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Abstract A completion of an n-ordered set P = 〈P,�1, . . . ,�n〉 is defined, by
analogy with the case of posets (2-ordered sets), as a pair 〈e, Q〉, where Q is a
complete n-lattice and e : P → Q is an n-order embedding. The Basic Theorem of
Polyadic Concept Analysis is exploited to construct a completion of an arbitrary n-
ordered set. The completion reduces to the Dedekind–MacNeille completion in the
dyadic case, the case of posets. A characterization theorem is provided, analogous to
the well-known dyadic one, for the case of joined n-ordered sets. The condition of
joinedness is trivial in the dyadic case and, therefore, this characterization theorem
generalizes the uniqueness theorem for the Dedekind–MacNeille completion of an
arbitrary poset.
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1 Introduction

In [9, 10] Wille introduced Formal Concept Analysis in order to exploit the powerful
machinery of Lattice Theory in a wide variety of applications. The book [4] gives an
overview of Formal Concept Analysis. The basic notion is that of a binary relation
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between a set of objects and a set of attributes, called a formal context, which gives
rise to a Galois connection whose collection of closed sets forms a complete lattice.
This lattice is termed the concept lattice of the formal context. Every complete lattice
arises in this way as the concept lattice of a formal context. In [11], Wille generalized
this framework to a ternary relation between objects, attributes and situations. It
is appropriately termed a triadic context. In a fashion similar to the dyadic case, a
triadic context gives rise to triadic concepts. Endowed with three quasi-orderings,
modeling the inclusions in each of the three components, triadic concepts form a
3-quasi-ordered structure satisfying the conditions of uniqueness and antiordinality.
It is termed a complete trilattice by Wille. In [11] the Basic Theorem of Triadic
Concept Analysis is proved, which states, roughly speaking, that every complete
trilattice is the trilattice of triadic concepts of some formal triadic context. As is the
case with lattices, besides the formulation of the concept of a complete trilattice in an
order-theoretic way, there exists a formulation in terms of six infinitary operations,
called joins.

Biedermann [1] considered algebraic structures with six operations similar in
nature to the operations of complete trilattices but of finite ranks. Thus arose,
in analogy with the case of lattices and complete lattices, the structure of a trilattice.
In [1] an equational basis for the theory of trilattices was provided making trilattices
an intriguing part of the theory of universal algebraic varieties.

The author, inspired by Wille, generalized the Triadic Concept Analysis to
n dimensions for arbitrary n, giving rise to Polyadic Concept Analysis [7]. An
n-ary relation replaces the ternary relation of triadic contexts. The n-adic contexts
give rise, in a way analogous to the triadic case, to n-adic formal concepts. They
form an n-quasi-ordered structure, also satisfying uniqueness and antiordinality
(an n-dimensional version), called a complete n-lattice. Complete n-lattices have,
in analogy to the triadic case, formulations in terms of n! algebraic operations,
generalizing the 6 joins of complete trilattices, also called joins. In [7], an analog
of the Basic Theorem of Wille for the n-adic case, the Basic Theorem of Polyadic
Concept Analysis, was proved. It states, roughly speaking, that every complete
n-lattice is the n-lattice of n-adic concepts of some formal n-adic context. Inspired
by Biedermann, the author studied the structures arising from complete n-lattices
by restricting these joins to finite ranks. The ensuing structures are called n-lattices
and in [8] an equational basis for n-lattices, generalizing the basis of Biedermann for
trilattices, was given.

Dyadic formal contexts can be used to provide a Dedekind–MacNeille completion
[6] (see also [3], Definition 2.31, [2], Section V.9) of an arbitrary partially ordered set
(see Theorem 4 of [4]). In the present paper an analog of this construction for the
polyadic case is studied. More specifically, it is shown that, in a way analogous to the
dyadic case, the Basic Theorem of Polyadic Concept Analysis may be used to provide
a Dedekind–MacNeille completion of n-ordered sets. This is a complete n-lattice
in which the original n-ordered set may be embedded via an n-order embedding.
This construction covers the case of posets, since 2-ordered sets reduce to posets. An
analog of the characterization theorem of the Dedekind–MacNeille completion of a
poset is also provided in the n dimensions for the special class of joined n-ordered
sets. The condition of joinedness is trivially satisfied in two dimensions, whence,
the n-dimensional characterization theorem provided here properly generalizes the
corresponding theorem on posets.
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2 n-ordered Sets and n-lattices

For more details on the material provided in this section the reader is referred to [11]
and [1] for the triadic case and to [7, 8] for the general n-adic case.

An ordinal structure P = 〈P,�1,�2, . . . ,�n〉 is a relational structure whose n
relations are quasiorders. Let ∼i = �i ∩ �i, for i = 1, 2, . . . , n. An n-ordered set
P = 〈P,�1, . . . ,�n〉 is an ordinal structure, such that, for all x, y ∈ P and all
{i1, i2, . . . , in} = {1, 2, . . . , n},
1. x ∼i1 y, . . . , x ∼in y imply x = y (Uniqueness Condition)
2. x �i1 y, . . . , x �in−1 y imply x �in y (Antiordinal Dependency)

Each quasiorder �i induces in the standard way an order ≤i on the set of equi-
valence classes P/∼i = {[x]i : x ∈ P}, i = 1, 2, . . . , n, where [x]i = {y ∈ P : x ∼i y}.

Let P = 〈P,�1,�2, . . . ,�n〉 be an n-ordered set, j1, j2, . . . , jn−1 ∈ {1, 2, . . . , n} be
distinct and X1, X2, . . . , Xn−1 ⊆ P.

