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In previous work, the limit structure of positive and negative finite threshold boolean networks without
inputs (TBNs) over the complete digraph Kn was analyzed and an algorithm was presented for computing
this structure in polynomial time. Those results are generalized in this paper to cover the case of arbitrary
TBNs over Kn. Although the limit structure is now more complicated, containing, not only fixed-points
and cycles of length 2, but possibly also cycles of arbitrary length, a simple algorithm is still available for
its determination in polynomial time. Finally, the algorithm is generalized to cover the case of symmetric
finite boolean networks over Kn.
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1. Introduction

Finite Threshold Boolean Networks without inputs

(TBNs) are special cases of the Random Boolean

Networks (RBNs) (also called Kauffman nets) that

were introduced in Ref. 15. See also Ref. 18 for a

more recent exposition. An RBN is a system of N

automata with two possible states of a Boolean vari-

able. Each of the automata is connected randomly

with exactly K neighbors. The state of each automa-

ton is updated by means of a Boolean function, also

randomly chosen among all Boolean functions with

K arguments. Once the choice of the neighborhoods

and the functions have been made, they remain

fixed. TBNs are the special cases of RBNs where

all randomness has been removed and the func-

tions are taken to be Boolean threshold functions.

RBNs have been extensively studied with respect to

many of their properties. For instance, Refs. 4 and

5 study some statistical properties of their behavior.

Kauffman, in Refs. 16 and 17, observed that RBNs

may exhibit either an orderly or a chaotic behavior

depending on the value of the parameter K, deter-

mining the connectivity of the network. The critical

value of that parameter was numerically discovered

by Kauffman and, later, analytically determined in

Refs. 7 and 8. Other aspects of the behavior of RBNs
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that have been studied in the literature include

the quantification of the mutual information they

contain at the order-disorder phase transition,19

control of the chaotic phase in RBN’s,20,21 and evo-

lution of their topology with time.6 Many other vari-

ants of RBNs have also been considered,12,13 includ-

ing versions where external inputs are also allowed.1

Boolean networks are also special cases of Finite Au-

tomata Networks,11–9 in which local automata may

each have any number of states.

A Finite Boolean Network (FBN) N =

〈G, {fi}i∈V 〉 (see also Ref. 14) consists of a digraph

G = 〈V, E〉 together with a collection {fi}i∈V of

functions fi : {0, 1}V → {0, 1}, i ∈ V, such that fi

only depends on those j, such that 〈j, i〉 ∈ E. The

fi’s are called the local update functions of the

FBN. The global update function f : {0, 1}V →

{0, 1}V of the FBN N is the function given by

f(x)i = fi(x) , for all x ∈ {0, 1}V , i ∈ V .

N is said to be a symmetric FBN if fi is a sym-

metric function in those j’s with 〈j, i〉 ∈ E, for all

i ∈ V, i.e., if fi is invariant under permutations of

the inputs or, equivalently, if it depends only on the

number of 1’s among its arguments.

The state space S(N) of the FBN N is the di-

graph with set of vertices {0, 1}V and edges all pairs

〈x, y〉 ∈ ({0, 1}V )2, such that y = f(x). A point x is

said to be a fixed-point if x = f(x) and a sequence

of points x1, . . . , xm is said to form a limit cycle

of length m if, for all 1 ≤ i ≤ m − 1, xi+1 = f(xi)

and x1 = f(xm). Thus fixed points are limit cycles

of length 1. All points in limit cycles are collectively

termed limit points.

The focus in this paper will be on a special class

of FBNs. This class is a subclass of neural or thresh-

old networks14 and it was introduced in Ref. 22

(under a different name; see below) as an alterna-

tive platform to the sequential dynamical systems,2,3

for modelling and analytically studying properties of

computer simulations.

A Finite Threshold Boolean Network with-

out inputs (TBN) (introduced in Ref. 22 under

the name Threshold Agent Network) is an FBN

A = 〈G, {fi}i∈V 〉, whose functions fi are inte-

ger threshold functions, i.e., fi, i ∈ V, is deter-

mined by an integer ti, in the following way, for all

x ∈ {0, 1}V ,

fi(x) =

{

1, if |{j : 〈j, i〉 ∈ E and xj = 1}| ≥ ti

0, otherwise
,

if ti ≥ 0, and

fi(x) =

{

0, if |{j : 〈j, i〉 ∈ E and xj = 1}| ≥ −ti

1, otherwise
,

if ti < 0.

