Iowa State University

Digital Repository @ Iowa State University

Retrospective Theses and Dissertations

1998

Categorical abstract algebraic logic

George Voutsadakis
Towa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd
b Part of the Mathematics Commons

Recommended Citation
Voutsadakis, George, "Categorical abstract algebraic logic " (1998). Retrospective Theses and Dissertations. Paper 11899.

This Dissertation is brought to you for free and open access by Digital Repository @ Iowa State University. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Digital Repository @ Iowa State University. For more information, please

contact hinefuku@iastate.edu.


http://lib.dr.iastate.edu?utm_source=lib.dr.iastate.edu%2Frtd%2F11899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=lib.dr.iastate.edu%2Frtd%2F11899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/11899?utm_source=lib.dr.iastate.edu%2Frtd%2F11899&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hinefuku@iastate.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g, maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overiaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to
order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700  800/521-0600






Categorical abstract algebraic logic

by

-

George Voutsadakis

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Major: Mathematics

Major Professor: Don L. Pigozzi

Iowa State University
Ames, [owa
1998
Copyright (© George Voutsadakis, 1998. All rights reserved.



UMI Number: 9841095

UMI Microform 9841095
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



i

Graduate College
[owa State University

This is to certifv that the Doctoral dissertation of
George Voutsadakis

has met the dissertation requirements of [owa State University

Signature was redacted for privacy.
€ommittee Member
Signature was redacted for privacy.
Committee Member
Signature was redacted for privacy.
Committee Member
Signature was redacted for privacy.
Committee Member
Signature was redacted for privacy.
Major Professor
Signature was redacted for privacy.
For the Major Program
Signature was redacted for privacy.

For the G¥adugtg College



i

To Don Pigozzi.



iv

TABLE OF CONTENTS

1 INTRODUCTION . . . . .. ittt ittt ittt et e e 1
Thesis Outline . . . . . .. ... . .. . e 2
On the Abstract Algebraic LogicSide . . . . . . . .. ... ... . . T

Deductive Systems . . . . . . . . . .. .. ... T
Equivalent Deductive Systems . . . . . .. ... ... ... ....... 9
Algebraizability of Deductive Systems . . . . . . ... ... .. ...... 12
On the Categorical AlgebraSide. . . . . . ... ... ... ... ... ..., 13
Algebraic Theortes . . . . ... ... ... ... ... o oo, 14
Adjoints . . . . . . . e e e e e e e e e e e e 16
Theories and Adjoints . . . . . .. .. ... .. ... ... 20
The Comparison Functors . . . . . ... ... ... ... ... .... 22

2 EQUIVALENT INSTITUTIONS ... .... ...ttt 25
Introduction . . . . . . . ... e 25
Institutions and w-Institutions . . . . . ... ... L L Lol L. 27
Examples . . . . . . . . . e i e 31

n-ary Relations . . . . .. ... .. ... .. L 32
Automata . . . . . . . L e e e e e e e 37
The Category of Theories . . . . .. .. ... ... ... ... .... 39
Relating Categories of Theories . . . . . . ... ... ... ... ... ..... 42
Relating Institutions . . . . . . ... . ... ... ... ... e, 43

Interpretability . . . . . . . .. .. ... 49



Quasi-Equivalence . . . . . ... ... L 55
Deductive Equivalence . . . .. . .. ... ... ... ... . ... ... ..., 61
Deductive Auto-Equivalence . . . . . . .. ... ... ... ... ... ... 66
Equivalence of Deductive Systems . . . . . ... .. ... .. .......... 69
ALGEBRAIZING INSTITUTIONS . . . . . . .. .. ... .. .... 73
Introduction . . . . . .. . ..o 73
Algebraic Institutions and Algebraizable =-Institutions . . . . ... ... ... 76
An Application . . . . . . .. e e e e 33
Deductive m-Institutions . . . . . . . .. .. .o L oL 90
Algebraizing the Equational Institution . . . . . . . ... . ... ... ... 96

The Equational Institution . . . . . .. .. ... ... ... .. ..... 96

The Algebraic Counterpart . . . . . ... ... ... . ... .. ...... 103

The Algebraization . . ... .. ... ... ... ... .. ..., 107
AUTO-ALGEBRAIZABLE THEORY INSTITUTIONS . . . . ... 112
Introduction . . . . . . . ... oo o 112
Theory Institutions and Algebraic Institutions . . . . . . ... ... .. .... 114
The Leibniz Operator . . . . . . . . .. .. . e 116
Uniqueness of Autoalgebraizability . .. ... ... ... ... ... ..... 119
Properties of the Leibniz Operator . . . .. .. .. ... .. ... ....... 130
An Intrinsic Characterization . . .. .. ... ... ... .. ... ... .... 132
Deductive w-Institutions Revisited . . . . . . . .. .. ... L Lo 138
METALOGICALPROPERTIES . . . . . ... ... .......... 142
Introduction . . . . .. .. .. L e 142
Deduction-Detachment Property . . . . . ... ... ... ... ... .. 143
Disjunction Property . . . . . . . . . .. e 144
A Noteon Conjunction . . . . . . . . .. ... it 147

Negation . . . . . . . . . . . . e 149



vi

Craig Interpolation . . . . . .. ... ... ... ... ... .. .. . ... ... 151
Robinson Consistency . . . .. ... .. ... ... ... ... 155
The Lindenbaum Property . . . . . . . ... . ... ... ... ........ 158
6 ABSTRACT CLONE ALGEBRAS . ... ............... 160
Introduction . . . . . . . ... e 160
Basic Constructions . . . . . .. .. ... ... ... Lo . 161
The Adjunction . . . . . . . . . . . .. 165
The Theory of the Adjunction . . . . . ... ... ... ... .. ....... 163
Abstract Clone Algebras . . .. ... ... . ... ... ... ... .. .. 169
The Equivalence . . . ... .. .. ... . ... . 173
ARelatedResult . . . ... ... ... .. .. ... o L. 178

BIBLIOGRAPHY . ... ... . ittt it iiie i 187



vil

ACKNOWLEDGEMENTS

The moral support of the following is acknowledged:

Don Pigozzi and my “extended” committee: Roger Maddux, Giora Slutzki. Jonathan
Smith, Bruce Wagner, Cliff Bergman and Sung Song, my family, my students at [.S.U.
and all the alcohol and music: Logic and Mathematics is my world...

The financial support of the following is acknowledged:

Department of Mathematics, lowa State University, my parents, Don Pigozzi. Gary
Leavens and the N.S.F., Jerry Keisler and the A.S.L., Ralph McKenzie and Vanderbilt
University, Josep Maria Font, Ramon Jansana, Don Pigozzi and the Centre de Recerca

Matematica and Stan Wainer and the A.S.L..



1 INTRODUCTION

In 1989 Blok and Pigozzi [6]. following in the footsteps of Czelakowski [13] and their
own previous work [5], made precise, for the first time. the notion of algebraizable logic.
A bulk of work has been published since, influenced by this “Memoirs monograph”,
and a new area in algebraic logic has emerged that has come to be known as abstract
algebraic logic.

To Blok and Pigozzi, it became clear later (8] that their definition of algebraizability
fell into a more general framework. Thus, they defined the notion of equivalence for two
deductive systems and showed how algebraizability can be perceived to be an instance
of this equivalence. In their work they dealt with sentential logics over a fixed signature.
Thus, universal algebra was the natural, necessary and indispensable algebraic tool for
handling algebraizability and promoting this marriage of logic and algebra.

In an appendix of the “Memoirs monograph”, Blok and Pigozzi showed how one can
use the traditional “cylindrification” process of 28] to transform first-order logic to a sen-
tential structural system and, thus, make it amenable to their algebraization techniques.
To Pigozzi this two-step algebraization of first-order logic did not seem very satisfactory.
The “cylindrification” step, although necessary if the currently available tools were to
be effective at all, was clumsy and unnatural and suggested that a more direct handling
of varying signatures required a more advanced and sophisticated framework.

In the meartime, in 1934, Goguen and Burstall [26], in a completely different context,
following work of Barwise on abstract model theory [I], had introduced the model-

theoretic structure of institution. This structure had proved very useful in handling
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logics with varying signatures, like equational and first-order logic. In 1988, Fiadeiro
and Sernadas [21] used Goguen and Burstall’s idea to obtain an institution-like syntax-
oriented structure which they called =-institution.

In 1994, Diskin [18], having seen the work of Blok and Pigozzi and realizing its lim-
itations in dealing with logics with varying signatures. suggested the use of institutions
and the algebraization of institutions as the appropriate framework for generalizing Blok
and Pigozzi’s work. The institution formalism uses concepts and tools borrowed from
category theory. Thus, it was only natural that the marriage of logic and algebra at this
higher level would require the tools and techniques of categorical algebra, namely the
powerful machinery of the theory of algebraic theories.

This is the point where the present work comes into play. It is our belief that a
new “section” of abstract algebraic logic is emerging, its main, distinctive feature being
the replacement of universal by categorical algebraic techniques. Our main goal in this
thesis is to make a contribution in this newly emerging area by advancing this line of
research and to present a, hopefully, convincing argument for the need to pursue further
research in order to deepen our understanding of what categorical abstract algebraic logic
has to offer and what are its limitations.

In the remainder of this chapter we will give a brief outline of the contents of the
thesis and a short review of past developments in this area that are our starting points

and have influenced our work significantly.

Thesis Outline

In the remainder of this chapter, some previous work on abstract algebraic logic and
categorical algebra is reviewed. On the abstract algebraic logic side, the definition of
a deductive system [51] and its generalization to that of a k-deductive system [7] are

recalled. The notion of equivalence for k-deductive systems [§] is then introduced and



the theory leading to the well known characterization of equivalence (Theorem 1.1)
overviewed. The algebraization of deductive systems [6. 7] comes next and the intrinsic
characterization of algebraizability (Theorem 1.3), which has been the starting point
for abstract algebraic logic, is briefly discussed. On the categorical algebra side, the
notion of an algebraic theory 38, 24], given in both its clone and its monoid form. starts
the development. The description of the Aleisli category [32] of the free algebras of a
theory follows. The notions of a T-algebra and T-homomorphism and the Eilenberg-
Moore category {19] of a theory come next. The central notion of an adjunction [31]
is then introduced and the well known Freyd adjoint functor theorem (Theorem 1.8)
[25] and the special adjoint functor theorem (Theorem 1.9) are briefly discussed. The
fundamental relationship between algebraic theories and adjunctions [32, 19], which
is crucial throughout the thesis, comes afterwards. In this context, the comparison
functors play a key role (Theorems 1.11 and 1.12) and lead naturally to Beck's famous
characterization of algebraic functors (Theorem 1.13), concluding the first chapter of the
thesis.

In the second chapter, the main development of categorical abstract algebraic logic
begins. First, the notions of an institution (Definition 2.1) [26, 27] and of a #-institution
(Definition 2.3) [21], which form the basis of our formalism throughout the thesis, are
introduced. The central notion of a term w-institution (Definition 2.7) is given and some
examples provided. The category of theories of an institution is then described. The
structure of this category plays as an important a role in categorical abstract algebraic
logic as the lattice of theories in classical abstract algebraic logic. Categories of theories
of two w-institutions can be related via functors from one into the other. The strength
of the ties with which such a functor binds these two categories can be estimated by
looking at some of its abstract properties. Those are presented next (Definition 2.19).
The notions of a translation and that of an interpretation between two institutions are

then introduced (Definition 2.21). The description of interpretability, quasi-equivalence,



strong quasi-equivalence and deductive equivalence, the central notions of this chapter.
follows (Definition 2.22). They are used to compare both the syntax and the deductive
apparatuses of two 7-institutions. Each one is stronger than the preceding one in the list.
Because of the generality of the notion of institution, it is very difficult to prove useful
results for the most general case. One has to restrict to special classes of institutions
with features that fit particular applications. Thus. focusing on term w-institutions.
necessary and sufficient conditions are given for each of the three relations of equivalence
to hold between two term w-institutions in terms of their categories of theories (Theorems
2.29, 2.31 and 2.36). which readily extend to institutions. Turning to the special case
of deductive equivalence, the logical interdependence of the characterizing conditions
is also investigated. It turns out that a very concise and elegant characterization of
deductive equivalence, that parallels the characterization of equivalence of deductive
systems [7], can be obtained for term institutions (Theorem 2.41). The special case
of deductive autoequivalence is then introduced, which naturally relates this result to
the corresponding one for deductive systems. This relation is described in detail in the
last paragraph of the chapter (Theorem 2.48). The requirement of equivalence for the
signature categories of two deductively equivalent 7-institutions appears to be too strict.
This is the main motive for investigating the weaker notions of quasi-equivalence and
strong quasi-equivalence, which relate the signature categories of the two institutions
more loosely.

The necessary framework having been laid in Chapter 2, Chapter 3 deals directly
with the algebraization issue. Based on the notion of an algebraic theory, which general-
izes that of a variety, the concept of an algebraic institution is described (Definition 3.1),
which corresponds to the notion of a 2-deductive system based on the equational conse-
quence relation of some class of algebras. Corresponding to the notions of interpretabil-
ity, quasi-equivalence, strong quasi-equivalence and deductive equivalence are the notions

of pre-algebraizability, quasi-algebraizability, strong quasi-algebraizability and algebraiz-



ability (Definition 3.4), which seem to form an algebraic hierarchy of 7-institutions, based
on both their syntax and their deductive power. As immediate consequences of the char-
acterization theorems of Chapter 2, one obtains, here, characterizations for the different
levels of algebraizability in terms of the categories of theories of the 7-institutions involved
(Corollary 3.5). These parallel the characterization of the algebraizability of deductive
systems of [6]. Three very interesting and important applications are discussed in length
closing Chapter 3. First, two institutions based on an algebraic theory in a category K,
one with richer syntax structure than the other, but very similar in deductive power.
are defined and it is shown that they are quasi-equivalent (Theorem 3.8). Second. in-
spired by the theory of deductive systems, a “universal algebraic” #-institution and its
corresponding categorical counterpart are shown to be deductively equivalent (Theorem
3.11). Finally, the algebraization of the, so called, equational institution, an institu-
tion that naturally represents a somewhat nonstandard version of equational logic, is
described (Theorem 3.27). The detailed development of the algebraic theory in SET,
on which the algebraic institution used for this algebraization is built, is delegated to
Chapter 6, although some of its essential features are described here, as the need arises.

The characterization of algebraizability of a m-institution, provided in Chapter 3, is
not intrinsic in the sense that it requires a priori knowledge of the algebraic institution
that will be used as the algebraic counterpart in the algebraization. Following [6]. one
hopes to discover a set of intrinsic necessary and sufficient conditions as concise and
elegant as possible. This task is undertaken in Chapter 4. Again the most general case,
and, in fact, even the term case, seem to be very difficult to handle. Investigation is
restricted, thus, further, to a subclass of term w-institutions, the, so called, theory insti-
tutions (Definition 4.1). The syntax of these institutions is very nice, already algebraic
in nature. The focus now is on the deductive apparatus. In this context, a generalized
Letbniz operator from theories to generalized equational theories can be defined (Defini-

tion 4.6). Further restricting both the class of institutions to the, so called, Blok-Pigoz=i



institutions (Definition 4.18) and the type of algebraizability to the, so called, auto-
algebraizability (Definition 4.3), requiring the syntax component to remain invariant.
makes it possible to give intrinsic necessary and sufficient conditions (Theorem 4.19)
similar to the ones presented in the main theorem of [6]. The chapter concludes with a
detailed description of the connection between Blok-Pigozzi theory institutions and de-
ductive systems in the sense of [6] (Theorem 4.23), which. in addition, justifies the name
chosen for those institutions. The end of Chapter 4 signals the end of the first main
section of the thesis dealing with the study of the algebraization process of institutions
itself.

As is the case with classical abstract algebraic logic, two other directions are of equal
interest. One is the study of metalogical properties and how these properties are related
to corresponding algebraic properties of the algebraizing counterparts and the other is
the study of the classes of algebras that are used as algebraic counterparts of logical
systems. These are the two directions that are pursued in the remainder of the thesis.

In Chapter 5, several metalogical properties are introduced and it is shown that they
are preserved under deductive equivalence. More precisely, if two institutions are deduc-
tively equivalent. then one has the property if and only if the other does. The properties
studied are the deduction-detachment property (Definition 5.1), the conjunction and the
disjunction properties (Definitions 5.6 and 5.3, respectively), negation (Definition 5.9),
the Craig interpolation property {Definition 5.12), the Robinson consistency property
(Definition 5.14) and the Lindenbaum property (Definition 5.17). Those properties have
been introduced long ago for deductive systems (see [23]) and adapted later for institu-
tions [50]. They are here formulated in a somewhat non-standard form, appropriate for
our purposes, but their essential features are, hopefully, preserved.

In Chapter 6, a detailed study of the algebraic theory of abstract clone algebras,
used in Chapter 3 to algebraize the equational institution, is undertaken. The main

theorem (Theorem 6.14) gives a universal algebraic characterization of the Eilenberg-



-~

Moore category of the algebras of this theory. Some connections with the variety of

representable substitution algebras of [20] are also investigated (Theorem 6.19).

On the Abstract Algebraic Logic Side

In this section, some of the most important notions and results that have appeared in
the literature of abstract algebraic logic and that have significantly influenced our devel-
opment of categorical abstract algebraic logic. presented in the main body of the thesis.
are briefly reviewed. In the first subsection. the main definition of a k-deductive system
is given. In the second, the notion of equivalence for deductive systems is described.
Finally, in the third subsection, the work of Blok and Pigozzi on the algebraization
of k-deductive systems is summarized and a generalization of the main result due to

Herrmann is stated.

Deductive Systems

For more details on the material that is reviewed in this section the reader is referred
to [6, 7]. Given a set X, we denote by X a disjoint copy of X constructed in some
canonical way, e.g., X = X x {0}, and by Z the copy of r € X in X.

Let A = {A; : 7 € [} be a set of symbols and p : A\ — w a rank function. £ = (\,p) is
called a language type. If A € A, we call A a connective of rank p(}) or a p())-ary
function symbol. If p(A) =0, then A is called a propositional constant or, simply.
a constant. Let V' be an arbitrary countably infinite set, called the set of variables.
The set of formulas of type £ over V, sometimes called £L-terms over V, is denoted

by Tm¢(V') and is the smallest set satisfying
e T € Tmg(V), for every v € V, and

® /\(to, e 7tp(.\)—1) € TmC(V’), for all A € .’\, to,. ce s tp(,\)_l € ng(‘/’).



From the logic point of view, one thinks of the elements of A as connectives and the
elements of Tm,(V') as formulas built using these connectives. whereas from the algebra
point of view, the elements of A are thought of as operation symbols and the elements of
Tm¢(V) as terms built using these operation symbols. This dual interpretation explains
the use of Tm.(V) to denote the set of formulas. As usual an L-algebra structure can

be associated with Tmg(V') by setting
ATmeW(go .. Eon)-1) = AMtose v <Epn)=1)s

forevery A € A, to, ... .t,\)-1 € Tme(V'). We denote the resulting L-algebra by Tm,(V')
and call it the algebra of L-formulas or the algebra of L-terms over V. An as-
signment is a mapping ¢ : V' — Tm¢(V). Every assignment extends uniquely to a
homomorphism ¢~ : Tms(V) » Tm¢(V'), which is called a substitution. Conversely.
every such homomorphism gives rise to an assignment by restricting to variables and
the two mappings & — o~ and h — k|0 are inverses of each other, where :V — V
maps v € V to its copy T. Thus, without any possibility of confusion we use ¢ to denote
both the assignment and the corresponding substitution.

Given k € w, a k-deductive system S over £ [7] is a pair § = (Tm¢(V)*.Fs).
where Tm (V') is the L-formula algebra and Fs C P(Tmz(V)*) x Tme(V)* is a relation

satisfving the following conditions, for all [, A C Tm¢(V)* and ¢ € Tm¢(V)%,
(i) 9 € implies ' ks
(i) TFspand [ C A imply AFs o
(iii) T Fs & and A Fs 7, for everv vy € [, imply A b5 &
(iv) T ks ¢ implies o([') ks o(®). for every substitution o,

where, obviously, if ¢ = (v, ... , 9k-1), 0(d) = (6(d0);- - - ;0(Pk-1)), and o(T) = {o(7) :
v €T}



Let x be an infinite cardinal. A k-deductive system S is said to be s-ary if, for every

[ U {¢} C Tm(V),
(v) T'Fs ¢ implies ['g s &, for some [y C I, with |[g] < &.

In particular, if x = w, then S is called finitary.
If we define Cs : P(Tmc(V)¥) = P(Tme(V)*) by

Cs(T) = {6 € Tme(V)*: T Fs ¢}, for every ' C Tmg(V)E.
then (i)-(v) above take the following form
(") [ C Cs(T)
(i) [ C A implies Cs(T') € Cs(A)
(iii") Cs(Cs(I)) € Cs(T)
(iv’) o(Cs(I)) € Cs(a(I))
(v)) Cs(T) = U{Cs(To) : To S T, |To| < &},

i.e., they become the well-known Tarski closure axioms [51].

A subset T C Tmg(V)* will be called an S-theory if, for every ¢ € Tmg(V)F,
T ks ¢ implies ¢ € T, or, equivalently, if Cs(T) = T. The collection of all S-theories
is denoted by Thg. Ordered by inclusion, they form a complete lattice which will be

denoted by Ths.

Equivalent Deductive Systems

In [8], Blok and Pigozzi define the notion of equivalence for k-deductive systems.
Their basic definitions and results are the paracigms for the deductive equivalence of

institutions that we will introduce in this thesis.
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Let S; = (Tmg(V)*,Fs,) be a finitary k-deductive system and S, = (Tmc (V).
Fs.) a finitary [-deductive system, both over the same language type £. By a (k.l)-
translation we mean a finite set 7 of [-formulas in a single k-variable v, i.e.. v € V*

with v; # vj,1 < j < k, and 7 C Tmg({vo,--- s e-1})". Thus, for some n € w.
T(v) = {n(v) : 1 < n}.

For [ C Tm(V)*, let 7(T) = U, er 7(9)-
A (k,!)-translation 7 is a (k.[)-interpretation of S| in S, written 7 : §; = Sa, if.

for all T C Tmg(V)k, 0 € Tme(V)-.
Cks, 0 iff 7([)Fs, 7(0), (1.1)
or, equivalently, using the closure operator notation,
6 € Cs(I) iff 7(¢) C Csy(7(T)).

S1 and S, are equivalent if there exists a (k.{)-interpretation 7 : §§ — S» and an
(I, k)-interpretation p : S; — &) that are inverses of each other in the sense that, for

every ¢ € Tm¢ (V).

¢ ks, p(7(0)) (1.2)

and, for every ¥ € Tme(V)!,

¥ ks, 7(p(¥)): (L.3)

where [ 45, A means I kg, 4, for every § € A, and A kg, «, for every v € T, and
similarly for kg, .
It is proved in [8] that the existence of T and p together with conditions (1.1) and

(1.3) are sufficient for the equivalence of S; and S,.
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Recall that, given a k-deductive system S over £ and an L-algebra A, an S-filter F
on A is a subset of A, such that, for all ' C Tm¢(V)*, ¢ € Tme(V)*.

[ts¢ implies ¢™(@) € F whenever (@) CF. forall a:V — A.

where ['*(a) = {y(@) : v € T}. The collection of all S-filters on A is denoted by

Fis(A). Under set inclusion. they form a complete lattice. which will be denoted by
Fis(A).
Given an interpretation 7 : S; — S», an L-algebra A and an S;-filter F on A. define

7s:(F) = Fgg,(T4(F)), (1.4)

where Fg‘g‘z(G) denotes the Sy-filter on A generated by G and 7(G) = [J{r*(@):ad €
G}, for every G C AF. In the particular case where A = Tmg(V) and T € Ths,. (1.4)

assumes the form
75:(T) = Cs,(7(T))- (1.5)

If 51,82 are equivalent via interpretations 7 : S| — S» and p : So = Sy, then. for any

L-algebra A,
7s, : Fis,(A) = Fis,(A) and ps, : Fis,(A) — Fis, (A)

are lattice isomorphisms and inverses of each other. Moreover, for all endomorphisms

h:A — A, the following diagrams commute:

Fis,(A) —— Fis,(A) Fis,(A) —— Fis,(A)
hsll lha h_%l l
Fis,(A) —— Fis,(A) Fis, (A) —— Fis,(A)

where hg, (F) = Fgél(h(F ), for every filter F' € Fis,(A), and similarly for ks,. This
property has come to be known as commutativity with endomorphisms and, spe-
cialized to formula algebras, as commutativity with substitutions.

The main result of [§] is the following:
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THEOREM 1.1 Assume Sy is a finitary k-deductive system and S, is a finitary [-dedu-

ctive system over the same language type L. The following are equivalent
(1) 81 and S, are equivalent.
(it) There ezists an isomorphism from Ths, to Ths, that commutes with substitutions.

(it} For each L-algebra A, there erists an isomorphism from Figs, (A) to Fis,(A) that

commutes with endomorphisms.

Algebraizability of Deductive Systems

Finally, we review some notions and results on the algebraizability of k-deductive
systems, our main sources being [6, 7, 8] and [29].

Let A" be a class of L-algebras. Define the 2-deductive system Sk = (Tm¢(V)?, k=)
as follows:

For every E C Tm(V)? and (to, t;) € Tmg(V)?,

E bk (to.t)) iff, forall A€R, h:Tme(V)— A,

hA(eg) = hA(e1), for every (eq,e,) € E. implies k™ (o) = AA(t)).

Sk is the 2-deductive system associated with A" In case A" is a quasivariety axiom-
atized by a known set of quasi-identities, one can express =g in terms of axioms and
rules of inference, see, e.g., [%].

A finitary k-deductive system S = (Tm¢(V)*,Fs) will be said to be algebraizable
with equivalent algebraic semantics A" if S is finitary and S is equivalent to Si in
the sense of the previous subsection, i.e., if there exists a (k. 2)-interpretation 7 : S — S
and a (2, k)-interpretation p : Sy — S that are inverses of each other. The 7 will be
called defining equations and the p equivalence formulas for S and A". Blok and
Pigozzi prove
THEOREM 1.2 Let S be a finitary k-deductive system over L and K a class of L-alge-

bras such that =k is finitary. S is equivalent to S iff there erists an isomorphism from
Ths onto Thg,. that commutes with substitutions.
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Given a k-deductive system S over £ and an S-theory T C Tmg(V)*. the Leib-
niz congruence ((T') associated with T is defined to be the largest congruence ©
on Tm¢(V) that is compatible with T, i.e., such that, for every é.¥ € Tmc(V)~.
;O ;i <k,and ¢ € T imply & € T. The main result of [6], generalized to k-deductive

systems [§], is the following
THEOREM 1.3 Let S be a finitary k-deductive system over L. S is algebraizable iff
(i} Q is injective on Ths and

it) Q preserves unions of directed subsets of Ths.
p

In [29] Hermann generalized slightly the results of Blok and Pigozzi by considering
infinitary deductive systems and allowing the sets of defining equations and equivalence
formulas in an algebraic equivalence to be infinite. The following is his main result,
given here for k-deductive systems

THEOREM 1.4 Let S be a k-deductive system over L. S is algebraizable in the sense of

Herrmann iff
(i) Q is injective on Thg
(ii) Q is meet-continuous on Ths and

(117} Q commutes with inverse substitutions.

On the Categorical Algebra Side

In this section we review some basic definitions and results of the theory of algebraic
theories. The interested reader may consult [39, 43, 2] or [9] for a more detailed account.
First, some basic notational conventions used throughout the thesis are presented.

Givea a category K, by |K! is denoted the collection of objects of X and by Mor(K)
the collection of morphisms of K. Given A, B € |K|, by K(A, B) is denoted the set of all
morphisms in K with domain A and codomain B. By P : SET — SET is denoted the
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powerset functor. Following a usual convention, given a morphism f : A — B in SET
and a subset X C A, we write f(.X) instead of P(f)(X). Finally, given a category X and

A € |K|, by (A | K) is denoted the category of objects under A. i.e.. the category with

objects all pairs (f,K). A" € |[K[, f € K(A.K'), and arrows h : (f,A’) — (g, L) those

arrows h € K(K, L), such that g =hf, i.e., such that the following diagram commutes
/ 4 g

Compeosition in (A | K) is inherited from the composition in K.

Algebraic Theories

In the sequel K will be a fixed category. called the base category.

An algebraic theory in clone form in (or over) K is a triple T = (T, n, o), where
(1) T : |K| = |K]| is an object function
(2) n:|K| = Mor(K) is a mapping such that 74 : A = T(A)

(3) o is 2 mapping assigning to every (4, B,C) € |K[® a function o : K(B,T(C)) x
K(A,T(B)) = K(A,T(C)) such that

(1) vo(Boa)=(yoPB)oa,foralla: A—=-T(B),3:B—=>T(C),v:C = T(D),
(i) npoa = a, for every a: A =+ T(B),

(ili) ao(nef) = af,forall f: A = Band a: B— T(C).

The category having as ccllection of objects [K| and, for all 4, B € |K]|. as collection of
morphisms from A to B all K-maps f : A — T(B), with composition o and identities
na, A € |K|, is called the Kleisli category of T and denoted by Kr. The notation
f: A— B is used to denote an arrow f : A — T(B) in K.

An algebraic theory in monoid form in (or over) K is a triple T = (T,n,u),

where



(1) T:K — K is a functor
(2) n: Ix = T is a natural transformation

(3) #: TT — T is a natural transformation such that. for every A € |K|, the following

diagrams commute

T(4) =2 T(T(A) —2L T(4)
iT(A) #a iTA)
o
T(A)
T(T(T(4))) —22L (T (4))
AT(A) BA
T(T(4)) ——— T(4)

If, given a category K and an algebraic theory T = (T, 7, 0) in clone form over K. one
defines T : Mor(K') = Mor(K), for every f: A — B € Mor(K), by T'(f): T(4) = T(B)
with T(f) = nsf oir(4), and, for every A € |K|, pa = iT(a) 0 iT(r(4)) then T = (T, 7. )
is an algebraic theory in monoid form.

Conversely, if, given K and an algebraic theory T = (T,n,x) in monoid form over
K. one defines, for every (A, B,C) € |[K]*,0: K(B,T(C)) x K(A,T(B)) = K(A.T(C)).
by a0 8= pcT(8)a,

T(8)

A ———T(B) T(T(C)) —— T(C)

forevery a: A - T(B)and 8: B — T(C), then T = (T,n,0) is an algebraic theory in
clone form and the two translations, just described, from algebraic theories in one form

to algebraic theories in the other are inverses of one another.
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Let K be a category and T = (T, 7,0, ) an algebraic theory over K. A T-algebra
is a pair (A,a), where A € |[K| and a : T(A) = A € Mor(K) satisfying commutativity
of the following diagrams

T(a)

4 —=—T(4) T(T(4)) T(A)
A T(A) —— 4

If (A.a).(B.3) are T-algebras. 2 T-homomorphism from (4, a) to (B, 3) is a map

f: A= B € Mor(K), such that the following diagram commutes

T(f)

T(A) T(B)
a 8
A — B

It is not difficult to see that iy : (4,a) — (A.a) is 2 T-homomorphism and, if
f:{A,a) = (B,3) and g : (B,3) = (C.v) are T-homomorphisms. then so is gf :
(A,a) = (C,7). Thus, T-algebras together with T-homomorphisms form a category
KT, called the Eilenberg-Moore category of the algebraic theory T.

Adjoints

Let A, K be categories, U : A — K be a functor and A" € [K|. A free 4-object over
K with respect to U is a pair (F.7), where F € [A]| and n : K — U(F) € Mor(K)
such that if (A, f) is another pair with A € [A],f : A = U(A) € Mor(K), then there
exists unique f¥ : F — A € Mor(A) such that U(f#)n = f. In this case, 5 is said to be
universal to U from K.

Pictorially, we have



F A —— U(F)
#* \ U(f#)
1 U(A)

Dual to the notion of a universal arrow from an object to a functor is the notion of
a universal arrow from a functor to an object. Let A,K be two categories, F : K —+ A
a functor and A € |A|. Given an object [/ € |K|, a mapping ¢ : F(U') = A € Mor(A)
is called universal to A from F if. for all A" € [K|, f: F(R) — A, there exists unique
f*: R = U € Mor(K) such that eF(f#) = f.

Pictorially, we have

U F(U) — 4
* F(f*) /
K F(R)

Let A, K be categories. An adjunction from K to A is a triple (F,U,9) : K — A,
where F : K — A,U : A — K are functors and ¢ is a function assigning to each pair of

objects A" € |K|, A € |A| a bijection
6= 0r.a: A(F(R), A) = K(R.U(4))

which is natural in A" and A.

Given such an adjunction, F' is said to be a left adjoint for U while U is called a
right adjoint for F. Moreover, the image of an arrow f : F(K) — A under ¢x 4 is its
right adjunct and the image of an arrow g : A — U(A) under 4"1—\{4 is its left adjunct.

In [39] the following theorems are proved:

THEOREM 1.5 An adjunction (F,U,9) : K = A determines
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(i) a natural transformation n : Ix — UF such that, for every object A~ € |K|, the
arrow Ny is universal to U from K, while the right adjunct of each f: F(R') — A
5 6(f) =U(f)nk : K = U(A)

(ii) a natural transformation € : FU — [ such that each arrow ¢4 is universal to A

from F, while each g : ' — U(A) has left adjunct 6='(g) = e€4F(g): F(R) = A.

Moreover the following triangles commute

U —=— UFU F-L2 pur
\ Ue \ <
1474 tF
U F

n is called the unit and € the counit of the given adjunction (F,(.9) : K — A.

THEOREM 1.6 FEach adjunction (F,U.¢) : K — A is completely determined by the
functors F,U and the natural transformations n: [x — UF and € : FU — [4 satisfying

the commautativity of the above triangles.

Given theorems 1.5 and 1.6 we feel free to switch between the notations (F,U.9) :
K — A and (F.U,n,¢) : K — A for the given adjunction.

The following theorem relating free objects and adjoints is proved in [43].

THEOREM 1.7 Let K, A be categories and U : A — K be a functor. Then there exists
an adjunction of the form (F,U,n.¢€) : K — A if and only if, for every K € |K|, there
exists a free A-object over K with respect to U.

In both [39] and [43] one can find the following theorems

THEOREM 1.8 (THE FREYD ADIJOINT FUNCTOR THEOREM) Given a small-complete
category A with small hom-sets, a functor U : A — K has a left adjoint if and only if it
preserves all small limits and satisfies the

Solution set condition: For each R € |K|, there ezists a small set I, an [—indezed
family of objects A; € |A| and an [—indezed family of morphisms f; : K — U(A;) €
Mor(K) such that every h : K — U(A) can be factored as h = U(t)f;, for some i € [
and t : A; = A.
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R U(A)
x A)
U(A:)

The following notions of a subobject and a cogenerating set are necessary for the
formulation of the special adjoint functor theorem and its corollary.
Given a category A and two monics f: B — A, g:C — A € Mor(A) with common

codomain A we write f < g when f factors through g. i.e.. when f = gf’. for some

fl:B—C.

\\}:4

/4
c

When f < g and g < f, we write f = g. The relation = is an equivalence relation on

B
£

the monics with codomain A and its equivalence classes are called the subobjects of
A. Following common practice we sometimes identify a representative f : B — A with
the subobject represented by f. A will be called well-powered when the subobjects of
each A € [A] can be indexed by a small set.

Given a category A, a set C C |A] will be called a cogenerating set for A if to

every parallel pair g # ¢’ : A = B € Mor(A) there exists C € C and f : B = C with
fa#fq.

A—-p -Ll.¢
g

THEOREM 1.9 (THE SPECIAL ADJOINT FUNCTOR THEOREM) Let A be a small-com-
plete category, with small hom-sets and a small cogenerating set C, such that every set
of subobjects of an object A € |A| has a pullback, and let K be a category with small
hom-sets. Then a functor U : A — K has a left adjoint if and only if it preserves all

small limits and all pullbacks of families of monics.
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Finally, if A happens to be well-powered the Special Adjoint Functor Theorem as-
sumes the following form
COROLLARY 1.10 If A is small-complete, well-powered, with small hom-sets and a small

cogenerating set while K has small hom-sets then a functor U : A — K has a left adjoint

if and only if it preserves all small limuts.
Theories and Adjoints

Let A,K be categories and (F.U.n.€) : K — A an adjunction. Define T : K — K
by T=UFand p:UFUF — UF by p=Uer, where € : FU — [4 is the counit of the
given adjunction. The definition of composition of natural transformations and that of

natural transformations and functors give €0 € = ¢(FU¢) = €(efy). i.e.. commutativity

of

FUFU —~ FU
CFU I3
FU 4

[ 4

and the triangular identities of the adjunction give

ny Fn

UFU F

These three diagrams show that (T,7.pu) is an algebraic theory in monoid form in K.

