
Advanced Computational Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 1 / 58



Outline

1 The Computational Model
Modeling Computation: The Essentials
The Turing Machine
Efficiency and Running Time
Machines as Strings and the Universal Turing Machine
Uncomputability: An Introduction
The Class P

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 2 / 58



The Computational Model Modeling Computation: The Essentials

Subsection 1

Modeling Computation: The Essentials

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 3 / 58



The Computational Model Modeling Computation: The Essentials

Algorithms and Turing Machines

Let f be a function that takes a string of bits, i.e., a member of the
set {0, 1}∗, and outputs either 0 or 1.

An algorithm, or a Turing machine, for computing f is a set of
mechanical rules, such that, by following them, we can compute f (x),
given any input x ∈ {0, 1}∗.

The set of rules being followed is fixed, i.e., the same rules must work
for all possible inputs, though each rule may be applied arbitrarily
many times.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 4 / 58



The Computational Model Modeling Computation: The Essentials

Rules

Each rule involves one or more of the following “elementary”
operations:

1. Read a bit of the input.
2. Read a bit, or possibly a symbol from a slightly larger alphabet, say a

digit in {0, . . . , 9}, from the scratch pad, or working space, that the
algorithm is allowed to use.

Based on the values read:

1. Write a bit/symbol to the scratch pad.
2. Either stop and output 0 or 1, or choose a new rule from the set that

will be applied next.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 5 / 58



The Computational Model Modeling Computation: The Essentials

Running Time, Robustness and Encoding of Machines

The running time of the algorithm is the number of these basic
operations performed.

A machine runs in time T (n) if it performs at most T (n) basic
operations on inputs of length n.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 6 / 58



The Computational Model Modeling Computation: The Essentials

Robustness

The model is robust to almost any tweak in the definition, such as:

Changing the alphabet from {0, 1, . . . , 9} to {0, 1};
Allowing multiple scratchpads;
...

The most basic version of the model can simulate the most
complicated version with at most polynomial (actually quadratic)
slowdown.

Thus, t steps on the complicated model can be simulated in O (tc)
steps on the weaker model, where c is a constant depending only on
the two models.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 7 / 58



The Computational Model Modeling Computation: The Essentials

Encoding of Machines

An algorithm (i.e., a machine) can be represented as a bit string once
we decide on some canonical encoding.

Thus an algorithm/machine can be viewed as a possible input to
another algorithm.

This blurs the boundary between input, software and hardware.

We denote by Mα the machine whose representation as a bit string is
α.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 8 / 58



The Computational Model Modeling Computation: The Essentials

Universal Machines and Uncomputability

There is a universal Turing machine U that can simulate any other
Turing machine given its bit representation.

Given a pair of bit strings (x , α) as input, machine U simulates the
behavior of Mα on input x .
This simulation is very efficient, in the sense that, if the running time
of Mα is T (|x |), then the running time of U is O (T (|x |) logT (|x |)).

The existence of a universal machine U, together with the possibility
of encoding Turing machines, can be used to show the existence of
functions that are not computable by any Turing machine.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 9 / 58



The Computational Model The Turing Machine

Subsection 2

The Turing Machine

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 10 / 58



The Computational Model The Turing Machine

Scratch Pad

The k-tape Turing machine (TM) is a concrete realization of the
informal model:

The scratch pad consists of k tapes.

A tape is an infinite one-directional line of cells, each of which can hold

a symbol from a finite set Γ, called the alphabet of the machine.

Each tape is equipped with a tape head that can potentially read or

write symbols to the tape one cell at a time.

The machine’s computation is divided into discrete time steps, and the

head can move left or right one cell in each step.

The first tape of the machine is designated as the input tape.
The machine’s head can only read symbols from that tape, but not

write them, i.e., it is a read-only head.

The k − 1 read-write tapes are called work tapes.
The last work tape is designated as the output tape of the machine,

on which it writes its final answer before halting its computation.

There are variants of Turing machines with random access memory.

Their computational powers are equivalent to the standard model.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 11 / 58



The Computational Model The Turing Machine

Finite Set of Operations/Rules

The machine has a finite set of states, denoted Q.

The machine contains a “register” that can hold an element of Q.

This is the “current state” of the machine.

It determines its action at the next computational step:
(1) Read the symbols in the cells directly under the k heads;
(2) For the k − 1 read-write tapes, replace each symbol with a new symbol

(or do not change it by writing down the old symbol again);
(3) Change the register to contain another state from the finite set Q (or

do not change the state by choosing the old state again);
(4) Move each head one cell to the left or to the right (or stay in place).

