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Abstract

Following work of Pa lasińska and Pigozzi on partially ordered varieties and quasi-varieties

of universal algebras, the author recently introduced partially ordered systems (posystems)

and partially ordered functors (pofunctors) to cover the case of the algebraic systems arising

in categorical abstract algebraic logic. Analogs of the ordered homomorphism theorems of

universal algebra were shown to hold in the context of pofunctors. In the present work, op-

erators on classes of pofunctors are introduced and it is shown that classes of pofunctors are

closed under the HSP and the SPPU operators, forming analogs of the well-known variety

and quasi-variety operators, respectively, of universal algebra.
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Introduction

The traditional theory of abstract algebraic logic (AAL) studies the process by which a

class of universal algebras is associated to a given sentential logic to form its “algebraic

counterpart”. The methods developed in AAL allow the classification of sentential logics in

an abstract algebraic hierarchy (also known as the Leibniz hierarchy), whose classes reflect

how strong the ties are between the logics in each class and their associated classes of algebras.

Stronger ties imply that one may draw more conclusions about metalogical properties of
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the logic by studying corresponding algebraic properties of its associated class of algebras.

The theory of categorical abstract algebraic logic (CAAL) generalizes AAL by allowing

the hierarchy to also cover logics formalized as π-institutions. The framework is broad

enough to cover logics with multiple signatures and quantifiers as well as several logics that

are not string-based and, therefore, could not be classified based on the original theory;

see, e.g., [23, 24]. It turns out that the classes of algebras that are suitable for forming

algebraic counterparts of π-institutional logics do not consist of universal algebras but rather

of algebraic systems [27], which are algebraic entities based on set-valued functors rather

than on single sets. In this paper it is these systems endowed with partial orderings that

will be at the focus of our studies. In particular, we continue the work started in [30]

on partially ordered algebraic systems, which form a generalization of the partially ordered

algebras studied in [21]. The goal of this study is to make general methods and techniques of

ordered universal algebra available in the context of the algebraic systems arising in CAAL.

The present work may also be taken as a promotion of the potential usefulness of these

partially ordered algebraic systems in a part of the theory of CAAL dealing with logical

implication à la Pa lasińska and Pigozzi (see also Raftery’s recent work [22]), rather than

logical equivalence, as is done in the Leibniz and Tarski operator approaches.

As background information, a quick summary of the work of Pa lasińska and Pigozzi,

presented in [21], is provided and, then, the precursor of the present work [30], which contains

some of the definitions and early results in the categorical setting, is briefly reviewed.

The motivation for the development of the theory of partially ordered varieties and quasi-

varieties of algebras in the context of AAL in [21] stems from Pa lasińska and Pigozzi’s belief

that they form the right class of structures to consider on the algebraic side, when the focus

on the logic side is on the abstract algebraization process of logical implication as opposed

to the traditional treatment, using the operator approach (see, e.g., [2, 3]), that focuses on

logical equivalence. A bulk of previous work has paved the way for developing the theory

of [21]. Sample references include the work of Bloom [4] on varieties of ordered algebras,

Mal’cev’s work [19, 20] on quasi-varieties of first-order structures, Dellunde and Jansana’s

[9, 8] and Elgueta’s [13, 14] work on first-order structures defined without equality, a special

case of which are the structures defined using universal Horn logic without equality, and

Dunn’s work [11, 12] on gaggle theory. The book on partially ordered algebraic structures

by Fuchs [17] should also be mentioned.

Given an algebraic signature L the notion of a polarity ρ, that allows treating operations

that may be monotone in some arguments and antimonotone in others, is introduced in

[21]. A ρ-poalgebra A = 〈A,≤A〉 is defined to be a pair consisting of an L-algebra A =

〈A,LA〉 together with a partial ordering ≤A on A, such that every algebraic operation

in LA is monotone in the arguments having positive polarity and antimonotone in those

with negative polarity with respect to the partial ordering ≤A. A quasi-ordering . on a

ρ-poalgebra A is a quasi-ordering on A that includes the partial ordering ≤A. Congruences
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on a ρ-poalgebra that are compatible with a given ρ-quasi-ordering are then introduced,

together with order homomorphisms between ρ-poalgebras. Based on these notions, analogs

of the well-known Homomorphism, Isomorphism and Correspondence Theorems of universal

algebra are established in the partially ordered setting.

The focus, then, shifts to operations on classes of ρ-poalgebras. The ordinary algebraic

operations of taking homomorphic images, subalgebras, direct products, filtered products

and direct limits are all shown to have valid counterparts for ρ-poalgebras. They are used

to provide an Order Subdirect Representation Theorem, stating that every ρ-poalgebra is

isomorphic to a subdirect product of order subdirectly irreducible ρ-poalgebras. They are

also used to establish that, as in the case of ordinary algebras, taking homomorphic images of

subalgebras of direct products of classes of ρ-poalgebras in the ordered setting, as well as tak-

ing subalgebras of filtered products, form closure operators on classes of ρ-poalgebras. After

developing a syntactic apparatus, including inidentities and quasi-inidentities, key analogs

of the notions of an identity and of a quasi-identity, respectively, analogs of Birkhoff’s char-

acterization theorem for varieties and Mal’cev’s characterization theorem for quasi-varieties

are proven for the case of ordered varieties and quasi-varieties of ρ-poalgebras.

The exposition in [21] concludes with the definition of algebraizable ρ-povarieties, taking

after the theory of algebraizable logics [3]. Several results paralleling those proven earlier in

the deductive system framework are now shown to be true for algebraizable ρ-povarieties.

In [25, 26, 27, 28, 29], an extension of the operator approach to AAL was developed

to cover the case of logical systems formalized as π-institutions. As is evident in [27], in

this abstract framework the role played by algebras in the universal algebraic setting is

subsumed by more general algebraic structures which are termed algebraic systems. These

are functors of the form SEN : Sign → Set, where Sign is an arbitrary category and

Set denotes the category of small sets. It is, therefore, reasonable to expect that these

systems will have a strong role to play if one attempts to lift a theory of algebraizability

focusing on logical implication, rather than on logical equivalence, to the categorical level.

With this motivation in mind, the author introduced in [30] the notion of a partially ordered

algebraic system that generalizes the notion of a partially ordered algebra. Order translations

and congruence systems compatible with given quasi-ordered systems, forming analogs of

order homomorphisms and congruences compatible with given quasi-orderings, were also

introduced and a Homomorphism, Isomorphism and Correspondence Theorem for partially

ordered algebraic systems were formulated and proven.

This work is continued in the present paper along the lines of [21]. First, several opera-

tions on classes of partially ordered algebraic systems are introduced, some of them closely

related to operations on π-institutions studied in [31]. It is then shown that the closure

operators of taking homomorphic images of subalgebras of direct products and of taking

subalgebras of filtered products give rise to analogous closure operators on classes of par-

tially ordered algebraic systems.
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It should be mentioned that additional work has been carried out in this direction [32],

which deals with analogs of the Birkhoff variety theorem and the Mal’cev quasi-variety

theorem in this context and explores the usefulness of all these results in the context of

algebraizability of partially ordered algebraic systems.

For general concepts and notation from category theory the reader is referred to any of

[1, 5, 18]. For an overview of the current state of affairs in abstract algebraic logic the review

article [16], the monograph [15] and the book [7] are all excellent references. To follow recent

developments on the categorical side of the subject the reader may refer to [25, 26, 27, 28, 29].

1 Operations on PoFunctors

We denote by Set the category of all small sets. Let Sign be a (arbitrary) category and

SEN : Sign→ Set a Set-valued functor. Any such functor will be referred to as a sentence

functor in the sequel. It is thought of as giving, for each “signature” object Σ in the category

Sign, perceived as a category of signatures with signature-changing morphisms between

them, the corresponding set SEN(Σ) of “formulas” over the given signature. These formulas

may vary significantly depending on the context, i.e., on the syntactic structure of the logical

system that the functor SEN is intended to capture. It may consist of propositional formulas,

of many-sorted formulas, of quantified formulas, of equations, or even of other entities (see,

e.g., [23, 24] and, also, [10] for several examples). Recall from [28] that the clone of all

natural transformations on SEN is defined to be the locally small category with collection

of objects {SENα : α an ordinal} and collection of morphisms τ : SENα → SENβ β-sequences

of natural transformations τi : SENα → SEN. Composition is defined by

SENα SENβ-
〈τi : i < β〉

SENγ-
〈σj : j < γ〉

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.

