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The notion of an I-matrix as a model of a given π-institution I is introduced. The main difference from the
approach followed so far in Categorical Abstract Algebraic Logic (CAAL) and the one adopted here is that an
I-matrix is considered modulo the entire class of morphisms from the underlying N -algebraic system of I into
its own underlying algebraic system, rather than modulo a single fixed (N, N ′)-logical morphism. The motiva-
tion for introducing I-matrices comes from a desire to formulate a correspondence property for N -protoalge-
braic π-institutions closer in spirit to the one for sentential logics than that considered in CAAL before. As a
result, in the previously established hierarchy of syntactically protoalgebraic π-institutions, i. e., those with an
implication system, and of protoalgebraic π-institutions, i. e., those with a monotone Leibniz operator, the pre-
sent paper interjects the class of those π-institutions with the correspondence property, as applied to I-matrices.
Moreover, this work on I-matrices enables us to prove many results pertaining to the local deduction-detach-
ment theorems, paralleling classical results in Abstract Algebraic Logic formulated, first, by Czelakowski and
Blok and Pigozzi. Those results will appear in a sequel to this paper.

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

One of the most important classes of logics considered in Abstract Algebraic Logic is the class of protoalge-
braic logics. These are the logics that are characterized by the monotonicity of the Leibniz operator on their theory
lattices. They are believed to form the widest class of logics amenable to algebraic study techniques. Another very
important characterizing property of protoalgebraic logics is the correspondence property. This property helps
in establishing isomorphisms between appropriate filter lattices on logical matrices related by surjective matrix
homomorphisms. In turn, the correspondence property lies at the heart of the work of Blok and Pigozzi [3], who
provide a host of equivalent conditions for protoalgebraic logics to the property of having a form of the local
deduction-detachment theorem. These facts constitute the motivating force behind the development of the theory
presented in this paper. More details will be provided now on these connections. The goal is to help the reader
position this work in the general landscape of Abstract Algebraic Logic and, in particular, realize its significance
in the framework of protoalgebraic logics.

A sentential logic or deductive system S is a pair S = 〈L, CS〉, where L is an algebraic signature and

CS : P(FmL(V )) −→ P(FmL(V ))

is a finitary and structural consequence operator on the absolutely free L-algebra FmL(V ) that is generated by a

∗ e-mail: gvoutsad@lssu.edu
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52 G. Voutsadakis: Structurality, protoalgebraicity, and correspondence

denumerable set of variables V . Being a consequence operator means that, for every Γ ∪ Δ ∪ {ϕ} ⊆ FmL(V ),
1. ϕ ∈ CS(Γ), for every ϕ ∈ Γ;
2. ϕ ∈ CS(Γ) and γ ∈ CS(Δ), for every γ ∈ Γ, imply that ϕ ∈ CS(Δ).

CS is finitary if, for every Γ ∪ {ϕ} ⊆ FmL(V ), ϕ ∈ CS(Γ) implies that there exists a finite Γ′ ⊆ Γ such that
ϕ ∈ CS(Γ′). Finally, CS being structural means that, for every Γ ∪ {ϕ} ⊆ FmL(V ) and every L-endomorphism
h : FmL(V ) −→ FmL(V ), ϕ ∈ CS(Γ) implies that h(ϕ) ∈ CS(h(Γ)).

The primary models used in the theory of sentential logics are logical matrices, which provide very flexible
tools for characterizing various properties of classes of sentential logics. These characterizations include the cor-
respondence property for protoalgebraic logics and various properties that are tantamount to having the local de-
duction-detachment theorem, which are the motivating forces behind the present study. Let A = 〈A,LA〉 be an
L-algebra. A subset F ⊆ A of its universe A is called an S-filter on A if, for every Γ ∪ {ϕ} ⊆ FmL(V ) such
that ϕ ∈ CS(Γ) and all h : FmL(V ) −→ A, h(Γ) ⊆ F implies h(ϕ) ∈ F . An S-matrix A = 〈A, FA〉 consists
of an L-algebra A = 〈A,LA〉 and an S-filter FA on A. The collection of all S-filters on A is denoted by FiS(A).
They form a complete lattice under inclusion, which is denoted by FiS(A) = 〈FiS(A),⊆〉. The collection of
all S-matrices, on the other hand, is denoted by Mat(S). The following facts are well-known from the theory of
logical matrices. Given an L-homomorphism h : A −→ B and an S-filter F on B, the set h−1(F ) is an S-filter
on A. The collection of all S-filters on the formula algebra FmL(V ) coincides with the set of all theories of the
logic S, i. e., FiS(FmL(V )) = Th(S). Finally, the class Mat(S) of all S-matrices forms a complete semantics
for S in the sense that, for all Γ ∪ {ϕ} ⊆ FmL(V ), ϕ ∈ CS(Γ) if and only if, for all A = 〈A, FA〉 ∈ Mat(I)
and every L-homomorphism h : FmL(V ) −→ A, h(Γ) ⊆ FA implies that h(ϕ) ∈ FA.

We turn now to the generation of S-filters. Suppose, again, that A = 〈A,LA〉 is an L-algebra and X ⊆ A is
a subset of its universe. Then the S-filter on A generated by X , denoted by FgA

S (X), is the intersection of all
S-filters on A that contain X , i. e.,

FgA
S (X) =

⋂{F ∈ FiS(A) : X ⊆ F}.
Moreover, if A = 〈A, FA〉 is an S-matrix, we define

FgA
S (X) =

⋂{F ∈ FiS(A) : X ⊆ F},
where

FiS(A) = {F ∈ FiS(A) : FA ⊆ F}.
It is shown in [3, Proposition 1.2.2] that, for every Γ ∪ {ϕ} ⊆ FmL(V ), we have CS(Γ, ϕ) = FgA

S (ϕ), where

A = 〈FmL(V ), CS(Γ)〉.
A generalization of this property in the categorical framework will be proven in Section 4. Another property that
will be abstracted in Section 4 asserts that each quotient of an S-matrix A = 〈A, FA〉 by an L-congruence θ that
is compatible with FA is also an S-matrix. More precisely, an L-congruence θ on A is compatible with FA if,
for all a, b ∈ A, 〈a, b〉 ∈ θ and a ∈ FA imply that b ∈ FA. Given such a congruence, denote by A/θ the quotient
algebra of A by θ and by A/θ the pair A/θ = 〈A/θ, FA/θ〉. If A is an S-matrix, then this quotient A/θ is also
an S-matrix. Moreover, the projection homomorphism πθ : A −→ A/θ is a matrix homomorphism

πθ : A −→ A/θ.

In general, given two S-matrices A = 〈A, FA〉 and B = 〈B, FB〉, an L-algebra homomorphism h : A −→ B
is an S-matrix homomorphism h : A −→ B if h(FA) ⊆ FB.

Finally, the last section of the paper discusses an abstraction of the correspondence property. A deductive sys-
tem S is said to have the correspondence property if, for every surjective matrix homomorphism h : A −→ B and
each S-filter F of A, we have that h−1(FgB

S (h(F ))) = F ∨FiS(A) h−1(FB). It is asserted in [3, Theorem 1.4.1]
that S is protoalgebraic if and only if it has the correspondence property. A partial analog of this result for
π-institutions will constitute the main result of Section 5 of the present work.

An outline of the contents of the paper is given next.
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In Section 2 the notions of a finitary π-institution and of an N -rule-based π-institution are recalled. Some ba-
sic definitions pertaining to N -algebraic systems and N -morphisms are also reviewed. The notion of an N -struc-
tural π-institution, based on that of an N -morphism between two N -algebraic systems, is introduced, closing the
section. This notion requires, roughly speaking, that the closure operator be invariant under all N -endomorphisms
of the underlying N -algebraic system of the π-institution under consideration.

