
Advanced Computational Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 1 / 22

Outline

1 Notation
Standard Conventions
Representing Objects as Strings
Decision Problems/Languages
Big-Oh Notation

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 2 / 22

Notation Standard Conventions

Subsection 1

Standard Conventions

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 3 / 22

Notation Standard Conventions

Standard Notational Conventions

Let Z = {0,±1,±2, . . .} denote the set of integers.

Let N denote the set of natural numbers (i.e., nonnegative integers).

A number denoted by one of the letters i , j , k , ℓ,m, n is always
assumed to be an integer.

If n ≥ 1, then [n] denotes the set {1, . . . , n}.

For a real number x , we denote by:

⌈x⌉ the smallest n ∈ Z, such that n ≥ x ;
⌊x⌋ the largest n ∈ Z, such that n ≤ x .

If a real number is used in a context requiring an integer, the operator
⌈ ⌉ is implied.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 4 / 22

Notation Standard Conventions

Standard Notational Conventions (Cont’d)

We denote by log x the logarithm of x to the base 2.

We say that a condition P(n) holds for sufficiently large n if, there
exists some number N, such that P(n) holds, for every n > N.

We use expressions such as
∑

i f (i) (as opposed to, say,
∑n

i=1 f (i))
when the range of values i takes is obvious from the context.

If u is a string, ui denotes the value of the i -th symbol of u.

If u is a vector, ui denotes the value of the i -th coordinate of u.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 5 / 22

Notation Standard Conventions

Strings

Let S be a finite set (of symbols).

A string over the alphabet S is a finite ordered tuple of elements
from S .

We will typically consider strings over the binary alphabet {0, 1}.

For any integer n ≥ 0, we denote by Sn the set of length-n strings
over S (S0 denotes the singleton consisting of the empty tuple).

We denote by S∗ the set of all strings,

S∗ =
⋃

n≥0

Sn.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 6 / 22

Notation Standard Conventions

Concatenation and Length

If x and y are strings, then we denote their concatenation (the tuple
that contains first the elements of x and then the elements of y) by

x ◦ y or simply xy .

If x is a string and k ≥ 1 is a natural number, then

xk

denotes the concatenation of k copies of x .

For example, 1k denotes the string consisting of k ones.

The length of a string x is denoted by |x |.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 7 / 22

Notation Standard Conventions

Distributions

If S is a distribution, then we use

x ∈R S

to say that x is a random variable that is distributed according to S .

If S is a set, then x ∈R S is used to denote that x is distributed
uniformly over the members of S .

We denote by Un the uniform distribution over {0, 1}n .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 8 / 22

Notation Standard Conventions

Dot Product and Inner Product

For two length-n strings x , y ∈ {0, 1}n , we denote their dot product

modulo 2 by
x ⊙ y .

That is,
x ⊙ y =

∑

i

xiyi (mod 2).

The inner product of two n-dimensional real or complex vectors u, v
is denoted by

〈u, v〉.

For any object x , we use xxy (not to be confused with the floor
operator ⌊x⌋) to denote the representation of x as a string.

This is detailed in the following slides.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 9 / 22

Notation Representing Objects as Strings

Subsection 2

Representing Objects as Strings

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 10 / 22

Notation Representing Objects as Strings

Representation of Input Objects

Our main computational task is computing a function.

We focus on functions whose inputs and outputs are finite strings of
bits, i.e., members of {0, 1}∗.

Considering only functions that operate on bit strings is not a real
restriction.

Simple encodings can be used to represent general objects as strings
of bits.

In this way, one can represent, e.g.:

Integers;
Pairs of integers;
Graphs;
Vectors;
Matrices;
...

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 11 / 22

Notation Representing Objects as Strings

Examples of Representation

We can represent an integer as a string using its binary expansion.

E.g., 34 is represented as 100010.

A graph can be represented as its adjacency matrix.

That is, an n vertex graph G is represented by an n × n 0/1-valued
matrix A, such that

Ai ,j = 1 iff the edge ij is present in G .

We will avoid dealing explicitly low-level representation issues.

We use xxy to denote some canonical binary representation of x .

Often x y is dropped and x is used for both the object and its
representation.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 12 / 22

Notation Representing Objects as Strings

Representing Pairs and Tuples

We use 〈x , y〉 to denote the ordered pair consisting of x and y .

A canonical representation for 〈x , y〉 can be obtained from the
representations of x and y .

Example: We can first encode 〈x , y〉 as the string

xxy#xyy,

over the alphabet {0, 1,#}.

Then, use the mapping 0 7→ 00, 1 7→ 11,# 7→ 01 to convert this
representation into a string of bits.