– An element b ∈ P is called a ( jn−1, . . . , j1)-bound of (Xn−1, Xn−2, . . . , X1) if
xi � ji b , for all xi ∈ Xi and all i = 1, . . . , n − 1. The set of all ( jn−1, . . . , j1)-
bounds of (Xn−1, . . . , X1) is denoted by (Xn−1, . . . , X1)

( jn−1,..., j1).
– A ( jn−1, . . . , j1)-bound l ∈ (Xn−1, . . . , X1)

( jn−1,..., j1) of (Xn−1, . . . , X1) is called a
( jn−1, . . . , j1)-limit of (Xn−1, . . . , X1) if l � jn b , for all ( jn−1, . . . , j1)-bounds b ∈
(Xn−1, . . . , X1)

( jn−1,..., j1). The set of all ( jn−1, . . . , j1)-limits of (Xn−1, . . . , X1) is
denoted by (Xn−1, . . . , X1)

( jn−1,..., j1).

The following proposition is Proposition 4 of [7]. When applied to an element x of
a quasi-ordered set, the term “largest” in the quasi-ordering � means greater than or
equal to all other elements with respect to � without, of course, necessarily implying
uniqueness. A similar comment holds for the term “smallest.”

Proposition 1 Let P = 〈P,�1, . . . ,�n〉 be an n-ordered set, X1, . . . , Xn−1 ⊆ P and
{ j1, . . . , jn} = {1, . . . , n}. Then, there exists at most one ( jn−1, . . . , j1)-limit l̄ of
(Xn−1, . . . , X1) satisfying

(C) l̄ is the largest in � j2 among the largest limits in � j3 among . . . among the largest
limits in � jn−1 among the largest limits in � jn or, equivalently,

(C’) l̄ is the smallest in � j1 among the largest limits in � j3 among . . . among the
largest limits in � jn−1 among the largest limits in � jn .

If it exists, a ( jn−1, . . . , j1)-limit satisfying the statement in Proposition 1 is called
the ( jn−1, . . . , j1)-join of (Xn−1, . . . , X1) and denoted by ∇ jn−1,..., j1(Xn−1, . . . , X1).

A complete n-lattice L = 〈L,�1, . . . ,�n〉 is an n-ordered set in which all
( jn−1, . . . , j1)-joins ∇ jn−1,..., j1(Xn−1, . . . , X1) exist, for all X1, . . . , Xn−1 ⊆ L and
all { j1, . . . , jn} = {1, . . . , n}. A complete n-lattice is bounded by 0 jn := ∇ jn−1,..., j1
(L, L, . . . , L), where { j1, . . . , jn} = {1, . . . , n}. This element does not depend on
the order of the ji’s. Indeed, if 0′

jn = ∇kn−1,...,k1(L, . . . , L), with {k1, . . . , kn−1} =
{ j1, . . . , jn−1}, then, by the bound property of the joins, we get that 0 jn � ji 0′

jn and,
also 0′

jn � ji 0 jn , for all i < n. Thus, 0 jn ∼ ji 0′
jn , for all i < n, which, combined with
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antiordinality, yields that 0 jn ∼ ji 0′
jn , for all i = 1, . . . , n. Therefore, by uniqueness,

we obtain that 0 jn = 0′
jn .

One may restrict attention to the case where ( jn−1, . . . , j1)-joins exist only for finite
subsets of an n-ordered set. If, for all k = 1, . . . , n − 1, ik is a positive integer and �xk =
(xk,1, xk,2, . . . , xk,ik), then the (in−1, . . . , i1)-ary ( jn−1, . . . , j1)-join of (�xn−1, . . . , �x1) is
defined to be

∇ in−1,...,i1
jn−1,..., j1(�xn−1, . . . , �x1) := ∇ jn−1,..., j1({xn−1,1, . . . , xn−1,in−1}, . . . , {x1,1, . . . , x1,i1}).

The tuple (in−1, . . . , i1) is then called the arity of ∇ in−1,...,i1
jn−1,..., j1 . The following theorem is

one of the key results of [8].

Theorem 2 (Reduction of Arity Theorem) If in an n-ordered set P = 〈P, �1, . . . ,�n〉
all ( jn−1, . . . , j1)-joins of arity (2, 2, . . . , 2) exist, then all finitary ( jn−1, . . . , j1)-joins
∇ in−1...i1

jn−1,..., j1 exist, where ∇ in−1...i1
jn−1,..., j1 is (in−1, . . . , i1)-ary.

An n-lattice L = 〈L,�1, . . . ,�n〉 is an n-ordered set in which all the (2, . . . , 2)-ary
( jn−1, . . . , j1)-joins exist. The following notation will be used for these joins:

∇ jn−1,..., j1(�xn−1, . . . , �x1) := ∇ jn−1,..., j1(xn−1,1, xn−1,2, . . . , x1,1, x1,2)

:= ∇ jn−1,..., j1((xn−1,1, xn−1,2), . . . , (x1,1, x1,2)),

where �xi = (xi,1, xi,2), xi,1, xi,2 ∈ L, i = 1, . . . , n − 1. The derived operations of arities
(εn−1, . . . , ε1), where εi ∈ {1, 2}, i = 1, . . . , n − 1, are all the operations defined by the
joins above by taking the argument corresponding to �xi to be �xi = (xi,1, xi,2), if εi = 2,
and �xi = (xi, xi), if εi = 1, i = 1, . . . , n − 1.

The main theorem of [8] provides an equational basis for n-lattices. This basis was
first worked out and presented for trilattices by Biedermann [1].

3 The Dedekind–MacNeille Completion

A completion of an n-ordered set P = 〈P,�1, . . . ,�n〉 is a pair 〈e, Q〉, where Q =
〈Q, �1, . . . ,�n〉 is a complete n-lattice and e : P → Q is an n-order embedding, i.e.,
a mapping e : P → Q, such that for all i = 1, . . . , n and all x, y ∈ P,

x �i y if and only if e(x) �i e(y).

