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1. Introduction

In their seminal “Memoirs monograph” [8], Blok and Pigozzi, following in the
footsteps of Czelakowski [13] and their own previous work [7], made for the
first time precise the notion of an algebraizable sentential logic. Since then, a
bulk of work extending theirs has appeared [3, 9, 10, 17, 19, 21, 22, 25, 26, 27,
32] that has come to be collectively known under the term abstract algebraic

logic. For an overview of this area of algebraic logic the reader is referred to
[18]. Two have been the main directions of development of abstract algebraic
logic. One is the study of the algebraization process itself and the other is the
extent to which metalogical properties are related to algebraic properties via
algebraizability, or, more generally, whether they are preserved or not under
equivalence of deductive systems. In [10, 16, 21], e.g., a detailed study of the
deduction-detachment property for deductive systems is undertaken. Some
other examples include [14] that studies the amalgamation property and [15]
on the Maehara interpolation property. Very recently, in [34, 36] the notion
of algebraizability for deductive systems has been extended to institutions
[23, 24] and π-institutions [20]. To cover this more general framework, equiv-
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alence of deductive systems, as defined in [10], has been extended in [34, 35]
to the notion of deductive equivalence for π-institutions. This more abstract
framework handles more effectively multi-signature logics with quantifiers,
some of which could also be handled in the deductive system framework but
in a rather unsatisfactory ad-hoc way (see the discussion in [36]). The gen-
eralized algebraizability framework of [34, 35, 36] is referred to as categorical

abstract algebraic logic because of its extensive use of categorical algebraic
rather than universal algebraic techniques. It is only natural that the two
main directions of research in abstract algebraic logic, mentioned above, will
be in the main focus of categorical abstract algebraic logic as well, the start-
ing point being relations between π-institutions or institutions like the ones
introduced in [35]. The first direction of research, i.e., the study and the
analysis of the algebraization process itself in the context of π-institutions,
has been pursued further in [35, 36]. Here, some aspects and properties
pertaining to the second direction of research are developed.

Various metalogical properties of institutions have already been defined
in [33]. Some of those are revisited in this paper and reformulated, in a
somewhat nonstandard way, in the π-institution framework and some new
ones are defined. Then the effect that deductive equivalence has on these
properties is explored.

Some of the basic notions that are necessary to understand the proofs
in the paper are now recalled. The reader is referred to [4] and [30] for all
unexplained categorical notation.

Definition 1.1. [23, 24] An institution I = 〈Sign,SEN,MOD, |=〉 consists
of

(i) a category Sign whose objects are called signatures,

(ii) a functor SEN : Sign → Set, from the category Sign of signatures
into the category Set of sets, called the sentence functor and giving,
for each signature Σ, a set whose elements are called sentences over

that signature Σ or Σ-sentences,

(iii) a functor MOD : Sign → CATop from the category of signatures into
the opposite of the category of categories, called the model functor

and giving, for each signature Σ, a category whose objects are called
Σ-models and whose morphisms are called Σ-morphisms and

(iv) a relation |=Σ ⊆ |MOD(Σ)| × SEN(Σ), for each Σ ∈ |Sign|, called Σ-
satisfaction, such that for every morphism f : Σ1 → Σ2 in Sign the
satisfaction condition

m2 |=Σ2
SEN(f)(φ1) if and only if MOD(f)(m2) |=Σ1

φ1

holds, for every m2 ∈ |MOD(Σ2)| and every φ1 ∈ SEN(Σ1).



CAAL: Metalogical Properties 371

The defining categories and functors of an institution together with their
interconnections are illustrated by the following diagram:

MOD@@@R

Set

Sign

SEN
�

���

CATop

|=

Furthermore, the satisfaction condition can be given pictorially as follows:
If f : Σ1 → Σ2 is a morphism in Sign, then,

MOD(Σ2) SEN(Σ2)
|=Σ2

MOD(Σ1) SEN(Σ1)
|=Σ1

6
MOD(f)

?

SEN(f)

Given an institution I = 〈Sign,SEN,MOD, |=〉,Σ ∈ |Sign|,Φ ⊆ SEN(Σ)
and M ⊆ |MOD(Σ)|, we define

Φ∗ = {m ∈ |MOD(Σ)| : m |=Σ φ for every φ ∈ Φ}
and

M∗ = {φ ∈ SEN(Σ) : m |=Σ φ for every m ∈M}.

Moreover we set Φc = Φ∗∗ and M c = M∗∗.

From now on when the “c” symbol is used, its scope will be the largest
possible well-formed expression to its left. For instance, in SEN(f)(Φ)c the
scope of “c” is SEN(f)(Φ) and not just (Φ), and in SEN(f)(SEN(f)−1(Φc))c

the scope of the second “c” is SEN(f)(SEN(f)−1(Φc)) and not just SEN(f)−1

(Φc).
Goguen and Burstall [24], prove the following very useful lemma that is

used below to obtain the π-institution associated with a given institution I.

Lemma 1.2. [Closure Lemma] Let I = 〈Sign,SEN,MOD, |=〉 be an institu-

tion, f : Σ1 → Σ2 ∈ Mor(Sign) and Φ ⊆ SEN(Σ1). Then SEN(f)(Φc) ⊆
SEN(f)(Φ)c.

Prototypical examples of institutions are provided by the well-known in-
stitutions of equational and of first-order logic. Several versions of these in-
stitutions are available and described in some detail in the literature. In [23],
Section 2, an institution for multi-sorted equational logic is presented. Sev-
eral other examples, including an institution for first-order logic, are given
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in [23], Section 3. These examples are further elaborated on in Appendix A
of [24]. Variants of these two institutions, that are more suitable for alge-
braization purposes in the context of categorical abstract algebraic logic, are
outlined in [36]. On the one hand, these versions are dealing only with the
single-sorted case but, on the other, allow for substitutions of terms for basic
operation symbols and of formulas for basic relation symbols, respectively,
whereas, the versions of [23] only allow basic operation symbols to be sub-
stituted by basic operation symbols and the same for relation symbols. The
versions of [36] are described in more detail in [37] and [38], respectively.

Two other, not so well-known, institutions will be briefly described here
to provide additional examples to the ones mentioned above to illustrate the
definition. The first is borrowed from the categorical theory of sketches. For
definitions and other information pertaining to sketches the reader is referred
to the following rich introductions and references [4, 5, 11, 12, 6, 1, 2]. The
second is borrowed from the theory of computation and, more specifically,
describes an institution formalizing changes of alphabets and states in finite
state automata that preserve acceptance of strings. For relevant definitions
in the theory of finite state automata the reader is referred to [28, 29, 31].

First Example: Sketch Logic

A sketch S = 〈G(S), D(S), L(S), C(S)〉 consists of a graph G(S), a set
D(S) of diagrams in G(S), a set L(S) of cones in G(S) and a set C(S) of
cocones in G(S). A sketch morphism f : S1 → S2 from a sketch S1 to a
sketch S2 is a morphism f : G(S1) → G(S2) of graphs that takes diagrams in
D(S1) to diagrams in D(S2), cones in L(S1) to cones in L(S2) and cocones
in C(S1) to cocones in C(S2).

Obviously, identity graph morphisms act as identity sketch morphisms
and the composition of two sketch morphisms is again a sketch morphism.
Therefore, sketches with sketch morphisms between them form a category,
called the category of sketches and denoted by Skt.

Given a category C one may construct a sketch SK(C) by taking the
underlying graph of the category as the graph of this sketch and stipulating
that its diagrams be all the commutative diagrams in C, its cones be all
the limit cones in C and its cocones be all colimit cocones in C. Moreover,
given a limit and colimit preserving functor F : C1 → C2, one obtains a
sketch morphism SK(F ) : SK(C1) → SK(C2), since the diagram condition
is automatically satisfied and the cone and cocone conditions may be de-
rived easily by the continuity and cocontinuity of F. This defines a functor
SK : Cat→ → Skt from the category of categories with limit and colimit
preserving functors into the category of sketches.
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The category of signatures, denoted SLSig, of the institution of Sketch
Logic will now be defined. In order to do this, we state first a well-known
theorem [4].

