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Abstract

This work is the result of cross-fertilization between the area of
logic dealing with combining logical systems, that has its main roots
in computing science considerations, and the area of categorical ab-
stract algebraic logic, where focus shifts from propositional to more
complex systems, potentially involving multiple signatures and quan-
tifiers. More specifically, on the former side, it is inspired by work of
Caleiro and Ramos on cryptofibring, a method for combining semanti-
cally logical systems that provides a solution to the collapsing problem
present in the more traditional method of fibring. On the side of alge-
braic logic, it is inspired by work previously carried out by the author
in formalizing logical systems by representing their algebraic signatures
as categories of natural transformations and replacing ordinary matrix
semantics by the so-called matrix system semantics. This line of work
goes back to the work of Lawvere on algebraic theories. In the present
work the method of cryptofibring is extended to cover these more com-
plex logical systems and several of the results of Caleiro and Ramos
related to soundness, completeness and conservativeness are considered
in this more general context.
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1 Introduction

The need for versatility and adaptability of logical systems used in various
diverse applications of computer science and artificial intelligence has led
to a reinvigoration of the area of logic dealing with combinations of logical
systems. Recently, various authors have revisited the methodology of fibring,
first introduced by Gabbay [17, 18], in order to either provide a more widely
applicable and versatile mechanism of combining logics based on the original
idea [25, 9, 6] or to study various logical properties of specific systems [7, 28]
or classes of systems [5, 29] that result from applications of fibring. In the
most important and interesting case where some of the connectives of the
component systems are identified, there has been a realization that semantic
fibring sometimes fails to yield a conservative extension of the constituent
logical systems and this leads to the collapsing problem (see, e.g., [24, 8]).

The paradigmatic example of the collapsing problem has been the com-
bination of intuitionistic and classical propositional logics. If the two im-
plications, intuitionistic and classical, are identified, then in the “syntac-
tic” fibring the two implications collapse into a single classical implication.
However, as shown in [8], even if the two implications are kept separate and
fibring is handled semantically, it may still happen that all models of the
resulting logic interpret both resulting implication connectives as classical,
i.e., some form of collapsing still occurs, thus, defeating, at least in part, the
intended purpose of constructing the fibred logical system.

Several approaches have been devised to cope with this phenomenon.
They strive to create an alternative logical system that avoids the collaps-
ing problem. Among those techniques, that either depart substantially from
fibring or modify it in a less radical way, one should mention the attempt
of [13] at combining intuitionistic and classical logics by imposing syntac-
tic restrictions on the instantiation of the axioms employed, the method
of modulated fibring [24], replacing fibring by meet-combination of logics
[26, 27], which, however, leads to a logic in which the shared connectives
preserve only those properties that are common in both constituent logics,
and cryptofibring [8], which is the work at the focus of our current investi-
gations.

Since the treatment of cryptofibring by Caleiro and Ramos [8] constitutes
the primary inspiration and the main starting point of the present work, we
provide, next, a summary of its main ideas and results, together with some
intuition of how they came about in the attempts to devise solutions for the
collapsing problem.

In [8] Caleiro and Ramos deal with propositional logics that are defined
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either by a collection of rules of inference (including axioms) Hilbert-style
or by classes of logical matrices over a fixed propositional signature. Their
basic syntactic apparatus consists of two propositional languages C ′ and C ′′

that share a subset Ĉ = C ′ ∩ C ′′ of connectives and their union C = C ′ ∪
C ′′. In other words, it is assumed that the naming has been appropriately
arranged a priori to take the intended sharing into account. We will follow
an analogous understanding, since it simplifies the presentation and, modulo
renaming, does not harm the generality. On the syntactic side the fibring
consists essentially of taking the union R′ ∪ R′′ of the rules of inference
R′ and R′′ determining the constituent propositional logics over C ′ and
C ′′, respectively, Hilbert-style. The semantic fibring of a class M′ of C ′-
logical matrices and of a class M′′ of C ′′-logical matrices gives rise to a
classM′ ∗M′′ of C-logical matrices that have as algebraic components C-
algebras that extend C ′- and C ′′-algebras over a common universe and that
share the same sets of designated elements.

Using [4, 6] as their starting points, Caleiro and Ramos remind the reader
in [8] that, if one starts with sound logical systems, then the syntactic fibring
is sound with respect to the fibred semantics. More importantly, under
fullness, a condition that ensures availability of enough models, completeness
is also preserved. The drawback here, which is one of the main points of
Caleiro and Ramos’ analysis, is that, depending on context, collapsing may
occur. This, moreover, happens in a natural formalization of the fibring
of intuitionistic and classical propositional calculus, due to the requirement
that algebraic universes and designated sets of elements of the fibred logical
matrices must be shared.

The collapsing phenomenon motivates modifying the framework of fib-
ring to obtain crypto-fibring, a more general way of combining models that
circumvents the restrictions that are responsible for causing collapsing. On
the syntactic side crypto-fibring does not entail any changes. Thus, the
system obtained has still the combined signature C = C ′ ∪ C ′′ with the
intended sharing of Ĉ = C ′ ∩ C ′′ (again taking place automatically by ap-
propriate arrangement). But on the semantic side, the crypto-fibred class
M′⊛M′′ contains many more models thanM′∗M′′; in fact, so many more
that sometimes it is necessary to consider only its subclass of sound models
M′

S○M′′ ⊆ M′ ⊛M′′ to preserve soundness of the resulting logic with re-
spect to this class. The clever natural device used in passing fromM′ ∗M′′

toM′⊛M′′ is that, instead of just allowing combinations of models with the
same universes and designated sets of elements, Caleiro and Ramos allow
also C ′- and C ′′-model morphisms from C ′- and C ′′-models, respectively,
to the C ′- and C ′′-reducts of C-models that preserve the designated sets of
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elements in a precise technical sense.
Without adding excessive conceptual complexity, this abstraction reaps

a wealth of advantages. First, it preserves soundness. Second, subject to
a representability condition on pairs of models from the constituent logical
systems, it ensures conservativeness of the crypto-fibred logic with respect
to both components and, therefore, it also preserves completeness. Rep-
resentability is a technical condition that, roughly speaking, postulates the
availability of enough models, in analogy with the fullness of the fibring con-
text. Finally, the collapsing problem is avoided in some important examples
of combinations, including the paradigmatic combination of intuitionistic
and classical implicational propositional calculi, using crypto-fbring.

Caleiro and Ramos conclude their work in [8] by presenting an elegant
necessary and sufficient condition for the representability of pairs of models
based on an interesting construction of chains of congruences whose unions
must respect and be compatible with designated sets. This latter condition
is inspired by the fundamental role that compatibility plays in the theory
of abstract algebraic logic, particularly emphasized both by the founders
Wim Blok and Don Pigozzi in their seminal “Memoirs monograph” [2] and
by other pioneers, such as Josep Maria Font and Ramon Jansana [15] and
Janusz Czelakowski [10, 11] (see, also [16, 12]).

This connection of the field of combinations of logics with abstract al-
gebraic logic has provided the motivation and the impetus for the work of
the author in abstracting the methodology and the techniques employed in
combining logical systems to a level general enough to encompass logical sys-
tems treated in categorical abstract algebraic logic [30, 31]. Those systems
are formalized as institutions [19, 20] and/or π-institutions [14], since the
institutional framework can accommodate successfully logics with multiple
signatures and quantifiers rather than being restricted to only propositional
logics. This line of research was already initiated in [35], where the work of
Sernadas, Sernadas and Rasga [27] on meet-combinations of logics was lifted
to encompass more general classes of logical systems. The targeted abstrac-
tion has become possible through the techniques pertaining to congruence
systems, matrix systems and generalized compatibility, corresponding to or-
dinary congruences, matrices and compatibility in the propositional context
(see, e.g., the very recent work [34]).