Section 3 starts with the definition of the notion of an I-filter on a given N -algebraic system. This definition
takes after the corresponding definition for sentential logics, but it is more involved in the categorical framework
due to the presence of signature morphisms. Roughly speaking, an I-filter must preserve inferences not only mo-
dulo N -morphisms but also modulo signature morphisms. As in the sentential logic framework, an I-matrix is
then defined as a pair consisting of an N -algebraic system together with an I-filter on that system. In this section,
three propositions are proven that show that I-matrices satisfy many properties satisfied by ordinary logical ma-
trices in the deductive system framework. This is the first indication that these definitions may be useful in fur-
ther developing the categorical theory along the lines of the classical theory. In the first proposition, it is shown
that the inverse images of I-filters under N -morphisms are also I-filters. The second proposition asserts that for
N -structural π-institutions, the collection of I-filters on the underlying N -algebraic system of the π-institution
coincides with the collection of all theory families of the π-institution. Finally, in the third proposition, it is pro-
ven that the collection of all I-matrices for an N -structural π-institution I forms a complete semantics for I.

In Section 4, the discussion veers towards the filters that are generated by given collections of sentences of the
π-institution under consideration. Notice that this operator is more complicated than the corresponding one for
sentential logics. This is due to the fact that it takes into account the multiplicity of signatures. More precisely,
not only is it possible to consider an I-filter generated by a given set of Σ-sentences of an N -algebraic system,
but, in addition, we may also consider the I-filter generated by sets of Σi-sentences, for i in some set I , over dif-
ferent signatures of a given N -algebraic system. However, in the case where only sentences over a single signa-
ture are considered, a result paralleling the one for sentential logics is obtained. Namely, it is shown that CΣ(Φ, ϕ)
coincides with the I-filter generated by the Σ-sentence ϕ on the I-matrix generated by the set of Σ-sentences Φ.
Section 4 closes with a detailed study of the property of lifting of N -quotients. This property is introduced to en-
sure that the quotient of a given I-matrix modulo an N -congruence system that is compatible with the I-filter
of the I-matrix is also an I-matrix. While this property is obtained for free in the sentential logic framework,
it cannot be proven for π-institutions without any special conditions. This shortcoming is the result of requiring
that N -morphisms be natural.

Finally, in the last section of the paper, Section 5, the N -correspondence property as pertaining to I-matrices
is introduced and its relation with N -protoalgebraicity is studied in some detail. The section starts with a review
of the definition of an N -protoalgebraic π-institution. Then the N -correspondence property is introduced. Simi-
larly to the sentential logic framework, it is shown that, given a π-institution with the N -correspondence proper-
ty, every surjective I-morphism with an isomorphic functor component induces an isomorphism between corre-
sponding I-filter lattices. Moreover, it is proven that if an N -structural π-institution that admits lifting of N -quo-
tients has the N -correspondence property, then it is N -protoalgebraic. Finally, the property of transferability of
N -rules is introduced and, in another interesting result of this section, it is asserted that, for a π-institution I that
has transferable N -rules and admits lifting of N -quotients, if I has an N -implication system, it has the N -cor-
respondence property. Taken together, the results of Section 5 show that, under certain conditions on the π-insti-
tution I, the property of having an N -implication system implies the N -correspondence property, which, in turn,
implies N -protoalgebraicity. These three properties turn out to be equivalent properties in the deductive system
framework. Despite the fact that no relevant counterexamples exist, it is conjectured that they are not, in general,
equivalent properties in the categorical framework.

The current state-of-art in Abstract Algebraic Logic is detailed in the review article [7]. For more details the
monograph [6] and the book [5] are recommended. For all unexplained categorical notation, the reader is referred
to any of the standard references [1, 4, 8].

2 N -structurality and N -firs π-institutions

In this paper, we will sometimes deal with π-institutions I = 〈Sign, SEN, C〉, with a category N of natural trans-
formations on SEN, that are finitary, N -rule-based, and N -structural. The first two terms have been defined for
π-institutions before and will be recalled below, while the last will be introduced in the sequel for the first time.
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Recall that I being finitary means that, for all Σ ∈ |Sign| and all Φ ∪ {ϕ} ⊆ SEN(Σ),

ϕ ∈ CΣ(Φ) implies ϕ ∈ CΣ(Ψ), for some finite Ψ ⊆ Φ.

This is also equivalent to the condition CΣ(Φ) =
⋃

Ψ⊆ωΦ CΣ(Ψ), for all Φ ⊆ SEN(Σ) and Σ ∈ |Sign|, where
by ⊆ω is denoted the “finite subset” relation. Finitary π-institutions have been at the focus of the investigations
in [9, Section 2].

For a functor SEN, with a category N of natural transformations on SEN, the collection TeN (SEN) of N -for-
mulas over SEN or, in accordance with the theory of sentential logics, N -terms over SEN is defined, in the present
context, to be the collection of all natural transformations in N of the form σ : SENk −→ SEN, for some k ∈ ω.

By an N -rule of inference or, simply, an N -rule of SEN [12] it is understood a member r of the Cartesian pro-
duct P(TeN (SEN)) × TeN (SEN). Such a rule is denoted r = 〈X, σ〉, where X ⊆ TeN (SEN), σ ∈ TeN (SEN).
The length of the N -rule r = 〈X, σ〉 is the cardinal number |r| = |X|+. The N -rule r is axiomatic if its length is
equal to 1. Otherwise, it is a proper N -rule of inference. This means that if an N -rule r = 〈X, σ〉 is axiomatic,
then X = ∅. Finally, the N -rule r = 〈X, σ〉 is finitary if |r| < ω. A finitary π-institution I = 〈Sign, SEN, C〉
is called N -rule-based if, for every Σ ∈ |Sign| and all ϕ0, . . . , ϕn−1, ϕ ∈ SEN(Σ), if ϕ ∈ CΣ(ϕ0, . . . , ϕn−1),
then there exist natural transformations σ〈Σ,ϕ0〉, . . . , σ〈Σ,ϕn−1〉, σ〈Σ,ϕ〉 : SENk −→ SEN in N and �χ ∈ SEN(Σ)k

such that
1. 〈{σ〈Σ,ϕ0〉, . . . , σ〈Σ,ϕn−1〉}, σ〈Σ,ϕ〉〉 is an N -rule of I;

2. σ
〈Σ,ϕi〉
Σ (�χ ) = ϕi, i < n, and σ

〈Σ,ϕ〉
Σ (�χ ) = ϕ.

Rule-basedness was first introduced in [12, Definition 3.3] (for not necessarily finitary π-institutions) with the
goal of providing an analog of Bloom’s well-known theorem for π-institutions.

Let SEN : Sign −→ Set be a functor and N be a category of natural transformations on SEN. An N -alge-
braic system is a triple A = 〈SEN′, 〈N ′, F ′〉〉, where SEN′ : Sign′ −→ Set is a set-valued functor on a catego-
ry Sign′, N ′ is a category of natural transformations on SEN′, and F ′ : N −→ N ′ is a surjective functor that pre-
serves projections. Given two N -algebraic systems A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉, an N -(al-
gebraic) morphism 〈F, α〉 : A −→ B is a singleton (N ′, N ′′)-epimorphic translation 〈F, α〉 : SEN′ −→se SEN′′

such that the following triangle commutes:

N ′ N ′′,

N

F ′ �
�

��
F ′′�

�
��

where the dotted line represents the two-way correspondence established by the (N ′, N ′′)-epimorphic property
of 〈F, α〉.

A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, is called N -struc-
tural if, for all N -(endo)morphisms 〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN, 〈N, I〉〉, 〈F, α〉 : I 〉−se I is an (N, N)-lo-
gical morphism, i. e., an (N, N)-epimorphic translation that is a semi-interpretation. More explicitly, this means
that, for all Σ ∈ |Sign| and all Φ ⊆ SEN(Σ), αΣ(CΣ(Φ)) ⊆ CF (Σ)(αΣ(Φ)).

Definition 2.1 A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,
is called N -firs if it is finitary, N -rule-based, and N -structural.

