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Subsection 1

The Class NP
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Efficient Verifiability

We formalize the notion of efficiently verifiable solutions.

We identified “efficient solvability” with polynomial time.

So “efficient verifiability” should also correspond to polynomial time.

By hypothesis, a Turing machine can only read one bit in a step.

The alleged solution can only be allowed to have at most polynomial
length.
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The class NP

Definition (The class NP)

A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N→ N

and a polynomial-time TM M (called the verifier for L), such that, for
every x ∈ {0, 1}∗,

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x |)(M(x , u) = 1).

If x ∈ L and u ∈ {0, 1}p(|x |) satisfy M(x , u) = 1, then we call u a
certificate for x (with respect to the language L and machine M).

The term witness instead of certificate is often used.

Clearly, P ⊆ NP, since the polynomial p(|x |) is allowed to be 0, i.e., u
can be an empty string.
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IndSet is in NP

We show that the language IndSet is in NP.

Recall that this language contains all pairs 〈G , k〉, such that the graph
G has a subgraph of at least k vertices with no edges between them.

Such a subgraph is called an independent set.

Consider the following polynomial-time algorithm M.

Input consists of a pair 〈G , k〉 and a string u ∈ {0, 1}∗.
Output 1 if and only if u encodes a list of k vertices of G , such that
there is no edge between any two members of the list.
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IndSet is in NP (Cont’d)

Clearly, 〈G , k〉 is in IndSet if and only if, there exists a string u,
such that

M(〈G , k〉, u) = 1.

Hence, IndSet is in NP.

The list u of k vertices forming the independent set in G serves as the
certificate that 〈G , k〉 is in IndSet.

If n is the number of vertices in G , then a list of k vertices can be
encoded using O (k log n) bits.

Thus, u is a string of at most O (n log n) bits.

This is polynomial in the size of the representation of G .
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Examples of Decision Problems in NP I

Traveling Salesperson: Given a set of n nodes,
(
n
2

)
numbers di ,j

denoting the distances between all pairs of nodes, and a number k ,
decide if there is a closed circuit (i.e., a “salesperson tour”) that visits
every node exactly once and has total length at most k .

The certificate is the sequence of nodes in such a tour.

Subset Sum: Given a list of n numbers A1, . . . ,An and a number T ,
decide if there is a subset of the numbers that sums up to T .

The certificate is the list of members in such a subset.

Linear Programming: Given a list of m linear inequalities with
rational coefficients over n variables u1, . . . , un (a linear inequality has
the form a1u1 + a2u2 + · · ·+ anun ≤ b, for some coefficients
a1, . . . , an, b), decide if there is an assignment of rational numbers to
the variables u1, . . . , un, that satisfies all the inequalities.

The certificate is the assignment.
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Examples of Decision Problems in NP II

0/1 Integer Programming: Given a list of m linear inequalities with
rational coefficients over n variables u1, . . . , un, find out if there is an
assignment of zeroes and ones to u1, . . . , un satisfying all the
inequalities.

The certificate is the assignment.

Graph Isomorphism: Given two n × n adjacency matrices M1,M2,
decide if M1 and M2 define the same graph, up to renaming of
vertices.

The certificate is the permutation π : [n] → [n], such that M2 is equal
to M1 after reordering M1’s indices according to π.

Composite Numbers: Given a number N decide if N is a composite
(i.e., non-prime) number.

The certificate is the factorization of N .

Factoring: Given three numbers N, L,U, decide if N has a prime
factor p in the interval [L,U].

The certificate is the factor p.
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Examples of Decision Problems in NP III

Connectivity: Given a graph G and two vertices s, t in G , decide if s
is connected to t in G .

The certificate is a path from s to t.

The Status of the Problems:

In the preceding list, the Connectivity, Composite Numbers, and Linear
Programming problems are known to be in P.
All the other problems in the list are not known to be in P, but no
proof of nonmembership exists.
The Independent Set, Traveling Salesperson, Subset Sum, and Integer
Programming problems are known to be NP-complete, which, implies
that they are not in P unless P = NP.
The Graph Isomorphism and Factoring problems are not known to be
either in P or be NP-complete.
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Relation between NP and P

Claim

Let EXP =
⋃

c≥1 2
O(nc ). Then

P ⊆ NP ⊆ EXP.

We first show that P ⊆ NP.

Suppose L ∈ P is decided in polynomial time by a TM N.