An i-order filter of an n-ordered set P = 〈P,�1, . . . ,�n〉 is a subset Fi ⊆ P, such
that, for all x, y ∈ P, x �i y and x ∈ Fi imply y ∈ Fi. Dually, an i-order ideal of P
is a subset Ii ⊆ P, such that, for all x, y ∈ P, x �i y and y ∈ Ii imply x ∈ Ii. Fi is a
principal i-order filter if

Fi = {x ∈ P : p �i x},
for some p ∈ P, and Ii is a principal i-order ideal if

Ii = {x ∈ P : x �i p},
for some p ∈ P.
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The �i-order filter generated by p1, . . . , pm ∈ P will be denoted by

[p1, . . . , pm)i := {x ∈ P : pj �i x, for some 1 ≤ j ≤ m}
and the �i-order ideal generated by p1, . . . , pm ∈ P will be denoted by

(p1, . . . , pm]i := {x ∈ P : x �i p j, for some 1 ≤ j ≤ m}.
In particular, the principal i-order filter generated by p ∈ P will be denoted by [p)i

and the principal i-order ideal generated by p ∈ P will be denoted by (p]i. If Q is an
n-ordered set, P ⊆ Q and q ∈ Q, the notation

(q]P
i = {p ∈ P : p �i q}

will be used for the �i-order ideal in P “generated” by q ∈ Q.

Definition 3 Given an n-ordered set P = 〈P,�1, . . . ,�n〉, define the n-ary comple-
tion relation R(P) ⊆ Pn of P to be the set of all ordered n-tuples 〈p1, . . . , pn〉 ∈ Pn,

for which there exists p ∈ P, such that pi �i p, for all i = 1, . . . , n.
If 〈p1, . . . , pn〉 ∈ R(P), it will be said that 〈p1, . . . , pn〉 is a bounded n-tuple in P.

The completion relation of P may also be characterized in terms of the principal
filters of P as follows:

Proposition 4 Let P = 〈P,�1, . . . ,�n〉 be an n-ordered set. Then, for all elements
p1, . . . , pn ∈ P,

〈p1, . . . , pn〉 ∈ R(P) iff
n⋂

i=1

[pi)i 
= ∅.

Proof Obvious from the definition of R(P). ��

By the Basic Theorem of Polyadic Concept Analysis (Theorem 6 of [7]) the con-
cept n-lattice C(P) = 〈C(P),⊆1, . . . ,⊆n〉 of the n-adic context P = 〈P, . . . , P, R(P)〉
is a complete n-lattice, whose ( jn−1, . . . , j1)-joins are described, for all Ai ⊆ C(P),

i = 1, . . . , n − 1, by

∇ jn−1,..., j1 (An−1, . . . ,A1)

= b jn−1,..., j1

({⋃ {
A ji : (A1, . . . , An) ∈ Ai

} : i = n − 1, . . . , 1
})

.

The operation b jn−1,..., j1 is described in detail in Proposition 3 of [7]. It corresponds,
roughly speaking, to first “closing” with respect to the jn-th component, followed
by “closing” with respect to the jn−1-st component and so on down to the j1-st
component.

Given A j ⊆ P, j 
= i, the notation

R(P)i(A1, . . . , Ai−1, Ai+1, . . . , An)

= {p ∈ P : (p1, . . . , pi−1, p, pi+1, . . . , pn) ∈ R(P), for all pj ∈ A j, j 
= i}
will be used for the closure with respect to the i-th component, i.e., for the image of
(A1, . . . , Ai−1, Ai+1, . . . , An) under R(P).
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It is shown next that, given an n-ordered set P and an element p ∈ P, the n-tuple
〈(p]1, . . . , (p]n〉 ∈ P(P)n is in C(P).

Lemma 5 Suppose that P = 〈P,�1, . . . ,�n〉 is an n-ordered set and p ∈ P. Then
〈(p]1, . . . , (p]n〉 ∈ C(P).

Proof It must be shown that, for all i = 1, . . . , n,

(p]i = R(P)i((p]1, . . . , (p]i−1, (p]i+1, . . . , (p]n).

We do this for i = n; the remaining equalities will then follow by symmetry.
First, if xn �n p, then, for all x1, . . . , xn−1 ∈ P, such that xi �i p, we have

〈x1, . . . , xn〉 ∈ R(P), since p ∈ P is such that xi �i p, for all i = 1, . . . , n.
Suppose conversely, that xn 
∈ (p]n, i.e., that xn 
�n p. Suppose, for the sake

of obtaining a contradiction, that there exists z ∈ P, such that p �i z, for all
i = 1, . . . , n − 1, and xn �n z. Then, by antiordinality, xn �n z �n p, which contra-
dicts our hypothesis.

Thus 〈(p]1, . . . , (p]n〉 ∈ C(P). ��

In the next lemma, it is shown that every n-ordered set P can be embedded into
the complete n-lattice C(P) of the n-adic concepts of the n-adic context P.

Lemma 6 Let = 〈P,�1, . . . ,�n〉 be an n-ordered set. The mapping e : P → C(P),
defined by

e(p) = 〈(p]1, . . . , (p]n〉, for all p ∈ P,

is an n-order embedding of P into C(P).

Proof It was shown in Lemma 5 that e(p) ∈ C(P), for all p ∈ P.

