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1 INTRODUCTION 

In 1989 Blok and Pigozzi [6], following in the footsteps of Czelakowski [13] and their 

own previous work [5], made precise, for the first time, the notion of algebraizablt logic. 

A bulk of work has been published since, influenced by this "Memoirs monograph", 

and a new area in aJgebraic logic has emerged that has come to be known cis abstract 

algebraic logic. 

To Blok and Pigozzi, it became clear later [8] that their definition of algebraizability 

fell into a more general framework. Thus, they defined the notion of equivalence for two 

deductive systems and showed how algebraizability can be perceived to be an instance 

of this equivalence. In their work they dealt with sentential logics over a fixed signature. 

Thus, universal algebra was the natural, necessary and indispensable algebraic tool for 

handling algebraizability and promoting this marriage of logic and cilgebra. 

In an appendix of the "Memoirs monograph", Blok and Pigozzi showed how one can 

use the traditional "cylindrification" process of [28] to transform first-order logic to a sen­

tential structural system and, thus, maJce it amenable to their cdgebraization techniques. 

To Pigozzi this two-step algebraization of first-order logic did not seem very satisfactory. 

The '^cylindrification" step, although necessary if the currently available tools were to 

be effective at sill, was clumsy eind unnatund and suggested that a more direct handling 

of varying signatures reqtiired a more adveinced and sophisticated framework. 

In the meantime, in 1984, Goguen cind BurstaJl [26], in a completely different context, 

following work of Barwise on abstract model theory [1], had introduced the model-

theoretic structure of institution. This structure had proved very useful in handling 
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logics with varying signatures, like equational and first-order logic. In 19SS. Fiadeiro 

and Semadeis [21] used Goguen and Burstall's idea to obtain an institution-like syntax-

oriented structure which they called --institution. 

In 1994, Diskin [18], having seen the work of Blok and Pigozzi and realizing its lim­

itations in dealing with logics with varying signatures, suggested the use of institutions 

and the algebraization of institutions as the appropriate framework for generalizing Blok 

and Pigozzi's work. The institution formalism uses concepts and tools borrowed from 

category theory. Thus, it was only natural that the marriage of logic and algebra at this 

higher level would require the tools and techniques of categorical algebra, namely the 

powerful machinery of the theory of algebraic theories. 

This is the point where the present work comes into play. It is our belief that a 

new ''section" of abstract algebraic logic is emerging, its main, distinctive feature being 

the replacement of universal by categorical aJgebraic techniques. Our main goal in this 

thesis is to make a contribution in this newly emerging area by advancing this line of 

resezirch and to present a, hopefully, convincing argument for the need to pursue further 

research in order to deepen our understanding of what categorical abstract algebraic logic 

has to offer and what are its limitations. 

In the remainder of this chapter we will give a brief outline of the contents of the 

thesis and a short review of pzist developments in this area that cire our stcirting points 

and have influenced our work significantly. 

Thesis Outline 

In the remainder of this chapter, some previous work on abstract aJgebraic logic and 

categorical algebra is reviewed. On the abstract aJgebraic logic side, the definition of 

a deductive system [51] and its generalization to that of a k-deductive system [7] are 

reccilled. The notion of equivalence for Ar-deductive systems [8] is then introduced and 
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the theory leading to the well known characterization of equivalence (Theorem 1.1) 

overviewed. The algebraization of deductive systems [6. 7] comes ne.xt and the intrinsic 

characterization of algebreiizability (Theorem 1.3), which has been the starting point 

for abstract algebraic logic, is briefly discussed. On the categorical algebra side, the 

notion of an algebraic theory [-38, 24], given in both its clone and its monoid form, starts 

the development. The description of the Kleisli category [32] of the free algebras of a 

theory follows. The notions of a T-algebra and T-homomorphism and the Eilenherg-

Moore category [19] of a theory come next. The central notion of an adjunction [31] 

is then introduced and the well known Freyd adjoint functor theorem (Theorem l.S) 

[25] cind the special adjoint functor theorem (Theorem 1.9) are briefly discussed. The 

fundeimentaJ relationship between «ilgebraic theories and adjunctions [32, 19], which 

is crucial throughout the thesis, comes ciftervvards. In this context, the comparison 

functors play a key role (Theorems 1.11 and 1.12) and lead naturally to Beck's famous 

characterization of algebraic functors (Theorem 1.13), concluding the first chapter of the 

thesis. 

In the second chapter, the main development of categorical abstract algebraic logic 

begins. First, the notions of an institution (Definition 2.1) [26. 27] and of a --institution 

(Definition 2.3) [21], which form the basis of our formalism throughout the thesis, zire 

introduced. The central notion of a term --institution (Definition 2.7) is given and some 

examples provided. The category of theories of an institution is then described. The 

structure of this category plays as an important a role in categorical abstract algebraic 

logic as the lattice of theories in classical abstract algebraic logic. Categories of theories 

of two --institutions caji be related via functors from one into the other. The strength 

of the ties with which such a functor binds these two categories can be estimated by 

looking at some of its abstract properties. Those are presented next (Definition 2.19). 

The notions of a translation eind that of an interpretation between two institutions are 

then introduced (Definition 2.21). The description of interpretability, quasi-equivalence. 
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strong quasi-equivatence and deductive equivalence, the central notions of this chapter, 

follows (Definition 2.22). They are used to compare both the syntax and the deductive 

apparatuses of two ^-institutions. Each one is stronger than the preceding one in the list. 

Because of the generality of the notion of institution, it is very difficult to prove useful 

results for the most general c«ise. One has to restrict to special cleisses of institutions 

with features that fit particular applications. Thus, focusing on term --institutions. 

necessary and sufficient conditions are given for each of the three relations of equivalence 

to hold between two term --institutions in terms of their categories of theories (Theorems 

2.29, 2.31 and 2.36), which readily extend to institutions. Turning to the special case 

of deductive equivalence, the logical interdependence of the characterizing conditions 

is aJso investigated. It turns out that a very concise and elegant characterization of 

deductive equivalence, that parallels the characterization of equivalence of deductive 

systems [7], can be obtained for term institutions (Theorem 2.41). The special ceise 

of deductive autoequivalence is then introduced, which naturally relates this result to 

the corresponding one for deductive systems. This relation is described in detail in the 

last paragraph of the chapter (Theorem 2.4S). The requirement of equivalence for the 

signature categories of two deductively equivalent --institutions appezirs to be too strict. 

This is the main motive for investigating the weaker notions of quasi-equivalence and 

strong quasi-equivalence, which relate the signature categories of the two institutions 

more loosely. 

The necessary framework having been laid in Chapter 2, Chapter 3 deals directly 

with the algebraization issue. Based on the notion of an algebraic theory, which general­

izes that of a veiriety, the concept of an algebraic institution is described (Definition 3.1), 

which corresponds to the notion of a 2-deductive system based on the equational conse­

quence relation of some class of algebrzis. Corresponding to the notions of interpretabil-

ity, quasi-equivalence, strong quasi-equivalence and deductive equivalence are the notions 

of pre-algebraizability. quasi-algebraizability, strong quasi-algebraizability and algebraiz-
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a6j7ffy (Definition 3.4), which seem to form an algebraic hierarchy of --institutions, based 

on both their syntax and their deductive power. .A.s immediate consequences of the char­

acterization theorems of Chapter 2, one obtains, here, characterizations for the different 

leveb of algebraizability in terms of the categories of theories of the --institutions involved 

(Corollary 3.5). These parallel the characterization of the algebraizability of deductive 

systems of [6]. Three very interesting and important applications are discussed in length 

closing Chapter 3. First, two institutions based on an algebraic theory in a category IC. 

one with richer syntaoc structure than the other, but very similar in deductive power, 

are defined and it is shown that they are quasi-equivalent (Theorem 3.S). Second, in­

spired by the theory of deductive systems, a "universal algebraic'' --institution cind its 

corresponding categorical counterpart are shown to be deductively equivalent (Theorem 

3.11). Finally, the algebraization of the, so called, equational institution, aji institu­

tion that naturally represents a somewhat nonstajidard version of equational logic, is 

described (Theorem 3.27). The detailed development of the algebraic theory in SET, 

on which the algebraic institution used for this algebraization is built, is delegated to 

Chapter 6, although some of its essential features axe described here, as the need arises. 

The characterization of algebraizability of a --institution, provided in Chapter 3, is 

not intrinsic in the sense that it requires a priori knowledge of the algebraic institution 

that will be used as the cJgebraic counterpart in the algebraization. Following [6], one 

hopes to discover a set of intrinsic necessary and sufficient conditions zis concise and 

elegant as possible. This tcisk is undertaken in Chapter 4. .Agetin the most generjil case, 

ajid, in fact, even the term case, seem to be very difficult to hcindle. Investigation is 

restricted, thus, further, to a subclass of term ^-institutions, the, so called, theory insti­

tutions (Definition 4.1). The syntax of these institutions is very nice, already algebraic 

in nature. The focus now is on the deductive apparatus. In this context, a generalized 

Leibniz operator Ixom theories to generalized equational theories can be defined (Defini­

tion 4.6). Further restricting both the class of institutions to the, so called, Blok-Pigozzi 
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institutions (Definition 4.18) and the type of algebraizability to the, so called, auto-

algebraizability (Definition 4.3), requiring the syntcix component to remain invariant, 

makes it possible to give intrinsic necessary and sufficient conditions (Theorem 4.19) 

similar to the ones presented in the main theorem of [6]. The chapter concludes with a 

detailed description of the connection between Blok-Pigozzi theory institutions and de­

ductive systems in the sense of [6] (Theorem 4.23), which, in addition, justifies the name 

chosen for those institutions. The end of Chapter 4 signals the end of the first main 

section of the thesis dealing with the study of the algebraization process of institutions 

itself. 

.A.S is the case with classical abstract algebraic logic, two other directions are of equal 

interest. One is the study of metalogical properties and how these properties are related 

to corresponding algebraic properties of the algebraizing counterparts and the other is 

the study of the cleisses of algebras that are used as algebraic counterparts of logical 

systems. These are the two directions that cire pursued in the remainder of the thesis. 

In Chapter 5, several metalogical properties are introduced and it is shown that they 

cire preserved under deductive equivalence. More precisely, if two institutions are deduc­

tively equivalent, then one has the property if eind only if the other does. The properties 

studied are the deduction-detachment property (Definition 5.1), the conjunction and the 

disjunction properties (Definitions 5.6 and 5.3, respectively), negation (Definition 5.9), 

the Craig interpolation property (Definition 5.12), the Robinson consistency property 

(Definition 5.14) and the Lindenbaum property (Definition 5.17). Those properties have 

been introduced long ago for deductive systems (see [23]) and adapted later for institu­

tions [50]. They axe here formulated in a somewhat non-standard form, appropriate for 

our purposes, but their essential features are, hopefully, preserved. 

In Chapter 6, a detailed study of the algebraic theory of abstract clone algebras, 

used in Chapter 3 to algebraize the equational institution, is undertaken. The main 

theorem (Theorem 6.14) gives a universal algebraic characterization of the Eilenberg-
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Moore categorj' of the algebras of this theory. Some connections with the variety of 

representable substitution algebras of [20] are also investigated (Theorem 6.19). 

On the Abstract Algebraic Logic Side 

In this section, some of the most important notions and results that have appeared in 

the literature of abstract algebraic logic and that have significantly influenced our devel­

opment of categorical abstract algebraic logic, presented in the main body of the thesis, 

are briefly reviewed. In the first subsection, the main definition of a fc-deductive system 

is given. In the second, the notion of equivalence for deductive systems is described. 

Finally, in the third subsection, the work of Blok and Pigozzi on the algebraization 

of fc-deductive systems is summarized and a generalization of the main result due to 

Herrmann is stated. 

Deductive Systems 

For more details on the material that is reviewed in this section the reader is referred 

to [6, 7]. Given a set X, we denote by X a disjoint copy of X constructed in some 

canonical way, e.g., X = X y. {0}, and by z the copy of x € -V in X. 

Let A = {A,- : i 6 /} be a set of symbols and p : A ^ u; a rank function. C = {A..p) is 

called a language type. If A 6 A, we call A a connective of rank p{X) or a ^(A)-ary 

function symbol. If p{X) = 0, then A is called a propositional constant or, simply, 

a constant. Let V be an arbitrary countably infinite set, called the set of variables. 

The set of formulas of type C over V, sometimes Ccilled £-terms over V, is denoted 

by Tm£(V') and is the smallest set satisfying 

• F € Tm£( V), for every v 6 V. and 

• A(io,... ,f^(A)-i) € Tm£(V'), for all A € € Tm£(V'). 
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From the logic point of view, one thinks of the elements of A as connectives and the 

elements of Tm£(V') as formulas built using these connectives, whereas from the algebra 

point of view, the elements of A are thought of as operation symbols and the elements of 

Tmc(V) as terms built using these operation symbols. This dual interpretation explains 

the use of Tm£(V) to denote the set of formulas, .^s usual an £-aIgebra structure can 

be associated with Tm£(V') by setting 

foreveryA G A,io---- .^p(.\)-i € Tmc(V'). We denote the resulting £-aIgebra by Tm£(V') 

and call it the algebra of ^-formulas or the algebra of £-terms over V. .An as­

signment is a mapping a : V Tm£(V'). Every assignment e.xtends uniquely to a 

homomorphism a' : Tm£(V') -> Tm£(V'), which is called a substitution. Conversely, 

every such homomorphism gives rise to an assignment by restricting to variables and 

t h e  t w o  m a p p i n g s  a  a '  a n d  h  h l y o  a r e  i n v e r s e s  o f  e a c h  o t h e r ,  w h e r e  :  V  V  

maps t7 6 V to its copy v. Thus, without any possibility of confusion we use <r to denote 

both the assignment and the corresponding substitution. 

Given fc € u;, a fc-deductive system S over C [7] is a pair 5 = (Tmc(V')*^.h5). 

where Tmc( V) is the ^-formula aJgebra and I-5 C 7^(Tm£( V')^') x Tmc(V')^ is a relation 

satisfying the following conditions, for all F, A C Tm£(V')^ and 0 € Tm£(V')'^, 

(i) o € r implies F I-5 o 

(ii) r 1-5 ^ and F C A imply A I-5 o 

(iii) F 1-5 (i> cind A hs 7 .  for every 7  6 F, imply A I-5 o 

(iv) F ^5 0 implies «r(F) I-5 c r { p ) .  for every substitution <7, 

where, obviously, if <i> = {^,... ,Ot-i), cr(<;i>) = {<7(^),... , <T(<j)fc_i)), and <T(r) = {cr(7) : 

7eF}. 
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Let K be an infinite cardinal. A Ar-deductive system S is said to be K-ary if, for every 

ru {<?} C Tm£(V')^ 

(v) r 1-5 ^ implies To 1~5 O, for some Fq C F. with |Fo| < K . 

In particular, if k = oj, then S is called finitary. 

If we define Cs • •P(Tm£(V')^) 'P(Tmc(V")*^) by 

C5(r) = {0 € Tmc(V')*^: F i-5 o}, for every F C Tmc{V)''. 

then (i)-(v) above take the following form 

(i') r C C s i T )  

(ii') F C A implies C5(F) C C5(A) 

(iii') C5(C5(F))cc5(r) 

(iv') a{Cs{ r ) )  c C5(<7(r)) 

(v') C5(F) = UiC^CFo) : Fo c F, IFol < K}, 

i.e., they become the well-known Tarski closure axioms [51]. 

A subset T C Tm£(V)^ will be called an 5-theory if, for every 0 € Tm£(V)'^, 

T \-s p implies p E T, or, equivalently, if Cs{T) = T. The collection of all 5-theories 

is denoted by Th^. Ordered by inclusion, they form a complete lattice which will be 

denoted by Th^. 

Equivalent Deductive Systems 

In [8], Blok and Pigozzi define the notion of equivcdence for Ar-deductive systems. 

Their basic definitions and results are the peiracigms for the deductive eqtiivaJence of 

institutions that we will introduce in this thesis. 
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Let Si = (Tm£(V)^, 1-5,) be a finitary Ar-deductive system and S2 = (Tm£(V')'. 

1-5,) a finitary /-deductive system, both over the same language type C. By a (/:./)-

translation we mean a finite set r of /-formulas in a single fc-variable i\ i.e.. v G V'^' 

with Vi ^ Vj.i < j < k, and r C Tm£({uo, • • • rUt-i})'- Thus, for some n 6 u;. 

T(V)  = : i  <  n } .  

For r C TmcCV')*-". let r(r) = U<,6r^(<?)-

(A:,/)-translation r is a (Ar./)-interpretation of SI in SO.  written T :  SI  S2.  if. 

for all r C Tm£(V)'^,o € Tm£(V')^ 

r\-s,ci> iff r(r) 1-5, r(0), (l.I) 

or, equivalently, using the closure operator notation, 

0 6C5.(r) iff r(o) C C5,(r(r)). 

<Si and S2 are equivalent if there exists a (Ar,/)-interpretation r : Si So and an 

(/, Ar)-interpretation p : S2 Si that are inverses of each other in the sense that, for 

every 0 6 Tm£(V')^. 

M^(o)) (1-2) 

and, for every ib € Tm£(V')', 

x b ( 1 . 3 )  

where F A means F 5. for every ^ € A, and A 7 ,  for every 7  6 F, and 

similaxly for . 

It is proved in [S] that the existence of r and p together with conditions (1.1) and 

(1.3) cire stifficient for the equivalence of Si eind S2. 
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Recail that, given a Ar-deductive system S over C and an ^-algebra A, an 5-filter F 

on A is a subset of .4^, such that, for all F C Tmc(V')*^,<p € Tm£(V')''. 

r 1-5 <j> implies <;£>'^(a) € F whenever r^(a) C F. for all a : V .4. 

where r''^(a) = {7'^(a) : 7  € F}. The collection of all 5-filters on A is denoted by 

Fi5(A). Under set inclusion, they form a complete lattice, which will be denoted by 

Fi5(A). 

Given an interpretation r : Si ^ 52, an £-algebra A and an «5i-filter F on A, define 

'S,(f) = Fg^(r^(f)), (1.4) 

where Fg^(G) denotes the 52-filter on A generated by G and r^(G') = U{'^(°) • ° € 

G}. for every G C .4'^. In the particular Ccise where A = Tm£(V') and T € Th^t. (1.4) 

assumes the form 

r^(r) = C5,(r(r)). (1.5) 

If Si,So are equivalent via interpretations r : Si So and p : So Si, then, for any 

£-aIgebra A, 

"^2 : Ft^-i(A) Fi^(A) and ps^ : Fi52(A) Fi5,(A) 

are lattice isomorphisms and inverses of each other. Moreover, for all endomorphisms 

h : A -¥ X, the following diagrams commute: 

Fi5,(A) Fi^(A) Fi5,(A) Fi^JA) 

5̂1 

Fi5,(A) Fi5,(A) Fi5,(A) Fi5.(A) 

where hsi{ F )  = Fg5j(^(F)), for every filter F  6 Fi5j(A), and similarly for hs^. This 

property has come to be known as commutativity with endomorphisms and, spe­

cialized to formula algebras, as commutativity with substitutions. 

The main result of [8] is the following; 
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THEOREM 1.1 Assume Si is a finitary k-deductive system and So is a finitary [-dedu­

ctive system over the same language type C. The following are equivalent 

( i )  S i  a n d  S 2  a r e  e q u i v a l e n t .  

( i i )  T h e r e  e x i s t s  a n  i s o m o r p h i s m  f r o m  T h ^ i  t o  T h ^ ,  t h a t  c o m m u t e s  w i t h  s u b s t i t u t i o n s .  

( H i )  F o r  e a c h  C - a l g e b r a  A, there exists an isomorphism from Fi5t(A) to Fi5j(A) that 

commutes with endomorphisms. 

Algebraizability of Deductive Systems 

Finally, we review some notions and results on the algebraizability of Ar-deductive 

systems, our main sources being [6, 7, S] and [29]. 

Let A' be a clciss of £-aJgebras. Define the 2-deductive system SK = (Tm£( V')-, 

as follows: 

For every E  C T m c { V ) '  and {tQ,ti) € Tm£(V')-, 

E  \=K { t o ^ t i )  iff, for all A € A', h :  Tmc(V) A, 

h^{eo) = h^{ei), for every (eo, ei) 6 E .  i m p l i e s =  h ^ { t i ) .  

SK is the 2-deductive system cissociated with A'. In Ccise A' is a qucisivariety axiom-

atized by a known set of quzisi-identities, one can express in terms of axioms and 

rules of inference, see, e.g., [S]. 

finitciry fc-deductive system 5 = (Tm£(V')'^,l-5) will be said to be algebraizable 

with equivalent algebraic semantics A' if Sfc is finitary and S is equivalent to SK in 

the sense of the previous subsection, i .e. ,  if  there exists a (Ar, 2)-interpretation R :  S SK 

and a (2, A:)-interpretation p : SK —>• S that are inverses of each other. The r will be 

called defining equations and the p equivalence formulas for S and A'. Blok and 

Pigozzi prove 

THEOREM 1.2 Let S be a finitary k-deductive system over C and A' a class of C-alge-

bras such that is finitary. SK is equivalent to S iff there exists an isomorphism from 

Th^ onto Th^^. that commutes with substitutions. 
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Given a A:-deductive system S over C and an 5-theory T C Tmi:(V')'=, the Leib­

niz congruence ^{T) associated with T is defined to be the largest congruence 0 

on Tm£(V') that is compatible with T, i.e., such that, for every O.tp €. Tm£(V')^. 

4>i 0 Tpi, i < k, and d ^ T imply il; £T. The main result of [6], generalized to fc-deductive 

systems [S], is the following 

THEOREM 1.3 L e t S  b e  a  f i n i t a r y  k - d e d u c t i v e  s y s t e m  o v e r  C .  S  i s  a l g e b r a i z a b l e  i f f  

( i )  n  i s  i n j e c t i v e  o n  T h ^  a n d  

( i i )  Q .  p r e s e r v e s  u n i o n s  o f  d i r e c t e d  s u b s e t s  o f T h s .  

In [29] Hermann generalized slightly the results of Blok and Pigozzi by considering 

infinitary deductive systems and allowing the sets of defining equations and equivalence 

formulas in an algebraic equivalence to be infinite. The following is his main result, 

given here for Ar-deductive systems 

THEOREM 1.4 Let S be a k-deductive system over C. S is algebraizable in the sense of 

Herrmann iff 

( i )  Q .  i s  i n j e c t i v e  o n  T h ^  

( i i )  Q  i s  m e e t - c o n t i n u o u s  o n  T h ^  a n d  

(Hi) n commutes vrith inverse substitutions. 

On the Categorical Algebra Side 

In this section we review some basic definitions and restilts of the theory of cilgebraic 

theories. The interested reader may consult [39, 43, 2] or [9] for a more detailed account. 

First, some basic notationaJ conventions used throughout the thesis are presented. 

Given a category IC, by |AC| is denoted the collection of objects of fC and by Mor(AC) 

the collection of morphisms of AC. Given A.BG [ACI, by AC( A, B) is denoted the set of all 

morphisms in AC with domain .4. and codomain B. By P : SET ̂  SET is denoted the 
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powerset functor. Following a usuai convention, given a morphism / : A B in SET 

a n d  a subset X C .4, we write fiX) instead of V{f){X). Finally, given a category JC and 

.4 6 |/C|, by (.4 | K.) is denoted the category of objects under .4. i.e.. the category with 

objects all pairs {f.K).K € l^l-/ € fC{A.R'), and arrows h : {f,K) -¥ {g, L) those 

arrows h G IC{K,L), such that g = hf, i.e., such that the following diagrajn commutes 

.4 

I ^ 
Composition in (.4 | f C )  is inherited from the composition in IC. 

Algebraic Theories 

In the sequel IC will be a fixed category, called the base category. 

.'Vn algebraic theory in clone form in (or over) AC is a triple T = { T ,  q .  o), where 

(1) r : 1^1 —>• |AC| is an object function 

(2) RF :\}C\ Mor(AC) is a mapping such that TJA: A-¥ T{A) 

(3) o is a mapping assigning to every { A . B . C )  G [/Cp a function o : K [ B . T { C ) )  x 

X:(.4,T(B)) ^ IC{A,T{C)) such that 

(i) 7 0 o a) = (7 0 /?) o Q, for all a : A ^ T { B ) ,  i 3  :  B  ̂  T { C ) ,  7 :  C - >  T [ D ) ,  

(ii) r/s 0  Q = Q, for every q : .4 -> T [ B ) ,  

(iii) Q o { r j B f )  = ocf, for ail f : A -¥ B and a : B T[C). 

The category having «is collection of objects |/C| and, for all .4, B 6 |/C|, as collection of 

morphisms from A to S all AC-maps f : A T{B), with composition o and identities 

TJAIA 6 1/C|, is called the Kleisli category of T and denoted by fCx- The notation 

f : A B is used to denote an arrow f : A—^ T[B) in /Cx-

An algebraic theory in monoid form in (or over) /C is a triple T = { T , r ] , f i ) ,  

where 
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(1) T : K -r )C IS SL functor 

(2) r j  :  I f c  T  I S  a .  natural transformation 

(3) fx : TT r is a natural transformation such that, for every .4 € |/C|, the following 

diagrams commute 

T { A )  T ( T { A ) )  T { A )  

T { A )  

T { T { T { A ) ) )  T { T { A ) )  

Mr(A) 

T { T { A ) )  HA T [ A )  

If, given a category K  and cin algebraic theory T = (T, i j ,  o) in clone form over IC. one 

d e f i n e s  T  :  M o r ( / C )  M o r ( ^ ) ,  f o r  e v e r y  f  :  A - ¥  B  ̂  M o r ( / C ) ,  b y  T { f )  : T { A )  T [ B )  

w i t h  T [ f )  =  T j B f  o i j ^ A ) .  a n d ,  f o r  e v e r y  . 4  6  \ I C \ , i i a  =  i r ( A )  °  ' T ( r ( . 4 ) ) ,  t h e n  T  =  { T . r j . f i )  

is an aJgebraic theory in monoid form. 

Conversely, if, given K eind an algebraic theory T = (T, T/,/i) in monoid form over 

/ C ,  o n e  d e f i n e s ,  f o r  e v e r } '  [ A .  B , C )  6  \ f C \ ^ , o  :  I C { B , T { C ) )  x  t C { A , T { B ) )  - > •  I C { A , T { C ) ) ,  

by a o ,5 = ficT{0)a, 

A T { B )  T { T { C ) )  T { C )  

for every a  :  A  T { B )  and /? : B T [ C ) ^  then T = (T, t/, o) is cin edgebraic theory in 

clone form and the two translations, just described, from aJgebraic theories in one form 

to algebraic theories in the other are inverses of one another. 
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Let /C be a category and T = ( T . r j ^ o . f i )  an algebraic theory over IC. A T-eJgebra 

is a pair (.4,Q), where .4 € jACj and a ; T(.4) —>• .4 € Mor(/C) satisfying commutativity 

of the following diagrams 

1A T { A )  T { T { A ) )  T { A )  

T ( A )  .4 

If (.4, a), are T-algebras, a T-homomorphism from {A, a) to {B,^) is a map 

f : A^ B E Mor(/C), such that the following diagram commutes 

T ( f )  
T { A )  — ^  T { B )  

A B 

It is not difficult to see that £.4 : (.4, a) —>• (-4. a) is a T-homomorphism and. if 

/  :  { A ,  a )  — >  { B , 3 )  z i n d  g  :  { B , j 3 )  - >  ( C , 7 )  a r e  T - h o m o m o r p h i s m s .  t h e n  s o  i s  g f  :  

(.4, a) —)• (C,7). Thus, T-algebras together with T-homomorphisms form a category 

called the Eilenberg-Moore category of the algebraic theory T. 

Adjoints 

Let A,IC be categories, U : -> AC be a functor and A" € lAC]. .A. free ^l-object over 

K with respect to U is a pair {F.TJ), where F € 1-41 and TJ : K ^ U{F) € Mor(AC) 

such that if (.4,/) is another pair with .4 € 1^1,/ : A' —)• U{A) G Mor(/C), then there 

exists unique f* : F A E Mor(^) such that U{f*)r] = /. In this Ccise, rj is said to be 

universsJ to U from A'. 

Pictoricilly, we have 
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F K U { F )  

f* U(S*)  

.4 U { A )  

Dual to the notion of a universal arrow from an object to a functor is the notion of 

a universal arrow from a functor to an object. Let A,IC be two categories, F : fC -r A 

a functor and .4 6 |-4|. Given an object U € |^|. a mapping e : F{U) —>•.4 6 Mor(>4.) 

is called universal to .4 from F if. for all K G \fC\,f : F{K) .4, there e.xists unique 

U  €  M o r ( / C )  s u c h  t h a t  e F ( f * )  =  f .  

PictoriaJly, we have 

Let A ,  K ,  be categories. .A.n adjunction from /C to >4 is a triple (F, U ,  o )  : K .  A ,  

where F : fC A. U : A-^ fC cure functors and o is a function eissigning to each pair of 

objects A' € |/C1,.4 6 |>1| a bijection 

which is natural in A' cind .4. 

Given such an adjunction, F is said to be a left adjoint for U while U is called a 

right adjoint for F. Moreover, the image of an arrow f : F{K) A tmder is its 

right adjunct aind the image of an arrow g : K -i- U{A) under is its left adjunct. 

In [39] the following theorems are proved: 

THEOREM 1.5 An adjunction (F,U,0) : fC A determines 

U F [ U )  —  ̂.4 

f* 

F [ K )  

o = O KJ, : ̂ (F(A'),.4) ^ K { K M { A ) )  
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( i )  a  n a t u r a l  t r a n s f o r m a t i o n  TJ :  [ /C -i- UF such that, for every object K 6 |AC|, the 

arrow rjfc is universal to U from A", while the right adjunct of each f : F{K) .4 

O i f )  =  m f ) r i K  :  A '  ̂  U { A )  

(ii) a natural transformation t : FU -> I A such that each arrow e^ is universal to .4 

from F, while each g : K has left adjunct 0~^(g) = -r .4. 

Moreover the following triangles commute 

U F 

Tj is called the unit and e the counit of the given adjunction { F .  U .  6 )  :  K .  A .  

THEOREM 1.6 Each adjunction {F.U.o) : IC A is completely determined by the 

functors F, U and the natural transformations ri: I/c UF and t: FU —> satisfying 

the commutativity of the above triangles. 

Given theorems 1.5 and 1.6 we feel free to switch between the notations ( F . U . o )  :  

IC A and (F, U, T},E) : fC A for the given adjunction. 

The following theorem relating free objects and adjoints is proved in [43]. 

THEOREM 1.7 Let K.A be categories and U : A fC be a functor. Then there exists 

an adjunction of the form {F.U.rj.t) : fC A if and only if for every K G |/C|, there 

exists a free A-object over K with respect to U. 

In both [39] eind [43] one Ccin find the following theorems 

THEORE.M 1.8 (THE FREYD ADJOINT FUNCTOR THEOREM) Given a small-complete 

category A with small hom-sets, a functor U : A—y IC has a left adjoint if and only if it 

preserves all small limits and satisfies the 

Solution set condition: For each K 6 1/C|, there exists a small set /, an I—indexed 

family of objects .4,- € |>l| and an [—indexed family of morphisms fi : K -¥ U{.Ai) 6 

Mor(AC) such that every h •. K -¥ U{.A) can be factored as h = U{t)fi. for some i ^ I 

and t : .4, .4. 
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A' U { A )  

The following notions of a subobject and a cogenerating set are necessary for the 

formulation of the special adjoint functor theorem and its corollary. 

Given a category* A and two monies f : B -t A, g : C A ^ Mor(>4^) with common 

codomain A we write f < g when / factors through g. i.e.. when / = gf. for some 

f ' : B - ^ C .  

B 

C 

When f < g and g < f, we write f = g. The relation = is an equivalence relation on 

the monies with codomain .4 and its equivalence classes axe called the subobjects of 

.4. Following common practice we sometimes identify a representative f : B A with 

the subobject represented by /. A will be called well-powered when the subobjects of 

each .4 6 |>l| Ccin be indexed by a small set. 

Given a category A, a set C C |>l| will be called a cogenerating set for A if to 

every parallel pair g g' : A B ^ Mor(>l) there exists C 6 C eind f : B C with 

fg fg'-

A —^ B • C 

THEOREM 1.9 (THE SPECIAL ADJOINT FUNCTOR THEOREM) Let A be a small-com­

plete category, with small hom-sets and a small cogenerating set C. such that every set 

of subobjects of an object A G |>l[ has a pullback, and let K. be a category with small 

hom-sets. Then a functor U i A K, has a left adjoint if and only if it preserves all 

small limits and all pullbacks of families of monies. 
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Finally, if A happens to be well-powered the Special Adjoint Functor Theorem as­

sumes the following form 

COROLLARY l.io If A. is small-complete, well-powered, with small hom-sets and a small 

cogenerating set while K has small hom-sets then a functor U A-¥ K, has a left adjoint 

if and only if it preserves all small limits. 

Theories and Adjoints 

Let A,IC be categories and {F.U.rj.e) : IC A a-ia. adjunction. Define T : fC K, 

by T = iff and : U FU F -=>• U F hy fx = U tp- where e : FU —>• I A is the counit of the 

given adjunction. The definition of composition of natural transformations and that of 

natural transformations and functors give to e =. t[FUc) = i.e.. commutativity 

of 

FUFU FU 

(•FU 

FU U 

eind the triangular identities of the adjunction give 

FT)  
F FUF 

'F \ 

U F 

These three diagrams show that {T . r j . f i )  is an cJgebraic theory in monoid form in AC. 

since they immediately yield commutativity of the following three diagrams 

UFUCP 
UFUFUF UFUF 

U (.fup Ijtp 

UFUF ULF UF 
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T J u  F  U  F r j  
UF —^ UFUF -—-  UF 

U T P  / 
y/ 'UF 

UF 

{T ,  RI .FI )  =  {UF,  TJ,  UEF)  will be called the theory of the adjunction (F. U.  RJ.C)  :  K .  

A. 

Suppose next that is an algebraic theory in monoid form over IC. Consider 

the Eilenberg-Moore category of T-algebrcis and define functors U'^ : ->• IC and 

F^ : IC KIT- as follows: 

U^{{X ,0 )  = -V and. i i h  :  (X^) {Y.Q 6 Morl/C^), then U'^{h) = h .  Further, 

FT(.Y) = {T{X),fix) and, if / : X ^ V € Mor(r), then F'^(/) = T(f). Finally, 

define natural transformations rj^ : I/c U^F"^ and : F'^U^ Iter hy rj^ = t} 

and ~ turns out that (F"^, 6/^, 77^, e^) : K, ->• tC'^ is aji adjunction and. 

moreover that the theory of this adjunction is the original theory {T .x f . f i ) .  

Let us now return for a while to the Kleisli category ICx of a given theory {T.rj.fi) 

over a category fC. Recall that /Cx has as objects the objects of IC and as morphisms 

f : X Y. AC-morphisms / : X -=>-T{Y). Moreover composition is defined by 

go  f  =  f i zT{g) f ,  for all / : A' Y.g  :Y  ^  Z €  Mor(/CT). 

X T{Y)  T[T{Z) )  T[Z)  

Define functors t/'x : ̂ x —^ ^ and Fx '• IC ICx as follows: 

UT{X)  =  T{X) ,  for every X € |/Cxl, and, if / : X V € Mor(K:x), then t/x(/) = 

fiyTif) : T{X) T{Y). Further Fx(X) = X, for every X 6 [/Cj, and, if / : X -H- K 6 

Mor(AC), then Fx(/) = Tjyf : X Y € Mor(/Cx)- FinjiUy, define RFI • Irz UTFT by 

Tfi = Tj and ex : Fx^x Ikt by ex x = ^T(JC)- It then turns out that (Fx, Ut, t/x, ct) ^ 
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K —> ACT is an adjunction and that the theory of this adjunction is the given theory 

(r, 77,^) as well. 

The Comparison Functors 

In this paragraph we consider the reverse problem. Instead of starting with a given 

algebraJc theory and comparing it with the theory of the adjunction constructed from 

the original theor\\ we start with an adjunction {F.U.rj.t) •. K, A and investigate 

its relationship with the adjunctions constructed as before by the theor\' of the given 

adjunction. 

In this direction, the following theorem is proved in [39]. 

THEORE.VI 1.11 (COMPARING ADJUNCTIONS WITH ALGEBRAS) Let {F.U. TJ.C)  :  K 

A be an adjunction, T = {UF, rj, UcF) the theory it defines in K. Then there ex­

i s t s  a  un ique  func tor  K  :  A  wi th  U '^K  =  U and  KF =  F^ .  

The functor K. whose e.xistence and uniqueness is asserted in the theorem and which 

makes the F and U paths of the following diagrams commute 

A K'^ A kT 

is defined as follows: 

K{A)  = {U{A) ,UeA) ,  for every .4 6 1-41, and, \ i  f  :  A  -h-  B  € .  Mor(>l), then 

A'(/) = U{f) : {U{A)Me.^) ^ (/7(B),6^£s). 

A simileir restdt holds with the Kleisli category ACT of T in place of the category 

of the T—algebras. 

THEOREM 1.12 (COMPARING ADJUNCTIONS WITH FREE ALGEBRAS) Let {F, IL TJ , 

e) : fC A be an adjunction and T = {UF, TJ, UCF) the theory it defines in K. Then there 

exists a unique functor L : /CT A, voith UL = U'T and LFT = F, whose restriction 

gives an equivalence of categories ICT —> F(/C). 
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K.1 A K.1 A. 

We now set out to present Beck's Theorem which provides a characterization of 

aigebrzis, i.e., gives necessary and sufficient conditions for the comparison functor A' : 

A —>• to be an isomorphism of categories. 

First we need some new concepts. 

Let C be a category. .A. fork in C is a diagram 

.4 e -i- c 
J2  

with g f i  = g f2 -  A  coequalizer g  of the parallel pair /i, /2 is then a fork as above such 

tha t ,  fo r  any  g ' :  B  D.  with  g ' f i  =  g ' f2 ,  the re  ex is t s  un ique  k  :  C  D with  g"  =  kg .  

A  ~ ^ B ^ C  
\ 

\ • H,  
9  \  I * •  

D 

An cirrow g is called an absolute coequalizer of fi.fz if, for every category K. and for 

every functor T : C ^ AC the fork 

^ 
has still T{g)  as  a .  coequalizer. 

A split fork in C is a fork with two additional arrows h i  :  C  - r  B ,h2  :  B  A  as  

follows f^ g 

A B C 

H2 HI  
that satisfy g f i  = g f i .gh i  = i c - f ihz  = ts?/2^2 = hig. hi, ho tire said to split the fork. 

The above conditions imply that 
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• g is a. split epi with right inverse hi 

•  g is the coequalizer of fi .fo 

• ^ is an absolute coequalizer of fi.fz-

Given f i ,  f2  :  A  B  in  C ,  g  :  B  - i -  C  will be called a split coequalizer of f i . f o ,  

if there exists a split fork with fi, h.g as above. 

