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Abstract. Algebraic systems play in the theory of algebraizability of π -institutions the role that alge-
bras play in the theory of algebraizable sentential logics. In this same sense, I-algebraic systems are
to a π -institution I what S-algebras are to a sentential logic S. More precisely, an (I, N)-algebraic
system is the sentence functor reduct of an N ′-reduced (N, N ′)-full model of a π -institution I.
Algebraic systems are formally introduced and their relationship with full models and with bilogical
morphisms is investigated.
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1. Introduction

This paper continues the investigations on the possibility of abstracting results
pertaining to the algebraization of deductive systems, as developed by Blok and
Pigozzi, and to the algebraization of sentential logics, as developed by Font and
Jansana, to the level of π -institutions. The motivation for this abstraction is two-
fold. On the one hand, it stems from a desire to handle the algebraization of some
well-known multi-signature logics with quantifiers in a way more natural than the
one traditionally used in classical algebraic logic. This is explained in more details
in the introductions of (Voutsadakis [23, 22]), the first two papers containing results
on this abstraction program. It has led to the algebraization of equational logic
(Voutsadakis [26, 24]) and to the algebraization of first-order logic without terms
(Voutsadakis [27, 25]) using a novel categorical method. The second motivating
factor comes from the hope that abstracting a framework that works well for some
restricted classes of logics may help in the investigation of other, perhaps not so
familiar, logics outside those classes. This direction parallels the motivation be-
hind the development recently of abstract, institution-independent, model theory by
Rǎzvan Diaconescu (see, e.g., [8–10]). The added generality, serving the purposes
outlined above, on the logic side, is due to the fact that the π -institution framework
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can accommodate logics with multiple signatures and can incorporate substitutions
in the object language and, on the algebraic side, due to the fact that categorical,
instead of universal, algebras may be used for the algebraization process.

The theory of Blok and Pigozzi [3, 4] has as its primary object of study a deduc-
tive system S = 〈L, �S〉. It consists of a language type L together with a finitary
and structural consequence relation �S⊆ P (FmL(V ))× FmL(V ), where FmL(V )

denotes the set of all L-formulas over a fixed denumerable set of variables V .
A theory of S is a set T of L-formulas that is closed under the S-consequence,
i.e., such that, for all φ ∈ FmL(V ), if T �S φ, then φ ∈ T . The main and most
important tool of the theory is the Leibniz operator, which maps theories of the
deductive system S to L-congruences. It is formally defined by

�(T ) = {〈α, β〉 : φ(α, �γ ) ∈ T iff φ(β, �γ ) ∈ T ,

for all φ(p, �q) ∈ FmL(V ), �γ ∈ FmL(V )k}.
�(T ) turns out to be the largest congruence on the formula algebra that is com-
patible with the theory T , in the sense that 〈α, β〉 ∈ �(T ) and α ∈ T imply that
β ∈ T . The Leibniz operator may be introduced, more generally, as an operator
from the collection of S-filters on an L-algebra A = 〈A, LA〉 to the collection of
congruences of the algebra. F ⊆ A is an S-filter on A, if, for all �∪{φ} ⊆ FmL(V )

and all homomorphisms h : FmL(V ) → A,

� �S φ and h(�) ⊆ F imply h(φ) ∈ F.

The pair A = 〈A, F 〉 is called an S-matrix if F is an S-filter on A. In that case

�A(F ) = {〈a, b〉 : φA(a, �c) ∈ F iff φA(b, �c) ∈ F,

for all φ(p, �q) ∈ FmL(V ), �c ∈ Ak}.
Again �A(F ) is the largest congruence on A that is compatible with F .

Based on this notion of Leibniz operator and several of the properties that it may
or may not possess depending on the deductive system S under investigation, e.g.,
monotonicity, injectivity, continuity, etc., deductive systems are classified in sev-
eral steps of an algebraic hierarchy, whose main classes are the protoalgebraic [2],
the equivalential [20, 6] and the algebraizable [3] (see also [16–18]) deductive
systems. The book by Czelakowski [7] and the survey article by Font, Jansana and
Pigozzi [13] provide an overview of the theory and the resulting hierarchy.

After Blok and Pigozzi, the theory was elaborated on and further developed by
the Barcelona Algebraic Logic group. Their work is detailed in the monograph of
Font and Jansana [12]. One of the major modifications from the original model
theory is the adoption of abstract logics as models of sentential logics in place of
logical matrices. An abstract logic L over the signature L is a pair L = 〈A, C〉,
where A = 〈A, LA〉 is an L-algebra and C is a closure operator on A. In this
case the abstract logic L is a model of the sentential logic S = 〈L, �S〉 if, for all
� ∪ {φ} ⊆ FmL(V ),

� �S φ implies h(φ) ∈ C(h(�)),
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for every homomorphism h : FmL(V ) → A.
When one considers abstract logics, the place of the Leibniz operator, as it is

applied on logical matrices, is taken by the Tarski operator �̃. It maps a closure
system C over an algebra A to the greatest logical congruence of the abstract logic
L = 〈A, C〉, i.e., the greatest congruence compatible with all closed sets of the
closure system induced by C. If one divides out both the algebra A and the closure
system C by the Tarski congruence of L, then the reduction L

∗ = 〈A∗, C∗〉 of L is
obtained. In case this reduction consists of the collection FiS(A∗) of all S-filters on
the algebra A∗, L is said to be a full model of the sentential logic S. Those models
of S of the form L = 〈A, FiS(A)〉, i.e., whose closure systems consist of the entire
collection of S-filters on the carrier algebra A, are called the basic full models of
the logic S. Using that terminology, a full model of S is a model whose reduction
is a basic full model on the quotient algebra. The collection of all full models of a
sentential logic S on the algebra A is denoted by FModS A and it is ordered by the
natural ordering ≤ on the corresponding closure operators, i.e.,

C ≤ C ′ iff C(X) ⊆ C ′(X), for all X ⊆ A.

