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Abstract

Algebraic systems arise in categorical abstract algebraic logic and
form a generalization of universal algebras. They allow multiple sig-
natures and accommodate changes between signatures in the form of
signature morphisms as well as natural transformations on signatures,
which correspond to term operations in the universal algebraic con-
text. In a way similar to ordinary equational logic and varieties of
universal algebras, one may define equations and natural equations
and the relation of satisfaction between algebraic systems, on the one
hand, and equations or natural equations, on the other. They give
rise, in the former case, to equational theories and semantic varieties,
and, in the latter, to metaequational theories and syntactic varieties.
We provide characterizations of these theories and of these classes of
algebraic systems, and study various relationships among them. In
the last section, we explore connections with equational classes of uni-
versal algebras.
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1 Introduction

Abstract algebraic logic is the area of mathematical logic that studies the in-
teraction between logical systems, on the one hand, and classes of algebraic
structures on the other. These studies incorporate three very closely related
but distinct directions. In the first, which constitutes the backbone and uni-
fying theme of the field, the process by which classes of algebraic structures
are associated with given logical systems or classes of logical systems sharing
some common properties is studied. In the second, the focus is shifted on
the classes of algebraic structures and their properties, which are studied
and analyzed by algebraic techniques or, sometimes, using model theoretic
techniques, typically drawing on both logical and algebraic background and
properties. The third direction establishes connections between properties of
logical systems and corresponding algebraic properties of the classes of struc-
tures used for their algebraization, according to the general algebraization
process. All three directions are expounded upon in greater or lesser detail
in recent and relatively recent surveys, monographs and books on the field,
e.g., [4, 15, 8, 16, 14].

The main underlying logical structure that is used to formalize logical
systems in the classical (or universal algebraic) approach to the field is that
of a sentential logic or deductive system. One fixes a logical (or algebraic,
depending on the point of view) signature L and considers the free algebra
of formulas (or terms, respectively) FmL(V ) (TmL(V ), respectively), gen-
erated by a countably infinite set V of variables. A sentential logic or deduc-
tive system over L is a pair S = ⟨L,⊢S⟩, where ⊢S ⊆ P(FmL(V )) × FmL(V )
is a structural consequence relation on the set of L-formulas, i.e., it satis-
fies, for all Γ ∪∆ ∪ {ϕ} ⊆ FmL(V ) and every substitution (endomorphism)
σ ∶ FmL(V )→ FmL(V ),

• Γ ⊢S γ, for all γ ∈ Γ;

• Γ ⊢S ϕ implies ∆ ⊢S ϕ, if Γ ⊆ ∆;

• Γ ⊢S ϕ and ∆ ⊢S γ, for all γ ∈ Γ, imply ∆ ⊢S ϕ;

• Γ ⊢S ϕ implies σ(Γ) ⊢S σ(ϕ).

When the algebraization process is applied on a given deductive system
S = ⟨L,⊢S⟩, a class of L-algebras, in the sense of universal algebra [5, 21, 1],
is obtained as its corresponding algebraic counterpart. As pointed out in
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[4] (see also [14]), in general, this class is a generalized quasivariety of L-
algebraic systems, but, very often, it turns out that it is a variety, in which
case the extensively developed theory of varieties from universal algebra can
be brought to bear in the study of the original sentential logic or class of
sentential logics. This short account gives a flavor of the importance of the
theory of varieties in the study of logical systems in the framework of abstract
algebraic logic.

From the early days of development, it became clear that the sentential
framework was not well suited in handling logical systems that encompass
multiple signatures and quantifiers. To deal with such logical systems one
would have to first recast them as sentential systems, as was done in Ap-
pendix C of [4] and then use, e.g., in the case of first-order logic, cylindric
[19] or polyadic [18] algebras to algebraize the sentential version of the sys-
tem. This unappealing process had led Diskin (unpublished notes, but see,
also, [12]) to consider using a categorical framework to incorporate changing
of signatures and substitutions in the object language, rather than delegat-
ing their handling to the metalanguage. At around the same time, in the
computer science domain of formal specification of data structures and pro-
gramming languages, Goguen and Burstall [17] introduced the structure of an
institution with a similar goal in mind, i.e., formalize multi-signature logics
with quantifiers in an abstract way. For an extensive and thorough study of
institutions from the model theoretic point of view, see [11]. Pigozzi, having
pointed out in [4] the artificiality of using sentential logics in the handling
of multi-signature systems, and being acquainted with both Diskin’s and
Goguen and Burstall’s work, encouraged the author (his graduate student at
the time) to look into the potential of using institutions in the algebraiza-
tion process. Since the starting point and main inspiration stemmed from
the extensive work that had already been accomplished in the sentential
framework, it was natural to take the simpler step of incorporating signature
changing morphisms and substitutions in the object language, but leaving
the manipulation of the models (be it logical or algebraic structures) in the
metalanguage. The appropriate structures that facilitated this transition
were π-institutions [13], structures constituting modifications of institutions,
that incorporate multiple signatures, but, instead of determining consequence
model theoretically, adopt, as in deductive systems, an axiomatic viewpoint.
Later, under the influence of Font and Jansana’s work [15], it became clear
to the author that an enriched version of π-institutions, where, in addition
to signature changing morphisms, clones of operations were also incorpo-
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rated in the object language, were even more suitable for the purposes of
algebraization. These were first considered in [29].1

According to current understanding (expounded upon in [31]), the cate-
gorical side of abstract algebraic logic uses as its underlying structures these
enhanced versions of π-institutions, which are based (as sentential logics are
based on an algebraic signature and the free algebra of formulas) on alge-
braic systems, structures that capture both the logical and and algebraic
fundamentals underlying the logical system under consideration.

An algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ consists of a category Sign♭ of
signatures, a sentence functor SEN♭ ∶ Sign♭ → Set, giving, for each signature
Σ ∈ ∣Sign♭∣, the set SEN♭(Σ) of Σ-sentences (and specifying how the signature
changing morphisms in Sign♭ transform sentences) and a category N ♭ of
natural transformations on SEN♭, which formalizes the clone of algebraic
operations and satisfies certain closure properties (contains all projections,
is closed under generalized compositions and is closed under the formation
of tuples).

A π-institution is a pair I = ⟨F,C⟩, where F is an algebraic system (called
the base algebraic system of I) and C = {CΣ}Σ∈∣Sign♭∣ is a family of closure
operators, one for each signature Σ, that, in addition to the standard axioms
of closure operators (inflationarity, monotonicity and idempotence), satisfy
the so-called structurality rule, which stipulates that, for all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′) and all Φ ⊆ SEN♭(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN
♭(f)(Φ)).

If a process analogous to the one applied in the sentential logic frame-
work, suitably modified, is now applied to π-institutions, one obtains a class
or classes of algebraic structures that form the algebraic counterpart of the
π-institution under consideration. In the same way that the ties between a
sentential logic and the corresponding class of algebraic structures classifies
logics into appropriate classes of an algebraic hierarchy, called the Leibniz
hierarchy (see, e.g., [8] or Chapter 6 of [14]), a similar analysis classifies π-
institutions into various classes depending on the strength of these ties (see
[31]). The main or core classes in the Leibniz hierarchy of sentential logics are
the protoalgebraic logics [3], the equivalential logics [6, 7], the truth equa-
tional logics [23], the weakly algebraizable [9] and the algebraizable logics

1Even though [29] is historically the first work written using this framework, it was
published much later than, e.g., [25], which is the first work using the same framework
that appeared in print (despite being written later and as one of the sequels to [29]).
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[4, 20]. These classes are surrounded by various weakenings and strength-
enings that contribute to the hierarchy pictured, e.g., in page 316 of [14]
or page xviii of [22]. Corresponding classes have also been introduced in the
hierarchy pertaining to logics formalized as π-institutions [26, 27, 28, 30, 24].2

But what are the algebraic structures that one considers in the π-insti-
tution framework in lieu of universal algebras, which are used in the alge-
braization of sentential logics? These are the so-called F-algebraic systems,
the study of whose classes forms the main object of the present work. An
F-algebraic system is a pair A = ⟨A, ⟨F,α⟩⟩, where A = ⟨Sign,SEN,N⟩ is
an algebraic system, such that there exists a surjective functor N ♭ → N

preserving all projection morphisms, and ⟨F,α⟩ ∶ F →A is a surjective mor-
phism, meaning that F ∶ Sign♭ → Sign is surjective on objects and full, and
αΣ ∶ SEN

♭(Σ) → SEN(F (Σ)) is surjective, for all Σ ∈ ∣Sign♭∣. The class of all
F-algebraic systems is denoted AlgSys(F).

When one wishes to study classes of F-algebraic systems defined by ob-
jects playing the role of equations in the universal algebraic context, there
are two possible choices. the first is to use pairs of Σ-sentences. These form
the family of F-equations defined by Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣, where, for

all Σ ∈ ∣Sign♭∣,

EqΣ(F) = SEN
♭(Σ)2 = {φ ≈ ψ ∶ φ,ψ ∈ SEN♭(Σ)}.

Here, the notation φ ≈ ψ is considered interchangeable with ⟨φ,ψ⟩ and will
be used throughout as such. The second choice is to use pairs of natural
transformations σ, τ in N ♭. These are referred to as natural F-equations
and we define

NEq(F) = {σ ≈ τ ∶ σ, τ ∈ N ♭}.

Having provided some motivation for studying classes of algebraic systems
as a necessary component in the process of algebraization of logical systems
and of its consequences, we now outline the contents of the present work.

In Section 2, we introduce the satisfaction relation of an F-algebraic sys-
tem by an F-equation. This establishes in the ordinary way a Galois connec-
tion and defines a closure operator C on the equational side and a closure
operator VSem on the algebraic side. The former associates with a given col-
lection X of F-equations the equational theory consisting of all F-equations

2The entire hierarchy constitutes the main subject of [31], in which many more classes
are introduced, based on refinements of the various properties used to define the core
classes.
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that are satisfied by all F-algebraic systems satisfying all F-equations in
X . The latter associates in a corresponding way with a given class K of
F-algebraic systems the so-called semantic variety generated by K.

The notion of a congruence system on an algebraic system is well known.
It consists of a family of equivalence relations, indexed by the signatures of
the algebraic system, that is invariant both under signature morphisms and
under the natural transformations of the algebraic system. It corresponds to
the notion of congruence in the framework of algebraic systems and, among
other things, it is possible to consider quotients, which inherit many of the
properties they possess in universal algebra [29]. Equational theories are
characterized by showing (Proposition 3) that the notion of an equational
theory is coextensive with that of a congruence system on F.

Less well known are the operators H and
⊲

IΠ on classes of F-algebraic sys-
tems of taking morphic images and of closing under subdirect intersections,
respectively. In an analog of Birkhoff’s Theorem [2] (see, e.g., Theorem 11.9
of [5] or Theorem 4.41 of [1]), it is shown (Proposition 6) that a class K of
F-algebraic systems forms a semantic variety if and only if it is closed under

the operators H and
⊲

IΠ.
In Section 3, we shift focus on the relation of satisfaction between F-

algebraic systems and natural F-equations. This also establishes a Galois
connection and gives rise to two closure operators CN and VSyn. CN as-
sociates with a given collection E of natural F-equations the equational
metatheory consisting of all natural F-equations that satisfy all F-algebraic
systems satisfying all natural F-equations in E. VSyn, on the other hand,
associates with a given class K of F-algebraic systems the syntactic variety
generated by K, i.e., the class of all F-algebraic systems satisfying all natural
F-equations satisfied by all systems in K.

