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A duality theory for bilattices

B. MOBASHER, D. PIG0zz1, G. SLUTZKI AND G. VOUTSADAKIS

Abstract. Recent studies of the algebraic properties of bilattices have provided insight into their internal strucutres,
and have led to practical results, especially in reducing the computational complexity of bilattice-based multi-
valued logic programs. In this paper the representation theorem for interlaced bilattices without negation found in
[19] and extended to arbitrary interlaced bilattices without negation in [2] is presented. A natural equivalence is
then established between the category of interlaced bilattices and the cartesian square of the category of bounded
lattices. As a consequence a dual natural equivalence is obtained between the category of distributive bilattices
and the coproduct of the category of bounded Priestley spaces with itself. Some applications of these equivalences
are given. The subdirectly irreducible interlaced bilattices are characterized in terms of subdirectly irreducible
lattices. A known characterization of the join-irreducible elements of the “knowledge” lattice of an interlaced
bilattice is used to establish a natural equivalence between the category of finite, distributive bilattices and the
category of posets of the forfid | Q.

Introduction

Bilattices are algebras with two separate lattice structures. They have been used as the
basis for a denotational semantics for systems of inference that arise in artificial intelligence
and knowledge-based logic programming ([7, 9]). In particular, they have been used to
provide a general framework for an efficient procedural semantics of logic programming
languages that can deal with incomplete as well as contradictory information. Such systems
must have two common characteristics: first they must rely on the expressive power of an
underlying multi-valued logic, and secondly, they should be able to interpret statements not
only based on their truth or falsity, but also based on some measure of the knowledge or
information contained within those statements. In such semantics the state of an agent’s
knowledge about a possible event plays as an important a role as the event’s truth value. In
this context the two lattice orderings of a bilattice are viewed as representing, respectively,
the relative degrees of truth and knowledge of possible events.

Originally, Ginsberg [9] suggested using bilattices as the underlying framework for
various Al inference systems including those based on default logics, truth maintenance
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systems, probabilistic logics, and others. These ideas were later pursued [7, 8, 13] in the
context of logic programming semantics. Also recently, bilattices and their extensions have
been used in the literature to model a variety of reasoning mechanisms about uncertainty
in the presence of incomplete or contradictory information. For example, in [18], a variant
of Fitting’s extension of logic programming to bilattices was used to deal with a form
of negation as failure as well as a second explicit negation in logic programs. In [11]
bilattices were extended to include a third ordering (callegtheisionordering) in order to
effectively deal with varying degrees of belief and doubtin probabilistic deductive databases.

Studies of the algebraic structure of bilattices have led to practical results, particularly in
reducing the computational complexity of bilattice-based logic programs. For example, in
[13] it was shown that for finite distributive bilattices (and, more generally, bilattices with
thedescending chain propertyve can restrict our attention to derivations that range over
a relatively small subset of special truth-values. These special truth values turn out to be
thejoin irreducible elements of the knowledge part of the bilattice, and they provide the
basis for an efficient procedural semantics for multivalued logic programs. Ginsberg [9] has
discussed the ramifications of reducing the complexity of bilattice based inference systems
by focusing on a smaller set of representative elements cgitachdedelements. Join-
irreducible elements provide an even smaller set of representative elements which represent
the most “primitive” bits of information. In fact, this difference could be exponential for
certain classes of bilattices. More recently, the notion of join-irreduciblity has been used
in connection with a proof theory for bilattice-based logics [1]. It is therefore important to
further study bilattices and their algebraic properties. This, in part, is the motivation behind
the present work.

A bilattice hamegationif there is a bijection of order 2 with the property that it preserves
one of the orderings and inverts the other. A bilatticénterlacedif the join and meet
operations of each of its two lattice orderings is monotonic with respect to the other ordering.
In this paper we extend the representation theorem for interlaced bilattices with negation
found in [19] to arbitrary interlaced bilattices. We then refine it to construct a natural
equivalence between the category of interlaced bilattices and the product (in the category of
categories) of the category of ordinary bounded lattices with itself. This natural equivalence
induces another equivalence between the category of distributive bilattices and the product
of the category of bounded distributive lattices with itself. This in turn gives rise to a dual
natural equivalence between the category of distributive bilattices and the coproduct of
the category of bounded Priestley spaces with itself. In analogy with distributive lattices,
this specializes to a duality between the categories of finite distributive bilattices and the
coproduct of the category of finite ordered sets (posets) with itself.