Theorem 1.3. Let S be a sketch. Then there is a category ThS and a

sketch morphism ηS : S → SK(ThS) such that, for any sketch morphism

f : S → SK(C), there is a unique up to natural isomorphism limit and

colimit preserving functor f ∗ : ThS → C, such that the following diagram

commutes

S SK(ThS)-ηS

f
@

@
@

@R
SK(C)

?

SK(f∗)

Motivated by this theorem, we will identify functors in Cat→ that are
naturally isomorphic. Furthermore, from now on we will write f : S1 ⇁ S2 to
denote a sketch morphism f : S1 → SK(ThS2). Given two such morphisms
f : S1 ⇁ S2 and g : S2 ⇁ S3 their composition g ◦ f : S1 ⇁ S3 is defined to
be the sketch morphism g ◦ f = SK(g∗)f.

S2 SK(ThS2)-ηS2

g
@

@
@

@R
SK(ThS3)

?

SK(g∗)

Then it is not hard to prove that if f : S1 ⇁ S2 and g : S2 ⇁ S3 are sketch
morphisms, we have SK(g∗)SK(f∗) ∼= SK((SK(g∗)f)∗, since both of these
make the following diagram commute:

S1 SK(ThS1)-ηS1

f
@

@
@

@R
SK(ThS2)

?

SK(f∗)

S2
-ηS2

g
@

@
@

@R
SK(ThS3)

?

SK(g∗)

S3
-
ηS3

Having this property at hand, it is not hard to show that the composition
◦ is associative, i.e., given three morphisms f : S1 ⇁ S2, g : S2 ⇁ S3 and
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h : S3 ⇁ S4, we have (h◦ g)◦f ∼= h◦ (g ◦f), and that, moreover, ηS : S ⇁ S
acts as an identity. Thus, SLSig having as collection of objects |Skt| and
as collections of morphisms

SLSig(S1,S2) = {f : S1 ⇁ S2 : f ∈ Skt(S1,SK(ThS2))}

for all S1,S2 ∈ |Skt|, with composition ◦ and S-identity ηS (identifying
morphisms that are naturally isomorphic) is a category. It will serve as the
signature category of the institution SKL of sketch logic.

Next, define the sentence functor SLSEN : SLSig → Set as follows. At
the object level, for every S ∈ |Skt|, we define SLSEN(S) to be the set of
all diagrams, cones and cocones in ThS. Thus SLSEN(S) = DCC(ThS),
where DCC(C) denotes the collection of all diagrams, cones and cocones
in the underlying graph of the category C and, for a sketch S, DCC(S) =
D(S)∪L(S)∪C(S). We call a δ ∈ SLSEN(S) an S-sentence. Note that, for
a category C, DCC(SK(C)) ⊆ DCC(C), since the first contains only com-
mutative diagrams, limit cones and colimit cocones in C whereas the second
contains all diagrams, cones and cocones in C, regardless of whether they
are commutative, limiting or colimiting, respectively. At the morphism level,
given f : S1 ⇁ S2 ∈ Mor(SLSig), we define SLSEN(f) : SLSEN(S1) →
SLSEN(S2) by letting

SLSEN(f)(δ) = f ∗(δ).

SEN(f) is well-defined and it is not difficult to see that it is a functor.

The model functor SLMOD : SLSig → CATop of the institution of
sketch logic is described next. At the object level, given S ∈ |Skt|, the
category SLMOD(S) has as collection of objects the collection of all models
M : S → SK(C) of the sketch S in a category C and as collections of
morphisms SLMOD(S)(M1,M2) all natural transformations α : M1 → M2,

for all M1,M2 : S → SK(C). These are G(S)-indexed collections of C-
morphisms {αn : n ∈ G(S)} such that, for all f : n0 → n1 ∈ G(S),

M2(n0) M2(n1)-
M2(f)

M1(n0) M1(n1)-M1(f)

?

αn0

?

αn1

commutes in C. In SLMOD(S) composition of α : M1 →M2, β : M2 →M3

is defined as usual by (βα)n = βnαn, for all n ∈ G(S), and identity natural
transformations act as identities. For SLMOD at the morphism level, let
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f : S1 ⇁ S2 ∈ Mor(SLSig). SLMOD(f) : SLMOD(S2) → SLMOD(S1) is
the functor defined as follows: Given M : S2 → SK(C) ∈ |SLMOD(S2)|,

SLMOD(f)(M) = SK(M ∗)f

SK(C)

SK(M∗)f
@

@
@

@R

S1 SK(ThS2)-f S2
�ηS2

?

SK(M∗) M

�
�

�
�	

and, given α : M1 →M2 ∈ Mor(SLMOD(S2)),SLMOD(f)(α) : SK(M ∗
1 )f →

SK(M∗
2 )f is given by

SLMOD(f)(α) = SK(α∗)f,

S2 SK(ThS2)-ηS2

M1

@
@

@
@

@
@@R

M2

@
@

@
@

@
@@R

SK(C)
?

M∗
1

?

M∗
2

where α∗ : M∗
1 → M∗

2 is the unique up to a natural isomorphism natural
transformation, such that SK(α∗)ηS2

= α.

SLMOD : SLSig → CATop, defined as above is a functor.
Finally, define SKL = 〈SLSig,SLSEN,SLMOD, |=〉 by letting , for every

S ∈ |SLSig|, |=S⊆ |SLMOD(S)| × SLSEN(S) be defined by

M |=S δ iff M∗(δ) ∈ DCC(SK(C)),

for all M ∈ |SLMOD(S)| and δ ∈ SLSEN(S). Given f : S1 ⇁ S2 ∈
Mor(SLSig),M ∈ |SLMOD(S2)| and δ ∈ SLSEN(S1), it may be shown
that

SLMOD(f)(M) |=S1
δ iff M |=S2

SLSEN(f)(δ).

Hence SKL is an institution, called the institution of sketch logic.

Second Example: Finite State Automata

In this section λ denotes the empty string. Given a set X, let X ∗ be the
set of all finite strings in the alphabet X, including the empty string λ.

Concatenation · : X∗×X∗ → X∗ on X∗ is defined as usual. Moreover, given
two sets X,Y and a map f : X → Y ∗, define f ∗ : X∗ → Y ∗ as the map
extending f on strings.



376 G. Voutsadakis

The category of signatures FASig of the institution of finite state au-
tomata is the category with collection of objects |Set| and morphisms f :
X ⇁ Y all set maps f : X → Y ∗. Given f : X ⇁ Y, g : Y ⇁ Z ∈
Mor(FASig), composition is defined by g ◦ f = g∗f.

The sentence functor FASEN : FASig → Set sends an object X ∈
|FASig| to the set X∗ and a morphism f : X ⇁ Y ∈ Mor(FASig) to the
set map FASEN(f) = f ∗ : FASEN(X) → FASEN(Y ).

To define the model functor FAMOD : FASig → CATop the following
preliminary definitions are needed.

LetX ∈ |Set|. By anX−automaton we mean a pair 〈〈Q,Y, q0, δ, A〉, f〉,
where Q,Y ∈ |Set|, q0 ∈ Q is the initial state of the automaton, δ :
Q×Y → Q is a function, called the transition function of the automaton,
A ⊆ Q is the set of accepting states of the automaton and f : X ⇁ Y ∈
Mor(FASig).

Given an X−automaton 〈〈Q,Y, q0, δ, A〉, f〉, let δ∗ : Q× Y ∗ → Q be the
function that uniquely extends the transition function from letters to strings.
This function gives the transition “in many steps” of the automaton and may
be defined formally by induction on the length of a string.

