ∣Sign∣,

ΛA
Σ (T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ∈ TΣ′ iff SEN(f)(ψ) ∈ TΣ′}.
The operators λA,ΛA ∶ SenFam(A) → RelFam(A) are called the local and
global Frege operators on A, respectively.

Let now A = ⟨Sign,SEN,N⟩ be an algebraic system and IL = ⟨A,D⟩ be
a π-structure.

• The local Frege relation family λ̃A(IL) = λ̃A(D) = {λ̃AΣ (D)}Σ∈∣Sign∣
of IL, or of D on A, is defined by setting, for all Σ ∈ ∣Sign∣,

λ̃AΣ (D) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ DΣ(φ) = DΣ(ψ)}.
• The global Frege relation family Λ̃A(IL) = Λ̃A(D) = {Λ̃A

Σ (D)}Σ∈∣Sign∣
of IL, or of D on A, is defined by setting, for all Σ ∈ ∣Sign∣,

Λ̃A
Σ (D) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),

DΣ′(SEN(f)(φ)) =DΣ′(SEN(f)(ψ))}.
Consider again an algebraic system A = ⟨Sign,SEN,N⟩, a π-structure

IL = ⟨A,D⟩ and X ∈ SenFam(A). Recall the notation DX ∶ PSEN → PSEN
denoting the closure family on A that is defined, for all Σ ∈ ∣Sign∣ and all
Φ ⊆ SEN(Σ), by

DX
Σ (Φ) =DΣ(XΣ ∪Φ).

• The local Frege relation family

λ̃IL(X) = λ̃A,D(X) = {λ̃A,DΣ (X)}Σ∈∣Sign∣
of X in IL is defined by setting, for all Σ ∈ ∣Sign∣,

λ̃
A,D
Σ (X) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶DX

Σ (φ) =DX
Σ (ψ)}.

• The global Frege relation family

Λ̃IL(X) = Λ̃A,D(X) = {Λ̃A,D
Σ (X)}Σ∈∣Sign∣

of X in IL is defined by setting, for all Σ ∈ ∣Sign∣,
Λ̃A,D

Σ (X) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
DX

Σ′(SEN(f)(φ)) = DX
Σ′(SEN(f)(ψ))}.
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The operators λ̃A,D, Λ̃A,D ∶ SenFam(A) → RelFam(A) are called the local
and global Frege operators on IL, respectively.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩ be a π-
structure and X ∈ SenFam(A). Some obvious relationships hold between sev-
eral of the notions defined above. We denote by Thm(IL) = {ThmΣ(IL)}Σ∈∣Sign∣,
where ThmΣ(IL) = DΣ(∅), an obvious generalization of the corresponding
notion from π-institutions. Note, however, that, since D is not necessarily
structural, in this case Thm(IL) is a theory family, but not necessarily a
theory system. Then, we have the following:

λ̃A(D) = λ̃A,D(Thm(IL));
Λ̃A(D) = Λ̃A,D(Thm(IL));

λ̃A,D(X) = ⋂{λA(T ) ∶ X ≤ T ∈ ThFam(IL)};
Λ̃A,D(X) = ⋂{ΛA(T ) ∶ X ≤ T ∈ ThFam(IL)}.

We show that all three local Frege operators give rise to equivalence fam-
ilies, whereas all three global operators give rise to equivalence systems on
the underlying algebraic system A.

Lemma 1415 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩
a π-structure and X ∈ SenFam(A).

(a) λA(X), λ̃A(D) and λ̃A,D(X) are equivalence families on A;

(b) ΛA(X), Λ̃A(D) and Λ̃A,D(X) are equivalence systems on A.

Proof: Because of the interdependencies between these concepts, pointed
out before the lemma, it suffices to prove the statements only for λA(X) and
ΛA(X). That both λA(X) and ΛA(X) are equivalence families is obvious
because of the properties of the equivalence connective used in their defini-
tions. So it suffices to show only that ΛA(X) is a system, i.e., that it is
invariant under signature morphisms. So suppose Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ ΛA

Σ (X) and let Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′).
Σ

f ✲ Σ′

❩
❩
❩
❩
❩h ⑦ ❂✚

✚
✚
✚
✚

g

Σ′′

By the definition of ΛA(X), we have that, for all Σ′′ ∈ ∣Sign∣ and all h ∈
Sign(Σ,Σ′′),

DΣ′′(SEN(h)(φ)) =DΣ′′(SEN(h)(ψ)).
A fortiori, for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′), we have

DΣ′′(SEN(g)(SEN(f)(φ))) =DΣ′′(SEN(g)(SEN(f)(ψ))).
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By the definition of ΛA(X), this proves that ⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈
ΛA

Σ′(X). Thus ΛA(X) is indeed an equivalence system on A. ∎

The next lemma shows that all four “tilde” Frege operators are monotone.

Lemma 1416 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure on A.

(a) λ̃A, Λ̃A ∶ ClFam(A)→ EqvFam(A) are monotone;

(b) λ̃A,D, Λ̃A,D ∶ SenFam(A)→ EqvFam(A) are monotone.

Proof: Suppose D,D′ ∈ ClFam(A), such that D ≤ D′, and let Σ ∈ ∣Sign∣
and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ λ̃AΣ (D). Then DΣ(φ) =DΣ(ψ), whence

D′Σ(φ) =D′Σ(ψ). Thus, ⟨φ,ψ⟩ ∈ λ̃AΣ (D′). We conclude that λ̃A(D) ≤ λ̃A(D′).
The proof for Λ̃A ∶ ClFam(A)→ EqvFam(A) is similar.

Suppose, next, that X,X ′ ∈ SenFam(A), such that X ≤ X ′. Note that,
in this situation, we have

{T ∈ ThFam(IL) ∶X ′ ≤ T} ⊆ {T ∈ ThFam(IL) ∶X ≤ T}.
Therefore, we have

λ̃A,D(X) = ⋂{λA(T ) ∶ X ≤ T ∈ ThFam(IL)}
≤ ⋂{λA(T ) ∶ X ′ ≤ T ∈ ThFam(IL)}
= λ̃A,D(X ′).

The proof for Λ̃A,D ∶ SenFam(A)→ EqvFam(A) is similar. ∎

The equivalence families produced by applying the six Frege operators
form a hierarchy under inclusion that we now make explicit.

Proposition 1417 Let A = ⟨A,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩
a π-structure and X ∈ SenFam(A). Then, we have the following inclusions
between equivalence families on A:

Λ̃A(D)
✠�
�
� ❅

❅
❅❘

λ̃A(D) Λ̃A,D(X)
❅
❅
❅❘ ✠�

�
� ❅

❅
❅❘

λ̃A,D(X) ΛA(D(X))
❅
❅
❅❘ ✠�

�
�

λA(D(X))
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Proof: First, note that the three southwest inclusions are obvious, since the
conditions defining λ̃A, λ̃A,D and λA are special cases of the ones defining
Λ̃A, Λ̃A,D and ΛA, respectively.

We show, next, the southeast inclusions between the λ’s, since the ones
between the Λ’s may shown similarly. We have

λ̃A(D) = λ̃A,D(Thm(IL)) ≤ λ̃A,D(D(X)) = λ̃A,D(X).
Moreover,

λ̃A,D(X) = ⋂{λA(T ) ∶X ≤ T ∈ ThFam(IL)}
≤ λA(D(X)).

Therefore, we have λ̃A(D) ≤ λ̃A,D(X) ≤ λA(D(X)). ∎

In the case of structural π-structures, i.e., π-institutions, the hierarchy
collapses to a smaller one, the top pair collapses and in the case of a sentence
system, the middle pair does also. More precisely, we have

Proposition 1418 Let A = ⟨A,SEN,N⟩ be an algebraic system, IL = ⟨A,D⟩
a π-structure and X ∈ SenSys(A). If D is structural, then

Λ̃A(D) = λ̃A(D) and Λ̃A,D(X) = λ̃A,D(X).

Proof: By the remarks preceding Lemma 1415, it suffices to show that the
second equation holds. Since it is always the case that Λ̃A,D(X) ≤ λ̃A,D(X),
we must prove the opposite inclusion. Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ),
such that ⟨φ,ψ⟩ ∈ λ̃A,DΣ (X). Then, we have, by definition, DΣ(XΣ, φ) =
DΣ(XΣ, ψ). By the structurality of D, for all Σ′ ∈ ∣Sign∣ and all f ∈
Sign(Σ,Σ′),

DΣ′(SEN(f)(XΣ),SEN(f)(φ)) =DΣ′(SEN(f)(XΣ),SEN(f)(ψ)).
Therefore, is X is a sentence system, we get

DΣ′(XΣ′ ,SEN(f)(φ)) =DΣ′(XΣ′ ,SEN(f)(ψ)).
We conclude that ⟨φ,ψ⟩ ∈ Λ̃A,D

Σ (X). ∎

Thus, if IL = ⟨A,D⟩ is a π-institution, and X ∈ SenFam(A), we obtain
the simplified hierarchy of Frege relation families shown on the left and, if,
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in addition, X ∈ SenSys(A), we get the linear hierarchy shown on the right.

Λ̃A(D) = λ̃A(D) Λ̃A(D) = λ̃A(D)

Λ̃A,D(X)❄

Λ̃A,D(X) = λ̃A,D(X)❄

✠�
�
� ❅

❅
❅❘

λ̃A,D(X) ΛA(D(X)) ΛA(D(X))❄

❅
❅
❅❘ ✠�

�
�

λA(D(X)) λA(D(X))❄

We look next at how finitarity of a closure family relates to continuity of
Frege operators.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system. Recall that:

• An X ∈ SenFam(A) is called locally finite if, for all Σ ∈ ∣Sign∣, XΣ is
finite. We write Y ≤lf X to suggest that Y is a locally finite sentence
subfamily of X .

• A collection X ⊆ SenFam(A) is said to be locally directed if, for every
Σ ∈ ∣Sign∣ and finite Y ⊆ X , there exists X ∈ X , such that YΣ ≤XΣ, for
all Y ∈ Y.

Let IL = ⟨A,D⟩ be a π-structure based on A.

• IL is finitary if, for all X ∈ SenFam(A),
D(X) =⋃{D(Y ) ∶ Y ≤lf X}.

• The operator λ̃A,D ∶ SenFam(A)→ EqvFam(A) is locally continuous
if, for every locally directed {X i ∶ i ∈ I} ⊆ SenFam(A),

λ̃A,D(⋃
i∈I

X i) =⋃
i∈I

λ̃A,D(X i).

Proposition 1419 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure based on A. IL is finitary if and only if

λ̃A,D ∶ SenFam(A)→ EqvFam(A)
is locally continuous.
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Proof: Suppose, first, that IL is finitary and let {X i ∶ i ∈ I} ⊆ SenFam(A)
be locally directed. Since, by Lemma 1416, λ̃A,D is monotone, we have

⋃
i∈I

λ̃A,D(X i) ≤ λ̃A,D(⋃
i∈I

X i).
To show the reverse inclusion, let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈
λ̃
A,D
Σ (⋃i∈IX i). Then, by definition, DΣ(⋃i∈IX i

Σ, φ) = DΣ(⋃i∈IX i
Σ, ψ). Since

IL is finitary, there exists finite Φ ≤f ⋃i∈IX i
Σ, such that DΣ(Φ, φ) = DΣ(Φ, ψ).

Hence, since {X i ∶ i ∈ I} is locally directed, there exists i ∈ I, such that Φ ⊆
X i

Σ. Hence, DΣ(X i
Σ, φ) = DΣ(X i

Σ, ψ), i.e., ⟨φ,ψ⟩ ∈ λ̃A,DΣ (X i). We conclude

that λ̃A,D(⋃i∈IX i) ≤ ⋃i∈I λ̃A,D(X i).
Assume, conversely, that λ̃A,D is locally continuous and consider X ∈

SenFam(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ DΣ(XΣ). Let Z ={Z ∈ SenFam(A) ∶ Z ≤lf X}. Z is a locally directed family, such that

⋃Z = X . For all ψ ∈ XΣ, we have DΣ(XΣ, φ) = DΣ(XΣ, ψ) = DΣ(XΣ). So
we get ⟨φ,ψ⟩ ∈ λ̃A,DΣ (X) = λ̃A,DΣ (⋃Z).
By the local directedness of Z and local continuity of λ̃A,D, we get ⟨φ,ψ⟩ ∈
⋃Z∈Z λ̃

A,D
Σ (Z). Therefore, we get, for some Z ≤lf X , φ ∈ DΣ(ZΣ, ψ) =

DΣ(ZΣ). This shows that IL is finitary. ∎

Among the key properties of Frege relations, which partly explains their
usefulness in the algebraic study of logical systems, is that, loosely speaking,
they are approximated from below by the Leibniz, the Tarski and the Suszko
congruence systems.

Proposition 1420 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure based on A and T ∈ ThFam(IL).
(a) The Leibniz congruence system ΩA(T ) is the largest congruence system

on A included in ΛA(T ) and in λA(T );
(b) The Tarski congruence system Ω̃A(D) is the largest congruence system

on A included in Λ̃A(D) and in λ̃A(D);
(c) The Suszko congruence system Ω̃A,D(T ) is the largest congruence sys-

tem on A included in Λ̃A,D(T ) and in λ̃A,D(T ).
Proof: Let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩA

Σ (T ). Since
ΩA(T ) is a congruence system, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ ΩA

Σ′(T ). Thus, by the compatibility property of
ΩA(T ) with T , we get

SEN(f)(φ) ∈ TΣ′ iff SEN(f)(ψ) ∈ TΣ′ ,
i.e., ⟨φ,ψ⟩ ∈ ΛA

Σ (T ). We conclude that ΩA(T ) ≤ ΛA(T ) ≤ λA(T ).
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Suppose, next, that θ ∈ ConSys(A), such that θ ≤ λA(T ). If Σ ∈ ∣Sign∣,
φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ and φ ∈ TΣ, then ⟨φ,ψ⟩ ∈ λA(T ) and
φ ∈ TΣ, whence by the definition of λA(T ), ψ ∈ TΣ. Thus, θ is a congruence
system on A compatible with T and, therefore, θ ≤ ΩA(T ), by the maximality
property of ΩA(T ).

Parts (b) and (c) can be proved similarly. ∎

We show next that Frege relations are preserved under inverse surjective
morphisms.

Lemma 1421 Let A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be π-structures based on A, A′, respec-
tively, and ⟨F,α⟩ ∶ A→A′ a surjective morphism.

(a) For every X ∈ SenFam(A′), ΛA(α−1(X)) = α−1(ΛA′(X)) and, also,
λA(α−1(X)) = α−1(λA′(X));

(b) If ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, then Λ̃A(D) = α−1(Λ̃A′(D′))
and, also, λ̃A(D) = α−1(λ̃A′(D′)).

Proof:

(a) Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ). We have ⟨φ,ψ⟩ ∈ α−1Σ (ΛA′(X)) iff⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΛA′

F (Σ)
(X) iff, by surjectivity, for all Σ′ ∈ ∣Sign∣ and

all f ∈ Sign(Σ,Σ′),
SEN′(F (f))(αΣ(φ)) ∈XF (Σ′) iff SEN′(F (f))(αΣ(ψ)) ∈XF (Σ′),

iff, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
αΣ′(SEN(f)(φ)) ∈XF (Σ′) iff αΣ′(SEN′(f)(ψ)) ∈XF (Σ′),

iff, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN(f)(φ) ∈ α−1Σ′ (XF (Σ′)) iff SEN(f)(ψ) ∈ α−1Σ′ (XF (Σ′)),

iff, ⟨φ,ψ⟩ ∈ ΛA
Σ (α−1(X)).

The proof of λA(α−1(X)) = α−1(λA′(X)) is similar.

(b) We have

Λ̃(D) = ⋂{ΛA(T ) ∶ T ∈ ThFam(IL)}
= ⋂{Λ(α−1(T ′)) ∶ T ′ ∈ ThFam(IL′)}
= ⋂{α−1(ΛA′(T ′)) ∶ T ′ ∈ ThFam(IL′)}
= α−1(⋂{ΛA′(T ′) ∶ T ′ ∈ ThFam(IL′)})
= α−1(Λ̃A′(D′)).

The proof of λ̃A(D) = α−1(λ̃A′(D′)) is similar.
∎
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19.9 Fullness and Metalogical Properties

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system.
An F-rule is a pair ⟨P,ρ⟩, with P ∪ {ρ} ∶ (SEN♭)ω → SEN♭ a finite set of

natural transformations in N ♭.
A generalized or Gentzen F-rule, or F-grule for short, is a pair

⟨{⟨P i, ρi⟩ ∶ i ∈ I}, ⟨P,ρ⟩⟩,
where {⟨P i, ρi⟩ ∶ i ∈ I}∪{⟨P,ρ⟩} is a finite set of F-rules. We sometimes write
an F-grule in the “two-line” format

⟨P i, ρi⟩ ∶ i ∈ I
⟨P,ρ⟩ or

P i ⊢ ρi ∶ i ∈ I
P ⊢ ρ

.

Let I = ⟨F,C⟩ be a π-institution based on F. I satisfies
⟨P i, ρi⟩ ∶ i ∈ I
⟨P,ρ⟩ if,

for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),
ρiΣ(χ⃗) ∈ CΣ(P i

Σ(χ⃗)), i ∈ I, impies ρΣ(χ⃗) ∈ CΣ(PΣ(χ⃗)).
Similarly, an F-structure IL = ⟨A,D⟩, with A = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign,

SEN,N⟩, satisfies
⟨P i, ρi⟩ ∶ i ∈ I
⟨P,ρ⟩ if, for all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ),

ρiΣ(χ⃗) ∈DΣ(P i
Σ(χ⃗)), i ∈ I, impies ρΣ(χ⃗) ∈DΣ(PΣ(χ⃗)).

Since an F-rule can be perceived as a a special case of an F-grule (with empty
set of premises), this notion of satisfaction applies in particular to F-rules.

It turns out that satisfaction of F-rules is transferred from a π-institution
to all its structure models.

Proposition 1422 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. If I satisfies an F-rule ⟨P,ρ⟩, then
every I-structure satisfies the same F-rule.

Proof: Suppose I satisfies ⟨P,ρ⟩ and let IL = ⟨A,D⟩ be an I-structure,
with A = ⟨A, ⟨F,α⟩⟩. Then, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign♭∣ and all
χ⃗ ∈ SEN♭(Σ), we have PF (Σ)(αΣ(χ⃗)) ⊆ TF (Σ) if and only if αΣ(PΣ(χ⃗)) ⊆ TF (Σ)
if and only if PΣ(χ⃗) ⊆ α−1Σ (TF (Σ)). Thus, since, by Lemma 51, α−1(T ) ∈
ThFam(I), we get, by hypothesis, ρΣ(χ⃗) ∈ α−1Σ (TF (Σ)). This is equivalent to
αΣ(ρΣ(χ⃗)) ∈ TF (Σ) and, in turn, to ρF (Σ)(αΣ(χ⃗)) ∈ TF (Σ). We conclude, by
the surjectivity of ⟨F,α⟩, that IL satisfies ⟨P,ρ⟩ as well. ∎

Moreover, it turns out that satisfaction of an F-grule, in general, is pre-
served by bilogical morphisms.
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Proposition 1423 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ N ♭-algebraic systems, IL = ⟨A,D⟩,
IL′ = ⟨A′,D′⟩ π-structures based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′

a bilogical morphism. Then IL satisfies an F-grule ⟨{⟨P i, ρi⟩ ∶ i ∈ I}, ⟨P,ρ⟩⟩ if
and only if IL′ satisfies the same F-grule.

Proof: Suppose, first, that IL satisfies the F-grule and let Σ ∈ ∣Sign∣, χ⃗ ∈
SEN(Σ), such that, for all i ∈ I,

ρ′iF (Σ)(αΣ(χ⃗)) ∈D′F (Σ)(P ′iF (Σ)(αΣ(χ⃗))).
This is equivalent to

αΣ(ρiΣ(χ⃗)) ∈D′F (Σ)(αΣ(P i
F (Σ)(χ⃗))).

Since ⟨F,α⟩ is a bilogical morphism, we get ρiΣ(χ⃗) ∈ DΣ(P i
Σ(χ⃗)). Since, by

hypothesis, IL satisfies the given F-grule, we get that ρΣ(χ⃗) ∈ DΣ(PΣ(χ⃗)).
Reversing the steps above, we conclude that

ρ′F (Σ)(αΣ(χ⃗)) ∈D′F (Σ)(P ′F (Σ)(αΣ(χ⃗))).
Since ⟨F,α⟩ is surjective, this shows that IL′ satisfies the F-grule as well.

Suppose, conversely, that IL′ satisfies the F-grule ⟨{⟨P i, ρi⟩ ∶ i ∈ I}, ⟨P,ρ⟩⟩.
Let Σ ∈ ∣Sign∣ and χ⃗ ∈ SEN(Σ), such that, for all i ∈ I,

ρiΣ(χ⃗) ∈DΣ(P i
Σ(χ⃗)).

Since, ⟨F,α⟩ is a bilogical morphism, we get

αΣ(ρiΣ(χ⃗)) ∈D′F (Σ)(αΣ(P i
Σ(χ⃗))),

which gives ρ′i
F (Σ)
(αΣ(χ⃗)) ∈ D′F (Σ)(P ′iF (Σ)(αΣ(χ⃗))). Since, by hypothesis, IL′

satisfies the given F-grule, we now get

ρ′F (Σ)(αΣ(χ⃗)) ∈D′F (Σ)(P ′F (Σ)(αΣ(χ⃗))).
Reversing again the preceding steps, we finally obtain that

ρΣ(χ⃗) ∈DΣ(PΣ(χ⃗)).
Thus, IL satisfies the same F-grule as well. ∎
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19.9.1 The Congruence Property

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL = ⟨A,D⟩ a π-structure.

• IL has the Congruence Property if Λ̃A(D) is a congruence system
on A, i.e., by Proposition 1420, if and only if

Λ̃A(D) = Ω̃A(D);
• IL has the strong Congruence Property if λ̃A(D) is a congruence

system on A, i.e., by Proposition 1420, if and only if

λ̃A(D) = Ω̃A(D).
Of course, the strong Congruence Property implies the Congruence Prop-

erty.

Proposition 1424 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a π-structure. If I has the strong Congruence Property, then it has
the Congruence Property.

Proof: We know that Ω̃A(D) ≤ Λ̃A(T ) ≤ λ̃A(T ). If IL has the strong Con-
gruence Property, Ω̃A(D) = λ̃A(T ), whence, also, Ω̃A(D) = Λ̃A(T ). Thus, IL
has the Congruence Property. ∎

Corollary 1425 Let A = ⟨Sign,SEN,N⟩ be an algebraic system and IL =⟨A,D⟩ a reduced π-structure based on A.

(a) IL has the Congruence Property if and only if Λ̃A(D) = ∆A.

(b) IL has the strong Congruence Property if and only if λ̃A(D) = ∆A.

Proof: IL has the Congruence Property if and only if Λ̃A(D) = Ω̃A(D) if
and only if, since IL is reduced, Λ̃A(D) =∆A. Part (b) is similar. ∎

It turns out that the Congruence Property is preserved in both directions
under bilogical morphisms.

Proposition 1426 Let A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be al-
gebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ π-structures based on A, A′,
respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism.

(a) IL has the Congruence Property if and only if IL′ has the Congruence
Property;

(b) IL has the strong Congruence Property if and only if IL′ has the strong
Congruence Property.
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Proof:

(a) We have

Λ̃A(D) = Ω̃A(D) iff α−1(Λ̃A′(D′)) = α−1(Ω̃A′(D′))
iff Λ̃A′(D′) = Ω̃A′(D′),

the first equivalence by Corollary 1364 and Lemma 1421, and the sec-
ond equivalence by the surjectivity of ⟨F,α⟩. Therefore, IL has the
Congruence Property if and only if IL′ has the Congruence Property.

(b) Similarly,

λ̃A(D) = Ω̃A(D) iff α−1(λ̃A′(D′)) = α−1(Ω̃A′(D′))
iff λ̃A

′(D′) = Ω̃A′(D′),
the first equivalence by Corollary 1364 and Lemma 1421, and the sec-
ond equivalence by the surjectivity of ⟨F,α⟩. Therefore, IL has the
strong Congruence Property if and only if IL′ has the strong Congru-
ence Property. ∎

Using the Congruence Property, we are now able to introduce the first
two classes of the Frege hierarchy of π-institutions, which will be looked more
closely at in a subsequent chapter.

Let F = ⟨Sign♭,SEN♭, IN♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• I is selfextensional if it has the Congruence Property, i.e., if

Λ̃(I) = Ω̃(I).
Recall from Proposition 1418, that, since I , is structural, this is equiv-
alent to having the strong Congruence Property.

• I is fully selfextensional if every full I-structure IL = ⟨A,D⟩ has the
Congruence Property, i.e., if, for all IL = ⟨A,D⟩ ∈ FStr(I),

Λ̃A(D) = Ω̃A(D).
Recall, also, from Proposition 1389 and Proposition 1418, that, since
every full I-structure is structural, this amounts to every full I-structure
having the strong Congruence Property.

We give a characterization of selfextensional π-institutions next.

Proposition 1427 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is selfextensional if and only if, for
all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

CΣ(φi) = CΣ(ψi), i < k,
imply CΣ(σ♭Σ(φ0, . . . , φk−1)) = CΣ(σ♭Σ(ψ0, . . . , ψk−1)).
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Proof: Suppose that I is selfextensional and let σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣ and
φi, ψi ∈ SEN♭(Σ), i < k, such that CΣ(φi) = CΣ(ψi), i < k. Thus, for all i < k,⟨φi, ψi⟩ ∈ λ̃Σ(I) = Ω̃Σ(I), by selfextensionality. Since Ω̃(I) is a congruence
system,

⟨σ♭Σ(φ0, . . . , φk−1), σ♭Σ(ψ0, . . . , ψk−1)⟩ ∈ Ω̃Σ(I) = λ̃Σ(I).
We conclude that CΣ(σ♭Σ(φ0, . . . , φk−1)) = CΣ(σ♭Σ(ψ0, . . . , ψk−1)).

Suppose, conversely, that the displayed condition holds. Then λ̃(I) is
a congruence system on F. Therefore, by Proposition 1420, we have that
Ω̃(I) = λ̃(I). We conclude that I is selfextensional. ∎

And also a characterization of fully selfextensional π-institutions.

Proposition 1428 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is fully selfextensional if and only if
every F-structure of the form ⟨A,FiFamI(A)⟩ has the Congruence Property.

Proof: Assume, first, that I is fully selfextensional. By definition, ev-
ery full I-structure has the Congruence Property. By Proposition 1390,⟨A,FiFamI(A)⟩ is full, for every F-algebraic system A. Therefore, every
F-structure of the form ⟨A,FiFamI(A)⟩ has the Congruence Property.

Assume, conversely, that every F-structure of the form ⟨A,FiFamI(A)⟩
has the Congruence Property. Let IL = ⟨A,D⟩ be a full I-structure. Then,
by definition, the reduction morphism is a bilogical morphism

⟨I, π⟩ ∶ ⟨A,D⟩ ⊢ ⟨A∗,FiFamI(A∗)⟩.
By hypothesis, ⟨A∗,FiFamI(A∗)⟩ has the Congruence Property. Thus, by
Proposition 1426, IL also has the Congruence Property. Therefore, every full
I-structure has the Congruence Property and we conclude that I is fully
selfextensional. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. Recall that the Lindenbaum-Tarski algebraic
system of I is the algebraic system F/Ω̃(I), where F = ⟨F, ⟨I, ι⟩⟩. Recall,
also, that, given a class of F-algebraic systems, Q(K) denotes the syntactic
variety generated by K, i.e., those F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, such
that ⋂{Ker(K) ∶ K ∈ K} ≤ Ker(A). We denoted Q(I) = Q(F/Ω̃(I)), the
syntactic variety generated by the Lindenbaum-Tarski F-algebraic system of
I . Moreover, given Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), we write K ⊧Σ φ ≈ ψ for⟨φ,ψ⟩ ∈ ⋂K∈K KerΣ(K).

Using these conventions, we can formulate a proposition to the effect that,
for a selfextensional π-institution I , an equation is satisfied in Q(I) if and
only if it is in the Frege equivalence family λ̃(I).
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Proposition 1429 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is selfextensional, then, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

Q(I) ⊧Σ φ ≈ ψ if and only if ⟨φ,ψ⟩ ∈ λ̃Σ(I).
Proof: By the definition of Q(I), it is easy to see that, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

Q(I) ⊧Σ φ ≈ ψ iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I).
Since I is assumed selfextensional, this happens if and only if ⟨φ,ψ⟩ ∈ Λ̃Σ(I),
i.e., due to the structurality of C, if and only if ⟨φ,ψ⟩ ∈ λ̃Σ(I). ∎

19.9.2 The Property of Conjunction

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, such that, in N , there exists
a binary natural transformation

∧ ∶ SEN2 → SEN,

and IL = ⟨A,D⟩ a π-structure. We say that IL has the Conjunction Prop-
erty with respect to ∧ if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

DΣ(φ ∧Σ ψ) =DΣ(φ,ψ),
where φ∧Σ ψ ∶= ∧Σ(φ,ψ). In this case, we also say ∧ is a conjunction for IL
and that IL is conjunctive.

Lemma 1430 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∧ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure based on A. IL has
the Conjunction Property with respect to ∧ if and only if, for every T ∈
ThFam(IL), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ∧Σ ψ ∈ TΣ iff φ ∈ TΣ and ψ ∈ TΣ.

Proof: Suppose that IL has the Conjunction Property with respect to ∧ and
let T ∈ ThFam(IL), Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ).

If φ ∧Σ ψ ∈ TΣ, then

φ ∈DΣ(φ,ψ) =DΣ(φ ∧Σ ψ) ⊆DΣ(TΣ) = TΣ.
Similarly, ψ ∈ TΣ.

Conversely, if φ,ψ ∈ TΣ, then

φ ∧Σ ψ ∈DΣ(φ ∧Σ ψ) =DΣ(φ,ψ) ⊆DΣ(TΣ) = TΣ.
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Thus, φ ∧Σ ψ ∈ TΣ if and only if φ,ψ ∈ TΣ.
Suppose, conversely, that the displayed condition in the statement is sat-

isfied. Then, for all Σ ∈ ∣Sign∣, and all φ,ψ ∈ SEN(Σ),
DΣ(φ ∧Σ ψ) = ⋂{TΣ ∶ T ∈ ThFam(IL) and φ ∧Σ ψ ∈ TΣ}

= ⋂{TΣ ∶ T ∈ Thfam(IL) and φ,ψ ∈ TΣ}
= DΣ(φ,ψ).

So ∧ ∶ SEN2 → SEN is a conjunction for IL. ∎

In terms of F-rules one can characterize the Conjunction Property as
follows.

Proposition 1431 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭ and I = ⟨F,C⟩ a π-institution I = ⟨F,C⟩ based
on F. I has the Conjunction Property if and only if it satisfies

p2,0, p2,1 ⊢ ∧♭ ○ ⟨p2,0, p2,1⟩, ∧♭ ○ ⟨p2,0, p2,1⟩ ⊢ p2,0, ∧♭ ○ ⟨p2,0, p2,1⟩ ⊢ p2,1.
Note that, in practice, we write these F-grules in the more familiar form

x, y ⊢ x ∧♭ y, x ∧♭ y ⊢ x, x ∧♭ y ⊢ y,

where x, y, z, . . . stand for the corresponding projection natural transforma-
tions in N ♭.
Proof: We have that I satisfies

x, y ⊢ x ∧♭ y, x ∧♭ y ⊢ x, x ∧♭ y ⊢ y,

iff, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ ∧♭Σ ψ ∈ CΣ(φ,ψ), φ ∈ CΣ(φ ∧♭Σ ψ), ψ ∈ CΣ(φ ∧♭Σ ψ),

iff, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ)

iff I has the Conjunction Property with respect to ∧♭. ∎

Having the Conjunction Property is preserved under bilogical morphisms
in both directions.

Proposition 1432 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system with
a binary ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭. Suppose A = ⟨Sign,SEN,N⟩, A′ =⟨Sign′,SEN′,N ′⟩ are N ♭-algebraic systems IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ π-
structures based on A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical mor-
phism. IL has the Conjunction Property with respect to ∧ if and only if IL′

has the Conjunction Property with respect to ∧′.
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Proof: This follows by Proposition 1431 and Proposition 1423. ∎

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and ∧ ∶ SEN2 → SEN
a binary natural transformation in N . We denote by N∧ the category of
natural transformations on SEN generated by ∧. Clearly, since ∧ is in N , we
have that N∧ is a wide subcategory of N . Moreover, we denote

A∧ = ⟨Sign,SEN,N∧⟩
the algebraic system that results by taking N∧ instead of N as its category
of natural transformations. This corresponds to the well-known operation of
reducing the type of an algebra.

Proposition 1433 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∧ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ be a π-structure based on A. If IL has the
Conjunction Property with respect to ∧, then Λ̃A(D) is a congruence system
on A∧. Moreover, for all X ∈ SenFam(A), Λ̃A,D(X) is also a congruence
system on A∧.

Proof: It suffices to show that, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign∣ and all
φ,φ′, ψ,ψ′ ∈ SEN(Σ),

⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ Λ̃A
Σ (T ) implies ⟨φ ∧Σ ψ,φ

′ ∧Σ ψ
′⟩ ∈ Λ̃A

Σ (T ).
To this end, suppose Σ ∈ ∣Sign∣, φ,φ′, ψ,ψ′ ∈ SEN(Σ), such that ⟨φ,φ′⟩,⟨ψ,ψ′⟩ ∈ Λ̃A

Σ (T ). Then, by definition, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN(f)(φ) ∈ TΣ′ iff SEN(f)(φ′) ∈ TΣ′ ,
SEN(f)(ψ) ∈ TΣ′ if SEN(f)(ψ′) ∈ TΣ′ .

Thus, we have, by the Conjunction Property and Lemma 1430,

SEN(f)(φ ∧Σ ψ) ∈ TΣ′ iff SEN(f)(φ) ∧Σ′ SEN(f)(ψ) ∈ TΣ′
iff SEN(f)(φ),SEN(f)(ψ) ∈ TΣ′
iff SEN(f)(φ′),SEN(f)(ψ′) ∈ TΣ′
iff SEN(f)(φ′) ∧Σ′ SEN(f)(ψ′) ∈ TΣ′
iff SEN(f)(φ′ ∧Σ ψ′) ∈ TΣ′ .

Thus, ⟨φ ∧Σ ψ,φ′ ∧Σ ψ′⟩ ∈ Λ̃A
Σ (T ) and Λ̃A(T ) is a congruence system on A∧.

The fact that Λ̃A(D) and Λ̃A,D(X) are congruence systems on A∧ now
follow from the relationships outlined before Lemma 1415. ∎

The Conjunction Property also satisfies a transfer property to the effect
that a given π-institution has the Conjunction Property if and only if all its
π-structure models have the Conjunction Property.
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Proposition 1434 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
I has the Conjunction Property with respect to ∧♭ if and only if, for every
I-structure IL = ⟨A,D⟩, IL has the Conjunction Property with respect to ∧.

Proof: Suppose that I has the Conjunction Property with respect to ∧♭.
Then, by Propositions 1431 and 1422, IL has the Conjunction Property with
respect to ∧.

The converse is trivial, since ⟨F ,C⟩ ∈ Str(I), where F = ⟨F, ⟨I, ι⟩⟩. ∎

Finally, we show that if a π-institution I has the Conjunction Property,
then any finitary I-structure with the Congruence Property is full.

Proposition 1435 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, I = ⟨F,C⟩ a π-institution based on F, and IL =⟨A,D⟩ a finitary I-structure, which has no theorems if I has no theorems.
If I has the Conjunction Property with respect to ∧♭ and IL has the strong
Congruence Property, then IL is a full I-structure.

Proof: Suppose IL = ⟨A,D⟩ is a finitary I-structure, without theorems, if
I has no theorems, satisfying the strong Congruence Property. Our goal is
to show that D∗ = FiFamI(A∗). We denote by ⟨I, π⟩ ∶ IL ⊢ IL∗ the bilogical
quotient morphism.

Assume, first, that T ∈ D∗. Then π−1(T ) ∈ D ⊆ FiFamI(D), by Propo-
sition 1385. Hence, by Corollary 55, T ∈ ThFamI(A∗). We conclude that
D∗ ⊆ FiFamI(A∗).

Conversely, assume that T ∈ FiFamI(A∗). If T = ∅, then I does not
have theorems. Thus, by hypothesis, ∅ ∈ D and, therefore, ∅ ∈ D∗. Suppose,
next, that T ≠ ∅. Let Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ), such that φ ∈ D∗Σ(TΣ).
By hypothesis and Proposition 1365, there exist φ0, . . . , φn−1 ∈ TΣ, such that
φ ∈ D∗Σ(φ0, . . . , φn−1). By the Conjunction Property and Proposition 1434,
φ ∈D∗Σ(φ0 ∧Σ (⋯∧Σ φn−1)). Therefore,

D∗Σ(φ ∧Σ (φ0 ∧Σ (⋯∧Σ φn−1))) =D∗Σ(φ0 ∧Σ (⋯∧Σ φn−1)).
By hypothesis, Proposition 1426 and Corollary 1425, we get that

φ ∧Σ (φ0 ∧Σ (⋯∧Σ φn−1)) = φ0 ∧Σ (⋯∧Σ φn−1).
Since T ∈ FiFamI(A∗) and I has the Conjunction Property with respect to
∧♭, φ0, . . . , φn−1 ∈ TΣ imply that φ0∧Σ (⋯∧φn−1) ∈ TΣ. Thus, by the displayed
equation above, φ ∧Σ (φ0 ∧Σ (⋯∧Σ φn−1)) ∈ TΣ. By Proposition 1434, φ ∈ TΣ.
So we have D∗Σ(TΣ) = TΣ and, hence, T ∈ D∗. Thus, D∗ = FiFamI(A∗) and
IL is a full I-structure. ∎
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19.9.3 The Deduction-Detachment Theorem

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with →∶ SEN2 → SEN a
binary natural transformation in N , and IL = ⟨A,D⟩ a π-structure.

• IL has the Modus Ponens or Detachment with respect to → if,
for all Σ ∈ ∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ),

φ→Σ ψ ∈DΣ(Φ) implies ψ ∈DΣ(Φ, φ).
• IL has the Deduction Theorem with respect to → if, for all Σ ∈∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ),

ψ ∈ DΣ(Φ, φ) implies φ→Σ ψ ∈DΣ(Φ).
• IL has the Deduction Detachment Theorem with respect to → if

it has both the Modus Ponens and the Deduction Theorem with respect
to →.

Structures that have the Deduction Detachment Theorem always have
theorems. The following proposition gives a few of those theorems that are
inspired by classical propositional calculus.

Proposition 1436 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
→∶ SEN2 → SEN a binary natural transformation in N , and IL = ⟨A,D⟩ a
π-structure that has the Deduction Detachment Theorem with respect to →.
Then, for all Σ ∈ ∣Sign∣ and all φ,ψ,χ ∈ SEN(Σ),

(a) φ→Σ φ ∈ ThmΣ(IL);
(b) φ→Σ (ψ →Σ φ) ∈ ThmΣ(IL);
(c) (φ→Σ (ψ →Σ χ))→Σ ((φ→Σ ψ)→Σ (φ→Σ χ)) ∈ ThmΣ(IL).

Proof: Let Σ ∈ ∣Sign∣ and φ,ψ,χ ∈ SEN(Σ).
(a) Since φ ∈ DΣ(φ), we get by the Deduction Theorem, φ →Σ φ ∈ DΣ(∅).

So φ→Σ φ ∈ ThmΣ(IL).
(b) Since φ ∈ DΣ(φ,ψ), we get, by the Deduction Theorem, ψ →Σ φ ∈

DΣ(φ). By yet another application of the Deduction Theorem, we
conclude that φ →Σ (ψ →Σ φ) ∈ DΣ(∅). Therefore, φ →Σ (ψ →Σ φ) ∈
ThmΣ(IL).

(c) Since φ →Σ ψ ∈ DΣ(φ →Σ ψ) and φ →Σ (ψ →Σ χ) ∈ DΣ(φ →Σ (ψ →Σ

χ)), we get, by Modus Ponens, ψ ∈ DΣ(φ →Σ ψ,φ) and ψ →Σ χ ∈
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DΣ(φ →Σ (ψ →Σ χ), φ). Moreover, since ψ →Σ χ ∈ DΣ(ψ →Σ χ), we
get, by Modus Ponens, χ ∈ DΣ(ψ →Σ χ,ψ). Thus, we obtain

χ ∈DΣ(ψ →Σ χ,ψ) ⊆DΣ(φ→Σ (ψ →Σ χ), φ →Σ ψ,φ).
By the Deduction Theorem, φ →Σ χ ∈ DΣ(φ →Σ (ψ →Σ χ), φ →Σ ψ).
By another application of the Deduction Theorem, (φ→Σ ψ)→Σ (φ→Σ

χ) ∈ DΣ(φ →Σ (ψ →Σ χ)). A final application of the Deduction Theo-
rem yields

(φ→Σ (ψ →Σ χ))→Σ ((φ →Σ ψ)→Σ (φ→Σ χ)) ∈DΣ(∅).
Therefore, (φ →Σ (ψ →Σ χ))→Σ ((φ →Σ ψ)→Σ (φ→Σ χ)) ∈ ThmΣ(IL).

∎

Corollary 1437 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ a binary natural transformation in N ♭, and I = ⟨F,C⟩
a π-institution based on F, which has the Deduction Detachment Theorem
with respect to →♭. Then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, and
every T ∈ FiFamI(A), T ≠ ∅. Consequently, for every IL = ⟨A,D⟩ ∈ Str(I),
Thm(IL) ≠ ∅.

Proof: Clear by Proposition 1436. ∎

We now give a characterization of the Podus Ponens property.

Proposition 1438 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with →∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure. IL has the Modus Ponens
with respect to → if and only if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

ψ ∈ DΣ(φ,φ→Σ ψ)
if and only if, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ∈ TΣ and φ→Σ ψ ∈ TΣ imply ψ ∈ TΣ.

Proof: Suppose, first, that IL has the Modus Ponens with respect to → and
let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ). Then φ →Σ ψ ∈ DΣ(φ →Σ ψ), whence, by the
Modus Ponens, ψ ∈ DΣ(φ →Σ ψ,φ). Conversely, suppose, for all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ), ψ ∈ DΣ(φ,φ →Σ ψ) and let Φ ⊆ SEN(Σ), such that
φ→Σ ψ ∈DΣ(Φ). Then, we have

ψ ∈DΣ(φ,φ →Σ ψ) ⊆DΣ(Φ, φ).
So IL has the Modus Ponens with respect to →.

The second equivalence is straightforward. ∎

The Modus Ponens in a π-institution I = ⟨F,C⟩ may also be characterized
in terms of F-rules.
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Proposition 1439 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. I has
the Modus Ponens with respect to →♭ if and only if it satisfies the F-rule

x,x →♭ y ⊢ y.

Proof: I satisfies x,x →♭ y ⊢ y if and only if, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(φ,φ→♭Σ ψ)
if and only if, by Proposition 1438, I has the Modus Ponens with respect to
→♭. ∎

Since the Modus Ponens in a π-institution is expressible in terms of F-
rules, we may use Propositions 1422 and 1423 to draw the conclusions that
the Modus Ponens transfers to all models and, moreover, that it is preserved
by all bilogical morphisms.

Corollary 1440 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I
has the Modus Ponens with respect to →♭, then, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and every IL = ⟨A,D⟩ ∈ Str(I), IL has the Modus Ponens with
respect to →.

Proof: This follows by combing Proposition 1439 with Proposition 1422. ∎

Corollary 1441 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be N ♭-
algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on A,
A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the Modus
Ponens with respect to → if and only if IL′ has the Modus Ponens with respect
to →′.

Proof: The conclusion follows by combining Proposition 1439 with Propo-
sition 1423. ∎

It turns out that the Deduction Theorem also transfers under bilogical
morphisms.

Proposition 1442 Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Deduction Theorem with respect to → if and only if IL′ has the Deduction
Theorem with respect to →′.
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Proof: Suppose, first, that IL has the Deduction Theorem with respect to
→ and let Σ ∈ ∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ), such that

αΣ(ψ) ∈D′F (Σ)(αΣ(Φ), αΣ(φ)).
Then, since ⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, ψ ∈DΣ(Φ, φ). Thus, since
IL has the Deduction Theorem, φ →Σ ψ ∈ DΣ(Φ). Again, by the fact that⟨F,α⟩ is a bilogical morphism, we obtain αΣ(φ →Σ ψ) ∈ D′

F (Σ)
(αΣ(Φ)) or,

equivalently, αΣ(φ)→′F (Σ) αΣ(ψ) ∈ D′F (Σ)(αΣ(Φ)). Since ⟨F,α⟩ is surjective,

we conclude that IL′ also has the Deduction Theorem with respect to →′.
Suppose, conversely, that IL′ has the Deduction Theorem with respect to

→′ and let Σ ∈ ∣Sign∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ), such that ψ ∈ DΣ(Φ, φ). Since⟨F,α⟩ ∶ IL ⊢ IL′ is a bilogical morphism, we get that

αΣ(φ) ∈D′F (Σ)(αΣ(Φ), αΣ(φ)).
Since IL′ has the Deduction Theorem with respect to →′, αΣ(φ) →′F (Σ)
αΣ(ψ) ∈D′F (Σ)(αΣ(Φ)) or, equivalently, αΣ(φ→Σ ψ) ∈D′F (Σ)(αΣ(Φ)). Again

by the fact that ⟨F,α⟩ is a bilogical morphism, we get φ →Σ ψ ∈ DΣ(Φ).
Therefore, IL also has the Deduction Theorem with respect to →. ∎

In an analog of Theorem 1433, we prove that, in case a π-structure has
the Deduction Detachment Theorem, with respect to a binary natural trans-
formation, then, Frege relation systems defined on the π-structure are con-
gruence systems if one restricts to the category of natural transformations
generated by the binary natural transformation.

Proposition 1443 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
→∶ SEN2 → SEN in N , and IL = ⟨A,D⟩ be a π-structure based on A. If IL
has the Deduction Detachment Property with respect to →, then Λ̃A(D) is a
congruence system on A→. Moreover, for all X ∈ SenFam(A), Λ̃A,D(X) is
also a congruence system on A→.

Proof: It suffices to show that, for all X ∈ SenFam(A), all Σ ∈ ∣Sign∣ and
all φ,φ′, ψ,ψ′ ∈ SEN(Σ),
⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ Λ̃A,D

Σ (X) implies ⟨φ→Σ ψ,φ
′ →Σ ψ

′⟩ ∈ Λ̃A,D
Σ (X).

So, suppose X ∈ SenFam(A), Σ ∈ ∣Sign∣ and φ,φ′, ψ,ψ′ ∈ SEN(Σ), such that⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ Λ̃A,D
Σ (X). Thus, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

DΣ′(XΣ′ ,SEN(f)(φ)) = DΣ′(XΣ′ ,SEN(f)(φ′)),
DΣ′(XΣ′ ,SEN(f)(ψ)) = DΣ′(XΣ′ ,SEN(f)(ψ′)).

Now, using the Modus Ponens with respect to → and the displayed equations,
we get

SEN(f)(ψ) ∈ DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ),SEN(f)(φ)),
SEN(f)(φ) ∈DΣ′(XΣ′ ,SEN(f)(φ′)).
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Therefore,

SEN(f)(ψ′) ∈ DΣ′(XΣ′ ,SEN(f)(ψ))
⊆ DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ),SEN(f)(φ))
⊆ DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ),SEN(f)(φ′)).

By the Deduction Theorem, we now get

SEN(f)(φ′)→Σ′ SEN(f)(ψ′) ∈DΣ′(XΣ′ ,SEN(f)(φ)→Σ′ SEN(f)(ψ)).
This is equivalent to SEN(f)(φ′ →Σ ψ′) ∈DΣ′(XΣ′ ,SEN(f)(φ→Σ ψ)). Thus,
by symmetry, we get that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
DΣ′(XΣ′ ,SEN(f)(φ →Σ ψ)) = DΣ′(XΣ′ ,SEN(f)(φ′ →Σ ψ′)) and, we con-
clude that ⟨φ→Σ ψ,φ′ →Σ ψ′⟩ ∈ Λ̃A,D

Σ (X). ∎

Our next goal is to show that, if a finitary π-institution I has the Deduc-
tion Detachment Theorem, then every full I-structure also has the Deduction
Detachment Theorem.

Theorem 1444 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on F. If
I has the Deduction Detachment Theorem with respect to →♭, then every full
I-structure IL = ⟨A,D⟩ has the Deduction Detachment Theorem with respect
to →.

Proof: Suppose I has the Deduction Detachment Theorem with respect to
→♭. By Corollary 1393, Corollary 1441 and Proposition 1442, it is enough
to show that every I-structure of the form ⟨A,FiFamI(A)⟩ has the Deduc-
tion Detachment Theorem with respect to →. By Corollary 1440, every
I-structure has the Modus Ponens with respect to →. So it suffices to show
that ⟨A,FiFamI(A)⟩ has the Deduction Theorem with respect to →, i.e.,
that, for all Σ′ ∈ ∣Sign∣ and all Φ′ ∪ {φ′, ψ′} ⊆ SEN(Σ′),

ψ′ ∈ CI,AΣ′ (Φ′, φ′) implies φ′ →Σ′ ψ
′ ∈ CI,AΣ′ (Φ′).

We do this, using Proposition 114, by applying induction on n < ω to show
that, for all n < ω,

ψ′ ∈ Ξn
Σ′(Φ′, φ′) implies φ′ →Σ′ ψ

′ ∈ CI,AΣ′ (Φ′).
For n = 0, we get ψ′ ∈ Ξ0

Σ′(Φ′, φ′) = Φ′ ∪ {φ′}.
• If ψ′ = φ′, then φ′ →Σ′ ψ′ = φ′ →Σ′ φ′ ∈ C

I,A
Σ′ (∅) ⊆ CA,IΣ′ (Φ′), because of

Proposition 1436.

• If ψ′ ∈ Φ′, then ψ′ →Σ′ (φ′ →Σ′ ψ′) ∈ CI,AΣ′ (∅) ⊆ CI,AΣ′ (Φ′), again by

Proposition 1436. Since ψ′ ∈ Φ′ ⊆ CI,AΣ′ (Φ′), we get by the Modus

Ponens, φ′ →Σ′ ψ′ ∈ C
I,A
Σ′ (Φ′).
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Assume, next that, if, for some i < n, ψ′ ∈ Ξi
Σ(Φ′, φ′), then φ′ →Σ′ ψ′ ∈

C
I,A
Σ′ (Φ′). Consider ψ′ ∈ Ξn

Σ′(Φ′, φ′). By definition, there exists Σ ∈ ∣Sign♭∣,
such that F (Σ) = Σ′, and Φ ∪ {φ,ψ} ⊆ SEN♭(Σ), such that

ψ ∈ CΣ(Φ, φ), αΣ(Φ) ⊆ Ξn−1
Σ′ (Φ′, φ′), αΣ(φ) = φ′, αΣ(ψ) = ψ′.

Now, we have, on the one hand, by the Induction Hypothesis, φ′ →Σ′ αΣ(χ) ∈
C
I,A
Σ′ (Φ′), for all χ ∈ Φ. On the other hand, since ψ ∈ CΣ(Φ, φ), we get, using

Modus Ponens,

ψ ∈ CΣ(Φ, φ) ⊆ CΣ({φ→♭Σ χ ∶ χ ∈ Φ}, φ)
and, therefore, by the Deduction Theorem, φ →♭Σ ψ ∈ CΣ({φ →♭Σ χ ∶ χ ∈ Φ}).
Therefore, we obtain

φ′ →Σ′ ψ
′ ∈ CI,AΣ′ ({φ′ →Σ′ αΣ(χ) ∶ χ ∈ Φ}).

Finally, we obtain

φ′ →Σ′ ψ′ ∈ C
I,A
Σ′ ({φ′ →Σ′ αΣ(χ) ∶ χ ∈ Φ})

⊆ C
I,A
Σ′ (CI,AΣ′ (Φ′))

= C
I,A
Σ′ (Φ′).

We conclude that ⟨A,FiFamI(A)⟩ has the Deduction Detachment Theorem
and therefore, every full I-structure does also. ∎

Finally, we show that if a π-institution has the Deduction Detachment
Theorem, then every finitary I-structure, with the Deduction Theorem and
the Congruence Property is a full I-structure.

Proposition 1445 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution that has the
Deduction Detachment Theorem with respect to →♭. If IL = ⟨A,D⟩ is a finitary
I-structure with the Deduction Theorem and the strong Congruence Property,
then IL is a full I-structure.

Proof: Suppose IL = ⟨A,D⟩ is a finitary I-structure with the Deduction
Theorem and the Congruence Property. Then, by Proposition 1385, D ⊆
FiFamI(A) and our goal is to show that D∗ = FiFamI(A∗).

Suppose, first, that T ′ ∈ D∗. Consider the bilgical quotient morphism⟨I, π⟩ ∶ IL ⊢ IL∗. Then we have T = π−1(T ′) ∈ D ⊆ FiFamI(A). Thus, by
Corollary 55, T ′ ∈ FiFamI(A∗). We conclude that D∗ ⊆ FiFamI(A∗).

Suppose, conversely, that T ′ ∈ FiFamI(A∗). Since I has the Deduction
Detachment Theorem, by Corollary 1437, T ′ ≠ ∅. Let Σ ∈ ∣Sign∣ and φ ∈
SEN(Σ), such that φ∗ ∈ D∗Σ(T ′Σ). By the finitarity of IL and Proposition
1365, there exist φ0, . . . , φn−1 ∈ SEN(Σ), such that φ∗0, . . . , φ

∗
n−1 ∈ T

′
Σ and
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φ∗ ∈ D∗Σ(φ∗0, . . . , φ∗n−1). Since IL has the Deduction Theorem, by Proposition
1442, so does IL∗, whence

φ∗0 →
∗
Σ (⋯(φ∗n−1 →∗Σ φ∗)⋯) ∈D∗Σ(∅) = D∗Σ(φ∗ →∗Σ φ∗),

the last equality, by Proposition 1436. Now we get

D∗Σ(φ∗0 →∗Σ (⋯(φ∗n−1 →∗Σ φ∗)⋯)) =D∗Σ(φ∗ →∗Σ φ∗).
Since IL has the strong Congruence Property, by Proposition 1426, so does
IL∗. Hence, by Corollary 1425,

φ∗0 →
∗
Σ (⋯(φ∗n−1 →∗Σ φ∗)⋯) = φ∗ →∗Σ φ∗ ∈ T ′Σ.

Since T ′ ∈ FiFamI(A∗) and φ∗0, . . . , φ
∗
n−1 ∈ T

′
Σ, we get by the Modus Ponens,

φ∗ ∈ T ′Σ. We conclude that D∗Σ(T ′Σ) ⊆ T ′Σ and, therefore, T ′ ∈ D∗. So D∗ =
FiFamI(A∗). Hence, IL = ⟨A,D⟩ is a full I-structure. ∎

19.9.4 The Property of Disjunction

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∨ ∶ SEN2 → SEN a
binary natural transformation in N , and IL = ⟨A,D⟩ a π-structure.

IL has the Disjunction Property with respect to ∨ if, for all Σ ∈ ∣Sign∣
and all Φ ∪ {φ,ψ} ⊆ SEN(Σ),

DΣ(Φ, φ ∨Σ ψ) =DΣ(Φ, φ) ∩DΣ(Φ, ψ).
In the next proposition, we discuss some of the F(g)rules that a π-

institution having the Disjunction Property satisfies.

Proposition 1446 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∨♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I
has the Disjunction Property with respect to ∨♭, then I satisfies the following
F-grules:

(a) x ⊢ x ∨♭ y and y ⊢ x ∨♭ y;

(b)
X,x ⊢ z, X, y ⊢ z

X,x ∨♭ y ⊢ z
, where X consists of any set of projections;

(c) x ∨♭ y ⊢ y ∨♭ x;

(d) x ⊢ x ∨♭ x and x ∨♭ x ⊢ x.

Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ,ψ,χ} ⊆ SEN♭(Σ).
(a) By the Disjunction Property, φ ∨♭Σ ψ ∈ CΣ(φ) ∩CΣ(ψ).
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(b) Suppose χ ∈ CΣ(Φ, φ) and χ ∈ CΣ(Φ, ψ). Then, by the Disjunction
Property,

χ ∈ CΣ(Φ, φ) ∩CΣ(Φ, ψ) = CΣ(Φ, φ ∨♭Σ ψ).
(c) We have, using the Disjunction Property,

ψ ∨♭Σ φ ∈ CΣ(ψ ∨♭Σ φ) = CΣ(ψ) ∩CΣ(φ)
= CΣ(φ) ∩CΣ(ψ) = CΣ(φ ∨♭Σ ψ).

(d) We have

φ ∨♭Σ φ ∈ CΣ(φ ∨♭Σ φ) = CΣ(φ) ∩CΣ(φ) = CΣ(φ)
and, also,

φ ∈ CΣ(φ) = CΣ(φ) ∩CΣ(φ) = CΣ(φ ∨♭Σ φ). ∎

It is not difficult to see that the Disjunction Property is also preserved
under bilogical morphisms.

Proposition 1447 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∨♭ ∶ (SEN♭)2 → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Disjunction Property with respect to ∨ if and only if IL′ has the Disjunction
Property with respect to ∨′.

Proof: Let Σ ∈ ∣Sign∣ and Φ∪ {φ,ψ} ⊆ SEN(Σ). Then, since ⟨F,α⟩ ∶ IL ⊢ IL′

is a bilogical morphism, we have, using Proposition 1360,

DΣ(Φ, φ ∨Σ ψ) = α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(φ) ∨′F (Σ) αΣ(ψ));
DΣ(Φ, φ) ∩DΣ(Φ, ψ) = α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(φ))

∩ α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(ψ))
= α−1Σ (D′F (Σ)(αΣ(Φ), αΣ(φ))

∩D′
F (Σ)
(αΣ(Φ), αΣ(ψ))).

Now, using the surjectivity of ⟨F,α⟩, we get that

DΣ(Φ, φ ∨Σ ψ) = DΣ(Φ, φ) ∩DΣ(Φ, ψ)
if and only if

D′
F (Σ)
(αΣ(Φ), αΣ(φ) ∨′F (Σ) αΣ(ψ))
=D′

F (Σ)
(αΣ(Φ), αΣ(φ)) ∩D′F (Σ)(αΣ(Φ), αΣ(ψ))

Once more, taking into account the surjectivity of ⟨F,α⟩, we conclude that
IL has the Disjunction Property with respect to ∨ if and only if IL′ has the
Disjunction Property with respect to ∨′. ∎

Using induction, we can extend the defining equation of the Disjunction
Property so that we can accommodate a finite number of conjunctions instead
of only a single conjunction.
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Proposition 1448 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∨ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure. If IL has the Disjunction
Property with respect to ∨, then, for all Σ ∈ ∣Sign∣ and all Φ∪{φ0, . . . , φn−1} ⊆
SEN(Σ),

DΣ(Φ, φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ) =DΣ(Φ, φ0, . . . , φn−1) ∩DΣ(Φ, ψ).
Proof: First, note that, for all Σ ∈ ∣Sign∣, all Φ∪{φ0, . . . , φn−1, ψ} ⊆ SEN(Σ)
and all i < n,

φi ∨Σ ψ ∈ DΣ(Φ, φi) ∩DΣ(Φ, ψ)
⊆ DΣ(Φ, φ0, . . . , φn−1) ∩DΣ(Φ, ψ).

Thus, we get

DΣ(Φ, φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ) ⊆DΣ(Φ, φ0, . . . , φn−1) ∩DΣ(Φ, ψ).
For the reverse inclusion, we use induction on n.

For n = 1, by the Disjunction Property, we get DΣ(Φ, φ0) ∩DΣ(Φ, ψ) =
DΣ(Φ, φ0 ∨Σ ψ).

Assume that the inclusion holds for n.
Let Σ ∈ ∣Sign∣ and Φ ∪ {φ0, . . . , φn, ψ} ⊆ SEN(Σ). Then we have

DΣ(Φ, φ0, φ1, . . . , φn) ∩DΣ(Φ, ψ)
=DΣ(Φ, φ0, φ1, . . . , φn) ∩DΣ(Φ, ψ) ∩DΣ(Φ, ψ)
⊆DΣ(Φ, φ0, φ1, . . . , φn) ∩DΣ(Φ, ψ,φ1, . . . , φn) ∩DΣ(Φ, ψ)
⊆DΣ(Φ, φ0 ∨Σ ψ,φ1, . . . , φn) ∩DΣ(Φ, φ0 ∨Σ ψ,ψ)
⊆DΣ(Φ, φ0,∨Σψ,φ1 ∨Σ ψ, . . . , φn ∨Σ ψ).

Hence the inclusion - and, therefore, the equation - holds for all n < ω. ∎

Another property of structures having disjunction is that, if a specific
entailment with a finite number of premises holds and the hypotheses are
disjuncted with the same sentence, then the disjunction of the conclusion
with the same sentence follows from the disjuncted hypotheses.

Lemma 1449 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ∨ ∶
SEN2 → SEN in N , and IL = ⟨A,D⟩ a π-structure. If IL has the Disjunction
Property with respect to ∨, then, for all Σ ∈ ∣Sign∣ and all φ0, φn−1, φ,ψ ∈
SEN(Σ),

φ ∈DΣ(φ0, . . . , φn−1) implies φ ∨Σ ψ ∈DΣ(φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ).
Proof: Let Σ ∈ ∣Sign∣ and φ0, φn−1, φ,ψ ∈ SEN(Σ). By Proposition 1448,

DΣ(φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ) =DΣ(φ0, . . . , φn−1) ∩DΣ(ψ).
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But, by hypothesis, φ ∈DΣ(φ0, . . . , φn−1). So we get

φ ∨Σ ψ ∈ DΣ(φ) ∩DΣ(ψ)
⊆ DΣ(φ0, . . . , φn−1) ∩DΣ(ψ)
= DΣ(φ0 ∨Σ ψ, . . . , φn−1 ∨Σ ψ).

∎

Our final goal is to show that, if a finitary π-institution has the Disjunc-
tion Property, then every full I-structure also has the Disjunction Property.
To accomplish this, we prove, first, a lemma to the effect that, if an entail-
ment holds in a model then the disjunct of the conclusion with an arbitrary
sentence is entailed by the same premises except for one, which is replaced
by the disjunct of the original with the same sentence.

Lemma 1450 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∨♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on
F, which has the Disjunction Property with respect to ∨♭. Then, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all Σ′ ∈ ∣Sign∣ and all Φ′ ∪ {φ′, ψ′, χ′} ⊆
SEN(Σ′),

χ′ ∈ CI,AΣ′ (Φ′, φ′) implies χ′ ∨Σ′ ψ
′ ∈ CI,AΣ′ (Φ′, φ′ ∨Σ′ ψ

′).
Proof: Let Σ′ ∈ ∣Sign∣ and Φ′ ∪ {φ′, ψ′, χ′} ⊆ SEN(Σ′). By Proposition 114,
C
I,A
Σ′ (Φ′, φ′) = ΞΣ′(Φ′, φ′) = ⋃n<ω Ξn

Σ′(Φ′, φ′). We show by induction on n < ω
that, for all n < ω

χ′ ∈ Ξn
Σ′(Φ′, φ′) implies χ′ ∨Σ′ ψ

′ ∈ CI,AΣ′ (Φ′, φ′ ∨Σ′ ψ
′).

If n = 0, the hypothesis is χ′ ∈ Ξ0
Σ′(Φ′, φ′) = Φ′ ∪ {φ′}.

• If χ′ = φ′, then the conclusion follows trivially.

• Suppose that χ′ ∈ Φ′. Then, we have χ′ ∨Σ′ ψ′ ∈ C
I,A
Σ′ (χ′) ⊆ CI,AΣ′ (Φ′) ⊆

C
I,A
Σ′ (Φ′, φ′ ∨Σ′ ψ′), where the first inclusion follows by Propositions

1446 and 1422.

Assume that the displayed implication holds for all i < n. Let χ′ ∈ Ξn
Σ′(Φ′, φ′).

By definition, there exists Σ ∈ ∣Sign♭∣, such that F (Σ) = Σ′, and φ0, . . . ,

φk−1, χ ∈ SEN♭(Σ), such that

χ ∈ CΣ(φ0, . . . , φk−1), αΣ(χ) = χ′, αΣ(φi) ∈ Ξn−1
Σ′ (Φ′, φ′), i < k.

By the induction hypothesis, αΣ(φi) ∨Σ′ ψ′ ∈ C
I,A
Σ′ (Φ′, φ′ ∨Σ′ ψ′), for all i < k.

Note that, by the surjectivity of ⟨F,α⟩, there exists ψ ∈ SEN(Σ), such that
αΣ(ψ) = ψ′. Since χ ∈ CΣ(φ0, . . . , φk−1), we get, by Lemma 1449, χ ∨♭Σ ψ ∈
CΣ(φ0 ∨♭Σ ψ, . . . , φk−1 ∨

♭
Σ ψ). Therefore, applying ⟨F,α⟩,

χ′ ∨Σ′ ψ′ ∈ C
I,A
Σ′ (αΣ(φ0) ∨Σ′ ψ′, . . . , αΣ(φk−1) ∨Σ′ ψ′)

⊆ C
I,A
Σ′ (Φ′, φ′ ∨Σ′ ψ′).



Voutsadakis CHAPTER 19. FULL MODELS 1225

Thus, the displayed formula holds for all n < ω, yielding the conclusion. ∎

Finally, we show that all full models of a given finitary π-institution with
the Disjunction Property also have the Disjunction Property.

Theorem 1451 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∨♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on F. If
I has the Disjunction Property with respect to ∨♭, then every full I-structure
IL = ⟨A,D⟩ has the Disjunction Property with respect to ∨.

Proof: By Corollary 1393 and Proposition 1447, it suffices to show that, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ,ψ} ⊆
SEN♭(Σ),

C
I,A
F (Σ)
(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ))

= CI,A
F (Σ)
(αΣ(Φ), αΣ(φ)) ∩CI,AF (Σ)(αΣ(Φ), αΣ(ψ)).

By Propositions Propositions 1446 and 1422, we have

C
I,A
F (Σ)
(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ))

C
I,A
F (Σ)
(αΣ(Φ), αΣ(φ)) ∩CI,AF (Σ)(αΣ(Φ), αΣ(ψ)).

Conversely, suppose that, for some χ ∈ SEN♭(Σ),
αΣ(χ) ∈ CI,AF (Σ)(αΣ(Φ), αΣ(φ)) ∩CI,AF (Σ)(αΣ(Φ), αΣ(ψ)).

Then, by Lemma 1450,

αΣ(χ) ∨F (Σ) αΣ(ψ) ∈ CI,AF (Σ)(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ)),
αΣ(χ) ∨F (Σ) αΣ(χ) ∈ CI,AF (Σ)(αΣ(Φ), αΣ(ψ) ∨F (Σ) αΣ(χ)).

Now we get

αΣ(χ) ∈ C
I,A
F (Σ)
(αΣ(χ) ∨F (Σ) αΣ(χ))

⊆ C
I,A
F (Σ)
(αΣ(Φ), αΣ(ψ) ∨F (Σ) αΣ(χ))

⊆ C
I,A
F (Σ)
(αΣ(Φ), αΣ(χ) ∨F (Σ) αΣ(ψ))

⊆ CI,A
F (Σ)
(αΣ(Φ), αΣ(φ) ∨F (Σ) αΣ(ψ)).

Taking into account the surjectivity of ⟨F,α⟩, we conclude that IL has the
Disjunction Property with respect to ∨. ∎
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19.9.5 Reductio ad Absurdum

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with ¬ ∶ SEN→ SEN a unary
natural transformation in N , and IL = ⟨A,D⟩ a π-structure based on A.

IL has the Intuitionistic Reductio ad Absurdum with respect to
¬ if, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

¬Σφ ∈DΣ(Φ) if and only if DΣ(Φ, φ) = SEN(Σ).
IL has the Reductio ad Absurdum with respect to ¬ if, for all Σ ∈ ∣Sign∣
and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) if and only if DΣ(Φ,¬Σφ) = SEN(Σ).
The two properties of the Reductio ad Absurdum are related.

Proposition 1452 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
¬ ∶ SEN → SEN in N , and IL = ⟨A,D⟩ a π-structure based on A. IL has the
Reductio as Absurdum with respect to ¬ if and only if it has the Intuitionistic
Reductio ad Absurdum with respect to ¬ and, for all Σ ∈ ∣Sign∣ and all φ ∈
SEN(Σ), φ ∈DΣ(¬Σ¬Σφ).
Proof: Suppose, first, that IL has the Reduction ad Absurdum with respect
to ¬ and let Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ).

Since ¬Σφ ∈ DΣ(¬Σφ), we get DΣ(¬Σφ,¬Σ¬Σφ) = SEN(Σ). Therefore,
φ ∈DΣ(¬Σ¬Σφ).

Suppose, next, that ¬Σφ ∈ DΣ(Φ). Note that, since φ ∈ DΣ(φ), we also
have DΣ(φ,¬Σφ) = SEN(Σ). So, finally, SEN(Σ) = DΣ(φ,¬Σφ) ⊆ DΣ(Φ, φ)
and equality follows.

On the other hand, ifDΣ(Φ, φ) = SEN(Σ), then DΣ(Φ,¬Σ¬Σφ) = SEN(Σ),
whence ¬Σφ ∈DΣ(φ).

Suppose, conversely, that IL has the Intuitionistic Reductio ad Absurdum
and that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), φ ∈ DΣ(¬Σ¬Σφ), and let
Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ).

Suppose, first, φ ∈ DΣ(Φ). Since ¬Σφ ∈ DΣ(¬Σφ), we get DΣ(φ,¬Σφ) =
SEN(Σ). Therefore, SEN(Σ) =DΣ(φ,¬Σφ) ⊆ DΣ(Φ,¬Σφ).

On the other hand, if DΣ(Φ,¬Σφ) = SEN(Σ), then ¬Σ¬Σφ ∈ DΣ(Φ),
whence φ ∈DΣ(¬Σ¬Σφ) ⊆DΣ(φ). ∎

We also show for future reference that the Intuitionistic Reductio ad
Absurdum is preserved under bilogical morphisms.

Proposition 1453 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
¬♭ ∶ SEN♭ → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Intuitionistic Reductio ad Absurdum with respect to ¬ if and only if IL′ has
the Intuitionistic Reduction ad Absurdum with respect to ¬′.
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Proof: Suppose Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ). Then, we have

¬Σφ ∈DΣ(Φ) iff αΣ(¬Σφ) ∈ D′F (Σ)(αΣ(Φ))
iff ¬′

F (Σ)
(αΣ(φ)) ∈D′F (Σ)(αΣ(Φ)).

Moreover, using the surjectivity of ⟨F,α⟩,
DΣ(Φ, φ) = SEN(Σ) iff D′

F (Σ)(αΣ(Φ), αΣ(φ)) = SEN′(F (Σ)).
Thus, the equivalence

¬Σφ ∈DΣ(Φ) iff DΣ(Φ, φ) = SEN(Σ)
holds if and only if the equivalence

¬′F (Σ)αΣ(φ) ∈D′F (Σ)(αΣ(Φ)) iff D′F (Σ)(αΣ(Φ), αΣ(φ)) = SEN′(F (Σ))
holds. In other words, IL has the Intuitionistic Reduction ad Absurdum with
respect to ¬ if and only if IL′ has the Intuitionistic Reductio ad Absurdum
with respect to ¬′. ∎

The Intuitionistic Reductio ad Absurdum is also closely related with are
called inconsistent elements or inconsistencies.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with � ∶ SEN → SEN a
unary natural transformation in N , and IL = ⟨A,D⟩ a π-structure based on
A. � is an inconsistency in IL if, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

DΣ(�Σφ) = SEN(Σ).
Having an inconsistency is clearly expressible by an F-rule and, therefore,

if a π-institution has an inconsistency then all its models do also.

Lemma 1454 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with �♭ ∶
SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. �♭ is an
inconsistency in I if and only if I satisfies the F-rule �♭x ⊢ y.

Proof: We have that I satisfies �♭x ⊢ y if and only if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ), ψ ∈ CΣ(�♭Σφ), if and only if, for all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ), CΣ(�♭Σφ) = SEN(Σ), if and only if �♭ ∶ SEN♭ → SEN♭ is an
inconsistency in I . ∎

Corollary 1455 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with �♭ ∶
SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If �♭

is an inconsistency in IL, then, � is an inconsistency in every I-structure
IL = ⟨A,D⟩, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩.
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Proof: By Lemma 1454 and Proposition 1422. ∎

The following proposition exhibits the relation between the Intuitionistic
Reductio ad Absurdum and inconsistencies.

Proposition 1456 Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with
→∶ SEN2 → SEN, and IL = ⟨A,D⟩ a π-structure that has the Deduction De-
tachment Theorem with respect to →. IL has the Intuitionistic Reductio ad
Absurdum with respect to some ¬ ∶ SEN→ SEN in N if and only if it has an
inconsistency � ∶ SEN → SEN in N . Moreover, in that case, for all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

DΣ(¬Σφ) = DΣ(φ→Σ �Σφ).
Proof: Suppose that IL has the Deduction Detachment Theorem with re-
spect to →.

Assume, first, that IL also has the Intuitionistic Reductio ad Absurdum
with respect to ¬. Let � ∶ SEN → SEN be defined, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ), by

�Σφ = ¬Σ(φ→Σ φ).
First, note, that, since � = ¬○ → ○⟨p1,0, p1,0⟩ and both → and ¬ are in N ,
we get that � is also in N . Moreover, we have, for all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

¬Σ(φ→Σ φ) ∈ DΣ(¬Σ(φ→Σ φ))
iff DΣ(φ→Σ φ,¬Σ(φ→Σ φ)) = SEN(Σ)

(by the Intuitionistic Reductio ad Absurdum)
iff DΣ(¬Σ(φ→Σ φ)) = SEN(Σ).

(by Proposition 1436)

Thus, � is an inconsistency in IL.
Assume, conversely, that � ∶ SEN → SEN is an inconsistency in IL. Define

¬ ∶ SEN → SEN, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

¬Σφ = φ→Σ �Σφ.

Since ¬ =→ ○⟨p1,0,�⟩ and, both → and � are in N , it follows that ¬ is also in
N . Moreover, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ), we have

¬Σφ ∈DΣ(Φ) iff φ→Σ �Σφ ∈DΣ(Φ)
iff �Σφ ∈ DΣ(Φ, φ)
iff DΣ(Φ, φ) = SEN(Σ).

Thus, IL has the Intuitionistic Reductio ad Absurdum with respect to ¬.
Finally, it remains to prove the last equality. Let Σ ∈ ∣Sign∣ and φ ∈

SEN(Σ). On the one hand, we have, by the Modus Ponens, �Σφ ∈ DΣ(φ,φ→Σ
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�Σφ), whence, since � is an inconsistency, DΣ(φ,φ →Σ �Σφ) = SEN(Σ) and,
hence, by the Intuitionistic Reductio ad Absurdum, ¬Σφ ∈ DΣ(φ →Σ �Σφ).
On the other hand, since ¬Σφ ∈ DΣ(¬Σφ), by the Intuitionistic Reductio ad
Absurdum, DΣ(φ,¬Σφ) = SEN(Σ) and, hence, ¬Σφ ∈DΣ(φ,¬Σφ). Therefore,
by the Deduction Theorem, φ→Σ �Σφ ∈DΣ(¬Σφ). These two parts allow us
to conclude that DΣ(¬Σφ) =DΣ(φ →Σ �Σφ). ∎

Since both the Deduction Detachment Theorem and inconsistencies are
inherited by the full models of a finitary π-institution, we obtain the following
concerning transference of the Intuitionistic Reductio ad Absurdum by full
models.

Corollary 1457 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ and ¬♭ ∶ SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary
π-institution based on F. If I has the Deduction Detachment Theorem with
respect to →♭ and the Intuitionistic Reductio ad Absurdum with respect to
¬♭, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, every full I-structure
IL = ⟨A,D⟩ also has the Deduction Detachment Theorem with respect to →
and the Intuitionistic Reductio ad Absurdum with respect to ¬.

Proof: Assume the hypothesis and let IL = ⟨A,D⟩ ∈ FStr(I). By Theorem
1444, IL has the Deduction Detachment Theorem with respect to →. By
Proposition 1456, �♭ = ¬♭○→♭ ○⟨p1,0, p1,0⟩ is an inconsistency in I . Therefore,
by Corollary 1455, � is an inconsistency in IL. Finally, we use again Proposi-
tion 1456 to conclude that IL has both the Deduction Detachment Theorem
with respect to → and the Intuitionistic Reductio ad Absurdum with respect
to ¬. ∎

19.9.6 Modality Introduction

Let A = ⟨Sign,SEN,N⟩ be an algebraic system, with # ∶ SEN → SEN a
unary natural transformation in N , and IL = ⟨A,D⟩ a π-structure based on
A. IL has Modality Introduction with respect to # if, for all Σ ∈ ∣Sign∣
and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈DΣ(Φ) implies #Σφ ∈DΣ(#ΣΦ),
where #ΣΦ = {#Σχ ∶ χ ∈ Φ}.

It turns out that Modality Introduction is also preserved under bilogical
morphisms.

Proposition 1458 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
#♭ ∶ SEN♭ → SEN♭ in N ♭, A = ⟨Sign,SEN,N⟩, A′ = ⟨Sign′,SEN′,N ′⟩ be
N ♭-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ be N ♭-structures based on
A, A′, respectively, and ⟨F,α⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL has the
Modality Introduction with respect to # if and only if IL′ has the Modality
Introduction with respect to #′.
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Proof: Let Σ ∈ ∣Sign∣ and Φ∪{φ} ⊆ SEN(Σ). Then, since ⟨F,α⟩ is a bilogical
morphism, we have

φ ∈DΣ(Φ) iff αΣ(φ) ∈D′F (Σ)(αΣ(Φ));
#Σφ ∈DΣ(#ΣΦ) iff #′

F (Σ)
αΣ(φ) ∈D′F (Σ)(#′F (Σ)αΣ(Φ)).

Therefore, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),
φ ∈DΣ(Φ) implies #Σφ ∈ DΣ(#ΣΦ)

is equivalent to

αΣ(φ) ∈D′F (Σ)(αΣ(Φ)) implies #′F (Σ)αΣ(φ) ∈D′F (Σ)(#′F (Σ)αΣ(Φ)).
Taking into account the surjectivity of ⟨F,α⟩, we conclude that IL has Modal-
ity Introduction with respect to # if and only if IL′ has Modality Introduction
with respect to #′. ∎

We conclude this section by showing that modality introduction is in-
herited by all full I-structures if I is a finitary π-institution possessing the
property.

Proposition 1459 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
#♭ ∶ SEN♭ → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary π-institution based on F.
If I has Modality Introduction with respect to #♭, then every full I-structure
IL = ⟨A,D⟩ has the Modality Introduction with respect to #.

Proof: By Corollary 1393 and Proposition 1458, it suffices to show that
every I-structure of the form ⟨A,FiFamI(A)⟩ has the Modality Introduction
with respect to #. Let Σ′ ∈ ∣Sign∣ and Φ′ ∪ {φ′} ⊆ SEN(Σ′). By Proposition
114, it suffices to show that

φ′ ∈ ΞΣ′(Φ′) implies #Σ′φ
′ ∈ CI,AΣ′ (#Σ′Φ

′).
We do this by applying induction on n < ω to show that, for all n < ω,

φ′ ∈ Ξn
Σ′(Φ′) implies #Σ′φ

′ ∈ CI,AΣ′ (#Σ′Φ
′).

If n = 0, then the hypothesis is φ′ ∈ Ξ0
Σ′(Φ′) = Φ′ and the conclusion is

trivial. Assume that the displayed formula holds, for all i < n and assume Σ′ ∈∣Sign∣ and Φ′ ∪ {φ′} ⊆ SEN(Σ′), such that φ′ ∈ Ξn
Σ′(Φ′). Then, by definition,

there exists Σ ∈ ∣Sign♭∣, such that F (Σ) = Σ′, and φ0, . . . , φk−1, φ ∈ SEN♭(Σ),
such that

φ ∈ CΣ(φ0, . . . , φk−1), αΣ(φ) = φ′, αΣ(φi) ∈ Ξn−1
Σ′ (Φ′), i < k.
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By the induction hypothesis, for all i < k, #Σ′αΣ(φi) ∈ CI,AΣ′ (#Σ′Φ′). More-
over, since I has Modality Introduction with respect to #♭, we get #♭Σφ ∈
CΣ(#♭Σφ0, . . . ,#♭Σφk−1). Therefore, applying ⟨F,α⟩,

#F (Σ)φ′ ∈ C
I,A
Σ′ (#F (Σ)αΣ(φ0), . . . ,#F (Σ)αΣ(φk−1))

⊆ C
I,A
Σ′ (#ΣΦ′).

This proves the induction step and shows that IL has the Modality Introduc-
tion with respect to #. ∎

19.10 I-Structures and Protoalgebraicity

We now work with an arbitrary π-institution I and look at its I-structures
and their properties. We start with a characterization of protoalgebraicity
involving I-structures.

Proposition 1460 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then the following conditions are
equivalent.

(i) I is protoalgebraic;

(ii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and every I-structure
IL = ⟨A,D⟩, Ω̃A(D) = ΩA(Thm(IL));

(iii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and every I-matrix family
A = ⟨A, T ⟩, Ω̃A(FiFamI(A)) = ΩA(T );

(iv) For every T ∈ ThFam(I), Ω̃(IT ) = Ω(T ).
Proof:

(i)⇒(ii) Assume I is protoalgebraic and let IL = ⟨A,D⟩ be an I-structure. Then,
by Proposition 1385, D ⊆ FiFamI(A). Moreover, by Theorem 179, ΩA

is monotone on FiFamI(A). Hence, we get

Ω̃A(D) =⋂{ΩA(T ) ∶ T ∈ D} = ΩA(⋂D) = ΩA(Thm(IL)).
(ii)⇒(iii) Follows by applying (ii) to IL = ⟨A,FiFamI(A)⟩.
(iii)⇒(iv) Follows by applying (iii) to A = ⟨F , T ⟩, where, as usual, F = ⟨F, ⟨I, ι⟩⟩,⟨I, ι⟩ ∶ F → F the identity morphism.

(iv)⇒(i) Suppose that, for every T ∈ ThFam(I), Ω̃(IT) = Ω(T ) and let T,T ′ ∈
ThFam(I), such that T ≤ T ′. Then T ′ ∈ ThFam(IT ), whence Ω̃(IT ) ≤
Ω(T ′). But, by hypothesis, Ω̃(IT) = Ω(T ). Thus, we get Ω(T ) ≤ Ω(T ′).
We conclude that Ω is monotone on theory families and, therefore, I
is protoalgebraic.
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∎

Recall that to a π-institution I , we have associated two different classes
of algebraic systems. On the one hand, the class AlgSys∗(I) consists of
the F-algebraic system reducts of the reduced I-matrix families. On the
other, the class AlgSys(I) consists of the F-algebraic system reducts of the
reduced full I-structures, or, equivalently, as was shown in Proposition 1399,
by the F-algebraic system reducts of the reduced I-structures. Under the
hypothesis of protoalgebraicity, it turns out that the two classes AlgSys(I)
and AlgSys∗(I) coincide.

Proposition 1461 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F. If I is protoalgebraic, then AlgSys(I) =
AlgSys∗(I).
Proof: By Theorem 1404, we know that AlgSys∗(I) ⊆ AlgSys(I). As-
sume, conversely, that A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(I). Then, there exists, by
Proposition 1399, D ∈ ClFam(A), such that Ω̃A(D) = ∆A. Thus, by Propo-
sition 1460, Ω̃A(⋂D) = Ω̃A(D) = ∆A, whence, since ⋂D ∈ D ⊆ FiFamI(A),
A ∈ AlgSys∗(I). ∎

Protoalgebraicity is strong enough to allow full I-structures on an alge-
braic system to be determined by their theorem systems.

Lemma 1462 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If I
is protoalgebraic and IL = ⟨A,D⟩, IL′ = ⟨A,D′⟩ are full I structures based on
A, such that Thm(IL) = Thm(IL′), then IL = IL′.

Proof: Since I is protoalgebraic, we have, by Proposition 1460,

Ω̃A(D) = ΩA(Thm(IL)) = ΩA(Thm(IL′)) = Ω̃A(D′).
By the Isomorphism Theorem 1408, Ω̃A ∶ FStrI(A) → ConSysI(A) is an
order isomorphism, in particular one-to-one. So we get that IL = IL′. ∎

For protoalgebraic π-institutions, it follows that all full I-models have the
form ⟨A,FiFamI(A)T ⟩ = ⟨A,FiFamA(⟨A, T ⟩)⟩, i.e., their closure systems are
principal filters in the lattice of I-filter families of the underlying algebraic
system.

Theorem 1463 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if, for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, all I-structures in FStrI(A) have
the form ⟨A,FiFamI(A)⟩, for some A = ⟨A, T ⟩ ∈MatFamI(A).
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Proof: Assume, first, that I is protoalgebraic and let IL = ⟨A,D⟩ ∈ FStr(I).
Let T = Thm(IL) and set A = ⟨A, T ⟩. Clearly, D ⊆ FiFamI(A). By protoal-
gebracity and Proposition 1460, Ω̃A(IL) = ΩA(T ). Therefore, if ⟨I, π⟩ ∶ A →
A/ΩA(T ) denotes the quotient morphism, ⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical mor-
phism. Since IL ∈ FStr(I), D∗ = ThFamI(A∗). But then, if T ′ ∈ ThFamI(A),
T ≤ T ′, whence ΩA(T ) is compatible with T ′ and, hence, by Corollary 56,
T ′/ΩA(T ) ∈ FiFamI(A∗) = D∗. Therefore, T ′ = π−1(T ′/ΩA(T )) ∈ D. So
FiFamI(A) = D.

Suppose, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
all I-structures in FStrI(A) have the form ⟨A,FiFamI(A)⟩, for some A =⟨A, T ⟩ ∈MatFamI(A). Let T,T ′ ∈ ThFamI(A), such that T ≤ T ′. Since, by
Theorem 1404, AlgSys∗(I) ⊆ AlgSys(I), ΩA(T ) ∈ ConSysI(A). Therefore,
by the Isomorphism Theorem 1408, there exists IL = ⟨A,D⟩ ∈ FStrI(A),
such that Ω̃A(D) = ΩA(T ). Let ⟨I, π⟩ ∶ A → A/ΩA(T ) be the quotient
morphism. Then ⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical morphism and, since IL is
full, D∗ = FiFamI(A∗). Thus, T = π−1(T /ΩA(T )) ∈ D. By hypothesis,
T ∈ FiFamI(A), for some A = ⟨A, T ′′⟩ ∈ FiFamI(A). Thus, T ′′ ≤ T ′, whence
T ′ ∈ FiFamI(A) = D. We now get ΩA(T ) = Ω̃A(D) ≤ ΩA(T ′). So ΩA is
monotone on A. Since A was arbitrary, we conclude that I is protoalgebraic.
∎

We proved that, for a protoalgebraic π-institution I , all full I-structures
have the form ⟨A,FiFamI(A)T ⟩, for some T ∈ FiFamI(A). We seek now
to characterize those I-filter families T for which the pair ⟨A,FiFamI(A)T ⟩
is a full I-model, i.e., those I-filter families T that give rise, through the
principal filters they determine in FiFamI(A) to full I-structures.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. We define

FiFamI,f(A) = {T ∈ FiFamI(A) ∶ ⟨A,FiFamI(A)T )⟩ ∈ FStrI(A)}.
Using the Isomorphism Theorem 1408, it is not difficult to see that, un-

der protoalgebraicity, there exists an order isomorphism between the poset
determined by FiFamI,f(A) and the lattice of all I-congruence systems on
A.

Proposition 1464 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F. If I is protoalgebraic, then, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩,

ΩA ∶ FiFamI,f(A)→ ConSysI∗(A)
is an order isomorphism.

Proof: Consider the mapping T ↦ ⟨A,FiFamI(AT ⟩. This is a mapping from
FiFamI,f(A) into FStrI(A), by the definition of FiFamI,f(A). Clearly, it is
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one-to-one and both order preserving and order reflecting. If I is protoalge-
braic, by Theorem 1463, it is also surjective. Hence, it is an order isomor-
phism. By the Isomorphism Theorem 1408, Ω̃A ∶ FStrI(A) → ConSysI(A)
is also an order isomorphism. Thus, T ↦ Ω̃A(FiFamI(A)T ) is an order iso-
morphism from FiFamI,f(A) onto ConSysI(A). By Protoalgebraicity and
Proposition 1460, we have Ω̃A(FiFamI(A)T ) = ΩA(T ) and. moreover, by
Proposition 1461, ConSysI(A) = ConSysI∗(A). Hence, we conclude that
ΩA ∶ FiFamI,f(A)→ ConSysI∗(A) is an order-isomorphism. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-
institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. Define

∼I,A ⊆ FiFamI(A)2
by setting, for all T,T ′ ∈ FiFamI(A),

T ∼I,A T ′ iff ΩA(T ) = ΩA(T ′),
i.e., ∼I,A is the kernel of the Leibniz operator on FiFamI(A).

It is clear from the definition that ∼I,A is an equivalence relation on
FiFamI(A). In case I is protoalgebraic, we have another important property.

Lemma 1465 Let F = ⟨Sign♭, SEN ♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. If I is
protoalgebraic, then each equivalence class of ∼I,A has a minimum element.

Proof: Let T ∈ FiFamI(A) and consider the equivalence class [T ] of T under∼I,A. Then we have ⋂[T ] ∈ FiFamI(A) and, moreover,

ΩA(⋂[T ]) = ⋂{ΩA(T ′);T ′ ∈ [T ]}
= ⋂{ΩA(T ) ∶ T ′ ∈ [T ]}
= ΩA(T ).

So ⋂[T ] ∈ [T ] and, therefore, ⋂[T ] is the minimum element of [T ]. ∎

The next proposition provides the promised characterization of those I-
filter families that determine full I-structures through their principal filters
in FiFamI(A), in the case of a protoalgebraic I .

Proposition 1466 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a protoalgebraic π-institution based on F. For every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and every T ∈ FiFamI(A), the following conditions
are equivalent:

(i) T ∈ FiFamI,f(A), i.e., ⟨A,FiFamI(A)T ⟩ ∈ FStr(I);
(ii) T = min [T ], where [T ] is the equivalence class of T under ∼I,A;
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(iii) T /ΩA(T ) =min FiFamI(A/ΩA(T )).
Proof:

(ii)⇒(iii) Assume that T = min [T ] and let Y ∈ FiFamI(A/ΩA(T )). Our goal is
to show that T /ΩA(T ) ≤ Y . Consider the quotient morphism ⟨I, π⟩ ∶
A→ A/ΩA(T ) and let X = π−1(Y ) ∩ T ∈ FiFamI(A). Then

X = π−1(Y ) ∩ π−1(π(T )) = π−1(Y ∩ π(T )).
It follows that ΩA(T ) is compatible with X and, hence, ΩA(T ) ≤
ΩA(X). But, by definition, X ≤ T and, thus, by protoalgebraicity,
ΩA(X) ≤ ΩA(T ). We conclude that ΩA(T ) = ΩA(X) and, hence,
T ∼I,A X . By hypothesis, we now get T ≤ π−1(Y ), i.e., T /ΩA(T ) ≤
X . Since Y ∈ FiFamI(A/ΩA(T )) was arbitrary, we conclude that
T /ΩA(T ) =min FiFamI(A/ΩA(T )).

(iii)⇒(i) Suppose that T /ΩA(T ) = min FiFamI(A/ΩA(T )). By protoalgebraic-
ity (see the Correspondence Theorem 1336),

π ∶ FiFamI(⟨A, T ⟩) ≅ FiFamI(⟨A/ΩA(T ), T /ΩA(T )⟩).
By hypothesis,

FiFamI(⟨A/ΩA(T ), T /ΩA(T )⟩) = FiFamI(A/ΩA(T )).
Since, by Proposition 1460, Ω̃A(FiFamI(⟨A, T ⟩)) = ΩA(T ), we obtain

FiFamI(⟨A, T ⟩)∗ = FiFamI(⟨A, T ⟩∗).
This proves that ⟨A,FiFamI(⟨A, T ⟩)⟩ is a full I-structure. We conclude
that T ∈ FiFamI,f(A).

(i)⇒(ii) Suppose T ∈ FiFamI,f(A). Since I is protoalgebraic, by Lemma 1465,
there exists T ′ = min [T ]. By the proofs of the two preceding impli-
cations (ii)⇒(iii)⇒(i), ⟨A,FiFamI(A)T ′⟩ is a full I-structure. But, by
hypothesis, ⟨A,FiFamI(A)T ⟩ is also a full I-structure. Now observe
that, by Proposition 1460,

Ω̃A(FiFamI(A)T ′) = ΩA(T ′) = ΩA(T ) = Ω̃A(FiFamI(A)T ).
By the Isomorphism Theorem 1408, FiFamI(A)T ′ = FiFamI(A)T and,
therefore, T ′ = T . So we conclude that T =min [T ].

∎

Since, for a protoalgebraic π-institution I , the filter families determining
full I-structures are the ones that are minimal in their equivalence classes un-
der ∼I,A, we can easily conclude that the class of those filter families consists
of all filter families just in case all equivalence classes are singletons.
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Proposition 1467 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic π-institution based on F. Then FiFamI,f(A) =
FiFamI(A) (i.e., for all T ∈ FiFamI(A), ⟨A,FiFamI(A)T ⟩ is a full I-struc-
ture) if and only if ΩA is injective on FiFamI(A).
Proof: By Proposition 1466, FiFamI,f(A) = FiFamI(A) if and only if, for
all T ∈ FiFamI(A), T = min [T ], if and only if, for all T,T ′ ∈ FiFamI(A),
ΩA(T ) = ΩA(T ′) implies T = T ′, if and only if ΩA is injective on FiFamI(A).

∎

Recall that a π-institution I = ⟨F,C⟩ is called weakly family algebraiz-
able, or WF algebraizable for short, if the Leibniz operator Ω is monotone
and injective on the theory families of I . Equivalently, by Theorem 295, I is
WF algebraizable if and only if, for every F-algebraic system A, the Leibniz
operator on A is monotone and injective on I-filter families.

The following theorem provides additional characterizations in terms of
I-structures and I-congruence systems.

Theorem 1468 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then the following conditions are equiva-
lent.

(i) I is protoalgebraic and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T ∈ FiFamI(A), T /ΩA(T ) =min FiFamI(A/ΩA(T ));

(ii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is monotone and
injective on FiFamI(A);

(iii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, T ↦ ⟨A,FiFamI(A)T ⟩
is a bijection between FiFamI(A) and FStrI(A) and, hence, an order
isomorphism from FiFamI(A) to FStrI(A);

(iv) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) →
ConSysI(A) is an order isomorphism;

(v) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA ∶ FiFamI(A) →
ConSysI∗(A) is an order isomorphism.

Proof:

(i)⇔(ii) By Propositions 1466 and 1467.

(i)⇒(iii) It is clear that T → ⟨A,FiFamI(A)T ⟩ is injective. By Proposition 1466,
it is into FStrI(A) and, by Theorem 1463, it is onto FStrI(A). Hence
it is a bijection, as claimed.
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(iii)⇒(iv) Since, by hypothesis, every full I-structure is of the form ⟨A,FiFamI(A)T ⟩,
by Theorem 1463, I is protoalgebraic. The composition of the given
isomorphism

FiFamI(A) ≅ FStrI(A)
with the isomorphism established in the Isomorphism Theorem 1408,

Ω̃A ∶ FStrI(A)→ ConSysI(A)
gives an isomorphism

FiFamI(A) ≅ConSysI(A),
which by protoalgebraicity and Proposition 1460 is identical to the
Leibniz operator.

(iv)⇒(v) By Corollary 1405, AlgSys∗(I) ⊆ AlgSys(I). Thus, ConSysI∗(A) ⊆
ConSysI(A). By the hypothesis, every θ ∈ ConSysI(A) is of the
form ΩA(T ), for some T ∈ FiFamI(A). Therefore, ConSysI(A) ⊆
ConSysI∗(A).

(v)⇒(ii) is trivial.
∎

In the context of weakly family algebraizable π-institutions, we look, also
at the local continuity of the Leibniz and the Tarski operators.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

• ΩA is continuous if, for every directed collection {T i ∶ i ∈ I} ⊆ FiFamI(A),
such that ⋃i∈I T i ∈ FiFamI(A), we have

ΩA(⋃
i∈I

T i) =⋃
i∈I

ΩA(T i).

• Ω̃A is continuous if, for every directed family {ILi ∶ i ∈ I} ⊆ FStrI(A),
Ω̃A(sup{ILi ∶ i ∈ I}) =⋃

i∈I

Ω̃A(ILi).

Proposition 1469 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a finitary π-institution based on F. If I is weakly family algebraiz-
able, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ΩA is continuous if
and only if Ω̃A is continuous.

Proof: Let Φ ∶ FiFamI(A) → FStrI(A) be the bijection of Theorem 1468.
Then, by Proposition 1460,

ΩA = Ω̃A ○Φ and Ω̃A = ΩA ○Φ−1.
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Suppose, first, that ΩA is continuous and let {ILi ∶ i ∈ I} ⊆ FStrI(A) be
directed. If T i = Φ−1(ILi), i ∈ I, then {T i ∶ i ∈ I} ⊆ FiFamI(A) is also directed.
Directedness implies local directedness and, therefore, by Proposition 112,

⋃i∈I T i ∈ FiFamI(A). Now we get

Φ(⋃
i∈I

T i) = ⟨A,FiFamI(A)⋃i∈I T i⟩ = ⟨A,⋂
i∈I

FiFamI(A)T i⟩,
whence Φ(⋃i∈I T i) = supi∈I ILi. Therefore, we get

Ω̃A(sup
i∈I

ILi) = (ΩA ○Φ−1)(Φ(⋃
i∈I

T i)) = ΩA(⋃
i∈I

T i) =⋃
i∈I

ΩA(T i) =⋃
i∈I

Ω̃A(ILi).
So Ω̃A is also continuous.

Assume, conversely, Ω̃A is continuous. Let {T i ∶ i ∈ I} ⊆ FiFamI(A) be
directed. Then {Φ(T i) ∶ i ∈ I} ⊆ FStrI(A) is also directed and we have

ΩA(⋃
i∈I

T i) = Ω̃A(Φ(⋃
i∈I

T i)) = Ω̃A(sup
i∈I

ILi) =⋃
i∈I

Ω̃A(ILi) =⋃
i∈I

ΩA(T i).
Therefore ΩA is also continuous. ∎

19.11 I-Structures and Fregeanity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is called Fregean if, for all T ∈ ThFam(I), the
π-structure IT has the Congruence Property, i.e., for all T ∈ ThFam(I),

Λ̃I(T ) = Ω̃I(T ).
Clearly, I is Fregean if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ), if, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

CΣ′(TΣ′ ,SEN♭(f)(φ)) = CΣ′(TΣ′ ,SEN♭(f)(ψ)),
then, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈
SEN♭(Σ′),

CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(φ), χ⃗)) = CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(ψ), χ⃗)).
I is called strongly Fregean if, for all T ∈ ThFam(I), the π-structure

IT has the strong Congruence Property, i.e., for all T ∈ ThFam(I),
λ̃I(T ) = Ω̃I(T ).

In this case, we get that I is strongly Fregean if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

CΣ(TΣ, φ) = CΣ(TΣ, ψ)
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implies, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈
SEN♭(Σ′),

CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(φ), χ⃗)) = CΣ′(TΣ′ , σ♭Σ′(SEN♭(f)(ψ), χ⃗)).
A consequence of strong Fregeanity is that every reduced matrix fam-

ily model has either an empty filter family or a filter family all of whose
components are singletons.

Proposition 1470 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is strongly Fregean, then, for
every reduced I-matrix family A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩ and A =⟨Sign,SEN,N⟩, we have, for all Σ ∈ ∣Sign∣, ∣TΣ∣ = 0, or, for all Σ ∈ ∣Sign∣,∣TΣ∣ = 1.

We abbreviate the first disjunct of the conclusion, as usual, by T = ∅ and
the second by writing ∣T ∣ = 1.
Proof: Assume that T ≠ ∅ and let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
αΣ(φ), αΣ(ψ) ∈ TF (Σ). Then φ,ψ ∈ α−1Σ (TF (Σ)). Hence,

CΣ(α−1Σ (TF (Σ)), φ) = CΣ(α−1Σ (TF (Σ)), ψ),
i.e., ⟨φ,ψ⟩ ∈ λ̃IΣ(α−1(T )). By strong Fregeanity, ⟨φ,ψ⟩ ∈ Ω̃IΣ(α−1(T )). Thus,
for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′),

CΣ′(α−1Σ′ (TF (Σ′)), σ♭Σ′(SEN♭(f)(φ), χ⃗))
= CΣ′(α−1Σ′ (TF (Σ′)), σ♭Σ′(SEN♭(f)(ψ), χ⃗)).

Now we get

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ α−1Σ′ (TF (Σ′)) iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ α−1Σ′ (TF (Σ′)).
Equivalently,

σF (Σ′)(SEN(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)
iff σF (Σ′)(SEN(F (f))(αΣ(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′).

Taking into account the surjectivity of ⟨F,α⟩, we get that ⟨αΣ(φ), αΣ(ψ)⟩ ∈
ΩA
F (Σ)
(T ) = ∆A

F (Σ)
, the last equation holding since A is reduced. Hence,

αΣ(φ) = αΣ(ψ) and, therefore, for all Σ ∈ ∣Sign∣, ∣TΣ∣ = 1. ∎

Of course, in the case of Fregeanity and protoalgebraicity, the role of the
Tarski operator may be substituted by the Leibniz operator.

Proposition 1471 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.
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(a) I is protoalgebraic and Fregean if and only if, for all T ∈ ThFam(I),
Ω(T ) = Λ̃I(T );

(b) I is protoalgebraic and strongly Fregean if and only if, for all T ∈
ThFam(I), Ω(T ) = λ̃I(T ).

Proof: We only prove Part (a), since Part (b) can be proven by following a
similar reasoning.

If I is protoalgebraic, then, by Proposition 1460, for all T ∈ ThFam(I),
Ω(T ) = Ω̃I(T ). If I is Fregean, then ,by definition, for all T ∈ ThFam(I),
Ω̃I(T ) = Λ̃I(T ). Therefore, if I is protoalgebraic and Fregean, then, for all
T ∈ ThFam(I), Ω(T ) = Λ̃I(T ).

Assume, conversely, that, for all T ∈ ThFam(I), we have Ω(T ) = Λ̃I(T ).
Then, for all T,T ′ ∈ ThFam(I), such that T ≤ T ′, we have

Ω(T ) = Λ̃I(T ) Lemma 1416

≤ Λ̃I(T ′) = Ω(T ′).
Thus, Ω is monotone on ThFam(I) and I is protoalgebraic. Moreover, since,
by Proposition 1460, for all T ∈ ThFam(I), Ω̃I(T ) = Ω(T ), we get Ω̃I(T ) =
Λ̃I(T ) and, therefore, I is also Fregean. ∎

Recall that a π-institution I is self extensional if

Ω̃(I) = Λ̃(I) (= λ̃(I)).
It turns out that Fregeanity (and, therefore, strong Fregeanity) implies

self extensionality.

Corollary 1472 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is Fregean, then it is self extensional.

Proof: We have

Ω̃(I) = Ω̃I(Thm(I)) (by definition)

= Λ̃I(Thm(I)) (by Fregeanity)

= Λ̃(I). (by definition)

So I is self extensional. ∎

If a π-institution I is strongly Fregean and has theorems, then the map-
ping T ↦ IT establishes an order embedding from the lattice of the theory
families of I into the lattice of full I-structures on the algebraic system F .

Proposition 1473 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is strongly Fregean with theorems,
then T ↦ IT is an order embedding of ThFam(I) into FStrI(F).
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Proof: We start by showing that the proposed mapping is indeed well-
defined into FStrI(F), i.e., that, for all T ∈ ThFam(I), IT = ⟨F ,ThFam(I)T ⟩
is a full I-structure. To this end, let T ∈ ThFam(I) and set θ = Ω̃I(T ) =
λ̃I(T ). To verify that IT is a full I-structure, it suffices to show that
ThFam(IT )/θ = FiFamI(F/θ).

If T ′ ∈ ThFam(IT ), then, by definition of θ, θ is compatible with T ′.
Therefore, by Corollary 56, T ′/θ ∈ FiFamI(F/θ). Thus, ThFam(IT)/θ ⊆
FiFamI(F/θ).

If, on the other hand, T ′ ∈ FiFamI(F/θ), then, setting ⟨I, π⟩ ∶ F → F/θ
the quotient morphism, we have, by Corollary 55, π−1(T ′) ∈ FifamI(F), i.e.,
π−1(T ′) ∈ ThFam(I). We also have, taking into account that I has theorems,
that, for all Σ ∈ ∣Sign♭∣, all φ ∈ TΣ and ψ ∈ TΣ ∩ π−1Σ (T ′Σ),

⟨φ,ψ⟩ ∈ λ̃IΣ(T ) = θΣ.
So πΣ(φ) = πΣ(ψ), whence φ ∈ π−1Σ (πΣ(ψ)) ∈ π−1Σ (T ′Σ). Since φ ∈ TΣ was arbi-
trary, T ≤ π−1(T ′) and, hence, π−1(T ′) ∈ ThFam(IT ). This shows that T ′ ∈
ThFam(IT )/θ and allows us to conclude that FiFamI(F/θ) ⊆ ThFam(IT )/θ.

As for the rest, everything follows, since T ↦ IT is clearly one-to-one and
both order preserving and order reflecting. ∎

If one adds protoalgebraicity into the mix, then the order embedding of
Proposition 1473 becomes an order isomorphism.

Proposition 1474 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a strongly Fregean protoalgebraic π-institution with theorems,
based on F. Then T ↦ IT is an isomorphism between ThFam(I) and
FStrI(F).
Proof: By Proposition 1473, it suffices to show that the mapping T ↦ IT is
also onto FStrI(F). The latter follows from Theorem 1463. ∎

Strong Fregeanity, protoalgebraicity and the existence of theorems have
very strong consequences for a π-institution. They ensure that the π-institution
is weakly family algebraizable, that the Leibniz operator is continuous (in
case of finitarity) and that all reduced matrix families have singleton filter
families.

Proposition 1475 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a strongly Fregean protoalgebraic π-institution with theorems.

(a) I is family injective and hence weakly family algebraizable;

(b) If I is finitary, then Ω is locally continuous;

(c) For every A = ⟨A, T ⟩ ∈MatFam∗(I), ∣T ∣ = 1.
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Proof: By Proposition 1460, for all T ∈ ThFam(I), Ω(T ) = Ω̃I(T ). Thus,
composing the mapping T ↦ IT of Proposition 1474, with the isomorphism of
Theorem 1408, we obtain an isomorphism Ω ∶ ThFam(I) → ConSysI(F).
By Proposition 1471, Ω = λ̃I and, hence, by Proposition 1419, Ω is locally
continuous. Finally, if A = ⟨A, T ⟩ ∈MatFam∗(I), then, since I has theorems,
T ≠ ∅ and, therefore, by Proposition 1470, ∣T ∣ = 1. ∎

We saw in Corollary 1472 that Fregeanity implies self extensionality. On
the other hand, even though we cannot prove that strong Fregeanity, coupled
with protoalgebraicity, are strong enough to guarantee full self extensionality,
we can show that they imply a weaker property, namely a version of full
self extensionality applying only to full I-structures with isomorphic functor
components. We start with a technical lemma.

Lemma 1476 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a strongly Fregean protoalgebraic π-institution based on F and A = ⟨A, ⟨F,α⟩⟩
an F-algebraic system, with F ∶ Sign♭ → Sign an isomorphism. Then, for
all T ∈ FiFamI(A),

ΩA(T ) = λ̃A(FiFamI(A)T ).
Proof: Note that, by protoalgebraicity, ΩA(T ) = Ω̃A(FiFamI(A)T ). There-
fore, by compatibility, ΩA(T ) ≤ λ̃A(FiFamI(A)T ). It therefore suffices to
show the reverse inclusion. To this end and taking into account the surjectiv-
ity of ⟨F,α⟩, let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨αΣ(φ), αΣ(ψ)⟩ ∈
λ̃A
F (Σ)
(FiFamI(A)T ). Then, by definition, for all T ≤ T ′′ ∈ FiFamI(A), we

have
αΣ(φ) ∈ T ′′F (Σ) iff αΣ(ψ) ∈ T ′′F (Σ).

However, since I is protoalgebraic, we get, by the Correspondence Theorem
1336, that, for all α−1(T ) ≤ T ′ ∈ ThFam(I),

φ ∈ T ′Σ iff ψ ∈ T ′Σ.

Hence, by definition,

⟨φ,ψ⟩ ∈ λ̃IΣ(α−1(T ))
= ΩΣ(α−1(T )) (strong Fregeanity)
= α−1Σ (ΩAF (Σ)(T )). (Proposition 24)

Hence ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA
F (Σ)
(T ). Taking into account the surjectivity of

⟨F,α⟩, we now conclude that λ̃A(FiFamI(A)T ) ≤ ΩA(T ). ∎

Proposition 1477 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I is strongly Fregean and protoal-
gebraic, then, every full I-structure, with an isomorphic functor component,
has the Congruence Property.
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Proof: We deal first with the case Thm(I) = ∅. Then, since I is protoalge-
braic, the only option is

ThFam(I) = {T ∶ TΣ = ∅ or SEN♭(Σ), for all Σ ∈ ∣Sign♭∣}.
In this case, given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the only full I-
structures on A are of the form ⟨A,D⟩, with

D = {T ∶ TΣ = ∅ or SEN(Σ), for all Σ ∈ ∣Sign∣}.
All those have the Congruence Property.

Assume, next, that I has theorems. By Lemma 1476, for every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩, with F ∶ Sign♭ → Sign an isomorphism,
and every T ∈ FiFamI(A),

ΩA(T ) = λ̃A(FiFamI(A)T ).
Thus, ⟨A,FiFamI(A)T ⟩ has the strong Congruence Property. Since, by The-
orem 1463, every full I-structure, with an isomorphic functor component
has this form, we conclude that every full I-structure, with an isomorphic
functor component, has the Congruence Property. ∎

For finitary fully self extensional π-institutions, we obtain the following
characterizations of weak family algebraizability.

Proposition 1478 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a finitary, fully self extensional π-institution based on F. Then
the following conditions are equivalent.

(i) I is strongly Fregean, protoalgebraic and has theorems;

(ii) I is weakly family algebraizable and Ω is locally continuous;

(iii) I is weakly family algebraizable.

Proof: (i)⇒(ii) follows from Proposition 1475. (ii)⇒(iii) is trivial. For
(iii)⇒(i) note, first, that, by hypothesis I is family monotone and fam-
ily injective. Thus, I is protoalgebraic. By Proposition 1468, for all T ∈
ThFam(I), IT ∈ FStrI(F). Hence, by full self extensionality, IT has the
strong Congruence Property and, hence, I is strongly Fregean. Finally, since
Ω(∅) = Ω(SEN♭) = ∇F , we get, by injectivity, ∅ ∉ ThFam(I) and I has
theorems. ∎
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20.1 Gentzen π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Σ ∈ ∣Sign♭∣. A Σ-
sequent is a pair ⟨Φ, φ⟩,
where Φ ∪ {φ} ⊆ SEN♭(Σ) (with Φ possibly empty). Sometimes we write

Φ ⊳Σ φ or Φ ⊢Σ φ

to denote the Σ-sequent ⟨Φ, φ⟩. The set Φ is called set of antecedents of⟨Φ, φ⟩ and φ is called the consequent of ⟨Φ, φ⟩.
The collection of Σ-sequents is denoted by SeqΣ(F) and the set of all

Σ-sequents with nonempty set of antecedents is denoted by Seq0
Σ(F). We

then set

Seq(F) = {SeqΣ(F)}Σ∈∣Sign♭∣ and Seq0(F) = {Seq0
Σ(F)}Σ∈∣Sign♭∣.

We sometimes use boldface Greek letters such as γ,δ, . . . to denote Σ-
sequents and boldface capital Greek letters such as Γ,∆, . . . for sets of Σ-
sequents. Moreover, we write Γ ⊢Σ Φ to stand for the set {Γ ⊢Σ φ ∶ φ ∈ Φ} of
Σ-sequents.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A Gentzen π-insti-
tution based on F of type 1 (of type 0, respectively) is a pair

G = ⟨F,G⟩,
where G ∶ P(Seq(F)) → P(Seq(F)) (G ∶ P(Seq0(F)) → P(Seq0(F)), re-
spectively) is a closure system on Seq(F) (Seq0(F), respectively) that, in
addition, satisfies the following structural rules, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ):

(Axiom) φ ⊢Σ φ ∈ GΣ(∅);
(Weakening) Φ,Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ φ);

(Cut) Φ ⊢Σ φ ∈ GΣ(Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ).
If Φ ⊢Σ φ ∈ GΣ(∅) we call Φ ⊢Σ φ a Σ-theorem or a derivable Σ-sequent
of G.

Each Gentzen π-institution based on an algberaic system F defines in a
natural way a π-institution based on F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a
Gentzen π-institution based on F. The π-institution IG = ⟨F,CG⟩ de-
fined or determined by G is defined by setting, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CG
Σ(Φ) iff Φ ⊢Σ φ ∈ GΣ(∅).
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Proposition 1479 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a Gentzen π-institution based on F. CG ∶ PSEN♭ → PSEN♭ is a
closure system on SEN♭ and, hence, IG = ⟨F,CG⟩ is a π-institution.

Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ).
If φ ∈ Φ, then, by (Axiom) φ ⊢Σ φ ∈ GΣ(∅) and by (Weakening) Φ ⊢Σ φ ∈

GΣ(φ ⊢Σ φ), whence Φ ⊢Σ φ ∈ GΣ(∅). Therefore φ ∈ CG
Σ(Φ).

If Φ ⊆ Ψ and φ ∈ CG
Σ(Φ), then Φ ⊢Σ φ ∈ GΣ(∅) and, by (Weakening),

Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ φ), whence Ψ ⊢Σ φ ∈ GΣ(∅), giving φ ∈ CG
Σ(Ψ).

If φ ∈ CG
Σ(CG

Σ(Φ)), then CG
Σ(Φ) ⊢Σ φ ∈ GΣ(∅) and, by (Weakening),

Φ,CG
Σ(Φ) ⊢Σ φ ∈ GΣ(CG

Σ(Φ) ⊢Σ φ) ⊆ GΣ(∅).
Moreover, by definition Φ ⊢Σ CG

Σ(Φ) ⊆ GΣ(∅), whence, by (Cut),

Φ ⊢Σ φ ∈ GΣ(Φ ⊢Σ CG
Σ(Φ), Φ,CG

Σ (Φ) ⊢Σ φ) ⊆ GΣ(∅).
Therefore, φ ∈ CG

Σ(Φ).
Finally, suppose φ ∈ CG

Σ(Φ), Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then, by
definition, Φ ⊢Σ φ ∈ GΣ(∅) and, by structurality,

SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ GΣ′(∅).
This shows that SEN♭(f)(φ) ∈ CG

Σ′(SEN♭(f)(Φ)) and, therefore, CG is a
closure system on SEN♭, as was to be shown. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and G = ⟨F,G⟩ a Gentzen π-institution, also based on F.
We say that G is adequate for I if C = CG and, moreover,

• G is of type 1 if I has theorems and

• G is of type 0 if I does not have theorems.

The following proposition clarifies the distinction imposed on the type,
since it reveals the fact that, if I has no theorems, then it is sufficient to
assume that a Gentzen π-institution adequate for I has type 0.

Proposition 1480 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a Gentzen π-institution based on F.

(a) If G is of type 0, then IG does not have theorems.

(b) If G is of type 1, then its restriction G0 = ⟨F,G0⟩ to Seq0(F) is a
Gentzen π-institution of type 0.

(c) If G is of type 1 and IG has no theorems, then IG = IG0

.
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Proof:

(a) Suppose IG has theorems. Thus, for all Σ ∈ ∣Sign♭∣, there exists φ ∈
SEN♭(Σ), such that φ ∈ CG

Σ(∅). Thus, by definition, ∅ ⊢Σ φ ∈ GΣ(∅).
Therefore, G cannot be of type 0 (since it admits a sequent with an
empty set of antecedents).

(b) Suppose G = ⟨F,G⟩ is of type 1. Consider G0 = ⟨F,G0⟩. We must show
that G0 ∶ P(Seq0(F)) → P(Seq0(F)) is a closure system on Seq0(F)
that satisfies the structural rules.

– Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ Seq0
Σ(F), such that γ ∈ Γ. Then

γ ∈ GΣ(Γ) and, hence, γ ∈ G0
Σ(Γ).

– Suppose Σ ∈ ∣Sign♭∣, Γ∪∆∪ {γ} ⊆ Seq0
Σ(F), such that γ ∈ G0

Σ(Γ)
and Γ ⊆ ∆. Then, by definition, γ ∈ GΣ(Γ) and Γ ⊆ ∆, whence
γ ∈ GΣ(∆). So γ ∈ G0

Σ(∆).
– Suppose Σ ∈ ∣Sign♭∣, Γ∪{γ} ⊆ Seq0

Σ(F), such that γ ∈ G0
Σ(G0

Σ(Γ)).
Then γ ∈ GΣ(GΣ(Γ)) = GΣ(Γ). As Γ ∪ {γ} ⊆ Seq0

Σ(F), it follows
that γ ∈ G0

Σ(Γ).
– Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ Seq0

Σ(F), such that γ ∈ G0
Σ(Γ),

Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). Then γ ∈ GΣ(Γ), whence
SEN♭(f)(γ) ∈ GΣ′(SEN♭(f)(Γ)). Observing that, if Γ ∪ {γ} ⊆
Seq0

Σ(F), then SEN♭(f)(Γ) ∪ {SEN♭(f)(γ)} ⊆ Seq0
Σ′(F), we con-

clude that
SEN♭(f)(γ) ∈ G0

Σ′(SEN♭(f)(Γ)).
Next, for the structural rules:

(Axiom) For Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), φ ⊢Σ φ ∈ Seq0
Σ(F), whence, since, by

(Axiom), φ ⊢Σ φ ∈ GΣ(∅), φ ⊢Σ φ ∈ G0
Σ(∅).

(Weakening) Let Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ), such that Φ ≠ ∅. Then,
since Φ ∪Ψ ≠ ∅ and since, by (Weakening), Φ,Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ
φ), we conclude that Φ,Ψ ⊢Σ φ ∈ G0

Σ(Φ ⊢Σ φ).
(Cut) Let Σ ∈ ∣Sign♭∣, Φ∪Ψ∪{φ} ⊆ SEN♭(Σ), with Φ ≠ ∅. Then Φ∪Ψ ≠ ∅

and, since, by (Cut), Φ ⊢Σ φ ∈ GΣ(Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ), we get
Φ ⊢Σ φ ∈ G0

Σ(Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ).
(c) Suppose G is of type 1 and IG has no theorems. Clearly, G0 ≤ G so

that CG0 ≤ CG. On the other hand, let Σ ∈ ∣Sign♭∣, Φ∪{φ} ⊆ SEN♭(Σ),
such that φ ∈ CG

Σ(Φ). Since IG has no theorems, Γ ≠ ∅. Moreover, by
definition, Φ ⊢Σ φ ∈ GΣ(∅). Thus, Φ ⊢Σ φ ∈ G0

Σ(∅). We conclude that
φ ∈ CG0

Σ (Φ). So CG ≤ CG0

and equality follows.
∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and Σ ∈ ∣Sign♭∣.
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• A Gentzen Σ-axiom is a Σ-sequent γ ∈ SeqΣ(F);
• A Gentzen Σ-rule is a pair ⟨Γ,γ⟩, where Γ ∪ {γ} ⊆ SeqΣ(F).

A Gentzen axiom system is a collection Ax = {AxΣ}Σ∈∣Sign♭∣, where AxΣ

is a set of Gentzen Σ-axioms, which is Sign♭-invariant.
A Gentzen rule system is a collection Ir = {IrΣ}Σ∈∣Sign♭∣, where IrΣ is a

set of Gentzen Σ-rules, which is also Sign♭-invariant. Set

R = Ax ∪ Ir.

The Gentzen closure system GR ⊆ P(Seq(F)) → P(Seq(F)) generated
by R is the least closure system on Seq(F), satisfying the structural rules,
that contains R, i.e., such that, for all Σ ∈ ∣Sign♭∣,

• γ ∈ GR
Σ(∅), for all γ ∈ AxΣ, and

• γ ∈ GR
Σ(Γ), for all ⟨Γ,γ⟩ ∈ IrΣ.

We denote by GR = ⟨F,GR⟩ the corresponding Gentzen π-institution, called
the Gentzen π-institution generated by R.

A Finitary Parenthesis

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R = Ax∪Ir a set of finitary
Gentzen axioms and rules of inference (i.e., such that the set of antecedents
of all sequents involved is finite and the set of hypotheses of each rule of
inference is also finite), and Γ ⊆ SeqΣ(F) a set of Σ-sequents. We define a
family

ΞR
Σ(Γ) =⋃{ΞR,n

Σ (Γ) ∶ n < ω},
where ΞR,n

Σ (Γ) is defined by induction on n < ω as follows:

• ΞR,0
Σ (Γ) = {φ ⊢Σ φ ∶ φ ∈ SEN♭(Σ)} ∪AxΣ ∪Γ;

• For all n ≥ 0, Φ ∪Ψ ∪ {φ} ⊆f SEN♭(Σ),
ΞR,n+1
Σ (Γ) = {Φ,Ψ ⊢Σ φ ∶ Φ ⊢Σ φ ∈ ΞR,n

Σ (Γ)}
∪{Φ ⊢Σ φ ∶ Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n

Σ (Γ)}
∪{Φ ⊢Σ φ ∶ ⟨∆,Φ ⊢Σ φ⟩ ∈ IrΣ,∆ ⊆ ΞR,n

Σ (Γ)}.
We define ΞR ∶ P(Seq(F)) → P(Seq(F)), by letting ΞR ∶= {ΞR

Σ}Σ∈∣Sign♭∣,
where ΞR

Σ ∶ P(SeqΣ(F)) → P(SeqΣ(F)) as defined above.
We show, next, that this is closure system on Seq(F), which satisfies the

structural rules, includes Ax and is closed under Ir.
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Lemma 1481 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R =
Ax∪Ir a collection of finitary axioms and rules of inference. ΞR ∶ P(Seq(F)) →
P(Seq(F)) is a closure system on Seq(F), satisfying the structural rules and
including R.

Proof: We show, first, that ΞR is a closure system on Seq(F).
• Suppose Σ ∈ ∣Sign♭∣ and Γ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ Γ. Then
γ ∈ ΞR,0

Σ (Γ) and, hence, γ ∈ ΞR
Σ(Γ).

• Suppose Σ ∈ ∣Sign♭∣, Γ ∪∆ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ ΞR
Σ(Γ) and

Γ ⊆ ∆. Then, for some n < ω, γ ∈ ΞR,n
Σ (Γ) and Γ ⊆ ∆. We show by

induction on n, that then γ ∈ ΞR,n
Σ (∆).

– If n = 0, then the conclusion follows directly from the inclusion
Γ ⊆∆.

– Now suppose that n > 0 and that the conclusion holds for n − 1.

∗ If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), then, by the

induction hypothesis, Φ ⊢Σ φ ∈ ΞR,n−1
Σ (∆), whence, it follows

that Φ,Ψ ⊢Σ φ ∈ ΞR,n
Σ (∆).

∗ If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), we get,

by the induction hypothesis, Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (∆),

whence Φ ⊢Σ φ ∈ ΞR,n
Σ (∆).

∗ If γ = Φ ⊢Σ φ, with ⟨Υ,Φ ⊢Σ φ⟩ ∈ IrΣ and Υ ⊆ ΞR,n−1
Σ (Γ),

then, by the induction hypothesis, Υ ⊆ ΞR,n−1
Σ (∆), whence,

again, Φ ⊢Σ φ ∈ ΞR,n
Σ (∆).

• Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ ΞR
Σ(ΞR

Σ(Γ)).
Then, for some n < ω, γ ∈ ΞR,n

Σ (ΞR
Σ(Γ)). We show by induction on n,

that then γ ∈ ΞR
Σ(Γ).

– If n = 0, then γ is of the form φ ⊢Σ φ or is in AxΣ or in ΞR
Σ(Γ).

In the first two cases, it is in ΞR,0
Σ (Γ) ⊆ ΞR

Σ(Γ) and in the last in
ΞR
Σ(Γ).

– Suppose n > 0 and the conclusion holds for n − 1.

∗ If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (ΞR

Σ(Γ)), then, by the

induction hypothesis, Φ ⊢Σ φ ∈ ΞR
Σ(Γ), i.e., Φ ⊢Σ φ ∈ ΞR,m

Σ (Γ),
for some m < ω. Thus Φ,Ψ ⊢Σ φ ∈ ΞR,m+1

Σ (Γ) ⊆ ΞR
Σ(Γ).

∗ If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (ΞR

Σ(Γ)), we
get, by the induction hypothesis, Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR

Σ(Γ).
Since Ψ is finite, there exists m > 0, such that Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ
φ ∈ ΞR,m

Σ (Γ). Thus, Φ ⊢Σ φ ∈ ΞR,m+1
Σ (Γ) ⊆ ΞR

Σ(Γ).
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∗ If γ = Φ ⊢Σ φ, with ⟨∆,Φ ⊢Σ φ⟩ ∈ IrΣ and ∆ ⊆ ΞR,n−1
Σ (ΞR

Σ(Γ)),
then, by the induction hypothesis, ∆ ⊆ ΞR

Σ(Γ), whence, again,

since ∆ is finite, there exists m > 0, such that ∆ ⊆ ΞR,m
Σ (Γ).

Therefore, Φ ⊢Σ φ ∈ ΞR,m+1
Σ (Γ) ⊆ ΞR

Σ(Γ).
• Suppose Σ ∈ ∣Sign♭∣, Γ ∪ {γ} ⊆ SeqΣ(F), such that γ ∈ ΞR

Σ(Γ), and let

Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′). Then, for some n < ω, γ ∈ ΞR,n
Σ (Γ). We

show by induction on n, that then SEN♭(f)(γ) ∈ ΞR,n
Σ′ (SEN♭(f)(Γ)).

– If n = 0, then γ is of the form φ ⊢Σ φ or in AxΣ or in Γ.
In the first case, SEN♭(f)(γ) = SEN♭(f)(φ) ⊢Σ′ SEN♭(f)(φ) ∈
ΞR,0
Σ′ (SEN♭(f)(Γ)), by definition. In the second case, the con-

clusion holds by the postulated invariance of Ax under Sign♭.
In the last case, it holds because, by definition, SEN♭(f)(γ) ∈
ΞR,0
Σ′ (SEN♭(f)(Γ)).

– Suppose n > 0 and the conclusion holds for n − 1.

∗ If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), then, by the

induction hypothesis,

SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n−1
Σ′ (SEN♭(f)(Γ)),

whence, by definition. SEN♭(f)(Φ ∪ Ψ) ⊢Σ′ SEN♭(f)(φ) ∈
ΞR,n
Σ′ (SEN♭(f)(Γ)).

∗ If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), we get,

by the induction hypothesis, SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(Ψ),
SEN♭(f)(Φ ∪Ψ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n−1

Σ′ (SEN♭(f)(Γ)). So,
again by definition,

SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n
Σ′ (SEN♭(f)(Γ)).

∗ If γ = Φ ⊢Σ φ, with ⟨∆,Φ ⊢Σ φ⟩ ∈ IrΣ and ∆ ⊆ ΞR,n−1
Σ (Γ),

then, by the induction hypothesis,

SEN♭(f)(∆) ⊆ ΞR,n
Σ′ (SEN♭(f)(Γ)),

whence, since Ir is invariant under Sign♭, we get, by definition,
SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ) ∈ ΞR,n

Σ′ (SEN♭(f)(Γ)).
We have concluded the proof that ΞR is a closure system on Seq(F).

Next, we show that it satisfies the structural rules.

• For (Axiom), if Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), then, by definition, φ ⊢Σ φ ∈
ΞR,0
Σ (∅) ⊆ ΞR

Σ(∅).
• For (Weakening), if Σ ∈ ∣Sign♭∣, Φ ∪ Ψ ∪ {φ} ⊆f SEN♭(Σ), such that

Φ ⊢Σ φ ∈ ΞR
Σ(Γ), then, there exists n < ω, such that Φ ⊢Σ φ ∈ ΞR,n

Σ (Γ).
Therefore, by definition, Φ,Ψ ⊢Σ φ ∈ ΞR,n+1

Σ (Γ) ⊆ ΞR
Σ(Γ).
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• For (Cut), if Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆f SEN♭(Σ), such that Φ ⊢Σ Ψ,
Φ,Ψ ⊢Σ φ ∈ ΞR

Σ(Γ), then, since Ψ ⊆f SEN♭(Σ), there exists n < ω,

such that Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞR,n
Σ (Γ). Thus, by definition, Φ ⊢Σ φ ∈

ΞR,n+1
Σ (Γ) ⊆ ΞR

Σ(Γ).
So ΞR does satisfy all three structural rules.

Finally, it does include all rules in R:

• For Σ ∈ ∣Sign♭∣, γ ∈ AxΣ, we have γ ∈ AxΣ ⊆ ΞR,0
Σ (∅) ⊆ ΞR

Σ(∅).
• For Σ ∈ ∣Sign♭∣, ⟨Γ,γ⟩ ∈ IrΣ, such that Γ ⊆ ΞR

Σ(∆), since Γ is finite,

there exists n < ω, such that Γ ⊆ ΞR,n
Σ (∆). Thus, by definition, γ ∈

ΞR,n+1
Σ (∆) ⊆ ΞR

Σ(∆).
This concludes the proof of the statement. ∎

We show that, given a system R of finitary Gentzen axioms and rules of
inference, the closure GR

Σ(Γ) of a set Γ of Σ-sequents in the least Gentzen
π-institution generated by R is exactly ΞR

Σ(Γ).
Proposition 1482 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
R = Ax ∪ Ir a set of finitary Gentzen axioms and rules of inference. Then,
for all Σ ∈ ∣Sign♭∣ and all Γ ⊆ SeqΣ(F),

GR
Σ(Γ) = ΞR

Σ(Γ).
Proof: Suppose, first, that γ ∈ SeqΣ(F), such that γ ∈ ΞR

Σ(Γ). Then,

γ ∈ ΞR,n
Σ (Γ), for some n < ω. We show by induction on n < ω that, if

γ ∈ ΞR,n
Σ (Γ), then γ ∈ GR

Σ(Γ).
• The conclusion is obvious for n = 0, since, by definition, GR

Σ(Γ) satisfies
the structural rules, contains AxΣ and, clearly, includes Γ;

• A similar clause applies for the induction step:

– If γ = Φ,Ψ ⊢Σ φ, with Φ ⊢Σ φ ∈ ΞR,n−1
Σ (Γ), then, by the induction

hypothesis, Φ ⊢Σ φ ∈ GR
Σ(Γ) and, since GR satisfies the structural

rules, Φ,Ψ ⊢Σ φ ∈ GR
Σ(Γ) also.

– If γ = Φ ⊢Σ φ, with Φ ⊢Σ Ψ ⊆ ΞR,n−1
Σ (Γ) and Ψ ⊢Σ φ ∈ ΞR,n−1

Σ (Γ),
then, again by the induction hypothesis, Φ ⊢Σ Ψ ⊆ GR

Σ(Γ) and
Ψ ⊢Σ φ ∈ GR

Σ(Γ), whence, since GR satisfies the structural rules,
Φ ⊢Σ φ ∈ GR

Σ(Γ).
– If γ = Φ ⊢Σ φ, with ⟨∆,γ⟩ ∈ IrΣ and ∆ ⊆ ΞR,n−1

Σ (Γ), then, by the
induction hypothesis, ∆ ⊆ GR

Σ(Γ) and, since GR is closed under
the rules of inference, we get that Φ ⊢Σ φ ∈ GR

Σ(Γ).
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We conclude that ΞR,n
Σ (Γ) ⊆ GR

Σ(Γ), for all n < ω, and, therefore, ΞR
Σ(Γ) ⊆

GR
Σ(Γ).