Take N as the verifier M, with the polynomial p(x) being the zero
polynomial, i.e., u the empty string.

This shows that L ∈ NP.
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Relation between NP and P (Cont’d)

We next show that NP ⊆ EXP.

Let L ∈ NP.

Let M be the verifier for L, with p the associated polynomial.

Then we can decide L in time 2O(p(n)) by:

Enumerating all possible strings u;
Using M to check whether u is a valid certificate for the input x .

The machine accepts iff such a u is ever found.

We have that p(n) = O (nc), for some c ≥ 1.

So the number of choices for u is 2O(nc ).

The running time of the machine is similar.
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P
?
= NP

The question whether or not P = NP is considered the central open
question of complexity theory, mathematics and science.

Most researchers believe that P 6= NP.

The main reason is that years of effort have failed to yield efficient
algorithms for NP-complete problems.
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Nondeterministic Turing Machines

The class NP can also be defined using a variant of Turing machines
called nondeterministic Turing machines (NDTM).

This was the original definition, and the reason for the name NP,
which stands for nondeterministic polynomial time.

The only difference between an NDTM and a standard TM is that an
NDTM has two transition functions δ0 and δ1, and a special state
denoted by qaccept.

When an NDTM M computes a function, at each computational step
M makes an arbitrary choice as to which of its two transition functions
to apply.
For every input x , we say that M(x) = 1 if there exists some sequence
of these choices, called the nondeterministic choices of M , that
would make M reach qaccept on input x .
Otherwise, if every sequence of choices makes M halt without reaching
qaccept, then we say that M(x) = 0.
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Nondeterministic Time Classes

We say that the NDTM M runs in T (n) time if, for every input
x ∈ {0, 1}∗ and every sequence of nondeterministic choices, M
reaches either the halting state or qaccept within T (|x |) steps.

Definition (Nondeterministic Time)

For every function T : N→ N and L ∈ {0, 1}∗, we say that

L ∈ NTIME(T (n))

if, there exists a constant c > 0 and a c · T (n)-time NDTM M, such that,
for every x ∈ {0, 1}∗,

x ∈ L ⇔ M(x) = 1.
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NP Equals Nondeterministic Polynomial Time

Theorem

We have
NP =

⋃

c≥1

NTIME(nc).

The main idea is that the sequence of nondeterministic choices made
by an accepting computation of an NDTM can be viewed as a
certificate that the input is in the language, and vice versa.
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Proof of ⊇

Suppose p : N→ N is a polynomial and L is decided by a NDTM N

that runs in time p(n).

For every x ∈ L, there is a sequence of nondeterministic choices that
makes N reach qaccept on input x .

We can use this sequence as a certificate for x .

This certificate has length p(|x |).
We use a deterministic machine that simulates in polynomial time the
action of N using these nondeterministic choices.
The machine verifies that N would have entered qaccept after using
these nondeterministic choices.

Thus, L ∈ NP.
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Proof of ⊆

Conversely, suppose that L ∈ NP.

Consider a polynomial time NDTM N that decides L:

On input x , use the ability to make nondeterministic choices to write
down a string u of length p(|x |).
This can be done by having transition δ0 correspond to writing a 0 on
the tape and transition δ1 correspond to writing a 1.
Run the deterministic verifier M to verify that u is a certificate for x .
If so, enter qaccept.

Clearly, N enters qaccept on x if and only if a certificate exists for x .

We know that p(n) = O (nc), for some c ≥ 1.

We conclude that L ∈ NTIME(nc).

NDTMs can be easily represented as strings, whence there exists a
universal nondeterministic Turing machine.
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Subsection 2

Reducibility and NP-Completeness
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Introducing Reductions

IndSet is at least as hard as any other language in NP.

This means that if IndSet has a polynomial time algorithm then so
do all the problems in NP.

The property is called NP-hardness.

Our conjecture states that NP 6= P.

So a language being NP-hard provides evidence that it cannot be
decided in polynomial time.

To prove that a language C is at least as hard as some other
language B , we introduce the notion of a reduction.
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Reductions, NP-hardness and NP-completeness

Definition (Reductions, NP-hardness and NP-completeness)

A language L ∈ {0, 1}∗ is polynomial-time Karp reducible, or simply
polynomial-time reducible, to a language L′ ∈ {0, 1}∗, denoted by

L ≤p L′,

if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗,
such that, for every x ∈ {0, 1}∗,

x ∈ L if and only if f (x) ∈ L′.