Turing machines can be thought of as simplified versions of modern
computers.

The machine’s tapes correspond to a computer’s memory;
The transition function and register correspond to a computer’s CPU.

However, it is best to think of Turing machines as simply a formal
way to describe algorithms.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 12 / 58



The Computational Model The Turing Machine

The Formal Definition of a Turing Machine

Definition (Turing Machine)

A Turing Machine (TM) M is described by a tuple (Γ,Q, δ) consisting
of:

A finite set Γ of the symbols that M’s tapes can contain, including:

A designated “blank” symbol, denoted ;
A designated “start” symbol, denoted ⊲;
The numbers 0 and 1.

We call Γ the alphabet of M.

A finite set Q of possible states M’s register can be in, including:

A designated start state qstart;
A designated halting state qhalt.

A function δ : Q × Γk → Q × Γk−1 × {L, S, R}k , where k ≥ 2,
describing the rules M uses in performing each step.

This function is called the transition function of M.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 13 / 58



The Computational Model The Turing Machine

Operation of a Turing Machine

Suppose the following hold:

The machine is in state q ∈ Q;
The symbols currently being read in the k tapes are

(σ1, σ2, . . . , σk );

The transition function gives

δ(q, (σ1, . . . , σk)) = (q′, (σ′

2, . . . , σ
′

k
), z),

where z ∈ {L, S, R}k.

Then at the next step:

The σ symbols in the last k − 1 tapes will be replaced by the σ′

symbols;
The machine will be in state q′,
The k heads will move Left, Right or Stay in place, as given by z .
If the machine tries to move left from a leftmost position it stays put.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 14 / 58



The Computational Model The Turing Machine

Start Configuration of a Turing Machine

The following is the start configuration of M on input x :
All tapes except for the input are initialized:

In their first location to the start symbol ⊲;

In all other locations to the blank symbol .

The input tape contains:

The start symbol ⊲;

The nonblank string x ;

The blank symbol on the rest of its cells.

All heads start at the left ends of the tapes.
The machine is in the special starting state qstart.

Once the machine is in qhalt, the transition function δ does not allow
it to further modify the tape or change states.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 15 / 58



The Computational Model The Turing Machine

Simulating a Programming Language Using TMs

Any program written in any of the familiar programming languages,
such as C or Java, has an equivalent Turing machine:

First, programs in these programming languages can be translated
(compiled) into an equivalent machine language program.

It consists of a sequence of instructions of a few simple types, e.g.:

(a) Read from memory into one of a finite number of registers;
(b) Write a register’s contents to memory;
(c) Add the contents of two registers and store the result in a third;
(d) Perform (c) but with other operations, such as multiplication instead of

addition.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 16 / 58



The Computational Model The Turing Machine

Simulating a Programming Language (Cont’d)

All these operations can be easily simulated by a Turing machine.

The memory and registers can be implemented using the machine’s
tapes;
The instructions can be encoded by the machine’s transition function.

To simulate the computer’s memory, a two-tape TM can use:

One tape for the simulated memory;
The other tape to do binary-to-unary conversion that allows it, for a
number i in binary, to read or modify the ith location of its first tape.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 17 / 58



The Computational Model Efficiency and Running Time

Subsection 3

Efficiency and Running Time

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 18 / 58



The Computational Model Efficiency and Running Time

Computing and Running Time

Every nontrivial computational task requires at least reading the
entire input.

So we count the number of basic steps as a function of the input
length.

Definition (Computing a Function and Running Time)

Let f : {0, 1}∗ → {0, 1}∗ and T : N→ N be some functions, and let M be
a Turing machine.

We say that M computes f if, for every x ∈ {0, 1}∗, if M is initialized to
the start configuration on input x , then it halts with f (x) written on its
output tape.

We say that M computes f in T (n)-time if its computation on every input
x requires at most T (|x |) steps.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 19 / 58



The Computational Model Efficiency and Running Time

Time-Constructible Functions

A function T : N→ N is time constructible if T (n) ≥ n and there
is a TM M that computes the function x 7→ xT (|x |)y in time T (n),
where, as usual, xT (|x |)y denotes the binary representation of the
number T (|x |).

Examples: The functions n, n log n, n2, 2n are time-constructible.

Almost all functions encountered will be time constructible.

We restrict attention to time bounds of this form.

Allowing time bounds that are not time constructible can lead to
anomalous results.

