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Abstract. The study of structure systems, an abstraction of the concept of first-
order structures, is continued. Structure systems have algebraic systems, rather than
universal algebras, as their algebraic reducts. Moreover, their relational component
consists of a collection of relation systems on the underlying functors, rather than
simply a system of relations on a single set. A variety of operators on classes of
structure systems are introduced and studied, taking after similar work of Elgueta in
the context of the model theory of equality-free first-order logic. Both Elgueta’s and
the present work are inspired by considerations arising in the study of the process of
algebraization in abstract algebraic logic. The ways that these various class operators
interact, when composed with one-another, are at the focus of current investigations.

1 Introduction The central role that classes of logical matrices play in the theory of
abstract algebraic logic (see, e.g., [8]) together with the fact that logical matrices may
be viewed as models of universal Horn logic without equality [3] (see also [8]) provided
the motivation for the study of the model theory of equality-free first-order structures by
Dellunde, Elgueta and their collaborators (see [9, 13, 14, 15, 16, 17] for Elgueta’s work, some
of which is joint with Czelakowski and some with Jansana, and [6, 10, 11, 12] for Dellunde’s
work, some of which is joint with Casanovas and Jansana). The idea was that equality-free
first-order model theory, which, as contrasted with its counterpart with equality, was not
as well studied, may benefit from results inspired by its interaction with abstract algebraic
logic and that, conversely, some novel ideas in that theory may prove useful in the domain
of the algebraization of sentential logics and the theory of logical matrices.

In recent work by the author [23, 24, 25] the theory of algebraizability of sentential logics
has been abstracted to cover those logical systems that are formalized as π-institutions. The
class of all these systems is wider than that of sentential logics since it includes logics with
multiple signatures and quantifiers. Moreover, the π-institution presentation is, in some
ways, more attractive from the metalogical point of view since it allows the treatment of
substitutions in the object language rather than delegating them to the metalanguage. On
the other hand, one has to pay the price that the added generality restricts, to a certain
extent, both the quantity and the depth of the results obtained, since these apply now to a
wider variety of logical systems. Ongoing investigations, however, allow optimism that the
amount of results that one is still able to obtain is worth the effort and, also, that some
of these results may prove fruitful in reconsidering or adding to the existing knowledge
pertaining to the theory as applied specifically to sentential logics.

The concept of a logical matrix, when lifted to the π-institution framework, gives rise to
that of a matrix system [26]. The concept of an abstract logic, which was used extensively
by Font and Jansana in [18] as an alternative algebraic model for sentential logics, more
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faithfully respecting the properties of a logic in the algebraic domain than logical matrix
models do, gives rise to that of a π-institution model of a given π-institution [24]. These
analogies, together with that established between universal algebras and algebraic systems
as algebraic models of sentential logics and of π-institutions, respectively, in [25], lead to the
consideration of abstracting the model theory of equality-free first-order logic to structure
systems. These are systems abstracting first-order structures and having algebraic systems,
rather than algebras, as their algebraic components. The aim of this abstraction process
is to obtain results paralleling those of Dellunde’s and Elgueta’s and thus, cross-fertilizing
categorical abstract algebraic logic with the theory of equality-free first-order structure
systems. This idea is further supported by some recent results providing an analog of
Bloom’s Theorem for the framework of π-institutions [29] and by the preceding two papers
in this series [30, 31] that introduce structure systems and deal with aspects of their basic
theory, inspired by Dellunde’s and Elgueta’s work.

In [30] both a syntactic and a semantic framework for the study of structure systems
has been introduced. Since in the present work the focus is entirely on semantics, only the
semantical aspects of [30] will be briefly reviewed in this introduction. A language type
L = 〈F, R, ρ〉 consists of a category F of natural transformations on a sentence functor, a
nonempty set R of relation symbols and an arity function ρ : R → ω. An L-structure system
A = 〈SENA, 〈NA, FA〉, RA〉 consists of a sentence functor SENA : SignA → Set, a category
NA of natural transformations on SENA, a surjective functor FA : F → NA preserving all
projections and a set of relation systems on SENA of arities equal to the arities assigned to
the relation symbols by ρ. Given two L-structure systems A = 〈SENA, 〈NA, FA〉, RA〉 and
B = 〈SENB, 〈NB, FB〉, RB〉, an L-morphism 〈F,α〉 : A → B is an (NA,NB)-epimorphic
translation 〈F,α〉 : SENA →se SENB, such that FA(σ) and FB(σ) correspond under
the (NA,NB)-epimorphic property and such that, for all r ∈ R, with ρ(r) = n, for all
Σ ∈ |SignA| and all �φ ∈ SENA(Σ)n,

�φ ∈ rA
Σ implies αΣ(�φ) ∈ rB

F (Σ).

Using these basic definitions, the notions of a subsystem, a homomorphic image of an L-
system and those of a product, a reduced product and an ultraproduct are all rigorously
defined in [30]. All of these definitions will become handy in the semantic investigations
that are undertaken in the present work. The reader is therefore advised to revisit [30] and
become familiar with them.