3 I-matrices and completeness

Given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, and an N -alge-
braic system A = 〈SEN′, 〈N ′, F ′〉〉, an axiom family T ′ of SEN′, i. e., a family T ′ = {T ′

Σ′}Σ′∈|Sign′| such that
T ′

Σ′ ⊆ SEN′(Σ′) for all Σ′ ∈ |Sign′|, is called an I-filter on A if, for all Σ ∈ |Sign| and all Φ ∪ {ϕ} ⊆ SEN(Σ)
such that ϕ ∈ CΣ(Φ),

αΣ′(SEN(f)(Φ)) ⊆ T ′
F (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T ′

F (Σ′),

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and every N -morphism 〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN′, 〈N ′, F ′〉〉.
c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Notice the universal quantification over the N -morphism 〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN′, 〈N ′, F ′〉〉. This
gives the distinctive flavor, mentioned in the abstract and in the introduction, to the current investigations, as con-
trasted to previous ones in CAAL. In all previous contexts, matrices, which were referred to as matrix systems,
were considered over a fixed (N, N ′)-logical morphism.

The collection of all I-filters on A is denoted by FiI(A). It is easy to see that

∇SEN′
= {SEN′(Σ′)}Σ′∈|Sign′| ∈ FiI(A)

and that FiI(A) is closed under signature-wise intersections. Therefore, the pair FiI(A) := 〈FiI(A),≤〉 is a
complete lattice, where ≤ denotes signature-wise inclusion.

Given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, an I-matrix
is a pair A = 〈A, T ′〉, where

1. A = 〈SEN′, 〈N ′, F ′〉〉 is an N -algebraic system,
2. T ′ is an I-filter on A.

The collection of all I-matrices will be denoted by Mat(I).
Three well-known results from the theory of sentential logics will now be formulated in the context of π-in-

stitutions. The first result states that, given a sentential logic S = 〈L,�S〉, for every L-algebra homomorphism
h : A −→ B and every S-filter G ∈ FiS(B) on B, the set h−1(G) is also an S-filter on A, i. e., S-filters are pre-
served under inverse homomorphic images. The second states that the collection of all S-filters on the formula
algebra FmL(V ) coincides with the theories of the logic, i. e., that FiS(FmL(V )) = Th(S). Finally, the third
states that the class Mat(S) of all S-matrices forms a complete semantics for the logic S.

Given
1. two sentence functors SEN : Sign −→ Set and SEN′ : Sign′ −→ Set,
2. a translation 〈F, α〉 : SEN −→ SEN′,
3. an axiom family T ′ = {T ′

Σ′}Σ′∈|Sign′| of SEN′,

recall that by α−1(T ′) is denoted the axiom family of SEN defined by α−1(T ′) = {α−1
Σ (T ′

F (Σ))}Σ∈|Sign|.

Proposition 3.1 Let I = 〈Sign, SEN, C〉 be a π-institution and N be a category of natural transformations
on SEN. Let A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉 be two N -algebraic systems, 〈F, α〉 : A −→ B be
an N -morphism, and T ′′ ∈ FiI(B). Then α−1(T ′′) ∈ FiI(A).

P r o o f. Suppose that 〈G, β〉 : 〈SEN, 〈N, I〉〉 −→ A is an N -morphism, Σ ∈ |Sign|, Φ ∪ {ϕ} ⊆ SEN(Σ),
such that ϕ ∈ CΣ(Φ), Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), such that βΣ′(SEN(f)(Φ)) ⊆ α−1

G(Σ′)(T
′′
F (G(Σ′))). Then

we have that

αG(Σ′)(βΣ′(SEN(f)(Φ))) ⊆ T ′′
F (G(Σ′)).

Hence, since T ′′ ∈ FiI(B) and 〈FG, αGβ〉 : 〈SEN, 〈N, I〉〉 −→ B is an N -morphism, we obtain that

αG(Σ′)(βΣ′(SEN(f)(ϕ))) ∈ T ′′
F (G(Σ′)),

i. e., βΣ′(SEN(f)(ϕ)) ∈ α−1
G(Σ′)(T

′′
F (G(Σ′))), showing that α−1(T ′′) ∈ FiI(A).

Next, it is shown that, for an N -structural π-institution I, the collection of all theory families ThFam(I) co-
incides with the collection of all I-filters on the N -algebraic system 〈SEN, 〈N, I〉〉.

Proposition 3.2 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,
is an N -structural π-institution. Then ThFam(I) = FiI(〈SEN, 〈N, I〉〉).

P r o o f. For simplicity of notation, let A = 〈SEN, 〈N, I〉〉.

www.mlq-journal.org c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Suppose, first, that T ∈ ThFam(I). To show that T ∈ FiI(A), let Σ ∈ |Sign| and Φ ∪ {ϕ} ⊆ SEN(Σ) such
that ϕ ∈ CΣ(Φ). Let, also, Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and let 〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN, 〈N, I〉〉 be
an N -endomorphism such that αΣ′(SEN(f)(Φ)) ⊆ TF (Σ′). Then we have

αΣ′(SEN(f)(ϕ)) ∈ αΣ′(SEN(f)(CΣ(Φ))) (since ϕ ∈ CΣ(Φ))
⊆ αΣ′(CΣ′(SEN(f)(Φ))) (since C is a closure system on SEN)
⊆ CΣ′(αΣ′(SEN(f)(Φ))) (by N -structurality)
⊆ CΣ′(TF (Σ′)) (by hypothesis)
= TF (Σ′) (by hypothesis).

Thus, T ∈ FiI(A). Note the crucial role that N -structurality played in this part of the proof.
Suppose, conversely, that T ∈ FiI(A). To see that T ∈ ThFam(I), suppose Σ ∈ |Sign|, ϕ ∈ SEN(Σ) such

that ϕ ∈ CΣ(TΣ). Then, since 〈I, ι〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN, 〈N, I〉〉 is an N -endomorphism such that

ιΣ(TΣ) = TΣ ⊆ TΣ ∈ FiI(A) and ϕ ∈ CΣ(TΣ),

we must have ϕ = ιΣ(ϕ) ∈ TΣ. Hence CΣ(TΣ) ⊆ TΣ and, therefore, T ∈ ThFam(I).

Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-institution and

M = {〈Ai, T i〉 : i ∈ I}

be a class of I-matrices, with Ai = 〈SENi, 〈N i, F i〉〉, i ∈ I . Define the triple IM = 〈Sign, SEN, CM〉 by set-
ting, for all Σ ∈ |Sign| and all Φ ∪ {ϕ} ⊆ SEN(Σ),

ϕ ∈ CM
Σ (Φ) iff αΣ′(SEN(f)(Φ)) ⊆ T i

F (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T i
F (Σ′),

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and every N -morphism
〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SENi, 〈N i, F i〉〉, i ∈ I.

It is shown next that the triple IM = 〈Sign, SEN, CM〉 is a π-institution.

Proposition 3.3 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-in-
stitution and M be a class of I-matrices. Then IM = 〈Sign, SEN, CM〉 is a π-institution.

P r o o f. First, it is shown that, for every Σ ∈ |Sign|, CM
Σ : P(SEN(Σ)) −→ P(SEN(Σ)) is a closure opera-

tor on SEN(Σ). Since reflexivity and monotonicity are obvious, we only check idempotency.
Suppose that Φ ∪ {ϕ} ⊆ SEN(Σ) such that ϕ ∈ CM

Σ (CM
Σ (Φ)). This means that, for all Σ′ ∈ |Sign| and all

f ∈ Sign(Σ, Σ′), all i ∈ I , and all 〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SENi, 〈N i, F i〉〉, we have that

(1) αΣ′(SEN(f)(CM
Σ (Φ))) ⊆ T i

F (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T i
F (Σ′).