In the case of interlaced bilattices with negation, we obtain the same pattern of equiva-
lences but with the product or coproduct of each category replaced by the category itself.
For example, the category of interlaced bilattices with negation is naturally equivalent to
the category of bounded lattices.
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These equivalences give considerable insight into the structure of join-irreducible
elements of an interlaced bilattice. This structure is investigated in the last part of the paper.
The representation of a finite, distributive bilattice in terms of the poset of join-irreducibles
of its knowledge lattice has proved useful in constructing simplified operational semantics
for knowledge-based logic programs based on bilattices; see [13].

Basic theory of bilattices

DEFINITION 1. Abilatticeis an algebr® = (B, A1, V1, 01, 11, A2, V2, 02, 1) such
thatB1 = (B, A1, V1, 01, 11) andB, = (B, A2, Vo, 02, 15) are bounded lattices.
By anegationon B we mean a unary operatiehon B satisfying the conditions

1. =——x =x,
2. 7(x V1y) = —x A1y, (X A1Y) = —x V1 Ty,
3. m(x vV2y) = —x Vay, (X A2 y) = —x Ag Ty,

Although the terminology for bilattices is not uniform, it has become more-or-less stan-
dard to use the terrhilattice to refer to what we call a bilattice with negation. For this
reason, we often speak of a bilattiw&hout negatiorfor emphasis.

The lattice ordering corresponding to the bounded latigewill be denoted by<;
and the lattice ordering correspondingBg by <; often the bilatticeB is written in the
form (B, <1, <p). Alternatively,<; and<j are often denoted by and <y, respectively,
reflecting the fact that they represent the “truth” and “knowledge” orderings when the
bilattice serves as the basis for the denotational semantics of a knowledge-based logic
program.

Any single latticeL = (L, <) determines two bilattices™ = (L, <, <) andL™ =
(L, >, <)inanatural way. Alternatively if. = (L, A, Vv, 0,1),thenL™ = (L, A, V,0, 1,

A, V,0,1yandL™ = (L, Vv, A, 10, A, V,0,1). The two simplest examples of nontrivial
bilattices without negation are the bilatticBsVO*™ and 7WO~, where7 WO is the
2-element lattice. The simplest example of a nontrivial bilattice with negation is the bilattice
FOUR, depicted in Figure 1; it is the algebraic representation of the four-valued logic
of Belnap [3]. There are many other interesting nonclassical logics that are useful for
knowledge-based logic programming and that can be represented using bilattices. For a
detailed discussion see [7, 9].

Note that, ifB has negation, them <3 y if and only if -y <3 —x andx <z y if
and only if —x <, —y. (The latter equivalence reflects the intuition that, if an agent
has more knowledge of one particular possible e¥anthan of another everify, it also
has more knowledge of the logical negationkf than of the logical negation df,.)
Moreover,— : (B, A1, V1) — (B, V1, A1) and—: (B, A2, Vo) — (B, A2, Vo) are lattice
isomorphisms. This immediately implies tha; = 17, —=1; = 01 and also thatPand b
remain fixed under negation.
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Figure 1

Let B; andB> be two bilattices. As usual, a mappihg B1 — By is called abilattice
homomorphisnif it preserves all bilattice operations (including negation if it is present).
The collection of all bilattices together with all bilattice homomorphisms forms a category,
called thecategory of bilatticeand denoted b3£. The category of bilattices with negation
is denoted by3.L-..

DEFINITION 2. A bilattice B (with or without negation) is callethterlacedif each
of A1, V1, A2, V2 IS monotonic with respect to both orderingg and <2. B is called
distributive if for every &, 0 € {A1, V1, A2, Vol and allx, y,z € B,x & (y O 2) =
x<oyOdOx<2).

Theterminterlaced bilatticevas introduced in [7]. Itis worth pointing out that interlaced
bilattices form a variety that can be axiomatized by the following four identities:

((xALyY)A22) ALy A22) = (X A1Yy) A2z,
((x A2y)A1z) A2 (yA1z) = (x A2y) A1z,
(xA1y)Vaz) A1 (yVaz) = (x A1y) Vaz,
((x Vay) A1z) Va(y Arz) = (x Vo y) Arz.

In [19] the term Padmanabhan bilattice is used instead of the term interlaced bilattice for
those bilattices that satisfy these four identities.

The bilatticed. * andL ~ are interlaced for every lattide. We also remark that every
distributive bilattice is interlaced.