A subcategory N of this category containing all objects of the form SENk for k < ω, and

all projection morphisms pk,i : SENk → SEN, i < k, k < ω, with pk,iΣ : SEN(Σ)k → SEN(Σ)

given by

pk,iΣ (~φ) = φi, for all ~φ ∈ SEN(Σ)k,

and such that, for every family {τi : SENk → SEN : i < l} of natural transformations in

N , the sequence 〈τi : i < l〉 : SENk → SENl is also in N , is referred to as a category of

natural transformations on SEN.

Recall, also, from [31] that, given a functor SEN : Sign → Set, a functor SEN′ :

Sign′ → Set is said to be a subfunctor of SEN if Sign′ is a subcategory of Sign and, for

all Σ,Σ′ ∈ |Sign′|, f ∈ Sign′(Σ,Σ′), we have

• SEN′(Σ) ⊆ SEN(Σ), and
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• SEN′(f)(φ) = SEN(f)(φ), for all φ ∈ SEN′(Σ).

Moreover, a subfunctor SEN′ : Sign′ → Set is called a simple subfunctor of SEN : Sign→
Set if Sign′ = Sign. If N is a category of natural transformations on SEN, a subfunctor

SEN′ of SEN is said to be an N -subfunctor, if, for all σ : SENn → SEN, all Σ ∈ |Sign′|
and all ~φ ∈ SEN′(Σ)n, we have σΣ(~φ) ∈ SEN′(Σ).

Suppose that SEN : Sign→ Set is a functor, with N a category of natural transforma-

tions on SEN. A polarity ρ for N is an assignment of a polarity, either positive or negative,

to each argument position i of each natural transformation σ in N that respects composition

of natural transformations [30]. More formally, if we denote (by slightly abusing notation)

by N the collection of morphisms of the category N , and by r(σ) = {0, 1, . . . , r(σ) − 1}
the arity of the natural transformation σ : SENr(σ) → SEN, then a polarity ρ for N is

a function ρ : (
⋃
σ∈N σ × r(σ)) → {+,−} with the following composition compatibility

property:

If σ : SENn → SEN, τ : SENm → SEN are in N and k is fixed, 0 ≤ k ≤ m − 1, the

natural transformation ω : SENn+m−1 → SEN in N , defined by

ωΣ(φ0, . . . , φm+n−2) = τΣ(φ0, . . . , φk−1, σΣ(φk, . . . , φk+n−1), φk+n, . . . , φm+n−2),

for all Σ ∈ |Sign|, φ0, . . . , φn+m−2 ∈ SEN(Σ), must satisfy, for all 0 ≤ j ≤ m+ n− 2,

ρ(ω, j) =


ρ(τ, j), if j < k or j ≥ k + n,

ρ(σ, j − k), if ρ(τ, k) = + and k ≤ j < k + n,

−ρ(σ, j − k), if ρ(τ, k) = − and k ≤ j < k + n.

A natural transformation σ in N of arity r(σ) is said to be of positive or of negative

polarity at the i-th argument (with respect to ρ) if ρ(σ, i) is + or −, respectively. We

let ρ+(σ) = {i < r(σ) : ρ(σ, i) = +} and ρ−(σ) = {i < r(σ) : ρ(σ, i) = −}.
Given a a functor SEN : Sign → Set, a quasi-order system (qosystem for short)

. = {.Σ}Σ∈|Sign| on SEN is a |Sign|-indexed set of quasi-orderings .Σ on SEN(Σ), such

that, for all Σ,Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

SEN(f)2(.Σ) ⊆ .Σ′ .

A quasi-order system . = {.Σ}Σ∈|Sign| is a partial order system (posystem for short)

if each .Σ is a partial ordering on SEN(Σ), for all Σ ∈ |Sign|.
With these definitions in mind we may now formally define the notions of a ρ-quasi-

ordered system (ρ-qosystem) and of a ρ-partially ordered system (ρ-posystem) as follows:

Definition 1 (Definition 1 of [30]). Let SEN : Sign → Set be a functor, N a category of

natural transformations on SEN and ρ a polarity for N . A qosystem . = {.Σ}Σ∈|Sign| on

SEN is said to be a ρ-qosystem if, for all σ : SENn → SEN in N , Σ ∈ |Sign|, ~φ, ~ψ ∈
SEN(Σ)n,

[(∀i ∈ ρ+(σ))(φi .Σ ψi) ∧ (∀j ∈ ρ−(σ))(φj &Σ ψj)]⇒ σΣ(~φ) .Σ σΣ(~ψ).
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A posystem . that satisfies this ρ-tonicity condition is called a ρ-posystem and, in that

case, 〈SEN,.〉 is said to be a ρ-pofunctor.

Suppose that . is a ρ-posystem on SEN. A ρ-pofunctor 〈SEN′,.′〉, with SEN′ : Sign′ →
Set will be said to be a ρ-subpofunctor of the ρ-pofunctor 〈SEN,.〉 if

• SEN′ is an N -subfunctor of SEN and

• .′Σ = .Σ ∩ SEN′(Σ)2, for all Σ ∈ |Sign′|.

Next, we recall the definition of an order translation (Definition 7 of [30]). Let SEN :

Sign → Set, SEN′ : Sign′ → Set be two functors. A (singleton) translation 〈F, α〉 :

SEN →s SEN′ consists of a functor F : Sign → Sign′ and a natural transformation

α : SEN → SEN′ ◦ F . Given categories N,N ′ of natural transformations on SEN, SEN′,

respectively, a translation 〈F, α〉 : SEN →s SEN′ is called an (N,N ′)-epimorphic trans-

lation if there exists a correspondence σ ↔ σ′ between the natural transformations in N

and those in N ′, preserving the projection natural transformations (and, therefore, also, the

arities of all natural transformations involved), such that, for all σ : SENn → SEN in N , all

Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n, αΣ(σΣ(~φ)) = σ′F (Σ)(α
n
Σ(~φ)).

SEN′(F (Σ))n SEN′(F (Σ))-
σ′F (Σ)

SEN(Σ)n SEN(Σ)-σΣ

?

αnΣ

?

αΣ

In this case, we sometimes write 〈F, α〉 : SEN →se SEN′. Suppose, next, that ρ, ρ′ are

polarities for N,N ′, respectively. An (N,N ′)-epimorphic translation 〈F, α〉 : SEN→se SEN′

is said to be a polarity translation from SEN to SEN′, denoted 〈F, α〉 : SEN →p SEN′,

if, for all corresponding τ : SENn → SEN in N and τ ′ : SEN′n → SEN′ via the (N,N ′)-

epimorphic property,

ρ′(τ ′, i) = ρ(τ, i), for all i < n.

Given a ρ-posystem . on SEN and a ρ′-posystem .′ on SEN′, a polarity translation 〈F, α〉 :

SEN →p SEN′ is said to be an order translation from the ρ-pofunctor 〈SEN,.〉 to the

ρ′-pofunctor 〈SEN′,.′〉, denoted 〈F, α〉 : 〈SEN,.〉 →p 〈SEN′,.′〉, if, for all Σ ∈ |Sign| and

all φ, ψ ∈ SEN(Σ),

φ .Σ ψ implies αΣ(φ) .′F (Σ) αΣ(ψ).

The following proposition is easy to prove. The proof is left to the reader.

Proposition 1. Suppose that 〈SEN,.〉, with N a category of natural transformations on

N , is a ρ-pofunctor and 〈SEN′,.′〉 a ρ-subpofunctor of 〈SEN, .〉. Then, the inclusion

translation 〈J, j〉 : SEN′ →se SEN is an order translation 〈J, j〉 : 〈SEN′,.′〉 →p 〈SEN,.〉.
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Given a collection of functors SENi : Signi → Set, with N i a category of natural

transformations on SENi, i ∈ I, the N i, i ∈ I, will be said to be compatible categories

if there exists a functor SEN : Sign → Set and a category of natural transformations N

on SEN, such that, for all i ∈ I, N i is a homomorphic image of N via a surjective functor

F i : N → N i that preserves all projections. This implies that F i also preserves the arities

of all natural transformations involved. In this case, we will tacitly assume that, given

σ : SENi → SEN in N , by σi : (SENi)n → SENi in N i is denoted the image of σ under F i.