Hence, if αΣ′(SEN(f)(Φ)) ⊆ T i
F (Σ′), then, by the definition of CM, we get that

αΣ′(SEN(f)(CM
Σ (Φ))) ⊆ T i

F (Σ′),

which, by condition (1), implies that αΣ′(SEN(f)(ϕ)) ∈ T i
F (Σ′), showing that ϕ ∈ CM

Σ (Φ). Thus,

CM
Σ (CM

Σ (Φ)) ⊆ CM
Σ (Φ),

which, together with monotonicity, yields idempotency.
Finally, it remains to show that CM is a closure system on SEN, i. e., that we have, for all Σ1, Σ2 ∈ |Sign|

and all f ∈ Sign(Σ1, Σ2), SEN(f)(CM
Σ1

(Φ)) ⊆ CM
Σ2

(SEN(f)(Φ)), for all Φ ⊆ SEN(Σ1).
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Suppose, to this end, that ϕ ∈ CM
Σ1

(Φ). Let Σ′ ∈ |Sign|, g ∈ Sign(Σ2, Σ′), and

〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SENi, 〈N i, F i〉〉 such that αΣ′(SEN(g)(SEN(f)(Φ))) ⊆ T i
F (Σ′).

Σ1 Σ2
�f

Σ′.

�
�
��

g��
��

This implies that αΣ′(SEN(gf)(Φ)) ⊆ T i
F (Σ′), whence, since ϕ ∈ CM

Σ1
(Φ), we get αΣ′(SEN(gf)(ϕ)) ∈ T i

F (Σ′).
Therefore αΣ′(SEN(g)(SEN(f)(ϕ))) ∈ T i

F (Σ′), giving that SEN(f)(ϕ) ∈ CM
Σ2

(SEN(f)(Φ)) and concluding the
argument that CM is also structural.

Now, the proposition asserting the completeness of the class of all I-matrices as a semantics for an N -struc-
tural π-institution I takes the following form.

Proposition 3.4 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,
is an N -structural π-institution. Then C = CMat(I).

P r o o f. Let Σ ∈ |Sign|, Φ ∪ {ϕ} ⊆ SEN(Σ).
Suppose, first, that ϕ ∈ CΣ(Φ). Consider Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and

〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN′, 〈N ′, F ′〉〉, with 〈〈SEN′, 〈N ′, F ′〉〉, T ′〉 ∈ Mat(I),

such that αΣ′(SEN(f)(Φ)) ⊆ T ′
F (Σ′). Then, since

〈〈SEN′, 〈N ′, F ′〉〉, T ′〉 ∈ Mat(I),

we have that T ′ ∈ FiI(〈SEN′, 〈N ′, F ′〉〉), whence we obtain that αΣ′(SEN(f)(ϕ)) ∈ T ′
F (Σ′), which shows that

ϕ ∈ C
Mat(I)
Σ (Φ).

Suppose, conversely, that ϕ ∈ C
Mat(I)
Σ (Φ). Thus, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and all

〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN′, 〈N ′, F ′〉〉, with 〈〈SEN′, 〈N ′, F ′〉〉, T ′〉 ∈ Mat(I),

we have that

αΣ′(SEN(f)(Φ)) ⊆ T ′
F (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T ′

F (Σ′).

Therefore, if T ∈ ThFam(I) such that Φ ⊆ TΣ, then, since T ∈ FiI(〈SEN, 〈N, I〉〉) by Proposition 3.2, we have
that 〈〈SEN, 〈N, I〉〉, T 〉 ∈ Mat(I), which, together with the fact that ιΣ(SEN(iΣ)(Φ)) = Φ ⊆ TI(Σ), yields that
ϕ = ιΣ(SEN(iΣ)(ϕ)) ∈ TΣ. Thus ϕ ∈ CΣ(Φ) and, therefore, CMat(I) = C.

4 I-filter generation and lifting of quotients

Consider a π-institution I = 〈Sign, SEN, C〉 and a category N of natural transformations on SEN.
Let A = 〈SEN′, 〈N ′, F ′〉〉 be an N -algebraic system and A = 〈A, T ′〉 ∈ Mat(I) be an I-matrix. A collec-

tion U = {UΣ′}Σ′∈|Sign′| is called an I-filter of A if U is an I-filter on A such that T ′ ≤ U . The collection of
all I-filters of A, denoted by FiIA, is closed under arbitrary signature-wise intersections and contains ∇SEN′

,
whence it forms a complete lattice FiIA = 〈FiIA,≤〉.

Given Σ ∈ |Sign′| and Φ ⊆ SEN′(Σ), denote by FgI,A(〈Σ, Φ〉) the I-filter of A generated by 〈Σ, Φ〉, de-
fined by

FgI,A(〈Σ, Φ〉) =
⋂{U ∈ FiIA : Φ ⊆ UΣ},
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where, of course, intersection is taken signature-wise. More generally, given a collection of pairs

X = {〈Σi, Φi〉 : i ∈ I},

with Σi ∈ |Sign′| and Φi ⊆ SEN′(Σi), i ∈ I , denote by FgI,A(X) the I-filter of A generated by X , defined by

FgI,A(X) =
⋂{U ∈ FiIA : Φi ⊆ UΣi

, for all i ∈ I}.
To formulate the following proposition, which forms an analog of [3, Proposition 1.2.2] in the context of π-in-

stitutions, it is useful to recall from [10], given Σ ∈ |Sign| and Φ ⊆ SEN(Σ), the definition of the least theory
family T [〈Σ,Φ〉] containing a given theory family T and such that Φ ⊆ T

[〈Σ,Φ〉]
Σ . This is the theory family

T [〈Σ,Φ〉] = {T [〈Σ,Φ〉]
Σ′ }Σ′∈|Sign|

defined, for all Σ′ ∈ |Sign|, by

T
[〈Σ,Φ〉]
Σ′ =

{
CΣ(TΣ, Φ) if Σ′ = Σ,

TΣ′ otherwise.

Also, recall that Thm = {ThmΣ}Σ∈|Sign| denotes the theorem system of I, i. e., it is defined by

ThmΣ = CΣ(∅), for all Σ ∈ |Sign|.
Proposition 4.1 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,

is an N -structural π-institution, Σ ∈ |Sign|, Φ ∪ {ϕ} ⊆ SEN(Σ), A = 〈SEN, 〈N, I〉〉, A = 〈A, Thm[〈Σ,Φ〉]〉.
Then CΣ(Φ, ϕ) = FgI,A

Σ (〈Σ, ϕ〉).
P r o o f. In fact, we have that

CΣ(Φ, ϕ) =
⋂{TΣ : T ∈ ThFam(I), Φ ∪ {ϕ} ⊆ TΣ} (definition of CΣ)

=
⋂{TΣ : T ∈ FiIA, Φ ∪ {ϕ} ⊆ TΣ} (Proposition 3.2)

=
⋂{TΣ : T ∈ FiIA, ϕ ∈ TΣ} (definition of FiIA)

= FgI,A
Σ (〈Σ, ϕ〉) (definition of FgI,A(〈Σ, ϕ〉)).

Let
1. I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-institution,
2. A = 〈SEN′, 〈N ′, F ′〉〉 be an N -algebraic system,
3. A = 〈A, T ′〉 be an I-matrix,

4. U ∈ FiIA.
Recall from [10, Section 2] that an N ′-congruence system θ on SEN′ is called compatible with U if 〈ϕ, ψ〉 ∈ θΣ

and ϕ ∈ UΣ imply that ψ ∈ UΣ, for all Σ ∈ |Sign′| and all ϕ, ψ ∈ SEN′(Σ). Recall also [10, Proposition 2.2]
that there always exists a largest N ′-congruence system on SEN′ compatible with U that is denoted by ΩN ′

(U)
and called the Leibniz N ′-congruence system of U .

Next, a desideratum that seems necessary so that a satisfactory theory of I-matrices, paralleling that pertaining
to sentential logics, may be developed will be discussed. A reason will be given as to why this desideratum may
fail under our running hypotheses. Then additional assumptions will be made on the π-institution I to force the
desideratum to hold and discussion will be continued in this more restricted framework, where several results that
are known to hold for sentential logics, including a form of the correspondence theorem for protoalgebraic deduc-
tive systems, will be lifted to the present framework.