It remains, therefore, to show that e : P → C(P) is an n-order embedding.
Assume, first, that p, q ∈ P, such that p �i q. Then (p]i ⊆ (q]i, whence e(p) ⊆i

e(q). Suppose, conversely, that p, q ∈ P, such that e(p) ⊆i e(q). Therefore (p]i ⊆ (q]i.
Thus p ∈ (q]i, i.e., p �i q. ��

One obtains from Lemma 6 the following

Theorem 7 Every n-ordered set P = 〈P,�1, . . . ,�n〉 has a completion 〈e, C(P)〉,
where C(P) = 〈C(P),⊆1, . . . ,⊆n〉 is the complete n-lattice of n-adic concepts of the
n-adic context P = 〈P, . . . , P, R(P)〉, where R(P) is the completion relation of P.

Proof Lemma 6 shows that the mapping e : P → C(P), defined by

e(p) = 〈(p]1, . . . , (p]n〉, for all p ∈ P,

is an n-order embedding of P into C(P). ��

The completion of Theorem 7 is termed the Dedekind–MacNeille Completion of
the n-ordered set P since, in the dyadic case, it reduces to the well-known Dedekind–
MacNeille completion of a poset (see [4] for more details on the dyadic case).
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The notation DM(P), introduced in [3], is used to denote the Dedekind–MacNeille
completion of P. So DM(P) := C(P) and DM(P) := 〈C(P),⊆1, . . . , ⊆n〉.

In the sequel the n-order embedding e : P → C(P), defined by

e(p) = 〈(p]1, . . . , (p]n〉, for all p ∈ P,

will be referred to as the standard embedding of P into DM(P) and the letter e will
be reserved to denote this standard embedding.

Important Remark We note that, unfortunately, it has not been possible to prove
that finitary n-adic joins that exist in P are preserved by the standard embedding for
n ≥ 3. It is, moreover, conjectured that joins are not preserved in general for n ≥ 3.

In the next section, three key properties of the Dedekind–MacNeille completion
of n-ordered sets will be studied. The first, called density, generalizes a well-known
2-dimensional analog to n dimensions. Density is the key property used in the
characterization of the Dedekind–MacNeille completion of a poset. It will also be key
in the characterization of the Dedekind–MacNeille completion of a joined n-ordered
set, that will be provided in the last section of the paper. The second condition,
called closure, is a consequence of density in two dimensions, but this does not
seem to be the case in arbitrary dimensions. Roughly speaking, a subset P of an
n-ordered set Q is closed in Q, if, for all 1 ≤ i ≤ n, every element p ∈ P that forms
as the ith coordinate with jth coordinates all elements in P � j-below a fixed element
q ∈ Q, j 
= i, a joined n-tuple, i.e., such that

(p1, . . . , pi−1, p, pi+1, . . . , pn) is joined for all pj ∈ P, such that pj � j q, j 
= i,

has to be �i-below q. The third condition to be studied in the following section is
separation. Separation is also a consequence of density in 2 dimensions, but this
does not seem to be the case in arbitrary dimensions either. Therefore, as is the
case with closure, this condition does not appear explicitly in the 2-dimensional
characterization theorem, but it is also a key condition in our n-dimensional analog.

4 Properties of the Completion: Density, Closure, Separation and Joinedness

Let Q = 〈Q,�1, . . . ,�n〉 be an n-ordered set, P ⊆ Q and { j1, . . . , jn} = {1, . . . , n}.
Then P is said to be ( jn−1, . . . , j1)-join dense in Q if, for every element q ∈ Q, there
are subsets A1, . . . , An−1 ⊆ P, such that q = ∇ jn−1,..., j1(An−1, . . . , A1). The subset P
is said to be dense in Q if it is ( jn−1, . . . , j1)-dense, for all { j1, . . . , jn} = {1, . . . , n}.

This condition is an adaptation to n dimensions of the corresponding condition for
posets, given, e.g., in Definition 2.34 of [3]. Lemma 8 is the analog in n dimensions of
the 2-dimensional Lemma 2.35 of [3].

Lemma 8 Let Q be an n-ordered set and P ⊆ Q. The following are related by (1) ⇔
(2) ⇒ (3) in general and are equivalent if Q is a complete n-lattice:

1. P is ( jn−1, . . . , j1)-join-dense in Q;
2. q = ∇ jn−1,..., j1((q]P

jn−1
, . . . , (q]P

j1), for every q ∈ Q;
3. for all q, q′ ∈ Q, with q < jn q′, there exists i 
= n and p ∈ P, such that p � ji q

and p 
� ji q′.
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Proof

(1) ⇒ (2) Assume that P is ( jn−1, . . . , j1)-join-dense in Q and let q ∈ Q. Then,
there exist An−1, . . . , A1 ⊆ P, such that q = ∇ jn−1,..., j1(An−1, . . . , A1).

Clearly, q is a ( jn−1, . . . , j1)-bound of ((q]P
jn−1

, . . . , (q]P
j1). If b is any

( jn−1, . . . , j1)-bound of ((q]P
jn−1

, . . . , (q]P
j1), then, for all pji ∈ (q]P

ji , pji � ji

b , i = 1, . . . , n − 1, whence, for all ai ∈ Ai, ai � ji b and, therefore, by
the limit property of joins, b � jn ∇ jn−1,..., j1(An−1, . . . , A1) = q. Thus
q is a ( jn−1, . . . , j1)-limit of ((q]P

jn−1
, . . . , (q]P

j1). Now suppose that l
is a ( jn−1, . . . , j1)-limit of ((q]P

jn−1
, . . . , (q]P

j1). Then, since q is also a
( jn−1, . . . , j1)-limit of ((q]P

jn−1
, . . . , (q]P

j1), we get that l ∼ jn q = ∇ jn−1,..., j1
(An−1, . . . , A1). Thus l is a ( jn−1, . . . , j1)-bound of (An−1, . . . , A1) and
∼ jn -equivalent to q = ∇ jn−1,..., j1(An−1, . . . , A1), which implies, by the join
property, that l � jn−1 ∇ jn−1,..., j1(An−1, . . . , A1) = q. Similarly, it may be
shown that, for all k = 1, . . . , n − 1, if both l and q are ( jn−1, . . . , j1)-
bounds of ((q]P

jn−1
, . . . , (q]P

j1), that are largest in � jk+1 among the largest in
� jk+2 , among . . . among the largest in � jn , then l � jk q. This proves that

q = ∇ jn−1,..., j1((q]P
jn−1

, . . . , (q]P
j1).

