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Czelakowski introduced the Suszko operator as a basis for the development of a hierarchy of non-protoalgebraic
logics, paralleling the well-known abstract algebraic hierarchy of protoalgebraic logics based on the Leibniz
operator of Blok and Pigozzi. The scope of the theory of the Leibniz operator was recently extended to cover
the case of, the so-called, protoalgebraic π-institutions. In the present work, following the lead of Czelakowski,
an attempt is made at lifting parts of the theory of the Suszko operator to the π-institution framework.

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In [3], Blok and Pigozzi, following work of Czelakowski [5] and their own previous work [2], introduced, for the
first time, the notion of an algebraizable logic in an attempt to capture the class of those finitary logics whose
properties are very intimately related to corresponding properties of appropriately chosen classes of algebras.
In their efforts to give an intrinsic characterization of the class of algebraizable logics, they were led to the intro-
duction of the Leibniz operator, an operator that assigns to every theory of the logic the largest congruence on the
formula algebra that is compatible with the theory. In one of the main theorems of [3], Blok and Pigozzi showed
that a finitary sentential logic is algebraizable if and only if the Leibniz operator is injective and continuous on
the theories of the logic (see also [6, Theorem 4.6.2]).

Many algebraic logicians have subsequently followed Blok and Pigozzi’s footsteps and, as a result, the Leibniz
operator has been very heavily studied. These studies led to the establishment of an algebraic hierarchy of logics,
based on properties of the Leibniz operator that may or may not be satisfied by particular logics. Justifiably so, this
hierarchy is sometimes called the Leibniz hierarchy. It consists, mainly, of the classes of protoalgebraic logics [2],
equivalential logics [18, 5], weakly algebraizable logics [8], and algebraizable logics [3, 14, 15, 16]. The follo-
wing diagram depicts the inclusion relationships between these four major classes.

equivalential weakly algebraizable

algebraizable
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�
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protoalgebraic
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At the very bottom of the hierarchy is the class of protoalgebraic logics that is characterized by the monotoni-
city of the Leibniz operator on the theories of the logics in the class. It has been widely believed to be the largest
class consisting of sentential logics that are amenable to universal algebraic study techniques.

Since the success, in terms of both classifying power and wide applicability, of the theory of algebraizability
of sentential logics based on the Leibniz operator has been broadly acknowledged, Czelakowski initiated in [7] an
effort to use an alternative operator to the Leibniz operator in order to be able to classify, in a similar way, non-pro-
toalgebraic logics. These logics are outside the scope of the traditional Leibniz hierarchy. Besides the desire to
create a theory that would comprehend all sentential logics, the other important requirement that Czelakowski
imposed on the new operator is that the resulting theory must coincide with the old one when relativized to the
class of protoalgebraic logics. It turns out that the operator that satisfies to a large extent these requirements is the
Suszko operator. The Suszko operator ΣC of a sentential logic S = 〈L, C〉 associates with a given theory T of the
logic the largest congruence ΣC(T ) on the formula algebra of the logic that is compatible with every theory T ′

of S that includes T . Equivalently, ΣC(T ) =
⋂{Ω(T ′) : T ′ ∈ Th(S) such that T ⊆ T ′}, where Ω(T ′) denotes,

as usual, the Leibniz congruence associated with the theory T ′ of S. In [7, Theorem 1.8], Czelakowski characte-
rizes the Suszko operator as being the largest operator from theories to congruences that is monotone and com-
patible with the theories of the logic. And in [7, Theorem 1.10] he shows that, indeed, when the logic S is pro-
toalgebraic, the Suszko operator coincides with the Leibniz operator of Blok and Pigozzi and, as a consequence,
the two theories provide identical results when classifying protoalgebraic logics. Czelakowski studies a wide va-
riety of properties concerning the Suszko operator and promises a second installment to appear exploring even
more aspects of the theory.

The theory of the Leibniz operator has recently been abstracted by the author [23] to cover logics that are for-
malized as π-institutions. A detailed account of the work that led to these developments, together with some sub-
sequent related investigations, is given in the series of papers [19] – [25], some of which contain abstractions of
the classes of the Leibniz hierarchy, discussed above, to corresponding classes of π-institutions. In [23], an analog
of the Suszko operator of Czelakowski was introduced at the π-institution level and it was shown that a π-insti-
tution is protoalgebraic if and only if this categorical version of the Suszko operator coincides with a similarly
abstracted version of the Leibniz operator. This fact, understood in the context of Czelakowski’s work, triggers
the idea that the categorical operator may be appropriate, in this context as well, for extending a hierarchy of pro-
toalgebraic π-institutions to the non-protoalgebraic ones.

Motivated by the ideas and by the work of Czelakowski in tackling the algebraizability status of the non-pro-
toalgebraic logics using the Suszko operator, and in anticipation of the second part of his studies on the Suszko
operator, an exposition is provided in this paper of some of the most elementary properties of the categorical
analog of the Suszko operator. We follow [7] and provide analogs at the level of π-institutions of many of the
properties that were shown to hold in the sentential logic case.

In the remainder of this section, a brief overview of the contents of the present paper will be provided.
Recall that, given a category Sign and a functor SEN : Sign −→ Set, the clone of all natural transforma-

tions on SEN is defined to be the locally small category with collection of objects {SENα : α an ordinal} and
collection of morphisms τ : SENα −→ SENβ β-sequences of natural transformations τi : SENα −→ SEN [23].
Composition

SENα SENβ�〈τi : i < β〉
SENγ�〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.
A subcategory N of this category whose objects are all objects of the form SENk for k < ω that contains all pro-
jection morphisms pk,i : SENk −→ SEN, i < k, k < ω, with pk,i

Σ : SEN(Σ)k −→ SEN(Σ) given by

pk,i
Σ (�ϕ ) = ϕi, for all �ϕ ∈ SEN(Σ)k,

and is such that, for every family {τi : SENk −→ SEN : i < l} of natural transformations in N , the sequence

〈τi : i < l〉 : SENk −→ SENl

is also in N , is referred to as a category of natural transformations on SEN.
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618 G. Voutsadakis: The categorical Suszko operator

Suppose I = 〈Sign, SEN, C〉 is a π-institution and N a category of natural transformations on SEN. Given
a theory family T = {TΣ}Σ∈|Sign| of I, the Suszko N -congruence system ΘN (T ) associated with T is defined,
for all Σ ∈ |Sign|, by setting, for all ϕ, ψ ∈ SEN(Σ), 〈ϕ, ψ〉 ∈ ΘN

Σ (T ) if and only if

(1) CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )}),

for all σ : SENk −→ SEN in N , all Σ′ ∈ |Sign|, all f ∈ Sign(Σ, Σ′), and all �χ ∈ SEN(Σ′)k−1, where the un-
derstanding is that SEN(f)(ϕ) and SEN(f)(ψ) may appear in any position of σ, but that they must appear in the
same position in both sides of the equation (1). This convention has been followed repeatedly in similar contexts
in categorical abstract algebraic logic because it helps simplify the notation considerably.

ΘN (T ) is an N -congruence system of I and is compatible with the theory family T , whence we immediately
have that ΘN (T ) ≤ ΩN (T ). In fact, it is shown in Proposition 2.1 that ΘN (T ) =

⋂
T≤T ′ ΩN (T ′), where the in-

tersection is taken over all theory families of I ≤-including T . Moreover, it may be shown that ΘN (T ) = ΩN (T )
if I is an N -protoalgebraic π-institution, i. e., the Suszko and the Leibniz operators coincide in the case of N -pro-
toalgebraic π-institutions, as happens in the framework of sentential logics.

In Section 3, the notion of a deductive semi-interpretation is introduced between π-institutions, following the
corresponding notion between logical matrices of [7]. The same notion is also defined in a slightly different way
for what are called matrix system models of a given π-institution. It is shown in Proposition 3.4 that kernels of
deductive logical morphisms roughly correspond to logical N -congruence systems, as defined in [19]. The bilo-
gical morphisms of [19] are also special cases of deductive logical morphisms, whence the canonical projection
morphism from a π-institution IT to the Suszko-reduction IT /ΘN (T ) is a deductive logical morphism (actually
a bilogical morphism). Similar results are also formulated in the context of matrix system models of π-institutions.
In Proposition 3.8 an analog of the Correspondence Property for Deductive Homomorphisms of sentential logics
is shown to hold for π-institutions. More precisely, given π-institutions

I = 〈Sign, SEN, C〉, I ′ = 〈Sign′, SEN′, C ′〉,

with N and N ′ categories of natural transformations on SEN and SEN′, respectively, and 〈F, α〉 : I 〉−se I ′ a de-
ductive (N, N ′)-logical morphism, α−1

Σ (αΣ(T )) = T , for every Σ-theory T of I, Σ ∈ |Sign|. Based on this re-
sult, it is proven in Corollary 3.12 that if 〈F, α〉 : I 	se I ′ is an (N, N ′)-bilogical morphism, then, for all theory
families T ′ of I ′, ΘN (α−1(T ′)) = α−1(ΘN ′

(T ′)). This result is used to prove a transfer property, stating, rough-
ly speaking, that the continuity of the Suszko operator on a given π-institution is preserved by every bilogical mor-
phism. This is the content of Proposition 3.14.

In Section 4, the notions of a Suszko reduced π-institution with respect to a given theory family and that of
a Suszko reduced matrix system model of a given π-institution are introduced. It is shown that a π-institution I
is Suszko reduced with respect to given theory system T if and only if the π-institution IT is isomorphic to a
quotient π-institution of the form I ′T ′

/ΘN ′
(T ′), for some π-institution I ′ and some theory system T ′ of I ′.

In Section 5, the investigations on properties of the Suszko operator are continued with the introduction of
some categorical analogs of the determinator systems of Czelakowski in the π-institution framework.

Finally, in Section 6, an analog of [7, Proposition 5.1] asserting that every countable Suszko-reduced model of
a given sentential logic is a strict homomorphic image of the Suszko reduction of a Lindenbaum matrix is provided
in the categorical framework.