We say that L′ is NP-hard if,

L ≤p L′, for every L ∈ NP.

We say that L′ is NP-complete if L′ is NP-hard and L′ ∈ NP.
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Illustration of Polynomial-Time Karp Reductions

A Karp reduction from L to L′ is a polynomial-time function f that
maps strings in L to strings in L′ and strings in L = {0, 1}∗\L to
strings in L′.

f can be used to transform a polynomial time TM M ′ that decides L′

to a polynomial time TM M for L by setting M(x) = M ′(f (x)).
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Properties of Polynomial-Time Karp Reductions

Theorem

1. (Transitivity) If L ≤p L′ and L′ ≤p L′′, then L ≤p L′′.

2. If language L is NP-hard and L ∈ P, then P = NP.

3. If language L is NP-complete, then L ∈ P if and only if P = NP.

The main observation underlying all three parts is that if p, q are two
functions that grow at most as nc and nd , respectively, then their
composition p(q(n)) grows as at most ncd , which is also polynomial.

1. Let f1 be a polynomial-time reduction from L to L′.

Let f2 be a polynomial-time reduction from L′ to L′′.

Then x 7→ f2(f1(x)) is a polynomial-time reduction from L to L′′:

f2(f1(x)) takes polynomial time to compute given x .
We have

f2(f1(x)) ∈ L′′ iff f1(x) ∈ L′ iff x ∈ L.
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Properties of Polynomial-Time Karp Reductions (Cont’d)

2. We know P ⊆ NP.

Assume L′ ∈ NP.

Since L is NP-hard, L′ ≤p L.

Since L ∈ P, then L′ ∈ P.

So NP ⊆ P.

3. For left-to-right, suppose L is NP-complete.

Then it is NP-hard.

Thus, by Property 2, P = NP.

For right-to-left, assume NP = P.

Since L is NP-complete, L ∈ NP.

Thus, by hypothesis, L ∈ P.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 24 / 80



NP and NP-Completeness Reducibility and NP-Completeness

The First NP-Complete Language

We show that NP-complete languages exist by exhibiting a language
in NP that is as hard as any other language in NP.

Theorem

The following language is NP-complete:

TMSat = {〈α, x , 1n , 1t〉 : ∃u ∈ {0, 1}n(Mα outputs 1 on input
〈x , u〉 within t steps)},

where Mα denotes the (deterministic) TM represented by the string α.

Let L be an NP-language.

Then, there is a polynomial p and a verifier TM M such that x ∈ L
iff:

There is a string u ∈ {0, 1}p(|x|) satisfying M(x , u) = 1;
M runs in time q(n), for some polynomial q.
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The First NP-Complete Language (Cont’d)

We reduce L to TMSat.

We map every string x ∈ {0, 1}∗ to the tuple

〈xMy, x , 1p(|x |), 1q(m)〉,

where:

m = |x |+ p(|x |);
xMy denotes the representation of M as a string.

This mapping can clearly be performed in polynomial time.

Moreover, by the definition of TMSat and the choice of M,

〈xMy, x , 1p(|x |), 1q(m)〉 ∈ TMSat

iff ∃u ∈ {0, 1}p(|x |)(M(x , u) outputs 1 within q(m) steps)

iff x ∈ L.
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Subsection 3

The Cook-Levin Theorem
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Satisfiable Boolean Formulas

A Boolean formula over the variables u1, . . . , un consists of the
variables and the logical operators AND (∧), OR (∨) and NOT (¬).

Example: (u1 ∧ u2) ∨ (u2 ∧ u3) ∨ (u3 ∧ u1) is a Boolean formula.

If ϕ is a Boolean formula over variables u1, . . . , un and z ∈ {0, 1}n ,
then ϕ(z) denotes the value of ϕ when the variables of ϕ are assigned
the values z (where we identify 1 with TRUE and 0 with FALSE).

A formula ϕ is satisfiable if there exists some assignment z such that
ϕ(z) is TRUE.

Otherwise, we say that ϕ is unsatisfiable.

Example: (u1 ∧ u2) ∨ (u2 ∧ u3) ∨ (u3 ∧ u1) is satisfiable, since the
assignment u1 = 1, u2 = 0, u3 = 1 satisfies it.