Let X ∈ |Set| and 〈〈P, Y, p0, γ, A〉, f〉, 〈〈Q,Z, q0, δ, B〉, g〉 be two X−au-
tomata. By an X−automaton morphism h : 〈〈P, Y, p0, γ, A〉, f〉 → 〈〈Q,
Z, q0, δ, B〉, g〉 we understand a pair h = (h1, h2) of two set maps h1 : P → Q

and h2 : Y ⇁ Z, such that

(i) h1(p0) = q0,

(ii) h1(A) ⊆ B,

(iii) δ∗(q0, h2(y)) = h1(γ(p0, y)), for every y ∈ Y, and

(iv) g = h∗2f.

If composition of two X−automaton morphisms k = (k1, k2) : 〈〈P, Y, p0,

γ, A〉, f〉 → 〈〈Q,Z, q0, δ, B〉, g〉 and l = (l1, l2) : 〈〈Q,Z, q0, δ, B〉, g〉 → 〈〈R,W,
r0, ε, C〉, h〉 is defined by l ◦ k = (l1k1, l2 ◦ k2), then X−automata together
with X−automaton morphisms between them form a category AUTX , the
category of X−automata.

FAMOD : FASig → CATop sends an object X ∈ |FASig| to the cate-
gory AUTX of X−automata and a morphism f : X ⇁ Y ∈ Mor(FASig), to
the functor FAMOD(f) : FAMOD(Y ) → FAMOD(X) sending 〈〈Q,Z, q0, δ,

A〉, g〉 to 〈〈Q,Z, q0, δ, A〉, g ◦ f〉, and a morphism k : 〈〈P,Z, p0, γ, A〉, g〉 →
〈〈Q,W, q0, δ, B〉, h〉 to FAMOD(f)(k) : 〈〈P,Z, p0, γ, A〉, g◦f〉 → 〈〈Q,W, q0, δ,
B〉, h ◦ f〉 defined by FAMOD(f)(k) = k.
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Finally, the institution FSA = 〈FASig,FASEN,FAMOD, |=〉 of finite
state automata is fully defined by stipulating that, for every X ∈ |FASig|,
|=X⊆ |FAMOD(X)| × FASEN(X) is given by

〈〈Q,Y, q0, δ, A〉, g〉 |=X w if and only if δ∗(q0, f
∗(w)) ∈ A,

for every 〈〈Q,Y, q0, δ, A〉, g〉 ∈ |FAMOD(X)|, w ∈ X∗.

FSA = 〈FASig,FASEN,FAMOD, |=〉 is an institution, called the insti-

tution of finite state automata.

Fiadeiro and Sernadas [20], modified the notion of an institution to free
the structure from the model theoretic satisfaction relations and bring it
closer in spirit to the deductive system framework. The model theoretic de-
ductions were replaced by logical closure operators. The emerging structures
were termed π-institutions.

Definition 1.4. [20] A π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 con-
sists of

(i) a category Sign whose objects are called signatures,

(ii) a functor SEN : Sign → Set, from the category Sign of signatures
into the category Set of sets, called the sentence functor and giving,
for each signature Σ, a set whose elements are called sentences over

that signature Σ or Σ-sentences and

(iii) a mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, called
Σ-closure, such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1
(A)) ⊆ CΣ2

(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|, f ∈
Sign(Σ1,Σ2), A ⊆ SEN(Σ1).

Given an institution I = 〈Sign,SEN,MOD, |=〉, define

π(I) = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉,

by setting
CΣ(Φ) = Φc, for all Σ ∈ |Sign|,Φ ⊆ SEN(Σ).

It is easy to verify, using Lemma 1.2, that π(I) is a π-institution. We will
refer to π(I) as to the π-institution associated with the institution I.

From now on, given a π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉, a
signature Σ and Φ ⊆ SEN(Σ), we will use the simplified notation Φc to



378 G. Voutsadakis

denote CΣ(Φ). Usually the signature Σ is clear from context and therefore
this simplified notation does not cause any confusion.

The following lemmas and corollaries were proven in [34] and will be
used in the proofs of the main theorems concerning the preservation of the
metalogical properties under deductive equivalence in the following sections.
The statements are included here for the convenience of the reader and for
the sake of completeness.

Lemma 1.5. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. Then,

for all f : Σ1 → Σ2 ∈ Mor(Sign),Φ ⊆ SEN(Σ1),

SEN(f)(Φc)c = SEN(f)(Φ)c.

Lemma 1.6. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, f : Σ1 →
Σ2 a morphism in Sign and Φ ⊆ SEN(Σ2). Then

SEN(f)−1(Φc)c = SEN(f)−1(Φc).

Corollary 1.7. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, f :
Σ1 → Σ2 an isomorphism in Sign and Φ ⊆ SEN(Σ1). Then SEN(f)(Φc)c =
SEN(f)(Φc).

Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. Following [20] we
define its category of theories TH(I), as follows:

The objects of TH(I) are pairs 〈Σ, T 〉, where Σ ∈ |Sign| and T ⊆
SEN(Σ) with T c = T. The morphisms f : 〈Σ1, T1〉 → 〈Σ2, T2〉 are Sign−mor-
phisms f : Σ1 → Σ2, such that SEN(f)(T1) ⊆ T2. Let π2 : |TH(I)| → Set

denote the projection onto the second coordinate.

Now, define a functor SIG : TH(I) → Sign by

SIG(〈Σ, T 〉) = Σ, for every 〈Σ, T 〉 ∈ |TH(I)|,

and

SIG(f) = f, for every f : 〈Σ1, T1〉 → 〈Σ2, T2〉 ∈ Mor(TH(I)).

The following relations between the categories of theories of two π-
institutions will be useful in what follows.

Definition 1.8. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two π-institutions. A functor F : TH(I1) →

TH(I2) will be called signature-respecting if there exists a functor F ′ :
Sign1 → Sign2, such that the following rectangle commutes
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Sign1 Sign2
-

F ′

TH(I1) TH(I2)-F

?

SIG

?

SIG

(i)

If this is the case, it is easy to verify that F ′ is necessarily unique. F is said
to be monotonic if, for all 〈Σ1, T1〉, 〈Σ1, T

′
1〉 ∈ |TH(I1)|,

T1 ⊆ T ′
1 implies π2(F (〈Σ1, T1〉)) ⊆ π2(F (〈Σ1, T

′
1〉)).

A signature-respecting functor F : TH(I1) → TH(I2) will be said to com-

mute with substitutions if, for every f : Σ1 → Σ′
1 ∈ Mor(Sign1),

SEN2(F
′(f))(π2(F (〈Σ1, T1〉)))

c = π2(F (〈Σ′
1,SEN1(f)(T1)

c〉)),

for every 〈Σ1, T1〉 ∈ |TH(I1)|, where F ′ : Sign1 → Sign2 is the (necessarily
unique) functor of diagram (i).

The properties above may be extended to the case where the two cate-
gories of theories TH(I1) and TH(I2) are related via an adjunction. The
following definition then applies

Definition 1.9. An adjunction 〈F,G, η, ε〉 : TH(I1) → TH(I2) will be
called signature-respecting if both F and G are signature-respecting. It
is said to be monotonic if both F and G are monotonic. A signature-
respecting adjunction will be said to commute with substitutions if both
F and G commute with substitutions.

Lemma 1.10. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,SEN2,

{CΣ}Σ∈|Sign2|
〉 be two π-institutions. A signature-respecting adjoint equi-

valence 〈F,G, η, ε〉 : TH(I1) → TH(I2) is monotonic and injective on Σ1-

theories, i.e., for all Σ1 ∈ |Sign1|, 〈Σ1, T1〉, 〈Σ1, T
′
1〉 ∈ |TH(I1)|,

〈Σ1, T1〉 6= 〈Σ1, T
′
1〉 implies F (〈Σ1, T1〉) 6= F (〈Σ1, T

′
1〉),

and the same holds for Σ2-theories, for every Σ2 ∈ |Sign2|.

Next, relations between π-institutions are reviewed with the goal of trans-
ferring properties of related π-institutions to their categories of theories.