It may be shown that, if the N i, i ∈ I, are compatible categories of natural transformations,

then there exists a category of natural transformations
∏

i∈I N
i on the product functor∏

i∈I SENi :
∏

i∈I Signi → Set that is also compatible with the N i, i ∈ I. Corresponding to

σ will be the natural transformation denoted by
∏

i∈I σ
i.

Suppose, now, that, on top of each N i a polarity ρi is provided for N i, i ∈ I. The ρi, i ∈ I,

will be said to be compatible polarities if

ρi(σi, k) = ρj(σj, k), for all i, j ∈ I, k < r(σ),

where by r(σ) is denoted the arity of σ in N . In this case, a polarity
∏

i∈I ρ
i may be defined

on
∏

i∈I SENi that is compatible with the ρi, i ∈ I, by∏
i∈I

ρi(
∏
i∈I

σi, k) = ρ(σ, k), for all σ in N, k < r(σ).

Suppose, next, that SEN : Sign→ Set and SEN′ : Sign′ → Set are functors with compat-

ible categories of natural transformations N and N ′ on SEN and SEN′, respectively, and ρ

and ρ′ compatible polarities for N and N ′, respectively. If . is a ρ-posystem on SEN and .′

a ρ′-posystem on SEN′, then the ρ′-pofunctor 〈SEN′,.′〉 is said to be an (ordered) homo-

morphic image of the ρ-pofunctor 〈SEN,.〉 if there exists a surjective order translation

〈F, α〉 : 〈SEN,.〉 →p 〈SEN′,.′〉. Here, surjective means that F : Sign→ Sign′ is surjective

both at the object and at the morphism level and, moreover, αΣ : SEN(Σ) → SEN′(F (Σ))

is surjective, for all Σ ∈ |Sign|. Given a class K of compatible pofunctors (i.e., endowed

with compatible categories of natural transformations and compatible polarities on them),

by H(K) is denoted the class of all ordered homomorphic images of pofunctors in the class

K.

Next, suppose that SENi : Signi → Set is a collection of functors with compatible

categories of natural transformations N i on SENi, i ∈ I, and ρi a compatible family of

polarities for the N i, i ∈ I. If .i is a ρi-posystem on SENi, i ∈ I, then by the product∏
i∈I ρ

i-pofunctor
∏

i∈I〈SENi,.i〉 of the ρi-pofunctors 〈SENi,.i〉 we mean the
∏

i∈I ρ
i-po-

functor 〈
∏

i∈I SENi,
∏

i∈I .
i〉, where

•
∏

i∈I SENi is the product of the SENi with
∏

i∈I N
i as its category of natural transfor-

mations, with polarity
∏

i∈I ρ
i, and

• ~φ
∏

i∈I .
i∏

i∈I Σi

~ψ iff φi .iΣi
ψi, for all Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), and i ∈ I.
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Suppose that SENi : Signi → Set is a collection of functors, with compatible categories

of natural transformations N i on SENi, i ∈ I, and ρi, i ∈ I, a compatible family of polarities

for the N i, i ∈ I. Define the translation 〈P i, πi〉 :
∏

i∈I SENi → SENi, for all i ∈ I, by

setting, for all Σi ∈ |Signi|, i ∈ I,

P i(
∏
i∈I

Σi) = Σi,

and, similarly, for morphisms, and, for all Σi ∈ |Signi|, φi ∈ SENi(Σi), i ∈ I,

πi∏
i∈I Σi

(~φ) = φi.

In the following proposition, it is shown that 〈P i, πi〉 is an order translation, for all i ∈ I.

Proposition 2. Suppose that SENi : Signi → Set, i ∈ I, is a collection of functors with

compatible categories of natural transformations N i on SENi, i ∈ I, and ρi a compatible

family of polarities for the N i, i ∈ I. Then 〈P i, πi〉 : 〈
∏

i∈I SENi,
∏

i∈I .
i〉 → 〈SENi,.i〉 is

an order translation, for every collection of ρi-pofunctors 〈SENi,.i〉, i ∈ I, and every i ∈ I.

Proof. It has been shown in [31] (see remarks after Lemma 6) that 〈P i, πi〉 :
∏

i∈I SENi

→se SENi is a surjective (
∏

i∈I N
i, N i)-epimorphic translation and, by the definition of∏

i∈I ρ
i, it is clearly a polarity translation, for all i ∈ I. So it suffices to show that, for all

Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I,

~φ
∏
i∈I

.i∏
i∈I Σi

~ψ implies πi∏
i∈I Σi

(~φ) .iΣi
πi∏

i∈I Σi
(~ψ).

This, however, is fairly obvious, by the definition of
∏

i∈I .
i.

Finally, the universal mapping property of a product of pofunctors is shown to hold.

Proposition 3. Let SENi : Signi → Set, i ∈ I, be a collection of functors with compat-

ible categories of natural transformations N i on SENi, i ∈ I, and ρi a compatible family

of polarities for the N i, i ∈ I. If 〈SEN,.〉 is a ρ-pofunctor and 〈F i, αi〉 : 〈SEN,.〉 →p

〈SENi,.i〉, i ∈ I, are order translations, then, there exists a unique order translation 〈F, α〉 :

〈SEN,.〉 →p 〈
∏

i∈I SENi,
∏

i∈I .
i〉, such that the following triangle commutes, for all i ∈ I:

〈
∏

i∈I SENi,
∏

i∈I .
i〉 〈SENi,.i〉-

〈P i, πi〉

〈SEN,.〉

6

〈F, α〉 〈F i, αi〉

�
��

�
��

�
��

�
��
�*
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Proof. It has been shown in Lemma 6 of [31] that there exists an (N,
∏

i∈I N
i)-epimorphic

translation

〈F, α〉 =
∏
i∈I

〈F i, αi〉 : SEN→se
∏
i∈I

SENi,

such that 〈P i, πi〉 ◦ 〈F, α〉 = 〈F i, αi〉, for all i ∈ I. It is defined by F (Σ) =
∏

i∈I F
i(Σ), for

all Σ ∈ |Sign|, and, similarly for morphisms, and

αΣ(φ) =
∏
i∈I

αiΣ(φ), for all Σ ∈ |Sign|, φ ∈ SEN(Σ).

So, it suffices to show that 〈F, α〉 : 〈SEN,.〉 →p 〈
∏

i∈I SENi,
∏

i∈I .
i〉 is in fact an order

translation. We do have, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

φ .Σ ψ implies (∀i ∈ I)(αiΣ(φ) .iF i(Σ) α
i
Σ(ψ))

(since 〈F i, αi〉 is an order translation)

iff
∏

i∈I α
i
Σ(φ)

∏
i∈I .

i∏
i∈I F

i(Σ)

∏
i∈I α

i
Σ(ψ)

(by the definition of
∏

i∈I .
i)

iff αΣ(φ)
∏

i∈I .
i
F (Σ)

αΣ(ψ)

(by the definition of 〈F, α〉).

The order translation 〈F, α〉 given in Proposition 3 will be denoted by
∏

i∈I〈F i, αi〉.

We switch now to the study of filtered products of pofunctors. Recall that, given a set

I, a filter on I is a family F of subsets of I, such that

• I ∈ F ,

• K,L ∈ F imply K ∩ L ∈ F and

• K ⊆ L and K ∈ F imply L ∈ F .

Suppose that SENi : Signi → Set, i ∈ I, are functors, with compatible categories of

natural transformations N i on SENi and compatible polarities ρi for N i, i ∈ I. Also suppose

that .i is a ρi-posystem on SENi, i ∈ I. Define on the direct product
∏

i∈I SENi the

relation system .F = {.F∏
i∈I Σi
}∏

i∈I Σi∈|
∏

i∈I Sign
i| by setting, for all Σi ∈ |Signi|, φi, ψi ∈

SENi(Σi), i ∈ I,
~φ .F∏

i∈I Σi
~ψ iff {i ∈ I : φi .

i
Σi
ψi} ∈ F.

It is shown next that .F is a
∏

i∈I ρ
i-qosystem on

∏
i∈I〈SENi,.i〉.

Lemma 1. Suppose that SENi : Signi → Set, i ∈ I, are functors, with compatible categories

of natural transformations N i on SENi and compatible polarities ρi for N i, i ∈ I. Let F be

a filter on I and .i a ρi-posystem on SENi, i ∈ I. The relation system .F is a
∏

i∈I ρ
i-

qosystem on
∏

i∈I〈SENi,.i〉.

