Combinatorial Analysis of the State Space
Structure of Finite Automata Networks®

George Voutsadakis!
March 3, 2002

Abstract

Several questions concerning the structure of the state space of Finite Au-
tomata Networks (FANs) are considered and many of them are answered in the
context of special classes of FANs, the most important of which, in our stud-
ies, is the class of Threshold Agent Networks (TANs). Namely, the number
of strongly non-equivalent FANs and TANs on the complete digraph C,, with
n vertices is computed, by using the techniques of generating functions and
recurrence relations together with Pélya’s theory of counting from elementary
combinatorics [5] and combining them as in [6]. Then a complete description is
given of the limit point structure of positive and negative TANs on C,,. These
results use only simple combinatorial counting arguments exploiting the thresh-
old structure available. Finally, a combinatorial algebra is introduced whose
product, scalar product and sum provide in many cases an easy way to compute
the description of the state space of products and other constructs of networks
from the corresponding descriptions of their components.

1 Introduction

A Finite Automata Network (FAN) N = (G,{f:}icv) [3] consists of a digraph
G = (V, E) together with a collection {f;}icy of functions f; : {0,1}Y — {0,1},5 € V,
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such that f; only depends on those j, such that (j,7) € E. The global update
function f:{0,1}V — {0,1}V of the FAN N is the function given by

f(x)i = fi(z), forallze{0,1}V,ie V.

The state space S(N) of the FAN N is the digraph with set of vertices {0,1}" and
edges all pairs (z,y) € ({0,1}V)?, such that y = f(z). A point z is said to be a
fixed-point if z = f(z) and a sequence of points &1, ..., Ty, is said to form a limit
cycle of length m if, for all 1 <i <m — 1,241 = f(x;) and 1 = f(x,,). Thus fixed
points are limit cycles of length 1. All points in limit cycles are collectively termed
limit points.

Two state spaces S(N7) and S(Ny) are said to be isomorphic if they are isomor-
phic as digraphs. They are said to be strongly isomorphic if they are isomorphic
via an isomorphism that is induced by a bijection between the sets Vi and V5 of the
vertices of the digraphs 7 and G2 of the FANs Ny and N, respectively. Two FANs
N1 and N, are said to be equivalent if S(/N;) and S(N;) are isomorphic and are
said to be strongly equivalent if their state spaces are strongly isomorphic. In
Section 2, a formula will be given to compute the number of strongly non-equivalent
FANs over the complete digraph with n vertices. This is accomplished by applying
Pélya’s theory of counting as done in [6], together with simple tools from the theory
of generating functions and recurrence relations.

Next, the focus will be shifted to a special class of FANs. This class is a subclass
of neural or threshold networks [3] and it was introduced in [6] as an alternative
platform to sequential dynamical systems of [1, 2] for modelling and analytically
studying properties of computer simulations.

A Threshold Agent Network (TAN) is a FAN A = (G, {f:}iev), whose func-
tions f; are integer threshold functions, i.e., f;,2 € V., is determined by an integer ¢;,
in the following way, for all z € {0,1}V,

1, ifH{y () e Fandx; =1} >t e
filz) = { 0, otherwise 1620,

e (52 Gd) € B and 2, — 1)
o )0, i) € Band x; = 1} > —¢; .
filz) = { 1, otherwise , it <0

Since the f;’s are completely determined by the thresholds ¢;, the TAN A is most often
denoted by A = (G, 1), where t = (t; : i € V) is the sequence of integer thresholds.

A TAN A is said to be positive if, for all i € V,0 < ¢; < |V| and it is said to be
negative if, foralli e V, —|V| <¢; < —1.

In [6], Pdlya’s theory of counting is used to obtain a tight upper bound on the
number of strongly non-equivalent TANs over a given digraph. This result will be
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applied in Section 2 to obtain a recursive formula for the number of strongly non-
equivalent TANs over the complete digraph C,, with n vertices. In Section 3, the limit
point structure of positive and of negative TANs over C,, is completely determined.
The problem for arbitrary TANs over (), and for TANs over other more complicated
digraphs is open. The results presented here are also of computational significance
since they simplify the complexity of computing the limit structure.