Definition 1.11. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two π-institutions. A translation of I1 in I2 is a

pair 〈F, α〉 : I1 → I2 consisting of a functor F : Sign1 → Sign2 and a natu-
ral transformation α : SEN1 → PSEN2 F. A translation 〈F, α〉 : I1 → I2 is
an interpretation of I1 in I2 if, for all Σ1 ∈ |Sign1|,Φ∪{φ} ⊆ SEN1(Σ1),

φ ∈ Φc if and only if αΣ1
(φ) ⊆ αΣ1

(Φ)c. (ii)
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Using these notions the relation of deductive equivalence on π-institu-
tions can be defined.

Definition 1.12. Let I1, I2 be two π-institutions, as above. I1 and I2

will be said to be deductively equivalent if there exist interpretations
〈F, α〉 : I1 → I2 and 〈G, β〉 : I2 → I1, such that

1. 〈F,G, η, ε〉 : Sign1 → Sign2 is an adjoint equivalence and

2. for all Σ1 ∈ |Sign1|, φ ∈ SEN1(Σ1),

SEN1(ηΣ1
)(φ)c = βF (Σ1)(αΣ1

(φ))c (iii)

and, for all Σ2 ∈ |Sign2|, ψ ∈ SEN2(Σ2),

SEN2(εΣ2
)(αG(Σ2)(βΣ2

(ψ)))c = {ψ}c. (iv)

Note that, if I1 and I2 are deductively equivalent via the interpreta-
tions 〈F, α〉 : I1 → I2 and 〈G, β〉 : I2 → I1 and the adjoint equivalence
〈F,G, η, ε〉 : Sign1 → Sign2, then, for all Σ2 ∈ |Sign2| and ψ ∈ SEN2(Σ2),

{ψ}c = SEN2(εΣ2
)(αG(Σ2)(βΣ2

(ψ))c), (v)

and, for all Σ1 ∈ |Sign1| and φ ∈ SEN1(Σ1),

{φ}c = SEN1(ηΣ1
)−1(βF (Σ1)(αΣ1

(φ))c). (vi)

In this case (v) and (vi) are equivalent to (iv) and (iii), respectively, in
view of Lemma 1.5 and Corollary 1.7 and the fact that ηΣ1

and εΣ2
are

isomorphisms.

Several examples of deductive equivalences are provided in [36]. They
are all borrowed from considerations in abstract algebraic logic and, there-
fore, deal with the deductive equivalence of institutions representing logical
systems and ones representing algebraic counterparts. The two prototypical
examples of equational and first-order logics together with detailed accounts
of their deductive equivalence with the institutions of equational algebras
and first-order algebras, respectively, are presented in [37] and [38], respec-
tively.

Lemma 1.13. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,SEN2,

{CΣ}Σ∈|Sign2|
〉 be two π-institutions and 〈F, α〉 : I1 → I2 an interpretation.

Then

αΣ1
(Φc)c = αΣ1

(Φ)c, for all Σ1 ∈ |Sign1|,Φ ⊆ SEN1(Σ1). (vii)
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Lemma 1.14. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,SEN2,

{CΣ}Σ∈|Sign2|
〉 be two π-institutions such that there exist translations 〈F, α〉 :

I1 → I2, 〈G, β〉 : I2 → I1 and an adjunction 〈F,G, η, ε〉 : Sign1 → Sign2,

such that, for all Σ1 ∈ |Sign1| and all φ ∈ SEN1(Σ1), (iii) holds. Then

SEN1(ηΣ1
)(Φ)c =βF (Σ1)(αΣ1

(Φ))c for all Σ1 ∈ |Sign1|,Φ ⊆ SEN1(Σ1).
(viii)

Similarly, if, for all Σ2 ∈ |Sign2| and all ψ ∈ SEN2(Σ2), (iv) holds, then

SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Ψ)))c = Ψc for all Σ2 ∈ |Sign2|,Ψ ⊆ SEN2(Σ2).
(ix)

If, in the hypothesis above, instead of the equalities in (iii) and (iv) only

left-to-right inclusions hold, then the equalities in (viii) and (ix) should be

replaced in the conclusion by left-to-right inclusions as well.

The following constitutes one of the main theorems of [34, 35].

Theorem 1.15. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two π-institutions. If I1 and I2 are deductively

equivalent then there exists a signature-respecting adjoint equivalence 〈F ′, G′,

η′, ε′〉 : TH(I1) → TH(I2) that commutes with substitutions.

For what follows it must be observed that, if 〈F, α〉 : I1 → I2 and
〈G, β〉 : I2 → I1 are the interpretations and 〈F,G, η, ε〉 : Sign1 → Sign2 the
adjoint equivalence witnessing the deductive equivalence in the hypothesis of
Theorem 1.15, then the functors F ′ : TH(I1) → TH(I2) andG′ : TH(I2) →
TH(I1) are given by

F ′(〈Σ1, T1〉) = 〈F (Σ1), αΣ1
(T1)

c〉 and G′(〈Σ2, T2〉) = 〈G(Σ2), βΣ2
(T2)

c〉,

for all 〈Σ1, T1〉 ∈ |TH(I1)|, 〈Σ2, T2〉 ∈ |TH(I2)|.

A brief outline of the contents of the paper is now presented. In Section
2, the deduction-detachment property for π-institutions is introduced and
it is shown that it is preserved under deductive equivalence. The disjunc-
tion property is introduced in Section 3 and is also shown to be invariant
under deductive equivalence. Section 4 deals briefly with conjunction. It
is defined in such a way that, owing to the fact that the sentence functors
of π-institutions map into Set, every π-institution has conjunction. Nega-
tion is explored in Section 5. It is introduced at the π-institution level and
its invariance under deductive equivalence demonstrated. Section 6 focuses
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on the Craig interpolation property, which was first translated to the in-
stitution framework by Tarlecki [33]. It is also preserved under deductive
equivalence of π-institutions. In Sections 7 and 8 this invariance property is
proved for the Robinson consistency property and the Lindenbaum property,
respectively.

In a nutshell, the proofs given justify the claim that a wide variety of in-
teresting metalogical properties, when translated from the deductive system
to the institutional framework, are invariant under deductive equivalence.
Thus, any of these properties that holds in all algebraic π-institutions will
hold automatically for all algebraizable π-institutions in the sense of [36].
Such nicely behaved properties have been historically of central interest in
algebraic logic.

2. Deduction-Detachment Property

The Deduction-Detachment property for a π-institution is now introduced
and it is shown that it is invariant under deductive equivalence of π-institu-
tions.

Definition 2.16. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. A

natural transformation E : PSEN2 → PSEN will be called a Deduction-

Detachment transformation (DDT) for I if, for all Σ ∈ |Sign|,Γ ∪∆∪
Φ ⊆ SEN(Σ),

Φ ⊆ (Γ ∪ ∆)c iff EΣ(∆,Φ) ⊆ Γc.

I will be said to have the Deduction-Detachment property (DDP) if
there exists a Deduction-Detachment transformation for I.

Theorem 2.17. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions. Then I1

has the DDP if and only if I2 has the DDP.

Proof. Let I1 and I2 be deductively equivalent π-institutions via the in-
terpretations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equiva-
lence 〈F,G, η, ε〉 : Sign1 → Sign2. Suppose I1 has the DDP with DDT
E : PSEN2

1 → PSEN1. Then, for all Σ2 ∈ |Sign2|,Γ ∪ ∆ ∪ Φ ⊆ SEN2(Σ2),

Φ ⊆ (Γ ∪ ∆)c iff, since 〈G, β〉 is an intrepretation,

βΣ2
(Φ) ⊆ βΣ2

(Γ ∪ ∆)c iff

βΣ2
(Φ) ⊆ (βΣ2

(Γ) ∪ βΣ2
(∆))c iff, since E is a DDT for I1,
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EG(Σ2)(βΣ2
(∆), βΣ2

(Φ)) ⊆ βΣ2
(Γ)c iff, since 〈F, α〉 is an interpretation,

αG(Σ2)(EG(Σ2)(βΣ2
(∆), βΣ2

(Φ))) ⊆ αG(Σ2)(βΣ2
(Γ))c

iff, since εΣ2
is an isomorphism,

SEN2(εΣ2
)(αG(Σ2)(EG(Σ2)(βΣ2

(∆), βΣ2
(Φ)))) ⊆

⊆ SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Γ))c)

iff, by Lemma 1.14, SEN2(εΣ2
)(αG(Σ2)(EG(Σ2)(βΣ2

(∆), βΣ2
(Φ)))) ⊆ Γc.