(2) ⇒ (1) This part is obvious by the definition of ( jn−1, . . . , j1)-density.
(2) ⇒ (3) Suppose that, for all q ∈ Q, q = ∇ jn−1,..., j1((q]P

jn−1
, . . . , (q]P

j1) and let q, q′ ∈
Q, with q < jn q′. If, for all i 
= n and all p ∈ P, p � ji q implies p � ji q′,
we have that (q]P

ji ⊆ (q′]P
ji , i = 1, . . . , n − 1, whence, by the limit property

of joins, ∇ jn−1,..., j1((q
′]P

jn−1
, . . . , (q′]P

j1) � jn ∇ jn−1,..., j1((q]P
jn−1

, . . . , (q]P
j1), i.e.,

that q′ � jn q, which contradicts the hypothesis.

Finally, assume that Q is a complete n-lattice and suppose that for all q, q′ ∈ Q,

with q < jn q′, there exists i 
= n and p ∈ P, such that p � ji q and p 
� ji q′.
Then, suppose, for the sake of obtaining a contradiction, that q ∈ Q, is such
that q 
= ∇ jn−1,..., j1((q]P

jn−1
, . . . , (q]P

j1). Then, there exists k, 1 ≤ k ≤ n, such that
q ∼ jl ∇ jn−1,..., j1((q]P

jn−1
, . . . , (q]P

j1), for all l > k, and q < jk ∇ jn−1,..., j1((q]P
jn−1

, . . . , (q]P
j1).

Thus, by the hypothesis, there exists i 
= k and p ∈ P, such that p � ji q
but p 
� ji ∇ jn−1,..., j1((q]P

jn−1
, . . . , (q]P

j1). Since q ∼ jl ∇ jn−1,..., j1((q]P
jn−1

, . . . , (q]P
j1), for all

l > k, this cannot happen for i > k, whence i < k. But p � ji q and p 
� ji
∇ jn−1,..., j1((q]P

jn−1
, . . . , (q]P

j1), for some i < k, contradicts the bound property of a join!
��

We prove now a lemma characterizing the ( jn−1, . . . , j1)-joins in the Dedekind–
MacNeille completion of an n-ordered set P of the form ∇ jn−1,..., j1(e(An−1), . . . ,

e(A1)) for some A1, . . . , An−1 ⊆ P.

Lemma 9 Let P be an n-ordered set and let e : P → DM(P) be the standard n-order
embedding of P into its Dedekind–MacNeille completion. Then, for all A1, . . . ,

An−1 ⊆ P,

∇ jn−1,..., j1(e(An−1), . . . , e(A1)) = b jn−1,..., j1((An−1] jn−1 , . . . , (A1] j1).
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Proof The equation holds since, for all ai ∈ Ai, i = 1, . . . , n − 1, e(ai) = 〈(ai]1, . . . ,

(ai]n〉, whence

∇ jn−1,..., j1(e(An−1), . . . , e(A1)) = b jn−1,..., j1

⎛

⎝
⋃

an−1∈An−1

(an−1] jn−1 , . . . ,
⋃

a1∈A1

(a1] j1

⎞

⎠ ,

by the definition of ∇ jn−1,..., j1 in the Dedekind–MacNeille completion of P. ��

Next, it is shown that the image of an n-ordered set into its Dedekind–MacNeille
completion via the standard embedding is a dense subset of the completion. Theorem
8 generalizes to n dimensions the corresponding result for posets (see, e.g., Theorem
2.36 (i) of [3]).

Theorem 10 (Density) Let P be an n-ordered set and let e : P → DM(P) be the
standard n-order embedding of P into its Dedekind–MacNeille completion. The image
e(P) is dense in DM(P).

Proof Since DM(P) is a complete n-lattice, Lemma 8 (3) may be used to show that
e(P) is dense in DM(P).

We must show that e(P) is ( jn−1, . . . , j1)-join dense in DM(P), for all { j1, . . . , jn} =
{1, . . . , n}. We do this only for (n − 1, . . . , 1)-join density since all other cases follow
by symmetry.

To this end, suppose that 〈A1, . . . , An〉, 〈B1, . . . , Bn〉 ∈ DM(P), are such that
〈A1, . . . , An〉 <n 〈B1, . . . , Bn〉. Then An ⊂ Bn. Therefore, by antiordinality in
DM(P), there exists i 
= n, such that Ai 
⊆ Bi. Hence, there exists p ∈ P, such that
p ∈ Ai and p 
∈ Bi. But this shows that, for this p, e(p) ⊆i 〈A1, . . . , An〉 and e(p) 
⊆i

〈B1, . . . , Bn〉. Now Lemma 8 may be invoked to conclude that e(P) is (n − 1, . . . , 1)-
join dense in DM(P). ��

Suppose that Q = 〈Q,�1, . . . ,�n〉 is an n-ordered set, P ⊆ Q and 1 ≤ i ≤ n. P is
said to be i-closed in Q if, for all q ∈ Q and x ∈ P, 〈p1, . . . , pi−1, x, pi+1, . . . , pn〉 ∈
R(P), for all pj ∈ P, with pj � j q, j 
= i, implies x �i q. It is said to be closed in Q if
it is i-closed in Q, for all i = 1, . . . , n.