The condition T (n) ≥ n allows the algorithm time to read its input.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 20 / 58



The Computational Model Efficiency and Running Time

Variations of the Turing Machine Model

Most changes in the details to the definition of the Turing Machine
model do not yield a substantially different model, in the sense that
the model introduced can simulate any of these new models.

In the context of computational complexity, we have to verify, not
only that one model can simulate another, but also that it can do so
efficiently.

We state a few results of this type.

The derived conclusion is that the exact model is unimportant if we
are willing to ignore polynomial factors in the running time.

Variations on the model include:

Restricting the alphabet Γ to be {0, 1, ,⊲};
Restricting the machine to have a single work tape;
Allowing the tapes to be infinite in both directions.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 21 / 58



The Computational Model Efficiency and Running Time

Restricting the Alphabet Γ

Claim

Let f : {0, 1}∗ → {0, 1}∗ and let T : N→ N be time-constructible.
Suppose f is computable in time T (n) by a TM M using alphabet Γ.
Then it is computable in time

4 log |Γ|T (n)

by a TM M̃ using alphabet {0, 1, ,⊲}.

Let M be a TM, with alphabet Γ, k tapes and state set Q, that
computes the function f in T (n) time.

We describe an equivalent TM M̃ computing f , with alphabet
{0, 1, ,⊲}, k tapes and a set Q ′ of states.

The idea is that any member of Γ can be encoded using log |Γ| bits.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 22 / 58



The Computational Model Efficiency and Running Time

Restricting the Alphabet Γ (Cont’d)

Each of M̃’s work tapes will simply encode one of M’s tapes.

For every cell in M’s tape we will have log |Γ| cells in the
corresponding tape of M̃.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 23 / 58



The Computational Model Efficiency and Running Time

Restricting the Alphabet Γ (Cont’d)

To simulate one step of M, the machine M̃ will:

(1) Use log |Γ| steps to read from each tape the log |Γ| bits encoding a
symbol of Γ;

(2) Use its state register to store the symbols read;
(3) Use M ’s transition function to compute the symbols M writes and M ’s

new state given the information gathered;
(4) Store this information in its state register;
(5) Use log |Γ| steps to write the encodings of these symbols on its tapes.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 24 / 58



The Computational Model Efficiency and Running Time

Restricting the Alphabet Γ (Cont’d)

One can verify that the simulation can be carried out if M̃ has access
to registers that can store:

M ’s state;
k symbols in Γ;
A counter from 1 to log |Γ|.

Thus, there is such a machine M̃ utilizing no more than c |Q||Γ|k+1

states for some absolute constant c .

We can show that, for every input x ∈ {0, 1}n , if on input x the TM
M outputs f (x) within T (n) steps, then M̃ will output the same
value within less than 4 log |Γ|T (n) steps.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 25 / 58



The Computational Model Efficiency and Running Time

Restricting to a Single Work Tape

Define a single tape Turing machine to be a TM that has only one
read-write tape, that is used as input, work and output tape.

We show that going from multiple tapes to a single tape can at most
square the running time.

Claim

Let f : {0, 1}∗ → {0, 1}∗ and let T : N→ N be time-constructible.
Suppose f is computable in time T (n) by a TM M using k tapes.
Then it is computable in time

5kT (n)2

by a single-tape TM M̃.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 26 / 58



The Computational Model Efficiency and Running Time

Restricting to a Single Work Tape (Cont’d)

The idea is for M̃ to encode the k tapes of M on a single tape.

M̃ uses:

Locations 1, k + 1, 2k + 1, . . . to encode the first tape;
Locations 2, k + 2, 2k + 2, . . . to encode the second tape;
...

The encoding is as follows.

For every symbol a in M ’s alphabet, M̃ will contain both the symbol a
and the symbol â.
In the encoding of each tape, exactly one symbol will be of the ˆ type.
This symbol indicates the position of the corresponding head of M .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 27 / 58



The Computational Model Efficiency and Running Time

Restricting to a Single Work Tape (Cont’d)

M̃ will not touch the first n + 1 locations of its tape, where the input
is located.

It will, rather, start by taking O
(
n2
)
steps to copy the input bit by bit

into the rest of the tape, while encoding it in the described way.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 28 / 58



The Computational Model Efficiency and Running Time

Restricting to a Single Work Tape (Cont’d)

To simulate one step of M, M̃ makes two sweeps of its work tape.

First, it sweeps the tape in the left-to-right direction and records to its
register the k symbols that are marked by ˆ;
Then M̃ uses M ’s transition function to determine the new state,
symbols and head movements;
Finally, it sweeps the tape back in the right-to-left direction to update
the encoding accordingly.