9



10 GEORGE VOUTSADAKIS

Proof. It is shown, first, that, for all
∏

i∈I Σi ∈ |
∏

i∈I Signi|, .F∏
i∈I Σi

is a quasi-ordering on∏
i∈I SENi(Σi), second, that .F is a relation system on

∏
i∈I SENi, and, finally, that it is a∏

i∈I ρ
i-qosystem on

∏
i∈I SENi.

For the first part, reflexivity is easy. So only transitivity will be shown. Suppose that

Σi ∈ |Signi| and φi, ψi, χi ∈ SENi(Σi), i ∈ I, such that ~φ .F∏
i∈I Σi

~ψ and ~ψ .F∏
i∈I Σi

~χ. Then

{i ∈ I : φi .iΣi
ψi} ∈ F and {i ∈ I : ψi .iΣi

χi} ∈ F . Thus

{i ∈ I : φi .
i
Σi
χi} ⊇ {i ∈ I : φi .

i
Σi
ψi} ∩ {i ∈ I : ψi .

i
Σi
χi} ∈ F

and, therefore, ~φ .F∏
i∈I Σi

~χ.

For the second part, suppose that Σi,Σ
′
i ∈ |Signi|, fi ∈ Signi(Σi,Σ

′
i) and φi, ψi ∈

SENi(Σi), i ∈ I, such that ~φ .F∏
i∈I Σi

~ψ. Then {i ∈ I : φi .iΣi
ψi} ∈ F . But .i is a qosystem

on SENi, whence, for all i ∈ I, φi .iΣi
ψi implies SENi(fi)(φi) .iΣ′i SENi(fi)(ψi). This shows

that

{i ∈ I : SENi(fi)(φi) .
i
Σ′i

SENi(fi)(ψi)} ⊇ {i ∈ I : φi .
i
Σi
ψi} ∈ F

and, therefore,
∏

i∈I SENi(fi)(φi) .F∏
i∈I Σ′i

∏
i∈I SENi(fi)(ψi), and .F is in fact a qosystem

on
∏

i∈I SENi.

For the last part, suppose, for the sake of simplicity, that σi : (SENi)2 → SENi is in N i

such that ρi(σi, 0) = +, for all i ∈ I. The case with arbitrarily many arguments or with

negative polarities may be treated similarly. Let Σi ∈ |Signi|, φi, ψi, χi ∈ SENi(Σi), i ∈ I.

Lemma 2 of [30] will be used. Suppose ~φ .F∏
i∈I Σi

~ψ. Then {i ∈ I : φi .iΣi
ψi} ∈ F . Now,

since ρi(σi, 0) = +, for all i ∈ I, we have that, if φi .iΣi
ψi, then σiΣi

(φi, χi) .iΣi
σiΣi

(ψi, χi),

for all i ∈ I. Therefore

{i ∈ I : σiΣi
(φi, χi) .

i
Σi
σiΣi

(ψi, χi)} ⊇ {i ∈ I : φi .
i
Σi
ψi} ∈ F

and, therefore,
∏

i∈I σ
i∏

i∈I Σi
(~φ, ~χ) .F∏

i∈I Σi

∏
i∈I σ

i∏
i∈I Σi

(~ψ, ~χ). Hence, .F is a
∏

i∈I ρ
i-

qosystem on
∏

i∈I SENi.

As a consequence of Lemma 1 and of Proposition 4 and Definition 14 of [30], the quotient∏
i∈I〈SENi,.i〉/∼F is a (

∏
i∈I ρ

i)∼
F

-pofunctor. It is called the ordered reduced product

of the collection 〈SENi,.i〉, i ∈ I, by the filter F and is denoted by
∏F

i∈I〈SENi,.i〉. In case

F is an ultrafilter on I, the ordered reduced product will be termed an order ultraproduct.∏
i∈I SENi/∼F will sometimes be denoted by

∏F
i∈I SENi and .F/∼F by

∏F
i∈I .

i. With this

notation, we then have
∏F

i∈I〈SENi,.i〉 := 〈
∏F

i∈I SENi,
∏F

i∈I .
i〉.

Finally, the case of order direct limits of pofunctors is treated. Recall that a partially

ordered set 〈I,≤〉 is upward directed if, for all i, j ∈ I, there exists k ∈ I, such that i ≤ k

and j ≤ k.

Let 〈I,≤〉 be an upward directed partially ordered index set. Suppose that SENi :

Signi → Set, i ∈ I, are functors, with compatible categories of natural transformations N i

on SENi and compatible polarities ρi for N i, i ∈ I. Suppose, also, that .i is a ρi-posystem

10



CAAL: CLOSURE OPERATORS ON CLASSES OF POFUNCTORS 11

on SENi, i ∈ I, and that 〈F ij, αij〉 : 〈SENi,.i〉 →p 〈SENj,.j〉, i ≤ j, is a surjective order

translation, satisfying

• 〈F ii, αii〉 = 〈ISigni , ιi〉 : 〈SENi,.i〉 →p 〈SENi,.i〉 is the identity order translation,

• 〈F jk, αjk〉 ◦ 〈F ij, αij〉 = 〈F ik, αik〉, for all i ≤ j ≤ k.

〈SENi,.i〉 〈SENk,.k〉-
〈F ik, αik〉

〈SENj,.j〉

〈F ij, αij〉
�
�
�
���

〈F jk, αjk〉
@
@
@
@@R

Set, for all i ∈ I, [i) = {j ∈ I : j ≥ i}. The directedness of I implies that, for all

i, j ∈ I, there exists k ∈ I, such that [k) ⊆ [i) ∩ [j). Let F be the collection of all subsets

of I, that include [i), for some i ∈ I. F is a filter on I and it may be shown that, for all

Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I,

~φ .F∏
i∈I Σi

~ψ iff (∃j ∈ I)(∀i ≥ j)(φi .
i
Σi
ψi).

As a consequence, we have that for all Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I,

~φ ∼F∏
i∈I Σi

~ψ iff (∃j ∈ I)(∀i ≥ j)(φi = ψi).

Consider the
∏

i∈I ρ
i-subpofunctor 〈SEN′,.′〉 of

∏
i∈I〈SENi,.i〉 formed by taking SEN′ :∏

i∈I Signi → Set to be the subfunctor of
∏

i∈I SENi, defined by

SEN′(
∏
i∈I

Σi) = {~φ ∈
∏
i∈I

SENi(Σi) : (∃i ∈ I)(∀j ≥ i)(αijΣi
(φi) = φj)}.

SEN′ is compatible with ∼F in the sense that, for all Σi ∈ |Signi|, i ∈ I,

~φ ∈ SEN′(
∏
i∈I

Σi) and ~φ ∼F∏
i∈I Σi

~ψ imply ~ψ ∈ SEN′(
∏
i∈I

Σi),

for all ~φ, ~ψ ∈ SEN(
∏

i∈I Σi). Therefore, the quotient (
∏

i∈I ρ
i)∼

F
-pofunctor 〈SEN′,.′〉/∼F

of 〈SEN′,.′〉 by the restriction of ∼F on SEN′ is a (
∏

i∈I ρ
i)∼

F
-subpofunctor of the order

reduced product
∏F

i∈I〈SENi,.i〉. It is called the order direct limit of the 〈SENi,.i〉, i ∈ I,
by F = {〈F ij, αij〉 : i, j ∈ I, i ≤ j} and is denoted by limFi∈I〈SENi,.i〉.

2 Closure Operators

All sentence functors considered in this section will be assumed endowed with compatible

categories of natural transformations and with compatible polarities for these categories. As

already mentioned in the preceding section, such functors will be termed compatible.

11



12 GEORGE VOUTSADAKIS

Suppose that K is a class of compatible pofunctors. By S(K) is denoted the class of

all pofunctors isomorphic to order subpofunctors of members of K, by P(K) the class of

all pofunctors order isomorphic to a product pofunctor of pofunctors in K. Finally, by

PR(K),PU(K) and L(K) will be denoted, respectively, the class of all order isomorphic copies

of an order reduced product, an order ultraproduct or an order direct limit, respectively, of

a collection of members of K.

2.1 The HSP operator

Work will now start that will culminate to an analog of Theorem 2.14 of [21], expressing

closure of a class K with respect to the HSP combination of the operators introduced

above. Because the framework of partially ordered algebraic systems is more complicated

and abstract than that of universal algebras, we proceed step by step establishing carefully

some of the results that are obvious and/or well-known in the basic theory of universal

algebra and that were adapted to the context of partially ordered algebras in [21].