In [7, 8] a categorical treatment of FANs and TANs was presented and the notion
of product of two FANs and TANs was introduced and studied. The same notion for
sequential dynamical systems was studied in [4]. In Section 4, based on the combi-
natorial idea of generating functions and combinatorial algebras, a representation is
given of the main features of the state space of a FAN in terms of sequences. The
collection of all sequences is endowed with operations that make it a Z-algebra, where
Z is the ring of integers. Not every element of this algebra is a valid description of
a state space of a FAN, but, when two elements are, their product in the algebra is
the description of the state space of their product as given in [7]. The meaning of
some of the other algebraic operations is also explored, but many questions on this
very interesting correspondence between the structure of FANs themselves and the
algebraic descriptions of their state spaces remain open.

Section 5 makes explicit some of the questions that we were unable to answer at
this point. The hope is that more work on this topic will give satisfactory answers to
many of these and other related issues.

2 The Number of FANs and TANs over C,

It is straightforward to verify that the number of FANs over the complete digraph C,,
with n vertices is (22")" = 272", This is because, for each vertex, one may arbitrarily
choose two output values for each of the 2™ possible inputs.

In a similar way, we may compute the number of different TANs over C,,. This
number is obtained by noting that an arbitrary selection of a threshold may be made
for each vertex in the TAN but that the thresholds must be chosen in the range
—n,...,n + 1, since all values below —n will determine exactly the same output
function with the value 0 and all values above n + 1 will determine exactly the same
output function with the value n + 1. Thus, the number of different TANs over C,, is
(2n +2)™.

As an illustration consider the number of different FANs and TANs over the
complete graphs with 1, 2, 3 and 4 vertices. The numbers are given in the following
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table
1 2 3 4

FANs |4 256 2% 264
TANs [4 36 512 10,000

A more challenging question is to determine the number of non-equivalent and of
strongly non-equivalent FANs and TANs over C,,. We do the latter for the complete
digraphs on 1,2,3 and 4 vertices by exploring a result in [6]. Namely, we compute,
using Pdlya’s theory of counting, all the possible non-isomorphic labelings of C,,
n = 1,2, 3,4, under the automorphism group of C,,, first with labels from the set of
22" possible functions with n variables, and then with labels from the 2n 42 allowable
thresholds. To do this, the cycle index Ce, (21, %2, . . . ,x,) of C}, has to be computed
first. To compute the cycle index, the number of permutations of the n vertices and
their cycle structures have to be computed. The number of strongly non-equivalent
FANs over C, is then given by Cg, (2%",...,2%"). Similarly, the number of strongly
non-equivalent TANs over C, is given by Ce, (2n+ 2,...,2n + 2).

For n = 1, there is only one permutation on 1 vertex, namely the identity that fixes
the vertex. Soits cycle structure is 7 and the cycle index of C'y is Ce, (21) = %a:l = 2.
The first column of the table below follows.

For n = 2, there is one permutation (the identity) fixing both vertices and one that
interchanges them and therefore contains one cycle of length 2. So the corresponding
cycle structures are % and x2 and the cycle index is Cg,(z1,%2) = 3(#3 + x2). Now
the second column of the table below follows.

For n = 3, there is the identity that fixes all three vertices and has cycle structure
x5, three permutations that fix one vertex each and have structures z;xs and two
permutations that do not fix any vertex and have cycle structure x3. Therefore the
cycle index in this case is Ce, (21, T2, 23) = %(xi’ + 3x122 + 2x3). The third column of
the table follows.

Finally, for n = 4, there is the identity with cycle structure zf, eight permu-
tations that fix only one point each with cycle structures z;x3, six permutations
that fix two points each and interchange the other two with cycle structure z%ws,
three permutations that interchange two pairs of points with cycle structures z3
and, finally, six more permutations that do not fix any point and have cycle struc-
ture representations x4. Thus, the cycle index in this case is Cg, (%1, T2, T3, L4) =
52 (2] + 8x123 + 62322 + 323 + 624). Thus the last column of the table follows.

n [1] 2 | 3 | 4
22" 41 16 256 216
m+24] 6 8 10
FANs | 4]136]2,829,056 | 768,684, 707,117, 285, 376
TANs [ 4] 10 120 715
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After seeing the analysis for the special cases of n = 1,2,3 and 4, we give a
combinatorial recursion formula for computing the cycle index C¢, of the full group
of permutations on n vertices, which is the symmetry group of the complete digraph on
n vertices. Denote by C,, this group for simplicity and set D,, = n!C,,. D,, is the same
polynomial as €, in the n variables x1,...,x, without the constant multiplicative
term 1

n!’