U FUF

Ue \
iF

U F

43

since they immediately vield commutativity of the following three diagrams

UFUes

UFUFUF UFUF

Uepvr Uep

UFUF e UF

F



UF 25 yruF 22 yF
) Uep .
(340 o tUF
UF

(T,n.p) = (UF,n,UeF) will be called the theory of the adjunction (F.U.n.¢): K —
A.

Suppose next that (T, n,p) is an algebraic theory in monoid form over K. Consider
the Eilenberg-Moore category KT of T-algebras and define functors U'T : KT — K and
FT : K = KT as follows:

UT((X,€)) = X and, if h : (X,£) = (Y.¢) € Mor(KT), then UT(h) = h. Further,
FY(X) = (T(X),ux) and, if f: X = Y € Mor(K), then FT(f) = T(f). Finally.

T FTUT = [kr by nT =9

define natural transformations nT : [x — UTFT and ¢
and e'(I:\..s) = . It then turns out that (FT,UT,7T,eT) : K — KT is an adjunction and.
moreover that the theory of this adjunction is the original theory (T, 7, u).

Let us now return for a while to the Kleisli category Kt of a given theory (T, 7, i)

over a category K. Recall that Kt has as objects the objects of K and as morphisms

f:X =Y, K-morphisms f : X = T(Y). Moreover composition is defined by

gof=pzT(g)f, foral f: X =Y, g:Y — Z € Mor(Kt).

T(g)

x —L— 1Y) T(T(Z)) -2~ T(2)

Define functors Up : Kt = K and Fp : K = Kt as follows:

Ur(X) = T(X), for every X € |[Ky|, and, if f : X = Y € Mor(Kt), then Ur(f) =
pyT(f) : T(X) = T(Y). Further Fp(X) = X, forevery X € [K|,and,if f: X =Y €
Mor(K), then Fr(f) =nyf : X = Y € Mor(Kt). Finally, define nt : Ix — UrFy by

nt =71 and ey : FrlUr — Ix; by et x = i7(x). It then turns out that (Fr, Uy, 5y, e1) :
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K — Kr is an adjunction and that the theory of this adjunction is the given theory

(T.n,p) as well.

The Comparison Functors

In this paragraph we consider the reverse problem. Instead of starting with a given
algebraic theory and comparing it with the theory of the adjunction constructed from
the original theory, we start with an adjunction (F.U.n.¢) : K — A and investigate
its relationship with the adjunctions constructed as before by the theory of the given
adjunction.

In this direction, the following theorem is proved in [39].

THEOREM 1.11 (COMPARING ADJUNCTIONS WITH ALGEBRAS) Let (F.U. n.¢) : K

— A be an adjunction, T = (UF,n,UcF) the theory it defines in K. Then there ez-
ists a unique functor R : A = KT with UTK = U and K'F = FT.

The functor A, whose existence and uniqueness is asserted in the theorem and which

makes the F' and U paths of the following diagrams commute
A—B T A—FE g
AN e N S
K K

is defined as follows:

K(A) = (U(A),Uea), for every A € |A|, and, if f : A - B € Mor(A), then
K(f)=U(f) : (U(A),Uea) = (U(B), Ues).

A similar result holds with the Kleisli category Kt of T in place of the category KT
of the T—algebras.
THEOREM 1.12 (COMPARING ADJUNCTIONS WITH FREE ALGEBRAS) Let (F, U, 7,
€) : K — A be an adjunction and T = (UF,n,UeF’) the theory it defines in K. Then there

exists a unique functor L : K — A, with UL = Ur and LFy = F, whose restriction
gives an equivalence of categories Ko — F(K).



Kt ——— A Kr —=—— A
AN AN
K K
We now set out to present Beck’s Theorem which provides a characterization of
algebras, i.e., gives necessary and sufficient conditions for the comparison functor A" :
A = KT to be an isomorphism of categories.

First we need some new concepts.

Let C be a category. A fork in C is a diagram

h g

A sz C

with gf; = gfs. A coequalizer g of the parallel pair fi, f> is then a fork as above such

that. for any ¢’ : B — D, with ¢’ fi = ¢’ f2, there exists unique A : C — D with ¢’ = hgq.

v Ij g
A T B C
\ }
9 !
D

An arrow g is called an absolute coequalizer of f;. f if. for every category X and for

every functor T : C — K the fork

T(fi)
T(f2)

T(g)

T(A) T(B) T(C)

has still T(g) as a coequalizer.

A split fork in C is a fork with two additional arrows h; : C — B,hy : B = A as

follows f g
A "B ©C
ko hy

that satisfy gf1 = gf2,gh1 = ic. fih2 = tB, f2h2 = h1g. h;, k2 are said to split the fork.

The above conditions imply that



e g is a split epi with right inverse k,
® g is the coequalizer of f, f>
® g is an absolute coequalizer of fi, f5.

Given f1,fo: A= BinC, g: B - C will be called a split coequalizer of f,. fo,
if there exists a split fork with fi. f,, g as above.

Finally, a functor U : A — K is said to create coequalizers for a parallel pair
fi, f2: A = Bin A when, to each coequalizer u: U(B) = X of U(f,),U(f2) in K there
is unique C and h : B — C with U(C) = X and U(h) = u, and, moreover, & is the
coequalizer of fi, f.

THEOREM 1.13 (BECK’S CHARACTERIZATION OF ALGEBRAIC FUNCTORS) Let (F,
U, n, ¢ : K = A be an adjunction, (T,n,u) the theory of this adjunction. KT the
category of T-algebras and (FT,UT, nT.eT) : K = KT the adjunction of T. Then the
following are equivalent
(i) The comparison functor R : A = KT is an isomorphism
(7)) U : A — K creates coequalizers for those parallel pairs fi, fo in A for which
U(f1),U(f2) has an absolute coequalizer in K

(it) U : A — K creates coequalizers for those parallel pairs fy, fo in A for which
U(f1),U(f2) has a split coequalizer in K.

For a proof of this theorem the reader is also referred to [39] and [43].



2 EQUIVALENT INSTITUTIONS

The notion of a term w-institution is introduced. Then the notions of quasi-equiva-
lence, strong quasi-equivalence and deductive equivalence are defined for m-institutions.
Necessary and sufficient conditions are given for the quasi-equivalence and the deductive
equivalence of two term 7-institutions. based on the relationship between their categories
of theories. The results carry over without any complications to institutions, via their

associated w-institutions. An application is also given.

Introduction

In [6], Blok and Pigozzi presented the theory of algebraizable deductive systems.
They called a deductive system algebraizable if there exists a quasivariety, over the same
signature, and translations from the sentences of the system into equations and vice-
versa that, roughly speaking, simulate the deduction over the system in the equational
deduction over the quasivariety and vice-versa and are inverses of each other. In [8] they
realized that this notion of algebraizability presents a specific example of the notion of
equivalence of deductive systems. It is simply the equivalence of a deductive system with
another very special system, namely the 2-deductive system that is associated with the
chosen quasivariety.

In this chapter, inspired by the work of Blok and Pigozzi, and in an attempt to set
a framework for the algebraization of institutions, the notions of quasi-equivalence and
deductive equivalence for m-institutions are introduced.

Roughly speaking, a w-instifution consists of an arbitrary category of signatures
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together with a functor SEN that gives, for each signature object £, a set of S-sentences.
For each ¥, a mapping Cs. mapping sets of T-sentences to sets of E-sentences, called
the X-closure, is defined, satisfving the usual Tarski closure axioms.

An institution, on the other hand, consists of an arbitrary category of signatures
together with two functors SEN and MOD that give, respectively. for each signature
object T, a set of E-sentences and a category of £-models. For each signature object
Y. sentences and models are related via a I-satisfaction relation. The main axiom
formalizes the slogan that “truth is invariant under change of notation”, see [26]. The
L-satisfaction relation induces in the standard way a -consequence relation on the set
of T-sentences. The axiom above, then, may be interpreted as giving a structurality
condition for these induced consequence relations. Thus, every institution gives rise in
a natural way to a w-institution.

Following [21] and [26, 27], the category of theories of a w-institution and that of
an institution are considered, i.e., the category with objects theories (closed sets of
sentences) with respect to either the sentence closures, in the w-institution framework.
or the induced consequence relations, in the institution framework. This category plays
the role of the theory lattice of a deductive system in this broader context.

Inspired by [6, 8, 18], the notions of quasi-equivalence and deductive equivalence
for two w-institutions are then defined. Generally speaking, two w-institutions Z; and
I, are quasi-equivalent if the sentence closures of the first can be interpreted in the
corresponding closures of the second and vice versa. This notion of quasi-equivalence
generalizes the notion of equivalence for deductive systems introduced in [8]. Attention
is subsequently restricted to a special, but yet wide, class of w-institutions, the, so-
called, term w-institutions. Some examples of term w-institutions are provided. Using
the theory categories of m-institutions, necessary and sufficient conditions for the quasi-
equivalence and the deductive equivalence of two term w-institutions are given. Namely,

it is proved that two term w-institutions Z; and I, are quasi-equivalent if and only
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if their categories of theories are adjoint categories via an adjunction satisfying some
additional, relatively simple and quite natural, conditions. A similar characterization
for deductive equivalence is also provided. More precisely. it is shown that two term
w-institutions are deductively equivalent if and only if their categories of theories are
naturally equivalent (in the usual category theoretical sense) via an equivalence satisfying
some of the same conditions. These results carry over without any complications to the
institution framework.

Finally, as an application of the theory, the special case of deductive institutions.
that naturally correspond to deductive systems, is explored in some detail. As another
application, two institutions based on an algebraic theory T in a category K, that have
very similar deductive apparatuses, will be constructed in the next chapter and it will
be shown that they are quasi-equivalent but, in general, not deductively equivalent,

institutions.

Institutions and w-Institutions
DEFINITION 2.1 (GOGUEN AND BURSTALL) An institution
T = (SIGN.SEN.MOD. =)
conststs of
(i) A category SIGN whose objects are called signatures

(it) A functor SEN : SIGN — SET, from the category SIGN of signatures into
the category SET of sets, called the sentence functor and giving, for each sig-
nature ¥, a set whose elements are called sentences over that signature ¥ or

Y-sentences.

(iti) A functor MOD : SIGN — CAT® from the category of signatures into the oppo-
site of the category of categories, called the model functor and giving, for each
signature £, a category whose objects are called £-models and whose morphisms
are called £-morphisms.
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(iv) A relation gz C [MOD(E)| x SEN(X), for each ¥ € |SIGNY|, called T-satisfa-
ction, such that for every morphism f : £; — X, in SIGN the satisfaction

condition
m2 Ex, SEN(f)(¢1) if and only if MOD(f)(m.) =5, &

holds, for every m, € IMOD(Z,)| and every ¢, € SEN(E,).

The defining categories and functors of an institution together with their intercon-

nections are illustrated by the following diagram:

SET

SIGN =

Mk

CAT*
Furthermore, the satisfaction condition can be given pictorially as follows:
If f:X, = £, is a morphism in SIGN, then,
MOD(E:) [s,  SEN(L)
MOD(f) SEN(S)
MOD(S:) ks, SEN(Z)
Given an institution Z = (SIGN,SEN,MOD, ), £ € [SIGN|,® C SEN(X) and
M C I[MOD(E)[, we define

¢ = {m € |[MOD(E)|:m s & forevery ¢ € &}

and

M ={p€SEN(E):m g ¢ forevery me M}.

Moreover we set ¢ = ®** and M = M.
From now on when the “” symbol is used, its scope will be the largest possible

well-formed expression to its left. For instance, in SEN(f)(®)° the scope of “” is
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SEN(f)(®) and not just (®), and in SEN(f)(SEN(f)~!(®<))¢ the scope of the second
“e” is SEN(f)(SEN(f)~(®°)) and not just SEN(f)~!(®).
Goguen and Burstall [27], prove the following very useful lemma that is used below

to obtain the m-institution associated with a given institution Z.

LEMMA 2.2 (CLOSURE LEMMA) Let T = (SIGN,SEN.MOD, =) be an institution,
f:E, =2 X, € Mor(SIGN) and ® C SEN(X,). Then

SEN(f)(®°) € SEN(f)(®)".

DEFINITION 2.3 (FIADEIRO AND SERNADAS) 4 m-institution
I = (SIGN, SEN. {Cc }s¢jsiaNi)
consists of the following ((i) and (i) are the same as those for institution)
(i) A category SIGN whose objects are called signatures

(ii) A functor SEN : SIGN — SET, from the category SIGN of signatures into
the category SET of sets, called the sentence functor and giving, for each sig-
nature ¥, a set whose elements are called sentences over that signature ¥ or

Y -sentences.

(iii) A mapping Cs : P(SEN(X)) — P(SEN(T)), for each £ € [SIGN|. called T-
closure, such that
(a) ACCc(A), forall £ € |SIGN|, A C SEN(Z),
(b) C<(Cs(A)) = Cs(A), for all T € |SIGN|, A C SEN(L),
(c) C<(A) CCs(B), forall T e€|SIGN|,AC B CSEN(E),

(d) SEN(f)(Cx,(A)) € C=,(SEN(f)(A)), for all £.%, € [SIGN]|.f €
SIGN(Z,, %), A C SEN(S,).

Given an institution Z = (SIGN, SEN, MOD, k=), define

=(Z) = (SIGN, SEN. {Cc}seision)-
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by setting
Ce(®) = @, for all ¥ € [SIGN|,® C SEN(E).

[t is easy to verify, using Lemma 2.2, that 7(Z) is a 7-institution. We will refer to 7(Z)
as to the m-institution associated with the institution Z.

From now on, given a m-institution Z = (SIGN, SEN, {Cs}s¢isiGni). a signature &
and ¢ C SEN(X), we will use the simplified notation ®¢ to denote Cg(®). Usually the
signature ¥ is clear from context and therefore this simplified notation does not cause

any confusion.
COROLLARY 2.4 Let T = (SIGN,SEN, {CS}SGISIGNl) be a w-institution. Then

SEN(f)(®°) = SEN(f)(®)° for all f : £, — £, € Mor(SIGN), & C SEN(S,).

Proof:
Clearly SEN(f)(®)° C SEN(f)(®)¢. For the reverse inclusion

SEN(f)(®°)° € (SEN(f)(®))* = SEN(f)(®)",

the inclusion being valid by (ii1)(d) of Definition 2.3, as required. |
Another lemma will also be of utmost importance for our subsequent considerations.

LEMMA 2.5 Let T = (SIGN,SEN, {Cc}sesian;) be a m-institution, f : £, - T, a
morphism in SIGN and ® C SEN(X,). Then

SEN(f)™'(®°)° = SEN(f)~'(®").

Proof:
Clearly, SEN(f)~'(®¢) C SEN(f)~!(®°)°. For the reverse inclusion, let

¢ € SEN(f)~'(®°).
Then SEN(f)(¢) € SEN(f)(SEN(f)~'(®°)), whence, by (iii)(d) of Definition 2.3,

SEN(f)(¢) € SEN(f)(SEN(f)~"(®))",
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and therefore SEN(f)(¢) € (9°)°, i.e., SEN(f)(d) € ®°. Hence ¢ € SEN(f)~!(®°), as

required. [ |

COROLLARY 2.6 Let T = (SIGN, SEN, {Cxc}c¢isienN|) be a w-institution. f: L, — T,
an isomorphism in SIGN and ® C SEN(E,). Then

SEN(f)(®°)° = SEN(f)(®°).

The definition of a term 7-institution is now given. Some examples follow in the next

section.

DEFINITION 2.7 Let T = (SIGN, SEN, {CS}Se[SIGN[) be a w-institution, A € |SIGN]|
and p € SEN(A). (A,p) is called a source signature-variable pair if there ezists a
function f : {(£,¢) : £ € [SIGN|,¢ € SEN(X)} — [(4|SIGN)|, such that, for all
L € |SIGN]| and for all $ € SEN(Z), fice) : 4 = T and SEN(fis.0))(p) = ¢ and

VE' € [SIGN]| Vg: S = ' (gf(s.0) = fizrsENt)e))-

A w-institution is called term if it has a source signature-variable pair. An institution
T is called term if its associated w-institution w(I) is a term w-institution.

A SIGN-object such as A will be called a source signature and a sentence such as
p will be called a source variable or, simply, a variable.

The following diagrams illustrate the definition:

Jfiz.0) SEN(f(z.0)) )

A z D) P : 6

f(:',ssxum / SEN(f(S'seN(g)(«m\ A“(g)
v SEN(g)(9)

Examples

Two examples of term institutions are provided. The first is borrowed by the
quantifier-free first-order theory of n-ary relations and the second by the theory of finite

state automata.



n-ary Relations

The reader is referred to [27] for a more general construction of a multi-sorted in-
stitution for first-order logic. Let SET denote as usual the category of all small sets.
Given X € |[SET), let X denote a disjoint copy of X constructed in some canonical way.
X could be, e.g., the set X x {0}.

Given X € |[SET|, define R(X). the propositional language of n-ary relations

in X, or. more simply, X-relational formulas, to be the smallest set, such that
o X CR(X)
e —r € R(X), for every r € R(X), and
o o Aty € R(X), for all rg,ry € R(X).

Given f : X — R(Y), define f* : R(X) — R(Y) by recursion on the structure of

X-relational formulas as follows:
o f*(Z) = f(z), for every z € X,
o f*(—-r)=~f"(r), for every r € R(X), and
o fr(roAry) = f(ro) A f*(r1), for all ro, 7 € R(X).

A map f : X = R(Y) will be denoted by f : X — Y. Define SIGN to be the
category with collection of objects |SET| and morphisms f from X to Y all set maps
f: X =Y. 1e,

SIGN(X,Y)={f: X = R(Y) € Mor(SET)}, for all X,Y € |SET|.
Compositionoof f: X —Y,g:Y — Z in SIGN is defined by

gof=gf.
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Given X € |[SIGN|, let RMx be the category whose objects are all first-order relational
structures A = (A, X*), where each symbol z € X is interpreted as an n-ary relation

symbol z#, and whose morphisms are all first-order structure homomorphisms & : A —

B € Mor(RM ) such that
(@gs- -+ ny) € 2 ifand only if (k(ao),... .h(an_y)) € 2B, (2.1)

for all ag,....an-1 € A.
The following lemma holds

LEMMA 2.8 Let X € |SET|, (A, X%),(B,XB) € |IRMy| andh: (A. X2) = (B.XB) ¢
Mor(RMy). Then, for all r € R(X),a0,-.. ,@n-1 € A,

(a0;--- ran-1) €™ iff (R(ao),-.- ,h(an_1)) € 8.

Proof:
By induction on the structure of r € R(X).

If r =7, for some z € X, then
(ao, cen gy a,,_l) € TA iff (ao, coe g Gn_[) € IA (by defin. of EA)
iff (R(ag):-...h(az-1)) € 2B (since h € Mor(RMy))
iff (h(@o),---,h(@z-1)) €EZB (by defin. of TB)
If r € R(X), such that (ag,... ,an—1) €™ iff (h(ao),-..,h(as—;)) € rB, then
(@g... ,8ny) € (-r)* iff (ao0,...,@n-1) € ™™ (by defin. of (-r)A)
iff (h(aq),... ,h(@n-1)) € ® (by induction hypothesis)
iff (h(aq),.-. ,h(@n-1)) € (-r)B (by defin. of (-r)B).
The remaining case can be handled similarly. [ |
Now, let X € [SIGN|,r € R(X) and A = (4, XA) € |RMy|. Define, as usual the

interpretation * of r in A by recursion on the structure of the X-relational formula

r as follows
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e TA is the interpretation of z in A, for every r € X,
o (-r)A = A" — A, for every r € R(X), and
o (roAr)A =rnrd, for all ro,r, € R(X).

Finally, given f : X — Y € Mor(SIGN) and A = (A,Y?) € |[RMy/, define f#(A) =
(A, X/*(A)) € IRM], by setting

# .
(ag,-.. ,@n-1) € /TA) (@gy... .Gn-1) € f(z)A.

—_
[
H
3]

~—

for all z € X, aq,... ,an-1 € A.

DEFINITION 2.9 Define REL = (SIGN,SEN,MOD, ), as follows:
(i) SEN : SIGN — SET is defined by
SEN(X) = R(X), forevery X €|SIGN],
and, given f : X — Y € Mor(SIGN),SEN(f) : R(X) — R(Y) is given by
SEN(f) = f=.

(ii) MOD : SIGN — CAT is defined as follows: For every X € |SIGN|,MOD(X)
is the category with objects all pairs of the form (A.ad). where A € |RMy| and
a@ € A and morphisms h : (A.@) — (B, g),RMX-morphisms h : A = B, such
that b = h(a), i.e., b; = h(a;), for every i € w.
Given k : X — Y € Mor(SIGN) the functor MOD(k) : MOD(Y) - MOD(X)
sends (A, @) to (f#(A),@) and a morphism h : (A,&) — (B,B) to the morphism
MOD(k)(k) : (f#(A),&) — (f#(B),b) with MOD(k)(k) = h.

(iit) For all X € |SIGN]|,r € R(X) and (A,a) € [MOD(X)|,

(A,@) Exr iff (@0s....an_1) €ETA

Next, it is shown that the previous construction gives an institution. A lemma is

needed first.



35

LEMMA 2.10 Let X,Y € [SET|,f : X — Y € Mor(SIGN) and A = (A, YA) ¢
IRMy|. Then, for all r € R(X),ao,...,a,-1 € A,

(ao,... ,an_[> € rf#(A) lﬂ. (007"' van—l) € f-(r)A'

Proof:
By induction on the structure of r € R(X).

If r =7, for some z € X, then

(Goy ... +noy) €F*A) G (ag,...,aq-y) € 2/*(A)  (by defin. of T/*'A))
iff (ag,--- .an-1) € f(z)* (by (2:2))
iff (@o,....an-1) € f(Z)* (by defin. of f7)

If r € R(X), such that (o, ... .an_1) € r/*A) iff (ao....,an_1) € f*(r)A, then

(@0, ... +@n1) € (-7)*A) iff (aq,...,an_ 1) € /¥ A (by defin. of (-r)/*(A))
iff (o,...,an1) € f(r)* (by the ind. hypothesis)
iff (ao..-. ,an-1) € (=f(r))* (by defin. of (=f*(r))*)
iff (go,...,an-1) € f(-r)A (by defin. of f*).

The remaining case can be treated similarly. |
THEOREM 2.11 REL = (SIGN,SEN,MOD, ) is an institution.

Proof:
We only show that MOD is well-defined on morphisms and then verify that the

satisfaction condition holds.

-

First, let £ : X — Y € Mor(SIGN) and h : (A,a) — (B,b) € Mor(MOD(Y')). Then
h: (k*(A),d) — (k#(B),b) € Mor(MOD(X)), since, for all ag, ... ;a,_; € A,

(@os- .. 1@ny) €A iff (aq,...,a0) € K(z)* (by (2.2))
iff (h(ao),---,kh(an-1)) € k(z)B (by Lemma 2.8)
iff (h(ao),--- ,h(an-1)) € "B (by (2.2))
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Finally, let £ : X — Y € Mor(SIGN),r € R(X) and ((4.YA).a@) € [MOD(Y)|.
Then
MOD(K)({(A.Y4).@)) Ex r iff ((A,k#(Y2)).d) xr
iff (ao,... .any) € rF*(A)
iff (ag,....an-1) €k"(r)* (by Lemma 2.10)
i ((4,YA),) kv k(r),
as required. [
Finally, it is shown that REL = (SIGN.SEN.MOD. k=) is a term institution.
THEOREM 2.12 REL = (SIGN,SEN,MOD, ) is a term institution.

Proof:

Let A = {a} € |[SIGN| be a one-element set and p = @ € SEN(A) = R(A). Define
f:{(X,r): X € |SIGN]|,r € R(X)} — |(A|SIGN)]| by

fixn:A—=X, with fix(a)=r

A straightforward computation verifies that, for every ¢ : X — Y € Mor(SIGN),
g0 fixry = fivseng)(r) as required. o

In [27], Goguen and Burstall construct an institution for first-order logic with terms.
Although REL represents the quantifier-free fragment of first-order logic without terms
having only relational symbols of a single arity, it is not a special case of the construction
in [27]. The main reason is that in the present development relational symbols of one
signature may be mapped to complex relational formulas of another signature whereas
in [27] the morphisms in the signature category map relational symbols of one signature
only to relational symbols of another signature rather than to more complex formulas.
The present treatment, although more general in this respect, has the drawback that it
can only handle first-order structure homomorphisms satisfying (2.1) and not all first-

order structure homomorphisms. This is because Lemma 2.8 fails for an arbitrary first-

order structure homomorphism 4 : A — B.



Automata

Given X € |SET]|, define W(X), the set of all words in X, or, more simply, X-

words, to be the smallest set, such that
o XU {\} CW(X)and
o wywp € W(X), for all wy,w, € W(X).

Given f : X = W(Y), define f~ : W(X) — W(Y) by recursion on the structure of

X-words as follows:

e f*(Z) = f(z), for every z € X, and
o fY(wnwr) = f(wy)f(w2), for all wy,w, € W(X).

A map f: X — W(Y) will be denoted by f : X — Y. Define SIGN to be the category
with collection of objects |[SET| and morphisms f from X to Y all set maps f: X — Y,

ie.,

SIGN(X,Y)={f: X = W(Y) € Mor(SET)}, for all X.Y € |SET].
Compositionoof f: X — Y,g:Y — Z in SIGN is defined by
gof=gf.

Given X € [SIGN]|, let AUT be the category with objects all finite state automata (see
(35, 44]) M = (Q. X, 40,9, A), and morphisms k : (Q, E, g0, 4, A) = (P, T, po. €, B) pairs
h = (hs,h) of SET-functions ks : Q@ — P and h;: £ — T, such that

¢ hs(q) = po

* hs(d(q,0)) = e(hs(q), hi(o)), forall g€ Q,0 € E, and
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o hs(A) = B.

DEFINITION 2.13 Define AUT = (SIGN,SEN,MOD, ), as follows:
(i) SEN : SIGN — SET is defined by
SEN(X) = W(X), forevery X € |SIGN],
and, given f : X — Y € Mor(SIGN),SEN(f) : W(X) — W(Y) is given by
SEN(f) = f~.

(it) MOD : SIGN — CAT is defined as follows: For every X € |[SIGN|. MOD(X)

is the category with objects all pairs of the form ((Q. X, qo. 8, A), f), where (Q, T. qo.
8.4) € |AUT| and f : X — £ € Mor(SIGN) and morphisms h : ((Q,X, qo,
0. A), f) = ((P.T,po,¢, B),g) AUT-morphisms h : (Q,X,qp, 9, A) = (P.T, po,e,
B), such that g = h}f.
Given k : X — Y € Mor(SIGN) the functor MOD(k) : MOD(Y) - MOD(X)
sends ((@,E, qo,6, A), f) to ((@.X. g0, 6, A), fok) and a morphism h : ((Q, T, qo. ¢,
A), f) = ((P,T,po,¢€,B).g) to the morphism MOD(k)(k) : ((Q.%, .9, A). f o
kY = ((P,T,po,¢, B), gok) with MOD(k)(k) = h.

(tiz) For all X € [SIGN|,w € W(X) end ((Q.%, q.,9, 4), f) € ]IMOD(X)]|,

((ngvq‘)’&’l)vf) #X w lﬁ &(qo,f‘(w)) € A.

Next, it is shown that the previous construction gives an institution.

THEOREM 2.14 AUT = (SIGN,SEN,MOD, ) is an institution.

Proof:
We only show that MOD is well-defined on morphisms and then verify that the

satisfaction condition holds.
First,let £ : X — Y € Mor(SIGN) and 4 : {((Q. £, q0,9, 4), f) = ((P,T.po,c. B). g)
€ Mor(MOD(Y')). Then

h:{(Q,E.q,6,A4),fok) = ((P,T,po.¢, B), g o k) € Mor(MOD(X)),
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since
gk = (hsf)k = (h5f)k
= h3(f k) = h3(fok),

as required.
Finally, let £ : X — Y € Mor(SIGN),w € W(X) and ((Q,%,,d. 4),f) €
[MOD(Y)|- Then
MOD(k)(((@:E.90.8. A). f)) Ex w iff ((Q.5.q0.0.A). fok) Exw
iff 6%(qo.(fo k) (w)) € A
iff 6%(qo. f*(k*(w))) € A
iff (@, %, 9,94, 4). f) Fy k*(w),
as required. )
Finally. it is shown that AUT = (SIGN,SEN,MOD, [=) is a term institution.
THEOREM 2.15 AUT = (SIGN,SEN,MOD, =) is a term institution.
Proof:

Let A = {a} € |[SIGN]| be a one-element set and p = @ € SEN(A) = W(A). Define
f:{(X,w): X € SIGN|,w € W(X)} — |(A|SIGN)| by

f(X,w) tA— .X, with f(x.w)(a) = w.

A straightforward computation verifies that, for every ¢ : X — Y € Mor(SIGN),

90 fix.w) = fiv,SEN(g)(w)): @S required. n
The Category of Theories

Let T = (SIGN, SEN, {Cc}s¢sicn|) be a 7-institution. Following [21] we define its
category of theories TH(Z), as follows:

The objects of TH(Z) are pairs (E,T), where £ € [SIGN| and T C SEN(X) with
T¢ = T. The morphisms f : (£;,T) — (£2,T>) are SIGN—morphisms f : £; = E,,
such that SEN(f)(T}) C T>.
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Given an institution Z = (SIGN,.SEN,MOD, k) define TH(Z) = TH(#(Z)), i.e..
its category of theories is the category of theories of its associated 7-institution. It
is straightforward to verify that this notion coincides with the notion defined directly in
[27].

Now, coming back to the w-institution framework, define a functor SIG : TH(Z) —
SIGN by

SIG(E.T))=%. forevery (Z,T)¢€ |TH(Z)|,

and

SIG(f) = f, forevery f:(X,,T))— (£:.T2) € Mor(TH(I)).

Then the following holds.

LEMMA 2.16 Let I = (SIGN, SEN, {Cc}seision) be a w-institution and f : (S,,T)) —
(X,.T2) € Mor(TH(Z)) an isomorphism. Then SEN(SIG(f))(T}) = To.

Proof:
Since f : (1. Th) = (E2,T=) € Mor(TH(Z)), SEN(SIG(f))(T:) C T-. Since f~!:
(2, T2) = (X1, T1) € Mor(TH(Z)), we also have

SEN(SIG(f))™"(T2) = SEN(SIG(f~"))(T2) C Th.

Thus, T» C SEN(SIG(f))(T}), whence SEN(SIG(f))(T1) = T», as was to be shown. W

Next, define a functor THY : SIGN — TH(Z) by
THY(E) = (£,0°), forevery X €|[SIGN],
and THY(f) : (E1,0°) — (E,,0°), with
SIG(THY(f)) = f, forevery f:X; — I, € Mor(SIGN),

which is well-defined, since, by (iii}(d) of Definition 2.3, SEN( f)(0°)c C SEN(f)(0)c = 0-.
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Finally, define natural transformations 7 : Is;gn — SIG o THY by
ne : £ = SIG(THY(E)) € Mor(SIGN),

with

ne = is, forevery T ¢ |SIGN],
and ¢ : THY 0 SIG — Itn(7) by ¢=.1) : (£.0°) = (E.T) € Mor(TH(Z))), with
SIG(¢ic.y) =i, forevery (I,T) € |TH(Z)|.
Then, the following theorem ([21], Proposition 3.32) holds.

THEOREM 2.17 (THY,SIG, n,¢) : SIGN — TH(Z) is an adjunction.

Proof:

By the preceding discussion n and ¢ are natural transformations. Thus, it suffices to

show that the following triangles commute:

NSIG((Z.T))

SIG((S, T)) SIG(THY(SIG((Z,T))))

. SIG(¢(z,y)
ISIG((S.T))

SIG((S. T))

SIG(gz.1y) © MstGe.1)) = isis = is = ISIG((E.T))

as required, and

THY (ng)

THY(E) THY(SIG(THY(X)))

. ¢THY(Z)
tTHY(Z)

THY(T)

€THY(Z) © THY(T]S) = €THY(Z) © THY(ig) = €THY(T) © im(g) =
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= ETHY(S) = YT 0c) = ITHY(S)>
as required. [}

In the sequel we will denote by THy(Z) the full subcategory of TH(Z) with objects
all theories of the form (X, 0°), T € |[SIGN|.

Then the proof of Theorem 2.17 gives
THEOREM 2.18 THYy : SIGN — THy(Z) acting as THY : SIGN — TH(Z) is an

isomorphism of categories with inverse SIGy : THy(Z) — SIGN given by SIGy =
SIG|TH,1)-

Relating Categories of Theories

Let I, = (SIGN,,SEN;. {Cc}=cesion,)).Z: = (SIGN2,SEN,, {Csleesian,|) be
two m-institutions. Properties of functors relating the categories of theories TH(Z;)
and TH(Z,) will now be introduced, that will be used in the sequel to give the main
characterization theorems of the relations of quasi-equivalence and deductive equivalence
between the w-institutions themselves.

Denote by m, : |TH(Z,)| — |SET| the second projection, defined by m({X;,T})) =
T,, for every (£,,T)) € |TH(Z;)|, and, similarly, 72 : [TH(Z;)| — |SET], given by
w2((E2,T2)) = Ta, for every (£,,T2) € |TH(Z,)|.

DEFINITION 2.19 A functor F : TH(Z,) — TH(Z;) will be called

(i) signature-respecting if there ezists a functor F’: SIGN; — SIGN,, such that

the following rectangle commutes

TH(Z,) ——— TH(Z,)

SIG [ ] SIG

SIGN, — SIGN:

If this is the case, it is easy to verify that F' is necessarily unique.
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(ii) (strongly) monotonic if, for all (£,,T), (%1, T}) € |TH(T ),

T CT, (if and) only if mo(F((S1,Th))) C ma( F((S1, TY))),s
(iii) join-continuous if, for all T, € |SIGN,|,® C SEN,(%,).

(U m2(F((S0 {S}N))E = ma( F((S), 99))).

o€d

Finally, a signature-respecting functor F : TH(Z,) - TH(Z;) will be said to com-
mute with substitutions if, for every f: £, — &1 € Mor(SIGN,),

SEN(F'(/))(m2( F((E1,T1))))* = w2 F((Z1, SEN«(F)(T1)))),

for every (£,.Ty) € |TH(Z,)|, where F' : SIGN, — SIGN,, is the (necessarily unique)
functor of (i).

The properties above may be extended to the case where the two categories of theories
TH(Z,) and TH(Z;) are related via an adjunction. The following definition then applies
DEFINITION 2.20 An adjunction (F.G,n,¢) : TH(Z,) — TH(Z;) will be called

(1) signature-respecting if both F' and G are signature-respecting,
(ii) (strongly) monotonic if both F and G are (strongly) monotonic,
(iii) join-continuous if both F' and G are join-continuous.

Finally, a signature-respecting adjunction will be said to commute with substitu-

tions if both F and G commute with substitutions.

Relating Institutions

In this section the notion of a translation and that of an interpretation between two
n-institutions are introduced. Based on these notions, the relations of quasi-equivalence,
strong quasi-equivalence and deductive equivalence, increasing in strength, can be de-
fined between two w-institutions. These relations provide the necessary means for com-

paring their deductive apparatuses. The weakest notion is introduced first and the rest
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are then developed in increasing order of strength. Characterizations of these relations
will be provided in the following sections of this chapter, in terms of the strength of the
ties that they impose between the categories of theories of the two m-institutions they

relate.
DEFINITION 2.21 Let
I, = (SIGN;,SEN,, {Cs}=esien)). Iz = (SIGN2, SEN,, {Cc}sejsigN,))
be two w-institutions.
e A translation of I, in I, is a pair (F.a) : I} — I, consisting of

(i) a functor F : SIGN; — SIGN; and
(ii) a natural transformation a : SEN; — PSEN; F.

o A translation (F,a) : I, — I, is an interpretation of Z; in I, if, for all T, €
[SIGN,|,® U {¢} C SEN,(E,),

$€® ifandonly if az,(9)C as,(P). (23)

Using these notions the following relations on w-institutions can be defined.

DEFINITION 2.22 Let I,.Z, be two w-institutions, as above.

o I, will be said to be interpretable in I if there ezists an interpretation (F,a) :
Il - Ig.

o I, will be said to be left quasi-equivalent to Z, and I, is right quasi-equiva-
lent to Z, if there ezist interpretations (F,a) : I} = I, and (G,B) : T, — I,
such that

1. (F.G,n,¢) : SIGN; — SIGN; is an adjunction
2. for all ¥, € |[SIGN,|,¢ € SEN,(X,),

SENi(nx,)(9)° C Br(z,)(as, (8))° (2.4)
and, for all T, € |[SIGN;|, ¥ € SEN(E,),

SENy(ex, )(ags,) (8= (¥)))° € {#}. (2:3)



45

In this case (F,a) is a left quasi-inverse of (G.3) and (G, 3) a right quasi-
inverse of (F, a).

o Z, will be said to be strongly left quasi-equivalent to Z, and I, strongly
right quasi-equivalent to I, if there ezist interpretations (F.a) : I} — I,
(G.B) : I = I, such that I and 2 above hold, but in 2 the inclusions are replaced
by equalities.