In general, an assignment u1 = z1, u2 = z2, u3 = z3 satisfies this
formula iff at least two of the zi ’s are 1.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 28 / 80



NP and NP-Completeness The Cook-Levin Theorem

Conjunctive Normal Form, Sat and 3Sat

A Boolean formula over variables u1, . . . , un is in CNF form
(shorthand for Conjunctive Normal Form) if it is an AND of OR’s
of variables or their negations.

Example: The following is a 3CNF formula, where ui denotes ¬ui ,

(u1 ∨ u2 ∨ u3) ∧ (u2 ∨ u3 ∨ u4) ∧ (u1 ∨ u3 ∨ u4).

More generally, a CNF formula has the form

∧

i



∨

j

vij


 ,

where each vij is either a variable uk or its negation uk .
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Conjunctive Normal Form, Sat and 3Sat (Cont’d)

Consider a CNF formula

∧

i



∨

j

vij


 .

The terms vij are called its literals;
The terms (

∨
j vij ) are called its clauses.

The size of a CNF formula is defined to be the number of ∧/∨
symbols it contains.

A kCNF is a CNF formula with all clauses having at most k literals.

We denote by Sat the language of all satisfiable CNF formulae.

We denote by 3Sat the language of all satisfiable 3CNF formulae.
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Expressing Equality of Strings

The formula (x1 ∨ y1) ∧ (x1 ∨ y1) is in CNF form.

It is satisfied by only those values of x1, y1 that are equal.

Thus, the formula

(x1 ∨ y1) ∧ (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) ∧ (xn ∨ yn)

is satisfied by an assignment if and only if each xi is assigned the
same value as yi .

Thus, though = is not a standard Boolean operator like ∨ or ∧, we
will use it as a convenient shorthand, since the formula φ1 = φ2 is
equivalent to (has the same satisfying assignments as)

(φ1 ∨ φ2) ∧ (φ1 ∨ φ2).
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Universality of AND, OR, NOT

Claim

For every Boolean function f : {0, 1}ℓ → {0, 1}, there is an ℓ-variable CNF
formula ϕ of size ℓ2ℓ, such that

ϕ(u) = f (u), for every u ∈ {0, 1}ℓ.

For every v ∈ {0, 1}ℓ, there exists a clause Cv (z1, z2, . . . , zℓ) in ℓ
variables, such that Cv (v) = 0 and Cv (u) = 1, for every u 6= v .

E.g., if v = 〈1, 1, 0, 1〉, the corresponding clause is

z1 ∨ z2 ∨ z3 ∨ z4.

Let ϕ be the AND of all the clauses Cv , for v such that f (v) = 0.
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Universality of AND, OR, NOT (Cont’d)

We set
ϕ =

∧

v :f (v)=0

Cv (z1, z2, . . . , zℓ).

ϕ has size at most ℓ2ℓ.

Consider an assignment u ∈ {0, 1}ℓ.

Suppose, fist, that f (u) = 0.
Then Cu(u) = 0.
So ϕ(u) = 0.
Suppose, on the other hand, that f (u) = 1.
Then Cv (u) = 1, for every v .
Therefore, ϕ(u) = 1.

Thus, for every u ∈ {0, 1}ℓ, ϕ(u) = f (u).
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The Cook-Levin Theorem

The following theorem provides the first natural NP-complete
problem.

Theorem (Cook-Levin Theorem)

1. Sat is NP-complete.

2. 3Sat is NP-complete.

Both Sat and 3Sat are clearly in NP, since a satisfying assignment
can serve as the certificate that a formula is satisfiable.

Thus we only need to prove that they are NP-hard.

We do so by:

(a) Proving that Sat is NP-hard;
(b) Showing that Sat is polynomial-time Karp reducible to 3Sat.

By the transitivity of polynomial-time reductions, this implies that
3Sat is NP-hard.
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NP-hardness of Satisfiability

Lemma

Sat is NP-hard.

We must show how to reduce every NP language L to Sat.

We need a polynomial-time transformation that turns any x ∈ {0, 1}∗

into a CNF formula ϕx , such that

x ∈ L iff ϕx is satisfiable.

L ∈ NP means that, there exists a polynomial time TM M, such that,
for every x ∈ {0, 1}∗,

x ∈ L iff M(x , u) = 1, for some u ∈ {0, 1}p(|x |),

where p : N→ N is some polynomial.
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NP-hardness of Satisfiability (Cont’d)

We describe a polynomial-time transformation x 7→ ϕx from strings to
CNF formulae, such that

x ∈ L iff ϕx is satisfiable.