The paper is structured as follows: In Section 2 we recall the basic defini-
tions pertaining to the underlying structures over which we build the theory.
The most fundamental is that of a logical system or logic, which consists of
a signature category, a sentence functor equipped with a category of natural
transformations, a collection of inference rules that defines a proof system,
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as well as a class of matrix system models that defines a closure system on
the sentence functor semantically. The sentence functor and natural trans-
formation setting follow similar concepts employed in categorical abstract
algebraic logic, that have their origins in work of Lawvere on algebraic theo-
ries [21] (see, also, [23]). The use of inference rules in this setting goes back to
[33], whereas the matrix system models form an adaptation of the ordinary
logical matrices from abstract algebraic logic that better fit the categorical
framework. In Section 3 we begin our work towards the study of crypto-
fibring by first introducing a type of fibring of logical systems and showing
that the fibring of two sound logical systems is sound and that the fibring of
two full logical systems is full, which implies that it is also complete. These
results form analogs in this more abstract setting of corresponding results
established for propositional logics by Caleiro and Ramos in Section 3 of [8].
In Section 4 several key concepts at the heart of crypto-fibring are defined
and studied. The concept of crypto-morphism between algebraic systems, as
employed in categorical abstract algebraic logic, is introduced, taking after
the corresponding concept of Caleiro and Ramos. Using crypto-morphisms,
we define the concept of a crypto-extension of two matrix system models
and, in turn, the crypto-fibring of two logical systems. As is ordinarily the
case, the original notion of Caleiro and Ramos is easily seen to be a special
case of this more general categorical notion. Since the special case of [8] al-
ready exhibits the potential of spoiling soundness in crypto-fibring, we also
introduce the sound crypto-fibring of logical systems at the present level,
expecting it to have similar taming influence in avoiding overextending the
collection of crypto-fibred models in a way that adversely affects soundness.
In Section 5, the notion of representability of pairs of models is adapted to
the categorical context and it is shown that, subject to the condition that
every pair of models from the constituent logical systems be represented
in the crypro-fibred system, the latter’s semantic entailment relation is a
conservative extension of the semantic entailments of both original systems.
The most interesting and challenging results, inspired by corresponding re-
sults of [8] for propositional logics, are encountered in Section 6. Namely,
two important necessary conditions for the representability of a pair of mod-
els in the crypto-fibred systems are formulated. Roughly speaking, the first
asserts that the morphisms of the represented models must respect the cor-
responding families of the designated sets of elements: a formula is assigned
a designated value in one system iff it is assigned a designated value in the
other. Necessity arises from the fact that crypto-morphisms are stipulated
to preserve designated sets of elements. Again roughly speaking, the second
necessary condition exhibits congruence relations on the represented models
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that “mesh” nicely and that are compatible with the corresponding desig-
nated systems. “Meshing nicely” here expresses the fact that, in some sense,
the pairs in each congruence include the pairs in the other under intended
identifications. The remaining three sections of the paper exploit this nec-
essary condition to unveil how it can be more intrinsically formulated in
terms of the represented systems, i.e., without recourse to a specific crypto-
extension, and to use the ensuing intrinsic formulation to obtain a sufficient
condition for representability. Sections 7 and 8 are rather technical and
prepare the prerequisite groundwork, while the main work, culminating in
Proposition 17, are presented in Section 9.

2 The Underlying Framework

For standard categorical notation that will mostly remain unexplained, we
refer the reader to any of the standard references [1, 3, 22].

In the sequel we consider an arbitrary but fixed category Sign, called
the category of signatures, and an arbitrary but fixed Set-valued functor
SEN ∶ Sign → Set, called the sentence functor. Also into the picture in
a critical way will be one or more categories of natural transformations on
SEN, usually denoted by the letter N , with possible intonation signs, sub-
or super-scripts, hats, etc.. Such a category N , which, roughly speaking, is
intended to represent the clone of all algebraic operations on SEN of interest
in a specific context, is defined as follows (see, e.g., [34]): The clone of

all natural transformations on SEN is defined to be the locally small
category with collection of objects {SENα ∶ α an ordinal} and collection
of morphisms τ ∶ SENα → SENβ β-sequences of natural transformations
τi ∶ SEN

α → SEN. Composition

SENα SENβ✲⟨τi ∶ i < β⟩
SENγ✲⟨σj ∶ j < γ⟩

is defined by

⟨σj ∶ j < γ⟩ ○ ⟨τi ∶ i < β⟩ = ⟨σj(⟨τi ∶ i < β⟩) ∶ j < γ⟩.

A subcategory N of this category containing all objects of the form SENk

for k < ω, and all projection morphisms pk,i ∶ SENk → SEN, i < k, k < ω, with
p
k,i
Σ
∶ SEN(Σ)k → SEN(Σ) given by

p
k,i
Σ
(φ⃗) = φi, for all φ⃗ ∈ SEN(Σ)k,



CAAL: Crypto-fibring of Logical Systems 7

and such that, for every family {τi ∶ SEN
k → SEN ∶ i < l} of natural trans-

formations in N , the sequence ⟨τi ∶ i < l⟩ ∶ SENk → SENl is also in N , is
referred to as a category of natural transformations on SEN.

An N -rule of inference or simply an N -rule is a pair of the form

⟨{σ0, . . . , σn−1}, τ⟩, sometimes written
σ0, . . . , σn−1

τ
, where σ0, . . . , σn−1, τ

are natural transformations in N . The elements σi, i < n, are called the
premises and τ the conclusion of the rule.

An N -Hilbert calculus R is a set of N -rules. Using the N -rules in R,
one may define derivations of a natural transformation σ in N from a set
∆ of natural transformations in N . Such a derivation is denoted by ∆ ⊢R σ.
If the calculus R is fixed and clear in a particular context, we might simply
write ∆ ⊢ σ.

Given two functors SEN ∶ Sign → Set and SEN′ ∶ Sign′ → Set, with
categories of natural transformations N,N ′ on SEN,SEN′, respectively, a
pair ⟨F,α⟩, where F ∶ Sign → Sign′ is a functor and α ∶ SEN → SEN′ ○ F is
a natural transformation, is called a translation from SEN to SEN′. More-
over, it is said to be (N,N ′)-epimorphic if, there exists a correspondence
σ ↦ σ′ between the natural transformations in N and N ′, that preserves
projections (and, thus, also arities), such that, for all σ ∶ SENk → SEN, all
Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ)k,

αΣ(σΣ(φ⃗)) = σ
′
F (Σ)(α

k
Σ(φ⃗)).

An (N,N ′)-epimorphic translation from SEN to SEN′ will be denoted by
⟨F,α⟩ ∶ SEN→ SEN′, with the relevant categories N,N ′ of natural transfor-
mations on SEN,SEN′, respectively, understood from context.

Given a functor SEN ∶ Sign → Set and a category N of natural trans-
formations on SEN, an N -algebraic system A = ⟨SEN′, ⟨F,α⟩⟩ consists
of

• a functor SEN′ ∶ Sign′ → Set, with a category N ′ of natural transfor-
mations on SEN′;

• an (N,N ′)-epimorphic translation ⟨F,α⟩ ∶ SEN→ SEN′.

An N -matrix system or, simply, N -matrix A = ⟨A, T ⟩ is a pair consisting
of

• an N -algebraic system A = ⟨SEN′, ⟨F,α⟩⟩;

• an axiom family T ∈ AxFam(SEN′) on SEN′, i.e., a collection T =
{TΣ}Σ∈∣Sign′∣ of subsets TΣ ⊆ SEN

′(Σ),Σ ∈ ∣Sign′∣.
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We perceive of the elements of SEN′(F (Σ)) as truth values for evaluating
the natural transformations in N and those of TF (Σ) as being the desig-

nated ones. An N -matrix (system) semanticsM is a class of N -matrix
systems. Given a natural transformation σ ∶ SENk → SEN in N , we set

σΣ′(f(φ⃗)) ∶= σΣ′(SEN(f)
k(φ⃗)),

where f ∈ Sign(Σ,Σ′) and φ⃗ ∈ SEN(Σ)k. The matrix A = ⟨A, T ⟩ satis-
fies σ at φ⃗ ∈ SEN(Σ)k under f ∈ Sign(Σ,Σ′), written A ⊧Σ σ[φ⃗, f], if

αΣ′(σΣ′(f(φ⃗))) ∈ TF (Σ′). A N -rule
σ0, . . . , σn−1

τ
is a rule of an N -matrix

semanticsM, written
σ0, . . . , σn−1 ⊧M τ,

if A ⊧Σ σi[φ⃗, f], for all i < n, implies A ⊧Σ τ[φ⃗, f], for every N -matrix
A ∈ M, all Σ ∈ ∣Sign∣, all Σ-assignments φ⃗ in A and all f ∈ Sign(Σ,Σ′). If
the semantics is clear from context, we simply write σ0, . . . , σn−1 ⊧ τ .

In the remainder of this paper, by a logical system, or simply a logic,
we understand a pentuple L = ⟨Sign,SEN,N,R,M⟩, where

• Sign is a category;

• SEN ∶ Sign → Set is a sentence functor (with domain Sign);

• N is a category of natural transformations on SEN;

• R is an N -Hilbert calculus and

• M is a N -matrix system semantics.

3 Fibring of Logical Systems

Throughout our discussion, we are dealing with an arbitrary but fixed
category Sign of signatures and an arbitrary but fixed sentence functor
SEN ∶ Sign → Set. Given two arbitrary categories N ′ and N ′′ of natu-
ral transformations on SEN, we denote by N ′ ∩N ′′ the category of natural
transformations on SEN consisting, for all k, l ∈ ω, of all those natural trans-
formations SENk → SENl that are in both N ′ and N ′′. It is not difficult to
show that this definition makes sense, because the included morphisms do
satisfy the axioms of a category of natural transformations.

We consider two logical systems L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ =⟨Sign,SEN,N ′′,R′′,M′′⟩. We let N̂ = N ′∩N ′′ and denote by N = ⟨N ′,N ′′⟩
the least category of natural transformations on SEN including N ′ and N ′′,
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which we call the category of natural transformations on SEN gener-

ated by N ′ and N ′′:

N ′ N ′′

N

�
�✒

❅
❅■

N̂

❅
❅■

�
�✒

(1)

This definition also makes sense because there exists a largest category of
natural transformations on SEN and the class of all categories of natural
transformations on SEN is closed under intersection.

The intended goal of N is to model in this abstract framework of clones
the concept of disjoint union of the signatures N ′ and N ′′ subject to sha-
ring of the common sub-signature N̂ , as is done in constrained fibring and
cryptofibring in the sentential context (see, e.g., [25, 8]).