In the context of natural F-equations, the place of congruence systems is
assumed by metacongruences, collections of natural F-equations that form
an equivalence relation on the set of natural transformations and, moreover,
satisfy a natural substitution property. A metacongruence is called feasible
if it arises as the collection of natural F-equations satisfied by a quotient
of F by some congruence system on F. Equational metatheories (natural
equational theories) are characterized (Proposition 12) as being exactly the
feasible metacongruences on F.

To characterize syntactic varieties, we establish a relationship with se-
mantic varieties. We say that a given class K of F-algebraic systems is nat-
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ural if the family of F-equations that it satisfies is induced by the natural
F-equations that it satisfies “by evaluation”. It is then shown (Proposition
17) that a class K constitutes a syntactic variety if and only if it is a natural
semantic variety. As a corollary of this connection and the characterization
of semantic varieties, we get (Corollary 18) that K is a syntactic variety if
and only if it is a natural class closed under morphic images and subdirect
intersections.

In Section 4, we focus on the closure operators C and CN , generating
equational and metaequational theories, respectively, and the underlying
equational and metaequational logics. We show how , starting from a collec-
tion X of F-equations, the equational theory C(X) is generated in a struc-
tured step-wise fashion, without reference to algebraic systems. Similarly,
starting from a collection E of natural F-equations, we show how CN(E) is
generated, staying throughout on the logical side of the established Galois
connections.

Symmetrically to Section 4, in Section 5, we concentrate on the operators
VSem and VSyn and provide for each a Birkhoff HSP-style characterization.
Recalling that a class K of F-algebraic systems is a semantic variety if and
only if it is closed under morphic images and subdirect intersections, we

show (Proposition 31) that VSem = H
⊲

IΠ. On the other hand, whenever there
exists a morphism ⟨H,γ⟩ ∶ A → B, then the algebraic system B potentially
satisfies more natural F-equations than does A. If, however, they satisfy
exactly the same natural F-equations, we say thatA constitutes a lifting of B.
Recalling the characterization of syntactic varieties as natural classes closed
under morphic images and subdirect intersections, we show (Proposition 37)

that VSyn = HL

⊲

IΠ, L being the operator closing under liftings. Thus, in

conjunction with H and
⊲

IΠ, the operator L manages to capture the additional
requirement of naturality placed on syntactic varieties.

Finally, in the closing Section 6, we establish connections of the frame-
work relating to algebraic systems, developed in the preceding sections, with
the classical framework of universal algebra. More precisely, modulo some
cardinality issues (stemming from the stipulation of surjectivity of all mor-
phisms in algebraic systems), we show (Proposition 39 and Corollary 43)
that, by narrowing considerations on a special kind of base algebraic sys-
tem FL, associated with a given, but arbitrary, universal algebraic type L,
we can recover the traditional universal algebraic framework pertaining to
L-algebras from the framework of FL-algebraic systems.
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2 Equations and Semantic Varieties

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Define a binary rela-
tion

⊧ ⊆ AlgSys(F) ×Eq(F)

by setting, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, every Σ ∈ ∣Sign♭∣
and all φ,ψ ∈ SEN♭(Σ),

A ⊧Σ φ ≈ ψ iff αΣ(φ) = αΣ(ψ).

We extend the notation to apply it to collections of F-algebraic systems and
families of F-equations by setting, for all K ⊆ AlgSys(F) and all X ≤ Eq(F)
(meaning XΣ ⊆ EqΣ(F), for all Σ ∈ ∣Sign

♭∣),

K ⊧X iff for all A ∈ K, all Σ ∈ ∣Sign♭∣ and all φ ≈ ψ ∈XΣ,
A ⊧Σ φ ≈ ψ.

It is clear that ⊧ determines a Galois connection between P(AlgSys(F)) and
P(Eq(F)) (see, e.g., pages 232-233 of [10]). Related to this Galois connection,
we use the following notational conventions.

First, given a class K of F-algebraic systems, we define the collection
Eq(K) = {EqΣ(K)}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign

♭∣,

EqΣ(K) = {φ ≈ ψ ∈ EqΣ(F) ∶ K ⊧Σ φ ≈ ψ}.

Next, given a family X = {XΣ}Σ∈∣Sign♭∣ of F-equations, we define

Mod(X) = {A ∈ AlgSys(F) ∶ A ⊧X}.

Finally, for the closure operators associated with the Galois connection, we
set, for all X ≤ Eq(F) and all K ⊆ AlgSys(F),

C(X) = Eq(Mod(X));
VSem(K) = Mod(Eq(K)).

C(X) is referred to as the equational theory generated by X and VSem(K)
as the semantic variety generated by K. By the general theory of Galois
connections, we know that the closed sets of the closure operator C are the
ones of the form Eq(K) for a class K of F-algebraic systems and those of
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the closure operator VSem are those of the form Mod(X) for a family X of
F-equations.

We set out to provide intrinsic characterizations of those closed sets.
First, let us formulate two lemmas that will play a role in the subsequent

characterizations. Recall that θ ≤ Eq(F) is called a congruence system on

F if θΣ is an equivalence relation on SEN♭(Σ), for every Σ ∈ ∣Sign♭∣ and θ is
invariant under both signature morphisms and under natural transformations
in N ♭, i.e., for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′), all σ♭ in N ♭ and all
φ⃗, ψ⃗ ∈ SEN♭(Σ),

• SEN♭(f)(θΣ) ⊆ θΣ′ ;

• φ⃗ θΣ ψ⃗ implies σ♭Σ(φ⃗) θΣ σ♭Σ(ψ⃗).

Recall, also, that, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, the kernel
of A is the kernel of ⟨F,α⟩, defined as Ker(A) = {KerΣ(A)}Σ∈∣Sign♭∣, where,

for all Σ ∈ ∣Sign♭∣,

KerΣ(A) = {φ ≈ ψ ∈ EqΣ(F) ∶ αΣ(φ) = αΣ(ψ)}.

Moreover, Ker(A) is a congruence system on F [29].

Lemma 1 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and X ∈
ConSys(F). Then X = Eq(F/X), where F ∶= ⟨F, ⟨I, ι⟩⟩, with ⟨I, ι⟩ ∶ F → F

the identity morphism.

Proof: Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then, we have

φ ≈ ψ ∈ EqΣ(F/X) iff ιΣ(φ)/XΣ = ιΣ(ψ)/XΣ

iff φ/XΣ = ψ/XΣ

iff ⟨φ,ψ⟩ ∈XΣ.

Since this holds for all Σ ∈ ∣Sign♭∣, we get Eq(F/X) =X . ∎

Lemma 2 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A ∈
AlgSys(F). Then Eq(A) ∈ ConSys(F).

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, where ⟨F,α⟩ ∶ F → A.
The conclusion follows by noticing that Eq(A) = Ker(⟨F,α⟩) and the fact
that the kernel system of any algebraic system morphism is a congruence
system. ∎

First, we characterize the closed sets in P(Eq(F)). Those turn out to be
the congruence systems on F.
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Proposition 3 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and X ≤
Eq(F). Then C(X) =X if and only if X ∈ ConSys(F)

Proof: Let X ≤ Eq(F), such that C(X) =X . Then, by the theory of Galois
connections, we get that there exists K ⊆ AlgSys(F), such that X = Eq(K).
Now we get

X = Eq(K)
= ⋂A∈KEq(A) (definition of Eq)
∈ ConSys(F). (Lemma 2 and closure under ⋂)

Suppose, conversely, that X ∈ ConSys(F). Then we have, by Lemma 1,
X = Eq(F/X). Since X is in the image of Eq, applying again the theory of
Galois connections, we get C(X) =X . ∎

Finally, we characterize the closed sets in P(AlgSys(F)). They turn out
to be those classes of F-algebraic systems that are closed under morphic
images and subdirect intersections. Briefly, given a class K of F-algebraic
systems, we write B ∈ H(K) if there exists a morphism ⟨H,γ⟩ ∶ A → B, with
A ∈ K. We say that K is closed under morphic images if H(K) ⊆ K. We

write A ∈
⊲

IΠ(K) if there exists a collection

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

of morphisms satisfying ⋂i∈I Ker(⟨H i, γi⟩) = ∆A, with Ai ∈ K, for all i ∈ I.
Such a collection is called a subdirect intersection. The class K is closed

under subdirect intersections if
⊲

IΠ(K) ⊆ K.
We shall rely on the following lemma:

Proposition 4 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆
AlgSys(F). The class of morphisms

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩) → B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,

where, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

βK
Σ(φ/ ⋂

B∈K

KerΣ(⟨G,β⟩)) = βΣ(φ),

forms a subdirect intersection.
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Proof: It is not difficult to see that βK is well defined and forms a natural
transformation. Moreover, ⟨G,βK⟩ is an F-morphism. Letting Ker(K) =
⋂B∈KKer(⟨G,β⟩), we have

F

❂✚
✚
✚
✚⟨I, πKer(K)⟩ ❩

❩
❩
❩

⟨G,β⟩
⑦

F/Ker(K)
⟨G,βK⟩

✲ B

To show that the displayed family forms a subdirect intersection, let Σ ∈
∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then, we get

⟨φ/KerΣ(K), ψ/KerΣ(K)⟩ ∈ ⋂B∈KKerΣ(⟨G,βK⟩)
iff βK

Σ(φ/KerΣ(K)) = βK
Σ(ψ/KerΣ(K)), B ∈ K,

iff βΣ(φ) = βΣ(ψ), B ∈ K,
iff φ/KerΣ(K) = ψ/KerΣ(K).

Thus, ⋂B∈KKer(⟨G,βK⟩) = ∆F/Ker(K), showing that

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩) → B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,

constitutes indeed a subdirect intersection. ∎

In the next lemma, it is shown that a semantic variety is closed under
morphic images and subdirect intersections. It provides the necessity part of
the main characterization that follows.

Lemma 5 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆ AlgSys(F).

If VSem(K) = K, then K is closed under H and
⊲

IΠ.

Proof: Let K ⊆ AlgSys(F). Suppose that VSem(K) = K. By the theory of
Galois connections, there exists X ≤ Eq(F), such that K =Mod(X).

To show closure under H, suppose that B = ⟨B, ⟨G,β⟩⟩ ∈ H(K). Thus,
there exists A = ⟨A, ⟨F,α⟩⟩ ∈ K, such that ⟨H,γ⟩ ∶ A→ B is an F-morphism.

F

❂✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩

⟨G,β⟩
⑦

A
⟨H,γ⟩

✲ B
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Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ≈ ψ ∈ XΣ. Since A ∈
K = Mod(X), we get that A ⊧Σ φ ≈ ψ, whence αΣ(φ) = αΣ(ψ). Thus,
γF (Σ)(αΣ(φ)) = γF (Σ)(αΣ(ψ)), i.e., βΣ(φ) = βΣ(ψ), showing that B ⊧Σ φ ≈ ψ.
Therefore, B ∈Mod(X) = K and H(K) ⊆ K.

To show closure under
⊲

IΠ, let A = ⟨A, ⟨F,α⟩⟩ ∈
⊲

IΠ(K). Then, there exists
a subdirect intersection

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

where, for all i ∈ I, Ai = ⟨Ai, ⟨F i, αi⟩⟩ ∈ K.

F

❂✚
✚
✚
✚⟨F,α⟩ ❩

❩
❩
❩

⟨F i, αi⟩
⑦

A
⟨H i, γi⟩

✲ Ai

Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ≈ ψ ∈ XΣ. Since Ai ∈
K = Mod(X), we get that Ai ⊧Σ φ ≈ ψ, i.e., αi

Σ(φ) = α
i
Σ(ψ). This gives

γi
F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ)). Since this holds for all i ∈ I, we get that

⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I KerF (Σ)(⟨H i, γi⟩) =∆A
F (Σ)

, where the last equation fol-

lows by the definition of a subdirect intersection. Therefore, αΣ(φ) = αΣ(ψ),

showing that A ⊧Σ φ ≈ ψ. Hence, A ∈Mod(X) = K, and, thus,
⊲

IΠ(K) ⊆ K. ∎

Proposition 6 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆

AlgSys(F). Then VSem(K) = K if and only if K is closed under H and
⊲

IΠ.