Equivalently,

ϕx ∈ Sat iff ∃u ∈ {0, 1}p(|x |)(M(x ◦ u) = 1).

To get a polynomial size formula, we use he following facts:

M runs in polynomial time;
Each basic step of a Turing machine is highly local.
That is, it examines and changes only a few bits of the machine’s tapes.
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Simplifying Assumptions About M

In the course of the proof, we will make the following simplifying
assumptions about the TM M:

(i) M only has two tapes, an input tape and a work/output tape.
(ii) M is an oblivious TM in the sense that its head movement does not

depend on the contents of its tapes.
This means that:

M’s computation takes the same time for all inputs of size n;

For every i , the location of M’s heads at the ith step depends only on i

and the length of the input.

We can make these assumptions without loss of generality because,
for every T (n)-time TM M, there exists a two-tape oblivious TM M̃

computing the same function in O
(
T (n)2

)
time.
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Simplifying Assumptions About M (Cont’d)

In particular, if L is in NP, then there exists a two-tape oblivious
polynomial-time TM M and a polynomial p, such that

x ∈ L iff ∃u ∈ {0, 1}p(|x |)(M(x ◦ u) = 1).

Since M is oblivious, we can run it on the trivial input (x , 0p(|x |)) to
determine the precise head position of M during its computation on
every other input of the same length.
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Snapshot of M ’s Computation

Let Q be the set of M’s possible states.

Let Γ be M’s alphabet.

The snapshot of M’s execution on input y at a particular step i is
the triple

〈a, b, q〉 ∈ Γ× Γ×Q,

such that:
a, b are the symbols read by M ’s heads from the two tapes;
q is the state M is in at the ith step.
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Encoding the Snapshot

Clearly the snapshot can be encoded as a binary string.

Let c denote the length of this string, a constant depending upon |Q|
and |Γ|.

For every y ∈ {0, 1}∗, the snapshot of M’s execution on input y at
the ith step depends on:

(a) Its state in the (i − 1)st step;
(b) The contents of the current cells of its input and work tapes.
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Insight at the Heart of the Proof

We want to verify the existence of some u satisfying M(x ◦ u) = 1.

We are given, as evidence, the sequence of snapshots that arise from
M’s execution on x ◦ u.

It suffices to check that, for each i ≤ T (n), the snapshot zi is correct
given the snapshots for the previous i − 1 steps.

The TM can only read/modify one bit at a time.

It follows that, to check the correctness of zi , it suffices to look at
only two of the previous snapshots.
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Insight at the Heart of the Proof (Cont’d)

Specifically, to check zi we need to only look at zi−1, yinputpos(i),
zprev(i), where:

y is shorthand for x ◦ u;
inputpos(i) denotes the location of M ’s input tape head at the ith step;
prev(i) is the last step before i when M ’s head was in the same cell on
its work tape that it is on during step i .

Note the contents of the current cell have not been affected between
step prev(i) and step i .
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Insight at the Heart of the Proof (Cont’d)

Since M is a deterministic TM, for every triple of values to zi−1,
yinputpos(i), zprev(i), there is at most one value of zi that is correct.

Thus, there is some function F , derived from M’s transition function,
that maps {0, 1}2c+1 to {0, 1}c such that a correct zi satisfies

zi = F (zi−1, zprev(i), yinputpos(i)).

Because M is oblivious, the values inputpos(i) and prev(i) do not
depend on the particular input y .

Moreover, these indices can be computed in polynomial-time by
simulating M on a trivial input.
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The Reduction

Input x ∈ {0, 1}n is in L iff M(x ◦ u) = 1, for some u ∈ {0, 1}p(n) .

This occurs if and only if there exists a string y ∈ {0, 1}n+p(n) and a
sequence of strings z1, . . . , zT (n) ∈ {0, 1}c , where T (n) is the number
of steps M takes on inputs of length n+ p(n), satisfying the following
four conditions.

1. The first n bits of y are equal to x .
2. The string z1 encodes the initial snapshot of M , i.e., z1 encodes the

triple 〈⊲, , qstart〉, where ⊲ is the start symbol of the input tape, is
the blank symbol, and qstart is the initial state of the TM M .