Finally, a functor U : —>• AC is said to create coequalizers for a parallel pair 

: A B in A when, to each coequaiizer u : U[B) X of in IC there 

is unique C and h  :  B  C  with U[C)  =  X eind U{h)  = u ,  and, moreover, h  is the 

coequzJizer of /i,/2-

THEOREM 1.13 (BECK'S CH.\RACTERIZATION OF ALGEBRAIC FUNCTORS) Le t  {F ,  

U, Tf. e) : IC A be an adjunction, {T.rj.fi) the theory of this adjunction. KT- the 

category ofT-algebras and (F^, 0'^, : IC -> IC'^ the adjunction o/T. Then the 

following are equivalent 

( i )  The  compar i son  func tor  K  :  A—> IC '^  i s  an  i somorph i sm 

(ii) U : A K. creates coequalizers for those parallel pairs /i,/2 in A for which 

U[fi).U{f2) has an absolute coequalizer in IC 

(Hi )  U  :  A  IC c rea tes  coequa l i zers  f o r  those  para l l e l  pa i r s  / i . / a  in  A  for  which  

F7(/I), T/'C/O) has a split coequalizer in IC. 

For a proof of this theorem the reader is cJso referred to [39] and [43]. 
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2 EQUIVALENT INSTITUTIONS 

The notion of a term "-institution is introduced. Then the notions of quasi-equiva-

lence, strong quasi-equivalence and deductive equivalence are defined for 7r-institutions. 

Necessary ajid sufficient conditions are given for the qucisi-equivalence and the deductive 

equivalence of two term ^--institutions, bzised on the relationship between their categories 

of theories. The results carry over without any complications to institutions, via their 

associated TT-institutions. .-Vn application is also given. 

Introduction 

In [6], Blok and Pigozzi presented the theorv- of algebrziizable deductive systems. 

They called a deductive system algebraizable if there exists a qucisivariety, over the same 

signature, and translations from the sentences of the system into equations and vice-

versa that, roughly speaking, simulate the deduction over the system in the equationaJ 

deduction over the quasivaxiety and vice-versa and are inverses of each other. In [8] they 

recilized that this notion of eJgebraizability presents a specific example of the notion of 

equivalence of deductive systems. It is simply the equivcilence of a deductive system with 

another very specisJ system, ncimely the 2-deductive system that is associated with the 

chosen quasivciriety. 

In this chapter, inspired by the work of Blok and Pigozzi, and in an attempt to set 

a framework for the aJgebraization of institutions, the notions of quasi-equivalence and 

deductive equivalence for ^-institutions axe introduced. 

Roughly speaking, a --institution consists of an arbitrary category of signatures 
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together with a functor SEN that gives, for each signature object S, a set of ^-sentences. 

For each S, a mapping Cv, mapping sets of S-sentences to sets of S-sentences, cailed 

the "E-closure, is defined, satisfying the usual Tarski closure a.xioms. 

.A.n institution, on the other hand, consists of tin axbitraxy category of signatures 

together with two functors SEN and MOD that give, respectively, for each signature 

object S, a set of T,-sentences ajid a category of "Z-models. For each signature object 

S. sentences cind models axe related via a ^-satisfaction relation. The main axiom 

formalizes the slogan that "truth is invariant under change of notation", see [26]. The 

S-satisfaction relation induces in the standard way a S-consequence relation on the set 

of S-sentences. The axiom above, then, may be interpreted as giving a structuraJity 

condition for these induced consequence relations. Thus, every institution gives rise in 

a natural way to a ;r-institution. 

Following [21] and [26, 27], the category of theories of a ;r-institution and that of 

an institution are considered, i.e., the category with objects theories (closed sets of 

sentences) with respect to either the sentence closures, in the --institution frajnework. 

or the induced consequence relations, in the institution framework. This category plays 

the role of the theory lattice of a deductive system in this broader context. 

Inspired by [6, 8, 18], the notions of quasi-equivalence and deductive equivalence 

for two --institutions cire then defined. Generally speaking, two ^-institutions Xi and 

I2 are quasi-equivalent if the sentence closures of the first can be interpreted in the 

corresponding closures of the second and vice versa. This notion of quasi-equivalence 

generalizes the notion of equivalence for deductive systems introduced in [8]. Attention 

is subsequently restricted to a specieil, but yet wide, class of 7r-institutions, the, so-

called, term ir-institutions. Some examples of term --institutions are provided. Using 

the theory categories of ^-institutions, necessary and sufficient conditions for the quasi-

equivalence and the deductive equivalence of two term --institutions are given. Namely, 

it is proved that two term 7r-institutions Ii aind I2 are quasi-equivalent if and only 
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if their categories of theories are adjoint categories via an adjunction satisfying some 

additional, relatively simple and quite natural, conditions. A similar characterization 

for deductive equivalence is aiso provided. More precisely, it is shown that two term 

--institutions are deductively equivalent if and only if their categories of theories axe 

naturally equivalent (in the usual category theoretical sense) via an equivalence satisfying 

some of the same conditions. These results carry over without any complications to the 

institution framework. 

Finally, as an application of the theory, the special Ccise of deductive institutions, 

that naturally correspond to deductive systems, is explored in some detail. .A.s another 

application, two institutions based on an algebraic theory T in a category IC, that have 

very similar deductive apparatuses, will be constructed in the next chapter and it will 

be shown that they are quasi-equivaJent but, in general, not deductively equivalent, 

institutions. 

Institutions and 7r-Institutions 

DEFINITION 2.1 (GOGUEN AND BURST.A.LL) An institution 

X= (SIGN. SEN. .MOD. }=) 

consists of 

(i) A category SIGN whose objects are called signatures 

(ii) A functor SEN : SIGN —> SET, from the category SIGN of signatures into 

the category SET of sets, called the sentence functor and giving, for each sig­

nature S, a set whose elements are called sentences over that signature H or 

S-sentences. 

(Hi )  A  func tor  MOD : SIGN -> CAT'^ from the category of signatures into the oppo­

site of the category of categories, called the model functor and giving, for each 

signature S, a category whose objects are called E-models and whose morphisms 

are called S-morphisms. 
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(iv) .4 relation C |MOD(S)| x SEN(S), for each E G |SIGN|, called S-satisfa-

ction, such that for every morphism / : Ei S2 m SIGN the satisfaction 

condition 

m2 1=E, SEN(/)(<;j)i) if and only if M0D(/)(m2) 1=;:, Oi 

holds, for every m2 € 1M0D(E2)1 and every <f>i € SEN(Si). 

The defining categories and functors of an institution together with their intercon­

nections are illustrated by the following diagram: 

SET 
SEN 

SIGN 

MOD 

CAT'^ 

Furthermore, the satisfaction condition Ccin be given pictorially cis follows: 

If / ; El —)• E2 is a morphism in SIGN, then, 

MOD(Ei) He. SEN(Et) 

MOD(/) SEN(/) 

M0D(E2) i=Sj SEN(S2) 

Given an institution X = (SIGN,SEN.MOD,(=),- € 1SIGN1,$ C SEN(E) and 

M C |MOD(S)|, we define 

= {m € |MOD(E)| : m o for every 0 € $} 

and 

M' = {<?>€ SEN(E) : m d for every m € iV/}. 

Moreover we set and = M". 

From now on when the symbol is used, its scope will be the largest possible 

well-formed expression to its left. For instcince, in SEN(/)($)'^ the scope of is 
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SEN(/)($) and not just ($), and in SEN(/)(SEN(/) the scope of the second 

is SEN(/)(SEN(/)-'($'^)) and not just SEN(/)-'($^). 

Goguen and Burstall [27], prove the following very useful lemma that is used below 

to obtain the 7r-institution associated with a given institution I. 

LEMMA 2.2 (CLOSURE LEMMA) Let 1 = (SIGN,SEN,MOD, H=) be an institution, 

/ : Si ^ I2 € Mor(SIGN) and $ C SEN(Si). Then 

SEN(/)(<^'^) C SEN(/)(<&r 

DEFINITION 2.3 (FIADEIRO AND SERNADAS) .4 --institution 

J = (SIGN,SEN.{C£}se|siGN|) 

consists of the following ((i) and (ii) are the same as those for institution) 

( i )  .4 category SIGN whose objects are ca//e<f signatures 

(ii) .4 functor SEN : SIGN —>• SET, from the category SIGN of signatures into 

the category SET of sets, called the sentence functor and giving, for each sig­

nature S, a set whose elements are called sentences over that signature S or 

^-sentences. 

(Hi )  A  mapping  Cs : •P(SEN(S)) 'P(SEN(S)), for each S € |SIGN|, called S-

closure, such that 

(a )  A  C  Ci:(.4), for all S € 1SIGN|, A C SEN(E), 

(b )  CS(CE(.4)) = Cs(.4), for all S € [SIGN], .4 C SEN(!:), 

(c) Cs(.4) C Cs(B), for all S € |SIGN|, ACBC SEN(E), 

(d )  SEN(/)(Cs,(-4)) C Cs,(SEN(/)(.4)), for all ^1,^2 € |SIGN|,/ 6 

SIGN(Si,S2),-4CSEN(SI). 

Given an institution X = (SIGN, SEN, MOD, ^), define 

IR{I) = (SIGN, SEN, {CV}S6,sign|). 
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by setting 

Cs(<^) = for all S € |SIGN|,$ C SEN(S). 

It is easy to verify, using Lemma 2.2, that 7r(I) is a ^-institution. We will refer to - [X)  

as to the 7r-institution associated with the institution X. 

From now on, given a --institution X = (SIGN, SEN, {C£}vg|siGN|)T a signature S 

and $ C SEN(S), we will use the simplified notation to denote CE($). Usually the 

signature S is clear from context and therefore this simplified notation does not cause 

any confusion. 

COROLLARY 2.4 Let X = (SIGN,SEN, {CSLSGISIGNI) ® -institution. Then 

SEN(/)($=)= = SEN(/)($)= for all / : Vj ^ V, g Mor(SIGN),$ C SEN(Si). 

Proof: 

Clearly SEN(/)($)'^ C SEN(/)($^)'^. For the reverse inclusion 

SEN{f){<t>'Y C (SEN(/)($)")^ = SEN(/)(<&)% 

the inclusion being valid by (iii)(d) of Definition 2.3, eis required. • 

Another lemma will also be of utmost importance for our subsequent considerations. 

LEMMA 2.5 Let X = (SIGN, SEN, {CV}T;£|SIGN|) be a n-institution. / : Ei —> S2 A 

morphism in SIGN and $ C SEN(E2). Then 

SEN(/)-'($=)^ = SEN(/)-^($'^). 

Proof: 

Clectrly, SEN(/)~^($'^) C SEN(/)~'($'^)'^. For the reverse inclusion, let 

<?>€ SEN(/)-^($T. 

Then SEN(/)(<;£>) 6 SEN(/)(SEN(/)~^($'^)'^), whence, by (iii)(d) of Definition 2.3, 

SEN(/)(<p) € SEN{f){SEN{fr'mr, 
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and therefore SEN(/)(<?>) € i.e., SEN(/)(<2>) G Hence (p € SEN(/) cis 

required. • 

COROLLARY 2.6 Let X = (SIGN, SEN, {CS}SE|SIGN|) be a :r-institution. / : SI —> SO 

an isomorphism in SIGN and $ C SEN(I!I). Then 

SEN{ f ) {^ '=Y  =  SENi f ) ^ .  

The definition of a term --institution is now given. Some examples follow in the ne.xt 

section. 

DEFINITION 2.7 Let X = (SIGN, SEN, {CSISSISIGNI) a ~-institution, A € |SIGN| 

and p € SEN(.4). (.A,p) is called a source signature-variable pair if there exists a 

function f : {(S,©) : S € |SIGN|,0 € SEN(S)} |(.4|SIGN)|, such that, for all 

S € ISIGNL and for all <p 6 SEN(S), : .4 ^ S and SEN(/(s.^))(p) = o and 

VS' € ISIGNl VJ: S S' (S/P,.) = 

.4 K-institution is called term if it has a source signature-variable pair. .An institution 

X is called term if its associated tt-institution ~{X) is a term n-institution. 

.4 SIGN-o6jecf such as .4 will be called a source signature and a sentence such as 

p will be called a source variable or, simply, a variable. 

The following diagrams illustrate the definition: 

/(!:.«) SEN(/(3:..,)) 
.4 S P <? 

v SEN{g){6)  

Examples 

Two examples of term institutions are provided. The first is borrowed by the 

quantifier-free first-order theory of n-axy relations and the second by the theory of finite 

state automata. 
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n-ary Relations 

The reader is referred to [27] for a more general construction of a multi-sorted in­

stitution for first-order logic. Let SET denote as usual the category of all small sets. 

Given X € |SET|, let X denote a disjoint copy of X constructed in some canonical way. 

X could be, e.g., the set X x {0}. 

Given X  € |SET|, define R { X ) ,  the propositional language of n-ary relations 

in X, or, more simply, X-relational formulcis, to be the smallest set, such that 

•  X C  R { X )  

•  -T €  R { X ) .  for every r 6 R { X ) ,  and 

• To A ri G R { X ) ,  for all ro.ri 6 R { X ) .  

Given f  :  X  - ¥  R { Y ) ,  define /' : R [ X )  - r  R { Y )  by recursion on the structure of 

-Y-relational formulas as follows: 

•  f { x )  = /(x), for every x  €  X .  

• /'(~'^) = ~'/'(^)? for every r € R{X)^ and 

• /*(ro A ri) = /"(ro) A /'(ri), for all ro,ri 6 fi(X). 

A map / : X  R { Y )  will be denoted by / : X -r Y .  Define SIGN to be the 

category with collection of objects [SET] and morphisms / from X to Y ail set maps 

J-.X-r y, i.e., 

SIGN(X,y) = {/ : X /2(r) 6 Mor(SET)}, for all X, V 6 [SET]. 

Composition o of f : X —rY,g :Y' —r Z in SIGN is defined by 

9 °  f  =  g ' f -
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Given X € |SIGN|, let RM;^ be the category whose objects are all first-order relational 

structures A = {A^X^), where each symbol X € -Y is interpreted as an n-axy relation 

symbol and whose morphisms are all first-order structure homomorphisms h : A 

B € Mor(RMX) such that 

(oo,.. - ,a„-i) € x"^ if and only if (/i(ao),. -. ./i(an-i)) € x®, (2.1) 

for all ao, • • - r fln-i € .4. 

The following lemma holds 

LEMMA 2.8 Let X e \SET\,{A,X^),{B,X^) € |RMA: |  andh  :  {A .X^)  ̂  {B .X^)  e  

Mor(RMX). Then, for all r €. /?(X), cq, ... ,an-i € .4, 

( c o , . . .  6  iff ( / i ( a o ) , . . .  , / i ( a „ - i ) )  €  r ® .  

Proof: 

By induction on the structure of r 6 /2(-V). 

If r = X, for some x € ,Y, then 

{ao,... , a„_i) € ^ iff (ao,.. - , On-i) € x^ (by defin. of x^) 

iff {h{ao) . - . .  ,A(a„_i)) £  x® (since h  € Mor(RMx)) 

iff (/i(ao)? • • • ,/i(an-i)) € X® (by defin. of x®) 

If r € i?(X), such that (oo,... ,an-i) G iff (A(ao),... ,/i(a,i_i)) € r®, then 

(ao,-.-rOn-i) € (-t)-^ iff (ao,... ,a„_i) (by defin. of (-"r)-*-) 

iff (A(ao),... ,K{AN-I ) )  ^ J*® (by induction hypothesis) 

iff (ft(ao)?- •• r^(an-i)) € ("t)® (by defin. of (->r)®). 

The remaining case can be hajidled similarly. • 

Now, let X € |SIGN|,r 6 ^(-Y) «ind A = (.4, 6 |RMx|. Define, as usual the 

interpretation of r in A by recursion on the structure of the .Y-relational formula 

r cis follows 
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• is the interpretation of x in A, for every x € X, 

• = -4" ~ for every r € and 

• (^o A Ti)-^ = 7-^ n rf-, for all ro,ri G /2(-V). 

Finally, given f  :  X  - r  Y  e  Mor(SIGN) and A = { A ,  Y ^ )  e  |RMy|, define f * { A )  =  

{A. 6 |RMx|, bN' setting 

( a o , - - - , a n - i )  €  x - ' ' * ^ ' ^ '  i f f  ( o q , . . .  , a „ _ i )  € / ( x ) " * - .  ( 2 . 2 )  

for all X 6 .Y, ao, • • • •> ^n-i € .4. 

DEFINITION 2.9 Deyine 7^£ = (SIGN, SEN, MOD, [=), as follows: 

( i )  SEN : SIGN SET is defined by 

SEN(X) = R{X) ,  for  every  X  € |SIGN|, 

and, given f : X -r Y e Mor(SIGN),SEN(/) : R{X) -> /2(V) « given by 

SEN(/) = /•. 

(ii) MOD : SIGN ^ CAT"^ is defined as follows: For every X € iSIGN|, MOD(X) 

is the category with objects all pairs of the form (A.a), where A 6 [RMxl and 

a € .4"' and morphisms h : (A,a) —>• (B,6), RMA'-morpAtsrrts /i : A —>• B, such 

that b = /i(a), i-e., bi = /i(a,), /or every i € u;. 

C?Jt?en k  :  X  - ^Y  €  Mor(SIGN) the functor UOD{k) : MOD(V') -)• MOD(X) 

sends (A, a) to (/*(A),a) and a morphism h : (A, a) —>• (B,6) to the morphism 

MOD(fc) ( / i )  :  ( /* (A) ,a )  ( /* (B) ,6)  wi th  UOD{k){h)  =  h .  

(Hi )  For  a l l  X  €  |SIGNI,r € RiX) and (A, a) € |MOD(X)|, 

(A, a)  \=xr  i f f  { ao , ,  a„_i) 6 

Next, it is shown that the previous construction gives aji institution. lemma is 

needed first. 
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LEMMA 2.10 Let X,Y e [SET],/ X ^ Y e Mor(SIGN) and A = {A,Y^) € 

[RMK|. Then, for all r € R{X),ao,... .Cn-i 6 A. 

(co,... ,a„-i) € iff (gq,• • • ,an-t) €/"(r)^. 

Proof: 

By induction on the structure of r € R{X) .  

If r = X, for some x € -V, then 

(oo,. . .  . f l n -i) € iff {ao,.. .  .Oji-i) € (by defin. of 

iff (G O , - - - , A N - I )  € / ( X ) ^  (by (2.2)) 

iff {ao , . . .  .On-i) € (by defin. of /") 

If r 6 /?(X), such that (oo,... .Gn-i) 6 iff (gq ,an-i) € then 

( G O , . . .  , G „ _ I )  E iff (G O , . . .  , G „ _ I ) ^ (by defin. of 

iff (G Q , . . .  , A N - I )  ^ (by the ind. hypothesis) 

iff (G O , . . .  , G „ _ I )  € (by defin. of (--/'(r))^) 

iff (G O , . . .  , G „ _ I ) € (by defin. of /'). 

The remzuning czise can be treated similarly. • 

THEOREM 2.11 1ZSC = (SIGN, SEN, MOD, is an institution. 

Proof: 

We only show that MOD is well-defined on morphisms and then verify that the 

satisfaction condition holds. 

First, let k:X^Ye Mor(SIGN) and /i : (A,a) ̂  (B,6) € Mor(MOD(V')). Then 

h : (fc*(A),a) (fc*(B),6) € Mor(MOD(X)), since, for all a©,... ,a„_i G .4, 

(GO,---,an-i) € iff (G O , . . .  , G „_i) 6 fc(x)^ (by (2.2)) 

iff (^(GQ),... , h {an- i ) )  € Ar(x)® (by Lemma 2.8) 

iff {k{ao),... ,A(G„_I)) e (by (2.2)) 
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Finally, let k : X ^ Y e Mor(SIGN),r € R { X )  and { { A , Y ^ ) . a )  €  |MOD(K)|. 

Then 

MOD(fc)(((AV'^),a))i=A:r iff ((.4,^-#(V••A)),a) hx r 

iff ( c o , . . .  . a „ _ i )  e 

iff {aoy... .an-i) € k'{r)^ (by Lemma 2.10) 

iff ((.4,V^},a)^KA:"(r), 

as required. • 

Finally, it is shown that "RSC = (SIGN. SEN*. MOD. is a term institution. 

THEOREM 2.12 TZSC = (SIGN, SEN, MOD, is a term institution. 

Proof: 

Let .4 = {a} 6 |SIGN| be a one-element set and p  =  a  E  SEN(.4) = R { A ) .  Define 

/ : {(X,r) : X € |SIGN|,r 6 R{X)} -)• [(.4 i SIGN)| by 

f { X , r )  • •  A  - r  X .  with f { x . r ) { a )  =  r .  

strciightforweird computation verifies that, for every g i X — r  Y E  Mor(SIGN), 

9 o f{x,r) = f(YSENi3)(r)h ^ required. • 

In [27], Goguen and Burstall construct an institution for first-order logic with terms. 

Although 1ZSC represents the quajitifier-free fragment of first-order logic without terms 

having only relational symbols of a single arity, it is not a special case of the construction 

in [27|. The main reason is that in the present development relationaJ symbols of one 

signature may be mapped to complex relational formul«is of another signature whereas 

in [27] the morphisms in the signature category map relational symbols of one signature 

only to relational symbols of another signature rather thein to more complex formulzis. 

The present treatment, although more general in this respect, has the drawback that it 

can only handle first-order structure homomorphisms satisfying (2.1) eind not all first-

order structure homomorphisms. This is because Lemma 2.8 ftiils for an arbitrarj'- first-

order structure homomorphism A : A —)• B. 
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Automata 

Given X G |SET|, define H'X-V), the set of all words in X, or, more simply, X-

words, to be the smallest set, such that 

• X U {A} C W { X )  and 

• W1W2 € W''(X), for all wi,w2 € VV"(.V). 

Given f  :  X  W[Y)^  define /" : l'V'(X) —>• ^'(V*) by recursion on the structure of 

X-words as follows: 

• /'(A) = A, 

• /'(x) = /(x), for every x € X. and 

• f'{wiw2) = f'{wi)f'{w2), for all wi,w2 € 

A map f : X ^(y') will be denoted by / : X —?• V. Define SIGN to be the category 

w i t h collection of objects |SET| ajid morphisms / from X to V" all set maps f : X —r Y, 

i.e., 

SIGN(X, Y) = {/ : X € Mor(SET)}, for all X, V € |SET1. 

Composition 0 of f  :  X  —rY^g  :Y  —r Z  in  SIGN is defined by 

9° f = 9 f-

Given X € |SIGN|, let AUT be the category with objects eill finite state automata (see 

[35, 44]) M = {Q,'£,qo,5,A), and morphisms k : {Q,E.qQ,S.A) {P.T.po.e. B) pairs 

h = {hs, hi) of SET-fimctions hs : Q P and h[ T, such that 

• hs{qo) = Po 

•  h s { S {q ,cr ) )  = e(A5(<7), A/(<r)), for all ^ 6 S, and 
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•  h s { A )  =  B .  

DEFINITION 2.13 Define AUT = (SIGN, SEN, MOD, [=), as follows: 

( i )  SEN : SIGN ̂  SET is defined by 

SEN(-Y) = VFC.Y), for every X € |SIGN1, 

and. given f : X -r Y € -Mor(SIGN),SEN(/) : is given by 

SEN(/) = /-. 

(ii) MOD : SIGN —>• CAT"^ 25 defined as follows: For every X G |SIGN|, MOD(.Y) 

is the category with objects all pairs of the form {{Q, S, qo, 5, .4), /), where {Q, S. qo, 

5, A) 6 |AUT| and f : X —r T. ^ Mor(SIGN) and morphisms h : ((Q,S,<7o, 

5 ,A) , f )  ->•  { {P ,T ,POJC ,  B ) ,g )  AIJT -morph i sms  h  :  {Q ,^ ,qo ,5 ,A)  ->  {P .T .po .e ,  

S ) ,  such  tha t  g  =  h] f .  

Given k : X -r Y e Mor(SIGN) the functor MOD(A:) : MOD(V') MOD(X) 

sends {{Q, T.,qo, 5, .4),/) to {{Q, E.qo,5. A),f ok) and a morphism h : ((Q, E,qo,S, 

A) , f )  —>• ( (P ,T ,po ,e ,  B) ,g}  to  the  morph i sm MOD{k){h)  :  { {Q, '£ ,qo ,5 ,  A ) ,  f  o  

k )  ( (F , r ,po ,e ,  B ) ,  g  o k )  wi th  MOD{k){h)  =  h .  

(Hi )  For  a l l  X  € |SIGNl, u; € ^V'(X) and {{Q,E,qo,5,A)J) € |M0D(X)1, 

{{Q, 'Z ,qQ,S ,A) , f )  \=x  w  i f f  S ' {qo , r {w) )  e  A .  

Next, it is shown that the previous construction gives an institution. 

THEOREM 2.14 AUT = (SIGN, SEN, MOD, is an institution. 

Proof: 

We only show that MOD is well-defined on morphisms and then verify that the 

satisfaction condition holds. 

First, let k - . X ^ Y e  Mor(SIGN) and h  :  { {Q, '£ ,qo ,5 ,A) , f )  ̂  ( (P , r ,po ,e ,  B ) ,g )  

6 Mor(MOD(y)). Then 

h  :  { {Q, i : ,qo ,S ,A)Jok)  ̂  {{P ,T ,po .e ,  B ) ,go  k )  G Mor(MOD(X)), 
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since 

g'k = {hsD'k = [hsHk 

= H'SIFK)  = HS(FOK) ,  

as required. 

Finally, let k : X ^ Y e Mor(SIGN),u; € I'r(.V) and ((Q, S,<7o,<J.-4),/) € 

|MOD(y')[. Then 

MOD(^-)(({C?,S,9o,^..4)./))Kv«' iff A)J  o  k )  [=x  w  

iff 5'(qo, (/ 0 k)'(w)) € .4 

iff 5 ' (qo , f ' { k ' (w) ) )  e  .4 

iff {{Q,'£.qo,5,A)J)\=Yk'{w), 

as required. • 

Finally, it is shown that = (SIGN, SEN, MOD, is a term institution. 

THEOREM 2.15 MAT = (SIGN, SEN, MOD, is a term institution. 

Proof: 

Let A = {a} € |SIGN| be a one-element set ajid p  =  a  £  SEN(.4) = W[A) .  Define 

/ : {{X,w) : X € lSIGN|,u; € |(.4|SIGN)| by 

f {X ,w)  : -4 ^ X, with f{x.w){o.) = w. 

A straightforweird computation verifies that, for every g : X —r Y ^ Mor(SIGN), 

9 ° f{X,w) = /{r3EN(5)(ur))- as required. • 

The Category of Theories 

Let X = (SIGN, SEN, {Cs}s6lsiGNi) be a --institution. Following [21] we define its 

category of theories TH(X), as follows: 

The objects of TH(I) axe pairs (S,r), where S G [SIGN] and T C SEN(E) with 

T" = T. The morphisms / : (Si,ri) ->• are SIGN—morphisms / : Si ^ Sj, 

such that SEN(/)(ri) C T2. 
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Given an institution J = (SIGN, SEN, MOD, f=) define TH(J) = TH(7r(J)), i.e.. 

its category of theories is the category of theories of its associated "-institution. It 

is straightforward to verify that this notion coincides with the notion defined directly in 

[27]. 

Now, coming back to the --institution framework, define a functor SIG : TH( J) —)• 

SIGN by 

SIG((S, T ) )  =  S. for every (E, T )  €  |TH(I)|, 

and 

SIG(/) = /, for every / : (Ei, Ti) (S,,T o )  € Mor(TH(X)). 

Then the following holds. 

LEMM.\ 2.16 Le tX= (SIGN,SEN,{Cv}vg|siGN|) a-n-institution and f ; (Si,Ti) —>• 

(So.Ts) € Mor(TH(I)) an isomorphism. Then SEN{SlG{f)){Ti) = To. 

Proof: 

Since / : (EuTi) 6 Mor(TH(X)), SEN(SIG(/))(ri) C To. Since f : 

{^2,T2) ->• (Di.Ti) 6 Mor(TH(X)), we also have 

SEN(SIG(/))-'(T2) = SEN(SIG(/-'))(!;) C Ti. 

Thus, 7*2 C SEN(SIG(/))(ri), whence SEN(SIG(/))(ri) = To, as was to be shown. • 

Next, define a functor THY ; SIGN —>• TH(X) by 

THYCS) = (S,0"), for every E € [SIGN], 

and THY(/) : (Si,0=) with 

SIG(THY(/)) = /, for every / : Si S2 € Mor(SIGN), 

which is well-defined, since, by (iii)(d) of Definition 2.3, SEN(/)(0'^)'^ C SEN(/)(0)'^ = 0^^. 
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Finally, define natural transformations T}  :  /SIGN SIG o THY by 

: S ^ SIG(THY(!:)) € Mor(SIGN), 

with 

= iV, for every S € |SIGN|, 

and c : THY o SIG by e(s,r) • (S.0'^) —>• (U.T") € Mor(TH(I))), with 

SIG(e<s.r)) = for every (1, 7) € 1TH(I)1. 

Then, the following theorem ([21], Proposition 3.32) holds. 

THEOREM 2.17 (THY, SIG,77, e) : SIGN TH(I) is an adjunction. 

Proof: 

By the preceding discussion rj and t are natural transformations. Thus, it suflBces to 

show that the following triangles commute: 

SIG( (S, R) SIG(THY(SIG( (S, T)))) 

«siG((s,r)) 

siG((s,r)) 

SIG(E(S.R)) 0 T7SIG((S.R)) = = 2SIG((S.R))-

«is required, and 

THY(S) THY(SIG(THY(S))) 

THY(S) 

£THY(S) O THY(J7S) = ETHY(S) 0 TH"V(is) = CTHYCE) ° ̂ THYCS) = 
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— CTHY(S) = 2{E.0=) = JTHY(S)T 

as required. • 

In the sequel we will denote by TH0(J) the full subcategory of TH(I) with objects 

all theories of the form (11,0'^), H € |SIGN|. 

Then the proof of Theorem 2.17 gives 

THEOREM 2.18 THY® : SIGN -> TH0(I) acting as THY : SIGN TH(J) is an 

isomorphism of categories with inverse SIGg : TH0(X) SIGN given by SIG0 = 

SIGlTHaCI)-

Relating Categories of Theories 

Let Xi = (SIGNt,SENi, {Cs}j;g|SIGNI|).^> = (SIGN2,SEN2, {CSISSISIGNII) he 

two TT-institutions. Properties of functors relating the categories of theories TH(Ii) 

and TH(l2) will now be introduced, that will be used in the sequel to give the main 

characterization theorems of the relations of qucisi-equi valence and deductive equivalence 

between the --institutions themselves. 

Denote by jr2 : |TH(Xi)| —> |SET| the second projection, defined by ~2{{'Li.Ti)) = 

Ti, for every (Ei^Ti) €. |TH(Xi)|, and, similarly, -2 : 1TH(J2)| |SET|, given by 

:r2((S2,T2)) = T2, for every (5:2, Tj) € {THiM-

DEFINITION 2.19 A functor F : TH(Xi) TH(X2) will be called 

(i) signature-respecting if there exists a functor F': SIGNi —>• SIGN2, such that 

the following rectangle commutes 

TH(Xi) —^ TH(X2) 

SIG SIG 

SIGNx —^ SIGN2 

If this is the case, it is easy to verify that F' is necessarily unique. 
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(ii) (strongly) monotonic if, for all € lTH(Ji)l, 

Ti C T[ (if and) only if -2(F((Si, Ti))) C 

(Hi )  join-continuous i f ,  f o r  a l l  Si 6 |SIGNI|,$ C SENi(Si). 

(u W))))' = -,(F({£„r))). 

Finally, a signature-respecting functor F : TH(II) —>• TH(Z2) will be said to com­

mute with substitutions if, for every / : SI -)• S'L € Mor(SIGNI), 

SENj(F' ( / )){=-j(f({S. ,r ,)))r = -2(F({S'„SEN,(/)(r,)'))), 

for every (Si.Ti) € lTH(Ii) l ,  where  F ' : SIGNi —f SIGNo is the (necessarily unique) 

func tor  o f  ( i ) .  

The properties above may be extended to the case where the two categories of theories 

TH(XI) and TH(X2) are related via an adjunction. The following definition then applies 

DEFINITION 2.20 An adjunction [F.G.rj.t): TH(II) —>• TH(L2) bt called 

( i )  signature-respecting if both F and G are signature-respecting, 

(ii) (strongly) monotonic if both F and G are (strongly) monotonic, 

(Hi) join-continuous if both F and G are join-continuous. 

Finally, a signature-respecting adjunction vrill be said to commute with substitu­

tions if both F and G commute vrith substitutions. 

Relating Institutions 

In this section the notion of a translation eind that of an interpretation between two 

a-institutions are introduced. Based on these notions, the relations of quasi-equivcilence, 

strong quasi-equivaJence sind deductive equivalence, increzising in strength, Cein be de­

fined between two 7r-institutions. These relations provide the necessary means for com-

pciring their deductive apparatuses. The wecikest notion is introduced first and the rest 
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are then developed in increasing order of strength. Chaxacterizations of these relations 

will be provided in the following sections of this chapter, in terms of the strength of the 

ties that they impose between the categories of theories of the two ^-institutions they 

relate. 

DEFINITION 2.21 Let 

Xi = (SIGNI,SENI,{CS}£€|sign,I)- ^2 = (SIGNo^SEN,, (CS}V6|SIGN.|) 

be two It-institutions. 

• .4 translation o fX i  in  I2  i s  a  pa i r  (F .a )  : I i  JO consisting of 

( i )  a  func tor  F  :  SIGNi SIGN2 and 

(ii) a natural transformation a : SENi •PSEN2 F. 

• .4 translation (F,Q) : II —>• JO is an interpretation of Xi in XO if for all Hi €. 

|SIGNi|,$U{<p}CSENi(Si), 

if and only if azi((p) C (2.3) 

Using these notions the following relations on --institutions can be defined. 

DEFINITION 2.22 Le tX i .X^  be  two  TT -institutions, as above. 

• Xi will be said to be interpretable in X2 if there exists an interpretation {F.a) : 

Xi —>• X2. 

• Xi will be said to be left quasi-equivalent to I2 and X2 is right quasi-equiva­

lent  to  Xi  i f  there  ex i s t  i n t e rpre ta t ions  {F ,a )  :  —>• XO and  (G , / ? )  :  XO —>• X i ,  

such that 

1 .  {F .G,T] ,e )  :  SIGNi —>• SIGN2 is an adjunction 

2. for all Si € lSIGNi|,o € SENi(Si), 

SENI(77VJ(<j>)'' C /3F(SI)(Q:SI(<?>))'' (2-4) 

and, for all S2 € lSIGN2l,^ € SEN2(S2), 

SEN2(ei:2)(aG(S2)(;^2(^^)))'' Q (2-5) 
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In this case {F.a) is a left quasi-inverse of {G.(3) and {G,l3) a right quEisi-

inverse  o f  {F .a ) .  

• X\ mil be said to be strongly left quasi-equivalent to Jo and lo strongly 

right quasi-equivalent to Ji if there exist interpretations {F.a) : Ji —>• lo, 

{G.0) 1X2 such that 1 and 2 above hold, but in 2 the inclusions are replaced 

by equalities. 

In this case {F.a) is a strong left quasi-inverse of {G.^) and {G,l3) a strong 

r ight  quas i - inverse  o f  {F .a ) .  

• Xi and Xz are deductively equivalent if there exist an interpretation {F.a) : 

Xi —> X2 and an interpretation {G.3) : I2 such that {F.a) and {G.jS) are 

inverses of one another meaning that {F.a) is a strong left quasi-inverse of {G.l3) 

and in I above the adjunction is replaced by an adjoint equivalence. 

Note tliat, if Xi  and I2 deductively equivalent via the interpretations {F .a )  :X i  —>• 

Jo and {G.3) : Jo —>• Ji and the adjoint equivalence {F.G.rj.e) : SIGNi —>• SIGNo, 

then, for ail So 6 ISIGN2I and p € SEN2(So), 

{?.}' = SEN,(£s,)(a<;|s,,(fe(0))'), (2.6) 

and, for all Si 6 [SIGNil and 0  €  SENi(Ei), 

{o}' = SE.N-,(TC,)-'(/3r(!:,i(a!:.(o))=). (2.7) 

In this case (2.6) and (2.7) are equivalent to (2.5) and (2.4), respectively, in view of 

Corollaries 2.4 and 2.6 and the fact that and are isomorphisms. 

We define the corresponding notions for institutions using their associated T-institu-

tions. 

DEFINITION 2.23 Let Xi and Xi be two institutions. 

•  Xi  i s  interpretable in Jo i f  ~{Xi )  i s  in te rpre tab le  i n  n iXz ) .  

•  Xi  i s  (strong) left quasi-equivalent to J2 i f ' n {X i )  i s  ( s t rong)  l e f t  quas i -equ iva­

lent to ~(J2) and, similarly, for (strong) right quasi-equivalence. 
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• Ji and Xi art deductively equivalent if ~{Xi) and t(J2) are deductively equiv­

alent. 

Note that if Xi  and I2 deductively equiveJent and {F ,a ) ,  {G,3 )  inverses of each 

other, then each is both left and right strong quasi-equivalent to the other and the unit 

and counit of the qucisi-invertibility relations are natural isomorphisms. 

A technical lemma that will be used very often in what follows is given first. 

LEMMA 2.24 Let 

Xi = (SIGNi.SENi, {C£}sg|siGNi|)r Xo = (SIGN2,SEN2,{CS}£€|SIGN2|) 

be two Ti-institutions and {F,a) :Xi —> X2 an interpretation. Then 

= AV,($)% for all Si € |SIGNi|,<^ C SENi(Si). (2.8) 

Proof: 

Clearly, as, C a^i Since a is cin interpretation, av^ C asi (^)'^, whence 

Q i-e., av, C as required. • 

A lemma giving a property of the quasi-invertibility relations follows. 

LEMMA 2.25 Let 

X,  = (SIGNi, SENr, {Cs}r6|siGN.|). ^2 = (SIGNo, SEN., {C^}ZE\SIGM)  

be two K-institutions such that there exist translations {F.a) :Xi —>• X2, {G. ,5) : X2 —>• Ii 

and an adjunction {F,G,Tj,e) : SIGNi SIGN2, such that, for all Si € |SIGNi|,o € 

SENi(Si), condition (2-4) holds. Then, 

SENi (77v,)($r C for all Si € |SIGNi|,$ C SENi(Si). 

Similarly, if, for all S2 € jSIGNo],^ € SEN2(S2), condition (2.5) holds, then 

SEN2(ESJ(TTG(S,)(./?S2(^)))'' C for all S2 6 ISIGN2I, ̂  C SENjCSj). 
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Proof: 

SENi(;7r.)(^r = (U€.tSENi(r/vJ(<p))<^ 

= (U6«SENI(t7VJ(<?)=)«= 

^ (U.i,e^^F(E,)(Q!!:.(<?))")" (by hypothesis) 

= (Uoe<t.%S,)(Q:St (<?)))" 

= /?F(SI)(Q!SI(^))S 

as required. The second assertion can be proved similarly. • 

COROLLARY 2.26 Let 

Ji = (SIGNi,SENi, {Cs}s6|siGNi|)i = (SIGN2,SEN2, {CvjselsiGNji) 

bt two TT-institutions suck that there exist translations {F,a) : Xi X2, {0.(5) \ 

and an adjunction {F,G,Tj,e) : SIGNi SIGN2, such that, for all Ei 6 |SIGNi| and 

all (t> € SENi(Si), SENi(77VJ(o))*^, I.e.. (2.4) holds with equality in 

place of the inclusion. Then 

SENi (77sJ ($r  =  ,%E,)(as.(^)r f o ra l l  Si 6 lSIGNil,$ C SENi(Si). 