On the other hand, [31] introduces the notion of Leibniz equality for L-systems, an
abstraction of the Leibniz equality of [13], a weak version of equality that replaces genuine
equality in the study of models of equality-free first-order logic. (See [2] for the origin
of this notion.) That notion, in turn, is inspired by the role that Leibniz congruences
play in the study of logical matrices and the relation, described above, between logical
matrices and universal Horn logic without equality. Leibniz equality and the more general
notion of a congruence system of an L-system lead to a detailed study of quotients of L-
systems by congruence systems in [31] and to the formulation and proof of analogs of the
Homomorphism, the Second Isomorphism and the Correspondence Theorems of Universal
Algebra in the context of L-systems.

In the present work the study of L-systems, started in [30, 31] is continued. Class op-
erators corresponding to the well-known operators of taking substructures, homomorphic
images, reduced products, products, ultraproducts, subdirect products as well as filter ex-
tensions, reductions and expansions of first-order structures, are introduced for classes of
structure systems. Several properties pertaining to the way these operators interact with
one another when composed are investigated. These parallel corresponding properties intro-
duced in [13] by Elgueta, but some are weaker in the present context, despite the fact that
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they all generalize the properties of [13]. The goal of this work, which is to be continued
with additional results elsewhere, is to characterize classes of structure systems that are
models of particular equality-free first-order theories in the spirit of Dellunde and Elgueta.
These explorations will hopefully shed more light in the relationships between analogous
concepts arising in the frameworks of the algebraizability of sentential logics and the alge-
braizability of π-institutions. Algebraizability remains, as before, the main framework in
which our investigations take place.

For general concepts and notation from category theory the reader is referred to any
of [1, 4, 21]. For an overview of the current state of affairs in abstract algebraic logic the
reader is referred to the review article [19], the monograph [18] and the book [8]. To follow
recent developments on the categorical side of the subject the reader may refer to the series
of papers [23]-[26]. Finally, standard references on model theory are the books by Chang
and Keisler [7], Hodges [20] and Marker [22].

2 Operators on Classes of Structure Systems The following analogs of the operators
S, Se, F,H,R,E, P, Pf , Pu and Psd on classes of L-structures, introduced in [13], will be
considered in the present work: S is the operator of taking isomorphic copies of subsystems
of a class of L-structure systems:

S(K) = {A : A ∼= C and C ⊆ B for some B ∈ K}.
Se is the operator of taking isomorphic copies of elementary subsystems of a class of L-
systems:

Se(K) = {A : A ∼= C and C ⊆e B for some B ∈ K}.
F is the operator of taking isomorphic copies of filter extensions of a class of L-systems:

F(K) = {A : A ∼= C and B � C for some B ∈ K}.
H is the operator of taking isomorphic copies of L-morphic images of a class of L-systems;

H(K) = {A : A ∼= C and h : B � C for some B ∈ K and some h}.
R is the operator of taking isomorphic copies of reductions of a class of L-systems:

R(K) = {A : A ∼= C and h : B �s C for some B ∈ K and some h}.
E is the operator of taking isomorphic copies of expansions of a class of L-systems:

E(K) = {A : A ∼= C and h : C �s B for some B ∈ K and some h}.
We also use the operators Si, and Ri and Ei to denote simple subsystems of a class of
L-systems, i.e., subsystems on identical sentence functors, and reductions and expansions,
respectively, of a class of L-systems via reductive L-morphisms with isomorphic functor
components.

P is the operator of taking isomorphic copies of direct products of a class of L-systems:

P(K) = {A : A ∼=
∏

i∈I

Ai and Ai ∈ K, for all i ∈ I}.

Pf is the operator of taking isomorphic copies of reduced products via proper filters of a
class of L-systems:

Pf(K) = {A : A ∼=
∏

i∈I

Ai/F , Ai ∈ K, for all i ∈ I, and F is a proper filter on I}.
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Pu is the operator of taking isomorphic copies of ultraproducts of a class of L-systems:

Pu(K) = {A : A ∼=
∏

i∈I

Ai/U , Ai ∈ K, for all i ∈ I, and U is an ultrafilter on I}.

Finally, Psd is the operator of taking isomorphic copies of subdirect products of a class of
L-systems:

Psd(K) = {A : h : A �sd

∏

i∈I

Ai, for some h, Ai ∈ K, for all i ∈ I}.

For any two O,O′ of these operators, we follow [13] in denoting their composition by
OO′, the property O(K) ⊆ O′(K) for every class K, by O ≤ O′ and the operator LO by O∗.
Also following [13], we write O for the operator O ∈ {P,Pf ,Pu,Psd} if the index sets over
which the corresponding products are taken are assumed to be nonempty.

3 Idempotency

Lemma 1 For any operator O ∈ {S, Se,F,H,R,E}, we have O2 := OO = O.