Consider, first, an order translation 〈F, α〉 : 〈SEN,.〉 →p 〈SEN′,.′〉 and a ρ′-subpofunctor

〈SEN′′,.′′〉 of the ρ′-pofunctor 〈SEN′,.′〉. Define the pair

〈SEN′′′,.′′′〉 = 〈F, α〉−1(〈SEN′′,.′′〉)

by setting:

• Sign′′′ = F−1(Sign′′),

• SEN′′′ : Sign′′′ → Set, where SEN′′′ : Sign′′′ → Set, is defined by

SEN′′′(Σ) = α−1
Σ (SEN′′(F (Σ))), for all Σ ∈ |Sign′′′|,

and, given Σ,Σ′ ∈ |Sign′′′|, f ∈ Sign′′′(Σ,Σ′),

SEN′′′(f)(φ) = SEN(f)(φ), for all φ ∈ α−1
Σ (SEN′′(F (Σ))).

• .′′′Σ = .Σ �α−1
Σ (SEN′′(F (Σ))), for all Σ ∈ |Sign′′′|.

It is shown, next, that 〈F, α〉−1(〈SEN′′,.′′〉) is a ρ-subpofunctor of the ρ-pofunctor

〈SEN,.〉. Lemma 2 is the essential ingredient in the proof of Proposition 4, that follows,

which shows that SH ≤ HS.

Lemma 2. Let 〈F, α〉 : 〈SEN,.〉 →p 〈SEN′,.′〉 be a surjective order translation and 〈SEN′′,

.′′〉 a ρ′-subpofunctor of 〈SEN′,.′〉. Then, the pair 〈SEN′′′,.′′′〉 := 〈F, α〉−1(〈SEN′′, .′′〉) is

a ρ-subpofunctor of the ρ-pofunctor 〈SEN,.〉.

〈F, α〉−1(〈SEN′′,.′′〉) 〈SEN′′,.′′〉-
〈F, α〉

〈SEN,.〉 〈SEN′,.′〉-
〈F, α〉

≥

12



CAAL: CLOSURE OPERATORS ON CLASSES OF POFUNCTORS 13

Proof. First, it is obvious that Sign′′′ is a subcategory of Sign. It suffices then to show that

SEN′′′ is well-defined on morphisms, it is a functor and a subfunctor of SEN and, finally,

that .′′′ is a ρ-posystem on SEN′′′, such that .′′′Σ = .Σ ∩ SEN′′′(Σ)2, for all Σ ∈ |Sign′′′|.
We work first with SEN′′′. Suppose that Σ,Σ′ ∈ |Sign′′′|, f ∈ Sign′′′(Σ, Σ′) and φ ∈

α−1
Σ (SEN′′(F (Σ))). Then we have

αΣ′(SEN(f)(φ)) = SEN′(F (f))(αΣ(φ)) ∈ SEN′′(F (Σ′)),

whence

SEN′′′(f)(φ) = SEN(f)(φ) ∈ α−1
Σ′ (SEN′′(F (Σ′))) = SEN′′′(Σ′)

and SEN′′′ is well-defined on morphisms. Moreover, we have, for all Σ ∈ |Sign′′′|,

SEN′′′(iΣ) = SEN(iΣ) �α−1
Σ (SEN′′(F (Σ)))

= iSEN(Σ) �α−1
Σ (SEN′′(F (Σ)))

= iSEN′′′(Σ)

and, for all f ∈ Sign′′′(Σ,Σ′), g ∈ Sign′′′(Σ′,Σ′′),

SEN′′′(gf) = SEN(gf) �α−1
Σ (SEN′′(F (Σ)))

= (SEN(g)SEN(f)) �α−1
Σ (SEN′′(F (Σ)))

= SEN(g) �α−1
Σ (SEN′′(F (Σ′))) SEN(f) �α−1

Σ (SEN′′(F (Σ)))

= SEN′′′(g)SEN′′′(f).

Therefore, SEN′′′ is indeed a functor SEN′′′ : Sign′′′ → Set. It is obvious from the definition

that SEN′′′(Σ) ⊆ SEN(Σ), for all Σ ∈ |Sign′′′|, and that SEN′′′(f) = SEN(f) �SEN′′′(Σ), for

all f ∈ Sign′′′(Σ,Σ′), i.e., SEN′′′ is a subfunctor of SEN.

That .′′′ is a ρ-posystem on SEN′′′ follows easily from the fact that . is a ρ-posystem

on SEN. Finally, by the definition of .′′′, we have that .′′′Σ = .Σ �α−1
Σ (SEN′′(F (Σ)))= .Σ ∩

SEN′′′(Σ)2, for all Σ ∈ |Sign′′′|. Hence 〈SEN′′′,.′′′〉 is a ρ-subpofunctor of 〈SEN,.〉.

Lemma 2 leads directly to Proposition 4, which shows that, given any class K of com-

patible pofunctors, SH(K) ⊆ HS(K).

Proposition 4. Let K be a class of compatible pofunctors. Then SH(K) ⊆ HS(K).

Proof. Suppose that 〈SEN,.〉 ∈ SH(K). That is, there exists 〈SEN′′′, .′′′〉 ∈ K, and a

surjective order translation 〈F, α〉 : 〈SEN′′′,.′′′〉 →p 〈SEN′′, .′′〉, such that 〈SEN,.〉 is a

ρ′′-subpofunctor of the ρ′′-pofunctor 〈SEN′′, .′′〉.

〈F, α〉−1(〈SEN,.〉) 〈SEN,.〉-
〈F, α〉

〈SEN′′′,.′′′〉 〈SEN′′,.′′〉-
〈F, α〉

≥

13



14 GEORGE VOUTSADAKIS

Consider the ρ′′′-pofunctor 〈F, α〉−1(〈SEN,.〉), which, by Lemma 2, is a ρ′′′-subpofunctor of

the ρ′′′-pofunctor 〈SEN′′′,.′′′〉. Then, the restriction 〈F, α〉 �〈F,α〉−1(〈SEN,.〉) of the translation

〈F, α〉 is a surjective order translation from 〈F, α〉−1(〈SEN, .〉) onto 〈SEN,.〉, whence

〈SEN,.〉 ∈ HS(K).

We proceed now to show that, given a collection of compatible pofunctors 〈SEN′i, .′i〉
and a collection of subpofunctors 〈SENi,.i〉 of 〈SEN′i,.′i〉, i ∈ I, the product pofunctor∏

i∈I〈SENi,.i〉 is also a subpofunctor of the product
∏

i∈I〈SEN′i,.′i〉. This result paves the

way for the proof of Proposition 5, that follows, which shows that PS ≤ SP.

Lemma 3. Let 〈SEN′i,.′i〉 be a collection of ρi-pofunctors, with compatible categories of nat-

ural transformations N i and compatible polarities ρi for N i, i ∈ I. Suppose that 〈SENi,.i〉
is a ρi-subpofunctor of the ρi-pofunctor 〈SEN′i, .′i〉, for all i ∈ I. Then

∏
i∈I〈SENi,.i〉 is

a
∏

i∈I ρ
i-subpofunctor of the

∏
i∈I ρ

i-pofunctor
∏

i∈I〈SEN′i,.′i〉.

Proof. Suppose that 〈SENi,.i〉 is a ρi-subpofunctor of the ρi-pofunctor 〈SEN′i, .′i〉, for all

i ∈ I. Since Signi is a subcategory of Sign′i, we get that
∏

i∈I Signi is a subcategory of∏
i∈I Sign′i. Moreover, since, for all Σi ∈ |Signi|, SENi(Σi) ⊆ SEN′i(Σi), i ∈ I, we have that∏

i∈I

SENi(Σi) ⊆
∏
i∈I

SEN′i(Σi),

for all Σi ∈ |Signi|, i ∈ I.

Since, by hypothesis, the pofunctors 〈SEN′i,.′i〉, i ∈ I, are compatible, there exists

a functor SEN, with a category of natural transformations N on SEN, together with a

collection of surjective functors F ′i : N → N ′i, i ∈ I, that preserve all projections in N .

Since, for every i ∈ I, the pofunctor 〈SENi,.i〉 is a ρi-subpofunctor of 〈SEN′i,.′i〉, there

exist surjective functors F i : N → N i, i ∈ I (among the other conditions that need to be

satisfied for a ρi-pofunctor). Thus, the collection of pofunctors 〈SENi,.i〉, i ∈ I, consists of

compatible pofunctors, which are all compatible, also, with the pofunctors in the collection

〈SEN′i,.′i〉, i ∈ I.