Conversely, since, by Lemma 1481, ΞR ∶ P(Seq(F)) → P(Seq(F)) is a
closure system on Seq(F), which satisfies the structural rules, contains Ax
and is closed under Ir, we conclude by the minimality of GR, that, for all
Σ ∈ ∣Sign♭∣ and all Γ ⊆ SeqΣ(F), GR

Σ(Γ) ⊆ ΞR
Σ(Γ). From this, the conclusion

follows. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ be a
π-institution based on F. Define a Gentzen π-institution GI = ⟨F,GI⟩, as
follows:

1. If I has theorems, GI is of type 1 and if I does not have theorems,
then GI is of type 0;

2. Set AxI = {AxIΣ}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)}.

Let RI ∶= AxI . Then set GI ∶= GRI .

Of course, GI is a Gentzen π-institution. Moreover, it turns out that, if
I is finitary, then GI is adequate for the π-institution I .

Lemma 1483 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F. Then GI = ⟨F,GI⟩ is a Gentzen
π-institution adequate for I.

Proof: Note that, by hypothesis and Proposition 1482, GI = ⟨F,ΞRI ⟩.
Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f SEN♭(Σ). We must show that

φ ∈ CΣ(Φ) iff Φ ⊢Σ φ ∈ ΞRI

Σ (∅).
First, if φ ∈ CΣ(Φ), then, by definition Φ ⊢Σ φ ∈ AxIΣ. Therefore, since

AxIΣ ⊆ ΞRI

Σ (∅), we get Φ ⊢Σ φ ∈ ΞRI

Σ (∅).
Conversely, we must show that, if Φ ⊢Σ φ ∈ ΞRI

Σ (∅), then φ ∈ CΣ(Φ). We
do this by showing, using induction on n < ω, that

Φ ⊢Σ φ ∈ ΞRI ,n
Σ (∅) implies φ ∈ CΣ(Φ).

• If Φ ⊢Σ φ ∈ ΞRI ,0
Σ (∅), then it is either of the form φ ⊢Σ φ or in AxIΣ. In

the first case, the conclusion follows by the inflationarity of C and, in
the second, by the definition of AxI .

• Suppose n > 0 and that the conclusion holds for n − 1. Then, since
IrI = ∅, there are only two cases to consider.
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– If Φ ⊢Σ φ is of the form Φ1,Φ2 ⊢Σ φ ∈ ΞRI ,n
Σ (∅), with Φ1 ⊢Σ φ ∈

ΞRI ,n−1
Σ (∅), then, by the induction hypothesis, φ ∈ CΣ(Φ1) and,

hence, by the monotonicity of C, φ ∈ CΣ(Φ1,Φ2).
– If Φ ⊢Σ φ ∈ ΞRI ,n

Σ (∅), with Φ ⊢Σ Ψ, Φ,Ψ ⊢Σ φ ∈ ΞRI ,n−1
Σ (∅), then,

by the induction hypothesis, Ψ ⊆ CΣ(Φ) and φ ∈ CΣ(Φ,Ψ), whence

φ ∈ CΣ(Φ,Ψ) (hypothesis)
⊆ CΣ(Φ,CΣ(Φ)) (monotonicity)
⊆ CΣ(CΣ(Φ)) (monotonicity)
= CΣ(Φ). (idempotency)

This finishes the induction and concludes the proof. ∎

End of the Finitary Parenthesis

20.2 G-Structures and G-Algebraic Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen π-
institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and IL = ⟨A,D⟩
an F-structure. IL is a G-structure or a model of G if, for all Σ ∈ ∣Sign♭∣
and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F),

Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and αΣ(φi) ∈DF (Σ)(αΣ(Φi)), i ∈ I,
imply αΣ(φ) ∈DF (Σ)(αΣ(Φ)).

In relation to G-structures, we use the following notation:

• D ∈ ClFamG(A) if ⟨A,D⟩ is a G-structure;

• Str(G) is the collection of all G-structures;

• StrG(A) is the collection of all G-structures on the F-algebraic system
A.

Let, again, F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a
Gentzen π-institution based on F and Γ = {ΓΣ}Σ∈∣Sign♭∣ ∈ ThFam(G). Define

DΓ ∶ PSEN → PSEN, by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ⊆ SEN♭(Σ),
DΓ

Σ(Φ) = {φ ∈ SEN♭(Σ) ∶ Φ ⊢Σ φ ∈ ΓΣ}.
We show that DΓ, thus defined, is a closure family on SEN♭ and, therefore,⟨F ,DΓ⟩ is an F-structure. In fact, ⟨F ,DΓ⟩ is a G-structure.

Lemma 1484 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩
a Gentzen π-institution based on F and Γ ∈ ThFam(G). Then ILΓ = ⟨F ,CΓ⟩
is a G-structure.
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Proof: We show, first, that DΓ is a closure family on F .

• Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Φ. Then, by
(Axiom) φ ⊢Σ φ ∈ GΣ(∅). By (Weakening), Φ ⊢Σ φ ∈ GΣ(φ ⊢Σ φ).
Therefore, by (Cut), Φ ⊢Σ φ ∈ GΣ(∅). Therefore, Φ ⊢Σ φ ∈ ΓΣ and,
hence, φ ∈DΓ

Σ(Φ).
• Let Σ ∈ ∣Sign♭∣ and Φ ∪ Ψ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ DΓ

Σ(Φ)
and Φ ⊆ Ψ. By definition, Φ ⊢Σ φ ∈ ΓΣ. Hence, by (Weakening)
Ψ ⊢Σ φ ∈ GΣ(Φ ⊢Σ φ) ⊆ GΣ(ΓΣ) = ΓΣ. We conclude that φ ∈DΓ

Σ(Ψ).
• Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ DΓ

Σ(DΓ
Σ(Φ)). Then,

by definition, DΓ
Σ(DΓ

Σ(Φ)) ⊢Σ φ ∈ ΓΣ and DΓ
Σ(Φ) ⊢Σ DΓ

Σ(DΓ
Σ(Φ)) ⊆ ΓΣ.

Now we get

DΓ
Σ(Φ) ⊢Σ φ ∈ GΣ(DΓ

Σ(Φ),DΓ
Σ(DΓ

Σ(Φ)) ⊢Σ φ,
DΓ

Σ(Φ) ⊢Σ DΓ
Σ(DΓ

Σ(Φ)))
⊆ GΣ(DΓ

Σ(DΓ
Σ(Φ)) ⊢Σ φ,
DΓ

Σ(Φ) ⊢Σ DΓ
Σ(DΓ

Σ(Φ)))
⊆ GΣ(ΓΣ)
= ΓΣ.

Therefore, by definition, φ ∈DΓ
Σ(Φ).

We conclude that ILΓ = ⟨F ,DΓ⟩ is an F-structure. We show, next, that ILΓ

is a G-structure. Let Σ ∈ ∣Sign♭∣, {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F),
such that

• Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and

• φi ∈DΓ
Σ(Φi), for all i ∈ I.

Then, by definition, Φi ⊢Σ φi ∈ ΓΣ, for all i ∈ I. Since Γ ∈ ThFam(G), we
get Φ ⊢Σ φ ∈ ΓΣ. Thus, by definition, φ ∈ DΓ

Σ(Φ). So ILΓ = ⟨F ,DΓ⟩ is a
G-structure. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution based on F, and IL = ⟨F ,D⟩ a G-structure. We define ΓIL ={ΓIL

Σ}Σ∈∣Sign♭∣ by setting, for all Σ ∈ ∣Sign♭∣,
ΓIL

Σ = {Φ ⊢Σ φ ∈ SeqΣ(F) ∶ φ ∈DΣ(Φ)}.
We show that ΓIL, thus defined, is a theory family of the Gentzen π-

institution G.

Lemma 1485 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩
a Gentzen π-institution based on F, and IL = ⟨F ,D⟩ a G-structure. Then
ΓIL ∈ ThFam(G).
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Proof: Let Σ ∈ ∣Sign♭∣, {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), such that

• Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and

• Φi ⊢Σ φi ∈ ΓIL
Σ , for all i ∈ I.

Then, by definition, φi ∈DΣ(Φi), for all i ∈ I. Thus, since IL is a G-structure,
φ ∈DΣ(Φ). Therefore, Φ ⊢Σ φ ∈ ΓIL

Σ . We conclude ΓIL ∈ ThFam(G). ∎

We show next that the two preceding constructions, of a G-structure ILΓ

out of a given theory family Γ of G and of a theory family ΓIL out of a given
G-structure IL = ⟨F ,D⟩ are inverses of one another.

Proposition 1486 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a Gentzen π-institution based on F and IL = ⟨F ,D⟩ an F-structure.

(a) IL ∈ Str(G) if and only if ΓIL ∈ ThFam(G) and IL = ILΓIL

;

(b) Γ ∈ ThFam(G) if and only if ILΓ ∈ Str(G) and Γ = ΓILΓ

;

(c) IG = ⟨F,CG⟩ is the smallest G-structure on F and CG =DThm(G).

Proof:

(a) Suppose, first, that IL = ⟨F ,D⟩ ∈ Str(G). Then, by Lemma 1485,
ΓIL ∈ ThFam(G). Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). We have

φ ∈DΓIL

Σ (Φ) iff Φ ⊢Σ φ ∈ ΓIL
Σ

iff φ ∈DΣ(Φ).
So D =DΓIL

.

Assume, conversely, that ΓIL ∈ ThFam(G) and IL = ILΓIL

. By Lemma

1484, ILΓIL

∈ Str(G). Thus, IL = ILΓIL

∈ Str(G).
(b) Suppose, first, that Γ ∈ ThFam(G). Then, by Lemma 1484, ILΓ ∈

Str(G). Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ). Then we have

Φ ⊢Σ φ ∈ ΓILΓ

Σ iff φ ∈DΓ
Σ(Φ)

iff Φ ⊢Σ φ ∈ ΓΣ.

So Γ = ΓILΓ

.

Suppose, conversely, that ILΓ ∈ Str(G) and Γ = ΓILΓ

. Then, by Lemma

1485, ΓILΓ

∈ ThFam(G) and, hence, Γ ∈ ThFam(G).
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(c) By Parts (a) and (b),

IL ✲ ΓIL

ILΓ ✛ Γ

are mutually inverse mappings between ThFam(G) and StrG(F) and
both are clearly order-preserving. Thus ILThm(G) = IG is the least G-
structure on F .

∎

The next result shows that a Gentzen π-institution is complete with re-
spect to class of all G-structures.

Proposition 1487 (Completeness Theorem) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system and G = ⟨F,G⟩ a Gentzen π-institution based on F.
For all Σ ∈ ∣Sign♭∣ and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), Φ ⊢Σ φ ∈
GΣ({Φi ⊢Σ φi ∶ i ∈ I}) if and only if, for every G-structure IL = ⟨A,D⟩, with
A = ⟨A, ⟨F,α⟩⟩,

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ)).
Proof: Let Σ ∈ ∣Sign♭∣ and {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F).

Suppose, first, that Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) and let IL = ⟨A,D⟩ ∈
Str(G), such that αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), for all i ∈ I. Then, by the
definition of a G-structure, αΣ(φ) ∈ DF (Σ)(αΣ(Φ)).

Assume, conversely, that the displayed condition in the statement holds.
Let Γ ∈ ThFam(G), such that {Φi ⊢Σ φi ∶ i ∈ I} ⊆ ΓΣ. Then, by definition,
φi ∈ DΓ

Σ(Φi), for all ∈ I. Since, by Lemma 1484, ILΓ is a G-structure, we
get, by hypothesis, φ ∈ DΓ

Σ(Φ). Therefore, Φ ⊢Σ φ ∈ ΓΣ. We conclude that
Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}). ∎

Next, we show that the property of being a model of a Gentzen π-
institution is preserved under bilogical morphisms.

Proposition 1488 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a Gentzen π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩
two F-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩ two F-structures and⟨H,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism. IL is a G-structure if and only if IL′ is
a G-structure.

Proof: For the proof, it suffices to notice that, since ⟨H,γ⟩ is a bilogical
morphism, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),

αΣ(φ) ∈DF (Σ)(αΣ(Φ)) iff γF (Σ)(αΣ(φ)) ∈D′H(F (Σ))(γF (Σ)(αΣ(Φ)))
iff α′Σ(φ) ∈ D′F ′(Σ)(α′Σ(Φ)).
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The rest of the argument is straightforward: If IL is a G-structure, then,
for all Σ ∈ ∣Sign♭∣ and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), such
that Φ ⊢Σ φ ∈ GΣ({Φi ⊢ φi ∶ i ∈ I}) and α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), for all

i ∈ I, we get αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), for all i ∈ I, whence, by hypothesis,
αΣ(φ) ∈ DF (Σ)(αΣ(Φ)), which gives α′Σ(φ) ∈ D′F ′(Σ)(α′Σ(Φ)). We conclude

that IL′ is also a G-structure. If, conversely, IL′ is a G-structure, then, for
all Σ ∈ ∣Sign♭∣ and all {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F), such that
Φ ⊢Σ φ ∈ GΣ({Φi ⊢ φi ∶ i ∈ I}) and αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), for all i ∈ I, we
get α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), for all i ∈ I, whence, by hypothesis, α′Σ(φ) ∈
D′
F ′(Σ)
(α′Σ(Φ)), which gives αΣ(φ) ∈ DF (Σ)(αΣ(Φ)). We conclude that IL is

also a G-structure. ∎

In particular, we obtain

Corollary 1489 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G =⟨F,G⟩ a Gentzen π-institution based on F. An F-structure IL = ⟨A,D⟩ is a
G-structure if and only if its reduction IL∗ is a G-structure.

Proof: This follows directly from Proposition 1488, since the quotient mor-
phism ⟨I, π⟩ ∶ IL ⊢ IL∗ is a bilogical morphism. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. A is a
G-algebraic system if it is the underlying algebraic system of a reduced
G-structure. We denote the class of all G-algebraic systems by AlgSys(G),
i.e., we have

AlgSys(G) = {A ∶ (∃D ∈ ClFamG(A))(Ω̃A(D) =∆A)}.
We show that, if a Gentzen π-institution G happens to be adequate for a

π-institution I , then every G-algebraic system is also an I-algebraic system.

Lemma 1490 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution based on
F that is adequate for I. Then:

(a) Every G-structure is an I-structure;

(b) AlgSys(G) ⊆ AlgSys(I).
Proof:

(a) Let IL = ⟨A,D⟩ ∈ Str(G). Suppose Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ),
such that φ ∈ CΣ(Φ). By the adequacy of G for I , Φ ⊢Σ φ ∈ GΣ(∅).
Since IL ∈ Str(G), αΣ(φ) ∈ DF (Σ)(αΣ(Φ)). Thus, by Lemma 50, IL is
an I-structure.



Voutsadakis CHAPTER 20. FULL ADEQUACY 1259

(b) Assume that G is adequate for I and let A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G).
Then, there exists a G-structure IL = ⟨A,D⟩, such that Ω̃A(D) = ∆A.
To conclude that A ∈ AlgSys(I), it suffices, by Proposition 1399, to
show that IL ∈ StrI(A). But this was done in Part (a).

∎

20.3 Fully Adequate Gentzen π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and G = ⟨F,G⟩ a Gentzen π-institution based on F, such that G
is adequate for I . Then, with I may be associated two classes of F-algebraic
systems and two classes of I-structures:

• I-algebraic systems and full I-structures;

• G-algebraic systems and G-structures.

We devise certain conditions that, when possible to enforce, would guarantee
that a Gentzen π-institution G adequate for I can be picked in such a way
as to have AlgSys(G) = AlgSys(I) and Str(G) = FStr(I).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and G = ⟨F,G⟩ a Gentzen π-institution based on F. G is
said to be fully adequate for I if one of the following two conditions holds:

• I has theorems, G is of type 1 and, for every F-structure IL = ⟨A,D⟩,
IL ∈ FStr(I) if and only if IL ∈ Str(G);

• I does not have theorems, G is of type 0 and, for every F-structure
IL = ⟨A,D⟩, IL ∈ FStr(I) if and only if IL ∈ Str(G) and IL does not have
theorems.

We show that, if G is fully adequate for I , then it is also adequate for I .

Proposition 1491 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution
based on F. If G is fully adequate for I, then G is adequate for I.

Proof: Assume that G is fully adequate for I and let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆
SEN♭(Σ).

If φ ∈ CG
Σ(Φ), then, by definition, Φ ⊢Σ φ ∈ GΣ(∅). Since, by Corollary

1391, ⟨F ,C⟩ ∈ FStr(I), we get, by hypothesis, ⟨F ,C⟩ ∈ Str(G). Therefore,
φ ∈ CΣ(Φ).

Assume, conversely, that φ ∈ CΣ(Φ). Since, by Proposition 1486, ⟨F ,CG⟩ ∈
Str(G), which, additionally, does not have theorems, if I has no theorems,
we get, by hypothesis, ⟨F ,CG⟩ ∈ FStr(I). But, by Corollary 1391, ⟨F ,C⟩ is
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the weakest full I-structure on F . Therefore, since φ ∈ CΣ(Φ), we get that
φ ∈ CG

Σ(Φ). ∎

We provide next a characterization of full adequacy, which also showcases
its features and hints at why it is a useful notion in trying to connect π-
institutions with Gentzen π-institutions.

Proposition 1492 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution
based on F. G is fully adequate for I if and only if

1. AlgSys(G) = AlgSys(I);
2. For all A ∈ AlgSys(I), ⟨A,FiFamI(A)⟩ is the only reduced G-structure

on A (without theorems if I does not have any);

3. I has theorems and G is of type 1 or I does not have theorems and G

is of type 0.

Proof: Assume G is fully adequate for I . Note that Condition 3 holds
by definition. By Proposition 1491, I is adequate for I . By Lemma 1490,
AlgSys(G) ⊆ AlgSys(I). If, on the other hand, A ∈ AlgSys(I), then ⟨A,
FiFamI(A)⟩ is a reduced full I-structure. Thus, by hypothesis, it is a reduced
G-structure. It follows that A ∈ AlgSys(G). This shows that Condition 1
also holds. It remains now to prove Condition 2. To this end, suppose
A ∈ AlgSys(I). Then ⟨A,FiFamI(A)⟩ is a reduced full I-structure. By
hypothesis, ⟨A,FiFamI(A)⟩ is a reduced G-structure. By the Isomorphism
Theorem 1408, it is the only full I-structure on A that is reduced. Hence, by
hypothesis, it is the only reduced G-structure on A. This proves Condition
2 and concludes the “only if”.

Assume, conversely, that Conditions 1-3 hold. Then, for all F-structures
IL = ⟨A,D⟩,

IL ∈ FStr(I) iff A∗ ∈ AlgSys(I) and D∗ = FiFamI(A∗)
iff A∗ ∈ AlgSys(G) and ⟨A∗,D∗⟩ ∈ Str(G)

(w/o theorems if I does not have any)
iff ⟨A,D⟩ ∈ Str(G)

(w/o theorems if I does not have any).

This, combined with Condition 3, gives that G is fully adequate for I . ∎

If a π-institution I has a fully adequate Gentzen π-institution, then that
Gentzen π-institution is unique.

Proposition 1493 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ two Gentzen
π-institutions based on F. If G and G′ are fully adequate for I, then G = G′.
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Proof: Let Σ ∈ ∣Sign♭∣, {Φi ⊢Σ φi ∶ i ∈ I} ∪ {Φ ⊢Σ φ} ⊆ SeqΣ(F). Then, we
get Φ ⊢Σ φ ∈ GΣ({Φi ⊢Σ φi ∶ i ∈ I}) if and only if, by Proposition 1487, for
every ⟨A,D⟩ ∈ Str(G),

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ))
if and only if, by full adequacy, for all ⟨A,D⟩ ∈ FStr(I),

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ))
if and only if, by full adequacy, for every ⟨A,D⟩ ∈ Str(G′),

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ))
if and only if, by Proposition 1487, Φ ⊢Σ φ ∈ G′Σ({Φi ⊢Σ φi ∶ i ∈ I}). There-
fore, G = G′ and, hence, G = G′. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Recall the notation
for the family of F-equations Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣, where EqΣ(F) =
SEN♭(Σ)2. Let K be a class of F-algebraic systems and recall the relative
equational consequence of K

CK = {CK
Σ}Σ∈∣Sign♭∣ ∶ P(Eq(F)) → P(Eq(F))

given, for all Σ ∈ ∣Sign♭∣, E ∪ {φ ≈ ψ} ⊆ EqΣ(F), by

φ ≈ ψ ∈ CK
Σ(E) iff for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

E ⊆ KerΣ(A) implies ⟨φ,ψ⟩ ∈ KerΣ(A).
We show that the structure QK = ⟨F2,CK⟩ is a π-structure.

Lemma 1494 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let K

be a class of F-algebraic systems. Then QK = ⟨F2,CK⟩ is a π-structure.

Proof: By Lemma ??. ∎

Recall from Proposition 115, that QK satisfies the properties of reflexivity,
symmetry, transitivity, congruence and invariance. So we have

Corollary 1495 et F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let
K be a class of F-algebraic systems. Then QK = ⟨F2,CK⟩ is an equational
π-structure.

Proof: By Lemma 1494 and Proposition 115. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution based on F and K a class of F-algebraic systems. According to
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the framework developed in Chapter 12, we say that G is equivalent to QK

if there exists a conjugate pair of translations (t, s) ∶ G⇄QK, where

t ∶ G ✲ QK

G ✛ QK ∶ s

We will focus specifically on the case in which the translation sq ∶ Eq(F) →
SenFam(G) is natural and given by the natural transformation κ ∶ Eq(F)→
P(Seq(F)), determined, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), by

κΣ(φ,ψ) = {φ ⊢Σ ψ,ψ ⊢Σ φ}.
Recall that, in this case, since κ does not have any parameters, we have that,
for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

sqΣ[φ ≈ ψ] = {sqΣ,Σ′[φ ≈ ψ]}Σ′∈∣Sign♭∣,
where

sqΣ,Σ′[φ ≈ ψ] = {SEN♭(f)(φ ⊢Σ ψ),SEN♭(ψ ⊢Σ φ) ∶ f ∈ Sign♭(Σ,Σ′)}.
Finally, we say that the Gentzen π-institution G has or satisfies Congru-
ence if, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗) ∈ GΣ(⋃
i<k

sqΣ[φi ≈ ψi]).
We show that the equivalence of a Gentzen π-institution G with an equa-

tional π-institution QK implies that G satisfies Congruence and, moreover,
that it has interesting consequences for any π-institution for which G happens
to be adequate. More precisely, such a π-institution must be self extensional
and the variety generated by its Lindenbaum-Tarski F-algebraic system must
coincide with the variety generated by the class K.

Proposition 1496 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a Gentzen π-institution based on F and K a class of F-algebraic sys-
tems. If G is equivalent to QK via a conjugate pair (t, sq) ∶ G ⇄ QK, then
G satisfies Congruence. If, in addition, G is adequate for a π-institution
I = ⟨F,C⟩, then I is self extensional and Q(K) = KI .

Proof: Suppose G is equivalent to QK via a conjugate pair (t, sq) ∶ G ⇄QK

and let σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, Σ ∈ ∣Sign♭∣ and φi, ψi ∈ SEN♭(Σ), i < k.
By Proposition 115,

σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗) ∈ CK
Σ({φi ≈ ψi ∶ i < k}).

Thus, by the hypothesis,

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗) ∈ GΣ(⋃
i<k

sqΣ[φi ≈ ψi]).
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Thus, G satisfies Congruence.
Suppose, next, that I = ⟨F,C⟩ is a π-institution, for which G is adequate,

and let σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, Σ ∈ ∣Sign♭∣ and φi, ψi ∈ SEN♭(Σ), i < k,
such that CΣ(φi) = CΣ(ψi). By structurality, for all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′), CΣ′(SEN♭(f)(φ)) = CΣ′(SEN♭(f)(ψ)). Then, by adequacy,

SEN♭(f)(φi ⊢Σ ψi),SEN♭(f)(ψi ⊢Σ φi) ∈ GΣ′(∅).
Since G has Congruence, we get

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗), σ♭Σ(ψ⃗) ⊢Σ σ♭Σ(φ⃗) ∈ GΣ(⋃i<k sqΣ[φi ≈ ψi])
⊆ GΣ(GΣ(∅))
= GΣ(∅)

.

Again using adequacy, CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)). Therefore, λ̃(I) is a con-
gruence system on F and, by Proposition 1427, I is self extensional.

For the last claim, recall that

Q(K) = {A ∶ Ker(K) ≤ Ker(A)};
KI = Q(F/Ω̃(I)) = {A ∶ Ω̃(I) ≤ Ker(A)}.

Moreover, note that Ker(K) = Thm(QK). Therefore, to see that the claim
holds, it suffices to show that Thm(QK) = Ω̃(I). To this end, let Σ ∈ ∣Sign♭∣,
φ,ψ ∈ SEN♭(Σ). Then we have

φ ≈ ψ ∈DK
Σ(∅) iff sqΣ[φ ≈ ψ] ≤ G(∅) (by hypothesis)

iff CΣ(φ) = CΣ(ψ) (by adequacy)

iff ⟨φ,ψ⟩ ∈ λ̃Σ(I) (by definition)

iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I). (by self extensionality)

Thus, we have Q(K) = KI , as claimed. ∎

In closing the section, we show that, given a π-institution I that has an
adequate finitary Gentzen π-institution G, satisfying Congruence, the equa-
tional consequence based on the variety KI is translated into the consequence
of the Gentzen π-institution via sq.

Proposition 1497 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and G = ⟨F,G⟩ a finitary Gentzen π-
institution, having Congruence, that is adequate for I. Then, for all Σ ∈∣Sign♭∣ and all E ∪ {φ,ψ} ⊆ SEN♭(Σ),

φ ≈ ψ ∈DKI

Σ (E) implies sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).
Proof: Let Σ ∈ ∣Sign♭∣, E∪{φ,ψ} ⊆ SEN♭(Σ), such that φ ≈ ψ ∈DKI

Σ (E). By

Theorem 119, we have DKI = ΞKer(KI) = ΞΩ̃(I). So, we get φ ≈ ψ ∈ Ξ
Ω̃(I)
Σ (E).

We show by induction on n < ω, that, for all n < ω,

φ ≈ ψ ∈ Ξ
Ω̃(I),n
Σ (E) implies sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).
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• For n = 0, we must have φ = ψ or ⟨φ,ψ⟩ ∈ Ω̃Σ(I) or φ ≈ ψ ∈ E.

In the first case the conclusion follows by (Axiom).

In the second case, we have that CΣ(φ) = CΣ(ψ), whence, by adequacy,
sqΣ[φ ≈ ψ] ≤ G(∅) ≤ G(sqΣ[E]).
In the last case, the conclusion follows by the inflationarity of G.

• Suppose, now, that the implication holds for n > 0 and let Σ ∈ ∣Sign♭∣,
E ∪ {φ ≈ ψ} ⊆ EqΣ(F), such that φ ≈ ψ ∈ Ξ

Ω̃(I),n+1
Σ (E).

If ψ ≈ φ ∈ Ξ
Ω̃(I),n
Σ (E), then, by the induction hypothesis, sqΣ[ψ ≈

φ] ≤ G(sqΣ[E]). Since sqΣ[φ ≈ ψ] = sqΣ[ψ ≈ φ], we conclude that
sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).
If φ ≈ χ,χ ≈ ψ ∈ Ξ

Ω̃(I),n
Σ (E), then, by the induction hypothesis,

sqΣ[φ ≈ χ], sqΣ[χ ≈ ψ] ≤ G(sqΣ[E]).
Using (Cut) and monotonicity, we get

sqΣ[φ ≈ ψ] ≤ G(sqΣ[φ ≈ χ], sqΣ[χ ≈ ψ])
≤ G(sqΣ[E]).

If φ ≈ ψ is of the form σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗), with φi ≈ ψi ∈ Ξ
Ω̃(I),n
Σ (E), i < k,

then, by the induction hypothesis, sqΣ[φi ≈ ψi] ≤ G(sqΣ[E]) i < k.
Then, since G has Congruence, we conclude

sqΣ[σ♭Σ(φ⃗) ≈ σ♭Σ(ψ⃗)] ≤ G(⋃i<k sqΣ[φi ≈ ψi])
≤ G(sqΣ[E]).

Last, assume that φ ≈ ψ has the form SEN♭(f)(φ′ ≈ ψ′), for some

Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ′,Σ), such that φ′ ≈ ψ′ ∈ Ξ
Ω̃(I),n
Σ′ (E). Then,

by the induction hypothesis, sqΣ′[φ′ ≈ ψ′] ≤ G(sqΣ[E]). But, note that
sqΣ[φ ≈ ψ] = sqΣ[SEN♭(f)(φ′ ≈ ψ′)] ≤ sqΣ′[φ′ ≈ ψ′]. Thus, we get
sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]).

We conclude that, for all Σ ∈ ∣Sign♭∣ and all E ∪ {φ ≈ ψ} ⊆ EqΣ(F), φ ≈ ψ ∈
DKI

Σ (E) implies that sqΣ[φ ≈ ψ] ≤ G(sqΣ[E]). ∎

20.4 Smoothness and Finitary Adaptations

In this section we define smooth Gentzen π-institutions and we also adapt
some of the preceding results to the case of finitary π-institutions. This work
is meant to pave the way for upcoming results on self extensionality and
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conjunction, presented in the next section, and on self extensionality and the
deduction detachment theorem, which follow in the section after that.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a
Gentzen π-institution based on F. We say that G is smooth if G oper-
ates on finite sequents and it is systemic, i.e., by Proposition 149, for all
Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), Φ ∪ {φ} ⊆ SEN♭(Σ),

SEN♭(f)(Φ ⊢Σ φ) ∈ GΣ′(Φ ⊢Σ φ).
In the case of smooth Gentzen systems, the equivalence of the Gentzen

system with an algebraic π-structure may be simplified as follows.

Proposition 1498 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G =⟨F,G⟩ a smooth Gentzen π-institution and K a class of F-algebraic systems.
Then G is equivalent to QK via the conjugate pair (t, sq) ∶ G ⇄ QK if and
only if its is equivalent to QK via the conjugate pair (t, κ) ∶ G⇄ QK.

Proof: By Lemma 889, it is enough to show that, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

G(sqΣ[φ ≈ ψ]) = G(κΣ(φ ≈ ψ)).
This is, however, a consequence of smoothness. ∎

Moreover, for a smooth Gentzen π-institution G, satisfying Congruence
is equivalent to an apparently simpler condition.

Proposition 1499 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a smooth Gentzen π-institution. G satisfies Congruence if and
only if, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ
♭
Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}).

Proof: Assume, first, that G satisfies Congruence. Then, for all σ♭ in N ♭,
all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ
♭
Σ(ψ⃗) ∈ GΣ(⋃i<k sqΣ[φi ≈ ψi])

(by Congruence)
⊆ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}).

(by Smoothness)

Assume, conversely, that the given condition holds. Then, for all σ♭ in N ♭,
all Σ ∈ ∣Sign♭∣ and all φi, ψi ∈ SEN♭(Σ), i < k,

σ♭Σ(φ⃗) ⊢Σ σ
♭
Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k})

(Hypothesis)
⊆ GΣ(⋃i<k sqΣ[φi ≈ ψi]).

(by Monotonicity)
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We conclude that G has Congruence. ∎

If a π-institution I is finitary, any I-structure must also be finitary.
Therefore, for any Gentzen π-institution G, no infinitary G-structure can
be a full I-structure. It is this observation that leads to the following modi-
fication of the definition of full adequacy for finitary π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a finitary
π-institution based on F and G = ⟨F,G⟩ a Gentzen π-institution based on F.
G is said to be fully adequate for I if one of the following two conditions
holds:

• I has theorems, G is of type 1 and, for every F-structure IL = ⟨A,D⟩,
IL ∈ FStr(I) if and only if IL is finitary and IL ∈ Str(G);

• I does not have theorems, G is of type 0 and, for every F-structure
IL = ⟨A,D⟩, IL ∈ FStr(I) if and only if IL ∈ Str(G) and IL is finitary
without theorems.

For the sequel we need a finitary adaptation of Proposition 1492. This
is a characterization of full adequacy of a Gentzen system for a finitary π-
institution I .

Proposition 1500 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a finitary π-institution based on F and G = ⟨F,G⟩ a Gentzen π-
institution based on F. G is fully adequate for I if and only if

1. AlgSys(G) = AlgSys(I);
2. For all A ∈ AlgSys(I), ⟨A,FiFamI(A)⟩ is the only finitary and reduced

G-structure on A (without theorems if I does not have any);

3. I has theorems and G is of type 1 or I does not have theorems and G

is of type 0.

Proof: Assume G is fully adequate for I . Then, by Proposition 1492, Con-
ditions 1-3 hold, where in Condition 2 ⟨A,FiFamI(A)⟩ is finitary by Propo-
sition 114. Thus, the “only if” holds.

Assume, conversely, that Conditions 1-3 hold. Then, for all F-structures
IL = ⟨A,D⟩,

IL ∈ FStr(I) iff A∗ ∈ AlgSys(I),D∗ = FiFamI(A∗)
iff A∗ ∈ AlgSys(G) and ⟨A∗,D∗⟩ ∈ Str(G)

finitary (w/o theorems if I does not have any)
iff ⟨A,D⟩ ∈ Str(G) finitary

(w/o theorems if I does not have any).

This, combined with Condition 3, gives that G is fully adequate for I . ∎
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20.5 IsoFull Adequacy and the DD Theorem

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and, for all n < ω, ∆n ∶(SEN♭)ω → SEN♭ a collection of natural transformations in N ♭, with n + 1
distinguished arguments. Set

∆ = {∆n ∶ n < ω}.
Given a π-institution I = ⟨F,C⟩, based on F, and T ∈ ThFam(I), ∆ is a
Parameterized Graded Deduction Detachment (PGDD) system for
I over T if, for all n < ω, all Σ ∈ ∣Sign♭∣ and all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(TΣ, φ0, . . . , φn−1) iff ∆n
Σ[φ0, . . . , φn−1, ψ] ≤ T.

The left-to-right implication is the Graded Deduction Property over
T and the right-to-left implication is the Graded Detachment Property
over T .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and ∆ = {∆n ∶ n < ω}
in N ♭. Define a family r∆

n = {r∆nΣ }Σ∈∣Sign♭∣ of Gentzen F-rules by setting, for

all Σ ∈ ∣Sign♭∣,
r∆

n

Σ = {⟨{φ0, . . . , φn−1 ⊢Σ ψ},⊢Σ ∆n
Σ(φ0, . . . , φn−1, ψ, χ⃗)⟩ ∶
φ⃗, ψ, χ⃗ ∈ SEN♭(Σ)}.

Existence of a PGDD system ∆ over a theory family T guarantees that
the I-structure ⟨F ,CT ⟩ satisfies all Gentzen F-rules in r∆

n
, n < ω.

Lemma 1501 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, T ∈ ThFam(I) and ∆ = {∆n ∶ n < ω} a PGDD
system for I over T . Then, for all n < ω,

⟨F ,ThFam(I)T ⟩ ⊧ r∆n.
Proof: Suppose Σ ∈ ∣Sign♭∣, φ⃗, ψ ∈ SEN♭(Σ), such that ψ ∈ CT

Σ(φ0, . . . , φn−1).
Equivalently, we get ψ ∈ CΣ(TΣ, φ0, . . . , φn−1). By hypothesis, since ∆ is a
PGDD system for I over T , we get ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ T . In particular,
we get, for all χ⃗ ∈ SEN♭(Σ), ∆n

Σ(φ0, . . . , φn−1, ψ, χ⃗) ⊆ TΣ. Equivalently, ⊢Σ
∆n

Σ(φ0, . . . , φn−1, ψ, χ⃗) ∈ CT
Σ(∅). Thus, ⟨F ,ThFam(I)T ⟩ ⊧ r∆n. ∎

We show, next, that all Gentzen F-rules are preserved by bilogical mor-
phisms between F-structures.

Lemma 1502 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A,⟨F,α⟩⟩, A′ = ⟨A′, ⟨F ′, α′⟩⟩ F-algebraic systems, IL = ⟨A,D⟩, IL′ = ⟨A′,D′⟩
two F-structures and ⟨H,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism. Then, for all
Σ ∈ ∣Sign♭∣, every F-sequent Ψ ⊢Σ ψ and every Gentzen F-rule r ∶= ⟨{Φi ⊢Σ
φi ∶ i ∈ I},Φ ⊢Σ φ⟩,
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(a) IL ⊧Σ Ψ ⊢Σ ψ if and only if IL′ ⊧Σ Ψ ⊢Σ ψ;

(b) IL ⊧Σ r if and only if IL′ ⊧Σ r.

Proof:

(a) We have

IL ⊧Σ Ψ ⊢Σ ψ iff αΣ(ψ) ∈DF (Σ)(αΣ(Ψ))
iff γF (Σ)(αΣ(ψ)) ∈ D′H(F (Σ))(γH(F (Σ))(αΣ(Ψ)))
iff α′Σ(ψ) ∈D′F ′(Σ)(α′Σ(Ψ))
iff IL′ ⊧Σ Ψ ⊢Σ ψ.

(b) This part follows easily from Part (a).

(⇒) If α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), i ∈ I, then αΣ(φi) ∈ DF (Σ)(αΣ(Φ)),
i ∈ I, whence αΣ(φ) ∈ DF (Σ)(αΣ(Φ)). So α′Σ(φ) ∈D′F ′(Σ)(α′Σ(Φ)).

(⇐) If αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, then α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)),
i ∈ I, whence α′Σ(φ) ∈ D′F ′(Σ)(α′Σ(Φi)), i ∈ I, and, therefore,

αΣ(φ) ∈DF (Σ)(αΣ(Φ)).
∎

Some of the elements of the discussion that follows will be revisited in
Chapter 21 on I-operators in a more general context. We give a preview of
a few results here, as needed, restricting the discussion mostly to protoalge-
braic π-institutions. This restriction will be lifted in Chapter 21, where the
concepts will be revisited in full generality.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and an
I-filter family T ∈ FiFamI(A), we let

[T ] = {T ′ ∈ FiFamI(A) ∶ ΩA(T ′) = ΩA(T )},
the equi-Leibniz class of T . If [T ] has a smallest member, it is denoted
by T ∗. T is called a Leibniz filter if T = T ∗, i.e., if it is the smallest filter in
its equi-Leibniz class. We denote by FiFamI∗(A) the collection of all Leibniz
I-filter families of A.

We show that Leibniz filter families are preserved under inverse surjective
morphisms with isomorphic functor components. For a more general result,
see Corollary 1575 in Chapter 21.

Lemma 1503 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism.
Then

γ−1(FiFamI∗(B)) ⊆ FiFamI∗(A).
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Proof: Let T ′ ∈ FiFamI∗(B) and T = γ−1(T ′). Then T ∈ FiFamI(A).
Moreover, ΩA(T ) = ΩA(γ−1(T ′)) = γ−1(ΩB(T ′)). Consider X ∈ FiFamI(A),
such that X ∈ [T ], i.e., such that ΩA(X) = ΩA(T ). Then, since ΩA(T ) =
γ−1(ΩB(T ′)), Ker(⟨H,γ⟩) is compatible with X . Hence γ(X) ∈ FiFamI(B).
Furthermore,

γ−1(ΩB(γ(X))) = ΩA(γ−1(γ(X))) = ΩA(X) = ΩA(T ) = γ−1(ΩB(T ′)).
So ΩB(γ(X)) = ΩB(T ′). Thus, since T ′ ∈ FiFamI∗(B), T ′ ≤ γ(X). Now
we get, taking again into account the compatibility of Ker(⟨H,γ⟩) with X ,
T = γ−1(T ′) ≤ γ−1(γ(X)) =X . This proves that T ∈ FiFamI∗(A). ∎

As a corollary, we obtain

Corollary 1504 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic
systems and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism.
Then, for all T ′ ∈ FiFamI(B), such that T ′∗ exists,

γ−1(T ′∗) = γ−1(T ′)∗.
Proof: Suppose T ′ ∈ FiFamI(B), such that T ′∗ exists. Then γ−1(T ′∗) ∈
FiFamI∗(A), by Lemma 1503. Hence, we have

ΩA(γ−1(T ′∗)) = γ−1(ΩB(T ′∗)) = γ−1(ΩB(T ′)) = ΩA(γ−1(T ′)).
Thus, since γ−1(T ′∗) is Leibniz, we get γ−1(T ′∗) = γ−1(T ′)∗. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. An I-structure IL = ⟨A,D⟩, with A = ⟨A, ⟨F,α⟩⟩, is
called isofull if it is full and F is an isomorphism.

We show, next, that, if ∆ = {∆n ∶ n < ω} is a PGDD system for I over
every I-theory family, then every isofull I-structure satisfies the Gentzen
F-rules r∆

n
.

Lemma 1505 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a protoalgebraic π-institution based on F and ∆ = {∆n ∶ n < ω} a PGDD sys-
tem for I over every Leibniz I-theory family. Then every isofull I-structure
satisfies r∆

n
, for all n < ω.

Proof: By Lemma 1502, it suffices to show that, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩, with F an isomorphism, and every n < ω,

⟨A,FiFamI(A)⟩ ⊧ r∆n .
Let T = CI,A(∅) be the smallest I-filter family on A. By the Correspon-
dence Theorem for protoalgebraic π-institutions, we have α−1(FiFamI(A)) =
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ThFam(I)α−1(T ). Since T is least among all I-filter families of A, we have
T ∈ FiFamI∗(A). Therefore, by Lemma 1503, α−1(T ) ∈ ThFam∗(I). Thus,
by the hypothesis and Lemma 1501, we get that ⟨F ,ThFam(I)α−1(T )⟩ ⊧ r∆n.
However, ⟨F,α⟩ ∶ ⟨F ,ThFam(I)α−1(T )⟩ ⊢ ⟨A,FiFamI(A)⟩ is a bilogical mor-
phism, whence, by Lemma 1502, we get ⟨A,FiFamI(A)⟩ ⊧ r∆n. ∎

In the next lemma, it is shown that, in case the π-institution I is syntacti-
cally protoalgebraic, the witnessing transformations may be used to generate
Leibniz filter families.

Lemma 1506 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a syntactically protoalgebraic π-institution based on F, with witnessing trans-
formations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and T ∈ FiFamI(A). Then

T ∗ = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ ΩAΣ(T )}).
Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). We set

T̃ = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ ΩAΣ(T )}).
Our goal is to show that T ∗ = T̃ . First, let T ′ ∈ FiFamI(A), such that
T ′ ∈ [T ], i.e., ΩA(T ′) = ΩA(T ). Then, we have, for all Σ ∈ ∣Sign∣ and all
φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ ΩAΣ(T ) iff ⟨φ,ψ⟩ΩAΣ(T ′)

iff
↔

I
A

Σ[φ,ψ] ≤ T ′.
We conclude that T̃ ≤ T ∗ and, by protoalgebraicity, ΩA(T̃ ) ≤ ΩA(T ∗). On the
other hand, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩAΣ(T ),
↔

I
A

Σ[φ,ψ] ≤ T̃ . Thus, ΩA(T ∗) = ΩA(T ) ≤ ΩA(T̃ ). Therefore, ΩA(T̃ ) = ΩA(T ∗)
and, since we showed that T̃ ≤ T ∗, we get by the minimality property of T ∗

in [T ], T ∗ = T̃ . ∎

Corollary 1507 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a syntactically protoalgebraic π-institution based on F, with witnessing
transformations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system and T ∈ FiFamI(A). Then T ∈ FiFamI∗(A) if and only if, there exists
X ≤ SEN2, such that

T = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ XΣ}).
Proof: For the left-to-right implication, assume T ∈ FiFamI∗(A). Take
X = ΩA(T ). Then we have, using the hypothesis and Lemma 1506, T = T ∗ =

CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈XΣ}).
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Suppose, conversely, that T = CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ XΣ}),
for some X ≤ SEN. Then, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈XΣ

implies
↔

I
A

Σ[φ,ψ] ≤ T . Thus, ⟨φ,ψ⟩ ∈ ΩAΣ(T ). Therefore, by Lemma 1506,

T ≤ CI,A(⋃{↔IAΣ[φ,ψ] ∶ Σ ∈ ∣Sign∣, ⟨φ,ψ⟩ ∈ XΣ}) = T ∗. Since, it is always the
case that T ∗ ≤ T , we get that T = T ∗ and T ∈ FiFamI∗(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. A collection ∆ = {∆n ∶ n < ω}, where ∆n ∶ (SEN♭)ω →
SEN in N ♭, with n+1 distinguished arguments, is called Leibniz generating
over I if, for all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ ∈ SEN♭(Σ),

C(∆n
Σ[φ⃗, ψ]) ∈ ThFam∗(I),

for all n < ω.
We show that, for a syntactically protoalgebraic π-institution I , the prop-

erty of being Leibniz generating over I , transfers, in certain sense, to the filter
families over arbitrary F-algebraic systems.

Lemma 1508 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a syntactically protoalgebraic π-institution based on F, with witnessing trans-
formations I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, and ∆ ∶ (SEN♭)ω → SEN♭ a Leibniz
generating collection in N ♭, with n + 1 distinguished arguments. Then for
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, Σ ∈ ∣Sign∣ and φ⃗, ψ ∈ SEN(Σ),

CI,A(∆AΣ[φ⃗, ψ]) ∈ FiFamI∗(A).
Proof: By hypothesis, ∆ is Leibniz generating. Hence, for all Σ ∈ ∣Sign♭∣,
φ⃗, ψ ∈ SEN♭(Σ), C(∆Σ[φ⃗, ψ]) ∈ ThFam∗(I). Thus, by Corollary 1507, there
exists X ≤ (SEN♭)2, such that

C(∆Σ[φ⃗, ψ]) = C(⋃{↔I ♭Σ′[φ′, ψ′] ∶ Σ′ ∈ ∣Sign♭∣, ⟨φ′, ψ′⟩ ∈XΣ′}).
Now we get

CI,A(∆A
F (Σ)
[αΣ(φ⃗), αΣ(ψ)])

= CI,A(α(∆Σ[φ,ψ]))
= CI,A(α(C(⋃{↔I ♭Σ′[φ′, ψ′] ∶ Σ′ ∈ ∣Sign♭∣, ⟨φ′, ψ′⟩ ∈XΣ′})))
= CI,A(α(⋃{↔I ♭Σ′[φ′, ψ′] ∶ Σ′ ∈ ∣Sign♭∣, ⟨φ′, ψ′⟩ ∈ XΣ′}))
= CI,A(⋃{↔IAF (Σ′)[αΣ′(φ′), αΣ′(ψ′)] ∶ Σ′ ∈ ∣Sign♭∣,⟨αΣ′(φ′), αΣ′(ψ′)⟩ ∈ αΣ′(XΣ′)}).

Thus, taking into account the surjectivity of ⟨F,α⟩, we obtain, using again
Corollary 1507, that for all Σ ∈ ∣Sign∣ and all φ⃗, ψ ∈ SEN(Σ), CI,A(∆AΣ[φ⃗, ψ]) ∈
FiFamI∗(A). ∎
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. A PGDD system ∆ = {∆n ∶ n < ω} for I is called
Leibniz generating if ∆n is Leibniz generating, for every n < ω.

It is not difficult to see that Leibniz generating PGDD systems have a
graded Modus Ponens property, in the sense detailed in the following

Lemma 1509 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If ∆ = {∆n ∶ n < ω} is a PGDD system for
I over every Leibniz theory family, then, for all n < ω, all Σ ∈ ∣Sign♭∣ and all
φ⃗, ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(∆n
Σ[φ⃗, ψ], φ⃗).

Proof: Let Σ ∈ ∣Sign♭∣ and φ⃗, ψ ∈ SEN♭(Σ) and set T = C(∆n
Σ[φ⃗, ψ]). By

hypothesis, T ∈ ThFam∗(I). Since ∆ is a PGDD system for I over every
Leibniz theory family, we get

ψ ∈ CΣ(TΣ, φ⃗) iff ∆n
Σ[φ⃗, ψ] ≤ C(T ) = T.

Thus, since the right hand side of the equivalence holds, we obtain ψ ∈
CΣ(TΣ, φ⃗) = CΣ(CΣ(∆n

Σ[φ⃗, ψ]), φ⃗) = CΣ(∆n
Σ[φ⃗, ψ], φ⃗). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∆ ∶ (SEN♭)ω →
SEN♭ in N ♭, with a single distinguished argument. We say that ∆ isode-
fines Leibniz filter families over I if, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with F an isomorphism, all T ∈ FiFamI(A) and all Σ ∈ ∣Sign∣,

T ∗Σ = {φ ∈ SEN(Σ) ∶ ∆AΣ[φ] ≤ T}.
We show, next, that, in a syntactically protoalgebraic π-institution I ,

which has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over every
Leibniz theory family, the 0-th component ∆0 does isodefine Leibniz filter
families over I .

A couple of lemmas are needed first.

Lemma 1510 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. For every F-algebraic sys-
tem A = ⟨A, ⟨F,α⟩⟩ and all T,T ′ ∈ FiFamI(A), T ≤ T ′ implies T ∗ ≤ T ′∗.

Proof: Suppose T,T ′ ∈ FiFamI(A), such that T ≤ T ′. By protoalgebraicity
of I , we get

ΩA(T ∩ T ′∗) = ΩA(T ) ∩ΩA(T ′∗) = ΩA(T ) ∩ΩA(T ′) = ΩA(T ).
Thus T ∗ ≤ T ∩ T ′∗ ≤ T ′∗. ∎
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Lemma 1511 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic π-institution based on F. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A),

⟨A,FiFamI(A)T ⟩ ∈ FStr(I) iff T ∈ FiFamI∗(A).
Proof: We have, using Theorem 1395 and protoalgebraicity, ⟨A,FiFamI(A)T ⟩ ∈
FStr(I) if and only if

FiFamI(A)T = {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)}.
Since, under protoalgebraicity, it always holds that

FiFamI(A)T ⊆ {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)},
it suffices to show that

T ∈ FiFamI∗(A) iff for all T ′ ∈ FiFamI(A),
ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′.

The right to left implication is trivial, since the condition on the right im-
plies that T is smallest among all filter families sharing the same Leibniz
congruence system with T . For the converse, suppose T is a Leibniz fil-
ter family of A and that ΩA(T ) ≤ ΩA(T ′). Then, using protoalgebraicity,
we get Ω(T ∩ T ′) = ΩA(T ) ∩ ΩA(T ′) = ΩA(T ). Thus, we conclude that
T = T ∗ ≤ T ∩ T ′ ≤ T ′. ∎

Theorem 1512 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic π-institution based on F, with ∆ = {∆n ∶
n < ω} a Leibniz generating PGDD system for I over every Leibniz theory
family. Then ∆0 isodefines Leibniz filter families over I.

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, with F an isomor-
phism, and T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ).

Suppose, first, that ∆0
Σ[φ] ≤ T . Let T ′ = CI,A(∆0

Σ[φ]). By hypothesis
and Lemma 1508, T ′ ∈ FiFamI∗(A). Since T ′ ≤ T , by Lemma 1510, T ′ ≤ T ∗.
Hence, ∆0

Σ[φ] ≤ T ∗. Therefore, by Lemma 1509, φ ∈ T ∗Σ.
Suppose, conversely, that φ ∈ T ∗Σ. Then, by definition, the I-structure⟨A,FiFamI(A)T ∗⟩ satisfies ⊢Σ φ. By Lemma 1511, ⟨A,FiFamI(A)T ∗⟩ ∈

FStr(I). Thus, by Lemma 1505, ⟨A,FiFamA(A)T ∗⟩ satisfies r∆
0

. Hence, for
all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′), ∆0

Σ′(SEN(f)(φ), χ⃗) ∈
T ∗Σ′ ⊆ TΣ′ . We conclude that ∆0

Σ[φ] ≤ T . ∎

We are ready now to prove one half of the main result of this section.
We would like to show that, for a syntactically protoalgebraic finitary π-
institution, the existence of a Leibniz generating PGDD system over all
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Leibniz theory families implies the existenc of an isofully adequate Gentzen
π-institution.

We define that institution, first, preceding the statement of the theorem
that involves it in its proof.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∆ = {∆n ∶ n < ω}
in N ♭, where ∆n has n + 1 distinguished arguments, and I = ⟨F,C⟩ a π-
institution based on F. Define:

• AxI = {AxIΣ}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)};

• IrI = {IrIΣ}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣,
IrIΣ = {r∆nΣ ∶ n < ω}.

Set RI = AxI ∪ IrI and let
GI = ⟨F,GI⟩

be the Gentzen π-institution generated by RI (recall that GI is required
to be a structural closed system on Seq(F) and, therefore, it is assumed to
satisfy, by default, (Axiom), (Weakening) and (Cut)).

Theorem 1513 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic finitary π-institution based on F. If I
has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over all Leibniz the-
ory families, then it has an isofully adequate Gentzen π-institution, namely
the Gentzen π-institution GI = ⟨F,GI⟩.
Proof: We must show that, for every F-structure IL = ⟨A,D⟩, where A =⟨A, ⟨F,α⟩⟩, with F an isomorphism, we have

IL ∈ Str(GI) iff IL ∈ FStr(I).
Suppose, first, that IL ∈ FStr(I). Then IL is, in particular, an I-structure.
Therefore, it satisfies AxI . Moreover, by Lemma 1505, IL satisfies r∆

n
, for

all n < ω. Hence, it also satisfies IrI . We conclude that IL ∈ Str(GI).
Suppose, conversely, that IL ∈ Str(GI). Clearly, IL ∈ Str(I), since it

satisfies AxI . So it suffices to show that it is also full. Assume, to the
contrary, that IL is not full and let T = D(∅). Since I is protoalgebraic
and IL is not full, we have, using Lemma 1511, D ⫋ FiFamI(A)T ∗ . Consider
T ′ ∈ FiFamI(A)T ∗ − D. Then we get D(T ′) ∈ FiFamI(A)T ∗ and T ∗ ≤ T ′ ≨
D(T ′). Let Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ DΣ(T ′) − T ′Σ. Then,
there exists Φ ⊆f T ′Σ, such that φ ∈ DΣ(Φ). Since IL satisfies IrI , we get
∆n

Σ[Φ, φ] ≤ T . But ∆ is also Leibniz generating, whence, by Lemma 1508,
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D(∆n
Σ[Φ, φ]) ∈ FiFamI∗(A). Therefore, by Lemma 1510, ∆n

Σ[Φ, φ] ≤ T ∗.
Now we get φ ∈DΣ(T ′Σ,Φ) ⊆DΣ(T ′Σ) = T ′Σ, which contradicts our assumption.
Therefore, IL is also full, as was to be shown. ∎

Suppose, now, that I is a syntactically protoalgebraic, finitary π-insti-
tution with an isofully adequate Gentzen π-institution G = ⟨F,G⟩. Then, for
all ⟨F ,D⟩ ∈ Str(G), we must have⟨F ,D⟩ ∈ FStr(I) and, therefore, taking into
account Lemma 1511, we get that D = ThFam(I)T , where T ∈ ThFam∗(I).
We denote by

hG ∶ StrG(F)→ ThFam∗(I)
the bijection that is established by this association, which is, in addiction an
order isomorphism.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a
Gentzen π-institution based on F. Given a theory family Γ ∈ ThFam(G),
recall the F-structure ILΓ = ⟨F ,DΓ⟩, which was shown in Lemma 1484 to be
a G-structure. For notational purposes, given Σ ∈ ∣Sign♭∣, φ0, . . . , φn−1, ψ ∈
SEN♭(Σ), let us write

G[φ0, . . . , φn−1 ⊢Σ ψ] ∶= ILG(φ0,...,φn−1⊢Σψ),

where, as usual, G(φ0, . . . , φn−1 ⊢Σ ψ) denotes the least theory family of G
including the F-sequent φ0, . . . , φn−1 ⊢Σ ψ.

We call the Gentzen π-institution G = ⟨F,G⟩ transformational if, for
all all n < ω, all Σ ∈ ∣Sign♭∣ and all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ),

hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) = C(∆n
Σ[φ0, . . . , φn−1, ψ]),

for some ∆n ∶ (SEN♭)ω → SEN♭ in N ♭, with n + 1 distinguished arguments.
We can show that the isofully adequate Gentzen π-institution GI associ-

ated with a syntactically protoalgebraic finitary π-institution I = ⟨F,C⟩ that
has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over all Leibniz
theory families, as in Theorem 1513, is, in fact, a transformational Gentzen
π-institution.

Theorem 1514 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic finitary π-institution based on F. If I
has a Leibniz generating PGDD system ∆ = {∆n ∶ n < ω} over all Leibniz
theory families, then the isofully adequate Gentzen π-institution GI = ⟨F,GI⟩
for I is transformational.

Proof: Let Σ ∈ ∣Sign♭∣, φ0, . . . , φn−1, ψ ∈ SEN♭(Σ) and denote

T ∶= C(∆n
Σ[φ0, . . . , φn−1, ψ]).

By hypothesis, we have T ∈ ThFam∗(I). Since T is a Leibniz I-theory fam-
ily and ∆ is a PGDD system over all Leibniz theory families, T is closed
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under all axioms and rules of GI . Moreover, if φ0, . . . , φn−1 ∈ TΣ, then,
since ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ T , we get, by Lemma 1509, ψ ∈ TΣ. Hence, T
is a theory family of the F-structure GI[φ0, . . . , φn−1, ψ]. Since, by def-
inition, hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) is its least theory family, we get that
hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) ≤ C(∆n

Σ[φ0, . . . , φn−1, ψ]).
On the other hand, by definition,

φ0, . . . , φn−1 ⊢Σ ψ ∈ GIΣ(φ0, . . . , φn−1 ⊢Σ ψ),
whence, writing GI[φ0, . . . , φn−1 ⊢Σ ψ] ∶= ⟨F ,D⟩, we get ψ ∈ DΣ(φ0, . . . , φn−1).
Recalling that every full model is structural, we get, for all Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(ψ) ∈DΣ′(SEN♭(f)(φ0), . . . ,SEN♭(f)(φn−1)).
Thus, since GI satisfies r∆

n
, we get, for all χ⃗ ∈ SEN♭(Σ′),

∆Σ′(SEN♭(f)(φ0), . . . ,SEN♭(f)(φn−1),SEN♭(f)(ψ), χ⃗) ⊆DΣ(∅),
i.e., that ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ hG(G[φ0, . . . , φn−1 ⊢Σ ψ]). We now conclude
that

C(∆n
Σ[φ0, . . . , φn−1, ψ]) ≤ hG(G[φ0, . . . , φn−1 ⊢Σ ψ]).

Therefore, for all all n < ω, all Σ ∈ ∣Sign♭∣ and all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ),
hG(G[φ0, . . . , φn−1 ⊢Σ ψ]) = C(∆n

Σ[φ0, . . . , φn−1, ψ]),
showing that GI is transformational. ∎

Finally, we show that, for a syntactically protoalgebraic, finitary π-insti-
tution I , the existence of an isofully adequate, transformational Gentzen
π-institution G for I implies that I has a Leibniz generating PGDD system
over every Leibniz theory family.

Theorem 1515 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a syntactically protoalgebraic, finitary π-institution based on F. If I
has an isofully adequate transformational Gentzen π-institution, then I has
a Leibniz generating PGDD system over every Leibniz theory family.

Proof: Suppose that I has an isofully adequate transformational Gentzen
π-institution G = ⟨F,G⟩. Thus, by definition, for all n < ω, all Σ ∈ ∣Sign♭∣ and
all φ0, . . . , φn−1, ψ ∈ SEN♭(Σ), there exists a collection ∆n ∶ (SEN♭)ω → SEN♭

in N ♭, with n + 1 distinguished arguments, such that

hG(G[φ0, . . . , φn−1, ψ]) = C(∆n
Σ[φ0, . . . , φn−1, ψ]).

By the fact that hG maps, by hypothesis and Lemma 1511, into ThFam∗(I),
ensures that ∆ = {∆n ∶ n < ω} is Leibniz generating. So it suffices to show
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that ∆ is a PGDD system for I over every Leibniz theory family. To this
end, assume that T ∈ ThFam∗(I), n < ω, Σ ∈ ∣Sign♭∣ and φ0, . . . , φn−1, ψ ∈
SEN♭(Σ). We must show that

ψ ∈ CΣ(TΣ, φ0, . . . , φn−1) iff ∆n
Σ[φ0, . . . , φn−1, ψ] ≤ T.

We have

ψ ∈ CΣ(TΣ, φ0, . . . , φn−1) iff ψ ∈ CT
Σ(φ0, . . . , φn−1)

iff G[φ0, . . . , φn−1 ⊢Σ ψ] ≤ CT
iff hG(G(φ0, . . . , φn−1 ⊢Σ ψ]) ≤ T
iff C(∆n

Σ[φ0, . . . , φn−1, ψ]) ≤ T
iff ∆n

Σ[φ0, . . . , φn−1, ψ] ≤ T.
We conclude that ∆ is indeed Leibniz generating PGDD system for I over
every Leibniz theory family. ∎

In conclusion, we have

Theorem 1516 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A syn-
tactically protoalgebraic, finitary π-institution I = ⟨F,C⟩ based on F has an
isofully adequate transformational Gentzen π-institution if and only if it has
a Leibniz generating PGDD system over every Leibniz theory family.

Proof: The “if” was proven in Theorems 1513 and 1514. The “only if” is
by Theorem 1515. ∎



1278 CHAPTER 20. FULL ADEQUACY Voutsadakis



Chapter 21

Operators on π-Institutions

1279



1280 CHAPTER 21. I-OPERATORS Voutsadakis

21.1 I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

An I-operator on A is a map

OA ∶ FiFamI(I)→ EqvFam(A),
where EqvFam(A) is the collection of equivalence families on A.

Given an I-operator OA on A, we define three derived operators (func-
tions) as follows:

• The lifting of OA, ÕA ∶ P(FiFamI(A)) → EqvFam(A), is given, for
all T ⊆ FiFamI(A), by

ÕA(T ) =⋂{OA(T ) ∶ T ∈ T };
• The relativization of OA to I , ÕI,A ∶ FiFamI(A) → EqvFam(A), is

given, for all T ∈ FiFamI(A), by

ÕI,A(T ) =⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} = ÕA(FiFamI(A)T );
• OA

−1
∶ EqvFam(A) → P(FiFamI(A)) is given, for all θ ∈ EqvFam(A),

by
OA

−1(θ) = {T ∈ FiFamI(A) ∶ θ ≤ OA(T )}.
Note that the lifting of the Leibniz operator ΩA on A is the Tarski operator
Ω̃A on A, whereas the relativization of the Leibniz operator on A is the
Suszko operator Ω̃I,A on A.

Immediately from the definitions, we obtain the following:

Lemma 1517 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) an I-operator on A.

(a) ÕI,A(T ) ≤ OA(T ), for all T ∈ FiFamI(A);
(b) ÕA(T ) ≤ OA(T ), for all T ∈ T ⊆ FiFamI(A).

Proof: Obvious from the definitions. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, and, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, let
there be given an I-operator OA ∶ FiFamI(A)→ EqvFam(A). We write

O = {OA ∶ A ∈ AlgSys(F)}
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and refer to this family as a family of I-operators.
Since I-operators are meant to abstract the operators of abstract alge-

braic logic, those properties that were studied in preceding chapters con-
cerning the Leibniz operator play also a significant role when it comes to
I-operators.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ EqvFam(A)
an I-operator on A.

• OA is order-preserving or monotone if, for all T,T ′ ∈ FiFamI(A),
T ≤ T ′ implies OA(T ) ≤ OA(T ′);

• OA is order-reflecting or reflective if, for all T,T ′ ∈ ThFamI(A),
OA(T ) ≤ OA(T ′) implies T ≤ T ′;

• OA is completely order reflecting or c-reflective if, for all T ∪{T ′} ⊆ FiFamI(A),
⋂
T ∈T

OA(T ) ≤ OA(T ′) implies ⋂T ≤ T ′.

Some important characterizations are related to these properties.

Lemma 1518 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) an I-operator on A.

OA is monotone if and only if OA = ÕI,A.

Proof: Suppose, first, that OA is monotone. Then, for all T ∈ FiFamI(A),
OA(T ) = ⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)}

= ÕI,A(T ).
If, conversely, OA = ÕI,A, then, for all T,T ′ ∈ FiFamI(A), such that T ≤ T ′,
we get

OA(T ) = ÕI,A(T )
= ⋂{OA(T ′′) ∶ T ≤ T ′′ ∈ FiFamI(A)}
≤ ⋂{OA(T ′′) ∶ T ′ ≤ T ′′ ∈ FiFamI(A)}
= ÕI,A(T ′)
= OA(T ′).

Therefore, OA is monotone. ∎
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Lemma 1519 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A) → EqvFam(A) an I-operator on A. OA is c-reflective if and
only if, for all T,T ′ ∈ FiFamI(A),

ÕI,A(T ) ≤ OA(T ′) implies T ≤ T ′.

Proof: Assume, first, that OA is c-reflective and let T,T ′ ∈ FiFamI(A),
such that ÕI,A(T ) ≤ OA(T ′). Then, by definition, ⋂{OA(T ′′) ∶ T ≤ T ′′ ∈
FiFamI(A)} ≤ OA(T ′). By c-reflectivity, ⋂{T ′′ ∶ T ≤ T ′′ ∈ ThFamI(A)} ≤ T ′,
i.e., T ≤ T ′.

Suppose, conversely, that the displayed condition holds and let T ∪{T ′} ⊆
FiFamI(A), such that ⋂T ∈T OA(T ) ≤ OA(T ′). Then we get

ÕI,A(⋂T ) ≤ ⋂
T ∈T

OA(T ) ≤ OA(T ′).
Hence, by the hypothesis, ⋂T ≤ T ′ and OA is c-reflective. ∎

We now show that the operators ÕA and OA
−1

, associated with a given I-
operator OA, establish a Galois connection between the class P(FiFamI(A))
of bundles of I-filters on A and the class EqvFam(A) of equivalence families
on A. This will yield several important consequences.

Proposition 1520 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A. The maps

ÕA ∶ P(FiFamI(A)) ✲ EqvFam(A)
P(FiFamI(A)) ✛ EqvFam(A) ∶ OA

−1

establish a Galois connection, where P(FiFamI(A)) is ordered under the
subclass relation and EqvFam(A) under signature-wise inclusion.

Proof: We must show that, for all T ⊆ FiFamI(A) and θ ∈ EqvFam(A),
T ⊆ OA

−1(θ) iff ÕA(T ) ≥ θ.
In fact, we have

T ⊆ OA−1(θ) iff θ ≤ OA(T ), for all T ∈ T ,
iff θ ≤ ⋂{OA(T ) ∶ T ∈ T }
iff θ ≤ ÕA(T ).

Thus (ÕA,OA−1) ∶ P(FiFamI(A)) ⇄ EqvFam(A) is, in fact, a Galois con-
nection. ∎
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Corollary 1521 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A.

(a) The operators

ÕA ∶ P(FiFamI(A)) → EqvFam(A)
OA

−1
∶ EqvFam(A)→ P(FiFamI(A))

are order reversing;

(b) The operators

OA
−1
○ ÕA ∶ P(FiFamI(A))→ P(FiFamI(A))

ÕA ○OA
−1
∶ EqvFam(A)→ EqvFam(A)

are closure operators;

(c) The collection of fixed-points of OA
−1
○ ÕA is the range of OA

−1
and the

collection of fixed-points of ÕA ○OA
−1

is the range of ÕA;

(d) ÕA and OA
−1

restrict to mutually inverse order isomorphisms between
the collections of fixed-points of OA

−1
○ ÕA and of fixed-points of ÕA ○

OA
−1

.

Proof: Known facts about Galois connections. ∎

We capture the elements described in Part (c) of Corollary 1521, by mak-
ing the following definitions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ EqvFam(A)
an I-operator on A.

• A family T ⊆ FiFamI(A) is called OA-full if T = OA−1(ÕA(T )) if and
only if T ∈ Ran(OA−1);

• An equivalence family θ ∈ EqvFam(A) is OA-full if θ = ÕA(OA−1(θ)) if
and only if θ ∈ Ran(ÕA).

The following statements provide a justification of the terminology used.

Proposition 1522 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A.
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(a) A collection T ⊆ FiFamI(A) is OA-full if and only if it is the largest
D ⊆ FiFamI(A), such that ÕA(D) = ÕA(T );

(b) An equivalence family θ ∈ EqvFam(A) is OA-full if and only if it is the
largest η ∈ EqvFam(A), such that OA

−1(η) = OA−1(θ).
Proof: We do Part (a). Part (b) can be proved analogously. Suppose,
first, that T ⊆ FiFamI(A) is OA-full and let D ⊆ FiFamI(A), such that
ÕA(D) = ÕA(T ). Then, we have

D ⊆ OA
−1(ÕA(D)) = OA−1(ÕA(T )) = T .

Suppose, conversely, that T is the largest among D ⊆ FiFamI(A), such
that ÕA(D) = ÕA(T ) and let T ∈ OA−1(ÕA(T )). Then, by definition,
ÕA(T ) ≤ OA(T ). Hence, ÕA(T ∪ {T}) = ÕA(T ). By the maximality of
T , we conclude that T ∈ T . This shows that OA

−1(ÕA(T )) ⊆ T . Since
the opposite inclusion always holds, we conclude that T is a fixed point of
OA

−1
○ ÕA and, hence, it is OA-full. ∎

We have the following consequences:

Corollary 1523 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A)→ EqvFam(A) an I-operator on A.

(a) FiFamI(A) is OA-full;

(b) ∇A is OA-full;

(c) If OA is monotone and T is OA-full, then T is an upset in the poset
P(FiFamI(A)).

Proof: All three statements are direct consequences of Proposition 1522. ∎

21.2 Congruential I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. An I-operator OA ∶
FiFamI(A)→ EqvFam(A) is called congruential if, for all T ∈ FiFamI(A),
OA(T ) ∈ ConSys(A). Thus a congruential I-operator is an operator OA ∶
FiFamI(A)→ ConSys(A).
Proposition 1524 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system,
θ ∈ ConSys(A) and ⟨I, π⟩ ∶ A→ A/θ the quotient natural transformation.
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(a) ΩA
−1(θ) = π−1(FiFamI(A/θ)) and FiFamI(A/θ) = π(ΩA−1(θ));

(b) The mappings

π ∶ SenFamI(A)→ SenFam(A/θ)
π−1 ∶ SenFam(A/θ)→ SenFam(A)

restrict to mutually inverse order isomorphisms between ΩA
−1(θ) and

FiFamI(A/θ).
Proof:

(a) Suppose T ∈ ΩA
−1(θ). Then θ ≤ ΩA(T ). Hence θ is compatible with

T , which implies, by Corollary 57, π(T ) ∈ FiFamI(A/θ). Suppose,
conversely, that T ∈ π−1(FiFamI(A/θ)). Then π(T ) ∈ FiFamI(A/θ)
and, hence, by Corollary 57, π−1(π(T )) ∈ FiFamI(A). Therefore, T is
compatible with θ, showing that θ ≤ ΩA(T ). This gives T ∈ ΩA

−1(θ).
The second equality of Part (a) is obtained from the first, using the
surjectivity of ⟨I, π⟩.

(b) By Part (a), the mappings

π ↾
ΩA

−1(θ)∶ Ω
A−1(θ)→ FiFamI(A)

π−1 ↾FiFamI(A)∶ FiFamI(A)→ ΩA
−1(θ)

are well-defined. Moreover, they are clearly inverses of one another and
order preserving. Thus, they establish an order isomorphism between
ΩA

−1(θ) and FiFamI(A/θ).
∎

21.3 O-Classes and O-Filter Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-
tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ EqvFam(A)
an I-operator on A. For all T ∈ FiFamI(A), the O-class of T , denoted[[T ]]O, is the collection

[[T ]]O = ΩA
−1(OA(T )) = {T ′ ∈ FiFamI(A) ∶ OA(T ) ≤ ΩA(T ′)}.

It turns out that this class forms a closure family on FiFamI(A).
Proposition 1525 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and OA ∶ FiFamI(A) → EqvFam(A) an I-operator on A. For all
T ∈ FiFamI(A), [[T ]]O is a closure family on FiFamI(A).
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Proof: First, observe that ΩA(SEN) = ∇A, whence SEN ∈ [[T ]]O. Next, let{T i ∶ i ∈ I} ⊆ [[T ]]O. Then, we have

OA(T ) ≤⋂
i∈I

ΩA(T i) ≤ ΩA(⋂
i∈I

T i).
So ⋂i∈I T i ∈ [[T ]]O and [[T ]]O is a closure family on FiFamI(A). ∎

Something even stronger is true in case OA happens to be a congruential
I-operator. In that case, the pair ⟨A, [[T ]]O⟩ turns out to be a full I-structure.

Proposition 1526 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A) → ConSys(A) a congruential I-operator on A. For all
T ∈ FiFamI(A), ⟨A, [[T ]]O⟩ is a full I-structure.

Proof: Let T ∈ FiFamI(A). Then [[T ]]O = ΩA
−1(OA(T )). By hypothesis,

OA(T ) ∈ ConSys(A). Thus, by Proposition 1524,

[[T ]]O = ΩA
−1(OA(T )) = π−1(FiFamI(A/ΩA(T ))),

where ⟨I, π⟩ ∶ A → A/ΩA(T ) is the quotient natural transformation. Thus,
by definition, ⟨A, [[T ]]O⟩ is a full I-structure. ∎

As a corollary, we obtain the fact that [[T ]]O is a closure system on A and,
therefore, ⟨A, [[T ]]O⟩ is a π-institution and not merely a π-structure.

Corollary 1527 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic sys-
tem and OA ∶ FiFamI(A)→ ConSys(A) a congruential I-operator on A. For
all T ∈ FiFamI(A), [[T ]]O is a closure system on FiFamI(A).
Proof: By Propositions 1526 and 1389. ∎

Corollary 1527 justifies the following definition.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-

tution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and

OA ∶ FiFamI(A)→ ConSys(A)
a congruential I-operator on A. For all T ∈ FiFamI(A), the least element of
the O-class of T is denoted by TO:

TO =⋂ [[T ]]O.
A T ∈ FiFamI(A) is called an O-filter family if T = TO. Note that, by
Corollary 1527, an O-filter family must be an I-filter system.

The collection of all O-filter systems of A is denoted by FiFamI,O(A).
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Proposition 1528 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A) → EqvFam(A) an I-operator on A. OA is reflective
(and, hence, injective) on FiFamI,O(A).
Proof: Let T,T ′ ∈ FiFamI,O(A), such that OA(T ) ≤ OA(T ′). Then, [[T ′]]O ⊆[[T ]]O. Therefore,

T = TO (T ∈ FiFamI,O(A))
= ⋂ [[T ]]O (definition)

≤ ⋂ [[T ′]]O ([[T ′]]O ⊆ [[T ]]O)
= T ′O (definition)

= T ′. (T ′ ∈ FiFamI,O(A))
We conclude that OA is reflective. ∎

Proposition 1529 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and OA ∶ FiFamI(A)→ EqvFam(A) a monotone I-operator on A. Then the
mapping T ↦ TO is monotone, i.e., for all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies TO ≤ T ′O.

Proof: We have, for all T,T ′ ∈ ThFamI(A),
T ≤ T ′ implies OA(T ) ≤ OA(T ′) (hypothesis)

implies [[T ′]]O ⊆ [[T ]]O (definitions of [[T ]]O, [[T ′]]O)
implies TO ≤ T ′O. (definitions of TO, T ′O)

So T ↦ TO is a monotone mapping. ∎

Proposition 1530 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system,
OA ∶ FiFamI(A) → ConSys(A) a congruential I-operator on A and T ∈
FiFamI(A). T ∈ FiFamI,O(A) if and only if T /OA(T ) is the least I-filter
family of A/OA(T ).
Proof: By hypothesis, OA(T ) ∈ ConSys(A). Consider the quotient natural
transformation ⟨I, π⟩ ∶ A→ A/OA(T ).
Since ΩA

−1(OA(T )) = [[T ]]O, we get, by Proposition 1524, that

π ∶ [[T ]]O → FiFamI(A/OA(T ))
is an order isomorphism. Thus, TO/OA(T ) is the least I-filter family on
A/OA(T ). ∎
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21.4 Compatibility I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶ FiFamI(A) →
EqvFam(A) an I-operator on A. OA is called a compatibility I-operator
if, for all T ∈ ThFamI(A),

OA(T ) ≤ ΩA(T ).
Clearly, ΩA ∶ FiFamI(A)→ ConSys(A) is the largest compatibility I-operator
on A. If one assumes monotonicity, then this role is played by the Suszko
operator instead:

Lemma 1531 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, the Suszko operator Ω̃I,A ∶ FiFamI(A) → ConSys(A) is the largest
monotone compatibility I-operator on A.

Proof: Suppose that OA ∶ FiFamI(A) → EqvFam(A) is a monotone com-
patibility I-operator on A. Then, for all T ∈ FiFamI(A),

OA(T ) = ÕI,A(T ) (by Lemma 1518)

= ⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (by Definition)

≤ ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (by Compatibility)

= Ω̃I,A(T ). (by Definition)

So Ω̃I,A is the largest monotone compatibility I-operator on A. ∎

For compatibility I-operators, we have the following properties pertaining
to O-classes and O-filter systems.

Lemma 1532 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a compatibility I-operator on A. Then, for every
T ∈ FiFamI(A),

T ∈ [[T ]]O and TO ≤ T.

Proof: Let T ∈ FiFamI(A). Since OA is a compatibility I-operator,OA(T ) ≤
ΩA(T ). Thus, by definition of [[T ]]O, we get T ∈ [[T ]]O. Moreover, since
T ∈ [[T ]]O, we now get TO = ⋂ [[T ]]O ≤ T . ∎

For monotone compatibility I-operators, we have the following properties.

Lemma 1533 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a monotone compatibility I-operator on A. Then,
for every T ∈ FiFamI(A):



Voutsadakis CHAPTER 21. I-OPERATORS 1289

(a) FiFamI(A)T ⊆ [[T ]]O;

(b) [[T ]]O = FiFamI(A)T iff T = TO iff T ∈ FiFamI,O(A).
Proof:

(a) Suppose T ≤ T ′ ∈ FiFamI(A). Then

OA(T ) ≤ OA(T ′) (by Monotonicity)
≤ ΩA(T ′). (by Compatibility)

So, by definition of [[T ]]O, T ′ ∈ [[T ]]O.

(b) The second equivalence if simply the definition of FiFamI,O(A). So

it suffices to prove the first equivalence. Assume, first, that [[T ]]O =
FiFamI,O(A). Then, we have TO = ⋂ [[T ]]O = ⋂FiFamI(A)T = T .

Assume, conversely, that T = TO. Then, if T ′ ∈ [[T ]]O, we get T = TO =
⋂ [[T ]]O ≤ T ′. Thus, T ′ ∈ FiFamI(A)T . Since, by Part (a), the converse

always holds, we get [[T ]]O = FiFamI(A)T .
∎

In the case of compatibility I-operators, there are also close relationships
between their classes and their filter families and those associated to the
Leibniz operator. More precisely, we get:

Lemma 1534 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a compatibility I-operator on A. Then, for every
T ∈ FiFamI(A):

(a) [[T ]]Ω ⊆ [[T ]]O;

(b) TO ≤ TΩ;

(c) FiFamI,O(A) ⊆ FiFamI,Ω(A).
Proof:

(a) Let T ′ ∈ FiFamI(A). Then we have

T ′ ∈ [[T ]]Ω implies ΩA(T ) ≤ ΩA(T ′) (by Definition of [[T ]]Ω)
implies OA(T ) ≤ ΩA(T ′) (by Compatibility)

implies T ′ ∈ [[T ]]O. (by Definition of [[T ]]O)

Thus, [[T ]]Ω ⊆ [[T ]]O.

(b) Using Part (a), we get TO = ⋂ [[T ]]O ≤ ⋂ [[T ]]Ω = TΩ.
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(c) Assume T ′ ∈ FiFamI,O(A). Then, by definition, T ′O = T ′. Thus, by
Part (b), T ′ ≤ T ′Ω. Since, by Lemma 1532, T ′Ω ≤ T ′, we get T ′Ω = T ′

and, therefore, T ′ ∈ FiFamI,Ω(A). We conclude that FiFamI,O(A) ⊆
FiFamI,Ω(A).

∎

For monotone compatibility I-operators, we have similar relationships
between their classes and their filter families and those associated to the
Suszko operator.

Lemma 1535 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and OA ∶
FiFamI(A)→ EqvFam(A) a monotone compatibility I-operator on A. Then,
for every T ∈ FiFamI(A):

(a) [[T ]]Ω̃I ≤ [[T ]]O;

(b) TO ≤ T Ω̃I ;

(c) FiFamI,O(A) ⊆ FiFamI,Ω̃
I(A).

Proof:

(a) Let T ′ ∈ FiFamI(A). Then we have

T ′ ∈ [[T ]]Ω̃I implies Ω̃I,A(T ) ≤ ΩA(T ′) (by Definition of [[T ]]Ω̃I )
implies OA(T ) ≤ ΩA(T ′) (by Lemma 1531)

implies T ′ ∈ [[T ]]O. (by Definition of [[T ]]O)

Thus, [[T ]]Ω̃I ⊆ [[T ]]O.

(b) Using Part (a), we get TO = ⋂ [[T ]]O ≤ ⋂ [[T ]]Ω̃I = T Ω̃I .

(c) Assume T ′ ∈ FiFamI,O(A). Then, by definition, T ′O = T ′. Thus, by
Part (b), T ′ ≤ T ′Ω̃I . Since, by Lemma 1532, T ′Ω̃

I ≤ T ′, we get T ′Ω̃
I = T ′

and, therefore, T ′ ∈ FiFamI,Ω̃
I(A). We conclude that FiFamI,O(A) ⊆

FiFamI,Ω̃
I(A).

∎

21.5 Commuting I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems and ⟨H,γ⟩ ∶
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A→ B a surjective morphism.

F

✠�
�
�⟨F,α⟩ ❅

❅
❅

⟨G,β⟩
❘

A ⟨H,γ⟩ ✲ B

Let, also OA ∶ FiFamI(A)→ EqvFam(A) and OB ∶ FiFamI(B)→ EqvFam(B)
be I-operators on A and on B, respectively. We say that the pair (OA,OB)
is commuting if, for all T ′ ∈ FiFamI(B),

OA(γ−1(T ′)) = γ−1(OB(T ′)).
More generally, let O = {OA ∶ A ∈ AlgSys(F)} be a family of I-operators.

We say that O is a commuting family if, for every pair A = ⟨A, ⟨F,α⟩⟩
and B = ⟨B, ⟨G,β⟩⟩ of F-algebraic systems, and every surjective morphism⟨H,γ⟩ ∶ A → B, the pair (OA,OB) is commuting.

A slightly more relaxed version, which will be of use to us later, is that
of semi-commutation. We say that a family of I-operators O = {OA ∶ A ∈
AlgSys(F)} is a semi-commuting family if, for every pair A = ⟨A, ⟨F,α⟩⟩
and B = ⟨B, ⟨G,β⟩⟩ of F-algebraic systems, and every surjective morphism⟨H,γ⟩ ∶ A → B, with H an isomorphism, the pair (OA,OB) is commuting.

It turns out that semi-commutation is too restrictive when applied to
compatibility I-operators, since there is only one semi-commuting family of
compatibility I-operators, namely, the Leibniz operator.

Theorem 1536 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-commuting
family of compatibility I-operators. Then O = Ω.

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∈ FiFamI(A).
Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/ΩA(T ).
We get, using Compatibility,

OA/Ω
A(T )(T /ΩA(T )) ≤ ΩA/Ω

A(T )(T /ΩA(T )) = ∆A/Ω
A(T ).

So, we get OA/Ω
A(T )(T /ΩA(T )) = ∆A/Ω

A(T ). Since, by hypothesis, O is a
semi-commuting family, we now get

OA(T ) = OA(π−1(T /ΩA(T )))
= π−1(OA/ΩA(T )(T /ΩA(T )))
= π−1(∆A/ΩA(T ))
= ΩA(T ).

We conclude that O = Ω. ∎

In particular, we have
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Corollary 1537 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Suszko operator Ω̃I is semi-commuting
if and only if Ω̃I = Ω.

Proof: If Ω̃I = Ω, then, by Proposition 24, Ω̃I is commuting and, hence,semi-
commuting. If conversely, Ω̃I is semi-commuting, then, by Theorem 1536,
Ω̃I = Ω. ∎

21.6 Coherent I-Operators

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of I-operators. Moreover,
let A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a
surjective morphism, T ∈ FiFamI(A) and T ⊆ FiFamI(A).

• The morphism ⟨H,γ⟩ is said to be O-compatible with T if

Ker(⟨H,γ⟩) ≤ OA(T );
• The morphism ⟨H,γ⟩ is said to be O-compatible with T if

Ker(⟨H,γ⟩) ≤ OA(T ), for all T ∈ T ,

i.e., if and only if
Ket(⟨H,γ⟩) ≤ ÕA(T ).

For the Leibniz operator, we have

Corollary 1538 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A,B F-algebraic systems and ⟨H,γ⟩ ∶
A → B a surjective morphism. ⟨H,γ⟩ is Ω-compatible with T if and only
if Ker(⟨H,γ⟩) is compatible with T .

Proof: We have ⟨H,γ⟩ is Ω-compatible with T if and only if, by definition,
Ker(⟨H,γ⟩) ≤ ΩA(T ) if and only if, by the compatibility of ΩA(T ) with T ,
Ker(⟨H,γ⟩) is compatible with T . ∎

Moreover, for a family O of compatibility I-operators, we get

Corollary 1539 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a family of
compatibility I-operators, A,B F-algebraic systems, ⟨H,γ⟩ ∶ A → B a sur-
jective morphism and T ∈ FiFamI(A). If ⟨H,γ⟩ is O-compatible with T ,
then:

(a) ⟨H,γ⟩ is Ω-compatible with T ;
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(b) If H is an isomorphism, T = γ−1(γ(T ));
(c) If H is an isomorphism, OA(T ) = γ−1(γ(OA(T )).

Proof:

(a) We have

Ker(⟨H,γ⟩) ≤ OA(T ) (hypothesis)
≤ ΩA(T ). (by Compatibility)

Thus, ⟨H,γ⟩ is Ω-compatible with T .

(b) Suppose H is an isomorphism. By Part (a) and Corollary 1539, we get
Ker(⟨H,γ⟩) is compatible with T . Therefore, γ−1(γ(T )) ≤ T . Since the
reverse inclusion is always satisfied, we get T = γ−1(γ(T )).

(c) Again the inclusion OA(T ) ≤ γ−1(γ(OA(T ))) is always satisfied. So it
suffices to show the reverse inclusion. So assume Σ ∈ ∣Sign∣, φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ γ−1Σ (γΣ(OAΣ(T ))). Thus, by definition,⟨γΣ(φ), γΣ(ψ)⟩ ∈ γΣ(OAΣ(T )). Therefore, there exist φ′, ψ′ ∈ SEN(Σ),
with ⟨φ′, ψ′⟩ ∈ OAΣ(T ), such that ⟨γΣ(φ), γΣ(ψ)⟩ = ⟨γΣ(φ′), γΣ(ψ′)⟩.
This shows that

⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ KerΣ(⟨H,γ⟩) ≤ OAΣ(T ).
Since ⟨φ′, ψ′⟩ ∈ OAΣ(T ) and OA(T ) is an equivalence family, we get,
using symmetry and transitivity, that ⟨φ,ψ⟩ ∈ OAΣ(T ). We conclude
that γ−1(γ(OA(T ))) ≤ OA(T ).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of I-operators.

• O is called coherent if, for all F-algebraic systems A, B, every surjec-
tive morphism ⟨H,γ⟩ ∶ A→ B and all T ′ ∈ FiFamI(B),

⟨H,γ⟩ O-compatible with γ−1(T ′)
implies OA(γ−1(T ′)) = γ−1(OB(T ′)).

• O is called semi-coherent if, for all F-algebraic systems A, B, every
surjective morphism ⟨H,γ⟩ ∶ A → B, with H an isomorphism, and all
T ′ ∈ FiFamI(B),

⟨H,γ⟩ O-compatible with γ−1(T ′)
implies OA(γ−1(T ′)) = γ−1(OB(T ′)).
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Clearly, if O is coherent, then it is also semi-coherent.

We define the identity I-operator

I = {IA ∶ A ∈ AlgSys(F)},
by letting, for all A ∈ AlgSys(F), IA ∶ FiFamI(A) → EqvFam(A), be given,
for all T ∈ FifamI(A), by

IA(T ) =∆A.

Lemma 1540 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The identity I is a coherent family of
compatibility I-operators.

Proof: It is clear that IA is a compatibility I-operator, for every F-algebraic
system A. So it suffices to prove coherence. To this end, let A, B be F-
algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism and T ′ ∈ FiFamI(B),
such that Ker(⟨H,γ⟩) ≤ IA(γ−1(T ′)) =∆A. Thus, we have Ker(⟨H,γ⟩) = ∆A.
Now we get

γ−1(IB(T ′)) = γ−1(∆B) = Ker(⟨H,γ⟩) =∆A = IA(γ−1(T )).
Thus, I is a coherent family of compatibility I-operators. ∎

Another example of a coherent I-operator is the Leibniz operator.

Lemma 1541 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Leibniz operator Ω is a coherent
family of compatibility operators.

Proof: By definition Ω is a family of compatibility I-operators. For coher-
ence, assume that A, B are F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective
morphism and T ′ ∈ FiFamI(B). Since, by Proposition 24, ΩA(γ−1(T ′)) =
γ−1(ΩB(T ′)), we get that the coherence implication is trivially satisfied and,
hence Ω is a coherent family of compatibility I-operators. ∎

For semi-coherence of compatibility I-operators, we get the following
characterization.

Lemma 1542 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of com-
patibility I-operators. O is semi-coherent if and only if, for all F-algebraic
systems A, B, all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an iso-
morphism, and all T ∈ FiFamI(A), if ⟨H,γ⟩ is O-compatible with T , then
γ(OA(T )) = OB(γ(T )).
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Proof: Suppose, first, that O is semi-coherent and let A, B be F-algebraic
systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism and
T ∈ FiFamI(A), such that

Ker(⟨H,γ⟩) ≤ OA(T ).
Then, by Corollary 1539, Ker(⟨H,γ⟩) ≤ OA(γ−1(γ(T ))). Applying semi-co-
herence gives

γ−1(OB(γ(T ))) = OA(γ−1(γ(T ))) (by semi-coherence)
= OA(T ). (by Corollary 1539)

By the surjectivity of ⟨H,γ⟩, OB(γ(T )) = γ(OA(T )).
Assume, conversely, that the condition in the statement holds. Let A, B

be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an
isomorphism, and T ′ ∈ FiFamI(B), such that

Ker(⟨H,γ⟩) ≤ OA(γ−1(T ′)).
Then, we get

OA(γ−1(T ′)) = γ−1(γ(OA(γ−1(T ′)))) (by Corollary 1539)
= γ−1(OB(γ(γ−1(T ′))) (by hypothesis)
= γ−1(OB(T ′)). (by surjectivity of ⟨H,γ⟩)

So O is a semi-coherent family of compatibility I-operators. ∎

We also have the following alternative characterization for semi-coherence
of compatibility I-operators.

Lemma 1543 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of com-
patibility I-operators. O is semi-coherent if and only if, for all F-algebraic
systems A, B and all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an iso-
morphism,

OA
−1(Ker(⟨H,γ⟩)) = {T ∈ FiFamI(A) ∶ γ−1(OB(γ(T ))) = OA(T )}.

Proof: Suppose O is semi-coherent and let A, B be F-algebraic systems,⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism, and T ∈
FiFamI(A).

• If T ∈ OA−1(Ker(⟨H,γ⟩)), then, by definition, Ker(⟨H,γ⟩) ≤ OA(T ).
Thus, by Lemma 1542, γ(OA(T )) = OB(γ(T )). Hence,

γ−1(γ(OA(T ))) = γ−1(OB(γ(T ))).
Thus, by Corollary 1539, OA(T ) = γ−1(OB(γ(T ))).
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• If γ−1(OB(γ(T ))) = OA(T ), then we get Ker(⟨H,γ⟩) = γ−1(∆B) ≤
γ−1(OB(γ(T ))) = OA(T ). Thus, T ∈ OA−1(Ker(⟨H,γ⟩)).

We conclude that OA
−1(Ker(⟨H,γ⟩)) = {T ∈ FiFamI(A) ∶ γ−1(OB(γ(T ))) =

OA(T )}.
Assume, conversely, that the condition of the statement holds. Let A,

B be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H

an isomorphism and T ′ ∈ FiFamI(B), such that Ker(⟨H,γ⟩) ≤ OA(γ−1(T ′)).
Then γ−1(T ′) ∈ OA−1(Ker(⟨H,γ⟩)), whence, by hypothesis,

γ−1(OB(γ(γ−1(T ′)))) = OA(γ−1(T ′)).
By surjectivity of ⟨H,γ⟩, γ−1(OB(T ′)) = OA(γ−1(T ′)) and, hence, O is a
semi-coherent family of compatibility I-operators. ∎

Next we show that semi-coherence of compatibility I-operators is pre-
served under relativization.

Proposition 1544 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then

ÕI = {ÕI,A ∶ A ∈ AlgSys(F)}
is also a semi-coherent family of compatibility I-operators.

Proof: It is easy to see that ÕI is also a compatibility operator. We have,
for every F-algebraic system A and all T ∈ FiFamI(A),

ÕI,A(T ) = ⋂{OA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (definition)

≤ ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)} (compatibility)
≤ ΩA(T ). (set theory)

Thus, ÕI is indeed a compatibility I-operator.
For semi-coherence, assume A, B are F-algebraic systems, ⟨H,γ⟩ ∶ A→ B

a surjective morphism, with H an isomorphism, and T ′ ∈ FiFamI(B), such
that Ker(⟨H,γ⟩) ≤ ÕI,A(γ−1(T ′)). We must show that

ÕI,A(γ−1(T ′)) = γ−1(ÕI,B(T ′)).
Claim: We have

{T ∈ FiFamI(A) ∶ γ−1(T ′) ≤ T} = {γ−1(T ′′) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)}.
• Suppose T ∈ FiFamI(A), such that γ−1(T ′) ≤ T . Then, by Corol-

lary 1539, T = γ−1(γ(T )), where, by Corollary 56, γ(T ) ∈ FiFamI(B).
Moreover, by hypothesis and the surjectivity of ⟨H,γ⟩, T ′ = γ(γ−1(T ′)) ≤
γ(T ). This proves the left-to-right inclusion.
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• Let T ′ ≤ T ′′ ∈ FiFamI(B). Then, by Corollary 55, we obtain γ−1(T ′′) ∈
FiFamI(A) and, by hypothesis, γ−1(T ′) ≤ γ−1(T ′′). This shows that
the right-to-left inclusion also holds.

This proves the Claim. Now, based on the Claim, we reason as follows:

γ−1(ÕI,B(T ′)) = γ−1(⋂{OB(T ′′) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)})
= ⋂{γ−1(OB(T ′′)) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)}
= ⋂{OA(γ−1(T ′′)) ∶ T ′ ≤ T ′′ ∈ FiFamI(B)}

(by Semi-Coherence of O)
= ⋂{OA(T ) ∶ γ−1(T ′) ≤ T ∈ FiFamI(A)}

(by the Claim)

= ÕI,A(γ−1(T ′)).
Thus, ÕI is indeed semi-coherent. ∎

Proposition 1545 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a coherent
family of compatibility I-operators. Let, also, A, B be F-algebraic systems
and ⟨H,γ⟩ ∶ A → B a surjective morphism. For all T ′ ⊆ FiFamI(B′), such
that ⟨H,γ⟩ is O-compatible with γ−1(T ′),

ÕA(γ−1(T ′)) = γ−1(ÕB(T ′)).
Proof: We have

γ−1(ÕB(T ′)) = γ−1(⋂{OB(T ′) ∶ T ′ ∈ T ′})
= ⋂{γ−1(OB(T ′)) ∶ T ′ ∈ T ′}
= ⋂{OA(γ−1(T ′)) ∶ T ′ ∈ T ′}

(hypothesis and coherence)
= ⋂{OA(T ) ∶ T ∈ γ−1(T ′)}
= ÕA(γ−1(T ′)).

∎

Proposition 1546 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Let, also, A, B be F-algebraic
systems and ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism.
For all T ⊆ FiFamI(A), such that ⟨H,γ⟩ is O-compatible with T , γ(ÕA(T )) =
ÕB(γ(T )).
Proof: By the hypothesis and Corollary 1539, we get that T = γ−1(γ(T )).
So exploiting Proposition 1545, we get

γ(ÕA(T )) = γ(ÕA(γ−1(γ(T ))))
= γ(γ−1(ÕB(γ(T ))))
= ÕB(γ(T )).

∎
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21.7 Semi-Coherence and Full Objects

We start by providing a characterization of the inverse operator associated
with a semi-coherent family of compatibility I-operators.

Proposition 1547 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then, for every F-algebraic
system A = ⟨A, ⟨F,α⟩⟩ and all θ ∈ ConSys(A),
OA

−1(θ) = {T ∈ FiFamI(A) ∶ π−1(OA/θ(T /θ)) = OA(T )}
= π−1({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}),

where ⟨I, π⟩ ∶ A→ A/θ denotes the quotient morphism.

Proof: We have by hypothesis and Lemma 1543,

OA
−1(θ) = {T ∈ FiFamI(A) ∶ π−1(OA/θ(T /θ)) = OA(T )}.

For the second equality, if T ∈ FiFamI(A), such that π−1(OA/θ(T /θ)) =
OA(T ), then T = π−1(T /θ) and, also,

π−1(OA/θ(T /θ)) = OA(T ) = OA(π−1(T /θ)).
This proves the left-to-right inclusion, since, by Corollary 57, we have T /θ ∈
FiFamI(A/θ).

Assume, conversely, that T ′ ∈ FiFamI(A/θ), such that π−1(OA/θ(T ′)) =
OA(π−1(T ′)). Then, by Corollary, 57, π−1(T ′) ∈ FiFamI(A) and, moreover,

π−1(OA/θ(π−1(T ′)/θ)) = π−1(OA/θ(T ′)) = OA(π−1(T ′)).
This proves the right-to-left-inclusion. ∎

We now give a characterization of O-full I-classes for semi-coherent fam-
ilies of congruential compatibility I-operators.

Corollary 1548 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators, A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system and T ⊆ FiFamI(A). T is OA-full if and only if, for some
surjective ⟨H,γ⟩ ∶ A→ B, with H an isomorphism, which may be taken to be
the quotient morphism ⟨I, π⟩ ∶ A→ A/Õ(T ),

T = {T ∈ FiFamI(A) ∶ γ−1(OB(γ(T ))) = OA(T )}.
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Proof: Suppose T ⊆ FiFamI(A) isOA-full. By definition, T = OA−1(ÕA(T )).
Let ⟨I, π⟩ ∶ A → A/ÕA(T ) be the quotient morphism. Then we have T =
OA

−1(Ker(⟨I, π⟩)) whence, by Proposition 1547,

T = {T ∈ FifamI(A) ∶ π−1(OA/ÕA(T )(π(T ))) = OA(T )}.
Assume, conversely, that T = {T ∈ FifamI(A) ∶ γ−1(OB(γ(T ))) = OA(T )},
for some surjective ⟨H,γ⟩ ∶ A → B, with H an isomorphism. By Proposition
1547, T = OA−1(Ker(⟨H,γ⟩)), whence T ∈ Ran(OA−1), showing that T is
OA-full. ∎

Corollary 1549 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators, A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system and T ⊆ FiFamI(A). T is OA-full if and only if, for some
θ ∈ ConSys(I), which can be taken to be ÕA(T ), and with ⟨I, π⟩ ∶ A → A/θ
the corresponding quotient morphism,

T = π−1({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}).
Proof: Assume, first, that T is OA-full. Then, by definition, we have T =
OA

−1(ÕA(T )). Take θ = ÕA(T ). Then T = OA−1(θ), whence, by Proposition
1547,

T = π−1({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}).
Assume, conversely, that T is given by the displayed expression above, for
some θ ∈ ConSys(A) and ⟨I, π⟩ ∶ A → A/θ the quotient morphism. Then, by
Proposition 1547, T = OA−1(θ) ∈ Ran(OA−1) and, therefore, T is OA-full, by
definition. ∎

Turning, next, to the full congruence systems, we obtain the following
characterization.

Proposition 1550 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent
family of compatibility I-operators, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
θ ∈ ConSys(A). θ is OA-full if and only if

ÕA/θ({T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}) =∆A/θ,

where ⟨I, π⟩ ∶ A→ A/θ is the quotient morphism.

Proof: Let T ′ = {T ′ ∈ FiFamI(A/θ) ∶ π−1(OA/θ(T ′)) = OA(π−1(T ′))}. Then⟨I, π⟩ is compatible with π−1(T ′), since, for all T ′ ∈ T ′,

Ker(⟨I, π⟩) = π−1(∆A/θ) ≤ π−1(OA/θ(T ′)) = OA(π−1(T ′)).
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Thus, by Propositions 1547 and 1545, θ is OA-full if and only if

θ = ÕA(OA−1(θ)) = ÕA(π−1(T ′)) = π−1(ÕA/θ(T ′)).
Now, if θ is OA-full, then we get, using the surjectivity of the quotient mor-
phism,

ÕA/θ(T ′) = π(π−1(ÕA/θ(T ′)))
= π(θ) =∆A/θ.

If, conversely, ÕA/θ(T ′) =∆A/θ, then θ = π−1(∆A/θ) = π−1(ÕA/θ(T ′)). Hence,
by the equivalence detailed above, θ is OA-full. ∎

Since Ω is a semi-coherent family of compatibility I-operators, we now
get

Corollary 1551 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and θ ∈ ConSys(A). Then

ΩA
−1(θ) = π−1(FiFamI(A/θ)),

where ⟨I, π⟩ ∶ A→ A/θ is the quotient morphism.

Proof: By Proposition 1547,

ΩA
−1(θ) = π−1({T ′ ∈ FiFamI(A/θ′) ∶ π−1(ΩA/θ(T ′)) = ΩA(π−1(T ′))}).

But, by Proposition 24, Ω is commuting and, hence,

{T ′ ∈ FiFamI(A/θ′) ∶ π−1(ΩA/θ(T ′)) = ΩA(π−1(T ′))} = FiFamI(A/θ).
Therefore, ΩA

−1(θ) = π−1(FiFamI(A/θ)). ∎

21.8 The General Correspondence Theorem

Theorem 1552 (General Correspondence Theorem) Let F = ⟨Sign♭,
SEN♭, N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on F
and O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent family of compatibility I-
operators. Then, for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩,
all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an isomorphism, and all
T ∈ FiFamI(A), if ⟨H,γ⟩ is O-compatible with T , then γ induces an order

isomorphism from [[T ]]OA onto [[γ(T )]]OB, with inverse γ−1.

Proof: Assume that ⟨H,γ⟩ is O-compatible with T . By Corollary 1539,⟨H,γ⟩ is Ω-compatible with T . By the same Corollary and by Corollary 56,
T = γ−1(γ(T )) and γ(T ) ∈ FiFamI(B).
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Suppose, next, that T ′ ∈ [[T ]]OA. Then, Ker(⟨H,γ⟩) ≤ OA(T ) ≤ ΩA(T ′).
Again, based on Corollaries 1539 and 56, we get γ−1(γ(T ′)) = T ′ and γ(T ′) ∈
FiFamI(B). Moreover, we get

OB(γ(T )) = γ(OA(T )) (by Lemma 1542)
≤ γ(ΩA(T ′))
= ΩB(γ(T ′)). (by Lemma 1542)

Thus, γ(T ′) ∈ [[γ(T )]]OB .

Suppose, next, that T ′′ ∈ [[γ(T )]]OB . Then, we get OB(γ(T )) ≤ ΩB(T ′).
By Corollary 55, γ−1(T ′′) ∈ FiFamI(A) and by surjectivity, γ(γ−1(T ′′)) =
T ′′. Since ⟨H,γ⟩ is O-compatible with T = γ−1(γ(T )), we get, using semi-
coherence,

OA(T ) = OA(γ−1(γ(T ))
= γ−1(OB(γ(T )))
≤ γ−1(ΩB(T ′))
= ΩA(γ−1(T ′)).

Hence, γ−1(T ′′) ∈ [[T ]]OA. We conclude that γ is a bijection from [[T ]]OA
onto [[γ(T )]]OB , with inverse γ−1. But, clearly, both γ and γ−1 are order
preserving functions, whence they establish an order isomorphism between
these two ordered sets. ∎

The General Correspondence Theorem has the following consequence con-
cerning O-filter systems on different F-algebraic systems.

Corollary 1553 Let F = ⟨Sign♭, SEN♭, N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all surjective morphisms ⟨H,γ⟩ ∶ A →
B, with H an isomorphism, and all T ∈ FiFamI(A), if ⟨H,γ⟩ is O-compatible
with T , then

T ∈ FiFamI,O(A) iff γ(T ) ∈ FiFamI,O(B).
Proof: We have the following chain of equivalences:

T ∈ FiFamI,O(A) iff T = TO

iff T = ⋂ [[T ]]OA
iff γ(T ) = ⋂ [[γ(T )]]OB (by Theorem 1552)
iff γ(T ) = γ(T )O
iff γ(T ) ∈ FiFamI,O(B).

Thus, the claim is established. ∎

For semi-coherent congruential compatibility I-operators, we obtain a
relation between the O-filter systems on an algebraic system and those on
the quotient algebraic system.
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Corollary 1554 Let F = ⟨Sign♭, SEN♭, N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, and all T ∈ FiFamI(A),

TO/OA(T ) = (T /OA(T ))O
and it is the least I-filter family on A/OA(T ).
Proof: Consider the quotient morphism ⟨I, π⟩ ∶ A→ A/OA(T ). ⟨I, π⟩ is sur-
jective, with I an isomorphism, and it is O-compatible with T . By Theorem

1552, π ∶ [[T ]]OA → [[T /OA(T )]]OA/OA(T) is an order isomorphism with inverse

π−1. Since TO is the least I-filter family of [[T ]]OA, it follows that TO/OA(T )
must be the least I-filter family of [[T /OA(T )]]OA/OA(T) , which is, by defini-
tion, (T /OA(T ))O. Finally, since OA/O

A(T )(T /OA(T )) =∆A/O
A(T ), it follows

that [[T /OA(T )]]OA/OA(T) = FiFamI(A/OA(T )). Thus, (T /OA(T ))O is the
least I-filter family on A/OA(T ). ∎

Finally, applying the General Correspondence Theorem to the relativiza-
tion of an operator, we obtain the following:

Theorem 1555 Let F = ⟨Sign♭, SEN♭, N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of compatibility I-operators. Then, for all F-algebraic sys-
tems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all surjective morphisms ⟨H,γ⟩ ∶
A → B, with H an isomorphism, and all T ∈ FiFamI(A), if ⟨H,γ⟩ is ÕI-

compatible with T , then γ induces an order isomorphism from [[T ]]ÕI,A onto

[[γ(T )]]ÕI,B , with inverse γ−1.

Proof: It is clear that if O is a compatibility I-operator, the same holds for
ÕI . Moreover, by Proposition 1544, if O is a semi-coherent family, then ÕI

is also semi-coherent. Therefore, under the given hypotheses, we can apply
Theorem 1552 with ÕI in place of O and the result immediately follows. ∎

21.9 Algebraic Systems of I-Operators

With a given family of congruential operators, there are associated several
classes of algebraic systems, which it is the purpose of this section to study
closely, in analogy to the various classes ensued from applications of the
Leibniz operator, and to explore their interrelationships.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of congruential
I-operators. We define the following classes of F-algebraic systems associated
with O (assuming closure under isomorphisms):
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• AlgSysO(I) = {A/OA(T ) ∶ A ∈ AlgSys(F), T ∈ FiFamI(A)};
• AlgSysO(I) = {A ∈ AlgSys(F) ∶ (∃T ∈ FiFamI(A))(OA(T ) =∆A)};
• AlgSysÕ

I(I) = {A/ÕI,A(T ) ∶ A ∈ AlgSys(F), T ∈ FiFamI(A)};
• AlgSysÕI(I) = {A ∈ AlgSys(F) ∶ (∃T ∈ FiFamI(A))(ÕI,A(T ) = ∆A)};
• AlgSysÕ(I) = {A/ÕA(T ) ∶ A ∈ AlgSys(F),T ⊆ FiFamI(A)};
• AlgSysÕ(I) = {A ∈ AlgSys(F) ∶ (∃T ⊆ FiFamI(A))(ÕA(T ) = ∆A)}.

Names corresponding to these classes go as follows:

• AlgSysO(I) is the class of O-reduced F-algebraic systems;

• AlgSysO(I) is the class of O-reductions of F-algebraic systems;

• AlgSysÕ
I(I) is the class of ÕI-reduced F-algebraic systems;

• AlgSysÕI(I) is the class of ÕI-reductions of F-algebraic systems;

• AlgSysÕ(I) is the class of Õ-reduced F-algebraic systems;

• AlgSysÕ(I) is the class of Õ-reductions of F-algebraic systems.

We provide some alternative characterizations for the classes associated
with the lifting Õ of the operator O.

Lemma 1556 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F and O = {OA ∶ A ∈ AlgSys(F)} a family of con-
gruential I-operators.

(a) AlgSysÕ(I) = {A/ÕA(T ) ∶ A ∈ AlgSys(F),T OA-full};
(b) AlgSysÕ(I) = {A ∶ ÕA(FiFamI(A)) =∆A};
(c) AlgSysÕ(I) = {A ∶ (∃T OA-full)(ÕA(T ) =∆A)}.

Proof: Note that, for all three equalities claimed, the right-to-left inclusions
are trivial, given the definitions of the corresponding classes on the left.
Therefore, in working out the various parts, it suffices to show the left-to-
right inclusions.

(a) Suppose that A/ÕA(T ) ∈ AlgSysÕ(I), for some T ⊆ FiFamA(A). Since
ÕA(T ) is by definition, an O-full congruence system on A, there ex-
ists, by Corollary 1521, an O-full T ′ ⊆ FiFamI(A), such that ÕA(T ′) =
ÕA(T ). Thus, we get A/ÕA(T ) = A/ÕA(T ′) ∈ {A/ÕA(T ) ∶ A ∈
AlgSys(F), T OA-full}.



1304 CHAPTER 21. I-OPERATORS Voutsadakis

(b) Assume A ∈ AlgSysÕ(I). Then, by definition, there exists a collection
T ⊆ FiFamI(A), such that ÕA(T ) = ∆A. Therefore,

ÕA(FiFamA(A)) ≤ ÕA(T ) =∆A.

Thus, ÕA(FiFamI(A)) =∆A. We get that A ∈ {A ∶ ÕA(FiFamI(A)) =
∆A}.

(c) This follows directly from Part (b) and Corollary 1523.
∎

We now show that the three pairs of classes of reduced - classes of re-
ductions, associated with the same operator, consist of identical classes of
F-algebraic systems. This is due to the fact that the reduction of an F-
algebraic system results in a reduced F-algebraic system, taken with respect
to the same operator.

Lemma 1557 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent family
of congruential compatibility I-operators and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. For all T ∈ FiFamI(A) and all θ ∈ ConSys(A),

θ ≤ OA(T ) implies OA/θ(T /θ) = OA(T )/θ.
In particular, OA/O

A(T )(T /OA(T )) =∆A/O
A(T ).

Proof: Let A be an F-algebraic system, T ∈ FiFamI(A) and θ ∈ ConSys(A),
such that θ ≤ OA(T ). Consider the quotient morphism ⟨I, π⟩ ∶ A → A/θ. It
is surjective and, by hypothesis, O-compatible with T . By the assumption
of semi-coherence and Lemma 1542, we get

OA/θ(T /θ) = OA/θ(π(T )) = π(OA(T )) = OA(T )/θ.
The last assertion in the statement is the specialization of what was just
proven for θ = OA(T ). ∎

Proposition 1558 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysO(I) = AlgSysO(I).
Proof: Suppose A ∈ AlgSysO(I). Then, there exists T ∈ FiFamI(A), such
that OA(T ) = ∆A. But then A ≅ A/∆A = A/OA(T ) ∈ AlgSysO(I).

On the other hand, if T ∈ FiFamI(A) so that A/OA(T ) ∈ AlgSysO(I),
then, for T /OA(T ) ∈ FiFamI(A/OA(T )), we get, by Lemma 1557,

OA/O
A(T )(T /OA(T )) =∆A/O

A(T ),

whence, by definition A/OA(T ) ∈ AlgSysO(I). ∎
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Corollary 1559 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysÕ
I(I) = AlgSysÕI(I).

Proof: By Proposition 1544 together with Proposition 1558. ∎

Lemma 1560 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, O = {OA ∶ A ∈ AlgSys(F)} a semi-coherent family
of congruential compatibility I-operators and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. For all T ⊆ FiFamI(A)

ÕA/Õ
A(T )(T /ÕA(T )) = ∆A/Õ

A(T ).

Proof: Let A be an F-algebraic system and T ⊆ FiFamI(A). Consider the
quotient morphism ⟨I, π⟩ ∶ A→ A/ÕA(T ). It is surjective and O-compatible
with T . By the assumption of semi-coherence and Proposition 1546, we get

ÕA/Õ
A(T )(T /ÕA(T )) = ÕA/Õ

A(T )(π(T ))
= π(ÕA(T ))
= ÕA(T )/ÕA(T )
= ∆A/Õ

A(T ).

This concludes the proof of the statement. ∎

Proposition 1561 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysÕ(I) = AlgSysÕ(I).
Proof: Suppose A ∈ AlgSysÕ(I). Then, there exists T ⊆ FiFamI(A), such

that ÕA(T ) =∆A. But then A ≅ A/∆A = A/ÕA(T ) ∈ AlgSysÕ(I).
On the other hand, if T ⊆ FiFamI(A) so that A/ÕA(T ) ∈ AlgSysÕ(I),

then, for T /ÕA(T ) ⊆ FiFamI(A/ÕA(T )), we get, by Lemma 1560,

ÕA/Õ
A(T )(T /ÕA(T )) = ∆A/Õ

A(T ),

whence, by definition A/ÕA(T ) ∈ AlgSysÕ(I). ∎

Proposition 1562 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, and O = {OA ∶ A ∈ AlgSys(F)} a semi-
coherent family of congruential compatibility I-operators. Then

AlgSysÕ(I) = AlgSysÕ(I) = AlgSysÕ
I(I) = AlgSysÕI(I).
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Proof: For every F-algebraic system and every T ∈ FiFamI(A), we have
ÕI,A(T ) = ÕA(FiFamI(A)T ). This equality gives that

AlgSysÕI(I) ⊆ AlgSysÕ(I) and AlgSysÕ
I(I) ⊆ AlgSysÕ(I).

Assume, conversely, in the first case, that AlgSysÕ(I). By Lemma 1556,
ÕA(FiFamI(A)) =∆A. Let T = ⋂FiFamI(A). Then we get

ÕI,A(T ) = ÕA(FiFamI(A)T ) = Õ(FiFamI(A)) =∆A.

This shows that A ∈ AlgSysÕI(I). Due to Corollary 1559 and Proposition
1561 the equality just proven suffices to guarantee the conclusion. ∎

21.10 Leibniz Operator as an I-Operator

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We consider in this section the Leibniz operator

Ω = {ΩA ∶ A ∈ AlgSys(F)},
which is a coherent, congruential, compatibility I-operator. We saw that its
lifting is the Tarski operator Ω̃ and its relativization is the Suszko operator
Ω̃I . Using the definition, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all θ ∈ ConSys(A), we have

ΩA
−1(θ) = {T ∈ FiFamI(A) ∶ θ ≤ ΩA(T )}

= {T ∈ FiFamI(A) ∶ θ is compatible with T}.
We have the following characterizations of Ω-full objects:

Proposition 1563 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ⊆ FiFamI(A). T is Ω-full if and only if ⟨A,T ⟩ is a full I-structure.

Proof: We have

T is Ω-full iff T = ΩA
−1(Ω̃A(T ))

(by definition of Ω-full)

iff T = {T ′ ∈ FiFamI(A) ∶ Ω̃A(T ) ≤ ΩA(T ′)}
(by definition of ΩA

−1
)

iff ⟨A,T ⟩ is a full I-structure.
(by Theorem 1395)

∎

Recall that ConSysI(A) denotes the collection of all AlgSys(I)-congruence
systems on an F-algebraic system A, i.e., those congruence systems θ on A,
such that A/θ ∈ ConSys(I). For Ω-full congruence systems, we get
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Proposition 1564 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
θ ∈ ConSys(A). θ is Ω-full if and only if θ ∈ ConSysI(A).
Proof: We have

θ is Ω-full iff Ω̃A/θ(FiFamI(A)) =∆A/θ

(by Proposition 1550)
iff A/θ ∈ AlgSys(I)

(by Proposition 1399)
iff θ ∈ ConSys(A).

(by definition).
∎

As a corollary of these two characterizations, we can derive from our
work on Galois connections (more precisely Corollary 1521) the Isomorphism
Theorem 1408 between full I-structures and I-congruence systems.

Corollary 1565 (Isomorphism Theorem 1408) Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system, I = ⟨F,C⟩ a π-institution based on F, and A =⟨A, ⟨F,α⟩⟩ an F-algebraic system. The operators Ω̃A and ΩA

−1
establish a Ga-

lois connection between P(FiFamI(A)) and EqvFam(A), which restricts to
mutually inverse isomorphisms between ⟨FStrI(A),≤⟩ and ⟨ConSysI(A),≤⟩.
Proof: By Corollary 1521 and Propositions 1563 and 1564, noting that the
order on ⟨FStrI(A),≤⟩ is the converse from that inherited by ⟨P(FiFamI(A)),⊆⟩.
∎

By applying Proposition 1522 to the Leibniz operator, we get a charac-
terization of full I-structures.

Proposition 1566 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ⊆ FiFamI(A). ⟨A,T ⟩ is a full I-structure if and only if T is the largest
collection D ⊆ FiFamI(A), such that Ω̃A(D) = Ω̃A(T ).
Proof: By instantiating Proposition 1522 to the Leibniz operator. ∎

Moreover, directly from Lemma 1518, we get:

Proposition 1567 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if
Ω̃I = Ω.

Proof: By instantiating Lemma 1518 to the Leibniz operator. ∎

We turn now to Ω-classes and Ω-filter families. Let F = ⟨Sign♭,SEN♭,N ♭⟩
be an algebraic system, I = ⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩
an F-algebraic system and T ∈ FiFamI(A).
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The Ω-class of T or Leibniz class of T is

[[T ]]∗ ∶= ΩA
−1(ΩA(T )) = {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)}.

The Leibniz filter family of T is the I-filter family

T ∗ =⋂ [[T ]]∗.
We say that T is a Leibniz filter family if T ∗ = T . The collection of all
Leibniz filter families of A is denoted by FiFamI∗(A).

We further denote by [T ] the equi-Leibniz class of T , i.e., the collection
of all I-filter families of A that share the same Leibniz congruence system
with T : [T ] = {T ′ ∈ FiFamI(A) ∶ ΩA(T ′) = ΩA(T )} ⊆ [[T ]]∗.

Some basic properties involving these concepts follow.

Lemma 1568 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A).

(a) T ∗ ≤ ⋂[T ] ≤ T ;

(b) If T ∗ = T , then T = ⋂[T ];
(c) If I is protoalgebraic, then T = T ∗ if and only if T = ⋂[T ].

Proof:

(a) We have T ∗ = ⋂ [[T ]]∗ ≤ ⋂[T ] ≤ T .

(b) If T ∗ = T , then, by Part (a), T = ⋂[T ].
(c) Suppose that I is protoalgebraic. The necessity is given by Part (b).

For the sufficiency, assume that T = ⋂[T ]. Since, by Part (a), T ∗ ≤ T ,
by protoalgebraicity, ΩA(T ∗) ≤ ΩA(T ). Since T ∗ ∈ [[T ]]∗, we get, by
definition, ΩA(T ) ≤ ΩA(T ∗). Hence, ΩA(T ) = ΩA(T ∗) and, therefore,
T ∗ ∈ [T ]. Now we conclude that T = ⋂[T ] ≤ T ∗. By Part (a), the
reverse inclusion always holds.

∎

Proposition 1569 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A).

(a) ⟨A, [[T ]]∗⟩ ∈ FStr(I);
(b) Ω̃A([[T ]]∗) = ΩA(T ).
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Proof: By Proposition 1563, ⟨A, [[T ]]∗⟩ is a full I-structure. Since T ∈ [[T ]]∗,
it follows that Ω̃A([[T ]]∗) ≤ ΩA(T ). On the other hand, for all T ′ ∈ [[T ]]∗,
ΩA(T ) ≤ ΩA(T ′). Thus, ΩA(T ) ≤ ⋂T ′∈[[T ]]∗ ΩA(T ′) = Ω̃A([[T ]]∗). ∎

It turns out that, for every theory family, its Leibniz counterpart is in
fact a Leibniz theory family.

Proposition 1570 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A). Then T ∗ ∈ FiFamI∗(A).
Proof: By Lemma 1568, we have (T ∗)∗ ≤ T ∗. On the other hand, T ∗ ∈ [[T ]]∗.
So, by definition ΩA(T ) ≤ ΩA(T ∗). This shows that [[T ∗]]∗ ⊆ [[T ]]∗. This, in
turn, yields T ∗ = ⋂ [[T ]]∗ ≤ ⋂ [[T ∗]]∗ = (T ∗)∗. We conclude that (T ∗)∗ = T ∗
and, hence, T ∗ ∈ FiFamI∗(A). ∎

We also have a characterization of Leibniz filter families in terms of full
structures.

Proposition 1571 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system
and T ∈ FiFamI(A). T ∈ FiFamI∗(A) if and only if, there exists ⟨A,T ⟩ ∈
FStrI(A), such that T = ⋂T .

Proof: Suppose, first, that T ∈ FiFamI∗(A). Then T = T ∗ = ⋂ [[T ]]∗ and, by
Proposition 1569, ⟨A, [[T ]]∗⟩ is a full I-structure.

Assume, conversely, that T = ⋂T , with ⟨A,T ⟩ ∈ FStr(I). Since T = ⋂T ∈
T , we get Ω̃A(T ) ≤ ΩA(T ). Thus, we get

[[T ]]∗ = ΩA
−1(ΩA(T )) ⊆ ΩA

−1(Ω̃A(T )) = T .
So T = ⋂T ≤ ⋂ [[T ]]∗ = T ∗. Since, by Lemma 1568, T ∗ ≤ T , we conclude that
T ∗ = T and, hence, T ∈ FiFamI∗(A). ∎

Corollary 1554, applied to the Leibniz operator, gives another character-
ization of Leibniz filter families.

Proposition 1572 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A). T ∈ FiFamI∗(A) if and only if T /ΩA(T ) is the least filter
family in FiFamI(A/ΩA(T )).
Proof: By specializing Corollary 1554 to the Leibniz operator. ∎

Leibniz filter families may also be used in characterizing the reflectivity
of the Leibniz operator, which characterizes family reflective π-institutions.
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Proposition 1573 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Ω is reflective if and only if, for every
F-algebraic system A = ⟨A, ⟨F,α⟩⟩, FiFamI∗(A) = FiFamI(A).
Proof: We have that Ω is reflective if and only if, by definition, for every
F-algebraic system A and all T,T ′ ∈ FiFamI(A),

ΩA(T ) ≤ ΩA(T ′) implies T ≤ T ′,

if and only if, by definition of [[T ]]∗, for every F-algebraic system A and
all T,T ′ ∈ FiFamI(A), T ′ ∈ [[T ]]∗ implies T ≤ T ′, if and only if, since T ∗ =
min [[T ]]∗, for every F-algebraic system A and all T ∈ FiFamI(A), T = T ∗, if
and only if, for every F-algebraic system A, FiFamI∗(A) = FiFamI(A). ∎

Surjective morphisms between algebraic systems, with isomorphic signa-
ture components, that satisfy a compatibility condition, induce order iso-
morphisms between Leibniz classes, which restrict to order isomorphisms
between equi-Leibniz classes.

Theorem 1574 (Correspondence Theorem for Leibniz Classes) Let F =⟨Sign♭, SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on
F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ two F-algebraic systems, ⟨H,γ⟩ ∶ A→ B a
surjective morphism, with H an isomorphism, and T ∈ FiFamI(A). If ⟨H,γ⟩
is Ω-compatible with T , then γ induces an order isomorphism from [[T ]]∗ onto[[γ(T )]]∗, with inverse γ−1. In addition, for all T ′ ∈ [[T ]]∗, γ induces an order
isomorphism from [T ′] onto [γ(T ′)].
Proof: The first statement follows from the General Correspondence Theo-
rem 1552 by instantiation to the Leibniz operator. So we undertake the proof
of the additional statement. Suppose that T ′, T ′′ ∈ [[T ]]∗. Since T ′ ∈ [[T ]]∗, we
get [T ′] ⊆ [[T ′]]∗ ⊆ [[T ]]∗. Thus, by the first statement, γ−1(γ(T ′)) = T ′ and
γ−1(γ(T ′′)) = T ′′. Thus, we get

ΩA(T ′′) = ΩA(T ′) iff ΩA(γ−1(γ(T ′′))) = ΩA(γ−1(γ(T ′)))
iff γ−1(ΩB(γ(T ′′))) = γ−1(ΩB(γ(T ′)))
iff ΩB(γ(T ′′)) = ΩB(γ(T ′)).

So T ′′ ∈ [T ′] if and only if γ(T ′′) ∈ [γ(T ′)]. Thus, the order isomorphism
γ ∶ [[T ]]∗ → [[γ(T )]]∗ restricts to an order isomorphism γ ∶ [T ]→ [γ(T )]. ∎

As a consequence of Correspondence Theorem, we get a correspondence
between Leibniz filter families.

Corollary 1575 Let F = ⟨Sign♭, SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ two F-
algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomor-
phism, and T ∈ FiFamI(A). If ⟨H,γ⟩ is Ω-compatible with T , then

T ∈ FiFamI∗(A) iff γ(T ) ∈ FiFamI∗(B).
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Proof: By Theorem 1574, under the isomorphism γ ∶ [[T ]]∗ → [[γ(T )]]∗, the
least theory family T ∗ of [[T ]]∗ corresponds to the least theory family γ(T )∗
of [[γ(T )]]∗. Therefore, T ∈ FiFamI∗(A) if and only if T = T ∗ if and only if
γ(T ) = γ(T )∗ if and only if γ(T ) ∈ FiFamI∗(B). ∎

Rephrased in terms of strict surjective morphisms Corollary 1575 yields

Corollary 1576 Let F = ⟨Sign♭, SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ two F-
algebraic systems, T ∈ FiFamI(A), T ′ ∈ FiFamA(B) and ⟨H,γ⟩ ∶ ⟨A, T ⟩ →⟨B, T ′⟩ a strict surjective morphism, with H an isomorphism. Then

T ∈ FiFamI∗(A) iff T ′ ∈ FiFamI∗(B).
Proof: It suffices to show that ⟨H,γ⟩ ∶ A → B is Ω-compatible with T . If
that is the case, then, since T = γ−1(T ′), we get, T ′ = γ(γ−1(T ′)) = γ(T ), and
the statement follows by applying Corollary 1575. We have, indeed

Ker(⟨H,γ⟩) = γ−1(∆B)
≤ γ−1(ΩB(T ′))
= ΩA(γ−1(T ′))
= ΩA(T ).

Therefore, ⟨H,γ⟩ is indeed compatible with T . ∎

The Correspondence Theorem 1574 allows us to formulate a Correspon-
dence Theorem for the special case of protoalgebraic π-institutions that, as
it turns out, provides an additional characterization of protoalgebraicity.

Theorem 1577 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is protoalgebraic if and only if, for all
F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all T ∈ FiFamI(A), T ′ ∈
FiFamI(B) and every strict surjective morphism ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩,
with H an isomorphism, γ induces an order isomorphism from FiFamI(A)T
onto FiFamI(B)T ′ , with inverse γ−1.

Proof: Suppose, first, that I is protoalgebraic and let ⟨H,γ⟩ ∶ ⟨A, T ⟩ →⟨B, T ′⟩ be a strict surjective morphism, with H an isomorphism. Then, we
get T = γ−1(T ′) and T ′ = γ(γ−1(T ′)) = γ(T ). So T = γ−1(γ(T )). This
implies that ⟨H,γ⟩ ∶ A → B is compatible with T . By the Correspon-
dence Theorem for Leibniz Classes 1574, γ induces an order isomorphism
γ ∶ [[T ]]∗ → [[T ′]]∗, with inverse γ−1. But, by protoalgebraicity, FiFamI(A)T
and FiFamI(B)T ′ are upsets of [[T ]]∗ and [[T ′]]∗, respectively and T cor-
responds to T ′ under γ. Therefore, γ restricts to an order isomorphism
γ ∶ FiFamI(A)T → FiFamI(B)T ′ , with inverse γ−1.
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Suppose, conversely, that the given condition holds. Let T,T ′ ∈ ThFam(I),
such that T ≤ T ′. Consider the quotient morphism ⟨I, π⟩ ∶ F → F/Ω(T ). It
gives a strict surjective morphism

⟨I, π⟩ ∶ ⟨F , T ⟩→ ⟨F/Ω(T ), T /Ω(T )⟩.
Since, by hypothesis, π ∶ FiFamI(F)T → FiFamI(F/Ω(T ))T /Ω(T ) is an order
isomorphism. with inverse π−1 and, clearly, T ′ ∈ FiFamI(F)T , we get that
π(T ′) ∈ FiFamI(F/Ω(T ))T /Ω(T ) and T ′ = π−1(π(T ′)). Now we get

Ω(T ) = Ker(⟨I, π⟩)
= π−1(∆F/Ω(T ))
≤ π−1(ΩF/Ω(T )(π(T ′)))
= Ω(π−1(π(T ′)))
= Ω(T ′).

Since Ω is monotone, we conclude that I is a protoalgebraic π-institution.
∎

Now we get a characterization of those full I-structures whose closure
families are Leibniz classes.

Proposition 1578 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ⊆ FiFamI(A), such that ⟨A,T ⟩ is a full I-structure. Then T = [[T ]]∗, for
some T ∈ FiFamI(A), if and only if A/Ω̃A(T ) ∈ AlgSys∗(I).
Proof: Suppose, first, that T = [[T ]]∗, for some T ∈ FiFamI(A). Then, using
Proposition 1569, we get

Ω̃A(T ) = Ω̃A([[T ]]∗) = ΩA(T ).
Therefore, A/Ω̃A(T ) = A/ΩA(T ) ∈ AlgSys∗(I).

Assume, conversely, that A/Ω̃A(T ) ∈ AlgSys∗(I). By definition, there
exists T ∈ FiFamI(A/Ω̃A(T )), such that ΩA/Ω̃

A(T )(T ) = ∆A/Ω̃
A(T )

. This
equality implies that [[T ]]∗ = FiFamI(A/Ω̃A(T )). Now consider the quo-
tient morphism ⟨I, π⟩ ∶ A → A/Ω̃A(T ). Since, by hypothesis ⟨A,T ⟩ is a full
I-structure, we get

T = π−1(T /Ω̃A(T )) = π−1(FiFamI(A/Ω̃A(T ))) = π−1([[T ]]∗).
Moreover,

Ker(⟨I, π⟩) = π−1(∆A/Ω̃A(T )) = π−1(ΩA/Ω̃A(T )(T )) = ΩA(π−1(T )).
So ⟨I, π⟩ is Ω-compatible with π−1(T ). By the Correspondence Theorem for
Leibniz Classes 1574, we get an order isomorphism π ∶ [[π−1(T )]]∗ → [[T ]]∗.
This gives T = π−1([[T ]]∗) = [[π−1(T )]]∗. ∎

We get, as a consequence, a characterization of those π-institutions for
which all full I-structures are determined by Leibniz classes of I-filter fami-
lies.
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Proposition 1579 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩, FStrI(A) = {⟨A, [[T ]]∗⟩ ∶ T ∈ FiFamI(A)} if and only if AlgSys(I) =
AlgSys∗(I).
Proof: Suppose, first, that, for every F-algebraic system A, FStrI(A) ={⟨A, [[T ]]∗⟩ ∶ T ∈ FiFamI(A)}. Since AlgSys∗(I) ⊆ AlgSys(I) holds in gen-
eral, it suffices to show the reverse inclusion. To this end, let A ∈ AlgSys(I).
Thus, there exists T ∈ FiFamI(A), such that Ω̃I,A(T ) = ∆A. Since [[T ]]Ω̃I ∈
FStrI(A), we get, by hypothesis, T ′ ∈ FiFamI(A), such that [[T ]]Ω̃I = [[T ′]]∗.
Now notice the following:

• FiFamI(A)T ⊆ [[T ]]Ω̃I , whence ΩA(T ′) ≤ ⋂T≤T ′′ ΩA(T ′′) = Ω̃I,A(T );
• T ′ ∈ [[T ′]]∗ implies Ω̃I,A(T ) ≤ ΩA(T ′).