Font and Jansana go on to define the notion of an S-algebra. An algebra A is an
S-algebra if the abstract logic consisting of all the S-filters on A is reduced. This is
tantamount to saying that A is the algebraic reduct of a reduced full model of S. The
class of all S-algebras is denoted by Alg S. The collection of all Alg S-congruences
on an algebra A, i.e., congruences on A whose quotient algebras lie in Alg S, is
denoted, as usual, by ConAlg S A. In the Isomorphism Theorem 2.30 of [12], it
is shown that, given an algebra A, the Tarski operator is an order-isomorphism
between 〈FModS A, ≤〉 and 〈ConAlg S A, ⊆〉. This result will be the focus of the
present work. More precisely, the concepts and results of [28] and [29], which
abstract corresponding concepts and results from [12], will be used to provide an
analog of Theorem 2.30 for the case of institutional logics. Some of the concepts
and the results that are needed for what follows are presented in the remainder of
this section.

First, recall the definitions of an institution [14, 15] and of a π -institution [11].
π -institutions play in the theory of categorical abstract algebraic logic [23, 22] the
role that sentential logics play in the theory of Blok and Pigozzi and of Font and
Jansana.

Let Sign be a category, SEN : Sign → Set a functor and N a category of natural
transformations on SEN, as defined in [28]. Given � ∈ |Sign|, an equivalence
relation θ� on SEN(�) is said to be an N -congruence if, for all σ : SENk → SEN
in N and all �φ, �ψ ∈ SEN(�)k,

�φ θk
�

�ψ imply σ�( �φ) θ� σ�( �ψ).

A collection θ = {〈�, θ�〉 : � ∈ |Sign|} is called an equivalence system of SEN if

– θ� is an equivalence relation on SEN(�), for all � ∈ |Sign|,
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– SEN(f )2(θ�1) ⊆ θ�2 , for all �1, �2 ∈ |Sign|, f ∈ Sign(�1, �2).

If, in addition, N is a category of natural transformations on SEN and θ� is an
N -congruence, for all � ∈ |Sign|, then θ is said to be an N -congruence system of
SEN.

Let now I = 〈Sign, SEN, {C�}�∈|Sign|〉 be a π -institution. An equivalence sys-
tem θ of SEN is called a logical equivalence system of I if, for all � ∈ |Sign|,
φ, ψ ∈ SEN(�),

〈φ, ψ〉 ∈ θ� implies C�(φ) = C�(ψ).

An N -congruence system of SEN is a logical N -congruence system of I if it is
logical as an equivalence system of I.

It is proven in [28] that the collection of all logical N -congruence systems of
a given π -institution I forms a complete lattice under signature-wise inclusion
and the largest element of the lattice is termed the Tarski N -congruence system
of I and denoted by �̃N(I). Theorem 4 of [28] fully characterizes the Tarski N -
congruence system of a π -institution. Tarski N -congruence systems correspond in
this framework to the Tarksi congruences of [12].

A π -institution I′, in this context, is a model of a π -institution I if I is semi-
interpretable in I′, in symbols I〉−I′. If N, N ′ are categories of natural transfor-
mations on SEN, SEN′, respectively, then I′ is said to be an (N, N ′)-model of
I via 〈F, α〉 : I → I′ if 〈F, α〉 is an (N, N ′)-logical morphism, i.e., a single-
ton (N, N ′)-epimorphic semi-interpretation. It is said to be an (N, N ′)-full model
of I via 〈F, α〉 if the reduction I′N ′

of I′ via its Tarski N ′-congruence system
is the (N, N ′)-model of I via 〈F, πN ′

F α〉 with the least closure system, where
〈ISign′, πN ′ 〉 : I′ � I′N ′

is the natural projection interpretation. This was called
an 〈F, πN ′

F α〉-min model of I. Min models correspond to the basic full models in
the sentential logic framework.

It is worth pausing here to add a parenthetical comment concerning a significant
difference between the notions of model, min model and full model in this context
and the corresponding ones of model, basic full model and full model, respectively,
in the theory of sentential logics of [12]. In the theory of sentential logics, a model
has to respect entailments under all possible translations (homomorphisms) from
the formula algebra into the carrier algebra of the model. In the categorical theory,
a model refers to one fixed translation from a π -institution to the one serving as its
model. For an explanation of the difficulties and the intuitive plausibility that led
to the adoption of this different approach in the categorical context the reader is
referred to [29].

The development of the categorical theory is continued in the present paper by
defining a notion of an (I, N)-algebraic system, an analog of an S-algebra, and
proving an isomorphism theorem, analogous to Theorem 2.30 of [12], relating full
models with logical congruence systems the algebraic reducts of whose quotients
are (I, N)-algebraic systems.
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For general categorical notation where needed, the reader is referred to any of
[1, 5, 19].

2. Algebraic Systems

Let I = 〈Sign, SEN, {C�}�∈|Sign|〉 be a π -institution and N a category of natural
transformations on SEN. From the definitions of reduced and full models [29], it
follows that the reduced full N -models of I are exactly those min (N, N ′)-models
I′ that are N ′-reduced, for some category N ′ of natural transformations on the
sentence functor SEN′. This fact partly motivates the following definition of an
(I, N)-algebraic system. (I, N)-algebraic systems parallel, in the context of π -
institutions, the concept of an S-algebra of a sentential logic S, in the theory of
sentential logics of [12].