Similarly, if, for all S2 € ISIGN2I and all xb 6 SEN2(S2), SEN2(es2)(Q:G(Si)(/?S2(^')))'^ = 

then 

SEN2(eEj(ac(S2)(/?S2(^))r = for all S2 € |SIGN2!,^ C SEN2(S2). 

Proof: 

In the proof of Lemma 2.25 replace inclusions by equaiities. • 

We next prove a theorem showing that the existence of an adjoint equivalence to­

gether with conditions (2.3) cind (2.6) are suflBcient for deductive equivalence. 

THEOREM 2.27 Let 

h = (SIGNi, SENi, {Cs}s€isiGN.|>. ^2 = (SIGN2, SEN., {Cz} SelSIGNji) 

be IT-institutions. Zi andXi are deductively equivalent if there exist translations {F.a) : 

Xi -¥ I2, (G,/3) : I2 ->• Xi, such that {F,G.ri,e) : SIGNi SIGN2 is an adjoint 

equivalence, {F.a) is an interpretation and, for all S2 6 |SIGN2|,^ € SEN2(S2), 

{^}' = SENj(£r,)(ac(E,|(fe,(0))'). 
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Proof: 

We first need to verify that {G, j3 )  is also an interpretation. To this end, let II2 € 

ISIGN2I, ^ U C SEN2(!:2)- We have 

^ iff 

Q iff, by Corollarv' 2.26, 

SEN2(cvj)(ac(S2)(/?E2(';i'))'') ^ SEN2(eE2)(Q:c(S2)(.^S2('5))'') iff, since CE, is iso, 

QfG(S2)('^-2(^)) — <^G(E2)(.^S2(^))'^ iff- since a is an interpretation. 

as required. Thus, (G, /3) : lo is aiso an interpretation. 

Next, let El € |SIGNi|,<?> 6 SENi(Si). We need to show that condition (2.7) holds. 

We have 

{o}"^ = SENi(r/£j^)(/?p(£;)(QVj(p))'^) iff, since a is an interpretation. 

as.(or = as.(SENr(7v,^)(/3F(s,)(«E:(<?)r)r 

iff, since a is a natural transformation (see diagram below), 

SENi(G(F(5:t)))''^^^'SEN2(F(G(F(3:i)))) 

SENDVIL)  

SENiCSi) 

SEN2(F(T,£^')) 

SEN2(F(i:i)) 

CIZI{<PY = SEN2(F(7/vj))(Qc(F(i:i))(/?F(S,)(asi(<?>))''))'' 

iff, since {F,G,T{,€.) is an equivalence (see diagram below), 

f(S,) ̂  F(G(f(S,))) 

*F{ZI)  
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= SEN2(eF(S,))(Q:G(F(Si))(/?F(S,)(Q;St(<?>))''))'' 

= SEN2(eF(Si))(Q!G(F(Ei))(,^F(5:i)(Q:Si(<?))'^)'^)'' (by Corollary 2.4) 

= SEN2(eF(Si))(Q!G(F(ri))(/?F(rt)(Q:Ei(®))'^)'^) (by Corollary 2.6) 

= SEN2(eF(Si))(Q!C(F(Si))(/?F(S,)(Q'5:i(<!>)))'^) (by Lemma2.24) 

which holds, by assumption and Corolleiry 2.26. • 

Interpretability 

We start by giving a characterization of the e.xistence of a translation (F.a) :Xi —>• X2. 

from a term ff-institution Zy to a --institution I2. 

LEMM.\ 2.28 Let 

Zi = (SIGNi,SENi,{Cs}se|siGNu), ^2 = (SIGN2,SEN2, {CS}E6|SIGN,|) 

be two --institutions. If there exists a translation {F.a) : Xi —>• X2, then there exists a 

signature-respecting functor F': TH(II) —>• TH(22)-

Moreover, Z/SIGNI = SIGNO = SIGN and F = /SIGN? then F' makes the follow­

ing diagram commute 

TH(II) TH(J2) 

SIGN 

Proof: 

Suppose that {F.a) : Xi Xz is a trajislation. Define F' : TH(Xi) —>• TH(X2) as 

follows. 

r((Ei,rx)) = (F(i:i),Qs,(ri)=), for every (Ei, Fx) G 1TH(X0|, 

and, given / : ^ {y.\J[) € Mor(TH(XO), F'{f) : {F{^,),az,{T,Y) ^ 

(F(S'i),asj(Ti)'^) is determined by 

SIG(F'(/)) = F(SIG(/)). 
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We have 

SEN2{F{f)){azt{TiYy = SEN2(F(/))(a£j(ri))''(by Corollaxy 2.4) 

= Qi;;(SENi(/)(T'i))'^ (since a is a natural transf.) 

C as;(r,r (since / : ^ € Mor(TH(Ji))), 

whence F'{f) is a well-defined theory morphism. Since F is a functor, F', which agrees 

with F on morphisms, is also a functor. For signature-respectability, we must show that 

the following diagrcim commutes: 

TH(Ji) —^ TH(l2) 

SIG SIG 

S I G N i  — S I G N ,  

For every 

SIG(F'((Ei.ri))) = SIG((F(SI),AS.(RIN) 

= F { ^ i )  

= F(SIG((SI,RI))), 

as required, and, for every / : (Si, Ti) {E[,T[) G Mor(TH(Ii)), we have, by definition 

of F', 

SIG(F'(/)) = F(SIG(/)), 

as required. The final eissertion of the lemma is straightforward. • 

THEOREM 2.29 Let Xi = (SIGNI,SENI,{CS}S€|SIGNI|) a term ir-institution and 

Xi = (SIGN2,SEN2, {Cs}sg|siGN2|) a --institution. 

(i) There exists a translation {F',a) :Zi To if and only if there exists a signature-

respecting functor F : TH(Xi) —>• TH(X2). 

(it) Moreover, in case SIGNi = SIGN2 = SIGN, there exists a translation (/siGNro) 

•.Xx-^Xi if and only if there exists a functor F : TH(Ii) —>• TH(X2) that makes 
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the follovnng diagram commute 

TH(Ji) THCJo) 

SIG^\ 
SIGN 

Proof: 

A stronger "only iP, without the requirement that Xi be term, was proved in Lemma 

2.2S. For the ~iP direction, suppose that F : TH(Xi) —)• TH(J2) is a signature-

respecting functor. Then, there exists a unique functor F' : SIGNi —>• SIGN2, such 

that the following rectangle commutes 

TH(ri) —^ TH(J2) 

SIG SIG 

SIGNi SIGNo 
F' 

Moreover, if the given triangle commutes, then F' = /SIGN- Since X\ is term, there 

exists a source signature .4 G |SIGNi| and a variable p € SENi(.4). Set 

0 = 7r,(F((.4,{pn)). 

Define a : SENi ^SENoF' by QV. : SENiCSi) :P(SEN2(F'(i:i))), with 

av,(p) = SEN2(F'(/(S,.^)))(0), foraU Si 6 |SIGNi|,0 € SENi(St). 

It suffices to show that a : SENi —>• 'PSEN2F' is a natural treinsformation, i.e., that the 

following diagTeim commutes, for every / : Ei —>• € Mor(SIGNi). 

SENi(Si) PSEN2(F'(SI)) 

S E t i i ( f )  7>SEN2(F'(/)) 

SEN.(S',) PSEN,(F'(S;)) 
-I 



For every <? € SENi(Si), we have 

PSEN2(F'( /))(as.(<?))  = SEN2(F' ( / ))(SEN2(P( /(s . .^)))(0))  (by defin.  ofavj  

= SEN2(F'(//(j;J,^)))(0) (since SEN2F' is a functor) 

= SEN2(F'(/(£;3EN,(/)(O))))(0) (by the term property) 

= Qv'j (SENi(/)(o)) (by definition of Qv'J, 

cis required. Thus, {F'.a) :Xi Zo is a. translation, as wsis to be shown. • 

A characterization of interpretability follows. 

LEMMA 2.30 Let 

Ji = (SIGNI,SENI,{CS}S61signu). ^2 = (SIGN2,SEN2, {Cs}vg,siGN.|) 

be two TT-institutions. If there exists an interpretation {F.a) : Zi then there ex­

ists a strongly monotonic, join-continuous, signature-respecting functor F' : TH(Ii) —>• 

TH(J2) that commutes with substitutions. 

Moreover, if SIGNi = SIGN2 = SIGN and F = /SIGN, then F' : TH(JI) ^ 

TH(J2) makes the following diagram commute 

TH(Ji) TH(X2) 

SIGN 

Proof: 

Consider the functor F': TH(II) —¥ TH(X2) that is given by Lemma 2.28. We show 

that it is strongly monotonic, join-continuous and commutes with substitutions. To this 

end, let (SI,RI), (EI,RO € |TH(Xi)l- Then 

Ti C T'l iff cczi{TiY C azi{T[Y (since Q is cin interpretation) 

iff ~2{F'{(^UTI)))  C -2(F'((Si,ri'))) (by the definitions of F',T2), 

eis required. To show that F' is join-continuous, let Si 6 ISIGNij.^ C SENi(Si). Then 
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(Ucie*{^}''))))'' = (U«6<t°St ({<?}")")" (by the definition of F' and TTa) 

as required. Finally, for commutativity with substitutions, letting / : Si —)• € 

Mor(SIGNi), we have 

SEN2(F(/))(7r2(F'((Si,rt)))r = SEN2(F(/))(Qv,(Tirr (by the def. of P,-,) 

THEOREM 2.31 Let Xi = (SIGNi,SENI,{C£}£G|siGNi|) be a term -n-institution and 

1. = (SIGN2 , SEN2, {CS}Eg|siGN2i) ^ ~-institution. 

(i) There exists an interpretation {F',a) : Ji I2 if and only if there exists a strongly 

monotonic, join-continuous, signature-respecting functor F : TH(Ii) -4- TH(l2) 

that commutes with substitutions. 

(ii) Moreover, in case SIGNi = SIGN2 = SIGN, there exists an interpretation 

(/siGN^Q:) : 2*1 —>• X2 if and only if there exists a strongly monotonic, join-

continuous functor F : TH(Ii) —>• TH(X2) that makes the following diagram 

commute 

= (Uo€<t (0)")" (by Lemma 2.24) 

= (U06«t'^St (<?))" 

= av,($)'^ 

= avj($'^)'^ (by Lemma 2.24) 

= ff2(F'((Si, $'^))) (by the definition of F' and 7r2), 

= SEN2(F(/))(QVJ(T'I))'^ (by Corollary 2.4) 

= Qv'^(SENi(/)(ri))'^ (since a is a nat.transf.) 

= a^{SENi{f){Tiyy (by Lemma 2.24) 

= -o(F'((S;,SENi(/)(ri)0)) (bydef. of F'.-2). 

as required. The second Jissertion follows by the last eissertion of Lemma 2.2S. • 

TH(Jr) F 
TH(J2) 

SIGN 

and commutes with substitutions. 
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Proof: 

A stronger "only iP was proved in Lemma 2.30 without the requirement that Ji be 

term. For the ~iP direction, let F' : SIGNI —)• SIGNO.Q : SENi —>• 'PSENoF' be the 

components of the translation given by Theorem 2.29. (ii) of 2.29 ensures that, if the 

given triangle commutes, then F' = /SIGN-

Note that 

T2(F((Si,$^))) = as.($r. for all € |SIGNi|,$ C SE.N'ilSi). (2.9) 

In fact, we have 

= (U.P6O^^^2(F'(/(V,,^)))(0))'^ (by the definition of avj 

= (Ud€«t SEN2(F'(/(v,,^)))(x2(F((.4, M"^)))))^ (by the definition of 0) 

= (U6^SEN2(F'(/(v,.,)))(T2(F((.4,{pr))))^)^ 

= (Uo6«t^2(F((i:i,SENi(/(v,,^))(p)<^))))"^ (by comm. with substit.) 

= (U^€<t 'r2(F((Ei, {o}'"))))" (by the term property) 

= T2(F((EI,$'^))) (by join-continuity), 

as required. 

It only remains to show that (F'.a) : Xi -> Z2 is an interpretation. To this end, let 

El G ISIGNil and $ U {0} C SENi(Ei). Then 

Q:Si(<?>) C Qv,($)'^ iff 

Q:i:i(?>)'^ C QSi(^)'^ iffr by Equation (2.9), 

-2(F((Si , {©}'^))) C T2(F((Ei ,$^))) iff, by strong monotonicity, 

C iff 

as required. • 
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Quasi-Equivalence 

In this section the relation of quasi-equivalence between two term --institutions Ji 

ajid Xo is characterized. As a corollary, a characterization of strong quasi-equivalence 

is obtained. This also yields a characterization of deductive equivalence by looking at 

the special case where the adjunction between the signature categories happens to be 

an adjoint equivalence. However, in the main result of the next section. Theorem 2.41. 

it will be shown that in this special case, the additional requirement that the unit and 

counit of the adjunction be naturzil isomorphisms can simplify the conditions imposed 

significantly. 

LEMMA 2.32 Let 

= (SIGNI,SENI,{CS}S€|SIGN.|). ^2 = (SIGNo,SEN2, {Cs}r€isiGN,i) 

be two TT-institutions and {F,G,ri,€.) : TH(Ii) TH(22) « signature-respecting adjunc­

tion. Then, for all e lTH(Ii)l,(S2,T2),{5:2.T4) € 1TH(J2)1, 

SIG(77(VJ 7-j)) = SIG(r/(£,.Tj')) and SIG(e(£2,r2)) = SIG(e(Sj,r4))-

Proof: 

We show that, for all Si € |SIGNi|,(Si,Ti) 6 |TH(Ji)l, 

SIG(J7(VJ,7-J)) = SIG(7?(v,,0e)). 

To this end, consider the theory morphism i : (^1,0"^) —>• (Ei.Ti). that is the iden­

tity on signatures. This morphism agrees on signatures with the morphism : 

(Si,©*^) that is zJso the identity on signatures, by definition. Thus, by 

signature-respectability, 

SIG(F(i)) = SIG(F(f(s.0=>)) 

= SIG(iF({Si.0=)))-
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Similarly, by signature-respectability, the above equation yields 

SIG(G(F(i))) = SIG(G(fF((v..8c)))) 

= SIG(IG(F((S,.0<=»)) 

= 2SIG(G(F((S,.0<=)))), 

and, therefore, the following diagram commutes, by the naturaJity of 7/ : 

SIG((Si,0^)f^^^'^^IG(G(F((Ei,0'^)))) 

'SIG(C(F((E,,ec»)) 

siG((Si,ri)^j^—^^^iG(c?(F((S:,ri)))) 

This shows that SIG(/7{s,,ri)) = SIG(77(£t,0e)), as required. The corresponding relation 

for the counit c can be proved similaxly. • 

LEMMA 2.33 Let 

Ii = (SIGNi,SENI, {CS}SE|SIGNI|)I ^2 = (SIGNJJSENO, {CS}E6|SIGN2|) 

be two IT-institutions. 

(i) If {F,G,r},e) : TH(Ii) —y TH(l2) is a signature-respecting adjunction, then there 

exists an adjunction {F',G\TJ',e') : SIGNi SIGNo. 

(ii) Moreover, if {F.G,r},e) : TH(Ii) —>• TH(l2) is a signature-respecting adjoint 

equivalence then {F'.G'^rj'.ef) : SIGNi SIGN2 is also an adjoint equivalence. 

Proof: 

By signature-respectability, there exist unique F' : SIGNi SIGN2 and G' : 

SIGN2 —>• SIGNi, such that the following squares commute: 

TH(JX) 

SIG 

SIGNi 

TH(J2) 

SIG 

SIGN2 

TH(J2) TH(ZI) 

SIG SIG 

SIGN2 SIGNi c ^ 
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By Lemma 2.32, there exists unique rj' : /SIGNI G'F', such that the following 

diagram commutes 

'TH(ri) 

SIG 

GF 

SIG 

/SIGN, —G'F' ij 

Similarly, there exists unique t' : F'G' /siGNi: such that, the following diagram 

commutes 

FG —^— /thcJi) 

SIG SIG 

F'G' ^SIGNj 

It is not diflScult to check that {F'.G'.ij'.t') : SIGNi —>• SIGNo is an adjunction and 

that, in case {F,G,T},e) : TH(Ii) —> TH(Z2) is an adjoint equivedence. {F'.G'.rj'.e') : 

SIGNi SIGN2 is also an adjoint equivalence. • 

DEFINITION 2.34 Let 

Xi = (SIGNi, SENi, {CslvgisiGNti)^ ^2 = (SIGN2,SEN2,{Cs}sg|siGN2i) 

be two T-institutions. An adjunction {F.G.T) ,E) : TH(Ii) TH(X2) voill be said to be 

strong if the following hold 

(i) SENi(SIG(i7(S:,T0))(rir = i^2{G{F{{I.,,T,)))), for every {ZuTi) € lTH(Ji)l, and 

(ii) SEN2(SIG(e{s,.r.)))(T2(F(G({S2,r2)))))^ = for every € 1TH(I2)|-

LEMMA 2.35 Let 

X, = (SIGNi,SENi,{Csh6isiGN.i>. ^2 = (SIGN2,SEN2,{CS}V£,SIGN.I) 

be two -K-institutions. 
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(i) IfXi is left quasi-equivalent to Xo via the interpretations {F,a) : Xi —)• X2, (G./?) : 

X2 Xi and the adjunction {F,G,TJ,T) : SIGNi -)• SIGNo, then there exists 

a strongly monotonic, join-continuous, signature-respecting adjunction {F%G',rj'. 

e') : TH(Xt) TH(X2) that commutes with substitutions. 

(ii) If Xi is strong left quasi-equivalent to X2 then the adjunction {F'.G'.t}'. t') : 

TH(Xi) TH(X2) is strong. 

( H i )  I f  TI is deductively equivalent to X2 then the adjunction {F',G'.T]'. t') : TH(Xi) —> 

TH(X2) is an adjoint equivalence. 

(iv) //SIGNi = SIGN2 = SIGN, F = G = /SIGN ^ "•nd e are the identity 

natural transformations, then rj' and t' are the identities, i.e., F' and G' are inverse 

isomorphisms that make the follounng diagrams commute 

TH(Xi) TH(X2) TH(X2) 2:^ TH(Xi) 

SIGN SIGN 

Proof: 

(i) Let (F, a) : Xi -> X2, {G. (3) 1X2 —r Zi be the two interpretations and (F, G, rj. t) : 

SIGNi —^ SIGN2 the adjunction witnessing the quasi-equivalence relation between 

Xi and X2. By Lemma 2.30 there exist strongly monotonic, join-continuous, signature-

respecting functors F' : TH(Xi) —> TH(X2),G' : TH(X^) —> TH(Xi), that commute 

with substitutions. Define 77': /thcXi) G'F' by 

ri[-zuT.) •• ^ (G(F(S0),/?F(so(«s.(ri)n, 

with 

SIG(77|s..r,>)='/Si' for every (Si,ri) € |TH(XO|, 

and e : F'G' ^ /THCXJ) by (S2,T2), with 

SIG(e(S2,r2>) = for every (S2,r2) € 1TH(X2)|. 
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Since, by the definition of left quasi-equivaJence aind Lemma 2.25, 

SENi(r7s.)(rirC^P(v^)(as,(r,)r 

and 

SEN2(esJ(ac(v,,(^vjr2))rcr2, 

both Jylv, and axe well-defined theory morphisms and it is clear that (F', G', T}' ,  

e') : TH(Xi) TH(X2) is an adjunction. Since both F' and G' axe strongly monotonic. 

join-continuous, signature-respecting and commute with substitutions, (F', G',77', e') is 

also strongly monotonic, join-continuous, signature-respecting and commutes with sub­

stitutions. 

(ii) If Xi is strong left qucisi-equivaJent to X2 then, by Corollary 2.26, 

SENi(77s.)(«l>r = ,%S:)(ar.(^)r for all Si € lSIGNil,$ C SENi(Si) and 

SEN2(esJ(ac(S2)(/?s,(1')))" = "if" for all So 6 ISIGN,], C SENsCSo). 

Thus, (i) and (ii) of Definition 2.34 hold and {F'.G'.rj'.e') is a strong adjunction. 

(iii) If Ii and lo are deductively equivalent then (F', G', 77', c') is obviously an adjoint 

eqtiivalence, since rj' and e' are isomorphisms. 

(iv) This part is clear by Lemma 2.30 and the definition of rj' and e'. • 

THEOREM 2.36 Let 

Ii = (SIGNi,SENI, {C£}VG|SIGNTI)? ^2 = (SIGNo.SENO, {CS}SG|SIGN2|) 

be two term ~-institutions. 

(i) Xi is left quasi-equivalent to I2 the interpretations (F'.a) : Zi —>• I2,{G'.0) : 

X2 Xi and the adjunction (F'.G'.rj'.ef) : SIGNi -i- SIGN2, if and only if 

there exists a strongly monotonic, join-continuous, signature-respecting adjunction 

(F,G,T/,e):TH(I0^TH(J2) that commutes with substitutions. 
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(ii) Xi is strong left quasi-equivalent to I2 via the interpretations {F'.a) : X\ 

J2,(G',/?) : I2 Zi and the adjunction {F',G',T}\e') : SIGNi -> SIGNo, if 

and only if there exists a strongly monotonic, join-continuous, signature-respecting 

strong adjunction {F,G,r},t) : TH(Ii) —>• TH(X2) that commutes rvith substitu­

tions. 

( H i )  X i  i s  d e d u c t i v e l y  e q u i v a l e n t  t o X o  v i a  t h e  i n t e r p r e t a t i o n s  { F ' . a )  :  I i  - ^ X 2 , { G ' . i 3 )  :  

X2 —)• Ji and the adjoint equivalence {F'.G'.rj'.e') : SIGNi SIGNo, if and only 

if there exists a strongly monotonic. join-continuous, signature-respecting adjoint 

equivalence {F.G,r],e) : TH(Ii) -> TH(X2) that commutes ivith substitutions. 

(iv) If SIGNi = SIGN2 = SIGN, then Xi is deductively equivalent to X2 via the 

interpretations (/siGNrCt) : Xi —> X2» (^sign?I^) XI and the identity adjoint 

equivalence if and only if there exist strongly monotonic, join-continuous inverse 

functors F : TH(Ii) —>• TH(J2) ond G : TH(22) —>• TH(Xi) that make the 

following diagrams commute 

TH(Ji) TH(J2) TH(J2) TH(Ji) 

SIGN SIGN 

and commute vrith substitutions. 

Proof: 

A stronger "only iP was proved in Lemma2.35 without the requirement that Ii,X2 be 

t e rm  in s t i t u t i ons .  Fo r  t he  " iP  d i r ec t i on  cons t ruc t  t h e  two  i n t e rp r e t a t i ons  { F ' , a )  :  X i  

X2,(G',/?) :X2 —>^Xi, given by Theorem 2.31, ajid note that, since (F.G, 7, E) : TH(Xi) 

TH(X2) is signature-respecting, there exist, by Lemma 2.33, 77' : /sigNi —>• G'F' and 

e': F'G' —> /SIGNJ? such that {F'.G'.rj'.t') : SIGNi SIGN2 is an adjunction Eind an 

adjoint equivalence in Ccise {F,G,ri,e) : TH(Xi) TH(X2) is an adjoint equivalence. 

Thus, it only remziins to show that 

SENi(7/;J((?>)^ C^p,(So(Qs.(O))% for all SI € |SIGNil,<P € SENI(SI), 

and 

SEN2(e's,)(aG'(s.)(;5s,W)rc{V;}% for all S2 6 ISIGN.],^ € SENalSj) 
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with inequaJities replaced by equalities in case of a strong quasi-equivalence or of an 

adjoint equivalence. We have 

(by Lemma 2.24) 

= /?F'(Si)(o'Si({<?}'^)'^)'^ (by Lemma 2.24) 

= i^F'(Ei)(5r2(F((i:i, {<?}'=))))= (by Equation (2.9)) 

= ~2(G((^'(-I),-2(^((-I,{<?}")))))) (by Equation (2.9)) 

= - 2 { G { F { ( £ „ { 0 Y ) ) ) )  

(since F((Ei,{o}^)) = (F'(S,),^2(F((S„ {op))))) 

D SENi{T)'^^){{<f>YY (by Lemma 2.32) 

= SENi(r7;j(6)% 

as required. The remaining inclusion and the equalities in the cases of a strong quasi-

equivalence eind of an adjoint equi\'alence caji be treated similarly. The last cissertion 

also follows by Theorem 2.31(ii) aind part (iii). • 

Deductive Equivalence 

The notion of deductive equivalence was defined for T-institutions in the section on 

"Relating Institutions'' and a chciracterization was obtained for the deductive equivalence 

of two term ^-institutions in terms of their categories of theories in Theorem 2.36(iii) of 

the previous section, as a special case of a similar characterization for the more general 

notion of quasi-equivalence. In this section, we exploit the special additional features 

present in the case of a deductive equivalence, more precisely, the fact that units cind 

counits of the adjimctions involved are natural isomorphisms, to obtain a refinement of 

paxt (iii) of Theorem 2.36. 

LEMM-A. 2-37 Let 

XI = (SIGNI, SENI, {CSLSELSIGNII), = (SIGN2, SENO, {CSIV^ISIGNJI) 
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be two ~-institutions. .4 signature-respecting adjoint equivalence {F,G,r),e) : TH(II) —>• 

TH(l2) is monotonic. 

Proof: 

Suppose (F, G, T j ,  e) : TH(Ii) TH(l2) is signature-respecting cind let (Ei, Ti), (Ei, 

Tj') 6 |TH(Ii)|, with Ti C T[. Then, the identity on induces a theory morphism 

i : (Ei.Ti) (Ei.TI). This morphism agrees on signatures with the identity i{Zi,Ti) '• 

(Ili,7'i) —T (Ei.Ti), whence, by signature-respectability, 

SIG(F(f)) = SIG(F(f(v..r.))) 

= SIG(i>((Si,ri))) 

= 2SIG(F((S,,TI)))-

Thus, F { i )  :  F((Si.T'i)) —>• F((Si,r[)) is the identity on signatures, showing that 

as required. By symmetry, for all (S2, To), (So, Tj) € |TH(X2)|, with T2 C r,, 

^2(G((E2,r2)))Cz2(G((S2,r^))), 

«is required. • 

LEMMA 2.38 Let 

XI = (SIGNI,SENI,{CS}S61SIGNU), I2 = (SIGN2,SEN2, {CS}S6|SIGN.|) 

be two IT-institutions. A signature-respecting adjoint equivalence (F, G. r/, e) : TH(Xi) 

—TH(J2) is injective on Hi-theories, i.e., for all Si 6 |SIGNi|, (Si-Ti), (Si,!^') € 

(Si,ri)#{St,r;) F((Si,ri))#F((Si,ro) 

an<f the same holds for '£.2-theories, for every S2 € ISIGN2I. 

Proof: 
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Let (Si,ri),(Si,r[) € |TH(Ji)|. If F((Si,ri)) = F((Si,ri')), then, by signature-

respectability and Lemma 2.32, 

SENi(SIG(r7(l:\.ro))MG(F((Si,ri))))) = SENi(SIG(;7(l:VTo)K'2(<^(^((-i'^i')))))-

whence, by Lemma 2.16, T i  = T [ ,  as required. .4n analogous argument can be used for 

G. • 

LEM.MA 2.39 Let 

Xi = (SIGNi,SENi,{Cv}se|siGN,|). ^2 = (SIGN2,SEN2. {Cv}vg|siGN.i) 

be two -institutions. .4 signature-respecting adjoint equivalence {F.G. rj. e) : TH(Ii) —>• 

TH(l2) IS join-continuous. 

Proof: 

Let El € ISIGNil,^ C SENi(I!i)- Since, by Lemma 2.37, (F, G.r/. c) is monotonic, 

n-2(F((Si, C 7r2(F((Si,$'^))), for every o 6 

whence 

(u T,(F((S„ {on))r c T,(F((S„$'))). 

Suppose that the inclusion is proper, i.e., that 

(U -2(f((Si, w=)))r C -,(F({s.,r))). 

Then, by Lemmcis 2.37 and 2.38, if S2 = SIG(F((Si,$'^))), we have 

T2(G((E2,(U«»'-a(f((SuW»)N)) c X,(G((S,,T2(F((S„$«)))))) 

=  i r , { G { F { ( S , . * ' ) ) ) ) ,  

whence, since is an isomorphism. 

SEN,(SIG(,,l!„».,))(=r,(G((S„(U«^,)r2(F({S„{,j}'))))')))) C 

SEN.(SIG(,ii'„^,))(T2(G(F((S„$'))))) 
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(2.10) 

i.e., by Lemma 2.16, 

SEN,(SIG(R,P\ ,.,))(R,(C({SJ,(U IR2(F((S„ {•>}'))))'»)) C 

Now, note that 

C ((J :r,(F((E„{'?n)))'.  

for every <? € $, whence, by Lemma 2.37, 

0€<t 

and, hence, 

(U T:(G(F({S,,{m)))r C -,(G({S,,([J -2(F((S,, {-!.}'))))=))).  

<>€• d6<t 

Thus, by Lemma 2.32, 

SENi(77;rM((U^^<,:r2(G(F((St,{o}=))))n C 

SENt(SIG(r7(-.\,^.p)(7r2(G((l2.(U€.^^2(F((!:i,{on))r)))), 

where every Si-theory (Si,Ti) € |TH(Ii)|. Therefore, by (2.10), 

and Corollaries 2.6 and 2.4, we have 

SEN,(,i;')(U 'r!(G(F({£„{«}•=)))))» c 

i.e., by Lemma 2.-32, 

(U SEN.(SIG(,,-j;„,^„))(-j(G(F((Si,{,?n))))r C 

whence, by Lemma 2.16, 

<t>€^ 

a contradiction. • 
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LEMMA 2.40 Let 

Xi = (SIGNi,SENi, (CslsgisiGNii), 22 = (SIGN2,SEN2, (CslsgisiGN^i) 

be two TT-institutions and {F,G,T],e) : TH(It) —r TH(X2) a signature-respecting adjoint 

equivalence. Then, for all (Ei,T'i).(Ei,r[) € lTH(Xi)j, 

T , CT[  i f f  - 2 ( F ( ( S x , r 0 ) ) C ; r 2 ( F ( ( S i , r 0 ) ) ,  

and. similarly, for G. 

Proof: 

The "only iP holds by Lemma 2.37. 

For the direction, assume that T2(F((Si,ri})) C -2(F((I!i,ri'))). Then we must 

have, by Lemma 2.37, 

T2(G(F((Si,ri)))) c T2(G(F({Si,r;)))). 

ajid, therefore, by Lemma 2.32, 

SEN,{SIG(i,,-:.'_j,,))(!rj(G(F((S,,r,)))))CSEN,(SIG(,,l.',,.,,))(^2(G(f((Si,r;))))). 

i.e., by Lemma 2.16, T i  C T [ .  as required. • 

THEOREM 2.41 Let 

II = (SIGNi,SENi,{CE}vg|siGNi|)T = (SIGN2,SEN2, {Cs}s€lSlGN2l) 

be two term ir-institutions. Xi and Xz are deductively equivalent if and only if there 

exists a signature-respecting adjoint equivalence {F,G.T],e) : TH(Xi) —>• TH(l2) that 

commutes with substitutions. 

Proof: 

A stronger ''only iP was proved in part (iii) of Theorem 2.36. 

For the "iP peirt, it suffices, by part (iii) of Theorem 2.36, to show that the signature-

respecting adjoint eqmvalence {F^G.rj.e) : TH(Ii) —>• TH(X2) that commutes with 
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substitutions is eiiso strongly monotonic and join-continuous. But this was shown in 

Lemmas 2.40 and 2.39, respectively. • 

Since the notions of deductive equivalence and the category of theories for institutions 

were defined in terms of the corresponding notions on the aissociated --institutions. 

Theorem 2.41 can be reformulated to fit in the institution framework as follows: 

COROLLARY 2.42 L e t h  =  (SIGNi,SENi,MODi,h^), ^2 =  (SIGNj^SENo^MODs, 

^•) bt two term institutions. Xi and Xo are deductively equivalent if and only if there 

exists a signature-respecting adjoint equivalence {F.G.rj.e) : TH(Ii) —)• TH(l2) that 

commutes with substitutions. 

Deductive Auto-Equivalence 

A special case of interest arises when we axe considering two --institutions Xi = 

(SIGN,SENI,{CV}S6ISIGN*|)? ^2 = (SIGN.SENO, {CDseisicNi) with the same signa­

ture categories. On certain occasions we need to know when Ii and lo are deductively 

equivalent via interpretations (/SIGN,A) ' Xi —)• X2 and (/SIGN?/?) : XO —>• XI and the 

identity adjoint equivalence. If this is the case we will say that XI and XO eire de­

ductively auto-equivalent. Part (iv) of Theorem 2.36 completely characterizes this 

particular case. In view of Lemmas 2.40 aind 2.39 it zissumes the following form 

COROLLARY 2.43 Let 

XI = (SIGN, SENT, {C^}s€|siGNi), I2 = (SIGN, SENO, {Cf} S6ISIGN1) 

be two term TT-institutions with the same signature categories. Xi and X2 are deductively 

auto-equivalent if and only if there exists an isomorphism F : TH(XI) TH(X2), such 

that the following diagrams commute 

TH(XI) TH(X2) TH(X2) — TH(XI) 

SIGN SIGN 

and both F and F ^ commute with substitutions. 
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Proof: 

By (iv) of Theorem 2.36 and Lemmas 2.40 and 2.39. • 

The following lemma will serve to simplify the conditions of Corollary 2.43. 

LEM.M.A 2.44 Let 

JI = (SIGN,SENI.{C^}VE,siGN|). I2 = (SIGN.SENO, {C^}S6,SIGN|) 

be two term --institutions with the same signature categories and F : TH(Ii) —)• TH(X2) 

an isomorphism such that 

TH(Ji) TH(J2) 

SIGN 

commutes and F commutes with substitutions. Then F' : TH(X2) TH(Ii) makes 

the following diagram commute 

THCJO) — TH(JI) 

SIGN 

and commutes vrith substitutions. 

Proof: 

If(S,R2)6|TH(J2)|, then 

siG(F-'((s,r2))) = siG(F(F-^((s,r2)))) = siG((i:,r2)), 

and, if sr 6 Mor(TH(X2)), then 

SIG(F-N^)) = SIG(F(F-H^))) = SIG(^). 

Hence, the diagram 

TH(X2) — TH(Ii) 

SIGN 
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also commutes. It suffices, thus, to show that, for all / : S ->• S' G Mor(SIGN), (S, 

SENi(/)(7r,(F-H(i:,r2)))r = -2(F-^((E'.SEN2(/)(T2r))). 

Since F is aji isomorphism, it suffices to show that 

F((S',SENI(/)(-O(F-'((I:.RO)))n) = {^'^SEN.iniToY). 

F((3:',SENI(/)(-2(F-^((S,r2)))r)) = 

= (S',SENO(/)(RO(F((i:,7R2(F-'((S,r2))))))r) 

= (S',SEN2(/)(-2(F(F-'((S,r2))))n 

= (S',SEN,(/)(7r2((S,7;))r) 

= (S',SEN2(/)(r2n, 

In view of Lemma 2.44, Corollary 2.43 tcikes the following simplified form 

COROLLARY 2.45 Let 

li = (SIGN.SENI, {CS}S€|SIGNI), = (SIGN,SEN2, {C|}S61SIGN|) 

be two term n-institutions vrith the same signature categories. X\ and Xz are deductively 

auto-equivalent if and only if there exists an isomorphism F : TH(XI) TH(X2) that 

makes the following diagram commute 

T2) e |TH(i2)| 

We have 

2LS required. 

TH(Ii) F TH(X2) 

SIGN 

and commutes vrith substitutions. 
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Equivalence of Deductive Systems 

In the Introduction to the thesis the notion of equivalence between A:-deductive sys­

tems, introduced in [8], was described in some detail. It is now shown how this notion 

can be perceived as a special case of the notion of deductive equivalence of --institutions 

that was introduced in this chapter. 

Recall that, given a set X. by X is denoted a disjoint copy of X constructed in some 

canonical way. Given a finitciry Ar-deductive system S — (Tm£( I-5) over £, define 

a --institution Xs = (SIGN, SEN, {CsjsgisiGNi)- as follows: 

(i) SIGN has [SIGNL = {V} and 

Mor(SIGN) =  { h  : V  Tm£(V') : h  cin assignment}. 

Composition of /ii, ^2 "• V' -)• Tmc( V) in SIGN is defined by = h^hi, where 

hi : Tm£(V') Tm£(V') is the substitution e.xtending ^2-

(ii) SEN : SIGN —>• SET is given by 

SEN(1/) = Tm£(Vy. 

and, for every k :V Tmc(V'), 

SEN(/I)((2)) = for every o €. TM£(V')^. 

(iii) 

C v ^ ( r )  =  C s { T ) ,  for every T C Tm£(V')^ 

Since <5 is a (structtxral) deductive system. Is is cleaxly a --institution. 

For the proof of our mciin theorem, the following lermncis are needed: 

LEMMA 2.46 L e t s  =  (TM£(K)^,H5) be afinitaryk-deductive system. The correspond­

ing IT-institution Xs = (SIGN, SEN, {CS}S€|SIGNI) IS o term ir-institution. 
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Proof: 

The source signature is necessarily V  and we choose the variable v  =  ( v q ,  . . . .  V k - i )  €  

Tm£(V)*'. Then there exists / ; {(V,^) : 6 € Tmc(V')^} ->• 1SIGN( V. V)], given by 

/(v.o) • ^ Tm£( V), with f{v,^)(vi) = <f>i, i < k. and f{v.<t,){vj) = Oo.j > k, for every 6 = 

(Oo,... € Tm£(V)'=. Then, for every o = (<?o, (pk-i) € Tm^CV)'', = 

0 and, for every f : V Tm£(V'), /"/(v,O) = /(V,SEN(/)(<.))- The last equality is true, 

since, for i < k, /•/(v,^>(ui) = /'(<?.) = /(V.SEN(/)(«)>(u,), and. for j > k, /'/(V'.o>(^V) = 

f'{4>o) = /(V3EN(/)(<i)>(u>), as required. • 

Lem.MA 2.47 Let Si = (Tm£(V')'^,l- 5 , )  b e  a  f i n i t a r y  k - d e d u c t i v e  s y s t e m  a n d  S 2  =  

(Tm£(V')', l-5j) a finitary l-deductive system over the same signature C. and Ts^ = 

(SIGN, SEN:, {a}se,siGN|),Z5. = (SIGN, SEN2, {C|}vg[siGN|) the corresponding TT-

institutions. The lattices Th5, and are isomorphic via an isomorphism that com­

mutes with substitutions if and only if there exists an isomorphism F : TH(X5,) —>• 

TH(l5j) that makes the following diagram commute 

TH(L5:) TH(L5,) 

SIGN 

and commutes with substitutions. 