Finally, given Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I,

~φ
∏

i∈I .
i∏

i∈I Σi

~ψ iff (∀i)(φi .iΣi
ψi)

iff (∀i)(φi .′iΣi
ψi ∧ φi, ψi ∈ SENi(Σi))

iff ~φ
∏

i∈I .
′i∏

i∈I Σi

~ψ ∧ ~φ, ~ψ ∈
∏

i∈I SENi(Σi)

iff ~φ(
∏

i∈I .
′i∏

i∈I Σi
∩ (

∏
i∈I SENi(Σi))2)~ψ,

and, thus,
∏

i∈I〈SENi,.i〉 is in fact a
∏

i∈I ρ
i-subpofunctor of

∏
i∈I〈SEN′i,.′i〉.

Lemma 3 is the critical component in showing that, given a class K of compatible po-

functors, PS(K) ⊆ SP(K).

Proposition 5. Let K be a class of compatible pofunctors. Then PS(K) ⊆ SP(K).

14
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Proof. Suppose that 〈SEN,.〉 ∈ PS(K). Then 〈SEN,.〉 =
∏

i∈I〈SENi, .i〉, where 〈SENi,

.i〉 is a ρi-subpofunctor of a ρi-pofunctor 〈SEN′i,.′i〉 ∈ K, i ∈ I. But then, by Lemma 3,

〈SEN,.〉 =
∏

i∈I〈SENi,.i〉 is a
∏

i∈I ρ
i-subpofunctor of the

∏
i∈I ρ

i-pofunctor
∏

i∈I〈SEN′i,

.′i〉. Therefore 〈SEN, .〉 ∈ SP(K).

Before introducing the next lemma, a construction of a translation out of a collection of

given translations is needed.

Suppose that 〈F i, αi〉 : 〈SENi,.i〉 →p 〈SEN′i,.′i〉, i ∈ I, are surjective order transla-

tions, where 〈SENi,.i〉, 〈SEN′i,.′i〉, i ∈ I, are collections of compatible pofunctors. De-

fine 〈F, α〉 :=
∏

i∈I〈F i, αi〉 :
∏

i∈I〈SENi,.i〉 →
∏

i∈I〈SEN′i,.′i〉 by letting, for all Σi ∈
|Signi|, φi ∈ SENi(Σi), i ∈ I,

F (
∏
i∈I

Σi) =
∏
i∈I

F i(Σi),

and, similarly for morphisms, and

α∏
i∈I Σi

(~φ) =
∏
i∈I

αiΣi
(φi).

It is shown, next, that 〈F, α〉 :
∏

i∈I〈SENi,.i〉 →
∏

i∈I〈SEN′i,.′i〉 is also a surjective

order translation. This will constitute the main component in the proof of Proposition 6,

showing that PH ≤ HP.

Lemma 4. Given surjective order translations 〈F i, αi〉 : 〈SENi,.i〉 →p 〈SEN′i, .′i〉, i ∈ I,
the mapping 〈F, α〉 :=

∏
i∈I〈F i, αi〉 :

∏
i∈I〈SENi,.i〉 →

∏
i∈I〈SEN′i, .′i〉 is also a surjective

order translation.

Proof. The verification that F :
∏

i∈I Signi →
∏

i∈I Sign′i is a functor is left to the reader.

It is shown here that α :
∏

i∈I SENi →
∏

i∈I SEN′i is a natural transformation, that it is

surjective and that 〈F, α〉 is an order translation.

Let Σi,Σ
′
i ∈ |Signi|, f ∈ Signi(Σi,Σ

′
i), i ∈ I. Then, we have, for all φi ∈ SENi(Σi), i ∈ I,

∏
i∈I SENi(Σ′i)

∏
i∈I SEN′i(F i(Σ′i))

-
α∏

i∈I Σ′i

∏
i∈I SENi(Σi)

∏
i∈I SEN′i(F i(Σi))-

α∏
i∈I Σi

?

∏
i∈I SENi(fi)

?

∏
i∈I SEN′i(F i(fi))

α∏
i∈I Σ′i

(
∏

i∈I SENi(fi)(~φ)) = α∏
i∈I Σ′i

(
∏

i∈I SENi(fi)(φi))

=
∏

i∈I α
i
Σ′i

(SENi(fi)(φi))

=
∏

i∈I SEN′i(F i(fi))(α
i
Σi

(φi))

=
∏

i∈I SEN′i(F i(fi))(
∏

i∈I α
i
Σi

(φi))

=
∏

i∈I SEN′i(F i(fi))(α∏
i∈I Σi

(~φ)).

15



16 GEORGE VOUTSADAKIS

Surjectivity of F :
∏

i∈I Signi →
∏

i∈I Sign′i follows easily from the surjectivity of F i :

Signi → Sign′i, i ∈ I. Suppose, now, that Σ′i ∈ |Sign′i|, ψi ∈ SEN′i(Σ′i), i ∈ I. Then,

by the surjectivity of F i, there exists Σi ∈ |Signi|, such that Σ′i = F i(Σi) and, by the

surjectivity of 〈F i, αi〉, there exists φi ∈ SENi(Σi), such that ψi = αiΣi
(φi), i ∈ I. Therefore

α∏
i∈I Σi

(~φ) =
∏

i∈I α
i
Σi

(φi) = ~ψ and, therefore, 〈F, α〉 is also surjective.

Finally, we show that 〈F, α〉 is an order translation. Suppose, to this end, that Σi ∈
|Signi|, φi ∈ SENi(Σi), i ∈ I. Then we have

~φ
∏

i∈I .
i∏

i∈I Σi

~ψ

iff (∀i)(φi .iΣi
ψi)

implies (∀i)(αiΣi
(φi) .′iF i(Σi)

αiΣi
(ψi))

iff
∏

i∈I α
i
Σi

(φi)
∏

i∈I .
′i∏

i∈I F
i(Σi)

∏
i∈I α

i
Σi

(ψi)

iff α∏
i∈I Σi

(~φ)
∏

i∈I .
′i
F (

∏
i∈I Σi)

α∏
i∈I Σi

(~ψ),

and, therefore, 〈F, α〉 is an order translation.

Proposition 6 undertakes the task of showing that, given a class K of compatible pofunc-

tors, PH(K) ⊆ HP(K).

Proposition 6. Let K be a class of compatible pofunctors. Then PH(K) ⊆ HP(K).

Proof. Suppose that 〈SEN,.〉 ∈ PH(K). Then, there are ρi-pofunctors 〈SEN′′i, .′′i〉 ∈
K, i ∈ I, and surjective order translations 〈F i, αi〉 : 〈SEN′′i, .′′i〉 →p 〈SEN′i,.′i〉, i ∈ I,

such that 〈SEN,.〉 =
∏

i∈I〈SEN′i,.′i〉. But then, by Lemma 4, there exists a surjec-

tive order translation 〈F, α〉 :
∏

i∈I〈SEN′′i, .′′i〉 →p
∏

i∈I〈SEN′i,.′i〉 and, therefore, since

〈SEN′′i,.′′i〉 ∈ K, i ∈ I, 〈SEN,.〉 =
∏

i∈I〈SEN′i,.′i〉 ∈ HP(K).

The last piece of the puzzle, before showing that HSP is a closure operator, is proving

the idempotency of the operators H,S and P. We state the result without proof, since its

proof is relatively easy to establish.

Proposition 7. If K is a class of compatible pofunctors, then HH(K) ⊆ H(K), SS(K) ⊆
S(K) and PP(K) ⊆ P(K).

Proof. The proof is relatively easy, following the corresponding universal algebraic leads,

and is left to the reader.

Finally, in the first main closure result of the paper, it is shown that, as in the case of

classes of universal algebras and corresponding operators, the operator HSP is a closure

operator on classes of compatible pofunctors.

Theorem 1. HSP is a closure operator on classes of compatible pofunctors.

16
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Proof. Reflexivity and monotonicity are clear. For idempotency we have

HSPHSP(K) = HS(PH)SP(K)

⊆ HSHPSP(K) (by Proposition 6)

= H(SH)PSP(K)

⊆ HHSPSP(K) (by Proposition 4)

= HS(PS)P(K) (by Proposition 7)

⊆ HSSPP(K) (by Proposition 5)

= HSP(K) (by Proposition 7).