For all unexplained categorical terminology and notation the reader is referred to any of [1, 4, 17]. For the
definitions pertaining to institutions see [12, 13], whereas π-institutions were introduced in [9]. For background
on the theory of abstract algebraic logic and discussion of the classes of the abstract algebraic hierarchy, some of
which were mentioned in this introduction, the reader is referred to the review article [11], the monograph [10],
and the comprehensive treatise [6].

2 The categorical Suszko operator

Before starting the exposition, a notational clarification is in order: Czelakowski [6, 7] uses the symbol Σ (as was
also done, following his example, in the introduction) to denote the Suszko operator. Since Σ is heavily used in the
present context (and, more generally, in institution theory) to denote an arbitrary signature in the category Sign
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of signatures of a π-institution I = 〈Sign, SEN, C〉, the letter Θ, rather than the letter Σ, will be used to denote
the institutional operator corresponding to the Suszko operator of Czelakowski in the present work.

Let I = 〈Sign, SEN, C〉 be a π-institution, let N be a category of natural transformations on SEN, and let
T = {TΣ}Σ∈|Sign| be a theory family of I. Define the family of binary relations

ΘN (T ) = {ΘN
Σ (T )}Σ∈|Sign|

by letting, for all Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ), 〈ϕ, ψ〉 ∈ ΘN
Σ (T ) if and only if

(2) CΣ′(TΣ′ ∪ {σΣ′(χ0, . . . , χi−1, SEN(f)(ϕ), χi+1, . . . , χk−1)})
= CΣ′(TΣ′ ∪ {σΣ′(χ0, . . . , χi−1, SEN(f)(ψ), χi+1, . . . , χk−1)}),

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), σ : SENk −→ SEN in N , �χ ∈ SEN(Σ′)k, and i < k.
Following a convention, introduced previously in a similar context in [20], equation (2) will sometimes be

abbreviated in the form

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )}),

with the understanding that SEN(f)(ϕ) and SEN(f)(ψ) may be appearing in any of the k argument positions
of σΣ′ and not just the first, but that they must appear in the same position on both sides of the equation.

It was proven in [23, Proposition 6.29] that ΘN (T ), as defined above, is an N -congruence system on SEN that
is compatible with the theory family T . Since ΩN (T ) is the largest N -congruence system that is compatible with
the theory family T , this yields immediately that ΘN (T ) ≤ ΩN (T ), for every theory family T = {TΣ}Σ∈|Sign|
of I.

Moreover, it may be shown that, for every theory family T of I,

ΘN (T ) =
⋂

T≤T ′ ΩN (T ′),

i. e., that, for all Σ ∈ |Sign|, ΘN
Σ (T ) =

⋂
T≤T ′ ΩN

Σ (T ′).

Proposition 2.1 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Then, for all T ∈ ThFam(I), ΘN (T ) =

⋂
T≤T ′ ΩN (T ′), where the signature-wise intersection is taken

over all theory families of I ≤-including T .

P r o o f. Suppose, first, that Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ) such that 〈ϕ, ψ〉 ∈ ⋂
T≤T ′ ΩN

Σ (T ′). Then we have
that, by [23, Proposition 2.4], for all T ′ ≥ T , all σ : SENn −→ SEN in N , all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),
and all �χ ∈ SEN(Σ′)n−1,

σΣ′(SEN(f)(ϕ), �χ ) ∈ T ′
Σ′ iff σΣ′(SEN(f)(ψ), �χ ) ∈ T ′

Σ′ .

Consider the theory family T ′ = T [〈Σ′,σΣ′ (SEN(f)(ψ),�χ )〉] as defined in the proof of [23, Lemma 3.8]. Then the

equivalence above yields that σΣ′(SEN(f)(ϕ), �χ ) ∈ T
[〈Σ′,σΣ′ (SEN(f)(ψ),�χ )〉]
Σ′ , whence we get that

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) ⊆ CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )}).

Hence, by symmetry, we get that

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )})

and, therefore, 〈ϕ, ψ〉 ∈ ΘN
Σ (T ). Thus, we have that

⋂
T≤T ′ ΩN (T ′) ≤ ΘN (T ).

Suppose, conversely, that Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ) such that 〈ϕ, ψ〉 ∈ ΘN
Σ (T ). Thus, we obtain that for

all σ : SENn −→ SEN in N , all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and all �χ ∈ SEN(Σ′)n−1,

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )}).

www.mlq-journal.org c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



620 G. Voutsadakis: The categorical Suszko operator

Now let T ′ ∈ ThFam(I) such that T ≤ T ′, and assume that σΣ′(SEN(f)(ϕ), �χ ) ∈ T ′
Σ′ . Then the equality above

yields that

σΣ′(SEN(f)(ψ), �χ ) ∈ CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) ⊆ CΣ′(T ′
Σ′) = T ′

Σ′ .

By symmetry, we obtain that

σΣ′(SEN(f)(ϕ), �χ ) ∈ T ′
Σ′ iff σΣ′(SEN(f)(ψ), �χ ) ∈ T ′

Σ′ ,

whence, again by [23, Proposition 2.4], 〈ϕ, ψ〉 ∈ ΩN
Σ (T ′). Therefore, we get that 〈ϕ, ψ〉 ∈ ⋂

T≤T ′ ΩN
Σ (T ′), and

thus ΘN (T ) ≤ ⋂
T≤T ′ ΩN (T ′).

The Suszko operator, unlike the Leibniz operator, and similarly with the deductive system framework, is al-
ways monotone on theory families of a π-institution, i. e., ΘN (T 1) ≤ ΘN (T 2), for all theory families T 1, T 2 of I
such that T 1 ≤ T 2. This was the content of [23, Proposition 6.31].

Similarly with [6, Theorem 1.5.3], the N -Suszko operator ΘN of a π-institution I may be characterized as
the operator yielding, for every theory family T , the largest N -congruence system such that, when it identifies
two Σ-sentences ϕ and ψ, then ϕ and ψ satisfy CΣ(TΣ ∪ {ϕ}) = CΣ(TΣ ∪ {ψ}). More precisely, it was shown
in [23, Theorem 6.32] that, given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transforma-
tions on SEN, and such that, for every theory family T of I, ON (T ) is an N -congruence system on SEN such
that, for all Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ),

〈ϕ, ψ〉 ∈ ON
Σ (T ) implies CΣ(TΣ ∪ {ϕ}) = CΣ(TΣ ∪ {ψ}),

then ON (T ) ≤ ΘN (T ), for all theory families T of I.
Finally, in [23, Proposition 6.33], it was shown that a π-institution I is N -protoalgebraic if and only if

ΩN (T ) = ΘN (T ), for all T ∈ ThFam(I).

This result is very significant in that it shows that, in agreement with the case of sentential logics, the categorical
N -Suszko operator will have a role to play in the case of non N -protoalgebraic π-institutions, while its theory
reduces to the theory of the N -Leibniz operator in the context of N -protoalgebraic π-institutions.

3 Deductive translations and bilogical morphisms

Let I = 〈Sign, SEN, C〉 and I ′ = 〈Sign′, SEN′, C ′〉 be π-institutions. Then we say that a singleton semi-inter-
pretation 〈F, α〉 : I 〉−s I ′ is deductive if, for all Σ ∈ |Sign| and all ϕ, ψ ∈ SEN(Σ),

αΣ(ϕ) = αΣ(ψ) implies CΣ(ϕ) = CΣ(ψ).

If, in addition, N, N ′ are categories of natural transformations on SEN, SEN′, respectively, then an (N, N ′)-lo-
gical morphism 〈F, α〉 : I 〉−se I ′ is said to be deductive if it is deductive as a semi-interpretation.

Note that every singleton interpretation 〈F, α〉 : I 	s I ′ is deductive. Indeed, if Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ)
such that αΣ(ϕ) = αΣ(ψ), then αΣ(ψ) ∈ C ′

F (Σ)(αΣ(ϕ)) and αΣ(ϕ) ∈ C ′
F (Σ)(αΣ(ψ)), whence, by the hypothe-

sis, ψ ∈ CΣ(ϕ) and ϕ ∈ CΣ(ψ), yielding CΣ(ϕ) = CΣ(ψ), i. e., 〈F, α〉 is deductive. As a consequence, every
strong (N, N ′)-logical morphism 〈F, α〉 : I 〉−se I ′ is deductive. Thus the following has been shown:

Lemma 3.1 Let I = 〈Sign, SEN, C〉, I ′ = 〈Sign′, SEN′, C ′〉 be π-institutions. Every singleton interpreta-
tion 〈F, α〉 : I 	s I ′ is deductive.

The following proposition, on the other hand, characterizes those surjective and deductive singleton semi-in-
terpretations that are interpretations.

Recall the convention followed in [10] whereby, given a closure operator C on some set X , the corresponding
closed set system is denoted by C.

Proposition 3.2 Let I = 〈Sign, SEN, C〉 and I ′ = 〈Sign′, SEN′, C ′〉 be π-institutions. Then a surjective
deductive singleton semi-interpretation 〈F, α〉 : I 〉−s I ′ is an interpretation if and only if, for all Σ ∈ |Sign|,
αΣ(CΣ) = C′

F (Σ).

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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P r o o f. Suppose, first, that 〈F, α〉 : I 〉−s I ′ is a surjective deductive singleton semi-interpretation, that is an
interpretation. It will be shown that αΣ(CΣ) = C′

F (Σ). For the left-to-right inclusion, suppose that T ∈ CΣ and

let ϕ′ ∈ SEN′(F (Σ)) such that ϕ′ ∈ C ′
F (Σ)(αΣ(T )). By the surjectivity of 〈F, α〉, there exists ϕ ∈ SEN(Σ) such

that αΣ(ϕ) = ϕ′. Thus αΣ(ϕ) ∈ C ′
F (Σ)(αΣ(T )), whence, because 〈F, α〉 is an interpretation, ϕ ∈ CΣ(T ) = T .