In this case (F,a) is a strong left quasi-inverse of (G.3) and (G.3) a strong
right quasi-inverse of (F a).

e Z, and I, are deductively equivalent if there ezist an interpretation (F.a) :
Z, = I, and an interpretation (G, 3) : I, — I,. such that {(F.a) and (G.3) are
inverses of one another meaning that (F,a) is a strong left quasi-inverse of (G. 3)

and in | above the adjunction is replaced by an adjoint equivalence.

Note that, if Z; and 7, are deductively equivalent via the interpretations (F,a) : Z; —
T, and (G,8) : o — I, and the adjoint equivalence (F,G,7n,¢) : SIGN; — SIGN,,
then, for all £, € |[SIGN;| and ¥ € SEN,(X,).

{¢}° = SENz(ex, J(ag(z,) (B, (¥)))s (2.6)

and, for all £, € |[SIGN,| and & € SEN,(%,),

{6} = SEN1(7x,) ™ (Br(z,)(as, (9))°). (2.7)

In this case (2.6) and (2.7) are equivalent to (2.5) and (2.4), respectively, in view of
Corollaries 2.4 and 2.6 and the fact that 7z, and es, are isomorphisms.

We define the corresponding notions for institutions using their associated w-institu-
tions.
DEFINITION 2.23 Let I; and I, be two institutions.

e 7, is interpretable in I, if #(Z;) is interpretable in w(Z,).

e Z; is (strong) left quasi-equivalent to Z; if =(Z;) is (strong) left quasi-equiva-
lent to w(Z;) and, similarly, for (strong) right quasi-equivalence.
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e 7, and I, are deductively equivalent if 7(Z;) and 7(Z;) are deductively equiv-

alent.

Note that if Z; and Z; are deductively equivalent and (F,a), (G, 3) inverses of each
other, then each is both left and right strong quasi-equivalent to the other and the unit
and counit of the quasi-invertibility relations are natural isomorphisms.

A technical lemma that will be used very often in what follows is given first.

LEMMA 2.24 Let
I, = (SIGN,.SEN,, {Cc}seisien, ). Iz = (SIGN,, SEN», {Cs}eesian,)
be two w-institutions and (F,a) : I; — I, an interpretation. Then

as, (9°)° = axg,(®)¢, forall T, € |SIGN;|,® CSEN,(L,). (

o
o
—

Proof:
Clearly, as, (®)° C ag, ($°)°. Since « is an interpretation, ag, ($¢) C as, (®)°, whence
ag, (9°)° C (ag, (®)°)<, i.e., ag, (P°)° C ax,(P)¢, as required. |
A lemma giving a property of the quasi-invertibility relations follows.
LEMMA 2.25 Let

I, = (SIGN,SEN}, {Cs}sesion, ). Iz = (SIGN2, SEN;, {Cr}eeisien,))

be two m-institutions such that there exist translations (F,a) : I, - I,,(G, 3): T, = I,
and an adjunction (F,G,n,¢€) : SIGN; — SIGN,, such that, for all T, € |[SIGN,|,¢ €
SEN,(X,), condition (2.4) holds. Then,

SEN, (7, )(®)° C Brzy(as, (8))° for all T, € [SIGN,|, C SEN,(Sy).
Similarly, if, for all £, € |[SIGN:|, % € SEN2(X,), condition (2.5) holds, then

SENa(es, )(@c(sy) (Be, (¥)))° C ¥¢  for all T, € |SIGN,|, ¥ C SEN(S,).



Proof:

SENi(ne,)(®)° = (Useo SEN1(nx, )(9))°
= (Useo SEN1(nz, )(9)°)°
(Uses Brsi)(as, (9)))¢ (by hypothesis)
(Useo Sriz(az,(8)))
= Br=ylas, (),

as required. The second assertion can be proved similarly. [ ]

N

COROLLARY 2.26 Let
I, = (SIGN,SEN;, {Cs}sesign, ). T2 = (SIGN,, SEN,, {Cs}reisigN.))

be two w-institutions such that there ezist translations (F,a) : Iy — 1,,(G.3) : I, = T,
and an adjunction (F,G,n,¢) : SIGN; — SIGN,, such that, for all £, € [SIGN,| and
all $ € SEN(Zy), SENi(ns,)(9)° = Br(s,)(as, (9))°, i.e.. (2.4) holds with equelity in

place of the inclusion. Then
SENi(ne, (@) = Br(z,)(azx,(®)) forall T, €[SIGN,|,® C SEN,(%,).

Similarly, if, for all £, € |SIGN,| and all ¥ € SEN,(E;), SEN2(es, J(ags,)(Fs,(¥))) =
{w}c, then

SEN:(es, J(ag(s,)(Bs,(¥)))* = ¥¢ for all T, € [SIGN:|, ¥ C SEN2(Z.).

Proof:

In the proof of Lemma 2.25 replace inclusions by equalities. [ ]

We next prove a theorem showing that the existence of an adjoint equivalence to-
gether with conditions (2.3) and (2.6) are sufficient for deductive equivalence.
THEOREM 2.27 Let

T, = (SIGN,,SENy, {Cs}sesien,)). Iz = (SIGN,, SEN,, {Cs}sesien,|)

be w-institutions. I; and I, are deductively equivalent if there erist translations (F,a) :
I - L,,(G,8) : I — I, such that (F,G.n,¢) : SIGN; — SIGN; is en adjoint
equivalence, (F,a) is an interpretation and, for all £, € |SIGN,|, v € SEN3(E,),

{¢}c = SBNz(ng )(QG(&)(ﬁsz(d’))c)'
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Proof:

We first need to verify that (G,3) is also an interpretation. To this end, let £, €
ISIGN,|, ¥ U {’'} C SEN,(E;). We have

¥ € Ueiff
{w}c C ¥e iff, by Corollary 2.26,
SEN:z(ex, M ag(s,)(Bs,(¥))°) C SENz(ex, )(ag(s,)(8s, (¥))°) iff, since eg, is iso,
ag(s,)(B=,(¥)) C ag(s,)(8x=,(¥))° iff. since a is an interpretation.
B, (¥) € 8=, (V)5

as required. Thus, (G, 3) : I, — I, is also an interpretation.

Next, let £; € [SIGN;|, ¢ € SEN,(X,). We need to show that condition (2.7) holds.
We have

{o}° = SENi(ng )(8F(z,)(ax, (¢))) iff, since a is an interpretation.

as, (9)° = ag, (SENy(ng))(Br(s,) (@, (€))))°
iff, since « is a natural transformation (see diagram below),

IG(F(Z1))

SEN;(G(F (%)) 222 SEN(F(G(F (1))
SENi(ng}) SENz(F(ng|))
SEN1(Z,) SEN2(F(X41))

as, (¢)° = SEN2(F(ns)))aciriz,)(8F ) (as, (9))°

iff, since (F,G,n,¢) is an equivalence (see diagram below),

F(ng,)
F(%,) l

F(G(F(%1))

h

CF(E)

F(S1)
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as,(¢)° = SENa(er(z,))(acirE,)(Brs)(as, (8))))
= SEN:(erey))(acr)(Bre) (s, (8))°)°)° (by Corollary 2.4)
= SEN:(er(z) )(acir(s)(BFs) (s, (9))°)°) (by Corollary 2.6)
= SENs(er(s)))(aGirz) (Brs) (s, (9)))%) (by Lemma 2.24)
which holds, by assumption and Corollary 2.26. |
Interpretability

We start by giving a characterization of the existence of a translation (F, a) : Z; — I..

from a term w-institution Z; to a w-institution Z,.
LEMMA 2.28 Let
I, = (SIGNy, SENy, {Cc}sesien, ), Iz = (SIGN2, SENa, {Cs}seision,)

be two w-institutions. If there ezxists a translation (F.a) : Iy — I, then there exists a
signature-respecting functor F' : TH(Z,) — TH(Z,).

Moreover, if SIGN,; = SIGN, = SIGN and F = IsigN, then F' makes the follow-
ing diagram commzte

F'

TH(Z,) TH(ZL)

W\, e

SIGN

Proof:
Suppose that (F,a) : Z; — I, is a translation. Define F' : TH(Z,) — TH(Z;) as

follows.
F'((Z1,Th)) = (F(E1),ax, (Th)5), forevery (E,,T)) € |TH(Zy)|,

and, given f : (£,,T1) — (X1,T]) € Mor(TH(Z,)), F'(f) : (F(E1),as,(T1)) —
(F(Z1), ax: (T7)°) is determined by

SIG(F'(f)) = F(SIG(/))-



We have

SEN(F(f))(as,(Th))* = SEN2AF(f))(ax,(T1)) (by Corollary 2.4)
ax; (SENy(f)(Th))° (since a is a natural transf.)
C ag(T))F (since £ : (Sy, Ty) = (4. T7) € Mor(TH(Z,))),

whence F’(f) is a well-defined theory morphism. Since F is a functor, F’, which agrees
with F on morphisms, is also a functor. For signature-respectability. we must show that

the following diagram commutes:

TH(Z,) —— TH(Z)

SIG l lSIG

SIGN, SIGN,

F
For every (S1.T1) € [TH(Z,)!.
SIG(F'((S1.T1))) = SIG({F(Z1), ax, (T1)))

= F(&)

= F(SIG((Zy, T))),
as required, and, for every f : (1, T1) — (S}, T!) € Mor(TH(Z;)). we have, by definition
of F”,

SIG(F'(f)) = F(SIG(f)).

as required. The final assertion of the lemma is straightforward. |
THEOREM 2.29 Let I; = (SIGN,,SEN;, {Cs}sesien,|) be a term w-institution and
Z, = (SIGN,,SEN,, {CS}Se[SIGN;»[) be a w-institution.

(i) There ezists a translation (F',a) : Iy — I, if and only if there exists a signature-
respecting functor F : TH(Z;) — TH(ZL,).

(i1) Moreover, in case SIGN,; = SIGN, = SIGN, there ezists a translation ([sigN, @)
: Iy = I, if and only if there exists a functor F : TH(I,) — TH(Z,) that makes



the following diagram commute

TH(Z,) £ TH(Z)
SIGN

Proof:

A stronger “only if”, without the requirement that Z; be term. was proved in Lemma
2.28. For the “if” direction, suppose that F : TH(Z;) — TH(Z;) is a signature-
respecting functor. Then, there exists a unique functor F’ : SIGN, — SIGN,, such

that the following rectangle commutes

TH(Z,) —— TH(T)

SIG l

SIGN; — SIGN,;

Moreover, if the given triangle commutes, then F' = Isign. Since Z, is term, there

exists a source signature A € [SIGN,| and a variable p € SEN,(A). Set

Define @ : SEN; — PSEN2F” by as, : SENi(S1) = P(SEN2(F(S1))), with
az,(6) = SENo(F'(fs,.9))(©), forall T € [SIGN|,6 € SEN(S,).

It suffices to show that a : SEN, — PSEN,F” is a natural transformation, i.e., that the

following diagram commutes, for every f : £; — £} € Mor(SIGN; ).

SEN;(E1) —=— PSEN.(F'(S1))
SEN:1(f) PSEN2(F'(f))
SEN, (=, PSEN,(F'(}))

Aer
-1
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For every ¢ € SEN,(X;), we have

PSEN(F'(f))(as,(8)) = SEN2(F'(f))(SEN2F'(fiz,.0)))(0)) (by defin. of as, )
= SEN2(F'(ffiz,.0)))(O) (since SEN,F’ is a functor)
= SEN2(F'(fi=;seN(1)6))))(©) (by the term property)
= ag(SEN(f)(0)) (by definition of ag/),

as required. Thus, (F’,a) : Z; — I, is a translation, as was to be shown. ]

A characterization of interpretability follows.

LEMMA 2.30 Let
I, = (SIGN,,SEN;, {Cc}sesion ). I: = (SIGN2, SEN2. {Cs}seisian,)

be two w-institutions. If there ezists an interpretation (F,a) : I} — I,, then there ez-
ists a strongly monotonic, join-continuous, signature-respecting functor F' : TH(Z;) —
TH(Z,) that commutes with substitutions.

Moreover, if SIGN; = SIGN, = SIGN and F = IsigN, then F' : TH(Z;) —
TH(Z;) makes the following diagram commute

TH(T,) £ TH(Z,)

g& SIG

SIGN

Proof:
Consider the functor F’ : TH(Z;) - TH(Z;) that is given by Lemma 2.28. We show
that it is strongly monotonic, join-continuous and commutes with substitutions. To this

end, let (X,,T1), (%1, T}) € I TH(Z,)|. Then

T, CT| it ag,(T1)° C as,(T])° (since a is an interpretation)
iff m F'((Z1,Th))) C ma F'((E1,T7))) (by the definitions of F', ),

as required. To show that F’ is join-continuous, let £; € |SIGN;|,® C SEN,(X,). Then



(Useo m2(F((E1. {0}N)° = (Usee @=, ({8}°)°)° (by the definition of F’ and ;)
= (Useo @5, (8)°)° (by Lemma 2.24)
= (Useo o=.(9))°
= og, (@)
= ag,(9°)° (by Lemma 2.24)
= m(F'((Xy,9))) (by the definition of F’ and ),

as required. Finally, for commutativity with substitutions, letting f : £, — T} €

Mor(SIGN, ), we have

SEN2(F(f))(m2(F'((S1,T1))))® = SEN2(F(f))(ex, (T1)°) (by the def. of F', )
= SEN:(F(f))(es,(T1)) (by Corollary 2.4)
= ag;(SENi(f)(T1))* (since a is a nat.transf.)
= ag (SEN{(f)(T1)°)° (by Lemma 2.24)
= m(F'((S,SEN,(f)(T1)%))) (by def. of F'. ).

as required. The second assertion follows by the last assertion of Lemina 2.28. |

THEOREM 2.31 Let I; = (SIGN,,SEN;, {Cc}sesion,|) be a term m-institution and
= (SIGN., SEN., {CS}SGISIGNzi) be a w-institution.

(i) There ezists an interpretation (F',a) : Iy — I, if and only if there exists a strongly
monotonic, join-continuous, signature-respecting functor F' : TH(Z;) — TH(Z,)

that commutes with substitutions.

(ii) Moreover, in case SIGN,; = SIGN, = SIGN, there ezists an interpretation
(Isign,a) : Iy — I, if and only if there ezxists a strongly monotonic, join-
continuous functor F : TH(Z,) — TH(Z,) that makes the following diagram

commute
TH(T,) £ TH(Z,)
SIGN

and commutes with substitutions.



Proof:

A stronger “only if” was proved in Lemma 2.30 without the requirement that Z, be
term. For the “if” direction, let F” : SIGN; — SIGN>,a : SEN; — PSEN,F' be the
components of the translation given by Theorem 2.29. (ii) of 2.29 ensures that, if the
given triangle commutes, then F’ = [gigN-

Note that

T2(F((S1,9%))) = ag, (8)5. forall T, € |[SIGN,|.® CSEN,(Si).  (2.9)

ax,
In fact, we have

oz, (@) = (Useo =i (9))°
= (Useo SEN2(F'(fiz,.6)))(©))° (by the definition of ax,)
= (Ugeo SEN2(F'(fix,,0)) (2 F({A, {p})))))° (by the definition of ©)
= (Usea SENo(F '(f(:l a))(m2(F((A, {p}))))
= (Useo 2 F((S: U,m(nmemmmmmwmmq
= (Useo m2(F({E1, {8}N)))°

= m(F((X1,9°))) (by join-continuity),

(by the term property)

as required.
It only remains to show that (F’.a) : T, — Z, is an interpretation. To this end, let

T, € |SIGN| and ® U {¢} C SEN{(Z1). Then

ag,(¢) C as, (®)° iff
as, (9)° C ag, (®)° iff, by Equation (2.9),
T2 F((E1,{6}9))) C m( F({E,, ®°))) iff, by strong monotonicity,
(o} C o if
o € &,

as required. a
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Quasi-Equivalence

In this section the relation of quasi-equivalence between two term w-institutions Z,
and 7, is characterized. As a corollary, a characterization of strong quasi-equivalence
is obtained. This also yields a characterization of deductive equivalence by looking at
the special case where the adjunction between the signature categories happens to be
an adjoint equivalence. However, in the main result of the next section. Theorem 2.41.
it will be shown that in this special case, the additional requirement that the unit and
counit of the adjunction be natural isomorphisms can simplify the conditions imposed

significantly.
LEMMA 2.32 Let

I, = (SIGN,SENy, {Cs}seisieny)). Lz = (SIGN2, SEN,, {Cr}reisioN,))

be two w-institutions and (F,G,n,¢) : TH(Z,) — TH(Z:) a signature-respecting adjunc-
tion. Then, for all (£,,T1),(X:,T}) € |TH(Z,)|,(Z2.T2), (., T3) € |TH(L,)),

SIG(ns,, 1)) = SIG(nz,.1y)  and  SIG(es,. 1)) = SIG(¢(z, 12y)-

Proof:
We show that, for all £; € [SIGN,|,(,,T}) € [TH(Z;)|,

SIG(n(z,.1)) = SIG(n(z, 0¢))-

To this end, consider the theory morphism z : (£;,0°) — (X;,T;), that is the iden-
tity on signatures. This morphism agrees on signatures with the morphism iz, gy :
(£,,0°) = (X,,0°), that is also the identity on signatures, by definition. Thus, by

signature-respectability,

SIG(F(i)) = SIG(F(itg,09))
= SIG(iF(z, 99))-
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Similarly, by signature-respectability, the above equation yields

SIG(G(F(i))) = SIG(G(ir(s, 0<)))
= SIG(iG(F((Sx'oc))))
= isIG(G(F((Sx.O‘))))7

and, therefore, the following diagram commutes, by the naturality of n :

SIG(n(x, o¢)

SIG((S1,0°)) —=281G(G(F((S1,09)))

it, I l‘sxc(cm(‘:l.aﬂm

SIG((S1. Th), )§IG(G(F((31,T1))))

Gz,
This shows that SIG(mz, 1)) = SIG(7(z, 0<)), as required. The corresponding relation

for the counit € can be proved similarly. [ |

LEMMA 2.33 Let
I, = (SIGN,, SENy, {Cc}sesion,), T2 = (SIGN2,SEN,, {Ce}reisien,))

be two w-institutions.

(i) If (F.G,n,¢) : TH(Z;) - TH(Z:) ts a signature-respecting adjunction, then there
ezists an adjunction (F',G',n',¢') : SIGN,; — SIGN..

(i) Moreover, if (F.G,n,¢) : TH(Z;) - TH(Z:) is a signature-respecting adjoint
equivalence then (F',G',n'.€) : SIGN; — SIGN; is also an adjoint equivalence.

Proof:
By signature-respectability, there exist unique F’ : SIGN; — SIGN, and G’ :

SIGN, — SIGN,, such that the following squares commute:

TH(I,) —— TH(Z,) TH(L,) —— TH(Z,)
SIG ‘ lSIG SIG l SIG
SIGN; —— SIGN, SIGN, —— SIGN,
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By Lemma 2.32, there exists unique 1’ : Isign, — G'F”. such that the following

diagram commutes

Itn(z,) GF
SIG SIG
Isign, G'F'

Y

Similarly, there exists unique €' : F'G’ — [gigN,. such that. the following diagram

commutes
FG —— Ituz,)
SIG SIG
F'G’ IsigN,

It is not difficult to check that (F'.G'.7',¢') : SIGN,; — SIGN is an adjunction and
that, in case (F,G.n,¢) : TH(Z;) — TH(Z;) is an adjoint equivalence. (F’.G’, 7", €'} :
SIGN,; — SIGN: is also an adjoint equivalence. [ |

DEFINITION 2.34 Let

I, = (SIGN,,SENy, {Cs}seisieny)):  T» = (SIGNz, SEN», {Cs}rejsian,))

be two w-institutions. An adjunction (F,G,n,¢) : TH(Z,) - TH(Z;) will be said to be
strong if the following hold

(1) SENy(SIG(ns, 1)) (Th) = m(G(F((E1,T1)))), for every (E,,T) € [TH(Z;)|, and

(il) SENz(SIG(C(S‘Q'Tz)))(Tg(F(G((Eg,Tg)))))c = Tg, fOT‘ every (Sg, Tg) € lTH(Iz)I.

LEMMA 2.35 Let
I, = (SIGN,,SENy, {Cs}cesiony)): I = (SIGN2,SEN,, {Cs}seisieon,))

be two w-institutions.



(1) If I, is left quasi-equivalent to I, via the interpretations (F,a) : I; — I,,(G.8) :
Z, — I, and the adjunction (F,G,n,€¢) : SIGN, — SIGN,, then there erists
a strongly monotonic, join-continuous, signature-respecting adjunction (F',G'.n'.
¢) : TH(Z,) — TH(Z,) that commutes with substitutions.

(it) If I, is strong left quasi-equivalent to I, then the adjunction (F'.G'.n'. €) :
TH(Z,) - TH(Z,) is strong.

(iii) If I, is deductively equivalent to I, then the adjunction (F'.G'.¢'. €'y : TH(Z,) —
TH(Z,) is an adjoint equivalence.

(tv) If SIGN,; = SIGN, = SIGN, F = G = Isign and n and ¢ are ihe identity
natural transformations, then ' and ¢’ are the identities, i.e., F' and G’ are inverse

isomorphisms that make the following diagrams commute

TH(Z,) F TH(Z.) TH(Z,) ¢ TH(Z,)
SIGN SIGN
Proof:

(i) Let (F,a) : Iy = I,.(G.8) : I; = I, be the two interpretations and (F,G,n,¢) :
SIGN,; — SIGN, the adjunction witnessing the quasi-equivalence relation between
Z, and 7Z,. By Lemma 2.30 there exist strongly monotonic, join-continuous, signature-
respecting functors F’ : TH(Z,) - TH(Z;),G' : TH(Z.) - TH(Z;), that commute

with substitutions. Define ' : Ity(z,) = G'F' by

My © (S, T1) = (G(F(E1)), Bre,) ez, (T1))9),

with

SIG(nzghm) =1x,, forevery (E,,T})€ |TH(Z,)|,

and € : F'G’ = Iz, bY €, 1) * (F(G(S2)), ez (. (T2))%) = (2, Ta), with

SIG(CZEQ,Tz)) =e¢s,, forevery (2, T3) € |TH(Z)|-
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Since, by the definition of left quasi-equivalence and Lemma 2.25,

SEN(ne, Th)° C Br(z,)(as,(Th))°

and

SENs(es, ) (agren (Bza(T2)))* C T,

both 7, 1,y and €, 1., are well-defined theory morphisms and it is clear that (F”. G, 7',
¢’) : TH(Z;) — TH(Z,) is an adjunction. Since both F’ and G’ are strongly monotonic.
join-continuous, signature-respecting and commute with substitutions. (F’,G’,7',€) is
also strongly monotonic, join-continuous, signature-respecting and commutes with sub-
stitutions.

(ii) If Z; is strong left quasi-equivalent to Z, then, by Corollary 2.26,
SEN:(ng, )(®)° = Br(s,)(ox, (@) forall X, € [SIGN,|,® C SEN;(E;) and

SENz(es, M ag(s,)(Ox,(¥)))S = ¥¢ for all I, € [SIGN,|, ¥ C SEN,(X,).
Thus, (i) and (ii) of Definition 2.34 hold and (F',G'.7’,€) is a strong adjunction.
(iii) If Z; and Z; are deductively equivalent then (F',G’, 7', ¢’) is obviously an adjoint
equivalence, since n’ and ¢ are isomorphisms.

(iv) This part is clear by Lemma 2.30 and the definition of n’ and ¢'. |

THEOREM 2.36 Let
I; = (SIGN,,SEN;, {Cs}eeisieny)), T2 = (SIGN:, SEN,, {Cs}eeisian,))

be two term w-institutions.

(i) I, is left quasi-equivalent to I, via the interpretations (F'.a) : I} — Ip.(G'.3) :
Z, = I, and the adjunction (F'.G'.n’,€) : SIGN; — SIGN,, if and only if
there exists a strongly monotonic, join-continuous, signature-respecting adjunction
(F,G,n,¢) : TH(Z;) — TH(Z;) that commutes with substitutions.
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(ii) I, is strong left quasi-equivalent to I, via the interpretations (F'.a) : I, —
L,.(G",8) : I = I, and the adjunction (F',G'.7'.€¢') : SIGN, — SIGN,, if
and only if there exists a strongly monotonic, join-continuous, signature-respecting
strong adjunction (F,G,n,¢) : TH(Z,) - TH(Z;) that commutes with substitu-

tions.

(tii) I, is deductively equivalent to I, via the interpretations (F'.a) : I} — T,.(G'. 3) :
I, = I, and the adjoint equivalence (F'.G'.n',€') : SIGN, — SIGN., if and only
if there exists a strongly monotonic. join-continuous, signature-respecting adjoint
equivalence (F,G,n,€) : TH(Z,) — TH(Z,) that commutes with substitutions.

(iv) If SIGN, = SIGN, = SIGN, then I, is deductively equivalent to I, via the
interpretations (IsigN, @) : 1 = I, (IsigN. B) : Z» = I, and the identity adjoint
equivalence if and only if there exist strongly monotonic, join-continuous inverse
functors F : TH(Z,) - TH(Z;) and G : TH(Z;) — TH(Z,) that make the

following diagrams commute

TH(Z,) d TH(Z;) TH(Z) i TH(Z,)
SIGN SIGN

and commute with substitutions.

Proof:

A stronger “only if” was proved in Lemma 2.35 without the requirement that Z;,Z, be
term institutions. For the “if” direction construct the two interpretations (F’,a) : I; —
,,(G',B) : I = I,, given by Theorem 2.31, and note that, since (F,G.n,¢€) : TH(Z;) —
TH(Z;) is signature-respecting, there exist, by Lemma 2.33, n’ : Isign, — G'F” and
¢ : F'G' = IsigN,, such that (F',G'.n’,¢') : SIGN; — SIGN is an adjunction and an

adjoint equivalence in case (F,G,n,¢) : TH(Z;) — TH(Z,) is an adjoint equivalence.

Thus, it only remains to show that
SEN, (1%, )(6)° C Brveyy(as,(0))', forall S, € [SIGN,],¢ € SEN,(Sy).
and

SEN:(et, )(acr (=) (B, (¥)))° C {#}°, forall T € |SIGN,|,3 € SEN,(Z,)
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with inequalities replaced by equalities in case of a strong quasi-equivalence or of an

adjoint equivalence. We have

Brizsylas, (@) = Bprs,)(ax, (8))° (by Lemma 2.24)
= Bpsyla {o}‘ ¢ (by Lemma 2.24)
= Beusy(ma( FU(S1, {9})))° (by Equation (29))
= m(G((F'(Sl)mz(F((Su{¢}¢>))>)) (by Equation (2.9))

= m(G(F({Z1,{e}M)
(since F((E1,{8})) = (F'(Z1) m(F((E1, {0}))))
2 SEN(ng,)({8}°)° (by Lemma 2.32)
= SEN(ng, )()5,
as required. The remaining inclusion and the equalities in the cases of a strong quasi-
equivalence and of an adjoint equivalence can be treated similarly. The last assertion

also follows by Theorem 2.31(ii) and part (iii). |

Deductive Equivalence

The notion of deductive equivalence was defined for w-institutions in the section on
“Relating Institutions” and a characterization was obtained for the deductive equivalence
of two term 7-institutions in terms of their categories of theories in Theorem 2.36(iii) of
the previous section, as a special case of a similar characterization for the more general
notion of quasi-equivalence. In this section, we exploit the special additional features
present in the case of a deductive equivalence, more precisely, the fact that units and
counits of the adjunctions involved are natural isomorphisms, to obtain a refinement of

part (iii) of Theorem 2.36.

LEMMA 2.37 Let

I, = (SIGN,SEN;, {Cc}eesiony), Tz = (SIGN2, SEN,. {Cs}reision,|)
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be two w-institutions. A signature-respecting adjoint equivalence (F,G,n,¢) : TH(Z,) —
TH(Z;) ts monotonic.

Proof:
Suppose (F.,G,n,¢) : TH(Z,) — TH(Z,) is signature-respecting and let (£,,T}), (X,
T!) € |TH(Z;)|, with T} C T;. Then, the identity on ¥, induces a theory morphism
L1.Ty) = (%1.Ty). This morphism agrees on signatures with the identity i(z, 1) :

(£,,T1) = (X1, Th). whence, by signature-respectability,

SIG(F(i)) = SIG(F(iz, 1))
= SIG(¢r(z,.0))

= ISIG(F((S1.Th)))-

Thus, F(i) : F((£,.T1)) = F((X1.TY})) is the identity on signatures, showing that
m2(F((S1, Th))) € m2(F{{E1, 1))

as required. By symmetry, for all (2, T»), (2., T;) € |[TH(Z,)|, with T, C T3,
72(G((2. T2))) C m2(G((E2, T2)))s

as required. [}

LEMMA 2.38 Let
7, = (SIGN,,SENy, {Cc}sesien, ), Iz = (SIGN,, SENz, {Cc}eeision,|)

be two w-institutions. A signature-respecting adjoint equivalence (F,G, n, €) : TH(Z;)
— TH(ZI,) is injective on I,-theories, i.e., for all £; € |SIGN,|,(E,,.T1),(%:,T}) €
ITH(Z,)|,

(E1.Th) # (1, T]) implies F((E1,Th)) # F((Z1,T7))

and the same holds for T,-theories, for every £, € |[SIGN,|.

Proof:
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Let (,.T), (%1, T)) € |TH(Z,)|. If F((£,,T1)) = F((£1,T})), then, by signature-

respectability and Lemma 2.32,
SEN(SIG(mg, 1,)))(m2(G(F((S1, T1))))) = SENu(SIG(ng, 7)) (w2 G(F ({1, TY))))-

whence, by Lemma 2.16, T; = T}, as required. An analogous argument can be used for

G. [

LEMMA 2.39 Let
I, = (SIGN,,SENy, {Cc}sesiany)). Tz = (SIGN,, SEN2, {Cc}reision,))
be two w-institutions. A signature-respecting adjoint equivalence (F,G. n, €) : TH(Z,) —

TH(Z,) is join-continuous.

Proof:
Let £, € |[SIGN,|,® C SEN(Z;). Since, by Lemma 2.37, (F,G. 7, €) is monotonic,

T2 F((Z1.{8}%))) C m2(F((Z1,®9))), forevery o€ O,

whence

(U m(FUE1 {2})))° C ma( F((E1,99))).
o€®

Suppose that the inclusion is proper, i.e., that
(U T2 F((E1, {8})))) (F((Z1, @)
o€

Then, by Lemmas 2.37 and 2.38, if £, = SIG(F((Z,, $°))), we have

m2(G((Z2; (Useo m2(F((E1: {8}))))) C m2(G((E2, m2(F({Z1, 2))))))
G(F((E1, 2)))s

whence, since (s, <) is an isomorphism,

SEN:(SIG(nig, ey (72(G((E2, (Usee m2(F ({1 {S}N))D)) C
SEN:(SIG(ms, ) ))(m2( G(F({Z1, €9)))))
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i.e., by Lemma 2.16,

SENL(SIG(ng, ¢e)))(72(G((E2, (| ma( F((S1: {8})))))))) € @°.

o€d

Now, note that

m(F((S1.{8}D) € (U m(FUES1 {8}DN)

dED

for every ¢ € ®, whence, by Lemma 2.37,

m2(G(F((E1-{8}))) € m2(G((Z2. (| 2 FU(E1- {&3D)))))),

o€d

and, hence,

(U m(GF(Z1, {0}ND) € 72 G(E2. (| 72 FUE1, {239
o o€
Thus, by Lemma. 2.32,

SEN: (7€, )(Useo 72(G(F((1, {2})))))%)
SEN1(SIG(n(g, 0e))(m2(G((Z2: (Upeo T2 F({E1, {8}))))))

N

where ng, = SIG(7(s, 1)), for every Ei-theory (T, T1) € |TH(Z;)]|. Therefore, by (2.10),

and Corollaries 2.6 and 2.4, we have
SEN(ng;' )(|J m(G(F((S1. {8}))))* € &,
P
i.e., by Lemma 2.32,
(L SEN:(SIG(nZ, go1ey)) (m( GLF (S, {SFIN)) C &,
oed
whence, by Lemma 2.16,
(U{8}) C &, ie., & C 0,
10 4

a contradiction.



LEMMA 2.40 Let
I, = (SIGN,SENy, {Cs}sesion), Iz = (SIGN2,SEN;, {Ce}seisiens))

be two w-institutions and (F,G,n,¢€) : TH(Z,) — TH(Z,) e signature-respecting adjoint
equivalence. Then, for all (£,,T}).(%:,T}) € |TH(Z:)|,

T\ CT] iff m(F((S1,Th))) Cm(FU(Z1,TY)))s
and, simtlarly, for G.
Proof:
The “only if™ holds by Lemma 2.37.

For the “if” direction, assume that m2( F((Xy,T1))) C 72 F((£1,T7))). Then we must

have, by Lemma 2.37,
T2(G(F((E1, Th)))) € m(G(F((Z1. T1))))
and, therefore, by Lemma 2.32,

SEN(SIG(nz, 1,))/(m2G(F((E1. T1))))) C SENy(SIG(ng, 1y ) (2 G(F((E1, T1)))))-
i.e., by Lemma 2.16, T} C T, as required. [ |

THEOREM 2.41 Let
I, = (SIGN},SENy, {Cs}sesien)):  To = (SIGN2, SENg, {Cs }eeision,)

be two term w-institutions. I, and I, are deductively equivalent if and only if there
exists a signature-respecting adjoint equivalence (F,G,n,¢) : TH(Z;) — TH(Z;) that

commutes with substitutions.

Proof:
A stronger “only if” was proved in part (iii) of Theorem 2.36.
For the “if” part, it suffices, by part (iii) of Theorem 2.36, to show that the signature-

respecting adjoint equivalence (F,G,n,¢) : TH(Z,) — TH(Z,) that commutes with



66

substitutions is also strongly monotonic and join-continuous. But this was shown in

Lemmas 2.40 and 2.39, respectively. [ |

Since the notions of deductive equivalence and the category of theories for institutions
were defined in terms of the corresponding notions on the associated w-institutions.

Theorem 2.41 can be reformulated to fit in the institution framework as follows:

COROLLARY 2.42 Let I, = (SIGN,,SEN;,MOD,,E!), Z, = (SIGN,,SEN,, MOD.,
E?) be two term institutions. I; and I, are deductively equivalent if and only if there
exists a signature-respecting adjoint equivalence (F.G.n,¢) : TH(I,) — TH(Z,) that

commutes with substitutions.

Deductive Auto-Equivalence

A special case of interest arises when we are considering two m-institutions Z; =
(SIGN, SENy, {Ct}seision), I» = (SIGN.SEN,, {CE}seisicn) with the same signa-
ture categories. On certain occasions we need to know when Z; and Z, are deductively
equivalent via interpretations (IsigN,a) : Iy — Z; and (Isign.3) : o = I, and the
identity adjoint equivalence. If this is the case we will say that Z; and Z, are de-
ductively auto-equivalent. Part (iv) of Theorem 2.36 completely characterizes this

particular case. In view of Lemmas 2.40 and 2.39 it assumes the following form
COROLLARY 2.43 Let
7, = (SIGN, SENy, {C¢ }seisian): T2 = (SIGN, SEN,, {CZ}seisien)

be two term w-institutions with the same signature categories. I; and I, are deductively
auto-equivalent tf and only if there exists an isomorphism F : TH(Z,) — TH(Z,), such
that the following diagrams commute

TH(Z,) F TH(Z,) TH(Z,) £ TH(Z,)
SIR A SIRA SIG
SIGN SIGN

and both F and F~' commute with substitutions.



Proof:
By (iv) of Theorem 2.36 and Lemmas 2.40 and 2.39. [ |

The following lemma will serve to simplify the conditions of Corollary 2.43.
LEMMA 2.44 Let
I, = (SIGN,SEN,. {Cs}sesianN)). T2 = (SIGN, SEN2, {C2}eision)

be two term w-institutions with the same signature categories and F : TH(Z,) - TH(ZL,)

an tsomorphism such that

TH(T,) £ TH(Z.)

SIX‘ SIG

SIGN

commutes and F commutes with substitutions. Then F~': TH(Z,) — TH(Z,) makes

the following diagram commute

TH(Z) £ TH(T,)

SIR‘ SIG

SIGN

and commutes with substitutions.

Proof:
If (£,T2) € |TH(Z,)|, then

SIG(F~'((E,T2))) = SIG(F(F~'((S,T2)))) = SIG((Z, T2)),
and, if g € Mor(TH(Z;)), then
SIG(F~'(g)) = SIG(F(F~'(g))) = SIG(g).