3. For every i ∈ {2, . . . ,T (n)}, zi = F (zi−1, zinputpos(i), zprev(i)).
4. The last string zT (n) encodes a snapshot in which the machine halts

and outputs 1.

The formula ϕx will take y ∈ {0, 1}n+p(n) and z ∈ {0, 1}cT (n) and
will verify that y , z satisfy the AND of these four conditions.

Thus, x ∈ L iff ϕx ∈ Sat.
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Polynomiality of the Reduction

We can express ϕx as a polynomial-sized CNF formula:

Condition 1 can be expressed as a CNF formula of size 4n;
Conditions 2 and 4 each depend on c variables and, hence, can be
expressed by CNF formulae of size c2c ;
Condition 3, which is an AND of T (n) conditions each depending on at
most 3c + 1 variables, can be expressed as a CNF formula of size at
most T (n)(3c + 1)23c+1.

Hence, the AND of all these conditions can be expressed as a CNF
formula of size d(n+ T (n)), where d is some constant depending
only on M.

Moreover, this CNF formula can be computed in time polynomial in
the running time of M.
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Reducing Sat to 3Sat

Lemma

Sat ≤p 3Sat.

We give a transformation that maps each CNF formula ϕ into a
3CNF formula ψ, such that ψ is satisfiable if and only if ϕ is.

We consider the case where ϕ is a 4CNF.

Let C be a clause of ϕ, say

C = u1 ∨ u2 ∨ u3 ∨ u4.

We add a new variable z to ϕ.

We replace C with the pair of clauses

C1 = u1 ∨ u2 ∨ z ;

C2 = u3 ∨ u4 ∨ z.
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Reducing Sat to 3Sat (Cont’d)

We verify the equivalence by considering two cases.

Suppose u1 ∨ u2 ∨ u3 ∨ u4 is true.
Then there is an assignment to z that satisfies both u1 ∨ u2 ∨ z and
u3 ∨ u4 ∨ z and vice versa.
Suppose C is false.
Then, no matter what value we assign to z , either C1 or C2 will be
false.

The same idea can be applied to a general clause of size 4.

It can be used to change every clause C of size k (for k > 3) into an
equivalent pair of clauses C1, of size k − 1, and C2, of size 3.

C1 and C2 depend on the k variables of C and an additional auxiliary
variable z .

Applying this transformation repeatedly, we get a polynomial-time
transformation of a CNF formula ϕ into an equivalent 3CNF formula
ψ.
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Refinement: Size of ϕx

The proof of the Cook-Levin Theorem actually yields a result that is a
bit stronger than the theorem’s statement:

1. We can reduce the size of the output formula ϕx if we use a more
efficient simulation of a standard TM by an oblivious TM, which
manages to keep the simulation overhead logarithmic.

Then, for every x ∈ {0, 1}∗, the size of the formula ϕx is O (T logT ),
where T is the number of steps the machine M takes on input x .
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Refinement: Levin and Parsimonious Reductions

2. The reduction f from an NP-language L to Sat, not only satisfies
that

x ∈ L iff f (x) ∈ Sat,

but actually the proof yields an efficient way to transform a certificate
for x to a satisfying assignment for f (x) and vice versa.

We call a reduction with this property a Levin reduction.

One can also modify the proof slightly so that it actually supplies us
with a one-to-one and onto map between the set of certificates for x
and the set of satisfying assignments for f (x)

Such a construction implies, of course, that the set of certificates for
x and the set of satisfying assignments for f (x) are of the same size.

A reduction with this property is called parsimonious.

Most of the known NP-complete problems have parsimonious Levin
reductions from all the NP-languages.
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Importance of the NP-Completeness of 3Sat

The fact that 3Sat is NP-complete is of paramount interest for
several reasons.

3Sat is useful for proving the NP-completeness of other problems.
It has very minimal combinatorial structure and, thus, is easy to use in
reductions.
Propositional logic has had a central role in mathematical logic.
This is why Cook and Levin were interested in 3Sat in the first place.
3Sat has practical importance.
It is a simple example of constraint satisfaction problems, which are
ubiquitous in many fields including artificial intelligence.
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Subsection 4

The Web of Reductions
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Web of Reductions

We showed that Sat and 3Sat are NP-complete.

So to prove the NP-completeness of any other language L, we need to
reduce Sat or 3Sat to L.

In fact, once we know that L is NP-complete, we can show that an
NP-language L′ is NP-complete by reducing L to L′.