2.2 The SPPU operator

Having shown that HSP is a closure operator on classes of compatible pofunctors, we turn

now our focus on showing that the analog of the well-known quasi-variety operator SPPU of

universal algebra is also a closure operator on classes of compatible pofunctors. Work starts

by showing that P ≤ PR.

Proposition 8. If K is a class of compatible pofunctors, then P(K) ⊆ PR(K).

Proof. We have that
∏

i∈I〈SENi,.i〉 ∼=p
∏{I}

i∈I〈SENi,.i〉, whence the result follows.

Proposition 9 shows that the operator PR is idempotent on classes of compatible pofunc-

tors. Its proof is complicated but follows steps similar to the ones used for the corresponding

proof of the universal algebraic analog (e.g., Lemma 2.22 of [6]).

Proposition 9. If K is a class of compatible pofunctors, PRPR(K) ⊆ PR(K).

Proof. We take after the proof of the corresponding result from first-order logic structures

that was presented in full detail as the proof of Lemma 2.22 of [6]. The reader is encouraged

to consult that proof and compare the present setting with that of first-order logic.

Let J be a set, Ij, j ∈ J, a family of pairwise disjoint sets, 〈SENi,.i〉 be ρi-pofunctors,

for all i ∈ Ij, j ∈ J , F a filter over J and, for all j ∈ J, Fj a filter over Ij. Define I =
⋃
j∈J Ij

and

F̂ = {S ⊆ I : {j ∈ J : S ∩ Ij ∈ Fj} ∈ F}.

Then F̂ is a filter over I and it suffices to show that

F∏
j∈J

(

Fj∏
i∈Ij

〈SENi,.i〉) ∼=p

F̂∏
i∈I

〈SENi,.i〉.

It is clear that, as categories,
∏

j∈J(
∏

i∈Ij Signi) ∼=
∏

i∈I Signi, where an isomorphism H :∏
j∈J(

∏
i∈Ij Signi) ∼=

∏
i∈I Signi is given at the object level by

H(
∏
j∈J

∏
i∈Ij

Σi) =
∏
i∈I

Σi,

17



18 GEORGE VOUTSADAKIS

and, similarly for morphisms. Next, a natural transformation

γ : (
∏
j∈J

(
∏
i∈Ij

SENi)∼
Fj

)∼
F → (

∏
i∈I

SENi)∼
F̂

is constructed.

The following order translations will be used in the construction: For all j ∈ J, the order

translation 〈Gj, αj〉 :
∏

i∈I〈SENi,.i〉 →p
∏

i∈Ij〈SENi,.i〉, given by

Gj(
∏
i∈I

Σi) =
∏
i∈Ij

Σi, for all Σi ∈ |Signi|, i ∈ I,

and, similarly for morphisms, and

αj∏
i∈I Σi

(~φ) = ~φ �Ij , for all ~φ ∈
∏
i∈I

SENi(Σi).

The natural projection translation

〈Ij, πFj〉 :
∏
i∈Ij

〈SENi,.i〉 →p

Fj∏
i∈Ij

〈SENi,.i〉.

The mapping

〈G, β〉 :=
∏
j∈J

〈Ij, πFj〉〈Gj, αj〉 :
∏
i∈I

〈SENi,.i〉 →
∏
j∈J

(

Fj∏
i∈Ij

〈SENi,.i〉).

∏
i∈I〈SENi,.i〉

∏
i∈Ij〈SENi,.i〉-

〈Gj, αj〉 ∏Fj

i∈Ij〈SENi,.i〉-
〈Ij, πFj〉

∏
j∈J

∏Fj

i∈Ij〈SENi,.i〉

6

〈Ij, πj〉〈G, β〉

XXXXXXXXXXXXXXXXXXXXXXXXz

Consider also the natural projection translation

〈I, πF 〉 :
∏
j∈J

Fj∏
i∈Ij

〈SENi,.i〉 →p

F∏
j∈J

Fj∏
i∈Ij

〈SENi,.i〉

and the natural projection translation

〈I, πF̂ 〉 :
∏
i∈I

〈SENi,.i〉 →p

F̂∏
i∈I

〈SENi,.i〉.

18
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Notice that we have, for all Σi ∈ |Signi|, φi ∈ SENi(Σi), i ∈ I,

~φ OrdKer∏
i∈I Σi

(〈I, πF 〉〈G, β〉) ~ψ
iff πFG(

∏
i∈I Σi)

(β∏
i∈I Σi

(~φ))
∏F

j∈J
∏Fj

i∈Ij .
i
G(

∏
i∈I Σi)

πFG(
∏

i∈I Σi)
(β∏

i∈I Σi
(~ψ))

iff {j ∈ J : πjG(
∏

i∈I Σi)
(β∏

i∈I Σi
(~φ))

∏Fj

i∈Ij .
i
G(

∏
i∈I Σi)

πjG(
∏

i∈I Σi)
(β∏

i∈I Σi
(~ψ))} ∈ F

iff {j ∈ J : {i ∈ Ij : φi .iΣi
ψi} ∈ Fj} ∈ F

iff {i ∈ I : φi .iΣi
ψi} ∈ F̂

iff ~φ
∏F̂

i∈I .
i∏

i∈I Σi

~ψ.

Therefore, matching the hypothesis of the Order Isomorphism Theorem (Corollary 16 of

[30]), we obtain an order isomorphism

〈H, γ〉 :
F̂∏
i∈I

〈SENi,.i〉 →p

F∏
j∈J

Fj∏
i∈Ij

〈SENi,.i〉,

such that the following diagram commutes:

∏
j∈J

∏Fj

i∈Ij〈SENi,.i〉
∏F

j∈J
∏Fj

i∈Ij〈SENi,.i〉-
〈I, πF 〉

∏
i∈I〈SENi,.i〉

∏F̂
i∈I〈SENi,.i〉-

〈I, πF̂ 〉

?

〈G, β〉

?

〈H, γ〉

Once more, following the universal algebraic leads, it will now be shown that PR ≤ SPPU.

Proposition 10. If K is a class of compatible pofunctors, then PR(K) ⊆ SPPU(K).

Proof. We follow again the proof of Part (b) of Lemma 2.22 of [6] that deals with the

corresponding result for first-order logic.

Suppose F is a filter over I and consider the collection J of all ultrafilters containing

F . Let, for all U ∈ J, 〈I, αU〉 :
∏F

i∈I〈SENi,.i〉 →
∏U

i∈I〈SENi,.i〉 be defined, for all

Σi ∈ |Signi|, φi ∈ SENi(Σi), i ∈ I, by

αU∏
i∈I Σi

(~φ/ ∼F∏
i∈I Σi

) = ~φ/ ∼U∏
i∈I Σi

.

This is a well-defined order translation. Then let

〈G,α〉 :=
∏
U∈J

〈I, αU〉 :
F∏
i∈I

〈SENi,.i〉 →
∏
U∈J

U∏
i∈I

〈SENi,.i〉.

19



20 GEORGE VOUTSADAKIS

∏F
i∈I〈SENi,.i〉

∏U
i∈I〈SENi,.i〉-

〈I, αU〉

∏
U∈J

∏U
i∈I〈SENi,.i〉

6

〈PU , πU〉〈G,α〉

HH
HHH

HHH
HHH

HHHj

It will now be shown that 〈G,α〉 is an embedding of the (
∏

i∈I ρ
i)∼

F
-pofunctor

∏F
i∈I〈SENi,.i〉

into the
∏

U∈J(
∏

i∈I ρ
i)∼

U
-pofunctor

∏
U∈J

∏U
i∈I〈SENi,.i〉. It will then follow, by the fact

that 〈SENi,.i〉 ∈ K, that
∏F

i∈I〈SENi,.i〉 ∈ SPPU(K).

If Σi,Σ
′
i ∈ |Signi|, for all i ∈ I, such that G(

∏
i∈I Σi) = G(

∏
i∈I Σ′i), then

PU(G(
∏
i∈I

Σi)) = PU(G(
∏
i∈I

Σ′i)),

for all U ∈ J, whence I(
∏

i∈I Σi) = I(
∏

i∈I Σ′i), i.e.,
∏

i∈I Σi =
∏

i∈I Σ′i. Similarly, it is shown

that G is injective on morphisms. Now, let Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I, such that

α∏
i∈I Σi

(~φ/∼F∏
i∈I Σi

) = α∏
i∈I Σi

(~ψ/∼F∏
i∈I Σi

).