Proposition 1 The polynomial D,, obeys the recursive formula

D, — zn: (Z: i) (k — 1)xDy .

k=1

Thus, the cycle index of the full permutation group on n vertices C,, obeys the recursive
formula

1 n
k=1

Proof:
An easy combinatorial proof follows from the observation that the permutation
group on n vertices may be constructed as the disjoint union of the permutations that

contain a fixed k-cycle containing a specific element, say 1, for £ = 0,1,...,n. Each
such cycle may be selected in (Zj) (k — 1)! ways and the sum of the cycle structure
representations of the permutations containing such a k-cycle is x4 D,,_g. [ |

We may now verify the results obtained above by computing, using these recursive
formulas, the polynomials computed in an ad-hoc fashion above.

Dy = 1
D~ (
D2 == <é)0'$1D1 —+ (1)1!$2D0 == $% + 9.
D3 <0)0!$1D2 -+ <1)1!$2D1 -+ <§)2'$3D0
21(22 + 32) + 23120 + 23
x:{’ + 3x122 + 223
21 (23 + 33120 + 223) + 3w (22 + x0) + 62173 + 614
= a1+ 62332 + 81123 + 373 + 624

I

Having Proposition 1 at hand one may now derive from the results in [6] the
following theorem

Theorem 2 The number of strongly non-equivalent FANs over C, is Cn(22",...,2%")
and the number of strongly non-equivalent TANs over C,, is C,(2n+2,...,2n + 2).
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3 The Limit Cycle Structure of TANs over C,

In this section, a study is undertaken to determine the structure of the state space of
a TAN over C,,. More precisely, we would like, given threshold values on the vertices
of C,, to be able to determine the structure of the state space of the corresponding
TAN. In the ideal case, it would be desirable to have this ability for an arbitrary TAN.
The study of TANs over the complete digraph forms only a simple first step and will,
hopefully, provide some insights on how to tackle the general case. The present study
will be furthermore restricted to the cases when all the thresholds are non-negative
and when all the thresholds are negative. These threshold agent networks were called
positive and negative, respectively, in [6].

Positive TANs over C,,

First, an analysis is provided of the limit point structure of positive TANs over the
complete digraph C,, on n vertices. These are TANs whose thresholds are in the
range 0, ...,n. Note that the local update functions f; : {0,1}V — {0,1},1 <i<n
of a positive TAN are nondecreasing functions. Thus, a positive TAN cannot have
a limit cycle of length greater than 1. In other words, all limit points of a positive
TAN are fixed-points. So the limit point structure of a positive TAN is completely
determined by the number of fixed-points in its state space. The following analysis
completely determines the number of fixed-points of a positive TAN over C,,. Such a
TAN is completely determined by the sequence t = (t; : i € V) of its thresholds. Let
Ty : {0,...,n}V — {0,1},0 < k < n be the function (really a predicate on allowable
sequences of thresholds)

1, i {ieVit, <k} =F,
Tilt) = { 0, otherwise 0<k<n.

Then, the following holds

Theorem 3 (Fixed-Points of a Positive TAN over C,) The number fp(t) of
fixed-points of a positive TAN over C,, with thresholds t = (t; : i € V) is given
by the formula fp(t) = > . o Ti(t).
Proof:
The formula follows directly from the observation that for
k n—k

—
11...100...0

to be a fixed-point, the first k& vertices must have thresholds not exceeding k£ and the
last n — k vertices thresholds at least & -+ 1. |
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Negative TANs over C,