Thus, ϕ′ = αΣ(ϕ) ∈ αΣ(T ). This shows that αΣ(T ) ∈ C′
F (Σ). Conversely, if T ′ ∈ C′

F (Σ), then α−1
Σ (T ′) ∈ CΣ

and T ′ = αΣ(α−1
Σ (T ′)) ∈ αΣ(CΣ), where the equality follows by the surjectivity of 〈F, α〉.

Now it is sufficient to show the following: if αΣ(CΣ) = C′
F (Σ), for all Σ ∈ |Sign|, then, for all Σ ∈ |Sign|

and all Φ ∪ {ϕ} ⊆ SEN(Σ),

αΣ(ϕ) ∈ C ′
F (Σ)(αΣ(Φ)) implies ϕ ∈ CΣ(Φ).

In fact, if T is a Σ-theory of I such that Φ ⊆ T , then αΣ(T ) is, by our hypothesis, an F (Σ)-theory of I ′ such
that αΣ(Φ) ⊆ αΣ(T ), whence, since αΣ(ϕ) ∈ C ′

F (Σ)(αΣ(Φ)), αΣ(ϕ) ∈ αΣ(T ). But, then, since 〈F, α〉 is de-
ductive, we get that there exists ψ ∈ T such that CΣ(ϕ) = CΣ(ψ). Therefore

ϕ ∈ CΣ(ϕ) = CΣ(ψ) ⊆ CΣ(T ) = T.

Since T was arbitrary, it follows that ϕ ∈ CΣ(Φ), as was to be shown.

For the previous notions there are corresponding counterparts in the case of logical matrix systems. Let a
functor SEN : Sign −→ Set be given, where N is a category of natural transformations on SEN. Then an
N -matrix system 〈〈SEN′, 〈F, α〉〉, T ′〉 for SEN consists of a functor SEN′ : Sign′ −→ Set, with N ′ a category
of natural transformations on SEN′, and a surjective (N, N ′)-epimorphic translation 〈F, α〉 : SEN −→se SEN′,
together with an axiom family T ′ of SEN′. On the other hand, given a π-institution I = 〈Sign, SEN, C〉, with N
a category of natural transformations on SEN, a triple 〈〈SEN′, 〈F, α〉〉, T ′〉 is said to be an N -matrix system mo-

del of I if it is an N -matrix system for SEN and T ′ ∈ ThFam〈F,α〉
I (SEN′), i. e., T ′ is a theory family of the

〈F, α〉-min (N, N ′)-model of I on SEN′ (see [20, Section 5]). An (N ′, N ′′)-epimorphic translation

〈G, β〉 : SEN′ −→se SEN′′

is said to be a matrix system morphism from the N -matrix system model 〈〈SEN′, 〈F, α〉〉, T ′〉 to the N -matrix
system model 〈〈SEN′′, 〈GF, βF α〉〉, T ′′〉 of I if

SEN′ SEN′′�
〈G, β〉

I

〈F, α〉
�

�
�

��

〈GF, βF α〉
�

�
�
��

for all Σ ∈ |Sign′| and all ϕ ∈ SEN′(Σ),

ϕ ∈ T ′
Σ implies βΣ(ϕ) ∈ T ′′

G(Σ).

〈G, β〉 : SEN′ −→se SEN′′ is said to be a strict matrix system morphism if, for all Σ ∈ |Sign′|, ϕ ∈ SEN′(Σ),

ϕ ∈ T ′
Σ iff βΣ(ϕ) ∈ T ′′

G(Σ).

Finally, 〈G, β〉 is said to be a deductive matrix system morphism if, for all Σ ∈ |Sign|, ϕ, ψ ∈ SEN′(Σ),

βΣ(ϕ) = βΣ(ψ) implies C ′min
Σ (T ′

Σ ∪ {ϕ}) = C ′min
Σ (T ′

Σ ∪ {ψ}),
where by C ′min is denoted the closure system of the 〈F, α〉-min (N, N ′)-model of I on SEN′.

Given a π-institution I = 〈Sign, SEN, C〉, where N is a category of natural transformations on SEN, recall
from [19] that an N -congruence system θ = {θΣ}Σ∈|Sign| is said to be a logical N -congruence system of I if
and only if, for all Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ),

〈ϕ, ψ〉 ∈ θΣ implies CΣ(ϕ) = CΣ(ψ).
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Recall, also, from [22, Proposition 2] the construction of the π-institution IT = 〈Sign, SEN, CT 〉 out of a given
π-institution I = 〈Sign, SEN, C〉 and of a given theory system T ∈ ThSys(I). The closure system CT of IT

is defined, for all Σ ∈ |Sign| and all Φ ∪ {ϕ} ⊆ SEN(Σ), by

ϕ ∈ CT
Σ (Φ) iff ϕ ∈ CΣ(TΣ ∪ Φ).

This construction may be carried out only in the case when T is a theory system and not in the case of an arbitrary
theory family. If T is an arbitrary theory family, then the family of closure operators {CΣ}Σ∈|Sign| may not form
a closure system on SEN, since it may not be structural.

Proposition 3.3 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN, and T ∈ ThSys(I). ΘN (T ) is the largest logical N -congruence system of IT = 〈Sign, SEN, CT 〉,
i. e., ΘN (T ) = Ω̃N (IT ).

P r o o f. This follows immediately by comparing the definition of ΘN (T ) and the characterization of Ω̃N (IT ),
given in [19, Theorem 4].

An analog of [7, Proposition 2.1] that relates deductive homomorphisms and deductive congruences is given
next. It relates deductive logical morphisms with logical congruence systems.

Proposition 3.4 Let I = 〈Sign, SEN, C〉, I ′ = 〈Sign′, SEN′, C ′〉 be π-institutions and N, N ′ categories of
natural transformations on SEN, SEN′, respectively.

1. If θ is an N -congruence system on SEN, then the canonical (N, Nθ)-epimorphic translation

〈ISign, πθ〉 : SEN −→se SENθ

is a deductive (N, Nθ)-logical morphism 〈ISign, πθ〉 : I 〉−se Iθ if and only if θ is a logical N -congruence system
of I.

2. Given an (N, N ′)-logical morphism 〈F, α〉 : I 〉−se I ′, 〈F, α〉 is deductive if and only if the kernel

θ〈F,α〉 := Ker(〈F, α〉)
is a logical N -congruence system of I.

P r o o f.
1. If θ is a logical N -congruence system of I, then by [19, Proposition 23], 〈ISign, πθ〉 : SEN −→se SENθ is

an (N, Nθ)-bilogical morphism 〈ISign, πθ〉 : I 	se Iθ. Thus, it is deductive, by Lemma 3.1.
If, conversely, 〈ISign, πθ〉 : I 〉−se Iθ is a deductive (N, Nθ)-logical morphism, then, for all Σ ∈ |Sign|, and

all ϕ, ψ ∈ SEN(Σ),

〈ϕ, ψ〉 ∈ θΣ iff ϕ/θΣ = ψ/θΣ iff πθ
Σ(ϕ) = πθ

Σ(ψ)

and

πθ
Σ(ϕ) = πθ

Σ(ψ) implies CΣ(ϕ) = CΣ(ψ).

Therefore, θ is a logical N -congruence system of I.
2. Suppose next that 〈F, α〉 : I 〉−se I ′ is an (N, N ′)-logical morphism.
Let 〈F, α〉 be deductive and let Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ) such that 〈ϕ, ψ〉 ∈ θ

〈F,α〉
Σ . Then αΣ(ϕ) = αΣ(ψ),

whence CΣ(ϕ) = CΣ(ψ) and, therefore, θ〈F,α〉 is a logical N -congruence system.
Conversely, let θ〈F,α〉 be a logical N -congruence system. Then if Σ ∈ |Sign| and ϕ, ψ ∈ SEN(Σ) are such

that αΣ(ϕ) = αΣ(ψ), then 〈ϕ, ψ〉 ∈ θ
〈F,α〉
Σ , whence CΣ(ϕ) = CΣ(ψ) and 〈F, α〉 is a deductive (N, N ′)-logical

morphism.

The following proposition exhibits an important example of a deductive logical morphism. It is the canonical
(N, NΘN (T ))-epimorphic projection 〈ISign, πΘN (T )〉 : SEN −→se SENΘN (T ) from the sentence functor SEN of

a π-institution I = 〈Sign, SEN, C〉 to its quotient SENΘN (T ) by the Suszko N -congruence of a given theory sys-
tem T of I. Of course, 〈ISign, πΘN (T )〉 is not only a deductive logical morphism from IT to IT /ΘN (T ), but in
fact a bilogical morphism.
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Proposition 3.5 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN, and T ∈ ThSys(I). Then the canonical (N, NΘN (T ))-epimorphic projection

〈ISign, πΘN (T )〉 : SEN −→se SENΘN (T )

is an (N, NΘN (T ))-bilogical morphism 〈ISign, πΘN (T )〉 : IT 	se IT /ΘN (T ).

P r o o f. Follows by [19, Proposition 23] and Proposition 3.3.

Going back to the matrix system framework, consider a π-institution I = 〈Sign, SEN, C〉, with N a category
of natural transformations on SEN, and M = 〈〈SEN′, 〈F, α〉〉, T ′〉 an N -matrix system model of I. An N ′-con-
gruence system θ on SEN′ is a deductive N ′-congruence system on M if, for all Σ ∈ |Sign′|, ϕ, ψ ∈ SEN′(Σ),

〈ϕ, ψ〉 ∈ θΣ implies C ′min
Σ (T ′

Σ ∪ {ϕ}) = C ′min
Σ (T ′

Σ ∪ {ψ}),
where, again, by C ′min is denoted the closure system of the 〈F, α〉-min (N, N ′)-model of I on SEN′.

For matrix systems Proposition 3.4 takes the following form.

Proposition 3.6 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN, and 〈F, α〉 : SEN −→se SEN′ an (N, N ′)-epimorphic translation.