We conclude that ΩA(T ′) = Ω̃I,A(T ) =∆A. Hence, we have A ∈ AlgSys∗(I).
Assume, conversely, that AlgSys(I) = AlgSys∗(I). Since, by Proposition

1569, we have, in general, {⟨A, [[T ]]∗⟩ ∶ T ∈ FiFamI(A)} ⊆ FStrI(A), it suf-
fices to show the reverse inclusion. To this end, let ⟨A,T ⟩ ∈ FStrI(A). Then
A/Ω̃A(T ) ∈ AlgSys(I). By hypothesis, A/Ω̃A(T ) ∈ AlgSys∗(I). Therefore,
by Proposition 1578, there exists T ∈ FiFamI(A), such that T = [[T ]]∗. ∎

So, one way to characterize π-institutions I for which I-algebraic systems
and I∗-algebraic systems coincide is to look at the form of full I-structures.
An alternative characterization uses the Leibniz and Suszko operators.

Proposition 1580 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. AlgSys(I) = AlgSys∗(I) if and only
if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A), there
exists T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) = ΩA(T ′).
Proof: Assume AlgSys(I) = AlgSys∗(I). Let T ∈ FiFamI(A), so that
A/Ω̃I,A(T ) ∈ AlgSys(I). By Proposition 1579, there exists T ′ ∈ FiFamI(A),
such that [[T ]]Ω̃I = [[T ′]]∗. We now get

Ω̃I,A(T ) = Ω̃A([[T ]]Ω̃I) = Ω̃A([[T ′]]∗) = ΩA(T ′).
Assume, conversely, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all T ∈ FiFamI(A), there exists T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) =
ΩA(T ′). Let A ∈ AlgSys(I). Then, there exists T ∈ FiFamI(A), such
that Ω̃I,A(T ) = ∆A. By hypothesis, there exists T ′ ∈ FiFamI(A), such that
ΩA(T ′) = Ω̃I,A(T ) = ∆A. We conclude that A ∈ AlgSys∗(I). The reverse
inclusion always holds. Therefore, AlgSys(I) = AlgSys∗(I). ∎

Proposition 1580, gives the following feature of protoalgebraic π-institutions.
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Corollary 1581 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is protoalgebraic, then every full I-
structure is of the form ⟨A, [[T ]]∗⟩, for some F-algebraic system A and some
T ∈ FiFamI(A).
Proof: We know that, if I is protoalgebraic and A is an F-algebraic system,
then, for all T ∈ FiFamI(A), we have Ω̃I,A(T ) = ΩA(T ). Therefore, by
Proposition 1580 and Proposition 1579, every full I-structure has the form
claimed in the statement. ∎

This property of the full I-structures in a more precise form, yields a
characterization of protoalgebraicity.

Theorem 1582 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is protoalgebraic;

(ii) Every full I-structure is of the form ⟨A,FiFamI(A)T ⟩, for some F-
algebraic system A and some T ∈ FiFamI(A);

(iii) Every full I-structure is of the form ⟨A,FiFamI(A)T ⟩, for some F-
algebraic system A and some T ∈ FiFamI∗(A);

(iv) [[T ]]∗ = FiFamI(A)T ∗, for every F-algebraic system A and all T ∈
FiFamI(A).

Proof:

(i)⇒(ii) Suppose that I is protoalgebraic and let ⟨A,T ⟩ ∈ FStrI(A). By Propo-
sition 1563, T = {T ∈ FiFamI(A) ∶ Ω̃A(T ) ≤ ΩA(T )}. By protoalge-
braicity, T is an upset in FiFamI(A). Moreover, T has a least element,
T = ⋂T . Thus, we have T = FiFamI(A)⋂T .

(ii)⇒(iii) Assume (ii) holds and let ⟨A,T ⟩ ∈ FStrI(A). Then, there exists T ∈
FiFamI(A), such that T = FiFamI(A)T . By Proposition 1571, T ∈
FiFamI∗(A).

(iii)⇒(iv) Assume (iii) holds and let A be an F-algebraic system and T ∈ FiFamI(A).
By Proposition 1569, ⟨A, [[T ]]∗⟩ ∈ FStr(I). By Proposition 1570, T ∗ ∈
FiFamI∗(A) and, by definition T ∗ = ⋂ [[T ]]∗. Thus, by (iii), we get[[T ]]∗ = FiFamI(A)T ∗ .

(iv)⇒(i) Let A be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that
T ≤ T ′. Then, by Lemma 1568, T ∗ ≤ T ≤ T ′. By hypothesis, T ′ ∈ [[T ]]∗.
So we get, by definition of [[T ]]∗, ΩA(T ) ≤ ΩA(T ′). Since Ω is monotone
on every F-algebraic system, we get that I is protoalgebraic.

∎
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21.11 Suszko Operator as an I-Operator

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈ FiFamI(A).

The Ω̃I-class of T or Suszko class of T is

[[T ]]Su = ΩA
−1(Ω̃I,A(T )) = {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ ΩA(T ′)}.

The Suszko filter family of T is

T Su =⋂ [[T ]]Su.
T is a Suszko filter family if T Su = T . The collection of all Suszko filter
families of A is denoted by FiFamI,Su(A).

The following lemma gives some of the basic properties of Suszko classes
and Suszko theory families.

Lemma 1583 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T,T ′ ∈
FiFamI(A).

(a) T Su ≤ T ∗ ≤ T ;

(b) T Su = T implies T ∗ = T ;

(c) If T ≤ T ′, then [[T ′]]Su ⊆ [[T ]]Su and T Su ≤ T ′Su;

(d) FiFamI(A)T ⊆ [[T ]]Su ⊆ FiFamI(A)T Su
;

(e) [[T ]]Su = FiFamI(A)T if and only if T Su = T .

Proof:

(a) We have Ω̃I,A(T ) ≤ ΩA(T ). Hence [[T ]]∗ ⊆ [[T ]]Su. This gives

T Su =⋂ [[T ]]Su ≤ [[T ]]∗ = T ∗.
The last inequality is by Lemma 1568.

(b) If T = T Su, then, by Part (a), T = T ∗.

(c) If T ≤ T ′, by the monotonicity of the Suszko operator, Ω̃I,A(T ) ≤
Ω̃I,A(T ′). Thus, we get [[T ′]]Su ⊆ [[T ]]Su. Finally, T Su = ⋂ [[T ]]Su ≤
⋂ [[T ′]]Su = T ′Su.

(d) Suppose T ≤ T ′. Then Ω̃I,A(T ) ≤ Ω̃I,A(T ′) ≤ ΩA(T ′). So T ′ ∈ [[T ]]Su.
Moreover, if T ′ ∈ [[T ]]Su, then T Su = ⋂ [[T ]]Su ≤ T ′.
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(e) By specializing Lemma 1533.
∎

For the Suszko classes, we get an analogous result to Proposition 1569, to
the effect that they are closure families of full I-structures and their Tarski
congruence systems equal the Suszko congruence system of their generating
theory family.

Proposition 1584 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A).

(a) ⟨A, [[T ]]Su⟩ ∈ FStr(I);
(b) Ω̃A([[T ]]Su) = Ω̃I,A(T ).

Proof: Part (a) is a specialization of Proposition 1526.

Since, by Lemma 1583, FiFamI(A)T ⊆ [[T ]]Su, we get Ω̃A([[T ]]Su) ≤ Ω̃I,A(T ).
On the other hand, if T ′ ∈ [[T ]]Su, then Ω̃I,A(T ) ≤ ΩA(T ′). Hence Ω̃I,A(T ) ≤
⋂T ′∈[[T ]]Su ΩA(T ′) = Ω̃A([[T ]]Su). Equality now follows. ∎

The mapping T ↦ T Su is monotone.

Lemma 1585 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system. For
all T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies T Su ≤ T ′Su.

Proof: By Proposition 1529. ∎

Moreover, even though T Su is not necessarily a Suszko theory family, in
case it happens to be, it is the largest such below T .

Lemma 1586 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). For all T ′ ∈ FiFamI,Su(A), such that T ′ ≤ T , we have T ′ ≤ T Su.

Proof: Suppose T ′ ∈ FiFamI,Su(A), such that T ′ ≤ T . Then, by the hypoth-
esis and Lemma 1585, T ′ = T ′Su ≤ T Su. ∎

As far as characterizing Suszko theory families, we have the following

Proposition 1587 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ FiFamI(A). T ∈ FiFamI,Su(A) if and only if T /Ω̃I,A(T ) is the least
I-filter family of A/Ω̃I,A(T ).
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Proof: By Proposition 1530. ∎

It turns out that the collection of Suszko theory families of a π-institution
forms a join complete subsemilattice of the lattice of all theory families.

Lemma 1588 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A = ⟨A,⟨F,α⟩⟩ FiFamI,Su(A) is a join complete subsemilattice of FiFamI(A).
Proof: Suppose {T i ∶ i ∈ I} ⊆ FiFamI,Su(A). By Lemma 1585, we get, for
all i ∈ I,

T i = (T i)Su ≤ (⋁
i∈I

T )Su.
This gives ⋁i∈I T i ≤ (⋁i∈I T i)Su. But, by Lemma 1583, (⋁i∈I T i)Su ≤ ⋁i∈I T i.
Hence, we conclude that ⋁i∈I T i ∈ FiFamI,Su(A). ∎

For an F-algebraic system A and T ∈ FiFamI(A), it turns out that T is
a Suszko I-filter family exactly when it is the least filter family of a full I-
structure, whose closure family consists of the upset in the lattice of I-theory
families generated by T .

Theorem 1589 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈
FiFamI(A). The following conditions are equivalent:

(i) T ∈ FiFamI,Su(A);
(ii) ⟨A,FiFamI(A)T ⟩ ∈ FStr(I);

(iii) T = ⋂T , where T ⊆ FiFamI(A) is an upset and ⟨A,T ⟩ ∈ FStr(I).
Proof:

(i)⇒(ii) Assume that T ∈ FiFamI,Su(A). Then, by Lemma 1583, FiFamI(A)T =
[[T ]]Su and, moreover, by Proposition 1584, ⟨A, [[T ]]Su⟩ ∈ FStr(I).

(ii)⇒(iii) Assume (ii) holds and set T = FiFamI(A)T . Then, T = ⋂T , T is an
upset in FiFamI(A) and, by hypothesis, ⟨A,T ⟩ ∈ FStr(I).

(iii)⇒(i) Suppose, finally, that T = ⋂T , where T is an upset in FiFamI(T )
and ⟨A,T ⟩ is a full I-structure. We then have T = ⋂T ∈ T , since
T is a closure family. Hence, since T is an upset, FiFamI(A)T ⊆ T .
But, by hypothesis T = ⋂T , whence T ⊆ FiFamI(A)T . Thus, we get
that T = FiFamI(A)T . Since ⟨A,T ⟩ is a full I-structure, we have, by
Theorem 1395,

T = FiFamI(A)T = {T ′ ∈ FiFamI(A) ∶ Ω̃A(FiFamI(A)T ) ≤ ΩA(T ′)}.
But Ω̃A(FiFamI(A)T ) = Ω̃I,A(T ), whence FiFamI(A)T = [[T ]]Su. Now

we get T = ⋂FiFamI(A)T = ⋂ [[T ]]Su = T Su and T ∈ FiFamI,Su(A).
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∎

It turns out that requiring that all I-filter families on all F-algebraic
systems be Suszko filter families is tantamount to I being family completely
reflective.

Theorem 1590 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is family c-reflective;

(ii) For every F-algebraic system A, FiFamI,Su(A) = FiFamI(A);
(iii) For every A ∈ AlgSys(I), FiFamI,Su(A) = FiFamI(A).
Proof:

(i)⇒(iii) Assume that I is family c-reflective and let A be an I-algebraic system

and T ∈ FiFamI(A). Then, for all T ′ ∈ [[T ]]Su, we have Ω̃I,A(T ) ≤
ΩA(T ′). By family c-reflectivity and Lemma 826, we get T ≤ T ′, Thus,

T ≤ ⋂ [[T ]]Su = T Su. Since, by Lemma 1583, T Su ≤ T , we get T = T Su,
i.e., T ∈ FiFamI,Su(A). We conclude that FiFamI,Su(A) = FiFamI(A).

(iii)⇒(ii) Suppose that (iii) holds and let A be an F-algebraic system and T ∈
FiFamI(A). Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
Set T ′ ∈ ⋂FiFamI(A/Ω̃I,A(T )). Since Ω̃I,A(T ) is compatible with T ,
by Corollary 57, T /Ω̃I,A(T ) ∈ FiFamI(A/Ω̃I,A(T )). Thus, by defini-
tion, T ′ ≤ T /Ω̃I,A(T ). Thus, we get

Ω̃I,A/Ω̃
I,A(T )(T ′) ≤ Ω̃I,A/Ω̃

I,A(T )(T /Ω̃I,A(T )) =∆A/Ω̃
I,A(T ).

By hypothesis, since A/Ω̃I,A(T ) ∈ AlgSys(I), we get that

T ′, T /Ω̃I,A(T ) ∈ FiFamI,Su(A/Ω̃I,A(T )).
By Proposition 1528, T ′ = T /Ω̃I,A(T ). Thus, T /Ω̃I,A(T ) is the least
I-theory family on A/Ω̃I,A(T ). Therefore, by Proposition 1587, T ∈
FiFamI,Su(A).

(ii)⇒(i) Assume (ii) and let A be an F-algebraic system, T,T ′ ∈ FiFamI(A),
such that Ω̃I,A(T ) ≤ ΩA(T ′). By definition, T ′ ∈ [[T ]]Su. Since T = T Su,

we get that T = ⋂ [[T ]]Su ≤ T ′. By Lemma 826, I is family c-reflective.
∎

Using Theorem 1590, we get additional characterizations of family c-ref-
lectivity.
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Corollary 1591 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is family c-reflective;

(ii) ⟨A,FiFamI(A)T ⟩ ∈ FStr(I), for every F-algebraic system A and all
T ∈ FiFamI(A);

(iii) [[T ]]Su = FiFamI(A)T , for every F-algebraic system A and all T ∈
FiFamI(A).

Proof:

(i)⇒(ii) Assume I is family c-reflective and let A be an F-algebraic system
and T ∈ FiFamI(A). By Theorem 1590, T ∈ FiFamI,Su(A). Thus, by
Theorem 1589, ⟨A,FiFamI(A)T ⟩ ∈ FStr(I).

(ii)⇒(iii) Assume (ii). Let A be an F-algebraic system and T ∈ FiFamI(A).
By hypothesis, ⟨A,FiFamI(A)T ⟩ ∈ FStr(I). Thus, by Theorem 1589,

T ∈ FiFamI,Su(A). Therefore, by Lemma 1583, [[T ]]Su = FiFamI(A)T .

(iii)⇒(i) Assume (iii). Then, by Lemma 1583, FiFamI(A) = FiFamI,Su(A).
Therefore, by Theorem 1590, I is family c-reflective.

∎

The condition that all full I-structures are of the form given in Part (ii)
of Theorem 1591 is tantamount to weak family algebraizability.

Corollary 1592 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is weakly family algebraizable if and only
if FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI(A)}, for every F-algebraic
system A.

Proof: By definition I is WF algebraizable if and only if it is protoalge-
braic and family c-reflective, if and only if, by Theorem 1582 and by Corol-
lary 1591, for every F-algebraic system A, FStrI(A) ⊆ {⟨A,FiFamI(A)T ⟩ ∶
T ∈ FiFamI(A)} and {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI(A)} ⊆ FStrI(A), if
and only if FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI(A)}, for every F-
algebraic system A. ∎

Moreover, as far as characterizations of WF algberaizability we obtain
one that involves both Suszko classes and Suszko filter families.

Proposition 1593 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is weakly family algebraizable if
and only if, for every F-algebraic system A, FiFamI(A) = FiFamI,Su(A)
and, for every T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈ FStr(I), there exists

T ∈ FiFamI(A), such that T = [[T ]]Su.
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Proof: Suppose that I is weakly family algebraizable. Since it is protoalge-
braic, by Theorem 1582, for every F-algebraic system A, if ⟨A,T ⟩ ∈ FStr(I),
then T = FiFamI(A)T , for some T ∈ FiFamI(A). Since I is family c-

reflective, by Corollary 1591, FiFamI(A)T = [[T ]]Su. Hence, if ⟨A,T ⟩ ∈
FStr(I), then T = [[T ]]Su, for some T ∈ FiFamI(A). Finally, by Theorem
1590, FiFamI(A) = FiFamI,Su(A).

Suppose, conversely, that the given property holds. Since, for every F-
algebraic system A, FiFamI(A) = FiFamI,Su(A), by Theorem 1590, I is

family c-reflective. By, Corollary 1591, for all T ∈ FiFamI(A), [[T ]]Su =
FiFamI(A)T . By hypothesis, for all T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈
FStr(I), there exists T ∈ FiFamI(A), such that T = FiFamI(A)T . Hence,
by Theorem 1582, I is also protoalgebraic. We conclude that I is WF alge-
braizable. ∎

As far as Suszko classes go, we have a special correspondence theorem
that follows from the General Correspondence Theorem 1552 for O-classes.

Theorem 1594 (Correspondence Theorem for Suszko Classes) Let F =⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on
F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, ⟨H,γ⟩ ∶ A → B a
surjective morphism, with H an isomorphism, and T ∈ FiFamI(A). If ⟨H,γ⟩
is Ω̃I-compatible with T , then γ induces an order isomorphism from [[T ]]Su
to [[γ(T )]]Su, with inverse γ−1.

Proof: By Proposition 1544, Ω̃I is a semi-coherent family of compatibility
I-operators, whence, by Theorem 1552, we get the conclusion. ∎

Under the hypotheses of Theorem 1594, we also obtain a correspondence
between Suszko filter families:

Corollary 1595 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic
systems, ⟨H,γ⟩ ∶ A→ B a surjective morphism, with H an isomorphism, and
T ∈ FiFamI(A), such that ⟨H,γ⟩ is Ω̃I-compatible with T . Then

T ∈ FiFamI,Su(A) iff γ(T ) ∈ FiFamI,Su(B).
Proof: We have

T ∈ FiFamI,Su(A) iff T = T Su

iff T = ⋂ [[T ]]Su
iff γ(T ) = ⋂ [[γ(T )]]Su (by Theorem 1594)
iff γ(T ) = γ(T )Su
iff γ(T ) ∈ FiFamI,Su(B).

∎
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Analogously to Theorem 1577, characterizing protoalgebraicity via a cor-
respondence between posets of filter families of F -algebraic systems related
via surjective strict morphisms, we get a correspondence theorem character-
izing family c-reflectivity.

Theorem 1596 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family c-reflective if and only if, for
all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all T ∈ FiFamI(A)
and T ′ ∈ FiFamI(B), and all strict surjective ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩, with
H an isomorphism, such that ⟨H,γ⟩ is Ω̃I-compatible with T , γ induces an
order isomorphism from FiFamI(A)T onto FiFamI(B)T ′Su , with inverse γ−1.

Proof: Suppose, first, that I is family c-reflective. Let ⟨H,γ⟩ ∶ ⟨A, T ⟩ →⟨B, T ′⟩ be a strict surjective morphism, with H an isomorphism, such that

⟨H,γ⟩ is Ω̃I-compatible with T . By Theorem 1594, γ ∶ [[T ]]Su → [[T ′]]Su is an

order isomorphism with inverse γ−1. By Corollary 1591, [[T ]]Su = FiFamI(AT

and [[T ′]]Su = FiFamI(B)T ′ . Moreover, by Theorem 1590, T ′ = T ′Su. Thus,
we get the conclusion.

Assume, conversely, that the given condition holds. It suffices, by Theo-
rem 1590, to show that every I-filter family on every F-algebraic system is a
Suszko I-filter family. So let A be an F-algebraic system and T ∈ FiFamI(A).
Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
Then ⟨I, π⟩ ∶ ⟨A, T ⟩ → ⟨A/Ω̃I,A(T ), T /Ω̃I,A(T )⟩ is a strict surjective mor-
phism, with I an isomorphism and it is Ω̃I-compatible with T . By hypothe-
sis,

π ∶ FiFamI(A)T → FiFamI(A/Ω̃I,A(T ))(T /Ω̃I,A(T ))Su
is an order isomorphism with inverse π−1.

• By Lemma 1557, we get Ω̃A/Ω̃
I,A(T )(T /Ω̃I,A(T )) = Ω̃I,A(T )/Ω̃I,A(T ) =

∆A/Ω̃
I,A(T ). Thus, by the definition of a Suszko class,

[[T /Ω̃I,A(T )]]Su = FiFamI(T /Ω̃I,A(T )),
whence (T /Ω̃I,A(T ))Su = ⋂FiFamI(T /Ω̃I,A(T )) and, therefore,

FiFamI(T /Ω̃I,A(T ))(T /Ω̃I,A(T ))Su = FiFamI(T /Ω̃I,A(T )).
• By Theorem 1594, π ∶ [[T ]]Su → [[T /Ω̃I,A(T )]]Su is an order isomorphism

with inverse π−1.
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We conclude that [[T ]]Su = FiFamI(A)T . By Lemma 1583, T ∈ FiFamI,Su(A).
Thus, every I-filter family on every F-algebraic system is a Suszko I-filter
family and, by Theorem 1590, I is family c-reflective. ∎

Along similar lines, for weakly family algebraizable π-institutions, we get
the following characterization, which consists of strengthening the condition
in Theorem 1596 by requiring that it holds for all strict surjective morphisms
with isomorphic signature components, without additional compatibility re-
quirements.

Theorem 1597 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is weakly family algebraizable if and
only if, for all F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all T ∈
FiFamI(A) and T ′ ∈ FiFamI(B), and all strict surjective morphisms ⟨H,γ⟩ ∶⟨A, T ⟩ → ⟨B, T ′⟩, with H an isomorphism, γ induces an order isomorphism
from FiFamI(A)T onto FiFamI(B)T ′Su , with inverse γ−1.

Proof: Suppose, first, that I is weakly family algebraizable. On the one
hand, it is protoalgberaic, whence, by Theorem 1577, γ ∶ FiFamI(A)T →
FiFamI(B)T ′ is an order isomorphism with inverse γ−1. On the other hand,
it is family c-reflective, whence by Theorem 1590, T ′ = T ′Su. This establishes
the conclusion.

Assume, conversely, that the property in the statement holds. Then, by
Theorem 1596, I is family c-reflective. Thus, by Theorem 1590, T ′Su = T ′.
So γ ∶ FiFamI(A)T → FiFamI(B)T ′ is an order isomorphism with inverse γ−1.
Hence, by Theorem 1577, I is also protoalgebraic. Therefore, I , being both
protoalgebraic and family c-reflective, is weakly family algebraizable. ∎

Next, in analogy with Proposition 1579, we give a characterization of
those π-institutions I all of whose I-structures correspond to closure families
consisting of Suszko classes.

Proposition 1598 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) FStrI(A) = {⟨A, [[T ]]Su⟩ ∶ T ∈ FiFamI(A)}, for every F-algebraic system
A;

(ii) Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is surjective, for every F-algebraic
system A.

Proof:

(i)⇒(ii) Suppose (i) holds. Let A be an F-algebraic system and θ ∈ ConSysI(A).
Then, by Corollary 1565, there exists T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈
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FStrI(A) and Ω̃A(T ) = θ. By hypothesis, there exists T ∈ FiFamI(A),
such that T = [[T ]]Su. Now we get, using Proposition 1584,

θ = Ω̃A(T ) = Ω̃A([[T ]]Su) = Ω̃I,A(T ).
Thus, Ω̃I,A is indeed surjective.

(ii)⇒(i) Assume that (ii) holds. Since, by Proposition 1584, the right-to-left
inclusion in (i) always holds, it suffices to show the reverse inclusion.
To this end, let T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈ FStr(I). Then
A/Ω̃A(T ) ∈ AlgSys(I), which gives that Ω̃A(T ) ∈ ConSysA(A). There-
fore, by hypothesis, there exists T ∈ FiFamI(A), such that Ω̃A(T ) =
Ω̃I,A(T ). Since, by Proposition 1584, Ω̃A([[T ]]Su) = Ω̃I,A(T ) and, by

Proposition 1584, ⟨A.[[T ]]Su⟩ ∈ FStrI(A), we get, by the isomorphism

established in Corollary 1565, that T = [[T ]]Su.
∎

The next proposition provides a characterization of weakly family alge-
braizable π-institution inside the class of family c-reflective ones, based on
the form of their full I-structures.

Proposition 1599 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family c-reflective π-institution based on F. I is weakly family
algebraizable if and only if, for every F-algebraic system A,

FStrI(A) = {⟨A, [[T ]]Su⟩ ∶ T ∈ FiFamI(A)}.
Proof: Suppose, first, that I is weakly family algebraizable. Since this
implies that I is protoalgebraic, we get that AlgSys(I) = AlgSys∗(I). Thus,

by Proposition 1579, FStrI(A) = {⟨A, [[T ]]Su⟩ ∶ T ∈ FiFamI(A)}, for every
F-algebraic system A.

Suppose, conversely, that the condition given in the statement holds
and let A be an F-algebraic system and T ∈ FiFamI(A). Since ΩA(T ) ∈
ConSysI∗(A) ⊆ ConSysI(A), by hypothesis and Proposition 1598, there ex-

ists T ′ ∈ FiFamI(A), such that ΩA(T ) = Ω̃I,A(T ′). Hence, [[T ]]∗ = [[T ′]]Su.
Since I is family c-reflective, by Theorem 1590 and Lemma 1583, FiFamI(A) =
FiFamI,Su(A) ⊆ FiFamI∗(A). Thus, T = T ∗ = T ′Su = T ′. We conclude that
ΩA(T ) = Ω̃I,A(T ). By Proposition 1567, we conclude that I is protoalge-
braic. Since, by hypothesis, it is family c-reflective, we conclude that I is
weakly family algebraizable. ∎

We see, next, that family c-reflectivity is characterized by the property
that all principal filters in the lattice of filter families are Suszko full classes
and, also, by the reflectivity of the Suszko operator on every F-algebraic
system.



1324 CHAPTER 21. I-OPERATORS Voutsadakis

Proposition 1600 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is family c-reflective;

(ii) FiFamI(A)T is Suszko full for every F-algebraic system A and all T ∈
FiFamI(A);

(iii) Ω̃I,A ∶ FiFamI(A) → ConSys(A) is order reflecting, for every F-alge-
braic system A.

Proof:

(i)⇒(iii) Suppose that I is family c-reflective and let A be an F-algebraic system
and T,T ′ ∈ FiFamI(A), such that Ω̃I,A(T ) ≤ Ω̃I,A(T ′). Then we get

⋂{ΩA(T ′′) ∶ T ≤ T ′′ ∈ FiFamI(A)} ≤ Ω̃I,A(T ′) ≤ ΩA(T ′).
By hypothesis and Lemma 826, ⋂{T ′′ ∶ T ≤ T ′′ ∈ FiFamI(A)} ≤ T ′, i.e.,
T ≤ T ′. Thus, Ω̃I,A is order reflecting.

(iii)⇒(i) If Ω̃I is order reflecting, then it is a fortiori injective. Thus, by Theorem
827, I is family c-reflective.

(ii)⇒(iii) Assume (ii) holds. LetA be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that Ω̃I,A(T ) ≤ Ω̃I,A(T ′). Then, by hypothesis,

FiFamI(A)T = Ω̃I,A
−1(̃̃I,AΩ(FiFamI(A)T ))

= Ω̃I,A
−1(Ω̃I,A(T ))

= {T ′′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ Ω̃I,A(T ′′)}.
Similarly, FiFamI(A)T ′ = {T ′′ ∈ FiFamI(A) ∶ Ω̃I,A(T ′) ≤ Ω̃I,A(T ′′)}.
Therefore, T ′ ∈ FiFamI(A)T , i.e., T ≤ T ′ and Ω̃I,A is order reflecting.

(iii)⇒(ii) Assume Ω̃I,A is order reflecting for every F-algebraic system A. Then

Ω̃I,A
−1(̃̃I,AΩ(FiFamI(A)T ))

= Ω̃I,A
−1(Ω̃I,A(T ))

= {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ Ω̃I,A(T ′)}
= FiFamI(A)T .

Hence FiFamI(A)T is Suszko full.
∎

Finally, we conclude the section with a characterization of protoalgebraic-
ity in terms of the form of full I-structures and, also, by the coincidence of
Leibniz and Suszko classes.
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Proposition 1601 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. The following conditions are equiva-
lent:

(i) I is protoalgebraic;

(ii) FStr(I) = {⟨A,FiFamI,Ω̃
I(A)⟩ ∶ A ∈ AlgSys(F)};

(iii) [[T ]]∗ = [[T ]]Su, for every F-algebraic system A and all T ∈ FiFamI(A).
Proof:

(i)⇒(ii) Suppose I is protoalgebraic. Then, by Theorem 1582,

FStr(I) = {⟨A,FiFamI,Ω(A)⟩ ∶ A ∈ AlgSys(F)}.
But, by Lemma 1518, Ω̃I = Ω, whence, the conclusion follows.

(i)⇒(iii) If I is protoalgebraic, then, by Lemma 1518, Ω̃I = Ω. Therefore, [[T ]]∗ =
[[T ]]Su, for every F-algebraic system A and all T ∈ FiFamI(A).

(ii)⇒(i) Suppose (ii) holds. Then, for every F-algebraic system A,

FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI,Ω̃
I(A)}.

So by Theorem 1582, I is protoalgebraic.

(iii)⇒(i) Assume (iii). Let A be an F-algebraic system and T,T ′ ∈ FiFamI(A),
such that T ≤ T ′. By Lemma 1583,

T ′ ∈ [[T ′]]Su ⊆ [[T ]]Su = [[T ]]∗.
So ΩA(T ) ≤ ΩA(T ′). Thus, Ω is monotone and, therefore, I is protoal-
gebraic.

∎

21.12 Frege Operator as an I-Operator

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ be a π-insti-
tution based on F and A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system.

Recall that λA ∶ FiFamI(A)→ EqvFam(A) is given, for all T ∈ FiFamI(A),
by setting λA(T ) = {λAΣ(T )}Σ∈∣Sign∣, where, for all Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),

λAΣ(T ) = {⟨φ,ψ⟩ ∈ SEN(Σ)2 ∶ φ ∈ TΣ iff ψ ∈ TΣ}.
Its lifting is the operator λ̃A ∶ P(FiFamI(A)) → EqvFam(A), given, for all
T ⊆ FiFamI(A),

λ̃A(T ) =⋂{λA(T ′) ∶ T ′ ∈ T }.
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Its relativization is the operator λ̃I,A ∶ FiFamI(A)→ EqvFam(A), given, for
all T ∈ FiFamI(A), by

λ̃I,A(T ) =⋂{λA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)}.
Given T ∈ FiFamI(A), the λ̃I-class of T or Frege class of T is

[[T ]]λ̃I = ΩA
−1(λ̃I,A(T )) = {T ′ ∈ FiFamI(A) ∶ λ̃I,A(T ) ≤ ΩA(T ′)}.

Since λ is not a compatibility I-operator, [[T ]]λ̃I may not be the closure
family of a full I-structure. But, nevertheless, it is still a closure family on
FiFamI(A).
Proposition 1602 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system

and T ∈ FiFamI(A). Then [[T ]]λ̃I is a closure family on FiFamI(A).
Proof: This is specialization of Proposition 1525. ∎

Given T ∈ FiFamI(A), based on Proposition 1602, we denote by T λ̃
I

the

least I-filter family of [[T ]]λ̃I , i.e.,

T λ̃
I

=⋂ [[T ]]λ̃I .
Moreover, we say that T is a Frege filter family if T = T λ̃I . The collection

of all Frege I-filter families of A is denoted by FiFamI,λ̃
I(A).

We give, now, a characterization of Frege filter families for π-institutions
with theorems.

Lemma 1603 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, having theorems, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system and T ∈ FiFamI(A).

T ∈ FiFamI,λ̃
I(A) iff λ̃I,A(T ) ≤ ΩA(T ) iff T ∈ [[T ]]λ̃I .

Proof: The last equivalence is by the definition of [[T ]]λ̃I . So it suffices to
show the first equivalence.

Suppose, first, that T ∈ FiFamI,λ̃
I(A). Then, we have

T = T λ̃
I

= ⋂ [[T ]]λ̃I
= ⋂{T ′ ∈ FiFamI(A) ∶ λ̃I,A(T ) ≤ ΩA(T ′)}.

Thus, taking into account Proposition 1602, λ̃I,A(T ) ≤ ΩA(T ).
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Suppose, conversely, that T ∈ FiFamI(A), such that λ̃I,A(T ) ≤ ΩA(T ).
Let T ′ ∈ FiFamI(A), such that T ′ ∈ [[T ]]λ̃I , i.e., λ̃I,A(T ) ≤ ΩA(T ′). Let
Σ ∈ ∣Sign∣ and t ∈ CI,AΣ (∅), which exists, since I is assumed to have theorems.

Then, if φ ∈ SEN(Σ), such that φ ∈ TΣ, we get CI,AΣ (TΣ, φ) = TΣ = CI,AΣ (TΣ, t).
Thus, ⟨φ, t⟩ ∈ λ̃I,AΣ (T ) ⊆ ΩAΣ(T ′). Since t ∈ T ′Σ, by compatibility, φ ∈ T ′Σ.
Therefore, T ≤ T ′. Now we have

T ≤ ⋂ [[T ]]λ̃I (T ≤ T ′, for all T ′ ∈ [[T ]]λ̃I )

= T λ̃
I

(by definition)

≤ T. (since T ∈ [[T ]]λ̃I )

Hence, we conclude that T = T λ̃I and T ∈ FiFamI,λ̃
I(A). ∎

Assuming that the π-institution I is protoalgebraic, gives the following
characterization of Frege filter families.

Corollary 1604 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a protoalgebraic π-institution based on F, having theorems, A =⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈ FiFamI(A).
T ∈ FiFamI,λ̃

I(A) iff λ̃I,A(T ) ≤ ΩA(T ).
Proof: If T ∈ FiFamI,λ̃

I(A), then

λ̃I,A(T ) ≤ ΩA(T ) (by Lemma ??)

= Ω̃I,A(T ) (by protoalgebraicity)

≤ λ̃I,A(T ). (by compatibility)

Thus, λ̃I,A(T ) = ΩA(T ). The converse is by Lemma 1603. ∎

Each component of any I-filter family is determined by any of its elements
modulo the Frege operator.

Proposition 1605 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F, having theorems, A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system and T ∈ FiFamI(A). Then, for all Σ ∈ ∣Sign∣ and all
φ ∈ TΣ, TΣ = φ/λ̃I,AΣ (T ).
Proof: Suppose that T ∈ FiFamI,λ̃

I(A) and let Σ ∈ ∣Sign∣, φ ∈ TΣ.

• Let ψ ∈ TΣ. Then, we have C
I,A
Σ (TΣ, φ) = TΣ = CI,AΣ (TΣ, ψ). Thus,

⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ), i.e., ψ ∈ φ/λ̃I,AΣ (T ).
• Conversely, if ψ ∈ φ/λ̃I,AΣ (T ), then ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ), which gives CI,AΣ (TΣ, φ) =
CI,AΣ (TΣ, ψ). Since φ ∈ TΣ, we get ψ ∈ TΣ.
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We conclude that TΣ = φ/λ̃I,AΣ (T ). ∎

Every Frege filter family is also a Leibniz filter family.

Lemma 1606 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, having theorems. Then

FiFamI,λ̃
I(A) ⊆ FiFamI∗(A).

Proof: Suppose T ∈ FiFamI,λ̃
I(A). Then, by Lemma 1603, λ̃I,A(T ) ≤

ΩA(T ). Since T ∗ ∈ [[T ]]∗, we also have ΩA(T ) ≤ ΩA(T ∗). Therefore, λ̃I,A(T ) ≤
ΩA(T ∗). Thus, by definition, T ∗ ∈ [[T ]]λ̃I . Now we have

T = T λ
I

=⋂ [[T ]]λ̃I ≤ T ∗
and, since, by Lemma 1568, T ∗ ≤ T always holds, we get T = T ∗, i.e., T ∈
FiFamI∗(A). ∎

We saw that, in general, the Leibniz and Suszko filter families of a given
filter family T are included in T , i.e., T ∗, T Su ≤ T . On the other hand, for
Frege filter families, we have the reverse inclusion.

Lemma 1607 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
be a π-institution based on F, having theorems, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic
system. For all T ∈ FiFamI(A), T ≤ T λ̃I .

Proof: By Proposition 1602, T λ
I ∈ [[T ]]λ̃I . Thus, λ̃I,A(T ) ≤ ΩA(T λI). Let

Σ ∈ ∣Sign∣ and t ∈ CI,AΣ (∅) and assume φ ∈ TΣ. Then, we have CI,AΣ (TΣ, t) =
TΣ = C

I,A
Σ (TΣ, φ), i.e., ⟨t, φ⟩ ∈ λ̃I,AΣ (T ). By the preceding inequality, ⟨t, φ⟩ ∈

ΩAΣ(T λ̃I). But t ∈ T λ̃IΣ , whence, by compatibility, φ ∈ T λIΣ . We conclude that

T ≤ T λ̃I . ∎

Strong Fregeanity is characterized by compatibility of the Frege operator
on theory families and, similarly, full strong Fregeanity by the compatibility
of the Frege operator on filter families of arbitrary algebraic systems.

Proposition 1608 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a π-institution based on F.

(a) I is strongly Fregean if and only if λ̃I,F is a compatibility I-operator
on F ;

(b) I is fully strongly Fregean if and only if λ̃I,A is a compatibility I-
operator on every F-algebraic system A.
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Proof: We only prove Part (a) in detail. Part (b) may be proved similarly,
by working on an arbitrary F-algebraic system A instead of on F .

Suppose I is strongly Fregean. Then, by definition, for all T ∈ ThFam(I),
λ̃I,F(T ) ≤ Ω̃I,F(T ) ≤ ΩF(T ). So λI,F is a compatibility I-operator on F .

Suppose, conversely, that λ̃I,F is a compatibility I-operator on F . Then,
for all T ∈ ThFam(I), λ̃I,F(T ) ≤ ΩF(T ). Therefore,

λ̃I,F(T ) = ⋂{λ̃I,F(T ′) ∶ T ≤ T ′ ∈ ThFam(I)} (monotonicity of λ̃I,F)
≤ ⋂{ΩF(T ′) ∶ T ≤ T ′ ∈ ThFam(I)} (by the hypothesis)

= Ω̃I,F(T ). (by definition)

Since, by compatibility, Ω̃I,F(T ) ≤ λ̃I,F(T ) always holds, we conclude that I
is strongly Fregean. ∎

The characterizations of Proposition 1608 imply that a π-institution if
strongly Fregean if and only if every theory family is Frege and that it is fully
strongly Fregean if and only if every filter family of any algebraic system is
a Frege filter family.

Corollary 1609 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F, having theorems. I is strongly Fregean

if and only if ThFam(I) = ThFamλ̃I(I).
Proof: Suppose I is strongly Fregean and let T ∈ ThFam(I). By Proposition

1608, λ̃I,F(T ) ≤ ΩF(T ). Thus, by Lemma 1603, T ∈ ThFamλ̃I(I).
Assume, conversely, that every theory family of I is Frege. Then, by

Lemma 1603, for all T ∈ ThFam(I), λ̃I,F(T ) ≤ ΩF(T ). Thus, by Proposition
1608, I is strongly Fregean. ∎

Corollary 1610 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F, having theorems. I is fully strongly

Fregean if and only if FiFamI(A) = FiFamI,λ̃
I(A), for every F-algebraic

system A.

Proof: The proof follows along the same lines as that of Corollary 1609,
using Proposition 1608 and Lemma 1603, but applied over an arbitrary F-
algebraic system A instead of over F . ∎

Our next goal is to show that the Frege operator λ̃I is a semi-coherent
family of I-operators. But, first, we need to have available an isomorphism
theorem involving this operator. So we embark on some preparatory work.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, and T ∈
FiFamI(A), T ′ ∈ FiFamI(B). A surjective morphism ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩
is called deductive if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

γΣ(φ) = γΣ(ψ) implies CI,AΣ (TΣ, φ) = CI,AΣ (TΣ, ψ).



1330 CHAPTER 21. I-OPERATORS Voutsadakis

Equivalently, ⟨H,γ⟩ is deductive if and only if

Ker(⟨H,γ⟩) ≤ λ̃I,A(T ),
i.e., if and only if ⟨H,γ⟩ is λ̃I-compatible with T .

We now show that for a surjective morphism, with an isomorphic signa-
ture component, compatibility properties and deductive morphisms are very
closely interrelated.

Lemma 1611 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems, and T ∈ FiFamI(A). For a surjective morphism ⟨H,γ⟩ ∶ A → B, with
H an isomorphism, the following statements are equivalent:

(i) ⟨H,γ⟩ is Ω̃I-compatible with T ;

(ii) ⟨H,γ⟩ is λ̃I-compatible with T ;

(iii) ⟨H,γ⟩ ∶ ⟨A, T ⟩→ ⟨B, γ(T )⟩ is deductive.

Proof:

(i)⇒(ii) Suppose Ker(⟨H,γ⟩) ≤ Ω̃I,A(T ). Since, by compatibility, Ω̃I,A(T ) ≤
λ̃I,A(T ), we get that Ker(⟨H,γ⟩) ≤ λ̃I,A(T ). Thus ⟨H,γ⟩ is λ̃I-com-
patible with T .

(ii)⇒(iii) Suppose Ker(⟨H,γ⟩) ≤ λ̃I,A(T ). This implies that Ker(⟨H,γ⟩) is com-
patible with T . Indeed, if Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that
γΣ(φ) = γΣ(ψ) and φ ∈ TΣ, then, by the hypothesis, ⟨φ,ψ⟩ ∈ λ̃I,AΣ (T ),
i.e., CI,AΣ (TΣ, φ) = CI,AΣ (TΣ, ψ). Since φ ∈ TΣ, we get that ψ ∈ TΣ.
Thus, by Corollary 56, γ(T ) ∈ FiFamI(B). Moreover, by hypothesis
and the comments preceding the lemma, ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, γ(T )⟩ is
a deductive morphism.

(iii)⇒(i) Suppose that Ker(⟨H,γ⟩) ≤ λ̃I,A(T ). Then, since, by Corollary 17,
Ker(⟨H,γ⟩) is a congruence system on A and, by Proposition 1420,
Ω̃I,A(T ) is the largest congruence system on A included in λ̃I,A(T ), we
conclude that Ker(⟨H,γ⟩) ≤ Ω̃I,A(T ). Thus, ⟨H,γ⟩ is Ω̃I-compatible
with T .

∎

We now show that each deductive morphism, with an isomorphic signa-
ture component, induces an order isomorphism between the principal filter of
the lattice of filter families generated by the domain and the principal filter
of the lattice of theory families generate by its codomain.
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Theorem 1612 (Correspondence Theorem for Deductive Morphisms)
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, T ∈ FiFamI(A),
T ′ ∈ FiFamI(B) and ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ a deductive morphism, with H

an isomorphism. Then γ induces an order isomorphism from FiFamI(A)γ−1(T ′)
onto FiFamI(B)T ′ , with inverse γ−1.

Proof: By Lemma 1611, ⟨H,γ⟩ is Ω̃I-compatible with T . This implies that,
for every T ′′ ∈ FiFamI(A)T ⊆ FiFamI(A)γ−1(T ′), Ker(⟨H,γ⟩) is compatible
with T ′′. It follows by Corollary 56 that, for all T ′′ ∈ FiFamI(A)γ−1(T ′),
γ(T ′′) ∈ FiFamI(B)T ′ . Moreover, the same compatibility property implies
that γ−1(γ(T ′′)) = T ′′, for all T ′′ ∈ FiFamI(A)γ−1(T ′). Finally, by surjectivity
of ⟨H,γ⟩, we get, for all T ′′′ ∈ FiFamI(B)T ′ , γ(γ−1(T ′′′)) = T ′′′. Therefore,
γ ∶ FiFamI(A)γ−1(T ′) → FiFamI(B)T ′ is a bijection and, since, clearly, both γ
and γ−1 are order preserving, they are mutually inverse order isomorphisms,
as claimed. ∎

Now we are ready to return to the main line of work and establish that
λ̃I constitutes a semi-coherent family of I-operators.

Theorem 1613 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The Frege operator λ̃I is a semi-coherent
family of I-operators.

Proof: Let A, B be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective mor-
phism, with H an isomorphism, and T ′ ∈ FiFamI(B), such that ⟨H,γ⟩ is
λ̃I-compatible with γ−1(T ′). Then, by Lemma 1611 and Theorem 1612, γ ∶
FiFamI(A)γ−1(T ′) → FiFamI(B)T ′ is an order isomorphism with inverse γ−1.
Thus, for all T ∈ FiFamI(A)γ−1(T ′), γ(T ) ∈ FiFamI(B)T ′ and γ−1(γ(T )) = T .
Now we get, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

C
I,B
H(Σ)
(T ′

H(Σ)
, γΣ(φ)) = C

I,B
H(Σ)
(γΣ(γ−1Σ (T ′H(Σ))), γΣ(φ))

= C
I,B
H(Σ)
(γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), φ)))

= γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), φ)).
Therefore, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

⟨φ,ψ⟩ ∈ γ−1Σ (λ̃I,BH(Σ)(T ′))
iff ⟨γΣ(φ), γΣ(ψ)⟩ ∈ λ̃I,BH(Σ)(T ′)
iff CI,B

H(Σ)
(T ′

H(Σ)
, γΣ(φ)) = CI,BH(Σ)(T ′H(Σ), γΣ(ψ))

iff γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), φ)) = γΣ(CI,AΣ (γ−1Σ (T ′H(Σ)), ψ))
iff C

I,A
Σ (γ−1Σ (T ′H(Σ)), φ) = CI,AΣ (γ−1Σ (T ′H(Σ)), ψ)

iff ⟨φ,ψ⟩ ∈ λ̃I,AΣ (γ−1(T ′)).
We conclude that λ̃I is semi-coherent. ∎
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It turns out that if we strengthen the semi-coherence condition by requir-
ing that λ̃I be commuting over all morphisms, with isomorphic signature
components (regardless of compatibility), then we get a characterization of
protoalgebraicity.

Theorem 1614 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if λ̃I is a
semi-commuting family of I-operators.

Proof: Suppose, first, that I is protoalgebraic and let A, B be F-algebraic
systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism,
and T ′ ∈ FiFamI(B). Then, by Corollary 55, γ−1(T ′) ∈ FiFamI(A). Let
Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ). Then

⟨φ,ψ⟩ ∈ λ̃I,AΣ (γ−1(T ′))
iff C

I,A
Σ (γ−1Σ (T ′H(Σ)), φ) = CI,AΣ (γ−1Σ (T ′H(Σ)), ψ)

iff CI,B
H(Σ)
(T ′

H(Σ)
, γΣ(φ)) = CI,BH(Σ)(T ′H(Σ), γΣ(ψ))

iff ⟨γΣ(φ), γΣ(ψ)⟩ ∈ λ̃I,BH(Σ)(T ′)
iff ⟨φ,ψ⟩ ∈ γ−1Σ (λ̃I,BH(Σ)(T ′)).

Therefore, λ̃I,A(γ−1(T ′)) = γ−1(λ̃I,B(T ′)) and λ̃I is a semi-commuting family
of I-operators.

Assume, conversely, that λ̃I is semi-commuting and let A, B be F-
algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an iso-
morphism, and T ′ ∈ FiFamI(B). Since Ω̃I,B(T ′) ≤ λ̃I,B(T ′), we get

γ−1(Ω̃I,B(T ′)) ≤ γ−1(λ̃I,B(T ′)) = λ̃I,A(γ−1(T ′)).
By Corollary 17, γ−1(Ω̃I,B(T ′)) is a congruence system on A. By Proposition
1420, Ω̃I,A(γ−1(T ′)) is the largest congruence system below λ̃I,A(γ−1(T ′)).
Therefore, we get γ−1(Ω̃I,B(T ′)) ≤ Ω̃I,A(γ−1(T ′)). Since the converse inclu-
sion always holds, Ω̃I is semi-commuting. Thus, by Corollary 1537, we get
that Ω̃I = Ω and, therefore, by Lemma 1518, I is protoalgebraic. ∎

We also get a commutativity property with direct images.

Lemma 1615 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic sys-
tems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism and
T ∈ FiFamI(A). If ⟨H,γ⟩ is λ̃I-compatible with T , then

γ(λ̃I,A(T )) = λ̃I,B(γ(T )).
Proof: By hypothesis and Lemma 1611, ⟨H,γ⟩ is Ω̃I-compatible with T .
Therefore, by Corollary 56, γ(T ) ∈ FiFamI(B) and, also, T = γ−1(γ(T )).
Since, by Theorem 1613, λ̃I is semi-coherent, we get

λ̃I,A(T ) = λ̃I,A(γ−1(γ(T ))) = γ−1(λ̃I,B(γ(T ))).
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Hence, by the surjectivity of ⟨H,γ⟩, we get γ(λ̃I,A(T )) = λ̃I,B(γ(T )). ∎

In analogy with previous correspondence theorems we have the following
one regarding correspondence between Frege classes.

Theorem 1616 (Correspondence Theorem for Frege Classes) Let F =⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution based on
F, A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems, ⟨H,γ⟩ ∶ A → B a
surjective morphism, with H an isomorphism and T ∈ FiFamI(A). If ⟨H,γ⟩
is λ̃I-compatible with T , then γ induces an order isomorphism from [[T ]]λ̃I
onto [[γ(T )]]λ̃I , with inverse γ−1.

Proof: Since ⟨H,γ⟩ is λ̃I-compatible with T , we get, by Lemma 1611,
that ⟨H,γ⟩ is Ω̃I-compatible with T . Therefore, by Corollary 56, γ(T ) ∈
FiFamI(B) and, also, T = γ−1(γ(T )).

Now, let T ′ ∈ [[T ]]λ̃I . Then Ker(⟨H,γ⟩) ≤ λ̃I,A(T ) ≤ ΩA(T ′). As a conse-
quence, we get γ(T ′) ∈ FiFamI(B) and γ−1(γ(T ′)) = T ′. Now we get

λ̃I,B(γ(T )) = γ(λ̃I,A(T )) (by Lemma 1615)

≤ γ(ΩA(T ′)) (λ̃I,A(T ) ≤ ΩA(T ′))
= ΩB(γ(T ′)). (by Lemma 1542).

We conclude that γ(T ′) ∈ [[γ(T )]]λ̃I .

Suppose, conversely, that T ′ ∈ [[γ(T )]]λ̃I . Then λ̃I,B(γ(T )) ≤ ΩB(T ′). By
Corollary 55, γ−1(T ′) ∈ FiFamI(A) and, by surjectivity, γ(γ−1(T ′)) = T ′.
Moreover, ⟨H,γ⟩ is λ̃I-compatible with γ−1(γ(T )) = T . Hence, we have

λ̃I,A(T ) = λ̃I,A(γ−1(γ(T )))
= γ−1(λ̃I,B(T )) (by Theorem 1613)

≤ γ−1(ΩB(T ′)) (λ̃I,B(γ(T )) ≤ ΩB(T ′))
= ΩA(γ−1(T ′)). (by Proposition 24)

Hence, γ−1(T ′) ∈ [[T ]]λ̃I .

Thus, γ ∶ [[T ]]λ̃I → [[γ(T )]]λ̃I is a bijection, with inverse γ−1. Since both
mappings are order-preserving, we conclude that they form a pair of mutually
inverse order isomorphisms. ∎

This correspondence theorem allows us to provide characterizations of full
self extensionality and full strong Fregeanity in the following two corollaries.

Corollary 1617 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is fully self extensional if and only if,
for all A ∈ AlgSys(I), λ̃I,A(⋂FiFamI(A)) = ∆A.
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Proof: Suppose, first, that I is fully self extensional and let A ∈ AlgSys(I).
Then we have

λ̃I,A(⋂FiFamI(A)) = Ω̃I,A(⋂FiFamI(A))
(by full self extensionality)

= ∆A. (since A ∈ AlgSys(I))
Suppose, conversely, that, for all A ∈ AlgSys(I), λ̃I,A(⋂FiFamI(A)) =

∆A, and let A be an F-algebraic system. Set, for notational convenience and
brevity, B = A/Ω̃I,A(⋂FiFamI(A)), and consider the quotient morphism

⟨I, π⟩ ∶ A→ B.

Then Ker(⟨I, π⟩) = Ω̃I,A(⋂FiFamI(A)), whence Ker(⟨I, π⟩) is compatible
with ⋂FiFamI(A). Hence, we get, by Corollary 56, π(⋂FiFamI(A)) ∈
FiFamI(B) and π−1(π(⋂FiFamI(A))) = ⋂FiFamI(A). Since, ⋂FiFamI(A)
is the least I-family of A, it must be a Suszko I-filter family. Hence, by
Corollary 1554, π(⋂FiFamI(A)) is the least I-filter family on B, i.e., we
have

π(⋂FiFamI(A)) =⋂FiFamI(B).
Since Ker(⟨I, π⟩) = Ω̃I,A(⋂FiFamI(A)) ≤ λ̃I,A(⋂FiFamI(A)), ⟨I, π⟩ is λ̃I-
compatible with π−1(π(⋂FiFamI(A))) = ⋂FiFamI(A). Moreover, since B ∈
AlgSys(I), we get, by hypothesis, λ̃I,B(⋂FiFamI(B)) =∆B. Now we get

Ω̃I,A(⋂FiFamI(A)) = Ker(⟨I, π⟩) (definition of ⟨I, π⟩)
= π−1(∆B) (definition of kernel)

= π−1(λ̃I,B(π(⋂FiFamI(A))))
(shown above)

= λ̃I,A(π−1(π(⋂FiFamI(A))))
(Theorem 1614)

= λ̃I,A(⋂FiFamI(A)).
We conclude that I is fully self extensional. ∎

Corollary 1618 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is fully strongly Fregean if and only if,
for all A ∈ AlgSys(I) and all T ∈ FiFamI(A), λ̃I,A(T ) = Ω̃I,A(T ).
Proof: The left-to-right implication follows directly by the definition of full
strong Fregeanity. Assume, conversely, that, for all A ∈ AlgSys(I) and all
T ∈ FiFamI(A), λ̃I,A(T ) = Ω̃I,A(T ). Let A be an arbitrary F-algebraic
system, T ∈ FiFamI(A) and consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
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Ker(⟨I, π⟩) = Ω̃I,A(T ) is compatible with T . Hence π(T ) ∈ FiFamI(A/Ω̃I,A(T ))
and π−1(π(T )) = T . Moreover, Ker(⟨I, π⟩) = Ω̃I,A(T ) ≤ λ̃I,A(T ). Thus, ⟨I, π⟩
is λ̃I-compatible with T . Since A/Ω̃I,A(T ) ∈ AlgSys(I), we get, by hypoth-
esis,

λ̃I,A/Ω̃
I,A(T )(π(T )) = Ω̃I,A/Ω̃

I,A(T )(π(T )) = ∆A/Ω̃
I,A(T ).

Now we have

Ω̃I,A(T ) = Ker(⟨I, π⟩) (definition of ⟨I, π⟩)
= π−1(∆A/Ω̃I,A(T )) (definition of kernel)

= π−1(λ̃I,A/Ω̃I,A(T )(π(T ))) (shown above)

= λ̃I,A(π−1(π(T ))) (Theorem 1614)

= λ̃I,A(T ).
We conclude that I is fully strongly Fregean. ∎

On the other hand, strong Fregeanity, combined with the existence of
natural theorems, implies assertionality.

Corollary 1619 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is strongly Fregean and has natural
theorems, then it is syntactically family assertional.

Proof: Assume I is strongly Fregean and has natural theorems. Let ϑ♭ ∶(SEN♭)k → SEN♭ be a natural theorem. Then define τ ♭ ∶ (SEN♭)k+1 → SEN♭

by
τ ♭ ∶= {pk+1,0 ≈ ϑ♭ ○ ⟨pk+1,1, . . . , pk+1,k⟩}.

We show, first, that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all χ⃗, χ⃗′ ∈
SEN♭(Σ), ⟨ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′⟩ ∈ ΩΣ(T ). Since, ϑ♭ is a natural theorem, we have,
for all Σ ∈ ∣Sign♭∣ and all χ⃗, χ⃗′ ∈ SEN♭(Σ), ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′) ∈ ThmΣ(I). There-

fore, we get ⟨ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′)⟩ ∈ λ̃IΣ(T ). Thus, by strong Fregeanity, ⟨ϑ♭Σ(χ⃗), ϑ♭Σ(χ⃗′)⟩ ∈
ΩIΣ(T ) ≤ ΩΣ(T ).

We show, next, that I is systemic. To this end, let T ∈ ThFam(I),
Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ ∈ SEN♭(Σ), such that φ ∈ TΣ.
Let t ∈ ThmΣ(I). Then, we have ⟨φ, t⟩ ∈ λ̃IΣ(T ) = Ω̃IΣ(T ). Hence, since

Ω̃I(T ) is a congruence system, we get ⟨SEN♭(f)(φ),SEN♭(f)(t)⟩ ∈ Ω̃IΣ′(T ) =
λ̃IΣ′(T ). But SEN♭(f)(t) ∈ ThmΣ′(I) ⊆ TΣ′ and, therefore, by compatibility,
SEN♭(f)(φ) ∈ TΣ′ . Hence, T ∈ ThSys(I) and I is systemic.

Finally, we show that, for all T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),
φ ∈ TΣ iff τ ♭Σ[φ] ≤ ΩΣ(T ).

Assume, first φ ∈ TΣ. By systemicity, for every Σ′ ∈ ∣Sign♭∣ and all f ∈
Sign♭(Σ,Σ′), SEN♭(f)(φ) ∈ TΣ′ . Therefore, for all χ⃗′ ∈ SEN♭(Σ′), ⟨SEN♭(f)(φ), ϑ♭Σ′(χ⃗′)⟩ ∈
λ̃IΣ′(T ) = Ω̃IΣ′(T ) ≤ ΩΣ′(T ). If, conversely, for all Σ′ ∈ ∣Sign♭∣, all f ∈



1336 CHAPTER 21. I-OPERATORS Voutsadakis

Sign(Σ,Σ′) and all χ⃗′ ∈ SEN♭(Σ′), we have ⟨SEN♭(φ), ϑ♭Σ′(χ⃗′)⟩ ∈ ΩΣ′(T ),
then, in particular for f = iΣ, we get, for all χ⃗ ∈ SEN♭(Σ), ⟨φ,ϑ♭Σ(χ⃗)⟩ ∈ ΩΣ(T ).
Since ϑ♭Σ(χ⃗) ∈ ThmΣ(I) ⊆ TΣ, we get, by compatibility, that φ ∈ TΣ. ∎

Finally, combining this work with previously obtained results, we get the
following corollary comparing the injectivity of the various I-operators we
have studied.

Corollary 1620 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) If Ω̃I is injective, then Ω̃ is injective.

(b) If Ω is injective, then λ̃I is injective.

Proof:

(a) If Ω̃I is injective, then, by Theorem 827, Ω is c-reflective. Thus, it is,
a fortiori, injective.

(b) If Ω is injective, then, necessarily, I has theorems. Therefore, by The-
orem 495, we get that λ̃I is injective.

∎

21.13 Leibniz Hierarchy Revisited

Using the Isomorphism Theorem 1408 between full I-structures and I-con-
gruence systems, we obtain, in the case of protoalgebraic π-institutions, the
following special isomorphism theorem between Leibniz I-filter families and
I∗-congruence systems.

Proposition 1621 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a protoalgebraic π-institution based on F. Then, for every F-
algebraic system A, the Leibniz operator ΩA ∶ FiFamI∗(A) → ConSysI∗(A)
is an order isomorphism.

Proof: By Theorem 1408, for every F-algebraic system A,

Ω̃A ∶ FStrI(A)→ ConSysI(A)
is an order isomorphism. By protoalgebraicity and Theorem 1582,

FStrI(A) = {⟨A,FiFamI(A)T ⟩ ∶ T ∈ FiFamI∗(A)}.
Moreover, by protoalgebraicity, for all T ∈ FiFamI(A), Ω̃A(FiFamI(A)T ) =
ΩA(T ) and, also, ConSysI(A) = ConSysI∗(A). Therefore, we get that ΩA ∶
FiFamI∗(A)→ ConSysI∗(A) is an order isomorphism. ∎
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We now show that ΩA, as a mapping from Leibniz I-filter families to
I∗-congruence systems on I-algebraic systems, being an order isomorphism
is sufficient to establish that the same mapping is an order isomorphism for
all F-algebraic systems.

Proposition 1622 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then, the following conditions are
equivalent:

(i) For every F-algebraic system A, ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is
an order isomorphism;

(ii) For every A ∈ AlgSys(I), ΩA ∶ FiFamI∗(A)→ ConSysI∗(A) is an order
isomorphism.

Proof: Since (i)⇒(ii) is trivial, assume (ii) holds and let A = ⟨A, ⟨F,α⟩⟩ be
an arbitrary F-algebraic system.

By Proposition 1528, ΩA is injective on FiFamI∗(A).
To show surjectivity, assume θ ∈ ConSysI∗(A). By definition, there exists

T ∈ FiFamI(A), such that θ = ΩA(T ). Consider the quotient morphism⟨I, π⟩ ∶ A → A/ΩA(T ). Since Ker(⟨I, π⟩) = ΩA(T ) is compatible with T ,
by Corollary 56, π(T ) ∈ FifamI(A/ΩA(T )). Since A/ΩA(T ) ∈ AlgSys∗(I) ⊆
AlgSys(I), we get, by hypothesis, that there exists T ′ ∈ FiFamI∗(A/ΩA(T )),
such that ΩA/Ω

A(T )(π(T )) = ΩA/Ω
A(T )(T ′). Now we have

ΩA(T ) = ΩA(π−1(π(T ))) (Ker(⟨I, π⟩) compatible with T )

= π−1(ΩA/ΩA(T )(π(T )))
= π−1(ΩA/ΩA(T )(T ′))
= ΩA(π−1(T ′)).

Since Ker(⟨I, π⟩) = ΩA(T ) = ΩA(π−1(T ′)), we get that Ker(⟨I, π⟩) is com-
patible with π−1(T ′), and, hence, π(π−1(T ′)) = T ′ ∈ FiFamI∗(A/ΩA(T )).
by Corollary 1575, π−1(T ′) ∈ FiFamI∗(A). We showed that θ = ΩA(T ) =
ΩA(π−1(T ′)), with π−1(T ′) ∈ FiFamI∗(A). Therefore, ΩA ∶ FiFamI∗(A) →
ConSysI∗(A) is surjective.

Next, we turn to monotonicity. To this end, let T,T ′ ∈ FifamI∗(A), such
that T ≤ T ′. Consider the quotient morphism

⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
We have Ker(⟨I, π⟩) = Ω̃I,A(T ) ≤ ΩA(T ) and, also, Ker(⟨I, π⟩) = Ω̃I,A(T ) ≤
Ω̃I,A(T ′) ≤ ΩA(T ′). Thus, by Corollary 56,

π(T ), π(T ′) ∈ FiFamI(A/Ω̃I,A(T )).
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Since A/Ω̃I,A(T ) ∈ AlgSys(I), we get, by hypothesis, ΩA/Ω̃
I,A(T )(π(T )) ≤

ΩA/Ω̃
I,A(T )(π(T ′)). Therefore,

ΩA(T ) = ΩA(π−1(π(T ))) (compatibility)

= π−1(ΩA/Ω̃I,A(T )(π(T )))
≤ π−1(ΩA/Ω̃I,A(T )(π(T ′)))
= ΩA(π−1(π(T ′)))
= ΩA(T ′).

Hence ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is monotone. Finally, by Propo-
sition 1528, ΩA is reflective on FiFamI∗(A). Thus, we conclude that ΩA ∶
FiFamI∗(A)→ ConSysI∗(A) is an order isomorphism. ∎

Next, we show that, if ΩA from the Leibniz filter families onto the I∗-
congruence systems happens to be an order isomorphism on every I-algebraic
system, then the class of I-algebraic systems coincides with the class of I∗-
algebraic systems.

Lemma 1623 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ ConSysI∗(A)

is an order isomorphism, then AlgSys(I) = AlgSys∗(I).
Proof: By Corollary 1405, we know that AlgSys∗(I) ⊆ AlgSys(I) always
holds. So it suffices to show the reverse inclusion. To this end, let A ∈
AlgSys(I) and let Tm = ⋂FiFamI(A). Then, for all T ∈ FiFamI∗(A), we
have, by the hypothesis, ΩA(Tm) ≤ ΩA(T ), which yields [[T ]]∗ ⊆ [[Tm]]∗.

Now let T ′ ∈ ThFamI(A). By hypothesis, there exists T ∈ ThFamI∗(A),
such that ΩA(T ′) = ΩA(T ). Thus, we get T ′ ∈ [[T ′]]∗ = [[T ]]∗ ⊆ [[Tm]]∗. Since
this holds for every T ′ ∈ FiFamI(A), we conclude that [[Tm]]∗ = FiFamI(A).
By Proposition 1578, we get A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I) and, as, by
hypothesis, A ∈ AlgSys(I) and, hence, Ω̃A(FiFamI(A)) = ∆A, we get A =
A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I). We conclude that AlgSys(I) ⊆ AlgSys∗(I)
and, therefore, the two classes of algebraic systems coincide. ∎

The same conclusion may be drawn if we assume that ΩA is an order
isomorphism from the collection of Suszko I-filter families to the collection
of all I∗-congruence systems and, in fact, the proof follows along very similar
lines.

Lemma 1624 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI,Su(A)→ ConSysI∗(A)

is an order isomorphism, then AlgSys(I) = AlgSys∗(I).
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Proof: By Corollary 1405, we know that AlgSys∗(I) ⊆ AlgSys(I) always
holds. So it suffices to show the reverse inclusion. To this end, let A ∈
AlgSys(I) and let Tm = ⋂FiFamI(A). Then, for all T ∈ FiFamI,Su(A), we
have, by the hypothesis, ΩA(Tm) ≤ ΩA(T ), which yields [[T ]]∗ ⊆ [[Tm]]∗.

Now let T ′ ∈ ThFamI(A). By hypothesis, there exists T ∈ ThFamI,Su(A),
such that ΩA(T ′) = ΩA(T ). Thus, we get T ′ ∈ [[T ′]]∗ = [[T ]]∗ ⊆ [[Tm]]∗. Since
this holds for every T ′ ∈ FiFamI(A), we conclude that [[Tm]]∗ = FiFamI(A).
By Proposition 1578, we get A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I) and, as, by
hypothesis, A ∈ AlgSys(I) and, hence, Ω̃A(FiFamI(A)) = ∆A, we get A =
A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I). We conclude that AlgSys(I) ⊆ AlgSys∗(I)
and, therefore, the two classes of algebraic systems coincide. ∎

We know that, under protoalgebraicity, AlgSys(I) = AlgSys∗(I). The
converse is true when family c-reflectivity is also assumed.

Proposition 1625 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a family completely reflective π-institution based on F. If
AlgSys(I) = AlgSys∗(I), then I is protoalgebraic.

Proof: Assume that I is family c-reflective and that AlgSys(I) = AlgSys∗(I).
By Proposition 1579, every full I-structure on an F-algebraic system A has
the form ⟨A, [[T ]]∗⟩, for some T ∈ FiFamI(A). By Proposition 1584, then, for

every T ∈ FiFamI(A), there exists T ′ ∈ FiFamI(A), such that [[T ]]Su = [[T ′]]∗.
Hence, T Su = T ′∗. Now we have

T = T Su (by Theorem 1590)
= T ′∗ (shown above)
= T ′. (by Lemma 1583)

We conclude that [[T ]]Su = [[T ]]∗. Since this holds, for every F-algebraic
system A and all T ∈ FifamI(A), we conclude, by Proposition 1601, that I
is protoalgebraic. ∎

By Lemma 1623, we may replace equality of the two classes of algebraic
system in Proposition 1625 by the condition that the Leibniz operator be an
order isomorphism.

Proposition 1626 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ be a family completely reflective π-institution based on F. If, for
every F-algebraic system A, ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is an order
isomorphism, then I is protoalgebraic.

Proof: By Proposition 1625 and Lemma 1623. ∎

We also get a characterization of weak family algebraizability.
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Corollary 1627 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a π-institution based on F. I is weakly family algebraizable if and
only if it is family c-reflective and AlgSys(I) = AlgSys∗(I).
Proof: If I is weakly family algebraizable, then it is, by definition, family c-
reflective and protoalgebraic. By protoalgebraicity, AlgSys(I) = AlgSys∗(I).
On the other hand, if I is family c-reflective and AlgSys(I) = AlgSys∗(I),
then it is family c-reflective and, by Proposition 1625, it is also protoalgebraic.
Hence, I is weakly family algebraizable. ∎

If, in Proposition 1626, we drop the hypothesis of I being family c-
reflective, but compensate by assuming that ΩA is an order isomorphism
between the collection of Suszko filter families and I∗-congruence systems on
all F-algebraic systems, then we can still infer the protoalgebraicity of I .

Theorem 1628 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if, for
every F-algebraic system A, ΩA ∶ FiFamI,Su(A) → ConSysI∗(A) is an order
isomorphism.

Proof: By Proposition 1621, for all A ∈ AlgSys(F), ΩA ∶ FiFamI∗(A) →
ConSysI∗(A) is an order isomorphism. By protoalgebraicity and Theo-
rem 1601, FiFamI∗(A) = FiFamI,Su(A). Therefore, ΩA ∶ FiFamI,Su(A) →
ConSysI∗(I) is an order isomorphism.

Conversely, assume that, for all A ∈ AlgSys(F), ΩA ∶ FiFamI,Su(A) →
ConSysI∗(A) is an order isomorphism. By Lemma 1518, it suffices to show
that the Leibniz and Suszko operators on an arbitrary F-algebraic system
coincide. To this end, let A ∈ AlgSys(F) and T ∈ FiFamI(A).

• Note that Ω̃I,A(T ) ∈ ConSysI(A). By Lemma 1624 and the hypothesis,
there exists T ′ ∈ FiFamI,Su(A), such that Ω̃I,A(T ) = ΩA(T ′). Hence,

[[T ]]Su = [[T ′]]∗ and, therefore, by Lemma 1583, T Su = T ′∗ = T ′. We
conclude that Ω̃I,A(T ) = ΩA(T Su).

• Note that ΩA(T ) ∈ ConSysI∗(A). Thus, there exists, by hypothesis,
T ′′ ∈ FiFamI,Su(A), such that ΩA(T ) = ΩA(T ′′). So [[T ]]∗ = [[T ′′]]∗.
Hence, by Lemma 1583, T ∗ = T ′′∗ = T ′′. This gives ΩA(T ) = ΩA(T ∗).
Since T ∗ = T ′′ ∈ FiFamI,Su(A), (T ∗)Su = T ∗. But, by Lemma 1568,

T ∗ ≤ T . Hence, [[T ]]Su ⊆ [[T ∗]]Su and, thus, T ∗ = (T ∗)Su ≤ T Su. By
Lemma 1583, the reverse inclusion always holds, whence T ∗ = T Su.
Now we get ΩA(T ) = ΩA(T Su).

Since, for all A ∈ AlgSys(F) and all T ∈ FiFamI(A), Ω̃I,A(T ) = ΩA(T Su) =
ΩA(T ), we get that I is a protoalgebraic π-institution. ∎

Theorem 1628 allows us to give a related characterization of equivalential
π-institutions.
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Corollary 1629 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family equivalential if and only if it is
family commuting and, for every F-algebraic system A, ΩA ∶ FiFamI,Su(A)→
ConSysI∗(A) is an order isomorphism.

Proof: Suppose, first, that I is family equivalential. Then, by definition, I
is family extensional and protoalgebraic. Thus, by Theorem 327, it is family
inverse commuting and, by Theorem 325, it is family commuting. Moreover,
by Theorem 1628, for every F-algebraic system A, ΩA ∶ FiFamI,Su(A) →
ConSysI∗(A) is an order isomorphism.

Assume, conversely, that I is family commuting and that, for every F-
algebraic system A, ΩA ∶ FiFamI,Su(A) → ConSysI∗(A) is an order isomor-
phism. Then, by Theorem 1628, it is protoalgebraic. Therefore, by Theorem
325, it is family inverse commuting and, by Theorem 327, it is family ex-
tensional. Being protoalgebraic and family extensional, it is, by definition,
family equivalential. ∎

We turn now to establishing some characterizations of semantic classes
in the Leibniz hierarchy via the use of the Suszko operator. First, we show
that the family c-reflectivity of the Leibniz operator is equivalent with the
universal injectivity of the Suszko operator and, in turn, a sufficient (and,
trivially, necessary) condition fr it is the injectivity of the Suszko operator
on an I-algebraic systems.

Theorem 1630 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is family c-reflective;

(ii) Ω̃I,A is injective, for all A ∈ AlgSys(F);
(iii) Ω̃I,A is injective, for all A ∈ AlgSys(I).
Proof:

(i)⇒(ii) By Proposition 1528, Ω̃I,A is injective on FiFamI,Su(A). By hypoth-
esis and Theorem 1590, FiFamI,Su(A) = FiFamI(A). Thus, Ω̃I,A is
injective, for all A ∈ AlgSys(F).

(ii)⇒(iii) Trivial.

(iii)⇒(i) We use again Theorem 1590, showing that for every F-algebraic sys-
tem A, FiFamI,Su(A) = FiFamI(A). To this end. let A ∈ AlgSys(F)
and T ∈ FiFamI(A). Consider Tm = ⋂FiFamI(A/Ω̃I,A(T )). We have
A/Ω̃I,A(T ) ∈ AlgSys(I) and, by Corollary 56, T /Ω̃I,A(T ) ∈ FiFamI(A/Ω̃I,A(T )).



1342 CHAPTER 21. I-OPERATORS Voutsadakis

Hence, by assumption, Tm ≤ T /Ω̃I,A(T ). By monotonicity of the
Suszko operator, Proposition 1544 and Lemma 1557,

Ω̃A/Ω̃
I,A(T )(Tm) ≤ Ω̃A/Ω̃

I<A(T )(T /Ω̃I,A(T )) =∆A/Ω̃
I,A(T ).

Hence, by hypothesis, T /Ω̃I,A(T ) = Tm. Therefore, by Proposition
1587, T ∈ FiFamI,Su(A). This proves that FiFamI,Su(A) = FiFamI(A)
and, by Theorem 1590, yields that I is family c-reflective.

∎

As regards protoalgebraicity, we have the following characterization.

Theorem 1631 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is protoalgebraic if and only if Ω̃I is
commuting.

Proof: If I is protoalgebraic, then, by Lemma 1518, Ω̃I = Ω and, by Proposi-
tion 24, Ω̃I is commuting. If, conversely, Ω̃I is commuting, then, by Corollary
1537, Ω̃I = Ω. Therefore, by Lemma 1518, I is protoalgebraic. ∎

We also get characterizations for equivalential, weakly algebraizable and
algebraizable π-institutions.

Theorem 1632 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is family equivalential if and only if Ω̃I is commuting and family
extensional.

(b) I is weakly family algebraizable if and only if Ω̃I is injective and com-
muting.

(c) I is family algebraizable if and only if Ω̃I is injective and commuting
and family extensional.

Proof:

(a) Suppose I is equivalential. Then, by Theorem 334, Ω is monotone and
family extensional. By Lemma 1518, Ω = Ω̃I . Thus, by Proposition
24, Ω̃I is commuting and family extensional. Conversely, if Ω̃I is com-
muting and family extensional, then, by Corollary 1537, Ω̃I = Ω. Thus,
Ω is monotone and family extensional. By Theorem 334, I is family
equivalential.

(b) By Theorems 1630 and 1631.

(c) By Part (a) and Theorem 1630.
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∎

In general, it is not hard to show that the Suszko operator on an F-
algebraic system is an order embedding from the collection of Suszko I-filter
families into the family of I-congruence systems.

Proposition 1633 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A)
is an order embedding.

Proof: The Suszko operator Ω̃I,A is always into ConSysI(A). It is monotone
by definition, and it is order-reflecting on FiFamI,Su(A) by Proposition 1528.
Therefore, it is an order embedding, as claimed. ∎

Requiring the preceding embedding to be an order isomorphism turns out
to be equivalent to the protoalgebraicity of I .

Theorem 1634 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is protoalgebraic;

(ii) Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A) is an order isomorphism, for every
F-algebraic system A;

(iii) Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A) is surjective, for every F-algebraic
system A.

Proof:

(i)⇒(ii) By hypothesis and Lemma 1518, ΩA = Ω̃I,A. Thus, by Proposition
1580, AlgSys(I) = AlgSys∗(I). It follows that ConSysI(A) = ConSysI

∗(A).
Now, by Theorem 1628, we get that Ω̃I,A ∶ FiFamI,Su(A)→ ConSysI(A)
is an order isomorphism.

(ii)⇒(iii) Trivial.

(iii)⇒(i) Assume (iii). We show that the Leibniz operator ΩA is monotone on
the I-filter families of every F-algebraic system A. To this end, let
A be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that T ≤ T ′.
Since ΩA(T ) ∈ ConSysI

∗(A) ⊆ ConSysI(A), there exists, by hypothesis,
T ′′ ∈ FiFamI,Su(A), such that Ω̃I,A(T ′′) = ΩA(T ). Thus, we have

Ω̃A([[T ′′]]Su) = Ω̃I,A(T ′′)
= ΩA(T )
= Ω̃A([[T ]]∗).
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Since ⟨A, [[T ′′]]Su⟩, ⟨A, [[T ]]∗⟩ ∈ FStr(I ∣), by Theorem 1408, [[T ′′]]Su =[[T ]]∗. Moreover, since T ′′ ∈ FiFamI,Su(A), by Lemma 1583, we obtain

[[T ′′]]Su = FiFamI(A)T ′′ . Since T ∈ [[T ]]∗ = [[T ′′]]Su = FiFamI(A)T ′′ , we

get T ′′ ≤ T ≤ T ′. Thus, T ′ ∈ FiFamI(A)T ′′ = [[T ′′]]Su = [[T ]]∗. In other
words, ΩA(T ) ≤ ΩA(T ′). We conclude that ΩA is monotone on every
A, whence I is protoalgebraic.

∎

In closing the section, we exploit Theorem 1634 to provide characteriza-
tions of some of the classes of the semantic Leibniz hierarchy.

Theorem 1635 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F.

(a) I is protoalgebraic if and only if, for every F-algebraic system A, Ω̃I,A ∶
FiFamI,Su(A)→ ConSysI(A) is an order isomorphism;

(b) I is family c-reflective if and only if, for every F-algebraic system A,
Ω̃I,A ∶ FiFamI(A)→ ConSysI(A) is an order embedding;

(c) I is weakly family algebraizable if and only if, for every F-algebraic
system A, Ω̃I,A ∶ FiFamI(A)→ ConSysI(A) is an order isomorphism;

(d) I is family algebraizable if and only if, for every F-algebraic system A,
Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is an order isomorphism and I is
family extensional.

Proof:

(a) By Theorem 1634.

(b) By Proposition 1633, Ω̃I,A ∶ FiFamI,Su(A) → ConSysI(A) is always
an order embedding. By Theorem 1590, family c-reflectivity implies
FiFamI,Su(A) = FiFamI(A). We conclude that Ω̃I,A ∶ FiFamI(A) →
ConSysI(A) is an order embedding. If, conversely, Ω̃I,A ∶ FiFamI(A)→
ConSysI(A) is an order embedding, then it is injective on FiFamI(A),
whence, by Theorem 1630, I is family c-reflective.

(c) Assume, first, that I is weakly family algebraizable. By Theorem 1628,
ΩA ∶ FiFamI,Su(A) → ConSysI∗(A) is an order isomorphism. By The-
orem 1590, FiFamI,Su(A) = FiFamI(A). Therefore, ΩA ∶ FiFamI(A)→
FiFamI∗(A) is an order isomorphism. Finally, by protoalgebraicity
and Lemma 1518, Ω̃I,A = ΩA, and by protoalgebraicity and Proposi-
tion 1580, ConSysI∗(A) = ConSysI(A). Thus, Ω̃I,A ∶ FiFamI(A) →
ConSysI(A) is an order isomorphism.

If, conversely, Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is an order isomor-
phism, then, by Theorem 1630, I is family c-reflective, whence, by
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Theorem 1590, FiFamI,Su(A) = FiFamI(A) and, hence, Ω̃I,A is onto
FiFamI,Su(A). Thus, by Theorem 1634, I is protoalgebraic. We con-
clude that I is weakly family algebraizable.

(d) By Part (c) and the definition of family algebraizability.
∎

21.14 Suszko Operator and Truth Equation-

ality

Recall that by Proposition 68 and Proposition 28, it makes sense, for every
F-algebraic system A, to consider the relative congruence system ΘI,A(R) ∶=
ΘAlgSys(I),A(R) on A generated by a relation family R ∈ RelFam(A).
Lemma 1636 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system
A and all X ∈ SenFam(A), if θ = ΘI,A(τA[X]) and ⟨I, π⟩ ∶ A → A/θ is the
quotient morphism, then

FiFamI(A/θ) = π(FiFamI(A)X) and π−1(FiFamI(A/θ)) = FiFamI(A)X .
Proof: Let us set

T = {T ∈ FiFamI(A) ∶ ΘI,A(τA[X]) ≤ ΩA(T )}.
By Proposition 1524, FiFamI(A/θ) = π(T ) and π−1(FiFamI(A/θ)) = T . But
we also have

T = {T ∈ FiFamI(A) ∶ θ ≤ ΩA(T )}
(definition of T )

= {T ∈ FiFamI(A) ∶ τA[X] ≤ ΩA(T )}
(since θ = ΘI,A(τA[X]) and ΩA(T ) ∈ ConSysI(A))

= {T ∈ FiFamI(A) ∶ X ≤ T}
(by family truth equationality)

= FiFamI(A)X . (definition of FiFamI(A)X)

The conclusion follows. ∎

We show, next that, under the same hypotheses, the Suszko congruence
system of an I-filter family generated by a sentence family X equals the least
I-congruence system on A generated by the relation family τA[X].
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Proposition 1637 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system
A and all X ∈ SenFam(A),

Ω̃I,A(CI,A(X)) = ΘI,A(τA[X]).
In particular, if T ∈ FiFamI(A), Ω̃I,A(T ) = ΘI,A(τA[T ]).
Proof: Let A be an F-algebraic system, X ∈ SenFam(A) and set θ =
ΘI,A(τA[X]). Since θ ∈ ConSysI(A), we have A/θ ∈ AlgSys(I). Therefore,

Ω̃A/θ(FiFamI(A/θ)) = ∆A/θ.

Consider the quotient morphism

⟨I, π⟩ ∶ A → A/θ.
We have

Ω̃I,A(CI,A(X)) = Ω̃A(FiFamI(A)X)
= Ω̃A(π−1(FiFamI(A/θ))) (Lemma 1636)

= π−1(Ω̃A/θ(FiFamI(A/θ)))
= π−1(∆A/θ)
= θ.

Therefore, Ω̃I,A(CI,A(X)) = ΘI,A(τA[X]), as was to be shown. ∎

Proposition 1638 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every Σ ∈ ∣Sign♭∣ and
φ ∈ SEN♭(Σ),

Ω̃I(C(φ)) = ΘI(τ ♭Σ[φ]).
Proof: Directly from Proposition 1637, letting X = {XΣ}Σ∈∣Sign♭∣, where
XΣ = {φ} and XΣ′ = ∅, for all Σ′ ≠ Σ. ∎

Another property is that the Suszko congruence family of the I-filter
family generated by a sentence family X can be obtained as the join of the
Suszko congruence families of the I-filter families generated by each singleton
in X .

Proposition 1639 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F. For every
F-algebraic system A and all X ∈ SenFam(A),

Ω̃I,A(CI,A(X)) =⋁{Ω̃I,A(CI,A(φ)) ∶ φ ∈XΣ,Σ ∈ ∣Sign∣}.
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Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then, we have, for every F-algebraic
system A and all X ∈ SenFam(A),

Ω̃I,A(CI,A(X))) = ΘI,A(τA[X])
(by Proposition 1637)

= ⋁{ΘI,A(τAΣ [φ]) ∶ φ ∈XΣ,Σ ∈ ∣Sign∣}
(by Proposition 35)

= ⋁{Ω̃I,A(CI,A(φ)) ∶ φ ∈ XΣ,Σ ∈ ∣Sign∣}.
(by Proposition 1637)

This proves the statement. ∎

More generally, we have

Proposition 1640 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F. For every
F-algebraic system A and all {T i ∶ i ∈ I} ⊆ FiFamI(A),

Ω̃I,A(FiFamI(A)

⋁
i∈I

T i) = ConSysI(A)

⋁
i∈I

Ω̃I,A(T i).

Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and let A be an F-algebraic system and{T i ∶ i ∈ I} ⊆ FiFamI(A). Then, we have

Ω̃I,A(⋁i∈I T i) = Ω̃(CI,A(⋃i∈I T i)) (joins in FiFamI(A))
= ΘI,A(τA[⋃i∈I T i]) (Proposition 1637)
= ΘI,A(⋃i∈I τA[T i])
= ⋁i∈I ΘI,A(τA[T i]) (joins in ConSysI(A))
= ⋁i∈I Ω̃I,A(T i). (Proposition 1637)

This proves the statement. ∎

Another property is the commutativity of the Suszko operator with sur-
jective morphisms with isomorphic functor components.

Proposition 1641 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F. For all F-
algebraic systems A, B, all surjective morphisms ⟨H,γ⟩ ∶ A → B, with H an
isomorphism, and all T ∈ FiFamI(A),

Ω̃I,B(CI,B(γ(T ))) = ΘI,B(γ(Ω̃I,A(T ))).
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Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and let A, B be F-algebraic sys-
tems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an isomorphism, and
T ∈ FiFamI(A). We now get

Ω̃I,B(CI,B(γ(T ))) = ΘI,B(τB[γ(T )]) (by Proposition 1637)
= ΘI,B(γ(ΘI,A(τA[T ]))) (by Proposition 34)

= ΘI,B(γ(Ω̃I,A(T ))). (by Proposition 1637)

This proves the equality in the statement. ∎

We now build a little further on our work of Section 12.2 in order to give
another characterization of family truth equationality.

Let K = ⟨Sign,SEN,N⟩ and K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems
and K = ⟨K,D⟩ and K′ = ⟨K′,D′⟩ be two π-structures based on K and K′,
respectively. Consider an order embedding

h ∶ ThFam(K)→ ThFam(K′).
Recall that

←Ð
h = {←Ðh Σ}Σ∈∣Sign∣ is defined, for all Σ ∈ ∣Sign∣, by letting

←Ð
h Σ ∶ SEN(Σ) → SenFam(K′)

be given, for all φ ∈ SEN(Σ), by

←Ð
h Σ[φ] = h(D(φ)).

Then we have the following analog of Lemma 894.

Lemma 1642 Let K = ⟨Sign,SEN,N⟩, K′ = ⟨Sign′,SEN′,N ′⟩ be algebraic
systems, K = ⟨K,D⟩, K′ = ⟨K′,D′⟩ be π-structures based on K, K′, re-
spectively, and h ∶ ThFam(K) → ThFam(K′) an order embedding, which

preserves suprema. Then
←Ð
h ∶ K → K′ is an interpretation.

Proof: Suppose h ∶ ThFam(K′) → ThFam(K) is an order embedding and
let Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ). Then we have

φ ∈ DΣ(Φ) iff D(φ) ≤D(Φ)
iff h(D(φ)) ≤ h(D(Φ))
iff h(D(φ)) ≤ h(⋁{D(χ) ∶ χ ∈ Φ})
iff h(D(φ)) ≤ ⋁{h(D(χ)) ∶ χ ∈ Φ}
iff
←Ð
h Σ[φ] ≤ ⋁{←Ðh Σ[χ] ∶ χ ∈ Φ}

iff
←Ð
h Σ[φ] ≤D′(←Ðh Σ[Φ]).

Thus,
←Ð
h ∶ K′ → K is indeed an interpretation. ∎
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Let K = ⟨Sign,SEN,N⟩ be an algebraic system and K = ⟨Kk,D⟩ and
K′ = ⟨Kℓ,D′⟩ be two π-structures based on Kk and Kℓ, respectively. Consider
a suprema preserving order embedding

h ∶ ThFam(K)→ ThFam(K′).
We say that the order embedding h ∶ ThFam(K)→ ThFam(K′) is transfor-
mational if there exists τ ∶ SENω → SENℓ, with k distinguished arguments,
such that, for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k,

←Ð
h Σ[φ⃗] = D′(τΣ[φ⃗]).

We have the following analog of Lemma 899.

Lemma 1643 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,D⟩,
K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K) → ThFam(K′) a
transformational suprema preserving order embedding induced by τ ∶ Kk →
Kℓ. Then, for all Σ ∈ ∣Sign∣, all Φ ⊆ SEN(Σ)k,

h(D(Φ)) =D′(τΣ[Φ]).
Proof: We have, for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ)k,

h(D(Φ)) = h(⋁φ∈ΦD(φ)) (join in ThFam(K))
= ⋁φ∈Φ h(D(φ)) (h suprema preserving)

= ⋁φ∈ΦD′(τΣ[φ]) (
←Ð
h Σ[φ] = D′(τΣ[φ]))

= D′(⋃φ∈Φ τΣ[φ]) (join in ThFam(K′))
= D′(τΣ[Φ]). (by definition)

This proves the equality of the statement. ∎

Furthermore, we have an analog of Theorem 900:

Theorem 1644 Let K = ⟨Sign,SEN,N⟩ be an algebraic system, K = ⟨Kk,

D⟩, K′ = ⟨Kℓ,D′⟩ be two π-structures and h ∶ ThFam(K′) → ThFam(K) a
transformational suprema preserving order embedding induced by τ ∶ Kk →
Kℓ. Then τ ∶ K → K′ is an interpretation.

Proof: Let Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ SEN(Σ)k. We then have:

φ ∈ DΣ(Φ) iff DΣ(φ) ≤DΣ(Φ)
iff h(D(φ)) ≤ h(D(Φ)) (h order embedding)
iff D′(τΣ[φ]) ≤ D′(τΣ[Φ]) (Lemma 1643)
iff τΣ[φ] ≤D′(τΣ[Φ]).

Thus, τ ∶ K → K′ is an interpretation. ∎

Now, we obtain the following theorem characterizing family truth equa-
tionality in terms of transformational suprema preserving order embeddings.
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Theorem 1645 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is family truth equational if and only
if, for every F-algebraic system A, Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is a
transformational suprema preserving order embedding.

Proof: Suppose, first, that I is family truth equational, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2. Then, it is, a fortiori, family c-
reflective, whence, by Theorem 1635, Ω̃I,A ∶ FiFamI(A)→ ConSysI(A) is an
order embedding, for every F-algebraic system A. By Proposition 1637, Ω̃I,A

is transformational and, by Proposition 1640, it is suprema preserving.
Assume, conversely, that Ω̃I,A ∶ FiFamI(A) → ConSysI(A) is a transfor-

mational suprema preserving order embedding. Then, on the one hand, by
Theorem 1635, I is family c-reflective, and, on the other, by definition, there
exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2, such that Ω̃I ∶ ThFam(I) → ConSysI(F) is
induced by τ ♭. Thus, by Theorem 1644, τ ♭ ∶ I → QAlgSys(I) is an interpreta-
tion. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). we have

φ ∈ TΣ iff τ ♭Σ[φ] ≤ ΘI,F(τ ♭Σ[TΣ]) (τ ♭ an interpretation)

iff τ ♭Σ[φ] ≤ Ω̃I(T ) (by Lemma 1643)

implies τ ♭Σ[φ] ≤ Ω(T ). (Ω̃I(T ) ≤ Ω(T ))
If, conversely, τ ♭Σ[φ] ≤ Ω(T ), then ΘI,F(τ ♭Σ[φ]) ≤ Ω(T ), whence, by Lemma

1643, Ω̃I(C(φ)) ≤ Ω(T ). Thus, by family c-reflectivity and Lemma 1519,
φ ∈ TΣ. Therefore, for all T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ ΩΣ(T ).
We conclude that I is family truth-equational, with witnessing transforma-
tions τ ♭. ∎

21.15 Relations With Algebraic Semantics

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
Given a class K of F-algebraic systems, recall the definition oof the closure

system CK,τ = {CK,τ
Σ }Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign♭∣, CK,τ

Σ ∶ P(SEN♭(Σ))→
P(SEN♭(Σ)) is given, for all Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ CK,τ
Σ (Φ) iff τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]).

Define the class K(I , τ) of F-algebraic systems by

K(I , τ) = {A ∈ AlgSys(F) ∶ C ≤ CA,τ}.
The following proposition gives a characterization of this class.
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Proposition 1646 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
Then

K(I , τ) = {A ∈ AlgSys(F) ∶ τA(∆A) ∈ FiFamI(A)}.
Proof: Suppose, first, that A ∈ K(I , τ). Let Σ ∈ ∣Sign♭∣, Φ∪ {φ} ⊆ SEN♭(Σ),
such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ τAF (Σ)(∆A). Then, by definition, τA

F (Σ)
[αΣ(Φ)] ≤

∆A. This implies α(τ ♭Σ[Φ]) ≤ ∆A. Since, by hypothesis, φ ∈ CΣ(Φ) and
C ≤ CA,τ , we get α(τ ♭Σ[φ]) ≤ ∆A. Equivalently, τA

F (Σ)
[αΣ(φ)] ≤ ∆A, i.e.,

αΣ(φ) ∈ τAF (Σ)(∆A). We conclude that τA(∆A) ∈ FiFamI(A). This proves
the left-to-right inclusion.

Assume, conversely, that A is an F-algebraic system, such that τA(∆A) ∈
FiFamI(A). Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ)
and α(τ ♭Σ[Φ]) ≤ ∆A. Then τA

F (Σ)
[αΣ(Φ)] ≤ ∆A, i.e., αΣ(Φ) ⊆ τAF (Σ)(∆A).

Since, by hypothesis, φ ∈ CΣ(Φ) and τA(∆A) ∈ FiFamI(A), we get αΣ(φ) ∈
τA
F (Σ)
(∆A), whence τA

F (Σ)
[αΣ(φ)] ≤ ∆A or, equivalently, α(τ ♭Σ[φ]) ≤ ∆A. We

conclude that φ ∈ CA,τΣ (Φ) and, hence, A ∈ K(I , τ). ∎

It is readily inferred from the definition that, provided I has a τ ♭-algebraic
semantics, then the class K(I , τ) is the largest such.

Corollary 1647 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on
F. If I has a τ ♭-algebraic semantics, then K(I , τ) is its largest τ ♭-algebraic
semantics.

Proof: Suppose K is a τ ♭-algebraic semantics for I and let A ∈ K. Then,
by the definition of τ ♭-algebraic semantics and taking into account the mem-
bership A ∈ K, we get C = CK,τ ≤ CA,τ . Therefore, by definition of K(I , τ),
A ∈ K(I , τ). We conclude that K ⊆ K(I , τ). ∎

we can also show that, if I is family truth equational, with witnessing
transformations τ ♭, then AlgSys(I) is a τ ♭-algebraic semantics for I .

Proposition 1648 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on
F. If I is family truth equational, with witnessing transformations τ ♭, then
AlgSys(I) is a τ ♭-algebraic semantics for I.

Proof: We must show that C = CAlgSys(I),τ .

Let A ∈ AlgSys(I), Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that
φ ∈ CΣ(Φ) and α(τ ♭Σ[Φ]) ≤ ∆A. Since A ∈ AlgSys(I), there exists T ⊆
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FiFamI(A), such that Ω̃A(T ) =∆A. Hence, we get

α(τ ♭Σ[Φ]) ≤∆A iff α(τ ♭Σ[Φ]) ≤ Ω̃A(T )
iff α(τ ♭Σ[Φ]) ≤ ΩA(T ), for all T ∈ T ,
iff τ ♭Σ[Φ] ≤ Ω(α−1(T )), for all T ∈ T ,
iff Φ ⊆ α−1Σ (T ), for all T ∈ T ,

implies φ ⊆ α−1Σ (T ), for all T ∈ T ,
iff τ ♭Σ[φ] ≤ Ω(α−1(T )), for all T ∈ T ,
iff α(τ ♭Σ[φ]) ≤ ΩA(T ), for all T ∈ T ,
iff α(τ ♭Σ[φ]) ≤ Ω̃A(T )
iff α(τ ♭Σ[φ]) ≤∆A.

We conclude that φ ∈ CAlgSys(I),τ
Σ (Φ). Therefore, C ≤ CAlgSys(I),τ .

Suppose, conversely, that Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈
C

AlgSys(I),τ
Σ (Φ) and T ∈ ThFam(I), such that Φ ⊆ TΣ. Then, we have τ ♭Σ[Φ] ≤

Ω(T ), i.e., τ
F/Ω(T )
Σ [Φ/ΩΣ(T )] ≤∆F/Ω(T ). But F/Ω(T ) ∈ AlgSys∗(I) ⊆ AlgSys(I).

Therefore, since φ ∈ CAlgSys(I),τ
Σ (Φ), we get that τ

F/Ω(T )
Σ [φ/ΩΣ(T )] ≤∆F/Ω(T ),

whence τ ♭Σ[φ] ≤ Ω(T ). Therefore, φ ∈ TΣ and we conclude that φ ∈ CΣ(Φ).
This proves that CAlgSys(I),τ ≤ C and, as a result, equality follows.

We have now shown that AlgSys(I) is a τ ♭-algebraic semantics for I . ∎

Corollary 1649 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I is
family truth equational, with witnessing transformations τ ♭, then AlgSys(I) ⊆
K(I , τ).
Proof: By Proposition 1648 and Corollary 1647. ∎

For family truth equational π-institutions we have the following charac-
terization of the least I-filter families on arbitrary algebraic systems and on
I-algebraic systems.

Lemma 1650 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭.

(a) For every A ∈ AlgSys(F), CI,A(τA(∆A)) = CI,A(∅);
(b) For every A ∈ AlgSys(I), τA(∆A) = CI,A(∅).

Proof:

(a) Let A be an F-algebraic system. We have τA(∆A) ≤ τA(ΩA(CI,A(∅))).
By family truth equationality, τA(∆A) ≤ CI,A(∅). It follows that
CI,A(τA(∆A)) = CI,A(∅).



Voutsadakis CHAPTER 21. I-OPERATORS 1353

(b) Let A ∈ AlgSys(I). Then, by Part (a), τA(∆A) ≤ CI,A(∅). Assume,
conversely, that Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ CI,AΣ (∅). Then,
for all T ∈ FiFamI(A), φ ∈ TΣ = τAΣ (ΩA(T )), i.e., for all T ∈ FiFamI(A),
τAΣ [φ] ≤ ΩA(T ). We conclude that τAΣ [φ] ≤ Ω̃I,A(CI,A(∅)) = ∆A. This
shows that φ ∈ τAΣ (∆A). Thus, CI,A(∅) ≤ τA(∆A). Equality now
follows.

∎

So in the case of family truth equational π-institutions, we may strengthen
the characterization of the class K(I , τ) given in Proposition 1646.

Proposition 1651 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then

K(I , τ) = {A ∈ AlgSys(F) ∶ τA(∆A) = CI,A(∅)}.
Proof: Note that, taking into account Proposition 1646,

{A ∈ AlgSys(F) ∶ τA(∆A) = CI,A(∅)}
⊆ {A ∈ AlgSys(F) ∶ τA(∆A) ∈ FiFamI(A)}
= K(I , τ).

Assume, conversely, that A ∈ K(I , τ). Then, by Proposition 1646, τA(∆A) ∈
FiFamI(A) and, by definition of K(I , τ), τA(∆A) ≤ CI,A(∅). Hence τA(∆A) =
CI,A(∅). ∎

Proposition 1651 has some interesting consequences. First, any two sets
of witnessing transformations for truth equationality are, roughly speaking,
deductively equivalent over any I-algebraic system.

Corollary 1652 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭τ ′ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F.
If I is family truth equational, with witnessing transformations τ ♭ and τ ′ ♭,
then, for every A ∈ AlgSys(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

CA(τ ♭Σ[φ]) = CA(τ ′ ♭Σ [φ]).
Proof: Suppose I is family truth equational, with witnessing transforma-
tions τ ♭ and τ ′ ♭ and let A ∈ AlgSys(I) and Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ),
such that α(τ ′ ♭Σ [φ]) ≤ ∆A. This is equivalent to τ ′A

F (Σ)
[αΣ(φ)] ≤ ∆A, i.e.,

αΣ(φ) ∈ τ ′AF (Σ)(∆A). By Proposition 1651, αΣ(φ) ∈ CI,AF (Σ)(∅). Again by

Proposition 1651, αΣ(φ) ∈ τAF (Σ)(∆A). Thus, τA
F (Σ)
[αΣ(φ)] ≤ ∆A. Hence,

αΣ(τ ♭Σ[φ]) ≤ ∆A. This shows that τ ♭Σ[φ] ≤ CA(τ ′ ♭Σ [φ]). By symmetry, we
conclude that CA(τ ♭Σ[φ]) = CA(τ ′ ♭Σ [φ]). ∎

Finally, the Suszko core S♭ has a special position among all witnessing
transformations. Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =
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⟨F,C⟩ be a π-institution based on F. Recall that the Suszko core of I is the
collection

SI = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[T ] ≤ Ω̃(T )}.
Recall, also, that, by Lemma 835, if I is truth equational, with witnessing
equations τ ♭ ⊆ N ♭, then τ ♭ ⊆ SI .

Corollary 1653 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then

K(I , SI) ⊆ K(I , τ).
Proof: Suppose A ∈ K(I , SI). By hypothesis and Lemma 835, τ ♭ ⊆ SI .
Hence SI(∆A) ≤ τ ♭(∆A). But, by hypothesis, Theorem 840 and Proposition
1651, SI(∆A) = CI,A(∅) and, by hypothesis and Lemma 1650, τA(∆A) ≤
CI,A(∅). Hence, we have

CI,A(∅) = SI(∆A) ≤ τA(∆A) ≤ CI,A(∅).
Therefore, τA(∆A) = CI,A(∅) and, thus, by Proposition 1651, A ∈ K(I , τ).
We conclude that K(I , SI) ⊆ K(I , τ). ∎

Corollary 1654 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a family truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Then K(I , SI) is a τ ♭-
algebraic semantics for I.

Proof: Observe that we have

AlgSys(I) ⊆ K(I , SI) (by Theorem 840 and Corollary 1649)
⊆ K(I , τ). (by Corollary 1653)

Since, by Proposition 1648, AlgSys(I) is a τ ♭-algebraic semantics for I and,
by Corollary 1647, K(I , τ) is also a τ ♭-algebraic semantics for I , we conclude
that K(I , SI) is one also. ∎

21.16 The I-Operator ΨK,τ

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F, with a τ ♭-algebraic
semantics K, such that AlgSys∗(I) ⊆ K. For every F-algebraic system A, we
define the operator

ΨK,τ,A ∶ FiFamI(A)→ EqvFam(A)
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by setting, for all T ∈ FiFamI(A),
ΨK,τ,A(T ) = Θ

⊲
IΠ(K),A(τA[T ]).

Note that, by the hypotheses and Proposition 28, ΨK,τ,A is well-defined, since
⊲

IΠ(K)-congruence systems on A form a closure system on A2.
It is the case that if a class K of F-algebraic systems is a τ ♭-algebraic

semantics for a π-institution I , then so is the larger class
⊲

IΠ(K).
Proposition 1655 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If
a class K of F-algebraic systems is a τ ♭-algebraic semantics for I, then so is
⊲

IΠ(K).
Proof: First, observe that K ⊆

⊲

IΠ(K), whence C
⊲
IΠ(K),τ ≤ CK,τ = C. To show

the converse, let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CΣ(Φ). Let

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

be a subdirect intersection, with Ai ∈ K, for all i ∈ I, and assume that
α(τ ♭Σ[Φ]) ≤ ∆A. Since, by definition ∆A = ⋂i∈I Ker(⟨H i, γi⟩), we get that
α(τ ♭Σ[Φ]) ≤ Ker(⟨H i, γi⟩), for all i ∈ I, i.e., γi(α(τ ♭Σ[Φ])) ≤ ∆A

i
, i ∈ I, or,

equivalently, αi(τ ♭Σ[Φ]) ≤ ∆A
i
, i ∈ I. Since φ ∈ CΣ(Φ), Ai ∈ K, for all i ∈ I

and K is a τ ♭-algebraic semantics for I , we get αi(τ ♭Σ[φ]) ≤∆A
i
, for all i ∈ I.

We now reverse the steps above. We get γi(α(τ ♭Σ[φ])) ⊆ ∆A
i
, i ∈ I, then

α(τ ♭Σ[φ]) ≤ Ker(⟨H i, γi⟩), i ∈ I, and, finally, α(τ ♭Σ[φ]) ≤ ∆A. Thus, φ ∈

C
A,τ
Σ (Φ). Since, for all A ∈

⊲

IΠ(K), C ≤ CA,τ , we conclude that C ≤ C
⊲
IΠ(K),τ .

Therefore,
⊲

IΠ(K) is also a τ ♭-algebraic semantics for I . ∎

Tying the operator ΨK,τ,A with our preceding work in this Chapter, we
show that it is a congruential monotone compatibility I-operator on A.

Proposition 1656 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on
F, with a τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K. For every
F-algebraic system A, ΨK,τ,A is a congruential, monotone, compatibility I-
operator on A.

Proof: ΨK,τ,mcA is, by definition, an I-operator on A. It is congruen-

tial, since, again by definition, for all T ∈ FiFamI(A), Θ
⊲
IΠ(K),A(τA[T ]) ∈

ConSys(A). It is monotone, since, for all T,T ′ ∈ FiFamI(A), with T ≤ T ′,

we get τA[T ] ≤ τA[T ′] and, therefore, Θ
⊲
IΠ(K),A(τA[T ]) ≤ Θ

⊲
IΠ(K),A(τA[T ′]).



1356 CHAPTER 21. I-OPERATORS Voutsadakis

To see that it is also a compatibility I-operator, consider T ∈ FiFamI(A).
Note, first, that

AlgSys(I) = ⊲

IΠ(AlgSys∗(I) (by Theorem 1404)

⊆
⊲

IΠ(K). (since AlgSys∗(I) ⊆ K)

Thus, we get Ω̃I,A(T ) ∈ ConSysI(A) ⊆ ConSys
⊲
IΠ(K)(A). Since, by Corollary

824, τA[T ] ≤ Ω̃I,A(T ), we get

Θ
⊲
IΠ(K),A(τA[T ]) ≤ Ω̃I,A(T ) ≤ ΩA(T ).

Therefore, ΨK,τ,A is also a compatibility I-operator on A. ∎

It turns out that ΨK,τ = {ΨK,τ,A ∶ A ∈ AlgSys(F)} is also semi-coherent.
To show this, we formulate two technical lemmas on the way.

Lemma 1657 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭. For all F-algebraic systems A, B, every surjective
morphism ⟨H,γ⟩ ∶ A → B, with H an isomorphism, and all T ′ ∈ SenFam(B),

(a) τB[T ′] = γ(τA[γ−1(T ′)]);
(b) τA[γ−1(T ′)] ≤ γ−1(τB[T ′]).

Proof: First, note that, for all T ∈ SenFam(A), we have, taking into account
the fact that ⟨H,γ⟩ is a surjective morphism, γ(τA[T ]) = τB[γ(T )]. Now,
we set T = γ−1(T ′). This gives

γ(τA[γ−1(T ′)]) = τB[γ(γ−1(T ′))] = τB[T ′],
which conclude the proof of Part (a). For Part (b), we have, using Part (a),

τA[γ−1(T ′)] ≤ γ−1(γ(τA[γ−1(T ′)])) = γ−1(τB[T ′]).
∎

Lemma 1658 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and K a class of F-algebraic systems, such that
⊲

IΠ(K) ⊆ K. For all F-algebraic systems A, B, every surjective morphism⟨H,γ⟩ ∶ A→ B, with H an isomorphism, and all T ′ ∈ FiFamI(B),
{θ ∈ ConSysK(A) ∶ Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ}

= {γ−1(θ′) ∶ θ′ ∈ ConSysK(B) and τB[T ′] ≤ θ′}.
Proof: Suppose K is closed under subdirect intersections and let A, B be
F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective morphism, with H an iso-
morphism, and T ′ ∈ SenFam(B).
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(⊆) Let θ ∈ ConSysK(A), such that Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ.
By Lemma 1657, τB[T ′] = γ(τA[γ−1(T ′)]) ≤ γ(θ). By Proposition 33,
γ(θ) ∈ ConSysK(B). Finally, by Lemma 25, θ = γ−1(γ(θ)). Hence, we
get

θ = γ−1(γ(θ)) ∈ {γ−1(θ′) ∶ θ′ ∈ ConSysK(B) and τB[T ′] ≤ θ′}.
(⊇) Suppose, now, θ′ ∈ ConSysK(B), such that τB[T ′] ≤ θ′. By Lemma 1657,

τA[γ−1(T ′)] ≤ γ−1(τB[T ′]) ≤ γ−1(θ′). Finally, Ker(⟨H,γ⟩) = γ−1(∆B) ≤
γ−1(θ′). So we get

γ−1(θ′) ∈ {θ ∈ ConSysK(A) ∶ Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ}.
∎

Now, for the main theorem to the effect that ΨK,τ is a semi-coherent
family of congruential monotone compatibility I-operators.

Theorem 1659 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F, with a
τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K. ΨK,τ is a semi-coherent
family of congruential monotone compatibility I-operators.

Proof: Let A, B be F-algebraic systems, ⟨H,γ⟩ ∶ A → B a surjective mor-
phism, with H an isomorphism, and T ′ ∈ FiFamI(B), such that ⟨H,γ⟩ is
ΨK,τ -compatible with γ−1(T ′). Then, by definition,

Ker(⟨H,γ⟩) ≤ ΨK,τ,A(γ−1(T ′)) = Θ
⊲
IΠ(K),A(τA[γ−1(T ′)]).

So we have

ΨK,τ,A(γ−1(T ′)) = Θ
⊲
IΠ(K),A(τA[γ−1(T ′)])

= ⋂{θ ∈ ConSys
⊲
IΠ(K)(A) ∶

Ker(⟨H,γ⟩) ≤ θ and τA[γ−1(T ′)] ≤ θ}
= ⋂{γ−1(θ′) ∶ θ′ ∈ ConSys

⊲
IΠ(K)(B) and τB[T ′] ≤ θ′}

= γ−1(⋂{θ′ ∈ ConSys
⊲
IΠ(K)(B) ∶ τB[T ′] ≤ θ′})

= γ−1(Θ ⊲
IΠ(K),B(τB[T ′]))

= γ−1(ΨK,τ,B(T ′)).
This proves that ΨK,τ is also semi-coherent (the remaining properties having
been demonstrated in Proposition 1656). ∎

Since, by Proposition 1648, every family truth equational π-institution I
has AlgSys(I) as a τ ♭-algebraic semantics and AlgSys∗(I) ⊆ AlgSys(I), set-
ting K ∶= AlgSys(I), we get that ΨK,τ is a semi-coherent family of monotone
congruential compatibility I-operators.
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Our last result shows that the classes of F-algebraic systems associated

with ΨK,τ (which are equal by Proposition 1558) coincide with
⊲

IΠ(K).
First, however, we show that, for any π-institution I , with τ ♭ in N ♭, the

class K(I , τ) is closed under subdirect intersections.

Lemma 1660 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F. Then

⊲

IΠ(K(I , τ)) ⊆ K(I , τ).
Proof: Let Ai ∈ K(I , τ), for all i ∈ I, and

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

be a subdirect intersection. Then, we have, by definition of subdirect in-
tersection, ⋂i∈I Ker(⟨H i, γi⟩) = ∆A and, by Proposition 1646, τA

i(∆Ai) ∈
FiFamI(Ai), for all i ∈ I. These give

τA(∆A) = τA(⋂i∈I Ker(⟨H i, γi⟩))
= ⋂i∈I τA(Ker(⟨H i, γi⟩))
= ⋂i∈I τA((γi)−1(∆Ai))
= ⋂i∈I(γi)−1(τAi(∆Ai))
∈ FiFamI(A),

where membership follows from the fact that τA
i(∆Ai) ∈ FiFamI(Ai), for all

i ∈ I, by Corollary 55 and by closure of FiFamI(A) under intersections. We
conclude, using again Proposition 1646, that A ∈ K(I , τ). ∎

Recall the classes of F-algebraic systems

AlgSysΨK,τ (I) = {A ∈ AlgSys(F) ∶ (∃T ∈ FiFamI(A))(ΨK,τ,A(T ) =∆A)};
AlgSysΨ

K,τ (I) = {A/ΨK,τ,A(T ) ∶ A ∈ AlgSys(F), T ∈ FiFamI(A)}.
Proposition 1661 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F,
with a τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K. Then

AlgSysΨK,τ (I) = AlgSysΨ
K,τ (I) = ⊲IΠ(K).

Proof: First, by Proposition 1558, AlgSysΨK,τ (I) = AlgSysΨ
K,τ (I). So it

suffices to show that AlgSysΨK,τ(I) = ⊲IΠ(K).
Suppose, first, that A ∈

⊲

IΠ(K). By Corollary 1647, K ⊆ K(I , τ). By

Lemma 1660,
⊲

IΠ(K) ⊆ ⊲

IΠ(K(I , τ)) ⊆ K(I , τ), whence A ∈ K(I , τ). Thus, by
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Proposition 1646, τA(∆A) ∈ FiFamI(A). Moreover, ∆A ∈ ConSys
⊲
IΠ(K)(A).

We now get

ΨK,τ,A(τA(∆A)) = Θ
⊲
IΠ(K),A(τA[τA(∆A)]) ≤ Θ

⊲
IΠ(K),A(∆A) = ∆A.

We conclude that A ∈ AlgSysΨK,τ (I).
Suppose, conversely, that A ∈ AlgSysΨK,τ (I). Then, there exists T ∈

FiFamI(A), such that ΨK,τ,A(T ) = ∆A, that is, Θ
⊲
IΠ(K),A(τA[T ]) = ∆A. This

shows that ∆A is an
⊲

IΠ(K)-congruence system on A. Hence A ∈
⊲

IΠ(K). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, and I = ⟨F,C⟩ a π-institution based on F, with a τ ♭-algebraic
semantics K, such that AlgSys∗(I) ⊆ K. Then we have

AlgSys∗(I) ⊆ K ⊆ K(I , τ).
Assume, now, that I is family truth equational, with witnessing transforma-
tions τ ♭. By Proposition 1648, AlgSys(I) is a τ ♭-algebraic semantics for I
and, by Proposition 65, AlgSys∗(I) ⊆ AlgSys(I). Thus, in the case of truth
equationality I has a τ ♭-algebraic semantics K, such that AlgSys∗(I) ⊆ K ⊆
K(I , τ).

• If K = AlgSys∗(I), then, by Proposition 1637 and Theorem 1404, we
would have ΨK,τ = Ω̃I ;

• At the other extreme, if K = K(I , τ), then, we get, by Proposition 1661
and Lemma 1660, a semi-coherent family of congruential monotone
compatibility I-operators ΨK,τ , such that, similarly, AlgSysΨK,τ(I) =
K(I , τ).
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22.1 The Strong Version of a π-Institution

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. We define the following classes of I-matrix families.

MI∗ = {⟨A, T ⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI∗(A)};
MI,Su = {⟨A, T ⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI,Su(A)};
MI,m = {⟨A, T ⟩ ∶ A ∈ AlgSys(F), T = ⋂FiFamI(A)}.

We show that all three classes of I-matrix families generate the same
closure system on F.

Proposition 1662 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then IMI∗ = IMI,m.

Proof: By Lemma 1568, we have that, for all A ∈ AlgSys(F), ⋂FiFamI(A) ∈
FiFamI∗(A). Thus, MI,m ⊆ MI∗. This implies that IMI∗ ≤ IMI,m. To show
the converse, assume that ⟨A, T ⟩ ∈MI∗ and consider the quotient morphism⟨I, π⟩ ∶ A → A/ΩA(T ). By Corollary 1554, π(T ∗) is the least I-filter family
of A/ΩA(T ). By hypothesis T = T ∗, whence π(T ) = π(T ∗) and, hence, since⟨I, π⟩ ∶ ⟨A, T ⟩ → ⟨A/ΩA(T ), π(T )⟩ is a strict surjective morphism,, we get
that

I ⟨A,T ⟩ = I ⟨A/Ω
A(T ),π(T )⟩ = I ⟨A/Ω

A(T ),π(T ∗)⟩

and ⟨A/ΩA(T ), π(T ∗)⟩ ∈MI,m. Putting things together, we finally obtain

IMI,m ≤ ⋂{I ⟨A/ΩA(T ),π(T ∗)⟩ ∶ T ∈ FiFamI∗(A)}
= ⋂{I ⟨A,T ⟩ ∶ T ∈ FiFamI∗(A)}
= IMI∗.

Therefore, IMI∗ = IMI,m. ∎

Proposition 1662 enables us to show that MI∗ and MI,Su also generate
the same closure system on F.

Corollary 1663 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then IMI∗ = IMI,Su.

Proof: By Lemma 1583, MI,Su ⊆ MI∗. Also by Lemma 1583, MI,m ⊆ MI,Su.
So we get IMI∗ ≤ IMI,Su ≤ IMI,m. Therefore, by Proposition 1662, IMI∗ =
IMI,Su. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Taking into account Proposition 1662 and Corollary
1663, we define the strong version of I , denoted by I+ = ⟨F,C+⟩, by

I+ ∶= IMI∗ = IMI,Su = IMI,m.
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There are even more ways to characterize the π-institution I+. Let F =⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-institution based
on F. Given a class K of F-algebraic systems, we define

M
I,m
K = {⟨A, T ⟩ ∶ A ∈ K, T = ⋂FiFamI(A)};

MI∗
K

= {⟨A, T ⟩ ∶ A ∈ K, T ∈ FiFamI∗(A)};
M
I,Su
K = {⟨A, T ⟩ ∶ A ∈ K, T ∈ FiFamI,Su(A)}.

Proposition 1664 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ be a π-institution based on F and K = AlgSys∗(I) or K = AlgSys(I).
Then

I+ = IM
I,m
K = IMI∗

K = IM
I,Su
K .

Proof: By definition and Lemma 1583, we have

M
I,m
K ⊆MI,SuK ⊆MI∗K ⊆M

I∗.

Therefore, we get

I+ ≤ IMI∗
K ≤ IM

I,Su
K ≤ IM

I,m
K .

For the converse, suppose A ∈ AlgSys(F) and T ∈ FiFamI∗(A). By Propo-
sition 1572, T /ΩA(T ) is the least I-filter family of A/ΩA(T ) ∈ AlgSys∗(I) ⊆
AlgSys(I). Therefore, we get

IM
I,m
K ≤ ⋂{I ⟨A/ΩA(T ),T /ΩA(T )⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI∗(A)}

= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(F), T ∈ FiFamI∗(A)}
= I+.

We conclude that I+ = IM
I,m
K = IMI∗

K = IM
I,Su
K . ∎

The following proposition lists some of the properties of the strong version
I+ of a π-institution I .

Proposition 1665 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) I ≤ I+;

(b) FiFamI
+(A) ⊆ FiFamI(A), for every F-algebraic system A;

(c) FiFamI,Su(A) ⊆ FiFamI∗(A) ⊆ FiFamI
+(A), for every F-algebraic sys-

tem A;

(d) If I is family reflective, then I+ = I.

Proof:

(a) Since MI,m ⊆MatFam(I), we get I = IMatFam(I) ≤ IMI,m = I+.
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(b) Since, by Part (a), I ≤ I+, we get that FiFamI
+(A) ⊆ FiFamI(A), for

all A ∈ AlgSys(F).
(c) By definition of I+, we have, for all A ∈ AlgSys(F), all T ∈ FiFamI∗(A)

and all T ′ ∈ FiFamI,Su(A), C+ ≤ C⟨A,T ⟩ and C+ ≤ C⟨A,T ′⟩. Moreover, by
Lemma 1583, every Suszko filter family is a Leibniz filter family. We
conclude that FiFamI,Su(A) ⊆ FiFamI∗(A) ⊆ FiFamI

+(A).
(d) By the hypothesis and Proposition 1573, FiFamI∗(A) = FiFamI(A),

for every F-algebraic system A. Therefore, I+ = IMI∗ = IMatFam(I) = I .
∎

It turns out that the strong version I+ is mostly interesting when I itself
has theorems. In the absence of theorems I+ has only trivial theory families.

Proposition 1666 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. If I does not have theorems, then I
is almost inconsistent.

Proof: Assume that I does not have theorems. Then, for every F-algebraic
system A, ∅ ∈ FiFamI(A). Therefore, by definition I+ = ⋂{I ⟨A,∅⟩ ∶ A ∈
AlgSys(F)}. This implies that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
we have, vacuously, for all ψ ∈ SEN♭(Σ), ψ ∈ C+Σ(φ). Therefore, the only
Σ-theory families of I+ are ∅ and SEN♭(Σ). So I+ is almost inconsistent. ∎

The least I-filter family on every algebraic system A coincides with the
least I+-filter family. As a consequence I and I+ share the same theorems.

Lemma 1667 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

⋂FiFamI(A) =⋂FiFamI
+(A).

In particular, ThFam(I+) = ThFam(I).
Proof: Let A be an F-algebraic system. By Proposition 1665, FiFamI

+(A) ⊆
FiFamI(A). Thus, we have ⋂FiFamI(A) ≤ ⋂FiFamI

+(A). On the other
hand, by Lemma 1568, ⋂FiFamI(A) ∈ FiFamI∗(A), whence, by Proposition
1665, ⋂FiFamI(A) ∈ FiFamI

+(A). Therefore, ⋂FiFamI
+(A) ≤ ⋂FiFamI(A).

Equality now follows. ∎

Lemma 1667 implies the idempotency of the strong version operator on
π-institutions.

Corollary 1668 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then (I+)+ = I+.



Voutsadakis CHAPTER 22. STRONG VERSION 1365

Proof: We have

(I+)+ = ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(F), T = ⋂FiFamI
+(I)}

= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(F), T = ⋂FiFamI(I)}
= I+.

The first and last equalities follow by the definition of
+
, and the main

equality is due to Lemma 1667. ∎

The next proposition provides sufficient conditions for recognizing that
a given π-institution is the strong version of another π-institution based on
the same algebraic system.

Proposition 1669 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ π-institutions based on F, such that

1. I ′ is family reflective;

2. AlgSys(I ′) = AlgSys(I);
3. For all A ∈ AlgSys(I ′), ⋂FiFamI(A) = ⋂FiFamI

′(A).
Then I ′ = I+.

Proof: We have

I ′ = I ′+ (by 1 and Proposition 1665)

= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(I ′), T = ⋂FiFamI
′(A)}

(by Proposition 1664)
= ⋂{I ⟨A,T ⟩ ∶ A ∈ AlgSys(I), T = ⋂FiFamI(A)}

(by 2 and 3)
= I+. (by Proposition 1664)

This proves the claim. ∎

We now show that Suszko and Leibniz I-filter families form subclasses,
respectively, of the classes of Suszko and Leibniz I+-filter families on every
F-algebraic system.

Proposition 1670 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

FiFamI,Su(A) ⊆ FiFamI
+,Su(A) and FiFamI∗(A) ⊆ FiFamI

+∗(A).
Proof: By Proposition 1665, FiFamI

+(A) ⊆ FFamI(A). Thus, for all T ∈
FiFamI

+(A), [[T ]]I+∗ ⊆ [[T ]]I∗ and [[T ]]I+,Su ⊆ [[T ]]I,Su.
Suppose that T ∈ FiFamI,Su(A). Then, by Proposition 1665, T ∈ FiFamI

+(A)
and, moreover, T = ⋂ [[T ]]I,Su ≤ ⋂ [[T ]]I+,Su. Thus, since T ∈ [[T ]]I+,Su, we get

that T = ⋂ [[T ]]I+,Su ∈ FiFamI
+,Su(A).

The second inclusion may be shown similarly. ∎

But the Leibniz counterpart of an I+-filter family is identical whether it
be considered with respect to I or with respect to I+.



1366 CHAPTER 22. STRONG VERSION Voutsadakis

Lemma 1671 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A, and all
T ∈ FiFamI

+(A), T I∗ = T I+∗.
Proof: By Proposition 1665, [[T ]]I+∗ ⊆ [[T ]]I∗. Therefore, T I∗ ≤ T I+∗. On
the other hand,

T I∗ ∈ FiFamI∗(A) (by Proposition 1570)

⊆ FiFamI
+(A) (by Proposition 1670)

and, since T I∗ ∈ [[T ]]I∗, ΩA(T ) ≤ ΩA(T I∗). Thus, T I∗ ⊆ [[T ]]I+∗, which gives
T I

+∗ ≤ T I∗. We conclude that T I∗ = T I+∗. ∎

And this implies that the Leibniz I-filter families and the Leibniz I+-filter
families coincide on every F-algebraic system.

Corollary 1672 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

FiFamI
+∗(A) = FiFamI∗(A).

Proof: The right-to-left inclusion was shown in Proposition 1670. For
the reverse, assume that T ∈ FiFamI

+∗(A). Then, by Proposition 1665,
T ∈ FiFamI(A) and, by Lemma 1671, T = T I+∗ = T I∗. Therefore, T ∈
FiFamI∗(A). ∎

22.2 Leibniz and Suszko I+-Filter Families

There is a relation between the I+-filter families on algebraic systems and
the Leibniz and Suszko I-filter families on the same algebraic systems. The
following proposition shows how these relations interplay with family c-
reflectivity.

Proposition 1673 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) If, for all F-algebraic systems A, FiFamI
+(A) = FiFamI,Su(A), then I+

is family c-reflective.

(b) If I+ is family c-reflective, then FiFamI
+(A) = FiFamI∗(A), for all

F-algebraic systems A.

Proof:
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(a) Suppose, for all F-algebraic systems A, FiFamI
+(A) = FiFamI,Su(A).

Let A be an F-algebraic system. By Proposition 1670, FiFamI,Su(A) ⊆
FiFamI

+,Su(A). Hence, by hypothesis, FiFamI
+(A) ⊆ FiFamI

+,Su(A).
Thus, FiFamI

+,Su(A) = FiFamI
+(A). By Theorem 1590, I+ is family

c-reflective.

(b) Suppose I+ is family c-reflective and let A be an F-algebraic system. By
Theorem 1590, FiFamI

+(A) = FiFamI
+,Su(A). Since, by Lemma 1583

and Corollary 1672, FiFamI
+,Su(A) ⊆ FiFamI

+∗(A) = FiFamI∗(A), we
get that FiFamI

+(A) ⊆ FiFamI∗(A). The reverse inclusion holds by
Proposition 1665.

∎

A necessary and sufficient condition for the I+-filter families to coincide
with the Leibniz I-filter families is the universal reflectivity of the Leibniz
operator on I+-filter families.

Proposition 1674 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. For every F-algebraic system A,

FiFamI
+(A) = FiFamI∗(A)

if and only if, for every F-algebraic system A, ΩA is order reflecting on
FiFamI

+(A).
Proof: By Corollary 1672, for every F-algebraic system A, FiFamI

+∗(A) =
FiFamI∗(A). By Proposition 1573, ΩA is reflective on FiFamI

+(A), for all A,
if and only if FiFamI

+(A) = FiFamI
+∗(A), for all A. Thus, we get that ΩA is

reflective on FiFamI
+(A), for all A, if and only if FiFamI

+(A) = FiFamI∗(A),
for all A. ∎

Under the stipulation that the strong version of I be protoalgebraic, the
identification of I+-filter families with the Leibniz I-families have several
characterizations.

Proposition 1675 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F, such that I+ is protoalgebraic. The
following conditions are equivalent:

(i) FiFamI
+(A) = FiFamI∗(A), for every F-algebraic system A;

(ii) ThFam(I+) = ThFam∗(I);
(iii) I+ is weakly family algebraizable;

(iv) I+ is family c-reflective;

Proof:
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(i)⇒(ii) Trivial.

(ii)⇒(iii) Suppose that ThFam(I+) = ThFam∗(I). By Proposition 1528, Ω is
injective on ThFam∗(I). By definition it is onto FiFamI∗(F). Thus,
by hypothesis and Corollary 1672, Ω ∶ FiFam(I+) → ConSysI

+∗(F) is
a bijection. By hypothesis it is monotone and, by Proposition 1528, it
is order reflecting. Therefore, it is an order isomorphism. By Theorem
296, I+ is weakly family algebraizable.

(iii)⇒(iv) Every weakly family algebraizable π-institution is a fortiori family c-
reflective.

(iv)⇒(i) By hypothesis, I+ is protoalgebraic, whence, by Proposition 1601 and
Corollary 1672,

FiFamI
+,Su(A) = FiFamI

+∗(A) = FiFamI∗(A).
By hypothesis and Theorem 1590, FiFamI

+,Su(A) = FiFamI
+(A). There-

fore, we get that FiFamI
+(A) = FiFamI∗(A).

∎

We close the section by looking at various consequences of the condition
imposed on a π-institution I that ΩA be an order isomorphism from the
Leibniz I-filter families of A onto the I∗-congruence systems on A, for ev-
ery I-algebraic system A. First, we show that this condition ensures that
I-algebraic systems, I∗-algebraic systems, I+-algebraic systems and (I+)∗-
algebraic systems all coincide.

Lemma 1676 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)

is an order isomorphism. Then

AlgSys(I+) = AlgSys∗(I+) = AlgSys∗(I) = AlgSys(I).
Proof: We show, first, that AlgSys∗(I+) = AlgSys∗(I). The left-to-right
inclusion holds because, by Proposition 1665, FiFamI

+(A) ⊆ FiFamI(A), for
every F-algebraic system I . Assume, conversely, that A ∈ AlgSys∗(I). Then
∆A ∈ ConSysI∗(A). By hypothesis, then, there exists T ∈ FiFamI∗(A), such
that ΩA(T ) = ∆A. By Proposition 1665 again, T ∈ FiFamI

+(A). Hence,
A ∈ AlgSys∗(I+).

Now we have

AlgSys(I) = AlgSys∗(I) (by Lemma 1623)
= AlgSys∗(I+) (shown above)
⊆ AlgSys(I+) (by Proposition 65)
⊆ AlgSys(I). (by Proposition 1665).
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We conclude that all four classes of algebraic system coincide. ∎

Next we show that, under the same hypothesis the Leibniz congruence
systems of a filter family and its Leibniz counterpart coincide and that the
Suszko congruence system of a filter family coincides with the Leibniz con-
gruence system of its Suszko counterpart.

Proposition 1677 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),

ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)
is an order isomorphism. Then, for every F-algebraic system and all T ∈
FiFamI(A),

ΩA(T ) = ΩA(T ∗) and Ω̃I,A(T ) = ΩA(T I,Su).
Proof: By Proposition 1622, for all A ∈ AlgSys(F), ΩA ∶ FiFamI∗(A) →
ConSysI∗(A) is an order isomorphism.