DEFINITION 1. If I is a π -institution, then a functor SEN′ : Sign′ → Set is said
to be an (I, N)-algebraic system if and only if there exists a category N ′ of natural
transformations on SEN′ and a singleton (N, N ′)-epimorphic translation 〈F, α〉 :
I →se SEN′, such that the 〈F, α〉-min (N, N ′)-model I′ = 〈Sign′, SEN′, C ′〉 of I
on SEN′ is N ′-reduced, i.e., iff I′ is a reduced (N, N ′)-full model of I via 〈F, α〉.

Let AlgN(I) denote the class of all (I, N)-algebraic systems.

It will now be shown that the N -quotient functor SENN : Sign → Set for a
given π -institution I = 〈Sign, SEN, C〉, where N is a category of natural transfor-
mations on SEN, is an (I, N)-algebraic system.

PROPOSITION 2. Given a π -institution I = 〈Sign, SEN, C〉 and a category N

of natural transformations on SEN, SENN : Sign → Set is an (I, N)-algebraic
system.

Proof. Consider the category N of natural transformations on SENN induced
by N . Then the N -reduct IN = 〈Sign, SENN, CN 〉 is the 〈ISign, πN 〉-min (N, N)-
model of I on SENN and it is N -reduced. �

The (I, N)-algebraic system SENN is called the Lindenbaum–Tarski N -alge-
braic system of I.

Combining the definition of an (I, N)-algebraic system together with the defi-
nitions of min and full models from [29], we obtain

PROPOSITION 3. Let I = 〈Sign, SEN, C〉 be a π -institution and N a category
of natural transformations on SEN. If I′ = 〈Sign′, SEN′, C ′〉 is a π -institution
and N ′ a category of natural transformations on SEN′, then the following are
equivalent:

(1) I′ is an N ′-reduced (N, N ′)-full model of I via 〈F, α〉.
(2) I′ is N ′-reduced and C ′ is the 〈F, α〉-min (N, N ′)-model of I on SEN′.
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(3) SEN′ : Sign′ → Set is a (I, N)-algebraic system via 〈F, α〉 : I →se SEN′
and C ′ is an 〈F, α〉-min (N, N ′)-model of I on SEN′.

The definition of the class AlgN(I) motivates the following definition of an
AlgN(I)-congruence system of a given π -institution.

DEFINITION 4. Let I = 〈Sign, SEN, C〉 be a π -institution, SEN′ : Sign′ →
Set be a functor and N ′ a category of natural transformations on SEN′. An N ′-
congruence system θ on SEN′ is an AlgN(I)-N ′-congruence system if SEN′θ :
Sign′ → Set is an (I, N)-algebraic system via N ′θ .

The collection of all AlgN(I)-congruence systems on SEN′ is denoted by
ConAlgN(I)(SEN′). By ConN ′

AlgN (I)
(SEN′) is denoted the subcollection of all

AlgN(I)-N ′-congruence systems on SEN′, for some fixed category N ′ of natural
transformations on SEN′.

The fact that the N ′-reduct of an (N, N ′)-full model of a π -institution I is, by
definition, an (N, N ′)-min model of I yields that the Tarski N ′-congruence system
of I′ is an N ′-logical congruence system of I′ that is a member of ConAlgN (I)(SEN′).

PROPOSITION 5. Let I′ = 〈Sign′, SEN′, C ′〉 be a full (N, N ′)-model of a
π -institution I = 〈Sign, SEN, C〉. Then SEN′N ′ : Sign′ → Set is an (I, N)-
algebraic system and, therefore, �̃N ′

(I′) is an N ′-logical congruence system in
ConAlgN(I)(SEN′).

The following result provides a characterization of (I, N)-algebraic systems
without recourse to the notion of a full model. Roughly speaking, it says that
the (I, N)-algebraic systems are exactly the underlying sentence functors of the
reduced models of I. This is the analog of Proposition 2.19 of [12].

PROPOSITION 6. Let I = 〈Sign, SEN, C〉 be a π -institution and N a category
of natural transformations on SEN. The class of all (I, N)-algebraic systems is the
class of all functors SEN′ : Sign′ → Set, such that, there exists a closure system
C ′ on SEN′, such that I′ = 〈Sign′, SEN′, C ′〉 is an N ′-reduced (N, N ′)-model of
I, for some category N ′ of natural transformations on SEN′.

Proof. Suppose that SEN′ is an (I, N)-algebraic system. Then, by definition,
there exists a category N ′ of natural transformations on SEN′, and a singleton
(N, N ′)-epimorphic translation 〈F, α〉 : I → SEN′, such that the 〈F, α〉-min
(N, N ′)-model I′ = 〈Sign′, SEN′, C ′〉 of I on SEN′ is N ′-reduced.