Note that, in the dyadic case, every dense subset of a poset is also a closed subset.
It is now shown that, for every n-ordered set P = 〈P,�1, . . . ,�n〉, e(P) is closed

in the Dedekind–MacNeille completion DM(P).

Theorem 11 (Closure) Let P be an n-ordered set and let e : P → DM(P) be the
standard n-order embedding of P into its Dedekind–MacNeille completion. The image
e(P) is closed in DM(P).

Proof We show n-closure; the remaining closures follow by symmetry. Suppose that
x ∈ P, and that, for all p1, . . . , pn−1 ∈ P, such that

e(p1) ⊆1 〈A1, . . . , An〉, . . . , e(pn−1) ⊆n−1 〈A1, . . . , An〉,
〈p1, . . . , pn−1, x〉 ∈ R(P). This yields that, for all p1, . . . , pn−1 ∈ P, such that p1 ∈
A1, . . . , pn−1 ∈ An−1, we have that 〈p1, . . . , pn−1, x〉 ∈ R(P). Thus, by the meaning
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of 〈A1, . . . , An〉 ∈ DM(P) := C(P), we must have x ∈ An and, therefore, e(x) ⊆n

〈A1, . . . , An〉, i.e., e(P) is n-closed in DM(P). ��

Let Q be an n-ordered set with P ⊆ Q, as before. For i = 1, . . . , n, P is said to
be i-separating in Q if, for all x, y ∈ Q, such that x 
�i y, there exists p ∈ P, such
that p �i x and p 
�i y. It is said to be separating in Q if it is i-separating, for all
i = 1, . . . , n.

We note that, in the dyadic case (posets) separability follows from density, since
the condition defining separability becomes equivalent to Condition 3 of Lemma 8.

In the next result, it is shown that e(P) is separating in DM(P), for every n-ordered
set P.

Theorem 12 (Separation) Let P be an n-ordered set and let e : P → DM(P) be the
standard n-order embedding of P into its Dedekind–MacNeille completion. The image
e(P) is separating in DM(P).

Proof Suppose that 〈A1, . . . , An〉, 〈B1, . . . , Bn〉 ∈ DM(P) are such that 〈A1, . . . , An〉

⊆i 〈B1, . . . , Bn〉. Then Ai 
⊆ Bi, whence, there exists p ∈ P, such that p ∈ Ai and
p 
∈ Bi. Hence (p]i ⊆ Ai and (p]i 
⊆ Bi, which shows that e(p) ⊆i 〈A1, . . . , An〉 and
e(p) 
⊆i 〈B1, . . . , Bn〉. Therefore e(P) is i-separating in DM(P), for all i = 1, . . . , n.

��

Finally, we introduce the notion of joinedness. The absolute version refers to an
arbitrary n-ordered set standing on its own. The relative version refers to a subset
of a given n-ordered set Q being joined in Q. We urge the reader to notice that in
the dyadic case absolute joinedness is a trivial condition, i.e., all posets are joined
2-ordered sets.

Let P = 〈P,�1, . . . ,�n〉 be an n-ordered set and { j1, . . . , jn} = {1, . . . , n}. P is
said to be ( jn−1, . . . , j1)-joined if, for all pn−1, . . . , p1 ∈ P, (pn−1, . . . , p1) has a
( jn−1, . . . , j1)-limit in P. P is said to be joined if it is ( jn−1, . . . , j1)-joined, for all
{ j1, . . . , jn} = {1, . . . , n}.

Next, let Q = 〈Q,�1, . . . ,�n〉 be an n-ordered set and P ⊆ Q. For fixed
{ j1, . . . , jn} = {1, . . . , n}, P is said to be ( jn−1, . . . , j1)-joined in Q if, for all p1, . . . ,

pn−1 ∈ P, there exists p ∈ P, such that p is a ( jn−1, . . . , j1)-limit of ({pn−1}, . . . , {p1})
in Q. P is said to be joined in Q if it is ( jn−1, . . . , j1)-joined in Q, for all { j1, . . . , jn} =
{1, . . . , n}.

It is now shown that if P is a joined n-ordered set, then it is joined in its Dedekind–
MacNeille completion DM(P).

Proposition 13 If P = 〈P,�1, . . . ,�n〉 is a joined n-ordered set, then e(P) is joined
in DM(P).

Proof Suppose that P is joined. To show that in that case e(P) is joined in DM(P), it
suffices to show, by symmetry, that, for all p1, . . . , pn−1 ∈ P, if l is an (n − 1, . . . , 1)-
limit of (pn−1, . . . , p1) in P, then e(l) is an (n − 1, . . . , 1)-limit of (e(pn−1), . . . , e(p1))

in DM(P). Obviously, since pi �i l, i = 1, . . . , n − 1, we get that e(pi) ⊆i e(l), i =
1, . . . , n − 1. Therefore, by the limit property of joins,

e(l) ⊆n ∇n−1,...,1(e(pn−1), . . . , e(p1)).
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To show that ∇n−1,...,1(e(pn−1), . . . , e(p1)) ⊆n e(l), it suffices to show, by Lemma 9
and the definition of bn−1,...,1, that R(P)n((p1]1, . . . , (pn−1]n−1) ⊆ (l]n. To this end,
suppose that xn ∈ R(P)n((p1]1, . . . , (pn−1]n−1). Then there exists p ∈ P, such that
pi �i p, i = 1, . . . , n − 1, and xn �n p. Thus, since l is an (n − 1, . . . , 1)-limit of
(pn−1, . . . , p1) in P, we get that p �n l. Hence xn �n l and xn ∈ (l]n. ��

In the next section a characterization of the Dedekind–MacNeille completion of
an n-ordered set, similar to the one existing for the dyadic case (i.e., the one for
posets) will be provided. Details for the dyadic case may be found, for instance, in
Theorem 2.36 of [3].