1. Let θ be an N ′-congruence system on SEN′ and

〈ISign′ , πθ〉 : 〈〈SEN′, 〈F, α〉〉, T ′〉 −→ 〈〈SEN′θ, 〈F, πθ
F α〉〉, T ′/θ〉

a matrix system morphism. Then 〈ISign′ , πθ〉 is a deductive matrix system morphism

I SEN′�〈F, α〉
SEN′θ�〈ISign′ , πθ〉

if and only if θ is a deductive N ′-congruence system on 〈〈SEN′, 〈F, α〉〉, T ′〉.
2. Suppose that 〈G, β〉 : SEN′ −→se SEN′′ is an (N ′, N ′′)-epimorphic translation such that 〈G, β〉 is a ma-

trix system morphism from 〈〈SEN′, 〈F, α〉〉, T ′〉 to 〈〈SEN′′, 〈GF, βF α〉〉, T ′′〉. Then 〈G, β〉 is a deductive matrix
system morphism

I SEN′�〈F, α〉
SEN′′�〈G, β〉

if and only if θ〈G,β〉 is a deductive N ′-congruence system on 〈〈SEN′, 〈F, α〉〉, T ′〉.
P r o o f.
1. Suppose, first, that 〈ISign′ , πθ〉 is a deductive matrix system morphism. Then we have, for all Σ ∈ |Sign′|,

ϕ, ψ ∈ SEN′(Σ) such that 〈ϕ, ψ〉 ∈ θΣ, that πθ
Σ(ϕ) = πθ

Σ(ψ), which yields that

C ′min
Σ (T ′

Σ ∪ {ϕ}) = C ′min
Σ (T ′

Σ ∪ {ψ}),
i. e., θ is indeed deductive. If, conversely, θ is deductive on 〈〈SEN′, 〈F, α〉〉, T ′〉, Σ ∈ |Sign′|, ϕ, ψ ∈ SEN′(Σ)
such that πθ

Σ(ϕ) = πθ
Σ(ψ), then we have ϕ/θΣ = ψ/θΣ, i. e., that 〈ϕ, ψ〉 ∈ θΣ, which yields that

C ′min
Σ (T ′

Σ ∪ {ϕ}) = C ′min
Σ (T ′

Σ ∪ {ψ}).
Thus, 〈ISign′ , πθ〉 is deductive.

2. Suppose, now, that θ〈G,β〉 is deductive and let Σ ∈ |Sign′| and ϕ, ψ ∈ SEN′(Σ) such that βΣ(ϕ) = βΣ(ψ).
Then 〈ϕ, ψ〉 ∈ θ

〈G,β〉
Σ , whence we get that C ′min

Σ (T ′
Σ ∪ {ϕ}) = C ′min

Σ (T ′
Σ ∪ {ψ}) and 〈G, β〉 is in fact a deduc-

tive matrix system morphism. Suppose, conversely, that 〈G, β〉 is deductive. If Σ ∈ |Sign′|, ϕ, ψ ∈ SEN′(Σ) are
such that 〈ϕ, ψ〉 ∈ θ

〈G,β〉
Σ , then βΣ(ϕ) = βΣ(ψ), whence C ′min

Σ (T ′
Σ ∪ {ϕ}) = C ′min

Σ (T ′
Σ ∪ {ψ}) and θ〈G,β〉 is

deductive.

The paradigm for a surjective deductive morphism is the canonical mapping from a matrix system model to
its quotient by the Suszko congruence system of its designated theory family.
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Proposition 3.7 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Let also 〈〈SEN′, 〈F, α〉〉, T ′〉 be an N -matrix system model of I and ΘN ′

(T ′) the N ′-Suszko congru-
ence of T ′ in the 〈F, α〉-min (N, N ′)-model

I ′min = 〈Sign′, SEN′, C ′min〉

of I on SEN′. If T ′/ΘN ′
(T ′) ∈ ThFam〈F,π

ΘN′
(T ′)

F α〉
I (SEN′ΘN′

(T ′)), then the canonical (N ′, N ′ΘN′
(T ′))-epi-

morphic projection 〈ISign′ , πΘN′
(T ′)〉 : SEN′ −→se SEN′ΘN′

(T ′) is a surjective, strict, and deductive matrix sys-

tem morphism from 〈〈SEN′, 〈F, α〉〉, T ′〉 to 〈〈SEN′ΘN′
(T ′), 〈F, π

ΘN′
(T ′)

F α〉〉, T ′/ΘN ′
(T ′)〉.

P r o o f. It is clear that 〈ISign′ , πΘN′
(T ′)〉 is a surjective translation. To show that it is also deductive, suppose

that Σ ∈ |Sign′|, ϕ, ψ ∈ SEN′(Σ) such that π
ΘN′

(T ′)
Σ (ϕ) = π

ΘN′
(T ′)

Σ (ψ). Then 〈ϕ, ψ〉 ∈ ΘN ′
Σ (T ′). Thus, by the

definition of ΘN ′
(T ′), we have that C ′min

Σ (T ′
Σ ∪ {ϕ}) = C ′min

Σ (T ′
Σ ∪ {ψ}) and, therefore, 〈ISign′ , πΘN′

(T ′)〉 is
a deductive matrix system morphism. To show that it is also strict, suppose that Σ ∈ |Sign′|, ϕ ∈ SEN′(Σ) such

that π
ΘN′

(T ′)
Σ (ϕ) ∈ T ′

Σ/ΘN ′
Σ (T ′). Then there exists ψ ∈ SEN′(Σ) such that ψ ∈ T ′

Σ and 〈ϕ, ψ〉 ∈ ΘN ′
Σ (T ′). This

shows that ϕ ∈ C ′min
Σ (T ′

Σ ∪ {ϕ}) = C ′min
Σ (T ′

Σ ∪ {ψ}) = T ′
Σ. Therefore 〈ISign′ , πΘN′

(T ′)〉 is also strict.

Next, an analog of the Correspondence Property for Deductive Homomorphisms [7, Proposition 2.3] will be
shown to hold in the framework of π-institutions. It says, roughly speaking, that pushing forth and then pulling
back a closed set along a deductive logical morphism leaves the closed set unchanged.

Proposition 3.8 Suppose that I = 〈Sign, SEN, C〉, I ′ = 〈Sign′, SEN′, C ′〉 are π-institutions and N, N ′ ca-
tegories of natural transformations on SEN, SEN′, respectively. If 〈F, α〉 : I 〉−se I ′ is a deductive (N, N ′)-logi-
cal morphism, Σ ∈ |Sign|, and T is a Σ-theory, then T = α−1

Σ (αΣ(T )).

P r o o f. We always have, set-theoretically, that

T ⊆ α−1
Σ (αΣ(T )).

To prove the reverse inclusion, suppose that ϕ ∈ SEN(Σ) such that ϕ ∈ α−1
Σ (αΣ(T )). Then αΣ(ϕ) ∈ αΣ(T ).

Therefore, there is ψ ∈ T such that αΣ(ϕ) = αΣ(ψ). But 〈F, α〉 is deductive, whence CΣ(ϕ) = CΣ(ψ). Now we
have ϕ ∈ CΣ(ϕ) = CΣ(ψ) ⊆ CΣ(T ) = T .

It was shown that a deductive logical morphism preserves theories that are pushed forth and then pulled back.
If the morphism happens, in addition, to be surjective and strong, i. e., a (deductive) bilogical morphism, then the
stronger conclusion that theories are in fact mapped to theories may be reached.

Proposition 3.9 Suppose that I = 〈Sign, SEN, C〉, I ′ = 〈Sign′, SEN′, C ′〉 are π-institutions and N, N ′ ca-
tegories of natural transformations on SEN, SEN′, respectively. If 〈F, α〉 : I 	se I ′ is an (N, N ′)-bilogical mor-
phism, Σ ∈ |Sign|, and T is a Σ-theory of I, then αΣ(T ) is an F (Σ)-theory of I ′.

P r o o f. Immediate by Lemma 3.1 and Proposition 3.2.

Proposition 3.9 has several corollaries.

Corollary 3.10 Let I = 〈Sign, SEN, C〉 be a π-institution, N a category of natural transformations on SEN,
and T ∈ ThSys(I). Then for each theory family T ′ ∈ ThFam(IT ), πΘN (T )(T ′) ∈ ThFam(IT /ΘN (T )), where

by πΘN (T )(T ′) is denoted the theory family {πΘN (T )
Σ (T ′

Σ)}Σ∈|Sign|.

P r o o f. This follows from Proposition 3.5 in conjunction with Proposition 3.9.

Corollary 3.11 Suppose that I = 〈Sign, SEN, C〉, I ′ = 〈Sign′, SEN′, C ′〉 are π-institutions and N, N ′ ca-
tegories of natural transformations on SEN, SEN′, respectively. If 〈F, α〉 : I 	se I ′ is an (N, N ′)-bilogical mor-
phism, then, for all Σ ∈ |Sign|, Φ ⊆ SEN(Σ),

αΣ(CΣ(Φ)) = C ′
F (Σ)(αΣ(Φ)).
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P r o o f. The fact that αΣ(CΣ(Φ)) ⊆ C ′
F (Σ)(αΣ(Φ)) follows from the definition of an (N, N ′)-logical mor-

phism. For the reverse inclusion, it is clear that αΣ(Φ) ⊆ αΣ(CΣ(Φ)). But, by Proposition 3.9, αΣ(CΣ(Φ)) is
an F (Σ)-theory, whence C ′

F (Σ)(αΣ(Φ)) ⊆ αΣ(CΣ(Φ)).

Corollary 3.12 Suppose that I = 〈Sign, SEN, C〉, I ′ = 〈Sign′, SEN′, C ′〉 are π-institutions and N, N ′ ca-
tegories of natural transformations on SEN, SEN′, respectively.

1. If 〈F, α〉 : I 	se I ′ is an (N, N ′)-bilogical morphism, then, for all T ∈ ThFam(I ′),

ΘN (α−1(T )) = α−1(ΘN ′
(T )).