Hence, the diagram
TH(Z,) TH(T,)

sk_ SIG

SIGN
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also commutes. It suffices, thus, to show that, for all f : £ — T’ € Mor(SIGN), (T,
T;) € |TH(ZL,)|

SEN (f) (72 FTH((S. T2))))° = ma FTH((E", SEN2(S)(T2)%))).-
Since F is an isomorphism, it suffices to show that

F((Z', SENi(f)(m2( FTI((E. T2))))%)) = (', SEN2(f)(T2)")-

We have
F((Z, SEN(f)(m2( FT((T, T2)))))) =
= (T, SEN(f)(me F((, ma F'((Z, T2))))))°)
= (Z,SEN(f)(m(F(F~'((Z, T2)))))°)
= (L, SENy(f)(m2((X, T2)))°)
= (X,SEN.(f)(T2)),
as required. .

In view of Lemma 2.44, Corollary 2.43 takes the following simplified form

COROLLARY 2.45 Let
= (SIGN,SEN,, {Ct}seisiany),  I» = (SIGN, SEN,, {C2}=¢isiang)

be two term m-institutions with the same signature categories. I, and I, are deductively
auto-equivalent if and only if there ezists an isomorphism F : TH(Z,) - TH(Z,) that

makes the following diagram commute

TH(T,) £ TH(Z,)

W\, e

SIGN

and commutes with substitutions.
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Equivalence of Deductive Systems

In the Introduction to the thesis the notion of equivalence between k-deductive sys-
tems, introduced in [8], was described in some detail. It is now shown how this notion
can be perceived as a special case of the notion of deductive equivalence of w-institutions
that was introduced in this chapter.

Recall that, given a set X, by X is denoted a disjoint copy of X constructed in some
canonical way. Given a finitary k-deductive system S = (Tmg(V)*.Fs) over £, define

a w-institution Zs = (SIGN, SEN. {Cz}cesieny)- as follows:
(i) SIGN has [SIGN| = {V'} and
Mor(SIGN) = {h: V = Tm,(V) : h an assignment}.

Composition of ~y,hy : V = Tm(V) in SIGN is defined by hyohy = h3h,, where

h3 : Tmg(V) — Tme(V) is the substitution extending h,.
(it) SEN : SIGN — SET is given by
SEN(V) = Tm¢(V)~.
and, for every A : V = Tmg(V),

SEN(k)(8) = h™(8), for every ¢ € Tme(V)*.
(iii)
Cv(T) = Cs(T), for every I' C Tm(V)~.
Since S is a (structural) deductive system, Zs is clearly a w-institution.

For the proof of our main theorem, the following lemmas are needed:

LEMMA 2.46 Let S = (Tmg(V)*,ts) be a finitary k-deductive system. The correspond-
ing w-institution Is = (SIGN, SEN, {Cs}s¢isien) is a term w-institution.



Proof:

The source signature is necessarily V' and we choose the variable 7 = (75, ... . 751) €
Tm(V)*. Then there exists f : {(V,¢) : 6 € Tm(V)¥} — |SIGN(V.V)|. given by
fiviey 1 V= Tme(V), with fiyvgy(vi) = é:.¢ < k, and fiv.5)(v;) = do.J > k., for every ¢ =
(Do, .- y0k-1) € Tme(V)*. Then, for every ¢ = (do, ... .d%1) € Tme(V)*, fv.e(@) =
¢ and, for every f : V. = Tme(V), f*five)y = fivsen(s)o)- The last equality is true.
since, for ¢ < k, ffive)(vi) = f7(d:) = frvsen(nen(vi)s and. for § > k, f~ five(v;) =

f*(%0) = frv.senisyen(v;): as required. s

LEMMA 2.47 Let §; = (Tmg(V)F,bs,) be a finitary k-deductive system and S, =
(Tme(V).Fs,) a finitary [-deductive system over the same signature L, and Is, =
(SIGN, SEN,, {Cé}SGISIGNI)v Zs, = (SIGN, SEN,, {Cg}Se[SIGNI) the corresponding w-
institutions. The lattices Ths, and Thg, are isomorphic via an isomorphism that com-
mutes with substitutions if and only if there ezists an isomorphism F : TH(Zs,) —
TH(Zs,) that makes the following diagram commute

F

TH(Zs, s:)

) TH(Z

SIGN

and commutes with substitutions.

Proof:
Suppose, first, that 75, : Ths, — Thyg, is a lattice isomorphism that commutes with

substitutions in the sense that, for every h : V' — Tm(V),
Cs,(h™(7s,(T))) = 75,(Cs,(R™(T))), forevery T € Thg,.
Define the functor F' : TH(Zs,) = TH(Zs,) as follows:
F((V,Th)) = (Vi75,(Tv)), forevery (V.T1) € |TH(Zs)l,
and, given h : V — Tm(V), such that Cs, (h*(T})) C T7,

F(h) = h.



We have
Cs,(h*(75,(Th))) = 75,(Cs,(R"(T1)))
C 75(TY).

whence F' is well defined on morphisms.
It is easy to verify that F is actually an isomorphism, with inverse G : TH(Zs,) —
TH(Zs, ) given by

G(V.T2)) = (V, 75 (T2)), forevery (V.T3) € |TH(ZIs,)|.

and, given h : V' = Tmg(V'), such that Cs,(h*(T2)) C T;, G(h) = k.

Clearly, the triangle

TH(Zs,) E TH(Zs,)

SIG SIG
SIGN

commutes and the fact that F' commutes with substitutions is simply a restatement of
the fact that the lattice isomorphism 75, commutes with substitutions.

Conversely, suppose that there exists an isomorphism F : TH(Zs,) — TH(Zs,)
that commutes with substitutions and such that the triangle above commutes. Then
F restricted to |TH(Zs, )| induces a lattice isomorphism 7s, : Ths, — Ths, and, if
T € Thg,, we have

Cs:(h*(15,(T))) = F(R)(m(F(V,T))))
= m(F(m((V.h*(T)))))
= 75(Cs (RY(T))),
as required. [ ]
Our main theorem for this section is the following:

THEOREM 2.48 Let S; = (Tm¢(V)*,ks,) be a finitary k-deductive system and S, =
(Tmg(V),Fs,) a finitary —deductive system over the same signature L, and Is, =
(SIGN,SEN1,{Cé}gelstGNl), Is, = (SIGN,SENz,{C'%}ge[s[GNI) the corresponding
w-tnstitutions. The deductive systems S; and S; are equivalent if and only if the =-
institutions Is, and Is, are deductively auto-equivalent.
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Proof:

By Theorem 1.1, S; and S; are equivalent if and only if there exists an isomorphism
from Ths, to Ths, that commutes with substitutions. By Lemma 2.47, this is true if
and only if there exists an isomorphism F : TH(Zs,) - TH(Zs,) that commutes with
substitutions, such that SIG o F = SIG. And. finally. by Lemma 2.46 and Corollary
2.45, this is true if and only if the (term) w-institutions Zs, and Zs, are deductively

auto-equivalent. |



3 ALGEBRAIZING INSTITUTIONS

“ When a logic is algebraizable. the powerful methods of modern algebra can be used
in its investigation, and this has had a profound influence on the development of these
logics. © W.J. Blok and Don Pigozzi, Algebraizable logics, Memoirs of the A.M.S.. Vol.
77, No. 396, (1989)

The notion of an algebraic institution is introduced and, through it and the use of the
machinery developed in the previous chapters, the notion of an algebraizable institution
is made precise. Some examples of algebraizable institutions are given that also serve

to connect the present theory with the algebraizability of k-deductive systems.

Introduction

In 1974 Barwise [1] introduced and axiomatized abstract model theory, using elemen-
tary category theory, with the intention of generalizing basic results of classical model
theory. In 1980 Burstall and Goguen [10], developing the semantics of the specifica-
tion language CLEAR, introduced the notion of language. They reintroduced this same
notion, together with some new concepts and improved notation, under the name of
institution in 1984 [26]. They further elaborated on it in 1992 [27]. Meanwhile, in 1988,
in a similar context, Fiadeiro and Sernadas [21] introduced the notion of w-institution.
Rather than having semantical satisfaction as the basis for the formalism, the emphasis
has now been shifted towards a syntactic consequence relation in the spirit of Tarski.
Finally, in 1989, Meseguer [45] introduced general logics in an attempt to combine all

previous approaches. He included axiomatizations of the notions of an entailment system
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and proof calculus as well as of that of an institution.

One hopes that the opening quote of Blok and Pigozzi concerning logics might be
equally applicable to the case of institutions, i.e., that a possible algebraization of an
institution will enable us to use the methods of universal algebra, or those of the theory
of algebraic theories in the context of category theory, in its investigation. More ambi-
tiously, one might even argue that successful application of the algebraic methods in the
institution domain might influence the development of the latter notion itself and make
it even more widely applicable to the solution of problems in the areas of logic. model
theory and theoretical computer science.

The attempt at the algebraization of an institution that we make in the present work
has as its starting influence the work of Blok and Pigozzi [6] on the algebraization of
classical deductive systems. Roughly speaking, given a deductive system S an algebraic
semantics for S is a class K of algebras such that the consequence relation ks of S can
be interpreted in the semantical equational consequence relation =g of A. An equivalent
algebraic semantics for S is an algebraic semantics for S such that there is also an inverse
interpretation of = in Fs . A deductive system S is then algebraizable in the sense of
Blok and Pigozzi if it has an equivalent algebraic semantics A" In [6] it was proved that
a class K of algebras is an equivalent algebraic semantics for a deductive system S if
and only if there is an isomorphism between the theory lattice of S and the equational
theory lattice of K that commutes with the substitution operators. Furthermore, given a
theory T of S, the elementary Leibniz (equivalence) relation associated with T, denoted
QT, was defined and, based on the Leibniz operator Q two intrinsic characterizations
of algebraizability were obtained. In 1992 [7], the theory was generalized to include &-
deductive systems and in 1995 [8], these algebraizability results were reformulated based
on the notion of equivalence for two deductive systems.

The traces of the work of Blok and Pigozzi are more than apparent in the present

work which owes much to it.
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The second main influence for our work comes from an attempt by Diskin [18] to
algebraize institutions. This attempt is heavily based on the work of the Zurich school
on categorical algebra. The beginnings of these latter developments can be traced back
to the works of Lawvere [33]. Linton [36],[37] and Beck [3]. (For a more detailed account
see Mac Lane [39], Manes (43] and Borceux [9].) In [18], starting from the notion of
an algebraic theory, the notion of a profodoctrine was defined and it was shown how
one can get an institution /V(P) out of a given protodoctrine P. This special kind of
institution plays the role of the equivalent algebraic semantics in Diskin’s development.
An institution Z was then said to be algebraizable if there exists a protodoctrine P and
a suitably defined institution morphism a : Z — [N(P), from the given institution
Z to the institution that arises from the protodoctrine P. satisfying some additional
conditions. Next, from an algebraizable institution (Z,a) the, so-called, specification
category SPEC((Z, a)) was extracted, which, in turn, gave rise in a natural way to a
specification system SPSYS((Z. a)), and then, the notion of regularity for a protodoctrine
was defined. In the main result of (18], it was shown that given an institution that is
algebraizable through a regular protodoctrine, one can obtain an algebraization of the
specification system SPSYS((Z, a)), which has many desirable algebraic properties.

Following Diskin’s ideas and elaborating on his notion of algebraizability, a modified
version of the notion of an algebraizable institution is introduced in this chapter. Only
basic notions and tools of category theory and some elements of the theory of algebraic
theories are used. This precise notion will make it possible to answer more general
questions pertaining to the algebraizability of institutions and w-institutions.

Inspired by [6, 8, 18], in the second chapter, the notion of deductive equivalence
for two w-institutions was defined. Generally speaking, two =-institutions Z; and Z,
are deductively equivalent if the consequence relations between sentences of the first
can be interpreted in the corresponding consequence relations of the second and vice

versa. This notion of deductive equivalence generalizes the notion of equivalence for
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deductive systems introduced in [8]; see Theorem 2.48. The focus was then directed to a
special, but yet wide, class of m-institutions, the, so-called, term =-institutions. Using the
theory categories of m-institutions, necessary and sufficient conditions for the deductive
equivalence of two term m-institutions were obtained. Namely, it was proved that two
term w-institutions Z; and Z, are deductively equivalent if and only if their categories of
theories are naturally equivalent via an equivalence satisfying some additional, relatively
simple and quite natural, conditions.

In this chapter, the notion of an algebraic institution is introduced. Algebraic theories
over locally small categories with a terminal object 1, in which the coproduct 11 exists
are considered. An algebraic institution Ly is one that is closely related to a prespecified
subcategory Q of the Eilenberg-Moore category of algebras of such a theory. Based on
this notion, the notion of an algebraic w-institution is then defined. If one specializes
to SET, i.e., the category of small sets, algebraic theories over SET are obtained.
whose Eilenberg-Moore categories of algebras, as is well-known, roughly correspond to
universal algebraic varieties of algebras. An arbitrary 7-institution Z is then said to
be algebraizable if it is deductively equivalent to some algebraic w-institution Zo. As a
corollary of the main characterization theorem of the second chapter, a characterization
of algebraizability for term w-institutions is obtained in terms of their categories of
theories. This result generalizes a similar result in [6].

Two examples of algebraizable 7-institutions are given next. The first inspired by
the theory of algebraizable k-deductive systems and the second on the algebraizability

of the equational institution, an institution that represents a version of equational logic.

Algebraic Institutions and Algebraizable 7-Institutions

We now give an important example of an institution. Let K be a locally small

category with a terminal object 1 and T = (T, n,u) an algebraic theory in monoid form
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over K. The Kleisli category of T in K is denoted, as usual, by Kt and the Eilenberg-
Moore category of T-algebras over K by KT.

DEFINITION 3.1 Let L be an arbitrary full subcategory of Kt and Q an arbitrary sub-
category of KT. Define I§ = (C,EQ, ALG. ) as follows:
(i) EQ: L — SET is defined by
EQ(L) = Kr(1.L)* = K(1.T(L))%. for every L € |L],
and, given f: L = K € Mor(£),EQ(f) : Kx(1,L)* = Kx(1, K)? is given by
EQ(f)({91:92)) =(fogi, foge), forevery (gi,42) € Kx(1, L)%
where f o g; = unT(f)g: is the Kleisli composite of g; and f.i = 1.2.

(it) ALG : L — CAT® is defined as follows: For every L € |L|,ALG(L) is the
category with objects all pairs of the form ((K.£). f). where (K.£) € |Q| and
f:L = K € Mor(Kt), and morphisms h : ((K,§). f) = ((M,().g), Q-morphisms
h:(K,E) = (M,(), such that g=T(h)f.

T(K) —— K
e
L T(h) h
X
T(M) —— M

Given k : L = K € Mor(L) the functor ALG(k) : ALG(R) — ALG(L) sends
((M, &), f) to ((M.E), f ok) and a morphism h : ((M,€), f) = ((N,(),g) to the
morphism ALG(k)(R) : ((M.&), f o k) = ((N,().g o k) with ALG(k)(h) = h.

K —— T(M) —— u
ALG(k):
T
[ —— (&) 2 ) 2Ty —— y




TM) ——— M
\ T(h) h
N) < N
ALG(k):
T(T(M)) (M) —— M
s
[ ——— T(R) T(T(h)) T(h) h

o

T(T(.’V)) T T(IV) —C—‘ N
(iti) For all L € |L],{(g1,92) € EQ(L) and ((A,€), f) € |ALG(L)|,

(K.6).f) EL (91,92) if EpnT(flgr = EunT(f)ge-

T(f) £

(R) ——— K

] —=——T(L)

92

T(T(K))

The next theorem states that the above construction gives an institution.

THEOREM 3.2 Let K be a locally small category with a terminal object 1, T = (T. 7. p)

an algebraic theory over K, L a full subcategory of Kt and Q a subcategory of KT. Then
I5 = (L,EQ, ALG, &), as defined in 3.1, is an institution.

Proof:

We only show that ALG is well-defined on morphisms and then verify that the
satisfaction condition holds.

First, let k : L = K € Mor(£) and suppose that k : ((M,£),f) = ((N,().g)
is a morphism in ALG(K’). To see that k is a valid morphism h : ((M.£),f o k) —
((N.¢),g o k) in ALG(L) it suffices to show that T(k)umT(f)k = uxT(g)k. We have

T(T(M))

M)
T(T(h)) l lT(h)



T(R)umT(/)k = unT(T(h))T(f)k (since u is a natural transf.; see diagram)
= unT(T(h)f)k (since T is a functor)
= unT(g)k, (since h € Mor(ALG(R)))
as required.

Next, let k: L = K € Mor(L).{(g1.9:) € EQ(L) and ((M.€). f) € |ALG(K)|. Then

ALG(R)(((M.€). )) k=1 (g1. ga) iff, by definition of ALG(k).
(M, &). umT(f)k) EL (g1.92) iff. by definition of =,
Eun T (s T(F)E)gr = EunT(1arT(f)k)gs iff, since T is a functor.
Eum T (pa) T(T(NT(K)gr = Epm T (pa)T(T( )T (k)g2 iff.

AT(M)

T(T(T(M))) T(T(M))

l#&l

T(T(M)) ——— T(M)

by commutativity of T(ea)

SumpronT(T(F)T(K)g1 = EpmpronT(T(f))T(k)g: i, since p is a nat. transf.,

T(T(K)) —=— T(k)

i.e., by commutativity of T(T(f)) T(f)

T(T(T(M))) o T(T(M))

EumT ()T (k)g1 = EpmT(furT(k)ge iff, by definition of =g,
((M.€). f) Ex (exT(k)g1, uxT(k)gz) iff, by definition of EQ(k),
(M, &), ) =r EQ(K)({g1.92)),

as required. ]

Now, suppose that 1 U 1 exists in K, i.e., for all A" € K, ki, k2 € K(1,K), there

exists unique k; U k, € K(1U 1, K), such that the following diagram commutes, where



q1.¢2 : 1 = 1 U1 are the coprojections,

Since left adjoints preserve colimits, 1 U 1 is also a coproduct of 1 with itself in Kr. In

fact, the following is a coproduct diagram in K. where k;, k» € Kr(1, R),

muir nul 92

1 Iyt —1
i kyUkz
A
i

Note that

(krUkz)o(muiq) = prT(kiUk)muq
= prnrr) (kU k)@
Tut

Ul = T(1ut)

by commutativity of kiuk:

lT(kxukz)

T(K)

T(T(K))

NT(K)
= prUT(R)RL
= klv
and, similarly, (k; U k2) o (mu1gz) = ka.
In the sequel, we will denote 7n;1q; by p;,t = 1.2.
In the next theorem, it is shown that, if 1U1 exists in K, the institution Ig" is term,
for every subcategory Q of KT.
THEOREM 3.3 Let T be an algebraic theory over a locally small category K with a

terminal object I, in which 1 U 1 ezists, and let Q be a subcategory of KT. Then the

institution Ig"' ts term.

Proof:
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We show that 1 U1 is a source signature and (p;.p.) € EQ(1 U 1) a variable (see
Definition 2.7). To this end, for all A" € |Kt| and (k;.k2) € EQ(AR) = Kx(1,R)?

K(1,T(R))? define fig k,.k)) = k1 U k2 € Ko(1 U L, K), where k; U k, is the coprod-
uct of k;,k; in K. Then, by the following coproduct diagram and the definition of

EQ(f(x (k1 k2)))> We have
P P2

1u1l

5 kyUks
I
ky ' k2

IS

1

1

EQUf(r (ki k) Y{P1: P2)) = (fB (ky 2)) © P1s S(R (ki a)) © P2) = (K, k2).

Moreover, lff K—-Le MOI‘(KT), f e} f(K.(khkz)) opr = fO kl and fO f(f\'.(kx'k:)) Op2 =
fokz. But we also have fiz (fok,.foks)) 0P = foky and fir (fok,,foks)) OP2 = foka, whence.

by uniqueness of coproduct,

[0 fik (kika)) = F(Lifokr foka)) = FILEQUA (ke k)

as required. ]

Next, suppose that £ is a full subcategory of K, such that thereexist L € [L[,{;,[2 €
Kr(1, L), with the property that there exists a set function f : {(A,{k;,k2)) : A €
[Kr|, k1. k2 € K1(1,K)} = [(L| K1)|, such that

[k (ko o)y € Ko (L, R), for all K € |[Kp|, ki, k2 € Kx(1, R), the following commutes
(3.1)

and, for every f € Ko (K, K'), f 0 fik (kv ke)) = SfiKr.(fokr. foka))-
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If (3.1) holds, we will refer to Z§ as the L-algebraic institution associated with
Q and to its associated w-institution rr(l'é) as the L-algebraic wm-institution asso-
ciated with Q. An algebraic institution or an algebraic #-institution is then an
L-algebraic institution associated with Q or an L-algebraic w-institution associated with
Q, respectively, for some £ and Q. Note that, if 1 U1 exists in £ and 1 U1 € |£], then
(3.1) is satisfied, with L =1 1,l; = p; and [, = p..

From now on we will be following the convention of writing fi, «,) instead of the
more cumbersome f(r (x, k,))- 1Dhe signature object A’ is usually clear from context and

so there is no possibility of confusion.

DEFINITION 3.4 Let I = (SIGN.SEN, {Cxc}ceisign|) be a m-institution. I is
o prealgebraizable if it is interpretable in some algebraic w-institution I§

e quasi-algebraizable if it is left or right quasi-equivalent to an algebraic w-insti-
tution Ié

¢ strongly quasi-algebraizable if it left or right strongly quasi-equivalent to an

algebraic w-institution I§
e algebraizable if it is deductively equivalent to an algebraic w-institution Ié,

where, as before, L is a full subcategory of Kt and Q is a subcategory of KT, for some
algebraic theory T over a locally small category K with a terminal object 1, in which
(3.1) holds. In this case the algebraic w-institution I§ will be referred to. respectively.
as an algebraic, ¢ quasi-algebraic, « strong quasi-algebraic and an equivalent
algebraic semantics for Z.

An institution I is prealgebraizable, (strongly) quasi-algebraizable, alge-
braizable if its associated w-institution w(Z) is prealgebraizable, (strongly) quasi-algeb-

raizable, algebraizable, respectively, in the previous sense.

Since, by construction, every algebraic m-institution is term, we get as an immediate
consequence of the characterization Theorems 2.36 and 2.41 of the previous chapter the

following corollary.
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COROLLARY 3.5 Let I = (SIGN,SEN, {Cc}s¢isienN)) be a term w-institution.

(i) T is prealgebraizable with algebraic w-institution semantics w(Z§), if and only if
there exists a strongly monotonic, join-continuous, signature-respecting functor F :
TH(Z) — TH(Z§) that commutes with substitutions.

(ii) I is (strongly) quasi-algebraizable with (strong) quasi-equivalent algebraic w-insti-
tution semantics w(Z5), if and only if there ezists a strongly monotonic, join-

continuous, signature-respecting (strong) adjunction
(F.G.n,¢) : TH(Z) - TH(Z5)
that commutes with substitutions.

(iii) T is algebraizable with deductively equivalent algebraic w-institution w(I§), if
and only if there erists a signature-respecting adjoint equivalence (F,G,n, €) :
TH(Z) — TH(Ié) that commutes with substitutions.

An Application

In this section a collection of pairs of w-institutions is provided, that will be strongly
quasi-equivalent but not deductively equivalent. This may serve as a motivation for the
introduction of the notion of quasi-equivalence in the previous chapter. Given a locally
small category K with a terminal object 1, and an algebraic theory T in K, recall that
by Kt is denoted, as usual, the Kleisli category of T in K, and by KT the Eilenberg-
Moore category of T-algebras over K. The pairs of institutions, that are considered in
this section, will consist of the institution ZXT. as constructed in Definition 3.1, and of
another institution that results from this by slightly modifying its components. Namely,
its signature category is the category K itself, instead of the Kleisli category of T in
K, its sentences are K-morphisms instead of Kr-morphisms and similar modifications
are introduced for the models and the satisfaction relations. Note that, despite these
modifications, the two institutions in each pair can be thought of as having very closely

related deductive mechanisms.
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Let K be a locally small category with a terminal object 1 and T = (T.7n.u) an
algebraic theory in monoid form over K.
DEFINITION 3.6 Define T = (K,SEN,MOD, =) as follows:
(i) SEN : K — SET is defined by
SEN(R) = K(1,R)?, for every K €|K|,
and. given f: K — L € Mor(K),SEN(f) : K(1, A)?> = K(1.L)? is given by
SEN(f)({91:92)) = (fg1- fgz). for every (g1.g2) € K(1. A)%.
(i) MOD : K — CAT® is defined as follows: For every R € |[K|.MOD(K) is the
category with objects all pairs of the form ((L.£). f). where (L.£) € |KT| and
f : K = T(L) € Mor(K), and morphisms h : ((L.£),f) — ((M.().g),KT-

morphisms h : (L.§) — (M,(), such that g =T(h)f.
§

T(L) L
-
R T(h) A
X
T(M) —— M

Given k : K — L € Mor(K) the functor MOD(k) : MOD(L) — MOD(A") sends

((M.E), f) to ((M,€), k) and a morphism h : ((M,€).f) = ((N.().g) to the
morphism MOD(k)(k) : ((M.€), fk) = ((N.C).gk) with MOD(k)(h) = h.

[ L1y - m
MOD(k):
F— L 1) - i
13 , 3
(M) —— u T(M) M
e e
L T(h) A K——1 T(h) A
X \
T(N) —— N T(N) —— N

MOD(k)
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(iii) For all K € |K|,{(g1,92) € SEN(K) and ((L,£), f) € [MOD(RA)|,

(L.6). f) Ex (91.92) iff Efqr=Efgo.

3t f 13

1 % T(L)

92

L

The next theorem states that the above construction gives an institution.

THEOREM 3.7 Let K be a locally small category with a terminal object 1. and T =
(T.n,p) an algebraic theory over K. Then T = (K,SEN,MOD. |), as defined in 3.6, is

an institution.

Proof:

We only show that MOD is well-defined on morphisms and then verify that the
satisfaction condition holds.

First, let £ : K — L € Mor(K) and suppose that h : ((M.€), f) = ((N.¢).g) €
Mor(MOD(L)). Then T(k)f = g, whence T(k)fk = gk. Thus, h : ((M.€), fk) —
((NV,¢). gk) € Mor(MOD(A)), as required.

Next, let £ : K — L € Mor(K).(g1,92) € SEN(R) and ((M, &), f) € [MOD(L)|.

Then
MOD(K)(((M,€). f)) Er (91,92) iff, by definition of MOD(k),

((M.§). fk) =k (91.92) iff, by definition of =g,
Efkgr = £fkg iff, by definition of =,
((M.€), f) =L (kg1.kg>) iff, by definition of SEN(k),
((M. &), f) EL SEN(k)({g1. 92))-
as required. |
Now let Iy = IE}' = (Kt,EQ, ALG, =T) be the Kr-algebraic institution associated
with KT. We show that 7(Z) is strong left quasi-equivalent to m(Zr). This result will
provide many examples of pairs of 7-institutions being strong quasi-equivalent but not

deductively equivalent.
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THEOREM 3.8 Let I,Iy = IF be the institutions defined in 3.6, 3.1 and =(Z). =(Zr)
the m-institutions associated with I,Zt, respectively (see Chapter 2). =(I) is left strong
quasi-equivalent to =(Zr).

Proof:
Let (Fp,Ur.nT,e1) : K — Kt be the Kleisli adjunction (see Chapter 1). Define
a : SEN — PEQ Fr by ax : SEN(R) — P(EQ(R)), with

ax({g91.92)) = {{(nkg1.1xg2)}.  for every (g1.g2) € SEN(A),

and 3 : EQ — P SEN Ur by 8« : EQ(R’) = P(SEN(T(K))), with

Br({91,92)) = {(g1.92)}, forevery (gi.g2) € EQ(R).

We first show that a and 3 are natural transformations. To this end, let f : A’ — L
€ Mor(K). We need to show that the following diagram commutes. For every (g;.g2) €
SEN(R’). we have

SEN(A) —— P(EQ(K))

SEN(/) PEQ(nLf)

SEN(L) —— P(EQ(L))

PEQ(FT(f))(aK((glrg'.’))) EQ('ILf)((TIth 77!\'92>)
= (ueT(nef g, ucT(nLf)nk g2)
= (T ()T (fmugr. wcT(n)T(f)nkgz)

= (T(f)nxg1.T(f)nkg)

T(nr)

I(L) T(T(L))

by commutativity of _ e
(L)

T(L)



[024]
~1

= (mfg,1Lfge)
K —— T(R)
by commutativity of s T(f)
L —— T(L)
= acl(fg1. fg2))
= ar(SEN(f)({g1.92)))-

as required. For 3, let f : A — L € Mor(Kt). We need to show that the following
diagram commutes. For every (g, g.) € EQ(A’), we have

Br

EQ(A)

EQ(f)l

EQ(L) —5— P(SEN(T(L)))

P(SEN(T(K)))

PSEN(uLT(S))

PSEN(pcT(f))(Bx((g1.92))) = SEN(uT(f))({g1.92))
= (pLT(f)g1. 1L T(f)g2)
= B((uLT(f)91.2LT(fg2))
= B(EQ(N){g1.92))).
as required.
Next, we show that (Fr,a) : #(Z) = #(Zr), (Ur.8) : #(Zr) = =(Z) are interpreta-
tions.

For (Fr,a), let K € |K],© U {{g1,92)} € SEN(K). Then
(91,92) € O°

iff, for every ((L,£), f) € [IMOD(K)|,

((L.f),f) |=K (01702)? for every (01?02) €0, implies ((L~§)vf) I=K (91792)7
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iff, by the definition of =g, forevery ((L.£),f) € [MOD(R)|,

§f00 =&f0, forevery (6i.0,) €O, implies £fgi = Efgn,
T(L) —L T(T(L))

iff, by commutativity of . BL
(L)

T(L)
for every ((L.&), f) € IMOD(A’)|.

Spenre)fOr = EprnrLyf02, for every (61,62) € ©, implies

Eucnryfoar = Eucnrr) f92-
A —X — T(R)

iff, by commutativity of f T(f)

T(L) e T(T(L))

for every ((L.£), f) € [MOD(K)|,
EurT(f)nkbr = EucT(f)nkb2, for every (61,8:) € ©, implies
§utT(fimegr = EpcT(f)nkge.
iff, by the definition of %, for every ((L.£).f) € |ALG(K)],
({L, ), f) ER (nx61,1K02), for every (61,02) € ©, implies ((L.£). f) Ex (7x91.nK92)-
iff (nkg1.1k92) € {(1&01,1x02) : (61.62) € O},
iff ax((91.92)) € ak(O),

as required.
The proof for (Ur,3) is more complicated. Let A" € |[Kr|,0 U {(g1,92)} C EQ(K).
We will first show that, if (g1.g2) € ©°, then 8x({g1.92)) € Bk (©)° and then that, if

Br((g1,92)) € Br(O)<, then (g;,92) € O°.
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Suppose that (g1,g.) € ©°. Then, for every ((L,£), f) € |ALG(R)|,

((L.6). f) IE (81,62). for every (61.6,) € O, implies ((L.£). ) EF (g1,92)-
(3.2)
Now, assume that {(L.£), f) € [MOD(T(K))| is such that ({L.£), f) 1) (61.62), for
every (01.02) € Bx(0). Then {f0, = {f8,, whence {furT(nx )01 = Efpr T (nx )02, and,
therefore, Eur T(f)T(nk )01 = EucT(f)T(nk)bs- Thus, ((L,€), fox) EF (61.62) and , by

(3.2), ((L.€), fax) EF (g1.92)- Following the same steps backwards. we conclude that

((L7€>7 f) l=T(K) (91-,92>~ Thusv /31\'((91792)) € 51\'(9)C~ as required.
Conversely, suppose that 3x({g1,92)) € Bx(©)°. Then,

for every ((L.¢), f) € [MOD(T(A))[,

((L.€). f) Bty (61,62), for every (01.62) € ©, implies ((L.£). f) Er(k) (g1.92)-
(3.3)
Now, assume that ((L,£), f) € [ALG(K)| is such that ((L,£). f) T (6. 62). for every
(61,02) € ©. Then EurT(f)01 = EuLT(f)b2. e, ({L.&). pT(f)) Er(x) (61,02) and , by
(3:3), ((L.€). e T(f)) Er(a) (91, 92)- Following the same steps backwards, we conclude
that ((L.€). f) =X (g1-92)- Thus. (g1.g2) € ©°. as required.
Finally, we need to show that, for all &' € K], (g1,g2) € SEN(K),

SEN(nx )({(91. 92))° = Br(ar({g1.92)))",
and, for all A" € [Ktl,{g1,92) € EQ(R),

EQ(ex)(at(x)(Br({(91:92))))° = {(91:92)}".

We have
Br(ax({91,92)))° = er({g1,92))°

I

{(nk g1, 1K 92} }°
= SEN(nx)({91,92))%,
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as required, and

EQ(ex)(arw)(Br((g91:92))))° = EQ(iru))(erw)((91-92)))°
= EQQGru))((nrx)91. 17(8)92))°
= {(e&T(irww))nrwgi- wx Tlirr))nTr)g2)
= {(uxnmim)gr, BETT(R)92) )
= {{91-92)}°, as required.

Deductive m-Institutions

In this section, part (iii) of Corollary 3.5 is applied to the, so-called, deductive 7-
institutions, that naturally arise from deductive systems, and a theorem is proved that
provides a relationship between the algebraizability of a deductive system and the alge-
braizability of the corresponding deductive -institution.

Recall from the last section of Chapter 2 that, given a language type £ and a finitary
k-deductive system S = (Trnc(V)k, Fs) over £, we can define a w-institution Zs =
(SIGN, SEN, {Cc}sesien) by letting SIGN be the one-element category with the
single object V' and morphisms all assignments & : V — Tm¢(V). SEN : SIGN —
SET is given by SEN(V) = Tmg(V)* and SEN(k)(¢) = h*(d), for every h : V —
Tmg(V), where A™ denotes the unique endomorphism on the £—term algebra extending
the assignment k. Finally, Cy([') = Cs(T), for every ' C Tmg(V)*, We call the =-
institution, thus obtained, the deductive 7-institution associated with S. In Lemma
2.46 it was proved that it is a term w-institution.

Given a language type L, we can construct an algebraic theory T = (T, n, ) in SET,
whose Eilenberg-Moore category of T-algebras SETT is isomorphic to the category of
the variety of all L-algebras. Recall that, given X € |[SET|, we denote by X a disjoint

copy of X, constructed in some canonical way, and by Tm(X) the set of all L-terms
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over X. Briefly, we have
T(X)=Tmg(X), forevery X €|SET|.

and, given f : X =+ Y € Mor(SET), T(f) : Tmz(X) = Tmg(Y') is the unique extension
of f to L-terms. It is formally defined by recursion on the structure of L—terms as

follows:

o T(f)(Z) = f(z), for every z € X, and

o T(f)(Ato,--- sty=1)) = MT(f)to)s--- .T(f)(tpa)-1))s for all XA € A.to,....
ton)-1 € Tme(X).

Moreover, nx : X — Tmg(X) is the map given by nx(z) = 7, for every r € X, and
px : Tmg(Tme(X)) = Tme(X) combines L-terms over L-terms to simple £-terms and

is defined formally by recursion on the structure of £-terms over Tm.(X) as follows

o ux(t) =t. for every t € Tme(X), and

o px(Mto,-.- ,ton)-1)) = Mpx(to).... .ux(tsn)=1)), for all A € Alto,... . ty=-1
€ Tm(Tme(X)).
Note that SIGN is the full subcategory of SETt with the single object V.
Given an L-algebra A = (A,LA), the corresponding T-algebra under the above
isomorphism is A" = (A, &), where the structure map &, : Tmg(A) = A is defined by

recursion on the structure of £-terms as follows

o £a(@) = a. for every a € A, and

L4 &(A(to,... 7tp(.\)—1)) = AA(sA(tO)s'-' 7§A(tp(.\)—1))7 for all A € As tOv--' 7tp(.\)—l
€ Tmg(A).

Given an L-term ¢ over V, let us denote by f; € SETx(1,V) the set map from the
singleton 1 = {0} to Tm¢(V), with f.(0) = ¢ and, given a class A of L-algebras we
denote by K™ the full subcategory of SETT with objects {A": A €K}
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LEMMA 3.9 Let t € Tme(V),A = (A, LA) an L-algebra and @ : V — A. Then. if
A= (A-v 5A)-
t4(@) = EanaT(nad) fo(0).

T(3) T(na)

{0} —L— Tme(V)

Tmg(A)

Tme(Tme(A)) —22— Tme(A) —2—— 4

Proof:

First. note that

EapnaT(na@)fe(0) = EapaT(na)T(a)f(B) (since T is a functor)
= EaT(a)fe(0) (since paT(n4) = l7(a))
= &aT(a)(t). (since f(0)=1¢)

We now work by recursion on the structure of an L-term. If t =T € V, then

EA(T(a)()) = €al@(v)) = &(v) = T4(a),

as required. Next. let ¢ = A(to.... .tyn)-1). for some X € A.to,... . .t,0)-1 € Tme(V),

and suppose that £5(7T(@)(¢;)) = (@), for every i < p(A). Then

Ea(T(@)(t)) = &a(T(@)(Alto,--- +tyn)-1)))
= EA(MT(@)(to)s--- - T(@)(t,n)-1))) (by the definition of T(&))
= M(&a(T(@)(to)); - -- .€a(T(@)(tpr)-1))) (by the definition of £a)
= M(t8(a),... ,t4,)-1(@) (by the induction hypothesis)
= t4a).
as required. [ ]
LEMMA 3.10 Let t € Tme(V), A = (4,LA) an L-algebra and @ : V — T(A). Then, if

AT = ('47 €A>~
EapaT(@)fo(0) = tA(€ad).