The following lemma provides an alternative (constructive) characteri-
zation of the category ⟨N ′,N ′′⟩.
Lemma 1 Suppose that Sign is a category, SEN ∶ Sign → Set is a functor

and N ′,N ′′ are categories of natural transformations on SEN. Then, the

category N = ⟨N ′,N ′′⟩ of natural transformations on SEN generated by N ′

and N ′′ has, for all k, l ∈ ω, as its morphisms SENk → SENl all l-tuples of

natural transformations SENk → SEN, that are built recursively according

to the following rules:

1. All natural transformations SENk → SEN in N ′ or N ′′ are in N ;

2. For all τ0, . . . , τm−1 ∶ SENk → SEN in N , ⟨τ0, . . . , τm−1⟩ ∶ SENk →
SENm is also in N ;

3. For all σ′ ∶ SENm → SEN in N ′ and all τ0, . . . , τm−1 ∶ SENk → SEN in

N , σ′(τ0, . . . , τm−1) ∶ SENk → SEN is in N ;

4. For all σ′′ ∶ SENm → SEN in N ′′ and all τ0, . . . , τm−1 ∶ SENk → SEN
in N , σ′′(τ0, . . . , τn−1) ∶ SENk → SEN is in N .

Proof: The category constructed recursively as above is a category of nat-
ural transformations on SEN and it contains N ′ and N ′′. Thus, it includes⟨N ′,N ′′⟩. On the other hand, since ⟨N ′,N ′′⟩ includes all natural transfor-
mations in N ′ and all natural transformations in N ′′ and is closed under
compositions and formation of tuples, it must certainly include all natu-
ral transformations built recursively according to the Rules 1-4 enumerated
above. ∎
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The fibring of L′ and L′′ constrained by the sharing of N̂ (as in
Diagram (1)) or, more simply, the constrained fibring of L′ and L′′, is
the logical system

L′ ∗ L′′ = ⟨Sign,SEN,N,R,M∗⟩
defined as follows:

The signature category and the sentence functor are the common
signature category and sentence functor of the two systems L′ and L′′; The
category of natural transformations is N = ⟨N ′,N ′′⟩;

The set of N -rules R is the union R′ ∪ R′′ of the sets of N ′-rules R′

and N ′′-rules R′′, which may be viewed as N -rules because of the inclusion
of N ′ and N ′′, respectively, in N .

Suppose, now, that A′ = ⟨A′, T ⟩ ∈ M′ and A
′′ = ⟨A′′, T ⟩ ∈M′′ are matrix

system models of L′ and L′′, respectively, such that

• A′ = ⟨SENA, ⟨F,α⟩⟩, with a category N ′A of natural transformations
on SENA, is an N ′-algebraic system, and ⟨F,α⟩ an (N ′,N ′A)-algebraic
morphism;

• A′′ = ⟨SENA, ⟨F,α⟩⟩, with a category N ′′A of natural transforma-
tions on SENA, is an N ′′-algebraic system, and ⟨F,α⟩ an (N ′′,N ′′A)-
algebraic morphism;

• there exists a category NA of natural transformations on SENA, ex-
tending both N ′A and N ′′A, such that A = ⟨SENA, ⟨F,α⟩⟩, with NA
on SENA, is an N -algebraic system, and ⟨F,α⟩ an (N,NA)-algebraic
morphism.

In this case we call A′ ∈M′ and A
′′ ∈M′′ compatible models. Given two

such models, we let A′ ∗A′′ = ⟨A, T ⟩. We then define

M∗ = {A′ ∗A′′ ∶ A′ ∈ M′ and A
′′ ∈M′′ compatible}.

A straightforward lemma relates satisfiability in A
′ (and A

′′) with satis-
fiability in A

′ ∗A′′, in case A
′ and A

′′ are compatible matrix systems inM′

andM′′, respectively.

Lemma 2 Suppose σ = σ′(τ0, . . . , τm−1) is a natural transformation in N ,

such that σ′ is in N ′. Then, for all compatible matrix systems A
′ ∈ M′ and

A
′′ ∈ M′′, all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), and all φ⃗ ∈ SEN(Σ)k,

A
′ ∗A′′ ⊧Σ σ[φ⃗, f] iff A

′ ⊧Σ σ
′[τΣ(φ⃗), f],

where τΣ(φ⃗) = ⟨τ0Σ(φ⃗), . . . , τm−1Σ
(φ⃗)⟩.
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Proof:

A
′ ∗A′′ ⊧Σ σ[φ⃗, f] iff αΣ′(σΣ′(f(φ⃗))) ∈ TF (Σ′)

iff αΣ′(σ′Σ′(τ0Σ′(f(φ⃗)), . . . , τm−1Σ′
(f(φ⃗)))) ∈ TF (Σ′)

iff αΣ′(σ′Σ′(f(τ0Σ(φ⃗)), . . . , f(τm−1Σ
(φ⃗)))) ∈ TF (Σ′)

iff A
′ ⊧Σ σ′[τΣ(φ⃗), f].

∎

Lemma 3 Suppose σ = σ′′(τ0, . . . , τm−1) is a natural transformation in N ,

such that σ′′ is in N ′′. Then, for all compatible matrix systems A′ ∈M′ and

A
′′ ∈ M′′, all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), and all φ⃗ ∈ SEN(Σ)k,

A
′ ∗A′′ ⊧Σ σ[φ⃗, f] iff A

′′ ⊧Σ σ
′′[τΣ(φ⃗), f].

Proof: Following similar steps as in the proof of Lemma 2. ∎

It is not difficult to show that the constrained fibring L′ ∗ L′′ of two
sound logical systems is also a sound logical system. This is an analog of
Proposition 3.3 of [8].

Proposition 4 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems over the same sentence functor SEN and

N = ⟨N ′,N ′′⟩. If L′,L′′ are sound, then the system L′ ∗ L′′ = ⟨Sign,SEN,
N,R,M∗⟩ is also sound.

Proof: It suffices to show that every instance of every axiom and of every
rule of inference in R = R′∪R′′ is sound with respect to all matrix systems in
M∗. We show this only for rules of inference in R′, since using an analogous
argument yields a proof for axioms and a completely symmetric argument
establishes the corresponding statement for axioms and rules in R′′.

Suppose that
σ0, . . . , σn−1

σ
is an N ′-rule in R′. Consider an instance

of this rule
σ0(τ ), . . . , σn−1(τ )

σ(τ ) in R, i.e., τ = ⟨τ0, . . . , τk−1⟩ is a k-tuple of

natural transformations SENl → SEN in N . Assume that A
′ ∗ A′′ ∈ M∗,

Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ⃗ ∈ SEN(Σ)l, such that A
′ ∗ A′′ ⊧Σ

σi(τ )[φ⃗, f], for all i < n. Then, by Lemma 2, A′ ⊧Σ σi[τΣ(φ⃗), f], for all i <
n, whence, since

σ0(τ ), . . . , σn−1(τ )
σ(τ ) is in R, we get that A′ ⊧Σ σ[τΣ(φ⃗), f].

A new application of Lemma 2 yields that A′∗A′′ ⊧Σ σ(τ )[φ⃗, f]. Therefore,
the given N -instance

σ0(τ ), . . . , σn−1(τ )
σ(τ ) of the N ′-rule

σ0, . . . , σn−1

σ
in R′
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is indeed sound for every model A′ ∗ A′′ ∈ M∗, showing that L′ ∗ L′′ is a
sound logical system. ∎

In the sequel we focus on a special class of logical systems, called Lin-
denbaum systems. Roughly speaking, they are characterized by the weak
completeness property that, every N -rule that is valid in all Lindenbaum
matrix system models of R is R-provable. We then define fullness for logical
systems as a means to obtain that a Lindenbaum logical system is complete
with respect to the class of its matrix system models. Finally, we show that
fullness is preserved by fibring, thus, obtaining an indirect, but quite elegant
way of ensuring that the fibring of two sound and full Lindenbaum logical
systems is a sound and full and, hence, also a complete logical system.

Consider a logical system L = ⟨Sign,SEN,N,R,M⟩. The collection R
of N -inference rules specifies a closure system CR on SEN (see, e.g., [33, 34]
for details). We consider the theory families ThFam(IR) of the π-institution
IR = ⟨Sign,SEN,CR⟩ and form the collection of Lindenbaum models

MR = {AT ∶ T ∈ ThFam(IR)},
where A

T = ⟨⟨SEN, ⟨ISign, ι⟩⟩, T ⟩. (Here ISign ∶ Sign → Sign is the identity
functor and ι ∶ SEN→ SEN is the identity natural transformation.) We call
the logical system L a Lindenbaum system and say that it satisfies the
Lindenbaum property, if, for all ∆ ∪ {σ} in N ,

∆ ⊧M
R

σ implies ∆ ⊢R σ. (2)

A logical system L = ⟨Sign,SEN,N,R,M⟩ is called full if it contains
all N -matrix systems A = ⟨⟨SENA, ⟨F,α⟩⟩, T ⟩ satisfying all N -rules in R.
It is not very difficult to show that, due to the fact that fullness forces
a logical system to contain all Lindenbaum models, any full Lindenbaum
logical system is also complete.

Proposition 5 A full Lindenbaum logical system L = ⟨Sign,SEN,N,R,
M⟩ is complete.