Conversely, let SEN′ : Sign′ → Set be a functor, N ′ a category of natural trans-
formations on SEN′ and C ′ a closure system on SEN′, such that I′ =
〈Sign′, SEN′, C ′〉 is an N ′-reduced (N, N ′)-model of I via 〈F, α〉 : I〉−seI′. Then,
if Cmin is such that Imin = 〈Sign′, SEN′, Cmin〉 is the 〈F, α〉-min (N, N ′)-model
of I on SEN′, we get Cmin ≤ C ′, whence, by Corollary 9 of [28], �̃N ′

(Imin) ≤
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�̃N ′
(I′). Thus, since I′ is N ′-reduced, so is Imin and SEN′ is an (I, N)-algebraic

system. �
Suppose that SEN′ : Sign′ → Set and SEN′′ : Sign′′ → Set are (I, N)-

algebraic systems via the categories N ′, N ′′ of natural transformations, respec-
tively. SEN′ : Sign′ → Set and SEN′′ : Sign′′ → Set are said to be isomorphic iff
there exists a singleton (N ′, N ′′)-epimorphic translation 〈F, α〉 : SEN′ →se SEN′′
and a singleton (N ′′, N ′)-epimorphic translation 〈G, β〉 : SEN′′ →se SEN′ that
are inverses of one another. 〈F, α〉 and 〈G, β〉 will be said to be (N ′, N ′′)- and
(N ′′, N ′)-isomorphisms, respectively, in that case.

The following proposition asserts that the class of all (I, N)-algebraic systems
AlgN(I) is closed under isomorphisms.

PROPOSITION 7. Let I = 〈Sign, SEN, C〉 be a π -institution and N a category
of natural transformations on SEN. If SEN′ : Sign′ → Set is an (I, N)-algebraic
system via N ′ and 〈F, α〉 : SEN′ →se SEN′′ is an (N ′, N ′′)-isomorphism, then
SEN′′ : Sign′′ → Set is also an (I, N)-algebraic system via N ′′.

Proof. Suppose that 〈F, α〉 : SEN′ →se SEN′′ is an (N ′, N ′′)-isomorphism
and that C ′ is a closure system on SEN′, such that I′ = 〈Sign′, SEN′, C ′〉 is an
N ′-reduced (N, N ′)-min model of I via 〈M, µ〉 : I〉−seI′. Let 〈G, β〉 : SEN′′ →se

SEN′ be the inverse isomorphism to 〈F, α〉.

I
〈M,µ〉

I′ 〈F,α〉
I〈G,β〉

〈G,β〉

Then, by Proposition 5.3 of [29], I〈G,β〉 is also an (N ,N ′′)-min model of I via
〈F, α〉〈M, µ〉 and, by Proposition 3.2 of [29], the two π -institutions I′ and I〈G,β〉
are isomorphic via 〈F, α〉 : I′ �se I〈G,β〉 and 〈G, β〉 : I〈G,β〉 �se I′. Hence,
by Theorem 21 of [28], since I′ is N ′-reduced, I〈G,β〉 is also N ′′-reduced and,
therefore, an (I, N)-algebraic system. �

The following proposition brings together several key definitions introduced in
the theory so far. In particular, it points out some of the connections between full
models, min models and algebraic systems.

PROPOSITION 8. Let I = 〈Sign, SEN, C〉 be a π -institution and N a category
of natural transformations on SEN. Suppose that I′ = 〈Sign′, SEN′, C ′〉 is also
a π -institution and N ′ a category of natural transformations on SEN′. Then the
following are equivalent:

(1) I′ is a full (N, N ′)-model of I via 〈F, α〉 : I〉−seI′.
(2) SEN′N ′ : Sign′ → Set is an (I, N)-algebraic system via 〈F, πN ′

F α〉 and I′N ′

is an 〈F, πN ′
F α〉-min (N, N ′)-model of I on SEN′N ′

.
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(3) There exists an (N ′, N ′′)-bilogical morphism 〈G, β〉, with G an isomorphism,
between I′ and a π -institution I′′, such that SEN′′ : Sign′′ → Set is an (I, N)-
algebraic system via 〈GF, βF α〉 : SEN → SEN′′ and I′′ is a 〈GF , βF α〉-min
(N, N ′′)-model of I on SEN′′.

Proof. This proof consists of putting together previously introduced definitions
and results on min models, full models and algebraic systems.

(1) ⇒ (2) Suppose that I′ is a full (N, N ′)-model of I via 〈F, α〉 : I〉−seI′.
Then, by definition, I′N ′

is an 〈F, πN ′
F α〉-min (N, N ′)-model on SEN′N ′

and, since
it is obviously N ′-reduced, SEN′N ′ : Sign′ → Set is an (I, N)-algebraic system
via 〈F, πN ′

F α〉.
(2) ⇒ (3) Now, suppose that SEN′N ′ : Sign′ → Set is an (I, N)-algebraic

system via 〈F, πN ′
F α〉 and I′N ′

is an 〈F, α〉-min (N, N ′)-model of I on SEN′N ′
.

Then 〈ISign′, πN ′ 〉 : I′ �se I′N ′
is an (N ′, N ′)-bilogical morphism, with ISign′ an

isomorphism, and, by hypothesis, SEN′N ′ : Sign′ → Set is an (I, N)-algebraic
system and I′N ′

is an 〈F, α〉-min (N, N ′)-model on SEN′N ′
.

(3) ⇒ (1) Finally, suppose there exists an (N ′, N ′′)-bilogical morphism 〈G, β〉,
with G an isomorphism, between I′ and a π -institution I′′, such that SEN′′ :
Sign′′ → Set is an (I, N)-algebraic system via 〈GF , βF α〉 : SEN → SEN′′ and
I′′ is a 〈GF, βF α〉-min (N, N ′′)-model of I on SEN′′. Then, by Proposition 5.12
of [29], I′ is a full (N, N ′)-model of I via 〈F, α〉 : I〉−seI′. �

The following completeness theorem for π -institutions with respect to the
classes of full, min and reduced full models is the analog of the Completeness
Theorem 2.22 of [12] for sentential logics.