Let
1. I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-institution,
2. A = 〈SEN′, 〈N ′, F ′〉〉 be an N -algebraic system,
3. A = 〈A, T ′〉 be an I-matrix.
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In the present context, we would like to have the tuple

A/ΩN ′
(T ′) = 〈〈SEN′/ΩN ′

(T ′), 〈N ′ΩN′
(T ′), F ′ΩN′

(T ′)〉〉, T ′/ΩN ′
(T ′)〉

to also be an I-matrix. Unfortunately, this may fail due to the fact that, given an N -morphism

〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN′/ΩN ′
(T ′), 〈N ′ΩN′

(T ′), F ′ΩN′
(T ′)〉〉,

there may not exist an N -morphism 〈F, β〉 : 〈SEN, 〈N, I〉〉 −→ 〈SEN′, 〈N ′, F ′〉〉 making the following diagram
commute:

SEN′ SEN′/ΩN ′
(T ′).�

〈I, πΩN′
(T ′)〉

SEN

〈F, β〉
�

�
�

�
��

〈F, α〉
�

�
�

�
��

The reason is that β : SEN −→ SEN′ ◦ F needs to be a natural transformation. To fix this shortcoming we stipu-
late that 〈SEN, N〉 admit lifting of quotients according to the following

Definition 4.2 Let SEN : Sign −→ Set be a functor and N be a category of natural transformations on SEN.
The functor SEN is said to admit lifting of N -quotients if, for every N -algebraic system A = 〈SEN′, 〈N ′, F ′〉〉,
every N ′-congruence system θ on SEN′, and every N -morphism 〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ A/θ, there exists
an N -morphism 〈F, β〉 : 〈SEN, 〈N, I〉〉 −→ A that makes the following diagram commute:

SEN SEN′/θ�〈F, α〉

SEN′.

〈F, β〉
�

�
�
��

〈I, πθ〉
�

�
�
��

A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, will be said to admit
lifting of N -quotients if the functor SEN admits lifting of N -quotients. An N -firs π-institution I will be said to
be N -qfirs if it admits lifting of N -quotients.

An equivalent characterization of this property is provided by the following proposition.

Proposition 4.3 Let

SEN : Sign −→ Set

be a functor and N be a category of natural transformations on SEN. The functor SEN admits lifting of N -quo-
tients if and only if, for all N -algebraic systems A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉, every surjective
N -morphism 〈F, α〉 : A −→ B, with F an isomorphism, and every N -morphism 〈G, β〉 : 〈SEN, 〈N, I〉〉 −→ B,
there exists an N -morphism 〈H, γ〉 : 〈SEN, 〈N, I〉〉 −→ A such that the following diagram commutes:

A B.�
〈F, α〉

〈SEN, 〈N, I〉〉

〈H, γ〉
�

�
�

��

〈G, β〉
�

�
�
��
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P r o o f. The fact that the given condition implies that I admits lifting of N -quotients is obvious, because the
given condition is clearly stronger than that defining lifting of N -quotients. So it suffices to show that if I admits
lifting of N -quotients, then the condition of the statement holds. For simplicity we show that, for all N -algebraic
systems A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉, with SEN′, SEN′′ : Sign′ −→ Set, every surjective
N -morphism 〈I, α〉 : A −→ B, and every N -morphism 〈G, β〉 : 〈SEN, 〈N, I〉〉 −→ B, there is an N -morphism
〈G, γ〉 : 〈SEN, 〈N, I〉〉 −→ A such that the following diagram commutes:

A B.�
〈I, α〉

〈SEN, 〈N, I〉〉

〈G, γ〉
�

�
�

��

〈G, β〉
�

�
�
��

To see that this holds, it suffices to notice that the N -morphism 〈I, α〉 : A −→ B admits a decomposition

SEN′ SEN′/θ〈I,α〉�〈I, π〈I,α〉〉
SEN′′,�〈I, α∗〉

where

〈I, π〈I,α〉〉 : SEN′ −→ SEN′/θ〈I,α〉

denotes the canonical projection N -morphism from the functor SEN′ onto the quotient functor SEN′/θ〈I,α〉 by the
kernel N -congruence system θ〈I,α〉 of 〈I, α〉, and 〈I, α∗〉 : SEN′/θ〈I,α〉 −→ SEN′′ is defined, for all Σ ∈ |Sign′|
and all ϕ ∈ SEN′(Σ), by

α∗
Σ(ϕ/θ

〈I,α〉
Σ ) = αΣ(ϕ).

It is not very hard to see that 〈I, α∗〉 is well-defined and is, indeed, an N -isomorphism. Thus, the conclusion fol-
lows by applying lifting of N -quotients to the left triangle of the following diagram to obtain the N -morphism
〈G, γ〉 : SEN −→ SEN′:

SEN′ SEN′/θ〈I,α〉�
〈I, π〈I,α〉〉 SEN′′.�

〈I, α∗〉

SEN

〈G, γ〉

�
�

�
�

�
�

�� �

〈G, α∗−1

G β〉 〈G, β〉

�
�

�
�

�
�
��

The following proposition shows that Definition 4.2 satisfies the desideratum presented at the beginning of the
section and, therefore, justifies the introduction of the “lifting of N -quotients” property.

Proposition 4.4 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-in-
stitution that admits lifting of N -quotients, A = 〈SEN′, 〈N ′, F ′〉〉 be an N -algebraic system, A = 〈A, T ′〉 be an
I-matrix, and θ be an N ′-congruence system on SEN′ that is compatible with T ′. If A/θ = 〈SEN′θ, 〈N ′θ, F ′θ〉〉,
then the pair A/θ = 〈A/θ, T ′/θ〉 is also an I-matrix.

P r o o f. It is to show that T ′/θ is an I-filter on A/θ. To this end, suppose Σ ∈ |Sign|, Φ ∪ {ϕ} ⊆ SEN(Σ)
such that ϕ ∈ CΣ(Φ) and Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), 〈F, α〉 : 〈SEN, 〈N, I〉〉 −→ A/θ are such that

αΣ′(SEN(f)(Φ)) ⊆ T ′
F (Σ′)/θF (Σ′).

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 55, No. 1 (2009) / www.mlq-journal.org 61

Since I admits lifting of N -quotients, SEN admits lifting of N -quotients, whence there exists

〈F, β〉 : 〈SEN, 〈N, I〉〉 −→ A

such that the following triangle commutes:

SEN SEN′/θ�〈F, α〉

SEN′.

〈F, β〉
�

�
�
��

〈I, πθ〉
�

�
�
��

Thus, we have that πθ
F (Σ′)(βΣ′(SEN(f)(Φ))) ⊆ T ′

F (Σ′)/θF (Σ′). This, however, is equivalent to

βΣ′(SEN(f)(Φ))/θF (Σ′) ⊆ T ′
F (Σ′)/θF (Σ′),

which, using the postulated compatibility of θ with T ′, yields βΣ′(SEN(f)(Φ)) ⊆ T ′
F (Σ′). Since A = 〈A, T ′〉 is

an I-matrix, T ′ is an I-filter on A, which, taken together with ϕ ∈ CΣ(Φ), now gives that

βΣ′(SEN(f)(ϕ)) ∈ T ′
F (Σ′).

Therefore πθ
F (Σ′)(βΣ′(SEN(f)(ϕ))) ∈ T ′

F (Σ′)/θF (Σ′), i. e., αΣ′(SEN(f)(ϕ)) ∈ T ′
F (Σ′)/θF (Σ′), and T ′/θ is in-

deed an I-filter on A/θ.