Let A ∈ AlgSys(F) and T ∈ FiFamI(A). Since ΩA(T ) ∈ ConSysI
∗(A),

there exists T ′ ∈ FiFamI∗(A), such that ΩA(T ′) = ΩA(T ). Hence, [[T ]]∗ =[[T ′]]∗, which gives T ∗ = T ′∗ = T ′. Thus, we get ΩA(T ) = ΩA(T ′) = ΩA(T ∗).
By hypothesis and Lemma 1623, AlgSys∗(I) = AlgSys(I). Since we have

Ω̃I,A(T ) ∈ ConSysI(A), there exists T ′′ ∈ FiFamI∗(A), such that ΩA(T ′′) =
Ω̃I,A(T ). Thus, we get [[T ]]Su = [[T ′′]]∗ and, therefore, T I,Su = T ′′∗ = T ′′. This
gives Ω̃I,A(T ) = ΩA(T ′′) = ΩA(T I,Su). ∎

Under the same hypothesis, it turns out that the coincidence of the class
of Leibniz filter families with Suszko filter families on every algebraic system
characterizes protoalgebraicity.

Corollary 1678 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)

is an order isomorphism. I is protoalgebraic if and only if, for every F-
algebraic system A, FiFamI∗(A) = FiFamI,Su(A).
Proof: If I is protoalgebraic, then, by Proposition 1601, Leibniz and Suszko
classes coincide and, therefore, FiFamI∗(A) = FiFamI,Su(A), for all A ∈
AlgSys(F).

Suppose, conversely, that, for all F-algebraic systems A, FiFamI∗(A) =
FiFamI,Su(A). Let A ∈ AlgSys(F) and T ∈ FiFamI(A). By Lemma 1583,
T I,Su ∈ FiFamI∗(A) = FiFamI,Su(A). By the hypothesis and Lemma 1586,
T I,Su is the largest Leibniz I-filter family included in T . Since, by Lemma
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1583, T I,Su ≤ T ∗ ≤ T and, by Proposition 1570, T ∗ is a Leibniz I-filter family,
we get T I,Su = T ∗. Therefore, using Proposition 1570, we get

Ω̃I,A(T ) = ΩA(T I,Su) = ΩA(T ∗) = ΩA(T ).
Thus, on every F-algebraic system A, the Suszko and the Leibniz operators
coincide and, therefore, by Lemma 1518, I is protoalgebraic. ∎

We already have the tools to show that the property that ΩA be an
isomorphism between Leibniz filter families and reduced algebraic systems is
bequeathed by a π-institution I to its strong version I+.

Lemma 1679 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)

is an order isomorphism. Then, for all A ∈ AlgSys(I+), ΩA ∶ FiFamI
+∗(A)→

ConSysI
+∗(A) is also an order isomorphism.

Proof: By Corollary 1672, we have FiFamI
+∗(A) = FiFamI∗(A). By Lemma

1676, AlgSys∗(I)) = AlgSys∗(I+). Now, taking into account the hypothesis,
we get the conclusion. ∎

In a proposition analogous to Proposition 1675, we provide under our
working hypothesis, of the Leibniz operator being an order isomorphism, a
characterization of the property of I+ being weakly family algebraizable.

Proposition 1680 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on I, such that, for all A ∈ AlgSys(I),

ΩA ∶ FiFamI∗(A)→ AlgSysI∗(A)
is an order isomorphism. The following conditions are equivalent:

(i) FiFamI
+(A) = FiFamI∗(A), for every F-algebraic system A;

(ii) ThFam(I+) = ThFam∗(I);
(iii) I+ is weakly family algebraizable;

(iv) I+ is family c-reflective;

(v) Ω is injective on the collection of reduced I+-filter families.

Proof:

(i)⇒(ii) Trivial.
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(ii)⇒(iii) By hypothesis and Lemma 1676, Ω ∶ ThFam(I+)→ ConSysI
+∗(F) is an

order isomorphism. Thus Ω is both monotone and family c-reflective,
whence I+ is weakly family algebraizable.

(iii)⇒(iv) Weak family algebraizability implies family c-reflectivity.

(iv)⇒(v) If I+ is family c-reflective, then it is a fortiori injective. Therefore, by
Theorem 214, ΩA is injective on the I-filter families of every F-algebraic
system A.

(v)⇒(i) Suppose (v) holds and let A ∈ AlgSys(F). By Proposition 1665, we
have FiFamI∗(A) ⊆ FiFamI

+(A). So it suffices to prove the reverse
inclusion. To this end, suppose T ∈ FiFamI

+(A). Consider the quotient
morphism ⟨I, π⟩ ∶ A → A/ΩA(T ).
Ker(⟨I, π⟩) = ΩA(T ) ≤ ΩA(T ∗), the last inclusion, since, by Proposition
1525, T ∗ ∈ [[T ]]I∗. Hence, by Corollary 56,

π(T ), π(T ∗) ∈ FiFamI
+(A/ΩA(T ))

and, by compatibility, π−1(π(T )) = T and π−1(π(T ∗)) = T ∗. By Corol-
lary 1554, π(T ∗) = π(T )∗. Now we get

∆A/Ω
A(T ) = ΩA/Ω

A(T )(π(T )) (by Lemma 1557)

= ΩA/Ω
A(T )(π(T )∗) (by Proposition 1677)

= ΩA/Ω
A(T )(π(T ∗)).

This, both π(T ) and π(T ∗) are reduced I+-filter families and, there-
fore, by the injectivity hypothesis, π(T ) = π(T ∗). Now we conclude
that T = π−1(π(T )) = π−1(π(T ∗)) = T ∗. This proves that, for all A,
FiFamI

+(A) ⊆ FiFamI∗(A). Equality now follows.
∎

22.3 Full I+-Structures

We now explore the relation between full I-structures and full I+-structures.

Proposition 1681 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F and A an F-algebraic system. ⟨A,D⟩ ∈
FStrI

+(A) if and only if, there exists T ⊆ FiFamI(A), such that ⟨A,T ⟩ ∈
FStrI(A) and D = T ∩FiFamI

+(A), i.e.,

FStr(I+) = {⟨A,T ∩FiFamI
+(A)⟩ ∶ ⟨A,T ⟩ ∈ FStr(I)}.

Proof:
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(⇒) Suppose that ⟨A,D⟩ ∈ FStr(I+). Set

T = {T ∈ FiFamI(A) ∶ Ω̃A(D) ≤ ΩA(T )}.
If T ∈ D, then Ω̃A(D) ≤ ΩA(T ) and T ∈ FiFamI

+(A) ⊆ FiFamI(T ).
Thus, T ∈ T ∩FiFamI

+(A). On the other hand, let T ∈ T ∩FiFamI
+(A).

Then Ω̃A(D) ≤ ΩA(T ) and, since T ∈ FiFamI
+(A) and ⟨A,D⟩ ∈ FStr(I+),

we must have, by Theorem 1395, T ∈ D. We conclude that D =
T ∩FiFamI

+(A). Thus, it only remains to show that ⟨A,T ⟩ ∈ FStr(I).
To this end, let T ∈ FiFamI(A), such that Ω̃A(T ) ≤ ΩA(T ). Then,
we get Ω̃A(T ) ≤ ⋂T ′∈DΩA(T ′) = Ω̃A(D) ≤ ΩA(T ). Thus, by definition,
T ∈ T . We conclude, using Theorem 1395, that ⟨A,T ⟩ ∈ FStr(I).

(⇐) Suppose, now, that ⟨A,T ⟩ ∈ FStr(I) and D = T ∩ FiFamI
+(A). Since,

by Proposition 1563, the least element of a full I-structure is a Leib-
niz I-filter family, we get that ⋂T ∈ FiFamI∗(A) ⊆ FiFamI

+(A). To
see that ⟨A,D⟩ is a dull I+-structure, let T ∈ FiFamI

+(A), such that
Ω̃A(D) ≤ ΩA(T ). Then, we infer

Ω̃A(T ) ≤ Ω̃A(D) ≤ ΩA(T ).
Since ⟨A,T ⟩ ∈ FStr(I), then, by Theorem 1395, T ∈ T . Since, in
addition, by hypothesis, T ∈ FiFamI

+(A), we get T ∈ D. Thus, again
by Theorem1395, ⟨A,D⟩ ∈ FStr(I+).

∎

Next, we show that the association

⟨A,T ⟩↦ ⟨A,T ∩FiFamI
+(A)⟩

of full I+-structures to full I-structures, given in Proposition 1681, is one-
to-one, provided that I- and I+-algebraic systems coincide.

Proposition 1682 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, such that AlgSys(I) = AlgSys(I+), and A
an F-algebraic system. For all ⟨A,T ⟩, ⟨A,T ′⟩ ∈ FStr(I),

T ∩ FiFamI
+(A) = T ′ ∩ FiFamI

+(A) implies T = T ′.

Proof: We start with some preparatory remarks. Suppose A is an F-
algebraic system. Since, by hypothesis, AlgSys(I) = AlgSys(I+), we get that
ConSysI(A) = ConSysI

+(A). Now, using Theorem 1408 (or, alternatively,
Corollary 1565), we have that FStrI(A) ≅ FStrI

+(A), through

T ↦ T = {T ∈ FiFamI
+(A) ∶ Ω̃A(T ) ≤ ΩA(T )}.
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This is obtained, by applying Theorem 1408 to get an isomorphism

γ ∶ FiFamI(A) → ConSysI(A);
T

γ
↦ Ω̃A(T ),

then, applying Theorem 1408 to get an isomorphism

δ ∶ ConSysI
+(A) → FStrI

+(A);
θ

δ
↦ {T ∈ FiFamI

+(A) ∶ θ ≤ ΩA(T )}
and, finally, composing these two, taking into account the hypothesis.

Now let T ,T ′ ∈ FiFamI(A), such that ⟨A,T ⟩, ⟨A,T ′⟩ ∈ FStrI(A), and
suppose that T ∩ FiFamI

+(A) = T ′ ∩ FiFamI
+(A).

Claim 1: T = T ∩FiFamI
+(A) and T ′ = T ′ ∩ FiFamI

+(A).
We show the first equality. The second one is shown in exactly the same

way. First, if T ∈ T , then T ∈ FiFamI
+(A) and Ω̃A(T ) ≤ ΩA(T ). Since ⟨A,T ⟩

is a full I-structure, by Theorem 1395, T ∈ T . Thus, T ∈ Y ∩ FiFamI
+(A).

If, on the other hand, T ∈ T ∩FiFamI
+(A), then T ∈ FiFamI

+(A) and T ∈ T .
Thus, T ∈ FiFamI

+(A) and Ω̃A(T ) ≤ ΩA(T ). Therefore, T ∈ T .

Claim 2: Ω̃A(T ) = Ω̃A(T ) and Ω̃A(T ′) = Ω̃A(T ′).
Again, it suffices to show the first equality, since the second is proven in

exactly the same way. By Claim 1 and Proposition 1681, ⟨A,T ⟩ ∈ FStrI
+(A).

Therefore, by Theorem 1395, T = {T ∈ FiFamI
+(A) ∶ Ω̃A(T ) ≤ ΩA(T )}.

Thus, we get δ(Ω̃A(T )) = δ(γ(T )) = T = δ(Ω̃A(T )). Since δ is an isomor-
phism, we get that Ω̃A(T ) = Ω̃A(T ).

To finish the proof, we get Ω̃A(T ) = Ω̃A(T ) = Ω̃A(T ′) = Ω̃A(T ′). There-
fore, by Theorem 1408, T = T ′. ∎

Now we can formulate an order isomorphism between full I- and full I+-
structures, subject to the condition that I- and I+-algebraic systems coincide.

Corollary 1683 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, such that AlgSys(I) = AlgSys(I+), and A
an F-algebraic system.

h ∶ FStrI(A) → FStrI
+(A);

⟨A,T ⟩ h
↦ ⟨A,T ∩ FiFamI

+(A)⟩
is an order isomorphism.

Proof: By Propositions 1681 and 1682. ∎

We turn next to relationships between full classes of filter families with
respect to a π-institution I and its strong version I+. Recall that, given any
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A ∈ AlgSys(F), we have FiFamI
+(A) ⊆ FiFamI(A). So we get immediately

the following inclusions, for all T ∈ FiFamI
+(A).

[[T ]]I+∗ = {T ′ ∈ FiFamI
+(A) ∶ ΩA(T ) ≤ ΩA(T ′)}

⊆ {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)}
= [[T ]]I∗.

Moreover, taking into account

Ω̃I,A(T ) = Ω̃A(FiFamI(A)T ) ≤ Ω̃A(FiFamI
+(A)T ) = Ω̃I

+,A(T ),
we infer

[[T ]]I+,Su = {T ′ ∈ FiFamI
+(A) ∶ Ω̃I+,A(T ) ≤ ΩA(T ′)}

⊆ {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ ΩA(T ′)}
= [[T ]]I,Su.

These relationships may be strengthened to apply to all extensions to a
π-institution rather that only its strong version. More precisely, we obtain

Lemma 1684 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
and I ′ = ⟨F,C ′⟩ be π-institutions based on F, such that I ≤ I ′, A be an
F-algebraic system and T ∈ FiFamI

′(A). Then

[[T ]]I′∗ = [[T ]]I∗ ∩ FiFamI
′(A) and [[T ]]I′,Su ⊆ [[T ]]I,Su ∩ FiFamI

′(A).
Proof: We have, mimicking the process preceding the statement, applied to
the extension I ′ rather than specifically I+:

[[T ]]I′∗ = {T ′ ∈ FiFamI
′(A) ∶ ΩA(T ) ≤ ΩA(T ′)}

= {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)} ∩FiFamI
′(A)

= [[T ]]I∗ ∩ FiFamI
′(A).

Moreover, taking into account

Ω̃I,A(T ) = Ω̃A(FiFamI(A)T ) ≤ Ω̃A(FiFamI
′(A)T ) = Ω̃I

′,A(T ),
we infer

[[T ]]I′,Su = {T ′ ∈ FiFamI
+(A) ∶ Ω̃I′,A(T ) ≤ ΩA(T ′)}

⊆ {T ′ ∈ FiFamI(A) ∶ Ω̃I,A(T ) ≤ ΩA(T ′)} ∩ FiFamI
′(A)

= [[T ]]I,Su ∩ FiFamI
′(A).

Thus, we have the equality and the inclusion claimed. ∎

Since I+ is an extension of I , then we immediately deduce
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Corollary 1685 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a π-institution based on F, A an F-algebraic system and T ∈ FiFamI
+(A).

Then

[[T ]]I+∗ = [[T ]]I∗ ∩FiFamI
+(A) and [[T ]]I+,Su ⊆ [[T ]]I,Su ∩ FiFamI

+(A).
Proof: By Lemma 1684, since I ≤ I+. ∎

Finally, we strengthen the preceding relation between Suszko classes to an
equality, in the special case, where T happens to be a Suszko I-filter family
of I (recalling that FiFamI,Su(I) ⊆ FiFamI

+(A)).
Lemma 1686 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a π-institution based on F, A an F-algebraic system and T ∈ FiFamI,Su(A).
Then [[T ]]I+,Su = [[T ]]I,Su ∩ FiFamI

+(A).
Proof: Let T ∈ FiFamI,Su(A). Then, by Lemma 1583, [[T ]]I,Su = FiFamI(A)T .

Since T = ⋂ [[T ]]I,Su, [[T ]]I+,Su ⊆ [[T ]]I,Su and T ∈ FiFamI
+(A), we get T =

⋂ [[T ]]I+,Su. Hence T ∈ FiFamI
+,Su(A). Again, using Lemma 1583, we get

[[T ]]I+,Su = FiFamI
+(A)T . Therefore, we conclude that

[[T ]]I+,Su = FiFamI
+(A)T

= FiFamI(A)T ∩FiFamI
+(A)

= [[T ]]I,Su ∩ FiFamI
+(A).

∎

22.4 Leibniz Truth Equationality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is Leibniz truth equational if there exists
τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, such that, for every F-algebraic system A
and all T ∈ FiFamI(A),

T ∗ = τA(ΩA(T )),
i.e., for all Σ ∈ ∣Sign∣ and all φ ∈ SEN♭(Σ),

φ ∈ T ∗Σ iff τAΣ [φ] ≤ ΩA(T ).
It follows directly by the definition that, if I is Leibniz truth equational,

then, for all A ∈ AlgSys(F) and all T ∈ FiFamI(A),
T ∈ FiFamI∗(A) iff T = τA(ΩA(T )).

Moreover, we can easily see that family truth equationality implies Leibniz
truth equationality.
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Lemma 1687 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is family truth equational, then I is
Leibniz truth equational.

Proof: Suppose that I is family truth equational, with witnessing transfor-
mations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Thus, by Theorem 848, for every
F-algebraic system A and all T ∈ FiFamI(A), T = τA(ΩA(T )). Let A be an
F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). We have

φ ∈ TΣ iff τAΣ [φ] ≤ ΩA(T ) (I truth equational)
implies τA[φ] ≤ ΩA(T ∗) (T ∗ ∈ [[T ]]∗)

iff φ ∈ T ∗Σ. (I truth equational)

Thus, we get T ≤ T ∗. On the other hand, by Lemma 1568, T ∗ ≤ T , whence
T − T ∗. This gives T ∗ = T and, hence T ∗ = τA(ΩA(T )), showing that I is
Leibniz truth equational. ∎

If I is Leibniz truth equational, then the collection of all its Leibniz filters
on every algebraic system forms a closure family.

Proposition 1688 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz truth equational π-institution based on F. For every F-
algebraic system A, FiFamI∗(A) is closed under signature-wise intersections
and, hence, forms a closure family on A.

Proof: Suppose I is Leibniz truth-equational, with witnssing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Let A be an F-algebraic system and{T i ∶ i ∈ I} ⊆ FiFamI∗(A) be a collection of Leibniz I-filter families. Then

⋂i∈I T i = ⋂i∈I(T i)∗ (T i ∈ FiFamI∗(A))
= ⋂i∈I τA(ΩA(T i)) (I Leibniz truth equational)
≤ τA(ΩA(⋂i∈I T i)) (⋂i∈I ΩA(T i) ≤ ΩA(⋂i∈I T i))
= (⋂i∈I T i)∗. (I Leibniz truth equational)

Since, by Lemma 1568, (⋂i∈I T i)∗ ≤ ⋂i∈I T i, we get that (⋂i∈I T i)∗ = ⋂i∈I T i
and, therefore, ⋂i∈I T i ∈ FiFamI∗(A). ∎

The next proposition shows that to check that a given π-institution I is
Leibniz truth equational, it is sufficient to work with I∗-algebraic systems
only. That is, if the defining property holds for all Leibniz filters of I∗-
algebraic systems, then it extends to Leibniz filters over arbitrary F-algebraic
systems.

Proposition 1689 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is Leibniz truth equational if and
only if, there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, such that, for all A ∈
AlgSys∗(I) and all T ∈ FiFamI(A), T ∗ = τA(ΩA(T )).
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Proof: The implication left-to-right follows from the definition of Leibniz
truth equationality. Suppose, conversely, that there exists τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, such that, for all A ∈ AlgSys∗(I) and all T ∈ FiFamI(A), T ∗ =
τA(ΩA(T )). Let A be an arbitrary F-algebraic system, T ∈ FiFamI(A), and
consider the quotient morphism ⟨I, π⟩ ∶ A → A/ΩA(T ). Then, by Corollary
1554, π(T ∗) = π(T )∗ and, by Proposition 1530, π(T )∗ is the least I-filter
family on A/ΩA(T ). Since A/ΩA(T ) ∈ AlgSys∗(I), we get, by hypothesis,

π(T )∗ = τA/ΩA(T )(T /ΩA(T )) = τA/ΩA(T )(∆A/ΩA(T )).
Hence, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ T ∗Σ iff φ/ΩAΣ(T ) ∈ πΣ(T ∗Σ) (ΩA(T ) ≤ ΩA(T ∗))
iff φ/ΩAΣ(T ) ∈ π(T )∗Σ
iff φ/ΩAΣ(T ) ∈ τA/ΩA(T )Σ (∆A/ΩA(T ))
iff φ ∈ τAΣ (ΩA(T )).

Thus, I is Leibniz truth equational. ∎

A fortiori, it suffices to show that the condition in the statement of Propo-
sition 1689 holds for all I-algebraic systems, since this class encompasses all
I∗-algebraic systems.

Corollary 1690 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. I is Leibniz truth equational if and only if,
there exists τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, such that, for all A ∈ AlgSys(I)
and all T ∈ FiFamI(A), T ∗ = τA(ΩA(T )).
Proof: The conclusion follows from Proposition 1689, taking into account
the fact that AlgSys∗(I) ⊆ AlgSys(I). ∎

Next, we provide another characterization of Leibniz truth equationality
by showing that it is equivalent to τA(∆A) being the least I-filter family on
every I- (or I∗-)algebraic system.

Proposition 1691 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭.
The following conditions are equivalent.

(i) I is Leibniz truth equational, with witnessing transformations τ ♭;

(ii) For all A ∈ AlgSys∗(I), τA(∆A) = ⋂FiFamI(A);
(iii) For all A ∈ AlgSys(I), τA(∆A) = ⋂FiFamI(A).
Proof:
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(i)⇒(iii) Suppose I is Leibniz truth equational, with witnessing transformations
τ ♭. Let A ∈ AlgSys(I) and Tm = ⋂FiFamI(A). Then, by Lemma 1568,
Tm ∈ FiFamI∗(A). Since τA(∆A) ≤ τA(ΩA(Tm)), we get, by hypoth-
esis, τA(∆A) ≤ Tm. On the other hand, since Tm = ⋂FiFamI(A),
we have, for all T ∈ FiFamI(A), Tm ≤ T ∗, whence, by hypothesis,
Tm ≤ τA(ΩA(T )). Since, this holds for all T ∈ FiFamI(A), we get,
taking into account that A ∈ AlgSys(I),

Tm ≤ τA(Ω̃A(FiFamI(A))) = τA(∆A).
Therefore, τA(∆A) = Tm.

(iii)⇒(ii) Trivial, since AlgSys∗(I) ⊆ AlgSys(I).
(ii)⇒(i) Suppose, for all A ∈ AlgSys∗(I), τA(∆A) = ⋂FiFamI(A). Let A be

an F-algebraic system, T ∈ FiFamI(A) and consider the quotient mor-
phism ⟨I, π⟩ ∶ A→ A/ΩA(T ).
Then, A/ΩA(T ) ∈ AlgSys∗(I) and, by Corollary 1554, π(T ∗) = π(T )∗
and, by Proposition 1530, π(T )∗ = ⋂FiFamI(A/ΩA(T )). Thus, by
hypothesis, π(T ∗) = τA/ΩA(T )(∆A/ΩA(T )). Therefore, for all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

φ ∈ T ∗Σ iff φ/ΩAΣ(T ) ∈ πΣ(T ∗Σ)
iff φ/ΩAΣ(T ) ∈ τA/ΩA(T )Σ (∆A/ΩA(T ))
iff φ ∈ τAΣ (ΩA(T )).

Hence, τ ♭ witnesses the Leibniz truth equationality of I .
∎

If I-algebraic systems and I+-algebraic systems coincide, then truth equa-
tionality of I+ guarantees the Leibniz truth equationality of I .

Proposition 1692 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F and τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in
N ♭. If I+ is family truth equational, with witnessing transformations τ ♭ and
AlgSys(I) = AlgSys(I+), then I is Leibniz truth equational, with witnessing
transformations τ ♭.

Proof: We use Proposition 1691. Suppose I+ is family truth equational via
τ ♭ and AlgSys(I) = AlgSys(I+). Let A ∈ AlgSys(I). Since, by hypothesis
A ∈ AlgSys(I+), we get, by hypothesis, Lemma 1687 and Proposition 1691,
τA(∆A) = FiFamI

+(A). By Lemma 1667, ⋂FiFamI(A) = ⋂FiFamI
+(A).

Hence, we get τA(∆A) = ⋂FiFamI(A), whence, by Proposition 1691, I is
Leibniz truth equational via τ ♭. ∎
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-insti-
tution based on F, τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭ and K a class of F-algebraic
systems. We define, as before, on F the closure system CK,τ = {CK,τ

Σ }Σ∈∣Sign♭∣,
where, for all Σ ∈ ∣Sign♭∣, CK,τ

Σ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)) is given, for all
Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ CK,τ
Σ (Φ) iff τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]).

Then we say that K is a τ ♭-algebraic semantics for I if C = CK,τ .
We show that, if a π-institution I is Leibniz truth equational, with

witnessing transformations τ ♭, then any of the four classes AlgSys∗(I+),
AlgSys(I+), AlgSys∗(I) or AlgSys(I) serves as a τ ♭-algebraic semantics for
I+.

Theorem 1693 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. Set K = AlgSys∗(I+) or
AlgSys(I+) or AlgSys∗(I) or AlgSys(I). Then K is a τ ♭-algebraic semantics
for I+.

Proof: Let, first, K = AlgSys∗(I) or AlgSys(I), Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆
SEN♭(Σ). Then, we have φ ∈ C+Σ(Φ) if and only if, by Proposition 1664,

φ ∈ CM
I,m
K

Σ (Φ) if and only if, for all A ∈ K,

αΣ(Φ) ⊆ CI,AF (Σ)(∅) implies αΣ(φ) ∈ CI,AF (Σ)(∅).
if and only if, by hypothesis and Proposition 1691,

αΣ(Φ) ⊆ τAF (Σ)(∆A) implies αΣ(φ) ∈ τAF (Σ)(∆A),
if and only if

τAF (Σ)[αΣ(Φ)] ≤∆A implies τAF (Σ)[αΣ(φ)] ≤∆A,

if and only if

α(τ ♭Σ[Φ]) ≤∆A implies α(τ ♭Σ[φ]) ≤ ∆A,

if and only if τ ♭Σ[φ] ≤ CK(τ ♭Σ[Φ]) if and only if φ ∈ CK,τ
Σ (Φ). Thus, K is a

τ ♭-algebraic semantics of I+.
Finally, note that, by hypothesis and Lemma 1671, I+ is Leibniz truth

equational via τ ♭, as well. Moreover, by Corollary 1668, (I+)+ = I+. Ap-
plying, therefore, what was shown above to I+, we get the result for K =
AlgSys∗(I+) or AlgSys(I+). ∎

Theorem 1693 implies that for AlgSys(I) to be a τ ♭-algebraic semantics
of a Leibniz truth equational π-institution I , where τ ♭ is a set of witnessing
transformations, I and I+ must be identical.
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Corollary 1694 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution based on F, with witnessing
transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. AlgSys(I) is a τ ♭-algebraic
semantics for I if and only if I = I+.

Proof: By Theorem 1693, C+ = CAlgSys(I),τ . Therefore, we get that AlgSys(I)
is a τ ♭-algebraic semantics of I if and only if, by definition C = CAlgSys(I),τ if
and only if C = C+. ∎

Moreover, we can show that Leibniz truth equationality of I implies the
family truth equationality of I+.

Corollary 1695 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is Leibniz truth equational, with
witnessing transformations τ ♭ ∶ (SEN♭)ω → (SEN♭)2, then I+ is family truth
equational via τ ♭.

Proof: Let A be an F-algebraic system and T ∈ FiFamI
+(A). By hypothesis

and Theorem 1693, I+ has a τ ♭-algebraic semantics. Therefore, by Corollary
824, T = τA(Ω̃I+,A(T )) ≤ τA(ΩA(T )). Conversely, by hypothesis and the
fact that, by Proposition 1665, T ∈ FiFamI(A), we get, using Lemma 1568,
τA(ΩA(T )) = T ∗ ≤ T . We now conclude that T = τA(ΩA(T )). Thus, I+ is
family truth equational, with witnessing transformations τ ♭. ∎

As another consequence, we get that, under Leibniz truth equational-
ity, I+ filter families coincide with Leibniz I-filter families on any algebraic
system.

Corollary 1696 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. If I is Leibniz truth equational, then, for
every F-algebraic system A, FiFamI

+(A) = FiFamI∗(A).
Proof: Suppose I is Leibniz truth equational. Then, by Corollary 1695,
I+ is family truth equational. Thus, by Proposition 1673, FiFamI

+(A) =
FiFamI∗(A), for every F-algebraic system A. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a
Leibniz truth equational π-institution, with witnessing transformations τ ♭ ∶(SEN♭)ω → (SEN♭)2 in N ♭. Let, also, A be an F-algebraic system and T ∈
FiFamI(A). Then, by definition T I,Su = ⋂ [[T ]]I,Su and, by Proposition 1584,

⟨A, [[T ]]I,Su⟩ ∈ FStr(I). Thus, by Proposition 1584, T I,Su ∈ FiFamI∗(A).
Now it follows, by hypothesis, that

T I,Su = τA(ΩA(T I,Su)).
There is also an additional characterization of the Suszko filter family,

using the Suszko operator.
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Proposition 1697 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transfor-
mations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system A and
all T ∈ FiFamI(A),

T I,Su = τA(Ω̃I,A(T )).
Proof: Let A be an F-algebraic system, T ∈ FiFamI(A) and consider the
quotient morphism ⟨I, π⟩ ∶ A→ A/Ω̃I,A(T ).
Then A/Ω̃I,A(T ) ∈ AlgSys(I). Moreover, by Lemma 1557, π(T I,Su) = π(T )I,Su
and, by Proposition 1587, π(T )I,Su = ⋂FiFamI(A/Ω̃I,A(T )). Thus, by
Proposition 1691,

π(T I,Su) = τA/Ω̃I,A(T )(∆A/Ω̃I,A(T )).
Now we get

T I,Su = π−1(π(T I,Su))
= π−1(τA/Ω̃I,A(T )(∆A/Ω̃I,A(T )))
= τA(π−1(∆A/Ω̃I,A(T )))
= τA(Ω̃I,A(T )).

This proves the statement. ∎

Proposition 1697 enables us to characterize the Suszko filter counterpart
T I,Su of a given filter family T as the intersection of all Leibniz filter family
companions of filter families in the upset of T .

Corollary 1698 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system A and all
T ∈ FiFamI(A),

T I,Su =⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)}.
Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). Then we have

T I,Su = τA(Ω̃I,A(T )) (by Proposition 1697)

= τA(⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)})
(definition of Ω̃I,A(T ))

= ⋂{τA(ΩA(T ′)) ∶ T ≤ T ′ ∈ FiFamI(A)})
= ⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)}.

(Leibniz truth equationality)

This proves the corollary. ∎

We now get immediately
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Corollary 1699 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. For every F-algebraic system A and all
T ∈ FiFamI(A),

T ∈ FiFamI,Su(I) iff T ≤ T ′∗, for all T ′ ∈ FiFamI(A)T .
Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). Then we have
T ∈ FiFamI,Su(A) if and only if, by definition, T = T I,Su if and only if, by
Corollary 1698, T = ⋂{T ′∗ ∶ T ′ ∈ FiFamI(A)T }, if and only if, taking into
account that T ∗ ≤ T , T ≤ T ′∗, for all T ′ ∈ FiFamI(A)T . ∎

We close the section with a characterization of weak family algebraizabil-
ity of the strong version of I among those π-institutions that are Leibniz
truth equational.

Proposition 1700 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transfor-
mations τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. I+ is weakly family algebraizable if
and only if, for all A ∈ AlgSys(I+), ΩA ∶ FiFamI

+∗(A) → ConSysI
+∗(A) is

an order isomorphism.

Proof: If I+ is weakly family algebraizable, then it is, a fortiori, pro-
toalgebraic. Therefore, by Proposition 1621, for all A ∈ AlgSys(I+), ΩA ∶
FiFamI

+∗(A)→ ConSysI
+∗(A) is an order isomorphism.

Assume, conversely, that the condition in the statement holds. Then, for
every F-algebraic system A,

FiFamI
+∗(A) = FiFamI∗(A) (by Corollary 1672)

= FiFamI
+(A). (by Corollary 1696)

Thus, for all A ∈ AlgSys(I+), ΩA ∶ FiFamI
+(A) → ConSysI

+∗(A) is an order
isomorphism. Hence, by Theorem 296, I+ is weakly family algebraizable. ∎

Proposition 1700 gives a sufficient condition for the weak family algbe-
braizability of I+ that involves only I-algebraic systems.

Corollary 1701 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz truth equational π-institution, with witnessing transforma-
tions τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in N ♭. If, for every A ∈ AlgSys(I), ΩA ∶
FiFamI∗(A) → ConSysI∗(A) is an order isomorphism, then I+ is weakly
family algebraizable.

Proof: By hypothesis and Lemma 1679, for every A ∈ AlgSys(I+), ΩA ∶
FiFamI

+∗(A)→ ConSysI
+∗(A) is an order isomorphism. Hence, by Proposi-

tion 1700, I+ is weakly family algebraizable. ∎
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22.5 Leibniz Definability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I is Leibniz definable if, there exists µ♭ ∶ (SEN♭)ω →
SEN♭ inN ♭, such that, for every F-algebraic system A, and all T ∈ FiFamI(A),

T ∗ = µA(T ),
i.e., for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

φ ∈ T ∗Σ iff µAΣ[φ] ≤ T.
We show that it suffices to consider only I∗-algebraic systems to establish

Leibniz definability.

Proposition 1702 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. I is Leibniz definable if and only if,
there exists µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭, such that, for all A ∈ AlgSys∗(I)
and all T ∈ FiFamI(A), T ∗ = µA(T ).
Proof: The “only if” is trivial. For the “if”, suppose the stated condition
holds and let A be an F-algebraic system and T ∈ FiFamI(A). Consider the
quotient morphism ⟨I, π⟩ ∶ A→ A/ΩA(T ).
Then A/ΩA(T ) ∈ AlgSys∗(I) and, moreover, Ker(⟨I, π⟩) = ΩA(T ) ≤ ΩA(T ∗),
since T ∗ ∈ [[T ]]∗. Now we have

T ∗ = π−1(π(T ∗)) (Ker(⟨I, π⟩) compatible with T ∗)
= π−1(π(T )∗) (by Lemma 1557)

= π−1(µA/ΩA(T )(π(T ))) (by hypothesis)
= µA(π−1(π(T ))) (algebra and surjectivity of ⟨I, π⟩)
= µA(T ). (Ker(⟨I, π⟩) compatible with T )

Therefore, I is Leibniz definable via µ♭. ∎

Leibniz definability ensures that the mapping sending a filter family to
it Leibniz counterpart is monotone and this, in turn, implies that T ∗ is the
largest Leibniz filter family below T .

Lemma 1703 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing transfor-
mations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. For every F-algebraic system A and all
T,T ′ ∈ FiFamI(A),

T ≤ T ′ implies T ∗ ≤ T ′∗.

Proof: Let A be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that
T ≤ T ′. Then T ∗ = µA(T ) ≤ µA(T ′) = T ′∗. ∎
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Corollary 1704 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing transfor-
mations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. For every F-algebraic system A and all
T ∈ FiFamI(A), T ∗ is the largest Leibniz filter family below T .

Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). Suppose
T ′ ∈ FiFamI∗(A), such that T ′ ≤ T . Then we have T ′ = T ′∗ ≤ T ∗, where
the last inclusion is due to Lemma 1703. ∎

Under Leibniz definability, the condition that ΩA be an order isomor-
phism from Leibniz filter families of A onto I∗-congruence systems on A, for
every I-algebraic system yields protoalgebraicity.

Proposition 1705 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing
transformations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. If, for every A ∈ AlgSys(I),
ΩA ∶ FiFamI∗(A) → ConSysI∗(A) is an order isomorphism, then I is pro-
toalgebraic.

Proof: Suppose the stated condition holds and let A be an F-algebraic
system and T ∈ FiFamI(A). Then we have

Ω̃I,A(T ) = ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)}
(definition of Ω̃I,A(T ))

= ⋂{ΩA(T ′∗) ∶ T ≤ T ′ ∈ FiFamI(A)}
(by Proposition 1677)

= ΩA(⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)})
(by the hypothesis)

= ΩA(T ∗) (by Lemma 1703)
= ΩA(T ). (by Proposition 1677)

Hence, the Leibniz and Suszko operators on every F-algebraic system coin-
cide, whence, by Lemma 1518, I is protoalgebraic. ∎

We show, next, that, under Leibniz definability, the collection of Leibniz
I-filter families on every F-algebraic system is closed under morphic images
and preimages and under intersections.

Proposition 1706 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing trans-
formations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭.

(a) M(MI∗) ⊆MI∗ and M−1(MI∗) ⊆MI∗;
(b) IΠ(MI∗) ⊆MI∗.

Proof:
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(a) Let A, B be F-algebraic systems, T ∈ FiFamI(A), T ′ ∈ FiFamI(B) and⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ a strict surjective morphism. We then have

T = T ∗ iff T = µA(T )
iff γ−1(T ′) = µA(γ−1(T ′))
iff γ−1(T ′) = γ−1(µB(T ′))
iff T ′ = µB(T ′)
iff T ′ = T ′∗.

Thus, ⟨A, T ⟩ ∈MI∗ if and only if ⟨B, T ′⟩ ∈MI∗.
(b) Let A be an F-algebraic system and {T i ∶ i ∈ I} ⊆ FiFamI∗(A). Then

we have
⋂i∈I T i = ⋂i∈I(T i)∗

= ⋂i∈I µA(T i)
= µA(⋂i∈I T i)
= (⋂i∈I T i)∗.

Therefore ⋂i∈I T i ∈ FiFamI∗(A). Thus, if ⟨A, T i⟩ ∈ MI∗, for all i ∈ I,
then ⟨A,⋂i∈I T i⟩ ∈MI∗. ∎

Proposition 1706, in conjunction with the characterization Theorem 1787
of the IM-matrix families for a class M of F-matrix families, allow us to prove
that, under Leibniz definability, I+-filter families and Leibniz I-filter families
on any F-algebraic system coincide.

Theorem 1707 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F, with witnessing transfor-
mations µ♭ ∶ (SEN♭)ω → SEN♭ in N ♭. For every F-algebraic system A,

FiFamI
+(A) = FiFamI∗(A).

Proof: We have

MatFam(I+) = MatFam(IMI∗) (I+ = IMI∗, by definition)
= MIΠM−1(MI∗) (by Theorem 1787)
⊆ MI∗. (by Proposition 1706)

This shows that FiFamI
+(A) ⊆ FiFamI∗(A). But, by Proposition 1665, the

reverse inclusion always holds. Therefore, for every F-algebraic system A,
FiFamI

+(A) = FiFamI∗(A). ∎

We give several conditions involving the strong version of I that turn out
to characterize both the protoalebraicity of I and the protoalgebraicity of
I+, under the proviso that I be Leibniz definable.

Corollary 1708 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable π-institution based on F. The following conditions
are equivalent:
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(i) I+ is protoalgebraic;

(ii) I is protoalgebraic;

(iii) For every A ∈ AlgSys(I), ΩA ∶ FiFamI∗(A)→ ConSysI∗(A) is an order
isomorphism;

(iv) For every A ∈ AlgSys(I+), ΩA ∶ FiFamI
+∗(A) → ConSysI

+∗(A) is an
order isomorphism;

(v) I+ is weakly family algebraizable.

Proof:

(i)⇒(ii) Suppose I+ is protoalgebraic. Let A be an F-algebraic system and
T,T ′ ∈ FiFamI(A), such that T ≤ T ′. By Lemma 1703, T ∗ ≤ T ′∗.
Hence, by Proposition 1665 and the hypothesis, ΩA(T ∗) ≤ ΩA(T ′∗). By
hypothesis, Proposition 1621 and Proposition 1677, ΩA(T ) ≤ ΩA(T ′).
Thus, the Leibniz operator is monotone on the I-filter families of every
F-algebraic system and, therefore, I is protoalgebraic.

(ii)⇒(iii) By Proposition 1621.

(iii)⇒(iv) By Lemma 1679.

(iv)⇒(v) We have, for every F-algebraic system A,

FiFamI
+∗(A) = FiFamI∗(A) (by Corollary 1672)

= FiFamI
+(A). (by Theorem 1707)

Therefore, by hypothesis, ΩA ∶ FiFamI
+(A) → ConSysI

+∗(A) is an or-
der isomorphism. By Theorem 296, I+ is weakly family algebraizable.

(v)⇒(i) If I+ is weakly family algebraizable, then it is, a fortiori, protoalgebraic.
∎

Finally, we give some consequences of imposing both Leibniz definabil-
ity and Leibniz truth equationality. The combination is strong enough to
guarantee that Leibniz filter families and Suszko filter families coincide.

Proposition 1709 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a Leibniz definable and Leibniz truth equational π-institution based
on F. For every F-algebraic system A and all T ∈ FiFamI(A),

T ∗ = T I,Su.
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Proof: Let A ∈ AlgSys(F) and T ∈ FiFamI(A). Then

T I,Su = ⋂{T ′∗ ∶ T ≤ T ′ ∈ FiFamI(A)} (by Corollary 1698)
= T ∗. (by Lemma 1703)

This proves the statement. ∎

Corollary 1710 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Leibniz definable and Leibniz truth equational π-institution based on
F. For every F-algebraic system A,

FiFamI∗(A) = FiFamI,Su(A).
Proof: Let A ∈ AlgSys(F). By Lemma 1583, FiFamI,Su(A) ⊆ FiFamI∗(A).
On the other hand, if T ∈ FiFamI∗(A), then, by Proposition 1709, T = T ∗ =
T I,Su. Thus, T ∈ FiFamI,Su(A). ∎
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23.1 The Frege Hierarchy

23.2 Self Extensionality and Implication

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 → SEN♭

a binary natural transformation in N ♭ and I = ⟨F,C⟩ a π-institution based
on F.

We say that →♭ has the Deduction Detachment Property in I if, for
all Σ ∈ ∣Sign♭∣, Φ ∪ {φ,ψ} ⊆ SEN(Σ),

ψ ∈ CΣ(Φ, φ) iff φ→♭Σ ψ ∈ CΣ(Φ).
I has the Uniterm Deduction Detachment Property with respect to
→♭ if →♭ has the Deduction Detachment Property in I . I has the Uniterm
Deduction Detachment Property if it has the Uniterm Deduction De-
tachment Property with respect to some →♭ ∶ (SEN♭)2 → SEN♭ in N ♭.

If a π-institution has the Uniterm Deduction Detachment Theorem with
respect to two different binary natural transformations in N ♭, then the two
must be interderivable in the following precise sense.

Lemma 1711 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭

,→′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If
I has the Uniterm Deduction Detachment Property with respect to both →♭

and →′ ♭, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
CΣ(φ→♭Σ ψ) = CΣ(φ →′ ♭Σ ψ).

Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). We have φ→♭Σ ψ ∈ CΣ(φ→♭Σ ψ).
By the Uniterm Deduction Detachment Property with respect to →♭, we get
ψ ∈ CΣ(φ,φ →♭Σ ψ). By the Uniterm Deduction Detachment Property with
respect to →′ ♭, we get φ →′ ♭Σ ψ ∈ CΣ(φ →♭Σ ψ). Using symmetry, we obtain
that CΣ(φ→♭Σ ψ) = CΣ(φ→′ ♭Σ ψ). ∎

Thus, for self extensional π-institutions, we get immediately

Corollary 1712 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭

,→′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a self extensional π-institution
based on F. If I has the Uniterm Deduction Detachment Property with re-
spect to both →♭ and →′ ♭, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ→♭Σ ψ,φ →′ ♭Σ ψ⟩ ∈ Ω̃Σ(I).
Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). By Lemma 1711, ⟨φ→♭Σ ψ,φ →′ ♭Σ
ψ⟩ ∈ λ̃Σ(I). But, by self extensionality, λ̃(I) = Ω̃(I). This yields the conclu-
sion. ∎
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, and K a class of F-algebraic systems. The class K is said to be
Hilbert based with respect to →♭ if, for all A ∈ K, for all Σ ∈ ∣Sign∣ and
all φ,ψ,χ ∈ SEN(Σ),
H1. φ→AΣ φ = ψ →

A
Σ ψ;

H2. (φ→AΣ φ)→AΣ φ = φ;

H3. φ→AΣ (ψ →AΣ χ) = (φ→AΣ ψ)→AΣ (φ→AΣ χ);
H4. (φ→AΣ ψ)→AΣ ((ψ →AΣ φ)→AΣ ψ) = (ψ →AΣ φ)→AΣ ((φ →AΣ ψ)→AΣ φ).

These equations are commonly referred to as the Hilbert equations. The
class K is Hilbert based if it is Hilbert based with respect to →♭, for some
→♭∶ (SEN♭)2 → SEN♭ in N ♭.

A class K of F-algebraic systems is called pointed if there exists ⊺♭ ∶(SEN♭)k → SEN♭ in N ♭, such that, for all A ∈ K, all Σ ∈ ∣Sign∣ and all
φ⃗, ψ⃗ ∈ SEN(Σ),

⊺AΣ(φ⃗) = ⊺AΣ(ψ⃗).
⊺♭ is then called a constant in K and we sometimes write ⊺AΣ for ⊺AΣ(φ⃗),
since this value is independent of the argument φ⃗ ∈ SEN(Σ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, and K a Hilbert based class with respect to →♭. Then, by the
Hilbert equation H1, the natural transformation ⊺♭ ∶ SEN♭ → SEN♭ in N ♭

defined by
⊺♭ ∶=→♭ ○ ⟨p1,0, p1,0⟩

(in abbreviated more readable form ⊺♭(x) ∶= x →♭ x) is a constant in K. So in
this case, it makes sense to write ⊺AΣ for the constant defined by this natural
transformation in A ∈ K, for Σ ∈ ∣Sign∣.

Moreover, for A ∈ K, we define the relation family ≤A = {≤AΣ}Σ∈∣Sign∣ on A
by setting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≤AΣ ψ iff φ→AΣ ψ = ⊺
A
Σ .

It is not difficult to see that this is actually a partial order system on A.

Lemma 1713 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and K a Hilbert based class with respect to
→♭. For all A ∈ K, ≤A is a posystem on A.

Proof: We show, first, that, for all Σ ∈ ∣Sign∣, ≤AΣ is a partial order on
SEN(Σ). Let φ,ψ,χ ∈ SEN(Σ).

• By definition φ→AΣ φ = ⊺
A
Σ , whence φ ≤AΣ φ and ≤AΣ is reflexive;
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• Suppose φ ≤AΣ ψ and ψ ≤AΣ φ. Then, we get φ →AΣ ψ = ψ →AΣ φ = ⊺AΣ .
Thus, we get

φ = ⊺AΣ →
A
Σ φ (by H2)

= ⊺AΣ →
A
Σ (⊺AΣ →AΣ φ) (by H2)

= ⊺AΣ →
A
Σ (⊺AΣ →AΣ ψ) (by H4)

= ⊺AΣ →
A
Σ ψ (by H2)

= ψ. (by H2)

Hence, ≤AΣ is antisymmetric;

• Suppose φ ≤AΣ ψ and ψ ≤AΣ χ. Then φ →AΣ ψ = ψ →AΣ χ = ⊺AΣ . Thus, we
get

φ→AΣ χ = ⊺AΣ →
A
Σ (φ→AΣ χ) (by H2)

= (φ →AΣ ψ)→AΣ (φ→AΣ χ) (hypothesis)
= φ→AΣ (ψ →AΣ χ) (by H3)
= φ→AΣ ⊺AΣ (hypothesis)
= φ→AΣ (φ→AΣ φ) (definition)
= (φ →AΣ φ)→AΣ (φ→AΣ φ) (by H3)
= ⊺AΣ . (definition)

So ≤AΣ is also transitive.

Thus, ≤A is a partial order family on A. We show that, in addition, it is a
system, i.e., it is invariant under signature morphisms. To this end, suppose
Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ,ψ ∈ SEN(Σ), such that φ ≤AΣ ψ. Then
φ→AΣ ψ = ⊺

A
Σ . Hence, SEN(f)(φ→AΣ ψ) = SEN(f)(⊺AΣ). This gives

SEN(f)(φ)→AΣ′ SEN(f)(ψ) = ⊺AΣ′ .
We conclude that SEN(f)(φ) ≤AΣ′ SEN(f)(ψ). Therefore, ≤A is indeed a
posystem on A. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, K a Hilbert based class with respect to →♭, A ∈ K and T ∈
SenFam(A). We say that T is an →♭-implicative filter family of A if

• ⊺AΣ ∈ TΣ, for all Σ ∈ ∣Sign∣;
• φ →AΣ ψ ∈ TΣ and φ ∈ TΣ imply ψ ∈ TΣ, for all Σ ∈ ∣Sign∣ and all
φ,ψ ∈ SEN(Σ).

We write FiFam→(A) for the collection of all →♭-implicative filter families on
A.

Next, we show that in any F-algebraic system A in a Hilbert based class
K, for all Σ ∈ ∣Sign∣ and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ0 →AΣ (φ1 →AΣ ⋯→AΣ (φn−1 →AΣ φ)⋯) = ⊺AΣ
iff φπ(0) →AΣ (φπ(1) →AΣ ⋯ →AΣ (φπ(n−1) →AΣ φ)⋯) = ⊺AΣ ,

where π is any permutation of {0, . . . , n − 1}.
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Lemma 1714 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and K a Hilbert based class of F-algebraic
systems with respect to →♭. For all A ∈ K, all Σ ∈ ∣Sign∣, all φ0, φ1, . . . , φn−1, φ ∈
SEN(Σ) and every permutation π of {0,1, . . . , n − 1},

φ0 →AΣ (φ1 →AΣ ⋯→AΣ (φn−1 →AΣ φ)⋯) = ⊺AΣ
iff φπ(0) →AΣ (φπ(1) →AΣ ⋯→AΣ (φπ(n−1) →AΣ φ)⋯) = ⊺AΣ .

Proof:
∎

Lemma 1714 allows us to write
⇒

Φ→AΣ φ = ⊺
A
Σ

for φ0 →AΣ (φ1 →AΣ ⋯ →AΣ (φn−1 →AΣ φ)⋯) = ⊺AΣ , where Φ = {φ0, . . . , φn−1},
when appropriate, since the equation does not depend on the order in which
the elements of Φ are arranged in the implication expression. Moreover, for
convenience, if Φ = ∅, we take

⇒

Φ →AΣ φ ∶= φ.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, K a Hilbert based class with respect to →♭, and I = ⟨F,C⟩ a
finitary π-institution based on F. I is called Hilbert based with respect
to K and →♭ if, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f SEN♭(Σ),

φ ∈ CΣ(Φ) iff for all A ∈ K, αΣ(⇒Φ →♭Σ φ) = ⊺AF (Σ).
We say that I is Hilbert based if there exists →♭∶ (SEN♭)2 → SEN♭ in N ♭

and a Hilbert based class K of F-algebraic systems with respect to →♭, such
that I is Hilbert based with respect to K and →♭.

Corollary 1715 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary →♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭

and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭. For
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ) = CΣ(ψ) iff ⟨φ,ψ⟩ ∈ KerΣ(K).
Proof: Suppose I is Hilbert based with respect to K and →♭. Then, for
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), CΣ(φ) = CΣ(ψ) if and only if, by
definition, for all A ∈ K, αΣ(φ→♭Σ ψ) = αΣ(ψ →♭Σ φ) = ⊺AF (Σ), if and only if, by

Lemma 1713, for all A ∈ K, αΣ(φ) = αΣ(ψ), if and only if, ⟨φ,ψ⟩ ∈ KerΣ(K).
∎

It is not difficult to see that if a π-institution is Hilbert based with respect
to a Hilbert based class K, then it is also Hilbert based with respect to the
semantic variety generated by K.
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Lemma 1716 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭

and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭. Then
I is also Hilbert based with respect to VSem(K) and →♭.

Proof: Assume that I is Hilbert based with respect K and →♭. First, note
that, since, for all A ∈ VSem(K), Ker(K) ≤ Ker(A), all F-algebraic systems
in VSem(K) satisfy the Hilbert equations and, hence, VSem(K) is a Hilbert
based class with respect to →♭.

Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆f SEN♭(Σ).
Suppose φ ∈ CΣ(Φ) and let A ∈ VSem(K). By hypothesis ⟨⇒Φ →♭Σ φ,⊺♭Σ⟩ ∈

KerΣ(K). Since A ∈ VSem(K), Ker(K) ≤ Ker(A). Therefore, ⟨⇒Φ →♭Σ φ,⊺♭Σ⟩ ∈
KerΣ(A). This shows that αΣ(⇒Φ →♭Σ φ) = ⊺A

F (Σ)
. Conversely, if, for all

A ∈ VSem(K), αΣ(⇒Φ →♭Σ φ) = ⊺AF (Σ), then this holds, a fortiori, for all A ∈ K
and, hence, by the hypothesis φ ∈ CΣ(Φ).

Thus, I is Hilbert based both with respect to VSem(K) and →♭. ∎

Corollary 1717 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary →♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭

and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭. For
all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ) = CΣ(ψ) iff ⟨φ,ψ⟩ ∈ KerΣ(VSem(K)).
Proof: By Corollary 1715 and Lemma 1716. ∎

We can also show that, if K and K′ are two Hilbert based classes of F-
algebraic systems with respect to binary transformations →♭ and →′ ♭ in N ♭,
respectively, and a π-institution I happens to be Hilbert based with respect
to both K and →♭ and K′ and →′ ♭, then, the two classes K and K′ generate
the same semantic variety of F-algebraic systems.

Proposition 1718 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭, →′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert class with respect to →♭ and
K′ a Hilbert class with respect to →′ ♭. If I = ⟨F,C⟩ is a π-institution that is
Hilbert based with respect to K and →♭ and Hilbert based with respect to K′

and →′ ♭, then VSem(K) = VSem(K′).
Proof: We show that K′ ⊆ VSem(K). Then the conclusion will follow by
symmetry. To this end, let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈
KerΣ(K), and A′ ∈ K′. By hypothesis, for all A, αΣ(φ) = αΣ(ψ). Hence,
for all A ∈ K, αΣ(φ →♭Σ ψ) = αΣ(ψ →♭Σ φ) = ⊺A

F (Σ)
. Thus, since I is

Hilbert based with respect to K and →♭, we get CΣ(φ) = CΣ(ψ). But,
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by hypothesis, I is also Hilbert based with respect to K′ and →′ ♭, whence
α′Σ(φ→′ ♭Σ ψ) = α′Σ(ψ →′ ♭Σ φ) = ⊺A′

F ′(Σ)
. Hence, by Lemma 1713, α′Σ(φ) = α′Σ(ψ)

or, equivalently, ⟨φ,ψ⟩ ∈ KerΣ(A′). This shows that A′ ∈ VSem(K). Thus,
K′ ⊆ VSem(K). ∎

We conclude that, if I = ⟨F,C⟩ is a Hilbert based π-institution, there is
a unique semantic variety of F-algebraic systems, with respect to which it is
Hilbert based. We denote this semantic variety by VSem(I) and call it the
semantic variety of I .

A key result is that every Hilbert based π-institution is self extensional
and has the Deduction Detachment Property. We also show that the semantic
variety of I coincides with the class KI , the semantic variety of I .

Proposition 1719 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, K a Hilbert based class with respect to →♭, and
I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭.

(a) I is self extensional;

(b) I has the Deduction Detachment Property with respect to →♭;

(c) VSem(I) = KI ; Thus, I is Hilbert based with respect to KI and →♭.

Proof:

(a) We must show that Λ̃(I) = Ω̃(I). Since Ω̃(I) is the largest congruence
system on F that is included in λ̃(I), it suffices to show that λ̃(I) is
a congruence system. To this end, let σ♭ be a natural transformation
in N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that ⟨φi, ψi⟩ ∈ λ̃Σ(I), for
all i < k. Hence, by definition, CΣ(φi) = CΣ(ψi), for all i ∈ I. Since I
is Hilbert based with respect to K and →♭, we get, by Corollary 1715,⟨φi, ψi⟩ ∈ KerΣ(K), for all i < k. But Ker(K) is a congruence system
on F, whence ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ KerΣ(K). Again, by Corollary 1715,

CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)) and, therefore, ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ λ̃Σ(I). We

conclude that λ̃(I) = Ω̃(I) and, hence, I is self extensional.

(b) Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ,ψ} ⊆ SEN♭(Σ).
– Suppose that ψ ∈ CΣ(Φ, φ). Since I is finitary, there exists Φ′ ⊆f

Φ, such that ψ ∈ CΣ(Φ′, φ). Since I is Hilbert based with respect

to K and →♭, we get ⟨⇒Φ′ →♭Σ (φ →♭Σ ψ),⊺♭Σ⟩ ∈ KerΣ(K). Thus,
again, since I is Hilbert based with respect to K and →♭, φ→♭Σ ψ ∈
CΣ(Φ′) ⊆ CΣ(Φ).

– Suppose, conversely, that φ →♭Σ ψ ∈ CΣ(Φ). Again, by finitarity,
there exists Φ′ ⊆f Φ, such that φ →♭Σ ψ ∈ CΣ(Φ′). Hence, since I

is Hilbert based with respect to K and →♭, ⟨⇒Φ′ →♭Σ (φ→♭Σ ψ),⊺♭Σ⟩ ∈
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KerΣ(K). But, again by the fact that I is Hilbert based with
respect to K and →♭, we get that ψ ∈ CΣ(Φ′, φ) ⊆ CΣ(Φ, φ).

Hence I has the Deduction Detachment Property with respect to →♭.

(c) Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). We have

⟨φ,ψ⟩ ∈ KerΣ(VSem(I)) iff CΣ(φ) = CΣ(ψ) (by Corollary 1717)

iff ⟨φ,ψ⟩ ∈ λ̃Σ(I) (by definition)

iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I) (by Part (a))
iff ⟨φ,ψ⟩ ∈ KerΣ(KI). (by definition)

Therefore, since KI is a semantic variety by definition, we get that
VSem(I) = KI . The last statement follows now by Lemma 1716.

∎

If I is Hilbert based, not only is the semantic variety with respect to which
it is Hilbert based unique, but, in addition, any two binary natural transfor-
mations that serve as the Hilbert implications are in a sense interderivable
and, hence, indistinguishable modeulo the Tarski congruence system of I .

Corollary 1720 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭,
→′ ♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a Hilbert based π-institution
with respect to →♭ and with respect to →′ ♭. Then, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ SEN♭(Σ),

(a) CΣ(φ→♭Σ ψ) = CΣ(φ→′ ♭Σ ψ);
(b) ⟨φ→♭Σ ψ,φ→′ ♭Σ ψ⟩ ∈ Ω̃Σ(I).

Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then

φ→♭Σ ψ ∈ CΣ(φ→♭Σ ψ) iff ψ ∈ CΣ(φ,φ →♭Σ ψ) (Proposition 1719)
iff φ→′ ♭Σ ψ ∈ CΣ(φ→♭Σ ψ). (Proposition 1719)

Therefore, φ →′ ♭Σ ψ ∈ CΣ(φ →♭Σ ψ). By symmetry, we get the conclusion of
Part (a). Part (b) follows by Proposition 1719, which asserts that I is self
extensional. ∎

If I is self extensional and has the Deduction Detachment Property with
respect to →♭, it turns out that the singleton class K = {F/Ω̃(I)}, consisting
of the Lindenbaum-Tarski F-algebraic system of I , is Hilbert based with
respect to →♭.

Lemma 1721 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional
π-institution, having the Deduction Detachment Property with respect to →♭.
The class K = {F/Ω̃(I)} is Hilbert based with respect to →♭.
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Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ).
(H1) By the Deduction Detachment Property with respect to →♭, we get

CΣ(φ →♭Σ φ) = CΣ(ψ →♭Σ ψ) = CΣ(∅). Therefore, by self extensionality,

⟨φ→♭Σ φ,ψ →♭Σ ψ⟩ ∈ Ω̃Σ(I);
(H2) We have φ →♭Σ φ ∈ CΣ(φ →♭Σ φ), whence φ ∈ CΣ(φ,φ →♭Σ φ) and, hence,(φ→♭Σ φ)→♭Σ φ ∈ CΣ(φ).

On the other hand, (φ →♭Σ φ) →♭Σ φ ∈ CΣ((φ →♭Σ φ) →♭Σ φ), whence
φ ∈ CΣ((φ →♭Σ φ) →♭Σ φ,φ →♭Σ φ) and, since φ →♭Σ φ ∈ CΣ(∅), φ ∈
CΣ((φ→♭Σ φ)→♭Σ φ).
This shows that CΣ((φ →♭Σ φ) →♭Σ φ) = CΣ(φ) and, hence, by self

extensionality, ⟨(φ→♭Σ φ)→♭Σ φ,φ⟩ ∈ Ω̃Σ(I).
(H3) By the Deduction Detachment Property with respect to →♭, we get

χ ∈ CΣ(φ,φ →♭Σ ψ, (φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)). Thus, since φ →♭Σ ψ ∈
CΣ(ψ), we get χ ∈ CΣ(φ,ψ, (φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)). This gives
ψ →♭Σ χ ∈ CΣ(φ, (φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)) and, hence, φ →♭Σ (ψ →♭Σ χ) ∈
CΣ((φ→♭Σ ψ)→♭Σ (φ→♭Σ χ)).
On the other hand, χ ∈ CΣ(φ,φ →♭Σ ψ,φ →♭Σ (ψ →♭Σ χ)). Therefore,
φ →♭Σ χ ∈ CΣ(φ →♭Σ ψ,φ →♭Σ (ψ →♭Σ χ)), whence (φ →♭Σ ψ) →♭Σ (φ →♭Σ
χ) ∈ CΣ(φ→♭Σ (ψ →♭Σ χ)).
We conclude that CΣ(φ →♭Σ (ψ →♭Σ χ)) = CΣ((φ →♭Σ ψ) →♭Σ (φ →♭Σ χ)).
Thus, by self extensionality, ⟨φ→♭Σ (ψ →♭Σ χ), (φ →♭Σ ψ)→♭Σ (φ→♭Σ χ)⟩ ∈
Ω̃Σ(I).

(H4) By the Deduction Detachment Property with respect to →♭,

ψ ∈ CΣ(ψ →♭Σ φ,φ→♭Σ ψ, (ψ →♭Σ φ)→♭Σ ((φ →♭Σ ψ)→♭Σ φ)).
Therefore, (ψ →♭Σ φ) →♭Σ ψ ∈ CΣ(φ →♭Σ ψ, (ψ →♭Σ φ) →♭Σ ((φ →♭Σ ψ) →♭Σ
φ)), whence (φ→♭Σ ψ)→♭Σ ((ψ →♭Σ φ)→♭Σ ψ) ∈ CΣ((ψ →♭Σ φ)→♭Σ ((φ →♭Σ
ψ)→♭Σ φ)). The other inclusion follows similarly and, then, we get the
conclusion by self extensionality.

Therefore, {F/Ω̃(I)} is Hilbert based with respect to →♭. ∎

Now we can fully characterize those finitary π-institutions which are
Hilbert based.

Theorem 1722 Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system and I a
finitary π-institution based on F. I is Hilbert based if and only if it is self
extensional and has the Uniterm Deduction Detachment Property.
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Proof: The left-to-right implication is given by Proposition 1719. Assume,
conversely, that I is self extensional and has the Uniterm Deduction Detach-
ment Property with respect to some →♭∶ (SEN♭)2 → SEN♭ in N ♭. Consider
K = {F/Ω̃(I)}. By Lemma 1721, K is Hilbert based with respect to →♭. Let
Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f SEN♭(Σ). Then we have

φ ∈ CΣ(Φ) iff
⇒

Φ→♭Σ φ ∈ CΣ(∅) (Deduction Detachment)

iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ λ̃Σ(I) (definition of λ̃(I))
iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ Ω̃Σ(I). (self extensionality)

Therefore, I is Hilbert based with respect to K and, hence, by Lemma 1716,
with respect to KI = VSem(K), and →♭. ∎

Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭ and K a Hilbert based semantic variety with respect to →♭. We
define the finitary π-institution

IK,→ = ⟨F,CK,→⟩,
associated with K and →♭, by setting, for all Σ ∈ ∣Sign♭∣ and all Φ∪ {φ} ⊆f
SEN♭(Σ),

φ ∈ CK,→
Σ (Φ) iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ KerΣ(K).

We can see easily from the definition that IK,→ is Hilbert based with
respect to K and →♭.

Corollary 1723 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, and K a Hilbert based semantic variety with respect
to →♭. Then IK,→ is Hilbert based with respect to K and →♭ and, moreover,
VSem(IK,→) = K.

Proof: This follows directly from the definition of IK,→ and by taking into
account Lemma 1716 and the definition of VSem(IK,→). ∎

Let F = ⟨Sign♭,SEN♭,N ♭ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭. Our next goal is to establish that the two mappings

I ✲ VSem(I)
IK,→ ✛ K

form a dual order isomorphism from the collection of Hilbert based π-insti-
tutions with respect to →♭, under ≤, and Hilbert based semantic varieties
with respect to →♭, under ⊆.

We first show that the Frege operator is both monotone and order reflect-
ing on Hilbert based π-institutions with respect to →♭.
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Proposition 1724 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
→♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ be Hilbert based
π-institutions with respect to →♭. Then

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′).
Proof: The left-to-right implication (monotonicity) is given by Lemma 1416.
For the right-to-left implication, suppose λ̃(I) ≤ λ̃(I ′) and let Σ ∈ ∣Sign♭∣,
Φ ∪ {φ} ⊆f SEN♭(Σ). Then we have

φ ∈ CΣ(Φ) iff CΣ(⇒Φ→♭Σ φ) = CΣ(∅) (by Theorem 1722)

iff ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ λ̃Σ(I) (definition)

implies ⟨⇒Φ→♭Σ φ,⊺♭Σ⟩ ∈ λ̃Σ(I ′) (hypothesis)

iff C ′Σ(⇒Φ→♭Σ φ) = C ′Σ(∅) (definition)
iff φ ∈ C ′Σ(Φ). (by Theorem 1722)

We conclude that I ≤ I ′ and, hence λ̃ is also order reflecting. ∎

Now we present the preannounced order isomorphism theorem. For an
algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, with →♭ a binary natural transfor-
mation in N ♭, we let

KF,→

be the semantic variety consisting of all F-algebraic systems satisfying the
Hilbert equations with respect to →♭.

Theorem 1725 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ in N ♭, There exists a dual order isomorphism between the
collection of all Hilbert based π-institutions with respect to →♭, ordered under
≤, and the collection of all semantic subvarieties of the semantic variety KF,→,
ordered under ⊆, given by I ↦ KI .

Proof: The given mapping is onto, since, by Corollary 1723, for K ⊆ KF,→ a
semantic subvariety of KF,→, K = KIK,→. Moreover, it is 1-1, since KI = KI′

implies that λ̃(I) = Ω̃(I) = Ω̃(I ′) = λ̃(I ′) and, hence, by Proposition 1724,
I = I ′. Finally, monotonicity and order reflectivity are both given by

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′) (Proposition 1724)

iff Ω̃(I) ≤ Ω̃(I ′) (Theorem 1722)

iff F/Ω̃(I ′) ∈ VSem(F/Ω̃(I))
iff KI

′ ⊆ KI .

This establishes the order isomorphism. ∎

Our next goal is to show that Hilbert based π-institutions, i.e., finitary
self extensional π-institutions that have the Uniterm Deduction Detachment
Property (by Theorem 1722) are fully self extensional.

We start by proving that on every F-algebraic system in the Hilbert class
VSem(I) = KI , I-filter families and implicative filter families coincide.
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Lemma 1726 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a bi-
nary →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a Hilbert based π-institution
with respect to →♭. For every F-algebraic system A ∈ KI,

FiFamI(A) = FiFam→(A).
Proof: Let A ∈ KI .

Suppose that T ∈ FiFamI(A) and let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ).
• We have φ ∈ CΣ(φ), whence, by Proposition 1719, φ →♭Σ φ ∈ CΣ(∅).

Hence, ⊺A
F (Σ)
∈ TF (Σ);

• Assume αΣ(φ →♭Σ ψ) ∈ TF (Σ) and αΣ(φ) ∈ TF (Σ). Since, again by

Proposition 1719, ψ ∈ CΣ(φ,φ →♭Σ ψ) and T ∈ FiFamI(A), we get
αΣ(ψ) ∈ TF (Σ).

Therefore, taking into account the surjectivity of ⟨F,α⟩, T ∈ FiFam→(A).
Suppose, conversely, that T ∈ FiFam→(A), Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆f

SEN♭(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). By Proposition 1719,
⇒

Φ →♭Σ φ ∈ CΣ(∅). Therefore, CΣ(⇒Φ →♭Σ φ) = CΣ(⊺♭Σ). Thus, by Proposition

1719 and the fact that A ∈ KI , we get that αΣ(⇒Φ →♭Σ φ) = ⊺AF (Σ). Since, by

hypothesis, T ∈ FiFam→(A), αΣ(⇒Φ →♭Σ φ) ∈ TF (Σ). Thus, by the fact that
αΣ(Φ) ⊆ TF (Σ) and T ∈ FiFam→(A), we get that αΣ(φ) ∈ TF (Σ). We conclude

that T ∈ FiFamI(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩, with →♭∶ (SEN♭)2 → SEN♭ in N ♭, be an alge-
braic system, K be a Hilbert based class of F-algebraic systems with respect
to →♭, and I = ⟨F,C⟩ a Hilbert based π-institution with respect to K and →♭.
For all A ∈ K, all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), define T ⟨Σ,φ⟩ = {T ⟨Σ,φ⟩Σ′ }Σ′∈∣Sign∣
by setting, for all Σ′ ∈ ∣Sign∣,

T
⟨Σ,φ⟩
Σ = {χ ∈ SEN(Σ) ∶ φ→AΣ χ = ⊺AΣ}

and

T
⟨Σ,φ⟩
Σ′ = {⊺AΣ′}, for all Σ′ ≠ Σ.

It is not difficult to see that T ⟨Σ,φ⟩ ∈ FiFam→(A).
Lemma 1727 Let F = ⟨Sign♭,SEN♭,N ♭⟩, with →♭∶ (SEN♭)2 → SEN♭ in N ♭,
be an algebraic system, K be a Hilbert based class of F-algebraic systems
with respect to →♭, and I = ⟨F,C⟩ a Hilbert based π-institution with respect
to K and →♭. For all A ∈ K, all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), T ⟨Σ,φ⟩ ∈
FiFam→(A).
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Proof: Consider, first, Σ′ ≠ Σ. By definition, ⊺AΣ′ ∈ T
⟨Σ,φ
Σ′ . Moreover, if

⊺AΣ′ →
A
Σ′∈ T

⟨Σ,φ⟩
Σ′ , then, by H2, φ ∈ T ⟨Σ,φ⟩Σ′ .

Consider, next, Σ′ = Σ. Note that we have

φ→AΣ ⊺AΣ = φ→AΣ (φ→AΣ φ) (definition)
= (φ →AΣ φ)→AΣ (φ→AΣ φ) (by H3)
= ⊺AΣ →

A
Σ ⊺AΣ (definition)

= ⊺AΣ . (by H2)

Hence, ⊺AΣ ∈ T
⟨Σ,φ⟩
Σ . Moreover, if ψ,ψ →AΣ χ ∈ T ⟨Σ,φ⟩Σ , then, we get, by defini-

tion, φ→AΣ ψ = ⊺
A
Σ and φ→AΣ (ψ →AΣ χ) ∈ ⊺AΣ . Therefore, we get

φ→AΣ χ = ⊺AΣ →
A
Σ (φ→AΣ χ) (by H2)

= (φ→AΣ ψ)→AΣ (φ→AΣ χ) (hypothesis)
= φ→AΣ (ψ →AΣ χ) (by H3)
= ⊺AΣ , (hypothesis)

We conclude that χ ∈ T ⟨Σ,φ⟩Σ . Thus, T ⟨Σ,φ⟩ ∈ FiFam→(A). ∎

We can now prove that the Frege equivalence system of every full I-
structure of the form ⟨A,FiFamI(A)⟩, with A ∈ KI , is the identity congruence
system. This shows, in particular that every F-algebraic system in KI is an
I-algebraic system and, moreover, satisfies the Congruence Property.

Lemma 1728 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Hilbert based π-institution based on F. For every A ∈ KI, λ̃I(FiFamI(A)) =
∆A. Thus, ⟨A,FiFamI(A)⟩ is reduced and satisfies the Congruence Property.

Proof: Let A ∈ KI , Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∉ ∆AΣ .
Thus, φ ≠ ψ. Taking into account Lemma 1727, consider T ⟨Σ,φ⟩, T ⟨Σ,ψ⟩ ∈
FiFam→(A). By Lemma 1726, T ⟨Σ,φ⟩, T ⟨Σ,ψ⟩ ∈ FiFamI(A). Moreover, by

definition, φ ∈ T ⟨Σ,φ⟩Σ and ψ ∈ T ⟨Σ,ψ⟩Σ . On the other hand, if it was the case

that ψ ∈ T ⟨Σ,φ⟩Σ and φ ∈ T ⟨Σ,ψ⟩Σ , then, by definition, φ →AΣ ψ = ψ →AΣ φ = ⊺AΣ ,
whence, by Lemma 1713, φ = ψ, contrary to hypothesis. Thus, it must
be the case that ψ ∉ T ⟨Σ,φ⟩Σ or φ ∉ T ⟨Σ,ψ⟩Σ . We can now conclude that

⟨φ,ψ⟩ ∉ λ̃AΣ(FiFamI(A)). This shows that λ̃A(FiFamI(A)) = ∆A. Since

Ω̃A(FiFamI(A)) ≤ λ̃A(FiFamI(A)), we get that ⟨A,FiFamI(A)⟩ is a reduced
I-structure and that it satisfies the Congruence Property. ∎

Lemma 1728 allows us to conclude that, for Hilbert based π-institutions
I , the semantic variety of I coincides with the class of all I-algebraic systems.

Theorem 1729 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Hilbert based π-institution based on F.

(a) AlgSys(I) = KI = VSem(I);
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(b) AlgSys(I) is a semantic variety;

(c) I is Hilbert based with respect to AlgSys(I).
Proof: By Proposition 65, we have AlgSys(I) ⊆ KI . On the other hand,
Lemma 1728 gives KI ⊆ AlgSys(I). Therefore, AlgSys(I) = KI . Since KI

is a semantic variety, we conclude that AlgSys(I) is also a semantic variety.
Finally, since, by Proposition 1719, I is Hilbert based with respect to KI , we
conclude that I is Hilbert based with respect to AlgSys(I). ∎

In one of the main theorems of the section, we show that a finitary self
extensional π-institution with the Uniterm Deduction Detachment Property
is necessarily fully self extensional.

Theorem 1730 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary self extensional π-institution with the Uniterm Deduction
Detachment Property. Then I is fully self extensional.

Proof: Suppose that I is finitary self extensional and that it has the Uniterm
Deduction Detachment Property with respect to →♭∶ (SEN♭)2 → SEN♭ in N ♭.
By Theorem 1722 and Proposition 1719, I is Hilbert based with respect to
KI and →♭. By Theorem 1729, KI = AlgSys(I), whence, by Lemma 1728, for
all A ∈ AlgSys(I),

λ̃A(FiFamI(A)) =∆A.

Now to prove full self extensionality, we use Proposition 1428. To this end,
assume ⟨A,FiFamI(A)⟩ is a full I-structure. Then A/Ω̃A(FiFamI(A)) ∈
AlgSys(I) and, by definition,

FiFamI(A/Ω̃A(FiFamI(A))) = FiFamI(A)/Ω̃A(FiFamI(A)).
Thus, by what was shown above,

λ̃A/Ω̃
A(FiFamI(A))(FiFamI(A)/Ω̃A(FiFamI(A))) =∆A/Ω̃

A(FiFamI(A)).

By Proposition 1426, we infer that ⟨A.FiFamI(A)⟩ also has the Congruence
Property. We now conclude, by Proposition 1428, that I is fully self exten-
sional. ∎

We finish the section by looking at some connections with the theory of
Gentzen π-institutions, that is presented in another chapter.

Recall that, given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a fini-
tary π-institution I = ⟨F,C⟩ based on F, a finitary Gentzen π-institution
G = ⟨F,G⟩ is said to be adequate for I if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆f SEN♭(Σ),

φ ∈ CΣ(Φ) iff Φ ⊢Σ φ ∈ GΣ(∅).
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We say that the Gentzen π-institution G = ⟨F,G⟩ has the Congruence
Property if, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all
φ⃗, ψ⃗ ∈ SEN♭(Σ),

σ♭Σ(φ⃗) ⊢ σ♭Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i ∈ I}).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →

SEN♭ in N ♭, and G = ⟨F,G⟩ a finitary Gentzen π-institution based on F. We
say that:

• G has the Deduction Rule with respect to →♭, if, for all Σ ∈ ∣Sign♭∣
and all Φ ∪ {φ,ψ} ⊆f SEN♭(Σ),

Φ ⊢Σ φ→♭Σ ψ ∈ GΣ(Φ, φ ⊢Σ ψ);
• G has the Detachment Rule with respect to →♭, if, for all Σ ∈∣Sign♭∣ and all Φ ∪ {φ,ψ} ⊆f SEN♭(Σ),

Φ, φ ⊢Σ ψ ∈ GΣ(Φ ⊢Σ φ→♭Σ ψ);
• G has the Deduction Detachment Rule with respect to →♭, if it

has both the Deduction and the Detachment Property with respect to
→♭.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional π-institution, having
the Deduction Detachment Property with respect to →♭.

• Define AxI = {AxIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)};

• Define IrI = {IrIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
IrIΣ = {⟨{φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i ∈ I}, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶

σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ)}
∪{⟨{Φ, φ ⊢Σ ψ},Φ ⊢Σ φ→♭Σ ψ⟩ ∶ Φ ∪ {φ,ψ} ⊆f SEN♭(Σ)}
∪{⟨{Φ ⊢Σ φ→♭Σ ψ},Φ, φ ⊢Σ ψ⟩ ∶ Φ ∪ {φ,ψ} ⊆f SEN♭(Σ)}.

• RI ∶= AxI ∪ IrI .

Finally, define GI = ⟨F,CI⟩ ∶= GRI be the Gentzen π-institution generated by
the system RI of Gentzen rules. Recall, by Proposition 1482, that GI = ΞRI .

We are almost ready to establish the existence of a fully adequate Gentzen
π-institution for any given Hilbert based π-institution. Recall, again, from
work in a different chapter, that a Gentzen π-institution G is fully adequate
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for a π-institution I (with theorems) if, for every F-structure IL = ⟨A,D⟩,
IL is a full I-structure if and only if it is a G-structure.

For Hilbert based π-institutions, it turns out that any I-structure whose
Frege equivalence system is the identity is of the form ⟨A,FiFamI(A)⟩, for
some A ∈ KI .

Lemma 1731 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a Hilbert based π-institution based on F. If ⟨A,D⟩ ∈ Str(I), such that
λ̃A(D) =∆A, then D = FiFamI(A) and A ∈ KI .

Proof: Let ⟨A,D⟩ ∈ Str(I), such that λ̃A(D) = ∆A. Then, we have

Ω̃A(D) ≤ λ̃A(D) =∆A,

i.e., Ω̃A(D) = ∆A and, therefore, A ∈ AlgSys(I) ⊆ KI .
Suppose, next, that T ∈ FiFamI(A). By Lemma 1726, T ∈ FiFam→(A),

where→♭ in N ♭ is the binary transformation with respect to which I is Hilbert
based. Let Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈ DΣ(TΣ). By finitarity and
Proposition 114, there exists Φ ⊆f TΣ, such that φ ∈ DΣ(Φ). Thus, by

the hypothesis, Proposition 1719 and Corollary 1440,
⇒

Φ→AΣ φ ∈DΣ(⊺AΣ), i.e.,

DΣ(⇒Φ →AΣ φ) =DΣ(⊺AΣ). By hypothesis,
⇒

Φ→AΣ φ = ⊺
A
Σ . Since T ∈ FiFam→(A),

we have
⇒

Φ →AΣ φ ∈ TΣ and, since, also, Φ ⊆ TΣ, we infer that φ ∈ TΣ. Therefore,
T =D(T ), showing that T ∈ D and, hence, D = FiFamI(A). ∎

We finally show that any Hilbert based π-institution I has a fully ade-
quate Gentzen π-institution, namely, the π-institution GI , generated by the
Gentzen rules RI , which encode the rules of I , the Congruence Property and
the Deduction Detachment Property.

Theorem 1732 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F, having the Uniterm Deduction
Detachment Property. I is self extensional if and only if the Gentzen π-
institution G = ⟨F,GI⟩ if fully adequate for I.

Proof: Suppose that GI is fully adequate for I . We know that ⟨F ,C⟩ is a
full I-structure. Thus, by full adequacy, ⟨F ,C⟩ ∈ Str(GI). Therefore, ⟨F ,C⟩
satisfies all the Gentzen rules that hold in GI . In particular, for all σ♭ in N ♭,
all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ⊆ SEN♭(Σ), CΣ(φi) = CΣ(ψi), for all i ∈ I, imply
CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)). Thus, λ̃(I) is a congruence system and, hence I
is self extensional.

Suppose, conversely, that I is self extensional. By Theorem 1730, it is
fully self extensional. Let ⟨A,D⟩ ∈ FStr(I). Then, by Theorem 1444 and
the definition of GI , we get that ⟨A,D⟩ ∈ Str(GI). Assume, conversely, that⟨A,D⟩ ∈ Str(GI). By considering, if necessary, ⟨A/Ω̃A(D),D/Ω̃A(D)⟩, we
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may assume that Ω̃A(D) = ∆A and must show that D = FiFamI(A). By the
definition of GI , we get ⟨A,D⟩ ∈ Str(I). For the same reason, ⟨A,D⟩ satisfies
the Congruence Property. Therefore, λ̃A(D) = Ω̃A(D) = ∆A. Since, by
hypothesis, it has the Deduction Detachment Property, we get, by Theorem
1722, that it is Hilbert based. Now, applying Lemma 1731, we conclude that
D = FiFamI(A). Therefore, ⟨A,D⟩ ∈ FStr(I).

This shows that FStr(I) = Str(GI) and, hence, GI is, indeed, fully ade-
quate for I . ∎

23.3 Self Extensionality and Conjunction

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 → SEN♭

in N ♭, and I = ⟨F,C⟩ a π-institution based on F. We say that I has the
Conjunction Property with respect to ∧♭ and that ∧♭ is a conjunction
for I if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

• φ ∧♭Σ ψ ∈ CΣ(φ,ψ);
• φ,ψ ∈ CΣ(φ ∧♭Σ ψ).

Equivalently, ∧♭ is a conjunction for I if and only if, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ).
We say I is conjunctive if it has the Conjunction Property with respect to
some ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭.

If a π-institution has the Conjunction Property with respect to two differ-
ent binary natural transformations in N ♭, then the two concjunctions must
be interderivable in an obvious sense.

Lemma 1733 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭,∧′ ♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F. If I
has the Conjunction Property with respect to both ∧♭ and ∧′ ♭, then, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ ∧♭Σ ψ) = CΣ(φ ∧′ ♭Σ ψ).
Proof: Suppose that ∧♭ and ∧′ ♭ are both conjunctions for I and let Σ ∈∣Sign♭∣, ψ,ψ ∈ SEN♭(Σ). Then

CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ) (∧♭ a conjunction)
= CΣ(φ ∧′ ♭Σ ψ). (∧′ ♭ a conjunction)

This proves the statement. ∎
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Corollary 1734 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭,∧′ ♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on
F. If I is self extensional and has the Conjunction Property with respect to
both ∧♭ and ∧′ ♭, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ ∧♭Σ ψ,φ ∧′ ♭Σ ψ⟩ ∈ Ω̃Σ(I).
Proof: Suppose that I is self extensional and ∧♭ and ∧′ ♭ are both con-
junctions for I . Then, if Σ ∈ ∣Sign♭∣, ψ,ψ ∈ SEN♭(Σ), by Lemma 1733,⟨φ ∧♭Σ ψ,φ ∧′ ♭Σ ψ⟩ ∈ λ̃Σ(I), whence, by self extensionality, ⟨φ ∧♭Σ ψ,φ ∧′ ♭Σ ψ⟩ ∈
Ω̃Σ(I). ∎

We also know, by Proposition 1434 that the Conjunction Property trans-
fers from a π-institution I to all I-structures.

Corollary 1735 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution based on F, having
the Conjunction Property with respect to ∧♭. For every I-structure ⟨A,D⟩,
all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

DΣ(φ ∧AΣ ψ) = DΣ(φ,ψ).
Proof: This is simply a restatement of Proposition 1434. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and K a class of F-algebraic systems. K is semilattice based
with respect to ∧♭ if, for all A ∈ K, all Σ ∈ ∣Sign∣ and all φ,ψ,χ ∈ SEN(Σ),

L1. φ ∧AΣ φ = φ;

L2. φ ∧AΣ ψ = ψ ∧
A
Σ φ;

L3. (φ ∧AΣ ψ) ∧AΣ χ = φ ∧AΣ (ψ ∧AΣ χ).
L1-L3 are referred to as the semilattice equations. We say that K is semi-
lattice based if it is semilattice based with respect to some ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭.

If a class of F-algebraic systems is semilattices based, then the semantic
variety generated by the class is also semilattice based with respect to the
same binary natural transformation.

Lemma 1736 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and K a class of F-algebraic systems. If K is semi-
lattice based with respect to ∧♭, then VSem(K) is also semilattice based with
respect to ∧♭.
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Proof: Let A ∈ VSem(K). We show A satisfies L2. The work for L1 and L3
follows along the same lines. Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Since K is
semilattice based with respect to ∧♭, ⟨φ ∧♭Σ ψ,ψ ∧♭Σ φ⟩ ∈ KerΣ(K). Since, by
hypothesis, A ∈ VSem(K), we get Ker(K) ≤ Ker(A), whence ⟨φ∧♭Σψ,ψ ∧♭Σ φ⟩ ∈
KerΣ(A). This shows that αΣ(φ∧♭Σψ) = αΣ(ψ∧♭Σφ), i.e., αΣ(φ)∧AF (Σ)αΣ(ψ) =
αΣ(ψ)∧AF (Σ)αΣ(φ). Thus, by the surjectivity of ⟨F,α⟩, we conclude that, for

all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), φ ∧AΣ ψ = ψ ∧AΣ φ. Therefore, A satisfies
L2. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and K a semilattice based class of F-algebraic systems with
respect to ∧♭. For every A ∈ VSem(K), define the relation family ≤A ={≤AΣ}Σ∈∣Sign∣ on A by setting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≤AΣ ψ iff φ ∧AΣ ψ = φ.

It is easily shown that ≤A is a partial order system on A.

Lemma 1737 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and K a semilattice based class with respect to ∧♭.
For all A ∈ VSem(K), ≤A is a posystem on A.

Proof: First, fix A ∈ VSem(K), Σ ∈ ∣Sign∣. We show that ≤AΣ is a partial
order on SEN(Σ). To this end, let φ,ψ,χ ∈ SEN(Σ).

• By L1, φ = φ ∧AΣ φ, whence, by definition, φ ≤AΣ φ and ≤AΣ is reflexive;

• If φ ≤AΣ ψ and ψ ≤AΣ φ, then, we get

φ = φ ∧AΣ ψ (φ ≤AΣ ψ)
= ψ ∧AΣ φ (by L2)
= ψ. (ψ ≤AΣ φ)

Thus, ≤AΣ is antisymmetric.

• If φ ≤AΣ ψ and ψ ≤AΣ χ, then

φ = φ ∧AΣ ψ (φ ≤AΣ ψ)
= φ ∧AΣ (ψ ∧AΣ χ) (ψ ≤AΣ χ)
= (φ ∧AΣ ψ) ∧AΣ χ (by L3)
= φ ∧AΣ χ. (φ ≤AΣ ψ)

Hence φ ≤AΣ χ and ≤AΣ is also transitive.

Thus, ≤A is a partial order on SEN(Σ). Suppose, now, that Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′) and φ,ψ ∈ SEN(Σ), such that φ ≤AΣ ψ. Then, by definition, φ =
φ∧AΣψ. Thus, SEN♭(f)(φ) = SEN♭(f)(φ∧AΣψ) = SEN♭(f)(φ)∧AΣ′SEN♭(f)(ψ).
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This shows that SEN♭(f)(φ) ≤AΣ′ SEN♭(f)(ψ). Thus, ≤A is a partial order
system on A. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, K a semilattice based class of F-algebraic systems with respect to
∧♭, A ∈ K and T ∈ SenFam(A). We say that T is a semilattice filter family
of A if the following conditions hold, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ):

• TΣ ≠ ∅;

• φ,ψ ∈ TΣ implies φ ∧AΣ ψ ∈ TΣ;

• φ ∈ TΣ and φ ≤AΣ ψ imply ψ ∈ TΣ.

We denote by FiFam∧(A) the collection of all semilattice filter families on
A. Moreover, we write FiFam∧,∅(A) for the same collection augmented by
those sentence families resulting from semilattice filter families after one or
more components are replaced by the empty set.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, K a semilattice based class of F-algebraic systems with respect
to ∧♭, A ∈ K, Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Define

T ⟨Σ,φ⟩ = {T ⟨Σ,φ⟩Σ′ }Σ′∈∣Sign∣
by setting,

• T
⟨Σ,φ⟩
Σ = {χ ∈ SEN(Σ) ∶ φ ≤AΣ χ};

• T
⟨Σ,φ⟩
Σ′ = { {χ ∈ SEN(Σ) ∶ 1Σ ≤AΣ χ}, if 1Σ is a maximum in ≤AΣ

∅, if ≤AΣ has no maximum
, for all

Σ ≠ Σ′ ∈ ∣Sign∣,
We show that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), T ⟨Σ,φ⟩ ∈ FiFam∧(A)

or T ⟨Σ,φ⟩ ∈ FiFam∧,∅(A).
Lemma 1738 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class of F-algebraic systems
with respect to ∧♭, A ∈ K, Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then, T ⟨Σ,φ⟩ ∈
FiFam∧(A) or T ⟨Σ,φ⟩ ∈ FiFam∧,∅(A).
Proof: It suffices to show that, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), the
collection {χ ∈ SEN(Σ) ∶ φ ≤AΣ χ} is an upset under ≤AΣ , closed under ∧AΣ . Let
ψ,χ ∈ SEN(Σ).

• If ψ,χ ∈ T ⟨Σ,φ⟩Σ , then, by definition, φ ≤AΣ ψ and φ ≤AΣ χ. Thus, we get

φ = φ ∧AΣ χ (φ ≤AΣ χ)
= (φ ∧AΣ ψ) ∧AΣ χ (φ ≤AΣ ψ)
= φ ∧AΣ (ψ ∧AΣ χ). (by L3)

Therefore, φ ≤AΣ ψ ∧
A
Σ χ and, hence ψ ∧AΣ χ ∈ T

⟨Σ,φ⟩
Σ .
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• If ψ ∈ T ⟨Σ,φ⟩Σ and ψ ≤AΣ χ, then φ ≤AΣ ψ and ψ ≤AΣ χ, whence, by Lemma

1737, φ ≤AΣ χ, i.e., χ ∈ T ⟨Σ,φ⟩Σ .

Thus, T ⟨Σ,φ⟩ ∈ FiFam∧(A) or T ⟨Σ,φ⟩ ∈ FiFam∧,∅(A). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, K a semilattice based class of F-algebraic systems with respect to
∧♭ and I = ⟨F,C⟩ a finitary π-institution based on F. We say I is semilattice
based with respect to K and ∧♭ if, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f
SEN♭(Σ), with Φ ≠ ∅,

φ ∈ CΣ(Φ) iff for all A ∈ K,
⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ).

We say that I is semilattice based if it is semilattice based with respect
to K and ∧♭, for some semilattice based class K with respect to some ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭.

We get immediately from the definition that interderivability in I is re-
flected into equality in all algebraic systems in the defining class K.

Lemma 1739 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class of F-algebraic systems
with respect to ∧♭ and I = ⟨F,C⟩ a semilattice based π-institution with respect
to K and ∧♭. For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

CΣ(φ) = CΣ(ψ) iff for all A ∈ K, αΣ(φ) = αΣ(ψ).
Proof: By the definition, we have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
CΣ(φ) = CΣ(ψ) iff, for all A ∈ K, αΣ(φ) ≤AF (Σ) αΣ(ψ) and αΣ(ψ) ≤AF (Σ) αΣ(φ)
iff, by Lemma 1737, for all A ∈ K, αΣ(φ) = αΣ(ψ). ∎

Moreover, in case I is semilattice based with respect to a class K, then
it is also semilattice based with respect to the semantic variety generated by
K, with respect to the same binary transformation.

Lemma 1740 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class of F-algebraic systems
with respect to ∧♭ and I = ⟨F,C⟩ a semilattice based π-institution with respect
to K and ∧♭. Then I is semilattice based with respect to VSem(K) and ∧♭.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f SEN♭(Σ), such that φ ∈ CΣ(Φ) and
A ∈ VSem(K). Since I is semilattice based with respect to K and ∧♭, ⟨⋀♭Σ Φ∧♭Σ
φ,⋀♭Σ Φ⟩ ∈ KerΣ(K). Since A ∈ VSem(K), we get Ker(K) ≤ Ker(A). This gives

⋀AF (Σ)αΣ(Φ) ∧AF (Σ) αΣ(φ) = ⋀AF (Σ)αΣ(Φ), and, therefore, ⋀AF (Σ)αΣ(Φ) ≤AF (Σ)
αΣ(φ).

Conversely, if, for all A ∈ VSem(K), ⋁AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ), then, a

fortiori, for all A ∈ K, we have ⋁AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ). Therefore, by
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hypothesis, φ ∈ CΣ(Φ). We conclude that I is semilattice based with respect
to VSem(K) and ∧♭. ∎

We can now show that, if a π-institution is semilattice based with respect
to two different classes of semilattice based F-algebraic systems, then, they
both have to generate the same semantic variety.

Lemma 1741 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭,∧′ ♭ ∶(SEN♭)2 → SEN♭ in N ♭, K a semilattice based class with respect to ∧♭ and
K′ a semilattice based class with respect to ∧′ ♭. If I = ⟨F,C⟩ is a semilattice
based π-institution both with respect to K and ∧♭ and with respect to K′ and
∧′ ♭, then VSem(K) = VSem(K′).
Proof: Suppose I = ⟨F,C⟩ is a semilattice based π-institution both with
respect to K and ∧♭ and with respect to K′ and ∧′ ♭ and let Σ ∈ ∣Sign♭∣,
φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ KerΣ(K) and A ∈ K′. Then, since I
is semilattice based with respect to K, by Lemma 1739, CΣ(φ) = CΣ(ψ).
Thus, since I is semilattice based with respect to K′, again, by Lemma 1739,
αΣ(φ) = αΣ(ψ). Hence, Ker(K) ≤ Ker(A), which gives that A ∈ VSem(K).
We conclude that K′ ⊆ VSem(K) and, by symmetry, VSem(K) = VSem(K′). ∎

Thus, if I is semilattice based with respect to some K and ∧♭, it makes
sense, based on Lemma 1741 and Lemma 1740, to denote by VSem(I) the
unique semantic variety of F-algebraic systems with respect to which it is
semilattice based.

In one of the cornerstone results of the section, we show that, if a π-
institution is semilattice based, then it is self extensional and has the Con-
junction Property, and, in addition, its semantic variety coincides with the
semantic variety KI generated by the Lindenbaum-Tarski algebraic system
of I .

Proposition 1742 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ in N ♭, K a semilattice based class with respect to ∧♭, I = ⟨F,C⟩ a semilat-
tice based π-institution with respect to K and ∧♭.

(a) I is self extensional;

(b) I has the Conjunction Property with respect to ∧♭;

(c) VSem(I) = KI; Hence I is semilattice based with respect to KI .

Proof:

(a) For self extensionality, it suffices to show that the Frege equivalence
system λ̃(I) is a congruence system. To this end, let σ♭ be in N ♭,
Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that ⟨φi, ψi⟩ ∈ λ̃Σ(I), for all i < k.
By definition, we get CΣ(φi) = CΣ(ψi), for all i < k. Hence, since
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I is semilattice based with respect to K and ∧♭, ⟨φi, ψi⟩ ∈ KerΣ(K),
for all i < k. But Ker(K) is a congruence system on F, whence,⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ KerΣ(K). By Lemma 1739, CΣ(σ♭Σ(φ⃗)) = CΣ(σ♭Σ(ψ⃗)),
whence ⟨σ♭Σ(φ⃗), σ♭Σ(ψ⃗)⟩ ∈ λ̃Σ(I). Therefore, λ̃(I) is a congruence sys-
tem on F and I is self extensional.

(b) Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then, for all A ∈ K,

αΣ(φ ∧♭Σ ψ) = αΣ(φ) ∧AF (Σ) αΣ(ψ) ≤AF (Σ) αΣ(φ), αΣ(ψ).
Thus, since I is semilattice based with respect to K and ∧♭, we get that
φ∧♭Σψ ∈ CΣ(φ,ψ) and φ,ψ ∈ CΣ(φ∧♭Σψ). Hence, ∧♭ is a conjunction for
I .

(c) We have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
⟨φ,ψ⟩ ∈ KerΣ(VSem(I)) iff ⟨φ,ψ⟩ ∈ KerΣ(VSem(K))

(definition of VSem(I))
iff ⟨φ,ψ⟩ ∈ KerΣ(K)

(definition of VSem(K))
iff CΣ(φ) = CΣ(ψ)

(Lemma 1739)

iff ⟨φ,ψ⟩ ∈ λ̃Σ(I)
(definition of λ̃(I))

iff ⟨φ,ψ⟩ ∈ Ω̃Σ(I)
(Part (a))

iff ⟨φ,ψ⟩ ∈ KerΣ(KI).
(definition of KI)

Therefore, since both classes are semantic varieties, we conclude that
VSem(I) = KI .

∎

If I is a finitary self extensional π-institution I , having the Conjunction
Property with respect to ∧♭, then the singleton class K = {F/Ω̃(I)}, con-
sisting of its Lindenbaum-Tarski F-algebraic system F/Ω̃(I), is semilattice
based with respect to ∧♭.

Lemma 1743 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional π-insti-
tution, having the Conjunction Property with respect to ∧♭. Then the class
K = {F/Ω̃(I)} is semilattice based with respect to ∧♭.

Proof: We have to verify that the class K satisfies the semilattice identities.
To this end, let Σ ∈ ∣Sign♭∣, φ,ψ,χ ∈ SEN♭(Σ).

• By the Conjunction Property, CΣ(φ ∧♭Σ φ) = CΣ(φ). Thus, using self

extensionality, ⟨φ ∧♭Σ φ,φ⟩ ∈ λ̃Σ(I) = Ω̃Σ(I). Hence K satisfies L1.
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• By the Conjunction Property, CΣ(φ ∧♭Σ ψ) = CΣ(φ,ψ) = CΣ(ψ ∧♭Σ φ).
Thus, again using self extensionality, ⟨φ∧♭Σ ψ,ψ ∧♭Σ φ⟩ ∈ λ̃Σ(I) = Ω̃Σ(I).
Hence K satisfies L2.

• Finally, we have

CΣ((φ ∧♭Σ ψ) ∧♭Σ χ) = CΣ(φ ∧♭Σ ψ,χ)
= CΣ(φ,ψ,χ)
= CΣ(φ,ψ ∧♭Σ χ)
= CΣ(φ ∧♭Σ (ψ ∧♭Σ χ)).

Thus, again using self extensionality,

⟨(φ ∧♭Σ ψ) ∧♭Σ χ,φ ∧♭Σ (ψ ∧♭Σ χ)⟩ ∈ λ̃Σ(I) = Ω̃Σ(I)
and K also satisfies L3.

Thus, K is semilattice based with respect to ∧♭. ∎

In one of our main theorems, we characterize semilattice based π-insti-
tutions as those that are self extensional and conjunctive.

Theorem 1744 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F. I is semilattice based if and only
if it is self extensional and conjunctive.

Proof: The left-to-right implication is by Proposition 1742. Suppose, con-
versely, that I is self extensional and conjunctive, with ∧♭ ∶ (SEN♭)2 → SEN♭

in N ♭ a conjunction for I . By Lemma 1743, K = {F/Ω̃(I)} is semilattice
based with respect to ∧♭. Moreover, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f
SEN♭(Σ),

φ ∈ CΣ(Φ) iff φ ∈ CΣ(⋀♭Σ Φ) (Conjunction Property)
iff CΣ(⋀♭Σ Φ ∧♭Σ φ) = CΣ(⋀♭Σ Φ) (Conjunction Property)

iff ⟨⋀♭Σ Φ ∧♭Σ φ,⋀
♭
Σ Φ⟩ ∈ λ̃Σ(I) (definition of λ̃(I))

iff ⟨⋀♭Σ Φ ∧♭Σ φ,⋀
♭
Σ Φ⟩ ∈ Ω̃Σ(I) (self extensionality)

iff ⋀
F/Ω̃(I)
Σ Φ/Ω̃Σ(I) ≤F/Ω̃(I)Σ φ/Ω̃Σ(I). (def. of ≤F/Ω̃(I))

Therefore, I is indeed semilattice based with respect to K and ∧♭. ∎

In some contexts it is desirable to have a specification of the theorems of a
π-institution under discussion. However, the hypothesis that I is semilattice
based by itself does not provide information about the theorems of I , since
it only specifies, based on properties of the defining class K, entailments with
non empty sets of hypotheses. We discuss the property of being non psudo-
axiomatic, which serves to streamline this ambiguity concerning theorems.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a finitary
π-institution based on F. We say that I is non pseudo-axiomatic if, for
all Σ ∈ ∣Sign♭∣,

ThmΣ(I) =⋂{CΣ(φ) ∶ φ ∈ SEN♭(Σ)}.
The property may be equivalently expressed by the condition

Thm(I) =⋂{T ∈ ThFam(I) ∶ (∀Σ ∈ ∣Sign♭∣)(TΣ ≠ ∅)}.
Non pseudo-axiomatic semilattice based π-institutions form a generaliza-

tion of π-institutions with theorems.

Lemma 1745 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a semilattice based π-institution with theorems, based on F.

(a) I is non pseudo-axiomatic;

(b) For all A ∈ KI , all Σ ∈ ∣Sign♭∣, all t ∈ ThmΣ(I) and all φ ∈ SEN♭(Σ),
αΣ(φ) ≤AF (Σ) αΣ(t).

Proof:

(a) Let Σ ∈ ∣Sign♭∣. On the one hand, ThmΣ(I) ⊆ ⋂{CΣ(φ) ∶ φ ∈ SEN♭(Σ)}.
On the other, ⋂{CΣ(φ) ∶ φ ∈ SEN♭(Σ)} ⊆ ⋂{CΣ(φ) ∶ φ ∈ ThmΣ(I)} =
ThmΣ(I). Hence, I is non pseudo-axiomatic.

(b) Suppose Σ ∈ ∣Sign♭∣ and t ∈ ThmΣ(I). Then, for all φ ∈ SEN♭(Σ),
t ∈ CΣ(φ). Since, by Proposition 1742, I is semilattice based with
respect to KI , we get that, for all A ∈ KI , αΣ(φ) ≤AF (Σ) αΣ(t). ∎

By Lemma 1739, for all Σ ∈ ∣Sign♭∣, and all t, t′ ∈ ThmΣ(I), αΣ(φ) =
αΣ(ψ), for all A ∈ K. Furthermore, the common value of all theorems in
SEN(Σ) is, by Lemma 1745, a maximum element under ≤AΣ . This element
will be denoted by 1AΣ .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and K a semilattice based semantic variety with respect to ∧♭.
We assume that K is conditionally max natural, i.e., for all A ∈ K, either
for no Σ ∈ ∣Sign∣ is there a maximum under ≤AΣ or, for every Σ ∈ ∣Sign∣, there
exists a maximum 1AΣ under ≤AΣ , and moreover, 1A = {1AΣ}Σ∈∣Sign∣ is natural,
i.e., it satisfies, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(1AΣ) = 1AΣ′ .

Define a finitary closure system

CK,∧ ∶ PSEN♭ → PSEN♭

on F by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆f SEN♭(Σ),
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• φ ∈ CK,∧
Σ (∅) if and only if, for all A ∈ K and all χ ∈ SEN(F (Σ)),

χ ≤A
F (Σ)

αΣ(φ);
• φ ∈ CK,∧

Σ (Φ) if and only if, for all A ∈ K, ⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ).
We note that conditional max naturality is essential in guaranteeing the

structurality of CK,∧.

Lemma 1746 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶(SEN♭)2 → SEN♭ in N ♭, and K a conditionally max natural semilattice based
semantic variety with respect to ∧♭. Then IK,∧ = ⟨F,CK,∧⟩ is a non pseudo-
axiomatic π-institution.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ), such that φ ∈ ⋂{CΣ(ψ) ∶ ψ ∈
SEN♭(Σ)}. Then, by definition, for all A ∈ K, αΣ(ψ) ≤ αΣ(φ), for all
ψ ∈ SEN♭(Σ). By the surjectivity of ⟨F,α⟩, we get that φ ∈ ThmΣ(IK,∧).
Therefore, IK,∧ is non pseudo-axiomatic. ∎

The semantic variety of IK,∧ turns out to be the class K.

Proposition 1747 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and K a conditionally max natural semilattice
based semantic variety with respect to ∧♭. Then IK,∧ = ⟨F,CK,∧⟩ is semilattice
based with respect to K and ∧♭ and VSem(IK,∧) = K.

Proof: By the second condition in the definition of CK,∧, we conclude that
IK,∧ is semilattice based with respect to K and ∧♭. Then, by definition
VSem(IK,∧) = VSem(K) = K, since, by hypothesis, K is a semantic variety. ∎

Proposition 1748 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a semilattice based non pseudo-
axiomatic π-institution. Then IV

Sem(I),∧ = I.

Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), with Φ ≠ ∅. Then, we have:

φ ∈ CV
Sem(I),∧

Σ (∅) iff for all A ∈ VSem(I), χ ∈ SEN(F (Σ)),
χ ≤A

F (Σ)
αΣ(φ),

iff for all A ∈ VSem(I), ψ ∈ SEN♭(Σ),
αΣ(ψ) ≤AF (Σ) αΣ(φ),

iff for all A ∈ K, ψ ∈ SEN♭(Σ),
αΣ(ψ) ≤AF (Σ) αΣ(φ),

iff φ ∈ ⋂{CΣ(ψ) ∶ ψ ∈ SEN♭(Σ)}
iff φ ∈ CΣ(∅).
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Moreover,

φ ∈ CV
Sem(I),∧

Σ (Φ) iff for all A ∈ VSem(I),
⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ)

iff for all A ∈ K,
⋀AF (Σ)αΣ(Φ) ≤AF (Σ) αΣ(φ)

iff φ ∈ CΣ(Φ).
Thus, we get IV

Sem(I),∧ = I . ∎

For non pseudo-axiomatic semilattice based π-institutions on the same
algebraic system, the Frege relations reflect the ≤ ordering on their closure
systems.

Proposition 1749 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ non pseudo-
axiomatic semilattice based π-institutions with respect to ∧♭. Then

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′).
Proof: The left-to-right implication is by Lemma 1416. Assume, conversely,
that I , I ′ are non pseudo-axiomatic semilattice based with respect to ∧♭,
such that λ̃(I) ≤ λ̃(I ′). Then, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆f SEN♭(Σ),
with Φ ≠ ∅,

φ ∈ CΣ(Φ) iff φ ∈ CΣ(⋀♭Σ Φ)
iff CΣ(⋀♭Σ Φ ∧♭Σ φ) = CΣ(⋀♭Σ Φ)
iff ⟨⋀♭Σ Φ ∧♭Σ φ,⋀

♭
Σ Φ⟩ ∈ λ̃Σ(I)

implies ⟨⋀♭Σ Φ ∧♭Σ φ,⋀
♭
Σ Φ⟩ ∈ λ̃Σ(I ′)

iff C ′Σ(⋀♭Σ Φ ∧♭Σ φ) = C ′Σ(⋀♭Σ Φ)
iff φ ∈ C ′Σ(⋀♭Σ Φ)
iff φ ∈ C ′Σ(Φ).

Moreover, taking into account what was just demonstrated,

φ ∈ CΣ(∅) iff φ ∈ ⋂{CΣ(ψ) ∶ ψ ∈ SEN♭(Σ)}
implies φ ∈ ⋂{C ′Σ(ψ) ∶ ψ ∈ SEN♭(Σ)}

iff φ ∈ C ′Σ(∅).
We conclude that I ≤ I ′. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭. Denote by KF,∧ the semantic variety of F-algebraic systems
generated by the semilattice equations L1-L4.

Theorem 1750 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭. There exists a dual isomorphism between the
collection of semilattice based non pseudo-axiomatic π-institutions with re-
spect to ∧f lat, ordered under ≤, and the collection of all conditionally max
natural semantic subvarieties of KF,∧, ordered under ⊆, given by I ↦ KI .
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Proof: Consider the mapping I ↦ KI .
Suppose, first, that I , I ′ are non pseudo-axiomatic and semilattice based

with respect to ∧♭, such that KI = KI′ . Then IKI ,∧ = IKI
′
,∧. By Proposition

1742 and Proposition 1748, we get I = I ′. Therefore, the mapping is one-to-
one.

Assume, now, that K is conditionally max natural and semilattice based
with respect to ∧♭. Then, by Lemma 1746 and Proposition 1747, IK,∧ is a
non pseudo-axiomatic and semilattice based π-institution with respect to K

and ∧♭, such that VSem(IK,∧) = K. Therefore, by Proposition 1742, KI
K,∧ = K

and the mapping is also onto. Thus, it is a bijection from the collection of
semilattice based non pseudo-axiomatic π-institutions with respect to ∧f lat
onto the collection of all conditionally max natural semantic subvarieties of
KF,∧.

Finally, for all non pseudo-axiomatic and semilattice based π-institutions
I , I ′, with respect to ∧♭, we have

I ≤ I ′ iff λ̃(I) ≤ λ̃(I ′) (by Proposition 1749)

iff Ω̃(I) ≤ Ω̃(I ′) (by Proposition 1742)
iff KI

′ ≤ KI . (definition of KI ,KI
′
)

Thus, the bijection is also order reversing and dual order reflecting and,
therefore, it is a dual order isomorphism, as claimed. ∎

Our next goal is to show that for semilattice based π-institutions, their
semantic variety coincides with the class of all I-algebraic systems. We start
by showing that, for such a π-institution, the I-filter families on any algebraic
system in their semantic variety coincides (roughly) with the collection of all
semilattice filter families.

Lemma 1751 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a semilattice based π-institution based on F. For all A ∈ KI ,

FiFamI(A) = { FiFam∧(A), if I has theorems
FiFam∧,∅(A), otherwise

Proof: It suffices to show that, for all T ∈ SenFam(A), such that TΣ ≠ ∅, for
all Σ ∈ ∣Sign∣, T ∈ FiFamI(A) if and only if T ∈ FiFam∧(A).

Suppose, first, that T ∈ FiFamI(A), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ).
• Suppose that αΣ(φ), αΣ(ψ) ∈ TF (Σ). Then, since φ∧♭Σ ψ ∈ CΣ(φ,ψ) and

T ∈ FiFamI(A), we get αΣ(φ) ∧AF (Σ) αΣ(ψ) = αΣ(φ ∧♭Σ ψ) ∈ TF (Σ);
• If αΣ(φ) ∈ TF (Σ) and αΣ(φ) ≤AF (Σ) αΣ(ψ), then αΣ(φ∧♭Σψ) = αΣ(φ)∧AF (Σ)
αΣ(ψ) = αΣ(φ) ∈ TF (Σ). Since ψ ∈ CΣ(φ ∧♭Σ ψ) and T ∈ FiFamI(A), we
get αΣ(ψ) ∈ TF (Σ).
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Taking into account the surjectivity of ⟨F,α⟩, we get T ∈ FiFam∧(A).
Assume, conversely, that T ∈ FiFam∧(A) and let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆f

SEN♭(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). Since, by Proposition
1742, I is semilattice based with respect to KI , we get that ⋀AF (Σ)αΣ(Φ) ≤AF (Σ)
αΣ(φ) and αΣ(Φ) ⊆ TF (Σ). Since, by hypothesis, T ∈ FiFam∧(A), αΣ(φ) ∈
TF (Σ).

Finally, if φ ∈ CΣ(∅), then φ ∈ CΣ(ψ), for all ψ ∈ SEN♭(Σ). Since I
has theorems, TF (Σ) ≠ ∅, whence, by the surjectivity of ⟨F,α⟩, for some
ψ ∈ SEN♭(Σ), αΣ(ψ) ∈ TF (Σ). For this chosen ψ, we also have, since I is
semilattice based with respect to KI , that αΣ(ψ) ≤AF (Σ) αΣ(φ). Thus, since

T ∈ FiFam∧(A), we conclude that αΣ(φ) ∈ TF (Σ).
Since in all cases φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ) imply αΣ(φ) ∈ TF (Σ),

T ∈ FiFamI(A). ∎

In the next step, we show that, for a semilattice based π-institution, the
Frege congruence system of any I-structure of the form ⟨A,FiFamI(A)⟩,
with A in the semantic variety of I , is reduced.

Lemma 1752 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ be a semilattice based π-institution based on F. For every A ∈ KI ,

λ̃A(FiFamI(A)) = ∆A.

Hence, ⟨A,FiFamI(A)⟩ is reduced.

Proof: Let A ∈ KI , Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∉ ∆AΣ .
Then, by definition, φ ≠ ψ and, by Lemma 1737 and Proposition 1742, we
get ψ ∉ T ⟨Σ,φ⟩Σ or φ ∈ T ⟨Σ,ψ⟩Σ . Since, by Lemmas 1738 and 1751, T ⟨Σ,φ⟩, T ⟨Σ,ψ⟩ ∈
FiFamI(A), we get that ⟨φ,ψ⟩ ∉ λ̃A(FiFamI(A)). Thus, λ̃A(FiFamI(A)) =
∆A.

Finally, Ω̃A(FiFamI(A)) ≤ λ̃A(FiFamI(A)), whence, Ω̃A(FiFamI(A)) =
∆A and, therefore, ⟨A,FiFamI(A)⟩ is a reduced I-structure. ∎

In the last step before the main theorem, we show that for a semilattice
based π-institution I , if ⟨A,D⟩ is any I-structure, such that λ̃A(D) = ∆A,
then D is either FiFamI(A), if I has theorems, or D∅ is FiFamI(A), if I does
not have theorems, where D∅ consists of the filter families in D, (potentially)
augmented by filter families in D, in which one or more components have
been replaced by ∅.

Lemma 1753 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩
a semilattice based π-institution based on F, and ⟨A,D⟩ ∈ Str(I), such that
λ̃A(D) = ∆A. If I has theorems, then D = FiFamI(A). If I does not have
theorems, then D∅ = FiFamI(A).
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Proof: Let A be an F-algebraic system and suppose T ∈ FiFamI(A), with
TΣ ≠ ∅, for all Σ ∈ ∣Sign∣. Let Σ ∈ ∣Sign∣, φ ∈ SEN(Σ), such that φ ∈DΣ(TΣ).
By Proposition 114, there exists Φ ⊆f TΣ, such that φ ∈ DΣ(Φ). Since⟨A,D⟩ ∈ Str(I), by Corollary 1735, DΣ(⋀AΣ Φ ∧AΣ φ) = DΣ(⋀AΣ Φ). Hence,
by hypothesis, ⋀AΣ Φ ∧AΣ φ = ⋀AΣ Φ. Since Φ ⊆f TΣ and, by Lemma 1751,
T ∈ FiFam∧(A), ⋀AΣ Φ ∈ TΣ. By the preceding equation, ⋀AΣ Φ ∧AΣ φ ∈ TΣ and,
therefore, φ ∈ TΣ. We conclude that T =D(T ) and, hence, T ∈ D.

If I has theorems, then, for every T ∈ FiFamI(A), TΣ ≠ ∅, for all Σ ∈∣Sign∣. By what was proven above, D = FiFamI(A). On the other hand, if
I does not have theorems, then any of the components of T ∈ FiFamI(A) is
allowed to be empty and, therefore, D∅ = FiFamI(A). ∎

In one of the main theorems, we show that, for a semilattice based π-
institution I , the semantic variety KI of I coincides with the class AlgSys(I)
of all I-algebraic systems.

Theorem 1754 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a semilattice based π-institution based on F.

(a) AlgSys(I) = KI ;

(b) AlgSys(I) is a semantic variety;

(c) I is semilattice based with respect to AlgSys(I).
Proof: We have, by Proposition 65, that, in general, AlgSys(I) ⊆ KI . Sup-
pose, conversely, that A ∈ KI . Then, by Lema 1752, ⟨A,FiFamI(A)⟩ is
reduced. Therefore, A ∈ AlgSys(I). We conclude that AlgSys(I) = KI .
Since KI is, by definition, a semantic variety, then so is AlgSys(I). Finally,
since, by Proposition 1742, I is semilattice based with respect to KI , it is
semilattice based with respect to AlgSys(I). ∎

In another main theorem, it is shown that a finitary self extensional and
conjunctive π-institution I is necessarily fully self extensional, i.e., that every⟨A,D⟩ ∈ FStr(I) satisfies the Congruence Property.

Theorem 1755 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary π-institution based on F. If I is self extensional and con-
junctive, then it is fully self extensional.

Proof: Suppose that I is finitary, self extensional and has the Conjunction
Property with respect to ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭. By Theorem 1744
and Proposition 1742, I is semilattice based with respect to KI and ∧♭. By
Proposition 65, AlgSys(I) ⊆ KI , whence, by Lemma 1752, if A ∈ AlgSys(I),
then λ̃A(FiFamI(A)) =∆A.

Suppose, now, that ⟨A,D⟩ ∈ FStr(I). Then, by definition,

FiFamI(A/Ω̃A(D)) = D/Ω̃A(D).
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Since A/Ω̃A(D) ∈ AlgSys(I), by what was shown in the preceding paragraph,

λ̃A/Ω̃
A(D)(D/Ω̃A(D)) =∆A/Ω̃

A(D).

Therefore, we get that ⟨A/Ω̃A(D),D/Ω̃A(D)⟩ has the Congruence Property.
Therefore, by Proposition 1426, ⟨A,D⟩ also has the Congruence Property.
We conclude that I is fully self extensional. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →
SEN♭ in N ♭, and G = ⟨F,G⟩ a finitary Gentzen π-institution based on F.

G has congruence if, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈
SEN♭(Σ),

σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗) ∈ GΣ({φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}).
Moreover, G has conjunction with respect to ∧♭ if, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

φ,ψ ⊢Σ φ ∧♭Σ ψ, φ ∧
♭
Σ ψ ⊢Σ φ, φ ∧

♭
Σ ψ ⊢Σ ψ ∈ GΣ(∅).

Let, also, I = ⟨F,C⟩ be a finitary π-institutuon based on F. Recall that:

• If I has theorems, G is fully adequate for I if Str(G) = FStr(I);
• If I does not have theorems, then G is fully adequate for I if

Str(G)∅ = FStr(I).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ∧♭ ∶ (SEN♭)2 →

SEN♭ in N ♭, and I = ⟨F,C⟩ a finitary self extensional π-institution, having
the Conjunction Property with respect to ∧♭.

• Define AxI = {AxIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
AxIΣ = {Φ ⊢Σ φ ∶ φ ∈ CΣ(Φ)};

• Define IrI = {IrIΣ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,
IrIΣ = {⟨{φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i ∈ I}, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶

σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ)}.
• RI ∶= AxI ∪ IrI .

Finally, define GI = ⟨F,CI⟩ ∶= GRI as the Gentzen π-institution generated by
the system RI of Gentzen rules. Recall, by Proposition 1482, that GI = ΞRI .

This Gentzen π-institution turns out to be fully adequate for the π-
institution I :
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Theorem 1756 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a finitary conjunctive π-institution. I is self extensional if and only
if GI = ⟨F,GI⟩ is fully adequate for I.

Proof: Suppose, first, that G is fully adequate for I . Since ⟨F ,C⟩ ∈ FStr(I),
we get that ⟨F ,C⟩ ∈ Str(GI), if I has theorems, and that ⟨F ,C⟩ ∈ Str(GI)∅,
otherwise. Since, by definition, GI has congruence, we get that ⟨F ,C⟩ has the
Congruence Property, which amounts to I having the Congruence Property.
Thus, I is self extensional.

Assume, conversely, that I is finitary, self extensional and has the Con-
junction Property with respect to ∧♭ ∶ (SEN♭)2 → SEN♭ in N ♭.

• Suppose, first, that ⟨A,D⟩ ∈ FStr(I). Then, by Theorem 1755, ⟨A,D⟩
has the Congruence Property. Moreover, by definition, for all Σ ∈∣Sign♭∣ and all Φ ∪ {φ} ⊆f SEN♭(Σ), if φ ∈ CΣ(Φ), then, αΣ(φ) ∈
DF (Σ)(αΣ(Φ)). We conclude that, if I has theorems, then ⟨A,D⟩ ∈
Str(GI) and that, otherwise, ⟨A,D⟩ ∈ Str(GI)∅.

• Suppose, conversely, that ⟨A,D⟩ ∈ Str(GI), if I has theorems, or⟨A,D⟩ ∈ Str(GI)∅, otherwise. Consider the reduction

⟨A/Ω̃A(FiFamI(A)),FiFamI(A)/Ω̃A(FiFamI(A))⟩.
This reduction is an I-structure and, by hypothesis and Proposition
1426, it has the Congruence Property. Thus, we get

λ̃A/Ω̃
A(FiFamI(A))(FiFamI(A)/Ω̃A(FiFamI(A))) = ∆A/Ω̃

A(FiFamI(A)).

Now Lemma 1753 allows us to conclude that

FiFamI(A)/Ω̃A(FiFamI(A)) = FiFamI(A/Ω̃A(FiFamI(A))).
Therefore, ⟨A,D⟩ ∈ FStr(I).

We conclude that GI is fully adequate for I . ∎

23.4 Fregeanity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a binary natural
transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a π-institution
based on F.

Recall that I is called:

• strongly Fregean if, for every T ∈ ThFam(I), λ̃(T ) = Ω̃(T ), i.e., if
and only if the strong Frege equivalence family λ̃(T ) is a congruence
system;
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• congruential if, for every T ∈ ThFam(I), λ̃(T ) satisfies the congru-
ence property, i.e., λ̃(T ) is a congruence family (but not necessarily a
system);

• Fregean if, for every T ∈ ThFam(I), Λ̃(T ) = Ω̃(T ), i.e., if its Frege
equivalence system Λ̃ is a congruence system.

Strong Fregeanity implies congruentiality, which, in turn, implies Fregeanity.

Recall, also, that I is said to have the Deduction Detachment Theo-
rem with respect to →♭ if, for every Σ ∈ ∣Sign♭∣, all Φ∪ {φ,ψ} ⊆ SEN♭(Σ),

ψ ∈ CΣ(Φ, φ) iff φ→♭Σ ψ ∈ CΣ(Φ).
In the following proposition, it is shown that every strongly Fregean π-

institution with the Deduction Detachment Theorem satisfies certain axioms
and the rule of Modus Ponens.

Proposition 1757 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
a binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩
a congruential π-institution having the Deduction Detachment Theorem with
respect to →♭. Then, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ, φ⃗, ψ⃗ ∈
SEN♭(Σ),

(a) φ→♭Σ (ψ →♭Σ φ) ∈ CΣ(∅);
(b) (φ→♭Σ (ψ →♭Σ χ))→♭Σ ((φ→♭Σ ψ)→♭Σ (φ→♭Σ χ)) ∈ CΣ(∅);
(c) (φ0 →♭Σ ψ0) →♭Σ ((ψ0 →♭Σ φ0) →♭Σ (⋯((φk−1 →♭Σ ψk−1) →♭Σ ((ψk−1 →♭Σ

φk−1)→♭Σ (σ♭Σ(φ⃗)→♭Σ σ♭Σ(ψ⃗))))⋯)) ∈ CΣ(∅);
(d) ψ ∈ CΣ(φ,φ →♭Σ ψ).

Proof:

(a) We have, by inflationarity, φ ∈ CΣ(φ,ψ), whence, by two applications
of the Deduction Theorem, φ→♭Σ (ψ →♭Σ φ) ∈ CΣ(∅).

(b) We have, using the Detachment Theorem,

χ ∈ CΣ(ψ,ψ →♭Σ χ) ⊆ CΣ(φ,φ→♭Σ ψ,φ →♭Σ (ψ →♭Σ χ)).
Thus, using the Deduction Theorem, we get

(φ→♭Σ (ψ →♭Σ χ))→♭Σ ((φ →♭Σ ψ)→♭Σ (φ→♭Σ χ)) ∈ CΣ(∅).
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(c) Since I is congruential, we get, for all T ∈ ThFam(I),
CΣ(TΣ, φi) = CΣ(TΣ, ψi), i < k,

imply CΣ(TΣ, σ♭Σ(φ⃗)) = CΣ(TΣ, σ♭Σ(ψ⃗)).
But CΣ(TΣ, φi) = CΣ(TΣ, ψi) is equivalent, by the Deduction Detach-
ment Theorem, to φ→♭Σ ψ, ψ →♭Σ φ ∈ CΣ(TΣ) = TΣ. Similarly,

CΣ(TΣ, σ♭Σ(φ⃗)) = CΣ(TΣ, σ♭Σ(ψ⃗))
is equivalent to σ♭Σ(φ⃗) →♭Σ σ♭Σ(ψ⃗), σ♭Σ(ψ⃗) →♭Σ σ♭Σ(φ⃗) ∈ CΣ(TΣ) = TΣ.
Therefore, we get

σ♭Σ(φ⃗)→♭Σ σ♭Σ(ψ⃗) ∈ CΣ({φi →♭Σ ψi, ψi →♭Σ φi ∶ i < k}).
Now (c) follows by several applications of the Deduction Theorem.

(d) By inflationarity, φ →♭Σ ψ ∈ CΣ(φ →♭Σ ψ), whence by the Detachment
Theorem, ψ ∈ CΣ(φ,φ→♭Σ ψ). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶ (SEN♭)2 →
SEN♭ in N ♭. Define Ax0 = {Ax0

Σ}Σ∈∣Sign♭∣, by setting, for all Σ ∈ ∣Sign♭∣, Ax0
Σ

is the set consisting, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ, φ⃗, ψ⃗ ∈
SEN♭(Σ),

• φ→♭Σ (ψ →♭Σ φ);
• (φ→♭Σ (ψ →♭Σ χ))→♭Σ ((φ →♭Σ ψ)→♭Σ (φ →♭Σ χ));
• (φ0 →♭Σ ψ0) →♭Σ ((ψ0 →♭Σ φ0) →♭Σ (⋯((φk−1 →♭Σ ψk−1) →♭Σ ((ψk−1 →♭Σ
φk−1)→♭Σ (σ♭Σ(φ⃗)→♭Σ σ♭Σ(ψ⃗))))⋯)).

Furthermore, define Ir0 = {Ir0Σ}Σ∈∣Sign♭∣ by setting, for all Σ ∈ ∣Sign♭∣,
Ir0Σ = {⟨{φ,φ→♭Σ ψ}, ψ⟩ ∶ φ,ψ ∈ SEN♭(Σ)}.

Finally, let R0 = Ax0∪Ir0. Set I0 = ⟨F,C0⟩ be the finitary π-institution, based
on F, with C0 = CR0

the closure system on F generated by the collection R0

of F-axioms and F-rules of inference.
Our work in Proposition 1757 allows us to formalize the fact that a con-

gruential finitary π-institution having the Deduction Detachment Theorem
with respect to →♭ is an axiomatic extension of I0. Recall that I = ⟨F,C⟩ is
an axiomatic extension of I0 if there exists an axiom family Ax′, such that
C = CR0∪Ax′ .

Theorem 1758 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a
congruential finitary π-institution having the Deduction Detachment Theo-
rem with respect to →♭. Then I is an axiomatic extension of I0.
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Proof: Since I is finitary, its closure system is specified by a collection
R = Ax ∪ Ir of F-axioms and F-rules. We define R′ = Ax′ ∪ Ir′, where, for all
Σ ∈ ∣Sign♭∣,

• Ax′Σ = AxΣ ∪ {φ0 →♭Σ (φi →♭Σ ⋯→♭Σ (φn−1 →♭Σ φ)⋯) ∶ ⟨{φ0, . . . , φn−1}, φ⟩ ∈
IrΣ};

• Ir′Σ = {⟨{⟨φ,φ→♭Σ ψ}, ψ⟩ ∶ φ,ψ ∈ SEN♭(Σ)}.
Note that, by the Deduction Theorem of I , for every Σ ∈ ∣Sign♭∣, Ax′Σ ⊆
CΣ(∅). Moreover, by the Detachment Theorem for I , for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), ψ ∈ CΣ(φ,φ→♭Σ ψ). Therefore, we conclude that CR′ ≤ C.

Conversely, note that, by definition, Ax ≤ Ax′. Moreover, for all Σ ∈∣Sign♭∣ and all ⟨{φ0, . . . , φn−1}, φ⟩ ∈ IrΣ,

φ ∈ CR′

Σ (Φ, φ0 →♭Σ (φ1 →♭Σ ⋯→
♭
Σ (φn−1 →♭Σ φ)⋯)) ⊆ CR′

Σ (Φ).
Hence, C = CR ≤ CR′ . We now conclude that C = CR′ . ∎

Next, we show that, if I is an axiomatic extension of I0, then it has the
Deduction Detachment Theorem with respect to →♭.

Proposition 1759 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ an
axiomatic extension of I0. Then I has the Deduction Detachment Theorem
with respect to →♭.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪ {φ,ψ} ⊆ SEN♭(Σ), such that φ →♭Σ ψ ∈ CΣ(Φ).
Then, since, by hypothesis, CR0 ≤ C, we get

ψ ∈ CΣ(φ,φ→♭Σ ψ) ⊆ CΣ(Φ, φ).
Suppose, conversely, that ψ ∈ CΣ(Φ, φ). Then, there exists in I a proof
φ0, φ1, . . . , φn = ψ of ψ from premises Φ∪{φ}. We show by induction on k ≤ n
that there exists a proof in I of φ→♭Σ ψ from premises Φ in I .

• If k = 0, then φ0 ∈ AxΣ or φ0 ∈ Φ ∪ {φ}.
– If φ0 ∈ AxΣ, then φ0 →♭Σ (φ →♭Σ φ0), φ0, φ →♭Σ φ0 is a proof in I of
φ→♭Σ φ0 from Φ;

– If φ0 ∈ Φ, then φ0 →♭Σ (φ →♭Σ φ0), φ0, φ →♭Σ φ0 is a proof in I of
φ→♭Σ φ0 from premises Φ.

– If φ0 = φ, then

(φ0 →♭Σ ((φ0 →♭Σ φ0)→♭Σ φ0))
→♭Σ ((φ0 →♭Σ (φ0 →♭Σ φ0))→♭Σ (φ0 →♭Σ φ0))

φ0 →♭Σ ((φ0 →♭Σ φ0)→♭Σ φ0)(φ0 →♭Σ (φ0 →♭Σ φ0))→♭Σ (φ0 →♭Σ φ0)
φ0 →♭Σ (φ0 →♭Σ φ0)
φ0 →♭Σ φ0

is a proof in I of φ0 →♭Σ φ0 from Φ
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• If k > 0, assume that, for all ℓ < k, φ →♭Σ φℓ ∈ CΣ(Φ). If φk is either an
axiom or in Φ∪{φ}, then the treatment is the same as in the Induction
Basis. So assume, for the final case, that φk follows from preceding Σ-
sentences in the sequel by an application of the only F-rule available,
i.e., that, for some i, j < k, φi = φj →♭Σ φk. Then, by the Induction
Hypothesis, φ →♭Σ (φj →♭Σ φk) ∈ CΣ(Φ) and φ →♭Σ φj ∈ CΣ(Φ). Then by
adjoining the following Σ-sentences to the sequence consisting of the
proofs in I from Φ of φ→♭Σ (φj →♭Σ φk) and φ→♭Σ φj, we obtain a proof
in I from Φ of φ→♭Σ φk:

⋮
φ→♭Σ (φj →♭Σ φk)
⋮
φ→♭Σ φj(φ→♭Σ (φj →♭Σ φk))→♭Σ ((φ →♭Σ φj)→♭Σ (φ→♭Σ φk))(φ→♭Σ φj)→♭Σ (φ→♭Σ φk)
φ→♭Σ φk

This completes the Induction Step.

Thus, we conclude that φ→♭Σ ψ ∈ CΣ(Φ) and, therefore, I has the Deduction
Detachment Theorem with respect to →♭. ∎

Moreover, under the same hypotheses, I turns out to be strongly Fregean.