5 A Uniqueness Theorem

In this section, a uniqueness theorem for the Dedekind–MacNeille completion
of a joined n-ordered set is proved. This theorem (Theorem 15) generalizes the
2-dimensional Theorem 2.36 of [3] to n dimensions. Before Theorem 15, a few
intermediate results will be presented. They all constitute steps in the proof of the
main theorem and treat more general cases and, as a consequence, have weaker
conclusions.

First, it is shown that if P is a subset of an n-ordered set Q that is joined, dense
and closed in Q, then, there exists an n-order homomorphism h : Q → DM(P), i.e.,
a mapping h : Q → DM(P), such that, for all x, y ∈ Q and all i = 1, . . . , n,

x �i y implies h(x) ⊆i h(y),

that agrees with the standard embedding e : P → DM(P) on P.

Theorem 14 (Joined, Dense and Closed Subsets) Let Q = 〈Q,�1, . . . ,�n〉 be an
n-ordered set, P = 〈P,�1, . . . ,�n〉 an induced sub-n-ordered set of Q, such that P
is joined, dense and closed in Q, and e : P → DM(P) the standard n-order embedding
of P into its Dedekind–MacNeille completion. Then, there exists an n-order homo-
morphism φ : Q → DM(P). Moreover φ agrees with e on P, that is φ(p) = e(p), for
all p ∈ P.

Proof Suppose, first, that Q = 〈Q,�1, . . . ,�n〉 is an n-ordered set and P ⊆ Q is
joined, dense and closed in Q. Define the mapping φ : Q → DM(P) by setting, for
all q ∈ Q,

φ(q) = 〈(q]P
1 , . . . , (q]P

n 〉.
It will be shown that φ : Q → DM(P) is an n-order homomorphism and that it agrees
with e on P.

First, to see that φ is well-defined, it must be shown that φ(q) ∈ DM(P), for all
q ∈ Q. To this end, it must be shown that, for all i = 1, . . . , n,

(q]P
i = R(P)i

(
(q]P

1 , . . . , (q]P
i−1, (q]P

i+1, . . . , (q]P
n

)
.

It is just shown that (q]P
n = R(P)n

(
(q]P

1 , . . . , (q]P
n−1

)
, since the remaining relations,

then, follow by symmetry.
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For the left-to-right inclusion, suppose that xn ∈ (q]P
n and that pi ∈ (q]P

i , for all
i = 1, . . . , n − 1. By (n − 1, . . . , 1)-joinedness, there exists p ∈ P, such that p is an
(n − 1, . . . , 1)-limit of (pn−1, . . . , p1) in Q. Thus pi �i p, i = 1, . . . , n − 1, and, by
( jn−1, . . . , j1)-join density, q �n p. Therefore pi �i p, for all i = 1, . . . , n − 1, and
xn �n q �n p. Hence 〈p1, . . . , pn−1, xn〉 ∈ R(P), i.e., xn ∈ R(P)n

(
(q]P

1 , . . . , (q]P
n−1

)
.

For the right-to-left inclusion, suppose that xn ∈ P, such that, for all pi ∈ (q]P
i , i =

1, . . . , n − 1, 〈p1, . . . , pn−1, xn〉 ∈ R(P). Hence, for all pi ∈ P, such that pi �i q, i =
1, . . . , n − 1, 〈p1, . . . , pn−1, xn〉 ∈ R(P), whence, by the closure property, we get that
xn �n q and xn ∈ (q]P

n .
Next, we show that φ : Q → DM(P) is an n-order homomorphism.
If x, y ∈ Q, such that x �i y, and p ∈ (x]P

i , then p �i x, whence p �i y and
p ∈ (y]P

i , yielding that (x]P
i ⊆ (y]P

i and, therefore φ(x) ⊆i φ(y).
The last statement is obvious, since, for all p ∈ P, we have

φ(p) = 〈(p]P
1 , . . . , (p]P

n 〉 = e(p).

��

Since n-lattices are joined n-ordered sets, if in Theorem 14 the n-ordered set P
happens to be an n-lattice, then the hypothesis of joinedness may be dropped.

Corollary 15 (Dense and Closed n-lattices) Let Q = 〈Q,�1, . . . ,�n〉 be an n-ordered
set, L = 〈L,�1, . . . ,�n〉 an induced sub-n-ordered set of Q, that is an n-lattice and is
dense and closed in Q, and e : L → DM(L) the standard n-order embedding of L into
its Dedekind–MacNeille completion. Then, there exists an n-order homomorphism φ :
Q → DM(L). Moreover φ agrees with e on L, that is φ(x) = e(x), for all x ∈ L.

Proof First, notice that, since L is an n-lattice, it is a joined n-ordered set. Therefore,
by Proposition 13, L is also joined in Q. Thus, all hypotheses of Theorem 14 are
satisfied and, therefore, there is an n-order homomorphism φ of Q into DM(L) that
agrees with e on L. ��

Next, it is shown that, if the hypothesis of separation is added in Theorem 14,
then the n-order homomorphism guaranteed by the conclusion of the theorem is
actually an n-order embedding φ : Q → DM(P). Separation is the property that
forces injectivity of φ. This condition is similar to the one used for Boolean algebras
in the dyadic case (see [5], Definition 4.15).