The full subcategories d#£ having as their objects all interlaced and distributive bilat-
tices will be denoted, respectively, BY5 L andDB L. The analogous subcategoried3# .
are denoted, respectively, BY5L_, andDBL-.
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DEFINITION 3. LetL = (L, A,Vv,0,1) andL’ = (L', A, V/,0, 1) be bounded
lattices. DefineB(L,L") = (L x L', nq, U, L1, T1,Mp, Uy, Lo, T2) as follows: for all
(x,x"), (y,y)eLxL,

DMy, Y)=@Aay, X' V'Y), @xHur . y)=c vy, x'Ay),
XM y) =@ Ay, x'AY), X)W, y) =G vy, x' V),

11=(0,1), T1=(1,0), Lp=(0,0), T2 =(1,2).

If h: L = L'is alattice isomorphism, we define
~ (x,x) = (W), h(x)).

B(L, L") with the operation~ adjoined is denoted bg;, (L, L’). For any bounded lattice
L we write B(L) for B;,(L, L), wherer is the identity automorphism dn.

B(L, L") is called theproduct bilattice associated with andL’. B(L) is thesquare
bilattice with negation associated with

The product bilattice with negation associated with the two-element lattiEOIE R .

THEOREM 4. ([7, 19]) 1.For any pair of bounded latticels andL’, B(L,L’) is an
interlaced bilattice. Moreovei3(L, L") is distributive if and only ifL andL’ are
both distributive.

2. For any bounded lattické , B(L) is an interlaced bilattice with negation. Moreover,
B(L) is distributive if and only iL is distributive.

The following representation theorem is the key to all the categorical equivalences
described in the introduction.

THEOREM 5. 1.For every interlaced bilattic®, there exists a paik, L’ of bounded
lattices such thaB = B(L, L").

2. For every interlaced bilatticdB with negation, there exists a bounded lattice
such thaB = B(L).

This theorem has a complicated evolution. It was formulated for distributive bilattices
without negation, and the essential ideas of the proof presented, in [9] and [7]. A complete
proof for the distributive case with negation can be found in [13]. Independently, the
theorem for interlaced bilattices with negation was proved in [19]. Although the theorem
is formulated in [19] for bilattices with negation, an analysis of the proof shows that the
assumption of negation is not used in any essential way. The proof uses some general results
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on quasilattices and the Plonka sums of lattices over a semilattice. We sketch here a simpler
and more direct proof along the lines of the proof in f1.3]

For the purpose of the proof, the following definition due to Ginsberg [9] is useful. In
the present context we find it more suitable to use the terms positive and negative for what
in [9] are referred to as t-grounded and f-grounded elements, respectively.

DEFINITION 6. LetB = (B, <1, <»2) be an interlaced bilattice. An element B is
calledpositiveif, for everyy € B, x <1 y impliesx <» y. Itis callednegativef, for every
y € B,y <1 x impliesx <> y. Denote by POE) and NEGB) the sets of positive and
negative elements, respectively,Bf

LEMMA 7. LetB be an interlaced bilattice.

1. POSB) = [02, 11]<, = [02, 11]<,;
2. NEGB) = [02, 01]>, = [02, 01] <,.

Proof. 1. Assumer € [0z, 11]<, andx <3 y. Then® <1 x <1 y. Thus@ vix =x
andy vix = y. From @ <> y and the monotonicity of/; with respect to<, we have
O vix <2 yVvix,ie,x <2y. Sox € POSB). Assume now that is positive. Then
fromx <1 13 wegetQ <o x <2 1y,i.e.,x € [02, 11]<,. Finally, assume e [0, 11]<,.
Fromx <> 11 weget} Ao x = x and from @ <; 1; we have @ A2 x <3 11 A2 x. SO
0p <1x,ie.,x e [02, 11]51. Hence [Q, 11]§1 C POSB) C [02, 11]52 - [02, 11]51.

This establishes the first part of the lemma. The second part is established by a similar
argument. O

As a consequence of Part 1 of this lemnii@y, 11]<,, <1) and ([0, 11]<,, <) are
identical lattices. We denote this lattice BBOS(B). Similarly, we setNEG(B) =
([02,01]>;, >1) = ([02,01]<,, <2). In caseB has negation,—~ (when restricted to
POS B)) is an isomorphism betwedPOS(B) and NEG(B); this is easy to check. We
note thaPOS(B)*T = (POSB), <, <) andNEG(B)~ = (NEG(B), >», <2).

As a corollary of the lemma we have the following characterization of positive and
negative elements of an interlaced bilattice in terms of its representation as the product
bilattice associated with bounded lattidesL’. This result was obtained for distributive
bilattices in [13].