2. If, moreover, F : Sign −→ Sign′ is an isomorphism, the mapping defined by T ′ �−→ α(T ′) is an isomor-
phism between the complete lattice ThFam(IT ) and the complete lattice ThFam(I ′α(T )), for every theory
system T ∈ ThSys(I).

P r o o f.
1. We have, for all Σ ∈ |Sign|,

α−1
Σ (ΘN ′

F (Σ)(T )) = α−1
Σ (

⋂{ΩN ′
F (Σ)(T

′) : T ′ ∈ ThFam(I ′) and T ≤ T ′}) (by Proposition 2.1)

=
⋂{α−1

Σ (ΩN ′
F (Σ)(T

′)) : T ′ ∈ ThFam(I ′) and T ≤ T ′}
=

⋂{ΩN
Σ (α−1(T ′)) : T ′ ∈ ThFam(I ′) and T ≤ T ′} (by [23, Lemma 5.26])

=
⋂{ΩN

Σ (T ′′) : T ′′ ∈ ThFam(I) and α−1(T ) ≤ T ′′}
= ΘN

Σ (α−1(T )) (by Proposition 2.1),

where the second equation before the end is justified by the fact that

{α−1(T ′) : T ′ ∈ ThFam(I ′) and T ≤ T ′} = {T ′′ : T ′′ ∈ ThFam(I) and α−1(T ) ≤ T ′′},

which follows by Corollary 3.11.
2. Let T ∈ ThSys(I) and consider the mapping T ′ �−→ α(T ′), for T ′ ∈ ThFam(IT ), from ThFam(IT )

to ThFam(I ′α(T )). By Proposition 3.9, this mapping is well-defined, since αΣ(T ′
Σ) is an F (Σ)-theory of I ′ that

includes αΣ(TΣ), for every Σ ∈ |Sign|. To show that it is one-to-one, suppose that T ′, T ′′ ∈ ThFam(IT ) such
that α(T ′) = α(T ′′). Then

α−1(α(T ′)) = α−1(α(T ′′)).

So it suffices to show that, for all T ′ ∈ ThFam(IT ), α−1(α(T ′)) = T ′. The right-to-left inclusion is obvious.
For the left-to-right inclusion, suppose that ϕ ∈ α−1

Σ (αΣ(T ′
Σ)). Then αΣ(ϕ) ∈ αΣ(T ′

Σ). Thus, there is ψ ∈ T ′

with αΣ(ϕ) = αΣ(ψ). Thus, since, by Lemma 3.1, 〈F, α〉 is deductive, CΣ(ϕ) = CΣ(ψ) ∈ T ′
Σ. Hence ϕ ∈ T ′

Σ.
This concludes the proof that α−1(α(T ′)) = T ′ and shows that T ′ �−→ α(T ′) is one-to-one. To show that it is
onto, suppose now that T ′′ ∈ ThFam(I ′α(T )). Then α−1(T ′′) ∈ ThFam(IT ) and, by the surjectivity of 〈F, α〉,
α(α−1(T ′′)) = T ′′. Thus T ′ �−→ α(T ′) is also onto. Since it is obviously order-preserving, it is an isomorphism
from ThFam(IT ) to ThFam(I ′α(T )).

Next, an analog of Proposition 3.8 will be shown to hold in the framework of matrix system models. It parallels
more closely the Correspondence Property for Deductive Homomorphisms [7, Proposition 2.3].

Proposition 3.13 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN, 〈F, α〉 : SEN −→se SEN′ an (N, N ′)-epimorphic translation, and let 〈G, β〉 : SEN′ −→se SEN′′ be an
(N ′, N ′′)-epimorphic translation, 〈G, β〉 also a deductive matrix system morphism from 〈〈SEN′, 〈F, α〉〉, T ′〉
to 〈〈SEN′′, 〈GF, βF α〉〉, T ′′〉. If T ′′′ ∈ ThFam〈F,α〉

I (SEN′) such that T ′ ≤ T ′′′, then β−1
Σ (βΣ(T ′′′

Σ )) = T ′′′
Σ for

all Σ ∈ |Sign′|.
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P r o o f. Obviously, we have T ′′′
Σ ⊆ β−1

Σ (βΣ(T ′′′
Σ )), for all Σ ∈ |Sign′|. To show the reverse inclusion, sup-

pose that Σ ∈ |Sign′| and ϕ ∈ SEN′(Σ) are such that ϕ ∈ β−1
Σ (βΣ(T ′′′

Σ )). Then βΣ(ϕ) ∈ βΣ(T ′′′
Σ ). Thus, there

exists ψ ∈ T ′′′
Σ such that βΣ(ϕ) = βΣ(ψ). Since 〈G, β〉 is deductive and T ′ ≤ T ′′′, we now obtain

ϕ ∈ C ′min
Σ (T ′

Σ ∪ {ϕ}) = C ′min
Σ (T ′

Σ ∪ {ψ}) ⊆ T ′′′
Σ

and therefore β−1
Σ (βΣ(T ′′′

Σ )) ⊆ T ′′′
Σ , for all Σ ∈ |Sign′|.

An interesting application of Corollary 3.12 concerns the property of continuity of the Suszko operator.
Suppose that I = 〈Sign, SEN, C〉 is a π-institution, with N a category of natural transformations on SEN.

The N -Suszko operator ΘN is said to be continuous if, for every directed system {T i : i ∈ I} of theory families
of I such that

⋃
i∈I T i is also a theory family,

ΘN (
⋃

i∈I T i) =
⋃

i∈I ΘN (T i).

The following proposition expresses a “transfer” property concerning the continuity of the Suszko operator.
It says that if the N -Suszko operator of a π-institution I is continuous, then the N ′-Suszko operator of every
(N, N ′)-model I ′ of I via an (N, N ′)-bilogical morphism is also continuous.

Proposition 3.14 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Let, also, I ′ = 〈Sign′, SEN′, C ′〉, with N ′ a category of natural transformations on SEN′, be a model
of I via an (N, N ′)-bilogical morphism 〈F, α〉 : I 	se I ′. If the N -Suszko operator is continuous on ThFam(I),
then the N ′-Suszko operator is continuous on ThFam(I ′).

P r o o f. Let {T i : i ∈ I} be a directed system of theory families of I ′ such that
⋃

i∈I T i is also a theory fa-
mily of I ′. We have, using Corollary 3.12, for all Σ ∈ |Sign|,

α−1
Σ (ΘN ′

F (Σ)(
⋃

i∈I T i)) = ΘN
Σ (α−1(

⋃
i∈I T i)) (by Corollary 3.12)

= ΘN
Σ (

⋃
i∈I α−1(T i)) (set-theoreticallly)

=
⋃

i∈I ΘN
Σ (α−1(T i)) (by the hypothesis)

=
⋃

i∈I α−1
Σ (ΘN ′

F (Σ)(T
i)) (by Corollary 3.12)

= α−1
Σ (

⋃
i∈I ΘN ′

F (Σ)(T
i)) (set-theoretically),

which yields, by the surjectivity of 〈F, α〉, that ΘN ′
F (Σ)(

⋃
i∈I T i) =

⋃
i∈I ΘN ′

F (Σ)(T
i).

4 Suszko-reduced π-institutions

Suppose that I = 〈Sign, SEN, C〉 is a π-institution and N a category of natural transformations on SEN. Given
a theory family T ∈ ThFam(I), I is said to be N -Suszko reduced with respect to T if ΘN (T ) = ∆SEN, the iden-
tity N -congruence system on SEN, where ΘN is the N -Suszko operator of I.

Note that if T ∈ ThSys(I), then I is N -Suszko reduced with respect to the theory system T if and only if IT

is N -Tarski reduced, since, by Proposition 3.3, Ω̃N (IT ) = ΘN (T ).
Similarly, given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,

and an N -matrix system model M = 〈〈SEN′, 〈F, α〉〉, T ′〉 of I, M will be said to be N ′-Suszko reduced if, in the
〈F, α〉-min (N, N ′)-model I ′min of I on SEN′, ΘN ′

(T ′) = ∆SEN′
.

Compare this notion to the notion of 〈〈SEN′, 〈F, α〉〉, T ′〉 being N ′-Leibniz reduced, which means that

ΩN ′
(T ′) = ∆SEN′

and which is absolutely defined, rather than relatively defined with respect to a specific closure system on SEN′.
Theorem 4.1 Suppose that I = 〈Sign, SEN, C〉 is a π-institution and N a category of natural transforma-

tions on SEN. Given a theory system T ∈ ThSys(I), the following statements are equivalent:
1. I is N -Suszko reduced with respect to T .

2. IT is isomorphic to a π-institution I ′T ′
/ΘN ′

(T ′), for some π-institution I ′ = 〈Sign′, SEN′, C ′〉, with N ′

a category of natural transformations on SEN′, and some theory system T ′ ∈ ThSys(I ′).
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P r o o f. If I is N -Suszko-reduced with respect to T , then ΘN (T ) = ∆SEN, which implies that IT is isomor-
phic to IT /ΘN (T ) and hence, 1. implies 2.

Suppose, conversely, that IT is isomorphic to the π-institution I ′T ′
/ΘN ′

(T ′), where I ′ = 〈Sign′, SEN′, C ′〉
is a π-institution with N ′ a category of natural transformations on SEN′ and some theory system T ′ ∈ ThSys(I ′).
It is shown first that I ′T ′

/ΘN ′
(T ′) is N ′ΘN′

(T ′)-Tarski reduced, i. e., N ′ΘN′
(T ′)-Suszko reduced with respect to

the theory system T ′/ΘN ′
(T ′). To this end, let Σ ∈ |Sign′|, ϕ, ψ ∈ SEN′(Σ) be such that, for all Σ′ ∈ |Sign′|,

f ∈ Sign′(Σ, Σ′), σ′ : SEN′n −→ SEN′ in N ′, �χ ∈ SEN′(Σ′)n−1,

C ′T ′ΘN′
(T ′)

Σ′ (σ′ΘN′
(T ′)

Σ′ (SEN′ΘN′
(T ′)(f)(ϕ/ΘN ′

Σ (T ′)), �χ/ΘN ′
Σ′ (T ′)))

= C ′T ′ΘN′
(T ′)

Σ′ (σ′ΘN′
(T ′)

Σ′ (SEN′ΘN′
(T ′)(f)(ψ/ΘN ′

Σ (T ′)), �χ/ΘN ′
Σ′ (T ′))).