Then, we get, for all U ∈ J,

πUG(
∏

i∈I Σi)
(α∏

i∈I Σi
(~φ/∼F∏

i∈I Σi
)) = πUG(

∏
i∈I Σi)

(α∏
i∈I Σi

(~ψ/∼F∏
i∈I Σi

)),

whence, for all U ∈ J, αU∏
i∈I Σi

(~φ/∼F∏
i∈I Σi

) = αU∏
i∈I Σi

(~ψ/∼F∏
i∈I Σi

), and, therefore, by the

definition of αU , for all U ∈ J, ~φ/∼U∏
i∈I Σi

= ~ψ/∼U∏
i∈I Σi

. Following now the same argument

as in the universal algebraic case, we obtain that ~φ/∼F∏
i∈I Σi

= ~ψ/∼F∏
i∈I Σi

.

Finally, we check that, for all Σi ∈ |Signi|, i ∈ I,

α∏
i∈I Σi

(
F∏
i∈I

.i∏
i∈I Σi

) =
∏
U∈J

U∏
i∈I

.i∏
U∈J

∏
i∈I Σi

⋂
α∏

i∈I Σi
(
F∏
i∈I

SENi(Σi))
2.

Since 〈G,α〉 is an order translation, it suffices to show that, for all Σi ∈ |Signi|, φi, ψi ∈
SENi(Σi), i ∈ I, if

α∏
i∈I Σi

(~φ/∼F∏
i∈I Σi

)
∏
U∈J

U∏
i∈I

.i∏
U∈J

∏
i∈I Σi

α∏
i∈I Σi

(~ψ/∼F∏
i∈I Σi

),

then ~φ/∼F∏
i∈I Σi

∏F
i∈I .

i∏
i∈I Σi

~ψ/∼F∏
i∈I Σi

. We have, indeed,

α∏
i∈I Σi

(~φ/∼F∏
i∈I Σi

)
∏
U∈J

U∏
i∈I

.i∏
U∈J

∏
i∈I Σi

α∏
i∈I Σi

(~ψ/∼F∏
i∈I Σi

)

whence, for all U ∈ J,

αU∏
i∈I Σi

(~φ/∼F∏
i∈I Σi

)
U∏
i∈I

.i∏
i∈I Σi

αU∏
i∈I Σi

(~ψ/∼F∏
i∈I Σi

),

20
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which yields that, for all U ∈ J, ~φ/∼U∏
i∈I Σi

∏U
i∈I .

i∏
i∈I Σi

~ψ/∼U∏
i∈I Σi

, and, therefore, that

{i ∈ I : φi .iΣi
ψi} ∈ U . This holding for all U ∈ J, we get that {i ∈ I : φi .iΣi

ψi} ∈ F ,

whence ~φ/∼F∏
i∈I Σi

∏F
i∈I .

i∏
i∈I Σi

~ψ/∼F∏
i∈I Σi

, as was to be shown.

The next lemma shows that, given a collection of compatible pofunctors 〈SEN′i, .′i〉, i ∈
I, a collection 〈SENi,.i〉, i ∈ I, of subpofunctors of 〈SEN′i,.′i〉, i ∈ I, respectively, and a

filter F over I, the order reduced product
∏F

i∈I〈SENi,.i〉 is also a subpofunctor of the order

reduced product
∏F

i∈I〈SEN′i,.′i〉. This lemma provides the main component in the proof

of the inclusion PRS ≤ SPR.

Lemma 5. Let 〈SENi,.i〉 be ρi-subpofunctors of the compatible ρi-pofunctors 〈SEN′i,.′i〉,
i ∈ I, respectively, and F a filter over I. Then the order reduced product

∏F
i∈I〈SENi, .i〉 is

a (
∏

i∈I ρ
i)∼

F
-subpofunctor of the order reduced product

∏F
i∈I〈SEN′i,.′i〉.

Proof. Since Signi is a subcategory of Sign′i, for all i ∈ I, we have that
∏

i∈I Signi is a

subcategory of
∏

i∈I Sign′i. Suppose, now, that Σi ∈ |Signi|, i ∈ I. Then SENi(Σi) ⊆
SEN′i(Σi), for all i ∈ I, whence

∏
i∈I SENi(Σi) ⊆

∏
i∈I SEN′i(Σi). Therefore, we obtain that∏

i∈I SENi(Σi)/∼F∏
i∈I Σi

is isomorphic to a subset of
∏

i∈I SEN′i(Σi)/∼F∏
i∈I Σi

, i.e., that the set∏F
i∈I SENi(

∏
i∈I Σi) is isomorphic to a subset of

∏F
i∈I SEN′i(

∏
i∈I Σi). The proof for sentence

morphisms is similar. Finally, for the posystem relation, we have, under the preceding

identification of the subset isomorphism, for all Σi ∈ |Signi|, φi, ψi ∈ SEN′i(Σi), i ∈ I,

~φ/∼F∏
i∈I Σi

∏F
i∈I .

i∏
i∈I Σi

~ψ/∼F∏
i∈I Σi

iff (∀i ∈ I)(∃φ′i, ψ′i ∈ SENi(Σi))(~φ′ ∼F∏
i∈I Σi

~φ, ~ψ′ ∼F∏
i∈I Σi

~ψ

and {i ∈ I : φ′i .
i
Σi
ψ′i} ∈ F )

iff ~φ/∼F∏
i∈I Σi

, ~ψ/∼F∏
i∈I Σi

∈
∏F

i∈I SENi(
∏

i∈I Σi) and

{i ∈ I : φi .′iΣi
ψi} ∈ F

iff ~φ/∼F∏
i∈I Σi

, ~ψ/∼F∏
i∈I Σi

∈
∏F

i∈I SENi(
∏

i∈I Σi) and

~φ/∼F∏
i∈I Σi

∏F
i∈I .

′i∏
i∈I Σi

~ψ/∼F∏
i∈I Σi

and, therefore
∏F

i∈I〈SENi,.i〉 is a (
∏

i∈I ρ
i)∼

F
-subpofunctor of

∏F
i∈I〈SEN′i, .′i〉.

Lemma 5 leads directly to Proposition 11, showing that, given a class K of compatible

pofunctors, PRS(K) ⊆ SPR(K).

Proposition 11. If K is a class of compatible pofunctors, then PRS(K) ⊆ SPR(K).

Proof. Suppose that 〈SEN,.〉 ∈ PRS(K). Then, there exist 〈SEN′i,.′i〉 ∈ K, i ∈ I, and

ρi-subpofunctors 〈SENi,.i〉 of 〈SEN′i,.′i〉, i ∈ I, such that 〈SEN,.〉 =
∏F

i∈I〈SENi,.i〉, for

some filter F on I. But, then, by Lemma 5, we obtain that 〈SEN,.〉 =
∏F

i∈I〈SENi,.i〉
is a (

∏
i∈I ρ

i)∼
F

-subpofunctor of the order filtered product
∏F

i∈I〈SEN′i,.′i〉, and, since

〈SEN′i,.′i〉 ∈ K, i ∈ I, we obtain that 〈SEN,.〉 ∈ SPR(K).
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Finally, in the second main closure result of the paper, it is shown that the operator

SPR = SPPU is a closure operator on classes of compatible pofunctors.

Theorem 2. SPR = SPPU is a closure operator on classes of compatible pofunctors.

Proof. We first prove equality of the two operators. For right-to-left inclusion

SPPU(K) ⊆ SPRPR(K) (by Proposition 8)

= SPR(K) (by Proposition 9)

For the left-to-right inclusion

SPR(K) ⊆ SSPPU(K) (by Proposition 10)

= SPPU(K) (by Proposition 7)

Finally, to show that SPR is a closure operator, it suffices to show that SPRSPR ⊆ SPR.

We indeed have

SPRSPR(K) = S(PRS)PR(K)

⊆ SSPRPR(K) (by Proposition 11)

⊆ SPR(K) (by Propositions 7 and 9).

In [32] the results presented here on closure operators on partially ordered algebraic

systems were used to extend the Birkhoff and Mal’cev style characterization theorems for

ordered varieties and quasivarieties of partially ordered algebras (Theorems 3.14 and 3.17 of

[21]) to the framework of partially ordered algebraic systems. The work in [32] introduces

and uses syntactical tools (similar to equations and quasi-equations) in the theory of partially

ordered algebraic systems.
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