Proof:
First, since all operators are inflationary, we have that O ≤ O2.
The reverse inequality must be shown case by case. The easy proofs are only sketched

in the remainder of the proof.
For O = S, it is easy to see, by the relevant definitions, the fact that a subfunctor of a

subfunctor is itself a subfunctor and by the subsystem condition on the relation systems of
a subsystem that a subsystem of a subsystem is itself a subsystem. Therefore S2 ≤ S.

The same holds for the operator Se. It suffices here to observe that the property of being
elementary as a subsystem transfers from a subsystem C of a subsystem B of an L-system
A to C being a subsystem of A. Hence S2

e ≤ Se.
Analogous comments apply to the case of F. Thus F2 ≤ F.
Finally, for H,R and E we only need to observe that the composition of two surjective L-

morphisms is a surjective L-morphism and that the composition of two strong and surjective
L-morphisms is also a strong and surjective L-morphism. Therefore H2 ≤ H,R2 ≤ R and
E2 ≤ E.

This shows that all operators in the collection {S, Se,F,H,R,E} are idempotent. �

Corollary 2 E2
i = Ei and R2

i = Ri.

The same idempotency property holds also for the operators P,Pf ,Pu and Psd. This is
shown in the following lemma. The proof deals only with Pf , since both direct products
and ultraproducts are special cased of reduced products and, hence, the cases P and Pu

follow from Pf .

Lemma 3 For any operator O ∈ {P,Pf,Pu}, we have O2 = O.

Proof:
Only the case P2

f = Pf will be shown in detail. Since products and ultraproducts are
special cases of reduced products, the remaining two cases follow easily from this case.
Obviously, we have that Pf ≤ P2

f .
For the reverse inclusion we are going to rely partly on the proof of Proposition 14 of

[28]. That proof was modeled after the proof of the corresponding result from first-order
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logic structures that was presented in full detail as the proof of Lemma 2.22 of [5]. The
reader is encouraged to consult that proof and compare the present setting with that of
first-order logic.

Let J be a set, Ij , j ∈ J, a family of pairwise disjoint sets, Ai = 〈SENi, 〈Ni, F i〉, Ri〉
be L-systems, for all i ∈ Ij , j ∈ J , F a filter over J and, for all j ∈ J, Fj a filter over Ij .
Define I =

⋃
j∈J Ij and

F̂ = {S ⊆ I : {j ∈ J : S ∩ Ij ∈ Fj} ∈ F}.

Then F̂ is a filter over I and it suffices to show that
∏

j∈J

(
∏

i∈Ij

Ai/Fj)/F ∼=
∏

i∈I

Ai/F̂ .

for all L-systems Ai = 〈SENi, 〈Ni, F i〉, Ri〉, i ∈ I.
It is clear that, as categories,

∏
j∈J (

∏
i∈Ij

Signi) ∼= ∏
i∈I Signi, where an isomorphism

H :
∏

i∈I Signi ∼= ∏
j∈J (

∏
i∈Ij

Signi) is given at the object level by

H(
∏

i∈I

Σi) =
∏

j∈J

∏

i∈Ij

Σi,

and, similarly for morphisms. Next, a natural transformation

γ : (
∏

i∈I

SENi)≡
F̂ → (

∏

j∈J

(
∏

i∈Ij

SENi)≡
Fj )≡

F

is constructed.
The following translations will be used in the construction: For all j ∈ J, the translation

〈F j , αj〉 :
∏

i∈I SENi → ∏
i∈Ij

SENi, given by

F j(
∏

i∈I

Σi) =
∏

i∈Ij

Σi, for all Σi ∈ |Signi|, i ∈ I,

and, similarly for morphisms, and

αj�
i∈I Σi

(�φ) = �φ �Ij , for all �φ ∈
∏

i∈I

SENi(Σi).

The natural projection translation 〈Ij , πFj 〉 :
∏

i∈Ij
SENi → (

∏
i∈Ij

SENi)≡
Fj . The trans-

lation
〈G,β〉 :=

∏

j∈J

〈Ij , πFj 〉〈F j , αj〉 :
∏

i∈I

SENi →
∏

j∈J

(
∏

i∈Ij

SENi)≡
Fj
.

∏
i∈I SENi ∏

i∈Ij
SENi�〈F j , αj〉

(
∏

i∈Ij
SENi)≡

Fj�〈Ij , πFj 〉

∏
j∈J (

∏
i∈Ij

SENi)≡
Fj

�

〈Ij , πj〉〈G,β〉

����������������������
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Consider also the natural projection translation

〈I, πF 〉 :
∏

j∈J

(
∏

i∈Ij

SENi)≡
Fj →p (

∏

j∈J

(
∏

i∈Ij

SENi)≡
Fj )≡

F

and the natural projection translation 〈I, πF̂ 〉 :
∏

i∈I SENi →p (
∏

i∈I SENi)≡
F̂
. Notice that

we have, for all Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I,

�φ Ker�
i∈I Σi

(〈I, πF 〉〈G,β〉) �ψ
iff πF

G(
�

i∈I Σi)
(β�

i∈I Σi
(�φ)) = πF

G(
�

i∈I Σi)
(β�

i∈I Σi
(�ψ))

iff {j ∈ J : πj
G(
�

i∈I Σi)
(β�

i∈I Σi
(�φ)) = πj

G(
�

i∈I Σi)
(β�

i∈I Σi
(�ψ))} ∈ F

iff {j ∈ J : {i ∈ Ij : φi = ψi} ∈ Fj} ∈ F
iff {i ∈ I : φi = ψi} ∈ F̂
iff �φ ≡F̂�

i∈I Σi

�ψ.