Consider, once more, a π-institution

I = 〈Sign, SEN, C〉,
with N a category of natural transformations on SEN. Let A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉 be
two N -algebraic systems, A = 〈A, T ′〉, B = 〈B, T ′′〉 be two I-matrices. An N -morphism 〈F, α〉 : A −→ B is
said to be an I-(matrix) morphism from A to B, written

〈F, α〉 : A −→ B,

if, for all Σ ∈ |Sign′|, αΣ(T ′
Σ) ⊆ T ′′

F (Σ) or, equivalently, if T ′
Σ ⊆ α−1

Σ (T ′′
F (Σ)), for all Σ ∈ |Sign′|, which may

also be written as T ′ ≤ α−1(T ′′).
Let I be a π-institution that admits lifting of N -quotients. The next proposition asserts that, given an I-matrix

A = 〈A, T ′〉, with A = 〈SEN′, 〈N ′, F ′〉〉, and an N ′-congruence system θ on SEN′ compatible with T ′, then
the N -morphism 〈I, πθ〉 : A −→ A/θ is an I-morphism 〈I, πθ〉 : A −→ A/θ and, moreover, it satisfies

T = (πθ)−1(T ′/θ).

Its proof, given Proposition 4.4, is straightforward and will, therefore, be omitted.
Proposition 4.5 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-in-

stitution that admits lifting of N -quotients, A = 〈SEN′, 〈N ′, F ′〉〉 be an N -algebraic system, A = 〈A, T ′〉 be an
I-matrix, and θ be an N ′-congruence system on SEN′ that is compatible with T ′. Then 〈I, πθ〉 : A −→ A/θ is
an I-morphism and, moreover, T ′ = (πθ)−1(T ′/θ).

In particular, in the special case where θ = ΩN ′
(T ′), we obtain the following corollary.

Corollary 4.6 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-insti-
tution that admits lifting of N -quotients, A = 〈SEN′, 〈N ′, F ′〉〉 be an N -algebraic system, and A = 〈A, T ′〉 be

an I-matrix. Then 〈I, πΩN′
(T ′)〉 : A −→ A/ΩN ′

(T ′) is an I-morphism and, moreover, it holds that

T ′ = (πΩN′
(T ′))−1(T ′/ΩN ′

(T ′)).

In the sequel, common practice in Abstract Algebraic Logic will be followed in denoting by A∗ the I-matrix
A∗ = 〈A/ΩN ′

(T ′), T ′/ΩN ′
(T ′)〉, where A/ΩN ′

(T ′) = 〈SEN′ΩN′
(T ′), 〈N ′ΩN′

(T ′), F ′ΩN′
(T ′)〉〉.
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5 Protoalgebraicity and the correspondence property

The definition of an N -protoalgebraic π-institution from [10] is now recalled. The goal is to use the notion of an
I-matrix to study the relation between N -protoalgebraicity and a version of the correspondence property that is
closer in spirit to the original version of Blok and Pigozzi [2]. The version of the correspondence property used
in [10] refers to a fixed surjective logical morphism. On the other hand, dealing with I-matrices, in the sense of
the present work, allows one to reason over the entire collection of N -morphisms, bringing this framework closer
in spirit to the original theory of logical matrices.

Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-institution. I is said
to be N -protoalgebraic if, for every theory family T ∈ ThFam(I), all Σ ∈ |Sign|, and all ϕ, ψ ∈ SEN(Σ),

〈ϕ, ψ〉 ∈ ΩN
Σ (T ) implies CΣ(TΣ, ϕ) = CΣ(TΣ, ψ).

This condition turns out to be equivalent [10, Lemma 3.3] to the monotonicity of the N -Leibniz operator on the
theory families of I, i. e., the condition that, for all T 1, T 2 ∈ ThFam(I),

T 1 ≤ T 2 implies ΩN (T 1) ≤ ΩN (T 2).

Let A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉 be two N -algebraic systems, A = 〈A, T ′〉, B = 〈B, T ′′〉
be two I-matrices, and 〈F, α〉 : A −→ B be an I-morphism from A to B. Given an I-filter U of A, consider the
collection α(U) = {〈F (Σ), αΣ(UΣ)〉}Σ∈|Sign′|. Note that this tuple may, on the one hand, omit some signatures
Σ′′ ∈ |Sign′′| and, on the other, may associate two sets with a specific signature Σ′′ ∈ |Sign′′|. Define

α∗(U) = FgI,B(α(U)).

Thus α∗ : FiI(A) −→ FiI(B), for every I-morphism 〈F, α〉 : A −→ B.
Definition 5.1 A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,

is said to have the N -correspondence property if, for every surjective I-morphism 〈F, α〉 : A −→ B, with F an
isomorphism,

α−1(α∗(U)) = U ∨FiI(A) α−1(T ′′),

for every U ∈ FiI(A), where A = 〈A, T ′〉, B = 〈B, T ′′〉, A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉.
Prior to exploring the relationship between the N -correspondence property and N -protoalgebraicity, we obtain

an important consequence of the N -correspondence property. It states that every surjective I-morphism with an
isomorphic functor component induces a certain isomorphism between lattices of I-filters. This result generalizes
to π-institutions a well-known result from the theory of protoalgebraic deductive systems (see, e. g., [3, p. 82]).

Proposition 5.2 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-in-
stitution having the N -correspondence property. Let, also, A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉 be
two N -algebraic systems and A = 〈A, T ′〉, B = 〈B, T ′′〉 be two I-matrices. If 〈F, α〉 : A −→ B is a surjective
I-morphism, with F an isomorphism, then α∗ induces an isomorphism between the sublattice of FiIA with uni-
verse {U ∈ FiIA : U ≥ α−1(T ′′)} and FiIB.

P r o o f. First, note that if U ∈ FiIA, then α∗(U) = FgI,B(α(U)) belongs to FiIB, whence the given map-
ping is well-defined.

Next, it is shown that α∗ is injective. Let U, V ∈ FiIA such that α−1(T ′′) ≤ U and α−1(T ′′) ≤ V , and as-
sume that α∗(U) = α∗(V ). Then α−1(α∗(U)) = α−1(α∗(V )), whence, by the N -correspondence property,

U ∨FiIA α−1(T ′′) = V ∨FiIA α−1(T ′′).

But, by the hypothesis, α−1(T ′′) ≤ U and α−1(T ′′) ≤ V , whence U = V and α∗ is indeed injective.
Finally, α∗ is shown to be surjective. Suppose, to this end, that W ∈ FiIB. Then W ∈ FiIB, with T ′′ ≤ W .

Hence α−1(T ′′) ≤ α−1(W ) and, therefore, taking into account Proposition 3.1,

α−1(W ) ∨FiIA α−1(T ′′) = α−1(W ).
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Now, using the N -correspondence property, we get that α−1(α∗(α−1(W ))) = α−1(W ). Thus, by the surjecti-
vity of 〈F, α〉, α∗(α−1(W )) = W . Hence α∗ is also surjective and, therefore, an isomorphism between the sub-
lattice of FiIA with universe {U ∈ FiIA : U ≥ α−1(T ′′)} and FiIB.

Next, the relationship between N -protoalgebraicity and the N -correspondence property is explored. The work
starts with a proposition showing that if an N -structural π-institution I, admitting lifting of N -quotients, has the
N -correspondence property, then it is N -protoalgebraic.

Proposition 5.3 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,
is an N -structural π-institution that admits lifting of N -quotients and has the N -correspondence property. Then
it is N -protoalgebraic.

P r o o f. Suppose that I is N -structural, admits lifting of N -quotients, and has the N -correspondence proper-
ty, and let T 1, T 2 ∈ ThFam(I) such that T 1 ≤ T 2. Consider the N -algebraic systems A = 〈SEN, 〈N, I〉〉 and
A/ΩN (T 1) = 〈SEN/ΩN (T 1), 〈NΩN (T 1), FΩN (T 1)〉〉. Then the tuple A = 〈A, T 1〉 is an I-matrix, by Proposi-
tion 3.2, since I is N -structural. The tuple A∗ = 〈A/ΩN (T 1), T 1/ΩN (T 1)〉 is also an I-matrix, by Proposi-
tion 3.2 and Corollary 4.6, since I is N -structural and admits lifting of N -quotients. Hence, the natural projection
morphism 〈I, πΩN (T 1)〉 : A −→ A∗ is an I-morphism. Since, also by N -structurality, T 2 ∈ FiI(A), we get, us-
ing the N -correspondence property, that

(πΩN (T 1))−1((πΩN (T 1))∗(T 2)) = T 2 ∨FiIA (πΩN (T 1))−1(T 1/ΩN (T 1)),

i. e., that

(πΩN (T 1))−1((πΩN (T 1))∗(T 2)) = T 2.