Proof: 

Suppose, first, that -¥ Th^ is a lattice isomorphism that commutes with 

substitutions in the sense that, for every h'.V -¥ Tm£(V), 

Cs,{h-[Ts, { T ) ) )  = Ts,{Cs,mT))). for every T eThs,. 

Define the fimctor F : TH(X5j) —>• TH(X^) as foUows: 

F((V;ri))=(V;r^(ri)), for every (KTi) € 1TH(J5J|, 

and, given h  : V  Tm£(V'), such that C s i i h ' { T i ) )  C T^, 

F { h )  =  h .  
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We have 

C5,(/i-(r5,(ri))) = T s , { C s , m T , ) ) )  

Q rs.{T[h 

whence F is well defined on morphisms. 

It is easy to verify that F is actually an isomorphism, with inverse G : TH(Z5j) ̂  

TH( J5,) given by 

G{{V\T2)) = {V,Tg\T2)), for every {V.T2) 6 iTH(l5,)|, 

and, given /i : V -> Tm£(V''), such that Cs;{h'{T2)) C G{h) = h. 

Clearly, the triangle 

TH(J5j TH(J5,) 

SIGN 

commutes aind the fax:t that F commutes with substitutions is simply a restatement of 

the fact that the lattice isomorphism TS, commutes with substitutions. 

Conversely, suppose that there exists an isomorphism F : TH(J5j) —>• TH(J5j) 

that commutes with substitutions and such that the triangle above commutes. Then 

F restricted to |TH(X5j| induces a lattice isomorphism : Th^, —>• and, if 

T € Ths,, we have 

Cs,mrs,{T))) = F{hnMF {{V,T)))r 
= -2(F(7r,((V;A'(rn))) 
= Ts,{Cs.{h'{T))), 

as required. • 

Our main theorem for this section is the following: 

THEOREM 2.48 Let SI = (TM£(V)^,L-5J) be a finitary k-deductive system and S2 = 

(Tm£(V )̂',l-̂ ) a finitary I—deductive system over the same signature C, and Xŝ  = 

(SIGN,SENi, {CV}SEISIGNI)? — (SIGN,SEN2,{C£}vg|siGN|) ^he corresponding 

TT - inst i tut ions.  The deductive systems Si  and S2 are equivalent i f  and only i f  the TV-

institutions Tsx and Xs2 are deductively auto-equivalent. 
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Proof: 

By Theorem 1.1, axid S2 axe equivalent if and only if there exists an isomorphism 

from Th^, to Th^j that commutes with substitutions. By Lemma 2.47, this is true if 

and only if there exists an isomorphism F : ) -)• TH( ) that commutes with 

substitutions, such that SIG o F = SIG. .A.nd. finally, by Lemma 2.46 and Corollary 

2.45, this is true if and only if the (term) --institutions Xsi and Xs^ are deductively 

auto-equivalent. • 
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3 ALGEBRAIZING INSTITUTIONS 

~ When a logic is algebraizable. the powerful methods of modem aJgebra can be used 

in its investigation, and this has had a profound influence on the development of these 

logics. " VV.J. Blok and Don Pigozzi, Algebraizable logics, Memoirs of the A.M.S.. Vol. 

77, No. 396, (1989) 

The notion of aji aigebraic institution is introduced and, through it and the use of the 

machinery developed in the previous chapters, the notion of an algebraizable institution 

is made precise. Some examples of zLlgebreiizable institutions are given that also serve 

to cotmect the present theory with the algebraizability of Ar-deductive systems. 

Introduction 

In 1974 Barwise [1] introduced and axiomatized abstract model theory, using elemen-

tciry category theory, with the intention of generalizing basic results of classical model 

theory. In 1980 BurstaU ajid Goguen [10], developing the semantics of the specifica­

tion language CLEAR, introduced the notion of language. They reintroduced this same 

notion, together with some new concepts and improved notation, under the name of 

institution in 1984 [26]. They further elaborated on it in 1992 [27]. Meanwhile, in 1988, 

in a similar context, Fiadeiro and Semadas [21] introduced the notion of --institution. 

Rather than having sem«intical satisfaction as the beisis for the formalism, the emphasis 

h<is now been shifted towards a syntactic consequence relation in the spirit of Tarski. 

Fincdly, in 1989, Meseguer [45] introduced general logics in an attempt to combine all 

previous approaches- He included axiomatizations of the notions of an entailment system 
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and proof calculus as well as of that of an institution. 

One hopes that the opening quote of Blok auid Pigozzi concerning logics might be 

equally applicable to the case of institutions, i.e., that a possible algebraazation of an 

institution will enable us to use the methods of universal algebra, or those of the theory 

of algebraic theories in the context of category theory, in its investigation. More ambi­

tiously, one might even argue that successful application of the algebraic methods in the 

institution domain might influence the development of the latter notion itself and make 

it even more widely applicable to the solution of problems in the areas of logic, model 

theory and theoretical computer science. 

The attempt at the algebraization of an institution that we maJce in the present work 

hcis as its starting influence the work of Blok and Pigozzi [6] on the algebraization of 

classical deductive systems. Roughly speaking, given a deductive system S an algebraic 

semantics for is a clciss K of eilgebras such that the consequence relation I-5 of S can 

be interpreted in the semantical equational consequence relation of A'. .A.n equivalent 

algebraic semantics for 5 is an cilgebraic semantics for S such that there is also an inverse 

interpretation of t=A' in I-5 . A deductive system S is then algebraizable in the sense of 

Blok and Pigozzi if it has an equivalent algebraic semantics A'. In [6] it was proved that 

a clciss K of eilgebras is an equivalent algebraic semantics for a deductive system S if 

and only if there is isomorphism between the theory lattice of S «ind the equational 

theory lattice of K that commutes with the substitution operators. Furthermore, given a 

theory T of S, the elementary Leibniz (equivalence) relation jissociated with T. denoted 

JIT, was defined and, based on the Leibniz operator f2 two intrinsic characterizations 

of algebreiizability were obtained. In 1992 [7], the theory was generalized to include k-

deductive systems and in 1995 [8], these algebraizability results were reformulated based 

on the notion of equivalence for two deductive systems. 

The traces of the work of Blok eind Pigozzi are more thcin apparent in the present 

work which owes much to it. 
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The second main influence for our work comes from an attempt by Diskin [IS] to 

algebraize institutions. This attempt is heavily based on the work of the Zurich school 

on categoriczJ aJgebra. The beginnings of these latter developments can be traced back 

to the works of Lawvere [33], Linton [36],[37] and Beck [3]. (For a more detciiled account 

see Mac Lajie [39], Maines [43] and Borceux [9].) In [IS], starting from the notion of 

an algebraic theory, the notion of a protodoctrine wa5 defined and it was shown how 

one can get an institution IN{V) out of a given protodoctrine V. This special kind of 

institution plays the role of the equivalent algebraic semeintics in Diskin's development, 

.^.n institution X was then said to be algebraizable if there e.xists a protodoctrine V cind 

a suitably defined institution morphism A : I IN{V), from the given institution 

X to the institution that arises from the protodoctrine V, satisfying some additional 

conditions. Next, from an algebraizable institution (I, Q) the, so-called, specification 

category SPEC((I,a)) was extracted, which, in turn, gave rise in a natural way to a 

specification system SPSYS{{Z,Q))^ and then, the notion of regularity ior a protodoctrine 

was defined. In the main result of [IS], it was shown that given ein institution that is 

algebraizable through a regular protodoctrine, one can obteiin an cdgebraization of the 

specification system SPSYS{{X,A)), which has many desirable algebraic properties. 

Following Diskin's ideas cind elaborating on his notion of algebraizability, a modified 

version of the notion of an algebraizable institution is introduced in this chapter. Only 

bzisic notions and tools of category theory and some elements of the theory of algebraic 

theories are used. This precise notion will make it possible to answer more general 

questions pertaining to the algebraizability of institutions and --institutions. 

Inspired by [6, 8, IS], in the second chapter, the notion of deductive equivalence 

for two ?r-institutions WBS defined. Generally speaking, two --institutions Xi and lo 

are deductively equivalent if the consequence relations between sentences of the first 

can be interpreted in the corresponding consequence relations of the second and vice 

versa. This notion of deductive equivalence generalizes the notion of equivedence for 
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deductive systems introduced in [8]: see Theorem 2.48. The focus was then directed to a 

special, but yet wide, class of <r-institutions, the, so-cailed, term --institutions. Using the 

theory categories of 7r-institutions, necessary and sufficient conditions for the deductive 

equivalence of two term --institutions were obtained. Namely, it was proved that two 

term ^-institutions Xj and J2 deductively equivalent if and only if their categories of 

theories are naturally equivalent via an equivalence satisfying some additional, relatively 

simple and quite natural, conditions. 

In this chapter, the notion of an algebraic institution is introduced. .Algebraic theories 

over locally small categories with a terminal object 1, in which the coproduct 1 Ul exists 

are considered. An algebraic institution XQ is one that is closely related to a prespecified 

subcategory Q of the Eilenberg-Moore category of algebras of such a theory. Based on 

this notion, the notion of an algebraic --institution is then defined. If one specializes 

to SET, i.e., the category of small sets, algebraic theories over SET are obtained, 

whose Eilenberg-Moore categories of algebras, as is well-known, roughly correspond to 

universal algebraic varieties of algebras, .^.n arbitrary 7r-institution Z is then said to 

be algebraizable if it is deductively equivalent to some ctlgebraic ^-institution XQ. .\S a 

corollary of the main characterization theorem of the second chapter, a characterization 

of algebrciizability for term --institutions is obtained in terms of their categories of 

theories. This result generalizes a similar result in [6]. 

Two examples of algebraizable --institutions are given next. The first inspired by 

the theory of algebrciizable fc-deductive systems and the second on the aJgebraizability 

of the equational institution, an institution that represents a version of equational logic. 

Algebraic Institutions and Algebraizable 7r-Institutions 

We now give an important exeimple of sui institution. Let /C be a locally small 

category with a terminal object 1 and T = (T, 77, fi) an algebraic theory in monoid form 



1 1  

over IC. The Kleisli category of T in IC is denoted, as usual, by fCx and the Eilenberg-

Moore category of T-algebras over K1 by 

DEFINITION 3.1 Let C be an arbitrary full subcategory of Ki and Q an arbitrary sub­

category of Define 1Q = (£, EQ, ALG, as follows: 

( i )  EQ : C SET is defined by 

E Q { L )  =  K : T{ 1 , L ) - =  J C { l . T { L ) ) - ,  f o r  e v e r y  L  €  | £ | ,  

and. given f : L K ^ Mor(£), EQ(/) : ̂ T(1, ^)' -> ^T(1> A')" given by 

EQ(/)((^1:^2)) = (/O5I,/O^2), for every (^1,^2) € ACT(1, 

where f 0 gi = fifcT{f)g{ is the Kleisli composite of gi and f.i = 1.2. 

( i i )  ALG : C  - i -  CAT*^ is defined as follows: For every L € 1>C1,.A.LG(L) is the 

category with objects all pairs of the form {{K.^).f). where (A',€ \Q\ and 

f  :  L  K  Q .  M o r ( A C T ) ,  a n d  m o r p h i s m s  h  :  ( (A ' , ^ ) . / )  { { M , Q . g ) . Q - m o r p h i s m s  

h  :  ( A ' . f )  - > •  s u c h  t h a t  g  =  T { h ) f .  

T { K )  —^ A' 

T [ M )  M  

Given k : L K E Mor(£) the functor ALG(/:) : ALG(A') —)• ALG(L) sends 

((M,^),/) to {{M.^),f 0 k) and a morphism h : {{M,^),f) —>• {{jy,Q,g) to the 

m o r p h i s m  A L G { k ) { h )  :  { { M , ^ ) , f  0  k )  { { N , Q , g  o  k )  w i t h  A L G { k ) { h )  =  h .  

K  T { M )  ^  M  

ALG(fc): 

L  T { K )  T [ T { M ) )  T { M )  ^  M  
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T { M )  

T{H) 

T { M  

M 

N 

ALG(fc): 

T { T ( M ) )  
T { f )  

T { K )  T(T{K))  

T ( 3 )  
T [ T { N ) )  

T [ M )  

T(/i) 

T { N )  

M 

N 

(in) For all L € \C\,{gi,g2) € EQ(Z-) a n d  { { K , ^ ) , f )  € |ALG(Z,)|, 

\=L { 9 1 ,92) iff ^fiKT{f)9i = ̂ fiKT{f)92. 

1  T { L )  T { T { K ) )  r ( A ' )  ^  K  

The next theorem states that the above construction gives an institution. 

THEOREM 3.2 Let IC be a locally small category with a terminal object 1. T = {T.TJ./ J L )  

an algebraic theory overfC, C a full subcategory ofJCx and Q a subcategory ofK^-. Then 

IQ = (£, EQ, .A.LG, ̂ ), as defined in .3.1, is an institution. 

Proof: 

We only show that .ALG is well-defined on morphisms auid then verify that the 

satisfaction condition holds. 

First, let k L K € Mor(£) and suppose that h : ((iV/,^),/) 

is a morphism in ALG(A"). To see that h is a. valid morphism h : ((M,^),/ 0 k) 

{{NX)i9 O ill .A.LG(L) it suffices to show that T{h)nMT[f)k = n^T[9)k. We have 

T { T { M ) )  T [ M )  

T(T(A)) T(H) 

T { N )  
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T { h ) i j . \ [ T { f ) k  = f i i \ T { T { h ) ) T { f ) k  (since ̂  is a natural transf.; see diagram) 

= fi_^T{T{h)f)k (since T is a functor) 

= fii\T{g)k. (since/i 6 Mor(ALG(A'))) 

as required. 

Next, let k - . L ^ R ' e  .VIor(>C).(^1,^2) € E Q { L )  and ((M.^./) € |.-\LG(A')|. Then 

A L G { k ) { { { M . ^ ) . f ) )  j=£, {gi.g2) iff, by definition of .A.LG(Ar), 

{{M,^),fiMT{f)k) \=[, {gi.gz) iff. by definition of ^£,, 

^fiMT{fiMT{f)k)gi = ^fiMT{fi\{T{f)k)g2 iff, since T is a functor. 

^fiMTifi.xf)T(T{f))T{k)gi = E,fMMT{ixM)T{T{f))T[k)g2 iff, 

T { T { T [ M ) ) )  T { T { M ) )  

by commutativity of T ( HM )  

T { T { M ) )  T { M )  

^HMfiT(,M)T{T{f))T{k)gi = ^fixffiT{M)T{T{f))T{k)g2 iff, since/z is a nat. transf., 

T { T { K ) )  T { K )  

i.e., by commutativity of T(r(/)) ni) 

n n n M ) ) )  n n M ) )  

^fXMT{f)nKT{k)gi = ^ijLx[T{f)fi[cT{k)g2 iff, by definition of [=/,-, 

((M,0,/) \=K {fifcT{k)gi,fifcT{k)g2) iff, by definition of EQ(A:), 

((M,0,/)hA-EQ(fc)((^i,^2)), 

as required. • 

Now, suppose that 1 U 1 exists in AC, i.e., for all A' € lC,ki.k2 6 AC(1,A'), there 

exists unique kiUkz €. ^(1 LI 1, A"), such that the following diagram commutes, where 
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<7i, 92 : 1 —^ 1 U 1 are the coprojections, 

Since left adjoints preserve colimits, 1 U 1 is also a coproduct of 1 with itself in KT- In 

fact, the following is a coproduct diagram in ACxr where A'), 

mui It ij ''"J' 

Note that 

{k i  U  ko)  0  ( r j iu i  q i )  =  f iKT(k i  U  k2}T} iu iq i  

= fih'VT(K-}(ki U k2)qi 

l u i  r ( i u i )  

by commutativity of kiuk^ rcfctufcz) 

H A ' )  T i T i h ' ) )  
IT(A')  

= f ^ K V T { K ) k i  

=  k i ,  

and, similarly, {k i  U k2)  o  {T] iu iq2)  =  ̂ 2-

In the sequel, we will denote rjimqi by p,-, t = 1,2. 

In the next theorem, it is shown that, if 1U1 exists in IC, the institution is term, 

for every subcategory Q of 

THEOREM 3.3 Let T be an algebraic theory over a locally small category K with a 

terminal object 1, in which 1 U 1 exists, and let Q be a subcategory of Then the 

institution is term. 

Proof: 
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We show that 1 U 1 is a source signature and (PI,P2) € EQ(1 U 1) a variable (see 

Definition 2.7). To this end, for all A' € |ACT1 € EQ(A') = A')- = 

IC{1,T{K))^,  define U A:2 € ACT(1 U 1, A'), where ARI U ko is the coprod­

uct of ki,k2 in ACT- Then, by the following coproduct diagram and the definition of 

EQ(/(A-.(yt,.;tj»), we have 
1 —^ lU 1 —^ 1 

A" 

EQ(/{A-.(A:,,A:2)))((PlrP2)) = { f { K , ( k i M ) ) ° P l ^ f { K , { k i J c 2 ) )  °  P i )  =  (fcl.fcs). 

Moreover, i f  f  :  K  ^  L  e  Mor(ACT), / o / { K . i k . M ) )  o pi = / o fci and / o /(A'.(fc,.Jfc2)> ° P 2  = 

/oito. But we also haveopi = foki and f(L.{fokijok2))°P2 = foko, whence, 

by uniqueness of coproduct, 

f  °  f ( h \ ( k l , k 2 ) }  =  / { L . i f o k l . f o k ^ ) )  =  /(£.£Q(/)((fcl.fc2))): 

as required. • 

Next, suppose that £ is a full subcategory of ACx, such that there exist L € |£|, /i, /o € 

L), with the property that there exists a set function / : {(A', (Ati, A:2)) : A' 6 

\IC'r\,ki.k2 6 /CT(I,A')} —>• |(L|/CT)|, such that 

f{K,{kiM)) € }C t{L ,K). for all A' 6 € /Ct(1, A'), the following commutes 

(3.1) 

and, for every / 6 /CT(A', K'),fo /(A-.(fcijt2» = /{fC'.Uoki.fok^))-
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If (3.1) holds, we will refer to XQ as the £-algebraic institution associated with 

Q and to its dissociated --institution 7r(Xg) as the £-algebraic 7r-institution asso­

ciated with Q. .A.n algebraic institution or an algebraic 7r-institution is then an 

£-aIgebraic institution associated with Q or an £-algebraic --institution associated with 

Q, respectively, for some C and Q. Note that, if 1 U 1 exists in /C and 1 U 1 G |£|, then 

(3.1) is satisfied, with Z, = 1 U l,/i = pi and U = ps-

From now on we will be following the convention of writing f{ki.k2) instead of the 

more cumbersome f{K,{ki.k-2))- The signature object A' is usually clear from context and 

so there is no possibility of confusion. 

DEFINITION 3.4 L e t l =  (SIGN, SEN, {CS}S6|SIGNI) a  - - i n s t i t u t i o n .  I  i s  

• prealgebraizable if it is interprttable in some algebraic --institution XQ 

• qucisi-algebraizable if it is left or right quasi-equivalent to an algebraic --insti­

tut ion XQ  

• strongly quasi-algebraizable if it left or right strongly quasi-equivalent to an 

algebraic T:- inst i tut ion XQ 

• algebraizable if it is deductively equivalent to an algebraic TT-institution XQ . 

where, as before. C is a full subcategory of ICx (^nd Q is a subcategory of JC^. for some 

algebraic theory T over a locally small category K with a terminal object 1, in which 

(3.1) holds. In this case the algebraic TT-institution XQ will be referred to. respectively, 

as an algebraic, a quasi-algebraic, a strong quasi-algebraic and an equivalent 

algebraic semantics for X. 

.4n institution X is prealgebraizable, (strongly) qu£isi-algebraizable, alge­

braizable if its associated TT-institution -{X) is prealgebraizable. (strongly) quasi-algeb-

raizable, algebraizable, respectively, in the previous sense. 

Since, by construction, every algebrciic --institution is term, we get as an immediate 

consequence of the characterization Theorems 2.36 and 2.41 of the previous chapter the 

following corollary. 
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COROLLARY 3.5 Let X = (SIGN, SEN, {CV}VG|SIGN|) a term --institution. 

( i )  X is prealgebraizable with algebraic iz-institution semantics ~{Xq ) .  i f  a n d  o n l y  i f  

there exists a strongly monotonic, join-continuous, signature-respecting functor F ; 

TH(I) TH(IQ) that commutes with substitutions. 

(ii) X is (strongly) quasi-algebraizable with (strong) quasi-equivalent algebraic it-insti­

tution semantics 7r(I^), if and only if there exists a strongly monotonic. join-

continuous, signature-respecting (strong) adjunction 

{ R G . r , , t ) : T H i X ) ^ T K { X ^ )  

that commutes with substitutions. 

( H i )  X  i s  a l g e b r a i z a b l e  w i t h  d e d u c t i v e l y  e q u i v a l e n t  a l g e b r a i c  - - i n s t i t u t i o n  - ( X ^ ) ,  i f  

and only if there exists a signature-respecting adjoint equivalence {F,G.T]^ e) : 

TH(X) TH(L2) that commutes vnth substitutions. 

An Application 

In this section a collection of pairs of T-institutions is provided, that will be strongly 

quasi-equivalent but not deductively equivalent. This may serve as a motivation for the 

introduction of the notion of qucisi-equivalence in the previous chapter. Given a locally 

small category K, with a terminal object 1, and an eilgebraic theory T in AC, recall that 

by ACT is denoted, as usual, the Kleisli category of T in AC, and by AC"^ the Eilenberg-

Moore category of T-algebras over AC. The pairs of institutions, that are considered in 

this section, will consist of the institution 2j^, as constructed in Definition 3.1, and of 

another institution that results from this by slightly modifying its components. Namely, 

its signature category is the category AC itself, instead of the Kleisli category of T in 

AC, its sentences are AC-morphisms instead of ACT-morphisms and similcir modifications 

cire introduced for the models and the satisfaction relations. Note that, despite these 

modifications, the two institutions in each ptiir can be thought of as having very closely 

related deductive mechanisms. 
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Let AC be a locally small category with a terminal object I and T = (T.RJ.FJ.)  an 

cilgebraic theory in monoid form over K. 

DEFINITION 3.6 Define I = (;C,SEN,MOD, [=) as follows: 

(i) SEN : IC SET is defined by 

SEN(A') = ;C(L A')^ for every K € |/C1, 

and, given f : K L ^ Mor(AC), SEN(/) : AC(1, A")" —>• /C(I. L)' is given by 

S E N { f ) { { g i , g 2 ) )  = { f g u f g 2 ) r  f o r  e v e r y  { g i . g 2 )  €  A C ( 1 .  K f .  

( i i )  MOD : )C CAT*^ <5 defined as follows: For every K € |/C1,M0D(A') is the 

category with objects all pairs of the form {{L,^).f), where (L,^) € |AC^| and 

f  :  K  T { L )  € Mor(^) ,  a n d  m o r p h i s m s  h  :  ( (L ,^ ) , / )  { { M , 0 . g ) , I C ' ^ -

m o r p h i s m s  h  :  ( L , ^ )  — >  { M , 0 ,  s u c h  t h a t  g  =  T { h ) f .  

T { L )  — ^  L  

T{H) 

T { M )  M 

Given k : K L € Mor(/C) the functor MOD(A:) : MOD(^) —MOD(A') sends 

{{M.^),f) to fk) and a morphism h : {{M,^),f) {{^-,0^9) ^o the 

morphism MOD(A:)(/i) : {{M.^),fk) {{N.Q.gk) with M.OD{k){h) = h. 

MOD(FC): 

L  T { M )  —^ M  

K  ^  L  T [ M )  — ^  M  

T { M )  

n h )  

T { N )  

M  

N 

K 

/ 

T [ M )  

L 

9 

T { N )  

M  

N 

MOD(fc) 



So 

( H i )  F o r  a l l  K  € |/C|,(^i,^2) € SEN(A') and {{L,OJ) € 1M0D(A')|, 

\=K {91.92) iff ^f9i=U92-

1 —^ A- TW L 

The next theorem states that the above construction gives an institution. 

THEOREM 3.7 Let K, be a locally small category with a terminal object 1. and T = 

(T.rf.fi) an algebraic theory over IC. Then X = (/C, SEN, MOD. ^), as defined in 3.6, is 

an institution. 

Proof: 

We only show that MOD is well-defined on morphisms and then verify that the 

satisfaction condition holds. 

First, let A: : A' L € Mor(/C) and suppose that h  :  ((M,^ ) , / )  — > •  { { N . Q . g )  G 

Mor (MOD(L) ) .  Then  T i h ) f  = g ,  whence  T { h ) f k  =  g k .  Thus ,  h  :  { { i V L O J k )  

{{N.Q.gk) € Mor(MOD(A')), cis required. 

Next, let k : K ^ L e Mor(X:),(^1,^2) € SEN(A') and ((iV/,^,/) G 1M0D(L)|. 

Then 

MOD(Ar)(((iV/,^),/)) [=/j: {gi,g2) iff, by definition of MOD(A:), 

{ { M , ^ ) , f k )  |=A: { g i , g 2 )  iff, by definition of [=/c, 

iff, by definition of [=£,, 

{kgi.kg2) iff, by definition of SEN(fc), 

mo J) N SEN(fc)((^x,^2)), 

cis required. • 

Now let XT = = {/Cx, EQ, ALG, be the /Cx-algebraic institution associated 

with ICT. We show that "(I) is strong left quasi-equivalent to ir{Xr). This result will 

provide many examples of pairs of 7r-institutions being strong quasi-equivalent but not 

deductively equivalent. 
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THEOREM 3.8 Let X.Xx = be the institutions defined in 3.6, 3.1 and 

the TT-institutions associated with X,XT, respectively (see Chapter 2). ~{X) is left strong 

q u a s i - e q u i v a l e n t  t o  ~ { X i ) .  

Proof: 

Let (Fx, C'T.'TT, ex) ^ ^ be the Kleisli adjunction (see Chapter 1). Define 

a : SEN -^VEQFT by : SE-N(A') -5- ^(EQ(A')), with 

aK{{9i^92)) = {{m9\^nK92)}' for every {91,92) € SEN(A'), 

and : EQ VSE^Ur by 3k : EQ(A') h- P(SEN(r(A'))), with 

We first show that Q and j3 are natural transformations. To this end, let / : A" £ 

€ Mor(AC). We need to show that the following diagram commutes. For every {91.92) G 

^k{{9i,92)) = for ever\- {91,92) € EQ(A'). 

SEN(A'). we have 

SEN(A') ^(EQ(A')) 

SEN(L) V { E C i { L ) )  

V E q , { F T { m c c K { { 9 u 9 2 ) ) )  = EQ(//L/)(tai.7A-^2)) 

= { f l L T { T l L f ) V K 9 u f ^ L T { r j L f ) V K 9 2 )  

=  { f i L T { T ] L ) T { f ) T j K 9 u f ^ L T [ T j L ) T { f ) r ] K g 2 )  

=  { T { f ) r i K 9 u T { f ) r } K 9 2 )  

T [ L )  T ( T [ L ) )  

by commutativity of 

T { L )  
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= { n L f 9 u r i L f 9 2 )  

K  T { K )  

bv commutativitv of I  T ( f )  

1L T { L )  

= a U S E m ) i { 9 i - 9 2 ) ) ) .  

as required. For /?, let / : A' —^ L € Mor(/Cx)- We need to show that the following 

diagram commutes. For every (^1,^2} € EQ(A'), we have 

EQ(A') 
0K 

P(SEN(r(A'))) 

EQ(/) V S E N i n t T U ) )  

EQ(£) 
PL 

V ( S E N { T { L ) ) )  

V S E N { f X L T i f ) m i { 9 x , 9 2 ) ) )  = SEN(^^r(/))((^i,^2)) 

= { f i L T { f ) 9 u f i L T { f ) 9 2 )  

=  m f ^ L T { f ) 9 u f ^ L T i f ) g 2 ) )  

=  M m f ) { { 9 u 9 2 ) ) ) .  

as required. 

Next, we show that (FX , Q ) : 'r(I) —>• '• ~[1T) ~(^) are interpreta­

tions. 

For (FT , a), let A' € L/C],© U {(^1,^2)} C SEN(A'). Then 

{91.92) € 0^ 

iff, for every { { L , ^ } , f )  € |MOD(A')|, 

((I,Or/) Na' (^1:^2), for every (^i.^o) € 0, implies {{L^},f) {=/,- {91,92), 
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iff, by the definition of for every f )  e  \ M O D { K ) \ ,  

for every (^1,^2) €0, implies ^fg\=^fg2-

T [ L )  T { T { L ) )  

iff, by commutativity of I^L 

T { L )  

forevery {{L.0J)e\UOD{K)\, 

^f^LlT{L)f&i = ^f^LriT{L)f02, for every {Oi,02)€Q, implies 

^ f ^ L V T { L ) f g i  = ̂ f i L n T { L ) f g 2 ,  

VK 
K r(A') 

iff, by commutativity of 

T { L )  ^T{,L)  

ru) 

T [ T [ L ) )  

for every 6 |M0D(A')1, 

^fiLTif)TiK&i = ̂ fiLT{f)T}K92, forevery {01,62) eQ, implies 

^ f i L T { f ) T l K g i  =  ̂H L T { f ) T t K g 2 ,  

iff, by the definition of for every { { L , ^ ) , f )  € |ALG(A')|, 

{ { L y O ^ f )  t=I- { V h ' d u v M ,  for every (0i,^2) € 0, implies { { L , ^ ) , f )  1=X- { r j K g i , T } K g 2 ) -

iff {nKgi,riKg2) € {{vkOutjM : {01,62) € 0^-

iff aK{{gi,g2)) 6 aK{Q)'', 

as reqtiired. 

The proof for {UT ,^3) is more complicated. Let A' € 1^t|?0 U Q EQ(A'). 

We will first show that, if { g i , g 2 )  € 0*^, then ^ K i i g i ^ g z ) )  € /3k-(0)'^ and then that, if 

f^K{{gi,92)) e ,/?iv(0)% then {gi,g2) € 0''. 



89 

Suppose that {§1,92) € O''. Then, for every ((I,^),/) € |ALG(A')|, 

Nl- (01,^2). for every (61,62) G 0, implies {{L,^)J) \=1- {91,92). 

(3.2) 

Now, assume that ((L,^),/) 6 lMOD(r(A'))l is such that ((L.^),/) ^=r(A-) {61.62), for 

every {61,62) € /?a-(0)- Then (f/^i = ^/02, whence ^f^iKT{rif:)6i = Ui^KT{TjK)62, and. 

therefore, ,f^£,r(/)T(77A:)^'i = ^HLT[f)T{riK)62- Thus, {{L,^), frji^-) \=J; {61,62) and , by 

(3.2), { { L , ^ ) ,  f r j f : )  { 9 1 ' 9 2 ) -  Following the same steps backwards, we conclude that 

{{L,^),f) \=T{K) {91,92)- Thus, I3K{{9I-92)) € /3A•(0)^ as required. 

Conversely, suppose that /?a:((5^1,^2)) G /?a:(0)'^- Then, 

for every { { L , 0 , f )  € |MOD(r(A'))|, 

{ { L ,0 , f )  [ = r ( A - )  { 6 1 , 6 2 ) ,  for every € 0, implies { { L . ^ ) , f )  \=T{K )  {91^92)-

(3.3) 

Now, assimie that { { L , ^ ) , f )  € |.A.LG(A')| is such that { { L , ^ ) , f )  { 6 1 , 6 2 ) ,  for every 

{61,62) e 0. Then ^/z£,r(/)0i = ̂ iiLT{f)62, i.e., {{L,^),iiLT{f)) l=r(K-) {61,62) and , by 

(3.3), { { L . ^ ) , j X L T { f ) )  l=r(A') { 9 1 , 9 2 ) -  Following the sajne steps backwards, we conclude 

that {{L,^),f) {91.92)' Thus. {91.92) € 0"^. as required. 

Finally, we need to show that, for all A' G 1/C|, { 9 1 , 9 2 )  G SEN(A'), 

S E ^ { T I K ) { { 9 U 9 2 ) ) ' '  =  3 K { c ^ K { { 9 i , 9 2 ) ) ) ^  

and, for all A' G |/Ct1, (£ri,fir2) G EQ(A'), 

EQ(eA-)(ar(A')(/?A-((5i,5r2))))^ = {(^i,52)F-

We have 

/?A-(aK'((^i,52)))^ = QA-((^i,^2))'' 

= {{VK9UVK92)Y 

=  S E N { i ] K ) { { 9 U 9 2 ) ) \  
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<is required, and 

EQ(CK-)(Q;T(K-)(/?i;-{(^l,^2)))r = EQ(iT(A-))(Q!T(A-)({^1.^2)))^ 

= ^ Q { h { K ) ) { { T l T ( K ) 9 l - , V T { K ) g 2 ) Y  

=  { { f ^ K T { I T ( K )  ) V T{ K ) 9 I  r f ^ K T {  I T { K ))'nT{ K ) 9 2 ) Y  

=  { { f i K T r r { K ) 9 u  f ^ K r ] T l K ) 9 2 ) Y  

= {{91^92)}', as required. 

Deductive Tr-Institutions 

In this section, part (iii) of Corollary 3.5 is applied to the, so-called, deductive T-

institutions, that naturally arise from deductive systems, and a theorem is proved that 

provides a relationship between the algebraizability of a deductive system and the adge-

braizability of the corresponding deductive 7r-institution. 

Reccill from the last section of Chapter 2 that, given a Icinguage type C and a finitary 

Ar-deductive system S = (Tm£(V')*^. (-5) over £, we can define a T-institution IS = 

(SIGN, SEN, {C£}vg|siGNi) by letting SIGN be the one-element category with the 

single object V and morphisms all assignments h : V Tm£(V'). SEN : SIGN —>• 

SET is  given by SEN(V) = Tmi:(V)*^ and SEN(/i)(0) = for every H :  V ^  

Tm£(K), where h' denotes the unique endomorphism on the £—term algebra extending 

the assignment h. Finally, Cv(r) = C5(r), for every F C Tm£(V")'^, We call the TT-

institution, thus obtciined, the deductive Tr-institution associated with S. In Lemma 

2.46 it was proved that it is a term Tr-institution. 

Given a language type £, we can construct an eilgebraic theory T = (T, r j ,  f i )  in SET, 

whose Eilenberg-Moore category of T-cdgebras SET^ is isomorphic to the category of 

the variety of cill £-«dgebras. Recjill that, given X € |SET|, we denote by X a disjoint 

copy of X, constructed in some canonical way, and by Tm£(.Y) the set of ciU £-terms 
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over X. Briefly, we have 

T { X )  = Tm£(X), for every X € ISET], 

and. given f  :  X  Y  £  Mor(SET), T { f )  : Tm£(X) —>• Tm£(y') is the unique extension 

of / to £-terms. It is formaJly defined by recursion on the structure of £—terms as 

follows: 

•  T { f ) { x )  = /(x), for every x  € -Y, and 

• r(/)(A(fo,... ,f, (A)-i)) = A(r(/)(<o),... .r(/){f,(.x)_i)K for all A 6 

^p(A)-i € Tmc(X). 

Moreover, TJX : X Tm£(.Y) is the map given by T]X{X) = x. for every x € X. cind 

fix '• Tm£(Tm£(X)) —>• Tmc(.Y) combines >C-terms over £-terms to simple £-terms and 

is defined formally by recursion on the structure of £-terms over Tm£(A') as follows 

•  f i x ( t )  = for every t  G Tmc(X), and 

•  f i x i H t o , - - -  , t p { \ ) - i ) )  =  H  f i x  { t o ) , . . .  , f i x { t p ( . \ ) - i ) ) ,  for all A 6 A.fo,-- - r^p(.\)-i 

6 TmaTmc(X)). 

Note that SIGN is the full subcategory of SETx with the single object V. 

Given an £-algebra A = { A , C ^ ) ,  the corresponding T-edgebra under the above 

isomorphism is A' = (A.i^a), where the structure map ^ Tmc(.4) —>• A is defined by 

recursion on the structure of £-terms as follows 

• 6v(a) = a- for every a G -4, and 

•  CA(A(to,-- -  • t p ( \ ) - i ) )  = A'^(^A(fo).• -• ?^a(^p(,\)-i))t for all A 6 A.to,... ,fp(,\)_i 

€ TM^CA). 

Given an £-term t over V", let us denote by ft € SETT(1, V') the set map from the 

singleton I = {0} to Tmc(V'), with /((O) = t axid, given a class A' of £-algebras we 

denote by K' the full subcategory of SET^ with objects {A* : A € A'}. 
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LEMMA 3.9 Let t € Tm£(V),A = (.4,ZI'^) an C-algebra and a : V A. Then, if 

A" = (.4,^a), 

t^{a) =^AA'.4r(r7.4a)/£(0). 

{0} TmcCV) Tmc(.4) — 

TM£(TMA.4)) TMA-4) .4 

Proof: 

First, note that 

^ A f i A T { T } A a ) f t { < ! } )  = ^ A f i A T i r i A ) T { a ) f t { f d )  (since T  is a functor) 

= ^A^(^/t(0) (since/i.4r(77.4) = 1t(a)) 

= UT{a){t). (since/,(0) = 0 

We now work bv recursion on the structure of ein £-tenn. U t = v E V. then 

^A(r(a)(u)) = .^A(a(u)) = a(u) = u (a), 

cLS required. Ne.xt. let t = A(fo.... for some A € G Tmc(V'), 

and suppose that ^ x { T { a ) { t i ) )  = t f - { a ) .  for every i  <  p { X ) .  Then 

U { T { S ) { t ) )  =  a ( r ( a ) ( A ( f o , . . - , f p ( A ) - i ) ) )  

= ^A(A(r(a)(fo)r-• - ^T{a){tp^x)-i))) (by the definition of r(a)) 

= A-^(^(r(a)(fo)),-- - ,CA(r(a)(<p(.\)_i))) (by the definition of ^A) 

= X ^ { t ^ { a ) , .... ̂ ^,\)_i(a)) (by the induction hypothesis) 

= 

as required. • 

LEMMA 3.10 Let t € Tmc(V"), A = (.4, £•'*') an C-algebra and a :V T[A). Then, if 

A- = (A,a>, 

^ x [ i A T { ^ f S )  = t\U.a)-

{0} T m c i V ) Tm£(Tni£(.4)) Tmc{A) .4 
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Proof: 

Note, first, that = ^x(^AT{a){t). We apply again recursion on the 

structure of £-terms. For t = v £ V, we have 

U f ^ A T { a ) { v )  =  ̂ x ^ l A { a { v ) )  = ̂ A(a(y)) = v^(^Aa), 

as required. Ne.\t, let t  =  X { t o , . . .  for some A € ,^p(,\)-i € Tm£(V'). 

and suppose that ^ A _ H A T { a ) ( t i )  = for every i  <  p { X ) ,  Then 

^AfiAT{a){t)  =  ^Ai".4r(a)(A(fo, . . .  ,^p(A)-l))  

= ifA/^^(A(r(a)(fo)... : T{a){tp^x)-l))) (by the definition of r(a)) 

= ^A(A(/iA(T(a)(io)),--. ,/z.4(T(a)(fp(A)-i)))) (by the defin. of fiA) 

= A-^(^A(/i>i(r(a)(fo))),... .^A(/i.4(r(a)(^p(A)-i)))) (by defin. of ^a) 

= A''^(f^(^Aa)r • - • T ^^,\)_i(^Aa)) (by the induction hypothesis) 

= (by the definition of t'^) 

as required. • 

THEOREM 3.11 Let C be a language type, K a class of C-algebras, Sfc = (Tmc(V')*, 

the equational 2-deductive system of K and T = the algebraic theory that 

corresponds to the variety of all C-algebras. Then Xsj^ and •!r{X^P^) are deductively 

auto-equivalent TT-institutions. 