THEOREM 9 (Completeness Theorem). Every π -institution I = 〈Sign, SEN, C〉,
with N a category of natural transformations on SEN, is complete with respect to
the following classes of π -institutions:

(1) The class of all (N, N ′)-full models of I.
(2) The class of all (N, N ′)-min models of I.
(3) The class of all N ′-reduced (N, N ′)-full models of I.

Proof. All three classes contain the model IN via 〈ISign, π
N 〉 : I �se IN . I is

therefore complete with respect to all three by Proposition 4.9 of [29]. �
Finally, a monotonicity theorem for the classes of algebraic systems of two

π -institutions with the same sentence functor is presented. Roughly speaking, it is
shown that finer closure systems have more algebraic systems. This is the analog
of Proposition 2.27 of [12].

PROPOSITION 10. Let Sign be a category, SEN : Sign → Set be a functor, N a
category of natural transformations on SEN and C1, C2 two closure systems on
SEN, such that C1 ≤ C2. If I1 = 〈Sign, SEN, C1〉 and I2 = 〈Sign, SEN, C2〉,
then AlgN(I2) ⊆ AlgN(I1).
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Proof. Suppose that SEN′ : Sign′ → Set is in AlgN(I2). Then, by Proposition 6,
there exists a closure system C ′ on SEN′, such that I′ = 〈Sign′, SEN′, C ′〉 is an
N ′-reduced (N, N ′)-model of I2 via 〈F, α〉 : I2〉−seI′, for some category N ′ of
natural transformations on SEN′. But then

I1
〈ISign,ι〉

I2
〈F,α〉

I′

I′ is an N ′-reduced (N, N ′)-model of I1 via 〈F, α〉 : I1〉−seI′, which, again by
Proposition 6, yields that SEN′ : Sign′ → Set is in AlgN(I1). �

3. Full Models and Algebraic Systems

In this section, the Isomorphism Theorem of Font and Jansana (Theorem 2.30
of [12]) between the lattice of full models 〈FModS(A), ≤〉 of a sentential logic
S over an algebra A and that of the Alg(S)-congruences of A 〈ConAlg(S)(A), ⊆〉
is lifted to the π -institution level. Before describing the corresponding result intu-
itively, it may be useful to introduce some notation based on the concepts that have
already been discussed in [29] and in the previous section.

Let I = 〈Sign, SEN, C〉 be a π -institution and N a category of natural transfor-
mations on SEN. Let also SEN′ : Sign′ → Set be a functor, N ′ a category of natural
transformations on SEN′ and 〈F, α〉 : I →se SEN′ a singleton (N, N ′)-epimorphic
translation. Denote by FMod〈F,α〉

I (SEN′) the collection of all (N, N ′)-full models
of I on SEN′ via 〈F, α〉. Also denote by Con〈F,α〉

AlgN(I)
(SEN′) the collection of all

AlgN(I)-N ′-congruence systems θ on SEN′, where SEN′θ is an (I, N)-algebraic
system because the 〈F, πθ

F α〉-min model I′ on SEN′θ is N ′θ -reduced. These will
be referred to as AlgN(I)-N ′-congruence systems on SEN′ via 〈F, α〉. Also by
�̃

〈F,α〉
SEN′ (C ′) will be denoted the Tarski N ′-congruence system �̃N ′

(C ′), where I′ =
〈Sign′, SEN′, C ′〉 is an (N, N ′)-full model of I via 〈F, α〉. This use of the Tarksi
congruence system symbol will be perceived as a Tarski operator from the collec-
tion FMod〈F,α〉

I (SEN′) into Con〈F,α〉
AlgN(I)

(SEN′).
Using the notation of the previous paragraph, it will be shown that the collection

Con〈F,α〉
AlgN(I)

(SEN′) of all AlgN(I)-N ′-congruence systems on SEN′ via 〈F, α〉 forms

a lattice Con〈F,α〉
AlgN(I)

(SEN′) which is isomorphic with the lattice FMod〈F,α〉
I (SEN′)

formed by all the (N, N ′)-full models of I on SEN′ via 〈F, α〉.
Let I = 〈Sign, SEN, C〉 be a π -institution, N a category of natural trans-

formations on SEN, SEN′ : Sign′ → Set a functor, N ′ a category of natural
transformations on SEN′ and 〈F, α〉 : I →se SEN′ a singleton (N, N ′)-epimorphic
translation. For all θ ∈ Con〈F,α〉

AlgN(I)
(SEN′), define

H̃
〈F,α〉
SEN′ (θ) = 〈Sign′, SEN′, C ′←θ 〉,
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where C ′←θ is the closure system on SEN′ generated by 〈ISign′, πθ 〉 : SEN′ → I′,
where I′ = 〈Sign′, SEN′θ , C ′〉 is the 〈F, πθ

Fα〉-min model of I on SEN′θ (for
closure system generation see Section 3 of [29]).

With this notation, Proposition 3.2 of [29] yields immediately

PROPOSITION 11. 〈ISign′, πθ 〉 : H̃
〈F,α〉
SEN′ (θ) �se I′ is an (N, N ′)-bilogical mor-

phism.

Some properties of H̃
〈F,α〉
SEN′ viewed as an operator from the collection

Con〈F,α〉
AlgN(I)

(SEN′) into FMod〈F,α〉
I (SEN′) are given in the following lemma, which

is an analog for π -institutions of Lemma 2.29 of [12].