Iwe thank the referee who pointed out that this proof was first given by Avron [2] and later strengthened
by Pynko [17] in an unpublished paper. Both, in turn, were not aware of the proof of Romanowska and Trakul
[19]. Although our proof is essentially the same as the one presented in [2], we leave it in the text for the sake
of completeness. Avron also obtained some results on the equational bases of the variety of interlaced bilattices
inspired by some similar results that had previously been obtainedri®sdn [10] for the variety of distributive
bilattices.
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COROLLARY 8. LetL andL’ be bounded lattices, and l6tand 0’ be the respective
least elements. An elemenbf B(L, L’) is positive if and only ift = (y, 0), for some
y € L, and it is negative if and only i = (0, y'), for somey’ € L.

Proof. LetB(L,L") = (L x L', C1, Cp). Itis easy to check thatlly, T1]c, = L x {0}
and [Lo, L1]c, = {0} x L. O

Proof of Theorem 5.
Part 1. We show tha = B(POS(B), NEG(B)). Let

B(POSB), NEG(B)) = (POSB) x NEG(B), rmy, Uz, L1, T1, M2, U2, Lo, T2).
Then, for all(x, x’), (y, y') € POSB) x NEG(B),
(e, x) M, y) = (x A2y, X' Va2 y) = (x Ary, x" ALY,
(e, XUy, y) = (x Vay,x" A2 y) = (x Vay,x" V1Y),
(x, X)) M2 (3, y) = (x A2y, x" A2 y') = (x Ay, x" Vi),
(r, x)Uz (y,y) = (x Vay,x" Vo y') = (x Vay,x" A1 Yy).
11=1(02,01), T1=(11,02), L2=1(02,02), T2=(11,00.
We note for future reference that
B(POS(B), NEG(B)) = POS(B)* x NEG(B)™,

where “x” denotes the ordinary direct product of bilattices.
For eachy € B we define

f(x) = (x A211,x A201).

By Lemma 7,f : B — POSB) x NEG(B). We will show thatf is an isomorphism
betweerB andB(POS(B), NEG(B)). For this purpose we first prove that, for ang B,

x = (x A217p) Vo (x A201). (1)

Trivially x <1 1;. Thus by the interlacing assumption<; x A2 1;. Again applying the
interlacing assumption, we get= x Va2 (x A2 01) <1 (x A2 11) V2 (x A2 01). Trivially
01 <1 x. Thus,x A2 01 <1 x. Hence(x A2 11) Vo (x A201) <1 (x A211) Vo x = x. This
establishes (1).



116 B. MOBASHER, D. PIGOZZI, G. SLUTZKI AND G. VOUTSADAKIS ALGEBRA UNIVERS.

It follows immediately from (1) thayf is injective. To see it is surjective, consider any
(x,y) € POSB) x NEG(B). Note thaty <1 02 <1 x. Sox Vo y <1 x Vo2 x = x, and
hence(x V2 y) A211 <1 x A2 11 = x; the last equality holds becausés positive, and thus
x <2 1;. Onthe other hand, from <1 1 we alsogek = (x Va2 y) A2x <1 (x V2y) A2lj.
Thus we havéx V2 y) A2 11 = x, and in a similar way we can show V2 y) A2 01 = y.

So f(x v2 y) = (x,y), and hencef is surjective. We have shown thitis a bijection
between the two bilatticeB andB(POS(B), NEG(B)).

In order to prove it is a bilattice isomorphism, it suffices to show that it preserves the
two lattice orderings. From the construction®fPOS(B), NEG(B)) it follows that, for
(x,x"), (v,y) € POSB) x NEG(B), (x, x") C1 (v, y) ifand only ifx <; y andx’ <1 y/,
and (x,x") Sz (y,y") ifand only if x < y andx’ <2 y’. Consider any,y € B.
Thenx <1 y implies (by the interlacing condition}(A2 11) <1 (y A2 11) and (x A2
01) <1 (y A201), which in turn is equivalent tgf'(x) =1 f(y). Similarly, x <, y implies
(x A211) <2 (y A2 11) and(x A2 01) <2 (y A201), and hencef (x) Sz f(y).

This completes the proof of Part 1.

Part 2. Assume now thd& has a negation~. We show thaB = B(POSB))(=
B(NEG(B)). Recall the— (restricted to POXR)) is an isomorphism between the lattices
POS(B) andNEG(B). Let ~ denote the negation &-. (POS(B), NEG(B)). Then, for all
(x,x") € POSB) x NEG(B),

~ (x,x") = (—=x/, =x).