Let E′ : PSEN2
2 → PSEN2 be defined by

E′
Σ2

(∆,Φ) = SEN2(εΣ2
)(αG(Σ2)(EG(Σ2)(β

2
Σ2

(∆,Φ)))),

for all Σ2 ∈ |Sign2|,∆,Φ ⊆ SEN2(Σ2). Note that E ′ : PSEN2
2 → PSEN2 is

a natural transformation since it is the composition of the natural transfor-
mations β2 : SEN2

2 → PSEN2
1G,EG : PSEN2

1G→ PSEN1G,αG : SEN1G →
PSEN2FG and SEN2(ε) : SEN2FG → SEN2. Thus, from what was just
shown, it follows that E ′ is a DDT for I2 and, therefore, I2 has the DDP.
The converse follows by symmetry.

3. Disjunction Property

The abstract property of disjunction for deductive systems in the context
of abstract algebraic logic has been studied in [22] and taken up again in
[21]. The property of conjunction for institutions has been introduced in
[33]. Modifying this definition appropriately, an institution I = 〈Sign,SEN,
MOD, |=〉 is said to have disjunction if, for every signature Σ and finite
set Φ ⊆ SEN(Σ), there exists

∨
Φ ∈ SEN(Σ), such that, for every M ∈

|MOD(Σ)|,M |=Σ
∨

Φ if and only if M |=Σ φ, for some φ ∈ Φ.
A somewhat nonstandard formulation of the conjunction property for

a π-institution will now be given and it will be shown that it is preserved
under deductive equivalence of π-institutions.

Definition 3.18. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. A

natural transformation
∨

: PSEN2 → PSEN will be called a disjunction

for I if, for all Σ ∈ |Sign|,Φ,Γ,∆ ⊆ SEN(Σ),

(Φ ∪
∨

Σ

(Γ,∆))c = (Φ ∪ Γ)c ∩ (Φ ∪ ∆)c.

I will be said to have disjunction if there exists a disjunction for I.
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A lemma is needed for the proof of our main result.

Lemma 3.19. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,SEN2,

{CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions via the interpre-

tations 〈F, α〉 : I1 → I2 and 〈G, β〉 : I2 → I1 and the adjoint equivalence

〈F,G, η, ε〉 : Sign1 → Sign2. Then, for all 〈Σ1, T1〉, 〈Σ1, T
′
1〉 ∈ |TH(I1)|,

αΣ1
(T1)

c ∩ αΣ1
(T ′

1)
c = αΣ1

(T1 ∩ T
′
1)

c.

Proof. First, note that, for all Σ1 ∈ |Sign1|, 〈Σ1, T1〉 ∈ |TH(I1)|, we have

αΣ1
(T1)

c = {ψ ∈ SEN2(F (Σ1)) : βF (Σ1)(ψ) ⊆ SEN1(ηΣ1
)(T1)}.

In fact,

ψ ∈ αΣ1
(T1)

c iff, since 〈G, β〉 is an interpretation,
βF (Σ1)(ψ) ⊆ βF (Σ1)(αΣ1

(T1))
c iff, by Lemma 1.14,

βF (Σ1)(ψ) ⊆ SEN1(ηΣ1
)(T1).

Thus, we have

αΣ1
(T1)

c ∩ αΣ1
(T ′

1)
c =

= {ψ ∈ SEN2(F (Σ1)) : βF (Σ1)(ψ) ⊆ SEN1(ηΣ1
)(T1)}

∩{ψ ∈ SEN2(F (Σ1)) : βF (Σ1)(ψ) ⊆ SEN1(ηΣ1
)(T ′

1)}

= {ψ ∈ SEN2(F (Σ1)) : βF (Σ1)(ψ) ⊆

SEN1(ηΣ1
)(T1) ∩ SEN1(ηΣ1

)(T ′
1)}

= {ψ ∈ SEN2(F (Σ1)) : βF (Σ1)(ψ) ⊆ SEN1(ηΣ1
)(T1 ∩ T

′
1)}

(since ηΣ1
is an isomorphism)

= αΣ1
(T1 ∩ T

′
1)

c.

Theorem 3.20. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions. I1 has

disjunction if and only if I2 has disjunction.

Proof. Let I1 and I2 be deductively equivalent π-institutions via the in-
terpretations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equiva-
lence 〈F,G, η, ε〉 : Sign1 → Sign2. Suppose that I1 has disjunction and
let

∨
: PSEN2

1 → PSEN1 be a disjunction for I1. Then, for all Σ2 ∈
|Sign2|,Φ,Γ,∆ ⊆ SEN2(Σ2),

(Φ ∪ Γ)c ∩ (Φ ∪ ∆)c =
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= SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Φ ∪ Γ))c)∩

∩SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Φ ∪ ∆))c)

(by Lemma 1.14)
= SEN2(εΣ2

)(αG(Σ2)(βΣ2
(Φ ∪ Γ))c ∩ αG(Σ2)(βΣ2

(Φ ∪ ∆))c)

(since εΣ2
is an isomorphism)

= SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Φ) ∪ βΣ2
(Γ))c ∩ αG(Σ2)(βΣ2

(Φ) ∪ βΣ2
(∆))c)

= SEN2(εΣ2
)(αG(Σ2)((βΣ2

(Φ) ∪ βΣ2
(Γ))c)c∩

∩αG(Σ2)((βΣ2
(Φ) ∪ βΣ2

(∆))c)c)

(by Lemma 1.13)
= SEN2(εΣ2

)(αG(Σ2)((βΣ2
(Φ) ∪ βΣ2

(Γ))c ∩ (βΣ2
(Φ) ∪ βΣ2

(∆))c)c)

(by Lemma 3.19)
= SEN2(εΣ2

)(αG(Σ2)((βΣ2
(Φ) ∪

∨
G(Σ2)(βΣ2

(Γ), βΣ2
(∆)))c)c)

(since
∨

is a disjunction for I1)
= SEN2(εΣ2

)(αG(Σ2)(βΣ2
(Φ) ∪

∨
G(Σ2)(βΣ2

(Γ), βΣ2
(∆)))c)

(by Lemma 1.13)
= SEN2(εΣ2

)((αG(Σ2)(βΣ2
(Φ)) ∪ αG(Σ2)(

∨
G(Σ2)(βΣ2

(Γ), βΣ2
(∆))))c)

= SEN2(εΣ2
)((αG(Σ2)(βΣ2

(Φ))c ∪ αG(Σ2)(
∨

G(Σ2)(βΣ2
(Γ), βΣ2

(∆))))c)

= SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Φ))c ∪ αG(Σ2)(
∨

G(Σ2)(βΣ2
(Γ), βΣ2

(∆))))c

(by Corollary 1.7 and Lemma 1.5)
= (SEN2(εΣ2

)(αG(Σ2)(βΣ2
(Φ))c)∪

∪SEN2(εΣ2
)(αG(Σ2)(

∨
G(Σ2)(βΣ2

(Γ), βΣ2
(∆)))))c

= (Φc ∪ SEN2(εΣ2
)(αG(Σ2)(

∨
G(Σ2)(βΣ2

(Γ), βΣ2
(∆)))))c

(by Lemma 1.14)
= (Φ ∪ SEN2(εΣ2

)(αG(Σ2)(
∨

G(Σ2)(βΣ2
(Γ), βΣ2

(∆)))))c.