Therefore, matching the hypothesis of the special case of the Order Isomorphism Theorem
(Corollary 16 of [27]), in which all partial orderings involved are identity relations, we obtain
an order isomorphism

〈H, γ〉 : (
∏

i∈I

SENi)≡
F̂ → (

∏

j∈J

(
∏

i∈Ij

SENi)≡
Fj )≡

F
,

such that the following diagram commutes:

∏
j∈J (

∏
i∈Ij

SENi)≡
F̂

(
∏

j∈J (
∏

i∈Ij
SENi)≡

Fj )≡
F�

〈I, πF 〉

∏
i∈I SENi (

∏
i∈I SENi)≡

F̂�〈I, πF̂ 〉

�

〈G,β〉
�

〈H, γ〉

To conclude the proof, it suffices to show that

〈H, γ〉 :
∏

i∈I

Ai/F̂ →
∏

j∈J

(
∏

i∈Ij

Ai/Fj)/F

is a strong L-system morphism. To this end, suppose that r ∈ R, such that ρ(r) = n, and
Σi ∈ |Signi|, φ0

i , . . . , φ
n−1
i ∈ SENi(Σi), i ∈ I. We have

〈 �φ0/F̂ , . . . , �φn−1/F̂〉 ∈ r
�

i∈I Ai/F̂�
i∈I Σi

iff {i ∈ I : 〈φ0
i , . . . , φ

n−1
i 〉 ∈ rAi

Σi
} ∈ F̂

iff {j ∈ J : {i ∈ Ij : 〈φ0
i , . . . , φ

n−1
i 〉 ∈ rAi

Σi
} ∈ Fj} ∈ F

iff {j ∈ J : 〈πj
G(
�

i∈I Σi)
(β�

i∈I Σi
( �φ0)), . . . ,

πj
G(
�

i∈I Σi)
(β�

i∈I Σi
( �φn−1))〉 ∈ r

�
i∈Ij

Ai/Fj
�

i∈Ij
Σi

} ∈ F

iff 〈πFG(
�

i∈I Σi)
(β�

i∈I Σi
( �φ0)), . . . , πF

G(
�

i∈I Σi)
(β�

i∈I Σi
( �φn−1))〉 ∈ r

�
j∈J (

�
i∈Ij

Ai/Fj)/F
�

j∈J

�
i∈Ij

Σi

iff 〈γ�
i∈I Σi

(πF̂�
i∈I Σi

( �φ0)), . . . , γ�
i∈I Σi

(πF̂�
i∈I Σi

( �φn−1))〉 ∈ r

�
j∈J (

�
i∈Ij

Ai/Fj)/F
H(
�

i∈I Σi)

iff 〈γ�
i∈I Σi

( �φ0/F̂), . . . , γ�
i∈I Σi

( �φn−1/F̂)〉 ∈ r

�
j∈J (

�
i∈Ij

Ai/Fj)/F
H(
�

i∈I Σi)
.
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�
Finally, we show that Psd is also idempotent.

Lemma 4 P2
sd = Psd.

Proof:
Continuing with the index notation from the proof of Lemma 3, consider the subdirect

L-system embeddings 〈F,α〉 : A �sd

∏
j∈J Aj and 〈F j , αj〉 : Aj �sd

∏
i∈Ij

Ai. From the
proof of Lemma 3, we have that

∏
j∈J(

∏
i∈Ij

Ai) ∼=
∏

i∈I Ai. Thus, it suffices to show that
there exists 〈G,β〉 : A �sd

∏
j∈J (

∏
i∈Ij

Ai). Simply define

〈G,β〉 =
∏

j∈J

(〈F j , αj〉 ◦ 〈P j , πj〉 ◦ 〈F,α〉).

SEN
∏

j∈J SENj�〈F,α〉
SENj�〈P j , πj〉 ∏

i∈Ij
SENi�〈F j , αj〉

∏
j∈J

∏
i∈Ij

SENi

�

〈P j , πj〉∏
j∈J (〈F j , αj〉 ◦ 〈P j , πj〉 ◦ 〈F,α〉)

������������������������

It is not difficult to verify that 〈G,β〉 is a subdirect embedding of functors. To see that it
is also a subdirect embedding of L-systems, consider r ∈ R, with ρ(r) = n, Σ ∈ |Sign|, �φ ∈
SEN(Σ)n. Then, we have

�φ ∈ rA
Σ iff αΣ(�φ) ∈ r

�
j∈J Aj

F (Σ)

iff πj
F (Σ)(αΣ(�φ)) ∈ r

Aj

P j(F (Σ)), for all j ∈ J

iff αj
P j(F (Σ))(π

j
F (Σ)(αΣ(�φ))) ∈ r

�
i∈Ij

Ai

F j(P j(F (Σ))), for all j ∈ J

iff πj
G(Σ)(βΣ(�φ)) ∈ r

�
i∈Ij

Ai

P j(G(Σ)), for all j ∈ J

iff βΣ(�φ) ∈ r

�
j∈J

�
i∈Ij

Ai

G(Σ) .