Proof: Let K ⊆ AlgSys(F). The necessity of the given condition is by Lemma

5. Conversely, suppose that H(K) ⊆ K and
⊲

IΠ(K) ⊆ K. It suffices to show that
K = Mod(Eq(K)). The left to right inclusion is obvious. For the converse,
consider A = ⟨A, ⟨F,α⟩⟩ ∈Mod(Eq(K)). By Proposition 4,

F/Eq(K) = F/ ⋂
B∈K

Ker(⟨G,β⟩) ∈
⊲

IΠ(K) = K.

But, since A ∈Mod(Eq(K)), we may define a morphism

⟨F,α∗⟩ ∶ F/Eq(K) → A,
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by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

α∗Σ(φ/EqΣ(K)) = αΣ(φ).

F

❂✚
✚
✚
✚⟨I, πEq(K)⟩ ❩

❩
❩
❩

⟨F,α⟩
⑦

F/Eq(K)
⟨F,α∗⟩

✲ A

Thus, we get A ∈ H(K) = K. We conclude that VSem(K) = K. ∎

3 Natural Equations and Syntactic Varieties

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Define a binary rela-
tion

⊧ ⊆ AlgSys(F) ×NEq(F)

by setting, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,
SEN,N⟩, every σ ≈ τ ∈ NEq(F),

A ⊧ σ ≈ τ iff for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ),
σAΣ(φ⃗) = τ

A
Σ (φ⃗).

Note that, because of the surjectivity of ⟨F,α⟩ ∶ F →A, the condition above
may be equivalently expressed by saying that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

σAF (Σ)(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗)).

We extend the notation to collections of F-algebraic systems and families of
natural F-equations by setting, for all K ⊆ AlgSys(F) and all E ⊆ NEq(F),

K ⊧ E iff for all A ∈ K and all σ ≈ τ ∈ E,
A ⊧ σ ≈ τ.

It is clear that ⊧ determines a Galois connection between P(AlgSys(F))
and P(NEq(F)). Related to this Galois connection, we use the following
notational conventions.

First, given a class K of F-algebraic systems, we define the collection

NEq(K) = {σ ≈ τ ∈ NEq(F) ∶ K ⊧ σ ≈ τ}.

13



Next, given a collection E of natural F-equations, we define

NMod(E) = {A ∈ AlgSys(F) ∶ A ⊧ E}.

Finally, for the closure operators associated with the Galois connection, we
set, for all E ⊆ NEq(F) and all K ⊆ AlgSys(F),

CN(E) = NEq(NMod(E));
VSyn(K) = NMod(NEq(K)).

We call CN(E) the metaequational theory or the natural equational

theory generated by E and VSyn(K) the syntactic variety generated by
K. By the general theory of Galois connections, we know that the closed sets
of the closure operator CN are the ones of the form NEq(K) for a class K of
F-algebraic systems and those of the closure operator VSyn are those of the
form NMod(E) for a collection E of natural F-equations.

We set out to provide intrinsic characterizations of those closed sets.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. A binary relation R

on N ♭ is called a metacongruence on F if it is an equivalence relation and,
in addition, satisfies the substitution property:

For all o, ρ ∶ (SEN♭)ω → SEN♭ in N ♭ and all σi, τ i ∶ (SEN♭)ω → SEN♭ in
N ♭, i < ω,

⟨o, ρ⟩ ∈ R and ⟨σi, τ i⟩ ∈ R, i < ω, imply ⟨o ○ σ⃗, ρ ○ τ⃗ ⟩ ∈ R.

We must recall, at this point, that all natural transformations in N ♭ are
assumed finitary. The seemingly infinitary notation above is adopted for
convenience, since, even though the arities of o and ρ are finite, they are not
a priori bounded.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R a metacongruence
on F and θ ∈ ConSys(F). R is said to be compatible with θ if it satisfies
the θ-compatibility property:

For all σ, τ, σ′, τ ′ ∶ (SEN♭)ω → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all
φ⃗, ψ⃗ ∈ SEN♭(Σ),

σ
R

τ

σ′

σΣ(φ⃗) θΣ σ′Σ(ψ⃗)

R
τ ′

τΣ(φ⃗) θΣ τ ′Σ(ψ⃗)

.............
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⟨σ, τ⟩ ∈ R and ⟨σ′, τ ′⟩ ∈ R and σΣ(φ⃗) θΣ σ′Σ(ψ)
imply τΣ(φ⃗) θΣ τ ′Σ(ψ⃗).

Let MetCon(F) stand for the collection of all metacongruences on F. It
is clear that it forms a complete lattice under ordinary inclusion, which is
denoted by MetCon(F) = ⟨MetCon(F),⊆⟩. We denote by MetConθ(F) the
collection of all metacongruences on F that are compatible with a given
congruence system θ on F.

As was, perhaps, to be expected, metacongruences on F and congruence
systems on F are very closely related.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system andR ∈MetCon(F).
Define the binary relation family θR = {θRΣ}Σ∈∣Sign♭∣ on F by letting, for all

Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ),

⟨φ,ψ⟩ ∈ θRΣ iff there exist ⟨σ, τ⟩ ∈ R, χ⃗ ∈ SEN♭(Σ),
such that φ = σΣ(χ⃗) and ψ = τΣ(χ⃗).

I.e., we have, for all Σ ∈ ∣Sign♭∣,

θRΣ = {⟨σΣ(χ⃗), τΣ(χ⃗)⟩ ∶ ⟨σ, τ⟩ ∈ R, χ⃗ ∈ SEN
♭(Σ)}.

It is not difficult to show that, if R is a metaconguence on F compatible
with ∆F, then θR, thus defined, is a congruence system on F.

Proposition 7 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
R ∈ MetCon∆(F). Then θR ∈ ConSys(F). Moreover, R is compatible with
θR.

Proof: Let us show, first, that θR is an equivalence family on F. To this
end, let Σ ∈ ∣Sign♭∣ and φ,ψ,χ ∈ SEN♭(Σ).

• From the fact that ⟨ι, ι⟩ ∈ R, we get that ⟨φ,φ⟩ = ⟨ιΣ(φ), ιΣ(φ)⟩ ∈ θRΣ ,
whence θR is reflexive.

• Suppose ⟨φ,ψ⟩ ∈ θRΣ . Then, there exist ⟨σ, τ⟩ ∈ R and χ⃗ ∈ SEN♭(Σ), such
that φ = σΣ(χ⃗) and ψ ∈ τΣ(χ⃗). Then, the pair ⟨τ, σ⟩ ∈ R and the tuple
χ⃗ ∈ SEN♭(Σ) witness that ⟨ψ,φ⟩ ∈ θRΣ and, hence, θR is also symmetric.
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• Finally, suppose that ⟨φ,ψ⟩, ⟨ψ,χ⟩ ∈ θRΣ . Then, there exist ⟨σ, τ⟩ ∈ R,
χ⃗ ∈ SEN♭(Σ) and ⟨σ′, τ ′⟩ ∈ R and χ⃗′ ∈ SEN♭(Σ), such that

φ = σΣ(χ⃗), ψ = τΣ(χ⃗), ψ = σ′Σ(χ⃗′), χ = τ
′
Σ(χ⃗

′).

Taking into account the compatibility property of R, together with the
equation τΣ(χ⃗) = σ′Σ(χ⃗

′), we conclude that σΣ(χ⃗) = τ ′Σ(χ⃗
′), i.e., that

⟨φ,χ⟩ ∈∆F
Σ ⊆ θ

R
Σ . Hence θ

R is also transitive.

Next, we show that θR is a system, i.e., invariant under signature morphisms.
To this end, let Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ,ψ ∈ SEN♭(Σ), such
that ⟨φ,ψ⟩ ∈ Rθ

Σ. Thus, there exist ⟨σ, τ⟩ ∈ R and χ⃗ ∈ SEN♭(Σ), such that
φ = σΣ(χ⃗) and ψ = τΣ(χ⃗). Thus, we get

SEN♭(f)(φ) = SEN♭(f)(σΣ(χ⃗)) = σΣ′(SEN
♭(f)(χ⃗))

and, similarly, SEN♭(f)(ψ) = τΣ′(SEN
♭(f)(χ⃗)). Thus, the pair ⟨σ, τ⟩ ∈ R and

the tuple SEN♭(f)(χ⃗) ∈ SEN♭(Σ′) witness ⟨SEN♭(f)(φ),SEN♭(f)(ψ)⟩ ∈ θRΣ′ ,
showing that θR is indeed an equivalence system on F.

Next, we must show that θR is a congruence system. Let ρ ∶ (SEN♭)k →
SEN♭ in N ♭, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that ⟨φi, ψi⟩ ∈ θRΣ , for all
i < k. Thus, there exist ⟨σi, τ i⟩ ∈ R and χ⃗i ∈ SEN♭(Σ), such that φi = σi

Σ(χ⃗
i)

and ψi = τ iΣ(χ⃗
i), for all i < k. Now, taking into account the substitution

property of R, we obtain

ρΣ(φ⃗) = ρΣ(σ0
Σ(χ⃗

0), . . . , σk−1
Σ (χ⃗

k−1))
θRΣ ρΣ(τ 0Σ(χ⃗

0), . . . , τk−1Σ (χ⃗
k−1))

= ρΣ(ψ⃗).

Thus, θR is a congruence system on F.
Finally, we show that R is compatible with θR. To this end, let ⟨σ, τ⟩ ∈ R,

⟨σ′, τ ′⟩ ∈ R, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that σΣ(φ⃗) θRΣ σ′Σ(ψ⃗).
Since ⟨σ, τ⟩ ∈ R, σΣ(φ⃗) θRΣ τΣ(φ⃗). Similarly, since ⟨σ′, τ ′⟩ ∈ R, we get

σ′Σ(ψ⃗) θ
R
Σ τ ′Σ(ψ⃗). Since θR is a congruence system, we now conclude that

τΣ(φ⃗) θRΣ τ ′Σ(ψ⃗), which proves that R is compatible with θR. ∎

On the other hand, let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system
and θ ∈ ConSys(F). Define a binary relation Rθ on N ♭ by setting, for all σ, τ
in N ♭,

⟨σ, τ⟩ ∈ Rθ iff for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),
⟨σΣ(χ⃗), τΣ(χ⃗)⟩ ∈ θΣ.
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In other words, using some obvious abbreviations,

Rθ = {⟨σ, τ⟩ ∶ (∀Σ)(∀χ⃗)(σΣ(χ⃗) θΣ τΣ(χ⃗))}.

Again, it is not difficult to show that Rθ is a metacongruence on F, which is
compatible with θ.

Proposition 8 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
θ ∈ ConSys(F). Then Rθ ∈MetConθ(F).

Proof: Let θ ∈ ConSys(F). Clearly, Rθ is an equivalence relation on N ♭. To
see that it also satisfies the substitution property, suppose ⟨o, ρ⟩ ∈ Rθ and
⟨σi, τ i⟩ ∈ Rθ, for i < ω. Then, since ⟨σi, τ i⟩ ∈ Rθ, for all Σ ∈ ∣Sign♭∣ and all
χ⃗ ∈ SEN♭(Σ), we have,

⟨σi
Σ(χ⃗), τ

i
Σ(χ⃗)⟩ ∈ θΣ, i < ω.

Since θ ∈ ConSys(F), we now get

⟨oΣ(σ⃗Σ(χ⃗)), oΣ(τ⃗Σ(χ⃗))⟩ ∈ θΣ.