It is easy to check that the mappitg, b) — (a, —b) is an isomorphism between the two
bilattices with negatiol8—.(POS(B), NEG(B)) and3(POS(B)). Consequently, in order to
prove the theorem it is sufficient to show tia& 5_,(POS(B), NEG(B)); to show this it
only remains to verify thay preserves negation.
~ f(x) = ~(xA211,x A20p)
= (—=(x A201), =(x A2 11))
= (—=x A2 =(01), =x A2 =(11))
= (mx A21;, =x A20p)
= f(=x).
This completes the proof of Theorem 5.
Note that as a corollary of the proof we have that

B = POS(B)" x NEG(B)™,
for every interlaced bilattic8.

COROLLARY 9. 1. An algebraB is a distributive bilattice if and only if there exist
bounded, distributive lattices,, L’ such thatB = B(L, L").
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2. B is a distributive bilattice with negation if and only if there exists a bounded
distributive latticeL such thatB = B(L).

Categorical equivalences

In this section we show that the extraction of the p&0OEB), NEG(B)) from the
bilatticeB is natural and consequently gives a categorical equivalence. Thereaderisreferred
to Mac Lane [12] for all unexplained categorical notation and terminology.

Let £ be the category of bounded lattides= (L, A, Vv, 0, 1) with morphisms al{0, 1}—
lattice homomorphismsD/L is the full subcategory of whose objects are all bounded
distributive lattices.

Given an interlaced bilatticB we set£2(B) = (POS(B), NEG(B)). As shown above,

B = B(L£2(B)), with fg : B = B(L£2(B)) given by

fB(x) = (x A2 11, x A2 0y), for everyx € B. (2)

Moreover, given an arbitrary pair of bounded lattides= (L, A,V,0,1) andL’ =
(L', N,V', 0, 1'), we can construct the interlaced bilattiée, L") and then extract the pair
of bounded lattice£2(B(L, L")). Itis not difficult to see, using Corollary 8, thdt, L") =
L2(B(L,L")) in the product categorg x L, whereg, |+ : (L,L") = L2(B(L, L") is
defined by

gL (x, x") = ((x,0), (0, x")) for every(x,x") e L x L. (3)

For our purposes the essential property of the constructioBslafL’) and of £2(B) is
their naturalness. This is formalized as a fundtdsetween the categorigsx £ andZBL
and a functoiG in the opposite direction.

Define Fopj : Obj(£ x £) — Obj(ZBL), by

Fopj(L, L") = B(L,L"), forevery(L,L’) € Obj(L x L).
Fmor © Mor(£ x £) — Mor (ZBL) is defined as follows. For allL,L’), (M, M’) €
Obj(L x L) and(h, k') : (L,L") — (M, M’) € Mor (£ x L), Fmor(h,h) : B(L,L") —
B(M,M’) € Mor(ZBL) is given by

Fuvor(h, I ((x, x")) = (h(x), k' (x")), for every(x, x") € B(L,L").

It is not difficult to see that" : £ x L — ZBL, acting asFopj on Obj (£ x £) and as
Fwmor on Mor (£ x L), is a functor.
DefineGopj : Ob(ZBL) — Obj (£ x £) by

Gonj(B) = L?(B), for everyB e Obj(ZBL),
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and Gmor : Mor(ZBL) — Mor(L x L) as follows: for everyB, C € Obj(ZBL) and
k:B — C e Mor(ZBL), Gymor (k) : £L2(B) — L2(C) € Mor(L x L) is given by

Gmor (k) (x, y) = (k(x) A2 11, k(y) A2 01), for every(x, y) € L(B).

It turns out thatG : ZBL — L x L, acting asGopj on ObjZBL) and asGmor on
Mor(ZBL), is also a functor. We have the following theorem relatihg £ x £ — IBL
andG : IBL — L x L. Following [12], given a categorg, we usel¢ to denote the
identity functor onC, and—> to denote natural transformations.

THEOREM 10. The categorie x £ andZBL are naturally equivalent. More pre-
cisely, f : Izgr = FG and g Iexr = GF are natural isomorphisms, where
f  Obj(ZBL) — Mor(ZBL) andg : Obj(L x £) — Mor(L x L) are as defined in
(2) and(3), respectively.

Proof. Let (b, h') : ({L,L") — (M, M’) € Mor(£ x £) and(x,x’) € L x L'. Then

G(F(h, k") (gL L/(x,x") = (F(h,h')(x,0) M2 (1,0, F(h, h")(0, x") M2 (0, 1))
((h(x), B'(0)) M2 (1, 0), (h(0), A’ (x")) M2 (0, 1))

((h(x) AL R(Q) A O), (h(0) AO, B (x") A" 1))
= ((h(x),0), (0, ' (x)))

gmm (h(x), h'(x"))

= gm.m (b, h)(x, x'),

i.e., the following diagram commutes, as required.