Proof: 

Clearly, the two given --institutions have the same signature categories. So it suflBces 

to exhibit natural transformations a : SEN VEQ and 3 : EQ —>• PSEN, such that 

(/SIGN, oc) —y Xsf^ axe inverse interpretations. 

Define av : Tm£(V')2 ^ ̂ >(SETT(L Vf) by 

o t v { { t o , t i ) )  =  { { f t o , f t i ) } -  for all to.ti 6 Tmz:(V'), 

and /?v : SETT (L Vf -)• 7'(Tmc(V)^) by 

/?v((/o,/i)) = {(/o(0),/i(0))}, for ail /O,/i 6 SETT (L K). 
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We first show that a  and ( 3  axe natural transformations. To this end, let h  :  V  

Tm£(V) € Mor(SIGN). We need to show that the following diagram commutes. If 

€ Tm£(V)^, we have 

Tmc(V')- -^-plSETxlUV')-) 

A* 

T m c i V ) -  -;^P(SETt(1.V)-) 

h { Q v { { t o J i ) ) )  =  /l((/to./£,)) 

=  { h o  f t o ^ f i o  f t , )  

=  { h - k , h ' U , )  

=  { f h - l t o ) r f h - { t i ) )  

=  a v { h ' { { t o J i ) ) ) ,  

as required. The proof for 3 is similar. 

Now, we show that (/SIGN^Q;) : —>• is an interpretation. To this end. 

let E \J {(^0,^i)} Q Tm£(V)'. We first show that, if (^o,^i) € E'̂ , then { f t o ^ f t i )  € 

{{f'-oJ^i) • (eo,ei) € Ey. 

If {to.ti) € E'^, then, for every A = (.4,>C'^} € A'.a : V .4, 

e^(a) = ef'(a). for every (eo.ei) E E, implies t^(a) = tf'(a). (3.4) 

Now, suppose that {{A,^A},/) 6 |ALG(V)|, such that ((.4,^A),/) 1=V (/eo'/ei)» for 

every (eo, ci) 6 E. Then ̂ xy-AT{f)feo = every (cq, ei) € E, whence, by 

Lemma 3.10, e^(^A/) = ef"(^/), for every (eo,ei) 6 E .  Therefore, by (3.4), = 

Thus, by Lemma 3.10 again, we obtain ^xt^AT{f)fto = ^AfiAT{f)fti, i.e., 

{{A,ix),f) \=v {fto^fti)- as required. 

Suppose, conversely, that {fto,fti) € {{feo^fd) ' (eo,ei) € Ey. Then, for every 

((.4,A),/) E 1ALG(K)|, 

^ j L f i A T{f)fro = i\ f i A T{f)fe,, for every (eo,ei) € E ,  
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implies UfiATif)fto=Uf^AT{f)fti. (3.5) 

Let A = { A . C ' ^ )  E  K . a  :  V  .4 be such that e^(a) = ef"(a), for every (eo.ei) 6 E .  

Then, by Lemma 3.9, ^xiiAT{r]Aa)feo = ^xfiAT{T}Aa)fei- for every (eo.ei) € E. Hence, 

by  (3 .5 ) ,  ̂ A f i A T i r i A a ) f t Q  =  ̂ A ^ ^ A T [ T } A a ) f t ^ ,  w h e n c e ,  by  Lemma3 .9  aga in ,  t ^ { a )  =  

Therefore {to,ti) € E*^, as required. 

The proof that (/SIGN:,^) •" "(^••^'^) —>• Xsf^. is an interpretation is similar. 

Finally, for every (to.ti) € Tmc(V')-. 

and, for every (/o,/i) € SETT(I, V)' ,  

av{M{foJi))r = av-((/o(0),/i(0)))^ 

= { { f M i h f f i m ) Y  

= {(/or/i)}", 

whence (/SIGN?Q:)T (^SIGNI/^) aje in fact inverse interpretations, cis required. • 

Now, we are ready to prove the m«iin theorem of the present section giving the 

relationship between eilgebraizability of a A:-deductive system S and algebraizability of 

its associated "-institution Is-

THEOREM 3.12 Let C be a language type and S = (TMC( V")^, I-5) a finitary k-deductive 

system over C. [f S is algebraizable then Xs is algebraizable. 

Proof: 

Suppose that S is algebraizable with equivalent algebraic semzintics (see [6]) the 

class K of £-algebras. This means that S is equivalent to the 2-deductive system 

Sfc = (Tm£( V')^, having as its consequence relation the semajiticai equationai 

consequence relation of A'. By Theorem 2.4S, this implies that the --institutions 
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Xs and are deductively auto-equivalent. By Theorem 3.11, is deductively 

auto-equivalent to the aJgebraic --institution Therefore S is deductively auto-

equivaient to and, hence, algebraizable. • 

.A.ctually. the proof of Theorem 3.12 gives the stronger result that, if S is algebraizable 

then Is is auto-algebraizable in a sense that will be made precise in the following chapter. 

Algebraizing the Equational Institution 

In this section, the, so-called, equational institution, an institution that naturally 

represents a version of equational logic, is constructed. In this version the operation 

symbols of each equationeil signature have no fixed arity. Instead, the arity of each 

symbol varies over different models of the same signature. Then, an algebraic institution 

XQ = is used to algebraize the equational institution. The theory T in SET 

over which this algebraic institution is constructed is discussed briefly in the second 

subsection, but is presented in detail in Chapter 6 of the thesis. 

The Equational Institution 

In this subsection, the basic construction of the equational institution is provided. It 

represents a version of equational logic in which the operation symbols of each language 

type do not have fixed arities. More precisely, for every language type C. other thcin 

the empty type, there exist algebras in which the operations corresponding to the same 

operation symbol of the type have different arities. These arities must be finite but vary. 

.A. countably infinite set V, called set of variables, is fixed in advance and well-

ordered and, as usual, the category of all small sets is denoted by SET . The definition 

of a term is given first. 

DEFINITION 3.13 Let X E |SET[. We define the set of .Y-terms Tmx(V') € [SET], 

to be the smallest set with 

(i) V C Tmx(V') and 
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(ii) If xe X^n ^ u! and to^— .^n-i € TmxCV), with tn-i ^ u„_i, then 

x { t Q , . . .  , t n - i )  € Tmx(V). 

Next, the definition of an algebra is provided. 

DEFINITION 3.14 Let X € |SET| and p : X IJJ be a rank function. By an (X,p)-

algebra we mean an C-algebra A = (.4, a), where C = (X^p), i.e.. a set .A together with 

a mapping a: X CI(.4), where Cl(.4) = ^ for every 

X € X. By an X-algebra we mean an {X. p)-algebra for some rank function p on X. 

Given a : V —^ .4, we denote by the element a(ui),z < uj. If A = (.4,a) is an 

(.Y./9)-algebra, x € -V cind Q(X) G .4-''''''', then we use the notation a(x)(a),a : V —>• .4, 

to denote the element Q(x)(ao,... , ap(i)_i) € .4. 

Next, the notion of homomorphism is defined. 

DEFINITION 3.15 Given two X-algebras A = (.4,A),B = (B.^) with corresponding 

rank functions px-PBi an X-homomorphism h : A 3 is a map h : B such 

that, for every x € X, 

h { a { x ) { a ) )  =  , 3 { x ) { h { a ) ) ,  f o r  e v e r y  a  : V  .4. 

where h{a) i  = h{ a i ) ,  for every i G u;. 

The collection of all X-algebrzis together with aill X-homomorphisms between them 

forms a category, called the category of X-algebras and denoted by ALG^. 

Fineilly, before the definition of the equationcil institution, the formal definitions of 

the evaluation of an .Y-term in an X-algebra and that of the extension of a given set 

map f : X Tmy(V') to a map /" : Tmx(^) —>• Tmi'(V) must be given. 

DEFINITION 3.16 Let X € [SETJ and A = (.4,Q) an X-algebra with rank function 

PA.: X uj. Define : Tmx(V^) x -i- .4 by recursion on the structure of X-terms, 

as follows: 

(i) e^(r,a) = a(t;), for all v €V.a :V A, 
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(ii) e^(x(<o,... ,f„_i),a) = Q(x)((e'^(fo, a), - - • , e^(f„_i,a),a„.a„+i,...)), for all x 

€  X . n  €  u ; , t o , . . .  , t n - i  G  T m x ( V ) , ^  a  €  . 4 ^ .  

Define a' : Tm;c(V^) —> Cl(.4) as follows: The rank p{Q'{t)) is defined by 

•  p { a ' ( v i ) )  = i  + 1,  for every u,- € V. 

• p{ot (x(fo-• • • l))) — P(^O)T • • • 1 P(^min{n.p;^(r)} —I)}• € -V. 

fo,... ,in-l € TmA-(V),fn-l # Un-l 

and 

a ' { t ) [ a )  =  e ^ { t , a ) ,  f o r  a l l  f € TmA'( V'), a € .A*'. 

DEFINITION 3.17 Let X £ |SET|, as before. Define a function 

OO 

R x  : Tnix(V') X U Tmx(V-)^ Tmx(V) 
k=0 

by recursion on the structure of X-terms as follows: 

( i )  

R x { V i , { s o , . . . , S r r . . , ) ) = [ ^ ' '  ' ̂ 
I V i ,  I  >  m  

for all m eijJ.SQ,... ,Sm-i € Tmx(V'), 

(ii) 

• • • ?^n—l)?'^ — * 

^ R x i h - i , ^ ,  i f m < n  o r n  < m  

and Si = Vi Vz > m 

^ (fo? • •) Rx{,^n—lr l)r if n ^ 77? 

for all X € X,n € u:,tQ,... Jn-i € Tmx(V^),fn-i 7^ Un-i, 6 w.J' € 

TmA^(V)"'. where, in the first branch, k = mcix{/ : Rx{ti,s) ^ t';}, antf, in the 

second branch, k = max{/ : si y;}. 

In other words, it is understood that the last, say k-th, term inside the parenthesis 

o n  t h e  r i g h t ,  i . e . ,  R x { t k - i j ^ , 0  <  k  <  n ,  i f  m  <  n ,  a n d  e i t h e r  R x { t k - i , ^  o r  

•sjfc-1,0 < k < m, if n < m, must be the last term that is not equal to the variable 

V k - l -
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DEFINITION 3.18 Let X,Y € |SET| and f : X TmK(V). Define f : Tmx(V) ^ 

Tmy(K) by recursion on the structure of X-terms as follows: 

( i )  f ' { v )  =  V .  f o r  e v e r y  v  6 V, 

( i i )  f { x { t o , . . .  = /2v(/(x), (/"(fo),... ./"(fn-i))), for all x e X.n e UJJ Q ,  

... .tn-i € Tmx(V')J„_i 7^ y„_i. 

In the sequel, we write f : X — r  Y to denote a SET-map / : X —> Tmv( V), as above. 

Given two such maps f : X —r Y and g : Y —r Z. their composition g o f : X —r Z \s 

defined to be 

9 °  f  =  g ' f -

We denote by SIGN the category having cis collection of objects |SET| and cis its 

collections of morphisms 

SIGN(X V) = {/ : .Y ^ V : / 6 SET(X,Tmy( V))}. 

for ail X , Y  € [SET]. This category, which is denoted by FACA in chapter 6 of the 

thesis (see Theorem 6.7), has as its composition the composition o as defined above eind 

its identity arrows jx ' X —r X are the set maps jx ' X -¥ Tmx(V'). with 

j x [ x )  = x(), for every x € X .  

The definition of the equational institution follows. 

DEFINITION 3.19 Define SQ = (SIGN, SEN, MOD, [=) by letting 

(i) SIGN be the category just defined. 

(ii) SEN : SIGN SET sends an object X € |SIGN| to the set Tmx(V')" and a 

morphism f:X-rYe Mor(SIGN) to the set map SEN(/) = {ff : SEN(X) ^ 

SEN(V'). 

We usually denote (fo^^i) € Tmx(V')^ by to ti. 
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(in) MOD : SIGN —>• CAT"'' sends an object X € |SIGN| to the category ALGX 

and a morphism f : X —r Y E Mor(SIGN) to the functor MOD(/) : ALGY 

ALGx sending (A.a) to {A,a'f) and a morphism h : {A.a) {B.IS) to MOD(/) 

[h) : (.4,q-/) defined by MOD(/)(/i) = h. 

(iv) For every X 6 |SIGN|, Q |MOD(A')| x SEN(X) is given by 

{ A . a )  ^1 ~ h if and only if e'^(ti,d) = e^{t2,a), for every A € .4*', 

for all {A,a) G |MOD(A)l,<i ^ t .  e  SEN(.V). 

To prove that £Q is an institution, we first need to prove three lemmas. 

LEMMA 3.20 Let X € |SET|. A = (.4,Q),B = { B , ( 3 )  be X-algebras. h : A B be an 

X-homomorphism and t € Tmx(V') an X-term. Then 

h { a { t ) { S ) )  =  l 3 ' { t m S ) ) .  

Proof: 

The proof is by induction on the structure of the .V-term t. 

If f = V i  € V .  then h { a ' { v i ) { a ) )  =  h { a { v i ) )  = ^(a,) = h { a ) i  =  /J"(y,(/i(a))). 

If z € X J o , . . .  , t „ - i  € Tmx(V"),f„_i ^  u„_i, with 

h { a ' { t i ) { a ) )  =  I 3 ' { t i ) { h { a ) ) ,  for every i  <  n ,  

h{ a ' { x {tQ.. . .  J n . i ) ) { a ) )  = h{ e ^ { x { t o , - . -  , tn-i) , a ) )  

= ^(Q(x)((e^(io,a),-.. ,e^(f„_i,a),an,a„+i,...))) 

(by the definition of e''^) 

= ,i3(x)((/i(e"^(fo,a))T-- - , h { e ^ { t n - i . a ) ) , h { a n ) , - - - ) )  

(since : A —>• B € Mor(ALGx)) 

=  l 3 { x ) { { h { a ' { t o ) { a ) ) , . . .  , / i ( a - ( f „ _ i ) ( a ) ) , / i ( a „ ) , . . . ) )  

(by the definition of Q') 

= /?(x)((/?-(fo)(M^)),--- J'itn-ima)),h{a^),...}) 

(by the induction hypothesis) 

= P'{x{to,.... i„_i))(/i(a)), (by the definition of /?*) 

as required. • 
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LEMMA 3.21 Let X € |SET|, A = {A,a) be an X-algebra with rank function p : X 

t € Tmx(V), -s 6 Tmx(V')'" and a 6 .4*^. Then 

e ^ { R x { t , s ) , a )  =  6 ^ ^ ( ^ , ( 6 ^ ( 5 0 , 0 )  6 ^ ( s „ » _ i ,  a ) . a ^ ,  £ t „ , + i , . . . ) ) .  

Proof: 

The proof is by recursion on the structure of t. 

If i = Vi G V, then 

CJ 

e ^ ( R x { v i , s ) , a )  = > = < 
e'^(5.-,a), i<m 

6 * ^ ( 1 7 , - . a ) ,  i > m  

— 6 (ft", (s ('^0, o), . . . . e (^m—1 ? o), flm? ....)) 

6'^(5,-.a). i <m 

a,, i > m 

as required. Now suppose that x G XAQ.. . .  .^n-i € Tmx(V'),i„_i ^ and 

e^{Rx{ti,^,a) = e\ti,{e^{sQ,a),... .e^{Sm-ua),ajn,a^^i,...)), for every i < n. 

Then 

e ^ { R x [ x [ t Q , . . .  A r , - i ) , s ) , a )  = 6  ( x ( ( ^ 0 ?  •  r  R x i ^ n — l  r  r  ̂ n *  '  '  '  l ) , o )  

( by  t he  de f in i t i on  o f  R x )  

a ( x ) ( e - ^ ( R x ( t o ,  1 ) , a ) , . . .  , e ' ' ^ ( R x ( t n - i , ^ , a ) ,  

e-^(5„,a),.... 6-^(5^_i, a), a„, a^+i,...) 

(by the definition of e"^) 

Q(x)(e-^(fo, (e-^(so, a ) , . . .  ,  e - ^ ( s m - i , a } ,  a„....)), 

... ,e-^(fn-i,(e'^(5o,a)r-- - .e-^(5„,_i,a),a„i,...)), 

^ (^Ti,o),-.. ,6 (•SjTi—t, (z)* Gyn? * ' * * ) 

(by the induction hypothesis) 

e^(x(fo, - - • , f n - i ) r  (£"^(50, a), 

e^(-Sm-i.a),am,aTii+i,---))^ definition of e*^) 

as required. 
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LEMMA 3.22 Let X,Y E 1SIGN|,/ : .Y V € Mor(SIGN),(.4.Q)  6 |MOD(y ' ) |  and 

t G Tmx(V)- Then 

= e<-'-">(/"(0.a), for every a € .4''. 

Proof: 

The proof is by recursion on the structure of t. 

If ^ = Vi 6 K then = a,- = a), as required. 

If X € X . n  € € Tmx(V'').in-i # t'n-i- with 

g(>».o ^ ) { ^ t i , a )  = e ^ ' ^ ' ° ' \ f { t i ) . a ) .  for every i  <  n .  

then 

) (by the definition of 

a„,a„+i,...) (by the induction hypothesis) 

(by the definitioD of a") 

(by Lemma 3.21) 

= e^''^'°\f[x{to....,tn-i)),a), (by the definition of /") 

eis required. • 

THEOREM 3.23 SQ = (SIGN, SEN, MOD, as defined in 3.19 is an institution. 

Proof: 

We show that MOD is well-defined on morphisms Jind then verify the satisfaction 

condition. 
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To this end, let f  :  X  — r Y e  Mor(SIGN) and h  :  { A , a )  ->• { B , 0 )  6 Mor(ALGK)-

Then h{a{y){a)) = I3{y){h{a)), for every a : V -=>• A. We need to show that 

h { a ' { f { x ) ) { a ) )  =  ̂ ' { f { x ) ) { h { a ) ) ,  for all x € X , a : V  ^  .4. 

This, however, was proved in Lemma 3.20. 

For the satisfaction condition, let f : X —TY £  Mor(SIGN).fo ^ € SEN(X) and 

(.4,a) € lMOU(r)i. Then 

M0D(/)((.4, a}) t o  m  t i  if and only if ( A . a ' f )  ^ if and only if 

for every a € .4*^, if and only if. by Lemma 3.22, 

e^''^'°'>(/"(fo)7a) = e(''*'°^(/'(fi),a), for every a ^ A^, if and only if 

(.4,a) \=Y nto)  ̂ rih) if and only if (.4,q) i=y SEN(/)(fo a= fi), 

as required. • 

We refer to 5Q as the equational institution. 

The Algebraic Counterpart 

In this subsection, the construction of the algebreiic theory T = (T. that will 

serve as the beisis for the aJgebreiic institution algebrciizing the equationed institution SQ 

is overviewed. Details are omitted, since the entire construction is carefully developed 

in Chapter 6 of the thesis. 

The functor T : SET SET is defined by 

T { X )  = Tmx(V), for every X  6 1SET|, 

and, given f  :  X  £  Mor(SET), T [ f ) : Tmx(V) ->• Tmy-(V') is defined by 

T[ f )  =  { j Y f ) ' -
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The natural transformation 77: /SET —>• T  is given h y  r j x  ^  T { X ) ,  with 

= j x ,  for every X € 1SET|. 

Finally, the natural transformation f x  :  T T  T  i s  defined by f i x  '  T { T { X ) )  — > •  T ( X ) ,  

with 

f i x  =  i T ( X )  o ir(r(A')) = if(X)7 for every X  € ISETj. 

Given a set .4, define A* = (CI(.4), <^.4) as follows: 

CI(.4) is the full clone of operations on the set .4, i.e.. 

C1(A) = 0 
k=0 

^.4 : Tmci(.4)(V') Cl(.4) is defined by induction on the structure of Cl(.4)-terms over 

V. as follows 

• ^A{vi) = Pi, for every i € w, where p,- : .4'''"^ .4 is the i-th projection map. 

• For all / € Cl(-4),n €u},to,... , f„-i 6 Tmci(,4)( V), in-i # Un-ir 

piUifiio,--- = max{yo(/),p(^^(fo)),... ,p(^^(fmin{n .p(/)}-i))}, and 

Uifi io,---  , f „ - i ) ) ( a )  =  f{{^Aito)i^ ,  ^^ ( f „_ i ) ( a ) , a„ , an+ i , . . . ) ) .  

LEMMA 3.24 Let .4 be a set. t,so,... ,Sm-i € TMCT(,4)(V'). Then 

Proof: 

The proof is by induction on the structure of the Cl(-4)-term t. 

If f = Ut € K then 

i < m 

i > m  
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—  P i { ^ A { ^ o ) i  •  •  •  l ) )  — -  ?  ̂ . 4 ( ' S m — I  )  ) i  

as required. Next, if / € Cl(.4), fo, • - • ,^n-i € Tmci(.4)( V), fn_i ^ y„_i, sucii that 

«f.4(/?ci(>i)(^-,-^) = ?.4(^)(^A(5O),---for every i < n. 

we have 

^yl(^CI(.4)(/(^0r • - - = <^.4(/(^CI(.4)(^07-^ ^CI(.4)(^n-l T 

•Sm-i)) (by the definition of /?ci( . 4 ) )  

= f { ^ A { R c i { A } { i o i ^  ^.4(^ci(.4)(^n-l,^). 

:C>i(-Sm-i)) (bv the definition of 

U{sn)y - .^A(sm-i)) (by the ind. hypothesis) 

=  m A i t o ) , . . .  

(by associativity of the clone composition) 

= ,tn-i)){^A{^) (by the definition of ^a) 

as required. I 

In the next lemma it is proved that A* is a T-algebra. 

LEMM.\ 3.25 A* = (C1(.4),^.4) « a T-algebra. 

Proof: 

By definition, we need to check commutativity of the following diagrams: 

Cl(.4) Tma(A)(V^) 

'CLTA) 

To this end, let f € CI(.4). We have 

U r i c H A ) { f ) )  =  u m  = f  =  i c H A ) { f ) -
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TmTma(^,(V')(V) Tmci(.4)(V) 

> * C H A )  iA 

Tmci(.4)(V) Cl(.4) 

For the commutativity of the rectangle we work by induction on the structure of a 

Tmci(>i)(V')-tenn t. 

For t = Vi E v. 

U i m A ) { v i ) )  =  U { r i C K A ) ^ A r ( v i ) )  

= 'f.4(y.) 

= ^.4/^Cl(A)(u.), 

as required. Ne.xt, if t  e  Tmci(A)(V' ) , r a  €  u;,so,... e  TmTmc,(^,(V')(^  

V m - i ,  such that ^.4(r(^A)(si)) = ^A{f^ci{A){si))-, for every i  <  n, then 

U{T{^A){t{so,... .5n-i))) = U { { n c \ { A ) U ) ' { i { ^ 0 ^ - - -  -^n-i))) (by defin. of T) 

= ^ A { R c i { A ) i i ' n C l [ A ) ^ A ) { t ) , { i T ] C l { A ) ^ A ) ' i S o ) , ' - -  , 

(i7a(A)^A)'(5„_i)))) (by the definition of") 

= iA{{VCl[A)U){i)MA{{r}Cl(A)^A)'{So)).... , 

s>i(('7a(.4)^>i)'(sn-i))) (by Lemma 3.24) 

= fA(0(^A(;'CI(A)(5o)),--- .^A(/'C1(.4)(5„-I))) 

(by commut. of triangle and induction hyp.) 

= tA{Rci(A){i, {l^cnA){so),. •. r;^a(>i)(5n-i)») (by Lemma .3.24) 

= ^ A { R c H A ) { h m c n ^ ^ [ V ) { t ) ,  {^Tmc(^,(V)^"TmTn^J^J(v,(V)(5o), - - - , 

^Tmc(^,(K)»"TinT„^j^,(V)('^)(«n-i)))) (by definition of ^ci(a)) 
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'^Tn,c„^,(V)(V)(^n-i)))) (by definition of) 

= ^.ACA'CU.AJC^C-SOR--- T'Sn-l))). 

as required. • 

The Algebraization 

In this subsection, the algebraization of the equational institution £Q. that was 

constructed in the first subsection, is presented. For the algebraization, zin algebraic 

institution that is based on the aJgebrciic theory T over SET, that was constructed in 

the preceding subsection, is used. 

Let Q be the full subcategory of SET^ with objects 

{A* = (Cl(.4),e.4):.4G|SET|}. 

Set XQ = It will be shown that XQ is deductively equivalent to ajid. therefore, 

that SQ is algebraizable. 

First, we need to prove the following lenima: 

LEMMA 3.26 Let X 6 |SET|,A = (.4,Q) € |ALG(X)|, t  e  Tmx(V') andSeA^ .  Then  

e^ ( t ,a )  =^AT(o) ( t ) (a ) .  

Proof: 

By induction on the structure of t .  

I f  t  =  Vi  € V, then 

^>i(r(Q)(y.))(a) = ^.4((7a(.4)Q)"(u.))(a) = ^A(u.)(a) = 

= pi{a) = Oi = e"^(r,-,a). 
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If X € X,n € u j . to , . . .  . t n - i  € Tmx(V),f„_i ^  Un-i, such that 

e^{ t i , a )  = ^.4r(Q)(f,)(a), for every i  <  n ,  

then 

^A(r(Q:)(x(io,---•^n-i)))(a) = ^.•t(('7ci(.4)Q!)'(x(fo----.fn-i)))(a) (by defin. of T) 

=  ̂ AiRa{A){vcnA)0!{^ ) r  {T ia ) { to ) , . . . .  

T{a){ tn - i ) ) ) ) {a )  (by the definition of') 

=  U { r i c i { A ) i Q { ^ ) K ^ A i T { a ) { t Q ) ) , . . . .  

^A(^(a)(^n-i))))(a) (by Lemma 3.24) 

= a(x ){UT{a){ to ) ) . . . .  .UTia){U. i ) ) ) {a )  

(by commutativity of triangle) 

= Q(x)(^^(r(a)(fo))(a),... .^.4(7'(a)(f„-i))(a), 

a„, fln+iT • • •) (by the definition of clone) 

= a{x){e^{ to ,a ) , . . .  ,  e^ ( f„_ i ,a ) ,a„ , . . . )  

(by the induction hypothesis) 

= e'^(x(fo7--- .^n-t),a), (by definition of e''^) 

as required. • 

.A.nd now for the main theorem of this subsection. 

THEOREM 3.27 SQ = (SIGN, SEN, MOD, H and IQ = (SETX, EQ, .-^LG, [=) are 

deductively equivalent institutions. 

Proof: 

First, note that SIGN = SETT, whence it is legal to take the identity functor as 

the signature component of the interpretations (/SIGN?^) • and (/SETT^/^) • 

IQ —>• SQ. Define A : SEN PEQ by ax • SEN(X) 7^(EQ(X)), with 

axito Rs ti) = {(/to./t,)}, for every to ^ tie SEN(X), 
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where, as  before, given t  € TmxCV'), we denote by f t  : {0} —)• Tmx(V'') the map 

that sends 0 to the ,V-term t. Similcirly, define (3 : EQ —>• 'PSEN by 3x • EQ(X) —> 

^(SEN(.\:)), with 

f^xi i foJi))  =  {/o(0) ~ /i(0)}, for every (/o,/i) € EQ(X). 

We first show that Q : SEN -> PEQ, /? : EQ —>• 'PSEN are natural transformations. To 

this end, let f X —r Y €. Mor(SIGN). We need to show that the following diagram 

commutes. If ^ € SEN(X). we have 

SEN(X) P(EQ(A')) 

SEN(/) PEQ(/) 

SEN(V) ^(EQ(V')) 

VEq{f)[ax{to^t,)) = EQ(/)((^,A)) 

=  i f  °  f t o - f  °  f t : )  

=  { f f t o J ' f t . )  

=  i f f ' M r  f I ' M) 

= aY{ f ' { to )^r i t i ) )  

= Qy(SEN( / ) ( fo  « i i ) ) ,  

as required. The proof for /? is similar. Next, we show that (/siGNrOf) - ^Q. 's 

cin interpretation. To this end. let X € |SIGN|, £ U {fo ^ ^i} C SEN(.Y). We need to 

show that 

t o ^ t i e E "  i f f  ( / t c / t , )  €  { ( / e o , / e t )  :  e o  «  e i  G  

We first show that, if fo fi € then { f t o r f t i )  € { { f e o i f e i )  '• gq ^ ci E By. Suppose 

that fo « fi 6 E'^. Then, for every A = (A,a) € 1M0D(X)|, 

e'^(eo,a) = e'^(ei,a), for every CQ » ei € E,a : V .4, implies e^(fo,a) = e'^(ti,a). 

(3.6) 
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Now assume that {{Cl{A) ,U) ,  f )  € |ALGA-|, such that ((C1(.4).^A)./) HX (/^O-AI)^ 

for every  eo  a j  e j  €  E.  Then  tA i^c \ (A)T{ f ) f to  = ^Ay-c \ (A)T[ f )h^ ,  for  every  CQ % e t  €  E,  

whence Uy-c\(A)m{C\(A))f'feo = t\t^c\(A)TlT(C\(A))f'hi, for every cq « ei € E. and, 

therefore ^^/'/eo = Uf'fei, for every CQ ei € E. Thus, {Cl{A),^aI) NA' CQ SS ei, for 

every CQ SJ EI € E. By (3.6), then, (CL(.4),F.4/) [=X to ~ h, and, reversing the steps in 

the above deduction, ((C1(A),^.4),/) 1=a' (/fo-/«i)- Hence (/to./«,) € {(/eo-A,) : eo « 

ci € Ey, as was to be shown. 

Suppose, conversely, that {fto'fti) € {{feo^fei) : eo ^ ei € Ey. Then, for every 

((Cl(.4),a),/)€|ALG(X)|, 

((C1(.4),^.4),/) KY (/eo'/ei)- for every CQ « ei 6 E,  

implies ((Cl(.4),.f^),/) Kv (/to^/ti)- (3-T) 

Now assume that (-4,q) € |MOD(X)|, such that e'^{eo,a) = e-^(ei,a), for every cq 

ei E E.a : V A. Then, by Lemma 3.26, we have ^A7'(a)(eo) = ^A7'(o!)(ei), for 

every eo ei G E, i.e., ^AMCHA)T(Tjci(A))T(a)(eo) = ^AMct(A)T(T}ci(A))T(a)(ei), for 

every eo d € E. Thus, ^AMci(A)T(Tjci(A}OcKeo) = ^.i/^ci(A)7'(?7ci(.4)Q!)(ei), for every 

Co « ei 6 E, and. therefore, ((Cl(.4),^^),r7ci(.4)0!) f= (Aor/et). for every CQ !=s: Ci € E. 

Thus, by (3.7), we have ((CI(.4),^.4),77CI(.4)Q) [= (/TO,/ti). Reversing the steps in the 

above deduction, we get e''^(fota) = for every a : V A. Hence fo ^ € E'^, 

as required. 

The proof that (/SETT?/^) -^Q SQ is an interpretation is similar. 

It only remains to show that (/siGN-OF) ' •  SQ  IQ  and (/SETT'? /^) are 

inverse interpretations. To this end. let X € |SIGNl,io ^ ti £ SEN(A'). We have 

Maxi to  ̂  t i ) ) "  =  f3x{{ f toJ t i ) y  

= { f tM^ fMy  
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as required, and if .Y € |SETT|, (/o,/i) € EQ(.Y). 

ax{ .3x{{ fo j i ) ) r  = 

= {(/o-/l)}^ 

as required. 
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4 AUTO-ALGEBRAIZABLE THEORY INSTITUTIONS 

A very speciai subclass of term --institutions, the so-called theory institutions, is 

introduced and the notion of auto-algebraizability is defined for theory institutions. The 

notion of Leibniz operator, introduced in [6], is extended and an intrinsic characterization 

of auto-aJgebraJzability for a subclass of theory institutions is then obtained along the 

lines of [6]. .\n example of an auto-algebraizable theorv' institution is provided and the 

relation between auto-algebrciizability of theory institutions and classical algebraizability 

of deductive systems is explored. 

Introduction 

In [6], Blok and Pigozzi developed a genercil framework for the algebraization of 

deductive systems in the sense of Tarski. They dealt with propositionaJ-like logics over 

a fixed signature C. In this framework, the algebraization of logics dealing with varying 

signatures, like equationaJ or first-order logic, requires first the transformation of the 

logic to a propositioneil-like structural counterpart. For example (see appendix in [6]) the 

algebraization of first-order logic presupposes its "cylindrification". This initial ad-hoc 

step makes the process ctmibersome and climisy and seems axtificicil and unsatisfactory. 

In a different context, Goguen and Burstall [26, 27] introduced the notion of insti­

tution in order to exploit some nice features of equationaJ and other logics in the eirea 

of specification of programming languages. The institution structure hcis proved to be 

very appropriate for handling logics with varying signatures. 

Inspired by a later work of Blok cind Pigozzi [8] on the equivalence of deductive sys-
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terns, a generalization, using the institution structure, of the theory of aJgebraization 

of [6] was developed in Chapters 2 and 3 of the thesis. This more general framework 

incorporates nicely the algebraization of logics with varying signatures (see Chapter 

3). The notion of deductive equivalence was defined for institutions ajid necessary and 

suflBcient conditions for the deductive equivalence of two term institutions were given. 

Further, the notion of algebraizable institution was introduced and, based on the char­

acterization result on deductive equivalence, a characterization of the algebraizability of 

term institutions was provided. 

In this chapter a very special subclciss of term institutions, the so-called theory in­

stitutions, is introduced. Roughly speaJcing, theory institutions are ^-institutions whose 

syntax hcis the specially desirable feature that it is already algebraic in nature. To alge­

braize them, therefore, it is only necessary to interpret their closure systems in algebraic 

closure systems JIND vice-versa. It is in this sense, that the CIEISS of theory institutions 

may be seen to be the natural first generalization of the class of classical deductive 

systems, whose syntax component is essentially an absolutely free algebra over some 

pre-specified signature. 

.\uto-aJgebraizability of theory institutions results from applying the general tech­

niques developed in Chapters 2 and 3 of the thesis to this special class of term --insti­

tutions, by imposing the additional restriction that the syntax component must remciin 

invariauit. See the section on deductive auto-equivaJence in Chapter 2 for more details 

on the idea of invariance. 

The nice algebraic-like structure of the syntax of theory institutions makes it possible 

to extend the definition of the Leibniz operator of [6] to this more general context. 

Agciin the genercilized congruence, thus obtained, may be thought of, as the largest 

congruence identifying elements with the "same behaviour" with respect to the system 

under consideration. The introduction of this notion enables one to get aa intrinsic 

characterization of auto-algebraizability for a specieil subclass of theorj' institutions along 
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the lines of [6|. Finally, the relation of auto-aigebraizability of theory institutions with 

the classical notion of algebraizability for deductive systems of [6] is also explored. 

Theory Institutions and Algebraic Institutions 

From now on we will be considering only categories K. with the following properties: 

1. AC is locaily small. 

2. JC has a terminal object 1 and 

3. in K the coproduct 1 U 1 exists. 

Let T = {T . r i . f j . )  be an algebraic theory in monoid form over a category IC. as 

above, and, denote, as usual, by ACT the Kleisli category of T in /C, and by the 

Eilenberg-Moore category of T-algebras over AC. Moreover, let £ be a full subcategory' 

of ACT. satisfying the following condition (see also the section on algebraic institutions 

in Chapter 3): 

There exists LQ € |£|,/o-^i € ACx(l.^o)^ with the property that there exists / : 

{ (K ,  (ko ,  k i } }  :  K  e  LACTL,FCO,FCI € ACT(1, A')} 1(LO|ACT)1, such that 

f{K,{ko,ki)) ^ ^T(j^OR A'), for all A' € |ACT|, ATQ, A:I € ACT(LR A') the following commutes 

(4.1) 

I 1 

A' 

and, for every g € ACT(A", A"),G O f(^K,{koJci)) = f{K' ,{3ok(,,goki))-

DEFINITION 4.1 An £-theory institution is a ~-institution X of the form 

X = (£,ACT(I,-),{C£,WI), 
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for some algebraic theory T over K. and some full subcategory C of JCi, satisfying (A.\). 

where SET is the representable covariant functor. 

Next, let T = {T ,T] ,FI )  be an algebraic theory in monoid form over a category IC ,  

satisfying 1-3, C a full subcategory of fCi, satisfying (4.1), eind Q a subcategory of 

Recall from Chapter 3 that the £-algebraic --institution XQ cissociated with Q is the 

- - ins t i tu t ion  IQ  = (£ , /CT (1 . - ) " •  {£^r ,}£ ,e |£ l ) '  where  EL '•  •P( /CT (1 ,  L) ' )  ->•  L) ' )  

is given, for every A C L)'. by 

E^A) = {(fi,f2)€A:T(l.iL)2:V(A-,0€|QlV/€/CT(iC,A-) 

{^fiKT{f)Si = ^^KT{f)62, for every (^1,^2) € A. 

implies ^fiKT{f)ti = ^fif^T{f)t2)}. 

Note that, in the present context, £-algebraic --institutions and £-theory institutions 

are in the same relation that equationaJ deductive systems and 1-deductive systems are 

in. So it is natural to aJso consider Ar-theory institutions that are obtained by taJcing 

the sentence functor to be /CTCL This entails a slight complication because (4.1) is 

no longer sufficient to ensure that the fc-theory institution is a term institution. Rather, 

one has to postulate the existence of IQ,... ,/jfc-i € /Ct(1,^o)i satisfying an analogous 

condition. Moreover, the introduction of Ar-tuples overloads the notation. So, from this 

point on we will only be considering 1-theory institutions. 

Now, the following result may be derived as a special case of Corollary 3.5(iii). 

COROLLARY 4.2 Let ACI./CA be categories satisfying 1-3, TI.TO algebraic theories in 

/Ci, AC2, respectively, Ci.Cifull subcategories respectively, satisfying (A.\), 

and Q a subcategory oflCj^. .4 theory institution X = (1? ~)t {C'£,,}£,ig|£i|) is 

algebraizable, xoith deductively equivalent algebraic institution XQ , if and only if there 

exists a signature respecting adjoint equivalence {F,G,TJ,e) : TH(X) TH(Iq^), that 

commutes with substitutions. 

This characterization of algebraizability for theory institutions is not intrinsic, in the 

sense that it requires a priori knowledge of the equivjdent algebraic institution semantics 
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XQ. A general result giving such an intrinsic characterization is not known. In the sequel, 

we define the notion of auto-algebraizability for a theory institution ajid prove a 

partial result, characterizing intrinsically this more restricted notion for a special class 

of theory institutions. 

DEFI.NITION 4.3 .4 theory institution X = (>C, ACXCL, —),  {C£,}£G|Q) mil be called auto-

algebraizable ^a.a., for short.) if there exists a subcategory Q of JC^, such that X is 

deductively equivalent to XQ via interpretations {Ic'Ot) -X XQ and :XQ X. 