�
The results proved so far are summarized in the following theorem, forming an analog

of Lemma 4.1 of [13] for L-systems.

Theorem 5 For any operator O ∈ {S, Se,F,H,R,E,P,Pf ,Pu,Psd}, we have O2 = O.

Proof:
Use Lemmas 1, 3 and 4. �

4 Properties of Expansions and Reductions We first prove three lemmas that col-
lectively provide an analog for L-systems of Part (i) of Lemma 4.2 of [13]. The first lemma
shows that taking subsystems of expansions with isomorphic functor components is an op-
erator lying below taking expansions with isomorphic functor components of subsystems.
The same holds if, instead of taking subsystems, we consider taking elementary subsystems.
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Lemma 6 SEi ≤ EiS and SeEi ≤ EiSe.

Proof:
Let A be an L-system and K a class of L-systems, such that A ∈ SEi(K). Thus, there exist

L-systems B and C and a reductive L-morphism 〈F,α〉 : C �s B, with F an isomorphism,
such that B ∈ K and A ⊆ C. Now, by Part 2 of Lemma 5 of [30], α(A) ⊆ B. Since the
restriction 〈F,α〉 �A of 〈F,α〉 is a reductive L-morphism 〈F,α〉 �A: A �s αA and it clearly
has an isomorphic functor component, we now have that A is an expansion of α(A), which
is, in turn, a subsystem of B ∈ K, i.e., A ∈ EiS(K). Therefore SEi ≤ EiS and the first
statement of the lemma has been verified.

Let again A be an L-system and K a class of L-systems, such that A ∈ SeEi(K). Thus,
there exist L-systems B and C and a reductive L-morphism 〈F,α〉 : C �s B, with F
an isomorphism, such that B ∈ K and A ⊆e C. Again relying on Part 2 of Lemma 5
of [30], α(A) ⊆ B. Since the restriction 〈F,α〉 �A of 〈F,α〉 is a reductive L-morphism
〈F,α〉 �A: A �s αA and it clearly has an isomorphic functor component, we have, by
Proposition 6 of [30], that it is elementary, whence α(A) ⊆e B ∈ K and, also, that A is an
expansion of α(A), i.e., A ∈ EiSe(K). Therefore SeEi ≤ EiSe and the last statement of the
lemma has been verified. �

The next lemma shows that taking direct products of expansions of systems in some
class is an operator smaller than that of taking expansions of direct products of systems
in the class. The same holds if, instead of direct products, we consider taking arbitrary
filtered products or ultraproducts.

Lemma 7 PE ≤ EP,PfE ≤ EPf and PuE ≤ EPu.

Proof:
Let A be an L-system and K a class of L-systems, such that A ∈ PE(K). Thus, there

exist a collection of L-systems Ai and Bi, i ∈ I, with Bi ∈ K, for all i ∈ I, and a collection
of reductive L-morphisms 〈F i, αi〉 : Ai �s Bi, i ∈ I, such that A ∼= ∏

i∈I Ai. Since∏
i∈I Bi ∈ P(K), it suffices to show that, there exists 〈F,α〉 :

∏
i∈I Ai �s

∏
i∈I Bi, since

then A ∼= ∏
i∈I Ai ∈ EP(K).

Indeed, define F :
∏

i∈I SignAi → ∏
i∈I SignBi , by F =

∏
i∈I F

i, i.e., as the unique
functor making the following square commutative, for all i ∈ I:

SignAi SignBi�
F i

∏
i∈I SignAi

∏
i∈I SignBi�F

�
P i

�
P i

Define, also α :
∏

i∈I SENAi → ∏
i∈I SENBi ◦∏

i∈I F
i, by letting, for all Σi ∈ |SignAi | and

all φi ∈ SENAi(Σi), i ∈ I,

α�
i∈I Σi

(�φ) = 〈αi
Σi

(φi) : i ∈ I〉.

This is a surjective L-system morphism 〈F,α〉 :
∏

i∈I Ai �
∏

i∈I Bi. Thus, it suffices now
to show that it is also strong.
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To this end, suppose that r ∈ R, with ρ(r) = n, Σi ∈ |SignAi |, i ∈ I, and �φ0, . . . , �φn−1 ∈∏
i∈I SENAi(Σi). Then, we have

〈 �φ0, . . . , �φn−1〉 ∈ r
�

i∈I Ai�
i∈I Σi

iff 〈φ0
i , . . . , φ

n−1
i 〉 ∈ rAi

Σi
, for all i ∈ I,

iff 〈αi
Σi

(φ0
i ), . . . , α

i
Σi

(φn−1
i )〉 ∈ rBi

F i(Σi)
, for all i ∈ I,

iff 〈α�
i∈I Σi

( �φ0), . . . , α�
i∈I Σi

( �φn−1)〉 ∈ r
�

i∈I Bi

F (
�

i∈I Σi)
.