Clearly, M̃ will have the same output as M.

By hypothesis, on n-length inputs, M never reaches more than
location T (n) of any of its tapes.

So M̃ will never need to reach more than location
2n + kT (n) ≤ (k + 2)T (n) of its work tape.

Thus, for each of the at most T (n) steps of M, M̃ performs at most
5 · k · T (n) work.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 29 / 58



The Computational Model Efficiency and Running Time

Oblivious Turing machines

With a bit of care, one can ensure that the proof of the preceding

claim yields a TM M̃ with the following property.

Its head movements do not depend on the input but only depend on
the input length: For every input x ∈ {0, 1}∗ and i ∈ N, the location
of each of M ’s heads at the ith step of execution on input x is only a
function of |x | and i .

A machine with this property is called oblivious.

The fact that every TM can be simulated by an oblivious TM can be
used to simplify some proofs in complexity.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 30 / 58



The Computational Model Efficiency and Running Time

Bidirectional Turing Machines

Define a bidirectional TM to be a TM whose tapes are infinite in
both directions.

Claim

Let f : {0, 1}∗ → {0, 1}∗ and let T : N→ N be time-constructible.
Suppose f is computable in time T (n) by a bidirectional TM M.
Then it is computable in time

4T (n)

by a standard (unidirectional) TM M̃.

The idea is for M̃ to use alphabet Γ2, if M uses uses alphabet Γ.

So M̃’s alphabet symbols correspond to a pairs of symbols in M’s
alphabet.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 31 / 58



The Computational Model Efficiency and Running Time

Bidirectional Turing Machines (Cont’d)

A tape of M is “folded” in an arbitrary location.

Each location of M̃’s tape encodes two locations of M’s tape.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 32 / 58



The Computational Model Efficiency and Running Time

Bidirectional Turing Machines (Cont’d)

At first, M̃ will ignore the second symbol in the cell it reads and act
according to M’s transition function.

If this transition function instructs M̃ to go “over the edge” of its
tape, then it will start:

Ignoring the first symbol in each cell and use only the second symbol;
Interchanging left and right movements.

If it needs to go over the edge again, then it will go back to:

Reading the first symbol of each cell;
Translating movements normally.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 33 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Subsection 4

Machines as Strings and the Universal Turing Machine

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 34 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Representing a Turing Machine as a String

We can represent a Turing machine as a string:

Write the description of the TM on paper;
Encode this description as a sequence of zeros and ones.

This string can be given as input to another TM.

The behavior of a TM is determined by its transition function.

So we use the list of all inputs and outputs of this function as the
encoding of the Turing machine.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 35 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Properties of the Representation Scheme

We adopt a representation scheme that satisfies the following:

1. Every string in {0, 1}∗ represents some Turing machine.
Strings that are not valid encodings represent some fixed trivial TM.

2. Every TM is represented by infinitely many strings.
The representation can end with an arbitrary number of 1s, that are
ignored.

We denote by xMy the TM M’s representation as a binary string.

If α is a string then Mα denotes the TM that α represents.

But we also use M to denote both the TM and its representation.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 36 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Universal Turing Machine: Ability to Simulate

There exists a universal Turing machine that can simulate the
execution of every other TM M, given M’s description as input.

The parameters of the universal TM are fixed:

Alphabet size;
Number of states;
Number of tapes.

The corresponding parameters for the machine being simulated could
be much larger.

This is not a hurdle because of the ability to use encodings.

Even if the universal TM has a very simple alphabet, this suffices to:

Represent the simulated machine’s state and transition table on its
tapes;
Follow along the machine’s computation step by step.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 37 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Efficiency of Universal Turing Machines

Theorem (Efficient Universal Turing Machine)

There exists a TM U such that, for all x , α ∈ {0, 1}∗,

U(x , α) = Mα(x),

where Mα denotes the TM represented by α. Moreover, if Mα halts on
input x within T steps then U(x , α) halts within CT logT steps, where C

is a number independent of |x | and depending only on Mα’s alphabet size,
number of tapes, and number of states.

We only exhibit a U accomplishing the task in CT 2 time.

U on input x , α, where α represents a TM M, needs to output M(x).

We may assume that M:

(1) Has a single work tape (in addition to the input and output tape);
(2) Uses the alphabet {0, 1, ,⊲}.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 38 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Proof of the Efficiency Theorem

U can transform an encoding of a TM M into one of an equivalent
TM M̃ that satisfies these properties.