As ⟨o, ρ⟩ ∈ Rθ, we get

⟨oΣ(τ⃗Σ(χ⃗)), ρΣ(τ⃗Σ(χ⃗))⟩ ∈ θΣ.

Using the fact that θ is a congruence system, we now get

⟨oΣ(σ⃗Σ(χ⃗)), ρΣ(τ⃗Σ(χ⃗))⟩ ∈ θΣ.

Since Σ ∈ ∣Sign♭∣ and χ⃗ ∈ SEN♭(Σ) were arbitrary, we conclude that ⟨o○ σ⃗, ρ○
τ⃗⟩ ∈ Rθ. Hence, Rθ satisfies the substitution property and, therefore, it is a
metacongruence on F.

Finally, we show that Rθ is compatible with θ. To this end, assume
that ⟨σ, τ⟩ ∈ Rθ, ⟨σ′, τ ′⟩ ∈ Rθ, Σ ∈ ∣Sign♭∣ and φ⃗, ψ⃗ ∈ SEN♭(Σ), such that
⟨σΣ(φ⃗), σ′Σ(ψ⃗)⟩ ∈ θΣ. From the hypothesis ⟨σ, τ⟩ ∈ Rθ, we get ⟨σΣ(φ⃗), τΣ(φ⃗)⟩ ∈
θΣ and from the hypothesis ⟨σ′, τ ′⟩ ∈ Rθ, we get ⟨σ′Σ(ψ⃗), τ

′
Σ(ψ⃗)⟩ ∈ θΣ. Hence,

since θ is a congruence system, we get ⟨τΣ(φ⃗), τ ′Σ(ψ⃗)⟩ ∈ θΣ. This proves that
Rθ is compatible with θ. ∎

We now characterize the closed sets in P(NEq(F)). They turn out to be
those metacongruences on F satisfying an additional property.
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Lemma 9 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R ⊆ NEq(F).
If CN(R) = R, then R ∈MetCon(F).

Proof: Let R ⊆ NEq(F) and K ⊆ AlgSys(F), such that R = NEq(K).
For σ in N ♭, A = ⟨A, ⟨F,α⟩⟩ ∈ K, with A = ⟨Sign,SEN,N⟩, Σ ∈ ∣Sign∣ and

φ⃗ ∈ SEN(Σ), σAΣ (φ⃗) = σ
A
Σ(φ⃗). Hence A ⊧ σ ≈ σ, showing that σ ≈ σ ∈ R.

Suppose that σ ≈ τ ∈ R and let A ∈ K, Σ ∈ ∣Sign∣ and φ⃗ ∈ SEN(Σ). Then,
since R = NEq(K), σAΣ (φ⃗) = τ

A
Σ (φ⃗). Thus, τAΣ (φ⃗) = σ

A
Σ (φ⃗). This shows that

A ⊧ τ ≈ σ and, since R = NEq(K), we get τ ≈ σ ∈ R.
Similarly, we see that R is transitive. Therefore, R is an equivalence

relation on NEq(F). To conclude the proof, we show that R also satisfies
the substitution property. To this end, let ⟨o, ρ⟩ ∈ R and ⟨σi, τ i⟩ ∈ R, i < ω.
Then, for all A ∈ K, all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ), since R = NEq(K),
σiA
Σ (φ⃗) = τ

iA
Σ (φ⃗), for all i < ω. Therefore,

oAΣ(σ⃗
A
Σ (φ⃗)) = ρAΣ(σ⃗

A
Σ (φ⃗)) (⟨o, ρ⟩ ∈ R = NEq(K))

= ρAΣ(τ⃗
A
Σ (φ⃗)). (σiA

Σ (φ⃗) = τ
iA
Σ (φ⃗), i < ω)

Thus, A ⊧ o○σ⃗ ≈ ρ○τ⃗ and, hence, since R = NEq(K), we get o○σ⃗ ≈ ρ○τ⃗ ∈ R. We
now conclude that R also satisfies the substitution property and, therefore,
it is a metacongruence on F. ∎

There is one additional property, however, that, by necessity, all metacon-
gruences on F of the form NEq(K), for some class K of F-algebraic systems,
must satisfy. Recall that, given θ ∈ ConSys(F), we defined

Rθ = {⟨σ, τ⟩ ∶ (∀Σ ∈ ∣Sign♭∣)(∀φ⃗ ∈ SEN♭(Σ))(⟨σΣ(φ⃗), τΣ(φ⃗)⟩ ∈ θΣ)}
= NEq(F/θ).

Definition 10 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. A
metacongruence R ∈ MetCon(F) is called feasible if there exists a congru-
ence system θ ∈ ConSys(F), such that R = Rθ.

Lemma 11 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R ⊆ NEq(F).
If CN(R) = R, then R is a feasible metacongruence on F.

Proof: Let R ∈ NEq(F), such that R = CN(R). By Lemma 9, R ∈
MetCon(F). To see that R is feasible, let K = NMod(R) and define θ =
Eq(K). It suffices to show that R = Rθ.
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Suppose, first, that σ ≈ τ ∈ R. Let A ∈ K, Σ ∈ ∣Sign♭∣, φ⃗ ∈ SEN♭(Σ).
Since σ ≈ τ ∈ R and A ∈ K = NMod(R), A ⊧ σ ≈ τ , whence σA

F (Σ)
(αΣ(φ⃗)) =

τA
F (Σ)
(αΣ(φ⃗)). Equivalently, αΣ(σΣ(φ⃗)) = αΣ(τΣ(φ⃗)). Since this holds for all

A ∈ K, ⟨σΣ(φ⃗), τΣ(φ⃗)⟩ ∈ EqΣ(K) = θΣ. Since this holds for all Σ ∈ ∣Sign♭∣ and
all φ⃗ ∈ SEN♭(Σ), σ ≈ τ ∈ Rθ.

Suppose, conversely, that σ ≈ τ ∈ Rθ. Then, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ), ⟨σΣ(φ⃗), τΣ(φ⃗)⟩ ∈ θΣ = EqΣ(K). That is, for all A ∈ K, A ⊧ σ ≈ τ
and, hence, σ ≈ τ ∈ NEq(K) = NEq(NMod(R)) = R. ∎

We are now ready for the promised characterization of the closed sets of
natural equations under CN .

Proposition 12 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
R ⊆ NEq(F). Then CN(R) = R if and only if R is a feasible metacongruence
on F.

Proof: If R = CN(R), then, by Lemma 11, R is a feasible metacongruence
on F. Suppose, conversely, that R is a feasible metacongruence on F. Then,
by definition, there exists θ ∈ ConSys(F), such that R = Rθ. By the theory
of Galois connections, to show that R is closed under CN , it suffices to
show that it is in the image of NEq. In fact, it is not difficult to see that
R = NEq(F/θ) ∶= NEq({F/θ}), where F = ⟨F, ⟨I, ι⟩⟩:

σ ≈ τ ∈ R iff σ ≈ τ ∈ Rθ

iff for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),
⟨σΣ(φ⃗), τΣ(φ⃗)⟩ ∈ θΣ

iff for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),
σθ
Σ(φ⃗/θΣ) = τ

θ
Σ(φ⃗/θΣ)

iff σ ≈ τ ∈ NEq(F/θ).

Therefore, R = CN(R), as was to be shown. ∎

Finally, we characterize the closed sets in P(AlgSys(F)) under VSyn, i.e.,
those that constitute syntactic varieties of F-algebraic systems. Similarly to
the case of semantic varieties, they turn out to be those classes of F-algebraic
systems that are closed under morphic images and subdirect intersections
and, in addition, are related in a specific way to semantics.

Proposition 13 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. For
all K ⊆ AlgSys(F), VSem(K) ⊆ VSyn(K).
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Proof: Let K be a class of F-algebraic systems and A an F-algebraic system.
Suppose A ∈ VSem(K) and let σ ≈ τ ∈ NEq(K). This means that, for all Σ ∈
∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), σΣ(φ⃗) ≈ τΣ(φ⃗) ∈ EqΣ(K). Since A ∈ VSem(K) =
Mod(Eq(K)), we get that A ⊧Σ σΣ(φ⃗) ≈ τΣ(φ⃗). Since this holds for all
Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ), we conclude that A ⊧ σ ≈ τ . But σ ≈ τ ∈
NEq(K) was arbitrary, whence A ∈ NMod(NEq(K)) = VSyn(K). We conclude
that VSem(K) ⊆ VSyn(K). ∎

Corollary 14 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆
AlgSys(F). If VSyn(K) = K, then VSem(K) = K.

Proof: If K ⊆ AlgSys(F), such that VSyn(K) = K, then

VSem(K) ⊆ VSyn(K) (by Proposition 13)
= K. (by hypothesis)

Since the reverse inclusion always holds, we get the conclusion. ∎

But, if K is a syntactic variety, it has to satisfy an additional condition.

Definition 15 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K ⊆ AlgSys(F) a class of F-algebraic systems. The class K is called natural

if Eq(K) = θNEq(K).

Proposition 16 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. For
all K ⊆ AlgSys(F), if VSyn(K) = K, then K is a natural class.

Proof: Let K ⊆ AlgSys(F), such that VSyn(K) = K. We must show that
Eq(K) = θNEq(K).

Suppose, first, that Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that ⟨φ,ψ⟩ ∈
EqΣ(K). Note that, since K = VSyn(K) ∶= NMod(NEq(K)), we obtain that
F/θNEq(K) ∈ K. Since ⟨φ,ψ⟩ ∈ EqΣ(K), we now get F/θNEq(K) ⊧Σ φ ≈ ψ. But

this means that ⟨φ,ψ⟩ ∈ θNEq(K)
Σ . Therefore, Eq(K) ≤ θNEq(K).

Assume, conversely, that Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that

⟨φ,ψ⟩ ∈ θNEq(K)
Σ . By definition, there exists σ ≈ τ ∈ NEq(K) and χ⃗ ∈ SEN♭(Σ),

such that φ = σΣ(χ⃗) and ψ = τΣ(χ⃗). Thus, since σ ≈ τ ∈ NEq(K), if A ∈ K,
we get A ⊧Σ σΣ(χ⃗) ≈ τΣ(χ⃗), i.e., A ⊧Σ φ ≈ ψ. Since this holds for all A ∈ K,
we conclude that ⟨φ,ψ⟩ ∈ EqΣ(K). Hence, θNEq(K) ≤ Eq(K). ∎

Now, we are ready to provide a characterization of syntactic varieties.
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Proposition 17 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. A
class K of F-algebraic systems is a syntactic variety if and only if it is a
natural semantic variety.

Proof: If K is a syntactic variety, then, by Corollary 14, it is a seman-
tic variety and, moreover, by Proposition 16, it is a natural class. Sup-
pose, conversely, that K is a natural semantic variety. We must show that
K = VSyn(K) = NMod(NEq(K)). Since the left to right inclusion always holds,
we focus on showing the reverse. To this end, assume A ∈ NMod(NEq(K)).
Since, by hypothesis, K = VSem(K) = Mod(Eq(K)), we have F/Eq(K) ∈
K. Since, by hypothesis, K is natural, we have Eq(K) = θNEq(K), whence,
F/θNEq(K) ∈ K. The proof will be completed if we show that A is a morphic
image of F/θNEq(K), since, then, by Proposition 6 and the hypothesis, we will
have A ∈H(K) = K. In fact, we show that

⟨F,αθNEq(K)

⟩ ∶ F/θNEq(K) → A,

F

❂✚
✚
✚
✚⟨I, πθNEq(K)⟩ ❩

❩
❩
❩

⟨F,α⟩
⑦

F/θNEq(K)

⟨F,αθNEq(K)
⟩
✲ A

defined, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), by

αθNEq(K)

Σ (φ/θNEq(K)
Σ ) = αΣ(φ),

is an algebraic system morphism. To verify this, let Σ ∈ ∣Sign♭∣ and φ,ψ ∈

SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ θNEq(K)
Σ . Then, by definition, there exists σ ≈

τ ∈ NEq(K) and χ⃗ ∈ SEN♭(Σ), such that φ = σΣ(χ⃗) and ψ = τΣ(χ⃗). As,
by hypothesis, A ∈ NMod(NEq(K)), we get that A ⊧ σ ≈ τ . In particular,
A ⊧Σ σΣ(χ⃗) ≈ τΣ(χ⃗), i.e., A ⊧Σ φ ≈ ψ. But this means that αΣ(φ) = αΣ(ψ)
and proves that αθNeq(K)

and, hence ⟨F,αθNEq(K)⟩ ∶ F/θNEq(K) → A is a well-
defined F-morphism. ∎

Corollary 18 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. A class
K of F-algebraic systems is a syntactic variety if and only if K is natural and

closed under H and
⊲

IΠ.