This approach is used to build a “web of reductions”.

The method is used to show that thousands of interesting languages
are in fact NP-complete.
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Part of the Web of Reductions
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NP-Completeness of IndSet

Consider

IndSet = {〈G , k〉 : G has independent set of size k}.

Theorem

IndSet is NP-complete.

We know IndSet is in NP.

To show that it is NP-hard, we reduce 3Sat to IndSet.

We transform, in polynomial time, every m-clause 3CNF formula ϕ
into a 7m-vertex graph G , such that

ϕ is satisfiable if and only if G has an independent set
of size at least m.
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Construction of the Graph G

The graph G is defined as follows.

We associate a cluster of 7 vertices in G with each clause of ϕ.

The vertices in a cluster associated with a clause C correspond to the
seven possible satisfying partial assignments to the three variables on
which C depends.

For example, suppose C is

u2 ∨ u5 ∨ u7.

Then the seven vertices in the cluster associated with C correspond
to all partial assignments of the form

u1 = a, u2 = b, u3 = c , 〈a, b, c〉 6= 〈1, 1, 0〉.

In case C depends on less than three variables, then we repeat one of
the partial assignments.
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Completing the Construction

We put an edge between two vertices of G if they correspond to
inconsistent partial assignments.

E.g., u2 = 0, u17 = 1, u26 = 1 and u2 = 1, u5 = 0, u7 = 1.

We also put edges between every two vertices in the same cluster.
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Polynomiality and Correctness

Transforming ϕ into G can be done in polynomial time.

We show that ϕ is satisfiable iff G has an independent set of size m.

Suppose, first, that ϕ has a satisfying assignment u.

We define a set S of m of G ’s vertices.

For every clause C of ϕ, put in S the vertex in the cluster associated
with C that corresponds to the restriction of u to the variables C
depends on.

We only choose vertices that correspond to restrictions of the
assignment u.

So no two vertices of S correspond to inconsistent assignments.

Hence, S is an independent set of size m.
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Correctness (Cont’d)

Suppose, conversely, that G has an independent set S of size m.

We define a satisfying assignment u for ϕ.

For every i ∈ [n]:

If there is a vertex in S whose partial assignment gives a value a to ui ,
then set ui = a;
Otherwise, set ui = 0.

This is well defined because of S ’s independence.

By construction, G contains all the edges within each cluster.

So S can contain at most a single vertex in each cluster.

Thus, there is an element of S in every one of the m clusters.

Thus, by our definition of u, u satisfies all of ϕ’s clauses.
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0/1 Integer Programming

Let 0/1IProg be the set of satisfiable 0/1 Integer Programs,

I.e., a set of linear inequalities with rational coefficients over variables
u1, . . . , un is in 0/1IProg if there is an assignment of numbers in
{0, 1} to u1, . . . , un that satisfies it.

Theorem

0/1IProg is NP-complete.

0/1IProg is in NP, since the assignment can serve as the certificate.

To reduce Sat to 0/1IProg, note that every CNF formula can be
easily expressed as an integer program.

This is done by expressing every clause as an inequality.

E.g., u1 ∨ u2 ∨ u3 can be expressed as u1 + (1− u2) + (1− u3) ≥ 1.
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NP-Completeness of Hamiltonian Path

A Hamiltonian path in a directed graph is a path that visits all
vertices exactly once.

Let dHamPath denote the set of all directed graphs that contain
such a path.

Theorem

dHamPath is NP-complete.

dHamPath is in NP, since the ordered list of vertices in the path can
serve as a certificate.

To show that dHamPath is NP-hard, we show a way to map every
CNF formula ϕ into a graph G , such that

ϕ is satisfiable if and only if G has a Hamiltonian path.
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NP-Completeness of Hamiltonian Path (Cont’d)

The graph G has:

(1) m vertices for each of ϕ’s clauses c1, . . . , cm;
(2) A special starting vertex vstart and ending vertex vend;
(3) n “chains” of 4m vertices corresponding to the n variables of ϕ.

A chain is a set of vertices v1, . . . , v4m, such that, for every
i ∈ [4m− 1], vi and vi+1 are connected by two edges in both directions.
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NP-Completeness of Hamiltonian Path (Cont’d)

We put edges from the starting vertex vstart to the two extreme points
of the first chain.

We also put edges from the extreme points of the jth chain to the
extreme points to the (j + 1)st chain, for every j ∈ [n − 1].