Then, unraveling the definitions of C ′T ′ΘN′
(T ′)

, σ′ΘN′
(T ′), and SEN′ΘN′

(T ′)(f), we obtain that

C ′T ′
Σ′ (σ′

Σ′(SEN′(f)(ϕ), �χ )) = C ′T ′
Σ′ (σ′

Σ′(SEN′(f)(ψ), �χ )).

But this gives that 〈ϕ, ψ〉 ∈ ΘN ′
Σ (T ′), whence ϕ/ΘN ′

Σ (T ′) = ψ/ΘN ′
Σ (T ′) and I ′T ′

/ΘN ′
(T ′) is N ′ΘN′

(T ′)-Tarski
reduced. This, combined with the hypothesis, shows that Ω̃N (IT ) = ∆SEN, whence, by Proposition 3.3, it fol-
lows that ΘN (T ) = ∆SEN and I is N -Suszko reduced with respect to T .

Given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, and a theory
system T ∈ ThSys(I), the quotient π-institution IT /ΘN (T ) is termed the N -Suszko reduction of the π-institu-
tion I with respect to the theory system T . Note that with this terminology at hand, Theorem 4.1 says that a π-in-
stitution I is N -Suszko reduced with respect to a theory system T if and only if IT is isomorphic to the N ′-Suszko
reduction I ′T ′

/ΘN ′
(T ′) of some π-institution I ′ with respect to its theory system T ′.

Proposition 4.2 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. If T ∈ ThSys(I) and θ is an N -congruence system on SEN such that IT /θ is Nθ-Suszko reduced with
respect to T/θ, then ΘN (T ) ≤ θ.

P r o o f. Suppose that Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ) are such that 〈ϕ, ψ〉 ∈ ΘN
Σ (T ). Thus, for all Σ′ ∈ |Sign|,

f ∈ Sign(Σ, Σ′), σ : SENn −→ SEN in N , and �χ ∈ SEN(Σ′)n−1,

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )}),

i. e.,

CT
Σ′(σΣ′(SEN(f)(ϕ), �χ )) = CT

Σ′(σΣ′(SEN(f)(ψ), �χ )).

This, now, implies, by passing to the quotient IT /θ, that

CT θ

Σ′ (σθ
Σ′(SENθ(f)(ϕ/θΣ), �χ/θΣ′)) = CT θ

Σ′ (σθ
Σ′(SENθ(f)(ψ/θΣ), �χ/θΣ′)).

Thus, we obtain that 〈ϕ/θΣ, ψ/θΣ〉 ∈ ΘNθ

Σ (T/θ). Since, however, IT /θ is, by hypothesis, Nθ-Suszko reduced
with respect to T/θ, we get that ϕ/θΣ = ψ/θΣ, i. e., that 〈ϕ, ψ〉 ∈ θΣ. This proves that ΘN (T ) ≤ θ.

Corollary 4.3 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, with N a category of natural transforma-
tions on SEN, and T ∈ ThSys(I). ΘN (T ) is the only logical N -congruence system θ of IT such that IT /θ is
Nθ-Suszko reduced with respect to T/θ.

P r o o f. If θ is an N -congruence system on SEN such that IT /θ is Nθ-Suszko reduced with respect to T/θ,
then, by Proposition 4.2, we obtain ΘN (T ) ≤ θ. On the other hand, if θ is a logical N -congruence system of IT ,
then θ ≤ ΘN (T ), since ΘN (T ) is, by Proposition 3.3, the largest logical N -congruence system of IT .
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5 Determinator systems for the Suszko operator

In [7, Section 4], Czelakowski introduced determinator systems for matrix models of a given sentential logic S.
These are sets of pairs of sentential formulas that define, in a specific technical sense, the Suszko relation of the
matrix model with reference to the closure system on the underlying algebra of the model consisting of all S-fil-
ters. In this section the determinator systems for the Suszko operator are abstracted from the framework of sen-
tential logics to the categorical level. Many of the results shown to hold for sentential logics in [7] will also be
carried over without significant changes to the context of logics formalized as π-institutions.

Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations on SEN. Suppose
that E = {〈δi, εi〉 : i ∈ I} is a collection of pairs of natural transformations δi, εi : SEN2+ki −→ SEN in N .
Given a theory family T ∈ ThFam(I), define on SEN the (binary) relation family E(T ) = {EΣ(T )}Σ∈|Sign| by
setting, for all Σ ∈ |Sign| and all ϕ, ψ ∈ SEN(Σ),

〈ϕ, ψ〉 ∈ EΣ(T ) iff CΣ′(TΣ′ ∪ {δi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )})

= CΣ′(TΣ′ ∪ {εi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )})

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki .

We follow [7] in calling the relation family E(T ) the analytical relation system on SEN determined by T and E.
This terminology is justified by the following lemma:

Lemma 5.1 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Let E = {〈δi, εi〉 : i ∈ I} be a collection of pairs of natural transformations δi, εi : SEN2+ki −→ SEN
in N . For every theory family T ∈ ThFam(I), E(T ) is a relation system.

P r o o f. Suppose that Σ1, Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2), ϕ, ψ ∈ SEN(Σ1) are such that 〈ϕ, ψ〉 ∈ EΣ1(T ).
Then

CΣ′(TΣ′ ∪ {δi
Σ′(SEN(g)(ϕ), SEN(g)(ψ), �χ )}) = CΣ′(TΣ′ ∪ {εi

Σ′(SEN(g)(ϕ), SEN(g)(ψ), �χ )}),

for all Σ′ ∈ |Sign|, g ∈ Sign(Σ1, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki ,

Σ1 Σ2
�f

Σ′.

g
�

�
�
��

h
�

�
�

��

This implies that, for all Σ′ ∈ |Sign|, h ∈ Sign(Σ2, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki ,

CΣ′(TΣ′ ∪ {δi
Σ′(SEN(h)(SEN(f)(ϕ)), SEN(h)(SEN(f)(ψ)), �χ )})

= CΣ′(TΣ′ ∪ {εi
Σ′(SEN(h)(SEN(f)(ϕ)), SEN(h)(SEN(f)(ψ)), �χ )}).

Therefore 〈SEN(f)(ϕ), SEN(f)(ψ)〉 ∈ EΣ2(T ) and E(T ) is a relation system, as was to be shown.

In a way very similar to the way an N -parameterized equivalence system behaves with respect to the N -Leibniz
operator on π-institutions (see, e. g., [24, Proposition 4.1]), the analytical relation system E(T ) on SEN deter-
mined by E and T has the property that, if it is reflexive, then it contains the N -Suszko congruence system
of T .

Lemma 5.2 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Let E = {〈δi, εi〉 : i ∈ I} be a collection of pairs of natural transformations δi, εi : SEN2+ki −→ SEN
in N . For every theory family T ∈ ThFam(I), if the relation system E(T ) is reflexive on SEN, then

ΘN (T ) ≤ E(T ).
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P r o o f. In fact, suppose that Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ) such that 〈ϕ, ψ〉 ∈ ΘN
Σ (T ). This means that for

all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), σ : SENn −→ SEN in N , �χ ∈ SEN(Σ′)n−1,

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )}).
This implies that, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki ,

CΣ′(TΣ′ ∪ {δi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )}) = CΣ′(TΣ′ ∪ {δi

Σ′(SEN(f)(ψ), SEN(f)(ψ), �χ )}),
and

CΣ′(TΣ′ ∪ {εi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )}) = CΣ′(TΣ′ ∪ {εi

Σ′(SEN(f)(ψ), SEN(f)(ψ), �χ )}).
But E(T ) being reflexive also yields that, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki ,

CΣ′(TΣ′ ∪ {δi
Σ′(SEN(f)(ψ), SEN(f)(ψ), �χ )}) = CΣ′(TΣ′ ∪ {εi

Σ′(SEN(f)(ψ), SEN(f)(ψ), �χ )}).
Thus, combining all three relations, we obtain that, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki ,

CΣ′(TΣ′ ∪ {δi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )}) = CΣ′(TΣ′ ∪ {εi

Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )}),
which shows that 〈ϕ, ψ〉 ∈ EΣ(T ). Therefore, ΘN

Σ (T ) ⊆ EΣ(T ). Since Σ ∈ |Sign| was arbitrary, we finally ob-
tain ΘN (T ) ≤ E(T ).

If T is a theory family of I and E is a collection of pairs of natural transformations in N as in Lemma 5.2 such
that ΘN (T ) = E(T ), then E is said to be an N -(parameterized ) determinator system for T . Moreover, E will
be called an N -(parameterized ) determinator system of the N -Suszko operator for I if and only if E is an N -pa-
rameterized determinator system for every theory family T ∈ ThFam(I).

It is shown, next, that the N -Suszko operator for every π-institution I possesses such an N -parameterized
determinator. In fact, analogously with the case of sentential logics (see [7, Theorem 4.2]), the collection of all
pairs of natural transformations in at least one variable yields an N -parameterized determinator for ΘN .

Theorem 5.3 For every π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations
on SEN, the N -Suszko operator for I possesses an N -parameterized determinator system.

P r o o f. Let

Z = {ζi : SEN1+ki −→ SEN : i ∈ I}
be the collection of all natural transformations ζi : SEN1+ki −→ SEN in N with at least one argument. Form the
collection E = {〈δi, εi〉 : i ∈ I}, where δi, εi : SEN2+ki −→ SEN are defined, for all i ∈ I , all Σ ∈ |Sign|, and
all ϕ, ψ ∈ SEN(Σ), �χ ∈ SEN(Σ)ki , by

δi
Σ(ϕ, ψ, �χ ) = ζi

Σ(ϕ, �χ ) and εi
Σ(ϕ, ψ, �χ ) = ζi

Σ(ψ, �χ ).