In this section, the analysis of the limit point structure of the positive TANs over C,
is modified to present an analysis of the limit point structure of negative TANs over
(. These are TANs whose thresholds take values in the range —1,..., —n. The first
observation that can be made is that all these TANs possess the two-state limit cycle

n n

—— -
00...0 11...1
This is true, because the thresholds are in the range —1,..., —n.
Now, let By, : {—1,...,—n}V — {0,1},0 < k < n, be the function defined by
1, it {ieV: ;< -k} =k
— ’ < k<n.
Ri(t) { 0, otherwise 0sk=n
Moreover, let Sy, : {—1,...,—n}Y — {0,1},0 <1 < k < n, be the function defined,

forall 0 <[ <k <n,by

Syu(t) = 1, it{ieV:iti<—k}=land |{ieV:t;> -1} =n—k
BRAY 0 0, otherwise :

Note, that, for all 0 < k < n, Sk, = Rk, so that Ry will be replaced by S in the
following discussion. The reason why they are both given is because Ry will be used
to address fixed-points and S, < k, will be used to detect limit cycles of length 2.

The following theorem reveals the limit point structure of a negative TAN over
C,. Two lemmas will be stated first to break up the proof into smaller pieces.

Lemma 4 Let s — s’ be a single transition in a limit cycle of a negative TAN over
Cn. There do not exist 1 < 1,5 < n, such that s; = 0,s; = 1 and s = 1,5, = 0.

Proof:
Suppose that this is not the case. Assume that 8" — s — s’ and that s, s”
contain k,l,m 1’s, respectively, and let ¢ and 7 be such that s; = 0,s; = 1 and

s; = 1,85 = 0. Then, s — s gives k < —t; and k > —t;. Therefore ¢; < t;. But,
s" — s gives m > —t; and m < —t;. These two combined give t; < ¢;, which is a
contradiction. [ |

Lemma 5 The state space of a negative TAN over C,, does not contain limil cycles
of length greater than 2.
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Proof:

Suppose that a negative TAN over C, contained a limit cycle of length [ > 3.
Then the state with the most 1’s, say m, would follow the state with the most 0’s,
containing say [ 1’s, and the state with the most 0’s would follow the state with the
most 1’s. This can only happen if there is at least one vertex with threshold ¢, such
that m < —t < m, a contradiction. [ |

Theorem 6 (Limit Points of a Negative TAN over C,,) The number fp(t) of
fixed-points of a negative TAN over C, with thresholds t = (t; : i € V') is given by the
Jormula fp(t) = > Sii(t). The number of its limit cycles of length 2 1co(t) is given
by lea(t) = D ocicnen Sik(t). Thus, the number of its limit cycles islc(t) = fp(t)+lea(t)
and the number of its limil points is Ip(t) = fp(t) + 2lca(t).

Proof:
First, it is clear that the two states 00...0 and 11...1 form a limit cycle by
themselves.

Suppose that
k n—k

—
11...100...0

is a fixed point. Then the first &k states must have thresholds less than —k, whereas
the remaining n — k states must have thresholds greater than or equal to —k. Hence
points of that form are counted by the sum Y. R;(¢) = > 7 Sii(t).
Next, suppose that
k n—k 1 n—1
— —
11...100...0 11...100...0
is a limit cycle of length 2 with [ < k. Then, by Lemma 4, it is not difficult to see
that exactly [ vertices must have thresholds less than —k and exactly n — k vertices
thresholds greater than or equal to [. Thus, the limit cycles of length 2 are counted
by Zogl<k§n St(t).
Finally, by Lemma 5, a negative TAN on the complete digraph cannot have any
limit cycles of length exceeding 2. Thus the statement follows. |

Note that Theorems 3 and 6 are of great computational value because they provide
means for computing the limit structure of positive and negative TANs over the
complete digraph with n vertices in time polynomial to the size of the input, whereas
the obvious brute force approach would require exponential time.