Note that negative thresholds are also allowed

which correspond to inhibitory rather than exciting

behavior.

Since the fi’s are completely determined by the

thresholds ti, the TBN A is most often denoted by

A = 〈G, t〉, where t = 〈ti : i ∈ V 〉 is the sequence of

integer thresholds. A TBN A is said to be positive

if, for all i ∈ V , 0 ≤ ti ≤ |V | and it is said to be

negative if, for all i ∈ V , −|V | ≤ ti ≤ −1.

In Ref. 23 the limit cycle structure of positive and

negative TBNs over the complete digraph Kn was de-

termined and a polynomial algorithm was provided

for computing it. More specifically, it was shown that

positive TBNs over Kn have only fixed-points, i.e.,

no limit cycles of length greater than 1, and a formula

for the number of these fixed-points was given. In the

case of negative TBNs, it was shown that they only

have limit cycles of lengths 1 and 2 and formulas were

also given for computing their number in polynomial

time. These results are interesting because they pro-

vide polynomial time prediction tools for the number

of limit cycles, whereas the brute force approach of

computing the entire state space obviously needs ex-

ponential time. Thus, even though the entire state

space computation works relatively fast in an up-to-

date personal computer for up to approximately 20+

vertex TBNs, from then on, it is hopeless to compute

the limit cycle structure without a polynomial time

prediction tool.

In Sec. 2, it is shown that the limit cycle struc-

ture of arbitrary TBNs over the complete digraph

Kn is more complicated than the ones of positive

and negative TBNs. Namely, for each k, a TBN is

constructed over K2k+2 whose state space contains a
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k-cycle. However, in Sec. 3, a polynomial time algo-

rithm for computing the cycle structure is also pre-

sented, this time for arbitrary TBNs over Kn. This

algorithm is a generalized version of the two algo-

rithms presented in Ref. 23 that work only for posi-

tive and negative TBNs over Kn.

In Sec. 4, the algorithm for computing the limit

cycle structure of TBNs over Kn is generalized to

obtain an algorithm that computes the limit cycle

structure of symmetric FBNs over Kn. This algo-

rithm is very similar to the previous one but the price

to be paid for the increased generality is quadratic

instead of linear time in terms of the number n of

vertices. However, they both require linear time in

terms of the input length.

Finally, it is noted that the previous two algo-

rithms may be calibrated to work for the case of

sequential dynamical systems (SDSs), as introduced

in Ref. 3, over the complete graph where all local

update functions are symmetric. Some preprocessing

may be required to compute the global update func-

tion from the given local update functions and the

update schedule but, in principle, the same technique

may be adjusted to predict the number of limit cycles

of each length without running the SDS.

2. TBNs over Kn with Arbitrarily

Large Limit Cycles

It was shown in Ref. 23 that positive TBNs over Kn

have only fixed-points and that negative TBNs over

Kn have only fixed-points and cycles of length 2, but

no limit cycles of length 3 or greater. In this section,

given a positive integer k ≥ 4, a TBN is constructed

over K2k+2 that has a limit cycle of length k. In

particular, this shows that TBNs over Kn may have

limit cycles of arbitrarily large length.

Let k ≥ 4 be a positive integer. Let A be the

TBN over K2k+2 which has the following sequence

of thresholds

t = 〈−2k,

k
︷ ︸︸ ︷

−2k + 1, . . . , −2k + 1 ,

k−1
︷ ︸︸ ︷

k + 1, k + 2, . . . , 2k − 1, 2k, 2k〉 .

It is not difficult to check that the state space

of this TBN contains the following limit cycle of

length k

k+1
︷ ︸︸ ︷

11 . . . 1

k+1
︷ ︸︸ ︷

00 . . . 0

↓
k+1

︷ ︸︸ ︷

11 . . . 1 1

k
︷ ︸︸ ︷

00 . . .0

↓
...

↓
2k−1

︷ ︸︸ ︷

11 . . .1 000

↓

1

k
︷ ︸︸ ︷

00 . . . 0

k−1
︷ ︸︸ ︷

11 . . . 1 00

↓
k+1

︷ ︸︸ ︷

11 . . . 1

k+1
︷ ︸︸ ︷

00 . . . 0

which proves the assertion.

For a concrete example of the construction, con-

sider the case k = 5 and the TBN over K12 with

sequence of thresholds

t = 〈−10, −9, −9, −9, −9, −9, 6, 7, 8, 9, 10, 10〉 .