Proposition 1760 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
a binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩
an axiomatic extension of I0. Then I is congruential.

Proof: Let T ∈ ThFam(I), σ♭ ∶ (SEN♭)k → SEN♭ be in N ♭, Σ ∈ ∣Sign♭∣ and
φ⃗, ψ⃗ ∈ SEN♭(Σ), such that CΣ(TΣ, φi) = CΣ(TΣ, ψi), for all i < k. Then, by
Proposition 1759, we get that

φi →♭Σ ψi, ψi →
♭
Σ φi ∈ CΣ(TΣ) = TΣ, i < k.

Since CR0 ≤ C, we get, by multiple applications of the Detachment Theo-
rem, σ♭Σ(φ⃗) →♭Σ σ♭Σ(ψ⃗), σ♭Σ(ψ⃗) →♭Σ σ♭Σ(φ⃗) ∈ CΣ(TΣ). Hence, CΣ(TΣ, σ♭Σ(φ⃗)) =
CΣ(TΣ, σ♭Σ(ψ⃗)). Thus, λ̃(T ) is a congruence family on F and, therefore, I is
congruential. ∎

Thus, we have obtained an exact characterization of those π-institutions
that are congruential and possess the Deduction Detachment Property with
respect to a binary natural transformation →♭.

Theorem 1761 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with a
binary natural transformation →♭∶ (SEN♭)2 → SEN♭ in N ♭, and I = ⟨F,C⟩ a
finitary π-institution based on F. I is congruential and has the Deduction
Detachment Theorem with respect to →♭ if and only if it is an axiomatic
extension of I0.
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Proof: The implication left-to-right is by Theorem 1758. The converse is
given by Propositions 1759 and 1760. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Recall that a Σ-
sequent is an expression of the form Φ ⊢Σ φ, where Φ ∪ {φ} ⊆ SEN♭(Σ).
It is finite if Φ is a finite set. Moreover, a Gentzen F-rule is an expression
of the form ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩,
where Φi ⊢Σ φi, i ∈ I, and Φ ⊢Σ φ are Σ-sequents. We say the rule is finitary
if I is finite and all sequents in the rule are finite.

Let IL = ⟨A,D⟩ be an F-structure, Σ ∈ ∣Sign♭∣, s = Φ ⊢Σ φ a Σ-sequent
and r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a Gentzen F-rule.

• IL satisfies s or s is true or valid or holds in IL, written IL ⊧Σ s, if
αΣ(φ) ∈DF (Σ)(αΣ(Φ));

• IL satisfies r or r is true or valid or holds in IL, written IL ⊧Σ r, if

αΣ(φi) ∈DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈ DF (Σ)(αΣ(Φ)).
These definitions are extended in the ordinary way to sets of rules and sets
of structures.

Let M be a class of F-structures. We say that M is a (finitary) Gentzen
class if it is specified by a collection R = {RΣ}Σ∈∣Sign♭∣ of (finitary) Gentzen
F-rules (including sequents, viewed as rules with empty sets of premises).

The following examples illustrate the definition.

• The class of all finitary F-structures having the Deduction Detach-
ment Theorem with respect to a binary natural transformation →♭∶(SEN♭)2 → SEN♭ in N ♭ is a finitary Gentzen class specified by R ={RΣ}Σ∈∣Sign∣♭∣, where

RΣ = {φ,φ→♭Σ ψ ⊢Σ ψ ∶ φ,ψ ∈ SEN♭(Σ)}
∪{⟨{Φ, φ ⊢Σ ψ},Φ ⊢Σ φ→♭Σ ψ⟩ ∶ Φ ∪ {φ,ψ} ⊆f SEN♭(Σ)}.

• The class of all finitary self extensional F-structures is also a finitary
Gentzen class specified by R = {RΣ}Σ∈∣Sign♭∣, with

RΣ = {⟨{φi ⊢Σ ψi, ψi ⊢Σ φi ∶ i < k}, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶
σ♭ ∈ N ♭, φ⃗, ψ⃗ ∈ SEN♭(Σ)}.

• The class of all finitary congruential F-structures is also a finitary
Gentzen class specified by R = {RΣ}Σ∈∣Sign♭∣, with

RΣ = {⟨{Φ, φi ⊢Σ ψi, Φ, ψi ⊢Σ φi ∶ i < k}, Φ, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶
σ♭ ∈ N ♭,Φ ⊆f SEN♭(Σ), φ⃗, ψ⃗ ∈ SEN♭(Σ)}.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣ and r =⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a finitary Gentzen F-rule. The accumulation of
r, denoted acm(r), is the collection of finitary Gentzen F-rules

acm(r) = {⟨{X,Φi ⊢Σ φi ∶ i ∈ I}, X,Φ ⊢Σ φ⟩ ∶ X ⊆f SEN♭(Σ)}.
We say that a collection R of Gentzen rules is accumulative if it is the union
of accumulations. We say that a class M of F-structures is an accumula-
tive class if it is a Gentzen class specified by an accumulative collection of
Gentzen F-rules.

Note, e.g., that both the class of all finitary F-structures having the De-
duction Detachment Theorem with respect to→♭ and the class of congruential
finitary F-structures are accumulative classes. On the other hand, the class
of of all self extensional finitary F-structures is not accumulative.

It is not difficult to see that satisfaction of Gentzen F-rules is preserved
under bilogical morphisms between F-structures.

Proposition 1762 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, IL =⟨A,D⟩, IL′ = ⟨A′,D′⟩ two F-structures, ⟨H,γ⟩ ∶ IL ⊢ IL′ a bilogical morphism,
Σ ∈ ∣Sign♭∣ and r = ⟨{Φi ⊢ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a Gentzen F-rule. Then

IL ⊧Σ r iff IL′ ⊧Σ r.

Proof: We have, by the definition of satisfaction and that of bilogical mor-
phism, IL ⊧Σ r if and only if

αΣ(φi) ∈ DF (Σ)(αΣ(Φi)), i ∈ I, imply αΣ(φ) ∈DF (Σ)(αΣ(Φ)),
if and only if

γF (Σ)(αΣ(φi)) ∈D′H(F (Σ))(γF (Σ)(αΣ(Φi))), i ∈ I,
imply γF (Σ)(αΣ(φ)) ∈D′H(F (Σ))(γF (Σ)(αΣ(Φ))),

if and only if

α′Σ(φi) ∈ D′F ′(Σ)(α′Σ(Φi)), i ∈ I, imply α′Σ(φ) ∈D′F ′(Σ)(α′Σ(Φ)),
if and only if IL′ ⊧Σ r. ∎

Additionally, we can show that the accumulation of a Gentzen rule hold-
ing in a finitary F-structure IL = ⟨A,D⟩ necessarily holds in all structures of
the form ILT = ⟨A,DT ⟩, where, for all T ∈ ThFam(IL), all Σ ∈ ∣Sign∣ and all
Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈DT
Σ(Φ) iff φ ∈DΣ(TΣ,Φ).
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Lemma 1763 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣,
r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ be an F-rule and IL = ⟨A,D⟩ a finitary F-
structure. If IL ⊧Σ acm(r), then, for all T ∈ ThFam(IL), ILT ⊧Σ acm(r).
Proof: Let X ⊆f SEN♭(Σ) and assume αΣ(φi) ∈ DT

F (Σ)
(αΣ(X), αΣ(Φi)), for

all i ∈ I. By definition,

αΣ(φi) ∈DF (Σ)(TΣ, αΣ(X), αΣ(Φi)), i ∈ I.
But ⟨F,α⟩ is surjective, whence there exists Ψ ∈ SEN♭(Σ), such that αΣ(Ψ) =
TΣ. Therefore, we get

αΣ(φi) ∈DF (Σ)(αΣ(Ψ), αΣ(X), αΣ(Φi)), i ∈ I.
By finitarity of IL, we get that there exists Ψ′ ⊆f Ψ, such that

αΣ(φi) ∈DF (Σ)(αΣ(Ψ′), αΣ(X), αΣ(Φi)), i ∈ I.
By the hypothesis, αΣ(φ) ∈DF (Σ)(αΣ(Ψ′), αΣ(X), αΣ(Φ)). Since Ψ′ ⊆ Ψ, we
get αΣ(φ) ∈ DF (Σ)(αΣ(Ψ), αΣ(X), αΣ(Φ)). Thus,

αΣ(φ) ∈DF (Σ)(TΣ, αΣ(X), αΣ(Φ)),
i.e., αΣ(φ) ∈DT

F (Σ)
(αΣ(X), αΣ(Φ). We conclude that ILT ⊧Σ acm(r). ∎

Proposition 1764 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M

an accumulative class of finitary F-structures. If IL = ⟨A,D⟩ ∈ M, then, for
all T ∈ ThFam(IL), ILT = ⟨A,DT ⟩ ∈M.

Proof: Directly by Lemma 1763. ∎

Next, we show that, if I is an accumulative protoalgebraic finitary π-
institution, then all full I-structures satisfy the defining Gentzen F-rules of
I .

Theorem 1765 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M an
accumulative class of finitary F-structures. If I = ⟨F,C⟩ is a protoalgebraic
π-institution in M, then the full I-structures of the form IL = ⟨A,D⟩, where
A = ⟨A, ⟨F,α⟩⟩, with F an isomorphism, are in M.

Proof: Suppose I = ⟨F,C⟩ is a protoalgebraic π-institution in M. By
Proposition 1762, it suffices to show that, for every F-algebraic system A =⟨A, ⟨F,α⟩⟩, with F an isomorphism, IL = ⟨A,FiFamI(A)⟩ ∈ M. By protoal-
gebraicity and Theorem 1577, we get

α−1(FiFamI(A)) = ThFam(I)T ,
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where T = α−1(CI,A(∅)). But

⟨F,α⟩ ∶ ⟨F , α−1(FiFamI(A))⟩ → ⟨A,FiFamI(A)⟩
is a bilogical morphism. Since, by the hypothesis and Proposition 1764, we
have ⟨F ,ThFam(I)T ⟩ ∈M, we get, by Proposition 1762. IL ∈M. ∎

Now we get easily the following results concerning the Deduction Detach-
ment Theorem and congruentiality, respectively.

Corollary 1766 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with →♭∶(SEN♭)2 → SEN♭ a binary natural transformations in N ♭, and I = ⟨F,C⟩ a
finitary π-institution based on F that has the Deduction Detachment Theorem
with respect to →♭. Then, every full I-structure of the form IL = ⟨A,D⟩, where
A = ⟨A, ⟨F,α⟩⟩, with F an isomorphism, has the Deduction Detachment
Theorem with respect to →♭.

Proof: This follows from Theorem 1765 once it is show that if I has the
Deduction Detachment Property with respect to→♭, then it is protoalgebraic.
Suppose T,T ′ ∈ ThFam(I), such that T ≤ T ′, Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ),
such that ⟨φ,ψ⟩ ∈ ΩΣ(T ). Then, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all χ⃗ ∈ SEN♭(Σ′), we have

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ TΣ′ .
But, by the Deduction Detachment Theorem, this holds if and only if,

σ♭Σ′(SEN♭(f)(φ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(ψ), χ⃗),
σ♭Σ′(SEN♭(f)(ψ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ TΣ′ .

Since T ≤ T ′, we get that

σ♭Σ′(SEN♭(f)(φ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(ψ), χ⃗),
σ♭Σ′(SEN♭(f)(ψ), χ⃗)→♭Σ′ σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ T ′Σ′ .

Hence, again by the Deduction Detachment Theorem,

σ♭Σ′(SEN♭(f)(φ), χ⃗) ∈ T ′Σ′ iff σ♭Σ′(SEN♭(f)(ψ), χ⃗) ∈ T ′Σ′ .
This gives ⟨φ,ψ⟩ ∈ ΩΣ(T ′). Therefore, Ω(T ) ≤ Ω(T ′) and, hence, I is pro-
toalgebraic. ∎

Corollary 1767 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a protoalgebraic finitary π-institution based on F. If I is congruential,
then the full I-structures of the form IL = ⟨A,D⟩, where A = ⟨A, ⟨F,α⟩⟩, with
F an isomorphism, are also congruential.



Voutsadakis CHAPTER 23. THE FREGE HIERARCHY 1429

Proof: This follows from Theorem 1765 and the fact that the class of all
congruential finitary F-structures is accumulative. ∎

Now we look at the converse, in a certain sense, of the inheritance problem
of properties specified by Gentzen F-rules. Namely, we identify a type of
properties that are bequeathed to the π-institution specified by classes of
F-structures, when all structures in the class satisfy the property.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M be a class of
F-structures. Recall that the π-institution IM = ⟨F,CM⟩ determined by, or
specified by or generated by, M is defined by setting, for all Σ ∈ ∣Sign♭∣ and
all Φ ∪ {φ} ⊆ SEN♭(Σ),

φ ∈ CM
Σ (Φ) iff for all ⟨A,D⟩ ∈M,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(φ)) ∈ DF (Σ′)(αΣ′(SEN♭(f)(Φ))).
Let, now, Σ ∈ ∣Sign♭∣ and r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ be a Gentzen F-

rule. The structure of r, denoted str(r) is the family of all Gentzen F-rules
of the form

SEN♭(f)(r) ∶= ⟨{SEN♭(f)(Φi) ⊢Σ′ SEN♭(f)(φi) ∶ i ∈ I},
SEN♭(f)(Φ) ⊢Σ′ SEN♭(f)(φ)⟩,

where Σ′ ∈ ∣Sign♭∣ and f ∈ Sign♭(Σ,Σ′). We say that a collection R of
Gentzen F-rules is structural if it is the union of structures. We say that a
class M of F-structures is a structural class if it is a Gentzen class specified
by a structural collection of Gentzen F-rules.

Lemma 1768 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Σ ∈ ∣Sign♭∣,
r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ a Gentzen F-rule and M a class F-structures.
If M ⊧ str(r), then str(r) holds in IM.

Proof: Let Σ ∈ ∣Sign♭∣, r = ⟨{Φi ⊢Σ φi ∶ i ∈ I},Φ ⊢Σ φ⟩ and suppose M ⊧
str(r) and Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), such that

SEN♭(f)(φi) ∈ CM
Σ′(SEN♭(f)(Φi)), i ∈ I.

Then, by definition of IM, for all ⟨A,D⟩ ∈ M, all Σ′′ ∈ ∣Sign♭∣ and all g ∈
Sign♭(Σ′,Σ′′),

Σ
f ✲ Σ′

g ✲ Σ′′

αΣ′′(SEN♭(g)(SEN♭(f)(φi))) ∈DF (Σ′′)(αΣ′′(SEN♭(g)(SEN♭(f)(Φi)))), i ∈ I,
i.e.,

αΣ′′(SEN♭(gf)(φi)) ∈DF (Σ′′)(αΣ′′(SEN♭(gf)(Φi))), i ∈ I.
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Since, by hypothesis, M ⊧ str(r) and ⟨A,D⟩ ∈M, we get

αΣ′′(SEN♭(gf)(φ)) ∈ DF (Σ′′)(αΣ′′(SEN♭(gf)(Φ)))
and, thus,

αΣ′′(SEN♭(g)(SEN♭(f)(φ))) ∈DF (Σ′′)(αΣ′′(SEN♭(g)(SEN♭(f)(Φ)))).
By the definition of IM, we conclude that SEN♭(f)(φ) ∈ CM

Σ′(SEN♭(f)(Φ)).
Therefore, IM ⊧ str(r). ∎

Theorem 1769 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and P a
structural class F-structures. If M ⊆ P, then IM ∈ P.

Proof: Suppose that str(r) is a rule of P. Since M ⊆ P, str(r) is a rule of
M. Therefore, by Lemma 1768, str(r) is a rule of IM. Thus, IM satisfies
all Gentzen F-rules determining P (since all of them are, by hypothesis,
structural) and, therefore, IM ∈ P. ∎

An application of Theorem 1769 gives that, if all F-structures in a class
M are congruential, then the π-institution determined by the class is also
congruential.

Corollary 1770 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
class of congruential F-structures. Then IM is congruential.

Proof: It suffices, by Theorem 1769 to show that the class of congruential
F-structures is a structural class. This is easily seen by observing that it is
the class of F-structures specified by R = {RΣ}Σ∈∣Sign♭∣, with

RΣ = {⟨{Φ, φi ⊢Σ ψi, Φ, ψi ⊢Σ φi ∶ i < k}, Φ, σ♭Σ(φ⃗) ⊢Σ σ♭Σ(ψ⃗)⟩ ∶
σ♭ ∈ N ♭,Φ ⊆ SEN♭(Σ), φ⃗, ψ⃗ ∈ SEN♭(Σ)}.

It is easy to check that R is a structural class of Gentzen F-rules, whence
the class of all congruential F-structures is a structural class. ∎

23.5 Fregeanity and Congruence Orderabil-

ity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k → SEN♭

in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic systems.
We say that K is congruence orderable if, for all A = ⟨A, ⟨F,α⟩⟩ ∈ K,

all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ = ψ if for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

ΘK,A(SEN♭(f)(φ),⊺AΣ′) = ΘK,A(SEN♭(f)(ψ),⊺AΣ′).
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Moreover, we say that K is Fregean if it is both relatively point regular and
congruence orderable.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶ (SEN♭)k →
SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic systems. For
every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, define the relation family

≤K,A= {≤K,AΣ }Σ∈∣Sign∣
on A by letting, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≤K,AΣ ψ iff for all Σ′ ∈ ∣Sign, f ∈ Sign(Σ,Σ′),
ΘK,A(SEN(f)(φ),⊺AΣ′) ≥ ΘK,A(SEN(f)(ψ),⊺AΣ′).

We show that ≤K,A is in fact a quasiordering system (qosystem, for short)
on A.

Proposition 1771 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic
systems. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, ≤K,A is a quasiorder-
ing system on A.

Proof: Let Σ ∈ ∣Sign∣. Since, for all φ ∈ SEN(Σ), all Σ′ ∈ ∣Sign∣ and all
f ∈ Sign(Σ,Σ′), ΘK,A(SEN(f)(φ),⊺AΣ′) = ΘK,A(SEN(f)(φ),⊺AΣ′), we get that

φ ≤K,AΣ φ and ≤K,A is reflexive. Since, for all φ,ψ,χ ∈ SEN(Σ), if φ ≤K,AΣ ψ and

ψ ≤K,AΣ χ imply, by definition, that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
ΘK,A(SEN(f)(φ),⊺AΣ′) ≥ ΘK,A(SEN(f)(ψ),⊺AΣ′) ≥ ΘK,A(SEN(f)(χ),⊺AΣ′),

we, get, again by definition, φ ≤K,AΣ χ. Thus, ≤K,A is also transitive.

Finally, suppose φ ≤K,AΣ ψ and let Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′). Then, by
definition, for all Σ′′ ∈ ∣Sign∣ and all h ∈ Sign(Σ,Σ′′), we get

ΘK,A(SEN(h)(φ),⊺AΣ′′) ≥ ΘK,A(SEN(h)(ψ),⊺AΣ′′).
In particular, for all Σ′′ ∈ ∣Sign∣ and all g ∈ Sign(Σ′,Σ′′),

Σ
f ✲ Σ′

❩
❩
❩
❩gf ⑦ ❂✚

✚
✚
✚

g
Σ′′

ΘK,A(SEN(g)(SEN(f)(φ)),⊺AΣ′′) ≥ ΘK,A(SEN(g)(SEN(f)(ψ)),⊺AΣ′′),
i.e., SEN(f)(φ) ≤K,AΣ′ SEN(f)(ψ) and ≤K,A is a system. ∎
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Corollary 1772 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic
systems. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the qosystem ≤K,A is
a posystem if and only if K is congruence orderable.

Proof: Clear, by Proposition 1772 and the definitions of ≤K,A and of con-
gruence orderability. ∎

Recall the assertional π-institution IK,⊺ associated with a ⊺♭-pointed gua-
sivariety K of F-algebraic systems. Recall, also, that, if IK,⊺ is family regular,
protoalgebraic, with ⊺♭ a natural theorem, then the guasivariety K is rela-
tively point regular.

We show, next, that, if IK,⊺ is strongly Fregean, protoalgebraic, with ⊺♭ a
natural theorem, then it is also family regular. Thus, the property of being
strongly Freagean, protoalgebraic, with ⊺♭ a natural theorem is stronger than
being family regular, protoalgebraic, with ⊺♭ a natural theorem. In terms of
the ⊺♭-pointed guasivariety K, this is reflected, as we shall see in the following
theorem, in the fact that, in additional to being relatively point regular, it
is also congruence orderable, i.e., it is a Fregean guasivariety of F-algebraic
systems.

Lemma 1773 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with ⊺♭ ∶(SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic sys-
tems. If IK,⊺ = ⟨F,CK,⊺⟩ is Fregean, then it is also family regular.

Proof: Suppose IK,⊺ is Fregean. Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ) and con-
sider the theory family CK,⊺(φ,ψ). We have, for all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′),
C

K,⊺
Σ′ (CK,⊺

Σ′ (φ,ψ),SEN♭(f)(φ)) = CK,⊺
Σ′ (φ,ψ) = CK,⊺

Σ′ (CK,⊺
Σ′ (φ,ψ),SEN♭(f)(ψ)).

Therefore, we get

⟨φ,ψ⟩ ∈ Λ̃Σ(CK,⊺(φ,ψ))
= Ω̃Σ(CK,⊺(φ,ψ)) (by Fregeanity)
⊆ ΩΣ(CK,⊺(φ,ψ)).

This shows that IK,⊺ is family regular. ∎

Theorem 1774 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
⊺♭ ∶ (SEN♭)k → SEN♭ in N ♭, and K a ⊺♭-pointed guasivariety of F-algebraic
systems. If IK,⊺ = ⟨F,CK,⊺⟩ is Fregean, protoalgebraic, with ⊺♭ a natural
theorem, then K is Fregean.
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Proof: Since IK,⊺ is Fregean, by Lemma 1774, it is family regular. Since
IK,⊺ is family regular, protoalgebraic, with ⊺♭ a natural theorem, by Theo-
rem 1356, K is a relatively point regular guasivariety of F-algebraic systems.
Thus, to show that K ir Fregean, it suffices, by definition, to show that it is
also congruence orderable.

To this end, assume that A = ⟨A, ⟨F,α⟩⟩ ∈ K, Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),
such that, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

ΘK,A(SEN(f)(φ),⊺AΣ′) = ΘK,A(SEN(f)(ψ),⊺AΣ′).
This is equivalent to asserting that

C
IK,⊺,A
Σ (φ) = CIK,⊺,AΣ (ψ).

Thus, we obtain

⟨φ,ψ⟩ ∈ Λ̃AΣ(FiFamI
K,⊺(A)) (definition of Frege relation)

= Ω̃AΣ(FiFamI
K,⊺(A)) (Fregeanity)

= ΩAΣ({⊺A}) (protoalgebraicity)
= ∆AΣ .

We conclude that φ = ψ and, therefore, K is also congruence orderable. ∎

To conclude the section, we would like to prove the converse of Theorem
1774, i.e., that, if K is a Fregean class of F-algebraic systems, then the
assertional π-institution IK,top of K is a Fregean, protoalgebraic π-institution
with ⊺♭ a natural theorem. Parts of the conclusion, we have already obtained
in Theorem 1356. To obtain the full conclusion, we work towards the only
remaining subgoal, expressed in the following proposition.

Proposition 1775 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a ⊺♭-pointed class of F-algebraic systems. If K is Fregean, then the assertional
π-institution IK,⊺ = ⟨F,CK,⊺⟩ of K is Fregean.

Proof: Suppose K is a Fregean guasivariety of F-algebraic systems, i.e.,
relatively point regular and congruence orderable. We must show that, for
all T ∈ ThFam(IK,⊺), Λ̃I

K,⊺(T ) = Ω̃I
K,⊺(T ). Let T ∈ ThFam(IK,⊺). Since

Ω̃I
K,⊺(T ) ≤ Λ̃I

K,⊺(T ) always holds, it suffices to show the reverse inclusion,
i.e., that Λ̃I

K,⊺(T ) ≤ Ω̃I
K,⊺(T ). Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that⟨φ,ψ⟩ ∉ Ω̃I

K,⊺

Σ (T ). Equivalently, φ/Ω̃IK,⊺Σ (T ) ≠ ψ/Ω̃IK,⊺Σ (T ). Let us denote, for

the sake of brevity θ ∶= Ω̃I
K,⊺(T ). Then, by Lemma 1351 and Proposition

1352, F/θ ∈ K. Thus,y congruence orderability, there exists Σ′ ∈ ∣Sign♭∣ and
f ∈ Sign♭(Σ,Σ′), such that

ΘK,F/θ(SEN♭(f)(φ)/θΣ′ ,⊺F/θΣ′ ) ≠ ΘK,F/θ(SEN♭(f)(ψ)/θΣ′ ,⊺F/θΣ′ ).
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Thus, by relative point regularity, we must have

⊺F/θ/ΘK,F/θ(SEN♭(f)(φ)/θΣ′ ,⊺F/θΣ′ ) ≠ ⊺F/θ/ΘK,F/θ(SEN♭(f)(ψ)/θΣ′ ,⊺F/θΣ′ ).
This gives that

C
K,⊺
Σ (SEN♭(f)(φ),⊺♭Σ′/ΩΣ′(T )) ≠ CK,⊺

Σ (SEN♭(f)(φ),⊺♭Σ′/ΩΣ′(T )),
which translates to ⟨φ,ψ⟩ ∉ Λ̃I

K,⊺

Σ (T ). We conclude that IK,⊺ is Fregean. ∎

Finally, putting this together, we get

Theorem 1776 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
⊺♭-pointed class of F-algebraic systems. If K is Fregean, then IK,⊺ = ⟨F,CK,⊺⟩
is a Fregean, protoalgebraic π-institution, with ⊺♭ a natural theorem.

Proof: By Proposition 1348, ⊺♭ is a natural theorem of IK,⊺. By Proposition
1352, IK,⊺ is protoalgebraic. Finally, by Proposition 1775, IK,⊺ is Fregean.
∎

The main result proven in this section is summarized in

Theorem 1777 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a ⊺♭-pointed class of F-algebraic systems. K is Fregean if and only if IK,⊺ =⟨F,CK,⊺⟩ is a Fregean, protoalgebraic π-institution, with ⊺♭ a natural theorem.

Proof: The “if” by Theorem 1774. The “only if” by Theorem 1776. ∎
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24.1 Rule Based π-Institutions

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.
An F-rule is a pair ⟨P,ρ⟩, where P ∪{ρ} ∶ (SEN♭)ω → SEN♭ is a finite set

of natural transformations in N ♭. If P = ∅, then ⟨∅, ρ⟩ is called an F-axiom
and it is ordinarily identified with ρ.

Let R = ⟨P,ρ⟩ be an F-rule, Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). We say
φ R-follows from Φ, written Φ→RΣ φ, if there exists χ⃗ ∈ SEN♭(Σ), such that

PΣ(χ⃗) ⊆ Φ and ρΣ(χ⃗) = φ.
Consider, now, a set R of F-rules. For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆

SEN♭(Σ), we say φ is R-provable from Φ, written φ ∈ CRΣ (Φ) or Φ ⊢RΣ φ, if
there exists a sequence

φ0, φ1, φ2, . . . , φn−1, φn

in SEN♭(Σ), such that φn = φ and, for all i ≤ n,

• φi ∈ Φ or

• φi R-follows from {φ0, φ1, . . . , φi−1}, for some R ∈R.

A sequence φ0, φ1, . . . , φn witnessing Φ ⊢RΣ φ is called an R-proof of φ from
Φ.

We show that CR, as defined here, is indeed a closure system on the base
algebraic system F.

Proposition 1778 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R
a collection of F-rules. Then CR = {CRΣ }Σ∈∣Sign♭∣ is a closure system on F.

Proof: Let Σ ∈ ∣Sign♭∣, Φ ∪Ψ ∪ {φ} ⊆ SEN♭(Σ).
(i) If φ ∈ Φ, then φ is an R-proof of φ from Φ. So φ ∈ CRΣ (Φ) and CR is

inflationary.

(ii) If Φ ⊆ Ψ and φ ∈ CRΣ (Φ), then, there exists an R-proof of φ from Φ.
The same sequence is then an R-proof of φ from Ψ. So φ ∈ CRΣ (Ψ) and
CR is monotone.

(iii) Suppose φ ∈ CRΣ (CRΣ (Φ)). Then, there exists an R-proof of φ from
CRΣ (Φ), say

φ0, φ1, . . . , φn−1, φn = φ.

Then, for each φi ∈ CRΣ (Φ), there exists an R-proof of φi from Φ. For
each such φi, we insert its R-proof from Φ in its place in the sequence.
The new sequence is an R-proof of φ from Φ. Thus, we get that φ ∈
CRΣ (Φ) and CR is also idempotent.
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(iv) Finally, it remains to show structurality. Let Σ,Σ′ ∈ ∣Sign♭∣, f ∈
Sign♭(Σ,Σ′) and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CRΣ (Φ). Let
φ0, φ1, . . . , φn−1, φn = φ be an R-proof of φ from Φ. We consider the
sequence

SEN♭(f)(φ0),SEN♭(f)(φ1), . . . ,SEN♭(f)(φn−1),SEN♭(f)(φn).
Then SEN♭(f)(φn) = SEN♭(f)(φ) and, moreover, for all i ≤ n, if
φi ∈ Φ, then SEN♭(f)(φi) ∈ SEN♭(f)(Φ), and, if φi R-follows from{φ0, φ1, . . . , φi−1}, for some R ∈ R, then SEN♭(f)(φi) R-follows from{SEN♭(f)(φ0),SEN♭(f)(φ1), . . . ,SEN♭(f)(φi−1)} because of the natu-
rality of R. So, the displayed sequence is an R-proof of SEN♭(f)(φ)
from SEN♭(f)(Φ) and CR is also structural.

We conclude that CR is a closure system on F. ∎

We denote by IR = ⟨F,CR⟩ the π-institution corresponding to CR.
In general, given a π-institution I = ⟨F,C⟩, we say that I is rule based

if there exists a collection R of F-rules, such that C = CR.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R a collection of F-

rules, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system and
T ∈ SenFam(A). We say that T is closed under R or is R-closed if, for all
R = ⟨P,ρ⟩ ∈R, all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ),

PAΣ (χ⃗) ⊆ TΣ implies ρAΣ(χ⃗) ∈ TΣ.
This terminology allows the following elegant characterization of IR-filter

families of A.

Proposition 1779 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R
a collection of F-rules, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-

algebraic system and T ∈ SenFam(A). Then T ∈ FiFamI
R(A) if and only if

T is R-closed.

Proof: Assume, first, that T ∈ FiFamI
R(A), R = ⟨P,ρ⟩ ∈ R and, using

surjectivity of ⟨F,α⟩, let Σ ∈ ∣Sign♭∣ and χ⃗ ∈ SEN♭(Σ), such that

PAF (Σ)(αΣ(χ⃗)) ⊆ TF (Σ).
Then we get αΣ(PΣ(χ⃗)) ⊆ TF (Σ). Since, by the definition of CI

R
, ρΣ(χ⃗) ∈

CI
R

Σ (PΣ(χ⃗)) and, by hypothesis, T ∈ FiFamI
R(A), we get αΣ(ρΣ(χ⃗)) ∈ TF (Σ)

or, equivalently, ρA
F (Σ)
(αΣ(χ⃗)) ∈ TF (Σ). Thus, T is R-closed.

Suppose, conversely, that T ∈ SenFam(A) is R-closed. Let Σ ∈ ∣Sign♭∣
and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ CIRΣ (Φ) and consider Σ′ ∈ ∣Sign♭∣ and
f ∈ Sign♭(Σ,Σ′), such that

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′).
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Since φ ∈ CIRΣ (Φ), there exists an R-proof of φ from Φ, say

φ0, φ1, . . . , φn−1, φn = φ.

We prove by induction on i ≤ n that, every member of the sequence

αΣ′(SEN♭(f)(φ0)), αΣ′(SEN♭(f)(φ1)), . . . ,
αΣ′(SEN♭(f)(φn−1)), αΣ′(SEN♭(f)(φn))

belongs to TF (Σ′). The case i = n, will yield the desired conclusion.
First, if φi ∈ Φ, then αΣ′(SEN♭(f)(φi)) ∈ αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′),

where the latter inclusion holds by hypothesis.
Suppose, on the other hand, that φi R-follows from {φ0, φ1, . . . , φi−1}, for

some R = ⟨P,ρ⟩ ∈R. Thus, there exists χ⃗ ∈ SEN♭(Σ), such that

PΣ(χ⃗) ⊆ {φ0, φ1, . . . , φi−1} and ρΣ(χ⃗) = φi.
But then

PA
F (Σ′)
(αΣ′(SEN♭(f)(χ⃗))) = αΣ′(SEN♭(f)(PΣ(χ⃗)))

⊆ αΣ′(SEN♭(f)({φ0, . . . , φi−1}))
⊆ TF (Σ′),

where the last inclusion follows by the induction hypothesis, and, hence,
since T is R-closed, we get that αΣ′(SEN♭(f)(φi)) = αΣ′(SEN♭(f)(ρΣ(χ⃗))) =
ρA
F (Σ′)
(αΣ′(SEN♭(f)(χ⃗))) ∈ TF (Σ′). This concludes the induction step and

shows that, for all i ≤ n, αΣ′(SEN♭(f)(φi)) ∈ TF (Σ′). ∎

In addition, we can characterize IR-filter families generated by a given
sentence family as follows.

Proposition 1780 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R
a collection of F-rules, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-
algebraic system and X ∈ SenFam(A). Then, for all Σ ∈ ∣Sign∣,

CI
R,A

Σ (X) = {φ ∈ SEN(Σ) ∶ XΣ ⊢RΣ φ}.
Proof: Define T = {TΣ}Σ∈∣Sign∣, by letting, for all Σ ∈ ∣Sign∣,

TΣ = {φ ∈ SEN(Σ) ∶XΣ ⊢RΣ φ}.
It is not difficult to see that X ≤ T and T is R-closed. Thus, by Proposition
1779, CI

R,A(X) ≤ T . On the other hand, if T ′ ∈ SenFam(I) contains X
and is R-closed, then T ≤ T ′. Therefore, we conclude that T ≤ CIR,A(X).
Equality now follows. ∎
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24.2 Operators on Classes of Matrix Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Recall that an F-
algebraic system is a pair A = ⟨A, ⟨F,α⟩⟩, where A = ⟨Sign,SEN,N⟩ is an
N ♭-algebraic system and ⟨F,α⟩ ∶ F → A is a surjective N ♭-algebraic system
morphism. Recall, also, that an F-matrix family is a pair A = ⟨A, T ⟩, where
A is an F-algebraic system and T ∈ SenFam(A) is a sentence family on A.

We define now some class operators on classes of F-matrix families, i.e.,
operators that, given, as input a class of F-matrix families, produce a new
class of F-matrix families.

Given F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and B = ⟨B, ⟨G,β⟩⟩, and F-
matrix families A = ⟨A, T ⟩ and B = ⟨B, T ′⟩, we say that B is a morphic
image of A and write B ∈ M(A), if there exists a surjective morphism⟨H,γ⟩ ∶ A → B (that is, such that ⟨G,β⟩ = ⟨H,γ⟩ ○ ⟨F,α⟩)

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

such that
γ−1(T ′) = T.

In this case, we call A an inverse morphic image or a morphic preimage
of B and write A ∈M−1(B).

Given a class M of F-matrix families, we write B ∈M(M) if there exists
A ∈M, such that B ∈M(A).

Similarly, we write A ∈ M−1(M) if there exists B ∈ M, such that A ∈
M−1(B).

It is not difficult to show that both M and M−1 are closure operators on
the collection of all F-matrix families.

Lemma 1781 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

M,M−1 ∶ P(MatFam(F))→ P(MatFam(F))
are closure operators on MatFam(F).
Proof: We prove the statement for M in detail. The proof for M−1 is similar.

Suppose, first, that M is a class of F-matrix families and A ∈ M. Then,
the diagram

F

❂✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩

⟨F,α⟩
⑦

A ⟨I, ι⟩ ✲ A
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where ⟨I, ι⟩ ∶ A→ A is the identity morphism, shows that A ∈M(M). There-
fore, M is inflationary.

Monotonicity is obvious, since, if M,N are classes of F-matrix families,
such that M ⊆ N, and A ∈M(M), then, by definition, A ∈M(B), with B ∈M.
But then, since M ⊆ N, A ∈ M(B), with B ∈ N and, again, by definition,
A ∈M(N). Thus, we have M(M) ⊆M(N).

Finally, assume that M is a class of F-matrix families and A ∈M(M(M)).
Then, there exists B ∈M(M), such that A ∈M(B). Furthermore, there exists
C ∈ M, such that B ∈M(C). But these two statements combined reveal the
existence of the following diagram, in which the two small triangles commute.

F

✰✑
✑
✑
✑
✑
✑
✑⟨H,γ⟩ ◗

◗
◗
◗
◗
◗
◗

⟨F,α⟩
s

C ⟨Q,q⟩ ✲ B

⟨G,β⟩
❄

⟨P,p⟩ ✲ A

As a result, the big triangle also commutes and this ensures that A ∈M(C),
which yields A ∈M(M). ∎

Next, we introduce another class operator on classes of F-matrix families.
Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and Ai = ⟨A, T i⟩, i ∈ I, a

collection of F-matrix families, all over A. Define the intersection of the Ai,
i ∈ I, as the F-matrix family, with the same underlying F-algebraic system
A and with filter family the intersection of the T i’s; more formally

⋂
i∈I

Ai = ⟨A,⋂
i∈I

T i⟩.
Given a class M of F-matrix families and an F-matrix family B, we write
B ∈ IΠ(M) if B is the intersection of members of M, i.e., B = ⋂i∈I A

i, with
Ai ∈M, for all i ∈ I.

Again, it is not difficult to show that IΠ is a closure operator on the
collection of F-matrix families.

Lemma 1782 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

IΠ ∶ P(MatFam(F)) → P(MatFam(F))
is a closure operator on MatFam(F).
Proof: To show inflationarity, notice that, trivially, for all A ∈M, A = ⋂{A},
whence A ∈ IΠ(M).

Monotonicity is straightforward, since, if M ⊆ N and A ∈ IΠ(M), then
A = ⋂i∈I A

i, with Ai ∈ M, for all i ∈ I, and, hence, A = ⋂i∈I A
i, with Ai ∈ N,

for all i ∈ I. So A ∈ IΠ(N).
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Finally, for transitivity, if A ∈ IΠ(IΠ(M)), then A = ⋂i∈I A
i, where Ai ∈

IΠ(M), for all i ∈ I. Thus, for all i ∈ I, Ai = ⋂j∈JiA
ij , where Aij ∈ M, for all

j ∈ Ji. Therefore, we get

A =⋂
i∈I

Ai =⋂
i∈I

⋂
j∈Ji

Aij ,

where Aij ∈M, for all i ∈ I, j ∈ Ji, and, hence, A ∈ IΠ(M). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a class of F-
matrix families. Recall the closure system CM ∶ PSEN♭ → PSEN♭ on F
generated by M. It is defined, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ),
by φ ∈ CM

Σ (Φ) if and only if, for all A = ⟨A, T ⟩ ∈ M, all Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ TF (Σ′).
IM = ⟨F,CM⟩ denotes the corresponding π-institution generated by M.

Now, given a π-institution I , one can consider its matrix family models,
i.e., those F-matrix families A, such that

I ≤ IA.

Doing this for the specific π-institution IM, generated by the class M of F-
matrix families, we consider the class MatFam(IM) of IM-matrix families.
Clearly, since, for every A ∈M, CM ≤ CA,

M ⊆MatFam(IM).
In the spirit of many classical problems in universal algebraic logic, the fol-
lowing question naturally arises:

Characterize MathFam(IM), i.e., find a list of operators on classes of F-
matrix families so that, when applied to M consecutively, they generate
the class MatFam(IM).

Our goal here is to show that the list of operators that are needed consists
of MIΠM−1, i.e., that, given any class M of F-matrix families, we have

MatFam(IM) =MIΠM−1(M).
We start by showing that applying each of the three operators to classes

of matrix family models of a π-institution I always results in classes of the
same character.

Proposition 1783 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.
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(a) M(MatFam(I)) ⊆MatFam(I);
(b) IΠ(MatFam(I)) ⊆MatFam(I);
(c) M−1(MatFam(I)) ⊆MatFam(I).

Proof:

(a) Let A = ⟨A, T ⟩ ∈ MatFam(I) and consider a surjective morphism⟨H,γ⟩ ∶ A→B, where B = ⟨B, T ′⟩, as in the diagram.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B

We now have

β−1(T ′) = α−1(γ−1(T ′)) = α−1(T ) ∈ ThFam(I),
where the last membership follows by the hypothesis and Lemma 51.
Thus, again by Lemma 51, we get that T ′ ∈ FiFamI(B) and, hence,
B ∈MatFam(I).

(b) Suppose, next, that Ai = ⟨A, T i⟩, i ∈ I, are I-matrix families. Then
T i ∈ FiFamI(A), for all i ∈ I. Since the collection FiFamI(A) forms a
closure system on A, it follows that ⋂i∈I T

i ∈ FiFamI(A). Thus, we get
that ⋂i∈I A

i ∈MatFam(I). So MatFam(I) is closed under IΠ.

(c) Let A = ⟨A, T ⟩ ∈ MatFam(I) and consider a surjective morphism⟨H,γ⟩ ∶B→ A, where B = ⟨B, T ′⟩, as in the diagram.

F

❂✚
✚
✚
✚
✚⟨G,β⟩ ❩

❩
❩
❩
❩

⟨F,α⟩
⑦

B ⟨H,γ⟩ ✲ A

We now have

β−1(T ′) = β−1(γ−1(T )) = α−1(T ) ∈ ThFam(I),
where the last membership follows by the hypothesis and Lemma 51.
Thus, again by Lemma 51, we get that T ′ ∈ FiFamI(B) and, hence,
B ∈MatFam(I).

∎

Proposition 1783 gives
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Corollary 1784 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

MIΠM−1(MatFam(I)) ⊆MatFam(I).
Proof: We have, using Proposition 1783,

MIΠM−1(MatFam(I)) ⊆ MIΠ(MatFam(I))
⊆ M(MatFam(I))
⊆ MatFam(I).

∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that a Lindenbaum I-matrix family is an
I-matrix family of the form ⟨F , T ⟩, where F = ⟨F, ⟨I, ι⟩⟩ and T ∈ ThFam(I).
We show, next, that the class of all I-matrix families can be obtained by
applying the M operator on the class of all Lindenbaum matrix families, i.e.,
MatFam(I) =M(LMatFam(I)).
Lemma 1785 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

MatFam(I) =M(LMatFam(I)).
Proof: First, observe that, since LMatFam(I) ⊆ MatFam(I), we have, by
Proposition 1783,

M(LMatFam(I)) ⊆M(MatFam(I)) ⊆MatFam(I).
Suppose, conversely, that A = ⟨A, T ⟩ ∈ MatFam(I), with A = ⟨A, ⟨F,α⟩⟩.
Then, we have, by Lemma 51, α−1(T ) ∈ ThFam(I). Hence, ⟨F , α−1(T )⟩ ∈
LMatFam(I). Now, it suffices to consider the surjective morphism ⟨F,α⟩ ∶⟨F , α−1(T )⟩→ A

F

❂✚
✚
✚
✚
✚⟨I, ι⟩ ❩

❩
❩
❩
❩

⟨F,α⟩
⑦

F ⟨F,α⟩ ✲ A

to conclude that A ∈M(LMatFam(I)). Therefore, we obtain MatFam(I) ⊆
M(LMatFam(I)). ∎

Now, to complete our task, we turn again to the specific π-institution
IM, generated by a given class M of F-matrix families. We show that all
its Lindenbaum matrix families, i.e., all matrix families of the form ⟨F , T ⟩,
where T ∈ ThFam(IM), can be obtained by applying the operator IΠM−1 on
the class M.
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Lemma 1786 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of F-matrix families. Then

LMatFam(IM) ⊆ IΠM−1(M).
Proof: Let F = ⟨F , T ⟩ ∈ LMatFam(IM), i.e., T ∈ ThFam(IM). Thus, there
exist Ai = ⟨Ai, T i⟩ ∈M, with A = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, such that

T =⋂
i∈I

(αi)−1(T i).
Consider the collection Fi = ⟨F , (αi)−1(T i)⟩, i ∈ I. Taking into account the
surjective morphisms ⟨F i, αi⟩ ∶ Fi → Ai, i ∈ I, and the fact that Ai ∈ M, we
conclude that Fi ∈M−1(M), for all i ∈ I. Finally, observing that F = ⋂i∈I F

i,
we get that F ∈ IΠM−1(M). Therefore, LMatFam(IM) ⊆ IΠM−1(M). ∎

Now we are ready to provide the promised characterization of MatFam(IM)
in terms of M and the class operators M, IΠ and M−1, introduced in this sec-
tion.

Theorem 1787 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of F-matrix families. Then

MatFam(IM) =MIΠM−1(M).
Proof: First, since M ⊆MatFam(IM), we have, using Corollary 1784,

MIΠM−1(M) ⊆MIΠM−1(MatFam(IM)) ⊆MatFam(IM).
Conversely, let A ∈MatFam(IM). Then, by Lemmas 1785 and 1786,

A ∈M(LMatFam(IM)) ⊆MIΠM−1(M).
Therefore, MatFam(IM) ⊆MIΠM−1(M). ∎

As a consequence of this characterization, we can also show that the
operator MIΠM−1 is a closure operator on classes of F-matrix families and,
moreover, given any such class M, applying the operator to the class results
in the smallest class of F-matrix systems that contains M and is closed under
the operations M, IΠ and M−1.

Theorem 1788 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of F-matrix families.

(a) MIΠM−1 ∶ P(MatFam(F)) → P(MatFam(F)) is a closure operator;

(b) MIΠM−1(M) is the smallest class of F-matrix families containing M

and closed under the operators M, IΠ and M−1.
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Proof:

(a) Inflationarity and monotonicity follow from the corresponding proper-
ties of the three operators, which were established in Lemmas 1781 and
1782. For idempotency, we have

MIΠM−1(MIΠM−1(M)) = MIΠM−1(MatFam(IM))
(by Theorem 1787)

⊆ MatFam(IM)
(by Corollary 1784)

= MIΠM−1(M).
(again by Theorem 1787)

(b) By Part (a), M ⊆MIΠM−1(M). Moreover, if O ∈ {M, IΠ,M−1}, then

O(MIΠM−1(M)) = O(MatFam(IM)) (by Theorem 1787)
⊆ MatFam(IM) (by Corollary 1784)
= MIΠM−1(M). (by Theorem 1787)

Hence, MIΠM−1(M) is closed under all three operators. If N is a class
of F-matrix families such that M ⊆ N and N closed under the three
operators, then, clearly, MIΠM−1(M) ⊆ MIΠM−1(N) = N. Therefore,
MIΠM−1(M) is the smallest class satisfying these properties.

∎

24.3 Classes of Reduced Matrix Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. Recall that LMatFam∗(I) is the class of all re-
duced Lindenbaum I-matrix families, i.e., all F-matrix families of the form⟨FΩ(T ), T /Ω(T )⟩, where F = ⟨F, ⟨I, ι⟩⟩ and T ∈ ThFam(I), and that I is
complete with respect to LMatFam∗(I).

Recall, also, that MatFam∗(I) is the collection of all reduced I-matrix
families, i.e., F-matrix families of the form ⟨A, T ⟩, where A is an F-algebraic
system and T ∈ FiFamI(A), such that ΩA(T ) = ∆A. Moreover, I is also
complete with respect to MatFam∗(I).

Our first goal is to show that the class MatFam∗(I) is, in fact, the class
generated by applying the morphic image operator M, introduced in the
previous section, on the class LMatFam∗(I).

We prove, first, that the operator

M ∶ P(MatFam∗(F))→ P(MatFam∗(F)),
i.e., the operator M, introduced in Section 24.2, restricted to reduced F-
matrix families, is also a closure operator.
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Proposition 1789 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

M ∶ P(MatFam∗(F)) → P(MatFam∗(F))
is a closure operator on MatFam∗(F).
Proof: Since we know, by Lemma 1781, that M is inflationary, monotone
and idempotent, it suffices to show that it is well-defined, i.e., that, when
applied to collections of reduced F-matrix families, it produces collections of
the same kind. In turn, it suffices to show that, given a reduced F-matrix
family A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩, an F-matrix family A′ = ⟨A′, T ′⟩,
with A′ = ⟨A′, ⟨F ′, α′⟩⟩, and a strict surjective morphism ⟨H,γ⟩ ∶ A → A′,
then A′ is also reduced.

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨F ′, α′⟩
⑦

A ⟨H,γ⟩ ✲ A′

Taking into account the surjectivity of ⟨F ′, α′⟩, we reason as follows. For all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), we have

⟨α′Σ(φ), α′Σ(ψ)⟩ ∈ ΩA
′

F ′(Σ)
(T ′)

iff ⟨γF (Σ)(αΣ(φ)), γF (Σ)(αΣ(ψ))⟩ ∈ ΩA
′

G(F (Σ))
(T ′)

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ γ−1F (Σ)(ΩA′G(F (Σ))(T ′))
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA

F (Σ)
(γ−1(T ′))

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΩA
F (Σ)
(T )

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ∆A
F (Σ)
(T )

iff αΣ(φ) = αΣ(ψ)
implies γF (Σ)(αΣ(φ)) = γF (Σ)(αΣ(ψ))

iff α′Σ(φ) = α′Σ(ψ).
Therefore ΩA

′(T ′) =∆A
′

and, hence A′ is also reduced. ∎

Next, we show that, given π-institution I , the class MatFam∗(I) is ob-
tained by applying the operator M on the class LMatFam∗(I).
Proposition 1790 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F. Then

MatFam∗(I) =M(LMatFam∗(I)).
Proof: The inclusion M(LMatFam∗(I)) ⊆ MatFam∗(I) is obtained by ob-
serving that LMatFam∗(I) ⊆MatFam∗(I) and applying M:

M(LMatFam∗(I)) ⊆ M(MatFam∗(I)) (Lemma 1781)
⊆ MatFam∗(I). (Propositions 1783 and 1789)
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Suppose, conversely, that A = ⟨A, T ⟩, with A = ⟨A, ⟨F,α⟩⟩, is a reduced
I-matrix family. Let θ = Ker(⟨F,α⟩) and consider the commutative diagram

F

❂✚
✚
✚
✚
✚⟨I, πθ⟩ ❩

❩
❩
❩
❩

⟨F,α⟩
⑦

Fθ ⟨F,αθ⟩ ✲ A

where, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
αθΣ(φ/θΣ) = αΣ(φ).

It now suffices to show that F ∶= ⟨F θ, α−1(T )/θ⟩ ∈ LMatFam∗(I). First, note
that since A ∈MatFam∗(I) ⊆MatFam(I), then

F ∈M−1(MatFam(I)) ⊆MatFam(I),
by Proposition 1783. So it suffices to show that ΩF

θ(α−1(T )/θ) = ∆F
θ
. We

have
ΩF

θ(α−1(T )/θ) = ΩF
θ((αθ)−1(T ))

= (αθ)−1(ΩA(T ))
= (αθ)−1(∆A)
= Ker(⟨F,αθ⟩) =∆F

θ
.

Now we conclude that A ∈M(LMatFam∗(I)). ∎

Consider, again, a base algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ and a
collection M of reduce F-matrix families. We pose now a problem similar to
that posed in Section 24.2, but for classes of reduced matrix families.

Characterize the class MatFam∗(I), i.e., find a list of operators on
classes of reduced F-matrix families so that, when applied to M con-
secutively, they generate the class MatFam∗(IM).

Unlike the operator M that, when applied to reduced matrix families
yields reduced matrix families, the other two operators that we considered in
Section 24.2, namely IΠ and M−1, do not share this property. So to “localize”
them to reduced matrix families, we must take the output classes of F-matrix
families that they produce and “reduce” them so that the output produced
becomes a collection of reduced F-matrix families. According to this scheme,
we consider the following operators, induced by the operators IΠ and M−1 on
class of matrix families, introduced in Section 24.2.

• IΠ∗ ∶ P(MatFam∗(F)) → P(MatFam∗(F)) is given, by setting, for all
M ⊆MatFam∗(F),

IΠ∗(M) = {A∗ ∶ A ∈ IΠ(M)};
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• M−1∗ ∶ P(MatFam∗(F)) → P(MatFam∗(F)) is given, by setting, for all
M ⊆MatFam∗(F),

M−1∗(M) = {A∗ ∶ A ∈M−1(M)}.
It is not very difficult to prove that both IΠ∗ and M−1∗ are closure oper-

ators on the class of reduced F-matrix families.

Proposition 1791 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

IΠ∗ ∶ P(MatFam∗(F))→ P(MatFam∗(F))
is a closure operator on MatFam∗(F).
Proof: Let M ⊆ MatFam∗(F) and A ∈ M. Then, by Proposition 1782,
A ∈ IΠ(M) and, as A is reduced, we get A ∈ IΠ∗(M). Thus, IΠ∗ is inflationary.

Suppose, next, that M ⊆ N ⊆ MatFam∗(F) and A ∈ IΠ∗(M). Then A =(⋂i∈I A
i)∗, with Ai ∈ M, for all i ∈ I. But then, since M ⊆ N, A = (⋂i∈I A

i)∗,
with Ai ∈ N, for all i ∈ I, and, hence, A ∈ IΠ∗(N). Therefore IΠ∗ is also
monotone.

Suppose, finally, that M ⊆MatFam∗(F) and that A ∈ IΠ∗(IΠ∗(M)). Then
A = (⋂i∈I A

i)∗, where Ai ∈ IΠ∗(M). Hence, for all i ∈ I, Ai = (⋂j∈Ji A
ij)∗,

where Aij ∈M, for all i ∈ I and all j ∈ Ji. Now note the following:

• For every i ∈ I, for ⋂j∈Ji A
ij to be defined, we must have Aij = ⟨Ai, T ij⟩,

for all j ∈ Ji.

• For ⋂i∈I Ai = ⋂i∈I(⋂j∈Ji A
ij)∗ to be defined, we must have, for all i ∈ I,

Ai = A, for some F-algebraic system A, and, moreover, for all i ∈ I,
ΩA(⋂j∈Ji T

ij) = θ, for some θ ∈ ConSys(A).
Under these restrictions, it is easy to show that

⟨I, π⟩ ∶ ⟨A,⋂
i∈I

⋂
j∈Ji

T ij)⟩ → Aθ/ΩAθ(⋂
i∈I

((⋂
j∈Ji

T ij)/θ))
defined, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

πΣ(φ) = (φ/θΣ)/ΩAθΣ (⋂
i∈I

((⋂
j∈Ji

T ij)/θ)),
is a strict surjective matrix morphism, with kernel

Ker(⟨I, π⟩) = ΩA(⋂
i∈I

⋂
j∈Ji

T ij).
Therefore, we get an isomorphism

A/ΩA(⋂
i∈I

⋂
j∈Ji

T ij) ≅ (Aθ)(ΩAθ(⋂
i∈I

((⋂
j∈Ji

T ij)/θ))).
We conclude that A ∈ IΠ∗(M) and, therefore, IΠ∗ is also idempotent. ∎

To show that M−1∗ is a closure operator, we employ a lemma to the effect
that, given a class M of reduced F-matrix families, M−1∗(M) ⊆M−1(M).
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Lemma 1792 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. For every
F-matrix family A = ⟨A, T ⟩, every reduced F-matrix family A′ = ⟨A′, T ′⟩ and
strict surjective morphism ⟨H,γ⟩ ∶ A → A′, there exists a strict surjective
morphism ⟨H,γ∗⟩ ∶ A∗ → A′, such that the following triangle commutes,

A
⟨H,γ⟩ ✲ A′

❩
❩
❩
❩
❩⟨I, π⟩ ⑦ ✚

✚
✚
✚
✚

⟨H,γ∗⟩
❃

A∗

where ⟨I, π⟩ ∶ A→ A∗ is the quotient morphism.

Proof: We define γ∗ ∶ SEN∗ → SEN′ ○H by setting, for all Σ ∈ ∣Sign∣, and
all φ ∈ SEN(Σ),

γ∗Σ(φ∗) = γΣ(φ).
This makes sense, since, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), such
that φ∗ = ψ∗, we have ⟨φ,ψ⟩ ∈ ΩAΣ(T ) = ΩAΣ(γ−1(T ′)), whence ⟨φ,ψ⟩ ∈
γ−1Σ (ΩA′H(Σ)(T ′)) and, hence, ⟨γΣ(φ), γΣ(ψ)⟩ ∈ ∆A

′

H(Σ)
, i.e., γΣ(φ) = γΣ(ψ).

Moreover, γ ∶ SEN∗ → SEN ○H is a natural transformation, since, for all
Σ,Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all φ ∈ SEN(Σ),

SEN∗(Σ) γ∗Σ ✲ SEN′(H(Σ))

SEN∗(Σ′)
SEN∗(f)

❄

γ∗Σ′
✲ SEN′(H(Σ′))

SEN′(H(f))
❄

SEN′(H(f))(γ∗Σ(φ∗)) = SEN′(H(f))(γΣ(φ))
= γΣ′(SEN(f)(φ))
= γ∗Σ′(SEN(f)(φ)∗)
= γ∗Σ′(SEN∗(g)(φ∗)).

Further, the triangle commutes, by the definition of ⟨H,γ∗⟩ and, finally,⟨H,γ∗⟩ ∶ A∗ → A′ is strict since π−1((γ∗)−1(T ′)) = γ−1(T ′) = T and, therefore,(γ∗)−1(T ′) = π(T ) = T ∗. ∎

Now, we show M−1∗ is a closure operator.

Proposition 1793 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

M−1∗ ∶ P(MatFam∗(F))→ P(MatFam∗(F))
is a closure operator on MatFam∗(F).
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Proof: Suppose, first, that M ⊆MatFam∗(F) and A ∈M. Then, we have, by
Proposition 1781, A ∈M−1(M) and, since A is reduced, we get A ∈M−1∗(M).
So M−1∗ is inflationary.

Suppose, next, that M ⊆ N ⊆ MatFam∗(F) and A ∈ M−1∗(M). Then
A =B∗, with B ∈M−1(M). Thus, by Proposition 1781, we get A =B∗, with
B ∈ M−1(N). We conclude that A ∈ M−1∗(N) and, therefore, M−1∗ is also
monotone.

Finally, suppose that M ⊆ MatFam∗(F) and that A ∈ M−1∗(M−1∗(M)).
Then, using Lemma 1792, we get

A ∈M−1∗(M−1∗(M)) ⊆M−1(M−1∗(M)) ⊆M−1(M−1(M)) ⊆M−1(M),
and, since A is reduced, we get A ∈M−1∗(M). Therefore M−1∗ is also idem-
potent. ∎

We need one more operator on reduced classes of F-matrix families.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. We define

←Ð
IΠ
∗

∶ P(MatFam∗(F))→ P(MatFam∗(F))
by setting, for all M ⊆MatFam∗(F),

←Ð
IΠ
∗(M) = (IΠM−1(M))∗.

Note that this operator dominates both IΠ∗ and M−1∗.

Proposition 1794 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then,
for all M ⊆MatFam∗(F),

IΠ∗(M) ⊆←ÐIΠ∗(M) and M−1∗(M) ⊆←ÐIΠ∗(M).
Proof: The proofs of both statements are parallel. We have

IΠ∗(M) = (IΠ(M))∗ M−1(M) = (M−1(M))∗
⊆ (IΠM−1(M))∗ ⊆ (IΠM−1(M))∗
=
←Ð
IΠ
∗(M) =

←Ð
IΠ
∗(M)

where the inclusions follow from Lemmas 1781 and 1782, respectively. ∎

Our next goal is to show that the list of operators that are needed to
obtain the class of all reduced IM-matrix families from a class M of reduced
F-matrix families generating a closure operator CM (of a π-institution IM =

⟨F,CM⟩) consists of M
←Ð
IΠ
∗

, i.e., that, given any class M of reduced F-matrix
families, we have

MatFam∗(IM) =M←ÐIΠ∗(M).
We start by showing that applying each of these operators to classes of

reduced matrix family models of a π-institution I always results in classes of
the same character. This forms an analog of Proposition 1783.
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Proposition 1795 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) M(MatFam∗(I)) ⊆MatFam∗(I);
(b)
←Ð
IΠ
∗(MatFam∗(I)) ⊆MatFam∗(I).

Proof:

(a) We have

M(MatFam∗(I)) ⊆ M(MatFam(I)) ∩M(MatFam∗(F))
(Proposition 1781)

⊆ MatFam(I) ∩MatFam∗(F)
(Propositions 1783 and 1789)

= MatFam∗(I). (Definition)

(b) Similarly,

←Ð
IΠ
∗(MatFam∗(I)) = (IΠM−1(MatFam∗(I)))∗

⊆ (IΠM−1(MatFam(I)))∗
(Lemmas 1781 and 1782)

⊆ (MatFam(I))∗
(Proposition 1783)

= MatFam∗(I).
∎

Proposition 1795, together with Proposition 1783, give the following

Corollary 1796 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. Then

M
←Ð
IΠ
∗(MatFam∗(I)) ⊆MatFam∗(I).

Proof: We have, using Propositions 1783 and 1795,

M
←Ð
IΠ
∗(MatFam∗(I)) ⊆ M(MatFam∗(I))

⊆ MatFam∗(I).
∎

In order to establish our final result, we must show that, given a class
M of reduced F-matrix families, all reduced Lindenbaum matrix families of
the π-institution IM, i.e., all matrix families of the form ⟨F/Ω(T ), T /Ω(T )⟩,
where T ∈ ThFam(IM), can be obtained by applying the operator

←Ð
IΠ
∗

on the
class M.
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Lemma 1797 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of reduced F-matrix families. Then

LMatFam∗(IM) ⊆ ←ÐIΠ∗(M).
Proof: we have

LMatFam∗(IM) = (LMatFam(IM))∗ (Definition)
⊆ (IΠM−1(M))∗ (Lemma 1786)

=
←Ð
IΠ
∗(M). (Definition)

∎

Now we provide the promised characterization of MatFam∗(IM) in terms
of the class M of reduced F-matrix families and the class operators M and
←Ð
IΠ
∗

.

Theorem 1798 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of reduced F-matrix families. Then

MatFam∗(IM) =M←ÐIΠ∗(M).
Proof: First, since M ⊆MatFam∗(IM), we have, using Corollary 1796,

M
←Ð
IΠ
∗(M) ⊆M←ÐIΠ∗(MatFam∗(IM)) ⊆MatFam∗(IM).

Conversely, let A ∈ MatFam∗(IM). Then, by Proposition 1790 and Lemma
1797,

A ∈M(LMatFam∗(IM)) ⊆M←ÐIΠ∗(M).
Therefore, MatFam∗(IM) ⊆M←ÐIΠ∗(M), and equality follows. ∎

As a consequence of this characterization, we can also show that the

operator M
←Ð
IΠ
∗

is a closure operator on classes of reduced F-matrix families
and, moreover, given any such class M, applying the operator to the class
results in the smallest class of reduced F-matrix systems that contains M

and is closed under the operations M,
←Ð
IΠ
∗

.

Theorem 1799 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M a
collection of reduced F-matrix families.

(a) M
←Ð
IΠ
∗

∶ P(MatFam∗(F))→ P(MatFam∗(F)) is a closure operator;

(b) M
←Ð
IΠ
∗(M) is the smallest class of F-matrix families containing M and

closed under the operators M and
←Ð
IΠ
∗

.
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Proof:

(a) Inflationarity and monotonicity follow from the corresponding proper-
ties of the operators M and IΠ, which were established in Lemmas 1781
and 1782. For idempotency, we have

M
←Ð
IΠ
∗(M←ÐIΠ∗(M)) = M

←Ð
IΠ
∗(MatFam∗(IM))

(by Theorem 1798)
⊆ MatFam∗(IM)

(by Corollary 1796)

= M
←Ð
IΠ
∗(M).

(again by Theorem 1798)

(b) By Part (a), M ⊆M
←Ð
IΠ
∗(M). Moreover, if O ∈ {M,

←Ð
IΠ
∗}, then

O(M←ÐIΠ∗(M)) = O(MatFam∗(IM)) (by Theorem 1798)
⊆ MatFam∗(IM) (by Corollary 1796)

= M
←Ð
IΠ
∗(M). (by Theorem 1798)

Hence, M
←Ð
IΠ
∗(M) is closed under both operators. If N is a class of re-

duced F-matrix families such that M ⊆ N and N closed under both op-

erators, then, clearly, M
←Ð
IΠ
∗(M) ⊆M←ÐIΠ∗(N) = N. Therefore, M

←Ð
IΠ
∗(M)

is the smallest class satisfying these properties.
∎

24.4 Protoclasses of Matrix Families

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A class of F-matrix fami-
lies M is called a protoclass if it is the class of all reduced I-matrix families
for a protoalgebraic π-institution I = ⟨F,C⟩ based on F.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Ai = ⟨Ai, ⟨F i, αi⟩⟩,
i ∈ I, a collection of F-algebraic systems and Ai = ⟨Ai, T i⟩ a collection of
F-matrix families. We say that an F-matrix family A = ⟨A, T ⟩, with A =⟨A, ⟨F,α⟩⟩, is a subdirect intersection of the collection Ai, i ∈ I, if there
exist surjective morphisms

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

such that:

• T = ⋂i∈I(γi)−1(T i);
• ⋂i∈I Ker(⟨H i, γi⟩) = ∆A.
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Let M be a class of F-matrix families. Given an F-matrix family A,

we write A ∈
⊲

IΠ(M) to denote the fact that A is a subdirect intersection of
members of M.

It is not difficult to see that
⊲

IΠ is a closure operator on classes of F-matrix
families.

Lemma 1800 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

⊲

IΠ ∶ P(MatFam(F)) → P(MatFam(F))
is a closure operator on MatFam(F).
Proof: Assume, first, that M ⊆MatFam(F) and A ∈M. Then ⟨I, ι⟩ ∶ A→ A

is a subdirect intersection morphism and, therefore, since A ∈ M, we get

A ∈
⊲

IΠ(M). Therefore
⊲

IΠ is inflationary.
Suppose, next, that M ⊆ N ⊆MatFam(F). Let ⟨H i, γi⟩ ∶ A→ A′i, i ∈ I, be

a collection of subdirect intersection morphisms, with A′i ∈ M, for all i ∈ I.
Since, then, A′i ∈ N, for all i ∈ I, the same collection of morphisms witnesses

that A ∈
⊲

IΠ(N). Therefore,
⊲

IΠ is also monotone.

Finally, assume that A ∈
⊲

IΠ( ⊲IΠ(M)), where M ⊆MatFam(F). Thus, there
exists a collection of subdirect intersection morphisms

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

where Ai ∈
⊲

IΠ(M), for all i ∈ I. It now follows that, for each i ∈ I, there exists
a collection of subdirect intersection morphisms

⟨H ij, γij⟩ ∶ Ai → Aij , j ∈ Ji,

where Aij ∈M, for all i ∈ I and all j ∈ Ji. We look at the collection

⟨H ij, γij⟩ ○ ⟨H i, γi⟩ ∶ A→ Aij , i ∈ I, j ∈ Ji,

with Aij ∈M, for all i ∈ I, j ∈ Ji. We have

• For filter family intersections,

⋂i∈I ⋂j∈Ji(γi)−1((γij)−1(T ij)) = ⋂i∈I(γi)−1(⋂j∈Ji(γij)−1(T ij))
= ⋂i∈I(γi)−1(T i)
= T.

• Similarly, for kernels,

⋂i∈I ⋂j∈Ji Ker(⟨H ij, γij⟩ ○ ⟨H i, γi⟩)
= ⋂i∈I ⋂j∈Ji(γi)−1((γij)−1(∆Aij))
= ⋂i∈I(γi)−1(⋂j∈Ji Ker(⟨H ij , γij⟩))
= ⋂i∈I(γi)−1(∆Ai)
= ⋂i∈I Ker(⟨H i, γi⟩)
=∆A.
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Therefore, ⟨H ij, γij⟩ ○ ⟨H i, γi⟩, i ∈ I, j ∈ Ji, is also a collection of subdirect

intersection morphisms, and, hence A ∈
⊲

IΠ(M). We conclude that
⊲

IΠ is also
idempotent. ∎

In general, given a class M of reduced F-matrix families, its closures under

both operators IΠ and M−1∗ are included in its closure under
⊲

IΠ.

Proposition 1801 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M

a class of reduced F-matrix families. Then

IΠ(M) ⊆ ⊲IΠ(M) and M−1∗(M) ⊆ ⊲IΠ(M).
Proof: Assume, first, that A = ⟨A, T ⟩ ∈ IΠ(M). Thus, there exists a collection
Ai = ⟨A, T i⟩ ∈M, such that

T =⋂
i∈I

T i.

Consider the family of surjective morphisms

⟨I, ι⟩ ∶ ⟨A, T ⟩→ ⟨A, T i⟩, i ∈ I.

We have

• T = ⋂i∈I T
i = ⋂i∈I ι

−1(T i), by hypothesis;

• ⋂i∈I Ker(⟨I, ι⟩) = ⋂i∈I ∆A = ∆A.

Therefore, since Ai ∈M, for all i ∈ I, A ∈
⊲

IΠ(M).
Assume, next, that A∗ = ⟨A/ΩA(T ), T /ΩA(T )⟩ ∈M−1∗(M), where ⟨H,γ⟩ ∶

A → A′ is a strict surjective morphism, with A′ = ⟨A′, T ′⟩ ∈ M. Since M ⊆
MatFam∗(F), there exists a factorization

A
⟨H,γ⟩ ✲ A′

❩
❩
❩
❩
❩⟨I, π⟩ ⑦ ❂✚

✚
✚
✚
✚

⟨H,γ∗⟩
A∗

Moreover, we have

• π−1(γ∗−1(T ′)) = γ−1(T ′) = T , whence γ∗−1(T ′) = T /ΩA(T );
• Ker(⟨H,γ∗⟩) = ∆A

∗
holds, since, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈

SEN(Σ),
⟨φ,ψ⟩ ∈ KerΣ(⟨H,γ∗⟩) iff γ∗Σ(φ/ΩAΣ(T )) = γ∗Σ(ψ/ΩAΣ(T ))

iff γΣ(φ) = γΣ(ψ)
iff ⟨φ,ψ⟩ ∈ γ−1Σ (ΩA′H(Σ)(T ′))
iff ⟨φ,ψ⟩ ∈ ΩAΣ(γ−1(T ′))
iff ⟨φ,ψ⟩ ∈ ΩAΣ(T ).
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Therefore, A∗ ∈
⊲

IΠ(M). ∎

Another useful feature of the operator
⊲

IΠ is that among model classes of
matrix families, it characterizes those that are protoclasses.

Theorem 1802 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M =
MatFam∗(I) a class of reduced F-matrix families. Then M is a protoclass if

and only if
⊲

IΠ(M) ⊆M.

Proof: Suppose, first, that M =MatFam∗(I), with I protoalgebraic and let⟨H i, γi⟩ ∶ A → A′i, i ∈ I, be a collection of subdirect intersection morphisms.
Then, clearly,

A ∈ IΠM−1(M) (Definition of
⊲

IΠ)
⊆ IΠM−1(MatFam∗(I)) (Lemmas 1781 and 1782)
⊆ MatFam(I). (Proposition 1783)

It suffices now to show that A is reduced. We have

ΩA(T ) = ΩA(⋂i∈I(γi)−1(T ′i)) (Subdirect Intersection)
= ⋂i∈I ΩA((γi)−1(T ′i)) (I protoalgebraic)

= ⋂i∈I(γi)−1(ΩA′i(T ′i)) (⟨H i, γi⟩ surjective)
= ⋂i∈I(γi)−1(∆A′i) (A′i reduced)
= ⋂i∈I Ker(⟨H i, γi⟩)
= ∆A. (Subdirect Intersection)

Since A ∈MatFam(I) and A is reduced, we conclude that A ∈MatFam∗(I).
So

⊲

IΠ(MatFam∗(I)) ⊆MatFam∗(I).
Suppose, conversely, that

⊲

IΠ(MatFam∗(I)) ⊆MatFam∗(I) and let T,T ′ ∈
ThFam(I), with T ≤ T ′. We set

F ∶= ⟨F/(Ω(T ) ∩Ω(T ′)), (T ∩ T ′)/(Ω(T ) ∩Ω(T ′))⟩
and consider the surjective natural projection morphisms

⟨I, π⟩ ∶ F→ ⟨F/Ω(T ), T /Ω(T )⟩⟨I, π′⟩ ∶ F→ ⟨F/Ω(T ′), T ′/Ω(T ′)⟩.
We observe that

• As far as filter families, we have

(T ∩ T ′)/(Ω(T ) ∩Ω(T ′))
= T /(Ω(T ) ∩Ω(T ′)) ∩ T ′/(Ω(T ) ∩Ω(T ′))
= π−1(T /Ω(T ′)) ∩ π′−1(T ′/Ω(T ′));
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• As far as kernels, we get

Ker(⟨I, π⟩) ∩Ker(⟨I, π′⟩)
= Ω(T )/(Ω(T ) ∩Ω(T ′)) ∩Ω(T ′)/(Ω(T ) ∩Ω(T ′))
= (Ω(T ) ∩Ω(T ′))/(Ω(T ) ∩Ω(T ′)) =∆F.

Therefore,

F ∈
⊲

IΠ(MatFam∗(I)) ⊆MatFam∗(I).
Hence Ω(T ) = Ω(T ∩ T ′) = Ω(T ) ∩Ω(T ′), which implies that Ω(T ) ≤ Ω(T ′).
Thus, Ω is monotone on theory families and, hence, I is protoalgebraic. ∎

Finally, we work to obtain expressions for the protoclass MatFam∗(I)
based on a reduced class M of generating F-matrix families for I .

We show, first, that if M is a class of reduced models of a protoalgebraic

π-institution, then its closure under
⊲

IΠ is included in its closure under
←Ð
IΠ
∗

.

Proposition 1803 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a protoalgebraic π-institution based on F and M ⊆ MatFam∗(I) a
class of reduced I-matrix families. Then

⊲

IΠ(M) ⊆←ÐIΠ∗(M).
Proof: Let A = ⟨A, T ⟩ ∈ ⊲IΠ(M). Then, there exists a collection of subdirect
intersection morphisms

⟨H i, γi⟩ ∶ ⟨A, T ⟩→ ⟨A′i, T ′i⟩, i ∈ I,

where A′i = ⟨A′i, T ′i⟩ ∈M, for all i ∈ I. By using the same morphisms,

⟨H i, γi⟩ ∶ ⟨A, (γi)−1(T ′i)⟩→ A′i, i ∈ I,

which have now become strict and surjective, we get that, for all i ∈ I,⟨A, (γi)−1(T ′i)⟩ ∈M−1(M). Moreover, since, by the definition of a subdirect
intersection, A = ⟨A, T ⟩ = ⟨A,⋂i∈I(γi)−1(T ′i)⟩, we get that A ∈ IΠM−1(M).
Now, by Theorem 1802, A is reduced, whence A ∈ (IΠM−1(M))∗ = ←ÐIΠ∗(M).
∎

Next, it is shown that, if M is a class of reduced models of a protoalgebraic

π-institution, then its closure under
←Ð
IΠ
∗

is included in its closure under the

operator
⊲

IΠM−1∗.

Proposition 1804 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I =⟨F,C⟩ a protoalgebraic π-institution based on F and M ⊆ MatFam∗(I) a
class of reduced I-matrix families. Then

←Ð
IΠ
∗(M) ⊆ ⊲IΠM−1∗(M).



1458 CHAPTER 24. SPECIAL TOPICS Voutsadakis

Proof: Suppose that M ⊆ MatFam∗(I), for a protoalgebraic π-institution

I = ⟨F,C⟩ and let A∗ = ⟨A/ΩA(T ), T /ΩA(T )⟩ ∈ ←ÐIΠ∗(M), where A = ⟨A, T ⟩ =⟨A,⋂i∈I T
i⟩ is such that there exist strict surjective morphisms

⟨H i, γi⟩ ∶ ⟨A, T i⟩→ ⟨A′i, T ′i⟩, i ∈ I,

with A′i = ⟨A′i, T ′i⟩ ∈M, for all i ∈ I. The key now is to look at the collection
of the projection morphisms

⟨I, πi⟩ ∶ A∗ → ⟨A/ΩA(T i), T i/ΩA(T i)⟩, i ∈ I,

where, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
πiΣ(φ/ΩAΣ(⋂

i∈I

T i)) = φ/ΩAΣ(T i).
Since ⟨H i, γi⟩ is strict and surjective, we have that ⟨A, T i⟩ ∈ M−1(M), for
all i ∈ I. Thus, ⟨A/ΩA(T i), T i/ΩA(T i)⟩ ∈M−1∗(M). Therefore, to complete
the proof, it suffices to show that the collection ⟨I, πi⟩, i ∈ I, constitutes a
collection of subdirect intersection morphisms. This is not difficult to verify.
We have

• ⋂i∈I(πi)−1(T i/ΩA(T i)) = ⋂i∈I T
i/ΩA(⋂i∈I T

i) = (⋂i∈I T
i)/ΩA(⋂i∈I T

i);
• For kernels,

⋂i∈I Ker(⟨I, πi⟩) = ⋂i∈I ΩA(T i)/ΩA(⋂i∈I T
i)

= ΩA(⋂i∈I T
i)/ΩA(⋂i∈I T

i) (I protoalgebraic)

= ∆A/Ω
A(⋂i∈I T

i).

Now we have A∗ ∈
⊲

IΠM−1(M). ∎

We are now able to obtain, under protoalgebraicity, some equivalent ex-

pressions for the operator
←Ð
IΠ
∗

, which, based on Theorem 1798, will allow us
to provide characterizations for the class MatFam∗(I), in case I is protoal-
gebraic.

Theorem 1805 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M ⊆
MatFam∗(I), for a protoalgebraic π-institution I = ⟨F,C⟩ based on F. Then

⊲

IΠ(M) =←ÐIΠ∗(M) = ⊲IΠM−1∗(M).
Proof: Suppose M ⊆ MatFam∗(I), for a protoalgebraic π-institution I =⟨F,C⟩. Then, we have

⊲

IΠ(M) ⊆ ←ÐIΠ∗(M) (Proposition 1803)

⊆
⊲

IΠM−1∗(M) (Proposition 1804)

⊆
⊲

IΠ( ⊲IΠ(M)) (Proposition 1801)

=
⊲

IΠ(M). (Lemma 1800)
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The conclusion follows. ∎

Finally, we get the following characterization of MatFam∗(IM) in terms
of closure operators on M, under the hypothesis that M is a subclass of a
protoclass of F-matrix families.

Theorem 1806 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and M ⊆
MatFam∗(I), for a protoalgebraic π-institution I = ⟨F,C⟩ based on F. Then

MatFam∗(IM) =M ⊲

IΠ(M).
Proof: Suppose M ⊆ MatFam∗(I), for a protoalgebraic π-institution I =⟨F,C⟩. Then,

MatFam∗(IM) = M
←Ð
IΠ
∗(M) (Theorem 1798)

= M
⊲

IΠ(M). (Theorem 1805)

∎

24.5 Irreducibility

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F, A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system
and A = ⟨A,X⟩ ∈MatFam(I).

An I-filter family T ∈ FiFamI(A) is completely meet irreducible in
FiFamI(A) if, for all {T i ∶ i ∈ I} ⊆ FiFamI(A),

T =⋂
i∈I

T i implies T = T i, for some i ∈ I.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, Ai = ⟨Ai, ⟨F i, αi⟩⟩,
i ∈ I, a collection of F-algebraic systems and Ai = ⟨Ai, T i⟩ a collection of
F-matrix families. Recall that an F-matrix family A = ⟨A, T ⟩, with A =⟨A, ⟨F,α⟩⟩, is a subdirect intersection of the collection Ai, i ∈ I, if there
exist surjective morphisms

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

such that T = ⋂i∈I(γi)−1(T i) and ⋂i∈I Ker(⟨H i, γi⟩) = ∆A. This subdirect
intersection is called a special subdirect intersection if H i ∶ Sign → Signi

is an isomorphism, for all i ∈ I.
It turns out that F-matrix families are representable as subdirect inter-

sections if and only they are representable as special subdirect intersections.
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Proposition 1807 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system and A = ⟨A, T ⟩
an F-matrix family. Then ⟨H i, γi⟩ ∶ A→ A′i, i ∈ I, is a collection of subdirect
intersection morphisms if and only if

⟨I, πi⟩ ∶ A→ ⟨A/Ker(⟨H i, γi⟩), (γi)−1(T ′i)/Ker(⟨H i, γi⟩)⟩, i ∈ I,

is a collection of special subdirect intersection morphisms.

Proof: Suppose, first, that ⟨H i, γi⟩ ∶ A→ A′i, i ∈ I, is a sibdirect intersection
representation of A. For convenience, denote θi = Ker(⟨H i, γi⟩), i ∈ I. Note
that there exist algebraic system morphisms ⟨H i, γ̂i⟩ ∶ Aθi → A′i, such that

A
⟨H i, γi⟩ ✲ A′i

❩
❩
❩
❩
❩⟨I, πi⟩ ⑦ ✚

✚
✚
✚
✚

⟨H i, γ̂i⟩
❃

Aθi

⟨H i, γi⟩ = ⟨H i, γ̂i⟩ ○ ⟨I, πi⟩,
where ⟨I, πi⟩ ∶ A → Aθi, i ∈ I, are the quotient morphisms. Moreover, these
morphisms are well-defined F-matrix family morphisms, since, for all i ∈ I, we
have, on the one hand, T ≤ (γi)−1(T ′i) = (πi)−1((γi)−1(T ′i)/θi), and, on the
other, (πi)−1((γi)−1(T ′i)/θi) = (γi)−1(T ′i) = (πi)−1((γ̂i)−1(T ′i)) and, hence,
by the surjectivity of ⟨I, πi⟩, (γi)−1(T ′i)/θi = (γ̂i)−1(T ′i). Now we compute:

• For the filter families:

⋂i∈I(πi)−1((γi)−1(T ′i)/θi)
= ⋂i∈I(πi)−1(πi((γi)−1(T ′i)))
= ⋂i∈I(γi)−1(T ′i)

(θi compatible with (γi)−1(T ′i))
= T. (by hypothesis)

• For the kernels

⋂i∈I Ker(⟨I, πi⟩) = ⋂i∈I θ
i

= ∆A. (by hypothesis)

Therefore,

⟨I, πi⟩ ∶ A→ ⟨A/Ker(⟨H i, γi⟩), (γi)−1(T ′i)/Ker(⟨H i, γi⟩)⟩, i ∈ I,

is a collection of special subdirect intersection morphisms. ∎

Special subdirect intersections of reduced matrix families have a char-
acterization similar to the one applicable for subdirect products of reduced
matriced.
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Proposition 1808 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A =⟨A, ⟨F,α⟩ be an F-algebraic system and A = ⟨A, T ⟩ an F-matrix family. A

is a special subdirect intersection of the system {A′i = ⟨A′i, T ′i⟩ ∶ i ∈ I} of
reduced F-matrix families if and only if, there exists a corresponding system
of sentence families {T i ∶ i ∈ I} ⊆ SenFam(A), such that:

(i) ⋂i∈I T
i = T ;

(ii) A/T i ≅ A′i, for all i ∈ I.

Proof: Suppose, first, that ⟨H i, γi⟩ ∶ A → A′i, i ∈ I, is a collection of special
subdirect intersection morphisms. Define T i = (γi)−1(T ′i), i ∈ I. Then, we
have

• ⋂i∈I T
i = ⋂i∈I(γi)−1(T ′i) = T ;

• Noting that

ΩA(T i) = ΩA((γi)−1(T ′i)) (definition of T i)
= (γi)−1(ΩA′i(T ′i)) (Proposition 24)

= (γi)−1(∆A′i) (A′i reduced)
= Ker(⟨H i, γi⟩), (set theory)

we obtain

A/T i = ⟨A/ΩA(T i), T i/ΩA(T i)⟩
= ⟨A/Ker(⟨H i, γi⟩), (γi)−1(T ′i)/Ker(⟨H i, γi⟩)⟩
≅ A′i,

where the last isomorphism is established by the morphism ⟨H i, γ̂i⟩ ∶
A/Ker(⟨H i, γi⟩)→ A′i, given in Proposition 1807.

Thus, (i) and (ii) of the statement hold.
Assume, conversely, that there exists a system {T i ∶ i ∈ I} ⊆ SenFam(A)

satisfying (i) and (ii). Consider ⟨I, πi⟩ ∶ A → A/ΩA(T i), i ∈ I. This forms a
well-defined system of F-matrix family morphisms

⟨I, πi⟩ ∶ A→ A/T i, i ∈ I.

Since, by hypothesis, A/T i ≅ A′i, for all i ∈ I, it suffices to show that the
above system of morphisms constitutes a subdirect intersection. We indeed
have

• ⋂i∈I(πi)−1(T i/ΩA(T i)) = ⋂i∈I T
i = T ;

• ⋂i∈I Ker(⟨I, πi⟩) = ⋂i∈I ΩA(T i) ≤ ΩA(⋂i∈I T
i) = ΩA(T ) =∆A.
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So {⟨I, πi⟩ ∶ A → A/T i ∶ i ∈ I} is a system of special subdirect intersection
morphisms. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M a class of reduced
F-matrix families and A = ⟨A, T ⟩ ∈M, with A = ⟨A, ⟨F,α⟩⟩.

The F-matrix family A ∈ M is called subdirectly irreducible relative
to M if, for every subdirect intersection

⟨H i, γi⟩ ∶ A→ A′i, i ∈ I,

with A′i ∈M, for all i ∈ I, there exists i ∈ I, such that

(i) T = (γi)−1(T ′i) and

(ii) Ker(⟨H i, γi⟩) =∆A.

We write M§ for the class of all relatively subdirectly irreducible members of
M.

If I = ⟨F,C⟩ is a π-institution based on F and M = MatFam∗(I) is the
class of all reduced I-matrix families, then a subdirectly irreducible A relative
to M is also called subdirectly irreducible relative to I .

It turns out that relative subdirect irreducibility and complete meet ir-
reducibility have a close relationship. To detail the relationship, we need an
additional operator on classes of F-matrix families.

Proposition 1809 Let F = ⟨Sign♭,SEN♭, IN♭⟩ be an algebraic system and M

a class of reduced F-matrix families closed under reduced inverse morphic
images, i.e., such that M−1∗(M) ⊆M. Then an F-matrix family A = ⟨A, T ⟩ ∈
M is subdirectly irreducible relative to M if and only if T is completely meet
irreducible in X = {X ∈ SenFam(A) ∶ A/X ∈M}.
Proof: Suppose, first, that A = ⟨A, T ⟩ ∈ M§ and let {X i ∶ i ∈ I} ⊆ X , such
that T = ⋂i∈IX

i. Then, by Proposition 1807,

⟨I, πi⟩ ∶ A→ A/X i, i ∈ I,

constitutes a special subdirect intersection. Moreover, since X i ∈ X , for all
i ∈ I, we have that A/X i ∈M, for all i ∈ I. By hypothesis, there exists an i ∈ I,
such that T = (πi)−1(X i/ΩA(X i)) = X i. We conclude that T is completely
meet irreducible in X .

Assume, conversely, that T is completely meet irreducible in X and let

⟨H i, γi⟩ ∶ A→ A′i, i ∈ I,

be a system of subdirect intersection morphisms, with A′i ∈ M, for all i ∈ I.
By Proposition 1807,

⟨I, πi⟩ ∶ A→ A/(γi)−1(T ′i), i ∈ I,
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is a collection of special subdirect intersection morphisms. Moreover, ⟨H i, γ̂i⟩ ∶
A/(γi)−1(T ′i) → A′i, i ∈ I, are strict surjective morphisms and A/(γi)−1(T ′i)
is reduced. Thus, since A′i ∈ M, for all i ∈ I and M−1∗(M) ⊆ M, we get
that A/(γi)−1(T ′i) ∈ M, for all i ∈ I. This shows that (γi)−1(T ′i) ∈ X , for
all i ∈ I. But, by the subdirect intersection property, T = ⋂i∈I(γi)−1(T ′i),
whence, by hypothesis, there exists i ∈ I, such that T = (γi)−1(T ′i). More-
over, Ker(⟨H i, γi⟩) = (γi)−1(∆A′i) = (γi)−1(ΩA′i(T ′i)) = ΩA((γi)−1(T ′i)) =
ΩA(T ) =∆A. Therefore, A is subdirectly irreducible relative to M. ∎
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25.1 Algebraic PoSystems

Let Sign be a category and SEN ∶ Sign → Set be a sentence functor. A
qofamily ≤ = {≤Σ}Σ∈∣Sign∣ on SEN is a relation family on SEN, such that, for
all Σ ∈ ∣Sign∣, ≤Σ ⊆ SEN(Σ)2 is a quasi-order on SEN(Σ). A pofamily ≤ ={≤Σ}Σ∈∣Sign∣ on SEN is a relation family on SEN, such that, for all Σ ∈ ∣Sign∣,
≤Σ ⊆ SEN(Σ)2 is a partial order on SEN(Σ). A qosystem ≤ on SEN is a
qofamily that is also a relation system. i.e., invariant under Sign-morphisms,
that is, such that, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(≤Σ) ⊆ ≤Σ′ .
Similarly, a posystem ≤ on SEN is a pofamily that is also a relation system.

Let A = ⟨Sign,SEN,N⟩ be an algebraic system. A qosystem (posys-
tem) on A is a qosystem (posystem, respectively) on SEN. The pair ⟨A,≤⟩
is then called an algebraic qosystem (algebraic posystem, respectively).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system. A qosystem (posystem) on A is a qosystem (posys-
tem, respectively) on A. We then term the pair ⟨A,≤⟩ an F-algebraic
qosystem (F-algebraic posystem, respectively).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system.

• The family of F-inequations In(F) = {InΣ(F)}Σ∈∣Sign♭∣ is defined by

setting, for all Σ ∈ ∣Sign♭∣,
InΣ(F) = {φ ≼ ψ ∶ φ,ψ ∈ SEN♭(Σ)};

• The family of F-quasi inequations QIn(F) = {QInΣ(F)}Σ∈∣Sign♭∣ is

defined by setting, for all Σ ∈ ∣Sign♭∣,
InΣ(F) = {⟨{φi ≼ ψi ∶ i < k}, φ ≼ ψ⟩ ∶ φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ)};

• The family of F-guasi inequations GIn(F) = {GInΣ(F)}Σ∈∣Sign♭∣ is

defined by setting, for all Σ ∈ ∣Sign♭∣,
InΣ(F) = {⟨{φi ≼ ψi ∶ i ∈ I}, φ ≼ ψ⟩ ∶ φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ)}.

As done previously, we sometimes abbreviate a guasi inequation ⟨{φi ≼ ψi ∶
i ∈ I}, φ ≼ ψ⟩ by writing ⟨φ⃗ ≼ ψ⃗, φ ≼ ψ⟩.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic posystems. We define the family CK,≤ ∶ PIn(F) → PIn(F) by
setting, for all Σ ∈ ∣Sign♭∣, I ∪ {φ ≼ ψ} ⊆ InΣ(F),

φ ≼ ψ ∈ CK,≤
Σ (I) iff, for all ⟨A,≤A⟩ ∈ K,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(I)) ⊆ ≤A
F (Σ′)

implies αΣ′(SEN♭(f)(φ)) ≤A
F (Σ′)

αΣ′(SEN♭(f)(ψ)).
It is not difficult to see that CK,≤ is a closure system on In(F).
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Lemma 1810 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic posystems. Then CK,≤ ∶ PIn(F) → PIn(F) is a closure
system on In(F).
Proof: Let Σ ∈ ∣Sign♭∣. It is straightforward from the definition of CK,≤

that CK,≤
Σ is inflationary and monotone. We show that it is also idempotent.

To this end, let I ∪ {φ ≼ ψ} ⊆ InΣ(F), be such that φ ≼ ψ ∈ CK,≤
Σ (CK,≤

Σ (I)).
Then, for all⟨A,≤A⟩ ∈ K, all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), we have
αΣ′(SEN♭(f)(I)) ⊆ ≤A

F (Σ′)
implies, by definition,

αΣ′(SEN♭(f)(CK,≤
Σ (I))) ⊆ ≤AF (Σ′),

whence, by the hypothesis and the definition,

αΣ′(SEN♭(f)(φ)) ≤AF (Σ′) αΣ′(SEN♭(f)(ψ)).
We now get φ ≼ ψ ∈ CK,≤

Σ (I). Therefore, CK,≤
Σ is also idempotent.

Finally, it only remains to show structurality. To this end, let Σ,Σ′ ∈∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and I ∪ {φ ≼ ψ} ⊆ InΣ(F), such that φ ≼ ψ ∈
C

K,≤
Σ (I). Then, by definition, for every ⟨A,≤A⟩ ∈ K, all Σ′′ ∈ ∣Sign♭∣ and all h ∈

Sign♭(Σ,Σ′′), αΣ′′(SEN♭(h)(I)) ⊆ ≤A
F (Σ′′)

implies αΣ′′(SEN♭(h)(φ)) ≤A
F (Σ′′)

αΣ′′(SEN♭(h)(ψ)).
Σ

f ✲ Σ′

❩
❩
❩
❩h ⑦ ❂✚

✚
✚
✚

g
Σ′′

In particular, for all Σ′′ ∈ ∣Sign♭∣ and all g ∈ Sign♭(Σ′,Σ′′),
αΣ′′(SEN♭(g)(SEN♭(f)(I))) ⊆ ≤AF (Σ′′)

implies

αΣ′′(SEN♭(g)(SEN♭(f)(φ))) ≤AF (Σ′′) αΣ′′(SEN♭(g)(SEN♭(f)(ψ))).
Therefore, SEN♭(f)(φ) ≼ SEN♭(f)(ψ) ∈ CK,≤

Σ′ (SEN♭(f)(I)). We conclude
that CK,≤ is also structural and, hence, a closure system on In(F). ∎

As a result of Lemma 1810, it makes sense to define the inequational
π-institution IK,≤ = ⟨F,CK,≤⟩ associated with a class K of F-algebraic
posystems.

We can show that the π-institution IK,≤ associated with the class K satis-
fies a reflexivity and transitivity property. On the other hand, antisymmetry
is not expressible in the language under consideration, since it is a language
without equality.
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Lemma 1811 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic posystems. For all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),

(a) φ ≼ φ ∈ CK,≤
Σ (∅);

(b) φ ≼ χ ∈ CK,≤
Σ (φ ≼ ψ,ψ ≼ χ).

Proof: Clearly, for all ⟨A,≤A⟩ ∈ K, all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
we get, by the reflexivity of ≤A, that

SEN♭(f)(φ) ≤AF (Σ′) SEN♭(f)(φ).
Thus, by definition, φ ≼ φ ∈ CK,≤

Σ (∅).
Similarly, for all ⟨A,≤A⟩ ∈ K, all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), by

the transitivity of ≤A, we get that

SEN♭(f)(φ) ≤AF (Σ′) SEN♭(f)(ψ) and SEN♭(f)(ψ) ≤AF (Σ′) SEN♭(f)(χ)
imply SEN♭(f)(φ) ≤A

F (Σ′)
SEN♭(f)(χ). Therefore, by definition φ ≼ χ ∈

C
K,≤
Σ (φ ≼ ψ,ψ ≼ χ). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, ⟨A,≤A⟩ an F-algebraic
posystem and g = ⟨φ⃗ ≼ ψ⃗, φ ≼ ψ⟩ ∈ GInΣ(F). We say ⟨A,≤A⟩ satisfies g or
that g holds or is valid in ⟨A,≤A⟩, written

⟨A,≤A⟩ ⊧Σ g,
if, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(φi)) ≤AF (Σ′) αΣ′(SEN♭(f)(ψi)), for all i ∈ I,

imply αΣ′(SEN♭(f)(φ)) ≤A
F (Σ′)

αΣ′(SEN♭(f)(ψ)). Equivalently, ⟨A,≤A⟩ sat-

isfies g if φ ≼ ψ ∈ C{⟨A,≤
A⟩},≤

Σ (φ⃗ ≼ ψ⃗).
Given a class K of F-algebraic posystems and a class G of F-guasi in-

equations, we write GIn(K) for the class of all F-guasi inequations satisfied
by every F-algebraic posystem in K and PAlgSys(G) for the class of all F-
algebraic posystems that satisfy all F-guasi inequations in G.

We now turn to examining some operations on classes of F-algebraic
posystems. We first show that the inverse image of a posystem under an
F-algebraic system morphism is also a posystem.

Lemma 1812 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩,
B = ⟨B, ⟨G,β⟩⟩ be two F-algebraic systems and ⟨H,γ⟩ ∶ A → B a surjective
morphism.

(a) If ≤B is a posystem on B, then γ−1(≤B) is a qosystem on A;
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(b) If ≤B is a posystem on B and Ker(⟨H,γ⟩) = ∆A, then γ−1(≤B) is a
posystem on A.

Proof: Let Σ ∈ ∣Sign∣, φ,ψ,χ ∈ SEN(Σ).
By the reflexivity of ≤B, we have γΣ(φ) ≤BH(Σ) γΣ(φ). Thus, φγ−1Σ (≤B)φ

and, hence γ−1Σ (≤B) is reflexive.
Suppose, next, that φγ−1Σ (≤B)ψ and ψγ−1Σ (≤B)χ. Then, γΣ(φ) ≤BH(Σ) γΣ(ψ)

and γΣ(ψ) ≤BH(Σ) γΣ(χ). Thus, by the transitivity of ≤B, we get γΣ(φ) ≤BH(Σ)
γΣ(χ). Therefore, φγ−1Σ (≤B)χ and γ−1Σ (≤B) is also transitive.

If φγ−1Σ (≤B)ψ, Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′), then we get γΣ(φ) ≤BH(Σ)
γΣ(ψ), whence SEN′(H(f))(γΣ(φ)) ≤BH(Σ′) SEN′(H(f))(γΣ(ψ)). Thus,

γΣ′(SEN(f)(φ)) ≤BH(Σ′) γΣ′(SEN(f)(ψ)).
So we obtain SEN(f)(φ)γ−1Σ′ (≤B)SEN(f)(ψ). This shows that γ−1(≤B) is a
qosystem on A.

Suppose, finally, for the sake of proving Part (b), that φγ−1Σ (≤B)ψ and
ψγ−1Σ (≤B)φ. Then, γΣ(φ) ≤BH(Σ) γΣ(ψ) and γΣ(ψ) ≤BH(Σ) γΣ(φ). Thus, by

the antisymmetry of ≤B, we get γΣ(φ) = γΣ(ψ). Since, by hypothesis,
Ker(⟨H,γ⟩) = ∆A, we get φ = ψ and, hence, γ−1(≤B) is a posystem on A
in this case. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of F-algebraic
posystems and ⟨A,≤A⟩, with A = ⟨A, ⟨F,α⟩⟩, an F-algebraic posystem.

• Given Σ ∈ ∣Sign♭∣, we say that ⟨A,≤⟩ is Σ-K-order certified if there
exists ⟨AΣ,≤Σ⟩ ∈ K, such that InΣ(⟨A,≤⟩) = InΣ(⟨AΣ,≤Σ⟩). In this case⟨AΣ,≤Σ⟩ will be referred to as the Σ-K-order certificate of ⟨A,≤⟩.

• We say that ⟨A,≤⟩ is K-order certified if it is Σ-K-order certified, for
all Σ ∈ ∣Sign♭∣. This, of course, means that

(∀Σ ∈ ∣Sign♭∣)(∃⟨AΣ,≤Σ⟩ ∈ K)(InΣ(⟨A,≤⟩) = InΣ(⟨AΣ,≤Σ⟩)).
We write C(K) for the class of all F-algebraic posystems that are K-order
certified. We say that K is an abstract order class whenever every K-order
certified F-algebraic posystem belongs to K, i.e., when C(K) = K.

It is not difficult to show that C is a closure operator on classes of F-
algebraic systems.

Proposition 1813 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then
the operator C on classes of F-algebraic posystems is a closure operator.

Proof: Suppose K is a class of F-algebraic posystems.
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• Let ⟨A,≤⟩ ∈ K. Then, since for all Σ ∈ ∣Sign♭∣, ⟨AΣ,≤Σ⟩ = ⟨A,≤⟩ ∈ K
is a Σ-K-order certificate for ⟨A,≤⟩, we get that ⟨A,≤⟩ ∈ C(K). Thus,
K ⊆ C(K) and C is inflationary.

• If K ⊆ K′ and ⟨A,≤⟩ ∈ C(K), then, by definition, for every Σ ∈ ∣Sign♭∣,
there exists a Σ-K-order certificate ⟨AΣ,≤Σ⟩. Since K ⊆ K′, ⟨AΣ,≤Σ⟩ ∈ K′
is also a Σ-K′-order certificate. Thus, ⟨A,≤⟩ ∈ C(K′) and C is also
monotone.

• Finally, suppose that ⟨A,≤⟩ ∈ C(C(K)). Then, there exists, for all
Σ ∈ ∣Sign♭∣, a Σ-C(K)-order certificate ⟨AΣ,≤Σ⟩ for A. Therefore, for
every Σ′ ∈ ∣Sign♭∣, there exists a Σ′-K-order certificate ⟨A⟨Σ,Σ′⟩,≤⟨Σ,Σ′⟩⟩
for ⟨AΣ,≤Σ⟩. Thus, for every Σ ∈ ∣Sign♭∣, there exists a Σ-K-order
certificate ⟨A⟨Σ,Σ⟩,≤⟨Σ,Σ⟩⟩ for ⟨A,≤⟩, since, by hypothesis,

InΣ(⟨A,≤⟩) = InΣ(⟨AΣ,≤Σ⟩) = InΣ(⟨A⟨Σ,Σ⟩,≤⟨Σ,Σ⟩⟩).
Thus C is a closure operator on classes of F-algebraic posystems. ∎

The importance of abstract classes of F-algebraic posystems rests on the
fact that the validity of an F-guasi inequation transfers from K-order certifi-
cates to an F-algebraic posystem itself.

Lemma 1814 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, K a class of
F-algebraic posystems and ⟨A,≤⟩, A = ⟨A, ⟨F,α⟩⟩, an F-algebraic posystem.
If A ∈ C(K), then GIn(K) ≤ GIn(A).
Proof: Suppose ⟨A,≤⟩ ∈ C(K), Σ ∈ ∣Sign♭∣ and ⟨φ⃗ ≼ ψ⃗, φ ≼ ψ⟩ ∈ GInΣ(K),
such that φ⃗ ≼ ψ⃗ ⊆ InΣ(⟨A,≤⟩). Let ⟨AΣ,≤Σ⟩ ∈ K be a Σ-K-order certificate for
A. Then, by definition φ⃗ ≼ ψ⃗ ⊆ InΣ(⟨AΣ,≤Σ⟩). Since ⟨AΣ,≤Σ⟩ ∈ K and ⟨φ⃗ ≼
ψ⃗, φ ≼ ψ⟩ ∈ GInΣ(K), we get φ ≼ ψ ∈ InΣ(⟨AΣ,≤Σ⟩) = InΣ(⟨A,≤⟩). Therefore,⟨φ⃗ ≼ ψ⃗, φ ≼ ψ⟩ ∈ GInΣ(⟨A,≤⟩). We conclude that GIn(K) ≤ GIn(⟨A,≤⟩). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic posystems.

• K is called an inequational class if there exists I ≤ In(F), such that
K = PAlgSys(I);

• K is called a quasi inequational class if there exists Q ≤ QIn(F),
such that K = PAlgSys(Q);

• K is called a guasi inequational class if there exists G ≤ GIn(F),
such that K = PAlgSys(G).

Clearly, by definition, if K is an inequational class, then it is a quasi in-
equational class and, if it is a quasi inequational class, then it is a guasi
inequational class.

Directly by these definitions and Lemma 1814, we get
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Corollary 1815 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic posystems. If K is a guasi inequational class (and, hence,
a fortiori, if it is a quasi inequational class or an inequational class), then it
is abstract.

Proof: Suppose K is a guasi inequational class defined by the F-guasi
inequations G ≤ GIn(F) and let ⟨A,≤⟩ ∈ C(K). Then, by Lemma 1814,
GIn(K) ≤ GIn(⟨A,≤⟩), whence

⟨A,≤⟩ ∈ PAlgSys(GIn(A))
⊆ PAlgSys(GIn(K))
= PAlgSys(GIn(PAlgSys(G)))
= PAlgSys(G)
= K.

Thus, K is an abstract class. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic posystems. We define:

• The semantic order variety generated by K

VOSem(K) = {⟨A,≤⟩ ∈ PAlgSys(F) ∶ In(K) ≤ In(⟨A),≤⟩};
• The semantic order quasivariety generated by K

QOSem(K) = {⟨A,≤⟩ ∈ PAlgSys(F) ∶ QIn(K) ≤ QIn(⟨A,≤⟩)};
• The semantic order guasivariety generated by K

GOSem(K) = {⟨A,≤⟩ ∈ PAlgSys(F) ∶ GIn(K) ≤ GIn(⟨A,≤⟩)}.
We have the following obvious relations between these classes.

Lemma 1816 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic posystems. Then

K ⊆ GOSem(K) ⊆ QOSem(K) ⊆ VOSem(K).
Proof: The essential observation is that

In(K) ≤ QIn(K) ≤ GIn(K).
Thus, we get

{⟨A,≤⟩ ∈ PAlgSys(F) ∶ (∀g ∈ GIn(K))(⟨A,≤⟩ ⊧ g)}
⊆ {⟨A,≤⟩ ∈ PAlgSys(F) ∶ (∀q ∈ QIn(K))(⟨A,≤⟩ ⊧ q)}
⊆ {⟨A,≤⟩ ∈ PAlgSys(F) ∶ (∀e ∈ In(K))(⟨A,≤⟩ ⊧ e)}.

In other words, K ⊆ GOSem(K) ⊆ QOSem(K) ⊆ VOSem(K). ∎

Given a class K of F-algebraic posystems
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• K is a semantic order variety if VOSem(K) = K;

• K is a semantic order quasivariety if QOSem(K) = K;

• K is a semantic order guasivariety if GOSem(K) = K.

We have the following result identifying inequational classes with seman-
tic order varieties, quasi inequational classes with semantic order quasivari-
eties and guasi inequational classes with semantic order guasivarieties.

Proposition 1817 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a class of F-algebraic posystems.

(a) K is an inequational class iff it is a semantic order variety;

(b) K is a quasi inequational class iff it is a semantic order quasivariety;

(c) K is a guasi inequational class iff it is a semantic order guasivariety.

Proof:

(a) Suppose, first, that K is an inequational class. Then, there exists
I ≤ In(F), such that K = PAlgSys(I). Let ⟨A,≤⟩ ∈ PAlgSys(F), such
that In(K) ≤ In(⟨A,≤⟩). Then we have ⟨A,≤⟩ ∈ PAlgSys(In(⟨A,≤⟩)) ⊆
PAlgSys(In(K)) = PAlgSys(In(PAlgSys(I))) = PAlgSys(I) = K. There-
fore, K is a semantic order variety.

Suppose, conversely, that K is a semantic order variety. Set I = In(K).
Then K ⊆ PAlgSys(In(K)) = PAlgSys(I). On the other hand, if ⟨A,≤⟩ ∈
PAlgSys(I), then

In(K) = In(PAlgSys(In(K))) = In(PAlgSys(I)) ≤ In(⟨A,≤⟩),
whence, by hypothesis, ⟨A,≤⟩ ∈ K. Therefore, K = PAlgSys(I) and K is
an inequational class.

(b) Suppose, first, that K is a quasi inequational class. Then, there exists
Q ≤ QIn(F), such that K = PAlgSys(Q). Let ⟨A,≤⟩ ∈ PAlgSys(F), such
that QIn(K) ≤ QIn(⟨A,≤⟩). Then we have

⟨A,≤⟩ ∈ PAlgSys(QIn(⟨A,≤⟩))
⊆ PAlgSys(QIn(K))
= PAlgSys(QIn(PAlgSys(Q)))
= PAlgSys(Q)
= K.

Therefore, K is a semantic order quasivariety.
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Suppose, conversely, that K is a semantic order quasivariety. Set Q =
QIn(K). Then K ⊆ PAlgSys(QIn(K)) = PAlgSys(Q). On the other
hand, if ⟨A,≤⟩ ∈ PAlgSys(Q), then

QIn(K) = QIn(PAlgSys(QIn(K))) = QIn(PAlgSys(Q)) ≤ QIn(⟨A,≤⟩),
whence, by hypothesis, ⟨A,≤⟩ ∈ K. Therefore, K = PAlgSys(Q) and K

is a quasi inequational class.

(c) Very similar to Part (b).
∎

We introduce, next, some operators on classes of F-algebraic posystems,
paralleling those introduced previously for classes of F-algebraic systems,
that will serve to provide different characterizations to the inequational, quasi
inequational and guasi inequational classes of F-algebraic posystems.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, ⟨A,≤⟩, with A =⟨A, ⟨F,α⟩⟩, ⟨Ai,≤i⟩, with Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, F-algebraic posystems
and ⟨H i, γi⟩ ∶ ⟨A,≤⟩ → ⟨Ai,≤i⟩, i ∈ I, surjective morphisms. We say the
collection

⟨H i, γi⟩ ∶ ⟨A,≤⟩ → ⟨Ai,≤i⟩, i ∈ I,

is a subdirect intersection if

⋂
i∈I

(γi)−1(≤i) = ≤.
Note that this implies that

⋂
i∈I

Ker(⟨H i, γi⟩) = ∆A.

Indeed, we have

⋂i∈I Ker(⟨H i, γi⟩) = ⋂i∈I((γi)−1(≤i) ∩ (γi)−1(≤i)−1)
= ⋂i∈I(γi)−1(≤i) ∩⋂i∈I(γi)−1(≤i)−1
= ⋂i∈I(γi)−1(≤i) ∩ (⋂i∈I(γi)−1(≤i))−1
= ≤ ∩ (≤)−1
= ∆A.

Given a class K of F-algebraic posystems, we write ⟨A,≤⟩ ∈ ⊲IΠ(K) in case
there exists a subdirect intersection {⟨H i, γi⟩ ∶ ⟨A,≤⟩ → ⟨Ai,≤i⟩, i ∈ I}, with

⟨Ai,≤i⟩ ∈ K, for all i ∈ I. If
⊲

IΠ(K) = K, we say that K is closed under
subdirect intersections.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨A, ⟨F,α⟩⟩ an
F-algebraic system and ≤ a posystem on A. A congruence system θ ∈
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ConSys(A) is said to be compatible with ≤ if, for all Σ ∈ ∣Sign∣ and all
φ,φ′, ψ,ψ′ ∈ SEN(Σ),

φ
≤Σ

ψ

φ′

θΣ

≤Σ
ψ′

θΣ

φ ≤Σ ψ, φ θΣ φ′ and ψ θΣ ψ′ imply φ′ ≤Σ ψ′.

A congruence system θ ∈ ConSys(A) is said to be a congruence system
on the F-algebraic posystem ⟨A,≤A⟩ if it is compatible with ≤A. We write
ConSys(⟨A,≤A⟩) for the collection of all congruence systems on ⟨A,≤A⟩.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, ⟨A,≤⟩, with A =⟨A, ⟨F,α⟩⟩, an F-algebraic posystem and {θi ∶ i ∈ I} ⊆ ConSys(⟨A,≤⟩) a
(upward) directed collection of congruence systems on ⟨A,≤⟩. It is not diffi-
cult to show that ⋃i∈I θ

i ∈ ConSys(⟨A,≤⟩).
Lemma 1818 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, ⟨A,≤⟩ an
F-algebraic posystem and {θi ∶ i ∈ I} ⊆ ConSys(⟨A,≤⟩) a directed collection of
congruence systems on ⟨A,≤⟩. Then ⋃i∈I θ

i is a congruence system on ⟨A,≤⟩.
Proof: We know, by Lemma ?? that ⋃i∈I θ

i
Σ is a congruence system on

A. Thus, it suffices to show that it is compatible with ≤. To this end,
suppose Σ ∈ ∣Sign∣, φ,φ′, ψ,ψ′ ∈ SEN(Σ), such that φ ≤Σ ψ, φ ⋃i∈I θ

i
Σ φ′

and ψ ⋃i∈I θ
i
Σ ψ′. Thus, there exist j ∈ I and j′ ∈ I, such that φ θjΣ φ′ and

ψ θ
j′

Σ ψ′. But {θi}i∈I is directed, whence, there exists k ∈ I, such that φ θkΣ φ
′

and ψ θkΣ ψ′. Therefore, since θk ∈ ConSys(⟨A,≤⟩), we get φ′ ≤Σ ψ′. We
conclude that ⋃i∈I θ

i ∈ ConSys(⟨A,≤⟩). ∎

Due to Lemma 1818, it makes sense to consider the quotient ⟨A,≤⟩/⋃i∈I θ
i.

This F-algebraic posystem is called the directed union of the collection⟨A,≤⟩/θi. Given a class K of F-algebraic posystems, we write ⟨A,≤⟩/⋃i∈I θ
i ∈

U(K) in case ⟨A,≤⟩/θi ∈ K, for all i ∈ I. If U(K) = K, we say that K is closed
under directed unions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, ⟨A,≤A⟩, with A =⟨A, ⟨F,α⟩⟩, ⟨B,≤B⟩, with B = ⟨B, ⟨G,β⟩⟩, F-algebraic posystems and

⟨H,γ⟩ ∶ ⟨A,≤A⟩→ ⟨B,≤B⟩
a surjective morphism. In this case we say ⟨B,≤B⟩ is an morphic image of⟨A,≤A⟩. Given a class K of F-algebraic posystems, we write ⟨B,≤B⟩ ∈ H(K)
in case there exists a surjective morphism

⟨H,γ⟩ ∶ ⟨A,≤A⟩→ ⟨B,≤B⟩,
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with ⟨A,≤A⟩ ∈ K. If H(K) = K, we say that K is closed under morphic
images.

It is not difficult to verify that all three operators are closure operators
on classes of F-algebraic posystems.

Proposition 1819 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Then

the operators
⊲

IΠ, U and H on classes of F-algebraic posystems are closure
operators.

Proof: We first look at
⊲

IΠ. Suppose K is a class of F-algebraic posystems.

• If ⟨A,≤⟩ ∈ K, then {⟨I, ι⟩ ∶ ⟨A,≤⟩ → ⟨A,≤⟩}, where ⟨I, ι⟩ ∶ A → A is
the identity morphism, is a subdirect intersection family. Thus, we get

that ⟨A,≤⟩ ∈ ⊲IΠ(K). Hence K ⊆
⊲

IΠ(K) and
⊲

IΠ is inflationary;

• It is obvious that
⊲

IΠ is monotonic;

• Suppose that ⟨A,≤⟩ ∈ ⊲IΠ( ⊲IΠ(K)). Then, there exists a subdirect inter-
section family

{⟨H i, γi⟩ ∶ ⟨A,≤⟩ → ⟨Ai,≤i⟩, i ∈ I},
with ⟨Ai,≤i⟩ ∈ ⊲IΠ(K), for all i ∈ I. Therefore, for each i ∈ I, there exists
a sibdirect intersection family

{⟨H ij, γij⟩ ∶ ⟨Ai,≤i⟩→ ⟨Aij ,≤ij⟩, j ∈ Ji},
with ⟨Aij ,≤ij⟩ ∈ K, for all i ∈ I and all j ∈ Ji. Consider

{⟨H ij, γij⟩ ○ ⟨H i, γi⟩ ∶ ⟨A,≤⟩ → ⟨Aij ,≤ij⟩, i ∈ I, j ∈ Ji}.
It is a subdirect intersection family, since

⋂i∈I,j∈Ji(γij ○ γi)−1(≤ij) = ⋂i∈I,j∈Ji(γi)−1((γij)−1(≤ij))
= ⋂i∈I(γi)−1(⋂j∈Ji(γij)−1(≤ij))
= ⋂i∈I(γi)−1(≤i)
= ≤.

Since ⟨Aij,≤ij⟩ ∈ K, for all i ∈ I, j ∈ Ji, we get that
⊲

IΠ( ⊲IΠ(K)) ⊆ ⊲

IΠ(K)
and

⊲

IΠ is idempotent.

Thus,
⊲

IΠ is a closure operator.
Now we turn to U. Suppose, again, that K is a class of F-algebraic

posystems.
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• If ⟨A,≤⟩ ∈ K, we look at the singleton family {∆A}, consisting of the
identity congruence system on ⟨A,≤⟩. Clearly, it is directed and its
union is ∆A. Therefore, ⟨A,≤⟩ ≅ ⟨A,≤⟩/∆A ∈ U(K);

• Monotonicity is obvious in this case as well;

• Suppose that ⟨A,≤⟩/θ ∈ U(U(K)). Then θ = ⋃i∈I θ
i for a directed

family {θi ∶ i ∈ I} ⊆ ConSys(⟨A,≤⟩), such that ⟨A,≤⟩/θi ∈ U(K), for
all i ∈ I. Thus, for all i ∈ I, θi = ⋃j∈Ji θ

ij for a directed family {θij ∶
j ∈ Ji} ⊆ ConSys(⟨A,≤⟩), such that ⟨A,≤⟩/θij ∈ K, for all j ∈ Ji. Now,

let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θijiΣ ∪ θ
i′ji′
Σ . By

hypothesis, ⟨φ,ψ⟩ ∈ θiΣ ∪ θi′Σ. Hence, since {θi ∶ i ∈ I} is directed, there
exists k ∈ I, such that ⟨φ,ψ⟩ ∈ θkΣ. Thus, again, by the hypothesis,
there exists, jk ∈ Jk, such that ⟨φ,ψ⟩ ∈ θkjk . We conclude that the
collection {θij ∶ j ∈ Ji, i ∈ I} is directed, such that ⟨A,≤⟩/θij ∈ K, for all
i ∈ I, j ∈ Ji, and, moreover, θ = ⋃i∈I θ

i = ⋃i∈I ⋃j∈Ji θ
ij = ⋃j∈Ji

i∈I
θij . Thus,

⟨A,≤⟩/θ ∈ U(K) and U is also idempotent.

Therefore, U is also a closure operator.
Finally, we deal with H, which is the easiest case. Let K be a class of

F-algebraic posystems. If ⟨A,≤⟩ ∈ K, then, using again the identity ⟨I, ι⟩ ∶⟨A,≤⟩ → ⟨A,≤⟩, we see that ⟨A,≤⟩ ∈ H(K), and, hence, H is inflationary. It
is again obvious that it is monotonic. Finally, if A ∈ H(H(K)), then, there
exists a surjective morphism ⟨G,β⟩ ∶ ⟨A′,≤′⟩ → ⟨A,≤⟩, with ⟨A′,≤′⟩ ∈ H(K),
whence, there also exists a surjective morphism ⟨H,γ⟩ ∶ ⟨A′′,≤′′⟩ → ⟨A′,≤′⟩,
with ⟨A′′,≤′′⟩ ∈ K. Now the surjective morphism

⟨G,β⟩ ○ ⟨H,γ⟩ ∶ ⟨A′′,≤′′⟩→ ⟨A,≤⟩
witnesses the fact that ⟨A,≤⟩ ∈ H(K). Therefore, H(H(K)) ⊆ H(K), and H

is idempotent. Thus, H is a closure operator. ∎

We show next that, if a class K of F-algebraic posystems is closed under
morphic images, then it is also closed under directed unions.

Proposition 1820 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

be a class of F-algebraic posystems. If K is closed under morphic images,
then it is closed under directed unions.

Proof: Suppose K is closed under
⊲

IΠ and H and let ⟨A. ≤⟩, with A =⟨A, ⟨F,α⟩⟩, be an F-algebraic posystem and {θi ∶ i ∈ I} ⊆ ConSys(⟨A,≤⟩),
a directed family of congruence systems, such that ⟨A,≤⟩/θi ∈ K. Consider a
morphism

⟨I, πi⟩ ∶ ⟨A,≤⟩/θi → ⟨A,≤⟩/⋃
i∈I

θi,
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given, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), by

πiΣ(φ/θiΣ) = φ/⋃
i∈I

θiΣ.

It is well defined, since, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), if ⟨φ,ψ⟩ ∈ θiΣ,
then, automatically, ⟨φ,ψ⟩ ∈ ⋃i∈I θ

i
Σ. Therefore, since ⟨A,≤⟩/θi ∈ K, we get,

by hypothesis, ⟨A,≤⟩/⋃i∈I θ
i ∈ H(K) = K. We conclude that U(K) ⊆ K and,

hence, K is closed under directed unions. ∎

We are now ready to provide alternative characterizations of inequational,
quasi inequational and guasi inequational classes of F-algebraic posystems.
Namely, we show that an abstract class of F-algebraic posystems is a guasi
inequational class if and only if it is closed under subdirect intersections,
that it is a quasi inequational class if and only if it is closed under subdirect
intersections and directed unions and that it is an inequational class if and
only if it is closed under subdirect intersections and morphic images.

Theorem 1821 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K an
abstract class of F-algebraic posystems. K is a guasi inequational class if and
only if it is closed under subdirect intersections.

Proof: Suppose, first, that K is a guasi inequational class and consider a
subdirect intersection

{⟨H i, γi⟩ ∶ ⟨A,≤⟩→ ⟨Ai,≤i⟩, i ∈ I},
with ⟨Ai,≤i⟩ ∈ K. Let G be the set of guasi inequations defining K and
Σ ∈ ∣Sign♭∣, ⟨φ⃗ ≼ ψ⃗, φ ≼ ψ⟩ ∈ GΣ, such that, for some Σ′ ∈ ∣Sign♭∣ and
f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(φj)) ≤F (Σ′) αΣ′(SEN♭(f)(ψj)), for all j ∈ J.

Then we get γi
F (Σ′)
(αΣ′(SEN♭(f)(φj))) ≤iHi(F (Σ′))

γi
F (Σ′)
(αΣ′(SEN♭(f)(ψj))),

for all i ∈ I, j ∈ J . This gives αiΣ′(SEN♭(f)(φj)) ≤iF i(Σ′) αiΣ′(SEN♭(f)(ψj)),
for all i ∈ I, j ∈ J . Since ⟨Ai,≤i⟩ ∈ K, for all i ∈ I, and ⟨φ⃗ ≼ ψ⃗, φ ≼ ψ⟩ ∈
GΣ, we get that αiΣ′(SEN♭(f)(φ)) ≤i

F i(Σ′)
αiΣ′(SEN♭(f)(ψ)), for all i ∈ I.

Equivalently, γi
F (Σ′)
(αΣ′(SEN♭(f)(φ))) ≤i

Hi(F (Σ′))
γi
F (Σ′)
(αΣ′(SEN♭(f)(ψ))),

for all i ∈ I, i.e.,

⟨αΣ′(SEN♭(f)(φ)), αΣ′(SEN♭(f)(ψ))⟩ ∈⋂
i∈I

(γiF (Σ′))−1(≤i).
Since {⟨H i, γi⟩ ∶ i ∈ I} is a subdirect intersection, we get

αΣ′(SEN♭(f)(φ)) ≤F (Σ′) αΣ′(SEN♭(f)(ψ)).
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We conclude that ⟨A,≤⟩ ∈ PAlgSys(G) = K. Hence, K is closed under subdi-
rect intersections.

Assume, conversely, that K is closed under subdirect intersections and
set G = GIn(K). Let ⟨A,≤⟩ ∈ PAlgSys(F), such that G ≤ GIn(⟨A,≤⟩). Let
Σ ∈ ∣Sign♭∣, such that φ ≼ ψ ∉ InΣ(⟨A,≤⟩), i.e., for some Σ′ ∈ ∣Sign♭∣ and
some f ∈ Sign♭(Σ,Σ′), αΣ′(SEN♭(f)(φ)) ≰F (Σ′) αΣ′(SEN♭(f)(ψ)). Thus, by
definition, the guasi inequation ⟨InΣ(⟨A,≤⟩), φ ≼ ψ⟩ ∉ GInΣ(⟨A,≤⟩). There-
fore, since G ≤ GIn(⟨A,≤⟩), ⟨InΣ(A), φ ≼ ψ⟩ ∉ GInΣ(K). Hence, for every
Σ ∈ ∣Sign♭∣ and all φ ≼ ψ ∉ InΣ(⟨A,≤⟩), there exists ⟨K⟨Σ,φ,ψ⟩,≤⟨Σ,φ,ψ⟩⟩ ∈ K,
such that

InΣ(⟨A,≤⟩) ⊆ InΣ(⟨K⟨Σ,φ,ψ⟩,≤⟨Σ,φ,ψ⟩⟩),
φ ≼ ψ ∉ InΣ(⟨K⟨Σ,φ,ψ⟩,≤⟨Σ,φ,ψ⟩⟩).

We conclude that

InΣ(⟨A,≤⟩) =⋂{InΣ(⟨K⟨Σ,φ,ψ⟩,≤⟨Σ,φ,ψ⟩⟩) ∶ φ ≼ ψ ∉ InΣ(⟨A,≤⟩)}.
Denote, for all Σ ∈ ∣Sign♭∣, KΣ = {⟨K⟨Σ,φ,ψ⟩,≤⟨Σ,φ,ψ⟩⟩ ∶ φ ≼ ψ ∉ InΣ(⟨A,≤⟩)}, for
brevity.

• Since K is closed under subdirect intersections, and

{⟨FK, αK⟩ ∶ ⟨F , ⋂
⟨K,≤K⟩∈KΣ

(αK)−1(≤K)⟩/Eq(KΣ)→ ⟨K,≤K⟩, ⟨K,≤K⟩ ∈ KΣ}
is a subdirect intersection, we get that

⟨F , ⋂
⟨K,≤K⟩∈KΣ

(αK)−1(≤K)⟩/Eq(KΣ) ∈ K.

• Since, for all Σ ∈ ∣Sign♭∣,
InΣ(⟨A,≤⟩) = InΣ(KΣ)

= InΣ(⟨F ,⋂⟨K,≤K⟩∈KΣ(αK)−1(≤K)⟩/Eq(KΣ))
and ⟨F ,⋂⟨K,≤K⟩∈KΣ(αK)−1(≤K)⟩/Eq(KΣ) ∈ K, ⟨A,≤⟩ ∈ C(K). Since K is
abstract, we conclude that ⟨A,≤⟩ ∈ K.

Hence, K is indeed a guasi inequational class of F-algebraic posystems. ∎

Theorem 1822 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K an
abstract class of F-algebraic posystems. K is a quasi inequational class if and
only if it is closed under subdirect intersections and directed unions.

Proof: Suppose, first, that K is a quasi inequational class, defined by a
collection Q of F-quasi inequations. Then it is a guasi inequational class
and, therefore, by Theorem 1821, closed under subdirect intersections. Let
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⟨A,≤⟩ be an F-algebraic posystem and {θi ∶ i ∈ I} ⊆ ConSys(⟨A,≤⟩) a directed
union of congruence systems on ⟨A,≤⟩, such that ⟨A,≤⟩/θi ∈ K, for all i ∈ I.
Let Σ ∈ ∣Sign♭∣, ⟨ψ⃗ ≼ ψ⃗, φ ≼ ψ⟩ ∈ QΣ, such that, for some Σ′ ∈ ∣Sign♭∣ and
f ∈ Sign♭(Σ,Σ′),

α⋃i∈I
θi

Σ′ (SEN♭(f)(φj)) ≤⋃i∈I θiF (Σ′)
α⋃i∈I

θi

Σ′ (SEN♭(f)(ψj)), j < n.

Thus, for every j < n, there exists kj ∈ I, such that

αθ
kj

Σ′ (SEN♭(f)(φj)) ≤θkjF (Σ′) α
θ
kj

Σ′ (SEN♭(f)(ψj)).
Since {θi ∶ i ∈ I} is directed, there exists k ∈ I, such that

αθ
k

Σ′(SEN♭(f)(φj)) ≤θkF (Σ′) αθkΣ′(SEN♭(f)(ψj)), j < n.

Since ⟨A,≤⟩/θk ∈ K and ⟨ψ⃗ ≼ ψ⃗, φ ≼ ψ⟩ ∈ QΣ, we get that

α⋃i∈I
θi

Σ′ (SEN♭(f)(φ)) ≤⋃i∈I θi
F (Σ′)

α⋃i∈I
θi

Σ′ (SEN♭(f)(ψ)).
Therefore, ⟨A,≤⟩/⋃i∈I θ

i ∈ PAlgSys(Q) = K and K is closed under directed
unions.

Suppose, conversely, that K is an abstract class of F-algebraic posystems
closed under subdirect intersections and directed unions. Set Q = QIn(K) and
let ⟨A,≤⟩ ∈ PAlgSys(F), such that Q ≤ QIn(A). Let Σ ∈ ∣Sign♭∣, such that
φ ≼ ψ ∉ InΣ(⟨A,≤⟩), i.e., for some Σ′ ∈ ∣Sign♭∣ and some f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(φ)) ≰F (Σ′) αΣ′(SEN♭(f)(ψ)). Thus, by definition, for every
finite I ≤ InΣ(A) the quasi inequation ⟨I, φ ≼ ψ⟩ ∉ QInΣ(⟨A,≤⟩). Therefore,
since Q ≤ QIn(⟨A,≤⟩), ⟨I, φ ≼ ψ⟩ ∉ QInΣ(K). Hence, for every Σ ∈ ∣Sign♭∣, all
I ⊆f InΣ(⟨A,≤⟩) and all φ ≼ ψ ∉ InΣ(⟨A,≤⟩), there exists

⟨K⟨Σ,I,φ,ψ⟩,≤⟨Σ,I,φ,ψ⟩⟩ ∈ K,
such that

• I ⊆ InΣ(⟨K⟨Σ,I,φ,ψ⟩,≤⟨Σ,I,φ,ψ⟩⟩);
• φ ≼ ψ ∉ InΣ(⟨K⟨Σ,I,φ,ψ⟩,≤⟨Σ,I,φ,ψ⟩⟩).

We conclude that, for all Σ ∈ ∣Sign♭∣,
InΣ(⟨A,≤⟩) = ⋂{⋃{InΣ(K⟨Σ,I,φ,ψ⟩,≤⟨Σ,I,φ,ψ⟩⟩) ∶

I ⊆f InΣ(⟨A,≤⟩)} ∶ φ ≼ ψ ∉ InΣ(⟨A,≤⟩)}.
Denote, for all Σ ∈ ∣Sign♭∣ and all φ ≼ ψ ∉ InΣ(⟨A,≤⟩),
K⟨Σ,φ,ψ⟩ = {⟨F , (α⟨Σ,I,φ,ψ⟩)−1(≤⟨Σ,I,φ,ψ⟩)⟩/Eq(K⟨Σ,I,φ,ψ⟩) ∶ I ⊆f InΣ(⟨A,≤⟩)},

and, for all Σ ∈ ∣Sign♭∣,
KΣ = {⟨F ,⋃K∈K⟨Σ,φ,ψ⟩(αK)−1(≤K)⟩/⋃K∈K⟨Σ,φ,ψ⟩ Eq(K) ∶

φ ≼ ψ ∉ InΣ(⟨A,≤⟩)},
for brevity.
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• Since K is closed under directed unions, for all Σ ∈ ∣Sign♭∣ and all φ ≼
ψ ∉ InΣ(A), we have ⟨F ,⋃K∈K⟨Σ,φ,ψ⟩(αK)−1(≤K)⟩/⋃K∈K⟨Σ,φ,ψ⟩ Eq(K) ∈ K.

• Since K is closed under subdirect intersections,

⟨F , ⋂
K∈KΣ

(αK)−1(≤K)⟩/Eq(KΣ) ∈ K,
for all Σ ∈ ∣Sign♭∣.

• Finally, noting that, for all Σ ∈ ∣Sign♭∣, ⟨F ,⋂K∈KΣ(αK)−1(≤K)⟩/Eq(KΣ)
is a Σ-K-certificate for A, and, taking into account that K is abstract,
we conclude that A ∈ K.