A quadratic slowdown may be introduced.

I.e., we may transform M, running in T time, to running in C ′T 2

time, where C ′ depends on M’s alphabet size and number of tapes.

The TM U uses the alphabet {0, 1, ,⊲} and three work tapes in
addition to its input and output tape.

U uses its input tape, output tape and one of the work tapes in the
same way M uses its three tapes;
U will use its first extra work tape to store the table of values of M ’s
transition function;
U will use its second extra work tape to store the current state of M .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 39 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Proof of the Efficiency Theorem (Cont’d)

To simulate one computational step of M:

U scans the table of M ’s transition function and the current state to
find the new state, the symbols to be written and the head movements.
Then U executes the transition, as specified.

We see that each computational step of M is simulated using C steps
of U , where C is some number depending on the size of the transition
function’s table.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 40 / 58



The Computational Model Machines as Strings and the Universal Turing Machine

Universal TM with Time Bound

It is sometimes useful to consider a variant of the universal TM U .

It gets a number T as an extra input, in addition to x and α.

It outputs

U(x , α,T ) =

{
Mα(x), if Mα halts on x within T steps,
✗, otherwise.

By adding a time counter to U , the proof of the theorem can be
easily modified to give such a universal TM.

The time counter is used to keep track of the number of steps that
the computation has taken so far.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 41 / 58



The Computational Model Uncomputability: An Introduction

Subsection 5

Uncomputability: An Introduction

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 42 / 58



The Computational Model Uncomputability: An Introduction

Uncomputable Functions and Diagonalization

It may be surprising that there exist functions that cannot be
computed within any finite number of steps!

The next theorem shows the existence of uncomputable functions.

In fact, the uncomputable function that it exhibits has range {0, 1},
i.e., is a language.

Uncomputable functions with range
{0, 1} are also known as undecidable
languages.

The proof uses a technique called
diagonalization, which is useful in
complexity theory as well.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 43 / 58



The Computational Model Uncomputability: An Introduction

The Undecidable Language UC

Theorem

There exists a function UC : {0, 1}∗ → {0, 1} that is not computable by
any TM.

We define he function UC by setting, for every α ∈ {0, 1}∗,

UC(α) =

{
0, if Mα(α) = 1
1, otherwise

.

Suppose, for the sake of contradiction, that UC is computable.
Hence, there exists a TM M, such that

M(α) = UC(α), for every α ∈ {0, 1}∗.

Then, in particular, M(xMy) = UC(xMy).
This is impossible, since, by the definition of UC,

UC(xMy) = 1 iff M(xMy) 6= 1.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 44 / 58



The Computational Model Uncomputability: An Introduction

The Halting Problem

The function Halt, on input 〈α, x〉, outputs 1 if and only if the TM
Mα halts on input x within a finite number of steps.

If computers could compute Halt, the task of designing bug-free
software and hardware would become much easier.

Theorem

Halt is not computable by any TM.

Suppose there was a TM MHalt computing Halt.

We will use MHalt to construct a TM MUC computing UC.

This would contradict the preceding theorem.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 45 / 58



The Computational Model Uncomputability: An Introduction

The Halting Problem (Cont’d)

The machine MUC operates as follows:

Suppose it receives input α.

It runs MHalt(α,α).

If the result is 0, meaning that Mα does not halt on α, then MUC

outputs 1.
Otherwise, MUC uses the universal TM U to compute b = Mα(α).

If b = 1, then MUC outputs 0.

Otherwise, it outputs 1.

We assumed that MHalt(α,α) outputs Halt(α,α) within a finite
number of steps.

Then the TM MUC(α) will output UC(α).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 46 / 58



The Computational Model Uncomputability: An Introduction

The Idea of a Reduction

The proof technique employed to show undecidability of Halt is
called a reduction.

We showed that computing UC is reducible to computing Halt,

I.e., that if there were a hypothetical algorithm for Halt, then there
would be one for UC.

Reductions are often used to show that a problem B is at least as
hard as a problem A.

This involves devising an algorithm that could solve A, given a
procedure that solves B.

There are many other examples of interesting uncomputable (also
known as undecidable) functions.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 47 / 58



The Computational Model The Class P

Subsection 6

The Class P

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 48 / 58



The Computational Model The Class P

Decidable Languages

A complexity class is a set of functions that can be computed within
given resource bounds.

For technical convenience, we will pay special attention to Boolean
functions, which define decision problems or languages.