The cycle above is, in this case, the 5-cycle

111111000000

↓

111111100000

↓

111111110000

↓

111111111000

↓

100000111100

↓

111111000000

3. Limit Cycles of TBNs over Kn

In this section, a linear time algorithm is provided for

computing the number of limit cycles of each length

in the state space of a TBN over Kn, given the se-

quence t = 〈ti : i ∈ V 〉 of its thresholds.

The key observation that validates this algorithm

is that, given the current state of a TBN over Kn,

the next state is uniquely determined by the num-

ber of 1’s in the current state. Thus, in every limit

cycle (with length at least 2), no two states may have
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the same number of 1’s. Moreover, due to the same

reason, even different limit cycles may not contain

states with the same number of 1’s, since these may

only belong to the same connected components of

the state space. Finally, noting that the number of

1’s in a state equals the number of vertices with neg-

ative thresholds that are greater in absolute value

than the number of 1’s in the previous state plus the

number of vertices with positive thresholds that are

less than or equal to the number of 1’s in the previous

state, the following algorithm computes the number

of limit cycles of each length in the state space of a

TBN over Kn.

In this algorithm three array structures N, S and

Next will be used. N[t] will contain the number of ver-

tices whose threshold value is equal to t, for t = −n

to n. S[t] will contain, for t negative, the number of

vertices whose thresholds are less than or equal to t

and, for t non-negative, the number of vertices whose

thresholds are non-negative and less than or equal to

t. Finally, Next[i] denotes the number of 1’s that are

contained in the state succeeding a state containing

i 1’s. Pseudo-code for the algorithm follows:

Algorithm for Computing the Limit Cycle

Structure of a TBN over Kn

Input: Sequence of thresholds

t = 〈t1, t2, . . . , tn〉, with −n ≤ ti ≤ n, for all

i = 1, 2, . . . , n.

// N[t] is set to contain the number of

vertices whose threshold value is equal to

t, for t = −n to n. So N[t] is initialized to

0 and

then increased by 1 each time a threshold

is found whose value is t. //

For i = −n to n, N[i] := 0;

For i = 1 to n, N[ti] := N[ti] + 1;

// S[t] is set to contain, for t negative,

the number of vertices whose thresholds are

less than or equal to t and, for t

non-negative, the number of vertices whose

thresholds are non-negative and less than

or equal to t.//

S[0] := N[0]; S[−n] := N[−n];

For i = −n + 1 to −1, S[i] := S[i − 1] + N[i];

For i = 1 to n, S[i] := S[i − 1] + N[i];

// For i = 0, 1, . . . , n Next[i] denotes the

number of 1’s that are contained in the

state succeeding a state containing i 1’s.

Note that this is a well-defined function,

since we are dealing with a TBN over Kn. //

For i = 0 to n − 1, Next[i] := S[i] + S[−i − 1];

Next[n] = S[n];

Output: Output the number of limit cycles

of each length of the

finite dynamical system over 0, . . . , n with

dynamics function Next.

Based on the observations listed at the beginning

of the current section, it is not difficult to check that

this algorithm correctly enumerates the number of

limit cycles of each length of the TBN with sequence

of thresholds T = 〈t1, . . . , tn〉, with −n ≤ ti ≤ n,

for all i = 1, . . . , n. Moreover, because only unnested

for-loops over the number of vertices occur with bod-

ies of constant time complexity, the algorithm can

be carried out in linear time in the size of the input.

This is significant because the limit cycle structure

may be predicted in linear time, whereas “running”

the TBN would obviously require exponential time

in terms of the input.

For a concrete example consider the TBN A over

K8 with sequence of thresholds

t = 〈−2, −1, −1, −1, −1, 3, 5, 6〉 .

Then, the following table shows the contents of the

arrays N, S and Next after the execution of the

algorithm.

i −8 −7 −6 −5 −4 −3 −2

N[i] 0 0 0 0 0 0 1

S[i] 0 0 0 0 0 0 1

Next[i]

i −1 0 1 2 3 4 5 6 7 8

N[i] 4 0 0 0 1 0 1 1 0 0

S[i] 5 0 0 0 1 1 2 3 3 3

Next[i] 5 1 0 1 1 2 3 3 3

The state space {0, 1, . . . , 8} of the finite dynam-

ical system with function Next is given in Fig. 1. It

has a single fixed-point and a limit cycle of length 3.