Proof: We have K is a syntactic variety if and only if, by Proposition 17, it
is a natural semantic variety, if and only if, by Proposition 6, it is a natural

class closed under H and
⊲

IΠ. ∎
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4 The Closures C, CN

In this section, we characterize C ∶ PEq(F) → PEq(F) and CN ∶ PNEq(F) →
PNEq(F) as closure operators, by showing how to obtain the closure of
given X ≤ Eq(F) and E ⊆ NEq(F) in a step-wise fashion. In particular, our
processes will show that both operators are finitary closure operators.

Let X ≤ Eq(F). We define, for all k < ω, by induction on k, the family
Xk = {Xk

Σ}Σ∈∣Sign♭∣ ≤ Eq(F) by letting, for all Σ ∈ ∣Sign♭∣, Xk
Σ be given by

X0
Σ = XΣ ∪ {φ ≈ φ ∶ φ ∈ SEN

♭(Σ)};
Xk+1

Σ = Xk
Σ ∪ {ψ ≈ φ ∶ φ ≈ ψ ∈X

k
Σ}

∪ {φ ≈ χ ∶ φ ≈ ψ,ψ ≈ χ ∈ Xk
Σ}

∪ {σΣ(φ⃗) ≈ σΣ(ψ⃗) ∶ φ⃗ ≈ ψ⃗ ∈Xk
Σ and σ ∈ N ♭}

∪ {SEN♭(f)(φ ≈ ψ) ∶ φ ≈ ψ ∈Xk
Σ′ and f ∈ Sign

♭(Σ′,Σ)}.

Proposition 19 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
X ≤ Eq(F). Then

C(X) =
∞

⋃
k=0

Xk.

Proof: Note that, for all Σ ∈ ∣Sign♭∣, XΣ ⊆ X0
Σ ⊆ ⋃

∞
k=0X

k
Σ. So to see that

C(X) ≤ ⋃∞k=0Xk, it suffices to show, by Proposition 3, that ⋃∞k=0Xk is a
congruence system on F.

• For all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ), φ ≈ φ ∈ X0
Σ ⊆ ⋃

∞
k=0X

k
Σ, whence

⋃∞k=0Xk is reflexive;

• For all Σ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ), such that ψ ≈ φ ∈ ⋃∞k=0X
k
Σ, we

get that ψ ≈ φ ∈ Xk
Σ, for some k < ∞, whence φ ≈ ψ ∈ Xk+1

Σ ⊆ ⋃∞k=0X
k
Σ,

showing that ⋃∞k=0Xk is symmetric;

• For all Σ ∈ ∣Sign♭∣ and all φ,ψ,χ ∈ SEN♭(Σ), such that φ ≈ ψ,ψ ≈ χ ∈
⋃∞k=0X

k
Σ, we get that φ ≈ ψ ∈ Xk

Σ and ψ ≈ χ ∈ Xℓ
Σ, for some k, ℓ < ∞,

whence φ ≈ χ ∈ Xmax {k,ℓ}+1
Σ ⊆ ⋃∞k=0X

k
Σ, showing that ⋃∞k=0Xk is also

transitive;

• For all Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), and all φ,ψ ∈ SEN♭(Σ), such
that φ ≈ ψ ∈ ⋃∞k=0X

k
Σ, we get that φ ≈ ψ ∈ Xk

Σ, for some k <∞, whence
SEN(f)(φ ≈ ψ) ∈Xk+1

Σ′ ⊆ ⋃
∞
k=0X

k
Σ′ , showing that ⋃∞k=0Xk is a system;
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• For all n-ary σ in N ♭, all Σ ∈ ∣Sign♭∣ and all φ⃗, ψ⃗ ∈ SEN♭(Σ), such
that φ⃗ ≈ ψ⃗ ∈ ⋃∞k=0X

k
Σ, we get that φi ≈ ψi ∈ X

ki
Σ , for some ki <∞, i < n,

whence σΣ(φ⃗) ≈ σΣ(ψ⃗) ∈ X
maxi<n {ki}+1
Σ ⊆ ⋃∞k=0X

k
Σ, showing that ⋃∞k=0Xk

also satisfies the congruence property.

Thus, ⋃∞k=0Xk is indeed a congruence system on F and, hence, since X ≤
⋃∞k=0Xk, we get C(X) ≤ ⋃∞k=0Xk.

Conversely, we work by induction on k to show that, for all k ≥ 0, Xk ≤
C(X). Clearly, X ≤ C(X) and, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),
φ ≈ φ ∈ CΣ(X), by Proposition 3. Thus, X0 ≤ C(X). Suppose that, for some
k < ∞, we have Xk ≤ C(X). Let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ), such that
φ ≈ ψ ∈Xk+1

Σ . Then one of the following must hold:

• φ ≈ ψ ∈Xk
Σ; Then φ ≈ ψ ∈ CΣ(X), by the induction hypothesis;

• ψ ≈ φ ∈ Xk
Σ; Then ψ ≈ φ ∈ CΣ(X), by the induction hypothesis. Since,

by Proposition 3, C(X) ∈ ConSys(F), we get that φ ≈ ψ ∈ CΣ(X);

• φ ≈ χ,χ ≈ ψ ∈ Xk
Σ, for some χ ∈ SEN♭(Σ); Then φ ≈ χ,χ ≈ ψ ∈

CΣ(X), by the induction hypothesis. Since, by Proposition 3, C(X) ∈
ConSys(F), we get that φ ≈ ψ ∈ CΣ(X);

• There exist σ in N ♭, φ⃗, ψ⃗ ∈ Xk
Σ, such that φ⃗ ≈ ψ⃗ ∈ Xk

Σ and φ = σΣ(φ⃗),
ψ = σΣ(ψ⃗); Then φ⃗ ≈ ψ⃗ ∈ CΣ(X), by the induction hypothesis. Since,
by Proposition 3, C(X) ∈ ConSys(F), we get that φ ≈ ψ = σΣ(φ⃗) ≈
σΣ(ψ⃗) ∈ CΣ(X);

• There exist Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ′,Σ) and φ′, ψ′ ∈ SEN♭(Σ′), such
that φ′ ≈ ψ′ ∈ Xk

Σ′ , and φ = SEN♭(f)(φ′), ψ = SEN♭(f)(ψ′); Then
φ′ ≈ ψ′ ∈ CΣ′(X), by the induction hypothesis. Since, by Proposition
3, C(X) ∈ ConSys(F), we get that φ ≈ ψ = SEN♭(f)(φ′ ≈ ψ′) ∈ CΣ(X).

We conclude that Xk+1 ≤ C(X), which finishes the induction and shows that

⋃∞k=0Xk ≤ C(X). Equality now follows. ∎

Corollary 20 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. The
closure operator C ∶ PEq(F) → PEq(F) is finitary.

Proof: Let X ≤ Eq(F), Σ ∈ ∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ), such that φ ≈ ψ ∈
CΣ(X). By Proposition 19, φ ≈ ψ ∈ ⋃∞k=0X

k
Σ. Thus, there exists k < ω, such
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that φ ≈ ψ ∈ Xk
Σ. It is not difficult to show, by induction on k, that this

implies that, there exists a locally finite subfamily Y ≤lf X of X , such that
φ ≈ ψ ∈ Y k

Σ ⊆ CΣ(Y ). This proves that C is indeed finitary. ∎

We work analogously regarding CN . However, to provide an elegant,
relatively simple characterization of CN(E), for every collection E of nat-
ural equations, and, importantly, one referring only to syntax, we opt to
incorporate the unavoidable reference to semantics in the general hypotheses
underlying our adopted framework. Accordingly, it is assumed that the base
algebraic system F is such that all its metacongruences are feasible. Such an
algebraic system is termed metafeasible.

Definition 21 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. F is called
metafeasible if every metacongruence R on F is feasible, i.e., if, for all
R ∈MetCon(F), there exists θ ∈ ConSys(F), such that R = Rθ.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and E ⊆ NEq(F).
We define, for all k < ω, by induction on k, the family Ek ⊆ NEq(F) as
follows:

E0 = E ∪ {σ ≈ σ ∶ σ ∈ N ♭};
Ek+1 = Ek ∪ {τ ≈ σ ∶ σ ≈ τ ∈ Ek}

∪ {σ ≈ ρ ∶ σ ≈ τ, τ ≈ ρ ∈ Ek}
∪ {o ○ σ⃗ ≈ ρ ○ τ⃗ ∶ o ≈ ρ, σ⃗ ≈ τ⃗ ∈ Ek}.

Moreover, we set

E∪ =
∞

⋃
k=0

Ek.

Our eventual goal is to show that, under the hypothesis that F is metafea-
sible, for all E ⊆ NEq(F), E∪ is exactly CN(E). We proceed in steps by
formulating some lemmas, forming parts of the proof of Proposition 26.

We start by showing that each level Ek, k ≥ 0, is contained in CN(E).

Lemma 22 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and E ⊆
NEq(F). For all k ≥ 0, Ek ⊆ CN(E).

Proof: Let E ⊆ NEq(F). We work by induction on k ≥ 0.
Since CN is a closure operator, E ⊆ CN(E). Moreover, since, for all

A ∈ NMod(E), it is obvious that A ⊧ σ ≈ σ, for all σ in N ♭, we get that
{σ ≈ σ ∶ σ in N ♭} ⊆ CN(E). This proves that E0 ⊆ CN(E).

Assume, now, that, for some k ≥ 0, Ek ⊆ CN(E).
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Suppose, first, that τ ≈ σ ∈ Ek. Then, by the induction hypothesis,
τ ≈ σ ∈ CN(E). Thus, by Proposition 12, σ ≈ τ ∈ CN(E).

Suppose, next, that σ ≈ τ, τ ≈ ρ ∈ Ek. Then, by the induction hypothesis,
σ ≈ τ, τ ≈ ρ ∈ CN(E). Thus, by Proposition 12, σ ≈ ρ ∈ CN(E).

Suppose, finally, that o ≈ ρ ∈ Ek and σ⃗ ≈ τ⃗ ⊆ Ek, Once more applying the
induction hypothesis, we get o ≈ ρ ∈ CN(E) and σ⃗ ≈ τ⃗ ⊆ CN(E). Hence, by
Proposition 12, o ○ σ⃗ ≈ ρ ○ τ⃗ ∈ CN(E).

This proves that Ek+1 ⊆ CN(E), and concludes the induction.
Thus, for all k ≥ 0, Ek ⊆ CN(E). ∎

Immediately from Lemma 22 and the definition of E∪, we get

Corollary 23 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and E ⊆
NEq(F). Then E∪ ⊆ CN(E).

The next lemma asserts that E∪ is a metacongruence on F.

Lemma 24 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and E ⊆
NEq(F). E∪ ∈MetCon(F).

Proof: We show that E∪ satisfies all required properties.