Clearly, auto-algebraizability trivially implies algebraizability as defined in 3.4. Co­

rollary 2.45 yields the following corollary referring to autoalgebraizability. 

COROLLARY 4.4 .4 theory institution X = (>C,/CT(U —)? FS autoalgebraizable, 

with deductively equivalent algebraic institution XQ, if and only if there exists an isomor­

phism F : TH(X) —)• TH(IQ), that makes the follouring diagram commute 

TH(I) TH(J^) 

and commutes with substitutions. 

The Leibniz Operator 

Let /C be a category satisfying conditions 1-3 of the previous section and T = (T, rj.fi) 

an algebraic theory in monoid form over IC. Recall that IC{l.U^) : —> SET is the 

functor from the Eilenberg-Moore category of T in /C into SET, that sends a T-

aJgebra  {K.^ )  to  the  se t  IC{ l ,K)  and  a  T -edgebra  homomorphism  ̂  :  {K,^ )  —>• {L ,Q 

T{K)  T{L)  
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to the set map fC{ l , k )  :  /C(l, A') —)• /C(l, L) ,  with 

A' L  

\ A, 
I 

IC{ l .h ) { f )  =  h f .  for every /€/C(l.A'). 

Now, let (A',^) be a T-algebra, as above. .\ congruence 0 of (A',^) is an equivalence 

relation on K{1. A'), such that, for all n € u;, all natural transformations r : AC(I. 

and ail t i . S i  6 ^(1, A'),i < n .  

{ t i . S i )  eQA <n .  implies ^ Q-

LEMMA 4.5 L C I X Q = (£,/Cx(l,—)",{£'£,}I,6|£|) an C -algebraic institution. For every 

theory {L,Q) € |TH(JQ)|, 0 is a congruence of (T(L),^£). 

Proof: 

Let {L ,Q)  € |TH(X^)| ajid denote by {L .Q) '  the cleiss of aJl pairs ((A',^),/), with 

(A',^) € \Q\ Jind / G K.T:[L.K). such that = ̂ FIKT{F)62-, for every (^i.^o) €. 

0. 

1 T{L)  T{T{K) )  r(A) ^ A' 

Clearly, by the definition of satisfaction in XQ. we have 

e = {(^1,^2) € ICriU L? : = ?/^a-T(/)02, for every ((A',0./) € (L,©)*} 

(4.2) 

It is easy to see from (4.2) that 0 is an equivalence relation on }C{ l^T{L) ) .  To show that 

it is a congruence, let n ^ uj, T : /C(l,(7^)" -> a natuicil transformation and 

t i , S i  6 /C(l,T(L)),i < n. Then { t i , S i )  6 Q. i  <  n ,  implies 

^ f iKT{ f ) t i  =  ̂ ^ iKT{ f ) s i , i  <  n ,  for every {{K,^ ) , f )  6 {L .Q) ' ,  
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whence and therefore, since :  { T { L ) , HL )  

(A',0 € MorC/C^), 

K{l .T{L) )  

K( iA t^KTU)r  IC(^^ t ^KTU))  

r(l,A'r m<.i) r(LA') 

^/^A:7'(/)t-(T(£.).mo(0 = ^ f ^KT{ f )T^T(LU[ . ) {^ '  

i.e., {T{T[LUi , ) { t ) .  nT{LUi ){^ )  6 0, as required. • 

.A, congruence 0 on (A'.^) is said to be compatible with a subset .4 C AC(1, A') if. 

for all 01,^2 €/C(LA'), 

{01,02) 6 0 and 0i 6 .4 imply 02 € .4. 

A binary relation 0 on /C(1,A') is said to be explicitly definable over a T-algebra 

(A',^) and a subset .4 C /C(l, A') if there exists n € u;, an /-indexed family of natural 

transformations r' : AC(L )""*•" ajid r,- € AC(1. A'),i < n. such that 

(^1,^2) € 0 iff € .4, for alh' 6 I .  

DEFINITION 4.6 Let (A',^) € and .4 C /C(l, A'). Define 

^(A'4)(-4) = € AC(1, A")" : for all n^u, natural transformations 

- ^ fC iUU^)  and  r i e lC{Lk ' ) , i  <n .  

T{K^){0i,-i^ ^ A if and only if t^k4){02,^ e A} 

^{K4) iA)  i s  ca l l ed  the  Leibniz (A",<^)-equivalence over A and 

is called the Leibniz operator on (A'.f). By Qa' vnll sometimes denote the Leibniz 

opera tor  on  {T{K) , fXK) .  
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THEOREM 4.7 Let (A,F) € |AC^|,.4 C IC{l,K). is the largest congruence on 

(A, F) compatible with .4. 

Proof: 

It is cleaj that is an equivalence on AC(1, A'). We show that it is a con­

gruence. To this end, let n 6 u;, r : K,{l.U'^Y ^(1-^'^) a natural transformation 

and {si.ti) € n(A:4)(.4),f < n. Then, if m € u;. cr : /C(L -)• a natural 

transformation and rj G /C(l, A"), j < m. we have 

- € .4 iff 

€ .4 iff 

(^{K^){T{K£){So-,Si.t2., . . . .tn^i),f) 6 -4 iff 

<5'(K.O(''"(K4>(^^^ € -4. 

Thus, as required. 

Compatibility of n(/v^)(.4) with .4 is obvious if one considers the identity natural 

t rans format ion  i  :K(1 ,C^)  -> /C( l , (7^ ) .  

Finally, let 0 be a congruence on (A',if), compatible with .4 and {61.O2) 6 0. Then, 

for  a i l  n  <  w,  na tura l  t rans format ion  r  :  AC(1 ,  >  AC(1 ,  U^)  e ind  r , -  G  AC(1 ,  A ' ) ,  i  <  

€ 0, whence, by compatibility with .4, 

€-4 iff T(A'4)(02,^ 6-4, 

i.e., (^1,02) € as required. • 

THEOEIEM 4.8 Let (A',^) € [iC^^A C JC{ l ,h ' )  and  0 C ;C(1, A')^ explicitly definable 

over (A'.F) and A. 

(i) IfQ is reflexive, then N(^-^)(.4) C 0. 

(ii) If, in addition, Q is a congruence compatible vaith A, then Q{K^ ) {A)  =  0. 
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Proof: 

(i) Suppose 

0 = {(^1,^2) € fCiUKf •• rif,^){0u92,f) e .4./ € /} 

and {61 ,62}  € By reflexivity of 0, T '^ i ^ - ^^ ) {62 ,62 , f )  € .4,/ € I .  Therefore, 

since {61,62} € ^{k,^){A ), ^2?0 € -4,' € /, and, hence, {61,62} 6 0. Thus 

^(A'4)(^) C 0, as required. 

(ii) Obvious by (i) and Theorem 4.7. • 

Uniqueness of Autocdgebraizability 

Let /C be a category satisfying conditions 1-.3, T = {T ,T ) , f i }  ein algebraic theory in 

monoid form over K. and £ a full subcategory of ICT satisfying (4.1). 

LEMM.\ 4.9 Le tX  = (£,/CT(1. —)? be  an  au toa lgebra i zab le  theory  ins t i tu t ion  

via the interpretations {Ic'jOt} ^ {^Cil3} iXq-^X. Then, for all L G |£| and 

all to, ti,t2 6 /Cx(l, L) ,  

(i) 

( i i )  ^L{{ iu tQ})  C ,3L{{ tQ, t i }Y  

(Hi) ( 3 L { { t Q , t 2 } )  Q  ^ L { { { t o , t i } , { t i , t 2 }}Y .  

Furthermore, for all n € w, natural transformation r : IC{l,U'^)^'^^ —>• IC{l,U'^) and 

ri € )Ci:{l,L),i < n, 

( i v )  /3L{{T{T^L) , ^^ ) i to , i ^ ,T{T(LUi , ) { t i , f ) } )  C l3L{{ to , t i }Y .  

Proof: 

(i) We have { to ,  to}  6 0*^, whence, since { lc ,0}  : XQ —Z is an interpretation, 

/?L((fo,fo))C^£,(0)- = 0% 

as required. 
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(ii) and (iii) can be proved similarly. 

(iv) Suppose that for some T—algebra (A',C) € \Q\ and / € ICT{L, K). (toJi) G 

((A',C),/)'- Then = CfiKT{f)ti, whence 

and therefore, by commutativity of the diagram 

IC iLT{L) )  

Cf^KTif )"•*•' 

CMA-T'(/)r(T(i).^o(^o,0 = Q^KT{f)T^T[L).^[.){tl,f)- Thus 

(T-(T(£).^t)(fo,^,T-(r(£).^^)(ii.f)) 6 ((A'.O,/)'-

This shows that (•r(T(£,),^t>('o.^,7-(r(£.).Mz.)(^u^) € {{^0,^1)}"^ w-hence. since (/c,;3) : 

J| J is an interpretation, i3L{{T(T{L) 

required. • 

LEMM.A. 4.10 Z.EF I = (£,/CT(1, —), {C£,}£G|£|) be an a.a. theory institution via the 

interpretations {Ic-,o.) : X ->• Xg and • XQ -> X. Then. 

(i) there exist an index set J and a J-indexed family of natural transformations oc' : 

K{l,U^) JCiUU^)-, such that 

Q:z: (5 )  =  {a |^ (^ )^^ ) ( s )  :  J G J} ,  for  a l l  L  €  \C \ , s  e /Cx i l ,  L ) ,  

(ii) there exist an index set I and an I-indexed family of natural transformations ,3* : 

;C(l,£/^)2 such that 

^£,((•5. t ) )  = {,^(T(£,),Mt)(('^?0) • ^ ^ ^ f 6 ^T(1? ̂ )-



Proof: 

(i) Let /o,/i./(i.5> be as in (4.1). 

^0 R 
1 u 1 

h'.') 

Then 

a i i s )  = Q£,(^T(1-/(4.3>)(^O)) 

= lCTi l . f ( s . s ) ) ' i o tLo{^o) ) ,  

ICT{I .LO)  
'to 

Vi fCTiLLof )  

by commutativity of -I 

ICr iUL)  

Let aio(/o) = : j  €  J } .  Then, for every (A',,f) € € J ,  define '• 

1C{1 ,K)  ^K:{ \ ,K) -  by 

°^(A-4)(^) = {^t^KT[ f (r,t:S.VK6))<?ir^f^KT{ f (r,t,d.vKO))pj)^ everv" ee}C( l .  A'). 

We first check that or' : —)• fC{l,U'^)' is a natural transformation. Let 

{K.^ ) , {L ,Q € 1^"^!,^ : (A',^) ->• {L .Q € Mor(/C'^). We need to show that the fol­

lowing diagram commutes. If 0 € /C(L A"), we have 

IC{LKf  

fC iUL)  IC{ l ,L ) -

= {h^fiKT{f{r,ice.nK6) )<?i T A-T {f(r,Ke,7,Ke) )^i) 

= {CT{k) f iKT{ f { r ,K0,VKE})<Pj-, CI'[h)fiKT{f(j,f.E, r ,I^E) ) ' ^ j )  
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T [ K )  T [ L )  

bv commutativitv of 

K 

T{T(K) )  T (K)  

by commutativitv of T{T(h)) r(/i) 

T(T{L) )  t^L  T (L)  

=  {( i f ^LTiT{h  )/(„^-5.7,K-«> )<?J T ^ ^ ) f {VKS,r tKe}  )V j  ) 

= (;>i,r(r(/i)^iKr(T7K)/{„^.MK-e))<Pi'CMLr(r(ft)^KT(T7K-)/(„^-s.„;,s))^'j> 

r(A') r(r{A')) 

bv commutativitv of 
• T [ K )  

T[K)  

{(:^LT[tiLT[T{h))T{r,K)h,^e.r,^e))Or<^^LT{piLTm^^^ 

(;>£,^(/'£.7'(T(/i)t/A-)/(»7A,-«.')A-9> )<?i ' ^ )^^')/('!K-e.'7K-«> )^i) 

{^HLT[T{h)TlK 0 /(r,K-fl,T,Kfl))<?/> CfiLT{T{h)TJlC o f{r,i^e,nKS)H'j) 

{Cf^LT{ f {T{h)r iKOVK9.TWvK^K9) )^ i i  i ( ^L l ' { f {T[k )VK°VK9 'TWVK°VK9) )^ ' j )  

C/^L7'(/(*iz.R(R(/i)T,;,-)T,K-«.;iiT(R(A)nAr)';A-«))^i) 

(C/^£.r(/(^^T(T(M)T(nK-)iK«.*^z.T(r(A))r(.,K)T,K-e))^i7 

(;>L f {T{k )nKT [TLK)VKE ,TWl^KNVK )VKS)  )<Pi ' 

CA'L^(/{T(/l)^A-r(»JA-)'JKfl.r(A);iKT(f?K)'7A-«))^j) 

{ii^LTif{T{h)vKe,TWr,Ke) )<?i7 CAtI.^(/(T(A)7,K-«.r(A)7,K-fl) )^j) 

{^f^LT{f[Tilths,7])4^jt Qt^LT{f{rti,hB,rti_hB) )^j) 



124 

K T{K)  

by commutativity of h T i h )  

VL T{L)  

= Q/ 

= a{^^^j(;C(l,A)(5)), 

as required. FinaJly, we have 

c^L i s )  = ^T(l./(,.,>)=({(o^,^.):i€./}) 

~ {(/(«.•*) ® f{i,a) ° V-j) • j € J} 

=  {{ i^LT{ f ( s .3 ) )4>i . f iLT{ f ( ^ , ^ ) )p j )  : j eJ}  

=  {{ f^L tJ 'T{L)T{r )T(L) )T{ f { s , s ) )Oj , f ^L f iT{L)T{T]T{L) )T{ f ( s^ ) ) i ' j  :  j  €  • / }  

=  {{ f^L f iT[L)T iT)T(L) f (3^ ) )<Pjr f ^L f^T{L)T{T]T{L) f (3 .3 ) ) i ' ' j )  •  j  ^  J }  

=  {{ f iLMT{L)T{T jT{L) f iLT{T]L) f ^ s . s ) )Oj - ,  

f iL f inL)T{ i r r {L) i ^LT{r iL) f {3^ ) )P j )  - - j eJ}  

=  {{ f iL f iT{L)T{ f lT{L)T{r]T[L] )T iT]L) f { s^ ) )Oj ' ,  

f iL f iT[L)T{ f lT (L)T{T]T{L) )T{r iL) f { s^ ) )p j )  •  j  ^  J }  

=  {{ f iL f iT{L)T i f iT{L)T{T]T(L)r tL ) f {3^ ) )4>j ,  

f ^L f iT[L)T{ f iT{L)T{T jT(L)nL) f {3^ ) ) i> j )  •  j  ̂  J }  

=  {{ f iL f iT{L)T{T jT{L)T}L  O f {3^ ) )Oi ,P-L l iT (L)T{T f r{ i )T] i  Q f {3^ ) )p j )  :  j  €  J }  

f^L f^T{L)T{ f [ i i ^^^^T(T i r{ [ . )V[ . )3 , ; iT{L)T{vT{L)VL)3) )^ j )  '  j  ̂  

{{ f ^L f^T[L)T  { f (MT(£.)T(»)T(T))T(')L)».MR{I)T(J?T(£.))T{I7I.)S))^JT 

{{l^Ly-T(L)T { f 

f iL f iT{L) ' ^ i f {VTlL) f ^LnVL)s .VTlL) (^LT{VL)s ) ) ^ j )  '  j  ̂  J }  



~ • J € J} 

as required. 

(ii) Let loJuf{s.t) be as in (4.1). 
IQ . 11  

1 —^ Lo —!— 1 

h'.') 

Then 

3L{{SA)) = 3DW-HS,))-{{KAI))) 

ACTILIO)' 

by commutativity of <T(i./(,.t>)^ P'Ct(1./(,.O) 

^T(l.i^)' 0L  

Let !3L^[{ IQ ,I I ) )  = [Oi : i € /}. Then, for every (A',^) € € /. define * 

;C(1,AT ^ A:(1,A') by 

for every 0i,02 € A:(1, A'). 

We first check that /?' : IC{ l ,U^) '  —>• /C(l,[/*^) is a natuieil transformation. Let 

(A',^), (£-, C) 6 [/C^I and h : (A',^) (JC'-C) € Mor(AC'^). We need to show that the 

following diagram commutes. If 6i,02 € AC(1, A'), we have 

/C(LA')2 

IC(l.h)^ 

fC iUL) '  
^U.C) 

IC iUK)  

C(t.A) 

K:(LL) 

= C,T{h) f iKT{ f^^^EI,T,K6^ ) )Oi  
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T(H)  
T{K)  —— T{L)  

bv commutativitv of 

K h. 

=  ( l f iLT{T{h) )T{  ,R ,^-e2) )<?>" 

T{T(K) )  T{K)  

bv commutativitv of T(T[k)) T{H)  

T{T{L) )  T{L)  

=  C/^£.R(^(/I)/(T,K-«lr'7K«2 >)<?«• 

= C, f tLT{T{h)fXKT{T]K )f{r,K8i .r,K«2 ) ) 't>i 

T {K)  T iT iK) )  

by commutativitv of 
'T(K) 

MA-

r(A') 

( ^ f iLT{ f iLT{T{h) )T{T i f : ) f {T , f : e i . ' iKd2) )^ i  

Cf^LTifiLT{T{ /I )T7A-)/(T7A-«I ,vkS2 ) )<?«• 

Cf^LT{T{h)Tlf^ O f{ri[^ei.T)Kd-i)^Pi 

Cf^LT{ f {T{h)T iKOVK8l  'T{h . )vK<>VK82)  

QP-LT  { f { f . iT (TWr , [c )T ,Kex  • I ^LT{T(K)vK)nKB2)  ) ^ i  

i f ^LT{ f {^ j_T[T[k ) )T(r ,K)r ,K9 l , ( ^LnT[h) )T(vK)VKS2) )^ i  

C f^LT{ f {T{h)T ,Ke i ,TWT,K62) )^ i  

QfJ-LT{f{r,[,hBx ,VLM2))(Pi 

K  T{K)  

bv commutativitv of k 

VL 

T[K)  

T{L)  
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as required. Finally, we have 

= /CT(l./(,.o)({6.:i€/}) 

= {/(5.0 ° 

= {fiLT{f{s,t))Oi : /• 6 /} 

=  { f ^ L f i T { L ) T { T ] T { L ) ) T { f { s . t ) ) O i  :  i  €  / }  

= {l^L f iT{L)T{r iT[L) f { s , t ) )<^ i  - i  € .  [ }  

=  { l ^L f iT[L)T{r iT[L) f iLT{T lL) f { s . t ) )Oi  : «  €  / }  

= {F^LLIT{L )T {LLT{L )T {T ]T{L ) )T i r ]L ) f {S .T ) )OI  : i € /} 

= {fiLf^nL)T{^T{L)T{TjT{L)riL)f{s.t))0i : / 6 /} 

=  { t i L t J - n L ) T { - n T ( L ) V L  o  f { s , t ) ) O i  ; i  €  1 }  

~ {/^i.PT(L)^(/(r(7-(i)77i.oj.T;x(t)'7LOt))<?t ^ 2 € /} 

as required. • 

LEMMA 4.11 Let X = (£,/CT(LR—),{C£,}£,G|£|) be an a.a. theory institution via the 

interpretations (IctOt) : X XQ and {ICTI^) : XQ X. Then, for all L € € 

ACt(1, L), 

t  e  ({ j j }  u /?L( ( s , f ) ) ) ' ' .  

Proof: 

Let {K.Q € |Q| eind / € }CT{L ,K ), such that Qi(s) C {{K,Q, f ) '  and {s . t )  €  

Then {CfiKT{f))^aL{s) C Afc(ijc) and (^fiKT{f)s = (;fii^T{f)t, where, by 
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•^K:(I.A-), we denote the identity binaxy relation on AC(1. A'). Then, by Lemma 4.10, we 

get, C A^(I.A-), for every j € J, and (,>K-R(/)s = c,>/vT(/)f. But 

Ca^A'7'(/) : {T{L),PLL) (A',(,') € Mor(/C'^), whence, since : /C(1.6''^) -)• 

is a natural transformation, we have 

JCiUTiD)  

C (l .C;xK-r(/)) 

m . k ' ) —  C ( i . A ' ) - )  

°^{K.o^Cf^KT{f)s) C Aac(i.a-) and. therefore, C Ac(i.a'), for every j € J. 

Thus, (CMA7'(/))"o:(7-(i),^^)(0 C for every; 6 X whence (;>Ar(/))-a£,(0 C 

Ak:(i.a-)- Hence ac i t )  Q  { {K .Q. f ) ' .  Therefore Qi{ t )  C ({(s.i)} U Q!£,(5))'^ and. since 

is an interpretation. 

cind therefore 

eis required. 

3L[ccL[t)Y C (JL((5,0) U/?L(a,,(5))T. 

THEOREM 4.12 Let X = (>C,/CT(1, —)R{C'£,}L€KL) theory institution and 

suppose there exist interpretations { [C- :OI )  •  X  Xq. { Ic^?)  iXq-^X and { IC^-'y) '• X ->  

XP, {ICI^} :XP—I-X that both autoalgebraize X. Then, for all L € |£|,5, F € AI^T(1« L)-

ccL{sr^=lL[sr  and  ^L[{sA)r  =  5L{{sA)Y .  

Proof: 

Because of symmetry, it suffices to show that a£,(s)'^« = and 5 i , { { s , t ) )  C 

,^^,((•Sr^))^ all L 6 l>CI,s, < G ICT{1,L).  

Let 5^ : —>• AC(Lf/^) be the natural trajisformations cissociated with 5 via 

Lemma 4.10. By Lemma 4.9(iv), 

fo))) Q !3Li{so,to)y,i 6 /. (4.3) 
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By Lemmas 4.11 and 4.9(i), 

^ L { ^ { T [ L ) . H [ . )  ( • ® O ) ) T  ̂ { T ( L ) . F I L ) ( ^ O ) ) ) ) ' ^  

Thus, by (4.3), 

- ̂ L{{^0-tQ)Y-i € /, 

ajid therefore 

<^£.((•§0,^0)) Q .^Liiso.to))'^. 

as required. 

For the first equality we get 

iff 

I3L{1L{S )Y = 13L{QL{S)Y iff, by the first part, 

<^L(7£(5)r = /?a«L(5)r iff 

{.K = {4^ 

as required. • 

This theorem shows that for an a.a. theory institution the adjoint equivalence be­

tween the theory of categories investigated in the previous chapters of the thesis must 

be unique. 

THEOREM 4.13 Le tX  =  (>C, ^T(1?~)T{C'£.}L€|£I) 6E an a.a. theory institution via the 

in terpre ta t ions  { Ic^A)  :  X  XQ and  :XQ -¥  X .  Then ,  for  a l l  L  €  \C \ , {L .T)  €  

1TH(X)1, 
OLL{TY  =  ̂ (J{L) , ^^ ) {T) .  

Proof: 
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By Theorem 4.S, it suffices to show that cctiTY is a congruence of {T{L).fii,) that 

i s  compat ib le  wi th  T and  expl ic i t ly  def inab le  over  {T{L) , f iL )  and  T.  

By Lemma 4.5. Ql{TY is a congruence of {T{L) , f i i . ) .  It is explicitly definable over 

{T{L),fiL) and T. since 

C^LITY = {{01-02) e lCT{UL)- : l3L i {&i -&2) )CT}  

= {(«i,e2> € Kll.TWr-: ,3|th,..,,((9,.9=» € T.i € /}, 

where ^ : K.{l.U'^)' —>• /C(l,6''^),f € /. are the natural transformations cissociated with 

3 via Lemma 4.10. 

For compatibility with T,  let {0 i .02)  € and 0 i  6 T.  Then 3 i{{6 i .92) )  C T 

and 01  €  T .  But, by Lemma 4.11, 

02€({0i}U/?t((0i.02))r cr = T. 

as required. • 

Properties of the Leibniz Operator 

In this section, several properties of the Leibniz operator are introduced, that will be 

used in the next section to obtain a partial chaxacterization result for autoalgebraizability 

for a special class of theory institutions. The notion of the Leibniz functor, which is, 

essentially, an extension of the Leibniz operator to theory morphisms is also introduced. 

Recall that, given a theory institution I = (£,/CT(lr —)? L 6 \C\ and 

(L,r) € |TH(r)|, 

n£,(T') = {(^1,^2) €. ACT(1, '• for all n € u;, natural transformation 

^ICiLU^) and ro,-.. ,r„_i G/CT(1,/:), 

T{nL).;.i.){0u^ € r if and only if T^T{LUt_){02, ^ €iT} 

n will be sciid to be join-continuous if, for all Z, 6 |£1, $ C ACT(1, L ), 
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It is said to be injective if, for all L € \C \ . {L ,T i ) . {L ,T2)  € |TH(I)|, 

{L,Ti) {L.T^) implies ^ ̂ £,(72). 

Finally, it is said to commute with substitutions if. for ail L 6 \C\ . {L .T)  G 

|TH(J)| and /€ A^.A'). 

^T(L/)-(fii(T)r = 9 .K{ lCT{Uf ){TY) .  

LEMMA 4.14 Let X = —)• theory institution, [f Q. is join-

continuous. then for all L € |£|, (Z., Ti), (L. To) € |TH(I)1, 

Ti C TO implies 9L (TI ) C V .LITO ). 

Proof: 

nar,) = (U f-i({iK)r £ (U "/.({(}'))' = ndT-,). 
teTi teT-i 

as required. • 

When the Leibniz operator satisfies the conclusion of the above Lemma it will be 

said to be monotonic. 

LEMMA 4.15 Let I = (£,ACT(1,—).{C£,}£,G(£|) be an a.a. theory institution. Then the 

Leibniz operator is injective. join-continuous and commutes vnth substitutions. 

Proof: 

.A.11 properties are direct consequences of Corollary 4.4 and Theorem 4.13. • 

Next, suppose that X = (£, ACT( 1, —), {CL \L&\C^ is a theory institution, such that, for 

all Z. € |£|,(L,r) € |TH(X)|, {L,Q.L{T)) € |TH(Jj^)|, and that the Leibniz operator 

is injective, join-continuous and commutes with substitutions. We define the Leibniz 

fiinctor n : TH(I) —>• TH(Xj^), as follows: 

n{{L ,T) )  =  {LMT)) ,  for every {L ,T)  e  \TH{X) l  
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and 

n(/) = /, for every / : (L.T) (L',r) 6 Mor(TH(J)). 

To see that 0 is well defined at the morphism level, note that 

f)'{^LiT)Y = Q i'{IC t{1, f){Ty), by commutativity with substitutions, 

C Q,L>(T'), by Lemma 4.14, since / 6 Mor(TH(X)), 

as required. 

Since Q. is the identity on morphisms, it is cleaxly a functor. 

An Intrinsic Characterization 

As before, let /C be a locally small category with a terminal object I. such that 

1 U 1 exists in /C, T = {T, rj. jj) an algebraic theory in monoid form over K eind C a full 

subcategor>' of the Kleisli category /Cx of T in K., satisfying (4.1). Recall also that 

is the Eilenberg-Moore category of T-algebrzis over K. 

LEM.VI.A. 4.16 Let X = (£./CT(1. —)T be a theory institution, such that the 

Leibniz operator^ is join-continuous. Then, for every collection {{L.Ti) : i 6 /} of 

L-theories. 

l\Jn dTi]}' = aM\jTir). 
:€/  

Proof: 

We have 

= (u,€/U«T.«<.({onr 

= (Uie;(U«T,ni.({'>}')rr 

~ by join-continuity, 

eis required. • 
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LEMMA 4.17 Let X = —)• {C'£,}£G|£|) be  a  theory  ins t i tu t ion ,  such  tha t  the  

Leibniz operator Q, is monotonic. Then, 

( i )  For  every  co l l ec t ion  { {L .T i )  : « € /} C |TH(X)|, 

iel i€l 

( i i )  For  a l l  {L .T )  € 1TH(I)|./ € C{L.K)^  such  tha t  i s  on to .  

Kr i i .  f r ' {9 . f , {T ) )  = nu icT i i . f r 'm) .  

Proof: 

(i) Since Q is monotonic, ^CICLI^ITI) C reverse inclusion, it 

suffices, by Theorem 4.7, to show that compatible with 

(^1,^2) 6 (^IR^2) 6 O-LiTi) and di e Ti, for every 

i € I. whence, by the compatibility of O-iiTi) with Ti, 62 € Ti, for every i G /, i.e., 

^2 € N.€/ Ti, as required. 

(ii) We first show that FCRIL,  f )~^{r t f ^ - {T) )  is compatible with ICT (1 .  f )~^{T)  ajid. 

hence, that ICTIH F)-'{NK{T)) C FR'IT)). 

Let {9 i , e2 )  e  lCT{ l , f ) - ' { ^K{T) )  and 9 i  e  /CTIL/)-^^). Then ( / O 5 I , / O 0 O )  e 

Qk{T) and fo9i G T, whence f 0O2 €T, and therefore 62 € lCi{l, f)~^{T), as required. 

For the reverse inclusion, suppose that {01 ,62)  € f )~^{T) )  cind assume, to 

the contrary, that {61 ,62)  ^ IC t{ l ,  f )~^{Q .K{T) ) .  Then, there exists n G U?, a natural 

treinsformation T : IC{1, —>• /C(L, U^) and TQ, ... , R„_I G A'), such that 

T{T(KUK)IF O6I,I^ET but T^T(K).^I^){F O62,F)^T or vice- versa.  

By surjectivity of /CT( 1, /), there exist SO, - - - , SN-I G ^T( U ^)? such that f o s i  =  r i ,  i  <  

n, whence 

T {T{KUK ) i f  o6 i , f  OS)  eT  but ^T{KUIC}IF  °  ̂ 2, f  O s )  ̂  T ,  

i.e., T(J^FC),FLJ^}IFIKT{F)DI,HKT{F)^ ET but T(J(K),^^){[IKT[F)62,[IKT{F)^ ^T, 
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and, thus, by commutativity of the following diagram 

^^KT{F)T^T{L) .NC)I^L ,^  €  T  but ^ T ,  

i.e. ,  /CT(L , / ) (T - (R(£ , ) , ; IT ) (^I ,^ )  €  R  but ICRI^-F)I ' ' ' (T {L) .FI [ . ) {02 -^ )^  T .  

whence {O^do)  ^  Q.L{ ICT: {1 ,  f )~^{T) ) ,  contradicting our hypothesis. • 

Deflation 4.18 1. Let (A'',^) € l^^l- ••1 morphism f € A'') will be said 

to  be  special with respect to C i f .  f o r  every  L  €  L^J ,  ^1 ,02  €  K , i { \ ,L ) ,g  €  

IC t : {L ,K ' ) ,  such  tha t  ̂ FI [C 'T(g )6 i  =  ̂ f iK 'T{g)02 ,  

K  A" 

h /  3 

L 

V / «2 
1 

there exists h € A'), such that 

•  ̂ f iK 'T{g)Oi  =  ̂ l iK 'T[ f  oh )6i, i  = 1,2,  

• /CT(1,/I) is surjective, 

2 .  T will be said to simply create theories for some theory institution X =  {C .  TCI  

(1,-), {CL}Le\c\) if, for every {L.T) € 1TH(X)|, there exists (A',^) € {iC^l.f 6 

ICT:{L,K). such that 

^L iT)  =  {{0^92)  € fCx iUL)^ : ^ f iKT{ f )d i  = ̂ f iKT{ f )e2} .  

3. T will be said to specially create theories for some theory institution I = 

(£ , /CT(1 .—)T {CL}L^ \C^  i f  i i  s imply  crea tes  theor ies  for  X and ,  moreover ,  t he  f ' s  

in (2) can be chosen to be special with respect to C. 
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4- Finally, a theory institution X = is said to be Blok-

Pigozzi i/T specially creates theories for X. 

THEOREM 4.19 .4 Blok-Pigozzi theory institution X = (£,). is auto-

algebraizable iff the Leibniz operator is injective. join-continuous and commutes with 

substitutions. 

Proof: 

A stronger "only iP was proved in Lemma 4.15 without the requirement that X be 

Blok-Pigozzi. 

By Corollary 4.4, for the "iP part, it suflBces to show that there exists a subcategory 

Q of iC^ and an isomorphism Q. : TH(T) TH(X2) that makes the following diagram 

commute 

TH(I) TH(J^) 

C 

and commutes with substitutions. Since X is Blok-Pigozzi and the Leibniz operator is 

injective, join-continuous cind commutes with substitutions, we can define the Leibniz 

ftmctor Q. : TH(I) —¥ TH(Ij^). Since X is Blok-Pigozzi. T specially creates theories. 

Thus, for every {L,T) € |TH(I)|, there exists = (A',^) € 6 A"), 

such that 

^T) = {{Que.) G /CT(1,L)- : r(/)0i = 

and / is special with respect to C. 

Let Q be the full subcategory of with objects 

121 = {K (C ,T )  :  {L.T)  e 1TH(X)|}. 

Clearly, n(|TH(J)|) C |TH(J|)1. We first show that : TH(r) ^ TH(Z^) is an 

isomorphism and, then, that it commutes with substitutions, since commutativity of the 

triangle is sticiightforward. 
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Since n is the identity on morphisms. it is full and faithfull. So it suffices to show-

that it induces a bijection n : |TH(X)| —>• |TH(Ig)|. Injectivity is guaranteed by our 

assumption on So it suffices to show that Q. is surjective. 

Let (L.Q) 6 1TH(I2)I- then, there exists a collection (Li.Ti) € |TH(J)|,f € /. and 

gi € K'i), such that 

0 = {(01,02) € /Ct(1. L)- : e.7^A-.r(5.)0i = C.MA-.r(5.)02 Vi 6 /}. 

where € |Q|. Let /, € fCiiLi.Ki) be the special morphism associated 

with (Li.Ti). Clearly, 

Q  =  ^ ̂- r i U L ) - :  ̂ i f i K . T { g i ) e i  = ̂ i^iKjigM. 
iei 

whence, by Lemma 4.17(i). it suffices to show that 

0i = {(01.02) € fCril. L)-: ̂ ifiKj{gi)0i = ^if^K.T{gi)02} € n(|TH(J)l). 

Since /,• is special with respect to C. there exists € K.t:{L. Li)., such that 

• ^if^K.T{gi)0j = ̂ ifiK,T{fi o = 1,2 .  

• ACx(l,^(ff,.fl5)) is surjective. 

We claim that 

©t = ( (J € ACt(1, L)- : ^ifiK.Tifi o h(^8i,B2))^i = ^if^K,T{fi o /i(fli,Sj))<^2})''-

Left to right inclusion is cle«ir. For right to left, note that, for every (0i,02) € 0t", 

{(<^1T<5^2) € ACTCI, L)^ : ̂ IFLK.T{FI O = ̂ IFIK,T{FI O /L(FLI,92>)^2} Q {(01R02)}% 

whence 

( U <^2) 6 ACT(1. L)' : O HE^^))5, = ̂ IFIK,T{FI O H^8,,6,))S2}R C 
(«tA>6e. 



C( U {<«i.«:i»T = ef = e„ 
(®1.52)6©i 

as claimed. 

Hence, by Lemma 4.16, it suffices to show that 

We have 

o  0 iff. by the def. of Kleisli comp.. 

^if^h-,T{fiK,T{fi)h{g^,s,))5i = ^ifiK,T{fiK,Tifi)h(^8,.e-i))^2 iff. since T is a functor, 

^ifZK,T(fiK.mT{fi))T{h^g„g,))5i = ^,flf,.T(fiK.mT{fi))T{k^g,,g,^)S2 iff 

7*r » 
TTT{Ki )  TT{Ki )  

by commutativity of ^T[K,) f^K, 

TT[Ki )  t^K, Tih ' i )  

^if^h\f^T{K,)T{T{fi))T{h(^g^^g^))5i = ^iflK,fiT[K.)T{T{fi))T{h{g^^g^))S2 iff 

TTU,) 
TT{L i )  —^  TTT{Ki )  

bv commutativitv of "t, ^T(A-,) 

T { L i )  
TU.) 

TT{Ki) 

^iy-K,T{fi)y-Lj'{h{g^^^))5i = ̂ iHKj'{fi)iiLj'{h{ei,02))^2 iff 

^ifiK,T{fi){h{g^,g^) 0 ̂ i) = ̂ ifiK,T{fi){h(gu02) ° <^2)-

Therefore 

{(^lr<^2) € ^T(lr '• ^iliK,T{fi O 0 = 
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= /CT(1. V.5,))-^({(£I,E2> € ;CT(L LF : = ̂ I^LKJ{FI)E2}) = 

= ICTil,h{ei.e2))~\^L.iTi)), 

which is in N(|TH(J)|), by Lemma 4.17(ii), as required. 

Finally, it remains to show that N : TH(I) TH(IG) commutes with substitutions. 

We have, for every {L, T) € 1TH(J)|, / 6 ICxiL. A'). 

n K { ) C T ( i j ) { T r )  = i c T { i . f ) - m T ) r .  

by our assumption, as required. • 

Deductive 7r-Institutions Revisited 

In this section, the general theory of auto-aigebraizability is applied to the class of 

deductive --institutions, that were studied in Chapter 3. Receill from Chapter 3 that, 

given a language type C and a finitary A:-deductive system S = {Tmc( I-5) over £, 

the deductive ̂ -institution 1$ = (SIGN, SEN, {CslselsiGNi)? associated with <S, heis as 

its signature category SIGN the category with the single object V and morphisms all 

assignments h : V Tm^(V'), as its sentence functor SEN : SIGN SET the functor 

sending V to Tm£(V')^ and the assignment h : V -i- Tm£(V') to SEN(/i) : Tm£(V')^ —> 

Tm£( V')^ with SEN(/i)(o) = h'{0), zind as its closure Cv ' 7'(Tm/;( V')*^) —>• 7^(Tmc( V)'^) 

the closure Cs of the given fc-deductive system S. Recall, also, that, given a language 

type £, we can construct ein algebraic theory T = (T.rj.fi) in SET, whose Eilenberg-

Moore category of T-algebras, SET^, is isomorphic to the category of the variety of all 

£-aIgebras. More details can be found in Chapter 3. 

In the comments following Theorem 3.12, it was mentioned that the proof was provi­

ding the following stronger result that Ccin now be stated explicitly as follows. 

COROLLARY 4.20 Let C be a language type and S = (Tm£(Y)'^,L-5) a finitary k-dedu-

ctive system over C. If S is algebraizable then Xs is auto-algebraizable. 
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Next, Theorems 1.3 and 4.19 will be used to show that the converse of this corollary 

holds. Namely, restricting attention to 1-deductive systems, it is shown that, given a 

finitary 1-deductive system S. if Is is auto-algebraizable. then S is algebraizable. The 

following lemma is needed first. 

LEMMA 4.21 Let C be a language type and S = (TM/;(V'),L-5) a finitary deductive 

system over C. Xs is a Blok-Pigozzi theory institution. 

Proof: 

Is = (SIGN, SEN, {Cv;}sg|siGNi) is a theory institution, since SET is locally small, 

has a terminal object {0} and {0} U {0} exists in SET, SIGN is a full subcategory 

of SETT, satisfying (4.1), and SEN can be taken to be SETT({0},—) by identifying 

0 € Tmc[V) with : {0} -)• Tm£(V'), sending 0 to o. 