This entails that the state space of the original TBN

A also has a single fixed-point and a limit cycle of

length 3. A complete picture of that state space is



June 24, 2004 14:25 00194

On the Limit Cycle Structure of Threshold Boolean Networks 213

Fig. 1. The state space of the finite dynamical system
with function Next.

Fig. 2. State Space of the TBN A.

depicted in Fig. 2. The limit points are the black

points in the figure.

4. Limit Cycles of Symmetric FBNs

over Kn

The basic idea of the algorithm of Sec. 3 may be

used to provide an algorithm for computing the num-

ber of limit cycles of each length of any symmetric

FBN over Kn. This generalizes the case dealt with in

Sec. 3, since threshold functions are obviously sym-

metric functions but the converse statement is not

true in general. The following is an algorithm that

covers the case of FBNs over Kn with symmetric lo-

cal update functions. Note that such a function fi,

1 ≤ i ≤ n, may be efficiently represented by a bi-

nary array 〈tij : 0 ≤ j ≤ n〉 of length n + 1 that

contains in its jth position the value of the function

when exactly j of its n input variables are equal to

1, 0 ≤ j ≤ n.

Algorithm for Computing the Limit Cycle

Structure of a Symmetric FBN over Kn

Input: An n × (n + 1) binary array

〈tij : 1 ≤ i ≤ n, 0 ≤ j ≤ n〉 with tij being the

value of fi when exactly j of its input

variables are equal to 1.

// N[t] is set to contain the number of

vertices whose local update functions take

the value 1 when exactly t of their input

variables have the value 1, for t = 0 to n.

So N[t] is initialized to 0 and then

increased by 1 each time a local update

function is found whose value is 1 when

exactly t of its input variables have the

value 1.//

For i = 0 to n, N[i] := 0;

For j = 0 to n, for i = 1 to n, if tij = 1

then N[j] := N[j] + 1;

// For i = 0, 1, . . . , n Next[i] denotes the

number of 1’s that are contained in the

state succeeding a state containing i 1’s.

Note that this is a well-defined function,

since we are dealing with a Symmetric FBN

over Kn. //

For i = 0 to n, Next[i] := N[i];

Output: Output the number of limit cycles

of each length of the

finite dynamical system over 0, . . . , n with

dynamics function Next.

This algorithm correctly computes the number of

limit cycles of each length of a FBN over Kn with

symmetric local update functions. Note that the al-

gorithm in this case is conceptually as simple as

in the case of TBNs over Kn, but the price for its

increased applicability is that it runs in quadratic

rather than in linear time in terms of the number n

of vertices, although it is still linear in terms of the

input length. This is because, in the present case, the

input, being more general, requires quadratic space

in terms of the number of vertices for its representa-

tion. Nevertheless, it is still a polynomial prediction

algorithm as opposed to the exponential algorithm

that computes the entire state space in detail.

For a concrete example, consider the symmet-

ric FBN over K5 with the symmetric local update
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Fig. 3. The state space of the finite dynamical system
with function Next.

functions given in the following table in the form of

the arrays 〈tij : 0 ≤ j ≤ 5〉, 1 ≤ i ≤ 5.

0 1 2 3 4 5

f1 0 1 0 1 0 0

f2 1 1 0 0 1 0

f3 0 1 0 1 0 1

f4 0 0 0 1 1 1

f5 1 1 0 0 1 0

After running the algorithm on this symmetric FBN,

the values of N and Next are as follows

i 0 1 2 3 4 5

N[i] 2 4 0 3 3 2

Next[i] 2 4 0 3 3 2

The state space of the finite dynamical system with

function Next is given in Fig. 3.

It has a single fixed-point and a limit cycle of

length 2. Thus, the state space of the original sym-

metric FBN also has a single fixed-point and a limit

cycle of length 2. It is depicted in Fig. 4. The labels

in the figure are meant to exhibit the relation of this

actual state space to the state space output by the

algorithm and depicted in Fig. 3. They show how

Fig. 4. The state space of the symmetric FBN.

many 1’s are contained in the states at each level of

the figure.

Finally, we note that the algorithm developed

above may be used for computing in polynomial time

the numbers of limit cycles of each length of a se-

quential dynamical system (SDS)3 over the complete

graph in which all functions are symmetric functions

of the input. Note that this requirement was present

in the original definition of SDSs. Thus, the algo-

rithm that was provided in this paper, appropriately

modified for SDSs, would provide a complete solution

to the polynomial prediction problem of the limit

structure of an SDS over the complete graph. For

more details on SDSs the interested reader is referred

to the papers in Refs. 2 and 3.
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