LEMMA 12. Let I = 〈Sign, SEN, C〉 be a π -institution, N a category of
natural transformations on SEN, SEN′ : Sign′ → Set a functor, N ′ a cate-
gory of natural transformations on SEN′ and 〈F, α〉 : I →se SEN′ a single-
ton (N, N ′)-epimorphic translation. Suppose θ ∈ Con〈F,α〉

AlgN(I)
(SEN′) and let I′ =

〈Sign′, SEN′θ , C ′〉 be the 〈F, πθ
Fα〉-min model of I on SEN′θ . Then

(1) θ is a logical N ′-congruence system of H̃
〈F,α〉
SEN′ (θ).

(2) H̃
〈F,α〉
SEN′ (θ)/θ = 〈Sign′, SEN′θ , C ′〉.

(3) H̃
〈F,α〉
SEN′ (θ) ∈ FMod〈F,α〉

I (SEN′).
(4) The mapping θ �→ H̃

〈F,α〉
SEN′ (θ) is order preserving, i.e., if θ1 ≤ θ2, then

H̃
〈F,α〉
SEN′ (θ1) ≤ H̃

〈F,α〉
SEN′ (θ2).

Proof. (1) θ is, by definition, an N ′-congruence system on SEN′. Therefore, it
suffices to show that θ is logical, i.e., that, for all � ∈ |Sign′|, φ, ψ ∈ SEN′(�),

〈φ, ψ〉 ∈ θ� implies C ′←θ
� (φ) = C ′←θ

� (ψ).

Suppose 〈φ, ψ〉 ∈ θ� . Then we have πθ
�(φ) = πθ

�(ψ) and, hence, C ′
�(πθ

�(φ)) =
C ′

�(πθ
�(ψ)). But, then, by the definition of C ′←θ , we get that C ′←θ

� (φ) = C ′←θ
� (ψ).

(2) Let � ∈ |Sign′|, � ∪ φ ⊆ SEN′(�). Then

φ/θ� ∈ C ′←θθ

� (�/θ�) iff φ ∈ C ′←θ
� (�)

iff φ/θ� ∈ C ′
�(�/θ�).

Therefore H̃
〈F,α〉
SEN′ (θ)/θ = I′.

(3) By hypothesis, 〈F, α〉 : I →se SEN′ is a singleton (N, N ′)-epimorphic
translation. So, it suffices to show that 〈F, α〉 : I〉−se〈Sign′, SEN′, C ′←θ 〉 is a semi-
interpretation and that 〈Sign′, SEN′, C ′←θ 〉 is full. Let � ∈ |Sign|, � ∪ {φ} ⊆
SEN(�). If φ ∈ C�(�), then

πθ
F(�)(α�(φ)) ∈ C ′

F(�)(π
θ
F(�)(α�(�))),

whence α�(φ) ∈ C ′←θ
F (�)(α�(�)) and H̃

〈F,α〉
SEN′ (θ) is an (N, N ′)-model of I via 〈F, α〉.

It is full, by Proposition 5.10 of [29], since, by Proposition 5.8 of [29], I′ is a full
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model of I via 〈F, πθ
Fα〉, and, by Proposition 11, 〈ISign′, πθ 〉 : H̃

〈F,α〉
SEN′ (θ) �se I′ is

an (N, N ′)-bilogical morphism.
(4) Suppose that θ1 ≤ θ2 are two AlgN(I)-N ′-congruence systems on SEN′

via 〈F, α〉. Let I′1 = 〈Sign′, SEN′θ1
, C ′1〉 and I′2 = 〈Sign′, SEN′θ2

, C ′2〉 be the
〈F, πθ1

F α〉-min and 〈F, πθ2

F α〉-min models of I on SEN′θ1
and SEN′θ2

, respectively.

Note that, if 〈ISign′, η〉 : SEN′θ1 →se SEN′θ2
is defined, for all � ∈ | Sign′ |, φ ∈

SEN′(�), by

η�(φ/θ1
�) = φ/θ2

�,

SEN′ 〈ISign′ ,πθ1 〉

〈ISign′ ,πθ2 〉

SEN′θ1

〈ISign′ ,η〉

SEN′θ2

we have, for all � ∈ |Sign′|, � ∪ {φ} ⊆ SEN′(�),

φ/θ1
� ∈ C ′1

�(�/θ1
�) implies φ/θ2

� ∈ C ′2
�(�/θ2

�).

Therefore, for all � ∈ |Sign′|, � ∪ {φ} ⊆ SEN′(�),

φ ∈ C ′←θ1

� (�) iff πθ1

� (φ) ∈ C ′1
�(πθ1

� (�))

implies η�(πθ1

� (φ)) ∈ C ′2
�(η�(πθ1

� (�)))

iff πθ2

� (φ) ∈ C ′2
�(πθ2

� (�))

iff φ ∈ C ′←θ2

� (�).

Therefore H̃
〈F,α〉
SEN′ (θ1) ≤ H̃

〈F,α〉
SEN′ (θ2). �

It will now be shown that the poset Con〈F,α〉
AlgN(I)

(SEN′) of all AlgN(I)-N ′-congru-

ence systems on SEN′ via 〈F, α〉 under the ≤-ordering is isomorphic to the poset
FMod〈F,α〉