Next, suppose that (V, T) € |TH(l5)|. .Note that, under the identification just made, 

the generalized Leibniz congruence fivCT), defined in this chapter, coincides with the 

Leibniz congruence n(T) of [6]. We can, thus, consider the T-aJgebra (Tmc( V')/il(T'), 

corresponding to the £-cdgebra Hmc{V)l^[T) and let / € SETT( V, Tm£(V'")/n(7')) be 

the map ?7Tmc(V)/n(T)9, where q : V -r Tmc(V')/n(r) sends v 6 V to v/^l{T). We then 

have 

Q.v{T) = { ( / < . , , €  S E T T({0}, V')-: CMTm£(V)/n(T)T(/)/j, = ^fiT;mc(V) /a{T)T{f)fi>^}, 

i.e., T simply creates theories for Xs-

To see that / is special with respect to SIGN, let 6 SETT({0}, V),^ € 

SETT(V;Tm£(V")/N(R)), such that 

^f^Tmc{V)/a{T)T{g)Ui = ̂ fiTmc{V)/a{T)T{g)f^. 

Then the k € SETT(K V) which is such that 
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Tmc(V')/0(r) 

•  ̂ f ^ T m c { V ) / ! l { T ) T { g ) f c ,  =  ̂ f X T m c { V ) / n { T ) T { f  0  =  1.2 

• SETT({0},/J) is surjective 

can be constructed using the following argument, borrowed from the proof of Lemma 

4.5 of [6]. 

First, note that, since <pi,02 contciin only finitely many variables of V, there ex­

ists a € SETT(V",Tm£(V')/N(R)), such that, each element of Tm£( V')/N(7') is the 

image of an infinite number of variables and T{g)f^^ = T{g')f0,.i = 1,2. Ne.xt.let 

h € SETT(V', V) be such that h{vi) € ^g'{vi),i € u;, and u,- is the image under h of 

some yj;such ein h exists because of the cissumption that each element of Tm£(V')/n(r) 

is the image of tin infinite number of Vciriables. Then h and, hence, SETT({0}.ft) is 

surjective and ^g'{vi) = k{vi)/n{T),i € w. Therefore 

o  h ) { v i )  = ^ f i T : m c { V ) f n ( T ) T { f ) h { v i )  

= ^t^Tmc(V)/a[T)T{rrTmc{V)/a[T)q)h{Vi) 

= ^fiTmc{V)/amT{Tnmc{V)/a{T))T{q)h{Vi) 

= ^T{<lMvi) 

= h {v i) /n iT)  
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Thus, 

^ f ^ T n i c l V ) m T ) T { f  0  k ) ( V i )  =  ^ T { ^ ) T { f  0  h ) { V i )  

=  m a f o h ) ) ( v , )  

= m^g'){vi) 

= ^mmg'){vi) 

= ^^^^mc(V)/n(T)T{g'){vi). 

i-e.. ^f^Tmclv)/ci{T)T{f 0 h) = ̂ fiTmc{V)/Q{T)T{g'), and. since T(g) agrees with T{g') on 

Oi.4>2-, the conclusion follows. • 

THEOREM 4.22 Let C be a language type and S = (TM£(V"),H5) a finitary deductive 

system over C. If Is auto-algebraizable then S is algebraizable. 

Proof: 

Suppose that Xs is auto-algebraizable. Then, by Theorem 4.19 and Lemma 4.21, 

the Leibniz operator is injective, join-continuous and commutes with substitutions. In 

particular, it preserves unions of directed subsets of theories. Hence, by Theorem 1.3. S 

is aJgebrciizable. • 

THEOREM 4.23 Let C be a language type and S = (TIN£(V'),H^) a finitary deductive 

system over C. S is algebraizable if and only if Xs is auto-algebraizable. 

Proof: 

By Theorems 3.12 and 4.22. 
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5 METALOGICAL PROPERTIES 

Metalogical properties that have traditionally been studied in the deductive system 

context (see [23]) and trzinsfered later in the institution context [50], are here formulated 

in the --institution context. Preservation under deductive equivalence of -r-institutions 

is investigated. 

Introduction 

Two have been the main directions of development of abstract cdgebraic logic. One is 

the study of the algebraization process itself and the other is the extent to which metalog­

ical properties are related to algebraic properties via «ilgebraizability, or, more generally, 

whether they are preserved or not under equivalence of deductive systems. [S, 14, 15, 23], 

e.g., study in detail the deduction-detachment property for deductive systems. It is only 

natural that these two directions will be the mciin focus of categorical abstract algebreiic 

logic as well, its starting point being relations between --institutions or institutions like 

the ones introduced in Chapter 2 of the thesis. In Chapters 3 and 4, the first direction 

has been pursued further. The study of the algebraization process has begun. This 

chapter is a contribution to the second direction of resezirch. Various metalogical prop­

erties of institutions have already been defined in [50]. We reformulate some of those, 

in a somewhat nonstandard way, in the 7r-institution framework and define some new 

ones. Then we study the effect that deductive equivalence heis on these properties. 



143 

Deduction-Detachment Property 

The Deduct ion-Detachment property for a ;r-institution is now introduced and it is 

shown, cis an application of the notion of deductive equivalence, that it is invariant under 

this equivaJence. 

DEFINITION 5.1 Let X = (SIGN, SEN. {Cs}selsiGN|) « TT-institution. .4 natural 

transformation E : "PSEN^ -¥ PSEN mil be called a Deduction-Detachment trans­

formation (DDT, for short.) for X if for all S 6 |SIGN|, T U A U $ C SEN(S), 

<&c(ruA)'^ iff £:s(A.$)cr. 

X will be said to have the Deduction-Detachment property (DDP, for short.) if 

there exists a Deduction-Detachment transformation for X. 

THEOREM 5.2 Let 

Xi = (SIGNi, SENi, {Cs}s€isiGN.i). = (SIGNo.SEN., {CsjvgisiGN.i) 

be two deductively equivalent ~-institutions. Then Xi has the DDP if and only ifXi has 

the DDP. 

Proof: 

Let Xi and lo be deductively equivalent 7r-institutions via the interpretations {F.a) : 

Xi —^ X2, {G,j3) 1X2 Xi eind the adjoint equivalence (F, G,T]J e) : SIGNi SIGNo. 

Suppose Xi has the DDP with Deduction-Detachment treinsformation E : 'PSENj —>• 

VSENi. Then, for all Eo € ISIGNo], T U A U $ C SEN2(S2), 

$ C (r U A)'^ iff, since (G,/?) is an intrepretation, 

/?S2(^) C,i3s2(ru Ar iff 

;3s2($) c (/?s2(r) U i^S2(A)r iff, since E is a DDT for Ji, 

Ec(S2)(/5s2(A),/3sj($)) C ,t?s2(r)'^ iff, since (F,a) is an interpretation. 
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Q;G(S2)(£'G(r2)(/?S2(-^)»/?S2(^))) Q Q;G(£2)(,^r2(r))'^ iff. since eso is an isomorphism, 

SEN2(eE2)(o'c(r2)(£^c(S2)(^S2(^)./5r2(^)))) C SEN2(es2)(o!C(S2)(,^S2(r)r) 

ifF, by Lemma2.26, SEN2(e£2)(QG(S2)(£^G(S2)(/?S2{^),/?S2(^)))) C V. 

Let E': PSEN^ —>• ^SEN2 be defined by 

£:;^(A,$) = SEN2(e£,)(aG(S2)(£^c(S2)(/5|2(A.<^)))), 

for all S2 € |SIGN2|,A,$ C SEN2(S2). Note that E' : VSENl PSEN2 is a nat­

ural transformation since it is the composition of the natural transformations i3' : 

SEN; -)• PSEN^G, Ec : -PSEN^G ^SENiG,aG : SENiG VSEN.FG and SENoe: 

SEN2FG SENo. Thus, it follows from what wcis just shown that E' is a DDT for X2 

and, thus To hcis the DDP, as required. 

The converse follows by symmetry. • 

Disjunction Property 

The abstract property of disjunction for deductive systems in the context of abstract 

algebraic logic has been studied in [22] and taken up again in [23]. The property of 

conjunction for institutions hcis been introduced in [50]. Modifying this definition ap­

propriately, an institution I = (SIGN, SEN, MOD, is said to have disjunction if, for 

every signature S and finite set $ C SEN(S), there exists V ̂  € SEN(E), such that, for 

every M € 1M0D(I1)1, M \f $ if and only if M o, for some ^ 

A somewhat nonstandard formulation of the conjunction property for a --institution 

will now be given and it will be shown that it is preserved under deductive equivcdence 

of TT-institutions. 

DEFINITION 5.3 Let X — (SIGN,SEN, {CSLSGISICNI) o --institution. .4 natural 

transformation V : PSEN^ —> T^SEN will be called a disjunction for I if, for all 

E 6 lSIGN|,$,r,A C SEN(E), 

($ u \/(r, A ) y  = ($ u r)"^ n ($ u Ay. 
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I will be said to have disjunction if there exists a disjunction for X. 

A lemma is needed for the proof of our main result. 

LEM.MA 5.4 Let 

JI = (SIGNI,SENI,{CE}S6ISIGN,|>- ^2 = (SIGN2.SENO,{CS}VE|SIGN,|) 

be two deductively equivalent --institutions via the interpretations {F.a) :Xi —>• X2 and 

{G.(3) '.X2 -^X\ and the adjoint equivalence {F^G.rj.c) : SIGNi —>• SIGN2. Then, for 

all 6 |TH(rt)l,Qv,(rtr nas.(ri7 = av.(ri n T{r. 

Proof: 

First, note that, for all Si 6 |SIGNi|,(^i.Ti) € |TH(Ii)|, we have 

AZ:{T,R = {^E SEN2(F(Si)) : ^ SEN,(r/s.ICTI)}. 

In fact, 

tk € azi{TiY iff, since {G,,3) is an interpretation, 

/^F(Zi)i^) Q iff- by Lemma 2.26, 

/?r(s.)(^)CSENt(7vJ(r,), 

as required. Thus, we have 

a.,(TirnaE,(T{r = e SEN^iFi^,)): C SENi(r/z,)(T:)} 

n{^ € SEN2(F(Si)) : C SENi(7/sJ(rO} 

= { ^ e S E N 2 i F ( E i ) ) : / 3 p ( ^ ^ j ( i ^ } C  

SENx(77vJ(Ti)nSENi(77vJ(rO} 

= {^ 6 SEN2(F(Ei)) : /?r(so(^) C SENi(r/vJ(ri n T{)} 

(since r/Vj is aJi isomorphism) 

= as,(TtnTl)% 

as required. • 
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THEOREM 5.5 Let 

Xi = (SIGNi.SENi, {Cs}sg|siGNii)i ^2 = (SIGN2,SEN2, {Cv}vg|siGN2|) 

6e two deductively equivalent ~-institutions. Xi has disjunction if and only if lo has 

disjunction. 

Proof: 

Let X i  and X 2  be deductively equivaJent 7r-institutions via the interpretations { F . a )  :  

Xi X2-.{G,i3) : X2 Xi and the adjoint equivalence {F,G.ri,e) : SIGNi -> SIGNo. 

S u p p o s e  t h a t  X i  h a s  d i s j u n c t i o n  a n d  l e t  \ f  :  " P S E N i  — >  P S E N i  b e  a  d i s j u n c t i o n  f o r  X i .  

Then, for all So 6 |SIGN2|,<&, T, A C SEN2(S2), 

($u rrn($u A)^ = 

= SEN2(csJ(aG(S.)(/?s.(^ur))^)n 

SEN2(es2)(QG(r2)(/?S2(^ U A))'^) (by Lemma 2.26) 

= SEN2(es2)(Qc(S2)(/?S2(^ U T))'^ n Q:G(S2)(/^S2(^ U ^)Y) 

(since £^2's an isomorphism) 

= SEN2(es2)(ac(v,)(;3v,($) u ^v,(r))= n aG(v,)(/?.,(<&) U ^v,(A))=) 

= SEN2(es2)(ac{i:2)((/?r2(^)U.5j:2(r))'^)'=nac;(S2)((/5i:2(^)U,5v,(A))'^)^) 

(by Lemma 2.24) 

= SEN2(eE2)(^»c(S2)((/?S2(^) U ,%(r))^ n (/3v,($) u /?v,(A))T) 

(by Lemma 5.4) 

= SEN2(£s.)(ac:(!:,i((/3&(*) U Voi!:,)(&-(n,fe(A)))'=)') 

(since V is a disjunction for Xi) 

= SEN2(es2)(ac(S2)(i5i:.(^) U Vc(S2)(^S2(r).^V,(A)))-) 

(by Lemma 2.24) 

= SEN2(£s,)((oc(!:,)(fe(*)) U AG(&)(Vo,E,|(fe(r),/fe,(A))))'=) 

= SENj(ts,)((c.C(:,i(fe(«))'= U ac(!:,i(Vc,E,|(fe(r),/fe.(A))))') 
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= U Q!C(S2)(VG(S2)(.^S2(r),/?S2(-^))))'' 

(by Corollaxies 2.6 and 2.4) 

= (SEN2(£s,)(aG(E.)(/?S2(<^)nuSEN2(esJ(aa(s.)(VG(s.)(/?s,(r),/?vJA))))r 

= U SEN2(esJ(QG(S2)(Vc(S2)('^S2(r),;5s2(A)))))'= (by Lemma 2.26) 

= ($USEN2(evJ(aG(s,)(VG(i;2)(/^S2(r)./?r2(A)))))=. 

Let V': VSEN- -> PSENo be defined by 

r  

V(r,A) = SENj(e!:,)(ao,^,( \J (;3|jr, A)))). 
G(S2) 

for all Eo € ISIGN^I, T, A C SEN2(S2). V' • ^SENo —>• 'PSEN2 is a natural transforma­

tion, since it is the composite of the natural transformations 0^ : SEN, —> PSENiG, Vg • 

VSENlG VSENiG, ac : SENiG -)> VSEN.GF and SEN2e : SENjGF ->• SEN2. 

Since, from what was just shown, we have 

f 

($ u \ /{r.A)y = ($ u r)= n ($ u Ay, 
-2 

V' is a disjunction for X2, as required. 

The converse follows by symmetry. • 

A Note on Conjunction 

By analogy with the previous section, one may attempt to define conjunction for 

jr-institutions eis follows 

DEFINITION 5.6 Let X = (SIGN,SEN,{CI:}SG|SIGN|) 0 n -institution. .4 natural 

transformation /\ : 'PSEN^ -> "PSEN will be called a conjunction for X if, for all 

S€lSIGNl,r,ACSEN(E), 

(ruAr = /\(r,A)'. 

X will be said to have conjunction if there exists a conjunction for X. 
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The property of conjunction will now be shown to be an intrinsic property of all 

--institutions, owing to the fact that their sentence functor is postulated to map into 

SET. 

LEMM.\ 5.7 Let X = (SIGN,SEN, {CSJVGISIGNI)? ® ~-institution. f\ : "PSEN" 

PSEN with 

/\(r.A) = ruA. for all S 6 |SIGN|,T, A C SEN(3:), 

a natural transformation. 

Proof: 

Let / : E S' € Mor(SIGN). We need to show that the following diagram com­

mutes. If r, A C SEN(S), then 

VSE^-{'£) ^SEN(S) 

PSEN^C/) T>SEN(/) 

^SEN-(!:') —— ^SEN(S') 
As' 

PSEN(/)(Ai:{r.A)) = 7?SEN(/)(ruA) 

= •PSEN(/)(r)U^SEN(/)(A) 

= As'(^SEN(/)(r),7 'SEN(/)(A)) 

= A-(^SEN-(/)(r.A)), 

eis required. 

THEOREM 5.8 Every n-institution has conjunction. 

Proof: 

Bv Lemma 5.7. 
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Negation 

Following the same line of thought that was followed in the previous sections, the 

property of negation for ^-institutions is now introduced. 

DEFINITION 5.9 Let X = (SIGN, SEN, {C£}VG|SIGN|) o- ~-institution. .4 natural 

transformation -> : 'PSEN —>• T^SEN urill be called a negation for I if. for all E 6 

|SIGNl,<&,r CSEN(E), 

rc<^' iff ((^u-sr)"'= SEN(S). 

X uHll be said to have negation if there exists a negation forX. 

For the proof of the main theorem a lemma is needed first. 

LEMMA 5.10 Let 

Xi = (SIGNi,SENt. {CslseisiGN.i), ^2 = (SIGNo.SENo, {Cs} relsiGNsi) 

be two deductively equivalent --institutions via the interpretations {F^a) : Xy —>• Xz.\G. 

/?) : X2 —>• X\ and the adjoint equivalence (F.G.rj.e) : SIGNi —>• SIGNo. Then, for 

every Si 6 ISIGNil, QSI(SENI(SI))'^ = SEN2(F(SI)) and, similarly, for every So 6 
ISIGN2I, ^v,(SEN2(S2))= = SENI(G(S2)). 

Proof: 

Obviously, asj(SENi(Si))'^ C SEN2(F(SI)). Suppose that 

as,(SENi(Si)rcSEN2(F(Si)). 

Then, by Theorem 2.41 cind Lemmas 2.37 eind 2.38, we have 

,%S:)(aE.(SENi(Sx)))= c ̂ F(so(SEN2(F(S0)n 

whence, since is cin isomorphism, 

SENi(T/£^^)(^ir(so(av,(SENx(Ex))n C SENI(T/£^)(^P(..)(SEN2(F(S0))^), 
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i.e., by Lemma 2.26, 

SENi(Si) C SEN,(77£;)(/?f(v,)(SEN2(F(!:i))n,  

which is absurd. • 

THEOREM 5.11 Let 

= (SIGNi,SENi,{Cv}vg,siGN.|), ^2 = (SIGN2,SE.N2,{Cv:}ve,siGN,|) 

be two deductively equivalent ~-institutions. X\ has negation if and only if lo hos nega­

tion. 

Proof: 

Let Xi and Xz be deductively equivalent rr-institutions via the interpretations (F,Q) : 

Xi —>• X2,(G,/3) '.Xz-^Xi ajid the adjoint equivciIence (F^G.rj.e) : SIGNi —>• SIGN2. 

Suppose that Xi hcis negation eind let -> : PSENi PSENi be a negation for Xi. Then, 

for all S2 € ISIGN2I, r U C SEN2(S2), 

r c r  i f f  

iff 

SEN2(evJ(aG(v,)(/?v,(r))^) C SEN2(evJ(aG(v,)(^v,($))^), by Lemma 2.26, iff 

C QG(S2)(/?s2(^))''r since cs, is an iso, iff 

/?S2(r)'^ C since (F,a) is an interpretation, iff 

(/3s2(^) U ~'C(S2)/^S2(r))'^ = SENi(G(S2)), since -> is a negation for Xi, iff 

Q:g(S2)(/?S2(^) U-'G(S2)/^S2(R')r = q:g(S2)(SENi(G(S2)))% since {F.a) is an int., iff 

(aG(S2)C^('^)) U aG(S2)(^C(S2)/fe2(n))'' = SEN2(F((?(S2))), by Lemma 5.10, iff 

(«c(r2)(/?i:2(^)rUaG(v,)(-G(S2)/^.(n)r = SEN2(F(G(S2))), iff 

SEN2(EV,)((AG(S2)(;5S2($)R U AC(S2)(-C(S2)/?S.(R))R) = SEN2(£S2)(SEN2(F(G(S2)))), 
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since cv^ is aji iso. iff 

SEN2(ev,)(ac(s.)(/5v,($)rUaG(v,,(-c(s.)/?r.(r))r = SEN2(esJ(SEN2(F(C(E2)))), 

by CoroIIaxies 2.6 and 2.4, iff 

(SEN2(£!;J(Q0|S,,C3^(<t.)r) U SE.N%(£s,)(Qc;,!;,|(-0(E,|fc(r)))r = SEN,(£,), 

since esj is an iso, iff 

U SEN2(eE2)(ac(S2)(~'C(S2)/^S2(r))))'^ = SEN2(Il2): by Lemma 2.26. iff 

($ U SEN2(es2)(aG(S2)(~'G(E2)/^S2(r))))'^ = SEN2(Il2)-

Let : "PSENo 'PSENa be defined by 

-•v^r = SEN2(eE2)("G(S2)(~'C(S2)/?S2(r))), 

for all ^2 € ISIGN2I, r C SEN2(S2)- : "PSENs PSEN2 is a natural transformation, 

since it is the composite of naturcil treinsformations. Thus, from what was just shown, 

we have 

r c $ =  i f f  ( $ u - v , r r  =  s e n 2 ( S 2 ) ,  

i.e., is a negation for X2 .  a s  required. 

The converse follows by symmetry. • 

Craig Interpolation 

Taxlecki [50] introduced and studied the Creiig Interpolation Theorem for institutions. 

Let I = (SIGN, SEN, MOD, be an institution and the following 

y ^ \  

V y" 

'X 
V 



a pushout diagram in SIGN. According to [50], I is said to satisfy the Craig Interpolation 

Theorem if, for all <?' € SEN(E'),(p" 6 SEN(S"), with SEN(^)((?') [= SEN(^')(<?"), there 

exists 4> € SEN(i:), such that o' [= SEN(/')(o) and SEN(/")(c>) N <?". 

Modifying slightly Taxlecki's definition the following is obtained. 

DEFINITION 5.12 Let X = (SIGN,SEN, {C£}VG[siGN|) be a TT-institution. X is said 

to have the Craig Interpolation Property (CIP, for short.) if, for all S.l!'. 11" € 

[SIGN] and pushout diagram 

tt-e have that, for all C SEN(S'),$" C SEN(i:"), with 

SEN(g")($") C SEN(y')($')% 

there exists $ C SEN(S). such that SEN(/')($) C and C SEN(/")($)'^. 

THEOREM 5.13 Let 

XI = (SIGNI, SENI, {CS}S€1SIGNU), ^2 = (SIGN,, SEN,, {CV}S6|SIGN,|) 

be two deductively equivalent --institutions. Xi has the CIP if and only if X2 has the 

Let Xi «Lnd X2 be deductively equivcilent ^-institutions via the interpretations (F, a) : 

Xi —>• X2,(G,/?) : Xo -> Xi zind the adjoint equivalence {FjG.rj,t) : SIGNi -> SIGN,. 

Suppose that Xi has the CIP and assume that 

V" 

V 

CIP. 

Proof: 
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92 9 i  

v V" 

\ / /j' 

is a pushout diagram in SIGN2 and $0 Q SEN2(S2)r^2 ^ SENo(S2)7 with 

SEN2(^^)(<&^') C SEN2(^^)(<^'2)^ 

Since left adjoints preserve colimits, the following is, then, a pushout diagram in SIGNi 

G(S;") 

g(E;) 

G i f i )  
G { ^ 2 )  

G(^^) 

OUi') 

Moreover, since {0.0) : Ii —> I2 is an interpretation, we have 

/?s4"(sen2(^^)(C)) C ,%'(SEN2(^;)(<&'2))^ 

Since is a natural transformation 

SEN2(S;) 
\ 2 

SEN2(5i) 

SEN2(S2") 

sen2(I:^') 

SESiig'^) 

SENJCSJ") 

/3RW 
"2 

/3v*" "2 

0R-TN 
"2 

PSENi(G(S;)) 

PSEN,(G(5i)) 

pseNI{G(E;")) 

^SENi(G(S;')) 

T'SENiCCCji')) 

7'SENi(G(S^")) 

we obtain 

SENx(G(5D)fe(^D) ^ SENi(G(^;))(/%(-^^)r 
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Since Ii has the CIP, there exists C SENi(G(E2)), such that 

SENi(G(/^))($i)C,i?v,(<^',r and %($^')CSENi(G(/^'))(^ir-

Thus, since ( F . a )  :  X i  X 2  is an interpretation, 

OC(SJ)(SENI(G(/2))(^I)) C Qrc(SJ)(/3i:^($2))'^ 

and 

ac(-;')(%(^2)) C aG(-)(SENi(G(y^'))(<^i)r 

eind. since Q is a natural transformation. 

SENi(G(E2)) 
"GCEi) 

SENI(G(/4)) 

seni(G(E;)) 

PSEN2(F(G(S2))) 

PSEN2(F(G(/J'))) 

'Psen2(F(G(E;))) 

SENI(G(S2)) 
®C(E2) 

T'SENatFtGCSo))) 

SEN,(C(/j")) •pSEN:ilF{G(fi'))) 

SENi(G(S^')) ^ PSEN2(F(G(S^'))) 

we obtain 

SEN2(F(G(/^)))(ac(v,,($i)) Cac(-)(/?-($;))' and 

ac(Si')(%(^2)) CSEN2(F(G(/;0))(«G(£.)(^i))^ Hence, 

SEN2(esi)(SEN2(F(G(/^)))(aG(s.)(0i))) C SEN2(e-)(aG(Si)(/?si($;)r) and 

SEN2(es4')(aG(-)(%(^2)ncSEN2(e-)(SEN2(F(G(/^')))(^»G(s,){^i))'^), 

i.e., by Lemma 2.26. SEN2(e5v)(SEN2(F(G(/^)))(QG(s,)($i))) C and 

C SEN2(e-)(SEN2(F(G(/^0))(aG(s.)(^i))^)-

Thus. 
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F(G(So)) 

FiGUi)) 12 F(GUi')) fi' 

V" F(G(S'2)) E', F(G(E;')) — 
•*2 -2 

SEN2(fe.)(aG(E,)(^i))C$;'^ and C SEN2(/^s,)(ac(v,,($i)r 

and, therefore, 

SENo(/^)(SEN2(esJ(aG(v,)(<&i))) C 

and C C SEN2(/:')(SEN2(esJ(aG(s,)(<J»i))r. 

Thus, lo has the CIP, as required. 

The converse follows bv svmmetrv. 

Robinson Consistency 

Let X = (SIGN, SEN, {CS}VG|siGN|) be a ^-institution eind S 6 |SIGN|. Recall 

that a theory (S, T) 6 1TH(I)1 is said to be consistent if T ^ SEN(S) cind complete 

if, for every (S, T) € |TH(I)|, TcT implies T = SEN(S). 

DEFINITION 5.14 Ltt X = (SIGN, SEN, {CJ;}£G|SIGN|) a TT-institution. I will be 

said to have the Robinson Consistency Property (RCP, for short.) if, for every 

consistent complete theory (S,r) and consistent theories (S', T'), (S", T"), such that 

f : (E,r) ^ (I',r),/" : (S.T) (S",r'') € Mor(TH(J)), the theory 

{E"\{SEN{g'){r) U SEN(/)(r'))^) 

is consistent, where as before, the following diagram 

•^nr 
0^* A N. 3  /  \  3  

V V" 

/' \ / /" 
V 
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is a pushout in SIGN. 

Before presenting our main result, a lemma is needed. 

LEM.MA 5.15 Let 

JI = (SIGNI,SENI,{CS}S6|SIGNU). ^2 = (SIGN2.SE.>J2,{CJ:}£61SIGN,|> 

be two deductively equivalent ~-institutions via the interpretations (F.a) : Xi —>• 

/?) : X2 —> IT and the adjoint equivalence {F.G.rj.e) : SIGNI -i- SIGNT. Then, for 

every (Ei.Ti) € |TH(Xi)|, if (Si.T'i) is consistent, then so is (F(I!i).ast(Ti)'^) and if 

(St,Ti) is complete, then so is (F(!Si),a£j(ri)'^). 

Proof: 

Suppose that {Hi.Ti) is consistent, i.e., that Ti ^ SENi(Ei) and assume, to the con­

trary, that aziiTiY = SEN2(F(Si)). By LemmaS.lO, QV,(SENI(SI))'^ = SEN2(F(Si)). 

whence azi{TiY = QV,(SENI(SI))'^, which contradicts Theorem 2.41 and Lemma 2.38. 

Ne.xt, suppose that (Si, Fi) is complete, i.e., that, for every ( E i , T [ ) ,  with Ti C T(, we 

have T[ = SENi(Si). Suppose to the contrziry, that (F(Ei),a^i(Tiy} is not complete, 

i.e., that there exists (F(Si),T'2), such that C Ti, but T2 ^ SEN2(F(Ei)). Then 

SEN,(,£,')(/JF(E.,(<'!:,(ri))') C SEN.(,5,')(/Jn.,,(ri)'). i.e., 

r, C SEN,(,;;)(/3F|!:,,(7i)=), 

with SENi(T7£^^)(/3f(j;,)(F2)'^) ^ SENi(Si), w^hich contradicts our hypothesis. • 

THEOREM 5.16 Let 

Xx = (SIGN:, SENI, {CE}S6|SIGNU). ^2 = (SIGN2, SEN2, {C£}S6|SIGN,I) 

be two deductively equivalent --institutions. Zi has the RCP if and only if X2 has the 

RCP. 



Proof: 

Let Xi and I2 be deductively equivalent --institutions via the interpretations {F.a) : 

Ii —>• X2,{G,f3) : J2 -> Jt and the adjoint equivalence (F^G.rj.e) : SIGNi ->• SIGNo. 

Suppose that Ii has the RCP and assume that 

—^2 
3 2  y  \ 9 2  

V/ v" -JO —IO 

'/X 
^2 

is a pushout diagram in SIGN2 and that (^2,12) is a consistent complete theory 

and are consistent theories in |TH(l2)|, such that /j : (Ez-rTz) —> 

: (^2,^2) ->• (^2^^2') ^ Mor(TH(J2))- Since left adjoints preserve colimits, 

the following diagram 

G { ^ n )  G { ^ ' : )  

G i ^ 2 )  

is a pushout diagram in SIGNi. 

Consider the theories {Gi'^z),l3^2{'^2y)-,{^{^2)-: 

TH(Xi). By Lemma 5.15, (G(S2),/?S2(72)'^) is consistent and complete and 

{G(s;),&;(rir). (G(s;),%(r,"n 

are consistent. Moreover G(/2) : (G(S2),/?S2(^2)'^) {Gi^z),t3^{T2Y) and ^(/o) : 

((?(S2),/?S2(T2)'^) {G{'E.2),PzqiTzY) are theory morphisms. Hence, since Ii has the 

RCP, the theory 

(G(Si"),(SEN,(t;(<,5))(/3^(7^)) U SEN.(G(<,a)(/%j(rn)r) 
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is a consistent theory in TH(Ji). This theory is the Scime as 

SENsCS^) PSENi(G(S2)) 

SENiCji) PSEN.(G(jA)) 

SEN2(S^") PSENi(G(!:2")) 

SENaCS;') V S E N i { G { I . o ) )  

sen2(5;') psen,(C(5;')) 

sen2(S;") -— :PSENI(G(3:;")) 
^^2 

(G(sr), (,%{SEN,(j;)(K)) U 3s;"(SEN,(9;)(n)))') 

i.e., <G(sr).%'(SEN2(s;)(K) U SEN2(ja(K'))'>. 

Consistency of this theory implies, by Lemma 5.15, consistency of 

(f (G(S;")), ao,E;..,(/?™(SEN2(j;)(K) U SEN2(SJ)(K')))') 

and, therefore, since is 3in isomorphism, of 

(Si", (SEN,(<,5)(r^) U SEN2(jJ)(r))'). 

Thus, I2  has the RCP, as  required. 

The converse follows by symmetry. • 

The Lindenbaum Property 

DEFINITION 5.17 Let Z = (SIGN, SEN, {CJ;}S€|SIGNI) O ~-institution. X will be 

said to have the Lindenbaum Property (LP, for short.) if. for all E € |SIGN|, 

(S,7') 6 1TH(I)1, I/(E,T) is consistent, then there exists a consistent, complete theory 

(S,r), such thatTCT. 
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THEOREM 5.18 Let 

XI = (SIGNI.SENi, {CslseisiGNii)^ = (SIGN2,SEN2, {CslsgisiGNji) 

be two deductively equivalent ir-institutions. Ii has the LP if and only if I2 has the LP. 

Proof: 

Let Xi and X2 be deductively equivalent :r-institutions via the interpretations (F. Q) : 

Xi —>• X2,{G.I3) : J2 —>• XI and the adjoint equivalence {F.G.rj. c) : SIGNi SIGNo. 

Suppose that Xi has the LP and let Eo € ISIGN2I, (Il2r ^2) € |TH(X2)| a consistent the­

ory. By Lemma5.15, {G{ll2)• i^'S.2{T2Y) is a consistent theory in TH(Xi). Thus, sinceXi 

has the LP, there exists a consistent, complete theory (G(S2),ri), such that /?s:j(T2)'^ C 

Ti. But then, by Lemma 5.15, (F(G{3]2)),Q:c(S2)(7'i)'') is a consistent, complete theory 

of X2, such that oiG(Y.^){^-z-i{T2)Y C aG(Z2){TiY- whence (E2,SEN2(es2)(Q!C(S2)(ri))'^) is 

a consistent, complete theory of TH(X2), such that T2 C SEN2(evj)(Q,j(v,)(ri))'^. Hence, 

I2 heis the LP, as required. 

The converse follows by symmetry. • 



160 

6 ABSTRACT CLONE ALGEBRAS 

The category FACA of free abstract clone algebras with a designated set of genera­

tors together with an adjunction {F.U.rj.c) : SET -¥ FACA is constructed. This gives 

rise to an algebraic theory T over SET. .A. variety ACA of algebras is. then, equationally 

defined. It is shown that the Eilenberg-Moore category of T-algebras is isomorphic to 

the category ACA = ACA corresponding to the variety ACA. 

Introduction 

In algebraic logic one studies the clcisses of algebras that form the so-called algebraic 

semantics of deductive systems ([6, "]). .A.long these lines several attempts have been 

made to define algebras that would be appropriate for algebraizing equationcil logic. 

Some of these attempts focused on ordinciry. single-sorted, algebras, whereas others 

used many-sorted algebras. The general theory of this latter type of algebras has been 

developed independently in [41, 42],[30] and [4]. Some of these attempts are P. Hcdl's 

notion of clone (see [12]), which gives a partial single-sorted algebra, B.H. Neumaim and 

E.G. Wiegold's representation of varieties in terms of semigroups [47], W.D. Neumann's 

substitution algebras [46], having infinitary substitution operations, Lawvere's algebraic 

theories [33, 34] (see also [36, 48]), W. Taylor's heterogeneous variety of substitution 

cilgebras [52] and, finally, N. Feldman's polynomial substitution algebras [20] (see also 

[11]). In a similar direction Czelakowski cind Pigozzi [17] view equational logic as a 

2-deductive system in the sense of [7] and propose its algebraization via another 2-

deductive system, based on [20], which they call hypefequational logic. 
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In Chapter 3, a general framework for the algebraization of institutions was intro­

duced. The attempt to algebraize the equational institution in this framework (see Chap­

ter 3) leads naturally to the construction of an adjunction {F.U.rj.e) : SET FACA. 

This adjunction gives, in turn, rise to an algebraic theory T in monoid form over SET 

(see Chapter 1). Based on [52], a variety ACA of single-sorted algebrzis is also con­

structed, that corresponds to clones of algebras with operations of arbitrary finite ari-

ties. It is then shown that the Eilenberg-Moore category of T-algebras of the theory T 

is isomorphic to the category ACA = ACA of the variety ACA. 

Basic Constructions 

•A. countably infinite set V. called set of variables, is fixed in advance and well-

ordered eind, as usual, the category of edl small sets is denoted by SET . The definition 

of a term, which has already been given in Chapter 3, is repeated below. 

DEFINITION 6.1 Let X 6 [SET]. We define the set of .V-terms TM,Y(V') 6 [SET], to 

be the smallest set with 

(i) V C Tm;c(V'') and 

(ii) If X € X.n € u; and TO,... ,f„_i € Tmx(V'), xvith ^ r„_i, then 

x(fo,... e Tmx(V'). 

The definitions of simtdtaneous substitution of terms for variables in a term and that 

of the extension of a given set map f : X Tmv( V") to a map /" : Tmx( V) Tmi'( V) 

axe also repeated below. 

DEFINITION 6.2 Let X G |SET|, as before. Define a function 

OO 

Rx : Tmx(V-) X U Tmx(V)^ ^ Tmx(V') 
fc=o 

by recursion on the structure of X-terms as follows: 
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(i) 

Rx{vi,{so 3^-i)) = ('''• 
I  V i .  I  >  m  

for all m 6 .^m-i € TmA-(V''), 

(it) 

^ Rx{ik-i,^), ifm<n. or n < m 

and Si = y, Vi > m 

x( (for • • • • ( ^n— t: • • • • ^k—l)? if Tl K. Ttl 

for all X G A',n 6 uJ,to,... .f„_i € Tmx(V').f„_i ^ i/'n-i. and all m 6 a; and 

s € Tmx(V')'", where, in the first alternative, k = maLX.{l: RxiUf^ T 

fAe second, k = mcLx{/: si ^ y/}. 

In other words, it is understood that the last, say k-th, term inside the parenthesis 

on the right, i.e., Rx{tk-i,^.0 < k < n. if m < n, and either Rx{tk-i-^ or 

•Sfc-irO < k < m. if n < m. mtist be the last term that is not equal to the variable 

Vk-l-

In what follows the second aJteraative in Definition 6.2 will be used as  shorthaind for 

both cdtematives. If the first actually holds, then the trailing s's inside the parenthesis 

on the right hand side should be disregzirded. 

DEFINITION 6.3 Let X,Y 6 |SET| and f : X -y Tm)'(V"). Define f : Tmx(V') —>• 

Tmv(V) by recursion on the structure of X-terms as follows: 

( i )  f ' { v )  =  V ,  f o r  e v e r y  v  € V, 

(ii) /*(x(fo,-.. ,fn-i)) = /2K(/(x),(/"(fo).--. /or everyx 6 X.n e 

IJJ. TQ̂  . . . , ̂N— I ̂  TRN_Y ( ̂ ) ? ̂ N— I  ̂ I • 

In the sequel, we write f : X —r Y to denote a SET—map f : X Tmy(V'), 

as above. Given two such maps f : X —r Y and g : Y —r Z. their composition 

go f : X —r Z is defined to be 

9 °  f  =  g ' f -
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LEMMA 6.4 Let f : X —r Y\k,m € ur.T ^ Tmx(V'),TR € Tmx(V')*^ and s € Tmx(V') 

Then 

• .  R x { ^ k - l , ^ - S k ,  •  .  •  .5m-l)). 

Proof: 

By recursion on the structure of t. 

If i = Vi 6 v. 

R x { R x ( v i , u ) . ^  =  

Rx(ui..s), i<k 

= < 5,. k < i < m 

Vi, m < i 

• • • t • • • ••Sm—l))r 

Rx(ui,^, i < k 

R x { v i , ^ ,  i > k  

eis required. 

Ne.xt, if X € -V.n € u: and to,... ,U-i € Tm>:(^').U-i r ̂ n-i, 

Rx{Rx{^{^^0^ • ' • 7 ^n—1)? f')"— 

= Rx{x{Rxito,u).,... , Rx{tn-i,u),iin,.. • ,Uk-i),^ (by definition of Rx) 

=  x { R x i R x { i o ^ ^ ' ^ 7 '  •  •  '  R x { R x [ t n - i ' U ) , s ) .  