Therefore K is indeed a quasiequational class of F-algebraic systems. ∎

25.2 Syntactic Order Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, I = ⟨F,C⟩ a π-institution
based on F and K a class of F-algebraic posystems. If I is equivalent to
IK,≤ via a conjugate pair (α,β) ∶ I ⇄ IK,≤, we say that the class K β-order
algebraizes the π-institution I . Recall, in more detail, that this means
that there exist a collection α ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with a single
distinguished argument and a collection β ∶ (SEN♭)ω → SEN♭ in N ♭, with two
distinguished arguments, such that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
Φ ⊆ SEN♭(Σ) and I ⊆ InΣ(F),

1. φ ∈ CΣ(Φ) if and only if αΣ[φ] ≤ CK,≤
Σ (αΣ[Φ]);

2. φ ≼ ψ ∈ CK,≤
Σ (I) if and only if βΣ[φ,ψ] ≤ C(βΣ[I]);

3. CK,≤(φ ≼ ψ) = CK,≤(α[βΣ[φ,ψ]]);
4. C(φ) = C(β[αΣ[φ]]).
Moreover, we say that I is β-order algebraizable if there exists a class

K of F-algebraic posystems, such that K β-order algebraizes I . In this case,
we call the least order guasivariety including K the β-ordered class of I
and denote it by PAlgSys(I).
Lemma 1823 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, I = ⟨F,C⟩ a
π-institution based on F and K, K′ two classes of F-algebraic posystems. If
both K and K′ β-order algebraize I, then IK,≤ = IK′,≤. Therefore, GOSem(K) =
GOSem(K′).
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Proof: Suppose both K and K′ β-order algebraize I . Then, we have, for all
Σ ∈ ∣Sign♭∣ and all I ∪ {φ ≼ ψ} ∈ InΣ(F),

φ ≼ ψ ∈ CK,≤
Σ (I) iff βΣ[φ,ψ] ≤ C(βΣ[I])

iff φ ≼ ψ ∈ CK′,≤
Σ (I).

We conclude that IK,≤ = IK′,≤, whence the semantic order guasivarieties gen-
erated by K and K′ coincide. ∎

We call the unique semantic order guasivariety that β-order algebraizes
I the β-order class of I and denote it by PAlgSysβ(I).

Next we show that if two families β,β′ ∶ (SEN♭)ω → SEN♭ in N ♭ are deduc-
tively equivalent, in the sense that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
βΣ[φ,ψ] and β′Σ[φ,ψ] are interderivable, then I is β-order algebraizable if
and only if it is β′-order algebraizable and, in fact, in that case, the corre-
sponding order classes of I coincide.

Lemma 1824 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β,β′ ∶(SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, and I = ⟨F,C⟩
be a π-institution based on F. If, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
C(βΣ[φ,ψ]) = C(β′Σ[φ,ψ]), then I is β-order algebraizable if and only if I is
β′-order algebraizable. In that case, the β- and β′-order classes of I coincide,
i.e., PAlgSysβ(I) = PAlgSysβ

′(I).
Proof: Suppose that I is β-order algebraizable. Then, there exists a conju-
gate pair (α,β) ∶ I ⇄ IK,≤. We show that I is also β′-order algebraizable via
the conjugate pair (α,β′) ∶ I ⇄ IK,≤.

• We have, for all Σ ∈ ∣Sign♭∣ and all I ∪ {φ ≼ ψ} ⊆ InΣ(F),
φ ≼ ψ ∈ CK,≤

Σ (I) iff βΣ[φ,ψ] ≤ C(βΣ[I])
iff β′Σ[φ,ψ] ≤ C(β′Σ[I]).

• C(φ) = C(β[αΣ[φ]]) = C(β′[αΣ[φ]]).
Thus, by Proposition 898, I and IK,≤ are equivalent via (α,β′). By symmetry,
we infer the first statement of the lemma. The second conclusion now follows
directly from Lemma 1823, since the same class K both β- and β′-order
algebraizes I . ∎

Moreover, we can show that the conjugate transformation α in a β-order
algebraization is essentially unique, in the sense that any two of them are
deductively equivalent modulo inequational derivability.

Lemma 1825 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, I = ⟨F,C⟩ a π-
institution based on F and K a class of F-algebraic posystems. If K β-order
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algebraizes I via a conjugate pair (α,β) ∶ I ⇄ IK,≤ and via a conjugate pair(α′, β) ∶ I ⇄ IK,≤, then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
CK,≤(αΣ[φ]) = CK,≤(α′Σ[φ]).

Proof: We have, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
αΣ[φ] ≤ CK,≤(α′Σ[φ]) iff β[αΣ[φ]] ≤ C(β[α′Σ[φ]])

iff φ ∈ CΣ(φ).
Therefore, αΣ[φ] ≤ CK,≤(α′Σ[φ]) and, hence, by symmetry, CK,≤(αΣ[φ]) =
CK,≤(α′Σ[φ]). ∎

We give next some conditions that are equivalent to
↔

β defining Leibniz
congruence systems of theory families of I . Recall that this is tantamount
to I being syntactically protoalgebraic.

Theorem 1826 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments and I = ⟨F,C⟩ a
π-institution based on F. The following conditions are equivalent:

(i) For all ⟨A, T ⟩ ∈MatFam∗(I), βA(T ) is reflexive and antisymmetric;

(ii) For all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ,ψ, χ⃗ ∈ SEN♭(Σ),
– βΣ[φ,φ] ≤ Thm(I);
– σ♭Σ(ψ, χ⃗) ∈ CΣ(βΣ[φ,ψ], βΣ[ψ,φ], σ♭Σ(φ, χ⃗));

(iii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and every T ∈ FiFamI(A),
ΩA(T ) = ↔βA(T ).

Proof:

(i)⇒(ii) Suppose that, for all ⟨A, T ⟩ ∈MatFam∗(I), βA(T ) is reflexive and an-
tisymmetric and let σ♭ ∈ N ♭, Σ ∈ ∣Sign♭∣, and φ,ψ, χ⃗ ∈ SEN♭(Σ). Con-
sider ⟨F/Ω(Thm(I)),Thm(I)/Ω(Thm(I))⟩ ∈MatFam∗(I). Then, by

hypothesis, ⟨φ,ψ⟩ ∈ βF/Ω(Thm(I))
Σ (Thm(I)), i.e.,

β
F/Ω(Thm(I))
Σ [φ/ΩΣ(Thm(I)), φ/ΩΣ(Thm(I))] ≤ Thm(I)/Ω(Thm(I)).

This is equivalent to βΣ[φ,φ] ≤ Thm(I).
Assume, next, that for some T ∈ ThFam(I), βΣ[φ,ψ], βΣ[ψ,φ] ≤ T and
σ♭Σ(φ, χ⃗) ∈ TΣ. Then, we get

β
F/Ω(T )
Σ [φ/ΩΣ(T ), ψ/ΩΣ(T )] ≤ T /Ω(T ),
β
F/Ω(T )
Σ [ψ/ΩΣ(T ), φ/ΩΣ(T )] ≤ T /Ω(T ),
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i.e.,

⟨φ/ΩΣ(T ), ψ/ΩΣ(T )⟩ ∈ βF/Ω(T )Σ (T /Ω(T )),
⟨ψ/ΩΣ(T ), φ/ΩΣ(T )⟩ ∈ βF/Ω(T )Σ (T /Ω(T )).

But on ⟨F/Ω(T ), T /Ω(T )⟩ ∈MatFam∗(I), βF/Ω(T )(T /Ω(T )) is, by hy-
pothesis, antisymmetric, whence we get ⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore,
since σ♭Σ(φ, χ⃗) ∈ TΣ, we have, by compatibility, that σ♭Σ(ψ, χ⃗) ∈ TΣ.

(ii)⇒(iii) Suppose that Condition (ii) holds and let A be an F-algebraic system
and T ∈ FiFamI(A). Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ).

– If ⟨φ,ψ⟩ ∈ ΩAΣ(T ), then, for all σ♭ ∈ β and all Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′),

⟨σAΣ′(SEN(f)(φ),SEN(f)(ψ), χ⃗),
σAΣ′(SEN(f)(φ),SEN(f)(φ), χ⃗)⟩ ∈ ΩAΣ′(T ),⟨σAΣ′(SEN(f)(ψ),SEN(f)(φ), χ⃗),
σAΣ′(SEN(f)(φ),SEN(f)(φ), χ⃗)⟩ ∈ ΩAΣ′(T ).

Thus, by compatibility, βAΣ [φ,ψ] ≤ T and βAΣ [ψ,φ] ≤ T , i.e.,
↔

β
A

Σ[φ,ψ] ≤ T . Thus, ⟨φ,ψ⟩ ∈ ↔βΣ(T ).
– Suppose, conversely, that ⟨φ,ψ⟩ ∈ ↔βAΣ(T ), i.e., βAΣ [φ,ψ] ≤ T and
βAΣ [ψ,φ] ≤ T . Then, by hypothesis, we have, for all σ♭ in N ♭, all
Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),

σAΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ iff σAΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ .
Therefore, ⟨φ,ψ⟩ ∈ ΩA(T ).

we conclude that
↔

β
A(T ) = ΩA(T ).

(iii)⇒(i) Finally, suppose that, for every F-algebraic system A and all T ∈

FiFamI(A), ↔βA(T ) = ΩA(T ) and let ⟨A, T ⟩ ∈ MatFam∗(I). Then we

get that
↔

β
A(T ) = ΩA(T ) = ∆A. Thus, clearly, βA(T ) is reflexive and

antisymmetric. ∎

We obtain as a corollary characterizing those collection of natural trans-
formations with two distinguished arguments that define posystems on the
class AlgSys∗(I), i.e., on the algebraic system reducts of the reduced matrix
families of a π-institution I .

Corollary 1827 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, and I = ⟨F,C⟩ a
π-institution based on F. For all ⟨A, T ⟩ ∈MatFam∗(I), βA(T ) is a posystem
on A if and only if the following conditions hold, for all σ♭ in N ♭, Σ ∈ ∣Sign♭∣,
φ,ψ,χ, χ⃗ ∈ SEN♭(Σ):
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1. βΣ[φ,φ] ≤ Thm(I);
2. βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]);
3. σ♭Σ(ψ, χ⃗) ∈ CΣ(↔βΣ[φ,ψ], σ♭(φ, χ⃗)).

Proof: Suppose that, for all ⟨A, T ⟩ ∈ MatFam∗(I), βA(T ) is a posystem
on A. Then, by Theorem 1826, Conditions 1 and 3 hold. By considering all
reduced matrix families ⟨/Ω(T ), T /Ω(T )⟩, with t ∈ ThFam(I), we get, by the

transitivity of βF/Ω(T )(T /Ω(T )), βF/Ω(T )Σ [φ/ΩΣ(T ), ψ/ΩΣ(T )] ≤ T /Ω(T ) and

β
F/Ω(T )
Σ [ψ/ΩΣ(T ), χ/ΩΣ(T )] ≤ T /Ω(T ) imply β

F/Ω(T )
Σ [φ/ΩΣ(T ), χ/ΩΣ(T )] ≤

T /Ω(T ), i.e., βΣ[φ,ψ] ≤ T and βΣ[ψ,χ] ≤ T imply βΣ[φ,χ] ≤ T . This proves
that βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]), i.e., that Condition 2 also holds.

Conversely, suppose Conditions 1-3 hold and let ⟨A, T ⟩ ∈ MatFam∗(I).
Then, by Theorem 1826, the relation system βA(T ) is reflexive and anti-
symmetric. But, by Condition 2 of the hypothesis, it is also transitive and,
therefore, it is a posystem on A. ∎

Given a π-institution I − ⟨F,C⟩, we term any collection β ∶ (SEN♭)ω →
SEN♭, with two distinguished arguments, that satisfies 1-3 of Corollary 1827
a semi-equivalence system for I .

Now we are in a position to provide a characterization of syntactic order
algebraizability.

Theorem 1828 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) I is syntactically order algebraizable;

(ii) There exists β ∶ (SEN♭)ω → SEN♭ in N ♭ having two distinguishes argu-
ments and α ∶ (SEN♭)ω → (SEN♭)2 with a single distinguished argument,
such that, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ, χ⃗ ∈ SEN♭(Σ),

– βΣ[φ,φ] ≤ Thm(I);
– βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]);
– βΣ[σ♭Σ(ψ, χ⃗), τ ♭Σ(ψ, χ⃗)] ≤ C(↔βΣ[φ,ψ], βΣ[σ♭Σ(φ, χ⃗), τ ♭Σ(φ, χ⃗)]);
– C(φ) = C(β[αΣ[φ]]);

(iii) I has a semi-equivalence system β and there exists α ∶ (SEN♭)ω →(SEN♭)2 in N ♭ with a single distinguished argument, such that, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), C(φ) = C(β[αΣ[φ]]).

If any of Conditions (i)-(iii) holds, then I is β-order algebraizable, with β in
N ♭ any collection satisfying Condition (ii) or (iii).

Proof:
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(i)⇒(ii) Suppose I is syntactically order algebraizable. Then, by definition, it is
equivalent to the inequational π-institution IK,≤ = ⟨F,CK,≤⟩ associated
with some class K of F-algebraic posystems, via a conjugate pair (α,β) ∶
I ⇄ IK,≤. Let σ♭ in N ♭, Σ ∈ ∣Sign♭∣ and φ,ψ,χ, χ⃗ ∈ SEN♭(Σ).

– We have, by Lemma 1811, φ ≼ φ ∈ CK,≤
Σ (∅). Thus, we get βΣ[φ,φ] ≤

C(∅).
– Similarly, by Lemma 1811, φ ≼ χ ∈ CK,≤

Σ (φ ≼ ψ,ψ ≼ χ). Therefore,
βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]).

– Since K is a class of F-algebraic posystems, we have

σ♭Σ(ψ, χ⃗) ≼ τ ♭Σ(ψ, χ⃗) ∈ CK,≤
Σ (φ ≼ ψ,ψ ≼ φ,σ♭Σ(φ, χ⃗) ≼ τ ♭Σ(φ, χ⃗)).

From this, we get

βΣ[σ♭Σ(ψ, χ⃗), τ ♭Σ(ψ, χ⃗)] ≤ C(↔βΣ[φ,ψ], βΣ[σ♭Σ(φ, χ⃗), τ ♭Σ(φ, χ⃗)]).
– C(φ) = C(β[αΣ[φ]]) holds by the definition of equivalence.

(ii)⇒(iii) Assume that α ∶ (SEN♭)ω → (SEN♭)2 with one distinguished argument
and β ∶ (SEN♭)ω → SEN♭ with two distinguished arguments satisfy the
Conditions in (ii). According to the definition of a semi-equivalence
system, it suffices to show that, for all σ♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all
φ,ψ, χ⃗ ∈ SEN♭(Σ),

σ♭Σ(ψ, χ⃗) ∈ CΣ(↔βΣ[φ,ψ], σ♭Σ(φ, χ⃗)).
By the last condition in the hypothesis, we have

β[αΣ[σ♭Σ(φ, χ⃗)]] ≤ C(σ♭Σ(φ, χ⃗)).
By the third condition in the hypothesis, we get

β[αΣ[σ♭Σ(ψ, χ⃗)]] ≤ C(↔βΣ[φ,ψ], β[αΣ[σ♭Σ(φ, χ⃗)]]).
Again, using the last condition in the hypothesis, we get

σ♭Σ(ψ, χ⃗) ∈ CΣ(β[αΣ[σ♭Σ(ψ, χ⃗)]]).
Combining these, we get σ♭Σ(ψ, χ⃗) ∈ CΣ(↔βΣ[φ,ψ], σ♭Σ(φ, χ⃗)).

(iii)⇒(i) Suppose β ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments,
is a semi-equivalence system for I and α ∶ (SEN♭)ω → (SEN♭)2 in
N ♭ satisfies the condition in (iii). We have to construct a class of
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F-algebraic posystems that will serve as the basis for the syntactic or-
der algebraization of I . Consider ⟨A, T ⟩ ∈MatFam∗(I). Define on A,
≤A,T= {≤A,TΣ }Σ∈∣Sign∣ by setting, for all Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),

φ ≤A,TΣ ψ iff βAΣ [φ,ψ] ≤ T.
By Corollary 1827, ≤A,T is a posystem on A. Set

K = {⟨A,≤A,T ⟩ ∶ ⟨A, T ⟩ ∈MatFam∗(I)}.
It now suffices to show that I is equivalent to IK,≤ via the conjugate
pair (α,β) ∶ I ⇄ IK,≤. One of the two requirements demanded by
Proposition 898 is fulfilled by the hypothesis. It suffices, therefore, to
show that, for all Σ ∈ ∣Sign♭∣ and all I ∪ {φ ≼ ψ} ⊆ InΣ(F),

φ ≼ ψ ∈ CK,≤
Σ (I) iff βΣ[φ,ψ] ≤ C(βΣ[I]).

We have φ ≼ ψ ∈ CK,≤
Σ (I) if and only if, for all ⟨A,≤A,T ⟩ ∈ K, Σ′ ∈ ∣Sign♭∣

f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(I)) ⊆ ≤A,T

F (Σ′)

implies αΣ′(SEN♭(f)(φ)) ≤A,T
F (Σ′)

αΣ′(SEN♭(f)(ψ))
if and only if, for all ⟨A, T ⟩ ∈ MatFam∗(I), all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′),

β[αΣ′(SEN♭(f)(I))] ≤ T
implies β[αΣ′(SEN♭(f)(φ)), αΣ′(SEN♭(f)(ψ))] ≤ T

if and only if, for all ⟨A, T ⟩ ∈ MatFam∗(I), all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′),

α(βΣ′[SEN♭(f)(I)]) ≤ T
implies α(βΣ′[SEN♭(f)(φ),SEN♭(f)(ψ)]) ≤ T

iff, by the completeness of I with respect to MatFam∗(I), βΣ[φ,ψ] ≤
C(βΣ[I]). ∎

This characterization allows us to obtain several properties pertaining to
syntactic order algebraizability.

Theorem 1829 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭, having two distinguished arguments, and I = ⟨F,C⟩
a β-order algebraizable π-institution based on F.

(a) For every F-algebraic system A and all T ∈ FiFamI(A),
ΩA(T ) = ↔βA(T );
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(b) The β-order class of I is the semantic order guasivariety generated
by K = {⟨A,≤A,T ⟩ ∶ ⟨A, T ⟩ ∈ MatFam∗(I)}, where, for all ⟨A, T ⟩ ∈
MatFam∗(I), Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ),

φ ≤A,TΣ ψ iff βAΣ [φ,ψ] ≤ T ;

(c) For every F-algebraic system A, the mapping T ↦ βA(T ) in injective
on FiFamI(A).

Proof:

(a) The conclusion follows from Theorems 1828 and 1826.

(b) This also follows from Theorem 1828.

(c) Suppose α ∶ (SEN♭)ω → (SEN♭)2 in N ♭, having one distinguished ar-
gument, be as in Theorem 1828 and let A be an F-algebraic system,
T,T ′ ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ ∈ SEN(Σ). Then we have

φ ∈ TΣ iff βA[αAΣ[φ]] ≤ T
iff αAΣ[φ] ≤ βA(T ),

and, similarly, φ ∈ T ′Σ if and only if αAΣ[φ] ≤ βA(T ′). We conclude that,
if βA(T ) = βA(T ′), then T = T ′ and, hence, T ↦ βA(T ) is injective.

∎

We can now establish some connections between syntactic order alge-
braizability and syntactic protoalgebraicity.

Proposition 1830 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
I = ⟨F,C⟩ a π-institution based on F.

(a) I has a semi-equivalence system if and only if it is syntactically pro-
toalgebraic;

(b) If I is syntactically order algebraizable, then it is syntactically protoal-
gebraic;

(c) If I♭ ∶ (SEN♭)ω → SEN♭ in N ♭, with two distinguished arguments, wit-
nesses the syntactic protoalgebraicity of I and I is β-order algebraiz-
able, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

C(↔I ♭Σ[φ,ψ]) = C(↔βΣ[φ,ψ]).
Proof:
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(a) I has a semi-equivalence system if and only if, by Corollary 1827, for
all ⟨A, T ⟩ ∈ MatFam∗(I), βA(T ) is a posystem on A, implies that,
for all ⟨A, T ⟩ ∈ MatFam∗(I), βA(T ) is reflexive and antisymmetric,
if and only if, by Theorem 1826, for every F-algebraic system A and

T ∈ FiFamI(A), ΩA(T ) = Ð→β A(T ), if and only if I is syntactically
protoalgebraic.

On the other hand, if I is syntactically protoalgebraic, with witness-
ing transformations I♭ ∶ (SEN♭)ω → SEN♭, having two distinguished

arguments, then, for all ⟨A, T ⟩ ∈ MatFam∗(I), ↔IA(T ) = ΩA(T ) = ∆A,

whence for all ⟨A, T ⟩ ∈ MatFam∗(I), ↔IA(T ) is a posystem on A and,

hence, by Corollary 1827,
↔

I
♭

is a semi-equivalence system for I .

(b) By Part (a) of Theorem 1829.

(c) This follows from the fact that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ), ↔I ♭Σ[φ,ψ] ≤ T if and only if ⟨φ,ψ⟩ ∈ Ω(T ) if and

only if
↔

βΣ[φ,ψ] ≤ T .
∎

Theorem 1830 reveals two important properties. First, that syntactic
order algebraizability implies syntactic protoalgebraicity and, second, that
the latter is equivalent to the existence of a semi-equivalence system for
I . Recall that syntactic protoalgebraicity is one component in syntactic
WF algebraizability. We turn now to investigating how far syntactic WF
algebraizability is from syntactic order algebraizability.

Theorem 1831 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭, having two distinguished arguments, I = ⟨F,C⟩ a
β-order algebraizable π-institution, based on F, and K the β-order class of I.
Then, the following conditions are equivalent:

(i) I is syntactically WF algebraizable;

(ii) There exists γ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with two distinguished
arguments, such that, for all ⟨A,≤A⟩ ∈ K, Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ),

φ ≼AΣ ψ iff γAΣ [φ,ψ] ≤∆A;

(iii) There exists γ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with two distinguished
arguments, such that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

C(βΣ[φ,ψ]) = C(↔β[γΣ[φ,ψ]]);
(iv) I is SI-fortified and for every F-algebraic system A, ΩA is injective on

FiFamI(A);
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(v) I is SI-fortified and Ω is injective on ThFam(I).
Proof:

(iv)⇔(v) We know that injectivity of the Leibniz operator transfers from Theory
families to all filter families over arbitrary algebraic systems.

(i)⇔(iv) If I is syntactically WF algebraizable, then it is RISI-fortified, protoal-
gebraic and family injective. Suppose, conversely, that I is SI-fortified
and family injective. This implies that I is family truth equational.
Together with the syntactic protoalgebraicity following from the hy-
pothesis and Proposition 1830, we get that I is syntactically WF alge-
braizable.

(ii)⇔(iii) Let γ ∶ (SEN♭)ω → (SEN♭)2 in N ♭, with two distinguished arguments.
Suppose, first, that, for all ⟨A,≤A⟩ ∈ K, Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ),
φ ≤AΣ ψ iff γAΣ [φ,ψ] ≤ ∆A. Then, we have, for all T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ),

βΣ[φ,ψ] ≤ T iff
↔

β[γΣ[φ,ψ]] ≤ T,
which yields the conclusion. Conversely, if, for all Σ ∈ ∣Sign♭∣ and all

φ,ψ ∈ SEN♭(Σ), C(βΣ[φ,ψ]) = C(↔β[γΣ[φ,ψ]]), then, we get

CK,≤(α[βΣ[φ,ψ]]) = CK,≤(α[↔β[γΣ[φ,ψ]]]).
Thus, CK,≤(φ ≼ ψ) = CK,≤(γΣ[φ,ψ] ∪ γΣ[φ,ψ]−1). This yields the con-
clusion if we take into account that K consists of F-algebraic posystems.

(i)⇒(ii) Suppose that I is syntactically WF algebraizable via the conjugate
pair (τ, I) ∶ I ⇄ QAlgSys∗(I). Then, by Proposition 1830, we get that,

for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), C(↔I ♭Σ[φ,ψ]) = C(↔βΣ[φ,ψ]).
Thus, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), C(φ) = C(↔I ♭[τ ♭Σ[φ]]) =
C(↔β[τ ♭Σ[φ]]). Therefore, in particular, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

C(βΣ[φ,ψ]) = C(↔β[τ ♭[βΣ[φ,ψ]]]).
Now consider any ⟨A,≤A,T ⟩, where T ∈ FiFamI(A) is such that ΩA(T ) =
∆A. Then, we get, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≤A,TΣ ψ iff βAΣ [φ,ψ] ≤ T
iff

↔

β
A[τA[βAΣ [φ,ψ]]] ≤ T

iff τA[βAΣ [φ,ψ]] ≤∆A.

Thus, taking into account the fact that K is the semantic order guasi-
variety generated by the class {⟨A,≤A,T ⟩ ∶ ⟨A, T ⟩ ∈ MatFam∗(I)}, we
conclude that γ ∶= τ ○β is witnessing the property asserted in Part (ii).
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(iii)⇒(v) Finally, assume (α,β) ∶ I ⇄ IK,≤ witnesses the β-order algebraizability
of I and that γ ∶ (SEN♭)ω → (SEN♭)2, with two distinguished arguments
satisfies the property in Condition (iii). Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣
and φ ∈ SEN♭(Σ). Then, we have

φ ∈ TΣ iff β[αΣ[φ]] ≤ T
iff

↔

β[γ[αΣ[φ]]] ≤ T
iff γ[αΣ[φ]] ≤ ΩA(T ).

This shows that I is truth equational, which implies that it is SI-
fortified and family injective. ∎

25.3 Polarities

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A polarity for F is a
pair M = (M+,M−), where M+ and M− are subsets of N ♭.

The intuition behind the definition is that

• if σ♭ ∈M+, then it is monotone in the first argument and

• if σ♭ ∈M−, then it is antimonotone in the first argument.

Why only referring to the first argument? The reason is that it suffices
to refer to the first argument to cover all arguments. Suppose, e.g., that
σ♭ ∶ (SEN♭)2 → SEN♭ is in N ♭. Then σ♭ ○ ⟨p2,1, p2,0⟩ is also in N ♭. If we denote
σ♭ informally by σ♭(x, y), then we may denote σ♭ ○ ⟨p2,1, p2,0⟩ by σ♭(y, x).
Since both transformations are in N ♭, if we wanted to declare that σ♭ is,
say, antimonotone in the second argument, then we would assign σ♭(y, x) in
M−, getting away with referring only to the first argument of some natural
transformation in N ♭. The same trick may be used for any argument position
and, hence, the expression “σ♭ has positive (or negative polarity) in
the k-th argument” should come as no surprise, even though the formal
assignment is done only by classifying leading arguments.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶ (SEN♭)ω →
SEN♭ in N ♭, with two distinguished arguments, and I = ⟨F,C⟩ a π-institution
based on F. Define the polarity B = (B+,B−) induced by β (the letter B
here is chosen to correspond to the transformation β) by setting, for all σ♭

in N ♭:

(+) σ♭ ∈ B+ if and only if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ, χ⃗ ∈ SEN♭(Σ),
σ♭Σ(ψ, χ⃗) ∈ CΣ(βΣ[φ,ψ], σ♭Σ(φ, χ⃗));

(−) σ♭ ∈ B− if and only if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ, χ⃗ ∈ SEN♭(Σ),
σ♭Σ(φ, χ⃗) ∈ CΣ(βΣ[φ,ψ], σ♭Σ(ψ, χ⃗)).
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-
larity for F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system, ≤ a relation system on A
and T ∈ SenFam(A). We say that ≤ is M-compatible with T if, for all σ♭

in N ♭, Σ ∈ ∣Sign∣, φ,ψ, χ⃗ ∈ SEN(Σ),
• if σ♭ ∈M+, φ ≤Σ ψ, then σAΣ (φ, χ⃗) ∈ TΣ imply σAΣ(ψ, χ⃗) ∈ TΣ;

• if σ♭ ∈M−, φ ≤Σ ψ, then σAΣ (ψ, χ⃗) ∈ TΣ imply σAΣ(φ, χ⃗) ∈ TΣ.

Proposition 1832 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all T ∈ SenFam(A), there exists a largest qosystem on A that is M-compatible
with T .

Proof: We consider the class QoSysA(T ) of all qosystems on A that are
M-compatible with T . We take the transitive closure of the union of all
qosystems in QoSysA(T ),

tc(⋃QoSysA(T )) = {tcΣ(⋃QoSysA(T )}Σ∈∣Sign∣.
It suffices to show that this is also a qosystem on A M-compatible with T ,
i.e., it is itself a member of QoSysA(T ). It will then follow that it is its largest
member. It is clear by the definition that tr(⋃QoSysA(T )) is a qosystem on
A. So it suffices to show that it is M-compatible with T . Suppose σ♭ in M+,
Σ ∈ ∣Sign∣, φ,ψ, χ⃗ ∈ SEN(Σ), such that φ trΣ(⋃QoSysA(T )) ψ and σ♭Σ(φ, χ⃗) ∈
TΣ. Then, there exist q0, . . . , qk ∈ QoSysA(T ) and ξ1, . . . , ξk ∈ SEN(Σ), such
that

φ q0Σ ξ1 q
1
Σ ξ2 q

2
Σ ⋯ qk−1Σ ξk q

k
Σ ψ.

Since φ q0Σ ξ1 and σ♭Σ(φ, χ⃗) ∈ TΣ, we get σ♭Σ(ξ1, χ⃗) ∈ TΣ. Similarly, since
ξ1 q1Σ ξ2 and σ♭Σ(ξ1, χ⃗) ∈ TΣ, we get σ♭Σ(ξ2, χ⃗) ∈ TΣ. We move one step
to the right at a time in a similar fashion until we obtain σ♭Σ(ψ, χ⃗) ∈ TΣ.
A similar argument is used to handle the case of negative polarity for σ♭.
This proves that tr(⋃QoSysA(T )) ∈ QoSysA(T ) and, therefore, that it is its
largest member. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-
larity for F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and T ∈ SenFam(A). The
M-Leibniz order of T on A is the largest qosystem ≼M,A(T ) on A that is
M-compatible with T .

The next theorem provides a characterization of the M-Leibniz order of
a sentence family.

Theorem 1833 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) be a polarity for F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and
T ∈ SenFam(A). For all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), φ ≼M,A

Σ (T ) ψ if
and only if, for all σ♭ in N ♭, Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′),
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• σ♭ ∈M+ and σAΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ imply σAΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′;
• σ♭ ∈M− and σAΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ imply σAΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′.

Proof: We let ≼A= {≼AΣ}Σ∈∣Sign∣ be defined by setting, for all Σ ∈ ∣Sign∣
and all φ,ψ ∈ SEN(Σ), φ ≼AΣ ψ if and only if, for all σ♭ in N ♭, Σ′ ∈ ∣Sign∣,
f ∈ Sign(Σ,Σ′), χ⃗ ∈ SEN(Σ′),

• σ♭ ∈M+ and σAΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ imply σAΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ ;
• σ♭ ∈M− and σAΣ′(SEN(f)(ψ), χ⃗) ∈ TΣ′ imply σAΣ′(SEN(f)(φ), χ⃗) ∈ TΣ′ .

Then it it clear that ≼A is a qosystem on A. Moreover, by its definition, it is
compatible with T . Hence, by the maximality of the M-Leibniz order of T on
A, ≼A ≤ ≼M,A(T ). On the other hand, if Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ), such
that φ≼M,A

Σ (T )ψ, then, since ≼M,A(T ) is a qosystem, we get for all Σ′ ∈ ∣Sign∣
and f ∈ Sign(Σ,Σ′), SEN♭(f)(φ)≼M,A

Σ′ (T )SEN(f)(ψ). Thus, since ≼M,A(T )
is M-compatible with T , we get φ ≼AΣ ψ. Therefore, ≼M,A(T ) ≤ ≼A. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-
larity for F and I = ⟨F,C⟩ a π-institution based on F. The pair ⟨I ,M⟩ is
called a polar π-institution.

Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and T ∈ FiFamI(A), the
qosystem ≼M,A(T ) is called the M-Leibniz order of T on A. The collection
of maps

T ↦ ≼M,A(T ), T ∈ FiFamI(A),
for all A, constitute the M-Leibniz order operator ≼M .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. We denote by O =(O+,O−) the total polarity for F, i.e., the polarity consisting of

O+ = O− = N ♭.

Corollary 1834 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, O = (O+,
O−) the total polarity for F and I = ⟨F,C⟩ a π-institution based on F. The
O-Leibniz order operator ≼O of I coincides with the Leibniz operator Ω of I.

Proof: This follows directly from the definition of O, Theorem 1833 and
Theorem 19. ∎

Next we give two properties of the operator ≼M . The first is commuta-
tivity with inverse surjective morphisms and the second is a characterization
of monotonicity. Both properties take after similar properties of the Leibniz
operator that were established in previous chapters.

Lemma 1835 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,

M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. For all F-
algebraic systems A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩, all surjective morphisms⟨H,γ⟩ ∶ A → B and all T ∈ FiFamI(B),

γ−1(≼M,B(T )) = ≼M,A(γ−1(T )).
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Proof: Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ). We have φ≼M,A
Σ (γ−1(T )ψ if

and only if, for all σ♭ in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all
χ⃗ ∈ SEN(Σ′),

• if σ♭ ∈M+, then σAΣ′(SEN(f)(φ), χ⃗) ∈ γ−1Σ′ (TH(Σ′)) implies
σAΣ′(SEN(f)(ψ), χ⃗) ∈ γ−1Σ′ (TH(Σ′));

• if σ♭ ∈M−, then σAΣ′(SEN(f)(ψ), χ⃗) ∈ γ−1Σ′ (TH(Σ′)) implies
σAΣ′(SEN(f)(φ), χ⃗) ∈ γ−1Σ′ (TH(Σ′));

if and only if for all σ♭ in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all
χ⃗ ∈ SEN(Σ′),

• if σ♭ ∈M+, then γΣ′(σAΣ′(SEN(f)(φ), χ⃗)) ∈ TH(Σ′) implies
γΣ′(σAΣ′(SEN(f)(ψ), χ⃗) ∈ TH(Σ′);

• if σ♭ ∈M−, then γΣ′(σAΣ′(SEN(f)(ψ), χ⃗)) ∈ TH(Σ′) implies
γΣ′(σAΣ′(SEN(f)(φ), χ⃗) ∈ TH(Σ′);

if and only if for all σ♭ in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all
χ⃗ ∈ SEN(Σ′),

• if σ♭ ∈ M+, then σB
H(Σ′)

(SEN′(H(f))(γΣ(φ)), γΣ′(χ⃗)) ∈ TH(Σ′) implies

σB
H(Σ′)

(SEN′(H(f))(γΣ(ψ)), γΣ′(χ⃗)) ∈ TH(Σ′);
• if σ♭ ∈ M−, then σB

H(Σ′)
(SEN′(H(f))(γΣ(ψ)), γΣ′(χ⃗)) ∈ TH(Σ′) implies

σB
H(Σ′)

(SEN′(H(f))(γΣ(φ)), γΣ′(χ⃗)) ∈ TH(Σ′);
if and only, by the surjectivity of ⟨H,γ⟩, γΣ(φ) ≼M,B

H(Σ)
γΣ(ψ) if and only if

φγ−1Σ (≼M,B
H(Σ)
(T ))ψ. ∎

Lemma 1836 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,

M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. For ev-
ery F-algebraic systems A = ⟨A, ⟨F,α⟩⟩, ≼M,A is monotone if and only if it
commutes with arbitrary intersections.

Proof: Suppose, first, that ≼M,A is monotone and let T ⊆ FiFamI(A).
Then, by monotonicity, ≼M,A(⋂T ∈T T ) ≤ ⋂T ∈T ≼M,A(T ). On the other hand,

⋂T ∈T ≼M,A(T ) is a qosystem on A, which can be easily seen to be M-compa-
tible with ⋂T . Thus, by the maximality property of ≼M,A(⋂T ), we get

⋂T ∈T ≼M,A(T ) ≤ ≼M,A(⋂T ∈T T ). Therefore, the two qosystems are equal and
≼M,A commutes with arbitrary intersections.

Suppose, conversely, ≼M,A commutes with arbitrary intersections and let
T,T ′ ∈ FiFamI(A), such that T ≤ T ′. Then, we have

≼M,A(T ) = ≼M,A(T ∩ T ′) = ≼M,A(T ) ∩ ≼M,A(T ′),
whence, we get ≼M,A(T ) ≤ ≼M,A(T ′) and, therefore, ≼M,A is monotone. ∎
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25.4 Directional Systems

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-
larity for F and I = ⟨F,C⟩ a π-institution based on F. The polar π-
institution ⟨I ,M⟩ is called directional and the π-institution I is called
M-directional if there exists β ∶ (SEN♭)ω → SEN♭ in N ♭, with two distin-
guished arguments, such that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN(Σ),

φ ≼M,A
Σ (T ) ψ iff βAΣ [φ,ψ] ≤ T,

The collection β in N ♭ will be called a family of witnessing transforma-
tions for the M-directionality of I .

Here are a couple of direct consequences of the definition. The first asserts
that any two set of witnessing transformations for the M-directionality of a
given π-institution are deductively equivalent. The second asserts that M-
directionality is preserved under extensions.

Lemma 1837 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β,β′ ∶(SEN♭)ω → SEN♭ in N ♭, having two distinguished arguments, M = (M+,M−)
a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If I is M-
directional with witnessing transformations β and β′, then, for all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

C(βΣ[φ,ψ]) = C(β′Σ[φ,ψ]).
Proof: We have, for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈ SEN♭(Σ) and all T ∈ ThFam(I),

βΣ[φ,ψ] ≤ T iff φ ≼M,F
Σ (T ) ψ

iff β′Σ[φ,ψ] ≤ T.
Therefore, C(βΣ[φ,ψ]) = C(β′Σ[φ,ψ]). ∎

Lemma 1838 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭, having two distinguished arguments, M = (M+,M−)
a polarity for F and I = ⟨F,C⟩, I ′ = ⟨F,C ′⟩ two π-institutions based on F.
If I is M-directional with witnessing transformations β and I ≤ I ′, then I ′

is also M-directional with witnessing transformations β.

Proof: Suppose I is M-directional with witnessing transformations β and
I ≤ I ′. Let A be an F-algebraic system, T ∈ FiFamI

′(A), Σ ∈ ∣Sign∣ and
φ,ψ ∈ SEN(Σ). Then, since every I ′-filter family of A is also an I-filter
family, we have, by hypothesis, φ ≼M,A

Σ (T ) ψ iff βAΣ [φ,ψ] ≤ T . We conclude
that I ′ is also M-directional, with witnessing transformations β. ∎

We give, next, sufficient conditions for the M-directionality of a given
π-institution.
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Theorem 1839 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, and M = (M+,

M−) a polarity for F, satisfying the following conditions:

1. βΣ[φ,φ] ≤ Thm(I), for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ);
2. M ≤ B, where B = (B+,B−) is the polarity induced by β;

3. For all σ♭ ∈ β, σ♭(x, y, z⃗) ∈M− or σ♭(y, x, z⃗) ∈M+.

Then I is M-directional, with witnessing transformations β.

Proof: Let A be an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and
φ,ψ ∈ SEN(Σ).

Suppose, first, that φ ≼M,A
Σ (T ) ψ and σ♭ ∈ β. Then, by Condition 3, either

σ♭ is of negative M-polarity in the first argument or of positive M-polarity
in the second argument.

• Assume σ♭ has negative polarity in the first argument. By Condition 1,
we have σAΣ [ψ,ψ] ≤ T . Therefore, by Condition 2 and the hypothesis,
we get σAΣ [φ,ψ] ≤ T .

• Assume σ♭ has positive polarity in the second argument. By Condition
1, we have σAΣ [φ,φ] ≤ T . Therefore, by Condition 2 and the hypothesis,
we get σAΣ [φ,ψ] ≤ T .

In either case σAΣ [φ,ψ] ≤ T , whence, βAΣ [φ,ψ] ≤ T .
Assume, conversely, that βAΣ [φ,ψ] ≤ T . Let σ♭ in N ♭, viewed as having

one distinguished argument.

• If σ♭ ∈ M+, then, by Condition 2, σ♭ ∈ B+. Hence, by definition of B
and the hypothesis, σAΣ [φ] ≤ T implies σAΣ [ψ] ≤ T .

• If σ♭ ∈ M−, then, by Condition 2, σ♭ ∈ B−. Hence, by definition of B
and the hypothesis, σAΣ [ψ] ≤ T implies σAΣ [φ] ≤ T .

Therefore, by Theorem 1833, we conclude that φ ≼M,A
Σ (T ) ψ. Hence, I is

M-directional with witnessing transformations β. ∎

Now we look at some properties of M-directional π-institutions.

Theorem 1840 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, M = (M+,M−)
a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If I is M-
directional, with witnessing transformations β, then the following properties
hold:

(a) For all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),
βΣ[φ,φ] ≤ Thm(I) and βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]);



1496 CHAPTER 25. ORDER Voutsadakis

(b) M ≤ B, where B is the polarity for F induced by β;

(c) For all σ♭ ∈ β,

σ♭(x, y, z⃗) ∈ B− and σ♭(y, x, z⃗) ∈ B+;
(d) I is B-directional, with witnessing transformations β;

(e) For every F-algebraic system A, ≼M,A = ≼B,A;

(f) B is the largest polarity M ′ for F, such that ≼M ′ = ≼M .

Proof:

(a) Since ≼M is a qosystem, it is reflexive and transitive. Thus, for all
T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),

φ ≼M,F
Σ (Thm(I)) φ,

φ ≼M,F
Σ (T ) ψ and ψ ≼M,F

Σ (T ) χ imply φ ≼M,F
Σ (T ) χ.

Hence, by M-directionality, we get βΣ[φ,φ] ≤ Thm(I) and

βΣ[φ,ψ] ≤ T and βΣ[ψ,χ] ≤ T imply βΣ[φ,χ] ≤ T.
The latter gives βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]).

(b) Suppose σ♭ ∈M+ and let A be an F-algebraic system, T ∈ FiFamI(A),
Σ ∈ ∣Sign∣ and φ,ψ, χ⃗ ∈ SEN(Σ), such that

βAΣ [φ,ψ] ≤ T and σAΣ (φ, χ⃗) ∈ TΣ.
By M-directionality, we get φ ≼M,A

Σ (T ) ψ and σAΣ(φ, χ⃗) ∈ TΣ. Thus,
since σ♭ ∈ M+, we get σAΣ(ψ, χ⃗) ∈ TΣ. We conclude that σ♭ ∈ B+ and,
hence, M+ ⊆ B+. Similarly, we get thatM− ⊆ B− and, therefore, M ≤ B.

(c) This follows directly by the second assertion of Part (a) and the defi-
nition of B.

(d) This follows from Parts (a), (c) and Theorem 1839.

(e) By the hypothesis and Part (d), we have, for every F-algebraic system
A, all T ∈ FiFamI(A) and all φ,ψ ∈ SEN(Σ),

φ ≼M,A
Σ (T ) ψ iff βAΣ [φ,ψ] ≤ T

iff φ ≼B,AΣ (T ) ψ.
Therefore, ≼M,A = ≼B,A.
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(f) We have that ≼M ′ = ≼M if and only β witnesses the M ′-directionality
of I . This implies, by Part (b), that M ′ ≤ B.

∎

We now obtain the following characterization of the existence of a polarity
M for which I is M-directional with a predetermined set β ∶ (SEN♭)ω → SEN♭

of natural transformations in N ♭ as its witnessing set.

Corollary 1841 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, and I = ⟨F,C⟩
a π-institution based on F. The following conditions are equivalent:

(i) There exists a polarity M = (M+,M−) for F, such that I is M-di-
rectional with witnessing transformations β;

(ii) For all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),
βΣ[φ,φ] ≤ Thm(I) and βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]);

(iii) I is B-directional with witnessing transformations β.

Proof: If Condition (i) holds, then Part (a) of Theorem 1840 ensures that
Condition (ii) holds. If Condition (ii) holds, then, we get Part (c) of Theorem
1840 and, from Part (a) (our hypothesis) and Part (c) of Theorem 1840, we
get, using Theorem 1839, Part (d) of Theorem 1840, which is Condition (iii).
Finally, if (iii) holds, then B is a polarity on F, such that I is B-directional,
with witnessing transformations β and, thus, Condition (i) holds. ∎

Our results allow us to show that families of collections of natural trans-
formations in N ♭ with two distinguished arguments, satisfying Condition (ii)
of Corollary 1841 and polarities on F are in correspondence under appro-
priate identifications of deductively equivalent collections of transformations
and of polarities giving rise to the same Leibniz order operators.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F.

• Let B(I) be the collection of all families β ∶ (SEN♭)ω → SEN♭ in N ♭,
with two distinguished arguments, such that, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ,χ ∈ SEN♭(Σ),

βΣ[φ,φ] ≤ Thm(I) and βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]).
Moreover, we declare two collections β,β′ ∈ B(I) to be equivalent,
written β ≡I β′ if and only if, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

C(βΣ[φ,ψ]) = C(β′Σ[φ,ψ]).
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• Let M(I) be the collection of all polarities for F, such that I is M-
directional.

Moreover, we declare two polarities M,M ′ in M(I) to be equivalent,
written M ∼I M ′, if and only if ≼M = ≼M ′

.

Then we have the following correspondence.

Theorem 1842 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. There exists a bijection from B(I)/≡I onto
M(I)/∼I, such that

β/≡I ↦ B/∼I , β ∈B(I),
and such that every β′ ∈ B(I), such that β′ ≡I β, witnesses the M-di-
rectionality of I, for all M ∈M(I), such that M ∼I B.

Proof: Let β,β′ ∈ B(I), such that β ≡I β′. Then, for every F-algebraic
system, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≼B,AΣ (T ) ψ iff βΣ[φ,ψ] ≤ T
iff β′Σ[φ,ψ] ≤ T
iff φ ≼B

′,A
Σ ψ.

Thus, B ∼I B′ and the mapping in the statement of the theorem is well-
defined.

By definition of M(I) and Theorem 1840, it is onto.
Finally, if β,β′ ∈ B(I), such that B ∼I B′, then, by definition, ≼B = ≼B′ .

Thus, for all ⟨A, T ⟩ ∈ MatFam∗(I), we get, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈
SEN(Σ),

βΣ[φ,ψ] ≤ T iff φ ≼B,AΣ (T ) ψ
iff φ ≼B

′,A
Σ (T ) ψ

iff β′Σ[φ,ψ] ≤ T.
Therefore, by the completeness of I with respect to MatFam∗(I), we get
that, for all Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), C(βΣ[φ,ψ]) = C(β′Σ[φ,ψ]),
i.e., β ≡I β′ and, therefore, the map in the statement of the theorem is also
injective. ∎

Corollary 1843 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, and I = ⟨F,C⟩
a π-institution based on F. If β is a semi-equivalence system for I (in partic-
ular, if I is β-order algebraizable), then I is B-directional, with witnessing
transformations β.

Proof: By Theorem 1828 and Corollary 1841. ∎
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25.5 Monotonicity and Directionaility

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a polarity
for F and I be a π-institution based on F.

• We say that I is M-order monotone if the M-Leibniz order operator
≼M is monotone.

• We say that I is M-directional if there exists β ∶ (SEN♭)ω → SEN♭

in N ♭, having two distinguished arguments, such that, for every F-
algebraic system A, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣ and all φ,ψ ∈
SEN(Σ),

φ ≼M,A
Σ (T ) ψ iff βAΣ [φ,ψ] ≤ T.

Our goal is to connect these two notions.
We have the following obvious relationship.

Theorem 1844 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I be a π-institution based on F. If I is
M-directional, then I is M-order monotone.

Proof: Suppose I is M-directional, with witnessing transformations β. Let
A be an F-algebraic system and T,T ′ ∈ FiFamI(A), such that T ≤ T ′. Then,
we get, by the M-directionality of I , we get

≼M,A(T ) = β(T ) ≤ β(T ′) = ≼M,A(T ′).
Therefore, I is M-order monotone. ∎

We introduce a collection of natural transformations associated with I
that play in the present context a role analog to the role that the reflexive
core RI played in the case of syntactic protoalgebraicity. In fact the collection
we introduce is a subcollection of the reflexive core of a π-institution I .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system M = (M+,M−) a po-
larity for F and I = ⟨F,C⟩ a π-institution based on F. The M-quasicore
QI,M of I is the collection

QI,M = {κ♭ ∈ N ♭ ∶ κ♭(x, y, z⃗) ∈M− and κ♭(y, x, z⃗) ∈M+ and(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))(κ♭Σ[φ,φ] ≤ Thm(I))}.
It turns out that, if I is M-directional with witnessing transformations

β, then β ⊆ QI,M .

Lemma 1845 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, M = (M+,M−)
a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If I is M-
directional, with witnessing transformations β, then β ⊆ QI,M .
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Proof: The conclusion follows directly from Parts (a) and (c) of Theorem
1840 and the definition of QI,M . ∎

The M-directionality of a π-institution I guarantees that the M-quasicore
of I has the global family modus ponens.

Theorem 1846 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If
I is M-directional, then QI,M has the global family modus ponens.

Proof: Suppose I is M-directional with witnessing transformations β and
let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ∈ TΣ and
Q
I,M
Σ [φ,ψ] ≤ T . Then, by Lemma 1845, φ ∈ TΣ and βΣ[φ,ψ] ≤ T . By

M-directionality, φ ∈ TΣ and φ ≼M,F
Σ (T ) ψ. Therefore, by the definition of

≼M,F(T ), ψ ∈ TΣ. We conclude that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

ψ ∈ CΣ(QI,MΣ [φ,ψ], φ),
i.e., QI,M has the global family modus ponens in I . ∎

Conversely, it turns out that, if the M-quasicore QI,M of I has the global
family modus ponens, then I is M-directional, with QI,M as its set of wit-
nessing transformations.

Theorem 1847 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If
QI,M has the global family modus ponens in I, then I is M-directional with
witnessing transformations QI,M .

Proof: We must show that, for every F-algebraic system A and all T ∈
FiFamI(A), ≼M,A(T ) = QI,M,A(T ).

Let Σ ∈ ∣Sign∣ and φ,ψ ∈ SEN♭(Σ), such that φ ≼M,A
Σ (T ) ψ and σ ∈ QI,M .

Then, by the definition of the M-quasicore, σAΣ [ψ,ψ] ≤ T . Since φ ≼M,A
Σ (T ) ψ

and σ♭ ∈M−, we get that σAΣ [φ,ψ] ≤ T . Therefore, QI,M,A
Σ [φ,ψ] ≤ T , which

gives ⟨φ,ψ⟩ ∈ QI,M,A
Σ (T ). Thus, ≼M,A(T ) ≤ QI,M,A(T ).

Conversely, to see that QI,M,A(T ) ≤ ≼M,A(T ), it suffices to show that
QI,M,A(T ) is a qosystem on A that is M-compatible with T .

• By definition of the M-quasicore, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
Q
I,M,A
Σ [φ,φ] ≤ T , whence QI,M,A(T ) is reflexive.

• Next let Σ ∈ ∣Sign∣ and φ,ψ,χ ∈ SEN(Σ), such that QI,M,A
Σ [φ,ψ] ≤ T

and Q
I,M,A
Σ [ψ,χ] ≤ T . For σ♭, τ ♭ ∈ QI,M , note that, by the definition

of the M-quasicore, the transformation τ ♭(σ♭(z, x, p⃗), σ♭(z, y, p⃗), q⃗) ∈
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QI,M . Hence, using modus ponens, we get, for all σ♭ ∈ QI,M and all
ξ⃗ ∈ SEN(Σ′),

σAΣ(φ,χ, ξ⃗)
∈ CI,AΣ (QI,M,A

Σ′ [σAΣ (φ,ψ, ξ⃗), σAΣ (φ,χ, ξ⃗)], σAΣ (φ,ψ, ξ⃗))
≤ CI,AΣ′ (QI,M,A

Σ′ [ψ,χ], σAΣ (φ,ψ, ξ⃗)).
We conclude that QI,M,A

Σ [φ,χ] ≤ CI,A(QI,M,A
Σ [φ,ψ],QI,M,A

Σ [ψ,χ]) and,
therefore, QI,M,A(T ) is also transitive.

• Suppose, next, that σ♭ ∈ M+, Σ ∈ ∣Sign∣ and φ,ψ, χ⃗ ∈ SEN(Σ), such
that ⟨φ,ψ⟩ ∈ QI,M,A

Σ (T ) and σ♭Σ(φ, χ⃗) ∈ TΣ. Then QI,M,A
Σ [φ,ψ] ≤ T and

σA(φ, χ⃗) ∈ TΣ. So we get

σAΣ (ψ, χ⃗) ∈ C
I,A
Σ (QI,M,A

Σ [σAΣ (φ, χ⃗), σAΣ (ψ, χ⃗)], σAΣ (φ, χ⃗))
⊆ CI,A(QI,M,A

Σ [φ,ψ], σAΣ (φ, χ⃗))
⊆ TΣ.

Similarly, consider σ♭ ∈ M−, Σ ∈ ∣Sign∣ and φ,ψ, χ⃗ ∈ SEN(Σ), such
that ⟨φ,ψ⟩ ∈ QI,M,A

Σ (T ) and σ♭Σ(ψ, χ⃗) ∈ TΣ. Then Q
I,M,A
Σ [φ,ψ] ≤ T and

σA(ψ, χ⃗) ∈ TΣ. So we get

σAΣ (φ, χ⃗) ∈ CI,AΣ (QI,M,A
Σ [σAΣ (ψ, χ⃗), σAΣ (φ, χ⃗)], σAΣ (ψ, χ⃗))

⊆ CI,A(QI,M,A
Σ [φ,ψ], σAΣ (ψ, χ⃗))

⊆ TΣ.

Thus, QI,M,A(T ) is M-compatible with T .

We conclude that QI,M,A(T ) is a qosystem on A that is M-compatible with
T , whence, by the maximality of ≼M,A(T ), we get QI,M,A(T ) ≤ ≼M,A(T ). ∎

We now have a characterization of M-directionality in terms of the prop-
erty of modus ponens of the M-quasicore QI,M of the π-institution I .

I is M-directional ←→ QI,M has Global Family MP.

Theorem 1848 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. I
is M-directional if and only if QI,M has the global family modus ponens in
I.

Proof: Theorem 1846 gives the “only if” and the “if” is by Theorem 1847.
∎

As a corollary, we obtain
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Corollary 1849 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, M = (M+,M−)
a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If I is M-
directional with witnessing transformations β, then, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ),

C(QI,MΣ [φ,ψ]) = C(βΣ∣[φ,ψ]).
Proof: If I is M-directional, with witnessing transformations β, then, by
Theorems 1846 and 1847, both β and QI,M are families of witnessing trans-
formations for the M-directionality of I . Therefore, by Lemma 1837, we get
the conclusion. ∎

We get relatively easily another related characterization of M-directio-
nality.

I is M-directional ←→ QI,M Defines M-Leibniz QoSystems.

Theorem 1850 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F. I
is M-directional if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T ∈ FiFamI(A),

≼M,A(T ) = QI,M,A(T ).
Proof: If I is M-directional, then, by Theorem 1846 and Theorem 1847,
QI,M constitutes a collection of witnessing transformations, whence, for every
F-algebraic system A and all T ∈ FiFamI(A) ≼M,A(T ) = QI,M,A(T ).

The converse follows by the definition of M-directionality, since, in that
case, QI,M forms a collection of witnessing transformations. ∎

We finally show that the property that separates M-order monotonicity
from M-directionality is the M-order compatibility property with respect to
the theory family generated by the M-quasicore.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-
larity for F and I = ⟨F,C⟩ be a π-institution based on F. In analogy with
the property of the reflexive core being Leibniz, we say that the M-quasicore
QI,M is order Leibniz if, for every F-algebraic system A, all T ∈ FiFamI(A),
all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ≼M,A
Σ (CI,A(QI,M,A

Σ [φ,ψ])) ψ.
This property is weaker than QI,M having the global family modus po-

nens, i.e., ifQI,M has the global family modus ponens, then it is order Leibniz.

Proposition 1851 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F. If
QI,M has the global family modus ponens, then it is order Leibniz.
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Proof: If QI,M has the global family modus ponens, then, by Theorem 1847,
we get, for every F-algebraic system A and all T ∈ FiFamI(A),

≼M,A(T ) = QI,M,A(T ).
Therefore, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), by considering, in par-
ticular, T = CI,A(QI,M,A

Σ [φ,ψ]), and taking into account that QI,M,A
Σ [φ,ψ] ≤

CI,A(QI,M,A
Σ [φ,ψ]), we get that φ ≼M,A

Σ (CI,A(QI,M,A
Σ [φ,ψ])) ψ. Thus, QI,M

is order Leibniz. ∎

In the opposite direction, in an M-order monotone π-institution I , if the
M-quasicore is order Leibniz, then it has the global family modus ponens in
I .

Proposition 1852 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F and I = ⟨F,C⟩ be an M-order monotone π-
institution based on F. If QI,M is order Leibniz, then it has the global family
modus ponens in I.

Proof: Suppose that I is M-order monotone and that QI,M is order Leibniz.
Let A be an F-algebraic system, T ∈ FiFamI(A), Σ ∈ ∣Sign∣ and φ,ψ ∈
SEN(Σ), such that φ ∈ TΣ and QI,M,A

Σ [φ,ψ] ≤ T . Since QI,M is order Leibniz,
we have

φ ≼M,A
Σ (C(QI,M,A

Σ [φ,ψ])) ψ,
whence, since I is M-order monotone and Q

I,M,A
Σ [φ,ψ] ≤ T ,

φ ≼M,A
Σ (T ) ψ.

Therefore, since φ ∈ TΣ, we get, by M-compatibility of ≼M,A(T ) with T , that
ψ ∈ TΣ. We conclude that QI,M has the global family modus ponens in I . ∎

We now show that a π-institution is M-directional if and only if it is
M-order monotone and it has an order Leibniz M-quasicore.

M-Directionality = QI,M has Global Family MP
= QI,M Defines Leibniz QoSystems
= M-Order Monotonicity +QI,M Order Leibniz

Theorem 1853 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) be a polarity for F and I = ⟨F,C⟩ be a π-institution based on
F. I is M-directional if and only if it is M-order monotone and has an
order Leibniz M-quasicore.
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Proof: Suppose, first, that I is M-directional. Then it is M-order monotone
by Theorem 1844. Moreover, its M-quasicore has the global family modus
ponens by Theorem 1846 and, hence, by Proposition 1851, its M-quasicore
is order Leibniz.

Suppose, conversely, that I is M-order monotone with an order Leibniz
M-quasicore. Then, by Proposition 1852, its M-quasicore has the global
family modus ponens and, therefore, by Theorem 1848, I is M-directional.
∎

25.6 c-Reflectivity and Truth Inequationality

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a polarity
for F and I = ⟨F,C⟩ a π-institution based on F. The polar π-institution⟨I ,M⟩ is called truth inequational and the π-institution I is called M-
truth inequational if there exists a collection τ ♭ ∶ (SEN♭)ω → (SEN♭)2 in
N ♭, with a single distinguished argument, such that, for all T ∈ ThFam(I),
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ ≼M,F(T ).
In this case τ ♭ is called a family of witnessing transformations for the
M-truth inequationality of I .

We can show, based on preceding work, that every β-order algebraizable
π-institution I is B-truth inequational, where B is the polarity induced by
β.

Proposition 1854 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
β ∶ (SEN♭)ω → SEN♭ in N ♭, having two distinguished arguments, and I =⟨F,C⟩ a π-institution based on F. If I is β-order algebraizable, then I is
B-truth inequational.

Proof: Suppose I is β-order algebraizable. Then, by Corollary 1843, it is
B-directional, with witnessing transformations β. Thus, by Theorem 1828,
there exists α ∶ (SEN♭)ω → (SEN♭)2, with a single distinguished argument,
such that, for every F-algebraic system A, all T ∈ FiFamI(A), all Σ ∈ ∣Sign∣
and all φ ∈ SEN(Σ),

φ ∈ TΣ iff βA[αAΣ[φ]] ≤ T
iff αAΣ[φ] ≤ ≼B,A(T ).

Thus, I is B-truth inequational, with witnessing transformations α. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) be a
polarity for F and I = ⟨F,C⟩ be a π-institution based on F. We say that
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≼M is completely order reflecting or c-reflecting, for short, if, for all
T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

≼M,F(T ) ≤ ≼M,F(T ′) implies ⋂
T ∈T

T ≤ T ′.

If this is the case, we call I M-c-reflective.
We formulate an equivalent condition to M-c-reflectivity.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-

larity for F and I = ⟨F,C⟩ a π-institution based on F. Given an F-algebraic
system A and T ∈ FiFamI(A), we define the qosystem

≼̃M,A(T ) =⋂{≼M,A(T ′) ∶ T ≤ T ′ ∈ FiFamI(A)}.
By analogy with the Suszko congruence system, we call ≼̃M,A(T ) the M-
Suszko qosystem of T .

Lemma 1855 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,

M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. I is M-c-
reflective if and only if, for all T,T ′ ∈ ThFam(I),

≼̃M,F(T ) ≤ ≼M,F(T ′) implies T ≤ T ′.

Proof: Assume, first, that I is M-c-reflective and let T,T ′ ∈ ThFam(I),
such that ≼̃M,F(T ) ≤ ≼M,F(T ′). Then, we have

⋂{≼M,F(T ′′) ∶ T ≤ T ′′ ∈ ThFam(I)} ≤ ≼M,F(T ′).
Therefore, by M-c-reflectivity, ⋂{T ′′ ∶ T ≤ T ′′ ∈ ThFam(I)} ≤ T ′, i.e., T ≤ T ′.

Suppose, conversely, that the displayed condition holds and let T ∪{T ′} ⊆
ThFam(I), such that ⋂T ∈T ≼M,F(T ) ≤ ≼M,F(T ′). Then, we get

≼̃M,F(⋂T ) = ⋂{≼M,F(T ) ∶ ⋂T ≤ T ∈ ThFam(I)}
≤ ⋂{≼M,F(T ) ∶ T ∈ T }
≤ ≼M,F(T ′).

Thus, by hypothesis, ⋂T ≤ T ′ and, therefore, I is M-c-reflective. ∎

Furthermore, under M-order monotonicity, it turns out that M-c-refle-
ctivity is equivalent to the injectivity of the M-Leibniz order operator.

Lemma 1856 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,

M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If I is
M-order monotone, then I is M-c-reflective if and only if ≼M,F is injective
on theory families.
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Proof: Suppose that I is M-order monotone.
Assume, first, that I is M-c-reflective and let T,T ′ ∈ ThFam(I), such

that ≼M,F(T ) = ≼M,F(T ′). Then, we have

≼M,F(T ) = ≼M,F(T ) ∩ ≼M,F(T ′) ≤ ≼M,F(T ′),
whence, by M-c-reflectivity, T ∩ T ′ ≤ T ′, i.e., T ≤ T ′. By symmetry, we get
T = T ′ and, therefore, ≼M,F is injective on theory families.

Assume, conversely, that ≼M,F is injective on theory families and let T ∪{T ′} ⊆ ThFam(I), such that ⋂T ∈T ≼M,F(T ) ≤ ≼M,F(T ′). Then we get

≼M,F(⋂T ∈T T ) = ⋂T ∈T ≼M,F(T ) (monotonicity)
= ⋂T ∈T ≼M,F(T ) ∩ ≼M,F(T ′) (hypothesis)
= ≼M,F(⋂T ∩ T ′). (monotonicity)

Thus, by injectivity, ⋂T = ⋂T ∩ T ′, whence ⋂T ≤ T ′ and, therefore, I is
M-c-reflective. ∎

It is always the case that truth inequationality implies c-reflectivity.

Theorem 1857 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) be a polarity for F and I = ⟨F,C⟩ a π-institution based on F.
If I is M-truth inequational, then it is M-c-reflective.

Proof: Suppose that I is M-truth inequational, with witnessing transforma-
tions τ ♭, and let T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T ≼M,F(T ) ≤ ≼M,F(T ′).
Then

⋂T ∈T T = ⋂T ∈T τ
♭(≼M,F(T )) (Truth Inequationality)

= τ ♭(⋂T ∈T ≼M,F(T )) (Set Theory)
≤ τ ♭(≼M,F(T ′)) (Hypothesis and Lemma 94)
= T ′. (Truth Inequationality)

Thus, I is M-c-reflective. ∎

Recall the characterization of truth equationality in terms of the solubil-
ity property of the Suszko core of the π-institution. We now work to establish
an analog for truth inequationaility. More precisely, we provide a character-
ization of truth inequationality in terms of the order solubility property of
the order core of a π-institution. Then, we provide an exact description of
those M-c-reflective π-institutions which are M-truth inequational.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a polar-
ity for F and I = ⟨F,C⟩ a π-institution based on F. We define the M-order
(Suszko) core of I to be the collection

OI,M = {σ♭ ∈ N ♭ ∶ (∀T ∈ ThFam(I))(σ♭[T ] ≤ ≼̃M,F(T ))}.
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Lemma 1858 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,

M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. For all σ♭

in N ♭, the following conditions are equivalent:

(i) For every T ∈ ThFam(I), σ♭[T ] ≤ ≼̃M,F(T );
(ii) For every Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), σ♭Σ[φ] ≤ ≼̃M,F(C(φ)).

Proof: Suppose Condition (i) holds and let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ).
Then, setting T = C(φ) in (i), we obtain σ♭[C(φ)] ≤ ≼̃M,F(C(φ)), whence, a

fortiori, σ♭Σ[φ] ≤ ≼̃M,F(C(φ)). Assume, conversely, that Condition (ii) holds
and let T ∈ ThFam(I). Then, we get

σ♭[T ] = ⋃{σ♭Σ[φ] ∶ φ ∈ TΣ,Σ ∈ ∣Sign♭∣} (definition)

≤ ⋃{≼̃M,F(C(φ)) ∶ φ ∈ TΣ,Σ ∈ ∣Sign♭∣} (Condition (ii))

≤ ⋃{≼̃M,F(T ) ∶ φ ∈ TΣ,Σ ∈ ∣Sign♭∣} (monotonicity of ≼̃M,F
)

= ≼̃M,F(T ).
Thus shows that Condition (i) holds and, therefore, that the two conditions
are equivalent. ∎

By Lemma 1858, this definition is equivalent to setting

OI,M = {σ♭ ∈ N ♭ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭(Σ))
(σ♭Σ[φ] ≤ ≼̃M,F(C(φ)))}.

It is clear, by definition that the M-order core of a π-institution satisfies
the following property:

Proposition 1859 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F. For
every T ∈ ThFam(I),

T ≤ OI,M(≼M,F(T )).
Proof: Let T ∈ ThFam(I). Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ implies O
I,M
Σ [φ] ≤ ≼̃M,F(T ) (definition of OI,M)

implies O
I,M
Σ [φ] ≤ ≼M,F(T ). (≼̃M,F(T ) ≤ ≼M,F(T ))

Thus, we get that T ≤ OI,M(≼M,F(T )). ∎

It is possible, but not necessary, that the M-order core of a π-institution
satisfies the reverse inclusion. We call this property order solubility.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-
larity for F and I = ⟨F,C⟩ be a π-institution based on F. We say that the
M-order core of I is order soluble if, for all T ∈ ThFam(I),

OI,M(≼M,F(T )) ≤ T.
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In other words OI,M is order soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ ∈ SEN♭(Σ),

O
I,M
Σ [φ] ≤ ≼M,F(T ) implies φ ∈ TΣ.

It turns out that possession of the order solubility property by the M-
order core intrinsically characterizes M-truth inequationality. We show, first,
that the M-order core being order soluble is necessary for M-truth inequa-
tionality. To see this, observe that, in case a π-institution is M-truth inequa-
tional, the witnessing transformations form a subset of the M-order core.

Lemma 1860 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,

M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If I is M-
truth inequational, with witnessing transformations τ ♭ ⊆ N ♭, then τ ♭ ⊆ OI,M .

Proof: By truth inequationality, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and
all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ ≼M,F(T ).
Thus, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff (∀T ≤ T ′ ∈ ThFam(I))(φ ∈ T ′Σ)
iff (∀T ≤ T ′ ∈ ThFam(I))(τ ♭Σ[φ] ≤ ≼M,F(T ′))
iff τ ♭Σ[φ] ≤ ⋂{≼M,F(T ′) ∶ T ≤ T ′ ∈ ThFam(I)}
iff τ ♭Σ[φ] ≤ ≼̃M,F(T ).

We conclude, by the definition of OI,M , that τ ♭ ⊆ OI,M . ∎

Now we prove the necessity of order solubility for truth inequationality.

Theorem 1861 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F.
If I is M-truth inequational, then OI,M is order soluble.

Proof: Suppose that I is M-truth equational, with witnessing equations τ ♭.
Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

O
I,M
Σ [φ] ≤ ≼M,F(T ) implies τ ♭Σ[φ] ≤ ≼M,F(T ) (Lemma 1860)

iff φ ∈ TΣ. (truth inequationality)

Thus, OI,M is order soluble. ∎

The reverse implication, which also holds and completes the promised
characterization of M-truth inequationality in terms of the M-order core, is
presented in the following result.

Theorem 1862 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F.
If OI,M is order soluble, then I is M-truth inequational, with witnessing
equations OI,M .
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Proof: It suffices to show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

φ ∈ TΣ iff O
I,M
Σ [φ] ≤ ≼M,F(T ).

The left-to-right implication is given in Proposition 1859, whereas the con-
verse is ensured by the postulated order solubility of OI,M . ∎

Theorems 1861 and 1862 provide the promised characterization of M-
truth inequationality in terms of the order solubility of the M-order core.

I is M-Truth Inequational ←→ OI,M is Soluble.

Theorem 1863 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F.
I is M-truth inequational if and only if OI,M is order soluble.

Proof: Theorem 1861 gives the “only if” and the “if” is by Theorem 1862.
∎

If I isM-truth inequational, then the M-order core defines theory families
in I in terms of their M-Leibniz qosystems.

Proposition 1864 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F. If
OI,M is order soluble, then, for all T ∈ ThFam(I),

T = OI,M(≼M,F(T )).
Proof: If OI,M is order soluble, then, by Theorem 1862, OI,M forms a set of
witnessing transformations for the M-truth inequationality of I . Therefore,
by definition, we get that, for every T ∈ ThFam(I), T = OI,M(≼M,F(T )). ∎

In fact, this property may also be restated as another characterization of
truth inequationality. Let us say that OI,M defines theory families if, for
all T ∈ ThFam(I), T = OI,M(≼M,F(T )). Then we have:

I is M-Truth Equational←→ OI,M Defines Theory Families.

Theorem 1865 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F.
I is M-truth inequational if and only if, for all T ∈ ThFam(I),

T = OI,M(≼M,F(T )).
Proof: If I is truth equational, then, by Theorem 1861, OI,M is order soluble.
Thus, by Proposition 1864, for all T ∈ ThFam(I), T = OI,M(≼M,F(T )).

Conversely, if, for all T ∈ ThFam(I), T = OI,M(≼M,F(T )), then, OI,M

is order soluble. Thus, again by Theorem 1863, OI,M is a set of witnessing
equations and I is M-truth inequational. ∎
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We finally show that the property that separates M-complete reflectivity
from M-truth inequationality is exactly the adequacy property of the M-
order core. Roughly speaking, this property ensures that the M-order core
is rich enough to define M-Suszko qosystems in terms of the M-Leibniz
qosystems of theory families that it selects via inclusion.

We have the following relationship connecting the M-order core with
both M-Leibniz quosystems and M-Suszko qosystems of enveloping theory
families.

Proposition 1866 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F and I = ⟨F,C⟩ be a π-institution based on F. For
all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

⋂{≼M,F(T ) ∶ OI,MΣ [φ] ≤ ≼M,F(T )} ≤ ≼̃M,F(C(φ)).
Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then, for all T ∈ ThFam(I),

φ ∈ TΣ implies O
I,M
Σ [φ] ≤ ≼̃M,F(T ) (M-order core)

implies O
I,M
Σ [φ] ≤ ≼M,F(T ).

Therefore, we have

⋂{≼M,F(T ) ∶ OI,MΣ [φ] ≤ ≼M,F(T )} ≤ ⋂{≼M,F(T ) ∶ OI,MΣ [φ] ≤ ≼̃M,F(T )}
≤ ⋂{≼M,F(T ) ∶ φ ∈ TΣ}
= ≼̃M,F(C(φ)).

∎

It is possible, but not necessary, that the M-order core of a π-institution
satisfies, for every Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), the reverse inclusion of
that given in Proposition 1866:

≼̃M,F(C(φ)) ≤⋂{≼M,F(T ) ∶ OI,MΣ [φ] ≤ ≼M,F(T )}.
Intuitively speaking, this means that the M-order core OI,M is rich enough
to allow, for every Σ-sentence φ, the determination of those theory families
whose M-Leibniz qosystems form a covering of the M-Suszko qosystem of
C(φ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a po-
larity for F and I = ⟨F,C⟩ be a π-institution based on F. We say that the
M-order core OI,M of I is order adequate if, for all Σ ∈ ∣Sign♭∣ and all
φ ∈ SEN♭(Σ),

≼̃M,F(C(φ)) =⋂{≼M,F(T ) ∶ OI,MΣ [φ] ≤ ≼M,F(T )}.
It is not difficult to see that, if OI,M is order soluble, then it is order

adequate.
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Corollary 1867 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. If
OI,M is order soluble, then it is order adequate.

Proof: Let Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭(Σ). Then we have

≼̃M,F(C(φ)) = ⋂{≼M,F(T ) ∶ φ ∈ TΣ} (definition of ≼̃M,F(C(φ)))
= ⋂{≼M,F(T ) ∶ OI,MΣ [φ] ≤ ≼M,F(T )}.

(order solubility of SI and Proposition 1864)

We conclude that OI,M is order adequate. ∎

In the opposite direction, in an M-c-reflective π-institution I , if the M-
order core is order adequate, then it is also order soluble.

Proposition 1868 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F and I = ⟨F,C⟩ an M-c-reflective π-institution
based on F. If OI,M is order adequate, then it is order soluble.

Proof: Suppose that I is M-c-reflective and that OI,M is order adequate.
We must show that, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ)

φ ∈ TΣ iff O
I,M
Σ [φ] ≤ ≼M,F(T ).

The implication left-to-right is always satisfied by Proposition 1859. For the
converse, assume that OI,MΣ [φ] ≤ ≼M,F(T ). Then, by the adequacy of OI,M ,

we get that ≼̃M,F(C(φ)) ≤ ≼M,F(T ). Thus, by M-c-reflectivity, we conclude
that C(φ) ≤ T , which gives φ ∈ TΣ. ∎

We finally show that a π-institution is M-truth inequational if and only
if it is M-c-reflective and it has an order adequate M-order core.

M-Truth Inequationality = OI,M Order Soluble
= OI,M Defines Theory Families
= M-c-Reflectivity +OI,M Order Adequate

Theorem 1869 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ a π-institution based on F. I
is M-truth inequational if and only if it is M-c-reflective and has an order
adequate M-order core.

Proof: Suppose, first, that I is M-truth inequational. Then it is M-c-
reflective by Theorem 1857. Moreover, its M-order core is order soluble
by Theorem 1861 and, hence, by Corollary 1867, its M-order core is order
adequate.

Suppose, conversely, that I is M-c-reflective with an order adequate M-
order core. Then, by Proposition 1868, its M-order core is order soluble and,
therefore, by Theorem 1863, I is M-truth inequational. ∎

Taking into account Lemma 1856 we obtain the following
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Corollary 1870 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for F and I = ⟨F,C⟩ an M-order monotone π-institution
based on F. I is M-truth inequational if and only if it is M-order injective
and has an order adequate M-order core.

Proof: By Theorem 1869 and Lemma 1856. ∎

Finally, it is not difficult to see that M-truth inequationality transfers
from a π-institution to all I-matrix families.

Theorem 1871 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+, M−) a polarity for I and I = ⟨F,C⟩ be a π-institution based on F.
I is M-truth inequational, with witnessing transformations τ ♭ ∶ (SEN♭)ω →(SEN♭)2 in N ♭, if and only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩,
and all T ∈ FiFamI(A), T = τA(≼M,A(T )).
Proof: Suppose I is truth equational, with witnessing transformations τ ♭ ∶(SEN♭)ω → (SEN♭)2 and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and
T ∈ FiFamI(A). Then, by Lemma 51, α−1(T ) ∈ ThFam(I), whence, by
hypothesis, α−1(T ) = τ ♭(≼M,F(α−1(T ))). Hence, by Lemma 1835, α−1(T ) =
τ ♭(α−1(≼M,A(T ))). Therefore, for all Σ ∈ ∣Sign♭∣, φ ∈ SEN♭(Σ), we get

αΣ(φ) ∈ TF (Σ) iff φ ∈ α−1Σ (TF (Σ))
iff τ ♭Σ[φ] ≤ α−1(≼M,A(T ))
iff α(τ ♭Σ[φ]) ≤ ≼M,A(T )
iff τA

F (Σ)
[αΣ(φ)] ≤ ≼M,A(T ). (⟨F,α⟩ surjective)

Taking again into account the surjectivity of ⟨F,α⟩, we conclude that, for all
Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ), φ ∈ TΣ if and only if τAΣ [φ] ≤ ≼M,A(T ), i.e.,
T = τA(≼M,A(T )). ∎

25.7 Order Algebraizability

Theorem 1872 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, M = (M+,M−)
a polarity for F and I = ⟨F,C⟩ an M-directional π-institution based on F,
with witnessing transformations β, such that, for all Σ ∈ ∣Sign♭∣, all φ,ψ ∈
SEN♭(Σ), all σ♭, τ ♭ in N ♭, and all χ⃗ ∈ SEN♭(Σ),

βΣ[σ♭Σ(ψ, χ⃗), τ ♭Σ(ψ, χ⃗)] ≤ C(↔βΣ[φ,ψ], βΣ[σ♭Σ(φ, χ⃗), τ ♭Σ(φ, χ⃗)]).
Then the following conditions are equivalent:

(i) I is β-order algebraized by {⟨A,≤A,T (T )⟩ ∶ ⟨A, T ⟩ ∈MatFam∗(I)};
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(ii) I is β-order algebraizable;

(iii) I is M-truth inequational;

(iv) I is M-order injective and has an order adequate M-order core.

Proof:

(i)⇒(ii) This implication is trivial.

(ii)⇒(iii) By hypothesis, β witnesses the M-directionality of I . Therefore, by
Theorem 1840, ≼M = ≼B. Thus, since, by hypothesis, I is β-order
algebraizable, by Proposition 1854, I is M-truth equational, with wit-
nessing transformations β.

(iii)⇒(i) Suppose I is M-truth inequational, with witnessing transformations
τ ♭ ∶ (SEN♭)ω → (SEN♭)2, having a single distinguished argument. Thus,
we have, for every T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

φ ∈ TΣ iff τ ♭Σ[φ] ≤ ≼M,F
Σ (T ).

Thus, by M-directionality, φ ∈ TΣ if and only if β[τ ♭Σ[φ]] ≤ T . Thus,
we get that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

C(φ) = C(β[τ ♭Σ[φ]]). (25.1)

Since, by hypothesis, I is M-directional, we have, by Theorem 1840,
for all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ),

βΣ[φ,φ] ≤ Thm(I);
βΣ[φ,χ] ≤ C(βΣ[φ,ψ], βΣ[ψ,χ]). (25.2)

Given the hypothesis, Conditions (25.2) and Condition (25.1), we get,
by Theorem 1828, that I is β-order algebraizable. Therefore, again
by Theorem 1828, I is β-order algebraized by the class {⟨A,≤A,T (T )⟩ ∶⟨A, T ⟩ ∈MatFam∗(I)}.

(iii)⇒(iv) Since I is M-truth inequational, by Theorem 1869, it is M-c-reflective
and has an order adequate M-order core. Since I is M-directional,
by Theorem 1853, it is M-order monotone. Hence, since it is M-c-
reflective, by Lemma 1856, it is M-order injective, Thus, I is M-order
injective and has an order adequate M-order core.

(iv)⇒(iii) Suppose I is M-order injective, with an order adequate M-order core.
Since, by hypothesis, I is M-directional, it is, by Theorem 1853, M-
order monotone. Thus, since it is, by hypothesis, M-order injective, it is
by Lemma 1856, M-c-reflective. Being M-c-reflective with an M-order
adequate M-order core, it is, by Theorem 1869, M-truth inequational.
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∎

Theorem 1873 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I =⟨F,C⟩ a π-institution based on F. The following conditions are equivalent:

(i) There exists a polarity M = (M+,M−) for F, such that I is M-order
monotone, M-order injective, ≼M is antisymmetric on {T ∶ ⟨A, T ⟩ ∈
MatFam∗(I)}, with an order Leibniz M-quasicore and an order ade-
quate M-order core;

(ii) I is order algebraizable, i.e., it is β-order algebraizable, for some β ∶(SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments.

If Condition (i) holds, then β can be chosen so that ≼M = ≼B and

{⟨A,≤A,T ⟩ ∶ ⟨A, T ⟩ ∈MatFam∗(I)}
generates the β-order class of I.

If Condition (ii) holds, then Condition (i) holds with M = B.

Proof:

(i)⇒(ii) Suppose Condition (i) holds. Since, by hypothesis, I is M-order mono-
tone and has an order Leibniz M-quasicore, we get, by Theorem 1853,
that I is M-directional, with some family β of witnessing transforma-
tions. Thus, by Theorem 1840, ≼M = ≼B. By hypothesis and Theorem
1869, we get that I is M-truth inequational. Therefore, by hypothesis,
Theorem 1826 and Theorem 1872, we get that I is β-order algebraiz-
able and that its β-order class is generated by {⟨A,≤A,T ⟩ ∶ ⟨A, T ⟩ ∈
MatFam∗(I)}.

(ii)⇒(i) Suppose Condition (ii) holds. Then, by Corollary 1843, I isB-directional,
with witnessing transformations β. Thus, by Theorem 1853, it is B-
order monotone and has an order Leibniz B-quasicore. Moreover, by
Proposition 1854, I is B-truth inequational and, therefore, by Theorem
1869, it is B-c-reflective and has on order adequate B-order core. Fi-
nally, taking into account Theorem 1828, we may apply Theorem 1872
to establish that ≼B is antisymmetric on {T ∶ ⟨A, T ⟩ ∈MatFam∗(I)}.

∎

Corollary 1874 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with β ∶(SEN♭)ω → SEN♭ in N ♭, having two distinguished arguments, M = (M+,M−)
a polarity for F and I = ⟨F,C⟩ a π-institution based on F, such that, for all
σ♭, τ ♭ in N ♭, all Σ ∈ ∣Sign♭∣, all φ,ψ, χ⃗ ∈ SEN♭(Σ):

1. βΣ[φ,φ] ≤ Thm(I);
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2. σΣ(ψ, χ⃗) ∈ CΣ(βΣ[φ,ψ], σ♭Σ(φ, χ⃗)), if σ♭ ∈M+;

3. σΣ(φ, χ⃗) ∈ CΣ(βΣ[φ,ψ], σ♭Σ(ψ, χ⃗)), if σ♭ ∈M−;

4. βΣ[σ♭Σ(ψ, χ⃗), τ ♭Σ(ψ, χ⃗)] ≤ C(↔βΣ[φ,ψ], βΣ[σ♭Σ(φ, χ⃗), τ ♭Σ(φ, χ⃗)]).
If, for all σ♭ ∈ β, σ♭(x, y, z⃗) ∈ M− or σ♭(y, x, z⃗) ∈ M+, then I is β-order
algbebraizable if and only if it is M-order injective and has an order adequate
M-order core.

Proof: By Theorem 1872, it suffices to show that I is M-directional. But
this follows from Theorem 1839. ∎

25.8 Tonicity

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M = (M+,M−) a polarity
for F, A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system and ≤A a qosystem on A. ≤A is
called an M-order if, for all σ♭ in N ♭, Σ ∈ ∣Sign∣, φ,ψ, χ⃗ ∈ SEN(Σ),

• if σ♭ ∈M+, then φ ≤AΣ ψ implies σAΣ(φ, χ⃗) ≤AΣ σAΣ (ψ, χ⃗);
• if σ♭ ∈M−, then φ ≤AΣ ψ implies σAΣ(ψ, χ⃗) ≤AΣ σAΣ (φ, χ⃗).
In a way similar to the proof of the existence of ≼M,A(T ) in Proposition

1832, we can also show that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T ∈ SenFam(A), there always exists a largest M-order on A, such
that T is upward closed, i.e., for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

φ ∈ TΣ and φ ≤M,A
Σ ψ imply ψ ∈ TΣ.

Proposition 1875 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T ∈ SenFam(A), there exists a largest M-order on A, such that T is
upward closed.

Proof: We consider the class MOrdA(T ) of all M-orders on A with respect
to which T is upward closed. We take the transitive closure of the union of
all qosystems in MOrdA(T ),

tc(⋃MOrdA(T )) = {tcΣ(⋃MOrdA(T )}Σ∈∣Sign∣.
It suffices to show that this is also an M-order on A with respect to which T
is upward closed. i.e., it is itself a member of MOrdA(T ). It will then follow
that it is its largest member.



1516 CHAPTER 25. ORDER Voutsadakis

It is clear by the definition that tr(⋃MOrdA(T )) is a qosystem on A. So
it suffices to show that it is an M-order with respect to which T is upward
closed.

Suppose σ♭ in M+, Σ ∈ ∣Sign∣, φ,ψ, χ⃗ ∈ SEN(Σ), such that

φ trΣ(⋃MOrdA(T )) ψ.
Then, there exist q0, . . . , qk ∈MOrdA(T ) and ξ1, . . . , ξk ∈ SEN(Σ), such that

φ q0Σ ξ1 q
1
Σ ξ2 q

2
Σ ⋯ qk−1Σ ξk q

k
Σ ψ.

Since φ q0Σ ξ1 and q0 ∈MOrdA(T ), we get σAΣ (φ, χ⃗) q0Σ σAΣ(ξ1, χ⃗). Since ξ1 q1Σ ξ2
and q1 ∈MOrdA(T ), we get σAΣ(ξ1, χ⃗) q1Σ σAΣ(ξ2, χ⃗). We move one step to the
right at a time in a similar fashion until we obtain σAΣ(ξk, χ⃗) qkΣ σAΣ(ψ, χ⃗).
Thus, we obtain

σAΣ(φ, χ⃗) trΣ(⋃MOrdA(T )) σAΣ(ψ, χ⃗).
A similar argument is used to handle the case of negative polarity for σ♭.
This proves that tr(⋃MOrdA(T )) is also an M-order on A.

Finally, suppose Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that φ ∈ TΣ and

φ trΣ(⋃MOrdA(T )) ψ.
Then, there exist q0, . . . , qk ∈MOrdA(T ) and ξ1, . . . , ξk ∈ SEN(Σ), such that

φ q0Σ ξ1 q
1
Σ ξ2 q

2
Σ ⋯ qk−1Σ ξk q

k
Σ ψ.

Since T is upward closed with respect to all elements in MOrdA(T ) and
φ ∈ TΣ, we get ξ1 ∈ TΣ, then ξ2 ∈ TΣ, then . . ., until, in the last step,
ξk ∈ TΣ implies ψ ∈ TΣ. Therefore, T is also upward closed with respect
to trΣ(⋃MOrdA(T )), showing that trΣ(⋃MOrdA(T )) ∈MOrdA(T ), whence
it is its largest element. ∎

Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and T ∈ SenFam(A), the
Leibniz M-order ≤M,A(T ) of ⟨A, T ⟩ is the largest M-order on A, such that
T is upward closed, whose existence is assured by Proposition 1875.

It turns out that the Leibniz M-order ≤M,A(T ) is included in the M-
Leibniz qosystem ≼M,A(T ) of T on A.

Proposition 1876 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, M =(M+,M−) a polarity for F. For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and
all T ∈ SenFam(A),

≤M,A(T ) ≤ ≼M,A(T ).
Proof: It suffices to show that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩
and all T ∈ SenFam(A), ≤M,A(T ) is M-compatible with T . To this end, let
σ♭ in N ♭, Σ ∈ ∣Sign∣, φ,ψ, χ⃗ ∈ SEN(Σ).
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• Suppose σ♭ ∈ M+, φ≤M,A
Σ (T )ψ and σAΣ (φ, χ⃗) ∈ TΣ. Since φ≤M,A

Σ (T )ψ
and ≤M,A(T ) is an M-order, we get σAΣ (φ, χ⃗) ≤ σAΣ (ψ, χ⃗). Hence, since
σAΣ (φ, χ⃗) ∈ TΣ and T is upward closed with respect to ≤M,A(T ), we get
σAΣ (ψ, χ⃗) ∈ TΣ.

• Suppose σ♭ ∈ M−, φ≤M,A
Σ (T )ψ and σAΣ (ψ, χ⃗) ∈ TΣ. Since φ≤M,A

Σ (T )ψ
and ≤M,A(T ) is an M-order, we get σAΣ (ψ, χ⃗) ≤ σAΣ(φ, χ⃗). Hence, since
σAΣ (ψ, χ⃗) ∈ TΣ and T is upward closed with respect to ≤M,A(T ), we get
σAΣ (φ, χ⃗) ∈ TΣ.

Thus, ≤M,A(T ) is M-compatible with T and, hence, by the maximality of
≼M,A(T ), ≤M,A(T ) ≤ ≼M,A(T ). ∎

We finally provide sufficient conditions ensuring that the two orders on A
associated with I-filter families T of a π-institution I , ≤M,A(T ) and ≼M,A(T ),
coincide.

Proposition 1877 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, with
β ∶ (SEN♭)ω → SEN♭ in N ♭ having two distinguished arguments, M = (M+,M−)
a polarity for F, such that p1,0 ∈M+, and I = ⟨F,C⟩ a π-institution based on
F. Suppose I is M-directional, with witnessing transformations β, and that,
for all σ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ,ψ, χ⃗ ∈ SEN♭(Σ),

• if σ♭ ∈M+, βΣ[σ♭Σ(φ, χ⃗), σ♭Σ(ψ, χ⃗)] ≤ C(βΣ[φ,ψ]);
• if σ♭ ∈M−, βΣ[σ♭Σ(ψ, χ⃗), σ♭Σ(φ, χ⃗)] ≤ C(βΣ[φ,ψ]).

Then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A),
≼M,A(T ) is the largest M-order on A with respect to which T is upward closed,
i.e., ≼M,A(T ) = ≤M,A(T ).
Proof: Let A be an F-algebraic system and T ∈ FiFamI(A). We show that
≼M,A(T ) is an M-order on A, with respect to which T is upward closed.
Then, it will follow, by the maximality property of ≤M,A(T ), that ≼M,A(T ) ≤
≤M,A(T ).

Let σ♭ in N ♭, Σ ∈ ∣Sign∣ and φ,ψ, χ⃗ ∈ SEN(Σ).
• Suppose σ♭ ∈ M+ and φ ≼M,A

Σ (T ) ψ. Thus, by M-directionality of
I , βAΣ [φ,ψ] ≤ T , whence, by hypothesis, βAΣ [σAΣ(φ, χ⃗), σAΣ (ψ, χ⃗)] ≤ T .

Thus, again by M-directionaility, σA(φ, χ⃗) ≼M,A
Σ (T ) σAΣ(ψ, χ⃗).

• Suppose σ♭ ∈ M− and φ ≼M,A
Σ (T ) ψ. Thus, by M-directionality of

I , βAΣ [φ,ψ] ≤ T , whence, by hypothesis, βAΣ [σAΣ(ψ, χ⃗), σAΣ (φ, χ⃗)] ≤ T .

Thus, again by M-directionaility, σA(ψ, χ⃗) ≼M,A
Σ (T ) σAΣ (φ, χ⃗).
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Thus, ≼M,A(T ) is an M-order on A.
Finally, suppose φ ≼M,A

Σ (T ) ψ and φ ∈ TΣ. Then, since, by hypothesis,
p1,0 ∈ M+ and ≼M,A(T ) is M-compatible with T , we get ψ ∈ TΣ. Therefore,
≼M,A(T ) is an M-order with respect to which T is upward closed. It now
follows by the maximality of ≤M,A(T ), that ≼M,A(T ) ≤ ≤M,A(T ) and, hence,
by Proposition 1876, that ≼M,A(T ) = ≤M,A(T ). ∎
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26.1 Gentzen π-Institutions Revisited

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,SEN,N⟩ be an
N ♭-algebraic system, Σ ∈ ∣Sign∣ and m,n ∈ ω. An ⟨m,n⟩-Σ-sequent of A is
an expression

φ0, . . . , φm−1 ⊳Σ ψ0, . . . , ψn−1,

abbreviated φ⃗ ⊳Σ ψ⃗, consisting of two finite (possibly empty) sequences φ⃗, ψ⃗ ∈
SEN(Σ). A ⟨0, n⟩-Σ-sequent ∅ ⊳Σ ψ⃗ is abbreviated ⊳Σ ψ⃗.

Given Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and an ⟨m,n⟩-Σ-sequent φ⃗ ⊳Σ ψ⃗, we
write

SEN(f)(φ⃗ ⊳Σ ψ⃗) ∶= SEN(f)(φ⃗) ⊳Σ′ SEN(f)(ψ⃗),
where, as usual,

SEN(f)(φ⃗) ∶= ⟨SEN(f)(φ0), . . . ,SEN(f)(φm−1)⟩,
SEN(f)(ψ⃗) ∶= ⟨SEN(f)(ψ0), . . . ,SEN(f)(ψn−1)⟩.

Sometimes, we denote a Σ-sequent by φ ∶= φ⃗0 ⊳Σ φ⃗1 and a set of Σ-sequents
by Φ. The notation for images under morphisms is then extended to sets of
Σ-sequents by writing

SEN(f)(Φ) = {SEN(f)(φ) ∶ φ ∈ Φ}.
A trace tr is a nonempty subset of ω × ω. An ⟨m,n⟩-Σ-sequent is a tr-Σ-
sequent if ⟨m,n⟩ ∈ tr. The collection of all tr-Σ-sequents of A is denoted by
Seqtr

Σ(A) and we set

Seqtr(A) = {Seqtr
Σ(A)}Σ∈∣Sign∣.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and tr be a given trace.
A Gentzen π-institution G = ⟨F,G⟩ of trace tr based on F consists of a
closure system

G ∶ PSeqtr(F)→ PSeqtr(F),
i.e., a collection of closure operators

GΣ ∶ PSeqtr
Σ(F)→ PSeqtr

Σ(F), Σ ∈ ∣Sign♭∣,
that also satisfy structurality, that is, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,
Σ′), and all Φ ⊆ Seqtr

Σ(F),
SEN(f)(GΣ(Φ)) ⊆ GΣ′(SEN(f)(Φ)).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G = ⟨F,G⟩
a Gentzen π-institution of trace tr based on F. If, for some Σ ∈ ∣Sign♭∣,
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Φ ∪ {φ} ⊆ Seqtr
Σ(F), such that φ ∈ GΣ(Φ), we say that ⟨Φ,φ⟩ is a Σ-rule of

G or a Σ-derivable rule of G, sometimes denoted

Φ

φ
.

A Σ-rule of form ⟨∅,φ⟩ is called a Σ-derivable sequent or a Σ-theorem
of G.

G is inconsistent if all elements in Seqtr(F) are derivable sequents in G.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and Gi =⟨F,Gi⟩, i ∈ I, a collection of Gentzen π-institutions, all of trace tr, based on

F. Then

⋂
i∈I

Gi = ⟨F,⋂
i∈I

Gi⟩,
defined, by setting, for all Σ ∈ ∣Sign♭∣, Φ ⊆ Seqtr

Σ(F),
(⋂
i∈I

Gi)Σ(Φ) =⋂
i∈I

Gi
Σ(Φ),

is also a Gentzen π-institution.
Therefore, given a family X = {XΣ}Σ∈∣Sign♭∣ of rules, there is a smallest

Gentzen π-institution GX = ⟨F,GX⟩, such that, for all Σ ∈ ∣Sign♭∣ and all⟨Φ,φ⟩ ∈ XΣ,
φ ∈ GX

Σ(Φ).
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a

Gentzen π-institution based on F, with ⟨0,1⟩ ∈ tr. Consider

G0 ∶ PSEN → PSEN

defined, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ SEN♭(Σ), by

φ ∈ G0
Σ(Φ) iff ⊳Σ φ ∈ GΣ({⊳Σ ψ ∶ ψ ∈ Φ}).

Lemma 1878 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G =⟨F,G⟩ a Gentzen π-institution based on F, with ⟨0,1⟩ ∈ tr. G0 ∶ PSEN♭ →
PSEN♭ is a closure system on F.

Proof: Suppose, first, that Σ ∈ ∣Sign♭∣, Φ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ Φ.
Then, by the inflationarity of G, ⊳Σ φ ∈ GΣ({⊳Σ ψ ∶ ψ ∈ Φ}) and, hence,
by definition of G0, φ ∈ G0

Σ(Φ). Suppose, next, that Σ ∈ ∣Sign♭∣, Φ ∪ Ψ ⊆
SEN♭(Σ), such that Φ ⊆ Ψ. Then, by monotonicity ofG, GΣ({⊳Σ φ ∶ φ ∈ Φ}) ⊆
GΣ({⊳Σ ψ ∶ ψ ∈ Ψ}), whence, by the definition of G0, G0

Σ(Φ) ⊆ G0
Σ(Ψ). Now

assume that Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ), such that φ ∈ G0
Σ(G0

Σ(Φ)).
Then, taking into account the idempotency of G, we get

⊳Σ φ ∈ GΣ({⊳Σ ψ ∶ ψ ∈ G0
Σ(Φ)})

⊆ GΣ(GΣ({⊳Σ φ ∶ φ ∈ Φ}))
⊆ GΣ({⊳Σ φ ∶ φ ∈ Φ}),
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whence φ ∈ G0
Σ(Φ). Finally, the structurality property of G0 follows directly

by the structurality property of G. ∎

According to Lemma 1878, the structure G0 = ⟨F,G0⟩ is a π-institution,
called the π-institution reduct of the Gentzen π-institution G.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-
algebraic systems. Recall the closure system CK ∶ P(SEN♭)2 → P(SEN♭)2
defined, by setting, for all Σ ∈ ∣Sign♭∣ and all E ∪ {φ ≈ ψ} ⊆ SEN♭(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff for all A ∈ K,Σ′ ∈ ∣Sign♭∣, f ∈ Sign(Σ,Σ′),

αΣ′(SEN♭(f)(E)) ⊆ ∆A
F (Σ′)

implies αΣ′(SEN♭(f)(φ)) = αΣ′(SEN♭(f)(ψ)).
The π-institution IK = ⟨F,CK⟩ was called the equational π-institution
associated with the class K. This π-institution may be recast as a Gentzen
π-institution of trace {⟨1,1⟩}. More precisely, we define the Gentzen π-
institution GK = ⟨F,GK⟩ by setting, for all Σ ∈ ∣Sign♭∣ and all {φi, ψi ∶ i ∈
I} ∪ {φ,ψ} ⊆ SEN♭(Σ),

φ ⊳Σ ψ ∈ GK
Σ({φi ⊳Σ ψi ∶ i ∈ I}) iff φ ≈ ψ ∈ CK

Σ({φi ≈ ψi ∶ i ∈ I}).
We call GK the Gentzen π-institution associated with the class K.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and I = ⟨F,C⟩ a π-
institution based on F. I may also be recast as a Gentzen π-institution of
trace {⟨0,1⟩}. More precisely, given Σ ∈ ∣Sign♭∣ and Φ ⊆ SEN♭(Σ), denote by

⊳Σ Φ = {⊳Σ φ ∶ φ ∈ Φ}
and, similarly, given T = {TΣ}Σ∈∣Sign♭∣ ∈ SenFam(F), let

⊳ T = {⊳Σ TΣ}Σ∈∣Sign♭∣.
We define GI = ⟨F,GI⟩ by setting, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆
SEN♭(Σ),

⊳Σ φ ∈ GIΣ(⊳Σ Φ) iff φ ∈ CΣ(Φ).
We call GI the Hilbert π-institution associated with I . In this termi-
nology, a Hilbert π-institution is a Gentzen π-institution of trace {⟨0,1⟩}.

Given a Gentzen π-institution G = ⟨F,G⟩ of trace tr, such that ⟨0,1⟩ ∈ tr,
we call the Hilbert π-institution GG

0

associated with the π-institution reduct
G0 of G the Hilbert π-institution reduct of G and we denote it by G0 =⟨F,G0⟩ (note the overloading of notation for G0, used both for the closure
system of the π-institution G0 and for the closure system of GG

0

; hopefully,
this will not result into any confusion, since it should be resolvable based on
context).
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26.2 Equivalence of Gentzen π-Institutions

Let F = ⟨Sign,SEN,N⟩, F′ = ⟨Sign′,SEN′,N ′⟩ be algebraic systems and tr,
tr′ be traces. A tr-tr′-translation is a collection of functions

α = {αm,n ∶ ⟨m,n⟩ ∈ tr},
where, for all ⟨m,n⟩ ∈ tr,

αm,n = {αm,nΣ }Σ∈∣Sign∣
is such that, for all Σ ∈ ∣Sign∣,

α
m,n
Σ ∶ SEN(Σ)m,n → P(Seqtr′

Σ (F′))
assigns to each ⟨m,n⟩-Σ-sequent φ⃗ ⊳Σ ψ⃗ of F a set of tr′-Σ-sequents of F′

α
m,n
Σ [φ⃗; ψ⃗].

We extend the notation in a natural way in order to write expressions more
concisely. Thus, given Σ ∈ ∣Sign∣ and Φ ∪ {φ} ⊆ Seqtr

Σ(F), we set

αΣ[φ] = αΣ[φ⃗; ψ⃗],
if φ = φ⃗ ⊳Σ ψ⃗, and

αΣ[Φ] =⋃{αm,nΣ [φ] ∶ φ ∈Φm,n, ⟨m,n⟩ ∈ tr}.
Finally, if Φ = {ΦΣ}Σ∈∣Sign∣ ≤ Seqtr(F), we set

α[Φ] =⋃{αΣ[ΦΣ] ∶ Σ ∈ ∣Sign∣}.
Even though we defined translations in a very general way, we will deal

almost exclusively with a special kind of translation, called a transformation.
To introduce those, we fix F = ⟨Sign♭,SEN♭,N ♭⟩ and two traces tr and tr′.
A tr-tr′-translation α = {αm,n ∶ ⟨m,n⟩ ∈ tr} is called a tr-tr′-transformation
if there exists a family

τ = {τm,n ∶ ⟨m,n⟩ ∈ tr},
such that, for all ⟨m,n⟩ ∈ tr,

τm,n ∶ SENω →⋃{SENk+ℓ ∶ ⟨k, ℓ⟩ ∈ tr′}
is a collection of natural transformations in N ♭, with m + n distinguished
arguments, such that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ⊳Σ ψ⃗ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
αm,nΣ [φ⃗; ψ⃗] = τm,nΣ [φ⃗; ψ⃗],
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where, we let τm,nΣ [φ⃗; ψ⃗] be defined, for all Σ′ ∈ ∣Sign♭∣, by

τm,nΣ [φ⃗; ψ⃗] = ⋃{τm,nΣ (φ⃗, ψ⃗, χ⃗) ∶ χ⃗′ ∈ SEN♭(Σ)}.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr and tr′ two traces

and G = ⟨F,G⟩ and G′ = ⟨F,G′⟩ two Gentzen π-institutions of traces tr and
tr′, respectively, both based on F. A tr-tr′-transformation τ is an inter-
pretation from G to G′, written τ ∶ G → G′ if, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GΣ(Φ) iff τΣ[φ] ⊆ G′Σ(τΣ[Φ]).

The two π-institutions G and G′ are equivalent if there exist a tr-tr′-
transformation τ and a tr′-tr-transformation ρ, such that:

• τ ∶ G→G′ is an interpretation;

• ρ ∶ G′ →G is an interpretation;

• for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F),

GΣ(φ) = GΣ(ρΣ[τΣ[φ]]);
• for all Σ ∈ ∣Sign♭∣ and all φ′ ∈ Seqtr′

Σ (F),
G′Σ(φ′) = G′Σ(τΣ[ρΣ[φ′]]).

In this case the pair (τ, ρ) is called a conjugate pair of transformations and
denoted by (τ, ρ) ∶ G⇄ G′.

As in Lemma 889, it suffices to check only the first and last conditions,
or, equivalently, the middle two conditions to ensure that two Gentzen π-
institutions are equivalent.

Lemma 1879 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

be traces, G = ⟨F,G⟩, G′ = ⟨F,G′⟩ two Gentzen π-institutions of traces
tr, tr′, respectively, based on F, τ a tr-tr′-transformation and ρ a tr′-tr-
transformation. The following are equivalent:

(i) τ ∶ G → G′ is an interpretation and, for all Σ ∈ ∣Sign♭∣, φ′ ∈ Seqtr′

Σ (F),
G′Σ(φ′) = G′Σ(τΣ[ρΣ[φ′]]);

(ii) ρ ∶ G′ → G is an interpretation and, for all Σ ∈ ∣Sign♭∣, φ ∈ Seqtr
Σ(F),

GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).
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Proof: Similar to the proof of Lemma 889. Suppose that the conditions in
(i) hold. Then, for all Σ ∈ ∣Sign♭∣ and all Φ′ ∪ {φ′} ⊆ Seqtr′

Σ (F), we have

φ′ ∈ G′Σ(Φ′) iff τΣ[ρΣ[φ′]] ⊆ G′Σ(τΣ[ρΣ[Φ′]])
iff ρΣ[φ′] ⊆ GΣ(ρΣ[Φ′]).

Hence, ρ ∶ G′ → G is also an interpretation. Finally, for all Σ ∈ ∣Sign♭∣ and
all φ ∈ Seqtr

Σ(F), we get, for all ψ ∈ Seqtr
Σ(F),

ψ ∈ GΣ(φ) iff τΣ[ψ] ⊆ G′Σ(τΣ[φ])
iff τΣ[ψ] ⊆ GΣ(τΣ[ρΣ[τΣ[φ]]])
iff ψ ∈ GΣ(ρΣ[τΣ[φ]]).

Thus, the second condition of (ii) is also satisfied. Thus (i) implies (ii) holds
and, by symmetry, we conclude that (i) and (ii) are equivalent. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ traces and τ a
tr-tr′-transformation. Define

τ∗ ∶ SenFam(Seqtr′(F)) → SenFam(Seqtr(F))
by setting, for all Φ′ ∈ SenFam(Seqtr′(F)),

τ∗(Φ′) = {τ∗Σ(Φ′)}Σ∈∣Sign♭∣
be given, for all Σ ∈ ∣Sign♭∣, by

τ∗Σ(Φ′) = {φ ∈ Seqtr
Σ(F) ∶ τΣ[φ] ⊆ Φ′Σ}.

Analogously to Theorem 893, we can show that, if G and G′ are equiv-
alent Gentzen π-institutions via a conjugate pair (τ, ρ) ∶ G ⇄ G′, then
ρ∗ ∶ ThFam(G) → ThFam(G′) and τ∗ ∶ ThFam(G′) → ThFam(G) form
a pair of mutually inverse order isomorphisms between the complete lattices
of the corresponding theory families.

Theorem 1880 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces, G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′, re-
spectively, and (τ, ρ) ∶ G⇄ G′ a conjugate pair of transformations. Then

ρ∗ ∶ ThFam(G)→ ThFam(G′) and τ∗ ∶ ThFam(G′)→ ThFam(G)
are mutually inverse order isomorphisms.

Proof: Similar to the proof of Theorem 893. Let T ∈ ThFam(G). Then, for
all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F), we get

φ ∈ τ∗Σ(ρ∗(T )) iff τΣ[φ] ⊆ ρ∗Σ(T )
iff ρΣ[τΣ[φ]] ⊆ T Σ

iff φ ∈ T Σ.
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Thus, τ∗(ρ∗(T )) = T . By symmetry, for all T ′ ∈ ThFam(G′), ρ∗(τ∗(T ′)) =
T ′. Thus, ρ∗ and τ∗ are mutually inverse bijections and, since they are both
order preserving, they form a pair of mutually inverse order isomorphisms
between ThFam(G) and ThFam(G′). ∎

Conversely, it is true that, under ceratin hypotheses, given mutually in-
verse order isomorphisms between the complete lattices of two Gentzen π-
institutions, one may define a conjugate pair between the two that establishes
the order-isomorphism via the process that was described above.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be traces, and
G = ⟨F,G⟩, G′ = ⟨F,G′⟩ be Gentzen π-institutions of traces tr, tr′, respec-
tively, based on F. Consider an order isomorphism

h ∶ ThFam(G′)→ ThFam(G)
between the corresponding complete lattices of theory families.

Define
Ð→
h = {Ð→h Σ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign∣,

Ð→
h Σ ∶ Seqtr

Σ(F) → P(Seqtr′

Σ (F))
be given, for all φ ∈ Seqtr

Σ(F), by

Ð→
h Σ[φ] = h−1Σ (G(φ)).

Further, define
←Ð
h = {←Ðh Σ}Σ∈∣Sign♭∣ by letting, for all Σ ∈ ∣Sign♭∣,

←Ð
h Σ ∶ Seqtr′

Σ (F)→ P(Seqtr
Σ(F))

be given, for all φ′ ∈ Seqtr′

Σ (F), by

←Ð
h Σ[φ′] = hΣ(G′(φ′)).

The order isomorphism h ∶ ThFam(G′) → ThFam(G) is called trans-
formational if there exist

• a tr-tr′-translation τ ,

• a tr′-tr-translation ρ,

such that, for all Σ ∈ ∣Sign♭∣, all φ ∈ Seqtr
Σ(F) and all φ′ ∈ Seqtr′

Σ (F),
Ð→
h Σ[φ] = G′Σ(τΣ[φ]) and

←Ð
h Σ[φ′] = GΣ(ρΣ[φ′]),

i.e., by definition of
Ð→
h and

←Ð
h , if and only if, for all Σ ∈ ∣Sign♭∣, all φ ∈

Seqtr
Σ(F) and all φ′ ∈ Seqtr′

Σ (F),
h−1Σ (G(φ)) = G′Σ(τΣ[φ]) and hΣ(G′(φ′)) = GΣ(ρΣ[φ′]).
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Here G(φ) and G′(φ′) denote the theory families of G and G’ generated
by the Σ-sequents φ and φ′, respectively. Since all components of these
theory families other than the Σ-components consist of sets of theorems, we
sometimes write by a slight abuse of notation

h−1Σ (GΣ(φ)) = G′Σ(τΣ[φ]) and hΣ(G′Σ(φ′)) = GΣ(ρΣ[φ′]).
In this case, we say that h is induced by the pair of translations (τ, ρ).

We can show that the properties defining transformationality of an order
isomorphism extend to sets of Σ-sequents.

Lemma 1881 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be
traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If h ∶ ThFam(G′) → ThFam(G) a transforma-
tional order isomorphism induced by the pair (τ, ρ) of translations, then, for
all for all Σ ∈ ∣Sign♭∣, all Φ ⊆ Seqtr

Σ(F) and all Φ′ ⊆ Seqtr′

Σ (F),
h−1Σ (G(Φ)) = G′Σ(τΣ[Φ]) and hΣ(G′(Φ′)) = GΣ(ρΣ[Φ′]).

Proof: Let Σ ∈ ∣Sign♭∣, and Φ ⊆ Seqtr
Σ(F). Then, taking into account that

both ThFam(G) and ThFam(G′) are ordered signature-wise, we have

h−1Σ (G(Φ)) = h−1Σ (⋁φ∈ΦG(φ))
= ⋁φ∈Φ h

−1
Σ (G(φ))

= ⋁φ∈ΦG
′
Σ(τΣ[φ])

= G′Σ(⋃φ∈Φ τΣ[φ])
= G′Σ(τΣ[Φ]).

The second equality holds by symmetry. ∎

Then the following result forms an analog of Theorem 900.

Theorem 1882 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

be traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr,
tr′, respectively, based on F. If h ∶ ThFam(G′) → ThFam(G) a transfor-
mational order isomorphism induced by the pair (τ, ρ) of translations, then(τ, ρ) ∶G ⇄G′ is a conjugate pair of transformations.

Proof: Similar to the proof of Theorem 900. Suppose h ∶ ThFam(G′) →
ThFam(G) is an order isomorphism and let Σ ∈ ∣Sign♭∣ and Φ′ ∪ {φ′} ⊆
Seqtr′

Σ (G′). Then we have

φ′ ∈ G′Σ(Φ′) iff G′Σ(φ′) ⊆ G′Σ(Φ′)
iff hΣ(G′(φ′)) ⊆ hΣ(G′(Φ′))
iff GΣ(ρΣ[φ]) ⊆ GΣ(ρΣ[Φ])
iff ρΣ[φ] ⊆ GΣ(ρΣ[Φ]).
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Thus, ρ ∶ G′ → G is an interpretation. Furthermore, for all Σ ∈ ∣Sign♭∣ and
φ ∈ Seqtr

Σ(F), we have

GΣ(ρΣ[τΣ[φ]]) = hΣ(G′Σ(τΣ[φ]))
= hΣ(h−1Σ (GΣ(φ)))
= GΣ(φ).

We conclude that (τ, ρ) ∶G ⇄G′ is a conjugate pair. ∎

Finally, we show that interpretations compose and the same holds for
equivalences of Gentzen π-institutions.

Lemma 1883 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′, tr′′

be traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩, G′′ = ⟨F,G′′⟩ be Gentzen π-institutions
of traces tr, tr′, tr′′, respectively, based on F.

(a) If τ ∶ G→ G′ and τ ′ ∶ G′ →G′′ are interpretations, then τ ′ ○ τ ∶G →G′′

is also an interpretation;

(b) If (τ, ρ) ∶ G ⇄ G′ and (τ ′, ρ′) ∶ G′ ⇄ G′′ are conjugate pairs, then(τ ′ ○ τ, ρ ○ ρ′) ∶G ⇄G′′ is also a conjugate pair.

Proof:

(a) Suppose τ ∶ G → G′ and τ ′ ∶ G′ → G′′ are interpretations. Then, for all
Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), we get

φ ∈ GΣ(Φ) iff τΣ[φ] ⊆ G′Σ(τΣ[Φ])
iff τ ′Σ[τΣ[φ]] ⊆ G′′Σ(τ ′Σ[τΣ[Φ]]).

hence, τ ′ ○ τ ∶G →G′′ is also an interpretation.

(b) Now suppose that (τ, ρ) ∶ G ⇄ G′ and (τ ′, ρ′) ∶ G′ ⇄ G′′ are conjugate
pairs. Then, by Part (a), τ ′○τ ∶ G→G′′ is an interpretation. Moreover,
for all Σ ∈ ∣Sign♭∣ and all φ′′,ψ′′ ∈ Seqtr′′

Σ (F), we have ψ′′ ∈ G′′Σ(φ′′) if
and only if

ρ′Σ[ψ′′] ⊆ G′Σ(ρ′Σ[φ′′]) = G′Σ(τΣ[ρΣ[ρ′Σ[φ′′]]]).
This holds if and only if

τ ′Σ[ρ′Σ[ψ′′]] ⊆ G′′Σ(τ ′Σ[τΣ[ρΣ[ρ′Σ[φ′′]]]]).
Equivalently,

ψ′′ ∈ G′′Σ(τ ′Σ[τΣ[ρΣ[ρ′Σ[φ′′]]]]).
We conclude that, for all Σ ∈ ∣Sign♭∣ and all φ′′ ∈ Seqtr′′

Σ (F),
G′′Σ(φ′′) = G′′Σ(τ ′Σ[τΣ[ρΣ[ρ′Σ[φ′′]]]]).

Therefore, by Lemma 1879, (τ ′ ○ τ, ρ ○ ρ′) ∶ G ⇄ G′′ is also a conjugate
pair.

∎
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26.3 Hilbertizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and G = ⟨F,G⟩ a Gentzen
π-institution based on F. G is Hilbertizable if it is equivalent to a Hilbert
π-institution based on F. In other words, G is Hilbertizable if there exists
a Hilbert π-institution H = ⟨F,H⟩, based on F, and a conjugate pair of
transformations (τ, ρ) ∶G ⇄ H.

We have the following proposition that follows directly from the relevant
definitions.

Proposition 1884 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
Hilbertizable if and only if there exist:

(1) A Hilbert π-institution H = ⟨F,H⟩;
(2) A collection ρ ∶ (SEN♭)ω → ⋃⟨m,n⟩∈tr SENm+m in N ♭ with a single distin-

guished argument;

(3) A family τ = {τm,n ∶ ⟨m,n⟩ ∈ tr}, where, for all ⟨m,n⟩ ∈ tr, the collection
τm,n ∶ (SEN♭)ω → SEN in N ♭ has m + n distinguished arguments;

such that, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ Seqtr
Σ(F) and all φ ∈ SEN♭(Σ),

(a) φ ∈ GΣ(Φ) iff τΣ[φ] ⊆HΣ(τΣ[Φ]);
(b) HΣ(φ) = HΣ(τΣ[ρΣ[φ]]);

or, equivalently, such that, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ SEN♭(Σ) and all
φ ∈ Seqtr

Σ(F),
(c) ⊳Σ φ ∈ HΣ(⊳Σ Φ) iff ρΣ[φ] ⊆ GΣ(ρΣ[Φ]);
(d) GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).

Proof: This is a rephrasing of the definition of Hilbertizability using the
conditions establishing an equivalence between two Gentzen π-institutions
and taking into account Lemma 1879. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, G = ⟨F,G⟩ a Gentzen
π-institution and H = ⟨F,H⟩ a Hilbert π-institution both based on F. Define
the {⟨0,1⟩}-tr-transformation ρ0 by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ),

ρ0Σ[φ] = {⊳Σ φ}.
We say that G and H are simply equivalent if they are equivalent via a
conjugate pair of the form (τ, ρ0) ∶ G ⇄ H. The Gentzen π-institution G is
simply Hilbertizable if it is simply equivalent to some Hilbert π-institution
H = ⟨F,H⟩.



1530 CHAPTER 26. GENTZEN π-INSTITUTIONS Voutsadakis

If G is simply Hilbertizable, it turns out that there is a unique Hilbert
π-institution simply equivalent to G, namely, the Hilbert π-institution reduct
G0 of G.

Proposition 1885 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and
G = ⟨F,G⟩ a Gentzen π-institution based on F. If G is simply Hilbertizable,
then it is simply equivalent to a unique Hilbert π-institution, namely, the
Hilbert π-institution reduct G0 = ⟨F,G0⟩ of G.

Proof: Suppose that G is simply Hilbertizable via the conjugate pair (τ, ρ0) ∶
G → H, with H = ⟨F,H⟩. It suffices to show that H = G0. To this end, let
Σ ∈ ∣Sign♭∣ and Φ ∪ {φ} ⊆ SEN♭(Σ). Then we have

⊳Σ φ ∈HΣ(⊳Σ Φ) iff ρ0Σ[φ] ⊆ GΣ(ρ0Σ[Φ]) (by hypothesis)
iff ⊳Σ φ ∈ GΣ(⊳Σ Φ) (definition of ρ0)
iff ⊳Σ φ ∈ G0

Σ(⊳Σ Φ). (definition of G0)

Therefore H = G0, whence it follows that G is simply Hilbertizable via a
simple equivalence involving the Hilbert π-institution reduct G0 of G ∎

We have, further, the following simpler characterization of simple Hilber-
tizability, due to the fact that the interpretation in one of the two directions
is required to be a fixed one.

Proposition 1886 Let F = ⟨Sign♭,SEN♭,N ♭⟩, be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
simply Hilbertizable if and only if there exists a tr-{⟨0,1⟩}-transformation
τ = {τm,n ∶ ⟨m,n⟩ ∈ tr}, such that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F),
GΣ(φ) = GΣ(⊳ τΣ[φ]).

Proof: If G is simply Hilbertizable, then, by Proposition 1885, it is equiv-
alent to the Hilbert π-institution reduct G0 of G via some conjugate pair(τ, ρ0) ∶ G ⇄ G0. Thus, by the definition of equivalence, we get, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F),
GΣ(φ) = GΣ(ρ0Σ[τΣ[φ]])

= GΣ(⊳Σ τΣ[φ]).
Assume, conversely, that there exists a tr-{⟨0,1⟩}-transformation τ , such
that, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F), GΣ(φ) = GΣ(⊳ τΣ[φ]). To
show that G is simply Hilbertizable, it suffices, by Proposition 1885 and
Proposition 1884, to show that, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆ SEN♭(Σ),

⊳Σ φ ∈ G0
Σ(⊳Σ Φ) iff ⊳Σ φ ∈ GΣ(⊳Σ Φ).

This equivalence, however, holds by the definition of G0. ∎
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26.4 Syntactic WF Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G = ⟨F,G⟩
a Gentzen π-institution of trace tr based on F. G is (syntactically WF)
algebraizable if it is equivalent to the Gentzen π-institution GK = ⟨F,GK⟩
associated with some class K of F-algebraic systems.

Explicitly, using the definition of equivalence, this means that there exists
a class K of F-algebraic systems, a tr-{⟨1,1⟩}-transformation τ and a {⟨1,1⟩}-
tr-transformation ρ, such that, for all Σ ∈ ∣Sign♭∣, all Φ∪{φ} ⊆ Seqtr

Σ(F) and
φ,ψ ∈ SEN♭(Σ),

(a) φ ∈ GΣ(Φ) iff τΣ[φ] ⊆ GK
Σ(τΣ[Φ]);

(b) GK
Σ(φ ⊳Σ ψ) = GK

Σ(τΣ[ρΣ[φ;ψ]]);
or, equivalently, such that, for all Σ ∈ ∣Sign♭∣, all E ∪ {φ ≈ ψ} ⊆ EqΣ(F) and
all φ ∈ Seqtr

Σ(F),
(c) φ ⊳Σ ψ ∈ GK

Σ(E) iff ρΣ[φ;ψ] ⊆ GΣ(ρΣ[E]);
(d) GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).

Recall that, given a class K of F-algebraic systems, we denote by G(K),
the guasivariety of F-algebraic systems generated by K, i.e., the collection of
all F-algebraic systems that satisfy the F-guasiequations that are satisfied
by all A ∈ K.

It turns out that, when a Gentzen π-institution G is algebraizable via
two different classes K and K′ of F-algebraic systems, then both classes K

and K′ generate the same guasivariety and, hence, that there exists a unique
guasivariety of F-algebraic systems that serves as the algebraizing class of
G. This is proven in Proposition 1888, following a needed lemma.

Lemma 1887 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via (τ, ρ) ∶ G ⇄ GK, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr,

ψ ∈ GΣ({φ} ∪⋃{ρΣ[φi;ψi] ∶ i <m + n}).
Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr. By the
definition of an equational Gentzen π-institution, we get

τΣ[ψ] ⊆ GK
Σ(τΣ[φ] ∪ {φi ⊳Σ ψi ∶ i <m + n}).

Thus, since, by the definition of equivalence

GK
Σ(φi ⊳Σ ψi) = GK

Σ(τΣ[ρΣ[φi;ψi]]),
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we get that

τΣ[ψ] ⊆ GK
Σ(τΣ[φ] ∪⋃{τΣ[ρΣ[φi;ψi]] ∶ i <m + n}).

Therefore, since τ is an interpretation,

ψ ∈ GΣ({φ} ∪⋃{ρΣ[φi;ψi] ∶ i <m + n}).
This establishes the conclusion. ∎

Proposition 1888 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via both the conjugate pair (τ, ρ) ∶ G ⇄ GK of transformations
and the conjugate pair (τ ′, ρ′) ∶ G ⇄ GK′ of transformations, then G(K) =
G(K′).
Proof: Suppose that G is algebraizable via both the conjugate pair (τ, ρ) ∶
G ⇄ GK of transformations and the conjugate pair (τ ′, ρ′) ∶ G ⇄ GK′ of
transformations.

We show, first, that, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
GΣ(ρΣ[φ;ψ]) = GΣ(ρ′Σ[φ;ψ]).

Note that ρ′Σ[φ;φ] ⊆ GΣ(∅), since φ ⊳Σ φ ∈ GK′

Σ (∅) and ρ′ ∶ GK′ → G is an
interpretation. Moreover, for all σ ∈ ρ′ of trace ⟨m,n⟩ ∈ tr, all i < m + n,all
Σ ∈ ∣Sign♭∣, and all χ⃗ ∈ SEN♭(Σ),

ρΣ[σiΣ(φ,φ, χ⃗);σiΣ(φ,ψ, χ⃗)] ⊆ GΣ(ρΣ[φ;ψ]).
Since, by Lemma 1887, ρ has the modus ponens in G, we get that ρ′Σ[φ;ψ] ⊆
GΣ(ρΣ[φ;ψ]). By symmetry, we conclude that GΣ(ρΣ[φ;ψ]) = GΣ(ρ′Σ[φ;ψ]).

Finally, we have, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),
φ ⊳Σ ψ ∈ GK

Σ(E) iff ρΣ[φ;ψ] ⊆ GΣ(ρΣ[E])
iff ρ′Σ[φ;ψ] ⊆ GΣ(ρ′Σ[E])
iff φ ⊳Σ ψ ∈ GK′

Σ (E).
Thus, we get that G(K) = G(K′). ∎

Given an algebraizable Gentzen π-institution G, there exists, by Propo-
sition 1888, a unique guasivariety K that serves as the algebraic counterpart
of G. It is called the equivalent algebraic semantics of G.

The next result asserts that equivalent Gentzen systems have the same
status vis-à-vis algebraizability and, in case they are algebraizable, they share
a common algebraic semantics. Moreover, they share the same Hilbertizabil-
ity status and, in case they are Hilbertizable, they share the same Hilberti-
zations (which, however, are not unique).
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Proposition 1889 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G = ⟨F,G′⟩ two equivalent Gentzen π-institutions of
traces tr, tr′, respectively, based on F.

(a) G is algebraizable if and only if G′ is algebraizable. If this is the case,
G and G′ have the same algebraic semantics.

(b) G is Hilbertizable if and only if G′ is Hilbertizable. If this is the case,
every Hilbertization of G is one of G′ also.

Proof:

(a) Suppose G and G′ are equivalent via (τ, ρ) ∶ G ⇄ G′ and that G′ is
algebraizable via (τ ′, ρ′) ∶ G′ ⇄ GK′ , for some class K′ of F-algebraic
systems. Then, by Lemma 1883,

G
τ ✲✛
ρ

G′
τ ′ ✲✛
ρ′

GK′

(τ ′ ○ τ, ρ ○ ρ′) ∶ G ⇄ GK′ is witnessing the algebraizability of G. By
symmetry G is algebraizable if and only if G′ is algebraizable. Since
any algebraizing class K′ for G′ is also an algebraizing class for G, and
vice versa, we get that G and G′ have the same equivalent algebraic
semantics.

(b) Suppose G and G′ are equivalent via (τ, ρ) ∶ G ⇄ G′ and that G′ is
Hilbertizable via (τ ′, ρ′) ∶ G′ ⇄ H′, for some Hilbert π-institution H′.
Then, again by Lemma 1883,

G
τ ✲✛
ρ

G′
τ ′ ✲✛
ρ′

H′

(τ ′○τ, ρ○ρ′) ∶G ⇄ H′ is witnessing the Hilbertizability of G. By symme-
try, G is Hilbertizable if and only if G′ is. Moreover, any Hilbertization
H′ for G′ serves also as one for G, and vice versa, i.e., G and G′ share
the same Hilbertizations.

∎

Suppose that a Gentzen π-institution G = ⟨F,G⟩ of trace tr, together
with a trace tr′, are given. We give, next, a characterization of the existence
of an equivalence (τ, ρ) ∶ G ⇄ G′ of G with some Gentzen π-institution G′,
having the given trace tr′.

Theorem 1890 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be
traces and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
equivalent to a Gentzen π-institution G′ = ⟨F,G′⟩ of trace tr′ based on F if
and only if there exist a tr-tr′-transformation τ and a tr′-tr-transformation
ρ, such that:
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(1) ρ∗ ∶ ThFam(G)→ SenFam(Seqtr′(F)) is injective on ThFam(G);
(2) For all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F), ρ∗Σ(G(φ)) = G′Σ(τΣ[φ]), where
G′ is the closure system induced by ρ∗(ThFam(G)).

Proof: Suppose, first, that there exists an equivalence (τ, ρ) ∶ G ⇄ G′,
where G′ = ⟨F,G′⟩ is a Gentzen π-institution of trace tr′ based on F. By
Theorem 1880, we know that ρ∗ ∶ ThFam(G) → ThFam(G′) is an order
isomorphism, whence, in particular, it is injective on ThFam(G). Moreover,
for all Σ ∈ ∣Sign♭∣ and all ψ ∈ Seqtr

Σ(F), we have

ψ ∈ ρ∗Σ(G(φ)) iff ρΣ[ψ] ⊆ GΣ(φ)
iff τΣ[ρΣ[ψ]] ⊆ G′Σ(τΣ[φ])
iff ψ ∈ G′Σ(τΣ[φ]).

Therefore, ρ∗Σ(G(φ)) = G′Σ(τΣ[φ]).
Suppose, conversely, that there exist a tr-tr′-transformation τ and a tr′-

tr-transformation ρ, such that Conditions (1) and (2) of the statement hold.
Since ρ∗(ThFam(G)) is closed under intersection, it defines a closure system
on Seqtr′(F), which we denote by G′, writing G′ = ⟨F,G′⟩ for the correspond-
ing Gentzen π-institution of trace tr′. It suffices now, by Theorem 1882, to
show that ρ∗ ∶ ThFam(G) → ThFam(G′) is a transformational order iso-
morphism induced by (τ, ρ). We know, by hypothesis, that ρ∗ is injective.
By definition of G′, it is surjective. By definition of ρ∗, it is order preserving.
Finally, it is order reflecting, since, for all T ,T ′ ∈ ThFam(G),

ρ∗(T ) ≤ ρ∗(T ′) iff ρ∗(T ) ∩ ρ∗(T ′) = ρ∗(T )
iff ρ∗(T ∩ T ′) = ρ∗(T )
iff T ∩ T ′ = T
iff T ≤ T ′.

Therefore, ρ∗ ∶ ThFam(G)→ ThFam(G′) is, indeed, an order isomorphism.
To show that ρ∗ ∶ ThFam(G)→ ThFam(G′) is transformational, it suffices
to show that, for all Σ ∈ ∣Sign♭∣, all φ ∈ Seqtr

Σ(F) and all φ′ ∈ Seqtr′

Σ (F),
ρ∗Σ(G(φ)) = G′Σ(τΣ[φ]) and (ρ∗)−1Σ (G′(φ′)) = GΣ(ρΣ[φ′]).

The first holds by hypothesis and the second holds by the definition of G′,
since ρ∗Σ(G(ρΣ[φ′])) is the least theory family of G′ containing φ′. ∎

26.5 Matrix Families and Algebraic Seman-

tics

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and A = ⟨A,⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, an F-algebraic system. A tr-filter family
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of A is a family T ≤ Seqtr(A). The pair A = ⟨A,T ⟩ is called a tr-matrix
family. It defines a closure family GA of trace tr on F as follows: For all
Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GA

Σ(Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ T F (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ T F (Σ′).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Let A = ⟨A, ⟨F,α⟩⟩,
with A = ⟨Sign,SEN,N⟩, be an F-algebraic system and T a tr-filter family
of A. T is called a G-filter family of A if G ≤ GA, i.e., if, for all Σ ∈ ∣Sign♭∣
and all Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GΣ(Φ) implies φ ∈ GA

Σ(Φ).
Note that, as was pointed out previously, because of the structurality of G,
it suffices to check that, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), such
that φ ∈ GΣ(Φ), we have

αΣ(Φ) ⊆ T F (Σ) implies αΣ(φ) ∈ T F (Σ).

If T is a G-filter family of A, then the pair A = ⟨A,T ⟩ is called a G-matrix
family of A. We denote by FiFamG(A) the collection of all G-filter families
of A and by MatFam(G) the collection of all G-matrix families.

Many facts, introduced previously in this work, that hold for I-filter
families and I-matrix families, for a π-institution I , have analogs for G-filter
and G-matrix families, respectively. We list some of those that will be needed
in the sequel.

Lemma 1891 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F and A = ⟨A, ⟨F,α⟩⟩,
B = ⟨B, ⟨G,β⟩⟩ F-algebraic systems.