Proof: Consider again the theory families ThFam(IR) of the π-institution
IR = ⟨Sign,SEN,CR⟩, where CR is the closure system on SEN specified by
R, and form the collection of Lindenbaum models

MR = {AT ∶ T ∈ ThFam(IR)},
where A

T = ⟨⟨SEN, ⟨ISign, ι⟩⟩, T ⟩. Since, for all T ∈ ThFam(IR), T is closed
under R, we have, by fullness, that AT ∈ M. Therefore,MR ⊆M.
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If ∆ ∪ {σ} is a set of natural transformations in N , such that ∆ /⊢R σ,
then, by Condition (2), there exists T ∈ ThFam(IR), Σ,Σ′ ∈ ∣Sign∣, f ∈
Sign(Σ,Σ′) and φ⃗ ∈ SEN(Σ)k, such that AT ⊧Σ ∆[φ⃗, f] and A

T /⊧Σ σ[φ⃗, f].
Thus, ∆ /⊧MR

σ and, a fortiori, ∆ /⊧M σ. This shows that L is a complete
logical system. ∎

In addition, fullness has the attractive property of being preserved under
fibring, i.e., as the following lemma asserts, the fibring of two full logical
systems is also a full logical system.

Lemma 6 Suppose L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ are two logical systems over the same sentence functor SEN
and N = ⟨N ′,N ′′⟩. If L′,L′′ are full, then L′ ∗ L′′ = ⟨Sign,SEN,N,R,M∗⟩
is also full.

Proof: Suppose that A = ⟨⟨SENA, ⟨F,α⟩⟩, T ⟩ is an N -matrix system
that is sound for R′ ∪ R′′. Then, clearly, A is sound for both R′ and
R′′. Therefore, by the fullness of L′ and of L′′, we get that the N ′A-
reduct A

′ = ⟨⟨SENA, ⟨F,α⟩⟩, T ⟩ of A is in M′ and that the N ′′A-reduct
A
′′ = ⟨⟨SENA, ⟨F,α⟩⟩, T ⟩ of A is in M′′. This, however, shows that A =

A
′ ∗A′′ ∈M∗ and, hence, L′ ∗ L′′ is also a full logical system. ∎

Lemma 6, put together with Proposition 5, yields the following result
to the effect that the fullness of the components ensures the completeness
of the fibred system, subject to the requirement that it be a Lindenbaum
system.

Proposition 7 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems over the same sentence functor SEN and

N = ⟨N ′,N ′′⟩. If L′,L′′ are full, then, if the logic L′ ∗ L′′ = ⟨Sign,SEN,N,
R,M∗⟩ satisfies the Lindenbaum property, it is complete.

Proof: By Lemma 6, L′ ∗L′′ is full and, therefore, since it is Lindenbaum,
by Proposition 5, it is complete. ∎

4 Cryptofibring of Logical Systems

Let Sign be a category and SEN ∶ Sign → Set a functor. Consider a
category N ′′ of natural transformations on SEN and a subcategoryN ′ of N ′′,
which is itself a category of natural transformations on SEN. Given an N ′-
matrix system A

′ = ⟨A′, T ′⟩, with A′ = ⟨SEN′, ⟨F ′, α′⟩⟩, and an N ′′-matrix
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system A
′′ = ⟨A′′, T ′′⟩, with A′′ = ⟨SEN′′, ⟨F ′′, α′′⟩⟩, a cryptomorphism⟨F,α⟩ ∶ A′ → A

′′ is an N ′-algebraic morphism ⟨F,α⟩ ∶ A′ → A′′, satisfying
the additional property that T ′ = α−1(T ′′). Note that ⟨F,α⟩ ∶ A′ → A′′ being
an N ′-algebraic morphism involves by definition the commutativity of the
following diagram:

SEN′ SEN′′✲⟨F,α⟩

SEN

⟨F ′, α′⟩ �
�

�
�✠

⟨F ′′, α′′⟩❅
❅
❅
❅❘

The morphism ⟨F,α⟩ ∶ A′ → A′′ being an N ′-algebraic morphism makes
sense, since N ′ is assumed to be a subcategory of natural transformations
of the category N ′′ of natural transformations and A′′ is assumed to be
an N ′′-algebraic system. Moreover, recall that the condition T ′ = α−1(T ′′)
means that, for all Σ′ ∈ ∣Sign′∣, T ′

Σ′
= α−1

Σ′
(T ′′

F (Σ′)).
Once more, we consider a fixed but arbitrary category of signatures

Sign and an arbitrary but fixed functor SEN ∶ Sign → Set. Let L′ = ⟨Sign,
SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,N ′′,R′′,M′′⟩ be two logical systems
and let N = ⟨N ′,N ′′⟩ be, as before, the category of natural transformations
on SEN generated by N ′ and N ′′ subject to sharing N̂ = N ′∩N ′′. We define
the crypto-fibring of L′ and L′′ constrained by the sharing of N̂ or,
more simply, the constrained crypto-fibring of L′ and L′′, as the logical
system

L′ ⊛L′′ = ⟨Sign,SEN,N,R,M⊛⟩
defined as follows:

The signature category and the sentence functor are the common
signature category and sentence functor of the two systems L′ and L′′; The
category of natural transformations is N = ⟨N ′,N ′′⟩.

The set of N -rules R is the union R′ ∪ R′′ of the sets of N ′-rules R′

and N ′′-rules R′′. Again, recall that, as was the case in constrained fibring,
these rules may be viewed as N -rules because of the inclusion of N ′ and N ′′

in N .
Let A′ = ⟨A′, T ′⟩ ∈ M′ and A

′′ = ⟨A′′, T ′′⟩ ∈ M′′ be models of L′ and L′′,
respectively, such that

• A′ = ⟨SEN′, ⟨F ′, α′⟩⟩, with N ′A a category of natural transforma-
tions on SEN′, is an N ′-algebraic system, and ⟨F ′, α′⟩ an (N ′,N ′A)-
algebraic morphism and
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• A′′ = ⟨SEN′′, ⟨F ′′, α′′⟩⟩, with N ′′A a category of natural transforma-
tions on SEN′′, is anN ′′-algebraic system, and ⟨F ′′, α′′⟩ an (N ′′,N ′′A)-
algebraic morphism.

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

Then, a crypto-extension of A′, A′′ is a triple ⟨A, ⟨G′, β′⟩, ⟨G′′, β′′⟩⟩, where
• A = ⟨A, T ⟩ is an N -matrix system, such that A = ⟨SENA, ⟨F,α⟩⟩, with
NA a category of natural transformations on SENA, is an N -algebraic
system, and ⟨F,α⟩ an (N,NA)-algebraic morphism;

• ⟨G′, β′⟩ ∶ A′ → A and ⟨G′′, β′′⟩ ∶ A′′ → A are crypto-morphisms which,
by definition, have to make the following diagram commute:

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�
��✒ ⟨G′′, β′′⟩

❅
❅

❅❅■✻

⟨F,α⟩ (3)

We set

A
′ ⊛A

′′ = {A ∶ ⟨A, ⟨G′, β′⟩, ⟨G′′, β′′⟩⟩ is a crypto-extension of A′,A′′},
the class of all matrix system components of crypto-extensions of A′ and
A
′′, and, moreover, we set

M⊛ =⋃{A′ ⊛A
′′ ∶ A′ ∈ M′,A′′ ∈ M′′}.

As the observant reader might have expected, it is the case, as was also in
the context of ordinary crypto-fibring of sentential logics of [8], that the class
of all crypto-models includes the class of all fibred models. The following
proposition forms an analog of Proposition 4.3 of [8].

Proposition 8 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems and N = ⟨N ′,N ′′⟩. Then, the class

of models M∗ is a subclass of the class of models M⊛.
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Proof: If A′ ∈ M′ and A
′′ ∈ M′′ are compatible, and A

′ ∗A′′ ∈ M∗, with
A
′′ ∗A′′ = ⟨⟨SENA, ⟨F,α⟩⟩, T ⟩, then the following diagram

SENA SENA

SEN

⟨F,α⟩
❅

❅
❅❅■ ⟨F,α⟩

�
�
��✒

SENA

⟨I, ι⟩
�
�

��✒ ⟨I, ι⟩
❅

❅
❅❅■✻

⟨F,α⟩

is a special case of Diagram (3), showing that A′ ∗A′′ ∈M⊛. ∎

As is pointed out in the discussion following Proposition 4.3 in [8], in
general, the classM⊛ is in fact much larger than the classM∗ and, some-
times, so large that soundness of L′ ⊛L′′ is not inherited by the soundness
of the constituent logical systems. Thus, to preserve soundness, one has to
restrict the class of modelsM⊛ to consist of only those models with respect
to which the N -rules in R are sound.

Given two logical systems L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,
SEN,N ′′,R′′,M′′⟩ and N = ⟨N ′,N ′′⟩, we define the sound crypto-fibring

of L′ and L′′ constrained by the sharing of N̂ = N ′∩N ′′ or, more simply,
the constrained sound crypto-fibring of L′ and L′′, as the logical system

L′ S○L′′ = ⟨Sign,SEN,N,R,M S○⟩
whereM S○ is the subclass ofM⊛ consisting of all those models that satisfy
all N -rules in R.

With this latter definition, the sound crypto-fibring of two logical sys-
tems becomes by default a sound logical system. Moreover, as is shown next,
in an analog of Proposition 4.5 of [8], if the original logical systems are full,
then the sound crypto-fibring is rich enough to also be full and, as a conse-
quence, completeness is also preserved under these circumstances, under the
proviso that the crypto-fibred system is Lindenbaum (see Proposition 5).