The proof just given for PE ≤ EP may be adapted to provide a proof for both PfE ≤ EPf

and PuE ≤ EPu. The proof for PfE ≤ EPf will also be presented, but the one for PuE ≤ EPu

is very similar and will be omitted.
Let A be an L-system and K a class of L-systems, such that A ∈ PfE(K). Thus, there

exist a collection of L-systems Ai and Bi, i ∈ I, with Bi ∈ K, for all i ∈ I, a proper filter
F on I, and a collection of reductive L-morphisms 〈F i, αi〉 : Ai �s Bi, i ∈ I, such that
A ∼= ∏

i∈I Ai/F . In the same way, as before, since
∏

i∈I Bi/F ∈ Pf(K), it suffices to show
that, there exists 〈F,α〉 :

∏
i∈I Ai/F �s

∏
i∈I Bi/F , since then A ∼= ∏

i∈I Ai/F ∈ EPf(K).
Define F :

∏
i∈I SignAi → ∏

i∈I SignBi exactly as before, i.e., by F =
∏

i∈I F
i. Define,

also α :
∏

i∈I SENAi/F → ∏
i∈I SENBi/F ◦ F , by letting, for all Σi ∈ |SignAi | and all

φi ∈ SENAi(Σi), i ∈ I,

α�
i∈I Σi

(�φ/F) = 〈αi
Σi

(φi) : i ∈ I〉/F .
It may be shown that 〈F,α〉 is well-defined, and that it is a surjective L-system morphism
〈F,α〉 :

∏
i∈I Ai/F �

∏
i∈I Bi/F . Thus, it suffices now to show that it is also strong.

To this end, suppose that r ∈ R, with ρ(r) = n, Σi ∈ |SignAi |, i ∈ I, and �φ0, . . . , �φn−1 ∈∏
i∈I SENAi(Σi). Then, we have

〈 �φ0/F , . . . , �φn−1/F〉 ∈ r
�

i∈I Ai/F�
i∈I Σi

iff {i ∈ I : 〈φ0
i , . . . , φ

n−1
i 〉 ∈ rAi

Σi
} ∈ F

iff {i ∈ I : 〈αi
Σi

(φ0
i ), . . . , α

i
Σi

(φn−1
i )〉 ∈ rBi

F i(Σi)
} ∈ F

iff 〈〈αi
Σi

(φ0
i ) : i ∈ I〉/F , . . . , 〈αi

Σi
(φn−1

i ) : i ∈ I〉/F〉 ∈ r
�

i∈I Bi/F�
i∈I F i(Σi)

iff 〈α�
i∈I Σi

( �φ0/F), . . . , α�
i∈I Σi

( �φn−1/F)〉 ∈ r
�

i∈I Bi/F
F (
�

i∈I Σi)
.

�
Finally, it is shown that an analogous property to that of Lemma 7 holds when subdirect

products of L-systems are considered in place of direct products. More precisely, it is
shown that taking subdirect products of expansions of systems via reductive morphisms
with isomorphic functor components is an operator smaller than that of taking expansions
with isomorphic functor components of subdirect products of L-systems.

Lemma 8 PsdEi ≤ EiPsd.

Proof:
Let A be an L-system and K a class of L-systems, such that A ∈ PsdEi(K). Then,

there exist L-systems Ai and Bi, i ∈ I, such that Bi ∈ K, for all i ∈ I, and reductive
L-morphisms 〈F i, αi〉 : Ai �s Bi, i ∈ I, with isomorphic functor components, such that
〈G,β〉 : A �sd

∏
i∈I Ai. Define the L-morphism

〈H, γ〉 =
∏

i∈I

〈F i, αi〉 ◦ 〈G,β〉 : A →
∏

i∈I

Bi
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by using the following commutative diagram:

∏
i∈I Ai

∏
i∈I Bi�

〈F,α〉 :=
∏

i∈I〈F i, αi〉

A

〈G,β〉
�

�
�

�
�

�	

〈H, γ〉













�

Ai Bi
�

〈F i, αi〉
�

〈P i, πi〉

�

〈P i, πi〉

First, note that, because F i is injective, for all i ∈ I, and because G is injective, we have
that H is also injective. Thus, by Part 2 of Lemma 5 of [30], γ(A) is a subsystem of

∏
i∈I Bi.