(a) The collection FiFamG(A) forms a complete lattice

FiFamG(A) = ⟨FiFamG(A),≤⟩
under signature-wise inclusion ≤;

(b) FiFamG(F) = ThFam(G);
(c) If A = ⟨A, ⟨F,α⟩⟩, B = ⟨B, ⟨G,β⟩⟩ are F-algebraic systems and ⟨H,γ⟩ ∶
A → B a surjective morphism, then T ∈ FiFamG(B) if and only if
γ−1(T ) ∈ FiFamG(A).

Proof:
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(a) Let {T i ∶ i ∈ I} ⊆ FiFamG(A), Σ ∈ ∣Sign♭∣ and Φ∪ {φ} ⊆ Seqtr
Σ(F), such

that φ ⊆ GΣ(Φ). Then, if αΣ(Φ) ⊆ ⋂i∈I T
i
F (Σ), we get αΣ(Φ) ⊆ T i

F (Σ),

for all i ∈ I, whence, since T ∈ FiFamG(A), αΣ(φ) ∈ T i
F (Σ), for all i ∈ I,

i.e., αΣ(φ) ∈ ⋂i∈I T
i
F (Σ). We conclude that ⋂i∈I T

i ∈ FiFamG(A).
(b) For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), such that φ ∈ GΣ(Φ),
we get that, for all T ∈ ThFam(G), Φ ⊆ T Σ implies φ ∈ T Σ. Therefore,
ThFam(G) ⊆ FiFamG(F). On the other hand, if T ∈ FiFamG(F),
then, if φ ∈ GΣ(T Σ), then φ ∈ T Σ, i.e., T ∈ ThFam(G). Therefore,
FiFamG(F) = ThFam(G).

(c) Assume, first, that T ∈ FiFamG(B) and let Σ ∈ ∣Sign♭∣, Φ ∪ {φ} ⊆
Seqtr

Σ(F), such that φ ∈ GΣ(Φ) and αΣ(Φ) ⊆ γ−1F (Σ)(TH(F (Σ))). Then

F

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨G,β⟩
❘

A ⟨H,γ⟩ ✲ B

γF (Σ)(αΣ(Φ)) ⊆ TH(F (Σ)), i.e., βΣ(Φ) ⊆ TG(Σ). Since T ∈ FiFamG(B),
we now get βΣ(φ) ∈ T G(Σ). Reversing the steps above, we conclude

that αΣ(φ) ∈ γ−1F (Σ)(TH(F (Σ))). Therefore, γ−1(T ) ∈ FiFamG(A).
Assume, conversely, that γ−1(T ) ∈ FiFamG(A) and let Σ ∈ ∣Sign♭∣,
Φ ∪ {φ} ⊆ Seqtr

Σ(F), such that φ ∈ GΣ(Φ) and βΣ(Φ) ⊆ T G(Σ). Then
γF (Σ)(αΣ(Φ)) ⊆ TH(F (Σ)), whence αΣ(Φ) ⊆ γ−1F (Σ)(TH(F (Σ))). Since

γ−1(T ) ∈ FiFamG(A), we get αΣ(φ) ∈ γ−1F (Σ)(TH(F (Σ))). Reversing,

once more, the preceding steps, we get that βΣ(φ) ∈ T G(Σ). Therefore,

T ∈ FiFamG(B). ∎

The isomorphism between the complete lattices of theory families induced
by an equivalence extends to corresponding order isomorphisms between the
complete lattices of filter families of the equivalent Gentzen π-institutions on
the same algebraic system.

Proposition 1892 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

be traces, and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ two Gentzen π-institutions of traces
tr, tr′, respectively, based on F. If G and G′ are equivalent via the conjugate
pair (τ, ρ) ∶ G ⇄ G′, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the
mappings

T ✲ ρA∗(T ), T ∈ FiFamG(A),
τA∗(T ′) ✛ T ′, T ′ ∈ FiFamG′(A),

are mutually inverse isomorphisms from FiFamG(A) onto FiFamG′(A).
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Proof: We show, first, that, for all T ∈ FiFamG(A), all Σ ∈ ∣Sign♭∣ and all
φ ∈ Seqtr

Σ(F),
ρAF (Σ)[τAF (Σ)[αΣ(φ)]] ⊆ T F (Σ) iff αΣ(φ) ∈ T F (Σ).

Indeed, taking into account the surjectivity of ⟨F,α⟩, we obtain

ρA
F (Σ)
[τA
F (Σ)
[αΣ(φ)]] ⊆ T F (Σ) iff ρA

F (Σ)
[αΣ(τΣ[φ])] ⊆ T F (Σ)

iff αΣ(ρΣ[τΣ[φ]]) ⊆ T F (Σ)

iff ρΣ[τΣ[φ]] ⊆ α−1Σ (T F (Σ))
iff φ ∈ α−1Σ (T F (Σ))
iff αΣ(φ) ∈ T F (Σ).

By symmetry, we also have, for all T ′ ∈ FiFamG
′(A), all Σ ∈ ∣Sign♭∣ and all

φ′ ∈ Seqtr′

Σ (F),
τAF (Σ)[ρAF (Σ)[αΣ(φ′)]] ⊆ T ′F (Σ) iff αΣ(φ′) ∈ T ′F (Σ).

Using the first of these equivalences and, once again, taking into account the
surjectivity of ⟨F,α⟩, we get, for all T ∈ FiFamG(A), all Σ ∈ ∣Sign∣ and all
φ ∈ SEN(Σ),

φ ∈ τA∗Σ (ρA∗(T )) iff τAΣ [φ] ⊆ ρA∗Σ (T )
iff ρAΣ[τAΣ [φ]] ⊆ T Σ

iff φ ∈ T Σ.

Thus, τA∗(ρA∗(T )) = T , for all T ∈ FiFamG(A) and, by symmetry, we also
have ρA∗(τA∗(T ′)) = T ′, for all T ′ ∈ FiFamG′(A). Therefore, ρA∗ and τA∗

are mutually inverse bijections and reflect component-wise inclusion, since
they are obviously order preserving undel ≤. We conclude that

ρA∗ ∶ FiFamG(A)⇄ FiFamG′(A) ∶ τA∗
are mutually inverse order isomorphisms. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace, A = ⟨Sign,
SEN,N⟩ an N ♭-algebraic system and θ ∈ ConSys(A).

Given φ = φ⃗ ⊳Σ ψ⃗, φ′ = φ⃗′ ⊳Σ ψ⃗′ ∈ Seqtr
Σ(A) of the same trace ⟨m,n⟩, we

say that φ is θ-equivalent to φ′, denoted φ θΣ φ
′, if, for all i < m and all

j < n,
φi θΣ φ′i and ψj θΣ ψ′j .

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace, A = ⟨Sign,
SEN,N⟩ an N ♭-algebraic system, T ≤ Seqtr(A) and θ ∈ ConSys(A).

We say that θ is compatible with T if, for all Σ ∈ ∣Sign∣, and all
φ,φ′ ∈ Seqtr

Σ(A) (of the same trace),

φ θΣ φ
′ and φ ∈ T Σ imply φ′ ∈ T Σ.

An alternative characterization of compatibility is given in the following
lemma.



1538 CHAPTER 26. GENTZEN π-INSTITUTIONS Voutsadakis

Lemma 1893 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
A = ⟨A, ⟨F,α⟩⟩ an F-algebraic system, T ≤ Seqtr(A) and θ ∈ ConSys(A). θ
is compatible with T if and only if the quotient morphism ⟨I, πθ⟩ ∶ A → Aθ
induces a strict matrix family morphism

⟨I, πθ⟩ ∶ ⟨A,T ⟩→ ⟨Aθ, πθ(T )⟩,
i.e., if and only if (πθ)−1(πθ(T )) = T .

Proof: Suppose, first, that θ is compatible with T and let Σ ∈ ∣Sign∣,
φ ∈ Seqtr

Σ(A), such that φ ∈ (πθΣ)−1(πθΣ(T Σ)). Then, we get πθΣ(φ) ∈ πθΣ(T Σ).
Hence, there exists φ′ ∈ T Σ, such that φ θΣ φ

′. Therefore, by the compati-
bility of θ with T , we get that φ ∈ T Σ. Thus, (πθ)−1(πθ(T )) ≤ T and, since
the reverse inclusion always holds, we conclude that (πθ)−1(πθ(T )) = T .

Conversely, assume that (πθ)−1(πθ(T )) = T . Let Σ ∈ ∣Sign∣, φ,φ′ ∈
Seqtr

Σ(A), such that φ θΣ φ
′ and φ ∈ T Σ. Then φ′ ∈ (πθΣ)−1(πθΣ(T Σ)) = T Σ

and, hence, θ is compatible with T . ∎

Given a Gentzen π-institution, taking the quotient of any filter family
by a compatible congruence system results in a filter family on the quotient
algebraic system.

Lemma 1894 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F, ⟨A,T ⟩ an F-matrix
family and θ ∈ ConSys(A). If θ is compatible with T , then

T ∈ FiFamG(A) iff T /θ ∈ FiFamG(Aθ).
Proof: Suppose that θ is compatible with T . Then, using Lemmas 1891 and
1893, we have the following equivalences:

T /θ ∈ FiFamG(A/θ) iff (πθ ○ α)−1(T /θ) ∈ ThFam(G)
iff α−1((πθ)−1(T /θ)) ∈ ThFam(G)
iff α−1(T ) ∈ ThFam(G)
iff T ∈ FiFamG(A).

Hence T /θ is a G-filter family of Aθ iff T is a G-filter family of A. ∎

The following lemma forms an analog of the characterization of the Leib-
niz congruence system of a filter family on a given F-algebraic system. It will
also give rise to a corresponding operator, also termed the Leibniz operator,
for theory families of Gentzen π-institutions.

Lemma 1895 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace,
A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system, T ≤ Seqtr(A) and θ ∈ ConSys(A).
θ is compatible with T if and only if, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),
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⟨φ,ψ⟩ ∈ θΣ implies, for all ⟨m,n⟩ ∈ tr, all σ⃗ = ⟨σ0, . . . , σm−1⟩, and all τ⃗ =⟨τ 0, . . . , τn−1⟩ in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),
σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗) ∈ T Σ′

iff σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗) ∈ T Σ′ .

Proof: Suppose that Σ ∈ ∣Sign∣ and ⟨φ,ψ⟩ ∈ SEN(Σ), such that ⟨φ,ψ⟩ ∈ θΣ.
Since θ is a congruence system, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′)⟨SEN(f)(φ),SEN(f)(ψ)⟩ ∈ θΣ′ . Since θ is a congruence system, we get, for
all i <m, all j < n and all χ⃗ ∈ SEN(Σ′),

⟨σiΣ′(SEN(f)(φ), χ⃗), σiΣ′(SEN(f)(ψ), χ⃗)⟩ ∈ θΣ′
and ⟨τ jΣ′(SEN(f)(φ), χ⃗), τ jΣ′(SEN(f)(ψ), χ⃗)⟩ ∈ θΣ′ .

The conclusion follows immediately by the assumption of compatibility of θ
with T . ∎

Lemma 1895 serves to show that, given an algebraic system A and T ≤
Seqtr(A), there exists a largest congruence system on A that is compatible
with T .

Corollary 1896 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace, A = ⟨Sign,SEN,N⟩ an N ♭-algebraic system and T ≤ Seqtr(A). There
exists a largest congruence system on A compatible with T .

Proof: Define θ = {θΣ}Σ∈∣Sign∣ as follows: For all Σ ∈ ∣Sign∣ and all φ,ψ ∈
SEN(Σ), ⟨φ,ψ⟩ ∈ θΣ iff, for all ⟨m,n⟩ ∈ tr, all σ⃗ = ⟨σ0, . . . , σm−1⟩, and all τ⃗ =⟨τ 0, . . . , τn−1⟩ in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),

σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗) ∈ T Σ′

iff σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗) ∈ T Σ′ .

It is easy to see that θ, thus defined, is a congruence system on A compatible
with T . By Lemma 1895, it is the largest one compatible with T . ∎

The largest congruence system on A compatible with T is denoted by
ΩA(T ) and called the Leibniz congruence system of T on A.

As a consequence of the definition of the Leibniz congruence system, given
T ∈ Seqtr(A) and θ ∈ ConSys(A),

θ is compatible with T if and only if θ ≤ ΩA(T ).
Given an algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩, a trace tr, a Gentzen π-
institution G = ⟨F,G⟩ of trace tr based on F and an F-algebraic system A,
the operator

ΩA ∶ FiFamG(A)→ ConSys(A)
is called the Leibniz operator of G on A.
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Recall from Proposition 1892 that, given two equivalent Gentzen π-insti-
tutions, the conjugate transformations establishing the equivalence induce an
order isomorphism between the corresponding filter families of the gentzen
π-institutions involved on arbitrary algebraic systems. It turns out that,
under this isomorphism, corresponding filter families have identical Leibniz
congruence systems.

Proposition 1897 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr,
tr′ traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr,
tr′, respectively, based on F. If G and G′ are equivalent via a conjugate
pair (τ, ρ) ∶ G ⇄ G′ of transformations, then, for every F-algebraic system
A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamG(A),

ΩA(T ) = ΩA(ρA∗(T )).
Proof: Let Σ ∈ ∣Sign∣, φ,φ′ ∈ Seqtr

Σ(A), such that φ ΩAΣ(T ) φ′ and suppose
that φ ∈ ρA∗Σ (T ). Then, we obtain ρAΣ[φ] ⊆ T Σ. Thus, since, by definition,
ΩA(T ) is a congruence system compatible with T , we get that ρAΣ[φ′] ⊆
T Σ and, therefore, φ′ ∈ ρA∗Σ (T ). Hence ΩA(T ) is compatible with ρA∗(T ),
showing that ΩA(T ) ≤ ΩA(ρA∗(T )).

Assume, conversely, that Σ ∈ ∣Sign∣, φ,φ′ ∈ Seqtr′

Σ (A), such that

φ ΩAΣ(ρA∗(T )) φ′
and suppose that φ ∈ T Σ. Then, we obtain ρAΣ[τAΣ [φ]] ⊆ T Σ, i.e., τAΣ [φ] ⊆
ρA∗Σ (T ). Thus, since, by definition, ΩA(ρA∗(T )) is a congruence system com-
patible with ρA∗(T ), we get that τAΣ [φ′] ⊆ ρA∗(T ). Therefore, ρAΣ[τAΣ [φ′]] ⊆
T Σ. So φ′ ∈ T Σ and, hence, ΩA(ρA∗(T )) is compatible with T , showing that
ΩA(ρA∗(T )) ≤ ΩA(T ). ∎

As was the case with ordinary π-institutions, the Suszko operator is a
very useful tool in the study of the algebraization of Gentzen π-institutions.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace, G = ⟨F,G⟩
a Gentzen π-institution of trace tr based on F and A = ⟨A, ⟨F,α⟩⟩ an F-
algebraic system. The Suszko operator Ω̃G,A of G on A is the operator

Ω̃G,A ∶ FiFamG(A)→ ConSys(A)
defined, for all T ∈ FiFamG(A), by

Ω̃G,A(T ) =⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamG(A)}.
Since, obviously, for all T ∈ FiFamG(A),

Ω̃G,A(T ) ≤ ΩA(T ),
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Ω̃G,A(T ) is also a congruence system on A compatible with T . Moreover,
the operator Ω̃G,A is monotone on FiFamG(A), for every F-algebraic system
A.

Using the definition of the Suszko congruence system and Corollary 1896,
it is not difficult to see that the following characterization of the Suszko
congruence system of a filter family holds:

Proposition 1898 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace, G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F, A = ⟨A,⟨F,α⟩⟩ an F-algebraic system and T ∈ FiFamG(A). For all Σ ∈ ∣Sign∣ and
all φ,ψ ∈ SEN(Σ), ⟨φ,ψ⟩ ∈ Ω̃G,A

Σ (T ) if and only if, for all ⟨m,n⟩ ∈ tr, all
σ0, . . . , σm−1, τ 0, . . . , τn−1 in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all
χ⃗ ∈ SEN(Σ′),

G
G,A
Σ′ (T Σ′ , σ⃗

A
Σ′(SEN♭(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN♭(f)(φ), χ⃗))

= GG,A
Σ′ (T Σ′ , σ⃗

A
Σ′(SEN♭(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN♭(f)(ψ), χ⃗)).

Proof: The statement follows directly by combining the definition of the
Suszko congruence system of T on A with the characterization of the Leibniz
operator of each T ′, with T ≤ T ′, given in the proof of Corollary 1896. ∎

Moreover, as is clear from the definition, we have

Lemma 1899 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr be a
trace, G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F, and A =⟨A, ⟨F,α⟩⟩ an F-algebraic system. The Suszko and the Leibniz operators on
A coincide, i.e., Ω̃G,A = ΩA, if and only if ΩA is monotone on FiFamG(A).
Proof: Since Ω̃G,A is monotone on FiFamG(A), if the two operators coin-
cide, ΩA is also monotone on FiFamG(A).

On the other hand, if ΩA is monotone on FiFamG(A), then, for all T ∈
FiFamG(A), we get

Ω̃G,A(T ) = ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamG(A)}
= ΩA(T ).

Therefore, Ω̃G,A = ΩA. ∎

An analog of Proposition 1897 holds also for the Suszko operator. That
is, under the isomorphism between the corresponding filter families of two
gentzen π-institutions that are equivalent, corresponding filter families have
identical Suszko congruence systems.

Proposition 1900 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent via the conjugate pair(τ, ρ) ∶ G ⇄ G′, then, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩ and all
T ∈ FiFamG(A),

Ω̃G,A(T ) = Ω̃G′,A(ρA∗(T )).
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Proof: Since ρA∗ ∶ FiFamG(A) → FiFamG′(A) is an order isomorphism,
and taking into account Proposition 1897, we obtain, for all T ∈ FiFamG(A),

Ω̃G,A(T ) = ⋂{ΩA(T ′) ∶ T ≤ T ′ ∈ FiFamG(A)}
= ⋂{ΩA(ρA∗(T ′)) ∶ ρA∗(T ) ≤ ρA∗(T ′) ∈ FiFamG′(A)}
= ⋂{ΩA(T ′′) ∶ ρA∗(T ) ≤ T ′′ ∈ FiFamG′(A)}
= Ω̃G′,A(ρA∗(T )).

Thus, the conclusion holds. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. A G-matrix family
A = ⟨A,T ⟩ is called Suszko reduced if

Ω̃G,A(T ) =∆A.

We denote by MatFamSu(G) the class of all Suszko reduced G-matrix fami-
lies.

Foe every G-matrix family A = ⟨A,T ⟩, the quotient structure

⟨A/Ω̃G,A(T ),T /Ω̃G,A(T )⟩
is also a G-matrix family and it is Suszko reduced. Moreover, if a G-matrix
family ⟨A,T ⟩ is Suszko reduced, it is obviously isomorphic to a G-matrix
family of this form.

Among other things, Suszko reduced G-matrix families are important
because they form a class of structures with respect to which G enjoys a
completeness property.

Theorem 1901 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr be a
trace, and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. For
all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F), φ ∈ GΣ(Φ) if and only if, for all⟨A,T ⟩ ∈MatFamSu(G), all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆ T F (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ T F (Σ′).

Proof: Suppose φ ∈ GΣ(Φ) and let ⟨A,T ⟩ be a Suszko reduced G-matrix
family. Then ⟨A,T ⟩ is, in particular, a G-matrix family, whence the conclu-
sion holds by applying the definition of a G-filter family to the G-filter family
T . Suppose, conversely, that, for all ⟨A,T ⟩ ∈MatFamSu(G), all Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ T F (Σ′) implies αΣ′(SEN♭(f)(φ)) ∈ T F (Σ′).

Let T ∈ ThFam(G) and consider the Suszko reduced G-matrix family

⟨F/Ω̃G,F(T ),T /Ω̃G,F(T )⟩.
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Then, we have, by hypothesis, taking Σ′ = Σ and f = iΣ,

Φ/Ω̃G,F
Σ (T ) ⊆ T Σ/Ω̃G,F

Σ (T ) implies φ/Ω̃G,F
Σ (T ) ∈ T Σ/Ω̃G,F

Σ (T ),
i.e., using the compatibility of Ω̃G,F(T ) with T , Φ ⊆ T Σ implies φ ∈ T Σ.
Equivalently, since T ∈ ThFam(G) was arbitrary, φ ∈ GΣ(Φ). ∎

If two Gentzen π-institutions are equivalent, then the classes of algebraic
system reducts of their Suszko reduced matrix families coincide.

Theorem 1902 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent via the conjugate pair(τ, ρ) ∶ G ⇄ G′, then MatFamSu(G) and MatFamSu(G′) have the same class
of F-algebraic system reducts.

Proof: Suppose that A = ⟨A, ⟨F,α⟩⟩ is the F-algebraic system reduct of⟨A,T ⟩ ∈MatFamSu(G). Then, by definition, we have Ω̃G,A(T ) = ∆A. There-
fore, by Proposition 1900, we obtain Ω̃G′,A(ρA∗(T )) = ∆A. Since, ρA∗(T ) ∈
FiFamG(A), we conclude that ⟨A, ρA∗(T )⟩ ∈ MatFamSu(G′) and, hence, A
is also the F-algebraic system reduct of a Suszko reduced G′-matrix family.
By symmetry of equivalence, every F-algebraic system reduct of a Suszko
reduced G′-matrix family is also one of a Suszko reduced G-matrix family.
Therefore, the two classes of F-algebraic system reducts coincide. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr be a trace, and
G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The class of all
F-algebraic system reducts of Suszko reduced G-matrix families is denoted
by AlgSys(G), i.e., we have, by definition,

AlgSys(G) = {A ∶ (∃T ≤ Seqtr(A)(⟨A,T ⟩ ∈MatFamSu(G)}
= {A ∶ (∃T ∈ FiFamG(A))(Ω̃G,A(T ) =∆A)}.

It is not difficult to show that the class AlgSys(G) is closed under
⊲

IΠ
and, thence, conclude that the class of all AlgSys(G)-congruence systems on
every F-algebraic system A forms a complete lattice under signature-wise
inclusion.

Proposition 1903 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Then
AlgSys(G) is closed under subdirect intersections, i.e.,

⊲

IΠ(AlgSys(G)) ⊆ AlgSys(G).
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Proof: Suppose that Ai = ⟨Ai, ⟨F i, αi⟩⟩ ∈ AlgSys(G), for all i ∈ I, and let

⟨H i, γi⟩ ∶ A→ Ai, i ∈ I,

be a subdirect intersection, i.e., such that ⋂i∈I Ker(⟨H i, γi⟩) = ∆A. Then,
for all i ∈ I, there exists T i ∈ FiFamG(Ai), such that Ω̃G,Ai(T i) = ∆A

i
. We

consider the least G-filter family on A, namely ⋂FiFamG(A). We have

Ω̃G,A(⋂FiFamG(A)) = ⋂{ΩA(X) ∶X ∈ FiFamG(A)}
≤ ⋂i∈I ⋂Xi∈FiFamG(Ai)(γi)−1(ΩAi(X i))
= ⋂i∈I(γi)−1(⋂Xi∈FiFamG(Ai)Ω

Ai(X i))
≤ ⋂i∈I(γi)−1(Ω̃G,Ai(T i))
= ⋂i∈I(γi)−1(∆Ai)
= ∆A.

Hence, we get that A ∈ AlgSys(G). Therefore, AlgSys(G) is indeed closed
under subdirect intersections. ∎

26.6 Equivalence and Algebraic Counterpart

In Theorem 1890, given a π-institution G and a trace tr′, we gave a charac-
terization of the existence of an equivalence (τ, ρ) ∶ G ⇄ G′ of G with some
Gentzen π-institution G′, having the given trace tr′. We strengthen this re-
sult here, by considering only G-filter families on algebraic systems belonging
to AlgSys(G).
Theorem 1904 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′ be
traces and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is
equivalent to a Gentzen π-institution G′ = ⟨F,G′⟩ of trace tr′ based on F if
and only if there exist a tr-tr′-transformation τ and a tr′-tr-transformation
ρ, such that, for all A ∈ AlgSys(G):

(1) ρA∗ ∶ FiFamG(A)→ SenFam(Seqtr′(A)) is injective on FiFamG(A);
(2) For all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr

Σ(A), ρA∗Σ (GG,A(φ)) = G′Σ(τAΣ [φ]),
where G′ is the closure system on A induced by ρA∗(FiFamG(A)).

Proof: Suppose, first, that there exists an equivalence (τ, ρ) ∶ G ⇄ G′,
where G′ = ⟨F,G′⟩ is a Gentzen π-institution of trace tr′ based on F. By
Proposition 1892, we know that ρA∗ ∶ FiFamG(A)→ FiFamG′(A) is an order
isomorphism, whence, in particular, it is injective on FiFamG(A). Moreover,
for all Σ ∈ ∣Sign∣ and all ψ ∈ Seqtr

Σ(A), we have

ψ ∈ ρA∗Σ (GG,A(φ)) iff ρAΣ[ψ] ⊆ GG,A
Σ (φ)

iff τAΣ [ρAΣ[ψ]] ⊆ GG′,A
Σ (τAΣ [φ])

iff ψ ∈ GG′,A
Σ (τAΣ [φ]).
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Therefore, ρA∗Σ (GG,A(φ)) = GG′,A
Σ (τAΣ [φ]) and, again by Proposition 1892,

GG′,A is the closure system on A induced by ρA∗(FiFamG(A)).
Suppose, conversely, that there exist a tr-tr′-transformation τ and a tr′-

tr-transformation ρ, such that Conditions (1) and (2) of the statement hold.
The function ρA∗ commutes with intersections of G-filter families on A. As
a consequence, we obtain, on the one hand, that ρA∗ is order reflecting on
FiFamG(A) and, on the other, that ρA∗(FiFamG(A)) is closed under inter-
section, and, hence, defines a closure system on Seqtr′(A), which we denote
by G′. It suffices now, to prove the two conditions of Theorem 1890.

Assume, first, that T ,T ′ ∈ ThFam(G), such that ρ∗(T ) ≤ ρ∗(T ′). Let
X = G(ρ[ρ∗(T )]) and A = F/Ω̃G,F(X). Since X/Ω̃G,F(X) ∈ FiFamG(A),
we get that ⟨A,X/Ω̃G,F(X)⟩ ∈ MatFamSu(G). Therefore, A ∈ AlgSys(G).
Further, T ∈ ThFam(G) and ρ[ρ∗(T )] ≤ T , which give X ≤ T . Moreover,
ρ[ρ∗(T )] ≤ ρ[ρ∗(T ′)] ≤ T ′. Hence, X ≤ T ′. Thus, by the monotonicity of
the Suszko operator, Ω̃G,F(X) ≤ Ω̃G,F(T ) and Ω̃G,F(X) ≤ Ω̃G,F(T ′). These
imply that Ω̃G,F(X) is compatible with both T and T ′. This, in turn,
gives that both T /Ω̃G,F(X) and T ′/Ω̃G,F(X) are G-filter families on A and,
furthermore, that

ρA∗(T /Ω̃G,F(X)) = ρ∗(T )/Ω̃G,F(X)
and, similarly, ρA∗(T ′/Ω̃G,F(X)) = ρ∗(T ′)/Ω̃G,F(X). Since, by hypothesis,
ρ∗(T ) ≤ ρ∗(T ′), we get

ρA∗(T /Ω̃G,F(X)) ≤ ρA∗(T ′/Ω̃G,F(X)).
Thus, by Condition (1) in the hypothesis, we get T /Ω̃G,F(X) ≤ T ′/Ω̃G,F(X),
whence, using again the compatibility of Ω̃G,F(X) with both T and T ′, we
obtain T ≤ T ′. We conclude that ρ∗ is order reflecting and, therefore, a
fortiori, injective on ThFam(G).

Finally, let Σ ∈ ∣Sign♭∣, φ ∈ Seqtr
Σ(F) and consider θ = Ω̃G,F(Thm(G)).

Then F/θ ∈ AlgSys(G), whence, by hypothesis,

ρ(F/θ)∗(GG,F/θ(φ/θΣ)) = G′Σ(τF/θΣ [φ/θΣ]),
where G′ is the closure system on F/θ generated by

ρ(F/θ)∗(FiFamG(F/θ)) = ρ(F/θ)∗(ThFam(G)/θ)
= ρ∗(ThFam(G))/θ.

Thus, we get ρ∗Σ(G(φ))/θ = G′Σ(τΣ[φ]/θΣ), whence

ρ
(F/θ)∗
Σ (G(φ)/θ) = ⋂{ρ∗(X)/θ ∶ τΣ[φ]/θ ⊆ ρ∗(X)/θ}

= ⋂{ρ∗(X) ∶ τΣ[φ] ⊆ ρ∗(X)}/θ.
Therefore, ρ∗Σ(G(φ)) = ⋂{ρ∗(X) ∶ τΣ[φ] ⊆ ρ∗Σ(X)} = G′′(τΣ[φ]), where G′′

is the closure system on F generated by ρ∗(ThFam(G)). ∎
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Theorem 1904 may be used to provide a characterization of equivalence
based on the coincidence of the algebraic counterparts of two Gentzen π-
institutions.

Theorem 1905 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. G and G′ are equivalent if and only if

• AlgSys(G) = AlgSys(G′) and

• there exist a tr-tr′-transformation τ and a tr′-tr-transformation ρ, such
that, for all A ∈ AlgSys(G),

– ρA∗ ∶ FiFamG(A)→ FiFamG′(A) is an order isomorphism and

– for all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr(A),
ρA∗Σ (GG,A(φ)) = G′AΣ (τAΣ [φ]),

where G′A is the closure system on A induced by ρA∗(FiFamG(A)).
Proof: Suppose that G and G′ are equivalent via the conjugate pair (τ, ρ) ∶
G ⇄ G′. Then, by Theorem 1902, AlgSys(G) = AlgSys(G′). By Proposition
1892, ρA∗ is an order isomorphism and, finally, for all Σ ∈ ∣Sign∣ and all
φ ∈ Seqtr

Σ(A) and all φ′ ∈ Seqtr′

Σ (A),
φ′ ∈ ρA∗Σ (GG,A(φ)) iff ρAΣ[φ′] ⊆ GG,A

Σ (φ)
iff τAΣ [ρAΣ[φ′]] ⊆ GG′,A

Σ (τAΣ [φ])
iff φ′ ∈ GG′,A

Σ (τAΣ [φ]),
i.e., for all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr(A), ρA∗Σ (GG,A(φ)) = GG′,A

Σ (τAΣ [φ]).
Conversely, assume that the conditions in the claimed characterization

of equivalence hold. Then, by Theorem 1904, there exists a Gentzen π-
institution X′ of trace tr′ to which G is equivalent, such that ρ∗ ∶ ThFam(G)→
ThFam(X) is an order isomorphism. Thus, ρ∗ is both order preserving and
order reflecting and, hence, injective, on ThFam(G). Thus, it suffices to
show that it is onto ThFam(G′).

Suppose T ∈ ThFam(G). Set A = F/Ω(T ) and let ⟨I, π⟩ ∶ F → A be
the quotient morphism. Then, since Ω̃G,F(T ) ≤ Ω(T ), we get, by the defi-
nition of AlgSys(G) and the hypothesis, A ∈ AlgSys(G) = AlgSys(G′). By
the compatibility of Ω(T ) with T , we get that T /Ω(T ) ∈ FiFamG(A) and
π−1(T /Ω(T )) = T . By hypothesis, ρA∗(T /Ω(T )) ∈ FiFamG′(A), whence
π−1(ρA∗(T /Ω(T ))) ∈ ThFam(G′). On the other hand, we have

ρ∗(T ) = ρ∗(π−1(T /Ω(T ))) = π−1(ρA∗(T /Ω(T ))).
Hence, we obtain ρ∗(T ) ∈ ThFam(G′).
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Finally, consider T ′ ∈ ThFam(G′). Set B = F/Ω(T ′) ∈ AlgSys(G′) =
AlgSys(G) and let ⟨I, π′⟩ ∶ F → B be the quotient morphism. Then we have
T ′/Ω(T ′) ∈ FiFamG′(B) and, by compatibility, π′−1(T ′/Ω(T ′)) = T ′. By
hypothesis, there exists T ∈ FiFamG(B), such that T ′/Ω(T ′) = ρB∗(T ). On
the other hand, π′−1(T ) ∈ ThFam(G) and

ρ∗(π′−1(T )) = π′−1(ρB∗(T )) = π′−1(T ′/Ω(T ′)) = T ′.
thus, ρ∗ maps ThFam(G) onto ThFam(G′) and, hence, it is an order iso-
morphism from ThFam(G) onto ThFam(G′). Therefore, G′ = X and G′ is
equivalent to G. ∎

Directly from Theorem 1904, we get the following

Corollary 1906 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is Hilberti-
zable if and only if there exist a tr-{⟨0,1⟩}-transformation τ and a {⟨0,1⟩}-
tr-transformation ρ, such that, for all A ∈ AlgSys(G):

(1) ρA∗ ∶ FiFamG(A)→ SenFam(A) is injective on FiFamG(A);
(2) For all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr

Σ(A),
ρA∗Σ (GG,A(φ)) = G′AΣ (τAΣ [φ]),

where G′A is the closure system on A induced by ρA∗(FiFamG(A)).
Proof: This is a special case of Theorem 1904. ∎

Specializing further, we get the following result characterizing simple
Hilbertizability.

Corollary 1907 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is simply
Hilbertizable if and only if there exists a tr-{⟨0,1⟩}-transformation τ , such
that:

(1) For all A ∈ AlgSys(G) and all T ,T ′ ∈ FiFamG(A),
T∩ ⊳ A = T ′∩ ⊳ A implies T = T ′;

(2) For all Σ ∈ ∣Sign∣ and all φ ∈ Seqtr
Σ(A),

G
G,A
Σ (φ)∩ ⊳ A =⋂{⊳ T Σ ∶ τAΣ [φ] ⊆ T Σ,T ∈ FiFamG(A)}.

Proof: It suffices to see that Conditions (1) and (2) in the statement reflect
exactly Conditions (1) and (2) in the statement of Corollary 1906, where the
role of ρ is assumed by the special {⟨0,1⟩}-tr-transformation ρ0. ∎

Finally, we obtain a characterization of those algebraic Gentzen π-ins-
titutions, i.e., Gentzen π-institutions associated with guasivarieties of alge-
braic systems, which are equivalent to some Hilbert π-institution.
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Corollary 1908 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

a guasivariety of F-algebraic systems. GK = ⟨F,GK⟩ is Hilbertizable if and
only if there exists a {⟨1,1⟩}-{⟨0,1⟩}-transformation τ and a {⟨0,1⟩}-{⟨1,1⟩}-
transformation ρ, such that, for all A ∈ K:

(1) ρA∗ ∶ ConSysK(A)→ SenFam(A̧) is injective on ConSysK(A);
(2) For all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ),

ρA∗Σ (ΘK,A(φ ≈ ψ)) = G′A(τAΣ [φ;ψ]),
where G′A is the closure system on A induced by ρA∗(ConSysK(A)).

Proof: This is again a specialization of Theorem 1904 for G = GK, where

we take into account the facts FiFamGK(A) = ConSysK(A), AlgSys(GK) = K
and, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈ SEN(Σ), we have, under appropriate
identifications, GGK,A(φ ⊳Σ ψ) = ΘK,A(φ ≈ ψ). ∎

26.7 Protoalgebraicity

We now start a relatively brief tour of analogs of some of the classes in
the algebraic hierarchy of π-institutions that were introduced in the earlier
chapters of this work, as adapted and generalized for Gentzen π-institutions.
Even though we revisit and recast only very few of the classes considered
previously for π-institutions, the observant reader would realize that all other
classes have similarly adapted analogs that have analogous properties.

In this section, we define protoalgebraic and syntactically protoalgebraic
Gentzen π-institutions and study some of their properties. In the following
section, we shall take a look at order algebraizable Gentzen π-institutions,
which parallel the order algebraizable π-institutions of Chapter 25. In the
last section, we look at completely reflective and truth equational Gentzen
π-institutions.

We look, first, at some properties of the Leibniz operator, whose analogs
for π-institutions have been established in Chapter 2.

Lemma 1909 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, A = ⟨Sign,
SEN,N⟩, B = ⟨Sign′,SEN′,N ′⟩ be N ♭-algebraic systems and ⟨H,γ⟩ ∶ A → B
a morphism. For every trace tr and all T ≤ Seqtr(B),

(a) γ−1(ΩB(T )) ≤ ΩA(γ−1(T ));
(b) γ−1(ΩB(T )) = ΩA(γ−1(T )), if ⟨H,γ⟩ is surjective.

Proof:
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(a) It is straightforward to check that γ−1(ΩB(T )) is a congruence system
on A compatible with γ−1(T ). Hence, by the maximality property of
ΩA(γ−1(T )), we get that γ−1(ΩB(T )) ≤ ΩA(γ−1(T )).

(b) Suppose, now, that ⟨H,γ⟩ is surjective and let Σ ∈ ∣Sign∣, φ,ψ ∈
SEN(Σ), such that ⟨φ,ψ⟩ ∈ ΩA

Σ (γ−1(T )). Then, by Lemma 1895, we get
that, for all ⟨m,n⟩ ∈ tr, all σ⃗ = ⟨σ0, . . . , σm−1⟩, and all τ⃗ = ⟨τ 0, . . . , τn−1⟩
in N ♭, all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′),
σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗) ∈ γ−1Σ′ (TH(Σ′))

iff σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗) ∈ γ−1Σ′ (TH(Σ′)).

Equivalently,

γΣ′(σ⃗A
Σ′(SEN(f)(φ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(φ), χ⃗)) ∈ TH(Σ′)

iff γΣ′(σ⃗A
Σ′(SEN(f)(ψ), χ⃗) ⊳Σ′ τ⃗AΣ′(SEN(f)(ψ), χ⃗)) ∈ TH(Σ′).

This holds if and only if, by the morphism property,

σ⃗B
H(Σ′)

(γΣ′(SEN(f)(φ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(γΣ′(SEN(f)(φ)), γΣ′(χ⃗)) ∈ TH(Σ′)

iff σ⃗B
H(Σ′)

(γΣ′(SEN(f)(ψ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(γΣ′(SEN(f)(ψ)), γΣ′(χ⃗)) ∈ TH(Σ′).

Equivalently, by the naturality of γ,

σ⃗B
H(Σ′)

(SEN′(H(f))(γΣ(φ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(SEN′(H(f))(γΣ(φ)), γΣ′(χ⃗)) ∈ TH(Σ′)

iff σ⃗B
H(Σ′)

(SEN′(H(f))(γΣ(ψ)), γΣ′(χ⃗))
⊳H(Σ′) τ⃗BH(Σ′)(SEN′(H(f))(γΣ(ψ)), γΣ′(χ⃗)) ∈ TH(Σ′).

Hence, taking into account the surjectivity of ⟨H,γ⟩, by Lemma 1895,
we get ⟨γΣ(φ), γΣ(ψ)⟩ ∈ ΩB

H(Σ)
(T ), i.e., γΣ(ΩA

Σ (γ−1(T ))) ⊆ ΩB
H(Σ)
(T ).

We conclude that ΩA(γ−1(T )) ≤ γ−1(ΩB(T )).
∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution based on F.

• We say G is protoalgebraic if the Leibniz operator Ω ∶ ThFam(G) →
ConSys(F) is monotone on ThFam(G);

• We say G is syntactically protoalgebraic if, for all ⟨m,n⟩ ∈ tr, there
exists I⟨m,n⟩ ∶ (SEN♭)ω → ⋃⟨k,ℓ⟩∈tr(SEN♭)k+ℓ in N ♭ with (m+n)+(m+n)
distinguished arguments, such that, for all T ∈ ThFam(G), all Σ ∈∣Sign♭∣ and all φ,ψ ∈ Seqtr(F) of trace ⟨m,n⟩,

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ.
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In this case the collection I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} is called a collection
of witnessing transformations of the syntactic protoalgebraicity of
G.

We give an alternative characterization of syntactic protoalgebraicity that
comes handy in what follows.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and tr a trace. Given⟨m,n⟩ ∈ tr, we say that a collection I ∶ (SEN♭)ω → (SEN♭)k of natural trans-
formations in N ♭, with (m+n)+(m+n) distinguished variables is (pairwise)
permutable if and only if, for all Σ ∈ ∣Sign♭∣, all φ⃗, ψ⃗ ∈ SEN♭(Σ) and all{i1, . . . , im+n} = {0, . . . ,m + n − 1},

IΣ[φi1, . . . , φim+n , ψi1 , . . . , ψim+n] = IΣ[φ0, . . . , φ(m+n)−1, ψ0, . . . , ψ(n+m)−1].
When we want to refer to an arbitrary pairwise permutation of two sequences
φ⃗, ψ⃗ of the same length as above, we write φ⃗π, ψ⃗π, the meaning being that φ⃗, ψ⃗
have the same length and that in φ⃗π, ψ⃗π, their elements have been permuted
both by applying the same arbitrary permutation π.

Theorem 1910 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution based on F. G is syntactically pro-
toalgebraic if and only if, for all ⟨m,n⟩ ∈ tr, there exists Î⟨m,n⟩ ∶ (SEN♭)ω →
⋃⟨k,ℓ⟩∈tr(SEN♭)k+ℓ in N ♭, with (m + n) + (m + n) distinguished arguments,

which is permutable, such that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all
φ,ψ, χ⃗ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff Î
⟨m,n⟩
Σ [⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.

Proof: Suppose, first, that G is syntactically protoalgebraic, with witnessing
transformations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}. For all ⟨m,n⟩ ∈ tr, we symmetrize
I⟨m,n⟩ by defining Î⟨m,n⟩ in N ♭, with (m+n)+(m+n) distinguished arguments,
by setting, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
Î
⟨m,n⟩
Σ [φ,ψ] =⋃{I⟨m,n⟩Σ [φπ,ψπ] ∶ π a permutation}.

Then, we have, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr
Σ(F) of

the same trace ⟨m,n⟩,
I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ iff ⟨φ,ψ⟩ ∈ ΩΣ(T )

iff ⟨φπ,ψπ⟩ ∈ ΩΣ(T ), for all π,

iff Î
⟨m,n⟩
Σ [φ,ψ] ⊆Σ T Σ.

Therefore, we obtain, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ, χ⃗ ∈
SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I
⟨m,n⟩
Σ [⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ

iff Î
⟨m,n⟩
Σ [⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.
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Suppose, conversely, that there exists a permutable I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈
tr} that satisfies the condition in the statement of the theorem. Define a
collection Ǐ = {Ǐ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} in N ♭ having (m+n)+(m+n) distinguished
arguments by setting, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
ǏΣ[φ,ψ] =⋃{I⟨m,n⟩Σ [(φψ)i+1, (φψ)i] ∶ i <m + n − 1},

where (φψ)i ∶= ⟨φ0, . . . , φi−1, ψi, . . . , ψm+n−1⟩.
Then we have, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F)
of trace ⟨m,n⟩,

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φi, ψi⟩ ∈ ΩΣ(T ), i <m + n − 1,
iff I⟨m,n⟩[(φψ)i+1, (φψ)i] ⊆ T Σ, i <m + n − 1,

iff Ǐ
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ.

Therefore, G is syntactically protoalgebraic with witnessing transformations
Ǐ. ∎

Before embarking on a characterization of the exact relationship between
syntactic protoalgebraicity and protoalgebraicity, we look at some proper-
ties related to notions that have been studied in this chapter, namely, the
algebraic counterpart of a Gentzen π-institution and equivalence between
Gentzen π-institutions.

The first property states that it suffices to check monotonicity of the
Leibniz operator only on the filter families of algebraic systems belonging to
the algebraic counterpart.

Lemma 1911 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G), ΩA is monotone, then G is protoalgebraic.

Proof: Suppose that ΩA is monotone, for all A ∈ AlgSys(G) and let T ,T ′ ∈
ThFam(G), such that T ≤ T ′. Then, by the monotonicity of the Suszko
operator, Ω̃G,F(T ) ≤ Ω̃G,F(T ′). Thus, the congruence system Ω̃G,F(T ) is
compatible with both T and T ′. Hence, both T /Ω̃G,F(T ) and T ′/Ω̃G,F(T )
are G-filter families of F/Ω̃G,F(T ), such that T /Ω̃G,F(T ) ≤ T ′/Ω̃G,F(T ). By
hypothesis, since F/Ω̃G,F(T ) ∈ AlgSys(G),

ΩF/Ω̃
G,F (T )(T /Ω̃G,F(T )) ≤ ΩF/Ω̃

G,F (T )(T ′/Ω̃G,F(T )).
Thus, applying the inverse of the quotient morphism ⟨I, π⟩ ∶ F → F/Ω̃G,F(T ),
we get that

π−1(ΩF/Ω̃G,F (T )(T /Ω̃G,F(T ))) ≤ π−1(ΩF/Ω̃G,F (T )(T ′/Ω̃G,F(T ))),
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whence, by Lemma 1909,

Ω(π−1(T /Ω̃G,F(T ))) ≤ Ω(π−1(T ′/Ω̃G,F(T ))).
Thus, since Ω̃G,F(T ) is compatible with both T and T ′, we get that Ω(T ) ≤
Ω(T ′). Therefore, G is protoalgebraic. ∎

Now we prove that protoalgebraicity is preserved under equivalence.

Theorem 1912 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is protoalgebraic
if and only if G′ is also.

Proof: Suppose G and G′ are equivalent via the conjugate pair (τ, ρ) ∶ G⇄
G′ and that G′ is protoalgebraic. Let T ,T ′ ∈ ThFam(G), such that T ≤ T ′.
Then, by Theorem 1880, ρ∗(T ) ≤ ρ∗(T ′). Thus, by hypothesis, Ω(ρ∗(T )) ≤
Ω(ρ∗(T ′)). Hence, by Proposition 1897, Ω(T ) ≤ Ω(T ′). Therefore, G is also
protoalgebraic. The converse follows by the symmetry of equivalence. ∎

Finally, it is shown that the same applies to syntactic protoalgebraicity,
i.e., if two Gentzen π-institutions are equivalent, then one is syntactically
protoalgebraic if and only if the other is also.

Theorem 1913 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is syntactically
protoalgebraic if and only if G′ is also.

Proof: Suppose that G and G′ are equivalent via a conjugate pair (τ, ρ) ∶
G ⇄ G′ and that G′ is syntactically protoalgebraic, with witnessing trans-
formations I ∶= {I⟨m,m⟩ ∶ ⟨m,n⟩ ∈ tr′}. Then, for all T ∈ ThFam(G), all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F), we get, setting, according to Theorem

1880, T ′ ∈ ThFam(G′) be such that T
ρ∗

⇄
τ∗
T ′, and taking into account Theo-

rem 1919,

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ ΩΣ(ρ∗(T ))
iff ⟨φ,ψ⟩ ∈ ΩΣ(T ′)
iff ÎΣ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ T ′Σ, i <m + n,
iff ÎΣ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ τ∗Σ(T ), i <m + n,
iff τΣ[ÎΣ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩]] ⊆ T Σ, i <m + n.

Therefore, (τ ○ Î)ˇ witnesses the syntactic protoalgebraicity of G. The con-
verse follows by the symmetry of equivalence. ∎

It is relatively easy to see that, if a Gentzen π-institution G is syntactically
protoalgebraic, then it is protoalgebraic.



Voutsadakis CHAPTER 26. GENTZEN π-INSTITUTIONS 1553

Theorem 1914 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
syntactically protoalgebraic, then it is protoalgebraic.

Proof: Suppose G is syntactically protoalgebraic, with witnessing transfor-
mations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} in N ♭, and let T ,T ′ ∈ ThFam(G), such that
T ≤ T ′. Then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of the same trace⟨m,n⟩, we have

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ

implies I
⟨m,n⟩
Σ [φ,ψ] ⊆ T ′Σ

iff ⟨φ,ψ⟩ ∈ ΩΣ(T ′).
Hence Ω(T ) ≤ Ω(T ′) and G is protoalgebraic. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The reflexive core
RG of G is the collection

RG = {RG,⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr},
where, for all ⟨m,n⟩ ∈ tr, RG,⟨m,n⟩ consists of all natural transformations
ρ ∶ (SEN♭)ω → ⋃⟨k,ℓ⟩∈tr(SEN♭)k+ℓ in N ♭ with (m + n) + (m + n) distinguished
arguments that satisfy:

1. For all Σ ∈ ∣Sign♭∣ and all φ, χ⃗ ∈ SEN♭(Σ),
ρΣ[⟨φ, χ⃗⟩, ⟨φ, χ⃗⟩] ⊆ ThmΣ(G);

2. For all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all φ,ψ ∈ Seqtr
Σ(F) of

trace ⟨m,n⟩,
ρΣ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ⊆ GΣ′(ρΣ[φ,ψ]).

Using the notation in the proof of Theorem 1919, we observe that, R̂G ⊆
RG and that ŘG ⊆ RG:

• If ρ ∈ RG, then, for

σΣ(φ,ψ, χ⃗) ∶= ρΣ(φπ,ψπ, χ⃗),
we get σΣ[φ,φ] = ρΣ[φπ,φπ] ⊆ ThmΣ(G);

• If ρ ∈ RG, then, for

σΣ(φ,ψ, χ⃗) ∶= ρΣ((φψ)i+1, (φψ)i, χ⃗),
we get σΣ[φ,φ] = ρΣ[φ,φ] ⊆ ThmΣ(G).
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If a Gentzen π-institution G of trace tr is syntactically protoalgebraic
with witnessing transformations I, then I⟨m,n⟩ ⊆ RG,⟨m,n⟩, for all ⟨m,n⟩ ∈ tr.

Lemma 1915 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is syn-
tactically protoalgebraic with witnessing transformations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈
tr}, then I ⊆ RG.

Proof: Suppose that G is syntactically protoalgebraic, with witnessing trans-
formations I.

• Since, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F), ⟨φ,φ⟩ ∈ ΩΣ(Thm(G)),

we get that IΣ[φ,φ] ⊆ ThmΣ(G).
• If, for some T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F), we have
IΣ[φ,ψ] ⊆ T Σ, then we get ⟨φ,ψ⟩ ∈ ΩΣ(T ), whence, since Ω(T ) is a
congruence system on F, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
we get ⟨SEN♭(f)(φ),SEN♭(f)(ψ)⟩ ∈ ΩΣ′(T ), showing that

IΣ′[SEN♭(f)(φ),SEN♭(f)(ψ)] ⊆ T Σ′ .

Thus, by definition of RG, we get that I ⊆ RG. ∎

Another important property of syntactic protoalgebraicity is that it guar-
antees that the reflexive core of G possesses a modus ponens property in G.

Theorem 1916 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
syntactically protoalgebraic, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F)
of the same trace,

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]).

Proof: Suppose G is syntactically protoalgebraic, with witnessing transfor-
mations I and let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F), such
that φ ∈ T Σ and RG

Σ[φ,ψ] ⊆ T Σ. Then, by Lemma 1915, we get φ ∈ T Σ

and IΣ[φ,ψ] ⊆ T Σ, that is, by syntactic protoalgebraicity, φ ∈ T Σ and⟨φ,ψ⟩ ∈ ΩΣ(T ). Therefore, by compatibility, we get ψ ∈ T Σ, showing that
ψ ∈ GΣ(φ,RG

Σ[φ,ψ]). ∎

Conversely, if the reflexive core RG of a Gentzen π-institution G has the
modus ponens property in G, then G is syntactically protoalgebraic, with
witnessing transformations RG. First, a lemma of a technical nature. For a
Gentzen π-institution G and T ∈ ThFam(G), we set

RG(T ) = {RG
Σ(T )}Σ∈∣Sign♭∣,
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where, for all Σ ∈ ∣Sign♭∣,
RG

Σ(T ) = {⟨φ,ψ⟩ ∈ SEN♭(Σ) ∶ (∀χ⃗ ∈ SEN♭(Σ))(RG
Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ)}.

Of course, by the symmetry of the transformations in N ♭, in this definition,
φ and ψ may appear, equivalently, in any position of the sequents on the
right, as long as they appear in the same position in both of the first sequent
arguments of RG.

Lemma 1917 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of the same trace,

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]),

the RG(T ) is a congruence family on F compatible with T .

Proof: We start by showing that RG
Σ(T ) is an equivalence family on F.

• By the definition of RG, we get, for all φ, χ⃗ ∈ SEN♭(Σ),
RG

Σ[⟨φ, χ⃗⟩, ⟨φ, χ⃗⟩] ⊆ ThmΣ(G) ⊆ T Σ.

Thus, ⟨φ,φ⟩ ∈ RG
Σ(T ) and RG

Σ(T ) is reflexive.

• Suppose ⟨φ,ψ⟩ ∈ RG
Σ(T ). Then, for all χ⃗ ∈ SEN♭(Σ), we have

RG
Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.

But then, by the definition of RG and the symmetry of N ♭, we get

RG
Σ[⟨ψ, χ⃗⟩, ⟨φ, χ⃗⟩] ⊆ RG

Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ.

Therefore, ⟨ψ,φ⟩ ∈ RG
Σ(T ) and RG

Σ(T ) is also symmetric.

• Suppose, now, that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ RG
Σ(T ). Thus, we get, for all χ⃗ ∈

SEN(Σ),
RG

Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩] ⊆ T Σ and RG
Σ[⟨ψ, χ⃗⟩, ⟨χ, χ⃗⟩] ⊆ T Σ.

By hypothesis, we have, for all ρ ∈ RG and all ξ⃗ ∈ SEN♭(Σ),
ρΣ(⟨φ, χ⃗⟩, ⟨χ, χ⃗⟩, ξ⃗) ⊆ GΣ(ρΣ(⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩, ξ⃗),

RG
Σ[ρΣ(⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩, ξ⃗), ρΣ(⟨φ, χ⃗⟩, ⟨χ, χ⃗⟩, ξ⃗)])

⊆ GΣ(RG
Σ[⟨φ, χ⃗⟩, ⟨ψ, χ⃗⟩],RG

Σ[⟨ψ, χ⃗⟩, ⟨χ, χ⃗⟩])
⊆ GΣ(T Σ) = T Σ.

Therefore, RG
Σ[⟨φ, χ⃗⟩, ⟨χ, χ⃗⟩] ⊆ T Σ, showing that ⟨φ,χ⟩ ∈ RG

Σ(T ) and,
hence, RG

Σ(T ) is also transitive.
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We show, next, that RG(T ) is a congruence family. Let σ be in N ♭, φ⃗, ψ⃗ ∈
SEN♭(Σ), such that, for all i < k, ⟨φi, ψi⟩ ∈ RG

Σ(T ). Then, for all i < k and all
χ⃗ ∈ SEN♭(Σ), RG

Σ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ T Σ. But, then, for all i < k,

RG
Σ[⟨σΣ((φ⃗ψ⃗)i+1), χ⃗⟩, ⟨σΣ((φ⃗ψ⃗)i), χ⃗⟩] ⊆ RG

Σ[⟨φi, χ⃗⟩, ⟨ψi, χ⃗⟩] ⊆ T Σ,

i.e., ⟨σΣ((φ⃗ψ⃗)i+1), σΣ((φ⃗ψ⃗)i)⟩ ∈ RG
Σ(T ). Since this holds for all i < k, we

get by the transitivity of RG(T ) proven above, that ⟨σΣ(φ⃗), σΣ(ψ⃗)⟩ ∈ RG
Σ(T )

and, therefore, RG(T ) is also a congruence family.
Finally, RG(T ) is a congruence system by the definition of RG. Com-

patibility of RG(T ) with T is also readily obtainable by the hypothesis,
since ⟨φ,ψ⟩ ∈ RG

Σ(T ) implies RG
Σ[φ,ψ] ⊆ T Σ. Therefore, if φ ∈ TΣ and⟨φ,ψ⟩ ∈ RG

Σ(T ), we get

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]) ⊆ GΣ(T Σ) = T Σ.

Hence, RG(T ) is a congruence system on F compatible with T . ∎

Now we are ready for the promised theorem.

Theorem 1918 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of the same trace,

ψ ∈ GΣ(φ,RG
Σ[φ,ψ]),

then G is syntactically protoalgebraic, with witnessing transformations RG.

Proof: Suppose that RG satisfies the displayed condition. We must show
that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F),
⟨φ,ψ⟩ ∈ ΩΣ(T ) iff RG

Σ[φ,ψ] ⊆ T Σ.

Suppose, first, that ⟨φ,ψ⟩ ∈ ΩΣ(T ). Then,, since Ω(T ) is a congruence
system on F, we get, for all ρ ∈ RG and all χ⃗ ∈ SEN♭(Σ),

⟨ρΣ(φ,φ, χ⃗), ρΣ(φ,ψ, χ⃗)⟩ ∈ ΩΣ(T ).
Moreover, RG

Σ[φ,φ] ⊆ ThmΣ(G) ⊆ T Σ, by the definition of the reflexive core.
Therefore, by the compatibility of Ω(T ), with T , we get that, for all ρ ∈ RG

and all χ⃗ ∈ SEN♭(Σ), ρΣ(φ,ψ, χ⃗) ∈ T Σ. We conclude that RG
Σ[φ,ψ] ⊆ T Σ.

Assume, conversely, that RG
Σ[φ,ψ] ⊆ TΣ. Since, by Lemma 1917, RG(T )

is a congruence system on F compatible with T , we get, by the maximality of
Ω(T ), that RG(T ) ≤ Ω(T ). But the hypothesis implies that ⟨φ,ψ⟩ ∈ RG

Σ(T ).
Therefore, we conclude that ⟨φ,ψ⟩ ∈ ΩΣ(T ). ∎

We now have a characterization of syntactic protoalgebraicity in terms
of the property of modus ponens of the reflexive core RG of the Gentzen
π-institution G.

G is syntactically protoalgebraic←→ RG has the MP.
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Theorem 1919 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is syntac-
tically protoalgebraic if and only if RG has the modus ponens in G.

Proof: Theorem 1916 gives the “only if” and the “if” is by Theorem 1918.
∎

As a corollary, we obtain

Corollary 1920 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is syn-
tactically protoalgebraic with witnessing transformations I = {I⟨m,n⟩ ∶ ⟨m,n⟩ ∈
tr}, then, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
GΣ(RG,⟨m,n⟩

Σ [φ,ψ]) = GΣ(I⟨m,n⟩Σ [φ,ψ]).
Proof: If G is syntactically protoalgebraic, with witnessing transformations
I, then, by Theorems 1919 and 1918, both I and RG are families of witnessing
transformations for the syntactic protoalgebraicity of G. Therefore, for all
T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
R

G,⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ iff ⟨φ,ψ⟩ ∈ ΩΣ(T )

iff I
⟨m,n⟩
Σ [φ,ψ] ⊆ T Σ.

Therefore, GΣ(RG,⟨m,n⟩
Σ [φ,ψ]) = GΣ(I⟨m,n⟩Σ [φ,ψ]). ∎

We get relatively easily another related characterization of syntactic pro-
toalgberaicity.

G is syntactically protoalgebraic
←→ RG Defines Leibniz Congruence Systems.

Theorem 1921 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is syntac-
tically protoalgebraic if and only if, for every T ∈ ThFam(G),

Ω(T ) = RG(T ).
Proof: If G is syntactically protoalgebraic, then, by Theorems 1919 and
1918, RG constitutes a collection of witnessing transformations, whence, for
every T ∈ ThFam(G) Ω(T ) = R̂G(T ) = RG(T ).

The converse follows by the definition of syntactic protoalgberaicity, since,
in that case, ŘG = RG forms a collection of witnessing transformations. ∎

We finally show that the property that separates protoalgebraicity from
syntactic protoalgebraicity is the compatibility property with respect to the
theory family generated by the reflexive core.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. We say that the
reflexive core RG is Leibniz if, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all
φ,ψ ∈ Seqtr

Σ(F),
φ ΩΣ(G(RG

Σ[φ,ψ])) ψ.
This property is weaker than RG having the modus ponens, i.e., if RG

has the modus ponens, then it is Leibniz.

Proposition 1922 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If RG

has the modus ponens, then it is Leibniz.

Proof: If RG has the modus ponens, then, by Theorem 1919, we get, for all
T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr,

φ ΩΣ(T ) ψ iff RG
Σ[φ,ψ] ⊆ T Σ.

Therefore, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ Seqtr
Σ(F), by considering, in

particular, T = G(RG
Σ[φ,ψ]), and taking into account that

RG
Σ[φ,ψ] ⊆ GΣ(RG

Σ[φ,ψ]),
we get that φ ΩΣ(G(RG

Σ[φ,ψ])) ψ. Thus, RG is Leibniz. ∎

In the opposite direction, in a protoalgebraic Gentzen π-institution G, if
the reflexive core RG is Leibniz, then it has the modus ponens in G.

Proposition 1923 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a protoalgebraic Gentzen π-institution of trace tr based
on F. If RG is Leibniz, then it has the modus ponens in G.

Proof: Suppose that G is protoalgebraic and that RG is Leibniz. Let T ∈
ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr, such that
φ ∈ T Σ and RG

Σ[φ,ψ] ⊆ T Σ. Since RG is Leibniz, we have

φ ΩΣ(G(RG
Σ[φ,ψ])) ψ,

whence, since G is protoalgebraic and RG
Σ[φ,ψ] ⊆ T Σ, we get φ ΩΣ(T ) ψ.

Therefore, since φ ∈ T Σ, we get, by the compatibility of Ω(T ) with T , that
ψ ∈ T Σ. We conclude that RG has the modus ponens in G. ∎

We now show that a Gentzen π-institution is syntactically protoalgebraic
if and only if it is protoalgebraic and it has a Leibniz reflexive core.

Syntactic Protoalgebraicity = RG has the Modus Ponens
= RG Defines Leibniz Congruence Systems
= Protoalgebraicity +RG Leibniz
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Theorem 1924 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. I is syntac-
tically protoalgebraic if and only if it is protoalgebraic and has a Leibniz
reflexive core.

Proof: Suppose, first, that G is syntactically protoalgebraic. Then it is
protoalgebraic by Theorem 1914. Moreover, its reflexive core has the modus
ponens by Theorem 1916 and, hence, by Proposition 1922, its reflexive core
is Leibniz.

Suppose, conversely, that G is protoalgebraic with a Leibniz reflexive
core. Then, by Proposition 1923, its reflexive core has the modus ponens
and, therefore, by Theorem 1919, G is syntactically protoalgebraic. ∎

26.8 Order Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class of F-algebraic
posystems. Recall the inequational π-institution IK = ⟨F,CK⟩ associated
with the class K, i.e., in which, for all Σ ∈ ∣Sign♭∣ and all I∪{φ ≼ ψ} ⊆ InΣ(F),

φ ≼ ψ ∈ CK
Σ(I) iff for all ⟨A,≤⟩ ∈ K,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(I)) ⊆ ≤F (Σ′) implies
αΣ′(SEN♭(f)(φ)) ≤F (Σ′) αΣ′(SEN♭(f)(ψ)).

To IK we associate the Gentzen π-institution GK = ⟨F,GK⟩ of trace {⟨1,1⟩}
defined by setting, for all Σ ∈ ∣Sign♭∣ and all {φi, ψi ∶ i ∈ I}∪{φ,ψ} ⊆ SEN♭(Σ),

φ ⊳Σ ψ ∈ GK
Σ({φi ⊳Σ ψi ∶ i ∈ I}) iff φ ≼ ψ ∈ CK

Σ({φi ≼ ψi ∶ i ∈ I}).
We call GK the inequational Gentzen π-institution associated with K.

It turns out that, for every class K of F-algebraic posystems, the associ-
ated inequational Gentzen π-institution GK is syntactically protoalgebraic.

Theorem 1925 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a
class of F-algebraic posystems. Then GK = ⟨F,GK⟩ is syntactically protoal-
gebraic.

Proof: Consider I = {I⟨1,1⟩}, where I⟨1,1⟩ ∶ (SEN♭)4 → (SEN♭)2 is given, for
all Σ ∈ ∣Sign♭∣ and all φ,ψ,φ′, ψ′ ∈ SEN♭(Σ), by

I
⟨1,1⟩
Σ [⟨φ,ψ⟩, ⟨φ′, ψ′⟩] = {φ ⊳Σ φ′, φ′ ⊳Σ φ ψ ⊳Σ ψ′, ψ′ ⊳Σ ψ}.

Then, we have, for all T ∈ ThFam(GK, all Σ ∈ ∣Sign♭∣ and all φ ⊳Σ ψ ∈
Seq

{⟨1,1}
Σ (F),
⟨φ,φ′⟩, ⟨ψ,ψ′⟩ ∈ ΩΣ(T ) iff {φ ⊳Σ φ′, φ′ ⊳Σ φ, ψ ⊳Σ ψ′, ψ′ ⊳Σ ψ} ⊆ T Σ

iff I
⟨1,1⟩
Σ [φ ⊳Σ ψ,φ′ ⊳Σ ψ′] ⊆ T Σ.
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Therefore, GK is syntactically protoalgebraic, with witnessing transforma-
tions I. ∎

Note, also, how I⟨1,1⟩ satisfies the modus ponens property in GK, i.e., for
all Σ ∈ ∣Sign♭∣ and all φ,ψ,φ′, ψ′ ∈ SEN♭(Σ),

φ′ ⊳Σ ψ′ ∈ GK
Σ(φ ⊳Σ ψ, I⟨1,1⟩Σ [φ ⊳Σ ψ,φ′ ⊳Σ ψ′]).

We now show that, if the class K happens to be an order guasivariety of
F-algebraic posystems, then the Leibniz reduced GK-matrix families coincide
with the class K.

Proposition 1926 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K

an ordered guasivariety of F-algebraic posystems. Then MatFam∗(GK) = K.

Proof: Suppose ⟨A,≤⟩ ∈ K and let Σ ∈ ∣Sign∣ φ,ψ ∈ SEN(Σ), such that⟨φ,ψ⟩ ∈ ΩAΣ(≤). Since φ ≤Σ φ, we get, by compatibility of ΩA(≤) with ≤,
that φ ≤Σ ψ and ψ ≤Σ φ. Thus, since ≤ is a posystem on A and, therefore,
antisymmetric, we get that φ = ψ. Hence, ΩA(≤) = ∆A. We conclude that⟨A,≤⟩ ∈MatFam∗(GK). Thus, K ⊆MatFam∗(GK).

Suppose, conversely, that ⟨A,≤⟩ ∈ MatFam∗(GK). Then ΩA(≤) = ∆A.
Since K is a class of F-algebraic posystems, we get that, for all σ, τ in N ♭, all
Σ,Σ′ ∈ ∣Sign∣, all f ∈ ∣Sign(Σ,Σ′) and all φ,ψ, χ⃗ ∈ SEN(Σ′),

σAΣ′(SEN♭(f)(ψ), χ⃗) ≤Σ′ τAΣ′(SEN♭(f)(ψ), χ⃗)
∈ GK,A

Σ (φ ≤Σ ψ,ψ ≤Σ φ,σAΣ′(SEN♭(f)(φ), χ⃗) ≤Σ′ τAΣ′(SEN♭(f)(φ), χ⃗)).
Therefore, if φ ≤Σ ψ and ψ ≤Σ φ, then we get that ⟨φ,ψ⟩ ∈ ΩAΣ(≤) = ∆AΣ , i.e.,
that φ = ψ. Therefore, ≤ is antisymmetric, i.e., ⟨A,≤⟩ ∈ GOSem(K) = K. We
conclude that MatFam∗(GK) ⊆ K. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is order alge-
braizable if it is equivalent to the inequational Gentzen π-institution GK

associated with some class K of F-algebraic posystems.
Order algebraizability implies protoalgebraicity.

Proposition 1927 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
order algebraizable, then it is protoalgebraic.

Proof: Suppose that G is equivalent to GK, for some class K of F-algebraic
posystems. Then, since, by Theorem 1925, GK is syntactically protoalgebraic,
it is, by Theorem 1914, protoalgebraic. Therefore, by Theorem 1912, G is
protoalgebraic as well. ∎

The following result provides a characterization of order algebraizability.
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Theorem 1928 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is order
algebraizable if and only if there exist a tr-{⟨1,1⟩}-transformation τ and an{⟨1,1⟩}-tr-transformation ρ, such that, for all σ,σ′ in N ♭, all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′), all φ,ψ,χ ∈ SEN♭(Σ), all χ⃗ ∈ SEN♭(Σ′), all {φi, ψi ∶ i ∈
I} ⊆ SEN♭(Σ), and all φ ∈ Seqtr

Σ(F):
(1) ρΣ[φ,φ] ⊆ ThmΣ(G);
(2) ρΣ[φ,χ] ⊆ GΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]);
(3) ρΣ[σΣ(ψ, χ⃗), σ′Σ(ψ, χ⃗)]

⊆ GΣ(ρΣ[φ,ψ], ρΣ[ψ,φ], ρΣ[σΣ(φ, χ⃗), σ′Σ(φ, χ⃗)]);
(4) ρΣ[φ,ψ] ⊆ GΣ(⋃i∈I ρΣ[φi, ψi]) implies

ρΣ′[SEN♭(f)(φ),SEN♭(ψ)] ⊆ GΣ′(⋃
i∈I

ρΣ′[SEN♭(f)(φi),SEN♭(f)(ψi)]);
(5) GΣ(φ) = GΣ(ρΣ[τΣ[φ]]).

Proof: Suppose, first, that G is order algebraizable. Then there exist τ
and ρ as postulated and a class K of F-algebraic posystems, such that G

is equivalent to GK via the conjugate pair (τ, ρ) ∶ G ⇄ GK. Since, for all
Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ⊳Σ φ ∈ ThmΣ(GK), we get that ρΣ[φ,φ] ⊆
ThmΣ(G). So Condition (1) holds. Since, for all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈
SEN♭(Σ), φ ⊳Σ χ ∈ GK

Σ(φ ⊳ ψ,ψ ⊳Σ χ), we get that

ρΣ[φ,χ] ⊆ GΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]).
Hence, Condition (2) is also satisfied. If, for some ⟨A,≤⟩ ∈ K, we have, for
some Σ ∈ ∣Sign∣ and some φ,ψ ∈ SEN(Σ), φ ≤Σ ψ and ψ ≤Σ φ, then, since K

is a class of F-algebraic posystems, we get that φ = ψ. Hence, it follows that,
if, for σ,σ′ in N ♭, and χ⃗ ∈ SEN(Σ), σAΣ (φ, χ⃗) ≤Σ σ′AΣ (φ, χ⃗), then, we will also
have σAΣ(ψ, χ⃗) ≤Σ σ′AΣ (ψ, χ⃗). In other words, we get that, for all σ,σ′ in N ♭,
all Σ ∈ ∣Sign♭∣, and all φ,ψ, χ⃗ ∈ SEN♭(Σ),

σΣ(ψ, χ⃗) ⊳Σ σ′Σ(ψ, χ⃗) ∈ GK
Σ(φ ⊳Σ ψ,ψ ⊳Σ φ,σΣ(φ, χ⃗) ⊳Σ σ′Σ(φ, χ⃗)).

Again, by applying ρ we get that Condition (3) holds. Suppose, now, that
for some Σ ∈ ∣Sign♭∣ and {φi, ψi ∶ i ∈ I} ∪ {φ,ψ} ⊆ SEN♭(Σ), ρΣ[φ,ψ] ⊆
GΣ(⋃i∈I ρΣ[φi, ψi]). Then, we get φ ⊳Σ ψ ∈ GK

Σ({φi ⊳Σ ψi ∶ i ∈ I}). Therefore,
since GK is structural, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(φ ⊳Σ ψ) ∈ GK
Σ′({SEN♭(f)(φi ⊳Σ ψi) ∶ i ∈ I}).

By applying ρ again, we get that Condition (4) holds. Finally, Condition (5)
holds directly by the definition of equivalence.
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Assume, conversely, that ρ and τ , as postulated in the statement, exist
and that they satisfy Conditions (1)-(5). Define G′ = ⟨F,G′⟩ of trace {⟨1,1⟩}
by setting, for all Σ′ ∈ ∣Sign♭∣ and all {φi, ψi ∶ i ∈ I} ∪ {φ,ψ} ⊆ SEN♭(Σ),
φ ⊳Σ ψ ∈ G′Σ({φi ⊳Σ ψi ∶ i ∈ I}) iff ρΣ[φ,ψ] ⊆ GΣ(⋃{ρΣ[φi, ψi] ∶ i ∈ I}).

Then, by the fact that G is a Gentzen π-institution and Property (4), we
get that G′ is also a Gentzen π-institution. Moreover, by its definition and
Condition (5), taking into account Lemma 1879, (τ, ρ) ∶G ⇄G′ is an equiva-
lence. Thus, it suffices to show that G′ = GK, for some class K of F-algebraic
posystems. For this, in turn, it suffices, by Theorem 1901, to show that
MatFamSu(G′) is a class of F-algebraic posystems.

Note, first, that I = {I⟨1,1⟩}, defined by setting, for all Σ ∈ ∣Sign♭∣ and all
φ,ψ,φ′, ψ′ ∈ SEN♭(Σ),

I
⟨1,1⟩
Σ [⟨φ,ψ⟩, ⟨φ′, ψ′⟩] ∶= {φ ⊳Σ φ′, φ′ ⊳Σ φ, ψ ⊳Σ ψ′, ψ′ ⊳Σ ψ}

is a subset of RG′ , which, by Condition (2) and the definition of G′ satisfies
the Modus Ponens in G′. Therefore, by Theorem 1918, G′ is syntactically
protoalgebraic and, hence, by Theorem 1914, it is protoalgebraic. Thus, by
Lemma 1899, the Leibniz and the Suszko operator coincide. Moreover, by
Conditions (1) and (2) and the definition of G′, for all ⟨A,≤⟩ ∈MatFam(G′),
the relation family ≤ is reflexive and transitive. Also, by Condition (3) and
the definition of G′, we get that, for all ⟨A,≤⟩ ∈MatFam(G′), all σ,σ′ in N ♭,
all Σ ∈ ∣Sign∣ and all φ,ψ, χ⃗ ∈ SEN(Σ),

φ ≤Σ ψ, ψ ≤Σ φ, σAΣ(φ, χ⃗) ≤Σ σ′AΣ (φ, χ⃗) imply σAΣ (ψ, χ⃗) ≤Σ σ′AΣ (ψ, χ⃗).
We finish the proof by showing that, for all ⟨A,≤⟩ ∈MatFamSu(G′), ≤ is also
antisymmetric. To this end, let Σ ∈ ∣Sign∣, φ,ψ ∈ SEN(Σ), such that φ ≤Σ ψ
and ψ ≤Σ φ. Then, by Property (4) and the definition of G′, we get that, for
all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(φ) ≤Σ′ SEN(f)(ψ) and SEN(f)(ψ) ≤Σ′ SEN(f)(φ).
Then, by what was shown above, we have, for all σ,σ′ in N ♭ and all χ⃗ ∈
SEN(Σ′),

σAΣ′(SEN(f)(φ), χ⃗) ≤Σ′ σ′AΣ′ (SEN(f)(φ), χ⃗)
iff σAΣ′(SEN(f)(ψ), χ⃗) ≤Σ′ σ′AΣ′ (SEN(f)(ψ), χ⃗).

Therefore, by Corollary 1896, we get ⟨φ,ψ⟩ ∈ ΩAΣ(≤) = Ω̃G′,A
Σ (≤) = ∆AΣ . We

conclude that ⟨A,≤⟩ is indeed an F-algebraic posystem. Hence, G′ is an
inequational Gentzen π-institution associated with the class MatFamSu(G′)
of F-algebraic posystems and, as a consequence, the Gentzen π-institution
G is indeed order algebraizable. ∎

Specializing Theorem 1928 to the case of Hilbert π-institutions, we get
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Corollary 1929 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and H =⟨F,H⟩ a Hilbert π-institution based on F. H is order algebraizable if and only
if there exist a {⟨0,1⟩}-{⟨1,1⟩}-transformation τ and an {⟨1,1⟩}-{⟨0,1⟩}-
transformation ρ, such that, for all σ,σ′ in N ♭, all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′), all φ,ψ,χ ∈ SEN♭(Σ) all χ⃗ ∈ SEN♭(Σ′) and all {φi, ψi ∶ i ∈ I} ⊆
SEN♭(Σ):

(1) ρΣ[φ,φ] ⊆ ThmΣ(H);
(2) ρΣ[φ,χ] ⊆HΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]);
(3) ρΣ[σΣ(ψ, χ⃗), σ′Σ(ψ, χ⃗)]

⊆HΣ(ρΣ[φ,ψ], ρΣ[ψ,φ], ρΣ[σΣ(φ, χ⃗), σ′Σ(φ, χ⃗)]);
(4) ρΣ[φ,ψ] ⊆HΣ(⋃i∈I ρΣ[φi, ψi]) implies

ρΣ′[SEN♭(f)(φ),SEN♭(ψ)] ⊆ HΣ′(⋃
i∈I

ρΣ′[SEN♭(f)(φi),SEN♭(f)(ψi)]);
(5) HΣ(⊳Σ φ) =HΣ(ρΣ[τΣ[φ]]).

Proof: Directly from Theorem 1928. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is simply order
algebraizable if it is equivalent to the inequational Gentzen π-institution
GK, associated with some class K of F-algebraic posystems, via a conjugate
pair (τ, ρ0) ∶ G ⇄ GK, where, as before, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈
SEN♭(Σ),

ρ0Σ(φ;ψ) = φ ⊳Σ ψ.
We have the following analog of Lemma 1823.

Lemma 1930 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is simply
order algebraizable via both (τ, ρ0) ∶ G ⇄ GK and (τ ′, ρ0) ∶ G ⇄ GK′, then
GOSem(K) = GOSem(K′).
Proof: Suppose G is simply order algebraizable via both (τ, ρ0) ∶ G ⇄ GK

and (τ ′, ρ0) ∶ G⇄GK′ . Then, for all Σ ∈ ∣Sign♭∣ and all I ∪{φ ≼ ψ} ⊆ InΣ(F),
we have

φ ≼ ψ ∈ GK
Σ(I) iff ρ0Σ[φ;ψ] ⊆ GΣ(ρ0Σ[I])

iff φ ≼ ψ ∈ GK′

Σ (I).
Thus, K and K′ satisfy exactly the same F-guasiinequations. ∎

The unique order guasivariety K that simply order algebraizes a simply
order algebraizable Gentzen π-institution G is called the order class of G.

Specializing Theorem 1928, we get
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Corollary 1931 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace, with ⟨1,1⟩ ∈ tr, and G = ⟨F,G⟩ a Gentzen π-institution of trace tr
based on F. G is simply order algebraizable if and only if there exists a tr-{⟨1,1⟩}-transformation τ , such that, for all σ,σ′ in N ♭, all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′), all φ,ψ,χ ∈ SEN♭(Σ), all χ⃗ ∈ SEN♭(Σ′) and all φ ∈
Seqtr

Σ(F):
(1) φ ⊳Σ φ ∈ ThmΣ(G);
(2) φ ⊳Σ χ ∈ GΣ(φ ⊳Σ ψ,ψ ⊳Σ χ);
(3) σΣ(ψ, χ⃗) ⊳Σ σ′Σ(ψ, χ⃗) ∈ GΣ(φ ⊳Σ ψ,ψ ⊳Σ φ,σΣ(φ, χ⃗) ⊳Σ σ′Σ(φ, χ⃗));
(4) GΣ(φ) = GΣ(ρ0Σ[τΣ[φ]]).

Proof: Directly by Theorem 1928. ∎

26.9 Truth Equationality

By Theorem 1901, the closure system G of a Gentzen π-institution G = ⟨F,G⟩
can be recovered by the class MatFamSu(G) of its Suszko reduced matrix
families. A related issue is to investigate when G can be recovered just from
the class of underlying F-algebraic systems of the class MatFamSu(G), i.e.,
from the class AlgSys(G). The algebraizability property of G gives that

MatFamSu(G) = {⟨A, τA∗(∆A) ∶ A ∈ AlgSys(G)},
where τ ∶ G → GK is the {⟨1,1⟩}-tr-transformation witnessing the algebraiz-
ability. In this case, the F-algebraic system A ∈ AlgSys(G) is the F-algebraic
system reduct of a unique Suszko reduced G-matrix family, i.e., the G-filter
family of every Suszko reduced G-matrix family is uniquely determined by
the F-algebraic system A, since it is exactly τA∗(∆A) and this expression
does not depend on the choice of τ witnessing the algebraizability of G.

Even in the absence of algebraizability, however, if each F-algebraic sys-
tem in AlgSys(G) is the F-algebraic system reduct of e unique Suszko reduced
G-matrix family, then, there exists, modulo a technical condition, analogous
to the adequacy of the Suszko core introduced in a preceding chapter, a{⟨1,1⟩}-tr-transformation τ that determines the unique G-matrix filter on
the F-algebraic system, as described previously.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution os trace tr based on F.

• G is completely reflective, or c-reflective for short, if, for all T ∪{T ′} ⊆ ThFam(G),
⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′) implies ⋂T ≤ T ′;
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• G is truth equational if there exists τ = {τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}, where
τ ⟨m,n⟩ ∶ (SEN♭)ω → (SEN♭)2, with m + n distinguished arguments, such
that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
φ ∈ T Σ iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

First, we provide a characterization of c-reflectivity.

Theorem 1932 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution os trace tr based on F. Then, the
following statements are equivalent:

(i) For every A ∈ AlgSys(G), there exists unique T ∈ FiFamG(A), such
that ⟨A,T ⟩ ∈MatFamSu(G);

(ii) For every F-algebraic system A, and all T ∈ FiFamG(A), T /Ω̃G,A(T )
is the least G-filter family on A/Ω̃G,A(T );

(iii) For every F-algebraic system A, Ω̃G,A is injective on FiFamG(A);
(iv) For every F-algebraic system A and all T ∪ {T ′} ⊆ FiFamG(A),

⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′) implies ⋂T ≤ T ′;

(v) For all T ∪ {T ′} ⊆ ThFam(G), ⋂T ∈T Ω(T ) ≤ Ω(T ′) implies ⋂T ≤ T ′.

Proof:

(i)⇒(ii) Suppose (i) holds and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system
and T ∈ FiFamG(A). Consider the algebraic system A/Ω̃G,A(T ) and
let T ′ be the least filter on A/Ω̃G,A(T ). Then, since T /Ω̃G,A(T ) ∈
FiFamG(A/Ω̃G,A(T )), we get that T ′ ≤ T /Ω̃G,A(T ). Thus, by the
monotonicity of the Suszko operator,

Ω̃G,A/Ω̃G,A(T )(T ′) ≤ Ω̃G,A/Ω̃G,A(T )(T /Ω̃G,A(T )) = ∆A/Ω̃
G,A(T ).

But, noting that A/Ω̃G,A(T ) ∈ AlgSys(G), we get, by hypothesis, that
T ′ = T /Ω̃G,A(T ). Therefore, T /Ω̃G,A(T ) is the least G-filter family on
A/Ω̃G,A(T ).

(ii)⇒(iii) Suppose that (ii) holds and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic sys-
tem and T ,T ′ ∈ FiFamG(A), such that Ω̃G,A(T ) = Ω̃G,A(T ′). Then
Ω̃G,A(T ) is compatible with both T and T ′ and, hence, T /Ω̃G,A(T )
and T ′/Ω̃G,A(T ) are both G-filter families on A/Ω̃G,A(T ). Thus, by
hypothesis, T /Ω̃G,A(T ) ≤ T ′/Ω̃G,A(T ). Therefore, taking into account
the compatibility of Ω̃G,A(T ) with both T and T ′, we get T ≤ T ′. By
symmetry, we also have T ′ ≤ T , whence T = T ′. Thus, Ω̃G,A is injective
on FiFamG(A).
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(iii)⇒(iv) Suppose (iii) holds and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system
and T ∪ {T ′} ⊆ FiFamG(A), such that

⋂
T ∈T

ΩA(T ) ≤ ΩA(T ′).
Then, we have

Ω̃G,A(⋂T ∩T ′) = ⋂{ΩA(X) ∶ T ∩T ′ ≤X ∈ FiFamG(A)}
= ⋂{ΩA(X) ∶ ⋂T ≤X ∈ FiFamG(A)}
= Ω̃G,A(⋂T ).

By hypothesis, we get ⋂T ∩T ′ = ⋂T , whence ⋂T ≤ T ′.

(iv)⇒(v) Condition (v) is a special case of Condition (iv).

(v)⇒(i) Assume that (v) holds and let A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G) and T ,T ′ ∈
FiFamG(A), such that Ω̃G,A(T ) = Ω̃G,A(T ′) = ∆A. By Lemma 1891,
α−1(T ) and α−1(T ′) are both theory families of G. Now we have,
by hypothesis, Ω̃G,A(T ) = Ω̃G,A(T ′), whence, by the definition of the
Suszko operator,

⋂{ΩA(X) ∶ T ≤X ∈ FiFamG(A)} ≤ ΩA(T ′).
Hence, applying α−1 to both sides,

α−1(⋂{ΩA(X) ∶ T ≤X ∈ FiFamG(A)}) ≤ α−1(ΩA(T ′)).
Equivalently,

⋂{α−1(ΩA(X)) ∶ T ≤X ∈ FiFamG(A)} ≤ α−1(ΩA(T ′)).
By Lemma 1909,

⋂{Ω(α−1(X)) ∶ T ≤X ∈ FiFamG(A)} ≤ Ω(α−1(T ′)).
By Condition (v),

⋂{α−1(X) ∶ T ≤X ∈ FiFamG(A)} ≤ α−1(T ′).
Hence, α−1(T ) ≤ α−1(T ′), which gives, by the surjectivity of ⟨F,α⟩,
T ≤ T ′. By symmetry, we get that T = T ′ and, therefore, there exists
only one G-filter family T on A, such that ⟨A,T ⟩ ∈MatFamSu(G).

∎

It also turns out that a sufficient condition for the c-reflectivity of a
Gentzen π-institution G is the injectivity of the Suszko operator on all F-
algebraic systems in AlgSys(G).
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Lemma 1933 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If, for all
A ∈ AlgSys(G), Ω̃G,A is injective on FiFamG(A), then G is c-reflective.

Proof: By the hypothesis, for all A ∈ AlgSys(G), there exists a unique
T ∈ FiFamG(A), such that ⟨A,T ⟩ ∈ MatFamSu(G). Therefore, by Theorem
1932, G is c-reflective. ∎

Next we provide an alternative characterization of truth equationality,
forming an analog of Theorem 818.

Theorem 1934 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if, there exists τ = {τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}, where τ ⟨m,n⟩ ∶(SEN♭)ω → (SEN♭)2, with m + n distinguished arguments, such that, for all⟨A,T ⟩ ∈MatFamSu(G), T = τA∗(∆A).
Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}. Let ⟨A,T ⟩ ∈ MatFamSu(G), Σ ∈ ∣Sign♭∣ and φ ∈
Seqtr

Σ(F) of trace ⟨m,n⟩. Then we have

αΣ(φ) ∈ T F (Σ) iff αΣ(φ) ∈ T ′F (Σ), all T ≤ T ′ ∈ FiFamG(A)
iff φ ∈ α−1Σ (T ′F (Σ)), all T ≤ T ′ ∈ FiFamG(A)
iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(α−1(T ′)), all T ≤ T ′ ∈ FiFamG(A)

iff τ
⟨m,n⟩
Σ [φ] ⊆ α−1Σ (ΩAF (Σ)(T ′)), all T ≤ T ′ ∈ FiFamG(A)

iff αΣ(τ ⟨m,n⟩Σ [φ]) ⊆ ΩA
F (Σ)
(T ′), all T ≤ T ′ ∈ FiFamG(A)

iff τ
A,⟨m,n⟩

F (Σ)
[αΣ(φ)] ⊆ Ω̃G,A

F (Σ)
(T )

iff τ
A,⟨m,n⟩

F (Σ)
[αΣ(φ)] ⊆∆A

F (Σ)
.

The conclusion follows by taking into account the surjectivity of ⟨F,α⟩.
Conversely, assume that the condition in the statement holds and let

T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr
Σ(F) of trace ⟨m,n⟩. Then, since

Ω̃G,F/Ω(T )(T /Ω(T )) ≤ ΩF/Ω(T )(T /Ω ∗ T ) =∆F/Ω(T ),

we get that ⟨F/Ω(T ),T /Ω(T )⟩ ∈MatFamSu(G). Therefore, by hypothesis,

φ/ΩΣ(T ) ∈ T Σ/ΩΣ(T ) iff τ
F/Ω(T ),⟨m,n⟩
Σ [φ/ΩΣ(T )] ⊆∆

F/Ω(T )
Σ ,

i.e.,
φ/ΩΣ(T ) ∈ T Σ/ΩΣ(T ) iff τ

⟨m,n⟩
Σ [φ]/ΩΣ(T ) ⊆∆

F/Ω(T )
Σ .

By the compatibility of Ω(T ) with T , we now get

φ ∈ T Σ iff τ
⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).
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Therefore, G is truth equational. ∎

Before turning into a characterization of the exact relationship between
c-reflectivity and truth equationality, we prove that both c-reflectivity and
truth equationality are preserved under equivalence of Gentzen π-institu-
tions.

Theorem 1935 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is c-reflective if
and only if G′ is also.

Proof: Suppose that G′ is c-reflective and let T ∪ {T ′} ⊆ ThFam(G), such
that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then, by Proposition 1897, ⋂T ∈T Ω(ρ∗(T )) ≤
Ω(ρ∗(T ′)). Thus, by Theorem 1880 and the hypothesis, we get ⋂T ∈T ρ

∗(T ) ≤
ρ∗(T ′) and, then, ρ∗(⋂T ) ≤ ρ∗(T ′). As ρ∗ is order reflecting, we conclude
that ⋂T ≤ T ′ and, therefore, G is c-reflective. The converse follows by the
symmetry of the notion of equivalence. ∎

Theorem 1936 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr, tr′

traces and G = ⟨F,G⟩, G′ = ⟨F,G′⟩ Gentzen π-institutions of traces tr, tr′,
respectively, based on F. If G and G′ are equivalent, then G is truth equa-
tional if and only if G′ is also.

Proof: Suppose that G and G′ are equivalent via a conjugate pair (τ, ρ) ∶
G ⇄ G′ and that G′ is truth equational, with witnessing transformations
σ ∶= {σ⟨m,m⟩ ∶ ⟨m,n⟩ ∈ tr′}. Then, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and
all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr, we get, setting, according to Theorem

1880, T ′ ∈ ThFam(G′) be such that T
ρ∗

⇄
τ∗
T ′,

φ ∈ T Σ iff φ ∈ τ∗Σ(T ′) (definition of T ′)
iff τΣ[φ] ⊆ T ′Σ (definition of τ∗)
iff σΣ[τΣ[φ]] ⊆ ΩΣ(T ′) (hypothesis)
iff σΣ[τΣ[φ]] ⊆ ΩΣ(ρ∗(T )) (definition of T ∗)
iff σΣ[τΣ[φ]] ⊆ ΩΣ(T ). (Proposition 1897)

Therefore, σ ○ τ witnesses the truth equationality of G. The converse follows
by the symmetry of equivalence. ∎

We now turn to the investigation of the exact relationship between com-
plete reflectivity and truth equationality. We will show that for a Gentzen
π-institution to be truth equational, it must be c-reflective and, in addition
satisfy a technical condition analogous to the adequacy of the Suszko core
in the context of π-institutions, that ensures that there are enough natu-
ral transformations in its category of natural transformations to specify the
Suszko operator in a precise sense.

We start by showing that truth equationality implies c-reflectivity.
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Proposition 1937 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. if G is
truth equational, then it is c-reflective.

Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}, and let T ∪ {T ′} ⊆ ThFam(G), such that ⋂T ∈T Ω(T ) ≤
Ω(T ′). Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩, we have

φ ∈ ⋂T ∈T T Σ iff φ ∈ T Σ, T ∈ T ,
iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ), T ∈ T ,

iff τ
⟨m,n⟩
Σ [φ] ⊆ ⋂T ∈T ΩΣ(T )

implies τ
⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ′)

iff φ ∈ T ′Σ.

Thus, ⋂T ≤ T ′ and, hence, G is c-reflective. ∎

The property of c-reflectivity also has a characterization involving both
the Suszko and the Leibniz operator. Namely, we obtain

Lemma 1938 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is c-
reflective if and only if, for all T ,T ′ ∈ ThFam(G),

Ω̃G,F(T ) ≤ Ω(T ′) implies T ≤ T ′.

Proof: Suppose, first, that G is c-reflective and let T ,T ′ ∈ ThFam(G), such
that Ω̃G,F(T ) ≤ Ω(T ′). Then, we get

⋂{Ω(X) ∶ T ≤X ∈ ThFam(G)} ≤ Ω(T ′).
Hence, by hypothesis, ⋂{X ∶ T ≤X ∈ ThFam(G)} ≤ T ′, i.e., T ≤ T ′.

Assume, conversely, that the condition of the statement holds and let
T ∪ {T ′} ⊆ ThFam(G), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′). Then we get

Ω̃G,F(⋂T ) ≤⋂{Ω(T ) ∶ T ∈ T } ≤ Ω(T ′).
Thus, by hypothesis, ⋂T ≤ T ′ and G is c-reflective. ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Define the Suszko
core

SG = {SG,⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}
of G, by setting, for all ⟨m,n⟩ ∈ tr,

SG,⟨m,n⟩ = {σ ∶ (SEN♭)ω → (SEN♭)2 ∈ N ♭ ∶
(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ Seq

{⟨m,n⟩}
Σ (F))

(σΣ[φ] ⊆ Ω̃G,F
Σ (G(φ)))}.

SG is a set of natural candidates from which to seek witnesses for the truth
equationality of G, if such exist, since it satisfies the following property.
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Lemma 1939 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is truth
equational, with witnessing transformations τ , then τ ⊆ SG.

Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr}. Then, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F) of trace⟨m,n⟩, we have φ ∈ GΣ(φ), whence, φ ∈ T Σ, for all G(φ) ≤ T ∈ ThFam(G).

Thus, by truth equationality, τ
⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ) and, therefore, τ

⟨m,n⟩
Σ [φ] ⊆

Ω̃G,F
Σ (G(φ)). We conclude that τ ⟨m,n⟩ ⊆ SG,⟨m,n⟩. ∎

The Suszko core of G always carries a theory family T of G into the
Leibniz congruence system Ω(T ) of the theory family T .

Proposition 1940 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. For all
T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ T Σ of trace ⟨m,n⟩ ∈ tr,

S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

Proof: Let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ T Σ of trace ⟨m,n⟩ ∈ tr.
Then, by the definition of SG, we get

S
G,⟨m,n⟩
Σ [φ] ⊆ Ω̃G,F

Σ (G(φ)) ⊆ Ω̃G,F
Σ (T ) ⊆ ΩΣ(T ).

This establishes the conclusion. ∎

The converse property, which does not always hold, is called solubility of
the Suszko core.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. SG is soluble if, for
all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩ ∈ tr,
we get

S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ) implies φ ∈ T Σ.

Truth equationality of a Gentzen π-institution guarantees the solubility
of its Suszko core.

Theorem 1941 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is truth
equational, then the Suszko core SG is soluble.

Proof: Suppose that G is truth equational, with witnessing transformations
τ , and let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩, such

that S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). Then, by Lemma 1939, τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). By

truth equationality, φ ∈ T Σ. Therefore, SG is indeed soluble. ∎

Conversely, if the Suszko core of a given Gentzen π-institution G is sol-
uble, then it acts as a set of witnessing transformations for the truth equa-
tionality of G.
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Theorem 1942 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If SG is
soluble, then G is truth equational, with witnessing transformations SG.

Proof: We must show that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all
φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
φ ∈ T Σ iff S

G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

The left to right implication is by Proposition 1940, whereas the reverse is
by the hypothesis of the solubility of the Suszko core. ∎

Theorems 1941 and 1942 allow two characterizations of truth equational-
ity in terms of the solubility of the Suszko core and in terms of the definability
of theory families by the Suszko core.

G is Truth Equational ←→ SG is Soluble.

Theorem 1943 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if its Suszko core SG is soluble.

Proof: The “only if” by Theorem 1941. The “if” by Theorem 1942. ∎

We say that SG defines theory families if, for all T ∈ ThFam(G) and
all Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F),
φ ∈ T Σ iff S

G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ).

Then we can show

G is Truth Equational ←→ SG Defines Theory Families.

Theorem 1944 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if SG defines theory families.

Proof: If G is truth equational, then, by Theorem 1943, SG is soluble,
whence it defines theory families. On the other hand, if SG defines theory
families, then it is soluble and, hence, by Theorem 1943, G is truth equa-
tional. ∎

We now know that truth equationality of a Gentzen π-institution is equiv-
alent to the solubility property of its Suszko core. The solubility property
implies another property, which, in accordance with our previous work on π-
institutions, we call adequacy. It says, roughly speaking, that in a Gentzen
π-institution the category of natural transformations is rich enough to deter-
mine Suszko congruence systems in terms of the Leibniz congruence systems
that it selects by inclusion. This property arises in a natural way by con-
sidering the following result relating the Suszko core with both Suszko and
Leibniz congruence systems of theory families generated by single sequents.
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Proposition 1945 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. For all
Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
⋂{Ω(T ) ∶ SG,⟨m,n⟩

Σ [φ] ⊆ ΩΣ(T )} ≤ Ω̃G,F(G(φ)).
Proof: Note that, for all T ∈ ThFam(G), all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr

Σ(F)
of trace ⟨m,n⟩, we have

φ ∈ T Σ ⇒ S
G,⟨m,n⟩
Σ [φ] ⊆ Ω̃G,F

Σ (T ) (Suszko core)

⇒ S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). (Ω̃G,F(T ) ≤ Ω(T ))

Therefore, we get

⋂{Ω(T ) ∶ SG,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T )} ≤ ⋂{Ω(T ) ∶ SG,⟨m,n⟩

Σ [φ] ⊆ Ω̃G,F
Σ (T )}

≤ ⋂{Ω(T ) ∶ φ ∈ T Σ}
= Ω̃(G(φ)).

Thus, the displayed inclusion always holds. ∎

The reverse inclusion is not always guaranteed, but, when it holds, we
say that the Suszko core of G is adequate. As the name suggests, the prop-
erty somehow conveys the idea that SG[φ] suffices to determine the theory
families whose Leibniz congruence systems form a covering of the Suszko
congruence system corresponding to the theory family G(φ).

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G =⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The Suszko core SG

is adequate if, for all Σ ∈ ∣Sign♭∣ and all φ ∈ Seqtr
Σ(F) of trace ⟨m,n⟩,

Ω̃G,F
Σ (G(φ)) ≤⋂{Ω(T ) ∶ SG,⟨m,n⟩

Σ [φ] ⊆ ΩΣ(T )}.
We can prove immediately that solubility implies adequacy.

Proposition 1946 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If the
Suszko core SG is soluble, then it is adequate.

Proof: Suppose SG is soluble. We have, for all Σ ∈ ∣Sign♭∣ and all φ ∈
Seqtr

Σ(F) of trace ⟨m,n⟩,
Ω̃G,F(G(φ)) = ⋂{Ω(T ) ∶ φ ∈ T Σ}

(Suszko congrunece system)

= ⋂{Ω(T ) ∶ SG,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T )}.

(solubility of SG)

Hence, the Suszko core of G is adequate. ∎

Conversely, if a Gentzen π-institution is c-reflective, then the adequacy
of its Suszko core is sufficient to give its solubility.
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Proposition 1947 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
c-reflective and the Suszko core SG is adequate, then SG is soluble.

Proof: Assume G is c-reflective and SG is adequate. Let T ∈ ThFam(G),
Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩.
If φ ∈ T Σ, then, by the definition of the Suszko core, we get

S
G,⟨m,n⟩
Σ [φ] ⊆ Ω̃G,F

Σ (G(φ)) ⊆ Ω̃G,F
Σ (T ) ⊆ ΩΣ(T ).

Assume conversely, that S
G,⟨m,n⟩
Σ [φ] ⊆ ΩΣ(T ). Then, by adequacy of the

Suszko core, Ω̃G,F(G(φ)) ≤ Ω(T ). Hence, by c-reflectivity and Lemma 1938,
G(φ) ≤ T , i.e., φ ∈ T Σ. We conclude that SG is soluble. ∎

We finally show that a Gentzen π-institution is truth equational if and
only if it is c-reflective and has an adequate Suszko core.

Truth Equationality = SG Soluble
= SG Defines Theory Families
= c-Reflectivity + SG Adequate

Theorem 1948 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational if and only if it is c-reflective and has an adequate Suszko core.

Proof: If G is truth equational, then, by Proposition 1937, it is c-reflective,
by Theorem 1941, its Suszko core is soluble and, by Proposition 1946, its
Suszko core is adequate. On the other hand, if G is c-reflective with an
adequate Suszko core, then, by Proposition 1947, its Suszko core is soluble
and, hence, by Theorem 1942, G is truth equational. ∎

We also obtain immediately

Corollary 1949 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a protoalgebraic Gentzen π-institution of trace tr based on F.
G is truth equational if and only if its Leibniz operator is injective on theory
families and has an adequate Suszko core.

Proof: If G is truth equational, then, by Theorem 1948, it is c-reflective and
has an adequate Suszko core, whence, it has, a fortiori, a Leibniz operator
injective on theory families and an adequate Suszko core.

Conversely, by Theorem 1948, it suffices to show that monotonicity and
injectivity of the Leibniz operator imply its c-reflectivity. In fact, given
T ,T ′ ∈ ThFam(G), we have

Ω̃G,G(T ) ≤ Ω(T ′) ⇒ Ω(T ) ≤ Ω(T ′) (Protoalgebraicity)
⇒ Ω(T ∩ T ′) = Ω(T ) ∩Ω(T ′) = Ω(T )

(Protoalgebraicity)
⇒ T ∩ T ′ = T (Injectivity)
⇒ T ≤ T ′.
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Thus, G is c-reflective, by Lemma 1938. ∎

We close the section by a result asserting that truth equationality trans-
fers from a Gentzen π-institution G to all G-matrix families.

Theorem 1950 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is truth
equational, with witnessing transformations τ = {τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} if and
only if, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, and all T ∈ FiFamG(A),
Σ ∈ ∣Sign∣ and φ ∈ Seqtr

Σ(A) of trace ⟨m,n⟩,
φ ∈ T Σ iff τ

A,⟨m,n⟩
Σ [φ] ⊆ ΩAΣ(T ).

Proof: Suppose G is truth equational, with witnessing transformations τ ={τ ⟨m,n⟩ ∶ ⟨m,n⟩ ∈ tr} and let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, T ∈
FiFamG(A), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩. Then, we have

αΣ(φ) ∈ T F (Σ) iff φ ∈ α−1Σ (T F (Σ))
iff τ

⟨m,n⟩
Σ [φ] ⊆ ΩΣ(α−1(T ))

iff τ
⟨m,n⟩
Σ [φ] ⊆ α−1Σ (ΩAF (Σ)(T ))

iff αΣ(τ ⟨m,n⟩Σ [φ]) ⊆ ΩA
F (Σ)
(T )

iff τ
A,⟨m,n⟩

F (Σ)
[αΣ(φ)] ⊆ ΩA

F (Σ)
(T ).

Taking into account the surjectivity of ⟨F,α⟩, we have the conclusion. ∎

26.10 Weak Algebraizability

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace and G = ⟨F,G⟩ a
Gentzen π-institution of trace tr based on F. G is called WF algebraizable
if it is protoalgebraic and c-reflective.

Proposition 1951 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. G is WF
algebraizable if and only if the Leibniz operator is monotone and injective on
ThFam(G).
Proof: It suffices to show that, under monotonicity, c-reflectivity and injec-
tivity are equivalent properties. Indeed, c-reflectivity always implies injectiv-
ity because it implies order reflectivity. On the other hand, suppose that the
Leibniz operator is monotone and injective. Then, we have, by monotonicity,
for all T ∪ {T } ⊆ ThFam(G), such that ⋂T ∈T Ω(T ) ≤ Ω(T ′),

Ω(⋂T ∩ T ′) = ⋂
T ∈T

Ω(T ) ∩Ω(T ′) = ⋂
T ∈T

Ω(T ) = Ω(⋂T ).
Thus, by injectivity, ⋂T ∩ T ′ = ⋂T and, hence, ⋂T ≤ T ′. Therefore G is
also c-reflective. ∎

The following theorem provides characterations of WF algebraizability.
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Theorem 1952 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. Then the
following statements are equivalent:

(i) G is WF algebraizable;

(ii) The Leibniz operator defines an order isomorphism from ThFam(G)
onto the lattice of all AlgSys(G)-congruence families on F ;

(iii) For every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the Leibniz operator de-
fines an order isomorphism from FiFamG(A) onto the lattice of all
AlgSys(G)-congruence systems on A;

(iv) For every A = ⟨A, ⟨F,α⟩⟩ ∈ AlgSys(G), the Leibniz operator defines an
order isomorphism from FiFamG(A) onto the lattice of all AlgSys(G)-
congruence systems on A.

Proof:

(i)⇒(ii) Suppose G is WF algebraizable. Denote ConSys(G) the collection of
all AlgSys(G)-congruences on F . Then, since, for all T ∈ ThFam(G),

Ω̃G,F/Ω(T )(T /Ω(T )) ≤ ΩF/Ω(T )(T /Ω(T )) =∆F/Ω(T ),

we get that ⟨F/Ω(T ),T /Ω(T )⟩ ∈ MatFamSu(G). Thus, F/Ω(T ) ∈
AlgSys(G) and, therefore, Ω(T ) ∈ ConSys(G). This shows that Ω ∶
ThFam(G) → ConSys(G) is well defined. By Proposition 1951, it is
injective. To see that it is surjective, consider θ ∈ ConSys(G). Then,
by definition, F/θ ∈ AlgSys(G), i.e., there exists T ∈ FiFamG(F/θ),
such that Ω̃G,F/θ(T ) = ∆F/θ. However, since the Leibniz operator is
monotone, by hypothesis, we get that the Susko operator coincides with
the Leibniz operator, whence ΩF/θ(T ) =∆F/θ. Denoting by ⟨I, π⟩ ∶ F →
F/θ the quotient morphism, we now get

Ω(π−1(T )) = π−1(ΩF/θ(T )) = π−1(∆F/θ) = θ.
Thus, Ω is indeed surjective. It is monotone by hypothesis and it
is order reflecting, since it is c-reflective. Thus, Ω ∶ ThFam(G) →
ConSys(G) is in fact an order isomorphism.

(ii)⇒(iii) It is not difficult to show that ΩA is also monotone and c-reflective.
Therefore, one can work in the same way as in Part (ii) replacing the
mapping Ω by ΩA ∶ FiFamG(A) → ConSysG(A), where ConSysG(A)
denotes the collection of AlgSys(G)-congruence systems on A.

(iii)⇒(iv) Condition (iv) is a special case of Condition (iii).
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(iv)⇒(i) If Condition (iv) holds, the G is protoalgebraic, by Lemma 1911. Hence
the Leibniz and Suszko operators coincide on the G-filter families of all
F-algebraic systems. Thus, by Theorem 1932, G is also truth equa-
tional. Therefore, it is WF algebraizable.

∎

Finally, based on results of preceding sections, we can also give a relation
between algebraizability and WF algebraizability.

We show, first, that, if G is algebraizable, then it is both syntactically
protoalgebraic and truth equational.

We start by giving a modus ponens property in the case of algebraizability.

Lemma 1953 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK, for some class K of F-
algebraic systems, then, for all Σ ∈ ∣Sign♭∣ and all φ,φ ∈ Seqtr

Σ(F) of trace⟨m,n⟩,
ψ ∈ GΣ({φ} ∪ ⋃

i<m+n

ρΣ[φi, ψi]).
Proof: We have, for all Σ ∈ ∣Sign♭∣ and all φ,φ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩,
τΣ[ψ] ⊆ GK

Σ(τΣ[φ] ∪ {φi ⊳Σ ψi ∶ i <m + n}).
Thus, we get

ρΣ[τΣ[ψ]] ⊆ GΣ(ρΣ[τΣ[φ]] ∪ ⋃
i<m+n

ρΣ[φi, ψi]).
Therefore, ψ ∈ GΣ({φ} ∪⋃i<m+n ρΣ[φi, ψi]). ∎

Moreover, in case of algebraizability, the isomorphism ρ∗ from the theory
families of the Gentzen π-institution G to the K-congruence systems on F
coincides with the Leibniz operator Ω.

Proposition 1954 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a
trace and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G

is algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK, for some class K of
F-algebraic systems, then, for all T ∈ ThFam(G),

ρ∗(T ) = Ω(T ).
Proof: Let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ).

If ⟨φ,ψ⟩ ∈ ΩΣ(T ), then, since Ω(T ) is a congruence system, we get, for
all σ ∈ ρ and all χ⃗ ∈ SEN♭(Σ),

⟨σΣ(φ,φ, χ⃗), σΣ(φ,ψ, χ⃗)⟩ ∈ ΩΣ(T ).
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But σΣ(φ,φ, χ⃗) ∈ ThmΣ(G) ⊆ T Σ. Therefore, by the compatibility of Ω(T )
with T , we get that σΣ(φ,ψ, χ⃗) ∈ T Σ. Therefore, ρΣ[φ,ψ] ⊆ T Σ, which gives
that ⟨φ,ψ⟩ ∈ ρ∗Σ(T ).

Conversely, to see that ρ∗(T ) ≤ Ω(T ) it suffices, by the maximality prop-
erty of Ω(T ), to show that ρ∗(T ) is compatible with T . Let Σ ∈ ∣Sign♭∣
and φ,ψ ∈ Seqtr

Σ(F) of trace ⟨m,n⟩, such that ⟨φ,ψ⟩ ∈ ρ∗Σ(T ) and φ ∈ T Σ.
Then, we have ρΣ[φi, ψi] ⊆ T Σ, for all i < m + n, and φ ∈ T Σ, whence, by
Lemma 1953, ψ ∈ T Σ. We conclude that ρ∗(T ) is compatible with T , giving
ρ∗(T ) ≤ Ω(T ). ∎

Now, we prove one of the main theorems of the section to the effect that
algebraizability implies both syntactic protoalgebraicity and truth equation-
ality.

Theorem 1955 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK, for some class K of
F-algebraic systems, then, G is syntactically protoalgebraic and truth equa-
tional.

Proof: Suppose G is algebraizable via the conjugate pair (τ, ρ) ∶ G ⇄ GK,
for some class K of F-algebraic systems.

Let, first, T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then we have

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ⟨φ,ψ⟩ ∈ ρ∗Σ(T ) (Proposition 1954)
iff ρΣ[φ,ψ] ⊆ T Σ. (definition of ρ∗)

Therefore, G is syntactically protoalgebraic, with witnessing transformations
ρ.

Finally, let T ∈ ThFam(G), Σ ∈ ∣Sign♭∣ and φ ∈ Seqtr
Σ(F) of trace ⟨m,n⟩.

Then, we have

φ ∈ T Σ iff ρΣ[τΣ[φ]] ⊆ T Σ ((τ, ρ) conjugate pair)
iff τΣ[φ] ⊆ ρ∗Σ(T ) (definition of ρ∗)
iff τΣ[φ] ⊆ ΩΣ(T ). ((Proposition 1954))

Therefore, G is truth equational, with witnessing transformations τ . ∎

We show, next, that, conversely, syntactic protoalgebraicity and truth
equationality guarantee algebraizability.

Theorem 1956 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. If G is
syntactically protoalgebraic and truth equational, then it is algebraizable.
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Proof: Suppose that G is syntactically protoalgebraic, with witnessing trans-
formations ρ, and truth equational, with witnessing transformations τ . Then,
we have, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {φ} ⊆ Seqtr

Σ(F),
φ ∈ GΣ(Φ) iff φ ∈ ⋂{T Σ ∶ Φ ⊆ T Σ}

iff τΣ[φ] ⊆ ⋂{ΩΣ(T ) ∶ τΣ[Φ] ⊆ ΩΣ(T )}
iff τΣ[φ] ⊆ GK

Σ(τΣ[Φ]).
Moreover, for all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ ΩΣ(T ) iff ρΣ[φ,ψ] ⊆ T Σ

iff τΣ[ρΣ[φ,ψ]] ⊆ ΩΣ(T ).
Hence, we have that GK

Σ(φ ⊳Σ ψ) = GK
Σ(τΣ[ρΣ[φ,ψ]]).

We conclude, by Lemma 1879, that G is equivalent to GK and, therefore,
G is algebraizable. ∎

Now we can formulate the main characterization theorem:

Theorem 1957 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, tr a trace
and G = ⟨F,G⟩ a Gentzen π-institution of trace tr based on F. The following
statements are equivalent:

(i) G is algebraizable;

(ii) G is syntactically protoalgebraic and truth equational;

(iii) G is WF algebraizable (i.e., protoalgebraic and c-reflective) and has
both a Leibniz reflexive core and an adequate Suszko core.

Proof: If G is algebraizable, then, by Theorem 1955, it is syntactically pro-
toalgebraic and truth equational. If G is syntactically protoalgebraic and
truth equational, then, by Theorems 1924 and 1948, it is protoalgebraic,
c-reflective and has both a Leibniz reflexive core and an adequate Suszko
core. Finally, if G is WF algebraizable, with a Leibniz reflexive core and
an adequate Suszko core, then, by Theorems 1924 and 1948, it is syntacti-
cally protoalgebraic and truth equational, whence, by Theorem 1956, it is
algebraizable. ∎
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Behavioral Algebraizability
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27.1 Behavioral π-Institutions

Let Sign be an arbitrary category of signatures, S a nonempty set of sorts
and, for each s ∈ S,

SENs ∶ Sign→ Set

a functor giving, for each signature Σ, a set of Σ-sentences of sort s. By a
multi-sorted sentence functor over set of sorts S we understand the
collection {SENs ∶ s ∈ S},
where all sets SENs(Σ), s ∈ S, are assumed to be disjoint, i.e.,

SENs(Σ) ∩ SENs′(Σ) = ∅, for all s, s′ ∈ S, s ≠ s′.

Because of this condition, given Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and Φ ⊆
⋃s∈S SENs(Σ), we write

SEN(f)(Φ) = ⋃
s∈S

{SENs(f)(φ) ∶ φ ∈ Φ of sort s}.
A multi-sorted sentence functor over set of sorts S is called behavioral if a
nonempty subset V ⊆ S of formula sorts has been singled out and, moreover,
there exists a companion subset V ∗ = {v∗ ∶ v ∈ V } of visible sorts. In that
case the (perhaps empty) set H = S − (V ∪ V ∗) is called the set of hidden
sorts. To denote a behavioral functor, making the set of visible and set of
hidden sorts explicit, we write

{SENv,SENv∗ ,SENh ∶ v ∈ V,h ∈H},
or sometimes, for the sake of succinctness,

{SENs}V,V ∗H .

Let Sign be a category and {SENs}s∈S a multi-sorted sentence functor. The
clone of all natural transformations on {SENs}s∈S is the locally small
category with:

• objects ∏κ<α SENsκ , with sκ ∈ S, α an ordinal;

• morphisms τ ∶ ∏κ<α SENsκ → ∏λ<β SENs′
λ

are β-sequences of natural
transformations

τλ ∶∏
κ<α

SENsκ → SENs′
λ
, λ < β.

Composition is defined as ordinary composition, i.e., by setting

∏
κ<α

SENsκ

⟨τλ ∶ λ < β⟩✲ ∏
λ<β

SENs′
λ

⟨σµ ∶ µ < γ⟩✲ ∏
µ<γ

SENs′′µ
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⟨σµ ∶ µ < γ⟩ ○ ⟨τλ ∶ λ < β⟩ = ⟨σµ(⟨τλ ∶ λ < β⟩) ∶ µ < γ⟩.
A subcategory N of the clone of all natural transformations on {SENs}s∈S,
with objects all objects of the form ∏k

i=1 SENsi, k < ω, is called a category
of natural transformations on {SENs}s∈S if the following conditions hold:

• It contains all natural projections

ps1⋯sk→si ∶
k

∏
i=1

SENsi → SENsi, i < k, k < ω.

• For every collection {τi ∶ ∏k
i=1 SENsi → SENs′

i
∶ i < ℓ} of ℓ natural

transformations in N , the tuple

⟨τi ∶ i < ℓ⟩ ∶ k

∏
i=1

SENsi →
ℓ

∏
j=1

SENs′
j

is also a natural transformation in N .

We refer to these conditions by saying that N “includes all projections” and
is “closed under combinations” of natural transformations.

Let {SENs}V,V ∗H be a behavioral sentence functor. A subcategory N of the
clone of all natural transformations on {SENs}s∈S, with objects all objects
of the form ∏k

i=1 SENsi, k < ω, is called a category of natural trans-

formations on {SENs}V,V ∗H if, in addition to being a category of natural
transformations on {SENs}s∈S, i.e., to including all projections and being
closed under combinations, the following condition also holds:

• For all v ∈ V , there is no outgoing natural transformation from SENv∗ ,
other than the identity, and there exists a unique surjective natural
transformation

ov ∶ SENv → SENv∗ ,

called the v-observation natural transformation, or, simply, ob-
servation, when the formula sort v to which it corresponds is clear
from context, such that, every incoming natural transformation σ∗ ∶
SENs → SENv∗ factors through ov:

SENs

σ∗ ✲ SENv∗

❩
❩
❩
❩
❩σ ⑦ ✚

✚
✚
✚
✚

ov

❃

SENv

We express this condition by saying that N “has observations”.
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Given a natural transformation σ ∶ ∏k
i=1 SENsi → SENs in N , we call

s1⋯sk → s the type of σ and say that σ is of sort s (i.e., of the output
sort).

A multi-sorted algebraic system F = ⟨Sign,{SENs}s∈S,N⟩ consists of
a category of signatures, a multi-sorted sentence functor and a category N of
natural transformations on {SEN}s∈S. It is called behavioral if {SENs}V,V ∗H

is a behavioral sentence functor and N is a category of natural transforma-
tions on {SENs}V,V ∗H (i.e., has observations), and we then write

F = ⟨Sign,{SENs}V,V ∗H ,N⟩.
Let F = ⟨Sign♭,{SEN♭s}s∈S,N ♭⟩ be a multi-sorted algebraic system. An

N ♭-algebraic system is a multi-sorted algebraic system

A = ⟨Sign,{SENs}s∈S,N⟩,
such that there exists a surjective functor F ∶ N ♭ → N that preserves all
natural projections (and, hence, the type of all natural transformations in
N ♭). We use σA to refer to the image of σ in N ♭ under F .

Moreover, given two N -algebraic systems A = ⟨Sign,{SENs}s∈S,N⟩ and
B = ⟨Sign′,{SEN′s}s∈S,N ′⟩, a morphism

⟨F,α⟩ ∶ A→ B

consists of a functor F ∶ Sign → Sign′ and a collection α = {αs}s∈S of nat-
ural transformations αs ∶ SENs → SEN′s ○ F , s ∈ S, such that, for every
σ ∶∏k

i=1 SEN♭si → SEN♭s in N , all Σ ∈ ∣Sign∣, and all φi ∈ SENsi(Σ), i ≤ k,

αsΣ(σA
Σ (φ1, . . . φk)) = σB

F (Σ)(αs1Σ (φ1), . . . , αskΣ (φk)).
Let F = ⟨Sign♭,{SEN♭s}s∈S,N ♭⟩ be a multi-sorted algebraic system. An

F-algebraic system A is a pair ⟨A, ⟨F,α⟩⟩, where

• A = ⟨Sign,{SENs}s∈S,N⟩ is an N ♭-algebraic system;

• ⟨F,α⟩ ∶ F →A is a surjective morphism, i.e., such that F ∶ Sign → Sign′

is surjective and full and αsΣ ∶ SEN♭s(Σ) → SENs(F (Σ)) is surjective,
for all Σ ∈ ∣Sign∣ and all s ∈ S.

Given two F-algebraic systems A = ⟨A, ⟨F,α⟩⟩ and B = ⟨B, ⟨G,β⟩⟩, with
A = ⟨Sign,{SENs}s∈S,N⟩ and B = ⟨Sign′,{SEN′s}s∈S,N ′⟩, a morphism

⟨H,γ⟩ ∶ A → B
is a morphism ⟨H,γ⟩ ∶ A→B, such that

F

❂✚
✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩
❩

⟨G,β⟩
⑦

A ⟨H,γ⟩ ✲ B
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⟨H,γ⟩ ○ ⟨F,α⟩ = ⟨G,β⟩.
A behavioral π-institution is a pair I = ⟨F,C⟩, where

• F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ is a behavioral algebraic system;

• C = {CΣ}Σ∈∣Sign♭∣ is a closure system on {SEN♭v}v∈V , i.e., for all Σ ∈
∣Sign♭∣,

CΣ ∶ P(⋃
v∈V

SEN♭v(Σ)) → P(⋃
v∈V

SEN♭v(Σ))
is a closure operator and, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′)
and all Φ ⊆ ∪v∈V SEN♭v(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN♭(f)(Φ)).
Given a behavioral algebraic system F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩, a be-

havioral sentence family T = {TΣ}Σ∈∣Sign♭∣ of F consists of subsets

TΣ ⊆ ⋃
v∈V

SENv(Σ), Σ ∈ ∣Sign♭∣.
Given a behavioral π-institution I = ⟨F,C⟩, based on F, a behavioral the-
ory family T = {TΣ}Σ∈∣Sign♭∣ of I is a behavioral sentence family of F, such

that, for all Σ ∈ ∣Sign♭∣,
CΣ(TΣ) = TΣ.

We write ThFam(I) for the collection of all behavioral theory families of I .

27.2 Behavioral Algebra

Let F = ⟨Sign,{SENs}s∈S,N⟩ be a multi-sorted algebraic system. An equiv-
alence family θ = {θΣ}Σ∈∣Sign∣ on F is a family, such that, for all Σ ∈ ∣Sign∣,
θΣ = {θsΣ}s∈S consists of equivalence relations θsΣ ⊆ SENs(Σ)2. It is called
an equivalence system on F if it is invariant under Sign-morphisms, i.e.,
such that, for all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and s ∈ S,

SENs(f)(θsΣ) ⊆ θsΣ′ .
An equivalence family/system θ on F is called a congruence family/sys-
tem on F if, for all σ ∶ ∏k

i=1 SENsi → SENs in N , all Σ ∈ ∣Sign∣ and all
φ⃗, ψ⃗ ∈∏k

i=1 SENsi(Σ),
φ⃗

k

∏
i=1

θsiΣ ψ⃗ implies σΣ(φ⃗) θsΣ σΣ(ψ⃗).
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The collection of all congruence systems on F is denoted by ConSys(F) and
it forms a complete lattice under signature-wise and sort-wise inclusion ≤:

ConSys(F) = ⟨ConSys(F),≤⟩.
Let F = ⟨Sign♭,{SENs}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and

T = {TΣ}Σ∈∣Sign♭∣ a behavioral sentence family of F. A congruence family

θ = {θΣ}Σ∈∣Sign♭∣ on F is compatible with T if, for all Σ ∈ ∣Sign♭∣, all v ∈ V
and all φ,ψ ∈ SENv(Σ),

⟨φ,ψ⟩ ∈ θvΣ and φ ∈ TΣ imply ψ ∈ TΣ.

A fundamental result, akin to that allowing us to define Leibniz congru-
ence systems in the context of ordinary π-institutions, is asserting that, given
a behavioral sentence family, there exists a largest congruence system on F
compatible with the theory family.

Theorem 1958 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system, T = {TΣ}Σ∈∣Sign♭∣ a behavioral sentence family of F. There exists a
largest congruence system on F compatible with T .

Proof: We define θ = {θΣ}Σ∈∣Sign♭∣, where θΣ = {θsΣ}s∈S by setting, for all

Σ ∈ ∣Sign♭∣, all s ∈ S and all φ,ψ ∈ SEN♭s(Σ), ⟨φ,ψ⟩ ∈ θsΣ if and only if, for
all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V , all Σ′ ∈ ∣Sign♭∣, all

f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

σΣ′(SEN♭s(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN♭s(f)(ψ), χ⃗) ∈ TΣ′ .
We show that θ, thus defined, is a congruence system on F that is compatible
with T .

First, it is straightforward by the definition that, for all Σ ∈ ∣Sign♭∣ and all
s ∈ S, θsΣ is reflexive, symmetric and transitive. So θ is an equivalence family
on F. To see that it is a system, let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), s ∈ S and
φ,ψ ∈ SEN♭s(Σ), such that ⟨φ,ψ⟩ ∈ θsΣ. Then, for all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si →

SEN♭v in N ♭, with v ∈ V , all Σ′′ ∈ ∣Sign♭∣, all h ∈ Sign♭(Σ,Σ′′) and all
χ⃗ ∈∏k

i=1 SEN♭si(Σ′′),
σΣ′′(SEN♭s(h)(φ), χ⃗) ∈ TΣ′′ iff σΣ′′(SEN♭s(f)(ψ), χ⃗) ∈ TΣ′′ .

Thus, as fortiori, for all σ ∶ SEN♭s ×∏
k
i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V , all

Σ′′ ∈ ∣Sign♭∣, all g ∈ Sign♭(Σ′,Σ′′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′′),

Σ
f ✲ Σ′

❅
❅
❅h ❘ ✠�

�
�

g

Σ′′
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σΣ′′(SEN♭s(g)(SEN♭s(f)(φ)), χ⃗) ∈ TΣ′′
iff σΣ′′(SEN♭s(g)(SEN♭s(f)(ψ)), χ⃗) ∈ TΣ′′ .

This shows that ⟨SEN♭s(f)(φ),SEN♭s(f)(ψ)⟩ ∈ θsΣ′ and, hence, θ is an equiv-
alence system.

To see that θ is a congruence system, let τ ∶ ∏ℓ
j=1 SEN♭s′

j
→ SEN♭s be in

N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ ∏ℓ
j=1 SEN♭s′

j
(Σ), such that φ⃗∏ℓ

j=1 θ
s′j
Σ ψ⃗. Then, we

have, for all σ ∶ SEN♭s ×∏
k
i=1 → SEN♭v in N ♭, with v ∈ V , all Σ′ ∈ ∣Sign♭∣, all

f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

σΣ′(SEN♭s(f)(τΣ(φ⃗)), χ⃗) ∈ TΣ′
iff σΣ′(τΣ′(SEN♭s′

1

(f)(φ1),SEN♭s′
2

(f)(φ2),SEN♭s′
3

(f)(φ3), . . . ,
SEN♭s′

ℓ−1
(f)(φℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff σΣ′(τΣ′(SEN♭s′
1

(f)(ψ1),SEN♭s′
2

(f)(φ2),SEN♭s′
3

(f)(φ3), . . . ,
SEN♭s′

ℓ−1
(f)(φℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff σΣ′(τΣ′(SEN♭s′
1

(f)(ψ1),SEN♭s′
2

(f)(ψ2),SEN♭s′
3

(f)(φ3), . . . ,
SEN♭s′

ℓ−1
(f)(φℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff⋯
iff σΣ′(τΣ′(SEN♭s′

1

(f)(ψ1),SEN♭s′
2

(f)(ψ2),SEN♭s′
3

(f)(ψ3), . . . ,
SEN♭s′

ℓ−1
(f)(ψℓ−1),SEN♭s′

ℓ
(f)(φℓ)), χ⃗) ∈ TΣ′

iff σΣ′(τΣ′(SENs′
1
(f)(ψ1),SEN♭s′

2

(f)(ψ2),SEN♭s′
3

(f)(ψ3), . . . ,
SEN♭s′

ℓ−1
(f)(ψℓ−1),SEN♭s′

ℓ
(f)(ψℓ)), χ⃗) ∈ TΣ′

iff σΣ′(SEN♭s(f)(τΣ(ψ⃗)), χ⃗) ∈ TΣ′ .
Hence, ⟨τΣ(φ⃗), τΣ(ψ⃗)⟩ ∈ θsΣ, showing that θ is a congruence system on F.

θ is also compatible with T , since, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
ψ,ψ ∈ SEN♭v(Σ), such that φ ∈ TΣ and ⟨φ,ψ⟩ ∈ θvΣ, we get, as a special instance
in the definition by taking σ = ι ∶ SEN♭v → SEN♭v in N ♭, Σ′ = Σ and f = iΣ,
φ ∈ TΣ iff ψ ∈ TΣ. Therefore, ψ ∈ TΣ and θ is, in fact, a congruence system on
F compatible with T .

Finally, we show that, if θ′ is a congruence system on F compatible with
T , then θ′ ≤ θ. Suppose, to this end, that θ′ is a congruence system on F
compatible with T and let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), such that⟨φ,ψ⟩ ∈ θ′sΣ . Then, since θ′ is a congruence system, for all Σ′ ∈ ∣Sign♭∣ and
all f ∈ Sign♭(Σ,Σ′), ⟨SEN♭s(f)(φ),SEN♭s(f)(ψ)⟩ ∈ θ′sΣ′ . Thus, since θ′ is a
congruence system, for all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V ,

and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),
⟨σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(ψ), χ⃗)⟩ ∈ θ′vΣ′ .

Therefore, by the compatibility of θ′ with T , we get

σΣ′(SEN♭s(f)(φ), χ⃗) ∈ TΣ′ iff σΣ′(SEN♭s(f)(ψ), χ⃗) ∈ TΣ′ .
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This shows that ⟨φ,ψ⟩ ∈ θsΣ and, hence, θ′ ≤ θ. Thus, θ is indeed the largest
congruence system on F compatible with T . ∎

The largest congruence system on F compatible with T is called the be-
havioral Leibniz congruence system of T on F and is denoted by Υ(T ).
Moreover, given a behavioral π-institution I = ⟨F,C⟩, and a behavioral the-
ory family T ∈ ThFam(I), we define the behavioral Suszko congruence
system of T on F by

Υ̃I(T ) =⋂{Υ(T ′) ∶ T ≤ T ′ ∈ ThFam(I)}.
Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and

A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,{SENs}s∈S,N⟩, an F-algebraic system. We
define ≡A = {≡AΣ}Σ∈∣Sign∣, where, for all Σ ∈ ∣Sign∣, ≡AΣ = {≡A,sΣ }s∈S is given,

for all s ∈ S, all φ,ψ ∈ SENs(Σ), by φ ≡A,sΣ ψ if and only if, for all σ ∶
SENs ×∏k

i=1 SENsi → SENv∗ , with v ∈ V , all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′)
and all χ⃗ ∈∏k

i=1 SENsi(Σ′),
σAΣ′(SENs(f)(φ), χ⃗) = σAΣ′(SENs(f)(ψ), χ⃗).

We show that ≡A is a congruence system on A.

Proposition 1959 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-

braic system and A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,{SENs}V,V ∗H ,N⟩, an F-
algebraic system. The relation family ≡A is a congruence system on A.

Proof: By the definition, it is obvious that, for all Σ ∈ ∣Sign∣ and all s ∈ S,
≡A,sΣ is an equivalence family on SENs(Σ). We show that ≡A is a system and
that it satisfies the congruence property.

Let Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), s ∈ S and φ,ψ ∈ SENs(Σ), such that
φ ≡A,sΣ ψ. Then, for all σ ∶ SENs × ∏k

i=1 SENsi → SENv∗ , with v ∈ V , all
Σ′′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′′) and χ⃗ ∈∏k

i=1 SENsi(Σ′′),
σAΣ′′(SENs(h)(φ), χ⃗) = σAΣ′′(SENs(h)(ψ), χ⃗).

