Read each problem very carefully before starting to solve it. Two out of the ten problems will be chosen at random and graded for a total of 20 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Find an equation for the straight line that passes through the point $(-1,3)$ and is perpendicular to the line with equation $3 x+4 y-8=0$.
2. Find an equation for the line that passes through $(-3,-2)$ and is parallel to the line passing through $(-2,-4)$ and $(1,5)$.
3. Find the domain of the function $f(x)=\sqrt{2 x-9}$. How about the domain of $g(x)=$ $\frac{1}{\sqrt{2 x-9}}$?
4. Find the domain of the function $f(x)=\frac{2 x-3}{3 x^{2}-5 x-2}$.
5. Sketch (nicely) the graph of the function $f(x)= \begin{cases}x+2, & \text { if } x \leq-1 \\ -x^{2}+1, & \text { if } x>-1\end{cases}$
6. Let $f(x)=\frac{1}{x}$ and $g(x)=2 x+3$. Find $f(x) g(x), \frac{f(x)}{g(x)}, f(g(x))$ and $g(f(x))$.
7. If $f(x)=x-3$ and $g(x)=\frac{1}{\sqrt{x+1}}$, find rules for the composite functions $f \circ g$ and $g \circ f$.
8. Find two functions f and g, such that $h=g \circ f$, where $h(x)=\frac{1}{\left(2 x^{2}+x+1\right)^{3}}$. (Hint: This problem has more than one solutions.)
9. Find the value of c, so that the point $(4,2)$ lies on the graph of the function $f(x)=$ $c x^{2}+3 x-4$.
10. No tenth problem this week!