R x {^n-,^t • • • r ^x(wfc_i.^,Sfc,... ,Sm-i) (by definition of R x )  

— X^Rxi^to, (^RX{UQ, ̂ ,. . . , Rx{Uk—l, Sfc, . . . , Sjn—l))'• •. • 

/?X(^n—1 r {^x(^0? 7 Rx{,^k—lr ^kr • • • • •Sm—I))• ^.Y(^n? - • 

Rx{uk-i,^.Sk.,... rSm-i) (by the induction hypothesis) 

— Rx{.X{^TQ, . . . ,TN^i),(^Rx{'UQ,^,... , Rx{,Uk—l, Sic,. • . 

(by definition of Rx) 

as required. 

LEMMA 6.5 Let f : X —r Y,m 6 A;.F 6 TMA'(V'),S € TMX(V')'". Then 

r { R x { t , ^ )  =  R Y i n t ) , r { ^ ) .  
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Proof: 

By induction on the structure of If f = u, 6 V, 

i < m 

f { v i ) ,  i  >  m  

as required. 

Next, if X € X , n  € u :  and to..,. € TmA-(V'),<n-i r 

• • • ••Sm-l))) = 

= (by definition of R x )  

= R Y { f i x ) , { f ' ( R x { t o , ^ h . . .  J - i R x { t n - U ^ ) J - { S n ) r . . . J ' { S m - l ) ) )  

(by definition of /') 

= R y { f { x ) , { R Y { r { t o ) J ' { ^ ) . . ^ - . R Y { r { U - t ) J ' m f ' { S n h - . .  

(by the induction hypothesis) 

= /2v-(/?y(/(x),(/"(fo),.--,/'(fn-i)))./'(^) (byLemma6.4) 

= RY{f'{x{tQ,...,tn-i)),f'{s)), (by definition of/*) 

as required. 

LEMMA 6.6 Let f: X —rY.g-.Y—rZ. Then 

{ 9 °  f y = 9 ' r -

i < m 

Vi. f > m 

Proof: 

By induction on the structure of f € Tmx(V'). 

U  t  =  Vi  V .  { g  0  f ) ' { v { )  = Vi  = g ' { f ' { v i ) ) ,  as required. 
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Next, if X € X . n  6 u; and t o , . . .  , t n - i  €  T m x ( V } J n - i  #  Un-i, 

( g o  f y ( x ( t o , . . .  J n - l ) )  =  R z d g o  / ) ( ^ ) , ( ( f f O  / ) ' ( t o ) '  ( g o  

(by definition of ( g o  /)') 

=  R z ( f f ' ( / ( x ) l ( g - ( f ( t o ) ) . . . .  . g - ( f ( t n . i ) ) } )  

(by definition o {  g o  f  and the induction hypothesis) 

= 9'{l^Y(f(x).{f'(to),... J'(tn-i)))) (by Lemma 6.5) 

=  g ' ( f ' ( x ( t o  . t n - i ) ) ) .  (by definition of /") 

as required. • 

Define |FACA| = |SET| and. for all X Y  € 1SET|, 

FACA(X, Y )  =  { f : X - . Y : f e  SET(.V,Tmr(V-))}. 

Then the following holds 

THEOREM 6.7 FACA is a category xcith objects |FACA|, morphisms FACA(A'', V). 

for all X.Y € |FACA|, morphism composition o and identity arrows jx : X —r X the 

set maps jx ' X —)• Tmx(V'), with JA'(^) = for every x 6 A'. 

Proof: 

We show that o is associative. Ti this end, let f  :  X  — T  Y . g  : Y — r Z  eind h  :  Z  — r  W  

be FACA-morphisms. Then 

h o ( g  0  f )  =  h ' ( g  o  f )  (by definition of o) 

= ^'{9'f) (by definition of o) 

=  ( h ' g ' ) f  (by associativity of composition) 

=  ( h o  g ) ' f  (by Lemma 6.6) 

=  ( h o  g )  o  f  (by definition of 0) 

• 

It will turn out that FACA is the Kleisli category of the algebraic theory T to be 

constructed later. Moreover, the adjunction that will be constructed in the next section 

will turn out to be the associated Kleisli adjimction. 
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The Adjunction 

We are now ready to proceed with the construction of the promised adjunction 

{ F . U . r j . e )  :  S E T  ^ F A C A .  

First, define a functor F : SET FACA by 

F { X )  =  X .  for every X 6 |SET|, 

and, if / : X y € Mor(SET), 

F { f ) = j Y f : X - r Y .  

U f : X - ^  Y .  g : Y - ^ Z  e  Mor(SET), then 

F i g f )  =  j z i g f )  =  U z g y U r f )  = F { 9 ] ' F { f )  = F { g )  o F(/). 

i.e., F is a functor, as required. 

Now define a functor U : FACA SET by 

U { X )  =  T m x { V ) ,  for ever\- .Y € |FACA|, 

and, if / : X ^ Y e Mor(FACA). 

U { f )  =  r  - - T r n x i V )  ̂ T m r i V ) .  

Then, i f  f  :  X  — r  Y . g  : Y  — r  Z  E  Mor(FACA), we have 

U { g o f )  = { g o f ) '  

= g'f' (by Lemma 6.6) 

=  U { g ) U { f l  

i.e., U is also a functor, as required. 

Finally, define natural transformations T J  : /SET U F  h y  T J X  •  X  - ¥  Tmx(V') with 

Tlx = 3X-, for every X 6 |SET|, and e : FU -)• /FACA by ex : Tmx(V') -R X with 
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c x  = iTmx(V')i for every X € |FACA|. We now show that r j  and e are indeed natural 

transformations. 

To this end. let / : .V —> V € Mor(SET). Then, for every x  €  X .  

X  l J { F { X ) )  

C'(F(/)) 

y  U i F i Y ) )  

0 ' { F { f m r ] x { x ) )  = i r { F { f ) ) { x { ) )  = U v / n x i ) )  = /(x)() = j y f { x )  =  r j y i f i x ) ) .  

tis required. 

Next, let f  :  X  — r  Y  E  Mor(FACA). Then, for every t  G TmA-(V ) ,  

F m x ) )  X  

F m / ) )  

F m Y ) )  Y  

i f  0  c x ) { t )  =  n ^ x i t ) )  =  n t )  =  e y { j T ^ y ( V ) { r m  =  ( e r  o  f m / m t ) ,  

a s  required. 

THEOREM 6.S { F . U . r j . c )  :  SET FACA i s  a n  a d j u n c t i o n .  

Proof: 

By the preceding discussion 77 ajid e are natural trzuisformations. whence it suffices 

to show that the following triangles commute, for every X € |FACA|, Y 6 1SET|, 

U ( X )  U ( F m m  F [ Y )  F(t'(F(V))) 

«c;(X) 

U { X )  F { Y )  
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These are 

TmA-(V) TmT:nx(V)(V') 
irmYmny 

Y  Tmy(V) 

'Tmx(V) 

Tmx(V") 

If t  € TmA-(V'), then 

'Tm.v(V')('?Tmx(V)(0) — 'Tmx(V)(^()) — ^ 

and, if J/ € V". 

'T tny(V)  

H m x { V ) i m m y { V ) { r { Y { y ) ) )  = iTmx(V)(y()()) = ^0 = V Y i v ) -

as required. 

The Theory of the Adjunction 

It is well-known ([39, 43, 9], see aiso Chapter 1) that the adjunction {F.U . T J . C )  :  

SET —)• FACA gives rise to an cdgebraic theory T = {T. RJ. /z) in monoid form over SET. 

with T = UF and FI = UTF. Moreover there exists a unique functor K : SETT —^ FACA 

from the Kleisli category of the theory to FACA, called the Kleisli comparison functor 

of the adjunction, that maJces the F- and 6'-paths of the following diagrams commute. 

K „. ̂ K 
SETT FACA SETT FACA 

fx ^ 

SET SET 

Given such an adjunction, the Kleisli category SETT OF T in SET hcis jis objects 

ISETI and as morphisms SETT{X,Y) = SET(X,(7(F(V))), for all X,Y E |SET|. 

Moreover, it is ecisy to verify that the Kleisli composition coincides with the composition 

0 in FACA. Thus, in this case SETT = FACA JIND A' = /FACA- Therefore FACA is 

the category of cdl free algebras of the algebraic theory T over SET. 
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Also recall that a T-aJgebra (X, consists of a set X  together with a map ^ : 

T(X) X, i.e., ^ : Tmx(V) —>• .Y, such that the following diagrajns commute 

' J X  T { T { X ) )  T { X )  

MX 

T { X )  X  

These talce the form 

Tm.Y(VO TmT„.;,(V)(V) TmA-(V) 

Tm;f(V ' )  

Tmx(V') X 

Abstract Clone Algebras 

In this section we equationally define a variety of aigebr«is A C  A ,  whose members we 

call abstract clone algebras. In the next section, it will be shown that the category-

ACA = ACA of this variety is isomorphic to the Eilenberg-Moore category SET^ of 

the algebraic theory T in SET, that vveis constructed in the previous section. 

Let C  =  (A, p )  be the language type defined cis follows. 

A = {v,-, C," : i  6 u;}, with p ( v i )  =  0 , p ( C i )  =  i  + 1. 

DEFINITION 6.9 An abstract clone eJgebra A  is an C -algebra that satisfies the fol­

l o w i n g  i d e n t i t i e s ,  f o r  a l l  n ^ m  £  a j .  

•  Co(x) = X 

•  C n(x, l / 0 - - -  rJ/n- 2 ,V, _ i )  = C„_l (x, T/o - • • rJ/n-2) 

r •^m? ( 
\ C 

,  i f  m  < n  

otherwise 
• • • ?^n—l) — 

* Cti( —, Cji(yo7 ^7 • • • t • • • r ^n—1) — Cn^Crni^ — r ^7 
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Let AC A be the variety of all abstract clone algebras and denote by ACA = AC A the 

category associated mth ACA. 

Let A =  ( A , b e  a n  a b s t r a c t  c l o n e  a l g e b r a .  D e f i n e  A' = (.4.^A') follows. 

: TmA(V') —>• .4 is defined by recursion on the structure of .4-terms. by 

• = vf-, for every i € u;. 

• If a € .4. n € .tn-\. € Tm.4(V'),f„_i ^ 

LEM.MA 6.10 Let A € ACA.A.' = (.4,^A* ) -  T h e n ,  f o r  e v e r y  t  G Tm.4(V') .m 6 € 

( f A - ( o ( f o  - i n - l ) )  —  C ^ ( a - ^ A * ( ^ o ) :  •  •  •  - ^ A ' l ^ n - l ) ) -

Tm.4(VT, 

Proof: 

By induction on the structure of t. 

If f = Vi € V, then 

^A*(-St)T if t < m 

^A*(^'.)r if 2 > m 

^A-('St), if i < m 

\-f', if i > m 

(by the third axiom) 

as required. 

If a € .4, n € a;, f € TmA(V')",<„_i ^ Un-i, then 

— CA* ^.4(^0? • r ^A(^n—1 r '®n? -  •  -  l ))  

(by definition of R A ) 

=  C ^ ( a , a - ( H 4 ( f o , ^ ) , . . -  . U ' { R A { t n - u ^ ) .  

ix'{sn),..- ,CA'(sm-i)) (by definition of ^A*) 
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= cA(a,cA(a-(io),a-(5i)..--

^A'(sn),--- •.CA.*(5m-i)) (bv the induction hypothesis) 

= C^^(C^(a,6\.-(0).6v(^) (by the fourth axiom) 

= Cj^(^A-(a(0).'^A*(-sl), (by definition of ^A-) 

as required. 

LEMM.A. 6.11 Let A 6 ACA. Then A' = (.4,^A-) € JSEX"^!. 

Proof: 

We need to show that the following diagrzims commute 

.4 
J A  

Tm.4(V') TmT„.,(V)(V) Tm.4(V') 

«-4 Tm.4(V) ^A* 

.4 TmA(V") 

For the triajigle. we have, for every a € .4, 
^A* 

A 

?A-(j.4(a)) = ^A*(a()) (by definition of J A ) 

= C^(a) (by definition of ^A*) 

= a (by the first axiom) 

= u(a), as required. 

For the rectangle, we proceed by induction on the structure of a Tm.4(V')-term t. If 

t = Vi £ K then 

6v*((j.4^A*) (t-'i)) — = ̂ A*(iTm.4(V)(^'t))r 

as required. 

If 5 6 Tm.4(V"),n eu:J e Tmx„,^(v')( V)", f„_i # u„_i, then 

^A'{{jAitiL')'{s{t))) = ^A'{RA{{jA^X'){s),{jA^JL')'{t))) (by definition of (J.4^A')") 

= C^(6\.*(i.4(^-(5))),^A-((jA^A-)'(0)) (by Lemma 6.10) 

~ ^m(CA*(5)?CA*(ixniA(V')(^))) 

(by commutativity of triangle and the induction hypothesis) 
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= (by Lemma 6.10) 

= ^A-(iTm^(V)(5(0)). (by definition of 

as required. • 

Next suppose that A = (.4,£'^),B = (B,£®) € A C  A  and /i : A ^ B 

€ ACA(A,B). We show that the following diagreim commutes 

Tm.4(V) TmB(V) 

U-

^ ^  

i.e.. that h € SET^(A'.B'). 

We work by induction on the structure of an .4-term t. 

If t = Vi € v. then 

^B*((iB/2)"(v.)) = 'fB'(u.) (by definition of { j a h ) ' )  

= vf (by definition of ) 

= h{v^) (since h 6 ACA(A.B)) 

= (by definition of ^A*) 

as required. 

If a 6 .4,72 € u?, f € TmA( V)", ^ u„_i, 

= ^B-{RB{UBh){a),{jBh)'{t))) (by definition of (is^)*) 

= C®(^B-(js(/i(a))),^B-((is/i)'(r))) (by Lemma 6.10) 

= Cn{fi{a), k{^A.»{t))) (by comm. of tricingle and the ind. hyp.) 

= k{C^ia,U'{t))) (since h e ACA(A,B)) 

= ft(^A*(a(0))? (by definition of ^A*) 

as required. 

Thus, it is possible to define the fimctor P  :  ACA —>• SET^ by 

F(A) = A", for every A G ACA, 



ajid, given h € ACA(A,B),  € SET^(A' ,B') ,  by 

P { h )  =  h .  

The Equivalence 

In this section, a functor Q : SET^ —>• ACA in the opposite direction is defined and 

it is shown that P and Q are inverses of each other. Therefore the two categories SET^ 

and ACA are isomorphic categories. 

Let A = {A.^x) be a T-algebra. Define an £-algebra A* = eis follows: 

• v^* = ifA(ut ), for every i 6 u;. 

,ao,... .a„_i) =  ̂ A { R A i j A { a ) - j A { a o ) -  •  •  •  ,i.4(an-i))). for every n eu;.a,ao, 

• • • -On-l € .4. 

LEMMA 6.12 Let A = (.4.,^A) € ISET^]. Then = (I.4^A)"ITMA(V)-

Proof: 

Let t G Tm^(V'). Then 

(I.4^A)"(ITM^(V)(0) = (i.4^A)"(i()) (by definition of JTM.^(V)) 

= jA^xit), (by definition of U A ^A )') 

as required. • 

LEMMA 6.13 Let A € ISET"^]. Then A* € ACA. 

Proof: 

We need to verify that the identities of Definition 6.9 hold. For the first one, 

C^*(a) = UiRA{jA{a),{))) = ̂ AjA(a) = a, 

as required. 



174 

For the second, we have 

C ^ * { a . b o , . . .  . b n - 2 , v ^ * i )  = CjJ-*(a,6.,^a(u„_i)) (by definition of v^^j) 

= UiRA{jA{a)JAb).jA{Ui^^n-i)))) (by defin. of Cf) 

= a(«A(j.4(eA(i.4(a))).i.4(a(j.4(6))),i.4(eA(l'n-l)))) 

(by ^AjA = 2.4) 

= a(«4(i.4(a(«()))-J.4(a(6())).i.4(a(£''n-l)))) 

(by definition of JA) 

= a(«4((i.4a)(a()).(i.4a)-(6()()),(i.4eA)-(tn-l()))) 

(by Lemma 6.12) 

= ^A((iA^A)"(a()(6()(),f„_i()))) (by defin. of (i.4^A)") 

(since ^aU A ^a) — ^A^TmA(V}) 

= ^A(^.4(a(),6(),Un-t)) (by definition of «Tm^(V')) 

= ^A(RA(O()-K))). (by definition of/?.4) 

= ... (reverse all the steps in the deduction above) 

= CJ* (<••'). 

eis required. 

For the third identity, we have 

C^*(Vm*.a) = C^*(fA(ym),a) (by definition of v;J^*) 

= 'fA(^.4(iA(CA(t'm)),jA(a))) (by definition of C^*) 

= ^A(^A(iA(^A(um)),J.4(^A(i.4(a))))) (since ^ a J a  =  i i )  

= ^ A ( R A ( j A U A ( V m ) ) , J A ( ^ A ( a ( ) ) ) } )  (by the definition of J A )  

= ^ A ( R A ( j A ( U ( ^ m ) ) r  (jA^A)'(a()()))) (by Lemma 6.12) 

= ^A((iA^A)'(i?m(a()()))) (by definition of (jA-fA)') 

= ^A(^Ttn^(V)(^"i(°()()))) (since ^(JACA) ~^^TmA(V)) 

= 6k.(^A(t^mra())) (by definition of j'Tm^cv)) 
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(by definition of R A ) 

• . (since ^aJa = M and by defin. of v^*) 

^A(Cm())r if m < rz 

'^A(um), if m > n 

a„i, if m < n 

v^*, if m > n 

as required. 

For the fourth identity, we have 

(a. C^^*(6o. c) (6„_I, c). c„ C„_0 = 

= C t * { a , U { R A { j A { b o ) , j A { m , - - - , U { R A i j A { b m - l ) j A { ^ ) ) . C m . . . . . C n - l )  

(by definition of C^*) 

= ^ A . { R A i j A { a ) , j A { ^ A i R A i j A { b o ) , j A { ^ ) ) ) , - - -  . J.4(^A( R4(i.4(6m-l ).i.4(^))), 

jA(cm),--- ,i.4(cn-i))) (by definition of C^*) 

=  U i R A { U A U ) U A { a ) ) . U A U ) ' { R A { j A { b o ) - j A { ^ } ) { ) ) . . . -  .  

( jA U)'(RA(jA(bm-l)rjA(^)()): 

(jA^A)'(cm()()),--- ,(jA^A.)'(cn-i()()))) (since M and by Lemma 6.12) 

= ^A((jA^A)'(jA(a)(RA(jA(bo)rjA(^)()r ••• , RA(jA(bm-l)rjA(^)()-

c^OO,... ,c„_i()()))) (by definition of (JA^A)') 

= '^A(iTm^(V-)(iA(a)(^.4(j.4(6o),7.4(^)0, - • • r ^A(i.4(^>m-l), j.4(^)(). 

C^OO,... ,c„_l()()))) (since ^A(iA^A)" =fA2Tm.i(V)) 

= ^A(RA(jA(a)r RA(jA(bo),jA(^)^ • • - - RA(jA(bm-l ), Ja(^ )r Cm(), • • - .Cn-l())) 

(by definition of 2TniH(V)) 

= U(^A(RA(jA(a)rjA(b)).jA(^)) 

(by Lemma 6.4) 

= ... (by reversing the steps in the deduction above) 

= CJ-*(C**(<.,6),c) ,  

as required. | 
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Next, let A = (.4,eA>,B = G |SET^| and /i € SET^(A,B), i.e., h 6 

SET(.4, B) and the following diagram commutes 

Tm.4(V-) Tms(VO 

CB 

^ ^  

We show that h 6 ACA(A*.B*). To this end. we need to verify the following two 

equations 

• h{v^*) = vf*. for every i  € u;. and 

• /i(C^*(a.ao a„_0) = { h i a ) , h { a o ) . ... , h { a , , . , ) ) .  for every n € ^\a.ao. 

• - • , On-l € .4. 

We have 

k { v f - * )  =  (by definition of v^*) 

= ^Biijehyivi)) (by commutativity of rectaxigle) 

= (by definition of (js/i)') 

= v®*, (by definition of v®*) 

as required and 

h { C ^ * { a , a ) )  =  /i(^A(HA(j.4(a),i.4(a)))) (by definition of C;^*) 

= ^B{{jBh)'{RA{jA{a),jA{^))) (by commut. of rectangle) 

= ^B(^s((js/i)'(iA(a)),(jB/i)'(iA(^))) (by Lemma 6.5) 

=  ^ { R B { U B h ) { a ) , { j B h ) { a ) ) )  

= Cn*{h{a).h{a)), (by definition of C®*) 

as required. 

Therefore, we can define a functor Q : SET^ —>• V, by 

Q(A) = A*, for every A 6 ISET*^!, 
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and, given h € SET'^(A,B),Q(/i) E ACA(A#,B#), by 

Q { h )  =  h .  

We finally proceed to show that QP = /ACA and PQ = /SET"^- TO this end, let A = 

(A.C^) 6 ACA. We have 

= v f -

and, for every n € u;. a. ao,... . c!„_i 6 .4. 

C ^ ' * { a , a )  = (fA«(^.4(j.A(a).J.4(a))) (by definition of 

= ^A*(a(i.4(a))) (by definition of RA) 

= C^(a,^A*(j.4(a))) (by definition of ^A-) 

= C^(a,a), (by ^A -J A  = I A ) 

as required. 

Finally, let A = (.4,^a) € |SET''|. We have 

fA.-(fi) = V** = UM 

and, for every a ^ A.to.... , 6 Tm^( V^), f„_i ^ fn-i, 

^A#'(a(0) = C^*(a,^A#-(0) (by definition of ^A#-) 

= ^AiRA(jA{a) JA{ifL{t)))) (by definition of C^* and the ind. hyp.) 

= fA(^.4(i.4(^A(iA(a)))r(j.4^A)'(f()))) (by ^aJ A  = ^.4 and Lemma 6.12) 

=  ^ A ( ( i .4̂ A ) " ( a ( ) ( i ( ) ) ) )  (by definition of R A ) 

= CA(^TmA(V)(''()(^()))) ^A(JA^A) — ^A^XmA(V')) 

= ^A(^.4(a(), T)) (by definition of ixmACV)) 

= CA(a(^)- (by definition of /2a) 

Thus, the following theorem holds 

THEOREM 6.14 ACA = SET"^. 
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A Related Result 

In this section we build on the universe Tmx( V') a substitution algebra Tmx (V-) = 

(Tmx(V'),S*^, Ufc)fc6u/ in the sense of Feldman [20]. We use the universal mapping prop­

erty of free algebras in a variety to show that TmA'(V') is the free algebra in the variety 

of representable substitution algebras, i.e., the variety generated by the class of all lo­

cally finite polynomial substitution algberas of [20]. This result, first proved in [49], is 

of interest because it shows that an algebraic theory T' in SET can be built, whose 

Eilenberg-Moore category of aJgebreis is isomorphic with the category corresponding to 

the variety of Feldman's representable substitution algebras, in such a way that the 

functor T': SET —> SET is defined on objects by T'{X) = Tmx(V'). 

First, we have to recall some definitions from [20]. 

.A. substitution algebra A is an algebra of type C  =  {.V,/>}. where A = {S". rn : 

n € u;} and p : L uj a. rank function on A, defined by /3(S") = 2 and p(y„) = 0. that 

satisfies the following a.xioms, for every n.m.l < u). s.t.u E .4. 

(SAl) S ^ J t )  ̂  t  

(SA2) S7(t;„) 55: t  

(S.\3) S"(t;m) Rs if n ^ m 

(SA4) S:{Sl{t)) ^ 

(SA5) s(m//) = and m,n and / 

cire all distinct. 

If A is a substitution algebra and a € .4, by the dimension set D(a) of the element 

a € A we mean the set 

D { a )  = {n G u;: S"(a) ^ a, for some t  €  .4}. 

A substitution cilgebra A is called locally finite if, for every a € -4, [Z?(a)| < w. 

The variety generated by the cleiss of all locally finite substitution algebras will be called 



179 

the variety of representable substitution algebras. By a representation result of 

Feldman [20], this is the variety generated by a class of polynomial substitution algebras. 

Let A' € |SET| and define on TmA'( V) nullary operations Vk : TmA-( V')° —>• Tm,Y(V') 

with = Vk, for every /: 6 cj, and binary operations : Tmx(V')- —>• Tmx(V') 

by 

S ^ { t )  =  R x i t . { v o , . . .  , V k - i . , s ) ) ,  for every 5.f € TmA'(V"), A: € u;. 

Our goal is to show that Tmx(^ ) = (Tmx(V').S'^. Vk)k^^ is a free representable substi­

tution algebra over X. 

LEMMA 6.15 Tmx(V') = (Tmx(V').S*^, is a substitution algebra. 

Proof: 

We verify that Tmx(V") = {Tmx(V'),S^,t;fc)feg^ satisfies the identities (SAl)-

(SAo). For (SAl) we apply induction on the structure of < 6 TrnxlV'). If t = Vi E V. 

then 

, V n - l , V n ) )  =  V i .  

If X € X.m € u;, ^0, • • • ' tm-i € Tmx( V), then 

- V n - l - U n ) )  

=  x { R x {tQ,{vQ,... . 

^x(^Tn—I? (^0? • • • Ir^n))) 

= x{to,... .tm-i), as required. 

Next, for (SA2), S7(t'„) = R x { v n , { v o , . . .  , V n - i , t ) )  = t .  

Now, for (SA3), S^(i7„) = Rx{vm,{vQ,... = Vm-

Next, for (SA4), we need to apply induction on the structure of t. First, if t = u„, 

then 

= R x { R x { V n r { V o , ' - -  • , V r ^ . i , u ) ) , { V o , . . .  . V n - l , s ) )  

=  R x [ u . { v o , . . .  , V n - i , s ) )  
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= S5?(tx)(^n)- ^ required. 

U  t  =  V m ¥ '  ^'n, then 

S " S ; ; ( t ' ^ )  =  R x { R x { V m A v O , - - -  , V n - l , u ) ) , { v o , . . .  . V n - l . s ) )  

— Rx i^m' 

— 

=  R x { v m , { v 0 r - - -  . V n - l - R x { u . { V o , . . .  . t \ - l , s ) ) ) )  

~ ^S?(u)('''")• 

cis required. If x € -V,A: € u.I q.,... .tk-i € Tmx(V'),<fc_i ^ then 

S ^ S ;;(x( f o r - - -  r ^ f c -l)) =  R x i R x i x i t o , . . .  ,ffc_l),(UOr--- . t'„_i. u) ). (t'o-• • • ,l'*n-lrS)) 

=  R x { x { R x { t o , { v Q , . . .  .u„_i,u)),... , R x i t k - i - { v o , . . .  , C n - l '  

" ) ) .  Vk  t ' „_ i .  u ) ,  ( fo ,  5 ) )  

=  x { R x { R x { i o A ^ ' 0 - , - ' -  , V n - l , u ) ) , { V o , . . .  , V n - l . s ) ) . . . .  ,  

R x { R x { t k - l - { ^ ' 0 ^ - - -  ,Un- l , " ) ) . (Uo , . . .  . y„ - l , 5 ) ) ,  

R x { v k , { v o , - - ~  

(Uo , - - -  TUn-1 ,5 ) ) )  

=  x { R x i t o , { V o , . . .  . V n - l , R x { u . { v o . . . .  .  U „ _ i ,  s )  ) ) ) . . .  .  .  

R x { t k - u { v o , . . .  , V n - u R x { u , { v o , . . .  

f i t , . . .  , V n - l , R x { u , { v Q , . . .  , l 7 „ _ i , s ) ) )  

=  R x { x { t o , . . -  , t k - l ) , { v Q , . . .  , V n - i , R x { u - { ^ ' o , - . -  , y „ - l , 5 ) ) ) )  

Finally, for (SA5), we need again to apply induction on the structure of f. If f = u„, then 

as required. If f then 
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as required. U  t  =  V k  r  then 

= '̂k = Ss7,^^„(u)S"(^//)(rfc). 

Finally, ' d  x  €  X . k  e  u j . t o , . . .  . t k _ i  G TmA-(V').ffc_i ^ i7fc_i, then 

S5(m//)Sr(^('oT • • • .^n-l)) = 

= ^s(m/i) i ^ x { x i t o  .r„i_i,u))) 

= R x { R x { 3 : { t o r . . .  .t'm-l."))r('-'0 t'„_i. 5( m//)) ) 

=  R x { x { R x ( t o , { v o , . . .  , V r a - l , u ) )  R x { t k - l - { V q ,  .  .  .  . V m - l - u ) ) .  

V k - . . .  . y m - i , " ) , ( u o ,  , V n - u s { m / l ) ) )  

=  x i R x i R x i t o A ^ ' o - : - -  -  , V m - i , u ) ) , { v o . . . .  ,  i \ - i ,  s { m / 1 ) ) ) .  .  .  .  ,  

R x { R x { t k - u { ^ 0 , - - -  . V m - l , u ) ) , { v o , . . .  , l ' „ _ i , 5 ( m / / ) ) ) ,  

R x { v k , { v 0 , - - -  , V n - l , s { m / l ) ) ) , . . .  . R x { V m - u { V o , . . .  . V n - l , s { m / l ) ) ) ,  

^ A ' ( " , ( t ' o , - - -  . V n - i , s { m / l ) ) ) . V m + i , ' . .  , y „ - i , s ( m / / ) )  

=  x { R x { R x { t Q ,  (uo, { v o , .... ... 

Rxi.Rx(.ik—l' {pOt • • • t t'n—I? - • ^'m—)•> '''fc* • • • • '''m—li 

'''"+1 • ? ^n-l?'S('^/0) 

=  /2x(^(/?x(fo,(t'o,-.- , U n - l , - S(m//))),... ,U„ _ l ,5(m//))), 

~ R x { R x { x ( ^ t Q ,  .  .  .  , ), (t'o, .. . , t7n—1, s('7l//))), (t'o, . . . '''m—1? ) 

cis required. • 

LemM.A. 6.16 Tmx(V') = (Tmx(V ),S*^,rfc)fcg>^ possesses the universal mapping prop­

erty over X with respect to the class of all locally finite substitution algebras. 

Proof: 

Let A = (.4, S^, Vkjke^ be a locally finite substitution algebra cind / : X —>• .4 a set 

map. We define a substitution algebra homomorphism /* : TmA'(V') -> A that agrees 
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with / on X ,  by recursion on the structure of .V-terms as follows: 

f*{vi) = vf", for everj' r,- € V. 

and, if X € X.n - i^n-i € Tmx(V)Jn-i r "n-i, then, if 

n — I  

fco.... ,^n-l ^ W(x))U U 
i=0 

f*Uorv^ 

This element of .4 is independent of the choice of Atq, • - - , A:„_i and hence well-defined. 

We first show that, if € Tmx(V''),m 6 then 

f * { R x ( v „ , { v o . . . .  =/*(s) = S7,,„(i>) =S7,„|(/*(t.„)). 

If f = t'n ^ Vm, then 

K , . . .  , V „ - U S ) ) )  = =  v t  =  = S7.|„(/*(i;„)). 

Finally, i f  x  £  X . n  £  U J J Q , . . .  ,f„_i € Tmx(V''),fn-i # t'n-i? then 

f * { R x { x { t Q , . . .  , f n _ i ) , ( u o , . . .  , t ' m - i , s ) ) )  =  

=  f * { x { R x { t o , { v o , . . .  , V m - l , s ) ) , . . .  ,  R x { t n - U  {VQ.  .  .  .  ,  VM-L^ s ) ) .  V n ,  •  •  •  ,VM-L , s ) )  

f * l R x l t .  (fo, . . . , v „ . u s ) ) )  =  s;,,„(/*(()). 

We do this by induction on the structure of t .  U  t  =  V m ,  then 

Ckn 
^ f * l V n r f * ( R x ( t n - l , ( ^ 0  

C^n C^—' 

/*W ,,(/#(£„_.)) 
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C ^ m  O ^ m - I  C " l  C m  C O  I  f f ' ^ W  

C^m cm c^n-i 0^=0 Cm o"—1 CO ( f/_\\ 

*m *n—I ^  

_ cm c^"-! C^ cn-t cO I  f ( - r \ \  

= S™#(^j(/#(x(io, . . .  .^n-l)))) .  

as required. 

Finally, we show that f* is a substitution algebra homomorphism. If n € u;. then 

and, if m e u;.5, < 6 TmA:(V'), then 

/*(sr(')) = /*(fi;t(l.<fo,... .f„-i,^))) = S7,|„(/*(()). 

as required. • 

COROLLARY 6.17 Tmx(V'') = (Tmx(V' ),S'', r)k)fcg^^ possesses the universal mapping 

property over X with respect to the variety of representable substitution algebras. 

Proof: 

Follows directly from lemma 6.16, since the variety of representable substitution 

algebras is the variety generated by the cleiss of all locally finite substitution algebras. 

• 

LEMM.A. 6.18 TMX(V') = (TMX(V'),S'^, YJT)FCE^ ^ o. representable substitution algebra, 

i.e., belongs to the variety generated by the class of locally finite substitution algebras. 

Proof: 

We show that Tmx(V') = {TmxiV),S''.Vk)ke^ belongs to the variety generated by 

the class of locjJly finite substitution algebras by proving that Tmx( V) is a subdirect 

product of locciUy finite substitution algebras. 

Let p : X —>• u; be a rank function on X. Construct a binary relation 0p C TmxC V')^ 

b y  r e c u r s i o n  o n  t h e  s t r u c t u r e  o f  X - t e r m s  a s  f o l l o w s :  ( u , - ,  V j )  6  0 p  i f  a n d  o n l y  i f  i  =  j  
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and given x , y  € X , m , n  6 u^J q.... G Tmx(V'),i„_i ^ 5=^ 

I ? 

(x(fo, ••• r^n-i)^y(so-----Sm-i)) € 0p if and onlv if x  =  y  and € Op, 

for every 0 < i < p { x ) ,  where we set t j  = v j . S k  = V k .  for every j  >  n , k  >  m .  0^ 

is clearly an equivalence relation on Tmx(V"). We show that 0^ is a congruence on 

Tmx(K) = (Tmx(V).S^rfc)fcg^. 

First, we show by induction on the structure of the X-term t  that, if ( t . t ' ) . { s . s ' )  G 

0p,m € uJ, then 

{ R x i t , { v o , . . .  , V m - l , s ) ) ,  R x i t ' , { v o , . . .  , V m - l , s ' ) ) )  €  Q p -

If f = Umr then t' = Vm, whence 

(  (^0? •  •  •  •  1 ? •®) )? R-X • •  '• 'm—11 ̂ ) ))  — ) €  0(j .  

If f = Un 7^ Urn, thcU t '  =  whcQCe 

(/?x(^(uo, ,Um-l-5'))) = (l''nTy7i) 6 0p. 

If X € .V,n € u;Jor--- T^n-1 € T m x { V ) , t n - i  # fn-ir then, if f - t n - l ) - ,  we 

must have f = x(fo,... , with (f.-,€ 0p,0 < 2 < p(x), t j  = t'j, = u^,j > n , l >  

k. Thus, 

(i2x(ar(fo,--. .f„-l),(yOr.-- ,Um-lr5)),Hx(x(fo,... , ). (uq, - - • .ym-lr^'))) = 

— (x(/?x(^07 (^0? •  •  •  •  I?  ̂ ) )? •  •  •  ? (^n—1 ? (^0? • -  -  r I 'm—I ?'®))? •  '^m—1 ? '5)r 

x( Rxiioi (UQ? - - - ^ ^171—I ? Rx{^k—l' (^0? • - • ? ^m—1: )» - • • ? 1 ?) ) ^ 

by the definition of 0^ amd the induction hypothesis. 

Now, if n € a? and (s,5'), { t ,  t ' )  €  0p, then 

S"(0 = Rxit,{vo,... ,i7„_i,s)) =e^ Rx{t'.{vQ,... = S",(Or 
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and hence 0^ 6 Co(Tm;c(V')), as required. 

Next, consider the quotient Tmx(V')/0p. We show that it is a locally finite sub­

stitution algebra. To this end, we show that if x ^ X.n ^ LJ and IQ,... € 

TmA-(V'),f„_i ^ y„_i. then 

n — I  

D(x(fo.... .<„-i)/0p) C {0.1,... , p { x )  -  1 } U  U  D ( ^ / 0 p ) .  

1=0 

Suppose that m  ̂  {0,1,... . p { x )  —  1} U IJ?Jo Then, for every 

7t-l 

• s  €  T m x ( V  ) . k o . . . .  ^  D { t i / Q p ) ,  
i=o 

^ 7 / e M i ^ o , - - -  J n . i ) / Q p )  =  , i n - l ) ) / 0 p  =  

— /?_,Y(^(^0? • • • ? ^N—1)? (^'O? • • • ? ^TTI—1? ^))/0P — 

— x( (^0? • •  •  ? ^m—17 - •  R-X (^n—I r (^0? . . .» — I? ? ^m—1 r — 

~ x(fo,.. . , fn—1 )/0p? 

since, for ever>- 0 < z < n, 

eind m ^ {0,1,... , p { x )  —  1}. Hence m ^ Z)(x(fo, - - - ,in-i)/0p), as was to be shown. 

Finally, we show that if /? = u!̂  is the collection of all rank functions p  :  X  u j .  

t h e n  P l p e R ^ P  =  ̂ T m x ( v ' ) -  T o  t h i s  e n d ,  s u p p o s e  t h a t  ( 5 . f )  G  T m x ( V ' ) - ,  w i t h  s  ̂  t .  U  

t = Vi E K then (5,f) ^ 0^, for every p E R. So suppose that s = y{so,... and 

i  x ^^Q,. . .  , ^ ,  f o r  s o m e  r/i,71 ^ , ^0,. . .  , — 1, ^q,... ,^ti— 1 G TC^ ?^tr— i 7— 

VM-IITJI-I ^ t'n-i- If J/, then (5,f) 0 0^, for every p 6 H. If x = t/ then, for some 

i < max{m,n},ti ^ s,-. Thus by the induction hypothesis, there exists p ^ R, such that 

{si,ti) ^ 0p. Let p' € R he defined by 

P'i^) = 
m a x { p ( x ) , i  + 1} if r = x 

p{z) otherwise 
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We show that, since p ' { z )  >  p { z ) ,  for every c € X ,  Q p >  C 0^. This being the case 

{sJ) ^ 0p/ and hence (s.f) ^ ^ to be shown. In fact, if 

( x ( f o - . . -  r  ̂ n — I  ) :  l ) )  0  ® p  

then, either x 7^ y, in which case (x(fo. ••• ,tn-i).y{sQ,... ^ 0^/. or x = y 

and { t i .Si) ^ Q p ,  for some i  <  p { x )  <  p ' { x ) .  In this case, applying the induction 

hypothesis, we get that ^ 0^', whence (x(fo. •• • .IN-I).y(5o •SM-I)) ^ 0p'- by 

the definition of 0^/, sis required. 

This concludes the proof that Tmx(V'') is subdirectly representable by means of 

the product Tm,Y(V')/0p locally finite, and therefore is 

representable. • 

THEOREM 6.19 Tmx(V') = { 1 m x { V ) - : S ' ' . V k ) k e u j  r e p r e s e n t a b l e  s u b s t i t u t i o n  

algebra over X. 

Proof: 

This is a direct consequence of Corollary 6.17 and Lemma 6.IS. 
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