Proposition 9 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,N ′′,
R′′,M′′⟩ be two sound logical systems and N = ⟨N ′,N ′′⟩. If both L′ and L′′

are full, then the class M S○ is a subclass ofM∗.

Proof: If A ∈ M S○, then, by definition, A satisfies all N -rules of R.
Therefore, since, by Lemma 6, M∗ is full, we get that there exist A

′ ∈ M′

and A
′′ ∈ M′′, such that A = A′ ∗A′′ ∈M∗. ∎
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5 Representability and Conservativeness

In the case of crypto-fibring, the concept of representability of a pair of
models plays a key role for ensuring conservativeness, similar to the role
that fullness plays in ensuring completeness. Because of its importance,
most of the remainder of the paper will be dedicated in its detailed study
and in taking advantage of it, whenever possible, to endow crypto-fibred
systems with the ensuing desirable properties. For sentential logics, where
our inspiration originates from, we refer the reader to Section 5 of [8].

Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,N ′′,R′′,M′′⟩ be
two logical systems and N = ⟨N ′,N ′′⟩. Assume that A′ ∈ M′ and A

′′ ∈M′′.
The pair ⟨A′,A′′⟩ is said to be represented in M⊛ if there exists an N -
matrix system A ∈ M⊛, such that A ∈ A′ ⊛A

′′, i.e., if there exists a crypto-
extension ⟨A, ⟨G′, β′⟩, ⟨G′′, β′′⟩⟩ of A′ and A

′′.

Proposition 10 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems and N = ⟨N ′,N ′′⟩. If, for all A′ ∈ M′,

there exists A
′′ ∈ M′′, such that ⟨A′,A′′⟩ is represented in M⊛, and vice-

versa, then ⊧⊛ is a conservative extension of both ⊧′ and ⊧′′.

Proof: Suppose that ∆ ∪ {σ} is a collection of natural transformations
in N ′, such that ∆ ⊧′ σ, and that ⟨A, ⟨G′, β′⟩, ⟨G′′, β′′⟩⟩, with A = ⟨⟨SENA,⟨F,α⟩⟩, T ⟩, is a crypto-extension of A′ ∈M′ and A

′′ ∈ M′′,

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

such that, for some Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ⃗ ∈ SEN(Σ)k,
A ⊧Σ ∆[φ⃗, f].

Then αΣ′(∆Σ′(f(φ⃗))) ⊆ TF (Σ′). This implies that

β′F ′(Σ′)(α′Σ′(∆Σ′(f(φ⃗)))) ⊆ TG′(F ′(Σ′)),
i.e., that α′

Σ′
(∆Σ′(f(φ⃗))) ⊆ β′−1F ′(Σ′)(TG′(F ′(Σ′))) = T ′F ′(Σ′). Thus, since ∆ ⊧′

σ, we get that α′
Σ′
(σΣ′(f(φ⃗))) ∈ T ′F ′(Σ′) = β′−1F ′(Σ′)(TG′(F ′(Σ′))), i.e.,
β′F ′(Σ′)(α′Σ′(σΣ′(f(φ⃗)))) ∈ TG′(F ′(Σ′)).
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Equivalently, αΣ′(σΣ′(f(φ⃗))) ∈ TF (Σ′). This shows that ∆ ⊧⊛ σ.
Conversely, suppose ∆ ∪ {σ} is a collection of natural transformations

in N ′, such that ∆ /⊧′ σ. Then, there exists A
′ ∈ M′, Σ,Σ′ ∈ ∣Sign∣, f ∈

Sign(Σ,Σ′) and φ⃗ ∈ SEN(Σ)k, such that A
′ ⊧′

Σ
∆[φ⃗, f] and A

′ /⊧′Σ σ[φ⃗, f],
i.e., such that α′

Σ′
(∆Σ′(f(φ⃗))) ⊆ T ′F ′(Σ′) and α′Σ′(σΣ′(f(φ⃗))) /∈ T ′F ′(Σ′). By

hypothesis, there exists, then, A′′ ∈M′′, such that ⟨A′,A′′⟩ is represented in
M⊛, say, via the diagram

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

where ⟨A, ⟨G′, β′⟩, ⟨G′′, β′′⟩⟩, with A = ⟨⟨SENA, ⟨F,α⟩⟩, T ⟩, is a crypto-ex-
tension of A′ ∈ M′ and A

′′ ∈ M′′. Since β′−1(T ) = T ′, we get that

αΣ′(∆Σ′(f(φ⃗))) = β′F ′(Σ′)(α′Σ′(∆Σ′(f(φ⃗)))) ⊆ TF (Σ′)
but

αΣ′(σΣ′(f(φ⃗))) = β′F ′(Σ′)(α′Σ′(σΣ′(f(φ⃗)))) /∈ TF (Σ′).
This shows that A ⊧⊛

Σ
∆[φ⃗, f] and A /⊧⊛Σ σ[φ⃗, f], i.e., that ∆ /⊧⊛ σ.

A symmetric argument shows that ⊧⊛ is a conservative extension of ⊧′′.
∎

6 Necessary Conditions for Representability

In this section, we abstract the two necessary conditions for representability
of pairs of models of sentential logics provided in Lemmas 5.3 and 5.4 of
[8] to obtain similar, but more general, conditions for the representability of
pairs of matrix systems in the abstract framework of crypto-fibring of logical
systems, as investigated in the present work. The first result, Proposition
11, corresponds to Lemma 5.3 of [8]. It expresses the fact that, due to the
availability of crypto-extensions, the model morphisms of the matrix systems
of the constituent logical systems must respect, in some sense, the families
of designated sets of elements.
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Proposition 11 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems, N = ⟨N ′,N ′′⟩ and A

′ = ⟨⟨SEN′, ⟨F ′,
α′⟩⟩, T ′⟩ ∈ M′, A′′ = ⟨⟨SEN′′, ⟨F ′′, α′′⟩⟩, T ′′⟩ ∈ M′′. If ⟨A′,A′′⟩ is represented

in M⊛, then, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN(Σ),
α′Σ(φ) ∈ T ′F ′(Σ) iff α′′Σ(φ) ∈ T ′′F ′′(Σ).

Proof: Suppose that ⟨A′,A′′⟩ is represented inM⊛ by the crypto-extension⟨A, ⟨G′, β′⟩, ⟨G′′, β′′⟩⟩, with A = ⟨⟨SENA, ⟨F,α⟩⟩, T ⟩:

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

Then, we have

β′F ′(Σ)(α′Σ(φ)) = αΣ(φ) = β′′F ′′(Σ)(α′′Σ(φ)).
Therefore, we obtain

α′
Σ
(φ) ∈ T ′

F ′(Σ) iff β′
F ′(Σ)(α′Σ(φ)) ∈ TF (Σ)

iff β′′
F ′′(Σ)(α′′Σ(φ)) ∈ TF (Σ)

iff α′′
Σ
(φ) ∈ T ′′

F ′′(Σ),

which is the required equivalence in the conclusion. ∎

Proposition 12 formalizes an analog of Lemma 5.4 of [8]. Roughly speak-
ing, it asserts that the existence of a crypto-extension for a pair of matrix
system models implies the existence of congruence systems, one on each
model of the pair, that are in some sense intertwined and, moreover, each
is compatible with the corresponding family of designated sets of elements.
This latter condition is inspired by the cornerstone compatibility condi-
tions of abstract algebraic logic [2, 15, 16] (see also, e.g., [32] for categorical
analogs, more intimately connected to the present context).

Proposition 12 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems, N = ⟨N ′,N ′′⟩ and A

′ = ⟨⟨SEN′, ⟨F ′,
α′⟩⟩, T ′⟩ ∈ M′, A′′ = ⟨⟨SEN′′, ⟨F ′′, α′′⟩⟩, T ′′⟩ ∈ M′′. If ⟨A′,A′′⟩ is represented

in M⊛, then, there exist an N ′-congruence system ∼ on SEN′ and an N ′′-

congruence system ≈ on SEN′′, such that
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• α′(α′′−1(≈)) ≤ ∼ and α′′(α′−1(∼)) ≤ ≈;
• ∼ is compatible with T ′ and ≈ is compatible with T ′′.

Proof: Suppose, once more, that ⟨A′,A′′⟩ is represented in M⊛, via the
following diagram:

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

We consider the N ′-congruence system ∼ = Ker(⟨G′, β′⟩) on SEN′ and the
N ′′-congruence system ≈ = Ker(⟨G′′, β′′⟩) on SEN′′.