To show that E is an N -parameterized determinator of the N -Suszko operator for I, follow the following string
of equivalences, for all T ∈ ThFam(I), Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ),

〈ϕ, ψ〉 ∈ ΘN
Σ (T )

iff CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )})
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), σ : SENn −→ SEN in N , �χ ∈ SEN(Σ′)n−1

iff CΣ′(TΣ′ ∪ {ζi
Σ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {ζi

Σ′(SEN(f)(ψ), �χ )})
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki

iff CΣ′(TΣ′ ∪ {δi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )})

= CΣ′(TΣ′ ∪ {εi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )})

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), i ∈ I , �χ ∈ SEN(Σ′)ki

iff 〈ϕ, ψ〉 ∈ EΣ(T ).
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Another way of constructing an N -parameterized determinator in the sentential logic framework was also pro-
vided by Czelakowski in [7, Proposition 4.3]. This new construction may be carried over as well to the π-institu-
tion framework. This is done in Proposition 5.4. Roughly speaking, instead of starting with the collection of all
natural transformations in N in at least one argument, the collection of all natural transformations in N in at least
two arguments is considered, and those pairs of natural transformations in two arguments that satisfy an extra pro-
perty are collected together to form the new N -parameterized determinator.

Proposition 5.4 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Let E′ be the collection of all pairs 〈δi, εi〉 of natural transformations δi, εi : SEN2+ki −→ SEN in N
such that, for all Σ ∈ |Sign| and all ϕ ∈ SEN(Σ),

CΣ′(δi
Σ′(SEN(f)(ϕ), SEN(f)(ϕ), �χ )) = CΣ′(εi

Σ′(SEN(f)(ϕ), SEN(f)(ϕ), �χ ))

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), �χ ∈ SEN(Σ′)ki . Then E′ is an N -parameterized determinator system of
the N -Suszko operator for I.

P r o o f. We follow Czelakowski’s proof of [7, Proposition 4.3] in providing a shortcut to the direct verification
that E′ is an N -parameterized determinator system by using Lemma 5.2, an analog of [7, Lemma 4.1].

The determinator E constructed in Theorem 5.3 is included in the collection E′. It follows that E′(T ) ≤ E(T ),
for every theory family T of I. Moreover, by the definition of E′, it follows that E′(T ) is a reflexive relation
system on SEN. Therefore, by Lemma 5.2, we get that ΘN (T ) ≤ E′(T ), for every theory family T of I. Putting
these together, we, finally, obtain ΘN (T ) ≤ E′(T ) ≤ E(T ) = ΘN (T ) and, therefore, E′(T ) = ΘN (T ) and E′

is indeed an N -parameterized determinator system for ΘN .

Using the definition of an N -parameterized determinator system for the N -Suszko operator of a π-institution
and that of the N -Suszko reduction of a π-institution with respect to a theory family, we obtain

Corollary 5.5 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Let, also, E be an N -parameterized determinator system for the N -Suszko operator of I. Then, for ev-
ery theory system T ∈ ThSys(I), I is N -Suszko reduced with respect to T (i. e., IT is N -Tarski reduced ) if and
only if E(T ) = ∆SEN, the identity relation system on SEN.

Suppose now that SEN : Sign −→ Set is a functor and N a category of natural transformations on SEN. A re-
lation system R = {RΣ}Σ∈|Sign| is said to be compatible with N if for all Σ ∈ |Sign|, all σ : SENn −→ SEN

in N , and all �ϕ, �ψ ∈ SEN(Σ)n,

〈ϕi, ψi〉 ∈ RΣ for i < n imply 〈σΣ(�ϕ ), σΣ(�ψ )〉 ∈ RΣ.

If, on the other hand, I = 〈Sign, SEN, C〉 is a π-institution, where N is a category of natural transformations
on SEN, and T is a theory family of I, then the relation system R is said to be compatible with C-interderivability
modulo T if, for all Σ ∈ |Sign| and all ϕ, ψ ∈ SEN(Σ),

〈ϕ, ψ〉 ∈ RΣ implies CΣ(TΣ ∪ {ϕ}) = CΣ(TΣ ∪ {ψ}).
In the next lemma, it is shown that a reflexive relation system R on the sentence functor SEN of a given

π-institution I that satisfies both compatibility with a category N of natural transformations on SEN and com-
patibility with C-interderivability modulo a theory family T of I, must be included in the Suszko N -congruence
system ΘN (T ) of T .

Lemma 5.6 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. If T ∈ ThFam(I) and R is a reflexive relation system on SEN satisfying the properties of compatibility
with C-interderivability modulo T and of compatibility with N , then R ≤ ΘN (T ).

P r o o f. Let Σ ∈ |Sign|, ϕ, ψ ∈ SEN(Σ) be such that 〈ϕ, ψ〉 ∈ RΣ. Now let Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),
σ : SENk −→ SEN in N , and �χ ∈ SEN(Σ′)k−1. Then, since R is a relation system, we obtain that

〈SEN(f)(ϕ), SEN(f)(ψ)〉 ∈ RΣ′
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and since R is reflexive, we get that 〈χi, χi〉 ∈ RΣ′ , for all i < k. Thus, since R satisfies compatibility with N ,
we obtain 〈σΣ′(SEN(f)(ϕ), �χ ), σΣ′(SEN(f)(ψ), �χ )〉 ∈ RΣ′ . Therefore, by the compatibility with C-interderiv-
ability modulo T , we get that

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ϕ), �χ )}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(ψ), �χ )}).
This proves that 〈ϕ, ψ〉 ∈ ΘN

Σ (T ). Therefore RΣ ⊆ ΘN
Σ (T ) and, because Σ has been arbitrary, we, finally, obtain

that R ≤ ΘN (T ).

We use Lemma 5.6 to prove Theorem 5.7, an analog of [7, Theorem 4.5], which provides a characterization
of N -parameterized determinator systems for theory families T of a given π-institution I.

Theorem 5.7 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Suppose, also, that T ∈ ThFam(I) and E = {〈δi, εi〉 : i ∈ I} is a collection of pairs of natural trans-
formations δi, εi : SEN2+ki −→ SEN, i ∈ I , in N . Then E is an N -parameterized determinator system for T if
and only if the following three conditions are satisfied:
(PD0) The relation system E(T ) is reflexive.

(PD1) The relation system E(T ) is compatible with C-interderivability modulo T .

(PD2) The relation system E(T ) is compatible with N .

P r o o f. Suppose, first, that E is an N -parameterized determinator system for T . Then E(T ) = ΘN (T ). Now
properties (PD0) – (PD2) obviously hold for E(T ) because they hold for ΘN (T ).

Suppose, conversely, that properties (PD0) – (PD2) hold for E(T ). Then property (PD0), combined with Lem-
ma 5.2, yields that ΘN (T ) ≤ E(T ). But (PD0) – (PD2), combined with Lemma 5.6, yield that E(T ) ≤ ΘN (T ).
Therefore, we obtain that E(T ) = ΘN (T ) and, hence, E is an N -parameterized determinator system for T .

We immediately obtain, by the definitions involved and Theorem 5.7:

Corollary 5.8 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN, and E = {〈δi, εi〉 : i ∈ I} a collection of pairs of natural transformations δi, εi : SEN2+ki −→ SEN,
i ∈ I , in N . E is an N -parameterized determinator system of the N -Suszko operator of I if and only if the con-
ditions (PD0) – (PD2) hold, for every theory family T ∈ ThFam(I).

The next result shows, informally speaking, that the operator E on theory families commutes with inverse
bilogical morphisms. This forms an analog at the level of π-institutions of [7, Lemma 4.9].

Lemma 5.9 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N is a category of natural transformations
on SEN, and E = {〈δi, εi〉 : i ∈ I} a collection of pairs of natural transformations δi, εi : SEN2+ki −→ SEN,
i ∈ I , in N . Suppose, also, that I ′ = 〈Sign′, SEN′, C ′〉, with N ′ a category of natural transformations on SEN′,
is an (N, N ′)-model of I via an (N, N ′)-bilogical morphism 〈F, α〉 : I 	se I ′. Then, for all T ′ ∈ ThFam(I ′),
E(α−1(T ′)) = α−1(E′(T ′)), where E′ is the collection of pairs of natural transformations in N ′ corresponding
to E via the (N, N ′)-epimorphic property.

P r o o f. We have that, for all Σ ∈ |Sign| and all ϕ, ψ ∈ SEN(Σ), 〈ϕ, ψ〉 ∈ EΣ(α−1(T ′)) if and only if for
all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), i ∈ I , and �χ ∈ SEN(Σ′)ki ,

CΣ′(α−1
Σ′ (T ′

F (Σ′)) ∪ {δi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )})

= CΣ′(α−1
Σ′ (T ′

F (Σ′)) ∪ {εi
Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ )})

if and only if, since 〈F, α〉 is an (N, N ′)-bilogical morphism,

C ′
F (Σ′)(T

′
F (Σ′) ∪ {αΣ′(δi

Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ ))})
= C ′

F (Σ′)(T
′
F (Σ′) ∪ {αΣ′(εi

Σ′(SEN(f)(ϕ), SEN(f)(ψ), �χ ))})
if and only if, by the (N, N ′)-epimorphic property,

C ′
F (Σ′)(T

′
F (Σ′) ∪ {δ′iF (Σ′)(α

2+ki

Σ′ (SEN(f)(ϕ), SEN(f)(ψ), �χ ))})
= C ′

F (Σ′)(T
′
F (Σ′) ∪ {ε′iF (Σ′)(α

2+ki

Σ′ (SEN(f)(ϕ), SEN(f)(ψ), �χ ))})
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if and only if, since α is a natural transformation,

C ′
F (Σ′)(T

′
F (Σ′) ∪ {δ′iF (Σ′)(SEN′(F (f))(αΣ(ϕ)), SEN′(F (f))(αΣ(ψ)), αki

Σ′(�χ ))})
= C ′

F (Σ′)(T
′
F (Σ′) ∪ {ε′iF (Σ′)(SEN′(F (f))(αΣ(ϕ)), SEN′(F (f))(αΣ(ψ)), αki

Σ′(�χ ))})
if and only if, by the surjectivity of 〈F, α〉, 〈αΣ(ϕ), αΣ(ψ)〉 ∈ E′

F (Σ)(T
′).