T(a)

{0} —L— Tm.(v) T (Tme(A)) —2— Tme(Ad) —2—— 4
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Proof:
Note, first, that apsT (@) fi(0) = EapaT(a)(t). We apply again recursion on the

structure of £-terms. For ¢t =7 € V, we have

EapaT(@)(T) = Eapa(@(v)) = €a(@(v)) = TA(Ead),

as required. Next, let ¢ = A(fo,... .¢,)=1), for some A € A to,... . E,0)—1 € Tmg(V),

and suppose that £4pAT(@)(t;) = tA(Ead), for every i < p(A). Then

§apaT(@)(t) = EapaT(@)(Alto,... tpr)-1))
= Eapa(MT(@)(to)... . T(@)(tya)-1))) (by the definition of T(d))
= §a(Mpa(T(a)(to)),--. .na(T(a)(tp(r)-1)))) (by the defin. of )
= M(Ea(ra(T(@)(t0))): -- - - Ealpra(T(@)(to(x)-1)))) (by defin. of £a)
= MA(tAEAT).... .t _,(£a)) (by the induction hypothesis)

= t2(€ad), (by the definition of t4)

as required. |

THEOREM 3.11 Let £ be a language type, K a class of L-algebras, Sy = (Tm(V)?,
k=x) the equational 2-deductive system of K and T = (T,n,u) the algebraic theory that
corresponds to the variety of all L-algebras. Then Is,. and n(I32CN) are deductively
auto-equivalent w-institutions.

Proof:

Clearly, the two given m-institutions have the same signature categories. So it suffices
to exhibit natural transformations o : SEN — PEQ and 3 : EQ — PSEN, such that
(Isten, @) : Is,. — T(I2CN), (Istgn, B) : #(T2ACN) — ZIs,. are inverse interpretations.

Define ay : Tmg(V)? = P(SETr(1, V)?) by
av((to, tl)) = {(ft()?f‘l)}? fOl’ a.ll to,t[ € ng(‘/),
and By : SETr(L, V)? = P(Tme(V)?) by

Bv((fo, fi)) = {{fo(0), f1(0))}, forall fo,f; € SETT(L,V).
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We first show that a and 3 are natural transformations. To this end, let A : V' —
Tme(V) € Mor(SIGN). We need to show that the following diagram commutes. If
(to.t;) € Tmg(V)?, we have

ay

Tme(V)? P(SET1(1,V)?)
h® h
i
Tme(V)? —— P(SETr(1.V)?)

h(av((to.tr))) = A((fio-fu))
= (ho fi.ho fi,)
= (h"fu,h" fu)
= (fhe(eo)s fre(en)
= av(h*({te.t1))),

as required. The proof for 3 is similar.

Now, we show that (Isign, @) : Zs, — 7(Z2GN) is an interpretation. To this end.
let EU {(to,t1)} C Tmg(V)?. We first show that, if (¢5,t,) € E°, then (f,.f:,) €
{{feo: fer) = (€0, €1) € E}<.

If (to,t1) € E°, then, for every A = (A, LAY € K.a: V — A,

ed (@) = (@), forevery (eg,e1) € E, implies td (&) = tMa). (3.4)

Now, suppose that ((4.§a).f) € |ALG(V)], such that ((A,6a). f) Ev (fe, far), for
every (eo, €1) € E. Then EapaT(f) fur = EapaT(f)fors for every (eo, 1) € E. whence, by
Lemma 3.10, eA(£a f) = eA(€a f), for every (eo, er) € E. Therefore, by (3.4). tA(€af) =
t(Eaf). Thus, by Lemma 3.10 again, we obtain EapaT(f)fie = EapaT(f)fu, ie.,
((A.€a); f) Ev (fio; f1,), as required.

Suppose, conversely, that (fi,, fi,) € {(fe: fe,) : (€0,€1) € E}°. Then, for every
((A.€a), f) € |JALG(V)],

EapaT(f)feo = EapaT(f)fe,, forevery (eo,e1) €E,
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implies  EapaT(f)fe, = EapaT(f)fr,- (3.5)

Let A = (A.LA) € A.@: V — A be such that e}(a@) = e2(a), for every (eo.€;) € E.
Then. by Lemma 3.9, EapaT(14@) fe; = EapaT(n4d)fe,. for every (eo,e;) € E. Hence,
by (3.5), éapaT(n4d) fr, = EapaT(n4d) fi,, whence, by Lemma 3.9 again, t5(d@) = t2(a).
Therefore (to,t,) € E°, as required.

The proof that {Isign. 3) : #(ZpAGN) — I, is an interpretation is similar.

Finally, for every (to.t1) € Tmg(V')>.

Bv(av({to,t1)))* = Bv{{fio. fr,))
= {(fo(0), £, (D)) }°
= {{to, t1)}".
and, for every (fo, f1) € SETx(L, V)2,

av(Bv({fo. f1)))° = av({fo(D), (D))

= {{(fnw) fro)}
{(fo, f)}<,

whence (IsigN, @), (IsigN, 3) are in fact inverse interpretations, as required. |

Now, we are ready to prove the main theorem of the present section giving the
relationship between algebraizability of a k-deductive system S and algebraizability of
its associated w-institution Zs.

THEOREM 3.12 Let L be a language type and S = (Tm,(V)F,Fs) a finitary k-deductive
system over L. [f S is algebraizable then Ts is algebraizable.

Proof:

Suppose that S is algebraizable with equivalent algebraic semantics (see [6]) the
class K of L-algebras. This means that S is equivalent to the 2-deductive system
Sk = (Tm¢(V)?, k), having as its consequence relation the semantical equational

consequence relation =g of A. By Theorem 2.48, this implies that the w-institutions



96

Zs and s, are deductively auto-equivalent. By Theorem 3.11, Zs,. is deductively
auto-equivalent to the algebraic w-institution Z3:CN. Therefore S is deductively auto-
equivalent to Z3GN and, hence, algebraizable. |

Actually. the proof of Theorem 3.12 gives the stronger result that, if S is algebraizable

then Zs is auto-algebraizable in a sense that will be made precise in the following chapter.

Algebraizing the Equational Institution

In this section. the, so-called. equational institution, an institution that naturally
represents a version of equational logic, is constructed. In this version the operation
symbols of each equational signature have no fixed arity. Instead. the arity of each
symbol varies over different models of the same signature. Then, an algebraic institution
I = IZETT is used to algebraize the equational institution. The theory T in SET
over which this algebraic institution is constructed is discussed briefly in the second

subsection, but is presented in detail in Chapter 6 of the thesis.

The Equational Institution

In this subsection, the basic construction of the equational institution is provided. It
represents a version of equational logic in which the operation symbols of each language
type do not have fixed arities. More precisely, for every language type L. other than
the empty type, there exist algebras in which the operations corresponding to the same
operation symbol of the type have different arities. These arities must be finite but vary.

A countably infinite set V, called set of variables, is fixed in advance and well-
ordered and, as usual, the category of all small sets is denoted by SET . The definition

of a term is given first.

DEFINITION 3.13 Let X € |[SET|. We define the set of X-terms Tmx(V) € |[SET],

to be the smallest set with

(1) VC Tmx(V) and
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(it) Ifz € X,n Ew and ty,... ,t,y € Tmx(V), with t,_, # v,_1, then

z(to, - .- »ta-1) € Tmx(V).

Next, the definition of an algebra is provided.

DEFINITION 3.14 Let X € |SET| and p : X — w be a rank function. By an (X, p)-
algebra we mean an L-algebra A = (A, @), where L = (X, p), i.e.. a set A together with
a mapping a : X — Cl(A), where CI(A) = 2, A% such that a(z) € AN, for every
r € X. By an X-algebra we mean an (X, p)-algebra for some rank function p on X.

Given @ : VV — A, we denote by a; the element @(v;),i < w. If A = (A,a) is an
(X.p)-algebra, € X and a(z) € A*, then we use the notation a(z)(@),@: V — A,
to denote the element a(z)(ag, ... .ayz)-1) € A.

Next, the notion of homomorphism is defined.

DEFINITION 3.15 Given two X-algebras A = (A,a),B = (B,3) with corresponding

rank functions pa.ps, an X-homomorphism ~ : A — B isa map h : A = B such
that, for every z € X,

h(a(z)(a)) = B(z)(h(a)), forevery a:V — A,

where h(&); = h(a;), for every i € w.

The collection of all X-algebras together with all X-homomorphisms between them
forms a category, called the category of X-algebras and denoted by ALGy.

Finally, before the definition of the equational institution, the formal definitions of
the evaluation of an X-term in an X-algebra and that of the extension of a given set
map f : X = Tmy(V) toa map f*: Tmx(V) - Tmy(V) must be given.

DEFINITION 3.16 Let X € [SET| and A = (A,a) an X-algebra with rank function

pa : X = w. Define e® : Tmx(V) x AY — A by recursion on the structure of X -terms,
as follows:

(i) eMv,@) = a(v), forallve V,a:V — A,
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(ii) eX(z(to,--- 1taz1),@) = a(z)({e*(to,a) e €Mtno1,@),an.Any1,...)), for all =
€ .X,Tl € w7t07--- ’ n—l € TmX(V)vtn—l % vn—lv‘-ie ‘4V'

Define a™ : Tmx (V) — Cl(A) as follows: The rank p(a”(t)) is defined by
¢ p(a”(v;)) =1+ 1, for everyv; € V,

o pla™(z(to,... ,tau1))) = ma'x{pA(ILP(tO)v‘-- vP(tmin{n»p,\(z)}-l)k forall z € X.
toy.-- staey € Tmx(V), tnoy # vt

and
a"(t)(@) = eA(t,d), forall te Tmy(V).de AY.

DEFINITION 3.17 Let X € |SET|, as before. Define a function

Ry : Tmx(V Ume V)* = Tmx(V)
k=0

by recursion on the structure of X-terms as follows:
(1)

S;y LM
RX(vis (307--- ,Sm_l)) = { 7

Us. ) Z m
forallm € w,so,...,5m-1 € Tmx(V),
(i)
I(Ra\'(tOﬂ;)’A-. uRX(tk_l’g)’ [:fm S norn < m

Rx(z(to,... ,tn-1),5) = and s; =v; Vi>m
I(RX(tOv;)v--' 7RX(tn-17§)75n7--- 7sk—l)v lfn <m

foral z € X,n € w,to,... . thoy € Tmx(V),thot # Vn-1, and all m € w,§ €
Tmx(V)™, where, in the first branch, k = max{l : Rx(t,5) # v}, and, in the
second branch, k = max{l : s; # v}.

In other words, it is understood that the last, say k-th, term inside the parenthests
on the right, i.e., Rx(t;-1,5),0 < k < n, if m < n, and either Rx(t(—,,5) or
$k-1,0 < k < m, if n < m, must be the last term that is not equal to the variable

Vk—1-
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DEFINITION 3.18 Let X,Y € |SET| and f : X = Tmy (V). Define f* : Tmx(V) —

Tmy (V') by recursion on the structure of X -terms as follows:
(i) f*(v)=v, for everyv €V,
(ii) fr(z(to,... .tam1)) = Ry(f(2).(f*(to)s--- . [ (tn=1))), for all £ € X.n € w.to,

.. 7tn—l € me(V),tn_[ # Un-1-

In the sequel, we write f : X — Y to denote a SET-map f : X — Tmy(V), as above.
Given two such maps f: X — Y and ¢ : Y — Z. their compositiongo f: X — Z is
defined to be

gof=g/f
We denote by SIGN the category having as collection of objects [SET| and as its

collections of morphisms
SIGN(X,Y)={f: X =Y : fe€SET(X,Tmy(V))}.

for all X,Y € |[SET|. This category, which is denoted by FACA in chapter 6 of the
thesis (see Theorem 6.7), has as its composition the composition o as defined above and

its identity arrows jx : X — X are the set maps jx : X = Tmyx(V'). with

Jjx(z) =z(), forevery ze€ X.

The definition of the equational institution follows.

DEFINITION 3.19 Define £Q = (SIGN,SEN.MOD, ) by letting
(i) SIGN be the category just defined.

(ii) SEN : SIGN — SET sends an object X € |[SIGN] to the set Tmx(V)? and a
morphism f : X — Y € Mor(SIGN) to the set map SEN(f) = (f*)? : SEN(X) —
SEN(Y).

We usually denote (to,t;) € Tmx(V)? by to = ¢;.
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(it} MOD : SIGN — CAT® sends an object X € |[SIGN]| to the category ALGx
and a morphism f : X — Y € Mor(SIGN) to the functor MOD(f) : ALGy —
ALGy sending (A, a) to (A, a" f) and a morphism h : (A, a) — (B. 83) to MOD(f)
(k) : (A,a"f) = (B. 3" f) defined by MOD(f)(k) = h.

(iv) For every X € |SIGN|, |=x C IMOD(X)| x SEN(X) is given by
(A,a) Ex ti = t2 ifand only if e™(t;,d@) = eP(ty,d), for every G e AY,

for all (4, @) € ]MOD(X)|.t, ~ t. € SEN(X).

To prove that £Q is an institution, we first need to prove three lemmas.

LEMMA 3.20 Let X € [SET|.A = (A,a),B = (B,3) be X-algebras, h : A — B be an
X -homomorphism and t € Tmx (V) an X-term. Then

h(a™(t)(a)) = B7(t)(h(a)).

Proof:

The proof is by induction on the structure of the X-term ¢.

If t = v; € V. then h(a™(v:)(@)) = h(a(v:)) = h(a:) = h(a): = 37(vi(h(@)))-
Ifzre X,to,... . tho1 € Tmx(V),tao1 # vaay, with

h(a*(t:)(a)) = B7(t:)(h(@)), for every i< m,

h(a*(z(to.- .. .ta-1))(@) = h{eA(z(to,-- . .ta1),@))

= h(a(z)({e?(t0,@);--. s €Mtnm1,@)s@ns Grsry---)))
(by the definition of e?)

= B(z)((h(e*(t0,@)). ... . h(eA(tn-1.d)). h(an), .. .))
(since h : A — B € Mor(ALGx))

= B(z)((h(a™(t0)(@)); - - - , h(a"(tn-1)(a)), h(an), - - )
(by the definition of a”)

= B(z)((8(t)(~(a)), - - . B (tn-1)(h(@)), h(an), - - -))
(by the induction hypothesis)

= B™(z(to,--- +tn-1))(R(@)), (by the definition of 37)

as required. [ |
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LEMMA 3.21 Let X € |SET|,A = (A, a) be an X-algebra with rank functionp : X = w
t € Tmx(V), §€ Tmx(V)™ and @ € AY. Then

e*(Rx(1,5), @) = e*(t. (e*(50,d). - - .€M(smo1,8), G- Ams1.. . ).

Proof:

The proof is by recursion on the structure of .

Ift=v; €V, then

A - . A o .
. e*(si,a), t<m e*si @), 1<m

CA(RX('U,', g)wa) = = =
eAMu,d), i>m a;. t>m

= eA(va (eA(s()v 5)' s eA(Sm_[,E), Cm.Am41. - - -))9
as required. Now suppose that z € X.¢g,... ,tno1 € Tmyx(V), tno1 # tn-1. and
ARy (£:5),8) = et (€*(50: @) . . M (Smers @)y @mprs-. ), forevery i<n.

Then

CA(RX(.’L‘(to,... 7tn—1)7 5)7&.) = CA(I(Rx(to,g),... 7RX(tn—l~,§)73n7--~ ~5m—l)7&.)

(by the definition of Rx)

= a(z)(e*(Rx(to,%),d). ... . eA(Rx(ta-1.5),d).
€A (52,)s- - + €A (Smmrs@): Gy Cmi s - - -)
(by the definition of )
= a(z)(er(to, (€*(50,d). - - - . eA(sm-1,@), . ---))s
oo €M1, (€M(50,@): ... .M (5mot. @) Em, .. ).

eM(5n,@)s--. € (Sma1,@); Gms Emtls---)
(by the induction hypothesis)
= e*z(tg,--- .tn-1), (€*(50,@),--- .
e*(Sm=1:@), @m,@m41,---)), (by definition of e?)

as required. [ ]
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LEMMA 3.22 Let X,Y € [SIGN], f: X — Y € Mor(SIGN), (A.a) € [IMOD(Y)| and
t € Tmx(V). Then

et N(t.d) = (f (1)), for every T A

Proof:
The proof is by recursion on the structure of ¢.
If t = v; € V, then 4" (v;,d) = a; = f1Nv;.a@) = el f*(v;), @). as required.

[fzre X.n€w,itg.... .taer € Tmyx(V) taoy # vn-y. with

el ). @) = elMoNf(¢;),d).  for every i < n.

e N (z(to,... .tam1). @) = a(fz))(ePNto,d),. .. , 1Nt @),

@n.Qni1----) (by the definition of ef4-a"f))

= a"(flz)) (e (f(to). @), ... .M f(ta1), @),
Gn,Qn41,---) (by the induction hypothesis)

= e4(f(z). (N f(to), @), - .
el f*(tn=1),@).@n,-..)) (by the definition of a~)

= 4N Ry(f(z).(f(to)---- . f*(ta=1))).@)
(by Lemma 3.21)

= eA(f(z(tos-.. stn-1)), @), (by the definition of f=)

as required. |
THEOREM 3.23 £Q = (SIGN,SEN,MOD, =) as defined in 3.19 is an institution.

Proof:
We show that MOD is well-defined on morphisms and then verify the satisfaction

condition.
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To this end, let f : X — Y € Mor(SIGN) and & : (A,a) — (B, 3) € Mor(ALGy).
Then h(a(y)(a)) = B(y)(k(a)), for every @ : V — A. We need to show that

h(a"(f(2))(@)) = B~(f(z))(h(&)), forall r€ X.@:V = A.

This, however. was proved in Lemma 3.20.
For the satisfaction condition, let f: X — ¥ € Mor(SIGN). ¢, = ¢; € SEN(X) and
(A.a) € [MOD(Y)|. Then

MOD(f)({A,a)) Ex toxt, ifand only if (A,e"f) Ex toxt; ifand only if
e‘""‘””(tm a)= e('4'°'f)(t[,c7), for every @€ AY. if and only if. by Lemma 3.22,
e (o), @) = N f(t1),@). for every @€ AY, ifand only if

(A,@) v f(to) = f(t) ifandonlyif (A.a) by SEN(f)(to & 1),

as required. |

We refer to £Q as the equational institution.

The Algebraic Counterpart

In this subsection, the construction of the algebraic theory T = (T.n,u) that will
serve as the basis for the algebraic institution algebraizing the equational institution £Q
is overviewed. Details are omitted, since the entire construction is carefully developed
in Chapter 6 of the thesis.

The functor T : SET — SET is defined by
T(X)=Tmx(V), forevery X €|SET]|,
and, given f : X =Y € Mor(SET), T(f) : Tmx(V) — Tmy (V) is defined by

T(f) =G f).
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The natural transformation n : Isgr — T is given by nx : X — T(X), with
nx = jx., forevery X €|SET|.

Finally, the natural transformation g : TT — T is defined by ux : T(T(X)) = T(X),
with

px =iT(Xx) O iT(T(X)) = ir(x), forevery X €|SET].

Given a set A, define A# = (Cl(A),&4) as follows:

Cl(A) is the full clone of operations on the set A, i.e..

o

Cl(4) = | J a*".

k=0

€4 : Tmey4)(V) = CI(A) is defined by induction on the structure of Cl(.A)-terms over

V., as follows

o £4(vi) = pi, for every i € w, where p; : A™*! = A is the i-th projection map.

o Forall f € Cl(A).n €w.to,....tay € Tmcya)(V). taot # Vn-r.
P(fA(f(to’n- vtn-l)) = mal?{p(f),p(fA(to)),... sP(&A(tmin{n.p(f)}-l))}: and
§a(f(to, - s ta1))(@) = f({§a(to)(@). ... .Ea(tn=1)(d); @ns @nstis- - -))-

LEMMA 3.24 Let A be a set, t,s0,... ;5m—1 € Tmcya)(V'). Then
Ea(Reya)(8,3)) = Ea(t)(also)s- -, €a(Sm—1))-
Proof:

The proof is by induction on the structure of the Cl(A)-term ¢.

Ift=v; €V, then

EA(S;), t<m

fa(v), t2m

€a(Reyay(vi, 9)) =
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= pi(&A(SO)v s ?6.4(Sm—1)) = &4(“)(6{\(50)7 ve. vEA(Sm—l))v

as required. Next, if f € Cl(A),to,... ,ta1 € Tmcya)(V),tnet # va-i, such that

Ea(Rcya)(ti; 3)) = €alt:)(Ea(so)s--- -6a(sm—1)), forevery i<n.

we have
§a(Raa)(f(tos--- -ta1),9)) = Eal(f(Raay(to.).-.. . Raay(ta-1. ).
Sne... -8m_1)) (by the definition of Rcy4))
= f(€a(Rcyay(to, 3). .. .Ea( Reyay(tn=1,5)).
€a(sn)s--- :€a(sm=1)) (by the definition of £,)

= f(€a(ta)(Ea(3))s--- . Ealtam1)(Ea(S)),
£a(sn)s--- -€a(Sm-1)) (by the ind. hypothesis)

= f(§alto)s--. . €a(tn-1))(8a(5))

(by associativity of the clone composition)

= E4(f(toy--- +taz1))(€4(3)) (by the definition of £4)

as required. a

In the next lemma it is proved that A# is a T-algebra.
LEMMA 3.25 A#¥ = (Cl(A),&4) is a T-algebra.
Proof:

By definition, we need to check commutativity of the following diagrams:

nci(A)

CI(A) Tmcya) (V)

\ lfz&
ici(a)

Cl(A)

To this end, let f € Cl(A). We have

§alnaway(f)) = a(f()) = f = taay(f)-
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T(¢4)

T Tme 4 (v) (V) —— Tmeyay(V)
BCI(A) §a
Tmcu..g)( ‘/) CI(A)

§a

For the commutativity of the rectangle we work by induction on the structure of a
TmCl(A)(V)—terrn L.

Fort=v;€V,

Ea(T(Ea)(vi)) = Eal(ncaba)(vi))
= §a(w)
= Ea(tTmgy ,‘,(V)i’rmrmc“ A)(V)(V}(vi )
= &apcia)(vi),
as required. Next, if ¢ € Tmey4)(V).n € w,s0,... . 5m—1 € Tmrme () (V)s Sm1 #

Um-~1, such that £4(T(£4)(s:)) = Ea(pcia)(si)), for every i < n, then
§a(T(§a)(t(s0;--- .5n-1))) = Eal(ncya)€a)*(¢(sos- .- +5n-1))) (by defin. of T)

= Sa(Ray((maayéa)(t), ((meyaéa) (so)s- - »
(mci(4)§4)"(sn-1)))) (by the definition of =)

= Cal(nera€a)(®))(€al(maa)€a)™(so))--- -
§a((mci4)€4)*(sn-1))) (by Lemma 3.24)

= &a(t)(§aluaay(so)):-- - . Ealkecray(sn-1)))
(by commut. of triangle and induction hyp.)

= Ea(Rayay(t, (kcia)(so):- - - s kcia)(sa-1)))) (by Lemma 3.24)

= SalBaa) (Tma g (V) () (g (v)iTmrmgy 4 0y (V) (S0): - - - -

My (V) TmTag 4 (V){Sn=1)))) (by definition of pcia))
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= €A(i'-['mC"A)(V)(t(iTﬂ'ITmCl(A)(V)(V)(so)y ceey
iTmeCl(A)(V)(V)(s“"I)))) (by definition of *)
- EA(i'-rmcu.u(V)iTmecm)(V)(")(t(so’ <+- = Sn=1)))

= €alpcia)(t(sos--. +5a-1))),

as required. |

The Algebraization

In this subsection, the algebraization of the equational institution £Q. that was
constructed in the first subsection, is presented. For the algebraization, an algebraic
institution that is based on the algebraic theory T over SET, that was constructed in
the preceding subsection, is used.

Let Q be the full subcategory of SETT with objects
{A* = (CI(A).£4) : A € |SET]}.

Set ITp = ISETT. It will be shown that Z, is deductively equivalent to £Q and. therefore,
that £Q is algebraizable.

First, we need to prove the following lemma:

LEMMA 3.26 Let X € |SET|.A = (4, e) € [ALG(X)|. t € Tmx(V) and G € AY. Then
et(t,a@) = EaT(a)(t)(@).

Proof:

By induction on the structure of £.

I[ft=v; €V, then
§a(T(a)(vi))(@) = Eal(noyaye)™(vi))(@) = Ealvi)(a@) =

-

= pi(@) = a; = e*(vi, @).
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Ifre X,n €w,ty,....they € Tmx(V),tn=1 # vn-1, such that
e(ti, @) = €4T(a)(t;)(@), forevery i<n,

then

§a(T(a)(z(to, ... +ta-1)))(@) = Eal(ncoyaye) (z(fo. ... .ta=1)))(@) (by defin. of T)
= Ea(Reay(naayo(z), (T(a)(to), - - - .
T(@)(tn1))))(@) (by the definition of *)
= Salnoway(a(z))(§a(T(a)(to)), - -
§a(T(a)(ta-1))))(@) (by Lemma 3.24)
= a(z)(§a(T(a)(to)). ... . a(T(a)(tn-1)))(@)
(by commutativity of triangle)

= a(z)(§a(T(a)(to))(@).. .. .Ea(T(a)(ta1))(a),

@n,Qntl,---) (by the definition of clone)
= afz)(er(to,d),... ,eAtnor. @), an,...)
(by the induction hypothesis)
= e®(z(to,--- -ta-1),@), (by definition of e?)

as required. |

And now for the main theorem of this subsection.

THEOREM 3.27 £Q = (SIGN,SEN,MOD, ) and Iy = (SETT,EQ,ALG, =) are

deductively equivalent institutions.

Proof:

First, note that SIGN = SETt, whence it is legal to take the identity functor as

the signature component of the interpretations (Isign, @) : £Q — Zp and (Isgr,.3) :

To — £Q. Define & : SEN — PEQ by ay : SEN(X) — P(EQ(X)), with

ax(to=t1) = {{feo: f1,)}, forevery t5=t; € SEN(X),
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where, as before, given t € Tmx(V'), we denote by f; : {#} - Tmx (V') the map
that sends § to the X-term ¢. Similarly, define 3 : EQ — PSEN by 3y : EQ(X) —

P(SEN(X)), with

Bx((fo. f1)) = {fo(0) = f1(D)}, for every (fo.f1) € EQ(X).

We first show that « : SEN — PEQ, 3 : EQ — PSEN are natural transformations. To

this end, let f : X — Y € Mor(SIGN). We need to show that the following diagram

commutes. If ¢ = t; € SEN(X). we have

SEN(X) —*— P(EQ(X))

SEN(S)

[pBQ(f)

SEN(Y')

P(EQ(Y))

ay

PEQ(f)(ax(to= t1)) = EQ(f)({fe:fu))

= (fo fuo.fofu)

= ([ fio- [ fui)

= (freo)»fren)

= ay(f(to) = f(t1))
= ay(SEN(f)(te = t1)),

as required. The proof for 3 is similar. Next, we show that (Isign.a) : EQ — To is

an interpretation. To this end. let X € [SIGN|, E U {¢{; = ¢;} C SEN(X). We need to

show that

tox=t, € B iff (fto’ftl) € {(fcwfcl) e € E}c'

We first show that, if to = t; € E°, then (f,, ft,) € {{feor fer) : €0 = €1 € E}*. Suppose
that ¢y = ¢; € E°. Then, for every A = (4, a) € ]MOD(X)],

e?(eq, @) = e™(ey, @), for every eg ~ e, € E,d:V — A, implies er(to, @) = e*(ty,d).

(3.6)
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Now assume that ((CI(A),£4), f) € |ALGxl, such that ((CI(A).€4). ) bx (fen- for)-
for every eo ~ e; € E. Then Epcia)T(f)foo = ExstcriyT(f)fur, for every e ~ €1 € E,
whence EapciynricanS " feo = Earcayirciay S fe,, for every e = e; € E. and,
therefore €4 f~ fe, = E4f"fe,, for every eq = €; € E. Thus, (Cl(A),€4f) Ex eo = ey, for
every e = e € E. By (3.6), then, (Cl(A),€4f) EEx to = t1, and. reversing the steps in
the above deduction, ((Cl(A),&a). f) Ex (fi- fu,). Hence (feo. fir,) € {(feo- fe,) 1 €0 =
e; € E}°. as was to be shown.

Suppose, conversely, that (fy,. fi,) € {(fe.fe,) : € = € € E}°. Then. for every
((Cl(A),€a), f) € [ALG(X)],

((CH(A),Ea). f) Ex (feo: fer), forevery eo~e €E,

implies  ((Cl(A).&a). ) Ex (fio: fu)- (3.7)

Now assume that (A,a) € |[MOD(X)], such that e®(eq,a@) = e?(e;, @), for every eq =
ey € E.@ : V — A. Then, by Lemma 3.26, we have 1T (a)(e0) = EaT(a)(e,), for
every e = e; € E. ie., LapaaT(noyy)T(a)(eo) = EanciayT(ncyay)T(a)(er). for
every eo =~ e; € E. Thus, fapcya T (noya)a)(eo) = EarcynT(neiaya)(er), for every
eo = e; € E, and. therefore, ((Cl(4).£4),7c14)0) = (feo: fe,). for every e = €; € E.
Thus, by (3.7), we have ((Cl(A),&4).ncia)a) E (fi,. fr,). Reversing the steps in the
above deduction, we get e*(t,a@) = e®(¢y,d), for every @: V' — A. Hence to = ¢; € E*,
as required.

The proof that (Isgr,.3) : Zg = £Q is an interpretation is similar.

It only remains to show that (Isign,a) : £Q — Zg and ([ser,.8) : Tg — £Q are

inverse interpretations. To this end. let X € [SIGN]|, ¢, = {; € SEN(X). We have

Bx(ax(to=t1))* = Bx({f, fer))°
= {fo(®) = fu. (D)}

= {to=t1}5,
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as required, and if X € [SETz|, (fo, fi) € EQ(X).

ax(Bx({fo. f1)))* = ax(fo(D)= f1(0))
= {{frw» fron}
= {(fo,fl)}c~

as required.



4 AUTO-ALGEBRAIZABLE THEORY INSTITUTIONS

A very special subclass of term m-institutions, the so-called theory institutions. is
introduced and the notion of auto-algebraizability is defined for theory institutions. The
notion of Leibniz operator. introduced in [6], is extended and an intrinsic characterization
of auto-aigebraizability for a subclass of theory institutions is then obtained along the
lines of [6]. An example of an auto-algebraizable theory institution is provided and the
relation between auto-algebraizability of theory institutions and classical algebraizability

of deductive systems is explored.

Introduction

In [6], Blok and Pigozzi developed a general framework for the algebraization of
deductive systems in the sense of Tarski. They dealt with propositional-like logics over
a fixed signature £. In this framework, the algebraization of logics dealing with varying
signatures, like equational or first-order logic, requires first the transformation of the
logic to a propositional-like structural counterpart. For example (see appendix in [6]) the
algebraization of first-order logic presupposes its “cylindrification”. This initial ad-hoc
step makes the process cumbersome and clumsy and seems artificial and unsatisfactory.

In a different context, Goguen and Burstall [26, 27] introduced the notion of insti-
tution in order to exploit some nice features of equational and other logics in the area
of specification of programming languages. The institution structure has proved to be
very appropriate for handling logics with varying signatures.

Inspired by a later work of Blok and Pigozzi [§] on the equivalence of deductive sys-
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tems, a generalization, using the institution structure, of the theory of algebraization
of [6] was developed in Chapters 2 and 3 of the thesis. This more general framework
incorporates nicely the algebraization of logics with varyving signatures (see Chapter
3). The notion of deductive equivalence was defined for institutions and necessary and
sufficient conditions for the deductive equivalence of two term institutions were given.
Further, the notion of algebraizable institution was introduced and, based on the char-
acterization result on deductive equivalence, a characterization of the algebraizability of
term institutions was provided.

In this chapter a very special subclass of term institutions, the so-called theory in-
stitutions, is introduced. Roughly speaking, theory institutions are w-institutions whose
syntax has the specially desirable feature that it is already algebraic in nature. To alge-
braize them, therefore, it is only necessary to interpret their closure systems in algebraic
closure systems and vice-versa. It is in this sense, that the class of theory institutions
may be seen to be the natural first generalization of the class of classical deductive
systems, whose syntax component is essentially an absolutely free algebra over some
pre-specified signature.

Auto-algebraizability of theory institutions results from applying the general tech-
niques developed in Chapters 2 and 3 of the thesis to this special class of term =-insti-
tutions, by imposing the additional restriction that the syntax component must remain
invariant. See the section on deductive auto-equivalence in Chapter 2 for more details
on the idea of invariance.

The nice algebraic-like structure of the syntax of theory institutions makes it possible
to extend the definition of the Leibniz operator of [6] to this more general context.
Again the generalized congruence, thus obtained, may be thought of, as the largest
congruence identifying elements with the “same behaviour” with respect to the system
under consideration. The introduction of this notion enables one to get an intrinsic

characterization of auto-algebraizability for a special subclass of theory institutions along
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the lines of [6]. Finally, the relation of auto-algebraizability of theory institutions with

the classical notion of algebraizability for deductive systems of [6] is also explored.

Theory Institutions and Algebraic Institutions

From now on we will be considering only categories K with the following properties:

1. K is locally small.

[SV]

. K has a terminal object 1 and
3. in K the coproduct 1 U1 exists.

Let T = (T.n,u) be an algebraic theory in monoid form over a category X, as
above, and, denote, as usual, by Kt the Kleisli category of T in K, acrd by KT the
Eilenberg-Moore category of T-algebras over K. Moreover, let £ be a full subcategory
of Kr, satisfving the following condition (see also the section on algebraic institutions
in Chapter 3):

There exists Lo € |L|,lo,li € Kx(l, Lo), with the property that there exists f :
{(K, (ko k1)) : K € |Kr], ko, k1 € K2(1, K)} = |(Lo]K1)|, such that

fik. (ko k1)) € Kr(Lo, K), for all A" € [Kr|,ko. k1 € Kx(1, K) the following commutes

(4.1)
] =2 L, g
f LK kg iy
ko ! ky
i

and, for every g € K(K. K"}, g0 fir ko)) = fir".(g0ko.g0k1))-
DEFINITION 4.1 An L-theory institution is a =-institution I of the form

I=(L,Kx(1,-).{CL}Leicr)
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for some algebraic theory T over K and some full subcategory L of K, satisfying (4.1).
where Kt(1,—) : Kt — SET is the representable covariant functor.

Next, let T = (T,n,u) be an algebraic theory in monoid form over a category K.
satisfying 1-3, £ a full subcategory of K, satisfying (4.1), and Q a subcategory of KT.
Recall from Chapter 3 that the L-algebraic w-institution Z§ associated with Q is the
m-institution I5 = (L. Kx(1, =) {EL}Lejey). where Ep : P(Kp(1, L)?) = P(Kx(1. L)?)
is given. for every A C Kx(1, L) by

E(d) = {{ti.t2) € Kx(1. L)* : V(K &) € |Q| Vf € Kx(L, R)
(EpT(f)01r = EurT(f)é2, for every (41,42) € A,
implies ExxT(f)ty = EuxT(f)t2)}-
Note that, in the present context, L-algebraic w-institutions and L-theory institutions
are in the same relation that equational deductive systems and 1-deductive systems are
in. So it is natural to also consider k-theory institutions that are obtained by taking
the sentence functor to be Kx(1, —)%. This entails a slight complication because (4.1) is
no longer sufficient to ensure that the k-theory institution is a term institution. Rather,
one has to postulate the existence of lg,... ,lk—1 € K1(l, Lg), satisfving an analogous
condition. Moreover, the introduction of k-tuples overloads the notation. So, from this
point on we will only be considering 1-theory institutions.

Now, the following result may be derived as a special case of Corollary 3.5(iii).
COROLLARY 4.2 Let K{,K, be categories satisfying 1-3, T, T, algebraic theories in
K1, K2, respectively, £,. L, full subcategories of ’Cl-rl s K2y, respectively, satisfying (4.1),
and Q a subcategory of K32. A theory institution T = (L1, Krp (1, =), {CL, }rie1c1)) 35
algebraizable, with deductively equivalent algebraic institution Iéz, if and only if there

erists a signature respecting adjoint equivalence (F,G,n.€) : TH(Z) — TH(Ié’), that

commautes with substitutions.