To see that the first listed conditions are satisfied, suppose that ⟨φ,ψ⟩ ∈
α′′−1
Σ
(≈F ′′(Σ)), i.e., that α′′Σ(φ) ≈F ′′(Σ) α′′Σ(ψ). Thus,

β′′F ′′(Σ)(α′′Σ(φ)) = β′′F ′′(Σ)(α′′Σ(ψ)).
By the commutativity of the previous diagram, we get that β′

F ′(Σ)(α′Σ(φ)) =
β′
F ′(Σ)(α′Σ(ψ)), yielding α′Σ(φ) ∼F ′(Σ) α′Σ(ψ). Hence, α′

Σ
(α′′−1

Σ
(≈F ′′(Σ))) ⊆

∼F ′(Σ). Since Σ ∈ ∣Sign∣ was arbitrary, we get that α′(α′′−1(≈)) ≤ ∼.
The proof that α′′(α′−1(∼)) ≤ ≈ is symmetric.
To demonstrate the second of the listed conditions, let Σ′ ∈ ∣Sign′∣ and

φ′, ψ′ ∈ SEN′(Σ′), such that φ′ ∼Σ′ ψ′ and φ′ ∈ T ′
Σ′
= β′−1

Σ′
(TG′(Σ′)). Thus,

β′
Σ′
(φ′) = β′

Σ′
(ψ′) and β′

Σ′
(φ′) ∈ TG′(Σ′). Hence β′Σ′(ψ′) ∈ TG′(Σ′) and, there-

fore, ψ′ ∈ β′−1
Σ′
(TG′(Σ′)) = T ′Σ′ , showing that ∼ is compatible with T ′. That ≈

is compatible with T ′′ may be shown similarly. ∎

7 Technical Lemmas on Congruence Systems

Motivated by Proposition 12, we start in this section an investigation on how
one can characterize intrinsically the congruences ∼ and ≈ without prior
knowledge of the morphisms ⟨G′, β′⟩ and ⟨G′′, β′′⟩ of a crypto-extension⟨A, ⟨G′, β′⟩, ⟨G′′, β′′⟩⟩ of the pair ⟨A′,A′′⟩. To do this, we need to be able to
construct congruence systems ∼ on SEN′ and ≈ on SEN′′ that will be shown
to satisfy the requisite conditions in case such a crypto-extension exists,
but without explicitly referring to it. Moreover, in the last section of the
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paper, taking further advantage of these constructions, it will be shown that,
in an important special case, if the constructed congruences satisfy those
conditions, then such a crypto-extension may be constructed a posteriori,
i.e., those conditions turn out to also be sufficient for a crypto-extension to
exist.

To begin with, we show that, given a congruence system on one of the
matrix systems A

′ or A
′′, one may pull it back to obtain a corresponding

congruence system on SEN and that, under this inverse image construction,
inclusion of the congruence systems in kernels of appropriate morphisms is
preserved. This is not yet an intrinsic condition, but it is a property that
will be proven useful later in constructing intrinsically an intertwined pair
of congruences on the matrix system models.

Lemma 13 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,N ′′,
R′′,M′′⟩ be two logical systems, N = ⟨N ′,N ′′⟩ and A

′ = ⟨⟨SEN′, ⟨F ′, α′⟩⟩,
T ′⟩ ∈ M′, A

′′ = ⟨⟨SEN′′, ⟨F ′′, α′′⟩⟩, T ′′⟩ ∈ M′′, such that ⟨A′,A′′⟩ is repre-

sented inM⊛ as follows:

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

(i) If ∼ is an N ′-congruence system on SEN′, then α′−1(∼) is an N ′-

congruence system on SEN. Moreover, if ∼ ≤ Ker(⟨G′, β′⟩), then

α′−1(∼) ≤ Ker(⟨F,α⟩);
(ii) If ≈ is an N ′′-congruence system on SEN′′, then α′′−1(≈) is an N ′′-

congruence system on SEN. Moreover, if ≈ ≤ Ker(⟨G′′, β′′⟩), then

α′′−1(≈) ≤ Ker(⟨F,α⟩).
Proof: It suffices to prove Part (i). The second part follows, then, by
symmetry.

First, it is not difficult to show that, for all Σ ∈ ∣Sign∣, α′−1
Σ
(∼F ′(Σ)) is

an equivalence relation on SEN(Σ). In fact, for all φ,χ,ψ ∈ SEN(Σ),
• by reflexivity of ∼F ′(Σ), α

′
Σ
(φ) ∼F ′(Σ) α′Σ(φ), whence φ α′−1Σ

(∼F ′(Σ)) φ;
• if φ α′−1

Σ
(∼F ′(Σ)) χ, then α′Σ(φ) ∼F ′(Σ) α′Σ(χ), whence, by the symme-

try of ∼F ′(Σ), α
′
Σ
(χ) ∼F ′(Σ) α′Σ(φ) and, therefore, χ α′−1Σ

(∼F ′(Σ)) φ;
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• if φ α′−1
Σ
(∼F ′(Σ)) χ and χ α′−1

Σ
(∼F ′(Σ)) ψ, then α′

Σ
(φ) ∼F ′(Σ) α′Σ(χ)

and α′
Σ
(χ) ∼F ′(Σ) α′Σ(ψ), whence, by the transitivity of ∼F ′(Σ), we

obtain α′
Σ
(φ) ∼F ′(Σ) α′Σ(ψ) and, therefore, φ α′−1Σ

(∼F ′(Σ)) ψ;
Moreover, for all Σ ∈ ∣Sign∣, α′−1

Σ
(∼F ′(Σ)) is an N ′-congruence relation

on SEN(Σ). Indeed, if σ is a natural transformation in N ′, and φ⃗, ψ⃗ ∈
SEN(Σ)k, such that φ⃗ α′−1

Σ
(∼F ′(Σ))k ψ⃗, then α′kΣ (φ⃗) ∼kF ′(Σ) α′kΣ (ψ⃗), whence,

since ∼F ′(Σ) is an N
′-congruence relation, we get that σF ′(Σ)(α′kΣ (φ⃗)) ∼F ′(Σ)

σF ′(Σ)(α′kΣ (ψ⃗)). This is equivalent to α′
Σ
(σΣ(φ⃗)) ∼F ′(Σ) α′Σ(σΣ(ψ⃗)), i.e.,

σΣ(φ⃗) α′−1Σ
(∼F ′(Σ)) σΣ(ψ⃗).

Next, the collection α′−1(∼) = {α′−1
Σ
(∼F ′(Σ))}Σ∈∣Sign∣ is an N ′-congruence

system, since, if Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and ⟨φ,ψ⟩ ∈ α′−1
Σ
(∼F ′(Σ)),

then α′
Σ
(φ) ∼F ′(Σ) α′Σ(ψ), whence, by the system property of ∼,

SEN(F (f))(α′Σ(φ)) ∼F ′(Σ′) SEN(F (f))(α′Σ(ψ)).
Thus, by the natural transformation property of α, α′

Σ′
(SEN(f)(φ)) ∼F ′(Σ′)

α′
Σ′
(SEN(f)(ψ)), giving, finally, SEN(f)2(⟨φ,ψ⟩) ∈ α′−1

Σ′
(∼F ′(Σ′)).

It only remains to show ∼ ≤ Ker(⟨G′, β′⟩) implies α′−1(∼) ≤ Ker(⟨F,α⟩).
If φ α′−1

Σ
(∼F ′(Σ)) ψ, then α′Σ(φ) ∼F ′(Σ) α′Σ(ψ), whence, by hypothesis,

β′F ′(Σ)(α′Σ(φ)) = β′F ′(Σ)(α′Σ(ψ)),
i.e., αΣ(φ) = αΣ(ψ), showing that ⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩).

As mentioned at the outset, Part (ii) follows by symmetry. ∎

We concentrate, next, in showing that, given either an N ′′- or an N ′-
congruence system on SEN, we can push it forward obtaining a relation fam-
ily on SEN′ or SEN′′, respectively, that generates an N ′- or N ′′-congruence
system on the matrix system A

′ or the matrix system A
′′, respectively, and

that, under this forward congruence generation, inclusion of the congruence
systems in kernels of appropriate morphisms is preserved. We obtain, as
before, a property that will prove handy in constructing intrinsically an
intertwined pair of congruences on the matrix system models.

Lemma 14 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,N ′′,
R′′,M′′⟩ be two logical systems, N = ⟨N ′,N ′′⟩ and A

′ = ⟨⟨SEN′, ⟨F ′, α′⟩⟩,
T ′⟩ ∈ M′, A

′′ = ⟨⟨SEN′′, ⟨F ′′, α′′⟩⟩, T ′′⟩ ∈ M′′, such that ⟨A′,A′′⟩ is repre-
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sented inM⊛ via the following diagram:

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

(i) If � is an N ′′-congruence system on SEN, such that � ≤ Ker(⟨F,α⟩),
then the N ′-congruence system ∼ on SEN′ generated by the image

α′(�) = {α′
Σ
(�Σ)}Σ∈∣Sign∣ satisfies ∼ ≤ Ker(⟨G′, β′⟩);

(ii) If ⌢ is an N ′-congruence system on SEN, such that ⌢ ≤ Ker(⟨F,α⟩),
then the N ′′-congruence system ≈ on SEN′′ generated by α′′(⌢) ={α′′

Σ
(⌢Σ)}Σ∈∣Sign∣ satisfies ≈ ≤ Ker(⟨G′′, β′′⟩).