• For all σ in N ♭, σ ≈ σ ∈ E0 ⊆ E∪. So E∪ is reflexive;

• Let σ ≈ τ ∈ E∪ = ⋃∞k=0Ek. Then, there exists k < ω, such that σ ≈ τ ∈ Ek,
whence, by definition, τ ≈ σ ∈ Ek+1 ⊆ ⋃∞k=0Ek = E∪. Thus, E∪ is also
symmetric;

• Suppose σ ≈ τ, τ ≈ ρ ∈ E∪ = ⋃∞k=0Ek. Then, there exist k, ℓ < ω, such
that σ ≈ τ ∈ Ek and τ ≈ ρ ∈ Eℓ. Thus, by definition, σ ≈ ρ ∈ Emax {k,ℓ}+1 ⊆

⋃∞k=0Ek = E∪. Therefore, E∪ is transitive;

• Finally, suppose that o ≈ ρ ∈ E∪ = ⋃∞k=0Ek and σ⃗ ≈ τ⃗ ∈ E∪ = ⋃∞k=0Ek

and assume that n =max{ar(o),ar(ρ)}, where ar(o) and ar(ρ) denote,
respectively, the arities of the natural transformations o and ρ. Then,
there exist k, ℓ0, . . . , ℓn−1 < ω, such that o ≈ ρ ∈ Ek and σi ≈ τ i ∈ Eℓi , i <
n. Thus, taking again m = max{k, ℓ0, . . . , ℓn−1}, we get, by definition,
o ○ σ⃗ ≈ ρ ○ τ⃗ ∈ Em+1 ⊆ ⋃∞k=0Ek = E∪.

We now conclude that E∪ ∈MetCon(F). ∎

At this point, to use Lemma 24 advantageously, we resort to our pre-
announced hypothesis that the base algebraic system F be metafeasible.
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Corollary 25 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a metafeasible base algebraic
system and E ⊆ NEq(F). Then CN(E) ⊆ E∪.

Proof: By Lemma 24, E∪ is a metacongruence on F and, by definition, it
contains E. By the metafeasibility of F, E∪ is a feasible metacongruence on F

containing E. By Proposition 12, CN(E) is the least feasible metacongruence
on F containing E. We conclude that CN(E) ⊆ E∪. ∎

We are now ready for the main

Proposition 26 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a metafeasible algebraic sys-
tem and E ⊆ NEq(F). Then

CN(E) = E∪.

Proof: By Corollary 23, E∪ ⊆ CN(E), and, by Corollary 25, we have
CN(E) ⊆ E∪. ∎

Finally, we use Proposition 26 to show that, under the hypothesis of
metafeasibility of F, the closure operator CN on NEq(F) is finitary.

Lemma 27 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a metafeasible algebraic system.
For all E ⊆ NEq(F) and all k ≥ 0,

Ek ⊆⋃{E′k ∶ E′ ⊆f E},

where ⊆f denotes the finite subset relation.

Proof: We use induction on k ≥ 0.
If k = 0 and σ ≈ τ ∈ E0, then σ ≈ τ ∈ E or σ = τ . In the first case,

σ ≈ τ ∈ {σ ≈ τ}0 and, in the second, σ ≈ σ ∈ ∅0.
Suppose, now, that the claim holds for some k ≥ 0.
If τ ≈ σ ∈ Ek, then, by the induction hypothesis, τ ≈ σ ∈ E′k, for some

E′ ⊆f E. Therefore, we get σ ≈ τ ∈ E′k+1.
Similarly, if σ ≈ τ, τ ≈ ρ ∈ Ek, then, by the induction hypothesis, there

exist E′,E′′ ⊆f E, such that σ ≈ τ ∈ E′k and τ ≈ ρ ∈ E′′k. Thus, we get
σ ≈ τ, τ ≈ ρ ∈ (E′ ∪E′′)k and, therefore, σ ≈ ρ ∈ (E′ ∪E′′)k+1.

Finally, assume that o ≈ ρ ∈ Ek and σ⃗ ≈ τ⃗ ⊆ Ek. Then, by the induction
hypothesis, for n = max{ar(o),ar(ρ)}, there exist E0, . . . ,En ⊆f E, such that
o ≈ ρ ∈ Ek

0 and σi ≈ τ i ∈ Ek
i+1, for i ≤ n. Therefore, we get that o ≈ ρ ∈

(⋃n
i=0Ei)k and σ⃗ ≈ τ⃗ ⊆ (⋃n

i=0Ei)k, and this yields o ○ σ⃗ ≈ ρ ○ τ⃗ ∈ (⋃n
i=0Ei)k+1.

This concludes the proof of the induction step.
We now have that, for all k ≥ 0, Ek ⊆ ⋃{E′k ∶ E′ ⊆f E}. ∎
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Corollary 28 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a metafeasible algebraic system.
The closure operator CN ∶ PNEq(F) → PNEq(F) is finitary.

Proof: By Proposition 26 and Lemma 27. ∎

5 The Closures VSem and VSyn

In this section we show how to obtain the semantic and the syntactic varieties
generated by a given class K of F-algebraic systems by applying on K a series
of class operators. Of course, we shall take advantage and make use of the
relevant results obtained in Sections 2 and 3.

We start by looking at two lemmas that we help us show that VSem(K) =

H

⊲

IΠ(K). They are, however, interesting in their own right.

Lemma 29 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a

class of F-algebraic systems. If A ∈ VSem(K), then A ∈H
⊲

IΠ(K).

Proof: Suppose that A ∈ VSem(K).

F/ ⋂
B∈K

Ker(B) ✲ B, B ∈ K

A
❄

By Proposition 4, F/⋂B∈KKer(B) ∈
⊲

IΠ(K). Since, by hypothesis, A ∈ VSem(K),
we have, by the definition of a semantic variety, ⋂B∈KKer(B) ≤ Ker(A).

Therefore, A ∈H(F/⋂B∈KKer(B)). We conclude that A ∈H
⊲

IΠ(K). ∎

Lemma 30 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a

class of F-algebraic systems. Then
⊲

IΠH(K) ⊆H
⊲

IΠ(K).

Proof: Suppose that A = ⟨F, ⟨F,α⟩⟩ ∈
⊲

IΠH(K). Thus, there exist Bi =
⟨Bi, ⟨Gi, βi⟩⟩ ∈ H(K), i ∈ I, and a subdirect intersection {⟨H i, γi⟩ ∶ A→ Bi, i ∈
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I}. Hence, for every i ∈ I, there exists a morphism ⟨Di, δi⟩ ∶ Ai → Bi, where
Ai = ⟨Ai, ⟨F i, αi⟩⟩ ∈ K.

F

✰✑
✑
✑
✑
✑
✑
✑

⟨F i, αi⟩
◗
◗
◗
◗
◗
◗
◗

⟨F,α⟩

s
Ai

⟨Di, δi⟩
✲ Bi

⟨Gi, βi⟩
❄
✛

⟨H i, γi⟩
A

By Proposition 4, F/⋂i∈I Ker(Ai) ∈
⊲

IΠ(K). So to see that A ∈ H
⊲

IΠ(K), it
suffices to show that there exists a morphism F/⋂i∈I Ker(Ai) → A and for
this, in turn, it suffices to show that ⋂i∈I Ker(Ai) ≤ Ker(A). Indeed, we have

⋂i∈I Ker(Ai) ≤ ⋂i∈I Ker(Bi) (⟨Gi, βi⟩ = ⟨Di, δi⟩ ○ ⟨F i, αi⟩)
= ⋂i∈I Ker(⟨H i ○ γi⟩ ○ ⟨F,α⟩) (⟨Gi, βi⟩ = ⟨H i, γi⟩ ○ ⟨F,α⟩)
= α−1(⋂i∈I Ker(⟨H i ○ γi⟩)) (set theory)
= α−1(∆A) ({⟨H i, γi⟩ ∶ i ∈ I} subdirect intersection)
= Ker(A).

This shows that
⊲

IΠH(K) ≤H
⊲

IΠ(K). ∎

Proposition 31 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and

K a class of F-algebraic systems. Then VSem(K) = H
⊲

IΠ(K).

Proof: On the one hand, since K ⊆ VSem(K) and, by Proposition 6, VSem(K)

is closed under H and
⊲

IΠ, we get that H
⊲

IΠ(K) ⊆ VSem(K).
For the converse, we can either appeal directly to Lemma 29 or, as was

done above, notice that K ⊆ H
⊲

IΠ(K). But H
⊲

IΠ(K) is obviously closed under

H and, by Lemma 30, is also closed under
⊲

IΠ. Hence, by Proposition 6, it

forms, a semantic variety and, therefore, VSem(K) ⊆ H
⊲

IΠ(K). ∎

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨A, ⟨F,α⟩⟩ and
B = ⟨B, ⟨G,β⟩⟩ two F-algebraic systems and ⟨H,γ⟩ ∶ A → B an F-morphism.
Clearly, NEq(A) ⊆ NEq(B). If NEq(A) = NEq(B), then we call A a (natu-
ral) lifting of B. Given a class K of F-algebraic systems, we let L(K) denote
the class of all natural liftings of members of K.

Almost by definition, we get
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Lemma 32 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a
class of F-algebraic systems. If K is a syntactic variety, then L(K) ⊆ K.

Proof: Suppose VSyn(K) ⊆ K. Let A ∈ L(K) and σ ≈ τ ∈ NEq(K). By
hypothesis, there exists B ∈ K, such that A is a lifting of B, whence σ ≈ τ ∈
NEq(B) = NEq(A). We conclude that NEq(K) ⊆ NEq(A) and, therefore,
A ∈ VSyn(K) = K. ∎

The addition of closure under the L operator to those under the H and the
⊲

IΠ operators guarantees that a class K of F-algebraic systems is a syntactic
variety.

Lemma 33 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a

class of F-algebraic systems. If K is closed under H, L and
⊲

IΠ, then it forms
a syntactic variety, i.e., VSyn(K) = K.

Proof: By Corollary 18, it suffices to show that K is natural, i.e., that
Eq(K) = θNEq(K). Since θNEq(K) ≤ Eq(K) always holds, it suffices to show the
reverse inclusion. We take advantage of the postulated closure of K under

the three operators in the following way: First, by closure under
⊲

IΠ (see
Proposition 4), F/Eq(K) ∈ K. Next, since θNEq(K) ≤ Eq(K), there exists a
natural morphism

F/θNEq(K) → F/Eq(K).

Moreover, it is not difficult to see that

NEq(F/θNEq(K)) = NEq(F/Eq(K)) = NEq(K).

Thus, by closure under L, F/θNEq(K) ∈ K. This now ensures that Eq(K) ≤
Eq(F/θNEq(K)) = θNEq(K). Hence, K is indeed natural and, as it is closed

under H and
⊲

IΠ, we get, by Corollary 18, that it is a syntactic variety. ∎

We now get

Proposition 34 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems. K is a syntactic variety if and only if it is

closed under H, L and
⊲

IΠ.
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Proof: If K is a syntactic variety, then, by Corollary 18, it is closed under

H and
⊲

IΠ. Finally, by Lemma 32, it is also closed under L. Conversely, if
K is closed under the three operators, then it is, by Lemma 33, a syntactic
variety. ∎

Finally, we prove that, for a class K of F-algebraic systems, the syntactic

variety generated by K is formed by applying on K the operator HL
⊲

IΠ.

Lemma 35 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a
class of F-algebraic systems. Then LH(K) ⊆HL(K).

Proof: Suppose that A = ⟨A, ⟨F,α⟩⟩ ∈ LH(K). Thus, there exists B =
⟨B, ⟨G,β⟩⟩ ∈ H(K) and ⟨J, δ⟩ ∶ A → B, such that NEq(A) = NEq(B) and, in
turn, C = ⟨C, ⟨H,γ⟩⟩ ∈ K and ⟨K,ǫ⟩ ∶ C → B.