8L,L/
—

(L.L" G(F(L,L")
by = G(F(h, h")
(M, M") gmm G(F(M,M")

Next, letk : B — C € Mor(ZBL) andx € B. Then

F(G(K)(fe(x)) F(G(k)((x A211, x A201))

(k(x A211) A2 11, k(x A2 01) A2 01)
= (k(x) A2 11 A2 11, k(x) A2 01 A201)
= (k(x) A211, k(x) A201) = fe(k(x)),

i.e., the following diagram commutes, as required.

B -2 F®)

k| J F(G(k))
C — F(G(C))
fc
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Thus f andg are natural transformations betwelig andF G and betweeii,, » and
GF, respectively. Sincgg : B — F(G(B)) andg 4. : L xL" — G(F(L x L") are
isomorphismsf andg are natural isomorphisms. O

COROLLARY 11. The categorie®DL x DL andDBL are naturally equivalent.

Proof. By Theorems 4 and 10, the restrictions ¢f and g to Obj(DBL) and
Obj(DL x DL), respectively, are natural isomorphisms. O

The well known natural equivalence betweRg and the opposite category of bounded
Priestley space®S°P ([14, 15, 16], see also [6]) induces a natural equivalence between
the corresponding product categoriB£ x DL andPS°P x PS°P. Combined with the
natural equivalence of the above theorem, this gives a Priestley-style duality theorem for
interlaced bilattices.

COROLLARY 12. The category of distributive bilattice®B8L and the coproduct of
the category of bounded Priestley spadaS with itself are dually naturally equivalent
categories.

Proof. Let ® : DL — PS%and¥ : PSP — DL be the well-known functors and
v i Ipy > Wd andg¢ : Ipge — dW the well-known natural isomorphisms that
establish the dual natural equivalence betw2€randPS. Considerthe composed functors
(® x ®)G : DBL — PSP x PSPand F(¥ x W) : PSP x PSP — DBL. Let
B € Obj(DBL). (YposB). YNEG®B)) : G(B) = (¥ x ¥)(P x $)G(B) is anisomorphism
in DL x DL. Applying the functorF we get the isomorphism ((¥pose), YNEG®))) :
FG(B) » F(¥ xW)(dxd)G(B)inDBL. Finally, composing this with the isomorphism
fs : B—> FG(B) we get the isomorphism, iPBL,

F({(Y¥poss), YNEG®))) © fB : B = F(¥ x ¥)(P x &)G(B).

The collection of these isomorphisms for edk Obj(D5L) is clearly a natural isomor-
phism between the functoigg, and F(¥ x ¥)(® x ®)G. In a similar way we have
that

{(D x ®)(gw(p).w(pr) 0 (Pp, dpr) 1 (P, P') € Obj(PSP x PSP)}
is a natural isomorphism betweégp gor, psor and(® x ®)GF (¥ x W). O

Theorem 10 and Corollaries 11 and 12 have corresponding analogues for bilattices with
negation.

THEOREM 13. The categorie€ andZ5L-, are naturally equivalent.
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Proof. Given an interlaced bilatticB with negation, set
L(B) = POS(B),

and, given a bounded lattide = (L, A, v, 0, 1), let B(L), be as in Definition 3. The
functor F : £ — ZBL- is defined as followsFop; : Obj(L) — Obj(ZBL-) is given by

Fopj(L) = B(L), for everyL € Obj(L),

and, for allL,M € Obj(£) andh : L — M € Mor(L), Fmor(h) : B(L) — B(M) €
Mor(ZBL-) is given by

Fwmor(h)(x, y) = (h(x), h(y)), for every(x, y) € B(L).
Furthermore, we note that preserves surjections in the sense that, ifL — M is a
surjection then so ig'(h) : B(L) — B(M).

The functorG : ZBL- — L is defined by

Gobj(B) = L(B), for everyB € Obj(ZBL-),
and, for evenB, C € Obj(ZBL-) andk : B — C € Mor(ZBL-),

Gwmor (k) (x) = (k(x) A2 11, k(x) A2 01), for everyx € L(B).

G also preserves surjections in the obvious sense.
If we then definefg : B = B(L(B)) by

fa(x) = (x A211, x A2 0q), for everyx € B,
andg, : L = L(B(L)) by
gL(x) = (x, x), for everyx € L,
then, following the proof of Theorem 10, we obtain again a natural equivalence. [

COROLLARY 14. The categorie® L andDBL-, are naturally equivalent.