This characterization of algebraizability for theory institutions is not intrinsic, in the

sense that it requires a priori knowledge of the equivalent algebraic institution semantics
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Ié’. A general result giving such an intrinsic characterization is not known. In the sequel.
we define the notion of auto-algebraizability for a theory institution and prove a
partial result, characterizing intrinsically this more restricted notion for a special class
of theory institutions.

DEFINITION 4.3 A theory institution T = (L,K1(1.~), {CL}Lec;) will be called auto-

algebraizable (a.a., for short,) if there erists a subcategory Q of KT, such that T is
deductively equivalent to I§ via interpretations (Iz.a): I — I§ and (I¢,3):I5 — T.

Clearly, auto-algebraizability trivially implies algebraizability as defined in 3.4. Co-
rollary 2.45 yields the following corollary referring to autoalgebraizability.

COROLLARY 4.4 A theory institution T = (L, Kr(1, =), {CL}Leic)) is autoalgebraizable,
with deductively equivalent algebraic institution I5, if and only if there exists an isomor-
phism F : TH(Z) — TH(Ié), that makes the following diagram commute

H(Z) ——— TH(Z})
L

and commutes with substitutions.

The Leibniz Operator

Let K be a category satisfying conditions 1-3 of the previous section and T = (T, ., )
an algebraic theory in monoid form over K. Recall that X(1,UT) : KT — SET is the
functor from the Eilenberg-Moore category KT of T in K into SET, that sends a T-
algebra (K, &) to the set K(1, K') and a T-algebra homomorphism £ : (K, €) — (L.¢)

T(K) =2 7(L)
£ ¢
K——1L
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to the set map K(1,k) : K(1,R’) = K(1, L), with

KR——1
N
1
K(1.h)(f)=hf. forevery fe€K(l.R).

Now, let (R, &) be a T-algebra, as above. A congruence O of (A, €) is an equivalence
relation on K (1, A'), such that. for all n € w, all natural transformations 7 : £(1.UT)* —»

K(1.UT) and all t;,s; € K(1,R),i < n.

-

(ti;s:) €O©,1 < n. implies (mrg(t), Tre(3)) € O.

LEMMA 4.5 Let I5 = (£, K1 (1, ~)*. {EL}Lejc)) be an L-algebraic institution. For every
theory (L,®) € |TH(Z5)|, © is a congruence of (T(L), p)-

Proof:

Let (L,0) € |TH(Z§)| and denote by (L.O)" the class of all pairs (K, £). f), with
(K.€) € |Q] and f € K1(L, R), such that EurT(f)0, = EunT(f)02, for every (0,,6,) €
0.

1 o T(L) ()

T(T(R)) =~ T(K) ——— K

Clearly, by the definition of satisfaction in Ié, we have

O = {(0:,0,) € Kx(1,L)? : EunT(f)0s = EunT(f)02, for every (K. &), f) € (L,0)"}
(4.2)

[t is easy to see from (4.2) that O is an equivalence relation on K(1,T(L)). To show that
it is a congruence, let n € w, 7 : K(1,UT)* = K(1,U7) a natural transformation and

t;,s: € K(1,T(L)),z < n. Then (;,s;) € ©,7 < n, implies

f.uKT(f)ti = fﬂKT(f)shi <n, for every ((K.s f)nf) € (L~ 6)-.-
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whence 7(x ¢ (Epx T(f)E) = Tk (Epr T(f)5) and therefore, since Eur T(f) : (T(L), pL)
— (K,€) € Mor(KT),

K(LT(L)) S8 1 7(L))
K(L&upxT(S)) K(1&urxT(f))
K(1,K)* ——— K(L.K)

Euk T()mTw)wn(t) = Eur T(F)TTL)uy (5)-

-

Le., (T(T(L).uL)( ), T(T(L)‘“L)(ST» € @, as required. |

A congruence O on (A §) is said to be compatible with a subset A C (1, A) if.
for all 8,6, € K(1, ),

(01,02) € O and 01 € A imply 02 € A.

A binary relation © on K(1,A’) is said to be explicitly definable over a T-algebra
(K, €) and a subset A C K(1, K) if there exists n € w, an [-indexed family of natural

transformations 7¢ : K(1,UT)"*? - K(1,U7T) and r; € K(1. K).i < n, such that

(6,,6,) € © iff T("Kf)(ol,Og,f') € A, forallie .

DEFINITION 4.6 Let (K, €) € [KT| and A C K(1, K). Define

Qrg(A) = {(61.6:) e K(1.K)?*: forall n€w, natural transformations
T K(LUT) - K(1,UT) and r; € K(1,R),i<n.
Tke(01,7) € A if and only if Tk e(02,7) € A}

Qk.)(A) s called the Leibniz (K, £)-equivalence over A and
Qe : P(K(L, R)) = P(K(L, K)?)

is called the Leibniz operator on (R, £). By Qp we will sometimes denote the Leibniz
operator on (T(K), ur).
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THEOREM 4.7 Let (K.€) € [KT|, A C K(1,K). Qx )(A) is the largest congruence on
(K,&) compatible with A.

Proof:

It is clear that Q¢ (A) is an equivalence on K(1, A'). We show that it is a con-
gruence. To this end, let n € w, 7 : K(1.UT)* = K(1.UT) a natural transformation
and (si.t;) € Qugy(A).i < n. Then, if m € w. o : K(1.UT)™*! - K(1,UT) a natural

transformation and r; € K(1,A’),j < m. we have
J(K.i)(r(f\'.ﬁ)(t0~,~ .- 7tn—l)7ﬂ €A iff

ore) (TR gy (S0 by e en stay),T) €A Iff

U(A’{)(T([{{)(So, sl?t27 LR tn—l)vf') €A iff

o(k.6(T(k.g)(5).7) € A

Thus, {7k (). 7w e)(3)) € Qr.g(A), as required.

Compatibility of Qg ¢ (A) with A is obvious if one considers the identity natural
transformation ¢ : K(1,U7T) — K(1,U7T).

Finally, let © be a congruence on (A", ), compatible with A and (8:,6,) € ©. Then,
for all n < w, natural transformation 7 : K(1,UT)**! = K(1,UT) and r; € K(1,K),i <

n, (T(xe) (01, 7). T(rg) (62, 7)) € O, whence, by compatibility with A,

Tike(01,7) € A ff TR g(02.7) € A,
i.e., (01.02) € Qrg)(A), as required. [ |
THEOREM 4.8 Let (R,€) € |KT|,A C K(1,K) and © C K(1,R)? explicitly definable
over (K.£) and A.

(t) If © is reflezive, then Qg (A) C O.
(i) If, in addition, © is a congruence compatible with A, then Qg (A) = ©.



Proof:

(i) Suppose
O = {(01702> € K:(lv [\-)2 : T(in)(019027’:) € -‘Li € [}

and (0,,60:) € Qrg(A). By reflexivity of O, 7(‘,\.'5)(92,02,7") € A,: € I. Therefore,
since (61.6.) € Qrg(A), 7'(",\-'5)(01,02,6 € A,¢ € I, and. hence, (6,.6,) € O. Thus
Qrg)(A) C O, as required.

(ii) Obvious by (i) and Theorem 4.7. a

Uniqueness of Autoalgebraizability

Let K be a category satisfying conditions 1-3, T = (T, n,u) an algebraic theory in

monoid form over K and £ a full subcategory of Kt satisfying (4.1).

LEMMA 4.9 Let T = (L.K1(l.—),{CL}Leic)) be an autoalgebraizable theory institution
via the interpretations (Iz,a) : T — Ié and (I¢,3) :Ié — Z. Then, for all L € |L| and
all t07t17 t2 € KT(]". L)v

(1) BL((to,to)) S 0°
(i) B({t1,t0)) S Br((to. 1))
(iii} ﬁL((t()’ t'Z)) g VBL({(t07tl)7 (t17t2)})c-

Furthermore, for all n € w, natural transformation 7 : K(1,UT)**' = K(1,UT) and
r; € KT(L/L)’! <n,

(tv) Br({mrL).ue)(to, ™) T (L)wr)(E1:7)) ) C Br({te. t1))°-

Proof:

(i) We have (to, to) € 0°, whence, since (I¢,8) : I§ — T is an interpretation,
tBL((t07 tO)) g )BL(G)C = 069

as required.



(ii) and (iii) can be proved similarly.
(iv) Suppose that for some T—algebra (A,() € [Q| and f € Kx(L,R). (Lo, t,) €
((R€). f)". Then (urT(f)to = (unT(f)tr. whence

Tk (ST (to, CurT(f)7) = Ty (S T (St Sua T(f)F)
and therefore, by commutativity of the diagram

K(LT(L) T2 K (1, T(L))

CurT()n+! CurnT(S)

K(1, )™+ K(1.R)

T(K.C)

CerT(F)mrwywy(to. ™) = SurT(F)Tr(Lyuy(tr, 7). Thus
(L)) (o, T)s (r(L) ) (E1.7)) € ((R.C), f)".

This shows that (7(r(z).u.)(to-T), (T(L)up)(E1: 7)) € {{to,t1)}°. whence. since ([, 3) :

Ié — I is an interpreta‘tionw BL((T(T(L)v“L)(tO?F')?T(T(L),[l[_)(tl7 F))) g BL((t()wtl))C? as

required. [

LEMMA 4.10 Let T = (£,Kx(1,=),{CL}Lei)) be an a.a. theory institution via the
interpretations (Iz,a) : T — Is and (I, 3) :Ié — I. Then,

(i) there ezist an indez set J and a J-indezed family of natural transformations o :

K(1,UT) = K(1.UT)?, such that
ar(s) = {Q{T(L)?“L>(S) :J € J}, fordl L€ |£|,s € Kr(1, L),

(ii) there ezist an indez set [ and an [-indezed family of natural transformations 5* :

K(1,UT)? = K(1,UT), such that

Br((s.t)) = {,BZT(L)'”L)({s,t)) :t€l}, foral Le|L]s,teKy(l,L).



Proof:
(i) Let lo, {1, fis.sy be as in (4.1).

{ {
] —— Lo —— 1

NI

L

Then
C!L(S) = QL(KT( 17 f(s,s) )(10))

= Kr(l, fis.)*(aLy (b)),
Kx(1. Lo) —=— P(Kx(L, Lo)*)
by commutativity of Kt(l.f.)) ‘ lmcru.f(,.,))z
Kr(1,L) —— P(Kz(1.L)*)
Let ar,(lo) = {(¢;,%;) : j € J}. Then, for every (K,§) € [KT|.j € J. define ajy, :
K(1, K) = K(1, K)? by
oy (0) = (Erx T(finwtni))5: EK T (fraxongo) J5).  for every 6 € K(L.K).

We first check that o : K(1,UT) — K(1,UT)® is a patural transformation. Let
(K.€),(L,¢) € [KT|,h : (R,€) = (L,{) € Mor(KT). We need to show that the fol-

lowing diagram commutes. If § € K(1, A), we have

)

K(1.R) K(1,R)?

K(1.h) K(1.h)2

K(1,L) —— K(1,L)?

XL

K(1. k) (og(0) = K(LAP((EuxT(finkt i) 9ir 8K T (fingcb.nic) )E5))
= (REUKT (finibnict))®is RELET (finyinica) ) ¥s)
= ((T(R)pxT(finx0.056))Pi+ ST (R) T finsco.nic0) )5)



T(K) =2 7(L)
by commutativity of £ Il(
K —— L

= (CrLT(TR)T( fingenis))Sss CELT(TR) T finctnecey ) ¥;)
T(T(R)) —— T(K)

by commutativity of  T(T(k)) T(h)

I(T(L)) T(L)

= (CuLT(T (k) finxb.nic)) 05 SELT(T(R) fingeo.nice) V)
= (CuT(T(R)exT (k) finko.mic6y)®is SBLT(T(RYur T (1K) fingb.nco) )E5)
T(K) —=L T(T(K))

by commutativity of \ [m\'
IT{R)

CurT(peT(T(R)T (1&) fingo.nxe))05- SELT (L T(T(R))T (k) fiasco.nice) ) ¥5)
(CucT(pcT(T(R)NK) finko.nx6)) 5 CELT (1L T (T (R)NK) fingco.nic6))¥5)
(CurT(T(h)mk © fincomwsy)@i: CULT(T(R)K © finyomus) i)

(CLT(firihymmonxd. T(hmxonzc8) )Pis SELT (FiT(h)mionscd T(h)nzonsc8) ) ¥5)

(CELT(fur T(T(h)mscynbin . T(TRIngIngc) ) Pi

CBLT (flu, T(T(h)ngIngcbuee T(T(R)nzc)mscd) ¥5)

(CeLT ([l TN T ngb s TT RN T (nchnscd) ) Do
CELT(fiu T (AN TrsImsc s T AN T (nhnsct) )7

(CeLT (T hyasTmInecd T(WsxT(nicnie) ) Pis

CHLT (ST husTnxined TR T (nxcinx)) ¥s)
(SeLT(firhimgs. Th1nic))is CELT (firhimics T(hynsct) 1 E5)

(CLT(finLho.mhey)Dis SHLT (finLho.m, 8))¥s)
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A K T([\)
by commutativity of h T(h)
L —— T(L)
= opp(hd)
= oty o(K(L,R))),
as required. Finally, we have
QL(S) = (1 f(ss) {(koUJ) JE€ ]})

= {{fos) 0 ) fsmy 0 ¢5) 15 € J}

= {{LLT(fis.5))B5 LT (fo))05) : 7 € J}

= {{ueeryT(nrw)T(fiss))is berriyT(nry)T(fisn)¥5 1 J € J}

= {{uceryT (mrL) fios))®is ety T (ML) fiss)W5) 1 5 € J}

= {(eerwyT(nrprcT(nL) fiss)i,
pepty T (e T(ne) fiss)05) 1 € J}

= {(pceryT(erw)T (nrw)) T (L) fis.0) 9
eeeryT (T T(nry) T (L) fis.s))¥i) 1 7 € J}

= {{pceryT (T (mreyne) fiss) ) @i
preriyT(erayT(nreyne) fss))¥i) 17 € J}

= {{eeerwyT(reye © fis.s)@is beerayT (e © fiss))es) 17 € J}

SR L( 777 Y A0 RN ——, I T
i) T (finrynposmryneos)¥i) 7 € J}

= {(Lori)T(furw Tarwmnsern T o)) 9
BLET T (Flure) Tornnswe Torrayno) )Ei) 1 5 € J}

= {{sLet) T (flure) T Tnssrn Trre) Tings) )65
BLBT) T (Fur ) T T swr) T Tine)s) )¥i 2 J € J}

= {{eeor T (Finryue T)smry s Tinc)s) B

I‘LF‘T(L)T(f(nru.)#LT(nL)SJIr(L)#LT(nL)s))d’j) 17 € J}
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= {(/‘LpT(L)T(f(nT(L)S»ﬂT(Ll-’))éi?.L‘L”T(L)T(f(’l'r(u-’JIT(:.)-’))7’/)1) :jE€J}

= {eryuy(s) 11 €J}

as required.

(ii) Let lo, {1, f(s.e) be as in (4.1).
| — Ly ——
Jio.0
s t
L

Br((s.t)) = BuKr(l. frsny)*({lo. 1))
= Kr(l. flsny(BLo(({lo. [1))).
Kr(L Lo)® —=— P(Kr(l. Lo))

Then

by commutativity of Kr(1.£..)? [ PET(L.f(s.0))

Kr(1.L)* —— P(Kx(1, L))
Let Br,({lo,ly)) = {#: : i € [}. Then, for every (R,£) € |[KT|,i € I. define ‘321\'.5) :
K(1,R)?* = K(1,R) by
Birey((01,02)) = EunT(fingo, muta))®i, for every 0;.62 € K(1, K).
We first check that 8 : K(1,UT)> — K(1,UT) is a natural transformation. Let
(K,€),(L.C) € [KT| and & : (K.€) = (L.C) € Mor(KT). We need to show that the

following diagram commutes. If 8,,6, € K(1, A), we have

K(1LK)? 259 k1, k)
K(1.h)? ] K(1,h)
K(1,L)? —— K(1.L)
(L.
K(1,R)(Bix((01,62))) = K(LR)(EuaT(fingbynita))oi
= hEpKT (finit, nibs) )9

= (T (R)p&T(fingty nictn)) O



T(K) =21 7(L)
by commutativity of ¢ ¢
K——— 1L

= CuLT(T(R))T(finub,.nx62))9i

T(T(K)) —— T(K)

lT(h)

T(L)

by commutativity of  T(T(k))

T(T(L))

“L

CﬂLT(T(h)f(nKﬂ ,n[{og) )ét
= CurT(T(h)urT (K ) finkor.nxt2)) @i

T(nx)

T(R) I(T(K))

by commutativity of \ lux
IT(K)

= C#LT(#LT(T(,"))T(’?K)f(m\'@xmcaz))¢f
= (urT (T (T(h)n&) finwtr nios)) O
= (uLT(T(h)nk o f(m\-ﬂx -ﬂKa2))¢f

= CuLT(firhimxonsb: T(hinxonse2) )0

= CuLT(fiur T(T(hn)nwct o T(T(R)nge)nic2) )i

= QLT (fiu T ANT (nr)nsctu m TT ) T (nge)nicéz) D
= (LT (fThuaTmxIngt T(RuxT(nx)nxts) ) Oi

= CurT(fir(hynnéy T(h)nxb2)) D

= CuLT(fin ho,.nLh62))0:

K~ T(K)
by commutativity of h T(h)
L T(L)

nL
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= Bl (k1. h02))
= .BEL‘()(K(Iv h)2(<017 02)))’

as required. Finally, we have

3L(<sv t))

as required.

Kr(l. fis))({0i : i € [})

{fayodi:i€ 1}

{pLT(fsm)oi i€ I}

{ecer)T(nrey)T(fis)oi:t € [}

{uepryT(nre) fiog)oi i € I}
{pceryT(nrypr T (L) fisny)oi i € [}
{ecera)T(pr)T(nr))T(nL) fisny)0i 2 & € T}
{ecernT(pry T (nryie) fisy)oi s i € I}
{urpr)T(nryne © fian)o: 2t € [}
{eeer)T(firpyniosariyneot))9i 11 € [}
{LbT)T(flur ) Toreeyne)sasrey Tneyne)) )0i 1 € 1}
{”L“T(L)T(f(“rmﬂﬂrm)T(ru.)s»ur(L;T(nr(u)T(m.)t))@i :t €}
{aLot)T(finpyue T snpyue Tene)) )95 2 & € [}
{uLury)T(fiargysmryt))9i 2 € [}

{Bir(Lygy((s:1)) i € I}

LEMMA 4.11 Let T = (L.Kt(1l.-),{CL}Leiq)) be an a.a. theory institution wia the
interpretations (Iz.a) : T — Ié and ([z,03) : l'é — Z. Then, for all L € |L].s,t €

KT(L L)~

Proof:

t€ ({s}uBL((s.t))".

Let (K,() € |Q] and f € Kx(L,K), such that ar(s) C ((K,(), f)" and (s.t) €
((KC), f)". Then (CuxT(f))*er(s) C Axu.k) and CusT(f)s = (uxT(f)t, where, by
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Ax(1.x), we denote the identity binary relation on K(1.A’). Then, by Lemma 4.10, we
get. (C#A'T(f))zafr(,;)“)(s) C Ak k), forevery j € J, and (uxT(f)s = (uxT(f)t. But
CexT(f) : (T(L).pL) = (A.C) € Mor(KT), whence, since o : K(1.UT) — K(1.UT)?

is a natural transformation, we have

K(1,T(L)) S22 k(1. T(L))?
K(1LupT(f)) K(1.CurT(f))?
K(1.R) K(1.K)?)

XK.Q)

o (CHRT(f)3) € Axqu.x) and. therefore, oy o (CuaT(f)t) € Axqu.k)s for every j € J.
Thus, (Cua () ez uy(t) € M. for every j € J. whence (CuxT(f)Par(t) C
Axq.x)- Hence ar(t) C ((A,¢). f)*. Therefore ar(t) C ({(s.t)} U ar(s))° and. since

(I¢,B) :Ié — T 1s an interpretation,

Brlar(t))® C (Bc((s. ) U Br(ar(s))) .
and therefore
t € ({s}uBL((s.t))).
as required. m

THEOREM 4.12 Let T = (L.K1(1,-).{CL}Leic)) be an a.a. theory institution and
suppose there exist interpretations ([¢,a) : T — Ié, (I¢,3) :Ié =T and (I¢,y): T -
Z§, (Ic,8) : 5 — T that both autoalgebraize I. Then, for all L € |£|,s.t € K1(1.L).

ar(s) @ =v(s)™ and Br((s.t)) =3dr((s,t))".
Proof:
Because of symmetry, it suffices to show that ar(s)®@ = v7(s)® and é.((s,t)) C
Br((s.t))s, for all L € |L],s,t € Kr(1,L).
Let 6 : K(1.UT)®2 = K(1,UT) be the natural transformations associated with & via

Lemma 4.10. By Lemma 4.9(iv),

B8z (z).e) ({505 50))s 8Ly ((50- E0))) € BL((s0, t0))". 7 € 1. (4.3)



By Lemmas 4.11 and 4.9(i).

Sz ey ((s0:t0)) € (8irizy.({50:50))U
BL(8ir(L).ry ((50:50))s 8y oy ({S0- 20))))°
C 5L(521(L),“L)((507So>)v5én[,),“)((so-to)))c-
Thus. by (4.3),
8ir(L) ) ({S0: o)) S BL({s0,t0)).i € .
and therefore

3r((s0, o)) € Br((s0.to))".

as required.

For the first equality we get
‘{[_(S)CQ = 01[_(.5)cp iff

Br(vLls))® = Brlar(s))® iff, by the first part,
o(7L(s))® = Br(ac(s))® iff
{s}*={s}"
as required. [ |
This theorem shows that for an a.a. theory institution the adjoint equivalence be-

tween the theory of categories investigated in the previous chapters of the thesis must
be unique.
THEOREM 4.13 Let T = (L, K1(1, =), {CL}Leic)) be an a.a. theory institution via the
interpretations (I¢,a) : T — I§ and ([¢,B) : I§ — I. Then, for all L € |L|,(L.T) €
|TH(Z)|.

ar(T)* = Urwyu)(T)-

Proof:
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By Theorem 4.8, it suffices to show that az(T)¢ is a congruence of (T(L).u.) that
is compatible with T and explicitly definable over (T'(L),u.) and T.

By Lemma 4.5. ar(T)¢ is a congruence of (T'(L), ur). It is explicitly definable over
(T(L),p) and T. since

ar(T) = {(61.62) € Kr(1,L)*: 8.((6:.6.)) C T}
= {(61.02) € K(1,T(L))*: ,BZT(L)‘“L)((BI.G;,)) eT.iel},

where 3 : K(1.UT)? = K(1,U7T).i € I. are the natural transformations associated with
3 via Lemma 4.10.

For compatibility with T, let (#,.62) € ar(T)° and 6, € T. Then 3.((61,6.)) C T
and 6; € T. But. by Lemma 4.11,

02 € ({61} U BL((01.62))) C T =T,

as required. (]

Properties of the Leibniz Operator

In this section, several properties of the Leibniz operator are introduced, that will be
used in the next section to obtain a partial characterization result for autoalgebraizability
for a special class of theory institutions. The notion of the Leibniz functor, which is,
essentially. an extension of the Leibniz operator to theory morphisms is also introduced.

Recall that, given a theory institution I = (£, Kp(l.-),{CL}Leic)). L € |£] and
(L,T) € |TH(T)|.

Q(T) = {(61,6.) e Kr(1,L)*: foralln € w, natural transformation
KLU 5 K(1.,UT) and ro,...,ra; € Kp(1, L),
Ty (01.7) €T ifand only if 77(z),,)(02,7) € T}

Q will be said to be join-continuous if, for all L € |[£],® C K¢(1, L),

(U 2c({a}9))¢ = Qr(99).

o€d
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It is said to be injective if, for all L € |£|.(L,T}).(L,T») € |[TH(Z)|,

(L,Ty) # (L, T2) implies Qu(Ty) # Qu(Ta).

Finally, it is said to commute with substitutions if. for all L € [£|.(L.T) €

ITH(T)| and f € £(L.K).

Kx(l, f)*(Qu(T))* = Qr(K(1. /UT)).

LEMMA 4.14 Let T = (L. Kr(1.=).{CL}Leiz)) be a theory institution. [f Q is join-
continuous. then for all L € |L|.(L.T\),(L.T,) € |TH(Z)|,

T\, C T, implies Qp(T)) CQL(T2).
Proof:

QL(Ty) = (|J ({39 € (| 2l{e}) = Qu(T2),

teT teT

as required. ]

When the Leibniz operator satisfies the conclusion of the above Lemma it will be

said to be monotonic.

LEMMA 4.15 Let T = (L, K1(1,=).{CL}Leic)) be an a.a. theory institution. Then the

Leibniz operator is injective, join-continuous and commutes with substitutions.

Proof:

All properties are direct consequences of Corollary 4.4 and Theorem 4.13. |

Next, suppose that Z = (£, Kz(1,—), {CL}Leg)) is a theory institution. such that, for
all L € |£],(L.T) € ITH(Z)|, (L,QL(T)) € |TH(ZE:)|, and that the Leibniz operator
is injective, join-continuous and commutes with substitutions. We define the Leibniz

functor Q : TH(Z) — TH(ZEx). as follows:

QL. T)) = (L,Q(T)), forevery (L,T)€|TH(Z)|.



and

Qf)y=f., forevery f:(L,T)—= (L', T') € Mor(TH(I)).

To see that Q is well defined at the morphism level. note that

I

Kr(1. f)3(Q(T))* Qu(Kx(L, f)(T)¢), by commutativity with substitutions,

C Qu(T"), by Lemma 4.14. since f € Mor(TH(Z)).

as required.

Since (2 is the identity on morphisms, it is clearly a functor.

An Intrinsic Characterization

As before, let K be a locally small category with a terminal object 1. such that
1uU 1 exists in K, T = (T, n, ) an algebraic theory in monoid form over X and £ a full
subcategory of the Kleisli category Kt of T in K, satisfying (4.1). Recall also that KT
is the Eilenberg-Moore category of T-algebras over K.

LEMMA 4.16 Let T = (L.Kr(l.—).{CL}Leic)) be a theory institution, such that the
Leibniz operator ) is join-continuous. Then, for every collection {(L.T;) : i € I} of

L-theories,
Joum)y = (1))
i€l i€l
Proof:
We have

LUt TO)) = (eru oT Qr({6}°))¢, by join-continuity,
Usier User, L({é}c))C
Uer(erT QL({(p}C

(
(
= (UerQL( €})¢, by join-continuity,
(User QL(To)",

as required. |
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LEMMA 4.17 Let T = (L,Kr(1.-).{CL}Leic)) be a theory institution, such that the

Leibniz operator Q is monotonic. Then,

(1) For every collection {{L.T;): i € [} C |TH(Z)|,

() T) =T

iel iel
(i) For all (L.T) € |TH(Z)|. f € L(L.R), such that Kx(1. f) is onto.

Kx(1. /)™ (Q(T)) = Qu(Kx (1. f)~HT)).

Proof:

(i) Since Q is monotonic, QL((N;e; T:) € i Q(T:). For the reverse inclusion. it
suffices, by Theorem 4.7, to show that [;c; Q.(T;) is compatible with ﬂ‘-e, T;. But. if
(01,02) € ;e Q(T:) and 6, € ﬂiel T:, we have (6,,0.) € Q(T;) and 6, € T:. for every
i € I, whence. by the compatibility of Qi (T;) with T}, 8, € T}, for every ¢ € [, i.e.,
6, € ﬂiel T;, as required.

(ii)) We first show that Kr(1, f)~}(Qx(T)) is compatible with Kx(1. f)~(T) and.
hence, that Kp(1, f)~H(Qx(T)) € Qu(Kx(1, £)~Y(T)).

Let (6,.6:) € Kx(1, f)"'(2&(T)) and 6, € Kx(1l,f)"(T). Then (fo08,,fob) €
Qx(T) and fob, € T, whence fo8, € T, and therefore 8, € Kx(1, f)~}(T), as required.

For the reverse inclusion, suppose that (8;,6.) € Q(Kr(1, f)~}(T)) and assume, to
the contrary, that (6;,02) € Kx(L.f) Y (Qx(T)). Then, there exists n € w, a natural
transformation 7 : K(1,UT)**! — K(1,UT) and ro.... ,ra_y € Kp(1. K). such that

TR we)(f001,7) €T but mrwyu(fobe,7) €T or vice-versa.

By surjectivity of Kr(1, f), there exist sq..-. ,8,-1 € K1(1, L), such that fos; =r;,i <

n, whence
TT(R)un)(f 001, f0S) €T but Ty (foba, fod)&T.

Le., Tr(K)ex)(BRT(F)01,uxT(f)S) €T but Trk)ue)(BeT ()02, uxT(f)3) € T,
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and, thus. by commutativity of the following diagram

K(1, T(L))™ 222 (1, T(L))

(& T urT(f)

K(1, T(K))**! K(1.T(k))

TT(R).up)

ERT(f)7riLyu)(01.8) €T but  urT(f)TTL)wu,)(02.5) € T,

e, Kr(L nrw)uy(61,9)) €T but Kr(l. ) 71L)wy(02.5) € T.
whence (0,,62) € QL(Kx(1, f)~1(T)), contradicting our hypothesis. |
DEFINITION 4.18 . Let (R".€) € |KT|. A morphism f € Kr(K,R") will be said

to be special with respect to £ if. for every L € |L], 6,.8> € Kx(1,L).g €
Kr(L, K", such that EuxT(g)0y = EurT(g)02,

there exists h € Kt(L, K), such that
L4 E#K'T(g)ai = f.uK'T(fo h)01~l =1,2,
o K1(1,h) is surjective.

2. T will be said to simply create theories for some theory institution T = (£,Kt
(1,=), {CL}rga)) ¥, for every (L.T) € |TH(Z)|, there ezists (R.€) € |KT|. f €
Kr(L,K), such that

Q(T) = {(81,02) € Kx(1, L) : Eux T ()01 = EuxT(f)b2}.

3. T will be said to specially create theories for some theory institution T =
(L, Kx(1,-), {CL}relq)) if it simply creates theories for I and, moreover, the f’s
in (2) can be chosen to be special with respect to L.
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4. Finally, a theory institution T = (L,Kr(l,=),{CL}Le)c)) is said to be Blok-
Pigozzi if T specially creates theories for I.

THEOREM 4.19 A Blok-Pigozzi theory institution T = (L, Kx(1,—). {CL}Leic) is auto-
algebraizable iff the Leibniz operator is injective, join-continuous and commutes with
substitutions.

Proof:

A stronger “only if” was proved in Lemma 4.15 without the requirement that Z be
Blok-Pigozzi.

By Corollary 4.4, for the “if” part, it suffices to show that there exists a subcategory
Q of KT and an isomorphism Q : TH(Z) — TH(Z§) that makes the following diagram
commute

TH(Z) —2— TH(Z5)
SI& /[G
c

and commutes with substitutions. Since I is Blok-Pigozzi and the Leibniz operator is
injective, join-continuous and commutes with substitutions, we can define the Leibniz
functor Q : TH(Z) — TH(I,@T). Since T is Blok-Pigozzi. T specially creates theories.
Thus, for every (L,T) € |TH(Z)|, there exists K.y = (A, €) € |KT|, f € Kx(L.K),
such that

Q(T) = {(81.82) € Kn(1, L) : Eun T(f)01 = Eux T(f)82}

and f is special with respect to L.

Let Q be the full subcategory of KT with objects
1@l = {K¢.) : (L. T) € [TH(Z)|}.

Clearly, Q(TH(Z)|) C |TH(Z§)|. We first show that Q : TH(Z) — TH(Z§) is an
isomorphism and, then, that it commutes with substitutions, since commutativity of the

triangle is straightforward.
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Since Q is the identity on morphisms, it is full and faithfull. So it suffices to show
that it induces a bijection Q : [TH(Z)| — |[TH(Z§)|. Injectivity is guaranteed by our
assumption on 2. So it suffices to show that € is surjective.

Let (L.©) € |TH(Z§)|. then, there exists a collection (L;.T;) € [TH(Z)|.i € I. and
g; € Kt(L, R;), such that

© = {(61,0:) € K(1. L) : ipk, T(g:)0r = Epn, T(g:)02 Vi€ I},

where (R}, &) = Kr,.1) € |Q|. Let f; € K1(Li. A;) be the special morphism associated
with (L;, T;). Clearly,

© =[){(61.62) € Kx(1, L) : &iuw, T(:)0 = Eiperc, T(g:)02}.

i€l

whence, by Lemma 4.17(i). it suffices to show that
0; = {(01.62) € Ko(1. L) : &pew, T(9:)0h = &nr, T(g:)02} € QTH(T))).
Since f; is special with respect to £, there exists kg, .6,y € K1(L. L;), such that
o &pr, T(g:)0; = &nr, T(fio ks .6,))0;,5 = 1,2,
o K1(1,h, 8,)) is surjective.

We claim that

0:=( |J {(d1.8) € Knl(1, L) : &ur, T(fi 0 hes 6081 = &, T(f: 0 s, )02} ).
(61,62)€0,

Left to right inclusion is clear. For right to left, note that, for every (6,.6.) € O;,

{(61.82) € Kr(1.L)? : &pr, T(fi © ko, 52))01 = &, T(fi © hys, 5y))02} € {(61.62)}°,
whence

( U {(41.6) € Kx(L. L) : i, T(f: 0 hoy )61 = Ettre, T f: © hoy ,))2})° C
(61.682)€8,
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< U {uo))r=05=0,

(91v92)eet
as claimed.

Hence, by Lemma 4.16, it suffices to show that

{(81.82) € Kp(1, L)* : Eipw, T(fi 0 hoy 2))01 = Epw, T fi © hyg, 52))02} € Q(TH(T))).
We have

&iur, T(fio ks, .6,))01 = &ur,T(fio ks, 9,))d2 iff. by the def. of Kleisli comp..

Sier, T(pn,T(fi)he, 6))01 = &ur, T(pk,T(fi)h, 4,y)82 iff. since T is a functor,

§ir, T(pn, ) T(T(f:))T (hio, 62) )01 = Eiptr, T (pw, ) T(T(f:))T (ho 80y)02  iff

Tl
TTT(R) —=) TT(K)
by commutativity of BT(K,) [ l“h’.
TT(R:) —— T(k3)

§inrur(k)T(T(f))T (R, .00))01 = Eppr )T (T(f:))T (o, 8,))02  iff

TT(f.)

TT(L;) TTT(K;)
by commutativity of KL, [ [“T(h’.)
(L) = TT(R)

§ur T(f)uL T (ke 6))01 = &Gun T(fi)pL T (ke 0,))02 iff

§inw, T(fi)(he, 62) 0 01) = &, T( f:)(h(e, 05) © 82)-

Therefore

{(81,82) € Kx(1,L)? : &pr, T(fi 0 hip, 63))01 = Eipr, T (fi 0 hyo, 3))02} =
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= Kr(L. hg, a)) " ({{e1. €2) € Kr(1. L)? : &, T(fi)er = Epew, T(fi)e2}) =
= K1(L ko, 6,)) " (Q(T0)).

which is in Q(|TH(Z)|), by Lemma 4.17(ii), as required.
Finally, it remains to show that Q : TH(Z) — TH(Z§) commutes with substitutions.

We have. for every (L.T) € |TH(Z)|, f € Kt(L.A).
Qr(Kr(1. )T)) = Kr(L. £ (Qu(T))".

by our assumption, as required. [ ]

Deductive w-Institutions Revisited

In this section, the general theory of auto-algebraizability is applied to the class of
deductive 7-institutions, that were studied in Chapter 3. Recall from Chapter 3 that.
given a language type £ and a finitary k-deductive system S = (Tm(V)*,Fs) over L,
the deductive m-institution Zs = (SIGN, SEN, {Cc}s¢sigN|). associated with S, has as
its signature category SIGN the category with the single object V' and morphisms all
assignments k : V' — Tm,(V), as its sentence functor SEN : SIGN — SET the functor
sending V' to Tm¢(V)F and the assignment h : V = Tm, (V) to SEN(R) : Tme(V)F —
Tmg(V)* with SEN(h)(0) = h*(¢), and as its closure Cy : P(Tme(V)*) = P(Tme(V)*)
the closure Cs of the given k-deductive system S. Recall, also, that, given a language
type L, we can construct an algebraic theory T = (T, n,u) in SET, whose Eilenberg-
Moore category of T-algebras, SETT, is isomorphic to the category of the variety of all
L-algebras. More details can be found in Chapter 3.

In the comments following Theorem 3.12, it was mentioned that the proof was provi-

ding the following stronger result that can now be stated explicitly as follows.

COROLLARY 4.20 Let £ be a language type and S = (Tmc(V)F,Fs) a finitary k-dedu-

ctive system over L. If S is algebraizable then Is is auto-algebraizable.



139

Next, Theorems 1.3 and 4.19 will be used to show that the converse of this corollary
holds. Namely, restricting attention to l-deductive systems, it is shown that, given a
finitary 1-deductive system S. if Is is auto-algebraizable. then S is algebraizable. The

following lemma is needed first.