Now, because 〈F i, αi〉, i ∈ I, are all strong, the L-morphism 〈F,α〉 is also strong, and,
hence, since 〈G,β〉 is strong, we conclude that 〈H, γ〉 = 〈F,α〉 ◦ 〈G,β〉 is strong. Therefore
〈H, γ〉 : A �s γ(A) is a reductive L-morphism. Now it suffices to show that γ(A) �

∏
i∈I Bi

is a subdirect embedding, because, then, A would be an expansion of a subdirect product
of the Bi’s and Bi ∈ K, for all i ∈ I. This is however true, since

〈P i, πi〉 ◦ 〈H, γ〉 = 〈F i, αi〉 ◦ 〈P i, πi〉 ◦ 〈G,β〉
and 〈P i, πi〉 ◦ 〈G,β〉 is surjective, since 〈G,β〉 is also a subdirect embedding. �

In the last two lemmas of the section, the focus is switched from the expansion operator
to the reduction operator. In the first, it is shown that taking subsystems of reductions is
an operator smaller than that of taking reductions of subsystems and, similarly, that taking
elementary subsystems of reductions is an operator smaller than that of taking reductions
of elementary subsystems.

Lemma 9 SR ≤ RS and SeR ≤ RSe.

Proof:
Let A be an L-system and K a class of L-systems and suppose that A ∈ SR(K). Thus,

there exist B and C and a reductive L-morphism 〈F,α〉 : B �s C, with B ∈ K, such that
A ⊆ C. Now, by Part 1 of Lemma 5 of [30], we have that α−1(A) ⊆ B and we also have that
〈F,α〉 �α−1(A): α−1(A) �s A is also a reductive L-morphism. Therefore A is a reduction of
α−1(A), which is a subsystem of B ∈ K, which shows that A ∈ RS(K). Hence SR ≤ RS.

Working along the same line, suppose that A ∈ SeR(K). Thus, there exist B and C and
a reductive L-morphism 〈F,α〉 : B �s C, with B ∈ K, such that A ⊆e C. For the same
reasons, as above, α−1(A) ⊆ B and we also have that 〈F,α〉 �α−1(A): α−1(A) �s A is a
reductive L-morphism. Thus, it suffices now to show that α−1(A) ⊆e B. Suppose that γ(�x)
is an L-formula, Σ ∈ |F−1(SignA)| and �φ ∈ SENα−1(A)(Σ)n. Then, we have

α−1(A) |=Σ β[�φ] iff A |=F (Σ) β[αΣ(�φ)] (since 〈F,α〉 : α−1(A) �s A)
iff C |=F (Σ) β[αΣ(�φ)] (since A ⊆e C)
iff B |=Σ β[�φ] (since 〈F,α〉 : B �s C).

Hence α−1(A) ⊆e B. �
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In the last lemma, it is proven that taking direct products of reductions is an operator
smaller than that of taking reductions of direct products and, similarly, if, instead of direct
products, either reduced products or ultraproducts are considered.

Lemma 10 PR ≤ RP,PfR ≤ RPf and PuR ≤ RPu.

Proof:
Let A be an L-system and K a class of L-systems, such that A ∈ PR(K). Then, there

exist Bi and Ai, i ∈ I, with A ∼= ∏
i∈I Ai, and 〈F i, αi〉 : Bi �s Ai, such that Bi ∈ K, for all

i ∈ I. Now, let, as in the proof of Lemma 7, 〈F,α〉 :=
∏

i∈I〈F i, αi〉 :
∏

i∈I Bi →
∏

i∈I Ai.
Since

∏
i∈I Bi ∈ P(K), it suffices to show that 〈F,α〉 is a reductive L-morphism. Both the

fact that it is surjective and the fact that it is strong follow directly from the corresponding
properties possessed by each of the 〈F i, αi〉, i ∈ I.

The two remaining inequalities follow along similar lines and the detailed proofs will be
omitted. �

5 The Filter Extension and the Reduction Operators In this final section of the
paper, we deal with a lemma that relates the filter extension with the expansion and the
reduction operators as well as with one that relates the reduction and the expansion operator
via reductive L-morphisms with isomorphic functor components to the operator of taking
Leibniz reductions of L-systems.

In the first lemma, it is shown that taking expansions of filter extensions is an operator
smaller than taking filter extensions of expansions, that taking filter extensions of reductions
is an operator smaller than taking reductions of filter extensions and, finally, that taking
filter extensions of subsystems with isomorphic functor components is an operator smaller
than taking subsystems with isomorphic functor components of filter extensions.

Lemma 11 1. EF ≤ FE

2. FR ≤ RF = H

3. FSi ≤ SiF

Proof:

1. Let A be an L-system and K a class of L-systems, such that A ∈ EF(K). Thus, there
exist B,C, with B ∈ K, and 〈F,α〉 : A �s C, such that B � C. But now we have that

A � 〈SENA, 〈NA, FA〉, α−1(RB)〉 〈F,α〉
�s B ∈ K,

whence A ∈ FE(K).

2. Let A be an L-system and K a class of L-systems, such that A ∈ FR(K). Thus, there
exist B,C, with B ∈ K, and 〈F,α〉 : B �s C, such that C � A. But now we have,
using Part 1 of Lemma 5 of [30], that

K  B � α−1(A)
〈F,α〉
�s A,

whence A ∈ RF(K).