Theorem 16 (Joined, Dense, Closed and Separating Subsets) Let Q = 〈Q,

�1, . . . ,�n〉 be an n-ordered set, P = 〈P,�1, . . . ,�n〉 an induced sub-n-ordered set
of Q, such that P is joined, dense, closed and separating in Q, and e : P → DM(P)

the standard n-order embedding of P into its Dedekind–MacNeille completion. Then,
there exists an n-order embedding φ : Q → DM(P) that agrees with e on P.

Proof Since P is joined, dense and closed in Q, there exists, by Theorem 14 an
n-order homomorphism φ : Q → DM(P) that agrees with e on P. Moreover φ is
given by

φ(q) = 〈(q]P
1 , . . . , (q]P

n 〉, for all q ∈ Q.
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To show that φ is an n-order embedding, it suffices to show that, for all x, y ∈ Q, and
all i = 1, . . . , n, if φ(x) ⊆i φ(y), then x �i y.

To this end, let x, y ∈ Q, such that φ(x) ⊆i φ(y). Then, by the definition of φ,

(x]P
i ⊆ (y]P

i . Thus

p �i x, implies p �i y, for all p ∈ P. (1)

Assume, for the sake of obtaining a contradiction, that x 
�i y. Then, by i-separation,
there exists p ∈ P, such that p �i x and p 
�i y. This contradicts Implication (1) and
concludes the proof that φ is also an n-order embedding. ��

Analogously with the case of a joined, dense and closed subsets of an n-ordered
set, if the n-ordered set P in the hypothesis of Theorem 16 happens to be an n-lattice,
then it is automatically joined and, therefore, Theorem 16 assumes the form of

Corollary 17 (Dense, Closed and Separating n-lattices) Let Q = 〈Q,�1,. . . ,�n〉 be
an n-ordered set, L = 〈L,�1, . . . ,�n〉 an induced sub-n-ordered set of Q, that is an
n-lattice and such that L is dense, closed and separating in Q, and e : L → DM(L)

the standard n-order embedding of L into its Dedekind–MacNeille completion. Then,
there exists an n-order embedding φ : Q → DM(L) that agrees with e on L.

Proof From Theorem 16 and Proposition 13, given that an n-lattice is a joined
n-ordered set. ��

Finally, it is shown that, if the n-ordered set Q in the hypothesis of Theorem 16
happens to be a complete n-lattice, then the n-order embedding φ : Q → DM(P)

guaranteed by the conclusion of the theorem becomes an n-order isomorphism.

Theorem 18 (Joined, Dense, Closed and Separating Subsets in Complete n-lattices)
Let C = 〈C,�1, . . . ,�n〉 be a complete n-lattice, P = 〈P,�1, . . . ,�n〉 an induced
sub-n-ordered set of C, such that P is joined, dense, closed and separating in C, and
e : P → DM(P) the standard n-order embedding of P into its Dedekind–MacNeille
completion. Then C ∼= DM(P) via an n-order isomorphism which agrees with e on P.

Proof Suppose that C is a complete n-lattice and let P be a subset of C which is
joined, dense, closed and separating in C. Then φ : C → DM(P), defined by

φ(q) = 〈(q]P
1 , . . . , (q]P

n 〉, for all q ∈ C,

is, by Theorem 16, an n-order embedding which agrees with e on P. Thus, it suffices to
show that φ : C → DM(P) is onto. To see this, let 〈A1, . . . , An〉 ∈ DM(P). Consider
the element q ∈ C, defined by

q = ∇n−1,...,1(An−1, . . . , A1).

It will be shown that φ(q) := 〈(q]P
1 , . . . , (q]P

n 〉 = 〈A1, . . . , An〉.
Clearly, for i = 1, . . . , n − 1, if pi ∈ Ai, then, by the bound property of joins,

pi �i ∇n−1,...,1(An−1, . . . , A1) = q. Thus 〈A1, . . . , An〉 ⊆i φ(q), for all i=1, . . . , n−1.
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To conclude the proof, it suffices, by the uniqueness condition, to show that
〈A1, . . . , An〉 ⊆n φ(q), i.e., that

An ⊆ (∇n−1,...,1(An−1, . . . , A1)]P
n .

If xn ∈ An, then, by the concept closure of 〈A1, . . . , An〉 with respect to R(P),

for all pi ∈ P, such that pi �i ∇n−1,...,1(An−1, . . . , A1), i = 1, . . . , n − 1,, we have
that, 〈p1, . . . , pn−1, xn〉 ∈ R(P). Hence, by the closure of P in C, we get that xn �n

∇n−1,...,1(An−1, . . . , A1), i.e., that An ⊆ (∇n−1,...,1(An−1, . . . , A1)]p
n . ��

Corollary 19 (Dense, Closed and Separating sub-lattices of Complete n-lattices) Let
C = 〈C,�1, . . . ,�n〉 be a complete n-lattice, L = 〈L,�1, . . . ,�n〉 a sub-n-lattice of C,
such that L is dense, closed and separating in C, and e : L → DM(L) the standard
n-order embedding of L into its Dedekind–MacNeille completion. Then C ∼= DM(L)

via an n-order isomorphism which agrees with e on L.

Proof It suffices to notice that, in Theorem 15, if the n-ordered set P happens to be
an n-lattice, then P is automatically joined and, therefore, by Proposition 13, it is also
joined in C. ��

An important question that remains open is whether the Dedekind–MacNeille
completion is the smallest completion of an n-ordered set. We close by formally
posing it as an open problem.

Open Problem Does every n-order embedding h : P → C of an n-ordered set P into
a complete n-lattice C extend to an embedding φ : DM(P) → C of its Dedekind–
MacNeille completion DM(P) into C?

P DM(P)�e

C

h
�

�
�
��

φ
�

�
�

��
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