LEMMA 4.21 Let £ be a language type and § = (Tmg(V).Fs) a finitary deductive
system over L. Is is a Blok-Pigoz=i theory institution.

Proof:

Zs = (SIGN.SEN, {Cc}=¢isieny) is a theory institution, since SET is locally small.
has a terminal object {#} and {0} U {0} exists in SET, SIGN is a full subcategory
of SETr, satisfving (4.1), and SEN can be taken to be SET1({0},~) by identifving
¢ € Tmg(V) with f,: {0} = Tmg(V'), sending 0 to ¢.

Next, suppose that (V. T) € |TH(Zs)|. Note that, under the identification just made,
the generalized Leibniz congruence Qv(T), defined in this chapter, coincides with the
Leibniz congruence Q(T) of [6]. We can, thus, consider the T-algebra (Tm¢(V)/QT).£)
corresponding to the L-algebra Tm,(V)/T) and let f € SET¢(V, Tm(V)/Q(T)) be
the map #tm.(v)/o1)q. where ¢ : V' — Tm(V)/QT) sends v € V' to v/Q(T). We then

have .

Qv(T) = {{for» for) € SETT({0}. V')? : Eutm vy T () for = EptmcviiamT(f) for -

i.e., T simply creates theories for Zs.
To see that f is special with respect to SIGN, let f,,, fs, € SET1({0},V),g €
SET¢(V.Tmg(V)/Q(T)), such that

Eutme vy T(9) for = EpTmevisamT(9) fon-

Then the A € SETr(V, V) which is such that
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o Sutm vy T(9) fo, = Eptmevisam T (fo k) fo, i = 1.2

o SETr({0}.4) is surjective

can be constructed using the following argument, borrowed from the proof of Lemma
4.5 of [6].

First, note that, since &;,¢. contain only finitely many variables of V, there ex-
ists 2 ¢ € SET(V,Tmg(V')/Q(T)), such that, each element of Tmg(V)/Q(T) is the
image of an infinite number of variables and T(g)f,, = T(¢')fs,.¢ = 1.2. Next,let
h € SETt(V,V) be such that ~(v;) € £¢/(v;),i € w, and v; is the image under h of
some v;;such an h exists because of the assumption that each element of Tmg(V)/Q(T)
is the image of an infinite number of variables. Then h and, hence. SET1({0}.k) is

surjective and £¢’'(v;) = h(v;)/QT),7 € w. Therefore

§(foh)(vi) = EptmcvysamT(f)h(v:)
= §utm vy T (Mm viama)h(v:)
= §tTm vyan) T (MTm vy T (g@)h(v:)
= £T(q)h(v:)
= h(v:)/T)
= &g'(vi).
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Thus,
§utmo vy T(fok)(vi) = ET(E)T(f o h)(vi)
= ET(§(f o h))(v:)
(
(

I
m

T(&g")(vi)
§T(g)(v:)
= Eptmvyon T (g ) (vi).

= €T

ie., Eutm vymT(f o h) = Eptme vy T (), and. since T(g) agrees with T(g’) on

1. P2, the conclusion follows. a

THEOREM 4.22 Let L be a language type and S = (Tm,(V),Fs) a finitary deductive
system over L. If Is is auto-algebraizable then S is algebraizable.

Proof:

Suppose that Zs is auto-algebraizable. Then, by Theorem 4.19 and Lemma 4.21,
the Leibniz operator is injective, join-continuous and commutes with substitutions. In
particular, it preserves unions of directed subsets of theories. Hence, by Theorem 1.3. S

is algebraizable. [}

THEOREM 4.23 Let £ be a language type and S = (Tm¢(V),bs) a finitary deductive
system over L. S is algebraizable if and only if Ts is auto-algebraizable.

Proof:
By Theorems 3.12 and 4.22. [ |



5 METALOGICAL PROPERTIES

Metalogical properties that have traditionally been studied in the deductive system
context (see [23]) and transfered later in the institution context [50], are here formulated
in the w-institution context. Preservation under deductive equivalence of w-institutions

is investigated.

Introduction

Two have been the main directions of development of abstract algebraic logic. Ore is
the study of the algebraization process itself and the other is the extent to which metalog-
ical properties are related to algebraic properties via algebraizability, or, more generally,
whether they are preserved or not under equivalence of deductive systems. [8, 14, 15, 23],
e.g., study in detail the deduction-detachment property for deductive systems. It is only
natural that these two directions will be the main focus of categorical abstract algebraic
logic as well, its starting point being relations between w-institutions or institutions like
the ones introduced in Chapter 2 of the thesis. In Chapters 3 and 4, the first direction
has been pursued further. The study of the algebraization process has begun. This
chapter is a contribution to the second direction of research. Various metalogical prop-
erties of institutions have already been defined in [50]. We reformulate some of those,
in a somewhat nonstandard way, in the w-institution framework and define some new

ones. Then we study the effect that deductive equivalence has on these properties.
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Deduction-Detachment Property

The Deduction-Detachment property for a w-institution is now introduced and it is
shown, as an application of the notion of deductive equivalence, that it is invariant under

this equivalence.

DEFINITION 5.1 Let T = (SIGN,SEN. {Cc}sesien|) be a w-institution. A natural
transformation E : PSEN? — PSEN will be called a Deduction-Detachment trans-
formation (DDT, for short.) for I if, for all £ € |[SIGN|,[ UA U ® C SEN(X).

® C(TUAF iff Es(A.®)CTe

Z will be said to have the Deduction-Detachment property (DDP, for short.) if

there ezxists a Deduction-Detachment transformation for I.

THEOREM 5.2 Let
I, = (SIGN,, SENy, {Cs}sesiong). Iz = (SIGN2.SEN,, {Cs }seision,))

be two deductively equivalent w-institutions. Then I, has the DDP if and only if I, has
the DDP.

Proof:

Let Z; and 7, be deductively equivalent 7-institutions via the interpretations (F,a) :
Z, = I,.(G,B) : I = I, and the adjoint equivalence (F,G,n,¢€) : SIGN; — SIGN..
Suppose Z; has the DDP with Deduction-Detachment transformation £ : PSEN? —
PSEN,. Then, for all £, € [SIGN,|,[UAU® C SEN,(L,),

® C (TuA)® iff, since (G, 3) is an intrepretation,

Bs,(®) C B, (TUA) iff
B5,(®) C (Bs,(T) U Be,(A))° i, since E is a DDT for 7,

Eg(s,)(Be,(A), Be,(®)) C 3<,(T')° i, since (F, ) is an interpretation,
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ag(s,)( Ecs;)(Bs,(A), B=.(P))) C ags,)(Bs,(T))° iff. since ex, is an isomorphism,
SEN2(es, Y og(s;)( Egrz,)(Be,(A), B, (®)))) € SEN2(es, (ag(s,) (B, (T))°)
iff, by Lemma 2.26, SENj(es,)(ag(z,)( Eq(s,) (8. (D), B, (®)))) C I

Let £’ : PSENZ — PSEN, be defined by
Ex, (A, ®) = SENa(es, ) ac(s,)( Ears,) (B8, (A. 2)))),

for all £, € |SIGN,|,A,® C SEN,(Z.). Note that E’ : PSENZ — PSEN, is a nat-
ural transformation since it is the composition of the natural transformations 32 :
SEN2 — PSEN}G, Eg : PSENG — PSEN,G, o : SEN|G — PSEN,FG and SENje :
SEN,FG — SEN,. Thus, it follows from what was just shown that £’ is a DDT for Z,
and. thus 7, has the DDP, as required.

The converse follows by symmetry. [ ]
Disjunction Property

The abstract property of disjunction for deductive systems in the context of abstract
algebraic logic has been studied in [22] and taken up again in [23]. The property of
conjunction for institutions has been introduced in [50]. Modifying this definition ap-
propriately, an institution Z = (SIGN, SEN, MOD, =) is said to kave disjunction if, for
every signature ¥ and finite set ® C SEN(E), there exists \/ & € SEN(X), such that, for
every M € IMOD(E)|, M l=x V@ if and only if M x ¢, for some ¢ € .

A somewhat nonstandard formulation of the conjunction property for a w-institution
will now be given and it will be shown that it is preserved under deductive equivalence
of w-institutions.

DEFINITION 5.3 Let T = (SIGN,SEN, {Cs}sesien|) be a w-institution. A natural
transformation \/ : PSEN? — PSEN will be called a disjunction for I if, for all
T € [SIGN], &,T, A C SEN(E),

(@U\/(F.A)) = (@UT)N(PUA).
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T will be said to have disjunction if there ezists a disjunction for I.

A lemma is needed for the proof of our main result.

LEMMA 5.4 Let
Z, = (SIGN,.SENy, {Cc}seisien, ). Iz = (SIGN2, SEN», {Cr}eeisian,))

be two deductively equivalent w-institutions via the interpretations (F.a) : I; — I, and
(G.B) : I = I, and the adjoint equivalence (F,G.n,¢) : SIGN; — SIGN,. Then. for
all (1, Th), (%1, T]) € |[TH(Zy)|, as,(T1) Nag, (T]) = as, (T1 N TY)".

Proof:
First. note that, for all £, € [SIGN,|,(X£,,T)) € |TH(Z,)|, we have

as,(T0)° = {& € SENa(F(S1)) : Bz, (¥) € SENy(e, )(T0)}-

In fact,

¢ € as,(T1)° iff, since (G, 3) is an interpretation,
Brz)(¥) C Brz,)(ax, (T1))¢  iff, by Lemma 2.26,
Brz)(¢) € SENy(ng, )(Th),

as required. Thus, we have

oz, (T1)*Nas, (T7)° = {¢ € SENy(F(E1)) : Br(s,)(¥) C SENy(ne, )(T1)}
N{¢ € SEN3(F(E1)) : Brz,)(¥) C SENi(ns, )(TY)}
= {¢ € SEN2(F(X1)) : Br(z,)(¥) C
SENi(nz, )(T1) 0 SENy(ne, )(T7) }
= {¢ € SENy(F(Z1)) : Br(z,)(¥) € SENi(ne, (T N TY)}
(since 7z, is an isomorphism)

= ag, (T1NTY)S,

as required. "
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THEOREM 5.5 Let
I, = (SIGN,SENy, {Cs}eesien))s Tz = (SIGN,, SEN», {Cs}reeisign,))

be two deductively equivalent w-institutions. I, has disjunction if and only if I, has

disjunction.

Proof:

Let Z; and 7, be deductively equivalent w-institutions via the interpretations (F. a) :
T, - 1,,(G,3) : I — I, and the adjoint equivalence (F.G.n,¢) : SIGN, — SIGN,.
Suppose that Z; has disjunction and let \/ : PSEN} — PSEN, be a disjunction for Z,.
Then, for all £, € |[SIGN,|,®.I', A C SEN,(Z,),

(@UT)N(RUA)F =

= SEN;(eg;)(ag(s:) (s, (@ U T)))N
SENz(es, )(ag(s,) (e, (® U A))°) (by Lemma 2.26)
= SENa(es,)(ag(z,)(8=,(® UT)) N ags,) (B, (@ U A))°)
(since es, is an isomorphism)
= SENa(es, {ag(s,)(Bx.(®) U Bx, (D)) N ags,)(Bs, (@) U Bs.(A))°)
= SENz(es, )(ag(s;) (B, (@) U 8=, (I))°) N ags;) (B, () U 85, (A))))
(by Lemma 2.24)
= SENy(eg, )(ag(s;) (8, (@) U s, (1)) N (Be, (@) U Be, (A))°)°)
(by Lemma 5.4)
= SEN2(es, )(acs;) (82 (®) U Vg, (Bx:(T). Bs,(A))))°)
(since \/ is a disjunction for Z;)
= SEN(eg, )(ag(s,) (8. (®) U Vg(s,) (B (D). B, (A))))
(by Lemma 2.24)
= SENz(es,)((ag(s;)(Be.(P)) U ag(s) (V) (B (). Be,(A)))))
= SENz(es, )((ag(s;) (8. (2))° U ags,) (Vgs,) (8= (L), B, (A))))F)
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= SENa(es,; )(ag(s,;) (s, (2))° U ags)(Vg(s,) (Fe.(D), B, (A))))°
(by Corollaries 2.6 and 2.4)
= (SENz(es,)(ag(s,)(Bx.(®))%) U SEN2(es, ) (ag(s)(Vg(s,) (Bea(T), Be. (A)))))*
= (®°USENx(es, )(ag(s)(Vg(s,)(Bs(T). Bs, (A)))))¢ (by Lemma 2.26)
= (® U SENa(ex, )(ag(s,)(Va(s,) (B (D). Bs.(A))))).
Let \/' : PSENZ — PSEN, be defined by

4

V/(T, 4) = SENy(ex, )agre,)( \/ (82,(T,2)))).

Iz G(Z,)
for all £, € [SIGN,|,[, A C SENy(E,). V' : 'PSEN% — PSEN,; is a natural transforma-
tion, since it is the composite of the natural transformations 32 : SEN3 — PSEN;G, /. :
PSEN?G — PSEN,G,ac : SEN|G — PSEN.GF and SEN,e : SEN,GF — SEN..
Since, from what was just shown, we have
(@U\/(T.A)=(@UT)*N(QUA),
2
V' is a disjunction for Z,, as required.

The converse follows by symmetry. a

A Note on Conjunction

By analogy with the previous section, one may attempt to define conjunction for

m-institutions as follows

DEFINITION 5.6 Let T = (SIGN,SEN, {Cc}seisieny) be a w-institution. A natural
transformation /\ : PSEN? — PSEN will be called a conjunction for Z if, for all
% € [SIGN].T, A C SEN(E),

(TuA)y = A(,A).

hN

-

Z will be said to have conjunction if there ezists a conjunction for I.
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The property of conjunction will now be shown to be an intrinsic property of all

w-institutions. owing to the fact that their sentence functor is postulated to map into

SET.

LEMMA 5.7 Let T = (SIGN,SEN, {Cc}cesion), be a w-institution. A : PSEN? —
PSEN with

A(.A)=TUA. forall T¢€l|SIGN|,I,ACSEN(T),

v
-

is a natural transformation.

Proof:
Let f: £ — ¥ € Mor(SIGN). We need to show that the following diagram com-
mutes. If [, A C SEN(X), then

PSEN*(T) —%_ PSEN(T)

PSEN?(f) PSEN(/)
PSEN*(T) PSEN(T)
PSEN(f)(Ac(T.A)) = PSEN(f)(TuUA)

= PSEN(f)(T') U PSEN(f)(A)
= Ag(PSEN(f)(T), PSEN(f)(A))
= Ao(PSEN*(f)(T,A)),

as required. [ |
THEOREM 5.8 FEvery w-institution has conjunction.

Proof:

By Lemma 5.7. [ ]
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Negation
Following the same line of thought that was followed in the previous sections, the

property of negation for w-institutions is now introduced.

DEFINITION 5.9 Let I = (SIGN.SEN, {Cs}sesienN|) be a w-institution. A natural
transformation -~ : PSEN — PSEN will be called a negation for I if. for all T €
ISIGN],®,I' C SEN(T),

FC & iff (®U-cl) =SEN(T).

Z wili be said to have negation if there ezists a negation for I.

For the proof of the main theorem a lemma is needed first.
LEMMA 5.10 Let
I, = (SIGN,,SEN;. {Cc}sesiaN,), T2 = (SIGN2, SEN2, {Cc}reisieon.|)

be two deductively equivalent w-institutions via the interpretations (F,a) : T, = I, (G,
B3) : Ip — I, and the adjoint equivalence (F,G.n,€) : SIGN, — SIGN,. Then, for
every £; € [SIGN,|, ag,(SEN,(E:))° = SEN,(F(E,)) and, similarly, for every =, €
[SIGN;[, 3s,(SEN2(X2))° = SEN(G(X2))-

Proof:
Obviously, ag, (SEN,(Z,))° € SEN2(F(Z,)). Suppose that

ag, (SENy(E,))° C SEN2(F(E,)).
Then, by Theorem 2.41 and Lemmas 2.37 and 2.38, we have
Br(zy(as, (SEN1(£1)))° C Br(s,)(SEN2(F(E1)))°,

whence, since 7z, is an isomorphism,

SEN1(ng, ) (Brz ez, (SEN1(E1)))) C SENi(ng, )(Br(=,)(SEN2(F(£41)))%),



150
i.e., by Lemma 2.26,
SEN1(Z1) C SENi(ng, )(8r(z.)(SEN2(F(£1)))),
which is absurd. |

THEOREM 5.11 Let
I, = (SIGN,,SENy, {Cs}=sesieny)): Iz = (SIGN2, SENz, {Cc}seision,)

be two deductively equivalent w-institutions. I, has negation if and only if T, has nega-

tion.

Proof:

Let Z, and 7, be deductively equivalent w-institutions via the interpretations (F, a) :
I, - 1,.(G,3) : I, — I, and the adjoint equivalence (F,G,n.¢) : SIGN; — SIGN,.
Suppose that Z, has negation and let = : PSEN; — PSEN, be a negation for Z,. Then,
for all £, € [SIGN2|,['U® C SENy(E,),

SEN2(es, )(ag(z,)(8x,(T))°) € SENa(ex, )(ag(z,) (B, (®))°), by Lemma 2.26, iff
aG(z,)(8s,(1))° € ag(s,)(Bx,(®))°, since e, is an iso, iff
B,(T)° C Bs, (), since (F.a) is an interpretation, iff

(Be,(®) U ~(z,)85,(T))° = SEN{(G(S2)), since - is 2 negation for I, iff
aG(s,) (B, (®) U ~g(=,;) 85, (I'))° = ag(s,)(SENi(G(E2)))°,  since (F.a) is an int., iff
(ag(s;)(Bs.(®)) U ag(s,)(—6(s:)Ps, (T)))° = SENo(F(G(E2))), by Lemma 5.10, iff
(ag(z;) (8=, (®))° U ag(z,)(—g(s,)Px, (1)) = SEN2(F(G(E2))). iff

SEN:(es, )((ag(s,) (Be,(®))° U ac(s,)(—6(2)85,(T)))%) = SENy(es, )(SEN2(F(G(Z2)))),
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since ez, is an iso. iff
SENy(ex, (ag(z,)(Be,(®))° U ags,)(—g(z.)Px.(T)))° = SEN2(ex, )(SEN2(F(G(X,)))),
by Corollaries 2.6 and 2.4, iff
(SEN2(ez, )(a(s,)(Bs.(®))°) U SEN2 (€5, )(aa(s,) (ma(x,)Px,(T))))¢ = SEN(E,),
since ez, is an iso, iff
(®° U SENz(ex, )(ag(s,)(ma(s,)Pe: (1)) = SEN2(Z2). by Lemma 2.26. iff
(@ U SENz(es, )(ag(z.)(—6(s,)Bx,(I))))° = SEN2(Z,).

Let = : PSEN, — PSEN, be defined by

-g, [ = SEN(ex, )(agis,) (~6(s,) (1)),

for all £, € |[SIGN;|,[' C SEN,(T,). = : PSEN, — PSEN, is a natural transformation,
since it is the composite of natural transformations. Thus, from what was just shown.

we have
FCo iff (®U-g, ) =SENy(Z2),
i.e., =’ is a negation for Z», as required.

The converse follows by symmetry. a

Craig Interpolation

Tarlecki [50] introduced and studied the Craig Interpolation Theorem for institutions.
Let Z = (SIGN,SEN,MOD, [=) be an institution and the following

(N4
-
7 N
A el4 L al/4
— —
k /f:'
v
e



a pushout diagram in SIGN. According to {50}, Z is said to satisfy the Craig Interpolation
Theorem if, for all ¢’ € SEN(Y'). 4" € SEN(X"), with SEN(¢')(¢') = SEN(¢")(¢"), there
exists ¢ € SEN(X), such that ¢’ = SEN(f')(¢) and SEN(f")(¢) &= ¢".

Modifying slightly Tarlecki’s definition the following is obtained.

DEFINITION 5.12 Let T = (SIGN,SEN, {Cc}s¢isigN|) be a m-institution. T is said
to have the Craig Interpolation Property (CIP, for short.) if, for all T.¥'.¥" €
|ISIGN| and pushout diagram

Lo lil4
—d
g’/ Y’
Y </
— —r
N
v
—t

we have that, for all ' C SEN(E'). ®” C SEN(E"), with
SEN(g")(®") S SEN(¢'}(®")",

there exists ® C SEN(Z). such that SEN(f')(®) C @' and " C SEN(f")(®)°.

THEOREM 5.13 Let
I, = (SIGN,,SEN;, {Cs}s¢sien,)). T2 = (SIGN,, SEN:, {Celsesion,)

be two deductively equivalent w-institutions. I, has the CIP if and only if I, has the
CIP.

Proof:
Let Z, and Z, be deductively equivalent 7-institutions via the interpretations (F, a) :
I, - I,,(G.B) : I, = I, and the adjoint equivalence (F,G.n,¢) : SIGN; — SIGN..

Suppose that Z; has the CIP and assume that
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mn
~2
2N
Y <M
N
Z.

is a pushout diagram in SIGN; and &, C SEN(X}), ®7 C SEN,(X7), with
SEN2(g2)(®7) C SEN2(g,)(®3)°"

Since left adjoints preserve colimits, the following is, then, a pushout diagram in SIGN,.

G( vlll

o) - \G‘h’
I
G(f\ /c(' "

G(E

Moreover, since (G, 3) : Iy — I, is an interpretation, we have
Bep (SEN(g5)(®4)) € Bexr(SEN(g5)(85))".

Since 3 is a natural transformation,
ﬁgl

SEN(Z%) PSEN(G(E5))
SEN2(g%) l 17’5&‘11(6(95))

SEN2(S4') —— PSEN,(G(E¥))

a\'”
SEN (vlll PSEVI(G(V‘U )
SENz(g} l lPSENx(G(yé'))
SEV2 vIII) - ’PSEV]_ (G vIII))

we obtain

SEN;(G(g2))(B=y(92)) € SEN1(G(g2)) (8= (2))"-
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Since Z; has the CIP, there exists ®; C SEN,(G(X,)), such that
SENI(G(£2))(®1) C By (95)° and  Ben(®7) C SENY(G(S3))(®1)
Thus, since (F,a) : Z; — Z, is an interpretation,
ag(sy) (SEN1(G(£2))(®1)) € eg(zy)(By (®3))°

and

agen(Ber(®3)) € acEn(SEN(G(f2))(@1))°

and. since « is a natural transformation,

FG(Z,)

SEN,(G(Z,)) PSEN2(F(G(X2)))

SEN:1(G(£2)) PSEN2(F(G(£3))

SEN,(G(S4)) 55y PSENa(F(G(S3)

aG(=2)

SEN,(G(E.)) PSEN2(F(G(X,)))
SEN1(G(f£)) PSEN2(F(G(£3)))
SENy(G(S5)) 5o PSEN2(F(G(E3)))

we obtain
SEN2(F(G(f2)))(ec(z,)(®1)) € acs;)(Fx;(93))° and
agen)(Bsy(®4)) C SEN2(F(G(f))(acie,)(®1))°.  Hence,
SEN2(ex; )(SEN2(F(G(f3)))(ag(s,)(®1))) C SEN2(ex; )(ag(z;)(Bey(®2))°) and
SENa(esy)(ag(ey)(Bey(92))°) C SEN2(esy)(SEN2(F(G(f2)))(ac(s;)(®1))%),
ie., by Lemma 2.26, SENa(ex;)(SEN2(F(G(f2)))(ags,)(®1))) C @5 and
& C SEN»(exy)(SEN2(F(G(£1)))(eas,)(81))°)-

Thus,



F(G(E,)) —— =, F(G(Z)) — =,
FG(3) 5 FGU) 4
F(G(%)) —/ % F(G(E3)) —— 5

’

SENa(faes,)(ag(s,)(81)) € @5 and @) C SENo(f7es,)(ag(s,)(®1))°

and, therefore,

1

SEN:(f3)(SEN2(es, )(ags,)(®1))) € @5
and @y C SENy( fy)(SENz(ex, )(ag(z,)(®1)))-

Thus, Z, has the CIP, as required.

The converse follows by symmetry. [ |

Robinson Consistency

Let Z = (SIGN.SEN, {Cc}sesien)) be a m-institution and £ € |SIGN]. Recall
that a theory (£,T) € |TH(Z)| is said to be consistent if T # SEN(E) and complete
if, for every (X,T") € [TH(Z)|,T C T’ implies T' = SEN(Z).

DEFINITION 5.14 Let T = (SIGN,SEN, {Cs}zesien|) be a w-institution. T will be
said to have the Robinson Consistency Property (RCP, for short,) if, for every

consistent complete theory (X,T) and consistent theories (E',T'),(X",T"), such that

fET) = (&1 f":(2.T) - (£",T") € Mor(TH(Z)), the theory
(=", (SEN(¢')(T") U SEN(¢")(T"))°)
is consistent, where as before. the following diagram

s
—
N
v w7
- ~
f’\ /f"
v
-t



is a pushout in SIGN.

Before presenting our main result, a lemma is needed.

LEMMA 5.15 Let
I, = (SIGN,SENy, {Cs}sesieng ). Iz = (SIGN,, SEN;, {Cc}seision,)

be two deductively equivalent w-institutions via the interpretations (F,a) : I, — I,.(G.
3) : Ip — I, and the adjoint equivalence (F.G,n.€) : SIGN, — SIGN,. Then. for
every (£,.Th) € |[TH(ZL,)|, if (£1.T1) is consistent. then so is (F(X,).ax,(T1)°) and if
(X1, T)) is complete, then so is (F(Z,), ag,(T;))-

Proof:

Suppose that (¥;,T}) is consistent. i.e., that T} # SEN,(E;) and assume, to the con-
trary, that ag, (T1)¢ = SEN2(F(E,)). By Lemma 5.10, ag, (SEN(E,))¢ = SEN(F(Z,))-
whence ag, (T1)¢ = ag,(SEN{(X,))¢, which contradicts Theorem 2.41 and Lemma 2.38.

Next, suppose that (£, T}) is complete, i.e., that, for every (X, T}), with T} C T}, we
have T} = SEN;(Z,;). Suppose to the contrary, that (F(Z;), ax, (T1)°) is not complete.
i.e., that there exists (F(E,), Tz}, such that ag, (T1)° C T, but T» # SENa2( F(E,)). Then

SEN:(n5))(Br(z,)(as, (Th))%) C SENi(n5))(Br(=,)(T2)°). e,
T[ C SENI(O‘S:)([’.F(SH(T2)C)~

with SEN; (751)(Brz,)(T2)°) # SENy(E1), which contradicts our hypothesis. m

THEOREM 5.16 Let
I, = (SIGN;,SENy, {Cs}seisigny)):  Io = (SIGN2, SEN», {Cs}seision,))

be two deductively equivalent w-institutions. I, has the RCP if and only if I, has the
RCP.



Proof:
Let Z, and Z; be deductively equivalent w-institutions via the interpretations (F’, c) :
Zy = I5,(G.B) : I — I, and the adjoint equivalence (F,G,n.¢) : SIGN,; — SIGN,.

Suppose that Z; has the RCP and assume that

N
~2
gé/ \gé'
N N
N
Z2

is a pushout diagram in SIGN, and that (£,,7,) is a consistent complete theory
and (X5, ) (£3.T7) are conmsistent theories in |TH(Z;)[, such that f; : (E,,T%) —
(5. T3), f3 : (82, T2) — (5, T7) € Mor(TH(Z,)). Since left adjoints preserve colimits,

the following diagram

G( Slll)
G(g3) '\ 97)
G(Z, G(SY

G(£) /G( )

is a pushout diagram in SIGN;.
Consider the theories (G(E2), Os,(T2)%), (G(X3), By (T2)°) and (G(X3), Bex(T7)°) in
TH(Z,). By Lemma 5.15, (G(X.), 8s,(T2)¢) is consistent and complete and

(G(E3), Bey (T2)). (G(E2), Bey(T7)°)

are consistent. Moreover G(f3) : (G(E2),8x,(T2)¢) — (G(L3), B (T7)°) and G(f7) :
(G(Z2), Bs,(T2)°) = (G(X3), Ben(T7)) are theory morphisms. Hence, since Z; has the
RCP, the theory

(G(E3"), (SEN1(G(92))(B=4(T3)) U SEN1(G(92)(Bex(T2)) )
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is a consistent theory in TH(Z;). This theory is the same as

SEN:(S]) —2 PSEN,(G(TL))
SEN2(g3) I IPSENX(G(Q{»))
SENz(Sf) —— PSENy(G(ZY)

Pey
SEN,(T7) PSEN,(G(E))
SENz(g%) l lPSENl(G(sé'))

SEN(Z3) ~— PSEN\(G(EY))
(G(S4), (Bey(SEN2(gh)(T3)) U Bez (SEN:(g4) (TE)))°)
Le., (G(SF),Bsy(SEN2(g3)(T3) USEN(gL)(TH))").

Consistency of this theory implies, by Lemma 5.15. consistency of
(F(G(Z3)), agzy By (SEN2(g2)(T;) U SEN2(g5)(T7))°)
and, therefore, since exy is an isomorphism, of
(25, (SEN2(g5)(T,) U SEN2(g5 )(T))°)-

Thus, Z; has the RCP, as required.

The converse follows by symmetry. [ |

The Lindenbaum Property

DEFINITION 5.17 Let T = (SIGN,SEN, {Cc}seisicn|) be a w-institution. T will be
said to have the Lindenbaum Property (LP, for short,) if, for all £ € |[SIGN],
(S, T) € [TH(T)|, if (X,T) is constistent, then there exists a consistent, complete theory
(X, T"), such that T C T".
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THEOREM 5.18 Let

Z, = (SIGN,,SENy, {Cs}sesign,):  I» = (SIGN2, SEN,, {Cs}seision,|)

be two deductively equivalent w-institutions. Z; has the LP if and only if T, has the LP.

Proof:

Let Z; and Z, be deductively equivalent 7-institutions via the interpretations (F.a) :
Z, = I,.(G.B) : I — I, and the adjoint equivalence (F.G.n,¢€) : SIGN,; — SIGN,.
Suppose that Z; has the LP and let £, € [SIGN;|, (., T») € |TH(Z:)| a consistent the-
ory. By Lemma 5.15, (G(E2), 8z, (T2)°) is a consistent theory in TH(Z;). Thus, since Z;
has the LP, there exists a consistent, complete theory (G(X,), T1), such that 8s,(T2)° C
T,. But then, by Lemma 5.15, (F(G(X:)), ag(z,)(T1)°) is a consistent, complete theory
of Iz, such that ags,)(Bc,(T2))° C ags,)(T1)°. whence (E2, SEN2(es, )(ags,)(T1))°) is
a consistent, complete theory of TH(Z;), such that T> C SEN:(ex, )(ag(s,)(T1))°. Hence,
7, has the LP, as required.

The converse follows by symmetry. a
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6 ABSTRACT CLONE ALGEBRAS

The category FACA of free abstract clone algebras with a designated set of genera-
tors together with an adjunction (F.U.7n.€) : SET — FACA is constructed. This gives
rise to an algebraic theory T over SET. A variety ACA of algebras is, then. equationally
defined. It is shown that the Eilenberg-Moore category of T-algebras is isomorphic to

the category ACA = ACA corresponding to the variety ACA.

Introduction

In algebraic logic one studies the classes of algebras that form the so-called algebraic
semantics of deductive systems ([6, 7]). Along these lines several attempts have been
made to define algebras that would be appropriate for algebraizing equational logic.
Some of these attempts focused or ordinary, single-sorted, algebras, whereas others
used many-sorted algebras. The general theory of this latter type of algebras has been
developed independently in [41, 42],[30] and [4]. Some of these attempts are P. Hall’s
notion of clone (see [12]), which gives a partial single-sorted algebra, B.H. Neumann and
E.C. Wiegold's representation of varieties in terms of semigroups [47], W.D. Neumann’s
substitution algebras [46], having infinitary substitution operations, Lawvere’s algebraic
theories {33, 34] (see also (36, 48]). W. Taylor’s heterogeneous variety of substitution
algebras [52] and, finally, N. Feldman’s polynomial substitution algebras [20] (see also
[11]). In a similar direction Czelakowski and Pigozzi [17] view equational logic as a
2-deductive system in the sense of [7] and propose its algebraization via another 2-

deductive system, based on [20], which they call hyperequational logic.
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In Chapter 3, a general framework for the algebraization of institutions was intro-
duced. The attempt to algebraize the equational institution in this framework (see Chap-
ter 3) leads naturally to the construction of an adjunction (F.U,n,¢) : SET — FACA.
This adjunction gives, in turn, rise to an algebraic theory T in monoid form over SET
(see Chapter 1). Based on [52], a variety ACA of single-sorted algebras is also con-
structed, that corresponds to clones of algebras with operations of arbitrary finite ari-
ties. It is then shown that the Eilenberg-Moore category of T-algebras of the theory T

is isomorphic to the category ACA = ACA of the variety ACA.

Basic Constructions

A countably infinite set V, called set of variables, is fixed in advance and well-
ordered and, as usual, the category of all small sets is denoted by SET . The definition

of a term, which has already been given in Chapter 3, is repeated below.

DEFINITION 6.1 Let X € [SET|. We define the set of X-terms Tmyx(V') € |[SET|, to
be the smallest set with

(i) V C Tmx(V) and

(it) Ifr € X.n €w and by, ... .taey € Tmx(V), with t,_y # va_y. then

2(toe- - taot) € Tmx (V).

The definitions of simultaneous substitution of terms for variables in a term and that
of the extension of a given set map f : X = Tmy (V) toamap f~ : Tmx(V) — Tmy (V)

are also repeated below.
DEFINITION 6.2 Let X € |SET]|, as before. Define a function
Rx : Tmx(V) x | Tmx(V)* - Tmx(V)

k=0

by recursion on the structure of X-terms as follows:



$i, 1<m
vi. t2>2m

Rx(vi.{so..e. s Smo1)) = {
foralm € w,sg.... ,s5m-1 € Tmy(V),
(it)
I(RX(t0~,§)?'“ ~.RX(tk-17§))7 lfm Sn,orn<m

RX(I(t07--- 7tn—l)7§) = and si=u; Vi >m
I(RX(t07§)v~- ~Rz\'(tn-—h‘;)ssn~,--° 7sk—l)? lfn <m

foralz € X,;n € w,tg,... .tpoy € Tmx(V)taoy # vtnet. and all m € & and
5€ Tmx(V)™, where, in the first alternative. k = max{(: Rx(t;,3) # vi}. and. in
the second, k = max{( : s; # vi}.

In other words, it is understood that the last, say k-th, term inside the parenthests
on the right, i.e., Rx(t-1,5).0 < k < n, if m < n, and either Rx(tx-1,5) or
sk-1.0 < k < m, if n < m, must be the last term that is not equal to the variable

Vk=-1-

In what follows the second alternative in Definition 6.2 will be used as shorthand for
both alternatives. If the first actually holds, then the trailing s’s inside the parenthesis

on the right hand side should be disregarded.

DEFINITION 6.3 Let X,Y € [SET| and f : X = Tmy(V). Define f* : Tmx(V) —
Tmy (V) by recursion on the structure of X-terms as follows:

(i) f~(v) =v, for everyv € V,

(i) f(z(to,--- sta-1)) = Ry(f(z).(f(to).... . [ (ta-1))), for every z € X.n €
Woloy.ee sty € Tmx(V).tnot # vnot.-

In the sequel, we write f : X — Y to denote a SET—map f : X — Tmy(V).
as above. Given two such maps f : X — Y and ¢ : Y — Z, their composition

go f: X — Z is defined to be

gof=gf.
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LEMMA 6.4 Let f: X = Ykkm € w.t € Tmx(V). 4@ € Tmx(V)* and § € Tmx(V)™.
Then

RX(RX(LJ)?‘;) = R,\’(t,(Rx(UQ,S_),... ~RJ\'(uk-l7s—)~,sk7--- -sm—l))-

Proof:
By recursion on the structure of £.

Ift=v,€V,

Rl\'(uif';)v i<k
RX(U{,OT), i<k
Rx(Rx(vi,4).5) = =9 s k<i<m ¢=
RX(vit‘;)s 12 k

v;, m<i
= RX(vif (RX(u07 3-)7 LR RX(uk—hg)’Skw e sm—l))e
as required.
Next,ifz € X.n €wand ly,... .tn) € Tmx(V).tnoy # va-y.