I (SEN′) of all (N, N ′)-full models of I on SEN′ via 〈F, α〉 under the
≤-ordering. These two orderings were formally defined in [28] (see Theorem 3
and Corollary 9 therein for more details). The Isomorphism Theorem that follows
is a π -institution analog of the corresponding Theorem 2.30 of [12] for sentential
logics. It should be emphasized, once more, that it is an analog and not a direct gen-
eralization of Theorem 2.30 of [12] due to the difference in the definitions of full
models and of algebraic systems between the sentential logic and the π -institution
frameworks. In sentential logics, full models and S-algebras are homomorphism-
independent, whereas in π -institutions, full models and (I, N)-algebraic systems
are translation-specific. This difference was discussed in the comments towards
the end of Section 1. However, it will be shown at the end of this section how one
comes close to Theorem 2.30 of [12] using Theorem 13.
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THEOREM 13 (The Isomorphism Theorem). Let I = 〈Sign, SEN, C〉 be a
π -institution and N a category of natural transformations on SEN. Let also SEN′ :
Sign′ → Set be a functor, N ′ a category of natural transformations on SEN′ and
〈F, α〉 : I →se SEN′ a singleton (N, N ′)-epimorphic translation. The Tarksi oper-
ator �̃

〈F,α〉
SEN′ is an order isomorphism between FMod〈F,α〉

I (SEN′) and

Con〈F,α〉
AlgN (I)

(SEN′) and H̃
〈F,α〉
SEN′ is its inverse operator.

Proof. By Proposition 5, if I′ = 〈Sign′, SEN′, C ′〉 is an (N, N ′)-full model of I
via 〈F, α〉 : I〉−seI′, then �̃

〈F,α〉
SEN′ (C ′) = �̃N ′

(I′) is an AlgN(I)-N ′-congruence
system on SEN′ via 〈F, α〉. By Lemma 12, if the N ′-congruence system θ ∈
Con〈F,α〉

AlgN(I)
(SEN′), then

H̃
〈F,α〉
SEN′ (θ) ∈ FMod〈F,α〉

I (SEN′).

Therefore, the two mappings �̃
〈F,α〉
SEN′ and H̃

〈F,α〉
SEN′ are well-defined. It suffices, there-

fore, to show that they are inverses of one another and order-preserving.
Suppose, first, that I′ = 〈Sign′, SEN′, C ′〉 is an (N, N ′)-full model of I via

〈F, α〉 : I〉−seI′. Then, by Proposition 5, SEN′N ′
is an (I, N)-algebraic system

and �̃N ′
(I′) is an AlgN(I)-N ′-congruence system on SEN′. Moreover, the clo-

sure system C ′ on SEN′ is generated by 〈ISign′, πN ′ 〉 : SEN′ →se I′′, where
I′′ = 〈Sign′, SEN′N ′

, C ′′〉 is the 〈F, πN ′
F α〉-min (N, N ′)-model of I on SEN′N ′

.
Therefore we obtain I′ = H̃

〈F,α〉
SEN′ (�̃

〈F,α〉
SEN′ (I′)), by the definition of H̃

〈F,α〉
SEN′ .

Next, suppose that θ ∈ Con〈F,α〉
AlgN (I)

(SEN′). Then, if I′ = 〈Sign′, SEN′θ , C ′〉 is

the 〈F, πθ
F α〉-min (N, N ′θ )-model of I on SEN′θ , we conclude that �̃N ′θ

(I′) =
�SEN′θ

. Thus, by Theorem 21 of [28] and Proposition 11,

�̃
〈F,α〉
SEN′ (H̃

〈F,α〉
SEN′ (θ)) = �̃N ′

(C ′←θ )

= πθ−1
(�̃N ′θ

(I′))
= πθ−1

(�SEN′θ
)

= θ.

This concludes the proof that �̃
〈F,α〉
SEN′ and H̃

〈F,α〉
SEN′ are inverse bijections. Both �̃

〈F,α〉
SEN′

and H̃
〈F,α〉
SEN′ are order-preserving by Corollary 9 of [28] and by Lemma 12, re-

spectively, whence they are order-isomorphisms between FMod〈F,α〉
I (SEN′) and

Con〈F,α〉
AlgN (I)

(SEN′). �
It will now be shown that the poset Con〈F,α〉

AlgN(I)
(SEN′) of all AlgN(I)-N ′-congru-

ence systems on SEN′ via 〈F, α〉 with the ≤-ordering is a complete lattice. Its meet
is signature-wise intersection.

THEOREM 14. Let I = 〈Sign, SEN, C〉 be a π -institution and N a category
of natural transformations on SEN. Let also SEN′ : Sign′ → Set be a functor,
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N ′ a category of natural transformations on SEN′ and 〈F, α〉 : I →se SEN′ a
singleton (N, N ′)-epimorphic translation. Then Con〈F,α〉

AlgN (I)
(SEN′) is a complete

lattice under signature-wise inclusion, where meet is signature-wise intersection.
Proof. Suppose that {θ i}i∈I is a non-empty family of AlgN(I)-N ′-congruence

systems on SEN′ via 〈F, α〉. Let θ = ⋂

i∈I θ i , i.e., θ� = ⋂

i∈I θ i
� , for all � ∈

|Sign′|. It will be shown that θ is also an AlgN(I)-N ′-congruence system on SEN′
via 〈F, α〉. Since θ i is an AlgN(I)-N ′-congruence system on SEN′ via 〈F, α〉, the
〈F, πθi

F α〉-min (N, N ′θi

)-model I′i = 〈Sign′, SEN′θi

, Ci〉 is N ′θi

-reduced. Now
define 〈ISign′, βi〉 : SEN′ /θ → SEN′ /θ i , by

βi
�(φ/θ�) = φ/θi

�, for all � ∈ |Sign′|, φ ∈ SEN′(�).

Since 〈ISign′, βi〉 is a surjective (N ′θ , N ′θi

)-logical morphism from the 〈F, πθ
F α〉-

min (N, N ′θ )-model I′ = 〈Sign′, SEN′θ , C ′〉 to I′i , we have, by Proposition 8
of [28],

�̃N ′θ
(I′) ⊆ βi−1

(�̃N ′θi

(I′i))

= βi−1
(�SEN′θi

).