F

✰✑
✑
✑
✑
✑
✑
✑

⟨F,α⟩
◗
◗
◗
◗
◗
◗
◗

⟨H,γ⟩

s
A

⟨J, δ⟩
✲ B

⟨G,β⟩

❄
✛

⟨K,ǫ⟩
C

Based on these data, we can now define two new morphisms

⟨F,α∗⟩ ∶ F/θNEq(C) → A and ⟨H,γ∗⟩ ∶ F/θNEq(C) → C,

as shown in the diagram

F

✰✑
✑
✑
✑
✑
✑
✑

⟨F,α⟩
◗
◗
◗
◗
◗
◗
◗

⟨H,γ⟩

s
A ✛

⟨F,α∗⟩
F/θNEq(C)

⟨I, π⟩
❄

⟨H,γ∗⟩
✲ C

by setting, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

α∗Σ(φ/θ
NEq(C)
Σ ) = αΣ(φ) and γ∗Σ(φ/θ

NEq(C)
Σ ) = γΣ(φ).

First, we show that ⟨F,α∗⟩ is well-defined. Let Σ ∈ ∣Sign♭∣ and φ,ψ ∈

SEN♭(Σ), such that ⟨φ,ψ⟩ ∈ θNEq(C)
Σ . Since C

⟨K,ǫ⟩
Ð→ B, we get ⟨φ,ψ⟩ ∈ θNEq(B)

Σ .
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But, by hypothesis, NEq(B) = NEq(A), whence, ⟨φ,ψ⟩ ∈ θNEq(A)
Σ . Thus,

there exists σ ≈ τ ∈ NEq(A) and χ⃗ ∈ SEN♭(Σ), such that φ = σΣ(χ⃗) and
ψ = τΣ(χ⃗). Thus, we finally get

αΣ(φ) = αΣ(σΣ(χ⃗)) = σAΣ(αΣ(χ⃗)) = τAΣ (αΣ(χ⃗)) = αΣ(τΣ(χ⃗)) = αΣ(ψ).

This shows that ⟨F,α∗⟩ is well-defined. Similarly, for all Σ ∈ ∣Sign♭∣ and
all φ,ψ ∈ SEN♭(Σ), if ⟨φ,ψ⟩ ∈ θNEq(C)

Σ , there exists σ ≈ τ ∈ NEq(C) and
χ⃗ ∈ SEN♭(Σ), such that φ = σΣ(χ⃗) and ψ = τΣ(χ⃗). But then

γΣ(φ) = γΣ(σΣ(χ⃗)) = σCΣ(γΣ(χ⃗)) = τ
C
Σ(γΣ(χ⃗)) = γΣ(τΣ(χ⃗)) = γΣ(ψ)

and ⟨H,γ∗⟩ is also well-defined.
In the next step, we show that NEq(F/θNEq(C)) = NEq(C), which will

conclude the proof. First, since F/θNEq(C)
⟨H,γ∗⟩
Ð→ C, we have NEq(F/θNEq(C)) ⊆

NEq(C). For the reverse inclusion, suppose σ ≈ τ ∈ NEq(C) and let Σ ∈ ∣Sign♭∣
and χ⃗ ∈ SEN♭(Σ). Then we get

σθNEq(C)

Σ (χ⃗/θNEq(C)
Σ ) = σΣ(χ⃗)/θ

NEq(C)
Σ

= τΣ(χ⃗)/θ
NEq(C)
Σ (σ ≈ τ ∈ NEq(C))

= τ θ
NEq(C)

Σ (χ⃗/θNEq(C)
Σ ).

Thus, σ ≈ τ ∈ NEq(F/θNEq(C)). Since C ∈ K, we now conclude that A ∈HL(K)
and this proves that LH(K) ⊆HL(K). ∎

Lemma 36 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and K a

class of F-algebraic systems. Then
⊲

IΠL(K) ⊆ L
⊲

IΠ(K).

Proof: Let A ∈
⊲

IΠL(K). Thus, there exist Ai ∈ L(K) and ⟨H i, γi⟩ ∶ A → Ai,
i ∈ I, such that ⋂i∈I Ker(⟨H i, γi⟩) = ∆A. Moreover, there exist Bi ∈ K and
⟨Li, λi⟩ ∶ Ai → Bi, i ∈ I, such that NEq(Ai) = NEq(Bi). So we have the
configuration

F

✰✑
✑
✑
✑
✑
✑
✑
✑

⟨F,α⟩

◗
◗
◗
◗
◗
◗
◗
◗

⟨Gi, βi⟩

s
A

⟨H i, γi⟩
✲ Ai

⟨F i, αi⟩

❄

⟨Li, λi⟩
✲ Bi
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Denote, for the sake of brevity

θi = Ker(⟨Li, λi⟩ ○ ⟨H i, γi⟩), i ∈ I.

Define, for all i ∈ I,
⟨J i, δi⟩ ∶ A/⋂

i∈I

θi → Bi,

by setting J i = Li ○H i and, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),

δiΣ(φ/⋂
i∈I

θiΣ) = λ
i
Hi(Σ)(γ

i
Σ(φ)).

The definition is clearly sound because of the meaning of θi, i ∈ I. Moreover,
the collection

A/⋂
i∈I

θi
⟨J i, δi⟩

✲ Bi, i ∈ I,

forms a subdirect intersection. In fact, for all Σ ∈ ∣Sign∣ and all φ,ψ ∈
SEN(Σ),

⟨φ/⋂i∈I θ
i
Σ, ψ/⋂i∈I θ

i
Σ⟩ ∈ ⋂i∈I KerΣ(⟨J i, δi⟩)

iff δiΣ(φ/⋂i∈I θ
i
Σ) = δ

i
Σ(ψ/⋂i∈I θ

i
Σ), i ∈ I,

iff λi
Hi(Σ)

(γiΣ(φ)) = λ
i
Hi(Σ)

(γiΣ(ψ)), i ∈ I,
iff ⟨φ,ψ⟩ ∈ KerΣ(⟨Li, λi⟩ ○ ⟨H i, γi⟩), i ∈ I,
iff ⟨φ,ψ⟩ ∈ θiΣ, i ∈ I,
iff ⟨φ,ψ⟩ ∈ ⋂i∈I θ

i
Σ

iff ⟨φ/⋂i∈I θ
i
Σ, ψ/⋂i∈I θ

i
Σ⟩ ∈∆

A/⋂i∈I θ
i

Σ .

Since Bi ∈ K, for all i ∈ I, we now get A/⋂i∈I θ
i ∈

⊲

IΠ(K). Thus, it suffices to
show that the quotient morphism

A
⟨I, π⟩

✲ A/⋂
i∈I

θi

is a lifting, i.e., that NEq(A/⋂i∈I θ
i) = NEq(A). Suppose that σ ≈ τ ∈

NEq(A/⋂i∈I θ
i). Then, for all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ), we have the

following equivalent statements

σ
A/⋂i∈I θ

i

Σ (χ⃗/⋂i∈I θ
i
Σ) = τ

A/⋂i∈I θ
i

Σ (χ⃗/⋂i∈I θ
i
Σ)

⟨σAΣ(χ⃗), τ
A
Σ (χ⃗)⟩ ∈ ⋂i∈I θ

i
Σ

λi
Hi(Σ)

(γiΣ(σ
A
Σ(χ⃗))) = λ

i
Hi(Σ)

(γiΣ(τ
A
Σ (χ⃗))), i ∈ I,

λi
Hi(Σ)

(σA
i

Hi(Σ)
(γiΣ(χ⃗))) = λ

i
Hi(Σ)

(τA
i

Hi(Σ)
(γiΣ(χ⃗))), i ∈ I,

σB
i

Li(Hi(Σ))
(λi

Li(Hi(Σ))
(γiΣ(χ⃗))) = τ

Bi

Li(Hi(Σ))
(λi

Li(Hi(Σ))
(γiΣ(χ⃗))), i ∈ I.
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Since, by hypothesis, ⟨Li, λi⟩, i ∈ I, are liftings, we now get, for all Σ ∈ ∣Sign∣
and all χ⃗ ∈ SEN(Σ), σA

i

Hi(Σ)
(γiΣ(χ⃗)) = τ

Ai

Hi(Σ)
(γiΣ(χ⃗)), i ∈ I, i.e., γ

i
Σ(σ

A
Σ (χ⃗)) =

γiΣ(τ
A
Σ (χ⃗)), i ∈ I. But, also by hypothesis, the collection {⟨H i, γi⟩ ∶ i ∈ I}

forms a subdirect intersection. Therefore, σAΣ (χ⃗) = τ
A
Σ (χ⃗). Since this holds

for all Σ ∈ ∣Sign∣ and all χ⃗ ∈ SEN(Σ), we conclude that σ ≈ τ ∈ NEq(A) and,

hence, ⟨I, π⟩ is a lifting, showing that A ∈ L
⊲

IΠ(K). ∎

Now we obtain

Proposition 37 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and

K a class of F-algebraic systems. Then VSyn(K) =HL
⊲

IΠ(K).

Proof: On the one hand, since K ⊆ VSyn(K) and, by Proposition 34, VSyn(K)

is closed under H, L and
⊲

IΠ, we get that HL
⊲

IΠ(K) ⊆ VSyn(K).
For the converse, we can provide a direct proof, analogous to that of

Lemma 29, which is done in the proof of Lemma 33. Alternatively, we may

notice that K ⊆ HL

⊲

IΠ(K) and show that HL

⊲

IΠ(K) is closed under H, L and
⊲

IΠ. It is obviously closed under H, by Lemma 35, it is closed under L, and,

by Lemmas 30 and 36, it is also closed under
⊲

IΠ. Hence, it forms, by Lemma

33, a syntactic variety, and, therefore, VSyn(K) ⊆ HL
⊲

IΠ(K). ∎

6 Relations with Universal Algebra

In this section, we explain some of the connections of the framework devel-
oped so far with that of varieties (or equational classes) of universal algebras.
On the one hand, the framework presented in this work is more general, since
it allows considerations of more complex structures. On the other hand, the
restriction imposed in the case of algebraic systems of considering only sur-
jective morphisms, imposes a certain cardinality restriction on the algebras
considered, when we specialize the current framework to universal algebras.
So, when adapting the current framework to compare it to varieties of univer-
sal algebras, we consider only algebras whose cardinalities do not surpass a
given fixed but arbitrary cardinality, determined by the base algebraic system
F. We embark on some of the details.

For the purpose of comparing the two frameworks, we consider an alge-
braic signature L = ⟨Λ,ar⟩, where Λ is a set of operation symbols, ar ∶ Λ→ ω

33



is the arity function, and a denumerable collection V of variables. Let us de-
note by TmL(V ) = ⟨TmL(V ),L⟩, the free algebra of L-terms with variables
in V . Based on the well-known duality between terms and formulas, we will
use lower case Greek letters, φ,ψ, . . . to denote L-terms and corresponding
starred versions φ∗, ψ∗, . . . to denote the corresponding term operations in
the clone CloL of L-operations on TmL(V ).

Define FL = ⟨Sign♭,SEN♭,N ♭⟩ as follows:

• Sign♭ is a trivial category with object, say, V ;

• SEN♭ gives the set SEN♭(V ) = TmL(V );

• N ♭ = CloL.

Then an FL-algebraic system A = ⟨A, ⟨F,α⟩⟩ may be more simply specified
as a pair ⟨A, h⟩, where

• A = ⟨A,LA⟩ is an L-algebra;

• h ∶ TmL(V ) →A is a surjective L-homomorphism.

