Read each problem very carefully before starting to solve it. Two out of the ten problems will be chosen at random and graded for a total of 20 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Compute the following indefinite integrals:
(a) $\int\left(e^{-x}+x\right)^{2} d x$
(b) $\int x(x+4)^{-2} d x$
2. Compute the following indefinite integrals:
(a) $\int \frac{\ln x}{\sqrt{x}} d x$
(b) $\int \frac{\ln x}{x^{3}} d x$
3. Compute the following indefinite integrals:
(a) $\int x^{2} e^{-x} d x \quad$ (Need to integrate twice)
(b) $\int x \ln (x+1) d x$ (First substitution; then by-parts)
4. Compute the definite integrals:
(a) $\int_{0}^{2} x e^{-x} d x$
(b) $\int_{0}^{3} \ln (x+1) d x$
5. Find the function f given that the slope of the tangent line to the graph of f at any point $(x, f(x))$ is $x \sqrt{x+1}$ and that the graph passes through the point $(3,6)$.
6. Find the area of the region under the curve $y=f(x)$ over the indicated interval:
(a) $f(x)=\frac{2}{(x+1)^{3}} ; \quad x \geq 0 ;$
(b) $f(x)=x e^{-x^{2}} ; \quad x \geq 0$.
7. Find the area of the region bounded by the x-axis and the graph of the function $f(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$.
8. Consider the improper integral $\int_{1}^{\infty} x^{-2 / 3} d x$.
(a) Evaluate $I(b)=\int_{1}^{b} x^{-2 / 3} d x$.
(b) Show that $\lim _{b \rightarrow \infty} I(b)=\infty$ thus proving that the given improper integral is divergent.
9. Evaluate each improper integral whenever it is convergent:
(a) $\int_{1}^{\infty} \frac{1}{x^{3}} d x$
(b) $\int_{-\infty}^{0} \frac{1}{(4-x)^{3 / 2}} d x$
(c) $\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x$
(d) $\int_{e^{2}}^{\infty} \frac{1}{x \ln x} d x$
10. No tenth problem this week! Start studying for the Final!