Therefore, for all � ∈ |Sign′|, φ, ψ ∈ SEN′(�), if 〈φ/θ�, ψ/θ�〉 ∈ �̃N ′θ
� (I′), then

φ/θi
� = ψ/θi

� , for all i ∈ I , and, hence φ/θ� = ψ/θ� , i.e., I′ is N ′θ -reduced.
Hence θ is also an AlgN(I)-N ′-congruence system on SEN′ via 〈F, α〉.

Finally, it suffices to show that Con〈F,α〉
AlgN(I)

(SEN′) has a largest element. But

it is easy to see that ∇SEN′
is an N ′-congruence system on SEN′ and that the

〈F, π∇SEN′
F α〉-min (N, N ′∇SEN′

)-model of I on SEN′∇SEN′
is ∇SEN′

-reduced. �
Putting together the Isomorphism Theorem 13 and Theorem 14 we obtain

COROLLARY 15. Let I = 〈Sign, SEN, C〉 be a π -institution and N a category
of natural transformations on SEN. Let also SEN′ : Sign′ → Set be a functor,
N ′ a category of natural transformations on SEN′ and 〈F, α〉 : I →se SEN′ a
singleton (N, N ′)-epimorphic translation. FMod〈F,α〉

I (SEN′) is a complete lattice
and the Tarski operator is a lattice isomorphism between FMod〈F,α〉

I (SEN′) and
the complete lattice Con〈F,α〉

AlgN (I)
(SEN′).

Finally, a result is presented on the relation of bilogical morphisms between
models of a given π -institution I with the corresponding AlgN(I)-congruence
system lattices. Theorem 16 is the analog for π -institutions of Proposition 2.33
of [12].

THEOREM 16. Let I = 〈Sign, SEN, C〉 be a π -institution and N a category
of natural transformations on SEN. Further, let I′ = 〈Sign′, SEN′, C ′〉 be an
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(N, N ′)-full model of I via 〈M, µ〉 and I′′ = 〈Sign′′, SEN′′, C ′′〉 be an (N, N ′′)-
full model of I via 〈N, ν〉, such that 〈F, α〉 : I′ �se I′′ is an (N ′, N ′′)-bilogical
morphism, with F an isomorphism and 〈F, α〉〈M, µ〉 = 〈N, ν〉.

I
〈M,µ〉 〈N,ν〉

I′
〈F,α〉 I′′

Then the mapping C• �→ α−1(C•) is an isomorphism between the lattice of all
(N, N ′)-full models of I on SEN′ via 〈M, µ〉 extending I′ and the lattice of all
(N, N ′′)-full models of I on SEN′′ via 〈N, ν〉 extending I′′. Moreover the prin-
cipal ideals of the lattices Con〈M,µ〉

AlgN(I)
(SEN′) and Con〈N,ν〉

AlgN(I)
(SEN′′) determined

by the Tarski congruence systems �̃
〈M,µ〉
SEN′ (C ′) and �̃

〈N,ν〉
SEN′′ (C ′′), respectively, are

isomorphic.
Proof. That the mapping C• �→ α−1(C•) is an isomorphism between the lattice

of all (N, N ′)-models of I on SEN′ via 〈M, µ〉 and the lattice of all (N, N ′′)-
models of I on SEN′′ via 〈N, ν〉 is a consequence of Corollary 18 of [28]. Each
of these models is a full model of I if and only if the other is, by Proposition 5.10
of [29]. Finally, the last part of the theorem follows from the Isomorphism Theo-
rem 13 and Corollary 15. �

In conclusion, it is shown, as a demonstration of the fact that Theorem 13
encompasses some general results from both Universal Algebra and Abstract Alge-
braic Logic, how one may obtain the formula algebra case of Theorem 2.30 of [12]
as a consequence of Theorem 13. Therefore, this also shows that the Isomorphism
Theorem 5.1 of [3] with A = FmL(V ) is also a special case of the Isomorphism
Theorem 13.

Consider the statement of Theorem 13. Let I = 〈Sign, SEN, C〉 be the
π -institution with Sign the trivial one-element category, with object, e.g., a set
of denumerable propositional variables V and SEN(V ) = FmL(V ), where L is a
fixed but arbitrary universal algebraic signature. Suppose, also, that C is a structural
closure operator on FmL(V ). Therefore I corresponds to a sentential logic in the
sense of Font and Jansana [12]. Take the category N of natural transformations
on SEN to be the clone of all algebraic operations generated by the signature L.
In that case an N -congruence system on SEN coincides with a universal algebraic
L-congruence on FmL(V ). Let now SEN′ = SEN, N ′ = N and 〈F, α〉 = 〈ISign, ι〉
be the identity surjective singleton (N, N)-epimorphic translation. Then Theo-
rem 13 yields that the Tarksi operator �̃

〈ISign,ι〉
SEN is an order isomorphism between

FMod
〈ISign,ι〉
I (SEN) and Con

〈ISign,ι〉
AlgN (I)

(SEN) and H̃
〈ISign,ι〉
SEN is its inverse operator. But,

in this context, a full model in FMod
〈ISign,ι〉
I (SEN) coincides with a full model ac-

cording to [12] on the formula algebra FmL(V ) and an AlgN(I)-N -congruence
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coincides with an Alg S-congruence on the formula algebra. Therefore, with this
special setup, we obtain the special case of the Isomorphism Theorem 2.30 of [12]
with A = FmL(V ).
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