This yields that ΩN (T 1) is compatible with T 2, i. e., that ΩN (T 1) ≤ ΩN (T 2), and proves that I is N -protoal-
gebraic.

Next we provide an alternative characterization of the N -correspondence property.

Definition 5.4 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, is a
π-institution. Let A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉 be two N -algebraic systems and A = 〈A, T ′〉,
B = 〈B, T ′′〉 be two I-matrices. An I-morphism 〈F, α〉 : A −→ B is strict if (in addition to T ′ ≤ α−1(T ′′),
it also satisfies) T ′c ≤ α−1(T ′′c), where c is used to denote signature-wise complementation.

The π-institution I has the strict N -correspondence property if, for each strict I-morphism 〈F, α〉 : A −→ B,
with F an isomorphism, U = α−1(α(U)), for every U ∈ FiI(A).

In Proposition 5.6, it will be shown that the N -correspondence property and the strict N -correspondence pro-
perty are equivalent properties for a large class of π-institutions. We first present a lemma to the effect that, infor-
mally speaking, under the presence of lifting of quotients, strict surjective I-morphisms, with isomorphic functor
components, and I-filter generation commute with one another.

Lemma 5.5 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-institu-
tion that admits lifting of N -quotients, let A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉 be two N -algebraic
systems, and let A = 〈A, T ′〉, B = 〈B, T ′′〉 be two I-matrices. If 〈F, α〉 : A −→ B is a surjective strict I-mor-
phism, with F an isomorphism, then α(FgI,A(U)) = FgI,B(α(U)), for all U ∈ AxFam(SEN).

P r o o f. We have α(U) ≤ FgI,B(α(U)), whence U ≤ α−1(FgI,B(α(U))). But, by Proposition 3.1, the col-
lection α−1(FgI,B(α(U))) is an I-filter of A, whence we get that FgI,A(U) ≤ α−1(FgI,B(α(U))). This entails
that α(FgI,A(U)) ≤ FgI,B(α(U)).

To show the reverse inclusion FgI,B(α(U)) ≤ α(FgI,A(U)), it is enough, given that α(U) ≤ α(FgI,A(U)),
to show that α(FgI,A(U)) ∈ FiIB. In turn, since 〈F, α〉 is surjective and strict, it suffices to show that

α(FgI,A(U)) ∈ FiIB.
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To this end, suppose that Σ ∈ |Sign|, Φ ∪ {ϕ} ⊆ SEN(Σ) such that ϕ ∈ CΣ(Φ), Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),
and 〈G, β〉 : 〈SEN, 〈N, I〉〉 −→ B are such that

A B,�
〈F, α〉

〈SEN, 〈N, I〉〉

〈G, β〉
�

�
�
��

βΣ′(SEN(f)(Φ)) ⊆ αF−1(G(Σ′))(FgI,A
F−1(G(Σ′))(U)).

As I admits lifting of N -quotients, there is, by Proposition 4.3, an N -morphism 〈H, γ〉 : 〈SEN, 〈N, I〉〉 −→ A
such that the following triangle commutes:

A B.�
〈F, α〉

〈SEN, 〈N, I〉〉

〈H, γ〉
�

�
�

��

〈G, β〉
�

�
�
��

Therefore αH(Σ′)(γΣ′(SEN(f)(Φ))) ⊆ αF−1(G(Σ′))(FgI,A
F−1(G(Σ′))(U)). But 〈F, α〉 is strict, whence we ob-

tain that γΣ′(SEN(f)(Φ)) ⊆ FgI,A
H(Σ′)(U). Therefore, since FgI,A(U) ∈ FiIA, we get that

γΣ′(SEN(f)(ϕ)) ∈ FgI,A
H(Σ′)(U).

This yields that αH(Σ′)(γΣ′(SEN(f)(ϕ))) ∈ αF−1(G(Σ′))(FgI,A
F−1(G(Σ′))(U)), which implies that

βΣ′(SEN(f)(ϕ)) ∈ αF−1(G(Σ′))(FgI,A
F−1(G(Σ′))(U)).

Thus, we get that α(FgI,A(U)) ∈ FiIB.

The following proposition shows that a π-institution I, admitting lifting of N -quotients, has the N -corres-
pondence property if and only if it has the strict N -correspondence property.

Proposition 5.6 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-in-
stitution that admits lifting of N -quotients. I has the N -correspondence property if and only if I has the strict
N -correspondence property.

P r o o f. Suppose, first, that I has the N -correspondence property and let 〈F, α〉 : A −→ B be a strict I-mor-
phism, with F an isomorphism, and U ∈ FiIA. Since it is clear that U ≤ α−1(α(U)), it is sufficient to show the
reverse inclusion. To take advantage of the N -correspondence property, we consider the surjective I-morphism
〈F, α〉 : A −→ α(A), where α(A) = 〈α(A), T ′′ ∩ α(SEN′)〉. Then, by the N -correspondence property applied
to this new 〈F, α〉 and the filter U ∈ FiIA, we get that

α−1(α(U)) ≤ α−1(α∗(U)) = U ∨FiIA α−1(T ′′ ∩ α(SEN′)) = U ∨FiIA T ′ = U.

Suppose, conversely, that I has the strict N -correspondence property, and let 〈F, α〉 : A −→ B be a surjec-
tive I-morphism, with F an isomorphism, and U ∈ FiIA. Note that U ∨FiIA α−1(T ′′) ≤ α−1(α∗(U)) since
U ≤ α−1(α(U)) ≤ α−1(α∗(U)) and also T ′′ ≤ α∗(U), whence α−1(T ′′) ≤ α−1(α∗(U)). Thus, it suffices to
show that α−1(α∗(U)) ≤ U ∨FiIA α−1(T ′′). In fact, we proceed to show full equality. To take advantage of the
strict N -correspondence property we consider the strict surjective I-morphism 〈F, α〉 : 〈A, α−1(T ′′)〉 −→ B.
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Clearly U ∨FiIA α−1(T ′′) ∈ FiI(〈A, α−1(T ′′)〉). Therefore, by the strict N -correspondence property, we get

U ∨FiIA α−1(T ′′) = α−1(α(U ∨FiIA α−1(T ′′)))
= α−1(α(FgI,A(U, α−1(T ′′))))
= α−1(α(FgI,〈A,α−1(T ′′)〉(U)))
= α−1(FgI,B(α(U))) (by Lemma 5.5 and the hypothesis)
= α−1(α∗(U)).

An additional condition on the π-institutions is introduced now that will allow us to formulate a result to the
effect that, provided this condition and the property of lifting of quotients, the existence of an implication system
implies the correspondence property. The need for this condition stems from the fact that in the present framework
there do not necessarily exist surjective translations from the sentence functor of a given π-institution to the un-
derlying functors of each of its matrices. However, notice that this is always the case for deductive systems and
their countable matrices due to the freeness of the underlying formula algebra of the deductive system.

Definition 5.7 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-insti-
tution. I is said to have transferable N -rules if, for every N -rule r = 〈{σ0, . . . , σn−1}, τ〉 of I, the rule r holds
in all I-matrices. This means that, for every I-matrix A = 〈A, T ′〉, with A = 〈SEN′, 〈N ′, F ′〉〉, all Σ ∈ |Sign′|,
�χ ∈ SEN′(Σ)k, σ′0

Σ(�χ ), . . . , σ′n−1
Σ (�χ ) ⊆ T ′

Σ imply that τ ′
Σ(�χ) ∈ T ′

Σ.
An N -(q)firs π-institution I with transferable N -rules will be called N -(q)first.
Before stating and proving Proposition 5.8, we remind the reader of the notion of an N -implication system for

a π-institution I. N -implication systems for π-institutions were introduced in [11], taking after the corresponding
notion for deductive systems (see, e. g., [5, Section 1.1]).