Let
∨′ : PSEN2

2 → PSEN2 be defined by

′∨

Σ2

(Γ,∆) = SEN2(εΣ2
)(αG(Σ2)(

∨

G(Σ2)

(β2
Σ2

(Γ,∆)))),

for all Σ2 ∈ |Sign2|,Γ,∆ ⊆ SEN2(Σ2).
∨′ : PSEN2

2 → PSEN2 is a natural
transformation, since it is the composite of the natural transformations β 2 :
SEN2

2 → PSEN2
1G,

∨
G : PSEN2

1G → PSEN1G,αG : SEN1G → PSEN2GF

and SEN2(ε) : SEN2GF → SEN2. Since, from what was just shown, we have

(Φ ∪
′∨

Σ2

(Γ,∆))c = (Φ ∪ Γ)c ∩ (Φ ∪ ∆)c,

∨′ is a disjunction for I2. The converse follows by symmetry.
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4. A Note on Conjunction

By analogy with the previous section, one may attempt to define conjunction
for π-institutions as follows

Definition 4.21. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. A

natural transformation
∧

: PSEN2 → PSEN will be called a conjunction

for I if, for all Σ ∈ |Sign|,Γ,∆ ⊆ SEN(Σ),

(Γ ∪ ∆)c =
∧

Σ

(Γ,∆)c.

I will be said to have conjunction if there exists a conjunction for I.

The property of conjunction will now be shown to be an intrinsic prop-
erty of all π-institutions, owing to the fact that their sentence functor is
postulated to map into Set.

Lemma 4.22. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉, be a π-institution.
∧

:

PSEN2 → PSEN with

∧

Σ

(Γ,∆) = Γ ∪ ∆, for all Σ ∈ |Sign|,Γ,∆ ⊆ SEN(Σ),

is a natural transformation.

Proof. Let f : Σ → Σ′ ∈ Mor(Sign). We need to show that the following
diagram commutes. If Γ,∆ ⊆ SEN(Σ), then

PSEN2(Σ′) PSEN(Σ′)-∧
Σ′

PSEN2(Σ) PSEN(Σ)-
∧

Σ

?

PSEN2(f)

?

PSEN(f)

PSEN(f)(
∧

Σ(Γ,∆)) = PSEN(f)(Γ ∪ ∆)
= PSEN(f)(Γ) ∪ PSEN(f)(∆)
=

∧
Σ′(PSEN(f)(Γ),PSEN(f)(∆))

=
∧

Σ′(PSEN2(f)(Γ,∆)).

Lemma 4.22 directly yields

Theorem 4.23. Every π-institution has conjunction.
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5. Negation

Following the same line of thought that was followed in the previous sections,
the property of negation for π-institutions is now introduced.

Definition 5.24. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. A
natural transformation ¬ : PSEN → PSEN will be called a negation for I
if, for all Σ ∈ |Sign|,Φ,Γ ⊆ SEN(Σ),

Γ ⊆ Φc iff (Φ ∪ ¬ΣΓ)c = SEN(Σ).

I will be said to have negation if there exists a negation for I.

For the proof of the main theorem a lemma is needed first.

Lemma 5.25. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,SEN2,

{CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions via the interpre-

tations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equivalence

〈F,G, η, ε〉 : Sign1 → Sign2. Then, for every Σ1 ∈ |Sign1| and for every

Σ2 ∈ |Sign2|,

αΣ1
(SEN1(Σ1))

c = SEN2(F (Σ1)) and βΣ2
(SEN2(Σ2))

c = SEN1(G(Σ2)).

Proof. Obviously, αΣ1
(SEN1(Σ1))

c ⊆ SEN2(F (Σ1)). Suppose that

αΣ1
(SEN1(Σ1))

c ⊂ SEN2(F (Σ1)).

Then, by Theorem 1.15 and the observation following it and Lemma 1.10,
we have

βF (Σ1)(αΣ1
(SEN1(Σ1)))

c ⊂ βF (Σ1)(SEN2(F (Σ1)))
c,

whence, since ηΣ1
is an isomorphism,

SEN1(η
−1
Σ1

)(βF (Σ1)(αΣ1
(SEN1(Σ1)))

c) ⊂

⊂ SEN1(η
−1
Σ1

)(βF (Σ1)(SEN2(F (Σ1)))
c),

i.e., by Lemma 1.14,

SEN1(Σ1) ⊂ SEN1(η
−1
Σ1

)(βF (Σ1)(SEN2(F (Σ1)))
c),

which is absurd.
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Theorem 5.26. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions. I1 has

negation if and only if I2 has negation.

Proof. Let I1 and I2 be deductively equivalent π-institutions via the in-
terpretations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equiva-
lence 〈F,G, η, ε〉 : Sign1 → Sign2. Suppose that I1 has negation and let
¬ : PSEN1 → PSEN1 be a negation for I1. Then, for all Σ2 ∈ |Sign2|,Γ ∪
Φ ⊆ SEN2(Σ2),

Γ ⊆ Φc iff

Γc ⊆ Φc iff

SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Γ))c) ⊆ SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Φ))c),

by Lemma 1.14, iff

αG(Σ2)(βΣ2
(Γ))c ⊆ αG(Σ2)(βΣ2

(Φ))c, since εΣ2
is an iso, iff

βΣ2
(Γ)c ⊆ βΣ2

(Φ)c, since 〈F, α〉 is an interpretation, iff

(βΣ2
(Φ) ∪ ¬G(Σ2)βΣ2

(Γ))c = SEN1(G(Σ2)),

since ¬ is a negation for I1, iff

αG(Σ2)(βΣ2
(Φ) ∪ ¬G(Σ2)βΣ2

(Γ))c = αG(Σ2)(SEN1(G(Σ2)))
c,

since 〈F, α〉 is an int., iff

(αG(Σ2)(βΣ2
(Φ)) ∪ αG(Σ2)(¬G(Σ2)βΣ2

(Γ)))c = SEN2(F (G(Σ2))),

by Lemma 5.25, iff

(αG(Σ2)(βΣ2
(Φ))c ∪ αG(Σ2)(¬G(Σ2)βΣ2

(Γ)))c = SEN2(F (G(Σ2))), iff

SEN2(εΣ2
)((αG(Σ2)(βΣ2

(Φ))c ∪ αG(Σ2)(¬G(Σ2)βΣ2
(Γ)))c) =

= SEN2(εΣ2
)(SEN2(F (G(Σ2)))),

since εΣ2
is an iso, iff

SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Φ))c ∪ αG(Σ2)(¬G(Σ2)βΣ2
(Γ)))c =

= SEN2(εΣ2
)(SEN2(F (G(Σ2)))),

by Corollary 1.7 and Lemma 1.5, iff

(SEN2(εΣ2
)(αG(Σ2)(βΣ2

(Φ))c) ∪ SEN2(εΣ2
)(αG(Σ2)(¬G(Σ2)βΣ2

(Γ))))c =

= SEN2(Σ2),

since εΣ2
is an iso, iff



CAAL: Metalogical Properties 389

(Φc ∪ SEN2(εΣ2
)(αG(Σ2)(¬G(Σ2)βΣ2

(Γ))))c = SEN2(Σ2),

by Lemma 1.14, iff

(Φ ∪ SEN2(εΣ2
)(αG(Σ2)(¬G(Σ2)βΣ2

(Γ))))c = SEN2(Σ2).

Let ¬′ : PSEN2 → PSEN2 be defined by

¬′
Σ2

Γ = SEN2(εΣ2
)(αG(Σ2)(¬G(Σ2)βΣ2

(Γ))),

for all Σ2 ∈ |Sign2|,Γ ⊆ SEN2(Σ2). ¬
′ : PSEN2 → PSEN2 is a natural

transformation, since it is the composite of natural transformations. Thus,
from what was just shown, we have

Γ ⊆ Φc iff (Φ ∪ ¬′
Σ2

Γ)c = SEN2(Σ2),

i.e., ¬′ is a negation for I2. The converse follows by symmetry.

6. Craig Interpolation

Tarlecki [33] introduced and studied the Craig Interpolation Theorem for
institutions.