4 On the Structure of Products

By a (state space) description of a FAN or TAN is meant an enumeration of the
number of cycles of each length and of the number of paths of each length on the
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A
L] L

Figure 1: Two non-isomorphic state spaces with the same description.

transients in its state space. Note that each FAN or TAN has a unique description
but, usually, a single description corresponds to many non-isomorphic state spaces.
This is because, on the one hand, a description does not specify the limit cycles
that each transient ends up into and, on the other, it does not specify how paths of
different lengths combine with each-other to form transients entering the limit cycles.
To exhibit the first point consider the following description: one cycle of length 3,
one cycle of length 4 and two transients of length 1. One may formally denote such a
description by two sequences (a1, ag, . ..) and (51, Fs, . . ., ) indexed by the nonnegative
integers with finitely many nonzero entries. «; is the number of cycles of length ¢ and
B; is the number of transient paths of length j. Thus, the above example corresponds
to the description (0,0,1,1,0,...) and (2,0,...). Two non-isomorphic state spaces
with this description are depicted in Figure 1. The second point may be exhibited
by considering the description with one cycle of length 2, two transient paths with
length 1 and four transients of length 2, i.e., the description given by (0,1,0,...) and
(2,4,0,...). Two non-isomorphic state spaces with this description are depicted in
Figure 2.

In this section, a state space description is given of the product of two FANs in
terms of the descriptions of the FANs themselves. Recall from [7] and [8] that the
product of two FANs, respectively TANs, consists of the disjoint union of their graphs,
where each vertex has the same local update function, respectively threshold, that it
had in the original FAN, respectively TAN. On the state space level, the product of
the two state spaces is their product when they are viewed as unary algebras. So a
description of the product state space may be given by combining the description of
the individual state spaces as follows:

A limit cycle of length ¢ in the first FAN and a limit cycle of length j in the second
combine to give 7 A j limit cycles of length ¢ V j, where by ¢ A j,7V j are denoted the
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Figure 2: Another pair of non-isomorphic state spaces with the same description.

0o 1

Figure 3: Product of two limit cycles.

greatest common divisor and the least common multiple of ¢ and j, respectively. As
an example consider the two limit cycles of lengths 2 and 4 on the left of Figure 3.
These give rise in the product space to the two limit cycles of lenth 4 on the right of
Figure 3. A transient path of length ¢ combined in the product with a limit cycle of
length j will give j transient paths of length 7. This is depicted in Figure 4, where a
transient of length 2 is combined in the product with a limit cycle of length 3 to give
3 transients of length 2. Finally, a transient path of length ¢ and a transient path of
length j combine in the product to give one transient path of length max(s, j). This
is illustrated by Figure 5, where a transient of length 2 and a transient of length 3 are
combined to a transient of length 3. Note that the paths of lengths 1 and 1 and 2,
respectively, on these transients combine with each other and with the full transients
to give the paths starting from the shaded nodes in Figure 5. Also note that the
remaining transients appear as a result of combining transients with limit cycles.
All the observations made above on combining descriptions of FANs to provide a
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Figure 4: Product of two limit cycles.

o

02, 04

Figure 5: Product of two transients.
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description of the product FAN may be nicely put together to provide a calculus or
algebra of descriptions as shown below.

A Combinatorial Calculus for Descriptions

We will be dealing with a Z-algebra A, where Z is the ring of integers. The elements of
this algebra are pairs of sequences ({ay, g, .. .), (51, Ba, . . ), with aq, e, ..., B1, Bo, - ..
integers such that only finitely many of the «;’s and the ;’s are nonzero. An alter-
native representation of the elements of A is as formal sums

Z ;¢ + Z B;d;,
-1 =1

where o, 8; € Z,7,57 € IN*, with only finitely many of the «;, 8;’s being nonzero.
Addition then is defined component-wise, i.e.,

O aic Y Bid) + Qe+ ) 6d) =Y (eit e + Y (55 +8;)d;.
=1 7=1 =1 7=1 =1 7=1

Multiplication is defined on the ¢;’s and the d;’s by the entries in table (1) and then
extended by linearity to the whole algebra.

| Ck dl
C; (’l A j)Ci\/j ’ldl (1)
d; kdj  dmax(j)

Finally, scalar multiplication acts again componentwise

k(z Q;C; + Zﬁjd]) — Z(k;ozz)cl -+ Z(kﬁj)dj
=1 j=1 =1 j=1

Not all elements of the Z-algebra A have, of course, an interpretation as descrip-
tions of FANs. However, every valid description is an element of this algebra and,
furthermore, given two descriptions, the description of the product FAN is obtained
by computing their product in this algebra. Moreover, given the description of a
FAN, its multiple by a positive integer 2" is the description of the network containing
n additional isolated vertices endowed with loops and having the identity functions
(or thresholds 1), called its n-increment. As an illustration of the first statement
consider the state spaces of two FANs on the left of Figure 6. The state space of the
product FAN is shown on the right of Figure 6. The description of the first FAN is
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1o n