Let I = 〈Sign, SEN, C〉 be a π-institution and N be a category of natural transformations on SEN. A collec-
tion E = {εi : i ∈ I} of natural transformations εi : SEN2 −→ SEN in N is said to be an N -implication system
for I if, for every Σ ∈ |Sign| and all ϕ, ψ ∈ SEN(Σ),

1. εi
Σ(ϕ, ϕ) ∈ CΣ(∅), for all i ∈ I (E-reflexivity),

2. ψ ∈ CΣ({εi
Σ(ϕ, ψ) : i ∈ I} ∪ {ϕ}) (E-modus ponens).

Usually, these two properties will be abbreviated, respectively, as EΣ(ϕ, ϕ) ⊆ CΣ(∅), ψ ∈ CΣ(EΣ(ϕ, ψ), ϕ).
Proposition 5.8 asserts that, for a π-institution I, with transferable N -rules, that admits lifting of N -quotients,
the property of having an N -implication system implies the N -correspondence property. Those π-institutions that
have an N -implication system are termed syntactically N -protoalgebraic. It is known that syntactic N -protoal-
gebraicity implies N -protoalgebraicity and, moreover, it has been conjectured, but still remains an open problem,
that the converse does not hold in general.

Proposition 5.8 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-in-
stitution with transferable N -rules that admits lifting of N -quotients. If I has an N -implication system, then I
has the N -correspondence property.

P r o o f. Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, is a π-in-
stitution with transferable N -rules that admits lifting of N -quotients and E = {εi : i ∈ I} is an N -implication
system for I. By Proposition 5.6, it suffices to show that I has the strict N -correspondence property. To this end,
let A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉 be two N -algebraic systems, A = 〈A, T ′〉, B = 〈B, T ′′〉 be
two I-matrices, 〈F, α〉 : A −→ B be a strict I-morphism, with F an isomorphism, and U ∈ FiIA. We have to
show that U = α−1(α(U)). Since U ≤ α−1(α(U)) always holds, it is sufficient to show that α−1(α(U)) ≤ U .
To this end, let Σ ∈ |Sign′| and ϕ ∈ SEN′(Σ) such that ϕ ∈ α−1

Σ (αΣ(UΣ)). Then we have αΣ(ϕ) ∈ αΣ(UΣ).
Thus, there exists ψ ∈ SEN′(Σ), with ψ ∈ UΣ, such that αΣ(ϕ) = αΣ(ψ). Hence, we obtain that

αΣ(E′
Σ(ψ, ϕ)) = E′′

F (Σ)(αΣ(ψ), αΣ(ϕ)) (since E is in N )
⊆ T ′′

F (Σ) (since I has tranferable N -rules).

Therefore, since 〈F, α〉 is strict, E′
Σ(ψ, ϕ) ⊆ T ′

Σ ⊆ UΣ. Now, using the modus ponens property with respect to E
and the fact that I has transferable N -rules, we get ϕ ∈ UΣ, thus α−1(α(U)) ≤ U , as was to be shown.
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Theorem 5.9 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-insti-
tution.

1. Under the hypotheses that I has transferable N -rules and admits lifting of N -quotients, if I has an N -im-
plication system, then I has the N -correspondence property.

2. Under the hypotheses that I is N -structural and admits lifting of N -quotients, if I has the N -correspon-
dence property, then it is N -protoalgebraic.

P r o o f. The first part is given by Proposition 5.8 and the second by Proposition 5.3.

Thus, for N -qfirst π-institutions, Theorem 5.9 gives a refinement of the N -protoalgebraic hierarchy as follows:

syntactic N -protoalgebraicity

N -correspondence property
�

N -protoalgebraicity.
�

Finally, the paper concludes with a proposition providing an equivalent condition to the N -correspondence
property. This characterization forms an analog of the one presented in [3, Theorem 1.4.2] for deductive systems
with some obvious modifications due to the finitarity of the deductive system framework.

Proposition 5.10 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, be a π-in-
stitution. I has the N -correspondence property if and only if, for all I-matrices A = 〈A, T ′〉 and B = 〈B, T ′′〉,
with A = 〈SEN′, 〈N ′, F ′〉〉, B = 〈SEN′′, 〈N ′′, F ′′〉〉, every surjective I-morphism 〈F, α〉 : A −→ B, with F an
isomorphism, and every axiom family X = {XΣ}Σ∈|Sign′| of SEN′, we have

(2) α−1(FgI,B(α(X))) = FgI,A(X) ∨FiIA α−1(T ′′).

P r o o f. If X is an I-filter of A, then one immediately obtains from equation (2) the N -correspondence pro-
perty for I. Thus, it only suffices to show that the N -correspondence property implies equation (2). To this end,
let X = {XΣ}Σ∈|Sign′| be an axiom family on SEN′ and set V = FgI,A(X) ∈ FiI(A). Applying the N -corres-
pondence property with U = V , we get that α−1(α∗(FgI,A(X))) = FgI,A(X) ∨FiIA α−1(T ′′), i. e.,

α−1(FgI,B(α(FgI,A(X)))) = FgI,A(X) ∨FiIA α−1(T ′′).

Thus, it suffices to show that FgI,B(α(X)) = FgI,B(α(FgI,A(X))).
The left-to-right inclusion is obvious, since X ≤ FgI,A(X).
For the right-to-left inclusion, we have that α(X) ≤ FgI,B(α(X)), whence X ≤ α−1(FgI,B(α(X))). Thus,

since, by Proposition 3.1, α−1(FgI,B(α(X))) ∈ FiI(A), we get that FgI,A(X) ≤ α−1(FgI,B(α(X))), which
implies that α(FgI,A(X)) ≤ FgI,B(α(X)). Therefore, FgI,B(α(FgI,A(X))) ≤ FgI,B(α(X)).

Acknowledgements Thanks go to Don Pigozzi, whose joint work with Wim Blok on the deduction theorems in abstract
algebraic logic inspired the current developments on the categorical side of the field. Thanks go also to Josep Maria Font and
Ramon Jansana for providing inspiration, encouragement, and support over many years. Finally, warm thanks to Charles Wells
and Giora Slutzki for guidance and support.

References

[1] M. Barr and C. Wells, Category Theory for Computing Science, third edition (Les Publications CRM, 1999).
[2] W. J. Blok and D. Pigozzi, Protoalgebraic logics. Studia Logica 45, 337 – 369 (1986).
[3] W. J. Blok and D. L. Pigozzi, Local deduction theorems in algebraic logic. Colloquia Mathematica Societatis János

Bolyai 54, 75 – 109 (1988).

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 55, No. 1 (2009) / www.mlq-journal.org 67

[4] F. Borceux, Handbook of Categorical Algebra. Encyclopedia of Mathematics and its Applications 50 (Cambridge Uni-
versity Press, 1994).

[5] J. Czelakowski, Protoalgebraic Logics. Studia Logica Library 10 (Kluwer, 2001).
[6] J. M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics. Lecture Notes in Logic 7 (Sprin-

ger-Verlag, 1996).
[7] J. M. Font, R. Jansana, and D. Pigozzi, A survey of abstract algebraic logic. Studia Logica 74 (1/2), 13 – 97 (2003).
[8] S. Mac Lane, Categories for the Working Mathematician (Springer-Verlag, 1971).
[9] G. Voutsadakis, Categorical abstract algebraic logic: Full models, Frege systems and metalogical properties. Reports on

Mathematical Logic 41, 31 – 62 (2006).
[10] G. Voutsadakis, Categorical abstract algebraic logic: Prealgebraicity and protoalgebraicity. Studia Logica 85, 217 – 251

(2007).
[11] G. Voutsadakis, Categorical abstract algebraic logic: More on protoalgebraicity. Notre Dame J. Formal Logic 47,

487 – 514 (2006).
[12] G. Voutsadakis, Categorical abstract algebraic logic: Bloom’s theorem for rule-based π-institutions. Logic Journal of

the IGPL 16, 233 – 248 (2008).

www.mlq-journal.org c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