COROLLARY 15. The category of distributive bilattices with negatib¥8£—, and the
category of bounded Priestley spad@s are dually naturally equivalent.
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Subdirect irreducibility

As an easy application of Theorem 5 we obtain a simple characterization of the subdirectly
irreducible interlaced bilattices, see, e.g., [4].

THEOREM 16. Aninterlaced bilatticd is subdirectly irreducible if and onlyROS(B)
is a subdirectly irreducible lattice anNEG (B) is trivial or vice-versa.

Proof. Let B = (B, <1, <») be a subdirectly irreducible interlaced bilattice. From
the remark following the proof of Theorem 5 we haBe= POS(B)*™ x NEG(B)~. So
either POS(B)™ or NEG(B)~, and hence eithedPOS(B) or NEG(B), must be trivial.
Assume, without loss of generality, tHROS(B) is trivial. ThenB = NEG(B)~. Therefore
NEG(B)™ must be a subdirectly irreducible bilattice. BUEG(B) ™ has exactly the same
congruence lattice thidEG(B) has. SANEG(B)™ is a subdirectly irreducible bilattice if
and only ifNEG(B) is a subdirectly irreducible lattice, as required.

Conversely, by a similar argument, if oneRDS(B), NEG(B) is subdirectly irreducible
and the other is trivial, theB = B(POS(B), NEG(B)) is also subdirectly irreducibld]

COROLLARY 17. Aninterlaced bilatticeB is subdirectly irreducible if and only if there
exists a subdirectly irreducible lattide such thatB = L+ orB = L.

COROLLARY 18. TWO™ and TWQO™ are up to isomorphism the only subdirectly
irreducible distributive bilattices.

Theorem 16 and its second corollary can be reformulated for interlaced bilattices with
negation. It turns out that it is more convenient to prove the analog of Theorem 16 as a
corollary of the natural equivalence between the categdiesdZBL-. established in
Theorem 13. We thus obtain the following result of Romanowska and Trakul.

THEOREM 19. ([19], Corollary 4.6) An interlaced bilatticeB with negation is sub-
directly irreducible iff the latticeC(B) = POS(B) is subdirectly irreducible.

Proof. Let B € Obj(ZBL-) be subdirectly irreducible. Ldt = £(B) and assume, to
the contrary, thalt is not subdirectly irreducible, i.e., thathas a subdirect representation
h:L — [];c; Li, where none of the compositiopgh : L — L; is a lattice isomorphism.
Natural isomorphisms preserve products. Hence, by Theorem 13, the previously observed
fact that the functoF : £ — ZBL- preserves surjections, and the fact that direct products
are preserved under natural equivalence, we haveRbat : B(L) — B([[;c;Li) =
[1;c; B(L)) is a subdirect representation B{L) = B with none of the compositions
piF(h) : B(L) — B(L;) a bilattice isomorphism, contrary to the subdirect irreducibility
of B.
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ThusB subdirectly irreducible implieg€ (B) is subdirectly irreducible. A similar argu-
ment shows that, iE is subdirectly irreducible, then so &L ). HenceL(B) subdirectly
irreducible implieB (= BL(B)) is subdirectly irreducible. O

COROLLARY 20. ([19], Theorem 4.7) FOUR is up to isomorphism the only sub-
directly irreducible distributive bilattice with negation.

Proof. In view of the last part of Theorem & is a subdirectly irreducible distributive
bilattice with negation iff£(B) is a subdirectly irreducible distributive lattice. But the
two-element lattice is the only subdirectly irreducible distributive lattice, A¢®)) is the
two-element lattice ifB is FOUR. O

Join irreducible elements of interlaced bilattices

Based on our representation theorem for interlaced bilattices, we obtain, in this section,
a characterization of the lattices of join-irreducible elements, with respect to the second
ordering, of arbitrary interlaced bilattices.

The natural equivalence betweEB L andL x £ induces a natural equivalence between
the categorie€BL; andL; x Ls, i.e., the category of finite interlaced bilattices and the
cartesian square of the category of finite lattices. It also induces one between the categories
DBL; andDLs x DL, i.e., the category of finite distributive bilattices and the cartesian
square of the category of finite distributive lattices. When the latter equivalence is combined
with the cartesian square of Birkhoff's [5] natural equivalence betwi2én andPOf P
where PO is the category of finite posets and order preserving mappings, we obtain
a natural equivalence betwe@B.L; and PO x PO = (POf U POr)°P. Under
this equivalence a finite, distributive bilatti@&is mapped into the poset of itsy-join-
irreducible elements.