In particular, for all g ∈ Sign(Σ′,Σ′′) and all χ⃗ ∈∏k
i=1 SENsi(Σ′′),

Σ
f ✲ Σ′

❅
❅
❅h ❘ ✠�

�
�

g

Σ′′

σAΣ′′(SENs(g)(SENs(f)(φ)), χ⃗) = σAΣ′′(SENs(g)(SENs(f)(ψ)), χ⃗).
Thus, by definition, SENs(f)(φ) ≡A,sΣ′ SENs(f)(ψ) and, therefore, ≡A is an
equivalence system.
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Finally, let σ ∶ ∏k
i=1 SENsi → SENs be in N , Σ ∈ ∣Sign∣ and φ⃗, ψ⃗ ∈

∏k
i=1 SENsi(Σ), such that φ⃗∏k

i=1 ≡
A,si
Σ ψ⃗. Then, we have, for all τ ∶ SENs ×

∏ℓ
j=1 SENs′

j
→ SENv∗ , with v ∈ V , all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all

χ⃗ ∈∏ℓ
j=1 SENs′

j
(Σ′),

τAΣ′(SENs(f)(σAΣ (φ⃗)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(φ1),SENs2(f)(φ2),SENs3(f)(φ3), . . . ,

SENsk−1(f)(φk−1),SENsk(f)(φk)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(φ2),SENs3(f)(φ3), . . . ,

SENsk−1(f)(φk−1),SENsk(f)(φk)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(ψ2),SENs3(f)(φ3), . . . ,

SENsk−1(f)(φk−1),SENsk(f)(φk)), χ⃗)
= ⋯
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(ψ2),SENs3(f)(ψ3), . . . ,

SENsk−1(f)(ψk−1),SENsk(f)(φk)), χ⃗)
= τAΣ′(σAΣ′(SENs1(f)(ψ1),SENs2(f)(ψ2),SENs3(f)(ψ3), . . . ,

SENsk−1(f)(ψk−1),SENsk(f)(ψk)), χ⃗)
= τAΣ′(SENs(f)(σAΣ (ψ⃗)), χ⃗)

Hence, σAΣ (φ⃗) ≡A,sΣ σAΣ (φ⃗) and ≡A is a congruence system on {SENs}V,V ∗H . ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and K a
class of F-algebraic systems. We define the closure system CK = {CK

Σ}Σ∈∣Sign♭∣
by letting, for all Σ ∈ ∣Sign♭∣,

CK
Σ ∶ P(⋃

v∈V

SEN♭v(Σ)2)→ P(⋃
v∈V

SEN♭v(Σ)2)
be given, for all E ∪ {φ ≈ ψ} ⊆ ⋃v∈V SENv(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff for all A ∈ K,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(E)) ⊆ ≡A
F (Σ′)

implies

αΣ′(SEN♭(f)(ψ)) ≡A
F (Σ′)

αΣ′(SEN♭(f)(ψ)).
Proposition 1960 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and K a class of F-algebraic systems. Then CK is a closure
system on ⋃v∈V (SEN♭v)2.

Proof: It is straightforward to check that CK
Σ is inflationary, monotone and

idempotent, for all Σ ∈ ∣Sign♭∣. The fact that it is invariant under Sign♭-
morphisms can be shown in a way similar to that in the proof of Proposition
1959. ∎

We call IK = ⟨F,CK⟩ the behavioral equational π-institution asso-
ciated with the class K of F-algebraic systems.
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27.3 Behavioral Algebraizability

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system, K a class
of F-algebraic systems and I = ⟨F,C⟩ a behavioral π-institution based on F.

• A transformation τ from I to IK is a collection τ = {τ v ∶ v ∈ V },
where, for every v ∈ V , τ v = {τ v,u ∶ u ∈ V } is such that

τ v,u ∶ SEN♭v ×∏
i<ω

SEN♭si → (SEN♭u)2

is a collection of natural transformations in N ♭;

• A transformation ρ from IK to I is a collection ρ = {ρv ∶ v ∈ V },
where, for every v ∈ V , ρv = {ρv,u ∶ u ∈ V } is such that

ρv,u ∶ (SEN♭v)2 ×∏
i<ω

SEN♭si → SEN♭u

is a collection of natural transformations in N ♭.

A transformation τ from I to IK is called an interpretation, written τ ∶
I → IK, if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all Φ ∪ {φ} ⊆ ⋃v∈V SENv(Σ),

φ ∈ CΣ(Φ) iff τΣ[φ] ⊆ CK
Σ(τΣ[Φ]).

Similarly, a transformation ρ from IK to I is called an interpretation,
written ρ ∶ IK → I , if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all E ∪ {φ ≈ ψ} ⊆
⋃v∈V SEN♭v(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E]).

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F. I is said to be behaviorally
(syntactically WF) algebraizable if there exists a class K of F-algebraic
systems and interpretations τ ∶ I → IK, ρ ∶ IK → I , that form a conjugate
pair, i.e., such that, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

• CΣ(φ) = CΣ(ρΣ[τΣ[φ]]);
• CK

Σ(φ ≈ ψ) = CK
Σ(τΣ[ρΣ[φ,ψ]]).

In this case we also say that I and IK are equivalent via (τ, ρ) and we
write (τ, ρ) ∶ I ⇄ IK.

Explicitly, I is behaviorally algebraizable if and only if, there exists a
class K of F-algebraic systems and translations τ from I to IK and ρ from
IK to I , such that, for all Σ ∈ ∣Sign♭∣, all Φ ∪ {φ} ⊆ ⋃v∈V SEN♭v(Σ) and all
E ∪ {φ ≈ ψ} ⊆ ⋃v∈V SEN♭v(Σ)2,
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(1) φ ∈ CΣ(Φ) if and only if τΣ[φ] ⊆ CK
Σ(τΣ[Φ]);

(2) φ ≈ ψ ∈ CK
Σ(E) if and only if ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E]);

(3) CΣ(φ) = CΣ(ρΣ[τΣ[φ]]);
(4) CK

Σ(φ ≈ ψ) = CK
Σ(τΣ[ρΣ[φ,ψ]]).

As in normal syntactic WF algebraizability, it turns out that, in this case
as well, Conditions (1) and (4), or dually, Conditions (2) and (3) suffice to
establish behavioral algebraizability.

Proposition 1961 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system, I = ⟨F,C⟩ a behavioral π-institution based on F, K a class of
F-algebraic systems and τ , ρ translations from I to IK and from IK to I,
respectively. The following statements are equivalent:

(i) τ ∶ I → IK is an interpretation and, for all Σ ∈ ∣Sign♭∣, all v ∈ V and
all φ ≈ ψ ∈ SEN♭v(Σ), CK

Σ(φ ≈ ψ) = CK
Σ(τΣ[ρΣ[φ,ψ]]);

(ii) ρ ∶ IK → I is an interpretation and, for all Σ ∈ ∣Sign♭∣, all v ∈ V and
all φ ∈ SEN♭v(Σ), CΣ(φ) = CΣ(ρΣ[τΣ[φ]]).

Proof: We only prove that (i) implies (ii), since the converse then follows
by the symmetry of the notion of equivalence. Suppose that (i) holds and let
Σ ∈ ∣Sign♭∣ and E ∪ {φ ≈ ψ} ⊆ ⋃v∈V SEN♭v(Σ)2. Then we have

φ ≈ ψ ∈ CK
Σ(E) iff τΣ[ρΣ[φ,ψ]] ⊆ CK

Σ(τΣ[ρΣ[E]])
iff ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E]).

Moreover, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ), we have, for all
ψ ∈ ⋃v∈V SEN♭v(Σ),

ψ ∈ CΣ(ρΣ[τΣ[φ]]) iff τΣ[ψ] ⊆ CK
Σ(τΣ[ρΣ[τΣ[φ]]])

iff τΣ[ψ] ⊆ CK
Σ(τΣ[φ])

iff ψ ∈ CΣ(φ).
Hence, CΣ(φ) = CΣ(ρΣ[τΣ[φ]]). This shows that Condition (ii) holds. ∎

We look next at some properties that are entailed by behavioral alge-
braizability.

Proposition 1962 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system, I = ⟨F,C⟩ a behavioral π-institution based on F and K a class
of F-algebraic systems. If (τ, ρ) ∶ I ⇄ IK is a conjugate pair, then, for
all v, u ∈ V , all σ ∶ SENv ×∏k

i=1 SENsi → SENu in N ♭, all Σ ∈ ∣Sign♭∣, all
φ,ψ,χ ∈ SEN♭v(Σ) and all χ⃗ ∈∏k

i=1 SEN♭si(Σ),
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(a) ρΣ[φ,φ] ⊆ ThmΣ(I);
(b) ρΣ[ψ,φ] ⊆ CΣ(ρΣ[φ,ψ]);
(c) ρΣ[φ,χ] ⊆ CΣ[ρΣ[φ,ψ], ρΣ[ψ,χ]);
(d) ρΣ[σΣ(φ, χ⃗), σΣ(ψ, χ⃗)] ⊆ CΣ(ρΣ[φ,ψ]);
(e) ψ ∈ CΣ(φ, ρΣ[φ,ψ]).

Proof:

(a) We have φ ≈ φ ∈ CK
Σ(∅), whence, since ρ ∶ IK → I is an interpretation,

ρΣ[φ,φ] ⊆ CΣ(∅).
(b) Since ψ ≈ φ ∈ CK

Σ(φ ≈ ψ), we get, again by the fact ρ ∶ IK → I is an
interpretation, ρΣ[ψ,φ] ⊆ CΣ(ρΣ[φ,ψ]).

(c) Since φ ≈ χ ∈ CK
Σ(φ ≈ ψ,ψ ≈ χ) and ρ ∶ IK → I is an interpretation, we

get that ρΣ[φ,χ] ⊆ CΣ(ρΣ[φ,ψ], ρΣ[ψ,χ]).
(d) By Proposition 1959, we have, for all σ ∶ SENv ×∏

k
i=1 SENsi → SENu

and all χ⃗ ∈ ∏k
i=1 SEN♭si(Σ), σΣ(φ, χ⃗) ≈ σΣ(ψ, χ⃗) ∈ CK

Σ(φ ≈ ψ). Hence,
again by the fact that ρ ∶ IK → I is an interpretation, we get that
ρΣ[σΣ(φ, χ⃗), σΣ(ψ, χ⃗)] ⊆ CΣ(ρΣ[φ,ψ]).

(e) In IK, we have τΣ[ψ] ⊆ CK
Σ(τΣ[φ], φ ≈ ψ). Hence, by Property (4) of

equivalence, τΣ[ψ] ⊆ CK
Σ(τΣ[φ], τΣ[ρΣ[φ,ψ]]). Thus, by Property (1) of

equivalence, we get that ψ ∈ CΣ(φ, ρΣ[φ,ψ]).
∎

We can also prove that, if a behavioral π-institution I is behaviorally
algebraizable in two different ways, then the interpretations are, roughly
speaking, interderivable and the classes of F-algebraic systems serving as
behavioral algebraic semantics generate the same behavioral consequence
operators.

Theorem 1963 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable via conjugate pairs (τ, ρ) ∶ I ⇄ IK and (τ ′, ρ′) ∶ I ⇄ IK′,
then, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

(a) CΣ(ρΣ[φ,ψ]) = CΣ(ρ′Σ[φ,ψ]);
(b) CK = CK′;

(c) CK
Σ(τΣ[φ]) = CK

Σ(τ ′Σ[φ]).
Proof:
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(a) For all σ′ ∈ ρ′ and all χ⃗ ∈∏k
i=1 SEN♭si(Σ), we get

ρΣ[σ′Σ(φ,φ, χ⃗), σ′Σ(φ,ψ, χ⃗)] ⊆ CΣ(ρΣ[φ,ψ]).
But we also have ρ′Σ[φ,φ] ⊆ CΣ(∅) ⊆ CΣ(ρΣ[φ,ψ]). Thus, by Propo-
sition 1962, Part (e), ρ′Σ[φ,ψ] ⊆ CΣ(ρΣ[φ,ψ]). By symmetry, we now
get CΣ(ρΣ[φ,ψ]) = CΣ(ρ′Σ[φ,ψ]).

(b) Using Part (a), we get, for all Σ ∈ ∣Sign♭∣ and all E ∪ {φ ≈ ψ} ⊆
⋃v∈V SEN♭v(Σ)2,

φ ≈ ψ ∈ CK
Σ(E) iff ρΣ[φ,ψ] ⊆ CΣ(ρΣ[E])

iff ρ′Σ[φ,ψ] ⊆ CΣ(ρ′Σ[E])
iff φ ≈ ψ ∈ CK′

Σ (E).
(c) Using Parts (a) and (b), we get

CΣ(φ) = CΣ(φ) iff CΣ(ρΣ[τΣ[φ]]) = CΣ(ρ′Σ[τ ′Σ[φ]])
iff CΣ(ρΣ[τΣ[φ]]) = CΣ(ρΣ[τ ′Σ[φ]])
iff CK

Σ(τΣ[φ]) = CK
Σ(τ ′Σ[φ]).

∎

27.4 Behavioral Protoalgebraicity

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F.

• I is behaviorally protoalgebraic if the behavioral Leibniz operator
Υ ∶ ThFam(I) → ConSys(F) is monotone on the behavioral theory
families of I , i.e., for all T,T ′ ∈ ThFam(I),

T ≤ T ′ implies Υ(T ) ≤ Υ(T ′).
• I is behaviorally syntactically protoalgebraic if there exists a

collection ρ = {ρv ∶ v ∈ V }, where, for all v ∈ V , ρv = {ρv,u ∶ u ∈ V } is
such that ρv,u ∶ (SEN♭v)2 ×∏i<ω SEN♭si → SEN♭u in N ♭ is a collection of

natural transformations satisfying, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭v(Σ),

⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ρvΣ[φ,ψ] ≤ T.
The set ρ is referred to as the set of witnessing transformations for
the behavioral syntactic protoalgebraicity of I .

We have the following characterization of behavioral protoalgebraicity.
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Proposition 1964 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is be-
haviorally protoalgebraic if and only if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣,
all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

⟨φ,ψ⟩ ∈ ΥΣ(T ) implies CΣ(TΣ, φ) = CΣ(TΣ, ψ).
Proof: Suppose, first, that I is behaviorally protoalgebraic and let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ), such that ⟨φ,ψ⟩ ∈ ΥΣ(T ).
Let T ′ ∈ ThFam(I), such that TΣ ⊆ T ′Σ and ψ ∈ T ′Σ. Then, by behavioral
protoalgebraicity, we have ⟨φ,ψ⟩ ∈ ΥΣ(T ) ⊆ ΥΣ(T ′). Since, by hypothesis,
ψ ∈ T ′Σ, we get, by compatibility of Υ(T ′) with T ′, that φ ∈ T ′Σ. Thus,
φ ∈ CΣ(TΣ, ψ) and, by symmetry, CΣ(TΣ, φ) = CΣ(TΣ, ψ).

Suppose, conversely, that the condition in the statement holds and let
T,T ′ ∈ ThFam(I), such that T ≤ T ′ and Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈
SEN♭v(Σ), such that ⟨φ,ψ⟩ ∈ ΥΣ(T ). Then, since Υ(T ) is a congruence
system on F, we get, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), all σ ∶ SEN♭v ×
∏k
i=1 SEN♭si → SEN♭u in N ♭, with u ∈ V , and all χ⃗ ∈∏k

i=1 SEN♭si(Σ′),
⟨σΣ′(SEN♭v(f)(φ), χ⃗), σΣ′(SEN♭v(f)(ψ), χ⃗)⟩ ∈ ΥΣ′(T ).

By hypothesis,

CΣ′(TΣ′ , σΣ′(SEN♭v(f)(φ), χ⃗)) = CΣ′(TΣ′ , σΣ′(SEN♭v(f)(ψ), χ⃗)).
Hence, since T ≤ T ′,

CΣ′(T ′Σ′ , σΣ′(SEN♭v(f)(φ), χ⃗)) = CΣ′(T ′Σ′ , σΣ′(SEN♭v(f)(ψ), χ⃗)).
We now get

σΣ′(SEN♭v(f)(φ), χ⃗) ∈ T ′Σ′ iff σΣ′(SEN♭v(f)(ψ), χ⃗) ∈ T ′Σ′ .
Therefore, by the characterization in the proof of Theorem 1958, we get that⟨φ,ψ⟩ ∈ ΥΣ(T ′). Hence Υ(T ) ≤ Υ(T ′) and it follows that I is behaviorally
protoalgebraic. ∎

Behavioral syntactic protoalgebraicity implies behavioral protoalgebraic-
ity.

Theorem 1965 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic, then it is behaviorally protoalgebraic.

Proof: Suppose I is behaviorally syntactically protoalgebraic, with witness-
ing transformations ρ, and let T,T ′ ∈ ThFam(I), such that T ≤ T ′. Then,
for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ), we have

⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ρvΣ[φ,ψ] ≤ T
implies ρvΣ[φ,ψ] ≤ T ′

iff ⟨φ,ψ⟩ ∈ ΥΣ(T ′).
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Hence, Υ(T ) ≤ Υ(T ′) and, therefore, I is behaviorally protoalgebraic. ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We define the behavioral
reflexive core of I

AI = {AI,s ∶ s ∈ S},
by letting, for all s ∈ S, AI,s be the collection of all natural transformations
σ ∶ (SEN♭s)2 ×∏k

i=1 SEN♭si → SEN♭v in N ♭, with v ∈ V , such that:

For all Σ ∈ ∣Sign♭∣, all s ∈ S, all φ ∈ SEN♭s(Σ),
σΣ[φ,φ] ≤ Thm(I).

The importance of the behavioral reflexive core lies, as in previous cases,
in the fact that it forms a pool of candidates for drawing witnessing trans-
formations for the behavioral syntactic protoalgebraicity of I .

Lemma 1966 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
syntactically protoalgebraic, with witnessing transformations ρ, then ρ ⊆ AI .

Proof: Suppose I is behaviorally syntactically protoalgebraic, with witness-
ing transformations ρ. Let σ ∈ ρ, Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). Since⟨φ,φ⟩ ∈ ΥΣ(Thm(I)), we get that σΣ[φ,φ] ≤ ρΣ[φ,φ] ≤ Thm(I). Therefore,
we get that ρ ⊆ AI . ∎

Moreover, if I is behaviorally syntactically protoalgebraic, then AI sat-
isfies a modus ponens property in I .

Theorem 1967 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic, then, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ,AIΣ[φ,ψ]).
Proof: Assume I is behaviorally syntactically protoalgebraic, with wit-
nessing transformations ρ and let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and
φ,ψ ∈ SEN♭v(Σ), such that φ ∈ TΣ andAIΣ[φ,ψ] ≤ T . Then we have φ ∈ TΣ and,
by Lemma 1966, ρΣ[φ,ψ] ≤ AIΣ[φ,ψ] ≤ T , whence φ ∈ TΣ and ⟨φ,ψ⟩ ∈ ΥΣ(T ).
Thus, by compatibility of Υ(T ) with T , we conclude that ψ ∈ TΣ. Therefore,
ψ ∈ CΣ(φ,AIΣ[φ,ψ]). ∎

Define, for all T ∈ ThFam(I), a relation family AI(T ) = {AIΣ(T )}Σ∈∣Sign♭∣
on F, by setting, for all Σ ∈ ∣Sign♭∣, all s ∈ S and all φ,ψ ∈ SEN♭s(Σ),

⟨φ,ψ⟩ ∈ AIΣ(T ) iff A
I,s
Σ [φ,ψ] ≤ T.

Then we have
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Lemma 1968 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If, for all
Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ,AIΣ[φ,ψ]),
then, for all T ∈ ThFam(I), AI(T ) is a congruence system on F compatible
with T .

Proof: Fix T ∈ ThFam(I) and let Σ ∈ ∣Sign♭∣, s ∈ S and φ ∈ SEN♭s(Σ). By
definition of AI , we have AIΣ[φ,φ] ≤ Thm(I) ≤ T . Therefore, ⟨φ,φ⟩ ∈ AIΣ(T )
and, hence, AI(T ) is reflexive.

Let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), such that ⟨φ,ψ⟩ ∈ AIΣ(T ).
Then AIΣ[φ,ψ] ≤ T . Again by the definition of AI , we get that AIΣ[ψ,φ] =
AIΣ[φ,ψ] ≤ T , whence ⟨ψ,φ⟩ ∈ AIΣ(T ) and AI(T ) is symmetric.

Let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ,χ ∈ SEN♭s(Σ), such that ⟨φ,ψ⟩ ∈ AIΣ(T )
and ⟨ψ,χ⟩ ∈ AIΣ(T ). Then, we have AIΣ[φ,ψ] ≤ T and AIΣ[ψ,χ] ≤ T . Thus,
by hypothesis, we have, for all α ∈ AI , all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′)
and all χ⃗ ∈ SEN♭(Σ′) of appropriate sorts,

αΣ′(SEN♭(f)(φ),SEN♭(f)(χ), χ⃗)
∈ CΣ′(αΣ′(SEN♭(f)(φ),SEN♭(f)(ψ), χ⃗),

AIΣ′[αΣ′(SEN♭(f)(φ),SEN♭(f)(ψ), χ⃗),
αΣ′(SEN♭(f)(φ),SEN♭(f)(χ), χ⃗)])

⊆ CΣ′(AIΣ[φ,ψ],AIΣ[ψ,χ])
⊆ TΣ′ .

Hence AIΣ[φ,χ] ≤ T and, therefore, ⟨φ,χ⟩ ∈ AIΣ(T ) and AI(T ) is also transi-
tive. It is, by its definition, a system. To see that it is a congruence system,
suppose σ ∶∏k

i=1 SEN♭si → SENs is in N Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈∏k
i=1 SEN♭si(Σ),

such that φ⃗∏k
i=1A

I,si
Σ (T )ψ⃗. Then we have

AIΣ[σΣ(φ⃗), σΣ(φ⃗)] ≤ T iff AIΣ[σΣ(φ⃗), σΣ(ψ1, φ2, φ3, . . . , φk−1, φk)] ≤ T
iff AIΣ[σΣ(φ⃗), σΣ(ψ1, ψ2, φ3, . . . , φk−1, φk)] ≤ T
iff ⋯
iff AIΣ[σΣ(φ⃗), σΣ(ψ1, ψ2, ψ3, . . . , ψk−1, φk)] ≤ T
iff AIΣ[σΣ(φ⃗), σΣ(ψ⃗)] ≤ T.

Therefore, AI(T ) is a congruence system. Finally, by hypothesis, it is com-
patible with T . ∎

Lemma 1968 enables us to show that, if the behavioral reflexive core of
a behavioral π-institution satisfies the modus ponens property postulated
in its hypothesis, then it is behaviorally syntactically protoalgebraic, with
witnessing transformations AI,V = {AI,v ∶ v ∈ V }.
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Theorem 1969 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If, for all
Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ,AIΣ[φ,ψ]),
then I is behaviorally syntactically protoalgebraic, with witnessing transfor-
mations AI,V = {AI,v ∶ v ∈ V }.
Proof: Suppose that I satisfies the condition in the hypothesis. Let T ∈
ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ).

• Assume, first, that ⟨φ,ψ⟩ ∈ ΥΣ(T ). Then, since Υ(T ) is a congruence
system on F, we have, for all σ ∶ (SEN♭v)2 ×∏k

i=1 SEN♭si → SEN♭u in AI,v,

all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

⟨σΣ′(SEN♭v(f)(φ),SEN♭v(f)(φ), χ⃗),
σΣ′(SEN♭v(f)(φ),SEN♭v(f)(ψ), χ⃗)⟩ ∈ ΥΣ′(T ).

But, by definition of AI , we also have that

σΣ′(SEN♭v(f)(φ),SEN♭v(f)(φ), χ⃗) ∈ ThmΣ′(I) ⊆ TΣ′ .
Hence, by the compatibility property of Υ(T ) with T , we get that
σΣ′(SEN♭v(f)(φ),SEN♭v(f)(ψ), χ⃗) ∈ TΣ′ . Thus, AI,vΣ [φ,ψ] ≤ T .

• Assume, conversely, that AI,vΣ [φ,ψ] ≤ T . Then, we get ⟨φ,ψ⟩ ∈ AIΣ(T ).
But, by Lemma 1968 and the hypothesis, AI(T ) is a congruence system
on F compatible with T , whence, by the maximality of Υ(T ), AI(T ) ≤
Υ(T ). Thus, ⟨φ,ψ⟩ ∈ ΥΣ(T ).

We now conclude that I is behaviorally syntactically protoalgebraic. ∎

We have now the essential ingredients for formulating a characterization
of behavioral syntactic protoalgebraicity.

I is behaviorally syntactically protoalgebraic←→ AI,V has the MP.

Theorem 1970 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
syntactically protoalgebraic if and only if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and
all φ,ψ ∈ SEN♭v(Σ), ψ ∈ CΣ(φ,AI,vΣ [φ,ψ]).
Proof: The “only if” is by Theorem 1967. The “if” is by Theorem 1969. ∎

It is not difficult to show now that, if a behavioral π-institution is behav-
iorally syntactically protoalgebraic, then any set of witnessing transforma-
tions is deductively equivalent to the visible part of the behavioral reflexive
core.
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Corollary 1971 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic, with witnessing transformations ρ, then,
for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

C(AI,vΣ [φ,ψ]) = C(ρvΣ[φ,ψ]).
Proof: Suppose I is behaviorally syntactically protoalgebraic, with witness-
ing transformations ρ. Then, by Theorems 1967 and 1969, AI,V is also a
collection of witnessing transformations for the behavioral syntactic protoal-
gebraicity of I . Therefore, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all v ∈ V
and all φ,ψ ∈ SEN♭v(Σ), we get

A
I,v
Σ [φ,ψ] ≤ T iff ⟨φ,ψ⟩ ∈ ΥΣ(T )

iff ρvΣ[φ,ψ] ≤ T.
Hence, we get C(AI,vΣ [φ,ψ]) = C(ρvΣ[φ,ψ]). ∎

Another characterizing property, therefore, of behavioral syntactic pro-
toalgebraicity is that the behavioral reflexive core define behavioral Leibniz
congruence systems in I .

I is behaviorally syntactically protoalgebraic
←→ AI,V defines behavioral Leibniz congruence systems.

Theorem 1972 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behav-
iorally syntactically protoalgebraic if and only if AI,V defines behavioral Leib-
niz congruence systems of theory families in I, i.e., for all T ∈ ThFam(I),
AI,V (T ) = Υ(T ).
Proof: Suppose, first, that I is behaviorally syntactically protoalgebraic.
Then, by Theorems 1967 and 1969, AI,V is a collection of witnessing trans-
formations for the behavioral syntactic protoalgebraicity of I . Therefore, for
all T ∈ ThFam(I), AI,V (T ) = Υ(T ). Conversely, if AI,V (T ) = Υ(T ), for
all T ∈ ThFam(I), then I is behaviorally syntactically protoalgebraic, with
witnessing transformations AI,V . ∎

The connection between behavioral syntactic protoalgebraicity and be-
havioral protoalgebraicity passes through another property of the behavioral
Suszko core that we term Leibniz.

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We say that the behavioral
reflexive core AI of I is Leibniz if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ,ψ ∈ SEN♭v(Σ), ⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])).
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It is straightforward to show that, if AI,V has the modus ponens property
in I , then it is also Leibniz.

Proposition 1973 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If AI has
the modus ponens in I, then it is Leibniz.

Proof: Suppose that AI has the modus ponens in I . Then, by Theorem
1969, I is behaviorally syntactically protoalgebraic, with witnessing trans-
formations AI,V . Thus, we obtain, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ,ψ ∈ SEN♭v(Σ),

⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])) iff A
I,v
Σ [φ,ψ] ≤ C(AI,vΣ [φ,ψ]).

However, the condition of the right always holds, whence, we get that, for
all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ), ⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])),
i.e., AI is Leibniz. ∎

The opposite implication is not true in general. It holds, however, in
behaviorally protoalgebraic behavioral π-institutions.

Proposition 1974 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behaviorally protoalgebraic behavioral π-institution
based on F. If AI is Leibniz, then it has the modus ponens in I.

Proof: Suppose that I is behaviorally protoalgebraic and AI is Leibniz. Let
T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ), such that φ ∈ TΣ and
A
I,v
Σ [φ,ψ] ≤ T . Since AI is Leibniz, we get that ⟨φ,ψ⟩ ∈ ΥΣ(C(AI,vΣ [φ,ψ])).

Since A
I,v
Σ [φ,ψ] ≤ T , we get, by the hypothesis of behavioral protoalge-

braicity, Υ(C(AI,vΣ [φ,ψ])) ≤ Υ(T ), whence, ⟨φ,ψ⟩ ∈ ΥΣ(T ). Hence, by
the compatibility of Υ(T ), with T , we get ψ ∈ TΣ. We conclude that
ψ ∈ CΣ(φ,AI,vΣ [φ,ψ]) and, thus, AI has the modus ponens in I . ∎

We close by formulating the exact relation between behavioral syntactic
protoalgebraicity and behavioral protoalgebraicity.

Behavioral Syntactic Protoalgebraicity
= AI has the Modus Ponens
= AI Defines Behavioral Leibniz Congruence Systems
= Behavioral Protoalgebraicity +AI Leibniz

Theorem 1975 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
syntactically protoalgebraic if and only if it is behaviorally protoalgebraic and
has a Leibniz behavioral reflexive core.
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Proof: If I is behaviorally syntactically protoalgebraic, then, by Theorem
1965, it is behaviorally protoalgebraic, by Theorem 1967, AI has the modus
ponens and, hence, by Proposition 1973, AI is Leibniz.

Conversely, if I is behaviorally protoalgebraic and AI is Leibniz, then,
by Proposition 1974, AI has the modus ponens in I , whence, by Theorem
1969, I is behaviorally syntactically protoalgebraic. ∎

27.5 Behavioral Truth Equationality

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F.

• I is behaviorally completely reflective (or behaviorally c-ref-
lective, for short), if, for all T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Υ(T ) ≤ Υ(T ′) implies ⋂
T ∈T

T ≤ T ′.

• I is behaviorally truth equational if there exists τ = {τ v ∶ v ∈ V },
where, for all v ∈ V , τ v = {τ v,u ∶ u ∈ V } is a collection of natural
transformations τ v,u ∶ SEN♭v ×∏i<ω SEN♭si → (SEN♭u)2 in N ♭, such that,

for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ),
φ ∈ TΣ iff τ vΣ[φ] ≤ Υ(T ).

In this case, the collection τ forms a set of witnessing transforma-
tions for the behavioral truth equationality of I .

We have the following alternative characterization of behavioral c-ref-
lectivity, involving both the behavioral Suszko and the behavioral Leibniz
operator.

Lemma 1976 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
c-reflective if and only if, for all T,T ′ ∈ ThFam(I),

Υ̃(T ) ≤ Υ(T ′) implies T ≤ T ′.

Proof: Suppose, first, that I is behaviorally c-reflective and let T,T ′ ∈
ThFam(I), such that Υ̃(T ) ≤ Υ(T ′). Then, we have ⋂{Υ(X) ∶ T ≤ X ∈
FiFam(I)} ≤ Υ(T ′), whence, by behavioral c-reflectivity, ⋂{X ∶ T ≤ X ∈
ThFam(I)} ≤ T ′, i.e., T ≤ T ′. Thus, the condition of the statement holds.

Assume, conversely, that the condition of the statement holds and let
T ∪ {T ′} ⊆ ThFam(I), such that ⋂T ∈T Υ(T ) ≤ Υ(T ′). Then we get

Υ̃(⋂T ) ≤⋂{Υ(T ) ∶ T ∈ T } ≤ Υ(T ′).
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Therefore, by the hypothesis, ⋂T ≤ T ′ and, hence, I is behaviorally c-
reflective. ∎

It is easy to see that behavioral truth equationality implies behavioral
c-reflectivity.

Proposition 1977 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is
behaviorally truth equational, then it is behaviorally c-reflective.

Proof: Suppose that I is behaviorally truth equational, with witnessing
transformations τ = {τ v ∶ v ∈ V }, and let T ∪ {T ′} ⊆ ThFam(I), such that

⋂T ∈T Υ(T ) ≤ Υ(T ′). Then, we have, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all
φ ∈ SEN♭v(Σ),

φ ∈ ⋂T ∈T TΣ iff φ ∈ TΣ, T ∈ T ,
iff τ vΣ[φ] ≤ Υ(T ), T ∈ T ,
iff τ vΣ[φ] ≤ ⋂T ∈T Υ(T )

implies τ vΣ[φ] ≤ Υ(T ′)
iff φ ∈ T ′Σ.

Therefore, ⋂T ≤ T ′ and I is indeed behaviorally c-reflective. ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We define the behavioral
Suszko core ΣI = {ΣI,v ∶ v ∈ V } of I by setting, for all v ∈ V ,

ΣI,v = {σ ∶ SEN♭v ×∏
k
i=1 SEN♭si → (SEN♭u)2, u ∈ V ∶

(∀Σ ∈ ∣Sign♭∣)(∀φ ∈ SEN♭v(Σ))(σΣ[φ] ≤ Υ̃(C(φ)))}
ΣI is a pool for possible candidates witnessing the potential behavioral

truth equationality of I .

Lemma 1978 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
truth equational, with witnessing transformations τ , then τ ⊆ ΣI .

Proof: Suppose I is behaviorally truth equational, with witnessing transfor-
mations τ = {τ v ∶ v ∈ V } and let v ∈ V , σ ∈ τ v, Σ ∈ ∣Sign♭∣ and φ ∈ SEN♭v(Σ).
Then, we have, for all T ∈ ThFam(I), such that φ ∈ TΣ, σΣ[φ] ≤ Υ(T ),
whence

σΣ[φ] ≤⋂{Υ(T ) ∶ φ ∈ TΣ} = Υ̃(C(φ)).
We conclude that σ ∈ ΣI,v. Therefore, τ ⊆ ΣI . ∎

The behavioral Suszko core ΣI was devised to carry a sentence of visible
sort into the behavioral Suszko congruence system of the theory family gen-
erated by it. Because of the monotonicity of the behavioral Suszko operator
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and the fact that the behavioral Suszko operator is universally subsumed by
the behavioral Leibniz operator, however, it turns out that the image of any
behavioral theory family under the behavioral Suszko core always lies inside
the behavioral Leibniz congruence system of the family.

Proposition 1979 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system, I = ⟨F,C⟩ a behavioral π-institution based on F, T ∈ ThFam(I),
Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). If φ ∈ TΣ, then

ΣI,vΣ [φ] ≤ Υ(T ).
Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ), such that
φ ∈ TΣ. Then, we have

ΣI,vΣ [φ] ≤ Υ̃(C(φ)) (definition of ΣI)

≤ Υ̃(T ) (monotonicity of Υ̃)

≤ Υ(T ). (Υ̃ ≤ Υ)

This proves the conclusion. ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. We say that the behavioral
Suszko core ΣI of I is soluble if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all
v ∈ V and all φ ∈ SEN♭v(Σ),

ΣI,vΣ [φ] ≤ Υ(T ) implies φ ∈ TΣ.

The solubility of the behavioral Suszko core is a necessary condition for
a behavioral π-institution to be behaviorally truth equational.

Theorem 1980 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally truth equational, then ΣI is soluble.

Proof: Suppose I is behaviorally truth equational, with witnessing trans-
formations τ = {τ v ∶ v ∈ V }. Then, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣, all
v ∈ V and all φ ∈ SEN♭v(Σ), such that ΣI,vΣ [φ] ≤ Υ(T ), we have, by Lemma
1978,

τ vΣ[φ] ≤ ΣI,vΣ [φ] ≤ Υ(T ),
whence, by the fact that τ witnesses the behavioral truth equationality of I ,
φ ∈ TΣ. Therefore, ΣI is indeed soluble. ∎

Conversely, the solubility of the behavioral Suszko core ensures that it can
serve as a collection of witnessing transformations for the behavioral truth
equationality of I .
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Theorem 1981 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If the behav-
ioral Suszko core ΣI is soluble, then I is behaviorally truth equational, with
witnessing transformations ΣI .

Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). If φ ∈ TΣ,
then, by Proposition 1979, ΣI,vΣ [φ] ≤ Υ(T ). On the other hand, if ΣI,vΣ [φ] ≤
Υ(T ), then, by the postulated solubility of ΣI , we get that φ ∈ TΣ. Hence,
we have φ ∈ TΣ if and only if ΣI,vΣ [φ] ≤ Υ(T ), showing that ΣI witnesses the
behavioral truth equationality of I . ∎

We now have the following characterization of behavioral truth equation-
ality depending on the behavior (in the ordinary sense) of the behavioral
Suszko core.

I is Behaviorally Truth Equational ←→ ΣI is Soluble.

Theorem 1982 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
truth equational if and only if it has a soluble behavioral Suszko core.

Proof: Necessity is by Theorem 1980, whereas sufficiency is proved in The-
orem 1981. ∎

We say that the behavioral Suszko core ΣI of a behavioral π-institution
I = ⟨F,C⟩ defines theory families if, for all T ∈ ThFam(I), all Σ ∈ ∣Sign♭∣,
all v ∈ V and all φ ∈ SEN♭v(Σ),

φ ∈ TΣ iff ΣI,vΣ [φ] ≤ Υ(T ).
Then, another characterization of behavioral truth equationality is the fol-
lowing:

I is Behaviorally Truth Equational ←→ ΣI Defines Theory Families.

Theorem 1983 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
truth equational if and only if its behavioral Suszko core ΣI defines theory
families.

Proof: I is behaviorally truth equational if and only if, by Theorem 1982 ΣI

is soluble if and only if, by Proposition 1979 and the definition of solubility,
ΣI defines theory families in I . ∎

We have just seen that behavioral truth equationality of a behavioral π-
institution is equivalent to the solubility property of its behavioral Suszko
core. The solubility property implies another property, which, taking after
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similar work in preceding chapters, we call adequacy. It says, roughly speak-
ing, that in a behavioral π-institution the category of natural transformations
is rich enough to determine behavioral Suszko congruence systems in terms of
the behavioral Leibniz congruence systems that it selects by inclusion. The
property of adequacy is motivated by the following property that holds in
every behavioral π-institution.

Proposition 1984 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. For all
Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ),

⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )} ≤ Υ̃(C(φ)).
Proof: Let Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). Then we have, for all
T ∈ ThFam(I),

φ ∈ TΣ implies ΣI,vΣ [φ] ≤ Υ̃(T )
implies ΣI,vΣ [φ] ≤ Υ(T ).

Thus, we get

⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )} ≤ ⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ̃(T )}
≤ ⋂{Υ(T ) ∶ φ ∈ TΣ}
= Υ̃(C(φ)).

Hence, the inclusion in the statement holds. ∎

The reverse inclusion is not always guaranteed, but, when it holds, we
say that the behavioral Suszko core of I is adequate. The terminology is
intended to convey the idea that ΣI,vΣ [φ] suffices to determine the theory
families whose behavioral Leibniz congruence systems form a “covering” of
the behavioral Suszko congruence system corresponding to the theory family
C(φ).

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behavioral π-institution based on F. The behavioral Suszko core
ΣI of I is adequate if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ ∈ SEN♭v(Σ),

Υ̃(C(φ)) ≤⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )}.
We can prove immediately that the solubility of the behavioral Suszko

core implies its adequacy.

Proposition 1985 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If the
behavioral Suszko core ΣI is soluble, then it is adequate.
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Proof: Suppose that ΣI is soluble. Let Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ).
By solubility, for all T ∈ ThFam(I),

ΣI,vΣ [φ] ≤ Υ(T ) implies φ ∈ TΣ.

Hence, we get
Υ̃(C(φ)) ≤ Υ̃(T ) ≤ Υ(T ).

Since this holds, for all T ∈ ThFam(I), such that ΣI,vΣ [φ] ≤ Υ(T ), we get
that

Υ̃(C(φ)) ≤⋂{Υ(T ) ∶ ΣI,vΣ [φ] ≤ Υ(T )}.
Therefore, ΣI is adequate. ∎

Conversely, if a behavioral π-institution is behaviorally c-reflective, then
the adequacy of its behavioral Suszko core is sufficient to give its solubility.

Proposition 1986 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is
behaviorally c-reflective and the behavioral Suszko core ΣI is adequate, then
ΣI is soluble.

Proof: Suppose that I is behaviorally c-reflective and that the behavioral
Suszko core ΣI is adequate. Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and
φ ∈ SEN♭v(Σ), such that ΣI,vΣ [φ] ≤ Υ(T ). Then, by the adequacy of the Suszko

core, we get that Υ̃(C(φ)) ≤ Υ(T ), whence, by behavioral c-reflectivity and
Lemma 1976, we get C(φ) ≤ T , i.e., φ ∈ TΣ. We conclude that ΣI is soluble.
∎

We can now show that a behavioral π-institution is behaviorally truth
equational if and only if it is behaviorally c-reflective and has an adequate
behavioral Suszko core.

Behavioral Truth Equationality
= ΣI Soluble
= ΣI Defines Theory Families
= Behavioral c-Reflectivity +ΣI Adequate

Theorem 1987 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behav-
iorally truth equational if and only if it is behaviorally c-reflective and has an
adequate behavioral Suszko core.

Proof: If I is behaviorally truth equational, then, by Proposition 1977, it is
behaviorally c-reflective, by Theorem 1980, its behavioral Suszko core is sol-
uble and, by Proposition 1985, its behavioral Suszko core is adequate. Con-
versely, if I is behaviorally c-reflective with an adequate behavioral Suszko
core, then, by Proposition 1986, its behavioral Suszko core is soluble and,
hence, by Theorem 1981, I is behaviorally truth equational. ∎
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27.6 Behavioral Weak Algebraizability

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and I =⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally WF alge-
braizable if it is behaviorally protoalgebraic and behaviorally c-reflective.

Lemma 1988 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
protoalgebraic, then, for all {T i ∶ i ∈ I} ⊆ ThFam(I),

Υ(⋂
i∈I

T i) =⋂
i∈I

Υ(T i).
Proof: Suppose I is behaviorally protoalgebraic and let {T i ∶ i ∈ I} ⊆
ThFam(I). Then, by hypothesis, Υ(⋂i∈I T i) ≤ ⋂i∈I Υ(T i). On the other
hand, ⋂i∈I Υ(T i) is a congruence system on F. Moreover, it is easy to see
that it is compatible with ⋂i∈I T i. Hence, by the maximality property of the
behavioral Leibniz congruence system, we get ⋂i∈I Υ(T i) ≤ Υ(⋂i∈I T i). ∎

Lemma 1989 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
protoalgebraic and the behavioral Leibniz operator is injective, then, for all
T ∪ {T ′} ⊆ ThFam(I),

⋂
T ∈T

Υ(T ) ≤ Υ(T ′) implies ⋂T ≤ T ′.

Proof: Suppose that I is behaviorally protoalgebraic and that the behav-
ioral Leibniz operator is injective. Let T ∪ {T ′} ⊆ ThFam(I), such that

⋂T ∈T Υ(T ) ≤ Υ(T ′). Then we have

Υ(⋂T ∩ T ′) = ⋂T ∈T Υ(T ) ∩Υ(T ′) (Lemma 1988)
= ⋂T ∈T Υ(T ) (hypothesis)
= Υ(⋂T ). (Lemma 1988)

Hence, by the injectivity of the behavioral Leibniz operator, ⋂T ∩ T ′ = ⋂T ,
showing that ⋂T ≤ T ′. ∎

Proposition 1990 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is
behaviorally WF algebraizable if and only if the behavioral Leibniz operator
is monotone and injective on ThFam(I).
Proof: Suppose I is behaviorally WF algebraizable. Then by definition, it
is behaviorally protoalgebraic and behaviorally c-reflective. Thus, the behav-
ioral Leibniz operator is monotone and c-reflective on ThFam(I), whence it
is monotone and, a fortiori, injective on ThFam(I).
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If, conversely, Υ is monotone and injective on ThFam(I), then it is mono-
tone and, by Lemma 1989, c-reflective on ThFam(I). Hence, I is behav-
iorally protoalgebraic and behaviorally c-reflective, i.e., by definition, it is
behaviorally WF algebraizable. ∎

Another characterization of behavioral WF algebraizability asserts that
it is equivalent to the existence of an isomorphism from the complete lattice
of theory families of a behavioral π-institution to the complete lattice of the
I-congruence systems on its underlying behavioral algebraic system.

We need the following preparatory definitions.
Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and

I = ⟨F,C⟩ a behavioral π-institution based on F.

• Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system. A family T = {TΣ}Σ∈∣Sign∣,
with TΣ ⊆ ⋃v∈V SENv(Σ), for all Σ ∈ ∣Sign∣, is called an I-filter family
of A if, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all Φ ∪ {φ} ⊆ ⋃v∈V SEN♭v(Σ),
such that φ ∈ CΣ(Φ),

αΣ(Φ) ⊆ TF (Σ) implies αΣ(φ) ∈ TF (Σ).
The collection of all I-filter families of A is denoted by FiFamI(A).
It is a complete lattice, whose corresponding closure operator will be
denoted by CI,A.

• An F-algebraic system A = ⟨A, ⟨F,α⟩⟩ is an I-algebraic system if
there exists T ∈ FiFamI(A), such that Υ̃(T ) = ∆A. The collection of
all I-algebraic systems is denoted by AlgSys(I).

• Given an F-algebraic system A = ⟨A, ⟨F,α⟩⟩, a congruence system θ ∈
ConSys(A) is a I-congruence system on A if A/θ ∈ AlgSys(I). The
collection of all I-congruence systems on A is denoted by ConSysI(A).

Lemma 1991 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. For every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T = {TΣ}Σ∈∣Sign∣, such that, for all
Σ ∈ ∣Sign∣, TΣ ⊆ ⋃v∈V SENv(Σ),

T ∈ FiFamI(A) iff α−1(T ) ∈ ThFam(I).
Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T = {TΣ}Σ∈∣Sign∣,
such that, for all Σ ∈ ∣Sign∣, TΣ ⊆ ⋃v∈V SENv(Σ).

Assume, first, that T ∈ FiFamI(A) and let Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈
SEN♭v(Σ), such that φ ∈ CΣ(α−1Σ (TF (Σ))). Then, by the definition of CI,A, we
get

αΣ(φ) ∈ CI,AF (Σ)(αΣ(α−1Σ (TF (Σ)))) ⊆ CI,AF (Σ)(TF (Σ)) = TF (Σ).
Hence, we get φ ∈ α−1Σ (TF (Σ)) and we conclude that α−1(T ) ∈ ThFam(I).
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Suppose, conversely, that α−1(T ) ∈ ThFam(I) and let Σ ∈ ∣Sign♭∣, Φ ∪{φ} ⊆ ⋃v∈V SEN♭v(Σ), such that φ ∈ CΣ(Φ) and αΣ(Φ) ⊆ TF (Σ). Then Φ ⊆
α−1Σ (TF (Σ)), whence, since φ ∈ CΣ(Φ) and α−1(T ) ∈ ThFam(I), we get that

φ ∈ α−1Σ (TF (Σ)), i.e., αΣ(φ) ∈ TF (Σ). We conclude that T ∈ FiFamI(A). ∎

Lemma 1992 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. For every F-
algebraic system A = ⟨A, ⟨F,α⟩⟩ and all T ∈ FiFamI(A),

Υ(α−1(T )) = α−1(ΥA(T )).
Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system and T ∈ FiFamI(A).
Then, for all Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), we have ⟨φ,ψ⟩ ∈
ΥΣ(α−1(T )) if and only if, for all σ ∶ SEN♭s ×∏

k
i=1 SEN♭si → SEN♭v, with v ∈ V ,

all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

σΣ′(SEN♭s(f)(φ), χ⃗) ∈ α−1Σ′ (TF (Σ′))
iff σΣ′(SEN♭s(f)(ψ), χ⃗) ∈ α−1Σ′ (TF (Σ′))

iff
αΣ′(σΣ′(SEN♭s(f)(φ), χ⃗)) ∈ TF (Σ′)

iff αΣ′(σΣ′(SEN♭s(f)(ψ), χ⃗)) ∈ TF (Σ′)
iff

σA
F (Σ′)
(αΣ′(SEN♭s(f)(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σA
F (Σ′)
(αΣ′(SEN♭s(f)(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff

σA
F (Σ′)
(SENs(F (f))(αΣ(φ)), αΣ′(χ⃗)) ∈ TF (Σ′)

iff σA
F (Σ′)
(SENs(F (f))(αΣ(ψ)), αΣ′(χ⃗)) ∈ TF (Σ′)

if and only if, by the surjectivity of ⟨F,α⟩, ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ΥA
F (Σ)
(T ) if

and only if ⟨φ,ψ⟩ ∈ α−1
F (Σ)
(ΥA

F (Σ)
(T )). We now conclude that Υ(α−1(T )) =

α−1(ΥA(T )). ∎

Now we have the following characterization result for behavioral WF al-
gebraizability.

Theorem 1993 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. I is behaviorally
WF algebraizable if and only if Υ ∶ ThFam(I) → ConSysI(F) is an order
isomorphism.
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Proof: Suppose that I is behaviorally WF algebraizable. Then, by Propo-
sition 1990, Υ is monotone and injective on ThFam(I). Moreover, by defi-
nition of behavioral WF algebraizability Υ is c-reflective on ThFam(I) and,
therefore, a fortiori, it is order reflecting. Thus, it suffices to show that it
is surjective, i.e., onto ConSysI(F). To this end, let θ ∈ ConSysI(F). By
definition, F/θ ∈ AlgSys(I). Thus, there exists T θ ∈ FiFamI(F/θ), such that
Υ̃F/θ(T θ) = ∆F/θ. Let ⟨I, πθ⟩ ∶ F → F/θ be the quotient morphism. Now, by
Lemma 1991, πθ

−1(T θ) ∈ ThFam(I) and

Υ(πθ−1(T θ)) = πθ
−1(ΥF/θ(T θ)) (Lemma 1992)

= πθ
−1(∆F/θ) (hypothesis and protoalgebraicity)

= θ. (set theory)

Therefore, Υ is surjective and, hence, an order isomorphism from ThFam(I)
onto ConSysI(F).

Conversely, if Υ ∶ ThFam(I) → ConSysI(F) is an order isomorphism,
then it is monotone and injective on ThFam(I) and, hence, by Proposition
1990, I is behaviorally WF algebraizable. ∎

Finally, we close by providing a relation between behavioral algebraiz-
ability and behavioral WF algebraizability. Our first step in this direction
is to show that behavioral algebraizability implies both behavioral syntac-
tic protoalgebraicity and behavioral truth equationality. To be able to show
this, we start by proving two technical results asserting that the binary rela-
tion family induced on the underlying behavioral algebraic system of a given
behaviorally algebraizable π-institution by one of the two interpretations
witnessing the behavioral algebraizability is a congruence system having a
compatibility property.

Lemma 1994 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic sys-
tem and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behaviorally
algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of F-
algebraic systems, then, for all Σ ∈ ∣Sign♭∣, all v ∈ V and all φ,ψ ∈ SEN♭v(Σ),

ψ ∈ CΣ(φ, ρvΣ[φ,ψ]).
Proof: Assume T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ), such
that φ ∈ TΣ and ρvΣ[φ,ψ] ≤ T . Then we get that

τ vΣ[φ] ≤ CK(τΣ[T ]) and ⟨φ,ψ⟩ ∈ CK(τΣ[T ]).
Hence, by the definition of CK, we get that τ vΣ[ψ] ≤ CK(τΣ[T ]) and, therefore,
ψ ∈ CΣ(T ) = TΣ. We conclude that ψ ∈ CΣ(φ, ρvΣ[φ,ψ]). ∎

Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic system and
I = ⟨F,C⟩ a behaviorally algebraizable π-institution, as witnessed by the
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conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of F-algebraic systems. We
define a class ρ+ = {ρ+,s ∶ s ∈ S} of natural transformations in N ♭ by setting,
for all s ∈ S, ρ+,s to be the collection of all natural transformations in N ♭ of
the form

σv(σ(x, z⃗), σ(y, z⃗), w⃗),
where

σ ∶ SEN♭s ×
k

∏
i=1

SEN♭si → SEN♭v, σv ∈ ρv, v ∈ V.

Moreover, for all T ∈ ThFam(I), we define ρ+∗(T ) = {ρ+∗Σ (T )}Σ∈∣Sign♭∣,
where, for all Σ ∈ ∣Sign♭∣, we set

ρ+∗Σ (T ) = {ρ+∗,sΣ (T ) ∶ s ∈ S}
by letting, for all Σ ∈ ∣Sign♭∣, all s ∈ S and all φ,ψ ∈ SEN♭s(Σ),

⟨φ,ψ⟩ ∈ ρ+∗,sΣ (T ) iff ρ+,sΣ [φ,ψ] ≤ T.
Proposition 1995 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral alge-
braic system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is
behaviorally algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class
K of F-algebraic systems, then, for all T ∈ ThFam(I), ρ+∗(T ) is a congruence
system on F compatible with T .

Proof: Let T ∈ ThFam(I) and Σ ∈ ∣Sign♭∣. Then ρ+∗Σ (T ) is reflexive, sym-
metric and transitive, by the definition of IK, the definition of ρ+ and the
fact that ρ is an interpretation.

E.g., to show symmetry, we let Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ),
such that ⟨φ,ψ⟩ ∈ ρ+∗,sΣ (T ). Then, we have ρ+,sΣ [φ,ψ] ≤ T and, thus, for all
σ ∶ SEN♭s × ∏

k
i=1 SEN♭si → SEN♭v in N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and

χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

ρvΣ′[σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(ψ), χ⃗)] ≤ T.
This, however, implies that

ρvΣ′[σΣ′(SEN♭s(f)(ψ), χ⃗), σΣ′(SEN♭s(f)(φ), χ⃗)] ≤ T.
Reversing the steps above, we get that ⟨ψ,φ⟩ ∈ ρ+∗,sΣ (T ). Hence, ρ+∗Σ (T ) is
symmetric.

Moreover, it has, by the same considerations, the congruence property.
Finally, it is a system by the definition of ρ+∗(T ). It is compatible with T

due to Lemma 1994. ∎
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Corollary 1996 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of
F-algebraic systems, then, for all v ∈ V , ρ+∗,v(T ) = ρ∗,v(T ).
Proof: Let v ∈ V and suppose Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭v(Σ), such that⟨φ,ψ⟩ ∈ ρ+∗,vΣ (T ). Then ρ

+,v
Σ [φ,ψ] ≤ T . But, by definition, ρ ⊆ ρ+, whence,

ρvΣ[φ,ψ] ≤ T , Therefore, ⟨φ,ψ⟩ ∈ ρ∗,vΣ (T ).
Suppose, conversely, that ⟨φ,ψ⟩ ∈ ρ∗,vΣ (T ). Then ρvΣ[φ,ψ] ≤ T . But this

implies that, for all σ ∶ SEN♭v ×∏
k
i=1 SEN♭si → SEN♭u, with u ∈ V , in N ♭, all

Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′),

ρuΣ′[σΣ′(SEN♭v(f)(φ), χ⃗), σΣ′(SEN♭v(f)(ψ), χ⃗)] ≤ T.
Therefore, we conclude that ρ+,vΣ [φ,ψ] ≤ T , giving that ⟨φ,ψ⟩ ∈ ρ+∗,vΣ (T ). ∎

Proposition 1995 allows us to establish that the congruence system ρ+∗(T )
coincides with the behavioral Leibniz congruence system Υ(T ) of T in I .

Theorem 1997 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable via a conjugate pair (τ, ρ) ∶ I ⇄ IK, for some class K of
F-algebraic systems, then, for all T ∈ ThFam(I),

ρ+∗(T ) = Υ(T ).
Proof: Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, s ∈ S and φ,ψ ∈ SEN♭s(Σ), such that⟨φ,ψ⟩ ∈ ΥΣ(T ). Since Υ(T ) is a congruence system, we get, for all Σ′ ∈ ∣Sign♭∣
and all f ∈ Sign♭(Σ,Σ′), ⟨SEN♭s(f)(φ),SEN♭s(f)(ψ)⟩ ∈ ΥΣ′(T ). Since Υ(T )
is a congruence system, we now get, for all σv ∈ ρv, all σ ∶ SEN♭s×∏

k
i=1 SEN♭si →

SEN♭v in N ♭, and all χ⃗ ∈∏k
i=1 SEN♭si(Σ′), ξ⃗ ∈∏j<ω SEN♭sj(Σ′),

⟨σvΣ′(σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(φ), χ⃗), ξ⃗),
σvΣ′(σΣ′(SEN♭s(f)(φ), χ⃗), σΣ′(SEN♭s(f)(ψ), χ⃗), ξ⃗)⟩ ∈ ΥΣ′(T ).

On the other hand, we know that ρ+,sΣ [φ,φ] ≤ T , whence, by the compatibility
of Υ(T ) with T , we get that ρ+,sΣ [φ,ψ] ≤ T . Therefore, ⟨φ,ψ⟩ ∈ ρ+∗Σ (T ).

Conversely, since, by Proposition 1995, ρ+∗(T ) is a congruence system
on F that is compatible with T , we get, by the maximality property of the
behavioral Leibniz operator, ρ+∗(T ) ≤ Υ(T ). ∎

Now, we prove that behavioral algebraizability implies both behavioral
syntactic protoalgebraicity and behavioral truth equationality.

Theorem 1998 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally algebraizable, then it is both behaviorally syntactically protoalgebraic
and behaviorally truth equational.
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Proof: Suppose I is behaviorally algebraizable via the conjugate pair (τ, ρ) ∶
I ⇄ IK, for some class K of F-algebraic systems.

Let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ,ψ ∈ SEN♭v(Σ). Then we have

⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ⟨φ,ψ⟩ ∈ ρ+∗Σ (T ) (Theorem 1997)
iff ⟨φ,ψ⟩ ∈ ρ∗Σ(T ) (by Corollary 1996)
iff ρΣ[φ,ψ] ≤ T. (definition of ρ∗)

Therefore, I is behaviorally syntactically protoalgebraic, with witnessing
transformations ρ.

Finally, let T ∈ ThFam(I), Σ ∈ ∣Sign♭∣, v ∈ V and φ ∈ SEN♭v(Σ). Then,
we have

φ ∈ TΣ iff ρΣ[τΣ[φ]] ≤ T ((τ, ρ) conjugate pair)
iff τΣ[φ] ⊆ ρ∗Σ(T ) (definition of ρ∗)
iff τΣ[φ] ⊆ ρ+∗Σ (T ) (by Corollary 1996)
iff τΣ[φ] ≤ Υ(T ). (Theorem 1997)

Therefore, I is behaviorally truth equational, with witnessing transforma-
tions τ . ∎

We show, next, that, conversely, behavioral syntactic protoalgebraicity
and behavioral truth equationality guarantee behavioral algebraizability.

Theorem 1999 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. If I is behav-
iorally syntactically protoalgebraic and behaviorally truth equational, then it
is behaviorally algebraizable.

Proof: Suppose that I is behaviorally syntactically protoalgebraic, with
witnessing transformations ρ, and behaviorally truth equational, with wit-
nessing transformations τ . Then, we have, for all Σ ∈ ∣Sign♭∣ and all Φ∪{φ} ⊆
⋃v∈V SEN♭v(Σ),

φ ∈ CΣ(Φ) iff φ ∈ ⋂{TΣ ∶ Φ ⊆ TΣ}
iff τΣ[φ] ≤ ⋂{Υ(T ) ∶ τΣ[Φ] ≤ Υ(T )}
iff τΣ[φ] ≤ CK(τΣ[Φ]).

Moreover, for all Σ ∈ ∣Sign♭∣, v ∈ V and all φ,ψ ∈ SEN♭v(Σ),
⟨φ,ψ⟩ ∈ ΥΣ(T ) iff ρvΣ[φ,ψ] ≤ T

iff τ[ρvΣ[φ,ψ]] ≤ Υ(T ).
Hence, we have that CK(φ ≈ ψ) = CK(τ[ρvΣ[φ,ψ]]).

We conclude, by Proposition 1961, that I is equivalent to IK and, there-
fore, I is behaviorally algebraizable. ∎

Now we can formulate the main characterization theorem:
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Theorem 2000 Let F = ⟨Sign♭,{SEN♭s}V,V ∗H ,N ♭⟩ be a behavioral algebraic
system and I = ⟨F,C⟩ a behavioral π-institution based on F. The following
statements are equivalent:

(i) I is behaviorally algebraizable;

(ii) I is behaviorally syntactically protoalgebraic and behaviorally truth e-
quational;

(iii) I is behaviorally WF algebraizable (i.e., behaviorally protoalgebraic and
behaviorally c-reflective) and has both a Leibniz behavioral reflexive core
and an adequate behavioral Suszko core.

Proof: If I is behaviorally algebraizable, then, by Theorem 1998, it is both
behaviorally syntactically protoalgebraic and behaviorally truth equational.
If I is behaviorally syntactically protoalgebraic and behaviorally truth equa-
tional, then, by Theorems 1975 and 1987, it is behaviorally protoalgebraic,
behaviorally c-reflective and has both a Leibniz behavioral reflexive core and
an adequate behavioral Suszko core. Finally, if I is behaviorally WF alge-
braizable, with a Leibniz behavioral reflexive core and an adequate behavioral
Suszko core, then, by Theorems 1975 and 1987, it is behaviorally syntacti-
cally protoalgebraic and behaviorally truth equational, whence, by Theorem
1999, it is behaviorally algebraizable. ∎
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A Few Words

We gather some of the problems arising at various places in the main text.
They are listed in order of occurrence and no suggestion is made about the
degree of their difficulty. In fact, I have not put the same amount of effort
in tackling all problems in the list. However, solving them, regardless of
difficulty, will definitively inform the theory and the context in which they
appear.

Each problem consists of a task, which is, in my estimation, the most
likely outcome. The alternative is also explicitly given. When a task seems
a bit involved and I am less certain about its status, I inserted in the list
some special subtasks that might be easier to tackle. So, not all problems
appearing in the list are independent, and, when aware, I tried to state this
explicitly.

As for the format, here is a generic sample, before presenting the list:

Problem X (Chapter 00, Example 00)
This is a special case of Problem Y.
Task: Construct a π-institution in class A but not in class B.
Alternative: Prove that every π-institution in A is also in B.

The List

No problems in the list for the time being.
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Mathematicae, Vol. 25 (1935), pp. 503-526
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de Montréal, 1986

[32] Blok, W.J., and Pigozzi, D.L., Local Deduction Theorems in Algebraic
Logic, Colloquia Mathematica Societatis János Bolyai, Vol. 54 (1988),
pp. 75-109

[33] Fiadeiro, J., and Sernadas, A., Structuring Theories on Consequence, in
D. Sannella and A. Tarlecki, eds., Recent Trends in Data Type Speci-
fication, Lecture Notes in Computer Science, Vol. 332, Springer-Verlag,
New York, 1988, pp. 44-72
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Logic, Colloquia Mathematica Societatis János Bolyai, Vol. 54 (1991),
pp. 75-109

[38] Font, J. M., Guzmán, F., and Verdú, V., Characterization of the Re-
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[83] Cintula, P., Hájek, P., and Noguera, C., Eds. Handbook of Mathematical
Fuzzy Logic, Studies in Logic, Vols. 37-38, College Publications, London,
2011

[84] Bergman, C., Universal Algbera Fundamentals and Selected Topics,
CRC Press, 2012

[85] Albuquerque, H., Operators and Strong Versions in Abstract Algebraic
Logic, Ph.D. Dissertation, University of Barcelona, March 2016

[86] Font, J.M., Abstract Algebraic Logic An Introductory Textbook, Studies
in Logic, Mathematical Logic and Foundations, Vol. 60, College Publi-
cations, London, 2016

[87] Moraschini, T., Investigations into the Role of Translations in Abstract
Algebraic Logic, Ph.D. Dissertation, University of Barcelona, 2016
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Intersection of π-Institutions, 121
Invariance Property of an

Equational π-Structure,
875

Inverse Interpretations, 865
Inverse Interpretations Between

π-Structures, 865
Isomorphism Between Lattices of

Theory Families Induced
by a Pair of Natural
Transformations, 874

Kernel of a Class of F-Algebraic
Systems, 113

Kernel of an F-Algebraic System,
112

Kernel System, 83

LC Prealgebraizable π-Institution,
364

LCF Prealgebraizable
π-Institution, 364
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LCGB-Poset Property of a Set of
Natural Transformations
in a π-Institution, 710

LCLF-Poset Property of a Set of
Natural Transformations
in a π-Institution, 710

LCLS-Poset Property of a Set of
Natural Transformations
in a π-Institution, 710

Left E-Global Membership, 163
Left E-Local Membership, 163
Left Adequate Left Suszko Core,

850
Left Adequate Narrow Left

Suszko Core, 1009
Left Adequate Rough Left Suszko

Core, 1001
Left Adequate Unary Left Suszko

Core, 935
Left Assertional π-Institution, 601
Left c∪-Monotone π-Institution,

235
Left c∨–Monotone π-Institution,

245
Left c-Monotone π-Institution,

235
Left c-Reflective π-Institution, 276
Left Completely ⋃-Monotone

π-Institution, 235
Left Completely ⋁-Monotone

π-Institution, 245
Left Completely Monotone

π-Institution, 235
Left Completely Reflective

π-Institution, 276
Left Completely Reflective Family

Prealgebraizable
π-Institution, 364

Left Completely Reflective
Prealgebraizable
π-Institution, 364

Left Injective π-Institution, 258
Left Injective Family

Prealgebraizable

π-Institution, 364
Left Injective Prealgebraizable

π-Institution, 365
Left Local Membership, 167
Left Loyal π-Institution, 215
Left Monotone π-Institution, 227
Left Reflective π-Institution, 265
Left Reflective Family

Prealgebraizable
π-Institution, 364

Left Reflective Prealgebraizable
π-Institution, 364

Left Regular π-Institution, 589
Left Regular Collection of Natural

Transformations in a
π-Institution, 1073

Left Regularity of Natural
Transformations, 1073

Left Soluble Left Suszko Core, 842
Left Soluble Narrow Left Suszko

Core, 1006
Left Soluble Rough Left Suszko

Core, 998
Left Soluble Unary Left Suszko

Core, 932
Left Suszko Core of a

π-Institution, 840
Left Truth Equational

π-Institution, 839
Leibniz Binary Reflexive Core, 915
Leibniz Congruence System, 96
Leibniz Hierarchy, 206
Leibniz Narrow Reflexive Core,

1050
Leibniz Narrow Reflexive System

Core, 1059
Leibniz Reduced Algebraic

System, 133
Leibniz Reduced Matrix Family,

133
Leibniz Reduction of a Matrix

Family, 133
Leibniz Reflexive Core, 796
Leibniz Truth Equational
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π-Institution, 816
LF Congruence Property of a Set

of Natural
Transformations in a
π-Institution, 727

LF SA of a Set of Natural
Transformations in a
π-Institution, 752

LF SPA of a Set of Natural
Transformations in a
π-Institution, 738

LF SR of a Set of Natural
Transformations in a
π-Institution, 765

LF Syntactic Algebraizability of a
Set of Natural
Transformations in a
π-Institution, 752

LF Syntactic Protoalgebraicity of
a Set of Natural
Transformations in a
π-Institution, 738

LF Syntactic Regularity of a Set
of Natural
Transformations in a
π-Institution, 765

LFGB Congruence Property of a
Set of Natural
Transformations in a
π-Institution, 725

LFGB-Equivalence of a Set of
Natural Transformations
in a π-Institution, 699

LFGF Rasiowa Property of a Set
of Natural
Transformations in a
π-Institution, 776

LFGF Rasiowan Set of Natural
Transformations in a
π-Institution, 776

LFGF RW Set of Natural
Transformations in a
π-Institution, 776

LFGF SA of a Set of Natural

Transformations in a
π-Institution, 750

LFGF SPA of a Set of Natural
Transformations in a
π-Institution, 737

LFGF SR of a Set of Natural
Transformations in a
π-Institution, 763

LFGF Syntactic Algebraizability
of a Set of Natural
Transformations in a
π-Institution, 750

LFGF Syntactic Protoalgebraicity
of a Set of Natural
Transformations in a
π-Institution, 737

LFGF Syntactic Regularity of a
Set of Natural
Transformations in a
π-Institution, 763

LFGS SA of a Set of Natural
Transformations in a
π-Institution, 750

LFGS SPA of a Set of Natural
Transformations in a
π-Institution, 737

LFGS Syntactic Algebraizability
of a Set of Natural
Transformations in a
π-Institution, 750

LFGS Syntactic Protoalgebraicity
of a Set of Natural
Transformations in a
π-Institution, 737

LFLF Congruence Property of a
Set of Natural
Transformations in a
π-Institution, 725

LFLF Rasiowa Property of a Set
of Natural
Transformations in a
π-Institution, 776

LFLF Rasiowan Set of Natural
Transformations in a
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π-Institution, 776
LFLF RW Set of Natural

Transformations in a
π-Institution, 776

LFLF SA of a Set of Natural
Transformations in a
π-Institution, 750

LFLF SPA of a Set of Natural
Transformations in a
π-Institution, 737

LFLF SR of a Set of Natural
Transformations in a
π-Institution, 763

LFLF Syntactic Algebraizability
of a Set of Natural
Transformations in a
π-Institution, 750

LFLF Syntactic Protoalgebraicity
of a Set of Natural
Transformations in a
π-Institution, 737

LFLF Syntactic Regularity of a
Set of Natural
Transformations in a
π-Institution, 763

LFLF-Equivalence of a Set of
Natural Transformations
in a π-Institution, 699

LFLS Congruence Property of a
Set of Natural
Transformations in a
π-Institution, 725

LFLS SA of a Set of Natural
Transformations in a
π-Institution, 750

LFLS SPA of a Set of Natural
Transformations in a
π-Institution, 737

LFLS Syntactic Algebraizability
of a Set of Natural
Transformations in a
π-Institution, 750

LFLS Syntactic Protoalgebraicity
of a Set of Natural

Transformations in a
π-Institution, 737

LFLS-Equivalence of a Set of
Natural Transformations
in a π-Institution, 699

LFSYS Rasiowa Property of a Set
of Natural
Transformations in a
π-Institution, 776

LFSYS Rasiowan Set of Natural
Transformations in a
π-Institution, 776

LFSYS RW Set of Natural
Transformations in a
π-Institution, 776

LFSYS SR of a Set of Natural
Transformations in a
π-Institution, 763

LFSYS Syntactic Regularity of a
Set of Natural
Transformations in a
π-Institution, 763

LI Prealgebraizable π-Institution,
365

LIF Prealgebraizable
π-Institution, 364

Lindenbaum I-Matrix Family, 811
Lindenbaum Relation System

Λ̃T (X), 147
Lindnbaum Relation Family

λ̃T (X), 147
Local Antisymmetry of a Set of

Natural Transformations
in a π-Institution, 706

Local Family Compatibility of a
Set of Natural
Transformations in a
π-Institution, 717

Local Family Equivalence of a Set
of Natural
Transformations in a
π-Institution, 724

Local Family Invertibility of a Set
of Natural
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Transformations in a
π-Institution, 742

Local Family MF of a Set of
Natural Transformations
in a π-Institution, 771

Local Family Modus Fortis of a
Set of Natural
Transformations in a
π-Institution, 771

Local Family Modus Ponens of a
Set of Natural
Transformations in a
π-Institution, 731

Local Family MP of a Set of
Natural Transformations
in a π-Institution, 731

Local Family Regularity of a Set
of Natural
Transformations in a
π-Institution, 758

Local Family Symmetry of a Set
of Natural
Transformations in a
π-Institution, 687

Local Family Transitivity of a Set
of Natural
Transformations in a
π-Institution, 693

Local Membership, 167
Local System Compatibility of a

Set of Natural
Transformations in a
π-Institution, 717

Local System Equivalence of a Set
of Natural
Transformations in a
π-Institution, 724

Local System Invertibility of a Set
of Natural
Transformations in a
π-Institution, 742

Local System MF of a Set of
Natural Transformations
in a π-Institution, 771

Local System Modus Fortis of a
Set of Natural
Transformations in a
π-Institution, 771

Local System Modus Ponens of a
Set of Natural
Transformations in a
π-Institution, 731

Local System MP of a Set of
Natural Transformations
in a π-Institution, 731

Local System Regularity of a Set
of Natural
Transformations in a
π-Institution, 758

Local System Symmetry of a Set
of Natural
Transformations in a
π-Institution, 687

Local System Transitivity of a Set
of Natural
Transformations in a
π-Institution, 693

Locally Continuous π-Institution,
173

Locally Directed Collection of
Sentence Families, 172

Locally Finite Sentence Family,
172

Locally Finitely Generated
Collection of Theory
Families, 660

Locally Finitely Generated
Theory Family, 660

Logical Extension, 351
Logical Morphism, 122
LR Prealgebraizable π-Institution,

364
LRF Prealgebraizable

π-Institution, 364
LS SA of a Set of Natural

Transformations in a
π-Institution, 752

LS SPA of a Set of Natural
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Transformations in a
π-Institution, 738

LS SR of a Set of Natural
Transformations in a
π-Institution, 765

LS Syntactic Algebraizability of a
Set of Natural
Transformations in a
π-Institution, 752

LS Syntactic Protoalgebraicity of
a Set of Natural
Transformations in a
π-Institution, 738

LS Syntactic Regularity of a Set of
Natural Transformations
in a π-Institution, 765

LSGB Congruence Property of a
Set of Natural
Transformations in a
π-Institution, 725

LSGB-Equivalence of a Set of
Natural Transformations
in a π-Institution, 699

LSGF Rasiowa Property of a Set
of Natural
Transformations in a
π-Institution, 776

LSGF Rasiowan Set of Natural
Transformations in a
π-Institution, 776

LSGF RW Set of Natural
Transformations in a
π-Institution, 776

LSGF SA of a Set of Natural
Transformations in a
π-Institution, 750, 763

LSGF SPA of a Set of Natural
Transformations in a
π-Institution, 737

LSGF Syntactic Algebraizability
of a Set of Natural
Transformations in a
π-Institution, 750

LSGF Syntactic Protoalgebraicity

of a Set of Natural
Transformations in a
π-Institution, 737

LSGF Syntactic Regularity of a
Set of Natural
Transformations in a
π-Institution, 763

LSGS SA of a Set of Natural
Transformations in a
π-Institution, 750

LSGS SPA of a Set of Natural
Transformations in a
π-Institution, 737

LSGS Syntactic Algebraizability
of a Set of Natural
Transformations in a
π-Institution, 750

LSGS Syntactic Protoalgebraicity
of a Set of Natural
Transformations in a
π-Institution, 737

LSLF Congruence Property of a
Set of Natural
Transformations in a
π-Institution, 725

LSLF Rasiowa Property of a Set
of Natural
Transformations in a
π-Institution, 776

LSLF Rasiowan Set of Natural
Transformations in a
π-Institution, 776

LSLF RW Set of Natural
Transformations in a
π-Institution, 776

LSLF SA of a Set of Natural
Transformations in a
π-Institution, 750

LSLF SPA of a Set of Natural
Transformations in a
π-Institution, 737

LSLF SR of a Set of Natural
Transformations in a
π-Institution, 763
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LSLF Syntactic Algebraizability
of a Set of Natural
Transformations in a
π-Institution, 750

LSLF Syntactic Protoalgebraicity
of a Set of Natural
Transformations in a
π-Institution, 737

LSLF Syntactic Regularity of a
Set of Natural
Transformations in a
π-Institution, 763

LSLF-Equivalence of a Set of
Natural Transformations
in a π-Institution, 699

LSLS Congruence Property of a
Set of Natural
Transformations in a
π-Institution, 725

LSLS SA of a Set of Natural
Transformations in a
π-Institution, 750

LSLS SPA of a Set of Natural
Transformations in a
π-Institution, 737

LSLS Syntactic Algebraizability of
a Set of Natural
Transformations in a
π-Institution, 750

LSLS Syntactic Protoalgebraicity
of a Set of Natural
Transformations in a
π-Institution, 737

LSLS-Equivalence of a Set of
Natural Transformations
in a π-Institution, 699

LSSYS Rasiowa Property of a Set
of Natural
Transformations in a
π-Institution, 776

LSSYS Rasiowan Set of Natural
Transformations in a
π-Institution, 776

LSSYS RW Set of Natural

Transformations in a
π-Institution, 776

LSSYS SR of a Set of Natural
Transformations in a
π-Institution, 763

LSSYS Syntactic Regularity of a
Set of Natural
Transformations in a
π-Institution, 763

Matrix (Family) Semantics for a
π-Institution, 812

Matrix Family Morphism, 132
Monotone Mapping, 232
Morphic Image of an F-Algebraic

System, 193
Morphism of N ♭-Algebraic

Systems, 88
Morphism of F-Algebraic

Systems, 90
Morphism of Sentence Functors,

80
Morphism Property, 88

Nabla Congruence System, 92
Narrow Definability of Leibniz

Congruence Systems, 1044
Narrow Definability of Leibniz

Congruence Systems of
Theory Families Up to
Arrow, 1064

Narrow Definability of Leibniz
Congruence Systems of
Theory Systems, 1054

Narrow Definability of Theory
Families Up to Arrow by
the Narrow Left Suszko
Core, 1008

Narrow Definability of Theory
Systems by the Narrow
System Core, 1026

Narrow Family Compatible
Collection of Natural
Transformations, 1042
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Narrow Family Modus Ponens of
a Collection of Natural
Transformations, 1042

Narrow Left Suszko Core of a
π-Institution, 1006

Narrow Reflexive Core of a
π-Institution, 1045

Narrow Reflexive System Core of
a π-Institution, 1055

Narrow Right Compatible
Collection of Natural
Transformations, 1063

Narrow Right Modus Ponens of a
Collection of Natural
Transformations, 1063

Narrow Suszko Operator of a
π-Institution I , 1009

Narrow System Compatible
Collection of Natural
Transformations, 1053

Narrow System Modus Ponens of
a Collection of Natural
Transformations, 1053

Narrow Systemic Suszko Operator
of a π-Institution I , 1027

Narrowly Family c-Monotone
π-Institution, 563

Narrowly Family c-Reflective
π-Institution, 489

Narrowly Family Completely
Monotone π-Institution,
563

Narrowly Family Completely
Reflective π-Institution,
489

Narrowly Family Injective
π-Institution, 421

Narrowly Family Monotone
π-Institution, 528

Narrowly Family Reflective
π-Institution, 456

Narrowly Family Reflexive
Collection of Natural
Transformations, 1040

Narrowly Family Symmetric
Collection of Natural
Transformations, 1041

Narrowly Family Transitive
Collection of Natural
Transformations, 1041

Narrowly Family Truth
Equational π-Institution,
984

Narrowly Left c-Monotone
π-Institution, 563

Narrowly Left c-Reflective
π-Institution, 489

Narrowly Left Completely
Monotone π-Institution,
563

Narrowly Left Completely
Reflective π-Institution,
489

Narrowly Left Injective
π-Institution, 421

Narrowly Left Monotone
π-Institution, 528

Narrowly Left Reflective
π-Institution, 456

Narrowly Left Truth Equational
π-Institution, 1003

Narrowly Right c-Monotone
π-Institution, 563

Narrowly Right c-Reflective
π-Institution, 489

Narrowly Right Completely
Monotone π-Institution,
563

Narrowly Right Completely
Reflective π-Institution,
489

Narrowly Right Injective
π-Institution, 421

Narrowly Right Monotone
π-Institution, 528

Narrowly Right Reflective
π-Institution, 456

Narrowly Right Reflexive
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Collection of Natural
Transformations, 1062

Narrowly Right Symmetric
Collection of Natural
Transformations, 1063

Narrowly Right Transitive
Collection of Natural
Transformations, 1063

Narrowly Stable π-Institution,
426, 513

Narrowly System c-Monotone
π-Institution, 563

Narrowly System c-Reflective
π-Institution, 489

Narrowly System Completely
Monotone π-Institution,
563

Narrowly System Completely
Reflective π-Institution,
489

Narrowly System Injective
π-Institution, 421

Narrowly System Monotone
π-Institution, 529

Narrowly System Reflective
π-Institution, 456

Narrowly System Reflexive
Collection of Natural
Transformations, 1052

Narrowly System Symmetric
Collection of Natural
Transformations, 1052

Narrowly System Transitive
Collection of Natural
Transformations, 1052

Narrowly System Truth
Equational π-Institution,
1020

Narrowly Systemic π-Institution,
402

Narrowly Truth Equational
π-Institution, 984

Natural F-Equation, 111
Natural Order Isomorphism

Between Lattices of
Theory Families, 874

Natural Theorem, 117
Natural Transformation, 871
Natural Transformation Between

Power Algebraic Systems,
871

Naturally Finitary π-Institution,
1126

Order Isomorphism Between
Lattices of Theory
Families Induced by(τ, I) ∶ K ⇄ K′, 872

Order Preserving Mapping, 232
Order Reflecting Mapping, 271

Parameter-Free P -Core of N ♭, 170
Parameters, 684
Parametric Arguments, 684
Parametric Arguments of a

Collection of Natural
Transformations, 159

Pointed Class of Algebraic
Systems, 1148

Power Algebraic System, 870
Prealgebraic π-Institution, 228
Preequivalential π-Institution, 356
Protoalgebraic π-Institution, 228

Quasiequational Class of
Algebraic Systems, 184

Quotient F-Algebraic System, 95
Quotient Algebraic System, 93
Quotient Morphism, 94

Raftery’s Logic, 676
Reflexive Core of a π-Institution,

790
Reflexive Set of Natural

Transformations in a
π-Institution, 685

Reflexive Set of Natural
Transformations in an
Algebraic System, 686
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Reflexively Covered π-Institution,
1050

Reflexively System Covered
π-Institution, 1059

Reflexivity Property of an
Equational π-Structure,
875

Regularly Family Algebraizable
π-Institution, 641

Regularly Family Prealgebraizable
π-Institution, 631

Regularly Left Algebraizable
π-Institution, 641

Regularly Left Prealgebraizable
π-Institution, 631

Regularly System Algebraizable
π-Institution, 641

Regularly System
Prealgebraizable
π-Institution, 631

Regularly Weakly Family
Algebraizable
π-Institution, 622

Regularly Weakly Family
Prealgebraizable
π-Institution, 612

Regularly Weakly Left
Algebraizable
π-Institution, 622

Regularly Weakly Left
Prealgebraizable
π-Institution, 612

Regularly Weakly System
Algebraizable
π-Institution, 622

Regularly Weakly System
Prealgebraizable
π-Institution, 612

Relation Family, 82, 92
Relation System, 82, 92
Relatively Point Regular Class of

Algebraic Systems, 1149
Residual of a Translation, 866
RF Algebraizable π-Institution,

641
RF Prealgebraizable π-Institution,

631
Right Assertional π-Institution,

601
Right c∪-Monotone π-Institution,

235
Right c∨-Monotone π-Institution,

245
Right c-Monotone π-Institution,

235
Right c-Reflective π-Institution,

276
Right Completely ⋃-Monotone

π-Institution, 235
Right Completely ⋁-Monotone

π-Institution, 245
Right Completely Monotone

π-Institution, 235
Right Completely Reflective

π-Institution, 276
Right Injective π-Institution, 258
Right Leibniz Narrow Reflexive

Core, 1068
Right Loyal π-Institution, 215
Right Monotone π-Institution, 227
Right Reflective π-Institution, 266
Right Regular π-Institution, 590
Right Regular Collection of

Natural Transformations
in a π-Institution, 1073

Right Regularity of Natural
Transformations, 1073

RL Algebraizable π-Institution,
641

RL Prealgebraizable π-Institution,
631

Rough Associate, 393
Rough Companion, 393
Rough Definability of Leibniz

Congruence Systems, 1044
Rough Definability of Theory

Families by the Rough
Suszko Core, 990
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Rough Definability of Theory
Families Up to Arrow by
the Rough Left Suszko
Core, 999

Rough Definability of Theory
Systems by the Rough
System Core, 1016

Rough Equivalence, 394
Rough Equivalence of Theory

Systems, 394
Rough Family Modus Ponens of a

Collection of Natural
Transformations, 1042

Rough Left Suszko Core of a
π-Institution, 997

Rough Reflexive Core of a
π-Institution, 1045

Rough Representative, 393
Rough Suszko Core of a

π-Institution, 987
Rough System Core of a

π-Institution, 1014, 1023
Roughly Equivalent Theory

Families, 394
Roughly Family c-Monotone

π-Institution, 545
Roughly Family c-Reflective

π-Institution, 474
Roughly Family Compatible

Collection of Natural
Transformations, 1042

Roughly Family Completely
Monotone π-Institution,
545

Roughly Family Completely
Reflective π-Institution,
474

Roughly Family Injective
π-Institution, 407

Roughly Family Monotone
π-Institution, 517

Roughly Family Reflective
π-Institution, 442

Roughly Family Reflexive

Collection of Natural
Transformations, 1040

Roughly Family Symmetric
Collection of Natural
Transformations, 1041

Roughly Family Transitive
Collection of Natural
Transformations, 1041

Roughly Family Truth Equational
π-Institution, 984

Roughly Left c-Monotone
π-Institution, 545

Roughly Left c-Reflective
π-Institution, 474

Roughly Left Completely
Monotone π-Institution,
545

Roughly Left Completely
Reflective π-Institution,
474

Roughly Left Injective
π-Institution, 407

Roughly Left Monotone
π-Institution, 517

Roughly Left Reflective
π-Institution, 442

Roughly Left Truth Equational
π-Institution, 996

Roughly Right c-Monotone
π-Institution, 545

Roughly Right c-Reflective
π-Institution, 474

Roughly Right Completely
Monotone π-Institution,
545

Roughly Right Completely
Reflective π-Institution,
474

Roughly Right Injective
π-Institution, 407

Roughly Right Monotone
π-Institution, 517

Roughly Right Reflective
π-Institution, 442
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Roughly System c-Monotone
π-Institution, 545

Roughly System c-Reflective
π-Institution, 474

Roughly System Completely
Monotone π-Institution,
545

Roughly System Completely
Reflective π-Institution,
474

Roughly System Injective
π-Institution, 407

Roughly System Monotone
π-Institution, 517

Roughly System Reflective
π-Institution, 442

Roughly System Truth Equational
π-Institution, 1013

Roughly Systemic π-Institution,
402

Roughly Truth Equational
π-Institution, 984

RS Algebraizable π-Institution,
641

RS Prealgebraizable π-Institution,
631

RWF Algebraizable π-Institution,
622

RWF Prealgebraizable
π-Institution, 612

RWL Algebraizable π-Institution,
622

RWL Prealgebraizable
π-Institution, 612

RWS Algebraizable π-Institution,
622

RWS Prealgebraizable
π-Institution, 612

S Algebraizable π-Institution, 380
S Prealgebraizable π-Institution,

365
Satisfaction of a Guasiequation in

an Algebraic System, 183

Satisfaction of a Natural Equation
by a Sentence in an
Algebraic System, 111

Satisfaction of a Natural Equation
in an Algebraic System,
112

Semantic Guasivariety, 185
Semantic Guasivariety Generated

by a Class of Algebraic
Systems, 185

Semantic Leibniz Hierarchy, 206
Semantic Quasivariety, 185
Semantic Quasivariety Generated

by a Class of Algebraic
Systems, 184

Semantic Variety, 185
Semantic Variety Generated by a

Class of Algebraic
Systems, 184

Semantic Variety of a
π-Institution I , 140

Semantic Variety Operator, 113
Sentence Family, 76
Sentence Family of A, 126
Sentence Functor, 76
Sentence System, 76
SF Prealgebraizable π-Institution,

364
Signature-Wise Inclusion, 76
Soluble Narrow System Core, 1024
Soluble Rough Suszko Core, 988
Soluble Rough System Core, 1015
Soluble Suszko Core, 828
Soluble System Core, 856
Soluble Unary Suszko Core, 925
Soluble Unary System Core, 939
Source Signature κ-Variable Pair,

114
Special F-Algebraic System

Morphism, 90
Special Morphism, 80
ssvκ Maps, 115
Stable π-Institution, 213
Strict Matrix Family Morphism,
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132
Strongly Family Truth Equational

π-Institution, 923
Strongly Left Truth Equational

π-Institution, 930
Strongly System Truth Equational

π-Institution, 937
Strongly Truth Equational

π-Institution, 923
Structurality Condition, 117
Subdirect Intersection of

F-Algebraic Systems, 105,
190

Surjective F-Algebraic System
Morphism, 90

Surjective Morphism, 80
Suszko Congruence System, 138
Suszko Core of a π-Institution,

826
Suszko Reduced I-Matrix Family,

139
Suszko Reduced Algebraic

System, 139
Suszko Reduced Lindenbaum

I-Matrix Family, 811
Suszko Reduction, 139
Suszko Truth Equational

π-Institution, 816
Symmetry Property of an

Equational π-Structure,
875

Syntactic Leibniz Hierarchy, 206
Syntactic Variety of a

π-Institution I , 140
Syntactic Variety Operator, 113
Syntactically Algebraizable

π-Institution, 975
Syntactically Antialgebraizable

π-Institution, 975
Syntactically Equivalential

π-Institution, 917
Syntactically Family

Algebraizable
π-Institution, 966

Syntactically Family
Antialgebraizable
π-Institution, 966

Syntactically Family Assertional
π-Institution, 1086

Syntactically Family Regularly
Equivalential
π-Institution, 1081

Syntactically Family Regularly
Prealgebraic π-Institution,
1077

Syntactically Family Regularly
Preequivalential
π-Institution, 1081

Syntactically Family Regularly
Protoalgebraic
π-Institution, 1076

Syntactically Left
Anti-Prealgebraizable
π-Institution, 947

Syntactically Left Assertional
π-Institution, 1086

Syntactically Left
Prealgebraizable
π-Institution, 947

Syntactically Narrowly Family
Monotone π-Institution,
1043

Syntactically Narrowly Right
Monotone π-Institution,
1063

Syntactically Narrowly System
Monotone π-Institution,
1053

Syntactically Prealgebraic
π-Institution, 788

Syntactically Preequivalential
π-Institution, 908

Syntactically Protoalgebraic
π-Institution, 800

Syntactically Regularly Family
Algebraizable
π-Institution, 1108

Syntactically Regularly Family
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Prealgebraizable
π-Institution, 1108

Syntactically Regularly Left
Algebraizable
π-Institution, 1108

Syntactically Regularly Left
Prealgebraizable
π-Institution, 1108

Syntactically Regularly System
Algebraizable
π-Institution, 1108

Syntactically Regularly System
Prealgebraizable
π-Institution, 1108

Syntactically Regularly Weakly
Family Algebraizable
π-Institution, 1100

Syntactically Regularly Weakly
Family Prealgebraizable
π-Institution, 1093

Syntactically Regularly Weakly
Left Algebraizable
π-Institution, 1100

Syntactically Regularly Weakly
Left Prealgebraizable
π-Institution, 1093

Syntactically Regularly Weakly
System Algebraizable
π-Institution, 1100

Syntactically Regularly Weakly
System Prealgebraizable
π-Institution, 1093

Syntactically RF Algebraizable
π-Institution, 1108

Syntactically RF Prealgebraizable
π-Institution, 1108

Syntactically Right Assertional
π-Institution, 1086

Syntactically RL Algebraizable
π-Institution, 1108

Syntactically RL Prealgebraizable
π-Institution, 1108

Syntactically Roughly Family
Monotone π-Institution,

1043
Syntactically RS Algebraizable

π-Institution, 1108
Syntactically RS Prealgebraizable

π-Institution, 1108
Syntactically RWF Algebraizable

π-Institution, 1100
Syntactically RWF

Prealgebraizable
π-Institution, 1093

Syntactically RWL Algebraizable
π-Institution, 1100

Syntactically RWL
Prealgebraizable
π-Institution, 1093

Syntactically RWS Algebraizable
π-Institution, 1100

Syntactically RWS
Prealgebraizable
π-Institution, 1093

Syntactically Strongly
Algebraizable
π-Institution, 972

Syntactically Strongly Family
Algebraizable
π-Institution, 963

Syntactically Strongly Left
Prealgebraizable
π-Institution, 944

Syntactically Strongly System
Prealgebraizable
π-Institution, 953

Syntactically System
Antiprealgebraizable
π-Institution, 956

Syntactically System Assertional
π-Institution, 1087

Syntactically System
Prealgebraizable
π-Institution, 956

Syntactically System Regularly
Equivalential
π-Institution, 1081

Syntactically System Regularly
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Prealgebraic π-Institution,
1077

Syntactically System Regularly
Preequivalential
π-Institution, 1081

Syntactically System Regularly
Protoalgebraic
π-Institution, 1076

Syntactically W Algebraizable
π-Institution, 886

Syntactically Weakly
Algebraizable
π-Institution, 886

Syntactically Weakly Family
Algebraizable
π-Institution, 881

Syntactically Weakly Left
c-Reflective
Prealgebraizable
π-Institution, 902

Syntactically Weakly System
Prealgebraizable
π-Institution, 896

Syntactically WF Algebraizable
π-Institution, 881

Syntactically WLC
Prealgebraizable
π-Institution, 902

Syntactically WS Prealgebraizable
π-Institution, 896

System 2-Extensional
π-Institution, 349

System Algebraizable
π-Institution, 380

System Assertional π-Institution,
601

System c∪-Monotone
π-Institution, 235

System c∨-Monotone
π-Institution, 245

System c-Monotone π-Institution,
235

System c-Reflective π-Institution,
277

System Commuting π-Institution,
352

System Completely ⋃-Monotone
π-Institution, 235

System Completely ⋁-Monotone
π-Institution, 245

System Completely Monotone
π-Institution, 235

System Completely Reflective
π-Institution, 277

System Core of a π-Institution,
856

System Equivalential
π-Institution, 356

System Extensional π-Institution,
341

System Family Prealgebraizable
π-Institution, 364

System Injective π-Institution,
258

System Inverse Commuting
π-Institution, 352

System Loyal π-Institution, 215
System Monotone π-Institution,

227
System Prealgebraizable

π-Institution, 365
System Preequivalential

π-Institution, 356
System Reduced Algebraic

System, 133
System Reflective π-Institution,

266
System Regular π-Institution, 590
System Regular Collection of

Natural Transformations
in a π-Institution, 1073

System Regularity of Natural
Transformations, 1073

System Truth Equational
π-Institution, 854

Systemic π-Institution, 212
Systemic Algebraic π-Structure

Associated with a
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π-Institution I , 899
Systemic Skeleton of a

π-Institution I , 888
Systemic Suszko Congruence

System, 597

Tarski Congruence System, 137
Tarski Reduced Algebraic System,

138
Tarski Reduced Gmatrix Family,

138
Tarski Reduction, 138
Theorem, 117
Theory Family, 118
Theory System, 118
Transformation, 870
Transformation Between Power

Algebraic Systems, 870
Transformational Order

Isomorphism Between
Lattices of Theory
Families, 872

Transitivity Property of an
Equational π-Structure,
875

Translation, 864
Translation Between Algebraic

Systems, 864
Trivial π-Institution, 121
Trivial Algebraic System, 87
Trivial Sentence Functor, 76
Truth Equational π-Institution,

819
Truth is τ ♭-Definable in a Class of

I-Matrix Families, 814
Truth is τ ♭-Equationally Definable

in a Class of I-Matrix
Families, 814

Unary Left Suszko Core of a
π-Institution, 931

Unary Suszko Core of a
π-Institution, 924

Unary System Core of a
π-Institution, 938

Universal Family c-Reflectivity,
823

Universal Family Complete
Reflectivity, 823

Universal Family Minimality of
the Suszko Operator, 822

Universally Family c-Reflective
π-Institution, 823

Universally Family Completely
Reflective π-Institution,
823

Universally Family Injective
Suszko Operator, 822

Universally Leibniz Truth
Equational π-Institution,
816

Universally Suszko Truth
Equational π-Institution,
816

Universe of A generated by X ,
154

Universe of an Algebraic System,
151

Validity of a Natural Equation in
an Algebraic System, 112

W Algebraizable π-Institution,
330

Weaker π-Institution, 121
Weakly Algebraizable

π-Institution, 330
Weakly Family Algebraizable

π-Institution, 322
Weakly Family Completely

Reflective Algebraizable
π-Institution, 321

Weakly Family Completely
Reflective
Prealgebraizable
π-Institution, 292

Weakly Family Injective
Algebraizable
π-Institution, 320
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Weakly Family Injective
Prealgebraizable
π-Institution, 291

Weakly Family Reflective
Algebraizable
π-Institution, 320

Weakly Family Reflective
Prealgebraizable
π-Institution, 292

Weakly Left Completely
Reflective Algebraizable
π-Institution, 321

Weakly Left Completely Reflective
Prealgebraizable
π-Institution, 292

Weakly Left Injective
Algebraizable
π-Institution, 320

Weakly Left Injective
Prealgebraizable
π-Institution, 291

Weakly Left Reflective
Algebraizable
π-Institution, 320

Weakly Left Reflective
Prealgebraizable
π-Institution, 292

Weakly Right Injective
Algebraizable
π-Institution, 320

Weakly Right Injective
Prealgebraizable
π-Institution, 291

Weakly System Algebraizable
π-Institution, 330

Weakly System Completely
Reflective Algebraizable
π-Institution, 321

Weakly System Completely
Reflective
Prealgebraizable
π-Institution, 292

Weakly System Injective
Algebraizable

π-Institution, 320
Weakly System Injective

Prealgebraizable
π-Institution, 291

Weakly System Prealgebraizable
π-Institution, 294

Weakly System Reflective
Algebraizable
π-Institution, 320

Weakly System Reflective
Prealgebraizable
π-Institution, 292

WF Algebraizable π-Institution,
322

WFC Algebraizable π-Institution,
321

WFC Prealgebraizable
π-Institution, 292

WFI Algebraizable π-Institution,
320

WFI Prealgebraizable
π-Institution, 291

WFR Algebraizable π-Institution,
320

WFR Prealgebraizable
π-Institution, 292

Witnessing Axioms of an
Axiomatic Extension, 134

Witnessing Equations for Family
Truth Equationality, 825

Witnessing Equations for Left
Truth Equationality, 839

Witnessing Equations for System
Truth Equationality, 854

Witnessing Equations for the
Leibniz Truth
Equationality of a
π-Institution, 816

Witnessing Equations for the
Suszko Truth
Equationality of a
π-Institution, 816

Witnessing Equations for the
Universal Leibniz Truth
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Equationality of a
π-Institution, 816

Witnessing Equations for the
Universal Suszko Truth
Equationality of a
π-Institution, 816

Witnessing Equations for Truth
Equationality, 825

Witnessing Equations of/for the
Narrow Family Truth
Equationality of a
π-Institution I , 984

Witnessing Equations of/for the
Narrow Left Truth
Equationality of a
π-Institution I , 1003

Witnessing Equations of/for the
Narrow System Truth
Equationality of a
π-Institution I , 1020

Witnessing Equations of/for the
Narrow Truth
Equationality of a
π-Institution I , 984

Witnessing Equations of/for the
Rough Family Truth
Equationality of a
π-Institution I , 984

Witnessing Equations of/for the
Rough Left Truth
Equationality of a
π-Institution I , 996

Witnessing Equations of/for the
Rough System Truth
Equationality of a
π-Institution I , 1013

Witnessing Equations of/for the
Rough Truth
Equationality of a
π-Institution I , 984

Witnessing Equations of/for the
Strong Left Truth
Equationality of a
π-Institution, 930

Witnessing Equations of/for the
Strong System Truth
Equationality of a
π-Institution, 937

Witnessing Equations of/for the
Strong Truth
Equationality of a
π-Institution, 924

Witnessing Natural
Transformations of
Syntactic Narrow Family
Monotonicity, 1043

Witnessing Natural
Transformations of
Syntactic Narrow Right
Monotonicity, 1064

Witnessing Natural
Transformations of
Syntactic Narrow System
Monotonicity, 1053

Witnessing Natural
Transformations of
Syntactic Prealgebraicity,
788

Witnessing Natural
Transformations of
Syntactic
Protoalgebraicity, 800

Witnessing Natural
Transformations of
Syntactic Rough Family
Monotonicity, 1043

Witnessing Natural
Transformations of/for the
Syntactic Equivalentiality
of a π-Institution, 918

Witnessing Natural
Transformations of/for the
Syntactic
Preequivalentiality of a
π-Institution, 909

Witnessing Transformations of
Syntactic Narrow Family
Monotonicity, 1043
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Witnessing Transformations of
Syntactic Narrow Right
Monotonicity, 1064

Witnessing Transformations of
Syntactic Narrow System
Monotonicity, 1053

Witnessing Transformations of
Syntactic Prealgebraicity,
788

Witnessing Transformations of
Syntactic
Protoalgebraicity, 800

Witnessing Transformations of
Syntactic Rough Family
Monotonicity, 1043

Witnessing Transformations of/for
the Syntactic
Equivalentiality of a
π-Institution, 918

Witnessing Transformations of/for
the Syntactic
Preequivalentiality of a
π-Institution, 909

WLC Algebraizable π-Institution,
321

WLC Prealgebraizable
π-Institution, 292

WLI Algebraizable π-Institution,

320

WLI Prealgebraizable
π-Institution, 291

WLR Algebraizable π-Institution,
320

WLR Prealgebraizable
π-Institution, 292

WRI Algebraizable π-Institution,
320

WRI Prealgebraizable
π-Institution, 291

WS Algebraizable π-Institution,
330

WS Prealgebraizable
π-Institution, 294

WSC Algebraizable π-Institution,
321

WSC Prealgebraizable
π-Institution, 292

WSI Algebraizable π-Institution,
320

WSI Prealgebraizable
π-Institution, 291

WSR Algebraizable π-Institution,
320

WSR Prealgebraizable
π-Institution, 292
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(α,β) ∶ K ⇄ K′ Conjugate Pair of
Inverse Interpretations
Between π-Structures K
and K′, 865

BI Binary Reflexive Core of a
π-Institution I , 908

C(T ) Theory Family Generated
by T , 120

C ≤ C ′ Extension Order on
π-Institutions, 121

CT Closure Subsystem of C with
Theorem System T , 121

CM Closure System Induced by a
Class M of Matrix
Families, 124

CI,A(T ) Least I-Filter Family of
A Including T , 127

CI,A Closure Family Generated by
a Matrix Family, 135

CK,⊺ Assertional Closure System
Defined by ⊺♭-Pointed
Class K of Algebraic
Systems, 1150

CA Closure System Induced by a
Matrix Family, 124

DK Closure Operator Associated
with a Class K of
F-Algebraic Systems, 106

DK Equational Consequence
Relative to a Class K of
F-Algebraic Systems, 177

Df Finitary Companion of D, 659

DI∗ Closure Family Associated
with ConSysI∗(I), 883

DI● Closure Family Associated
with ConSysI●(I), 899

EΣ(φ⃗) Collection of Values of
Finitary Natural
Transformations in E at
φ⃗, 159

EΣ[φ⃗] Sentence Family Induced
by Collection E of Natural
Transformations (with
Parameters) and φ⃗, 159

F I Frege Core of a π-Institution
I , 1035

I♭(T ) Family of Pairs all of
Whose Images Under
I♭ ⊆ N ♭ are in T , 685

I♭Σ,Σ′[φ⃗] Σ′-Component of the

Sentence Family I♭Σ[φ⃗],
684

I♭Σ(T ) Collection of all ⟨φ,ψ⟩ such
that I♭Σ[φ,ψ] ≤ T , 685

I♭Σ(φ⃗) Image of a tuple φ⃗ of
Sentences Under a Set I♭

of Natural
Transformations, 684

I♭Σ[φ⃗] Family of Images of φ⃗
Under I♭, 684

KI Closure Family Associated
with ThSys(I), 888

LI Left Suszko Core of a
π-Institution I , 840

LI Narrow Left Suszko Core of a
π-Institution I , 1006

N θ Category of Natural
Transformations on SENθ,

1649
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94
P ♭ ⊆ N ♭ Collection of All Natural

Transformations
Satisfying P , 170

RI Reflexive Core of a
π-Institution I , 790

RI Rough Reflexive Core of a
π-Institution I , 1045

RIs Rough Reflexive System Core
of a π-Institution I , 1055

S♭ ∶ (SEN♭)ω → (SEN♭)ℓ Collection
of Natural
Transformations in N ♭,
168

SI Suszko Core of a π-Institution
I , 826

SI Rough Suszko Core of a
π-Institution I , 987

X ≤lf Y X is a Locally Finite
Subfamily of Y , 172

XiI,A,n(X) n-th Step in Filter
Family Generation, 175

ZI System Core of a π-Institution
I , 856

ZI Rough System Core of a
π-Institution I , 1023[RI Σ [φ,ψ]) Poset of Theory
Families in ThFam (I)
Containing RI Σ [φ,ψ],
1050[RIsΣ [φ,ψ]) Poset of Theory
Systems in ThSys (I)
Containing RIsΣ [φ,ψ],
1059

∆A Identity Congruence System
on A, 92

Λ(T ) Frege Relation System of a
Sentence Family T , 143

ΛA(T ) Frege Relation System of
T on A, 144

ΩA(T ) Leibniz Congruence
System, 96

SEN/θ Quotient Sentence
Functor, 93

SENθ Quotient Sentence Functor,
93

⊲

IΠ Subdirect Intersection
Operator on Classes of
F-Algebraic Systems, 105,
191

ΘK(X) K-Congruence System on
F Generated by X , 106

ΘI,A(X) AlgSys(I)-Congruence
System on A Generated
by X , 143

ΘK,A(X) K-Congruence System
on A Generated by X , 106

ΞQ(E) Congruence System
Relative to Q Stepwise
Generated by E, 178

ΞI,A(X) Filter Family Stepwise
Generated by X , 176

α(T ) Image of a sentence family
T under a morphism⟨F,α⟩, with F an
isomorphism, 83

α(A) Image of an N ♭-Algebraic
System A Under a
Morphism ⟨F,α⟩, with F

an isomorphism, 88

α[T ] Image of a Sentence Family
T Under a Translation α,
864

α∗ Residual of a Translation α,
866

α−1(R) Inverse Image of a
Relation Family, 84

α−1(T ) Inverse Image of a
Sentence Family, 80

α−1(A′) Algebraic Subsystem of F
Determined by the
Universe α−1(SEN′), 155

αΣ[Φ] Image of the Set Φ of
Σ-Sentences Under a
Translation α, 864

αΣ[φ] Image of ϕ Under a
Translation α, 864
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⋂i∈I C
i Intersection of Closure

Systems, 121

⋂i∈I I i Intersection of
π-Institutions, 121

⋁I T Join of T ⊆ ThFam(I) in
ThFam(I), 244

⋁F Θ Join of Θ ⊆ ConSys(F) in
ConSys(F), 244

⋁AΘ Join of Θ ⊆ ConSys(A) in
ConSys(A), 251

⋁I,A T Join of T ⊆ FiFamI(A) in
FiFamI(A), 251

R̈I Binary Reflexive Core of a
π-Institution I , 908

σ̈♭ ∶ (SEN♭)2 → (SEN♭)ℓ
Parameter-Free Collection
of Natural
Transformations Induced
by
σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ,
168

L̇I Unary Left Suszko Core of a
π-Institution I , 931

Ṡ♭ ∶ (SEN♭)k → (SEN♭)ℓ
Parameter-Free Collection
of Natural
Transformations Induced
by
S♭ ∶ (SEN♭)ω → (SEN♭)ℓ,
168

ṠI Unary Suszko Core of a
π-Institution I , 924

ŻI Unary System Core of a
π-Institution I , 938

σ̇♭ ∶ (SEN♭)k → (SEN♭)ℓ
Parameter-Free Collection
of Natural
Transformations Induced
by
σ♭ ∶ (SEN♭)ω → (SEN♭)ℓ,
168

P̂ Restriction of Property P to
Parameterless Natural
Transformations, 170

P̂ ♭ Collection of Parameterless
Natural Transformations
Satisfying Property P , 170

λ(T ) Frege Relation Family of a
Sentence Family T , 143

λA(T ) Frege Relation family of T
on A, 144⟨I, πθ⟩ Quotient Morphism, 94⟨I, j⟩ Injection Morphism, 152⟨V, v⃗⟩ Source Signature κ-Variable
Pair, 114⟨X⟩ Universe of A Generated by a
Sentence Family X , 154

A∗ Tarski Reduction of the
F-Gmatrix Family A, 138

C(K) Class of All K-Certified
Algebraic Systems, 187

C∗(K) Class of All Directedly
K-Certified Algebraic
Systems, 188

GSem(K) Semantic Guasivariety
Generated by the Class K,
185

H Morphic Image Operator on
Classes of F-Algebraic
Systems, 105, 193

QSem(K) Semantic Quasivariety
Generated by the Class K,
184

VSem(I) Semantic Variety of I ,
140

VSem(K) Semantic Variety
Generated by K, 113

VSem(K) Semantic Variety
Generated by the Class K,
184

VSyn(I) Syntactic Variety of I ,
140

VSyn(K) Syntactic Variety
Generated by K, 113

A/θ Quotient F-Algebraic
System, 95

A ⊧ σ♭ ≈ τ ♭ Validity of a Natural
Equation in an Algebraic
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System, 112

A ⊧Σ ⟨φ⃗ ≈ ψ⃗, φ ≈ ψ⟩ Satisfaction of
Guasiequation in an
Algebraic System, 183

A ⊧Σ σ♭ ≈ τ ♭[φ⃗] Satisfaction of a
Natural Equation by a
Sentence in an Algebraic
System, 111

Aθ Quotient F-Algebraic System,
95

D Dellunde’s Logic, 672

I ≤ I ′ Extension Order on
π-Institutions, 121

IT π-Institution Generated in I
by a Theory System T of
I , 122

IM π-Institution Induced by a
Class M of Matrix
Families, 124

If Finitary Companion of I , 660

IK,⊺ Assertional π-Institution
Defined by a ⊺♭-Pointed
Class K of Algebraic
Systems, 1151

K
(α,β)

⇄ K′ Conjugate Pair of
Inverse Interpretations
Between π-Structures K
and K′, 865

KI = ⟨F,KI⟩ Systemic Skeleton of
a π-Institution I , 888

QI∗ = ⟨F2,DI∗⟩ Algebraic
π-Structure Associated
with a π-Institution I , 883

QI● = ⟨F2,DI●⟩ Systemic
Algebraic π-Structure
Associated with a
π-Institution I , 899

R Raftery’s Logic, 676

min [RI Σ [φ,ψ]) Collection of
Minimal Elements in[RI Σ [φ,ψ]), 1050

min [RIsΣ [φ,ψ]) Collection of
Minimal Elements in

[RIsΣ [φ,ψ]), 1059

K ⊧ E♭ Validity of a Set of Natural
Equations in a Class of
Algebraic Systems, 112

A∗ Leibniz Reduction of the
Matrix Family A, 133

ASu Suszko Reduction of the
I-Matrix Family A, 139

∇A Nabla Congruence System on
A, 92

νA(X) Closure of sentence Family
X under the Operations of
A, 153

νA(Ð→X) Universe of A Generated
by X , 154

←Ð
E (T ) Relation System Consisting

of All Tuples of Sentences
Carried by E into T , 160

←Ð
T Sentences all of whose images

are in T , 76
↔

I♭ Set of all σ and σ, with σ ∈ I♭,
684

Ð→
C (T ) Theory System Generated

by T , 120
Ð→
C
I,A(T ) Least I-Filter System of

A Including T , 127
Ð→
T Images of all sentences in T , 77

I♭ Set of all σ, with σ ∈ I♭, 684

σ Natural Transformation
Resulting from σ by
Interchanging the First
Two Arguments, 684∼ Rough Equivalence Between
Theory Families, 394[̃T ] Rough Equivalence Class of
T , 394[̃T ] ≤ [̃T ′] Order on Family Rough
Equivalence Classes, 455

θ⟨F,α⟩ Kernel System of ⟨F,α⟩, 83

⌊̃T ⌋ Rough Equivalence Class of
the Theory System T , 394⌊̃T ⌋ ≤ ⌊̃T ′⌋ Order on System Rough
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Equivalence Classes, 455
φ⃗ ≈ ψ⃗ Collection of Equations

φi ≈ ψi, 182
Ω̂I(T ) Systemic Suszko

Congruence System of a
Theory System T of I , 597

Ω̂I(T ) Version of Suszko
Congruence System of the
Theory System T Based
on Theory Systems, 856

Ω̂I Narrow Systemic Suszko
Operator of a
π-Institution I , 1027

L̃I Rough Left Suszko Core of a
π-Institution I , 997

R̃I Rough Reflexive Core of a
π-Institution I , 1045

T̃ Rough Associate of T , 393
T̃ Rough Companion of T , 393
Z̃I Rough System Core of a

π-Institution I , 1014
Λ̃(I) Carnap Relation System of

ThFam(I) on F , 148
Λ̃(T ) Carnap Relation System of

a Collection T of Sentence
Families, 145

Λ̃A(I) Carnap Relation System of
FiFamI(A) on A, 148

Λ̃A(T ) Carnap Relation System
of T on A, 146

Λ̃I,A(T ) Lindenbaum Relation
System of T on A Relative
to FiFamI(A), 148

Λ̃I(T ) Lindenbaum Relation
System of T on F Relative
to ThFam(I), 148

Λ̃T (X) Lindenbaum Relation
System of X Relative to
T , 147

Λ̃A,T (X) Lindenbaum Relation
System of X on A
Relative to T , 148

Ω̃(A) Tarski Congruence System
of the F-Gmatrix Family

A, 137
Ω̃(I) Tarski Congruence System

of I , 138
Ω̃A(I) Tarski Congruence System

of FiFamI(A) on A, 138
Ω̃A(T ) Tarski Congruence System

of T on A, 137
Ω̃I(T ) Suszko Congruence of T

Relative to Thfam(I), 139
Ω̃A,T (T ) Suszko Congruence

System of T ∈ T Relative
to T on A, 138

Ω̃I,A(T ) Suszko Congruence of T
Relative to FiFamI(A),
139

Ω̃I Narrow Suszko Operator of a
π-Institution I , 1009

T̃hFam(I) Poset of Family
Rough Equivalence
Classes, 455

T̃hSys(I) Poset of System Rough
Equivalence Classes, 455

λ̃(I) Carnap Relation Family of
ThFam(I) on F , 148

λ̃(T ) Carnap Relation Family of a
Collection T of Sentence
Families, 145

λ̃A(I) Carnap Relation Family of
FiFamI(A) on A, 148

λ̃A(T ) Carnap Relation Family of
T on A, 146

λ̃I,A(T ) Lindenbaum Relation
Family of T on A Relative
to FiFamI(A), 148

λ̃I(T ) Lindnbaum Relation
Family of T on F Relative
to ThFam(I), 148

λ̃T (X) Lindenbaum Relation
Family of X Relative to
T , 147

λ̃A,T (X) Lindenbaum Relation
Family of X on A
Relative to T , 148

T̃hFam(I) The Collection of All
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Rough Equivalence
Classes of Theory Families
of I , 394

T̃hSys(I) Collection of All Rough
Equivalence Classes of
Theory Systems of I , 394

pk ∶ (SEN♭)k → (SEN♭)k Identity
Natural Transformation,
168

 L  Lukasiewicz’s Infinite Valued
Logic, 669

A′ ≤A A′ is an Algebraic
Subsystem of A, 152

A/θ Quotient of A by θ, 93
Aθ Quotient of A by θ, 93
Cln(SEN) Clone of All Natural

Transformations on SEN,
85

ConSys(A) Lattice of
Congruence Systems on
A, 92

ConSysA(T ) Lattice of All
Congruence Systems on A
Compatible with T , 95

FiFamI(A) Lattice of All I-Filter
Families on A, 126

FiSysI(A) Lattice of All I-Filter
Systems of A, 126

SenFam(SEN) Lattice of
Sentence Families, 76

SenSys(SEN) Lattice of Sentence
Systems, 76

ThFam(I) Lattice of Theory
Families of a π-Institution
I , 118

ThFam(K) Lattice of Theory
Families of a π-Structure
K, 868

ThSys(I) Lattice of Theory
Systems of a π-Institution
I , 118≤ Signature-Wise Inclusion, 76

AlgSys(G) Collection of All
Algebraic Systems

Satisfying Guasiequations
in G, 184

AlgSys(I) Collection of All Tarski
Reduced F-Algebraic
Systems, 138

AlgSys(F) Class of All
F-Algebraic Systems, 90

AlgSys∗(I) Collection of All
Leibniz Reduced
F-Algebraic Systems, 133

AlgSys●(I) Collection of All
System Reduced
F-Algebraic Systems, 133

AlgSysSu(I) Class of All
F-Algebraic System
Reducts of Suszko
Reduced I-Matrix
Families, 813

ConSys(A) Collection of
Congruence Systems on
A, 95

ConSys(I) Collection of
AlgSys(I)-Congruence
Systems on F , 226

ConSys(A) Collection of
Congruence Systems on
A, 92

ConSys●(I) Collection of All
I●-Congruence Systems,
897

ConSys∗(I) Collection of
AlgSys∗(I)-Congruence
Systems on F , 226

ConSysA(T ) Collection of All
Congruence Systems on A
Compatible with T , 95

ConSysI∗(A) Collection of
AlgSys∗(I)-Congruence
Systems on A, 226

ConSysI●(A) Collection of All
I●-Congruence Systems on
A, 897

ConSysI(A) Collection of
AlgSys(I)-Congruence
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Systems on A, 226
ConSysK(A) Collection of All

K-Congruence Systems on
A, 104

EqvFam(SEN) Collection of All
Equivalence Families on
SEN, 82

EqvSys(SEN) Collection of All
Equivalence Systems on
SEN, 82

Eq(A) Family of Equations
Satisfied by A, 183

Eq(K) Family of Equations Valid
in Class K, 183

Eq(F) Family of F-Equations,
177, 182

FiFamI(A) Collection of All
I-Filter Families on A,
126

FiFamI(A) Collection of All
I-Filter Families of A, 126

FiFamI(A) Collection of All
I-Filter Families of a
Matrix Family A, 133

FiSysI(A) Collection of All
I-Filter Systems on A,
126

GEq(A) Family of Guasiequations
Satisfied by A, 183

GEq(K) Family of Guasiequations
Valid in Class K, 183

GEq(G) Family of
F-Guasiequations
(Generalized
Quasiequations), 182

GMatFam∗(I) Collection of All
Tarski Reduced
I-Gmatrix Families, 138

Ken(⟨F,α⟩) Kernel System of⟨F,α⟩, 83
Ker(A) Kernel of an F-Algebraic

System, 112
Ker(K) Kernel of a Class of

F-Algebraic Systems, 113

LAlgSys∗(I) Class of All
F-Algebraic System
Reducts of (Leibniz)
Reduced Lindenbaum
I-Matrix Families, 813

LAlgSysSu(I) Class of All
F-Algebraic System
Reducts of Suszko
Reduced Lindenbaum
I-Matrix Families, 813

LMatFam(I) Collection of All
Lindenbaum I-Matrix
Families, 811

LMatFam∗(I) Collection of All
(Leibniz) Reduced
Lindenbaum I-Matrix
Families, 811

LMatFamSu(I) Collection of All
Suszko Reduced
Lindenbaum I-Matrix
Families, 811

MatFam(I) Collection of All
I-Matrix Families, 126

MatFam(F) Collection of All
F-Matrix Families, 124

MatFam∗(I) Collection of All
Leibniz Reduced I-Matrix
Families, 133

MatFamSu(I) Collection of All
Suszko Reduced I-Matrix
Families, 140

MatSys(I) Collection of All
I-Matrix Systems, 126

MatSys(F) Collection of All
F-Matrix Systems, 124

MatSys∗(I) Collection of All
Leibniz Reduced I-Matrix
Systems, 133

Mod(G) Collection of All
Algebraic Systems
Satisfying Guasiequations
in G, 184

NEq(F) Collection of All Natural
F-Equations, 111
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NThm(I) Collection of Natural
Theorems of I , 118

QEq(A) Family of Quasiequations
Satisfied by A, 183

QEq(K) Family of Quasiequations
Valid in Class K, 183

QEq(F) Family of
F-Quasiequations, 182

RelFam(SEN) Collection of All
Relation Families on SEN,
82

RelSys(SEN) Collection of All
Relation Systems on SEN,
82

SenFam(SEN) Collection of
Sentence Families, 76

SenFam(A) Collection of All
Sentence Families of a
Matrix Family, 126

SenSys(SEN) Collection of
Sentence Systems, 76

ThFam(I) Collection of All
Theory Families of a
π-Institution I , 118

ThFam(K) Collection of Theory

Families of a π-Structure
K, 868

ThFam (I) Collection of Theory
Families of a π-Institution
I , with Nonempty
Components, 394

ThSys(I) Collection of All
Theory Systems of a
π-Institution I , 118

ThSys (I) Collection of Theory
Systems of a π-Institution
I , with Nonempty
Components, 394

Thm(I) Theorem Family of a
π-Institution I , 117

ThmΣ(I) Set of Σ-Theorems of a
π-Institution I , 117

ThΣ(I) Collection of All
Σ-Theories of a
π-Institution I , 118

Unv(A) Collection of All
Universes of an Algebraic
System A, 151

ssvκ Source Signature κ-Variable
Pair, 114



Index of Classes

Algebraizable, 380

Equivalential, 356
Exclusively Stable, 514
Exclusively Systemic, 402

F Algebraizable, 380
Family 2-Extensional, 349
Family Algebraizable, 380
Family Assertional, 601
Family c∪-Monotone, 235
Family c∨-Monotone, 245
Family c-Monotone, 235
Family c-Reflective, 276
Family Commuting, 352
Family Completely ⋃-Monotone,

235
Family Completely ⋁-Monotone,

245
Family Completely Monotone, 235
Family Completely Reflective, 276
Family Equivalential, 356
Family Extensional, 341
Family Injective, 258
Family Injective Family

Prealgebraizable, 364
Family Injective Prealgebraizable,

365
Family Inverse Commuting, 352
Family Loyal, 215
Family Monotone, 226
Family Preequivalential, 356
Family Reflective, 265
Family Regular, 589
Family Truth Equational, 819

FI Prealgebraizable, 365
FIF Prealgebraizable, 364

LC Prealgebraizable, 364
LCF Prealgebraizable, 364
Left Assertional, 601
Left c∪-Monotone, 235
Left c∨-Monotone, 245
Left c-Monotone, 235
Left c-Reflective, 276
Left Completely ⋃-Monotone, 235
Left Completely ⋁-Monotone, 245
Left Completely Monotone, 235
Left Completely Reflective, 276
Left Completely Reflective Family

Prealgebraizable, 364
Left Completely Reflective

Prealgebraizable, 364
Left Injective, 258
Left Injective Family

Prealgebraizable, 364
Left Injective Prealgebraizable,

365
Left Loyal, 215
Left Monotone, 227
Left Reflective, 265
Left Reflective Family

Prealgebraizable, 364
Left Reflective Prealgebraizable,

364
Left Regular, 589
Left Truth Equational, 839
LI Prealgebraizable, 365
LIF Prealgebraizable, 364
LR Prealgebraizable, 364

1657
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LRF Prealgebraizable, 364

Narrowly Family c-Monotone, 563
Narrowly Family c-Reflective, 489
Narrowly Family Completely

Monotone, 563
Narrowly Family Completely

Reflective, 489
Narrowly Family Injective, 421
Narrowly Family Monotone, 528
Narrowly Family Reflective, 456
Narrowly Family Truth

Equational, 984
Narrowly Left c-Monotone, 563
Narrowly Left c-Reflective, 489
Narrowly Left Completely

Monotone, 563
Narrowly Left Completely

Reflective, 489
Narrowly Left Injective, 421
Narrowly Left Monotone, 528
Narrowly Left Reflective, 456
Narrowly Left Truth Equational,

1003
Narrowly Right c-Monotone, 563
Narrowly Right c-Reflective, 489
Narrowly Right Completely

Monotone, 563
Narrowly Right Completely

Reflective, 489
Narrowly Right Injective, 421
Narrowly Right Monotone, 528
Narrowly Right Reflective, 456
Narrowly Stable, 426, 513
Narrowly System c-Monotone, 563
Narrowly System c-Reflective, 489
Narrowly System Completely

Monotone, 563
Narrowly System Completely

Reflective, 489
Narrowly System Injective, 421
Narrowly System Monotone, 529
Narrowly System Reflective, 456

Narrowly System Truth
Equational, 1020

Narrowly Systemic, 402
Narrowly Truth Equational, 984

Prealgebraic, 228
Preequivalential, 356
Protoalgebraic, 228

Regularly Family Algebraizable,
641

Regularly Family
Prealgebraizable, 631

Regularly Left Algebraizable, 641
Regularly Left Prealgebraizable,

631
Regularly System Algebraizable,

641
Regularly System

Prealgebraizable, 631
Regularly Weakly Family

Algebraizable, 622
Regularly Weakly Family

Prealgebraizable, 612
Regularly Weakly Left

Algebraizable, 622
Regularly Weakly Left

Prealgebraizable, 612
Regularly Weakly System

Algebraizable, 622
Regularly Weakly System

Prealgebraizable, 612
RF Algebraizable, 641
RF Prealgebraizable, 631
Right Assertional, 601
Right c∪-Monotone, 235
Right c∨-Monotone, 245
Right c-Monotone, 235
Right c-Reflective, 276
Right Completely ⋃-Monotone,

235
Right Completely ⋁-Monotone,

245
Right Completely Monotone, 235



Voutsadakis Index of Classes 1659

Right Completely Reflective, 276
Right Injective, 258
Right Loyal, 215
Right Monotone, 227
Right Reflective, 266
Right Regular, 590
RL Algebraizable, 641
RL Prealgebraizable, 631
Roughly Family c-Monotone, 545
Roughly Family c-Reflective, 474
Roughly Family Completely

Monotone, 545
Roughly Family Completely

Reflective, 474
Roughly Family Injective, 407
Roughly Family Monotone, 517
Roughly Family Reflective, 442
Roughly Family Truth

Equational, 984
Roughly Left c-Monotone, 545
Roughly Left c-Reflective, 474
Roughly Left Completely

Monotone, 545
Roughly Left Completely

Reflective, 474
Roughly Left Injective, 407
Roughly Left Monotone, 517
Roughly Left Reflective, 442
Roughly Left Truth Equational,

996
Roughly Right c-Monotone, 545
Roughly Right c-Reflective, 474
Roughly Right Completely

Monotone, 545
Roughly Right Completely

Reflective, 474
Roughly Right Injective, 407
Roughly Right Monotone, 517
Roughly Right Reflective, 442
Roughly System c-Monotone, 545
Roughly System c-Reflective, 474
Roughly System Completely

Monotone, 545
Roughly System Completely

Reflective, 474
Roughly System Injective, 407
Roughly System Monotone, 517
Roughly System Reflective, 442
Roughly System Truth

Equational, 1013
Roughly Systemic, 402
Roughly Truth Equational, 984
RS Algebraizable, 641
RS Prealgebraizable, 631
RWF Algebraizable, 622
RWF Prealgebraizable, 612
RWL Algebraizable, 622
RWL Prealgebraizable, 612
RWS Algebraizable, 622
RWS Prealgebraizable, 612

S Algebraizable, 380
S Prealgebraizable, 365
SF Prealgebraizable, 364
Stable, 213
Strongly Family Truth

Equational, 923
Strongly Left Truth Equational,

930
Strongly System Truth

Equational, 937
Strongly Truth Equational, 923
Syntactically Algebraizable, 975
Syntactically Antialgebraizable,

975
Syntactically Equivalential, 917
Syntactically Family

Algebraizable, 966
Syntactically Family

Antialgebraizable, 966
Syntactically Family Assertional,

1086
Syntactically Family Regularly

Equivalential, 1081
Syntactically Family Regularly

Prealgebraic, 1077
Syntactically Family Regularly

Preequivalential, 1081
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Syntactically Family Regularly
Protoalgebraic, 1076

Syntactically Left
Anti-Prealgebraizable, 947

Syntactically Left Assertional,
1086

Syntactically Left
Prealgebraizable, 947

Syntactically Narrowly Family
Monotone, 1043

Syntactically Narrowly Right
Monotone, 1063

Syntactically Narrowly System
Monotone, 1053

Syntactically Prealgebraic, 788
Syntactically Preequivalential, 908
Syntactically Protoalgebraic, 800
Syntactically Regularly Family

Algebraizable, 1108
Syntactically Regularly Family

Prealgebraizable, 1108
Syntactically Regularly Left

Algebraizable, 1108
Syntactically Regularly Left

Prealgebraizable, 1108
Syntactically Regularly System

Algebraizable, 1108
Syntactically Regularly System

Prealgebraizable, 1108
Syntactically Regularly Weakly

Family Algebraizable,
1100

Syntactically Regularly Weakly
Family Prealgebraizable,
1093

Syntactically Regularly Weakly
Left Algebraizable, 1100

Syntactically Regularly Weakly
Left Prealgebraizable,
1093

Syntactically Regularly Weakly
System Algebraizable,
1100

Syntactically Regularly Weakly

System Prealgebraizable,
1093

Syntactically RF Algebraizable,
1108

Syntactically RF
Prealgebraizable, 1108

Syntactically Right Assertional,
1086

Syntactically RL Algebraizable,
1108

Syntactically RL Prealgebraizable,
1108

Syntactically Roughly Family
Monotone, 1043

Syntactically RS Algebraizable,
1108

Syntactically RS Prealgebraizable,
1108

Syntactically RWF Algebraizable,
1100

Syntactically RWF
Prealgebraizable, 1093

Syntactically RWL Algebraizable,
1100

Syntactically RWL
Prealgebraizable, 1093

Syntactically RWS Algebraizable,
1100

Syntactically RWS
Prealgebraizable, 1093

Syntactically Strongly
Algebraizable, 972

Syntactically Strongly Family
Algebraizable, 963

Syntactically Strongly Left
Prealgebraizable, 944

Syntactically Strongly System
Prealgebraizable, 953

Syntactically System
Antiprealgebraizable, 956

Syntactically System Assertional,
1087

Syntactically System
Prealgebraizable, 956
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Syntactically System Regularly
Equivalential, 1081

Syntactically System Regularly
Prealgebraic, 1077

Syntactically System Regularly
Preequivalential, 1081

Syntactically System Regularly
Protoalgebraic, 1076

Syntactically W Algebraizable,
886

Syntactically Weakly
Algebraizable, 886

Syntactically Weakly Family
Algebraizable, 881

Syntactically Weakly Left
c-Reflective
Prealgebraizable, 902

Syntactically Weakly System
Prealgebraizable, 896

Syntactically WF Algebraizable,
881

Syntactically WLC
Prealgebraizable, 902

Syntactically WS
Prealgebraizable, 896

System 2-Extensional, 349
System Algebraizable, 380
System Assertional, 601
System c∪-Monotone, 235
System c∨-Monotone, 245
System c-Monotone, 235
System c-Reflective, 277
System Commuting, 352
System Completely ⋃-Monotone,

235
System Completely ⋁-Monotone,

245
System Completely Monotone,

235
System Completely Reflective, 277
System Equivalential, 356
System Extensional, 341
System Family Prealgebraizable,

364

System Injective, 258
System Inverse Commuting, 352
System Loyal, 215
System Monotone, 227
System Prealgebraizable, 365
System Preequivalential, 356
System Reflective, 266
System Regular, 590
System Truth Equational, 854
Systemic, 212

Truth Equational, 819

W Algebraizable, 330
Weakly Algebraizable, 330
Weakly Family Algebraizable, 322
Weakly Family Completely

Reflective Algebraizable,
321

Weakly Family Completely
Reflective
Prealgebraizable, 292

Weakly Family Injective
Algebraizable, 320

Weakly Family Injective
Prealgebraizable, 291

Weakly Family Reflective
Algebraizable, 320

Weakly Family Reflective
Prealgebraizable, 292

Weakly Left Completely Reflective
Algebraizable, 321

Weakly Left Completely Reflective
Prealgebraizable, 292

Weakly Left Injective
Algebraizable, 320

Weakly Left Injective
Prealgebraizable, 291

Weakly Left Reflective
Algebraizable, 320

Weakly Left Reflective
Prealgebraizable, 292

Weakly Right Injective
Algebraizable, 320
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Weakly Right Injective
Prealgebraizable, 291

Weakly System Algebraizable, 330
Weakly System Completely

Reflective Algebraizable,
321

Weakly System Completely
Reflective
Prealgebraizable, 292

Weakly System Injective
Algebraizable, 320

Weakly System Injective
Prealgebraizable, 291

Weakly System Prealgebraizable,
294

Weakly System Reflective
Algebraizable, 320

Weakly System Reflective
Prealgebraizable, 292

WF Algebraizable, 322
WFC Algebraizable, 321

WFC Prealgebraizable, 292
WFI Algebraizable, 320
WFI Prealgebraizable, 291
WFR Algebraizable, 320
WFR Prealgebraizable, 292
WLC Algebraizable, 321
WLC Prealgebraizable, 292
WLI Algebraizable, 320
WLI Prealgebraizable, 291
WLR Algebraizable, 320
WLR Prealgebraizable, 292
WRI Algebraizable, 320
WRI Prealgebraizable, 291
WS Algebraizable, 330
WS Prealgebraizable, 294
WSC Algebraizable, 321
WSC Prealgebraizable, 292
WSI Algebraizable, 320
WSI Prealgebraizable, 291
WSR Algebraizable, 320
WSR Prealgebraizable, 292