Proof: It suffices to prove Part (i). The second part follows, then, by
symmetry. Since ⟨G′, β′⟩ ∶ SEN′ → SENA is an N ′-morphism, it follows that
Ker(⟨G′, β′⟩) is an N ′-congruence system on SEN′. Therefore, to conclude
the proof of Part (i), it suffices to show that, for all Σ ∈ ∣Sign∣, αΣ(�Σ) ⊆
KerF ′(Σ)(⟨G′, β′⟩). Suppose, to this end, that φ,ψ ∈ SEN(Σ), such that
φ �Σ ψ. Then, by hypothesis, αΣ(φ) = αΣ(ψ), whence β′

F ′(Σ)(α′Σ(φ)) =
β′
F ′(Σ)(α′Σ(ψ)). Thus, ⟨α′

Σ
(φ), α′

Σ
(ψ)⟩ ∈ KerF ′(Σ)(⟨G′, β′⟩), showing that

α′
Σ
(�Σ) ⊆ KerF ′(Σ)(⟨G′, β′⟩). ∎

8 Building Up Congruence Systems

In this section, we use the technical lemmas of Section 7 to construct con-
gruence systems on the matrix systems A

′ and A
′′ of a pair in M′ ×M′′,

without the prior assumption that the pair ⟨A′,A′′⟩ is represented in M⊛.
This is what exactly was meant by the use of the word “intrinsic”. If the pair
is in fact represented inM⊛, then we show that the intrinsically constructed
congruence systems satisfy the necessary conditions outlined in Section 6.
In Section 9, we will show that, in addition, these two conditions do imply
representability in a special case that is, however, general enough to capture
the important case of categorical Lindenbaum models. In this way, we close,
at least partially, the full circle of necessity and sufficiency.



CAAL: Crypto-fibring of Logical Systems 24

Let us fix, again, two logical systems L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and
L′′ = ⟨Sign,SEN,N ′′,R′′,M′′⟩, set N = ⟨N ′,N ′′⟩ and A

′ = ⟨⟨SEN′, ⟨F ′, α′⟩⟩,
T ′⟩ ∈M′, A′′ = ⟨⟨SEN′′, ⟨F ′′, α′′⟩⟩, T ′′⟩ ∈ M′′:

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

Inspired by analogous constructions presented in Sections 6 and 7 of Caleiro
and Ramos [8] for the propositional framework, we define two sequences

⌢0 ≤ ⌢1 ≤ ⌢2 ≤ ⋯ and �0 ≤ �1 ≤ �2 ≤ ⋯

of N ′- and N ′′-congruence systems, respectively, on SEN, a sequence

∼0 ≤ ∼1 ≤ ∼2 ≤ ⋯

of N ′-congruence systems on SEN′ and a sequence

≈0 ≤ ≈1 ≤ ≈2 ≤ ⋯

of N ′′-congruence systems on SEN′′ by joint induction on superscripts as
follows:

• First, we set ∼0 = ∆SEN
′

and ≈0 = ∆SEN
′′

, the identity congruence
systems on SEN′ and SEN′′, respectively.

• Next, assuming that ∼n and ≈n have been defined on SEN′ and SEN′′,
respectively, define ⌢n = α′−1(∼n) and �n = α′′−1(≈n);

• Finally, assuming that ⌢n and �n have been defined on SEN, we de-
fine the N ′-congruence system ∼n+1 on SEN′ and the N ′′-congruence
system ≈n+1 on SEN′′ as the N ′- and N ′′-congruence systems, respec-
tively, generated by α′(�n) and α′′(⌢n), respectively.

Lemma 15 asserts that these constructions, applied inductively starting
from identity congruence systems in increasing superscript order, produce
increasing chains of congruence systems on the corresponding sentence func-
tors.

Lemma 15 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,N ′′,
R′′,M′′⟩ be two logical systems, N = ⟨N ′,N ′′⟩ and A

′ = ⟨⟨SEN′, ⟨F ′, α′⟩⟩,
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T ′⟩ ∈ M′, A
′′ = ⟨⟨SEN′′, ⟨F ′′, α′′⟩⟩, T ′′⟩ ∈ M′′, such that ⟨A′,A′′⟩ is repre-

sented inM⊛.

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

The sequences ⌢0 ≤ ⌢1 ≤ ⌢2 ≤ ⋯, �0 ≤ �1 ≤ �2 ≤ ⋯, ∼0 ≤ ∼1 ≤ ∼2 ≤ ⋯
and ≈0 ≤ ≈1 ≤ ≈2 ≤ ⋯ are increasing sequences of N ′-, N ′′-, N ′- and N ′′-

congruence systems, the first two on SEN and the last two on SEN′ and
SEN′′, respectively.

Proof: Suppose that ⟨A′,A′′⟩ is represented inM⊛ as follows:

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

We use a joint induction on the superscripts of the sequences involved.
First, note that ∼0 and ≈0, being identity equivalence systems, are valid
N ′- and N ′′-congruence systems on SEN′ and SEN′′, respectively, and, in
addition, they satisfy ∼0 ≤ Ker(⟨G′, β′⟩) and ≈0 ≤ Ker(⟨G′′, β′′⟩). Therefore,
by Lemma 13, both ⌢0 and �0 are N ′- and N ′′-congruence systems, respec-
tively, on SEN and they satisfy ⌢0,�0 ≤ Ker(⟨F,α⟩). This concludes the
basis of the induction.

Suppose, next, that ⌢n,�n are already defined N ′- and N ′′-congruence
systems, respectively, on SEN, such that ⌢n,�n ≤ Ker(⟨F,α⟩). Then, by
Lemma 14, ∼n+1 is an N ′-congruence system on SEN′ and ≈n+1 is an N ′′-
congruence system on SEN′′, such that ∼n+1 ≤ Ker(⟨G′, β′⟩) and ≈n+1 ≤
Ker(⟨G′′, β′′⟩).

Now assume that ∼n,≈n are already defined N ′- and N ′′-congruence
systems on SEN′ and SEN′′, respectively, satisfying ∼n ≤ Ker(⟨G′, β′⟩) and
≈n ≤ Ker(⟨G′′, β′′⟩). Then, by Lemma 13, ⌢n is an N ′- and �n an N ′′-
congruence system on SEN and they satisfy ⌢n,�n ≤ Ker(⟨F,α⟩). This
concludes the inductive step.
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As far as the inclusions go, note, first, that ∼0 ≤ ∼1 and that ≈0 ≤ ≈1. But
we also have that ∼n ≤ ∼n+1 implies ⌢n ≤ ⌢n+1, ≈n ≤ ≈n+1 implies �n ≤ �n+1,
as well as ⌢n ≤ ⌢n+1 implies ≈n+1 ≤ ≈n+2 and �n ≤ �n+1 implies ∼n+1 ≤ ∼n+2.
Using these implications, together with an easy induction on superscripts,
we may show that the postulated chains of inclusions of congruence systems
hold as claimed. ∎

At last, Lemma 15 justifies the following definitions: Let ∼ be the N ′-
congruence system on SEN′ defined by

∼ = (⋃
n∈ω

∼n)
and, similarly, ≈ be the N ′′-congruence system on SEN′′ defined by

≈ = (⋃
n∈ω
≈n).

The next lemma, an analog of Lemma 5.4 of [8], asserts that the con-
gruence systems ∼ and ≈ satisfy both necessary conditions outlined for the
congruences ∼ and ≈ of Proposition 12, under the proviso that the pair⟨A′,A′′⟩ is represented in M⊛. The main difference and the main gain in
this section, as compared to the context of Section 6, is that the present sec-
tion’s ∼ and ≈ have been constructed intrinsically, whereas those of Section
6 were constructed extrinsically on SEN′ and SEN′′, respectively, as kernels
of the algebraic morphisms ⟨G′, β′⟩ and ⟨G′′, β′′⟩, that were assumed known
a priori.

Proposition 16 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems, N = ⟨N ′,N ′′⟩ and A

′ = ⟨⟨SEN′, ⟨F ′,
α′⟩⟩, T ′⟩ ∈ M′, A′′ = ⟨⟨SEN′′, ⟨F ′′, α′′⟩⟩, T ′′⟩ ∈M′′. It is always the case that

α′(α′′−1(≈)) ≤ ∼ and α′′(α′−1(∼)) ≤ ≈.
Moreover, if ⟨A′,A′′⟩ is represented in M⊛, then we also have that ∼ is

compatible with T ′ and ≈ is compatible with T ′′.
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Proof: For the first statement, we have

α′(α′′−1(≈)) = α′(α′′−1( ∞⋃
n=0

≈n))
= α′( ∞⋃

n=0

α′′−1(≈n))
= α′( ∞⋃

n=0

�n)
≤

∞

⋃
n=1

∼n

≤ ∼.

Similarly, one obtains also that α′′(α′−1(∼)) ≤ ≈.
Next, assume that the representation diagram is given by

SEN′ SEN′′

SEN

⟨F ′, α′⟩
❅

❅
❅❅■ ⟨F ′′, α′′⟩

�
�
��✒

SENA

⟨G′, β′⟩
�
�

��✒ ⟨G′′, β′′⟩
❅

❅
❅❅■✻

⟨F,α⟩

Since, by definition, ∼ = (⋃
n∈ω
∼n) and ≈ = (⋃

n∈ω
≈n). and since compatibility

is preserved under unions of chains, it suffices to show that, for all n ∈ ω,
the N ′-congruence system ∼n on SEN and the N ′′-congruence system ≈n on
SEN′′ are compatible with T ′ and T ′′, respectively.