1100 110 o100 oo

Figure 6: Product FAN.
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Figure 7: 1-increment of a TAN.

cs + di and of the second FAN ¢; + d; + 2dy. The description of the product FAN is
then computed by

(cs +di)(er +dy + 2de) = czen + dier + cady + didy + 2¢3dg + 2dyde
= 63+d1+3d1+d1+6d2+2d2
= 3+ 5d1 + 8d2,

which is in fact the description of the product. For the second statement, a TAN and
its 1-increment together with their state spaces are given in Figure 7. The description
of the first TAN is ¢z + 3d; + 2ds and of its 1-increment is 2c; + 6d; + 4ds.
Suppose, now, that u', u” € A are the descriptions of the FANs N' = (G’ { f! }iev/),
"= AG" {f!'}icvr), respectively. Is there a FAN N = (G, {fi}icv) that has u =
u' +u” as its description? First, note that u may not even be a valid description of a
FAN at all. For instance, c3 + d; and ¢y are two valid descriptions corresponding to

the TANs of Figure 8 but co + ¢3 + d; is not a valid description, since a state space



COMBINATORIAL ANALYSIS OF THE STATE SPACE 14

1]

22)
1)
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' W

Figure 8 Two TANs with descriptions ¢3 + d; and cs.

242)
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1 10 oo n

110 100

Figure 9: Two TANs and the FAN that has as its description the sum of their
descriptions.

with one cycle of length 2, one cycle of length 3 and one transient of length 1 must
necessarily have 6 points and 6 is not a power of 2. The only combination of points
that guarantees that this cannot happen is 2" and 2" for some n. So, suppose that
|V'| = |V"| = n. Then, given a bijection h : V! — V" a FAN with description v may
be constructed as follows: Its graph has set of nodes V'U{z}, z & V', and set of edges
E'Uh Y (E"YU{(z,v) : v € V'}. Tts functions are determined, for all 7 € V, by

fim) = @A fil@ T V)V (@: A S (B (@ [V)) and  fu(@) = 2,

where
R*(y); = yn-1(5), for all y € {0, 1}W,jev”

As an example consider the two TANs on the left of Figure 9. The first has functions

fi(@1,22) = @2, and  fo(z1,22) = T1 VI3
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and description ¢z -+ d;. The second has functions

fi(x1,x0) = x2 and  f3(z1,22) = 21

and description 2¢; + ¢y. Using the identity function from V’ to V" as the bijection
h, a FAN with description 2¢; + ¢ + ¢3 + dy may be given as on the right in Figure
9. This FAN has functions

fi(z1, z2,23) = (22 AT3)V (T2 AZ3) = X2
fo(z,29,23) = ((TTVT2)AT3)V(z1Axs) = (T1AT3) V(T2 AT3) V (21 A 23)
f3($1,$2,$3) = X3

and state space also depicted on the right in Figure 9.

5 Open Questions

This paper addresses the problem of describing the structure of the state space of
a TAN as a function of the adjacency relations of its underlying digraph and its
thresholds without actually "running” the network. Some questions are answered
but a lot more are left open. One obvious open question is to give a description of the
limit point structure of an arbitrary TAN over the complete digraph. This was done
in this paper only for positive and negative TANs of this kind. Another, more general,
question would be to extent these or related results to TANs over different underlying
digraphs. Further, related to the composition and decomposition of TANSs, it would
be very interesting to investigate whether an algebraic formula may be given for the
description of the TAN that results by taking the product graph and product threshold
structure of two TANs in terms of the description of these TANs. Finally, pertaining
to finite control issues on TANs, a point of interest would be to investigate whether
controlling some aspects of a TAN corresponds nicely to optimizing or, otherwise
changing, in a specific way, quantities related to the description of the TAN. This
would transform combinatorial control problems to algebraic, opening the possibility
of applying powerful algebraic tools for their solution.
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