Lemma 5.9 helps in establishing a preservation theorem for N -parameterized determinator systems of theory
families along bilogical morphisms.

Theorem 5.10 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of natural transformations
on SEN, and E = {〈δi, εi〉 : i ∈ I} a collection of pairs of natural transformations δi, εi : SEN2+ki −→ SEN,
i ∈ I , in N . Suppose, also, that I ′ = 〈Sign′, SEN′, C ′〉, with N ′ a category of natural transformations on SEN′,
is an (N, N ′)-model of I via an (N, N ′)-bilogical morphism 〈F, α〉 : I 	se I ′. If T ′ ∈ ThFam(I ′), then E is
an N -determinator system for the theory family α−1(T ′) ∈ ThFam(I) if and only if E′ is an N ′-determinator
system for T ′, where E′ is the collection of pairs of natural transformations in N ′ corresponding to E via the
(N, N ′)-epimorphic property.

P r o o f. We have that E(α−1(T )) = ΘN (α−1(T )) if and only if, by Corollary 3.12 and Lemma 5.9,

α−1(E′(T )) = α−1(ΘN ′
(T ))

if and only if, by surjectivity of 〈F, α〉, E′(T ) = ΘN ′
(T ). Thus, E is an N -parameterized determinator system

for α−1(T ) if and only if E′ is an N ′-parameterized determinator system for T .

The following corollary easily follows from Theorem 5.10 and relates determinator systems of the Suszko
operator of a given π-institution with determinator systems of the collection of all theory families of its Suszko
reduct.

Corollary 5.11 Let I = 〈Sign, SEN, C〉 be a π-institution, N a category of natural transformations on SEN,
and E = {〈δi, εi〉 : i ∈ I} a collection of pairs of natural transformations δi, εi : SEN2+ki −→ SEN, i ∈ I ,
in N . Then E is an N -determinator system for the N -Suszko operator of I if and only if, for each T ∈ ThSys(I),
EΘN (T ) is an NΘN (T )-determinator system for the NΘN (T )-Suszko operator of IT /ΘN (T ).

6 A Lifting Theorem

In this last section of the paper, we present an analog of [7, Proposition 5.1]. [7, Proposition 5.1] asserts that ev-
ery countable Suszko-reduced model of a given sentential logic is a strict homomorphic image of the Suszko re-
duction of a Lindenbaum matrix. Its analog in the π-institution framework, the Lifting Theorem 6.2, states, infor-
mally speaking, that, given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations
on SEN, and T a theory system of I such that I is N -Suszko reduced with respect to T , there exist a the-
ory system X of the π-institution It = 〈Sign, TeN ◦ SEN, Ct〉, whose sentences are N -terms in the sentences

of I, and an (N tΘ
Nt

(X)
, N)-bilogical morphism 〈ISign, α〉 : ItX

/ΘNt

(X) 	se IT , i. e., IT is, in some sense,
an epimorphic image of the Suszko reduction of ItX

with respect to the theory system X .
Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations on SEN. Recall

from [26] the construction of the functor TeN ◦ SEN : Sign −→ Set, of the category N ′ of natural transforma-
tions on TeN ◦ SEN, and of the singleton (N ′, N)-epimorphic translation 〈ISign, µN 〉 : TeN ◦ SEN −→ SEN.
All these concepts are used now to provide an analog of [7, Proposition 5.1], which states that every countable
Suszko-reduced model of a given sentential logic is a strict homomorphic image of the Suszko reduction of a
Lindenbaum matrix. For the purpose of having a uniform notation below, the category of natural transformations
on TeN ◦ SEN, that was denoted by N ′ in [26], will now be denoted by N t.

First define, given I = 〈Sign, SEN, C〉, the triple It = 〈Sign, TeN ◦ SEN, Ct〉 by letting, for all Σ ∈ |Sign|,
Ct

Σ : P(TeN (SEN(Σ))) −→ P(TeN (SEN(Σ))) be defined, for all U ∪ {t} ⊆ TeN (SEN(Σ)), by

t ∈ Ct
Σ(U) iff µN

Σ (t) ∈ CΣ(µN
Σ (U)).
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Then the following lemma is easy to verify:

Lemma 6.1 Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Then It = 〈Sign, TeN ◦ SEN, Ct〉 is also a π-institution. Moreover, the singleton (N t, N)-epimorphic
translation 〈ISign, µN 〉 : TeN ◦ SEN −→se SEN is an (N t, N)-bilogical morphism 〈ISign, µN 〉 : It 	se I.

Lemma 6.1 will be used now to prove Proposition 6.2, the promised analog of [7, Proposition 5.1].

Theorem 6.2 (Lifting Theorem) Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural
transformations on SEN, and T a theory system of I such that I is N -Suszko reduced with respect to T , i. e.,
such that IT is N -Tarski reduced. Then there exist a theory system X of It = 〈Sign, TeN ◦ SEN, Ct〉 and an

(N tΘ
Nt

(X)
, N)-bilogical morphism

〈ISign, α〉 : ItX

/ΘNt

(X) 	se IT

such that the following diagram commutes:

ItX IT�〈ISign, µN 〉

ItX

/ΘNt

(X).

〈ISign, πΘNt
(X)〉
�

�
�

�
��

〈ISign, α〉
�

�
�

�
��

P r o o f. Define the theory system X by X := (µN )−1(T ). Furthermore, let

α : TeN ◦ SEN/ΘNt

(X) −→ SEN

be given, for all Σ ∈ |Sign| and all t ∈ TeN (SEN(Σ)), by

αΣ(t/ΘNt

Σ (X)) = µN
Σ (t).

It will now be shown that αΣ is well-defined. Suppose, to this end, that 〈s, t〉 ∈ ΘNt

Σ (X). Then we have that for
all σ : SENn −→ SEN in N , all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and all �u ∈ TeN (SEN(Σ′))n−1,

Ct
Σ′(XΣ′ ∪ {σt

Σ′(TeN (SEN(f))(s), �u )}) = Ct
Σ′(XΣ′ ∪ {σt

Σ′(TeN (SEN(f))(t), �u )}).

This implies, by Lemma 6.1, that

CΣ′(µN
Σ′(XΣ′) ∪ {µN

Σ′(σt
Σ′(TeN (SEN(f))(s), �u ))})

= CΣ′(µN
Σ′(XΣ′) ∪ {µN

Σ′(σt
Σ′(TeN (SEN(f))(t), �u ))}).

Hence, we obtain

CΣ′(TΣ′ ∪ {σΣ′(µN
Σ′(TeN (SEN(f))(s)), µN

Σ′(�u ))})
= CΣ′(TΣ′ ∪ {σΣ′(µN

Σ′(TeN (SEN(f))(t)), µN
Σ′(�u ))}),

which gives

CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(µN
Σ (s)), µN

Σ′(�u ))}) = CΣ′(TΣ′ ∪ {σΣ′(SEN(f)(µN
Σ (t)), µN

Σ′(�u ))}).

Thus, by the surjectivity of µN , we obtain that 〈µN
Σ (s), µN

Σ (t)〉 ∈ ΘN
Σ (T ). But I was assumed to be N -Suszko

reduced with respect to T , whence ΘN (T ) = ∆SEN, and, therefore, µN
Σ (s) = µN

Σ (t), as was to be shown.

www.mlq-journal.org c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



634 G. Voutsadakis: The categorical Suszko operator

Next, it will be shown that α : TeN ◦ SEN/ΘNt

(X) −→ SEN is a natural transformation. To this end, sup-
pose that Σ1, Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2), and t ∈ TeN (SEN(Σ1))/ΘNt

Σ1
(X). We have

TeN (SEN(Σ2))/ΘNt

Σ2
(X) SEN(Σ2),�

αΣ2

TeN (SEN(Σ1))/ΘNt

Σ1
(X) SEN(Σ1)�αΣ1

�

TeN (SEN(f))/ΘNt

(X)

�

SEN(f)

αΣ2(TeN (SEN(f))/ΘNt

(X)(t/ΘNt

Σ1
(X))) = αΣ2(TeN (SEN(f))(t)/ΘNt

Σ2
(X))

= µN
Σ2

(TeN (SEN(f))(t))
= SEN(f)(µN

Σ1
(t))

= SEN(f)(αΣ1(t/ΘNt

Σ1
(X))).

Finally, it suffices to show that 〈ISign, α〉 is a bilogical morphism, since commutativity of the triangle is fairly
obvious by the definition of 〈ISign, α〉. In fact, for all Σ ∈ |Sign|, U ∪ {t} ∈ TeN (SEN(Σ)), we have

t/ΘNt

Σ (X) ∈ CtXΘNt
(X)

Σ (U/ΘNt

Σ (X)) iff t ∈ CtX

Σ (
⋃

U/ΘNt

Σ (X))
iff t ∈ Ct

Σ(XΣ ∪ ⋃
U/ΘNt

Σ (X))
iff µN

Σ (t) ∈ CΣ(µN
Σ (XΣ) ∪ µN

Σ (
⋃

U/ΘNt

Σ (X)))
iff αΣ(t/ΘNt

Σ (X)) ∈ CΣ(TΣ ∪ αΣ(U/ΘNt

Σ (X)))
iff αΣ(t/ΘNt

Σ (X)) ∈ CT
Σ (αΣ(U/ΘNt

Σ (X))).
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