Rx(Rx(z(to,.-- stn-1).%).5) =

= Rx(z(Rx(to,%),.-.,Rx(ta=1,U).Uns.-. ,Uk—y),5) (by definition of Ry)
= z(Rx(Rx(to,).5),... . Rx(Rx(tr-1.4),5).
X (UnsS)s - s Rx(¥k=1-5)s Sks--- +Sm-1) (by definition of Ry)
= z(Rx(to, (Rx(u0,3)s-.. s Rx(Uk=1,5)sSkevv sSmat))senr s
Rx(tn—1, (Rx(u0:8)s... s Rx(Uk=1.5)s8ks -« s Smo1))s Rx(tn,5)s--- s
Rx(uk—1,5).Sky--- sSm-1) (by the induction hypothesis)
= Rx(z(to,--- stn-1): (Rx(u0:8)-- s Rx(tUk=1,35)s Skvv-- sSm=1))s
(by definition of Rx)
as required. [ |

LEMMA 6.5 Let f: X — Y,m € w.t € Tmx(V),5 € Tmx(V)™. Then

[ (Rx(¢,9)) = Ry (f7(2), £7(3))-
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Proof:

By induction on the structure of t. [f ¢t = v; € V/
fi(si), i<m f(s:), i<m
F(Rx(vﬁ (307"- ?sm-l>)) = =
frwi), t2m vi, i>m

= Ry (vi, (f7(s0):- .., fT(sm-1))) = Ry (f7(v:). (f7(s0)- .- s [T (sm-1))),

as required.

Next.if z € X,n €Ew and &y.... ,tho; € Tmx (V). tnoy F Un-1-

f-(RX(.’L‘(fQ,... .tﬂ_l), (So,... ..Sm..1>)) =

= f(z(Bx(to.5);--. ; Rx(tn-1,5);: $n;- .- ;5m-1)) (by definition of Ry)

= RY(f(-T), (f.(RX(tmg))?' .- *.f-(RX(tn—lrs‘))v f-(sn)t .. ?f-(sm—l )))
(by definition of f*)

= RY(f(l‘), (RY(f-(tO)v f-(“;))* e RY(f-(tn—l)v f.(‘;))*f.(sn)? coe ?f-(sn—l)))
(by the induction hypothesis)

= Ry(Ry(f(z).(f(to):-.. . f (£a=1))). f7(5)) (by Lemma 6.4)

= Ry(f*(z(to, .- sta=1)), f7(3)), (by definition of f*)
as required.
LEMMA 6.6 Let f: X —Y.g:Y — Z. Then
(gof)y =g f.
Proof:

By induction on the structure of ¢ € Tmx (V).

ft=v; €V, (go f)(v:) = vi = g"(f~(vi)), as required.
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Next, if 2 € X,n €wand fo,... .tn_t € Tmx(V), tact # vnors
(go f)(z(to, ... .taz1)) = Rz((go f)(z).((go f)(ta).-.. .(go f)(taz1)))
(by definition of (g o f)7)
= Rz(g"(f(2)).(9°(f(ta)):--- .g°(f*(ta-1))))
(by definition of go f and the induction hypothesis)
= ¢ (Ry(f(z).(f*(to):--- . f*(£a-1)))) (by Lemma 6.5)
= g"(f*(z(fo.- .. .taz1))). (by definition of f*)

as required. [

Define |[FACA| = |SET]| and, for all X. Y € |[SET],
FACA(X.Y)={f: X =Y : f € SET(X,Tmy(V))}.

Then the following holds
THEOREM 6.7 FACA is a category with objects |[FACA|, morphisms FACA(X.Y).
for all X.Y € |[FACA|, morphism composition o and identity arrows jx : X — X the
set maps jx : X = Tmx(V), with jx(z) = z(), for every z € X.
Proof:
We show that o is associative. Tithisend,let f: X - Y,g:Y —Zandh:Z — W
be FACA-morphisms. Then
ho(gof) = h*(gof) (by definition of o)
= h*(g"f) (byv definition of o)
= (h*g")f (by associativity of composition)
= (hog)"f (by Lemma 6.6)
= (hog)o f (by definition of o)
|
It will turn out that FACA is the Kleisli category of the algebraic theory T to be
constructed later. Moreover, the adjunction that will be constructed in the next section

will turn out to be the associated Kleisli adjunction.
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The Adjunction

We are now ready to proceed with the construction of the promised adjunction

(F.U.n.€) : SET — FACA.
First, define a functor F : SET — FACA by
F(X)=X. forevery X € |SET]|,
and, if f: X = Y € Mor(SET),
F(fy=yf:X=Y.
Iff:X—>Y.g:Y = Z & Mor(SET), then
F(gf) = jz(9f) = (Gzg9) (v ) = F(9)"F(f) = F(g) o F(f).

i.e., F is a functor, as required.

Now define a functor U : FACA — SET by
U(X)=Tmx(V), forevery X € |FACA|,
and, if f: X — Y € Mor(FACA),
U(f) = f : Tmx(V) = Tmy (V).
Then,if f: X —Y.g:Y — Z € Mor(FACA), we have

Ulgof) = (gof)
= g°f* (by Lemma 6.6)
= U(gU(f).
i.e., U is also a functor, as required.
Finally, define natural transformations 1 : Isgr — UF by nx : X = Tmyx (V) with

nx = Jx. for every X € |SET]|, and € : FU — Ipaca by ¢x : Tmx(V) — X with
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€EX = ITmy(v), for every X € |[FACA|. We now show that n and ¢ are indeed natural
transformations.

To this end. let f: X — Y € Mor(SET). Then. for every z € X.

X —— U(F(X))

f U(F(M)

Y —— U(F(Y))

U(F(f)(nx(z)) = UF(f)(() = Gy f)(z()) = f(2)() = Jy f(z) = mv (f(z)).

as required.

Next, let f: X — Y € Mor(FACA). Then, for everv t € Tmy(V'),

FUX) =— x

Fu(n) f

F(U(Y)) Y

&y

(foex)(t) = fH(ex(t)) = (1) = & (Utmyvy(S7(2))) = (ey 0 F(U(f)))(8).
as required.

THEOREM 6.8 (F,U.n,¢) : SET — FACA is an adjunction.

Proof:
By the preceding discussion 7 and ¢ are natural transformations, whence it suffices

to show that the following triangles commute, for every X € [FACA|,Y € |SET],

ny(x) F(ny)

U(X)

U(F(U(X))) F(Y)

k

F(U(F(Y)))

U(X) F(Y)

CF(Y)
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These are
Tmx(V) =22 T vy (V) y IO (V)
Tmx(V) Y
Ift € Tmx(V), then
i'-l'mx(l/')(mmx(v)(t)) = i'}mx(V)(t()) =,
and, if y € Y.
Py (V) (MTmy (V) (MY (4))) = 1Ty () (50O 0)) = y() = nv (y).
as required. ]

The Theory of the Adjunction

It is well-known ([39. 43, 9], see also Chapter 1) that the adjunction (F,U.n,¢) :
SET — FACA gives rise to an algebraic theory T = (T, n, 1) in monoid form over SET.
with T = UF and u = Uer. Moreover there exists a unique functor A" : SETy — FACA
from the Kleisli category of the theory to FACA, called the Aleisli comparison functor
of the adjunction, that makes the F- and [/-paths of the following diagrams commute.

SETy ————~FACA SETr — 2 FACA

N o T
SET SET

Given such an adjunction, the Kleisli category SETt of T in SET has as objects
[SET| and as morphisms SETy(X,Y) = SET(X,U(F(Y))), for all X,Y € [SET]|.
Moreover, it is easy to verify that the Kleisli composition coincides with the composition
o in FACA. Thus, in this case SETt = FACA and A = [raca. Therefore FACA is

the category of all free algebras of the algebraic theory T over SET.
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Also recall that a T-algebra (X,£) consists of a set X together with a map £ :

T(X)— X, e, &: Tmx(V) — X, such that the following diagrams commute

T(4)

X 2 __T(X) T(T(X)) T(X)
\ le “XI le
ix
X T(X) — X
These take the form
X —%  Tmy(V) Totme)(V) 22 Ty (V)
ix 3 T x(V) 3
X Tmx (V) . X

Abstract Clone Algebras

In this section we equationally define a variety of algebras ACA, whose members we
call abstract clone algebras. In the next section. it will be shown that the category
ACA = ACA of this variety is isomorphic to the Eilenberg-Moore category SETT of
the algebraic theory T in SET, that was constructed in the previous section.

Let £ = (\,p) be the language type defined as follows.

A={vi.Ci:iew}, with p(v;)=0,p(C;)=7+1.

DEFINITION 6.9 An abstract clone algebra A is an L-algebra that satisfies the fol-
lowing identities, for all n,m € w,

o Co(z)=1¢

L Cn(zsyo--~ sYn-2, Vi-—l) = Cn-l(l',‘!lo--- tyn—'l)
®

Im, fm<n
Cn(vmv Zgy.-- vIn—l) = { m

Vm. otherwise

e Cn(ze Cn(y07 E)v R 7Cn(ym—l7f)7 Tmo--- 7In—l) = Cn(Cm(zv 37)75)
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Let ACA be the variety of all abstract clone algebras and denote by ACA = ACA the
category assoctated unth ACA.

Let A = (A,LA) be an abstract clone algebra. Define A = (A4.£a-) as follows.
€as : Tm4(V) = A is defined by recursion on the structure of A-terms. by
o fa-(v;) = vA, for every i € w.

elfac Ane€wty,... .they € Tmy(V).tnot # tn-t-

Ea-(a(to. ... .ta-1)) = C(a.€as(to):- .. €A+ (tnmr))

LEMMA 6.10 Let A € ACA, A" = (A,£a.). Then. for every t € Tmy(V).m € w.5 €
Tma(V)™,
Ea-(Ra(t.3)) = Cr(Ea-(t).Eas(3))-

Proof:
By induction on the structure of ¢.

Ift=v; €V, then

Ear(Ra(vnd) = as(si), fi<m _ Eas(si), ifi<m
as(vi). if12m VA, ifi>m
= Ca(vh.€a-(5)) (by the third axiom)
= Ch(fa+(vi).€as(3)).
as required.

fa€ An€w, e Tma(V)*, taot # Un_1, then

Ea-(Ra(a(t),5)) = €a-(a(Ralt.3),.--  Ra(tn-1,5):8ns-- Smo1))
(by definition of R4)
= Ch(a.éa-(Ra(to:5)):--- €a+(Ra(tn-1.5)),

€as(sn);--- ;6as(sm-1)) (by definition of {a-)
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= Ch(a,Ch(Ea+(t0):€A~(3)):. - - .CA(EA=(tat), Ean(3)).
Ea+(Sn);--- +€A+(Sm—1)) (by the induction hypothesis)
= CA(C2(a.€a+(1)).£a+(3)) (by the fourth axiom)
= CA(£a-(a(t)).€a~(3)), (by definition of £a-)
as required. |

LEMMA 6.11 Let A € ACA. Then A~ = (A,£s.) € |SETT|.

Proof:

We need to show that the following diagrams commute

JA .\ (Fakac)®

A ———— Tmy(V) Tmrg,,v)(V) Tm,(V)
R §ae i’;’mA(V] [ I
4
A Tma(V) ——— 4

§Ar
For the triangle, we have, for every ¢ € A,

€a-(jala)) = €a-(a()) (by definition of j4)
= C#(a) (by definition of £4.)
= a (by the first axiom)
= i4(a), as required.
For the rectangle, we proceed by induction on the structure of a Tm,(V')-term ¢. If

t =v; €V, then

€as((Jabas)"(v:) = €as(vi) = €as(iTm v (2:)):
as required.
If s € Tma(V),n € w,f € T, wv)(V)" ta-t # Vn-1, then
Ea-((a€as)"(s(})) = Ea-(Ra((jabas)(s):(ja€as)"(£))) (by definition of (ja&a-)")
= CA(a-(7a(Ea=(s))):Ea-((Fa€a-)"(E))) (by Lemma 6.10)
= Ch(Ea(s),Ea-(17q, (D))

(by commutativity of triangle and the induction hyoothesis)



= fA‘(RA(Svi'-rmd(v)(t-))) (by Lemma 6.10)
= €ar(ifp, v (s(D)). (by definition of i3, )
as required. [ ]
Next suppose that A = (A,L*),B = (B,LB) € ACAand h : A - B
€ ACA(A,B). We show that the following diagram commutes

(sgh)*

Tma(V)

Tms(V)

A -1

A——8B
i.e.. that h € SETT(A".B").
We work by induction on the structure of an A-term ¢.

Ift=v; €V, then

€e-((jgh)*(v:)) = &p-(v:) (by definition of (jgh)")
= vB (by definition of £g-)
= h(v}) (since h € ACA(A.B))
= h(€a-(v:)), (by definition of £a-)
as required.

Ifaec A,n€w.t € Tma(V)™, tacy # Unots

€s+((jsh)*(a(t)) = EB-(Ra((jsh)(a),(jBR)"(f))) (by definition of (jph)")
= CB(¢s-(78(h(a))).E~((jBR)"({))) (by Lemma 6.10)
= CB(h(a),h(€a-(%))) (by comm. of triangle and the ind. hyp.)
= h(CA(a.€a-(f))) (since h € ACA(A,B))
= h(Ea-(a(f))), (by definition of £-)
as required.
Thus, it is possible to define the functor P : ACA — SETT by

P(A)= A", forevery A€ ACA,
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and, given h € ACA(A,B). P(k) € SETT(A",B"). by

P(k) = h.

The Equivalence

In this section. a functor Q : SETT — ACA in the opposite direction is defined and
it is shown that P and Q are inverses of each other. Therefore the two categories SETT

and ACA are isomorphic categories.

Let A = (A,£4) be a T-algebra. Define an L-algebra A#* = (A, LA*) as follows:
o vA* = £4(w;), for every i € w,
o CnA#(av ag,- .- van—l) = EA(RA(jA(a)?jA(GO)v .. 7j.4(an—l)))~ for every n € «., a, ao,
cee s Qpoi € .4.
LEMMA 6.12 Let A = (A, EA) € ‘SETTL Then jAfA = (jAEA)-ijA(V)“

Proof:
Let t € Tm4(V). Then

(748A) UTma) (1)) = (Jaéa)"(£()) (by definition of jrm ,v))
= Jjala(t). (by definition of (74£a)")

as required. "
LEMMA 6.13 Let A € [SETT|. Then A* € ACA.

Proof:

We need to verify that the identities of Definition 6.9 hold. For the first one,
C8" (a) = €a(Ralja(a), ())) = Eajala) =,

as required.
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For the second, we have

as required.

A#* A#
Cn (a~ bOv s bn—27 Vo

1) = CA%(a.b.6a(vn-1)) (by definition of vA*)
= £a(Ra(ja(a).ja(b). ja(€a(va1)))) (by defin. of CA*)
= €a(Ral(74(€a(1a(@))):7a(€A(Ga(B))): jal€A(va1))))
(by Eaja =14)
= Ea(Ra(ia(ala()))a(€a(B))))-ja(Ealtn1))))
(by definition of j4)
= Ea(Ra((ja€a)(@()): (74€a)"(B)0))- (Faba)™(¢az1()))

(by Lemma 6.12)

-

= &a((7a€a) (a()(b()(): ta=1()))) (by defin. of (j46a))
= Ea(itm, v (@00 va-1())))
(since Ea(748A)” = Eattm, (1)
= Ea(Ra(a(),b(), va-1)) (by definition of i3, ()
= Ea(Ra(a(),5())). (by definition of R.)
= ... (reverse all the steps in the deduction above)

= CA*(a.b),

n-1

For the third identity, we have

# # =
CnA (VnA-; @) =

CA* (€a(vm). @) (by definition of vA*)
£a (vm)),
§a(Ra(7a(8a(vm)); 74(6a(74(@))))) (since §aja =14)
§a(Ra(ja(8a(vm)). 7a(€a(a())))) (by the definition of j4)
(vm)).
)

(R, ja(@))) (by definition of CA*)
(
(
§a(Ra(jaléa(vm)). (Ja€a) (@()()))) (by Lemma 6.12)
(
(z
(

a(Ja(6a(vm

§a((748a)"(vm(a()()))) (by definition of (ja§a))

éa szA(V) (vm(a()()))) (since éa(jaéa)™ = §Al’.rmA(V))
Ea(Ra(vm.a())) (by definition of szA(V))
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.
4 €alom()), ifm<n

(by definition of R4)
€a(vm), ifm>n

\
;

am, ifm<n . S .
= < . (since £4ja1 = i1 and by defin. of vA™)
A¥#* .
vi', fm>n

as required.

For the fourth identity. we have

CAM (a.CA* (56.8).... .CA* (b1, ) Cmer v Cact) =

= CA%(a.6a(Ra(ja(50):5a()):s-- - . EA(Ralia(bmo1). Ja())-Cms- - - Cnmt)
(by definition of CA*)

= Ea(Ra(ja(a), ja(6a(Ra(54(80),5a(@))):--- . Ja(Ea(Ralja(bmer). Ja (D)),
ja(Cm)s--- s jal€a=1))) (by definition of CA*)

= Ea(Ra((748a)(1a(a)). (Ja8A) (Ra(74(b0).74(€))()).- .. .
(7aéa) (Ra(74(bm-1).74())())-
(F7a€A) (em()())s--- +(Ja€a) (cn=1()()))) (since Eajs = i4 and by Lemma 6.12)

= §a((Jaéa) (7a(a)(Ra(5a(bo). 7a(€))(): - s Ra(Ja(bm=1).74(E))().
cm()():-- - en=1()()))) (by definition of (j1€a)")
= EA(lrmA(v)(JA(a)(Rdh b0),74(6))()s - - . Ra(Ja(bm-1): Ja(E))()
cm()(), - -10()))) (since §a(jaéa)” = fatly, (v))
(Ra(ja(a), Ra(ja(bo), 7a(0)): - - Ra(ja(bm=1),J4(€))s€m()s- - - - €n-1()))
(by definition of i3, (v,))
= Ea(Ra(Ra(ja(0).3a(6)).74(0)))
(by Lemma 6.4)

I
?‘

= ... (by reversing the steps in the deduction above)
= C2*(CA"(e.0).9),
as required. [ ]
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Next, let A = (A,£a),B = (B,¢8) € |SETT| and h € SETT(A.B), ie., h €
SET(A, B) and the following diagram commutes

(ish)*

Tma(V)

Tmg(V')

§a 133

A———8
We show that A € ACA(A# B¥#). To this end. we need to verify the following two

equations
# -
o A(vA*) = vB* forevery i € w. and

° h(C;‘}#(a,ao.... “Gp_y)) = CE#(h(a),h(ao) sh(an-1)). for every n € w.a.ao.

PRI

cee 5 Qupat € A.

We have

h(vA*) = h(€a(v:)) (by definition of vA®)
= &B((yBh)"(v:)) (by commutativity of rectangle)
= &p(v;) (by definition of (jgh)™)

= vB* (by definition of vB*)
as required and
h(CA*(a.d@)) = h(Ea(Ra(ja(a),54(d@)))) (by definition of CA*)
= €B((Bh)"(Ra(ja(a),ja(@)))) (by commut. of rectangle)
= &{s(Ra((78R)"(Ja(a));(j8R) (1a(@)))) (by Lemma 6.5)

= &B(Rs((jBR)(a), (jBR)(@)))
= CB*(A(a).k(d)), (by definition of CB*)

as required.

Therefore, we can define a functor Q : SETT — v, by

Q(A) = A¥*  forevery A €|SETT|,
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and, given k € SETT(A,B),Q(k) € ACA(A# B#), by

Q(k) = h.

We finally proceed to show that QP = [aca and PQ = [ggpr. To this end, let A =
(A, LA) € ACA. We have
VAT = Ean(vi) = v

and, for every n € w.a.ag,... .an-; € A.

CA*(a,@) = £a-(Ral(ja(a).ja(d@))) (by definition of CA™)
= £a-(a(ja(d@))) (by definition of Ry)
= CA(a,£4-(j4(d@))) (by definition of £4-)
= C2(a,d), (by €a-js =14)
as required.

Finally, let A = (A4,£4) € [SETT|. We have

*
Eane(vi) = V:l = §a(vi)
and, for every a € A, to.... ,tn—1 € Tma(V),tno1 # Vn-1.

Ear-(a(f)) = CA*(a,Eps-(f)) (by definition of Exs.)
= €a(Ra(ja(a),ja(€a(D)))) (by definition of CA* and the ind. hyp.)
= Ea(Ra(ja(€a(Ga(a))), (ja€a)(£)))) (by €aja = i4 and Lemma 6.12)
= £a((74€a)(a()(&()))) (by definition of R,)
= £a(ifm, ) a()(&)))) (since Ea(jaa)” = Eait, )
= €a(Ra(a(), 1)) (by definition of i3, 1)
= £a(a(f)). (by definition of R,)

Thus, the following theorem holds

THEOREM 6.14 ACA = SETT.
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A Related Result

In this section we build on the universe Tmy (V') a substitution algebra Tmy (V') =
(Tmx(V),S*, vk)ke. in the sense of Feldman [20]. We use the universal mapping prop-
erty of free algebras in a variety to show that Tmy (V') is the free algebra in the variety
of representable substitution algebras, i.e., the variety generated by the class of all lo-
cally finite polynomial substitution algberas of [20]. This result. first proved in [49], is
of interest because it shows that an algebraic theory T’ in SET can be built. whose
Eilenberg-Moore category of algebras is isomorphic with the category corresponding to
the variety of Feldman’s representable substitution algebras. in such a way that the
functor T" : SET — SET is defined on objects by T'(X) = Tmyx (V).

First, we have to recall some definitions from [20].

A substitution algebra A is an algebra of type £ = {\,p}. where A\ = {S™.v, :
n € w} and p : L — « a rank function on A, defined by p(S™) = 2 and p(v,) = 0. that
satisfies the following axioms, for every n.m,l < w.s.t,u € A,

(SA1) S} (t) =~ ¢

(SA2) S} (va) = ¢

(SA3) SP(vm) = vmifn#m

(SA4) S3(S5(2)) = Sgny(t)

(SA5) S3./, (ST (t)) = SGa

,(m,,)(u)(s:(m/l)(t))r where s(m/l) = S7'(s) and m,n and [

are all distinct.
If A is a substitution algebra and a € A. by the dimension set D(a) of the element

a € A we mean the set
D(a) = {n € w : S{(a) # a, for some t € A}.

A substitution algebra A is called locally finite if, for every ¢ € A,[D(a)| < w.
The variety generated by the class of all locally finite substitution algebras will be called
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the variety of representable substitution algebras. By a representation result of
Feldman [20], this is the variety generated by a class of polynomial substitution algebras.

Let X € |[SET| and define on Tmy (V') nullary operations v : Tmx (V) = Tmyx (V)
with v,?m"(v) = vy, for every k € w, and binary operations S¥ : Tmy(V)?* = Tmyx (V)

by
Sf(t) = Rx(t.(vo,... .Uk=-1,5)), forevery s.t€ Tmx(V). k€ w.

Qur goal is to show that Tmy (V) = (Tmy(V). S*. ti)re. is a free representable substi-

tution algebra over X.

LEMMA 6.15 Tmx(V) = (Tmx (V). S*, vk )ee. is a substitution algebra.

Proof:

We verify that Tmyx(V) = (Tmy(V),S*.vt)re. satisfies the identities (SAl)-
(SA5). For (SA1) we apply induction on the structure of ¢t € Tmy (V). If t = v; € V,
then

S:n(vi) = RX(U{, (v0~,-- - 7vn—lfvn)) = U
fzeX.meuw,ty,... .tmo1 € Tmyx(V), then

Szn(r(tO?" . ?tm—l)) = RX(I(tO?--- 7tm-l)7<‘00?--- 7vn—lsvn))
= x(RX(tOV (U07°°- ?L,ﬂ—l?vTI))?"' .
Rx(tm-1. (Uo---- »Un—-1, Un)))

= z(tg,... .tm-1). as required.
Next, for (SA2), S?(va) = Rx(n, (vo,.-. stn-1,t)) = L.
Now, for (SA3), ST (vm) = Rx(vm,(vVos-+- s Un-1,t)) = .
Next, for (SA4). we need to apply induction on the structure of ¢. First, if ¢t = vy,

then
S?Sh(va) = Rx(Rx(va.(vos--.,Cn1,u))(Vos... .Vn-1,5))

= RX(u9 (007 .- 7vn—l7s))
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= RX(v'rh (U(),. -+ s Un-t, RX(uﬁ (U0~, R vvn—hs))))

= Sg,’,(u)(v,,), as required.

If t = vy # vg, then

S:SZ(vm ) =

Rx(Rx(vm:(Vos--- sUn=1:u)), (Voy--- s Un=t1.5))
Rx(vm.{vo.--- +Tn=1,5))

Um

Rx(vm,(vo. ... .vn_1. Rx(u.(vos-- . . tno1.5))))
S5 () (vm):

as required. If z € X,k € w,to,... ,tp—1 € Tmx(V), tk—1 # ve—1. then

SiSh(z(to, ... . tk-1)) =

Rx(Rx(z(tos--- +tk=1)s (Vos--- s Cnep o tt)), (Touevn s Unoys S))
Ry (2(Rx (o (V0r- -+ +Onets@))se e s R (Ebots (Toue -+ nmts
u)). Vkenne a1 8) (Vose vt Uney.$))

z(Rx(Rx(to:(Vos--- - Un-1.u)); (Vos- -+ s Un=1:8)) - -

Ry (Rx(tk-1.(vo,--. ,Un-1.u)): (To. ... . Un-1,5)),

Rx (Ve (Vos- -+ +Vn=1:8)): -+ s Bx(tnot: (o, - - - Tnt28))s
Ry(u,(vo,--- ,Va-1,5)))

2(Rx(tor (Yo - +Onets Rx (s (T0n - - +tnets$))))ev - -
Rx(te—1.(vos--. s Un-1. Rx(u,(vo,-.. . tn=1.3))}),

Tk en s Onmte R (e (Vos -+ 3 Oners5))

Rx(z(tos--- +tk=1)s{v0s--- sn-1, Rx(u.(vo,--- s Un=1,5))))

Sg’;(u)(z(tO? LRI tk—l))‘

Finally, for (SA35), we need again to apply induction on the structure of ¢. If ¢ = v,, then

S?(m/l)sr‘n(vn) = S:(m/l)(vﬂ) = S(m/l) = Sgn:(m[l)(u)( m/l) ( /l)(u)(st(m/l)(vn)),

as required. If { = v, then

Sl‘(m/z)SZ‘(vm) = Sr(m/z)(") = S?';(m m(u)(vm) = S?g(m/,)(u)S?(m/l)(vm)v



as required. If t = vx # v,, vy, then

S:(m/l)s:‘n(vk) =0 = S’s"»(m,,)(u)s’,‘(mm(vk).

L

Finally, if r € X,k € w.to,... .tkey € Tmyx (V). txy # vr_y, then
sim/nSu (z(tos-- - o tat)) =

= S/ RBx(z(to. ... .te=1). (vos- .. . tm-1, 1))

= Ryx(Rx(z(toe--- +tiet)s (Wou- -+ Umeto))s (Corr -+ - tneres(m/1)})

= Rx(z(Rx(to.(vo:-- s Um-1,t))e--. . Rx(tie1. (vo, ... . tm-1. 4)).
Tkovor +Uma1s 8)s {0y oo s Un1, 8(m/1)))

= z(Rx(Rx(to:(vos.-- sUm=r,su))s (Voe. . ,Cuer,s(m/1))).... .
Rx(Rx(te-1.(vos- - . Um=1,%)); (Vo, - .. . Uno1,5(m/1))),
Rx(vk, (Vos- - - s Vne1: S{m/I))), .- . Rx(¥mets (V05 e oo« Oney, S(m/1))),
Rx(u,(vo,... sUn1:5(m /1)) Ums1s... s Un_y1.8(m/l))

= z(Rx(Rx(to,(vo.- .. . tno1.5(m/1))), (V0. - - . s Um=1. 87/ (w)))s- ..
Rx(Rx(tk-1. (vo. .. ,Un-1.5(m/1)}). (vo. . .. . Om-1. S5, iy (W) Cks- oo < Umet
S;‘(m/l)(u),vm.,.[,.. -+ Un—1,8(m/l))

= Rx(z(Rx(to,(vo,--- svn-1.8(m/[l)}),... . Rx(tk=1, (%0, .- - . Vn=1,8(m/l))),
Otse - + Ot S0, (For -+ +Ommts ST ()

= Rx(Rx(z(to,.-- . tk-1); (Tos-- - vn_1,5(m /1)), (vo, - . . . Um=1.87 /(1))

= ng(m/‘)(u)si‘(m/l)(r(to, oo sbea1))s
as required. a

LEMMA 6.16 Tmx (V) = (Tmx(V),S*, vi)re. possesses the universal mapping prop-
erty over X with respect to the class of all locally finite substitution algebras.

Proof:
Let A = (A, S*, vk)re. be a locally finite substitution algebra and f: X — A a set

map. We define a substitution algebra homomorphism f# : Tmyx (V') — A that agrees
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with f on X, by recursion on the structure of X-terms as follows:
fF(v;) = v, forevery v, eV.

and, if £ € X.n €w.to,... ,tny € Tmx(V),bnot # -y, then, if

kO?’-’tkn—lgD UUD
=0
[Haltor- o otne) = ST+ Sha ST - Sip (2D
This element of A is independent of the choice of ko.... ,k,-; and hence well-defined.

We first show that, if s,t € Tmx(V'),m € w, then
FE(Rx(t(vo, .-+ Um-1,5))) = STa(,) (FF(2)).
We do this by induction on the structure of ¢. If ¢ = vy,, then
H(Bx (0 (e +Vmero$))) = FR(5) = ST (02) = ST ) (fF(vm)-
Ift = v, # vp, then

f#(RX(vﬂ? (vO?' .. ,Um_[,5>)) = f#(vﬂ) - v Sj#(s)( ) S}n#(s)(f#(vﬂ))'

Finally,if z € X,n € w,tog,... .tn-1 € Tmx(V).tnoy 7 vy, then
f#(RX(I(tO?- ey tn—l)v(v(h ... ,Um_‘,S))) =
= f#(x(RX(tfh <v0~ LR vm—l's))~ e RX(tn—lv (v07 cve s Um—1s 3))7 Uny--- s Um-1, S))
- km km—1 kn kn—1
- Sf#(s)sf*(vm-x) Sf#("n)sf*(a’c(tn-x (v0s-- s¥m—1,8))) " 7

Sko

S#(Rx(t0,(v0s-r ¥m—=1,9)))

Sy oS3 ST .S (f(2)

_ km krn-—l kn Qkn—1 ko m SO

- Sf#(-’)s s S [#( )(f#(fn-l)) S !#( )(f*(to))sf#(s)s UA (f(=))

. QFm kfn—l kn Qkn—t ky ko 0

- Sf*( )S vt SUAS STy (¥ (tn-1)) S (f#(t1)) f#(s)sf#(‘o)s SUA (f( )

r#( )
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. km m—1 kn 1 ko m 0
=SB SAT - SaSTe Sty - SpreSia, - S (f(2)
—_ km n-1 ko m n-l 0

= ST ST St Sote )Sia Sox ---Sa (f(2)

_ kn—1 ko n—1 0

- S}n#(s)sf#(t,. 1) ° Sf#(:o)s., --svﬁ\o(f(l'))

= f#( ) f#(-t tOv--' n— ))))’

as required.

Finally, we show that f# is a substitution algebra homomorphism. If n € «. then

) = ) = of

and, if m € w.s.t € Tmx(V), then

f#(s;n(t))=f#(RX(t'<va-~svm-lss))): }n#(s)(j-#(t))f

as required. |

COROLLARY 6.17 Tmx (V) = (Tmx(V),S¥, vk)re. possesses the universal mapping

property over X with respect to the variety of representable substitution algebras.

Proof:
Follows directly from lemma 6.16. since the variety of representable substitution

algebras is the variety generated by the class of all locally finite substitution algebras.

LEMMA 6.18 Tmx(V) = (Tmx(V),S*. vk)re. is a representable substitution algebra,
i.e., belongs to the variety generated by the class of locally finite substitution algebras.

Proof:

We show that Tmyx (V) = (Tmx(V), S, vi)re. belongs to the variety generated by
the class of locally finite substitution algebras by proving that Tmx (V') is a subdirect
product of locally finite substitution algebras.

Let p : X — w be a rank function on X. Construct a binary relation ©, C Tmy(V)?

by recursion on the structure of X-terms as follows: (v;,v;) €0, ifandonlyif i=7;
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and given z,y € X,m,n € w.to.... ,tn1.50.-.. s Smet € TMx (V). bnoy # Unots St #
Um-1-
(z(fos--- ta1):Y(S0s ... .Sm-1)) € O, ifandonlyif r=y and (t.s;) € O,,

for every 0 < ¢ < p(z), where we set t; = vj, s = vg. for every j > n,k > m. O,
is clearly an equivalence relation on Tmy(V'). We show that ©, is a congruence on
Tmx(V) = (Tmx(V). $*. vi)ieo-

First, we show by induction on the structure of the X-term ¢ that. if (£.¢).(s.s") €

O,,m € w, then
(Rx(t,(vos--- :Um=1,3)), Bx(t',(Vos--- s Vm=1,5"))) € O,.
If t = v, then ¢ = v, whence
(Rx(t.(voy--- sUm=1-5))s Rx(t'.(voy- -+ .tm=1,8"))) = (5.5) € O,.
If t = vy, # v, then ¢’ = v,, whence
(Rx(t,{(vos--- Um=1:5))s Rx(t'.(vos--- s Um=1-5"))) = (tn.Vn) € O,.

Ifz e X,n € w,to,... .taoy € Tmx(V),baoy # U1, then, if t = z(fo,... . tn=1), We

must have t’ = z(tg,... . t;_;), with (£;,¢)) € 0,,0 <1 < p(z),t; = v, ti=v. 7 200>

k. Thus,
(Rx(z(to.-- - -tac1): (Vos -+ +Um=1.8)), Rx(2(tg, - -+  tkmy): (V0s-- - 2 Umo1: ) =
= (z(Rx(to, (Vos--- s Um=1,5))s--- s Rx(tae1s{¥0s- - s Um—1,5))sCnse vt s Vm—1,5);
z(Rx(t, (vo,- -+ -Um=1,8")); - s Rx(th s (Vos o s Um—1:57))s ks oo . Um—1.8")) € O,

by the definition of @, and the induction hypothesis.

Now, if n € w and (s,5),(t,t') € O,, then

S:(t) = RX(t7 (UO?--- ?vn—lvs)) Ee, RX(t,7 (v07"- :Un-1, S,)) = S:’(t,)~
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and hence ©, € Co(Tmy(V')), as required.
Next, consider the quotient Tmx(V')/0,. We show that it is a locally finite sub-
stitution algebra. To this end, we show that if z € X,n € «w and f,... .t.—y €

Tmx(V),tn-1 # vn-1. then

D(z(to.. .. -ta=1)/0,) S {0.1,... .p(z) — 1} U | ] D(t:/0,).

=0

Suppose that m & {0, 1,... .p(z) — 1} U s D(t:/©,). Then, for every

n—1
s € Tmx(V).kooooo knmt & | D(5:/O,),

=0

o, (z(to, - - 1 ta=1)/0,) = ST(z(to, - - . .ta1))/©, =
= Rx(z(tor- - +tact) (Cos- -~ U1, 8))/O, =
= 2(Rx(to, (B0v -+ + Omets5))s-e v« Rit(tnot (V0ue -  Umete8)) Omsee v s Umets5)/©, =
= z(to,- - - +tn-1)/0p.

since, for every 0 <: < n,

Rx(ti; (vo, .. .vm-1.5))/©, = ST(t:)/0, = S}, (t:/0,) = t:;/0,
and m € {0,1,... ,p(z) — 1}. Hence m &€ D(z(to,--. .tn-1)/0,), as was to be shown.

Finally, we show that if R = w* is the collection of all rank functions p : X — w.
then (,cp ©, = ATmy(v)- To this end, suppose that (s.t) € Tmx(V)?, with s # ¢. If
t =v; € V, then (s,t) € O,, for every p € R. So suppose that s = y(so,.-- .5m-1) and
t = z(tgy... ,tn-1), for some m.n € w, sg,--. sSm—1,s toy--- ytno1 € Tmx(V),8m-1 #
Um—1ytn-1 # Un-1- If = # y, then (s.t) € ©,, for every p € R. If z = y then, for some
i < maz{m,n}.t; # s;. Thus by the induction hypothesis, there exists p € R, such that

(s:,t:) € O,. Let p’ € R be defined by

maz{p(z),t+1} ifz=z

p(z) otherwise
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We show that, since p’(z) > p(z), for every = € X, O, C O,. This being the case

(s.t) € Oy and hence (s.t) €[ cp ©,. as was to be shown. In fact. if
(z(to: - - - -tn-1). Y(S0. .- - .5m-1)) € O,

then, either z # y, in which case (z(tg,... .tn-1).yY(S0s--- +Sm-1)) € Op.0or z = y
and (¢;,s;) € O, for some ¢ < p(z) < p'(z). In this case. applying the induction
hypothesis, we get that (¢;,s;) &€ O,/ whence (z(tg.... .ta=1):Y(S0.--. . Sm—-1)) € O, by
the definition of O, . as required.

This concludes the proof that Tmy (V) is subdirectly representable by means of
the product [],crTmx(V')/0,, with all Tmx(V')/©, locally finite. and therefore is
representable. .

THEOREM 6.19 Tmy(V) = (Tmx(V),S*. vi)re. is the free representable substitution

algebra over X.

Proof:

This is a direct consequence of Corollary 6.17 and Lemma 6.18. |
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