Let AlgSys(FL) denote the class of all FL-algebraic systems and by Alg(L)
the class of all L-algebras of cardinality not exceeding that of TmL(V ).

Classes of FL-algebraic systems give rise to classes of L-algebras and
vice versa via the two operators ↓ ∶ P(AlgSys(FL)) → P(Alg(L)) and ↑ ∶
P(Alg(L)) → P(AlgSys(FL)) specified as follows:

• First, given a class K of F-algebraic systems, define

K↓ = {A ∈ Alg(L) ∶ (∃h)(⟨A, h⟩ ∈ K)}.

• Secondly, given a class A of L-algebras, define

A↑ = {⟨A, h⟩ ∈ AlgSys(FL) ∶A ∈ A}.

To formalize some connections between these operators, let us call a class K
of FL-algebraic systems universal if, for all ⟨A, k⟩, ⟨A, h⟩ ∈ AlgSys(FL),

⟨A, k⟩ ∈ K iff ⟨A, h⟩ ∈ K,

i.e., K is universal if and only if membership in K is determined by the L-
algebra component of an FL-algebraic system.
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Lemma 38 Let L be an algebraic signature and FL the corresponding alge-
braic system.

(a) If A ⊆ Alg(L), then A↑ is universal and A↑↓ = A;

(b) If K ⊆ AlgSys(FL), then K↓↑ = K if and only if K is universal.

Proof:

(a) Suppose ⟨A, k⟩, ⟨A, h⟩ ∈ AlgSys(FL), such that ⟨A, k⟩ ∈ A↑. Then,
by the definition of ↑, A ∈ A, whence, again by the definition of ↑,
⟨A, h⟩ ∈ A↑. By symmetry, we have ⟨A, k⟩ ∈ A↑ iff ⟨A, h⟩ ∈ A↑, whence
A↑ is universal. Moreover, for all A ∈ Alg(L), we get

A ∈ A↑↓ iff (∃h)(⟨A, h⟩ ∈ A↑) (definition of ↓)
iff (∀h)(⟨A, h⟩ ∈ A↑) (A↑ universal)
iff A ∈ A. (definition of ↑)

(b) Let K ⊆ AlgSys(FL). Suppose, first, that K is a universal class. Then
we get, for all ⟨A, h⟩ ∈ AlgSys(FL),

⟨A, h⟩ ∈ K↓↑ iff A ∈ K↓ (definition of ↑)
iff ⟨A, h⟩ ∈ K. (definition of ↓ and universality).

Thus, if K is universal, K↓↑ = K. Conversely, if K↓↑ = K, then K happens
to be a class of FL-algebraic systems of the form A↑ for a class A ∶= K↓

of L-algebras, whence, by Part (a), K is universal.
∎

It turns out that the notion of universal class is closely related to one we
have encountered before in a more general context; namely, that of a natural
class of FL-algebraic systems in the sense of Definition 15, i.e., a class K,
such that Eq(K) = θNEq(K).

Proposition 39 Let L be an algebraic signature and FL the corresponding
algebraic system. If a class K of FL-algebraic systems is universal, then it is
natural.

Proof: Suppose K ⊆ AlgSys(FL) is universal. We must show that Eq(K) =
θNEq(K). The right to left inclusion always holds, but let us present the
proof as a warm up for the reverse inclusion. Suppose φ,ψ ∈ θNEq(K). Then,
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by definition, there exist φ′∗ ≈ ψ′∗ ∈ NEq(K) and χ⃗ ∈ TmL(V ), such that
φ = φ′∗(χ⃗) and ψ = ψ′∗(χ⃗). Since φ′∗ ≈ ψ′∗ ∈ NEq(K), we get, for all ⟨A, k⟩ ∈ K
and all h ∶ TmL(V ) → A, φ′∗A(h(v⃗)) = ψ′∗A(h(v⃗)). In particular, since this
holds for all h, we can substitute in the values h(χ⃗), getting φ′∗A(h(χ⃗)) =
ψ′∗A(h(χ⃗)), which yields h(φ′∗(χ⃗)) = h(ψ′∗(χ⃗)), i.e., h(φ) = h(ψ). Thus,
we get, for k in place of h, ⟨A, k⟩ ⊧ φ ≈ ψ. Since ⟨A, k⟩ ∈ K was arbitrary,
φ ≈ ψ ∈ Eq(K). So θNEq(K) ⊆ Eq(K).

Assume, conversely, that φ ≈ ψ ∈ Eq(K). Consider φ∗ ≈ ψ∗ ∈ NEq(FL)
and v⃗ ∈ TmL(V ) consisting of the variables in their natural order. Since, in
this case, we have φ∗(v⃗) = φ and ψ∗(v⃗) = ψ, to see that ψ ≈ ψ ∈ θNEq(K),
it suffices to show that φ∗ ≈ ψ∗ ∈ NEq(K). To this end, let ⟨A, k⟩ ∈ K and
h ∶ TmL(V ) → A. We have the following series of implications, where the
initial equality is based on the assumptions that ⟨A, k⟩ ∈ K, φ ≈ ψ ∈ Eq(K)
and the hypothesis that K is universal:

h(φ) = h(ψ)
h(φ∗(v⃗)) = h(ψ∗(v⃗))
φ∗(h(v⃗)) = ψ∗(h(v⃗))

φ∗(k(χ⃗)) = ψ∗(k(χ⃗)), all χ⃗ ∈ TmL(V )
k(φ∗(χ⃗)) = k(ψ∗(χ⃗)), all χ⃗ ∈ TmL(V )

⟨A, k⟩ ⊧ φ∗ ≈ ψ∗.

We conclude that φ∗ ≈ ψ∗ ∈ NEq(K), whence, φ ≈ ψ ∈ θNEq(K). ∎

It is also not very difficult to show that a syntactic variety of FL-algebraic
systems must be a universal class.

Lemma 40 Let L be an algebraic signature and FL the corresponding alge-
braic system. If K is a syntactic variety of FL-algebraic systems, then K is a
universal class.

Proof: Suppose that K is a syntactic variety and consider ⟨A, k⟩, ⟨A, h⟩ ∈
AlgSys(FL), such that ⟨A, k⟩ ∈ K = NMod(NEq(K)). Then, for all φ∗ ≈ ψ∗ ∈
NEq(K), we have

⟨A, h⟩ ⊧ φ∗ ≈ ψ∗ iff φ∗A(a⃗) = ψ∗A(a⃗), all a⃗ ∈ A,
iff ⟨A, k⟩ ⊧ φ∗ ≈ ψ∗.

Since the latter holds, by hypothesis, so does the former, and, therefore,
⟨A, h⟩ ∈ NMod(NEq(K)) = K. We conclude that K is indeed universal. ∎
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Thus, we get the following relation between semantic and syntactic vari-
eties and universal classes when referring to FL-algebraic systems.

Corollary 41 Let L be an algebraic signature and FL the corresponding al-
gebraic system. A class K of FL-algebraic systems is a syntactic variety if
and only if it is a universal semantic variety.

Proof: If K is a syntactic variety, then, by Lemma 40, it is a universal class
and, by Proposition 17, it is a semantic variety. Conversely, if K is a universal
semantic variety, then, by Proposition 39, it is a natural semantic variety,
whence, by Proposition 17, it is a syntactic variety. ∎

Finally, a result relating varieties of L-algebras with syntactic varieties of
FL-algebraic systems may be formalized as follows (note that, when writing
A ⊧ φ ≈ ψ for A ∈ Alg(L), we refer to the ordinary satisfaction relation of
universal algebra):

Proposition 42 Let L be an algebraic signature, FL the corresponding al-
gebraic system, A ⊆ Alg(L) and K ⊆ AlgSys(FL).

(a) If A is an equational class, then A↑ is a syntactic variety of FL-algebraic
systems;

(b) If K is a syntactic variety, then K↓ is an equational class of L-algebras.

Proof: The proof of both parts relies on the fact that, for every L-algebra
A ∈ Alg(L), every h ∶ TmL(V ) ↠A and every L-equation (or FL-equation)
φ ≈ ψ, it holds that

A ⊧ φ ≈ ψ iff ⟨A, h⟩ ⊧ φ∗ ≈ ψ∗.

Given X ⊆ Eq(L) and E ⊆ NEq(FL), denote

X∗ = {φ∗ ≈ ψ∗ ∶ φ ≈ ψ ∈ X}

and
E− = {φ ≈ ψ ∶ φ∗ ≈ ψ∗ ∈ E}.

37



(a) Assume A = Alg(X), for some collection X ⊆ Eq(L). Then A↑ =
NMod(X∗). Indeed, for all A ∈ Alg(L) and all h ∶ TmL(V ) ↠A,

⟨A, h⟩ ∈ A↑ iff A ∈ A (definition of ↑)
iff A ⊧X (A = Alg(X))
iff ⟨A, h⟩ ⊧X∗ (displayed equivalence above)
iff ⟨A, h⟩ ∈ NMod(X∗). (definition of NMod)

Therefore, A↑ = NMod(X∗) and A↑ is a syntactic variety of FL-algebraic
systems.

(b) Assume K = NMod(E), for some collection E ⊆ NEq(FL). Then K↓ =
Alg(E−). Indeed, for all A ∈ Alg(L) and all h ∶ TmL(V ) ↠A,

A ∈ K↓ iff ⟨A, h⟩ ∈ K (definition of ↓)
iff ⟨A, h⟩ ⊧ E (K = NMod(E))
iff A ⊧ E− (displayed equivalence above)
iff A ∈ Alg(E−). (definition of Alg)

Therefore, K↓ = Alg(E−) and K↓ is an equational class of L-algebras.
∎

We close the exposition by using Proposition 42 to exhibit a close con-
nection between the operator V ∶ P(Alg(L)) → P(Alg(L)), that maps a
class of L-algebras to the equational class it generates, and the operator
VSyn ∶ P(AlSys(FL)) → P(AlgSys(FL)), mapping a class of FL-algebraic
systems to the syntactic variety it generates.

Corollary 43 Let L be an algebraic signature, FL the corresponding alge-
braic system, A ⊆ Alg(L) and K ⊆ AlgSys(FL). Then

V(A) = VSyn(A↑)↓ and V
Syn(K) = V(K↓)↑.

Proof: Suppose, first, that A ⊆ Alg(L). Then, by definition, VSyn(A↑) is
a syntactic variety. Thus, by Proposition 42, VSyn(A↑)↓ is an equational
class. But, obviously, A ⊆ VSyn(A↑)↓ and, therefore, by the definition of V,
we get V(A) ⊆ VSyn(A↑)↓. On the other hand, V(A) is an equational class
by definition. Therefore, by Proposition 42, V(A)↑ is a syntactic variety.
Moreover, clearly, A↑ ⊆ V(A)↑. hence, by the definition of VSyn, we get
VSyn(A↑) ⊆ V(A)↑. Now, applying ↓ and taking into account Lemma 38, we
get VSyn(A↑)↓ ⊆ V(A). This yields that V(A) = VSyn(A↑)↓.
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Suppose, next, that K ⊆ AlgSys(FL). Then, by definition, V(K↓) is an
equational class. Thus, by Proposition 42, V(K↓)↑ is a syntactic variety.
But, obviously, K ⊆ V(K↓)↑ and, therefore, by the definition of VSyn, we get
VSyn(K) ⊆ V(K↓)↑. On the other hand, VSyn(K) is a syntactic variety by
definition. Therefore, by Proposition 42, VSyn(K)↓ is an equational class.
Moreover, clearly, K↓ ⊆ VSyn(K)↓. hence, by the definition of V, we get
V(K↓) ⊆ VSyn(K)↓. Now, applying ↑ and taking into account Lemmas 40 and
38, we get V(K↓)↑ ⊆ VSyn(K). This yields that VSyn(K) = V(K↓)↑. ∎
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