We say that a machine decides a language L ⊆ {0, 1}∗ if it computes
the function fL : {0, 1}∗ → {0, 1}, where

fL(x) = 1 iff x ∈ L.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 49 / 58



The Computational Model The Class P

Deterministic Time Bounds

Definition (The class DTIME)

Let T : N→ N be some function. A language L is in

DTIME(T (n))

iff there is a Turing machine that:

Decides L;

Runs in time c · T (n), for some constant c > 0.

The D in the notation DTIME refers to “deterministic”.

The Turing machine introduced in this chapter is more precisely called
the deterministic Turing machine, since, for any given input x , the
machine’s computation can proceed in exactly one way.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 50 / 58



The Computational Model The Class P

The Class P

To make the notion of “efficient computation” precise, we equate it
with polynomial running time, i.e., with time at most nc , for some
constant c > 0.

Definition (The class P)

We define
P =

⋃

c≥1

DTIME(nc).

The question as to whether IndSet (independent set) has an
efficient algorithm can be expressed as “Is IndSet in P?”

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 51 / 58



The Computational Model The Class P

Example: Graph Connectivity

In the graph connectivity problem, we are given:

A graph G ;
Two vertices s, t in G .

We have to decide if s is connected to t in G .

The problem is in P.

The algorithm that shows this uses depth-first search.

It explores the graph edge-by-edge starting from s.
It marks visited edges.
In subsequent edges, it also tries to explore all unvisited edges that are
adjacent to previously visited edges.

After at most
(
n

2

)
steps, all edges are either visited or will never be

visited.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 52 / 58



The Computational Model The Class P

Class P Consists of Decision Problems

The class P contains only decision problems.

Thus, we cannot say, e.g., that “integer multiplication is in P”.

Instead, we may say that its decision version is in P:

{〈x , i〉 : The ith bit of xy is 1}.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 53 / 58



The Computational Model The Class P

Running Time is a Function of the Number of Input Bits

The running time is a function of the number of bits in the input.

Consider the problem of solving a system of linear equations over the
rational numbers.

Given is a pair
〈A,b〉,

where:

A is an m × n rational matrix;
b is an m-dimensional rational vector.

The problem is to find out if there exists an n-dimensional vector x ,
such that

Ax = b.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 54 / 58



The Computational Model The Class P

Running Time and the Number of Input Bits (Cont’d)

The standard Gaussian elimination algorithm solves this problem in
O
(
n3
)
arithmetic operations.

But on a Turing machine, each arithmetic operation has to be
executed bit by bit.

To prove that this decision problem is in P, we have to verify that
Gaussian elimination (or some other algorithm) runs on a Turing
machine in time polynomial in the number of bits required to
represent the input.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 55 / 58



The Computational Model The Class P

Decidability, P and Model of Computation

We defined the classes of “computable” languages and P using Turing
machines.

Would these classes be different if we had used a different
computational model?

We saw that each of the variants of the Turing machine model we
encountered can simulate any other with at most quadratic slowdown.

So, for all these variants, polynomial time is the same, as is the set of
computable problems.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 56 / 58



The Computational Model The Class P

The Church-Turing Thesis

The Church-Turing (CT) Thesis: Every physically realizable
computation device, whether it is based on silicon, DNA, neurons or
some other alien technology, can be simulated by a Turing machine.

The thesis implies that the set of computable problems would be no
larger on any other computational model than on the Turing machine.

The Strong Form of the CT Thesis: Every physically realizable
computation model can be simulated by a TM with polynomial
overhead.

If true, it implies that the class P defined by any other physically
realizable model will be the same as ours.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 57 / 58



The Computational Model The Class P

Criticisms of P Addressed by Other Classes

Worst-case exact computation is too strict. The definition of P only
considers algorithms that compute the function on every possible
input, whereas not all possible inputs arise in practice.

Possible remedies:

Average-case complexity;
Approximation Algorithms.

Other physically realizable models. Subtleties in the strong form of
the Church-Turing Thesis:

(a) Precision when dealing with real numbers.
(b) Use of randomness; the class BPP.
(c) Use of quantum mechanics; the class BQP.
(d) Use of other exotic physics, such as string theory; also BQP?

Decision problems are too limited. Several classes intend to capture
tasks such as computing non-Boolean functions, solving search
problems, approximating optimization problems, interaction, etc.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 58 / 58


	Outline
	The Computational Model
	Modeling Computation: The Essentials
	The Turing Machine
	Efficiency and Running Time
	Machines as Strings and the Universal Turing Machine
	Uncomputability: An Introduction
	The Class P