LetL = (L, <) be a bounded lattice. Recall that an elemerd L is called<-join-
irreducible, or simply join-irreducible when the lattice is clear from context, if, for all
v,z € L,x =y Vvzimpliesx =y orx = z. The set of all nonzero join-irreducibles bf
is denoted by/ (L) and the subposet @/ (L), <) of L is denoted byl(L).

LetB = (B, <1, <2) be a bilattice. An element € B is calledpositive(resp.negative
<s-join-irreducibleif it is positive (resp. negative) and join-irreducible with respect to the
<»-ordering. We denote by2+(B) (resp. J, (B)) the set of all nonzero positive (resp.
negative)<o-join-irreducible elements d8, and bng(B) (resp. J; the corresponding
partially ordered set with the partial ordering inherited<y. Moreover, J>(B) denotes
the set of all<,- join-irreducible elements d, andJ2(B) is the corresponding poset.

LEMMA 21. LetB be an interlaced bilattice.
1. J;(B) = J(POS(B)) and J, (B) = J(NEG(B)).

2. {J(B), J, (B)} is a bipartition of J2(B) — {02}.
3. If B has negationJ; (B) = J; (B).
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Proof. Part 1 is an immediate consequence of Lemma 7.
Supposex € B is both positive and negative. Then by Parts 1 and 2 of Lemma 7
respectively we haves0<; x and @ >1 x, i.e.,x = 0o. SoJ;(B) andJ, (B) are disjoint.
ClearlyJ>(B) 2 J, (B)UJ, (B). Forthe opposite inclusion, assume® x ¢ J; (B)U
J5 (B). By (1) we havex = (x A2 11) V2 (x A2 01). By Lemma 7, since is nonpositive,
x # x A2 11, and, since it is also nonnegative# x A2 01. Sox = (x A211) V2 (x A2 01)
is a propervz-decomposition ok, and hence ¢ J»(B). This gives Part 2. The last part of
the lemma is an immediate consequence of the fact that the |aR@868) andNEG (B)
are isomorphic under negation. O

LetP = (P, <) andQ = (Q, C) be two disjoint partially ordered sets. Define tit
of P, denoted byP,, by P, = (P U {0}, <), where O0¢ P andx < y in P, if and only if
x = 0orx < yinP. Define thedisjoint unionP [+/ Q = (P U Q, <) to be the partially
ordered set withr < y if and only if eitherx, y € P andx < yorx,y € Q andx C y.

Given two partially ordered seBandQ, define theseparated surof P andQ, denoted
P@®, Q,to be the poseP ¢, Q = (P' |1 Q')., whereP’, Q' are canonically determined
isomorphic copies oP, Q, respectively, such tha’ N Q' = @.

Finally, observe that, by Lemma 213(B) = 31 (B) &, J; (B).

THEOREM 22. 1.LetB be a (finite) interlaced bilattice. Then there exist (finite)
posets, Q such that

J2(B) =P &1 Q.

2. Conversely, leP, Q be finite posets. Then there is a finite interlaced bilatBcgich
that

P&, Q= JxB).

Proof. (1). Suppose thaB = (B, <1, <) is a finite interlaced bilattice. We have
already observed thak(B) = J2+(B) @1 J,(B) = J(POSB)) @1 J(NEG(B)). Set
P = J(POS(B)) andQ = J(NEG(B)). Thend2(B) £ P&, Q.

(2). LetP, Q be finite posets. LaD(P), O(Q) be the lattice of order-ideals (i.e., down
sets) ofP, Q, respectively. Th& = J(O(P)) andQ = J(O(Q)). Next, we construct the
bilattice B = B(O(P), O(Q)). By Corollary 8 and Lemma 21 we haxlg‘(B) = P and
J, (B) = Q. ThereforeP &, Q = J»(B). m|

The correspondence between finite distributive bilattices and pairs of finite posets, as
described in Theorem 22, gives rise to a natural equivalence between the category of finite
distributive bilattices and a subcategory of the category of finite posets. We omit the details.
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COROLLARY 23. 1.LetB be a (finite) interlaced bilattice with negation. Then
there exists a (finite) pos€tsuch that

J2(B)=P®, P

2. Conversely, leP be a finite poset. Then there is a finite interlaced bilattice with
negationB such that

P&y P=JaB).

We note that part 2 of Theorem 22 can be extended to the infinite case if one considers
completely join-irreducible elements with respect to the second ordering, as opposed to just
join-irreducibles.
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