DUE DATE: Tuesday, December 1

INSTRUCTOR: George Voutsadakis
Read each problem very carefully before starting to solve it. Two out of the ten problems will be chosen at random and graded for a total of 20 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Find the area of the region under the graph of $f(x)$ on the interval $[a, b]$:
(a) $f(x)=4 x-x^{2} ;[0,4]$
(b) $f(x)=\frac{1}{\sqrt{x}} ;[1,9]$
(c) $f(x)=e^{x}-x ;[1,2]$
2. Evaluate the definite integrals:
(a) $\int_{0}^{2} 8 x^{3} d x$
(b) $\int_{1}^{4} 2 x^{-3 / 2} d x$
(c) $\int_{0}^{1} \sqrt{2 x}(\sqrt{x}+\sqrt{2}) d x$
3. Evaluate the definite integrals:
(a) $\int_{1}^{3} x \sqrt{3 x^{2}-2} d x$
(b) $\int_{0}^{2} \frac{x}{\sqrt{x^{2}+5}} d x$
(c) $\int_{1}^{4} x \sqrt{x+1} d x$
4. Evaluate the definite integrals:
(a) $\int_{0}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
(b) $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x$
(c) $\int_{1}^{2} \frac{\ln x}{x} d x$
5. Find the area of the region under the graph of $f(x)$ on the interval $[a, b]$:
(a) $f(x)=2+\sqrt{x+1} ;[0,3]$
(b) $f(x)=\frac{\ln x}{4 x} ;[1,2]$
6. Find the average value of $f(x)$ over the indicated interval:
(a) $f(x)=4-x^{2} ;[-2,3]$
(b) $f(x)=x e^{x^{2}} ;[0,2]$
7. (a) Graph on the same system of axes the functions $f(x)=x-2$ and $g(x)=\sqrt{x}$.
(b) Find the point where the two graphs intersect.
(c) Find the area of the region enclosed by the two graphs and the y-axis.
8. (a) Graph on the same system the functions $f(x)=x^{3}, g(x)=x+6$ and $h(x)=-\frac{1}{2} x$.
(b) Find the points where these graphs intersect.
(c) Find the area of the region enclosed by these three graphs.
9. Sketch the graph and find the area of the region completely enclosed by the graphs of the functions $f(x)=-x^{2}+4 x$ and $g(x)=2 x-3$.
10. No tenth problem this week! Happy Thanksgiving!