For the equality of Part 2, suppose, first, that A is an L-system and that K is a class of
L-systems, such that A ∈ H(K). Thus, there exists an L-system B ∈ K and a surjective
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L-morphism 〈F,α〉 : B � A. But then we have, again using Part 1 of Lemma 5 of
[30],

K  B � α−1(A)
〈F,α〉
�s A,

whence A ∈ RF(K). If, conversely, A ∈ RF(K), then, there exist B,C, with B ∈ K,
and 〈F,α〉 : C �s A, such that B � C. But then 〈F,α〉 : B � A is a surjective
L-morphism, whence, since B ∈ K, A ∈ H(K).

3. Suppose, finally, that A is an L-system and K a class of L-systems, such that A ∈
FSi(K). Thus, assume, without loss of generality, that, there exist B,C, with B ∈ K,
such that C ⊆i B and C � A. Define the triple

D = 〈SENB, 〈NB, FB〉, RB ∪RA〉,

i.e., for all r ∈ R, with ρ(r) = n, set, for all Σ ∈ |SignB|, and all �φ ∈ SENB(Σ)n,

�φ ∈ rD
Σ iff �φ ∈ rB

Σ or �φ ∈ rA
Σ .

Now it is not difficult to verify that B � D and also that A ⊆i D, whence, since
B ∈ K, we get that A ∈ SiF(K).

�
The last lemma relates the operators of taking reductions and expansions with isomor-

phic functor components and the operator L of taking Leibniz reductions of L-systems.

Lemma 12 1. RiEi ≤ EiRi = EiL

2. LEi = LRi = RiL = L ≤ EiL

Proof:

1. It is first shown that RiEi ≤ EiRi. Suppose, to this end, that A is an L-system and K a
class of L-systems, such that A ∈ RiEi(K). Then, there exist B and C, with B ∈ K and
reductive L-morphisms 〈F,α〉 : C �s A and 〈G,β〉 : C �s B, with isomorphic functor
components. By Corollary 17 of [31], we have that A∗ ∼= B∗ ∼= C∗, whence A is an
expansion of C∗ via a reductive L-morphism with an isomorphic functor component
and C∗ is a reduction of B via a reductive L-morphism with an isomorphic functor
component. Therefore, since B ∈ K, A ∈ EiRi(K).

For the equality, EiL ≤ EiRi is trivial, since every Leibniz reduction is a reduction via
a reductive L-morphism with an isomorphic functor component, in fact an identity
functor component. For the reverse inclusion, suppose that A is an L-system and K
a class of L-systems, such that A ∈ EiRi(K). Thus, there exist B,C, with B ∈ K,
and reductive L-morphisms 〈F,α〉 : C �s A, 〈G,β〉 : B �s C with isomorphic functor
components. But then A is obviously an expansion of C∗ via a reductive L-morphism
with an isomorphic functor component and, by Corollary 17 of [31], C∗ ∼= B∗ is a
Leibniz reduct of B ∈ K. Therefore, we obtain that A ∈ EiL(K).

2. That L ≤ EiL is trivial.

We proceed, now, to show that LEi = L. The inclusion L ≤ LEi is obvious. For
the reverse inclusion, suppose that A is an L-system and K a class of L-systems, such
that A ∈ LEi(K). Thus, there exist B,C, with B ∈ K and a reductive L-morphism
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〈F,α〉 : C �s B with an isomorphic functor component, such that A ∼= C∗. But, by
Lemma 17 of [31], we also have that B∗ ∼= C∗ and, therefore, A ∼= B∗, whence, since
B ∈ K, A ∈ L(K).

Finally, we show the string of inequalities

LRi ≤ L ≤ RiL ≤ Ri ≤ LRi,

which will conclude the proof of Part 2.

For LRi ≤ L, suppose that A is an L-system and K a class of L-systems, such that
A ∈ LRi(K). Then, there exist B,C, such that B ∈ K and a reductive L-morphism
〈F,α〉 : B �s C, with isomorphic functor component, such that A ∼= C∗. But then,
using Lemma 17 of [31], we get that A ∼= C∗ ∼= B∗ and, since B ∈ K, A ∈ L(K).

L ≤ RiL is trivial as is Ri ≤ LRi. Thus, it suffices now to show that RiL ≤ Ri.
Suppose that A is an L-system and K a class of L-systems, such that A ∈ RiL(K).
Thus, there exist B,C, with B ∈ K, and 〈F,α〉 : C �s A, such that C ∼= B∗. Thus, we
have that

B
〈I

SignB ,πΩ(B)〉
� B∗ ∼= C �s A

is a reductive L-morphism from B to A with an isomorphic functor component, and,
hence, since B ∈ K, we have A ∈ Ri(K).

�
We intend to continue the work presented in this paper with the goal of abstracting

several of Elgueta’s results to the present framework. Elgueta’s results generalize well-known
results of the theory of models of first-order logic to the equality-free context. The present
framework leads to further generalization of these results to a multi-signature equality-free
context.
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