Read each problem very carefully before starting to solve it. Two out of the ten problems will be chosen at random and graded for a total of 20 points. It is necessary to show all your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. Consider the graph of $y=f(x)$ of Exercise 2 on page 126 of your textbook.
(a) Find $\lim _{x \rightarrow 3^{-}} f(x), \lim _{x \rightarrow 3^{+}} f(x)$.
(b) Find $\lim _{x \rightarrow 3} f(x)$ and $f(3)$.
(c) Is $f(x)$ continuous at $x=3$? Explain.
2. Consider the graph of $y=f(x)$ of Exercise 8 on page 126 of your textbook.
(a) Find $\lim _{x \rightarrow 0^{-}} f(x), \lim _{x \rightarrow 0^{+}} f(x)$.
(b) Find $\lim _{x \rightarrow 0} f(x)$.
(c) Is $f(x)$ continuous at $x=0$? Explain.
3. Suppose $f(x)=\left\{\begin{array}{ll}2 x-4, & \text { if } x<1 \\ 3, & \text { if } x=1 \\ \frac{x-5}{x+1}, & \text { if } x>1\end{array}\right.$.
(a) Find $\lim _{x \rightarrow 1} f(x)$.
(b) Is $f(x)$ continuous at $x=1$? Explain.
4. Find $f^{\prime}(a)$ if $f(x)=-x^{2}+3 x$.
5. Find an equation for the tangent line to the graph of $f(x)=\sqrt{x-3}$ at $x=4$.
6. Find the point(s) $x=a$ at which the tangent line to the graph of $f(x)=\frac{3}{2 x}$ has slope $m=-\frac{2}{3}$.
7. A hot air balloon rises vertically from the ground so that its height after $t \mathrm{sec}$ is $h=\frac{1}{2} t^{2}+\frac{1}{2} t \mathrm{ft}, 0 \leq t \leq 60$.
(a) What is the average velocity of the balloon between $t=0$ and $t=40$?
(b) What is the instantaneous velocity of the balloon at $t=40$?

In the previous problems you ought to evaluate the derivatives using the limit definition. In the following two problems, you are supposed to use the rules of differentiation.
8. Find $f^{\prime}(x)$ using the rules of differentiation, if
(a) $f(x)=\frac{5}{4} x^{4 / 5}$
(b) $f(x)=x^{4}-2 x^{3}+7 x$
(c) $f(x)=\frac{5}{x^{3}}-\frac{2}{x^{2}}-\frac{1}{x}+200$
(d) $f(x)=\frac{3}{x^{3}}+\frac{4}{\sqrt{x}}+1$
9. Find the point(s) on the graph of $f(x)=x^{3}+1$, where the slope of the tangent line is equal to 12 . Then find the equation(s) of the tangent line(s).
10. No tenth problem this week!