Let I = 〈Sign,SEN,MOD, |=〉 be an institution and the following

Σ′′ Σ′′′-
g′′

Σ Σ′-f ′

?

f ′′

?

g′

a pushout diagram in Sign. According to [33], I is said to satisfy the
Craig Interpolation Theorem if, for all φ′ ∈ SEN(Σ′), φ′′ ∈ SEN(Σ′′), with
SEN(g′)(φ′) |= SEN(g′′)(φ′′), there exists φ ∈ SEN(Σ), such that φ′ |=
SEN(f ′)(φ) and SEN(f ′′)(φ) |= φ′′.

Modifying slightly Tarlecki’s definition the following is obtained.

Definition 6.27. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution.
I is said to have the Craig Interpolation Property (CIP) if, for all
Σ,Σ′,Σ′′ ∈ |Sign| and pushout diagram

Σ′′ Σ′′′-
g′′

Σ Σ′-f ′

?

f ′′

?

g′
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we have that, for all Φ′ ⊆ SEN(Σ′),Φ′′ ⊆ SEN(Σ′′), with SEN(g′′)(Φ′′) ⊆
SEN(g′)(Φ′)c, there exists Φ ⊆ SEN(Σ), such that SEN(f ′)(Φ) ⊆ Φ

′c and
Φ′′ ⊆ SEN(f ′′)(Φ)c.

Theorem 6.28. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign
2
|〉 be two deductively equivalent π-institutions. I1 has

the CIP if and only if I2 has the CIP.

Proof. Let I1 and I2 be deductively equivalent π-institutions via the in-
terpretations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equivalence
〈F,G, η, ε〉 : Sign1 → Sign2. Suppose that I1 has the CIP and assume that

Σ′′
2 Σ′′′

2
-

g′′2

Σ2 Σ′
2

-f ′2

?

f ′′2

?

g′2

is a pushout diagram in Sign2 and Φ′
2 ⊆ SEN2(Σ

′
2),Φ

′′
2 ⊆ SEN2(Σ

′′
2), with

SEN2(g
′′
2 )(Φ′′

2) ⊆ SEN2(g
′
2)(Φ

′
2)

c.

Since left adjoints preserve colimits, the following is, then, a pushout diagram
in Sign1.

G(Σ′′
2) G(Σ′′′

2 )-
G(g′′2 )

G(Σ2) G(Σ′
2)

-G(f ′2)

?

G(f ′′2 )

?

G(g′2)

Moreover, since 〈G, β〉 : I1 → I2 is an interpretation, we have

βΣ′′′
2

(SEN2(g
′′
2 )(Φ′′

2)) ⊆ βΣ′′′
2

(SEN2(g
′
2)(Φ

′
2))

c.

Since β is a natural transformation,

SEN2(Σ
′′′
2 ) PSEN1(G(Σ′′′

2 ))-
βΣ′′′

2

SEN2(Σ
′
2) PSEN1(G(Σ′

2))
-

βΣ′
2

?

SEN2(g
′
2)

?

PSEN1(G(g′2))
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SEN2(Σ
′′′
2 ) PSEN1(G(Σ′′′

2 ))-
βΣ′′′

2

SEN2(Σ
′′
2) PSEN1(G(Σ′′

2))
-

βΣ′′
2

?

SEN2(g
′′
2 )

?

PSEN1(G(g′′2 ))

we obtain

SEN1(G(g′′2 ))(βΣ′′
2
(Φ′′

2)) ⊆ SEN1(G(g′2))(βΣ′
2
(Φ′

2))
c.

Since I1 has the CIP, there exists Φ1 ⊆ SEN1(G(Σ2)), such that

SEN1(G(f ′2))(Φ1) ⊆ βΣ′
2
(Φ′

2)
c and βΣ′′

2
(Φ′′

2) ⊆ SEN1(G(f ′′2 ))(Φ1)
c.

Thus, since 〈F, α〉 : I1 → I2 is an interpretation,

αG(Σ′
2
)(SEN1(G(f ′2))(Φ1)) ⊆ αG(Σ′

2
)(βΣ′

2
(Φ′

2))
c

and
αG(Σ′′

2
)(βΣ′′

2
(Φ′′

2)) ⊆ αG(Σ′′
2
)(SEN1(G(f ′′2 ))(Φ1))

c

and, since α is a natural transformation,

SEN1(G(Σ′
2)) PSEN2(F (G(Σ′

2)))
-

αG(Σ′
2
)

SEN1(G(Σ2)) PSEN2(F (G(Σ2)))-
αG(Σ2)

?

SEN1(G(f ′2))

?

PSEN2(F (G(f ′2)))

SEN1(G(Σ′′
2)) PSEN2(F (G(Σ′′

2)))-
αG(Σ′′

2
)

SEN1(G(Σ2)) PSEN2(F (G(Σ2)))-
αG(Σ2)

?

SEN1(G(f ′′2 ))

?

PSEN2(F (G(f ′′2 )))

we obtain

SEN2(F (G(f ′2)))(αG(Σ2)(Φ1)) ⊆ αG(Σ′
2
)(βΣ′

2
(Φ′

2))
c and

αG(Σ′′
2
)(βΣ′′

2
(Φ′′

2)) ⊆ SEN2(F (G(f ′′2 )))(αG(Σ2)(Φ1))
c. Hence,

SEN2(εΣ′
2
)(SEN2(F (G(f ′2)))(αG(Σ2)(Φ1))) ⊆ SEN2(εΣ′

2
)(αG(Σ′

2
)(βΣ′

2
(Φ′

2))
c)

and
SEN2(εΣ′′

2
)(αG(Σ′′

2
)(βΣ′′

2
(Φ′′

2))
c) ⊆
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⊆ SEN2(εΣ′′
2
)(SEN2(F (G(f ′′2 )))(αG(Σ2)(Φ1))

c),

i.e., by Lemma 1.14, SEN2(εΣ′
2
)(SEN2(F (G(f ′2)))(αG(Σ2)(Φ1))) ⊆ Φ

′c
2

and

Φ′′
2 ⊆ SEN2(εΣ′′

2
)(SEN2(F (G(f ′′2 )))(αG(Σ2)(Φ1))

c).

Thus,

F (G(Σ′
2)) Σ′

2
-

εΣ′
2

F (G(Σ2)) Σ2
-εΣ2

?

F (G(f ′2))

?

f ′2

F (G(Σ′′
2)) Σ′′

2
-

εΣ′′
2

F (G(Σ2)) Σ2
-εΣ2

?

F (G(f ′′2 ))

?

f ′′2

SEN2(f
′
2εΣ2

)(αG(Σ2)(Φ1)) ⊆ Φ
′c
2 and Φ′′

2 ⊆ SEN2(f
′′
2 εΣ2

)(αG(Σ2)(Φ1))
c

and, therefore,

SEN2(f
′
2)(SEN2(εΣ2

)(αG(Σ2)(Φ1))) ⊆ Φ
′c
2

and Φ′′
2 ⊆ SEN2(f

′′
2 )(SEN2(εΣ2

)(αG(Σ2)(Φ1)))
c.

Thus, I2 has the CIP. The converse follows by symmetry.

7. Robinson Consistency

Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution and Σ ∈ |Sign|. Recall
that a theory 〈Σ, T 〉 ∈ |TH(I)| is said to be consistent if T 6= SEN(Σ) and
complete if, for every 〈Σ, T ′〉 ∈ |TH(I)|, T ⊂ T ′ implies T ′ = SEN(Σ).

Definition 7.29. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. I
will be said to have the Robinson Consistency Property (RCP) if, for
every consistent complete theory 〈Σ, T 〉 and consistent theories 〈Σ′, T ′〉, 〈Σ′′,

T ′′〉, such that f ′ : 〈Σ, T 〉 → 〈Σ′, T ′〉, f ′′ : 〈Σ, T 〉 → 〈Σ′′, T ′′〉 ∈ Mor(TH(I)),
the theory 〈Σ′′′, (SEN(g′)(T ′)∪SEN(g′′)(T ′′))c〉 is consistent, where as before,
the following diagram

Σ′′ Σ′′′-
g′′

Σ Σ′-f ′

?

f ′′

?

g′

is a pushout in Sign.
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Before presenting our main result, a lemma is needed.