We do this for ∼n, since the case of ≈n follows along similar lines using
symmetry. Recall that, according to Lemma 14, ∼n ≤ Ker(⟨G′, β′⟩). Let Σ′ ∈∣Sign′∣ and φ′, ψ′ ∈ SEN′(Σ′), such that φ′ ∼n

Σ′
ψ′ and φ′ ∈ T ′

Σ′
. Therefore,

β′
Σ′
(φ′) = β′

Σ′
(ψ′) and β′

Σ′
(φ′) ∈ TG′(Σ′). But, then, we also have β′

Σ′
(ψ′) ∈

TG′(Σ′) and, hence, ψ
′ ∈ T ′

Σ′
, showing that ∼n is in fact compatible with T ′.

∎

9 A Result Concerning Sufficiency

In this section, we tackle the sufficiency of the conditions established in
Propositions 11 and 12 for the representability of a pair of matrix system
models of two logical systems L′ and L′′ in their crypto-fibring in the special
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case in which the functor components of the algebraic morphisms are iden-
tities (or more generally, isomorphisms). Even though this condition is re-
strictive, it does allow handling a variety of important special cases. Among
these are the framework of sentential logics, handled in [8]. To accommo-
date sentential logics one has to consider only trivial one element signature
categories and, therefore, they fit in the present categorical framework as
trivial special cases. Another important special case that our framework
is general enough to handle is that of the categorical Lindenbaum models,
where the underlying algebraic systems of the matrix systems are the “for-
mula” algebraic systems (or sometimes their canonical quotients). In this
case, all algebraic morphisms are either identities or natural projections with
identity functor components and, hence, equally amenable to the techniques
of this section.

Proposition 17 Let L′ = ⟨Sign,SEN,N ′,R′,M′⟩ and L′′ = ⟨Sign,SEN,
N ′′,R′′,M′′⟩ be two logical systems and N = ⟨N ′,N ′′⟩. Consider two sen-

tence functors SEN′,SEN′′ ∶ Sign → Set and A
′ = ⟨⟨SEN′, ⟨ISign, α′⟩⟩, T ′⟩ ∈

M′, A′′ = ⟨⟨SEN′′, ⟨ISign, α′′⟩⟩, T ′′⟩ ∈ M′′, such that, for all Σ ∈ ∣Sign∣ and
all φ ∈ SEN(Σ),

α′Σ′(φ) ∈ T ′F ′(Σ′) iff α′′Σ′(φ) ∈ T ′′F ′′(Σ′). (4)

If the N ′-congruence system ∼ is compatible with T ′ and the N ′′-congruence

system ≈ is compatible with T ′′, then ⟨A′,A′′⟩ is represented inM⊛.

Proof: We first define a new sentence functor SENA ∶ Sign → Set as
follows: Let SEN+ ∶ Sign → Set be defined as the free N -algebraic system
on the disjoint union of SEN′ and SEN′′, i.e., for all Σ ∈ ∣Sign∣,

SEN+(Σ) = TmN(SEN′(Σ) ⊎ SEN′′(Σ)),
the collection of all N -terms build on the disjoint union of SEN′(Σ) and
SEN′′(Σ), and, given f ∈ Sign(Σ1,Σ2),

SEN+(f)(φ) = { SEN′(f)(φ), if φ ∈ SEN′(Σ1)
SEN′′(f)(φ), if φ ∈ SEN′′(Σ1)

and, if σ(t0, . . . , tk−1) ∈ TmN(SEN′(Σ) ⊎ SEN′′(Σ)),
SEN+(f)(σ(t0, . . . , tk−1)) = σ(SEN+(f)(t0), . . . ,SEN+(f)(tk−1)).

Next, define on SEN+ the N -congruence system ≡ = {≡Σ}Σ∈∣Sign∣ generated
by (i.e., smallest N -congruence system including) the following relation sys-
tems:
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(i) Equality of N ′-terms in TmN ′(SEN′) as evaluated in A
′ and equality

of N ′′-terms in TmN ′′(SEN′′) as evaluated in A
′′;

(ii) The N ′-congruence system ∼ on SEN′ and the N ′′-congruence system
≈ on SEN′′;

(iii) The relation system ⋈ = {⋈Σ}Σ∈∣Sign∣, defined, for all Σ ∈ ∣Sign∣, by
⋈Σ = {⟨α′Σ(φ), α′′Σ(φ)⟩ ∶ φ ∈ SEN(Σ)}.

Set SENA ∶ Sign → Set to be the quotient functor SENA ∶= SEN+/≡ and
define

• the N ′-morphism ⟨ISign, β′⟩ ∶ SEN′ → SENA by setting β′
Σ
(φ) = φ/≡Σ,

for all Σ ∈ ∣Sign∣ and all φ ∈ SEN′(Σ), and
• the N ′′-morphism ⟨ISign, β′′⟩ ∶ SEN′′ → SENA by setting β′′

Σ
(φ) =

φ/≡Σ, for all Σ ∈ ∣Sign∣ and all φ ∈ SEN′′(Σ).
Finally, we set T = {TΣ}Σ∈∣Sign∣ be the family defined by TΣ = (T ′Σ ⊎T ′′Σ)/≡Σ,
for all Σ ∈ ∣Sign∣. Noting that, because ⋈ ≤ ≡, we have, for all Σ ∈ ∣Sign∣,
β′
Σ
○ α′

Σ
= β′′

Σ
○ α′′

Σ
and denoting this composition by αΣ, we define

A = ⟨⟨SENA, ⟨ISign, α⟩⟩, T ⟩.
We prove that ⟨A′,A′′⟩ is represented in M⊛ by the crypto-extension ⟨A,⟨ISign, β′⟩, ⟨ISign, β′′⟩⟩:

SEN′ SEN′′

SEN

⟨ISign, α′⟩
❅

❅
❅❅■ ⟨ISign, α′′⟩

�
�
��✒

SENA

⟨ISign, β′⟩
�
�

��✒ ⟨ISign, β′′⟩
❅

❅
❅❅■✻

⟨ISign, α⟩ (5)

First, note that, for all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and φ ∈ SEN′(Σ),

SENA(Σ) SENA(Σ′)✲
SENA(f)

SEN′(Σ) SEN′(Σ′)✲SEN′(f)

❄

β′
Σ

❄

β′
Σ′
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β′
Σ′
(SEN′(f)(φ)) = SEN′(f)(φ)/≡Σ′ (by definition)

= SEN+(f)(φ)/≡Σ′ (by definition of +)
= (SEN+(f)/≡)(φ/≡Σ) (≡ a congruence system)

= SENA(f)(β′
Σ
(φ)). (by definition)

If σ′ is a k-ary natural transformation in N , Σ ∈ ∣Sign∣ and φ0, . . . , φk−1 ∈
SEN′(Σ), with ψ = σ′

Σ
(φ0, . . . , φk−1) ∈ SEN′(Σ),

β′
Σ
(σ′

Σ
(φ0, . . . , φk−1)) = β′

Σ
(ψ) (since ψ = σ′

Σ
(φ0, . . . , φk−1))

= ψ/≡Σ (by definition)
= σ′

Σ
(φ0, . . . , φk−1)/≡Σ (by Condition (i))

= σ′≡
Σ
(φ0/≡Σ, . . . , φk−1/≡Σ) (quotient)

= σ′≡
Σ
(β′

Σ
(φ0), . . . , β′Σ(φk−1)). (by definition)

Thus, ⟨ISign, β′⟩ ∶ SEN′ → SENA is an N ′-algebraic morphism. One shows
similarly that ⟨ISign, β′′⟩ ∶ SEN′′ → SENA is an N ′′-algebraic morphism.

To conclude the proof that ⟨A′, ⟨ISign, β′⟩, ⟨ISign, β′′⟩⟩ is a crypto-ex-
tension of ⟨A′,A′′⟩, it suffices now to show that the collections of designated
sets of elements are preserved by β′−1 and by β′′−1. We provide a detailed
proof only for β′−1 since the corresponding statement for β′′−1 follows then
by a symmetric argument. The goal is to show that, for all Σ ∈ ∣Sign∣, we
have

β′−1Σ (TΣ) = T ′Σ.
Suppose, first, that φ ∈ T ′

Σ
. Then β′

Σ
(φ) = φ/≡Σ ∈ T ′Σ/≡Σ ⊆ TΣ, by the

definition of TΣ. Thus, T ′
Σ
⊆ β′−1

Σ
(TΣ). The reverse inclusion is slightly

more challenging, but it follows, generally, along lines similar to the proof
of the corresponding sentential result, presented in Proposition 5.5 of [8].
Suppose that β′

Σ
(φ) = φ/≡Σ ∈ TΣ. This implies that either there exists

ψ ∈ T ′
Σ
, such that φ ≡Σ ψ, or there exists χ ∈ T ′′

Σ
, such that φ ≡Σ χ. In

the first case we must have, by Condition (ii), φ ∼Σ ψ, whence, by the
postulated compatibility of ∼ with T ′, we get that φ ∈ T ′

Σ
. In the second

case we must have, by Condition (iii), that there exists θ ∈ SEN(Σ), such
that φ = α′

Σ
(θ) ≡Σ α′′

Σ
(θ) = χ. Thus, by the fact that α′′

Σ
(θ) = χ ∈ T ′′

Σ
and

the postulated Equivalence (4), we get that φ = α′
Σ
(θ) ∈ T ′

Σ
.

Since, by symmetry, we get also that β′′−1
Σ
(TΣ) = T ′′Σ , for all Σ ∈ ∣Sign∣,

this concludes the proof that ⟨A′,A′′⟩ is represented inM⊛. ∎
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