To reduce notational clutter, instead of x〈x , y〉y, we use 〈x , y〉 to also
denote the representation of this pair as a binary string.

Similarly, we use 〈x , y , z〉 to denote both the ordered triple consisting
of x , y , z and its representation x〈x , y , z〉y.

We adopt similar conventions for other representations.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 13 / 22

Notation Representing Objects as Strings

Functions with Nonstring Inputs or Outputs

The idea of representation allows us to talk about computing
functions whose inputs are not strings.

E.g., functions that take natural numbers as inputs.

We implicitly identify any function f whose domain and range are not
strings with the function

g : {0, 1}∗ → {0, 1}∗

that:

Receives a representation of an object x as input;
Outputs the representation of f (x).

Using the representation of pairs and tuples, we can also talk about
computing functions that have more than one input or output.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 14 / 22

Notation Decision Problems/Languages

Subsection 3

Decision Problems/Languages

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 15 / 22

Notation Decision Problems/Languages

Languages or Decision Problems

A special case of functions mapping strings to strings is the case of
Boolean functions, whose output is a single bit.

We identify such a function f with the subset

Lf = {x ∈ {0, 1}∗ : f (x) = 1} ⊆ {0, 1}∗.

We call such sets languages or decision problems.

We identify the corresponding computational problems.

Compute f :
Given x , compute f (x).
Decide the language Lf :
Given x , decide whether x ∈ Lf .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 16 / 22

Notation Decision Problems/Languages

Example: Independent Set

Let G be a graph.

An independent set in G is a subset of the set of vertices, such that
no edge in G joins any two of them.

A computational problem consists, given a graph G , of finding a
maximum sized independent set.

The corresponding language is:

IndSet = {〈G , k〉 : ∃S ⊆ V (G) s.t. |S | ≥ k and
∀u, v ∈ S , uv 6∈ E (G)}.

An algorithm to solve this language will tell us, on input a graph G

and a number k , whether there exists an independent set in G of size
at least k .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 17 / 22

Notation Big-Oh Notation

Subsection 4

Big-Oh Notation

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 18 / 22

Notation Big-Oh Notation

Computational Efficiency of Algorithms

We will typically measure the computational efficiency of an algorithm
as the number of basic operations it performs as a function of its
input length.

The efficiency of an algorithm can be captured by a function T from
the set N of natural numbers to itself, such that T (n) is equal to the
maximum number of basic operations that the algorithm performs on
inputs of length n.

This function T is sometimes overly dependent on the low-level
details of our definition of a basic operation.

Example: The addition algorithm will take about three times more
operations if it uses addition of single digit binary numbers as a basic
operation, as opposed to decimal numbers.

To ignore these low-level details in our measurements, we introduce
the big-Oh notation.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 19 / 22

Notation Big-Oh Notation

Big-Oh Notation

Definition (Big-Oh Notation)

If f , g are two functions from N to N, then we say:

(1) f = O (g) if there exists a constant c , such that f (n) ≤ c · g(n), for
every sufficiently large n;

(2) f = Ω(g) if g = O(f);

(3) f = Θ(g) if f = O(g) and g = O(f);

(4) f = o (g) if, for every ǫ > 0, f (n) ≤ ǫ · g(n), for every sufficiently
large n;

(5) f = ω(g) if g = o (f).

To emphasize the input parameter, we often write f (n) = O (g(n)) instead
of f = O(g), and use similar notation for o,Ω, ω and Θ.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 20 / 22

Notation Big-Oh Notation

Examples

1. Let f (n) = 100n log n and g(n) = n2.

Then we have the relations

f = O(g) , g = Ω(f), f = o (g) , g = ω(f).

2. Let f (n) = 100n2 + 24n + 2 log n and g(n) = n2.

Then f = O(g). In this case, we often write f (n) = O
(

n2
)

.

We also have g = O(f).

As a result, f = Θ(g) and g = Θ(f).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 21 / 22

Notation Big-Oh Notation

Examples (Cont’d)

3. Let f (n) = min {n, 106} and g(n) = 1, for every n.

Then f = O(g). We write f = O(1).

Similarly, if h is a function that tends to infinity with n (i.e., for every
c , it holds h(n) > c for n sufficiently large), then we write h = ω(1).

4. Let f (n) = 2n and g(n) = nc , for some c ∈ N.

Then g = o (f). We write 2n = nω(1).

Similarly, we write
h(n) = nO(1)

to denote that h is bounded from above by some polynomial.

I.e., there exist a number c > 0, such that, for sufficiently large n,
h(n) ≤ nc .

Another notation for this is h(n) = poly(n).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 22 / 22

	Outline
	Notation
	Standard Conventions
	Representing Objects as Strings
	Decision Problems/Languages
	Big-Oh Notation