Lemma 7.30. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,SEN2,

{CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions via the interpre-

tations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equivalence

〈F,G, η, ε〉 : Sign1 → Sign2. Then, for every 〈Σ1, T1〉 ∈ |TH(I1)|, if 〈Σ1, T1〉
is consistent, then so is 〈F (Σ1), αΣ1

(T1)
c〉 and if 〈Σ1, T1〉 is complete, then

so is 〈F (Σ1), αΣ1
(T1)

c〉.

Proof. Suppose that 〈Σ1, T1〉 is consistent, i.e., that T1 6= SEN1(Σ1) and
assume, to the contrary, that αΣ1

(T1)
c = SEN2(F (Σ1)). By Lemma 5.25,

αΣ1
(SEN1(Σ1))

c = SEN2(F (Σ1)), whence αΣ1
(T1)

c = αΣ1
(SEN1(Σ1))

c. But
this contradicts Theorem 1.15 and Lemma 1.10.

Next, suppose that 〈Σ1, T1〉 is complete, i.e., that, for every 〈Σ1, T
′
1〉,

with T1 ⊂ T ′
1, we have T ′

1 = SEN1(Σ1). Suppose to the contrary, that
〈F (Σ1), αΣ1

(T1)
c〉 is not complete, i.e., that there exists 〈F (Σ1), T2〉, such

that αΣ1
(T1)

c ⊂ T2, but T2 6= SEN2(F (Σ1)). Then

SEN1(η
−1
Σ1

)(βF (Σ1)(αΣ1
(T1))

c) ⊂ SEN1(η
−1
Σ1

)(βF (Σ1)(T2)
c), i.e.,

T1 ⊂ SEN1(η
−1
Σ1

)(βF (Σ1)(T2)
c),

with SEN1(η
−1
Σ1

)(βF (Σ1)(T2)
c) 6= SEN1(Σ1), which contradicts our hypothe-

sis.

Theorem 7.31. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions. I1 has

the RCP if and only if I2 has the RCP.

Proof. Let I1 and I2 be deductively equivalent π-institutions via the in-
terpretations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equivalence
〈F,G, η, ε〉 : Sign1 → Sign2. Suppose that I1 has the RCP and assume that

Σ′′
2 Σ′′′

2
-

g′′2

Σ2 Σ′
2

-f ′2

?

f ′′2

?

g′2

is a pushout diagram in Sign2 and that 〈Σ2, T2〉 is a consistent complete
theory and 〈Σ′

2, T
′
2〉, 〈Σ

′′
2 , T

′′
2 〉 are consistent theories in |TH(I2)|, such that



394 G. Voutsadakis

f ′2 : 〈Σ2, T2〉 → 〈Σ′
2, T

′
2〉, f

′′
2 : 〈Σ2, T2〉 → 〈Σ′′

2, T
′′
2 〉 ∈ Mor(TH(I2)). Since left

adjoints preserve colimits, the following diagram

G(Σ′′
2) G(Σ′′′

2 )-
G(g′′2 )

G(Σ2) G(Σ′
2)

-G(f ′2)

?

G(f ′′2 )

?

G(g′2)

is a pushout diagram in Sign1.

Consider the theories 〈G(Σ2), βΣ2
(T2)

c〉, 〈G(Σ′
2), βΣ′

2
(T ′

2)
c〉 and 〈G(Σ′′

2),
βΣ′′

2
(T ′′

2 )c〉 in TH(I1). By Lemma 7.30, 〈G(Σ2), βΣ2
(T2)

c〉 is consistent and
complete and

〈G(Σ′
2), βΣ′

2
(T ′

2)
c〉, 〈G(Σ′′

2), βΣ′′
2
(T ′′

2 )c〉

are consistent. Moreover G(f ′
2) : 〈G(Σ2), βΣ2

(T2)
c〉 → 〈G(Σ′

2), βΣ′
2
(T ′

2)
c〉

and G(f ′′2 ) : 〈G(Σ2), βΣ2
(T2)

c〉 → 〈G(Σ′′
2), βΣ′′

2
(T ′′

2 )c〉 are theory morphisms.
Hence, since I1 has the RCP, the theory

〈G(Σ′′′
2 ), (SEN1(G(g′2))(βΣ′

2
(T ′

2)) ∪ SEN1(G(g′′2 ))(βΣ′′
2
(T ′′

2 )))c〉

is a consistent theory in TH(I1). This theory is the same as

SEN2(Σ
′′′
2 ) PSEN1(G(Σ′′′

2 ))-
βΣ′′′

2

SEN2(Σ
′
2) PSEN1(G(Σ′

2))
-

βΣ′
2

?

SEN2(g
′
2)

?

PSEN1(G(g′2))

SEN2(Σ
′′′
2 ) PSEN1(G(Σ′′′

2 ))-
βΣ′′′

2

SEN2(Σ
′′
2) PSEN1(G(Σ′′

2))
-

βΣ′′
2

?

SEN2(g
′′
2 )

?

PSEN1(G(g′′2 ))

〈G(Σ′′′
2 ), (βΣ′′′

2
(SEN2(g

′
2)(T

′
2)) ∪ βΣ′′′

2
(SEN2(g

′′
2 )(T ′′

2 )))c〉

i.e., 〈G(Σ′′′
2 ), βΣ′′′

2
(SEN2(g

′
2)(T

′
2) ∪ SEN2(g

′′
2 )(T ′′

2 ))c〉.

Consistency of this theory implies, by Lemma 7.30, consistency of

〈F (G(Σ′′′
2 )), αG(Σ′′′

2
)(βΣ′′′

2
(SEN2(g

′
2)(T

′
2) ∪ SEN2(g

′′
2 )(T ′′

2 )))c〉
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and, therefore, since εΣ′′′
2

is an isomorphism, of

〈Σ′′′
2 , (SEN2(g

′
2)(T

′
2) ∪ SEN2(g

′′
2 )(T ′′

2 ))c〉.

Thus, I2 has the RCP. The converse follows by symmetry.

8. The Lindenbaum Property

Definition 8.32. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. I
will be said to have the Lindenbaum Property (LP) if, for all Σ ∈ |Sign|,
〈Σ, T 〉 ∈ |TH(I)|, if 〈Σ, T 〉 is consistent, then there exists a consistent,
complete theory 〈Σ, T ′〉, such that T ⊆ T ′.

Theorem 8.33. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|
〉, I2 = 〈Sign2,

SEN2, {CΣ}Σ∈|Sign2|
〉 be two deductively equivalent π-institutions. I1 has

the LP if and only if I2 has the LP.

Proof. Let I1 and I2 be deductively equivalent π-institutions via the in-
terpretations 〈F, α〉 : I1 → I2, 〈G, β〉 : I2 → I1 and the adjoint equiva-
lence 〈F,G, η, ε〉 : Sign1 → Sign2. Suppose that I1 has the LP and let
Σ2 ∈ |Sign2|, 〈Σ2, T2〉 ∈ |TH(I2)| a consistent theory. By Lemma 7.30,
〈G(Σ2), βΣ2

(T2)
c〉 is a consistent theory in TH(I1). Thus, since I1 has

the LP, there exists a consistent, complete theory 〈G(Σ2), T1〉, such that
βΣ2

(T2)
c ⊆ T1. But then, by Lemma 7.30, 〈F (G(Σ2)), αG(Σ2)(T1)

c〉 is a con-
sistent, complete theory of I2, such that αG(Σ2)(βΣ2

(T2))
c ⊆ αG(Σ2)(T1)

c,

whence 〈Σ2,SEN2(εΣ2
)(αG(Σ2)(T1))

c〉 is a consistent, complete theory of
TH(I2), such that T2 ⊆ SEN2(εΣ2

)(αG(Σ2)(T1))
c. Hence, I2 has the LP.

The converse follows by symmetry.
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[4] Barr, M., and Wells, C., Toposes, Triples and Theories, Springer-Verlag, New York

1985

[5] Barr, M., and Wells, C., Category Theory for Computing Science, Third Edition, Les

Publications CRM, Montréal, 1999
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