We put an edge from the extreme points of the nth chain to the
ending vertex vend.
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Completing the Construction

For every clause C of ϕ, we put edges between the chains
corresponding to the variables appearing in C and the vertex vC
corresponding to C in the following way:

If C contains the literal uj , then we take two neighboring vertices
vi , vi+1 in the jth chain and add edges from vi to C and from C to vi+1.
If C contains the literal uj , then we connect these edges in the
opposite direction vi+1 to C and C to vi .

When adding these edges:

We never “reuse” a link vi , vi+1 in a particular chain;
Always keep an unused link between every two used links.

We can do this since every chain has 4m vertices, which is more than
sufficient for this.
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Illustration of the Construction
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Correctness of the Reduction

We show that ϕ ∈ Sat iff G ∈ dHamPath.

Suppose that ϕ has a satisfying assignment u1, . . . , un.

We exhibit a path that visits all the vertices of G .

It starts at vstart;
It travels through all the chains in order;
It ends at vend.

Consider the path that travels the jth chain:

Left-to-right, if uj = 1;
Right-to-left, if uj = 0.

This path visits all the vertices except those corresponding to clauses.

For each clause C , there is at least one literal that is true.

Use one link on the chain corresponding to that literal to “skip” to
the vertex vC .

Then continue on as before.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 65 / 80



NP and NP-Completeness The Web of Reductions

Correctness of the Reduction (Cont’d)

Suppose that G has an Hamiltonian path P .

The path P must start in vstart and end at vend.

P needs to traverse all the chains in order.

Within each chain, it traverses it either left-to-right or right-to-left.

If it takes the edge u → w , where u is on a chain and w corresponds
to a clause, then it must continue with w → v , where v is the vertex
adjacent to u in the link.

Otherwise, the path will get stuck the next time it visits v .

Define an assignment u1, . . . , un to ϕ by setting:

uj = 1, if P traverses the jth chain left-to-right;
uj = 0, otherwise.

Then u1, . . . , un is a satisfying assignment for ϕ.
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Subsection 5

Decision Versus Search

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 67 / 80



NP and NP-Completeness Decision Versus Search

Decision Problems Versus Search Problems

We have defined NP using Yes/No problems (e.g., “Is the given
formula satisfiable?”) as opposed to search problems (e.g., “Find a
satisfying assignment to this formula if one exists”).

The search problem is obviously harder than the corresponding
decision problem.

So, if P 6= NP, then neither one can be solved for an NP-complete
problem.

It turns out that for NP-complete problems, decision and search are
equivalent in the sense that, if the decision problem can be solved
(and, hence, P = NP), then the search version of any NP problem
can also be solved in polynomial time.
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Fast Decision and Fast Search Under P = NP

Theorem

Suppose that P = NP. Then, for every NP language L and a verifier TM
M for L, there is a polynomial-time TM B that, on input x ∈ L, outputs a
certificate for x (with respect to the language L and TM M).

Suppose that P = NP.

Let M be a polynomial-time TM.

Let p(n) be a polynomial.

We must show that there is a polynomial-time TM B with the
following property:

For every x ∈ {0, 1}n, if there is u ∈ {0, 1}p(n), such that M(x , u) = 1
(i.e., a certificate that x is in the language verified by M), then
|B(x)| = p(n) and M(x ,B(x)) = 1.
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Proof of the Theorem for Sat

We start by showing the theorem for the case of Sat.

Let A be an algorithm that decides Sat.

We come up with an algorithm B that, on input a satisfiable CNF
formula ϕ with n variables, finds a satisfying assignment for ϕ, using:

2n+ 1 calls to A;
Some additional polynomial-time computation.
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Proof of the Theorem for Sat (Algorithm)

Let ϕ be a CNF formula with n variables.

First, use A to check that the input formula ϕ is satisfiable.

If so:

First substitute x1 = 0 and, then, x1 = 1 in ϕ.
This transformation, which leaves a formula with n − 1 variables, can
certainly be done in polynomial time.
Then use A to decide which of the two is satisfiable.
Say the first is satisfiable. Fix x1 = 0.
Continue with the simplified formula, using substitutions for x2.
Continuing this way, we end up fixing all n variables while ensuring that
each intermediate formula is satisfiable.

Thus, the final assignment to the variables satisfies ϕ.
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Proof of the Theorem: The General Case

Consider an arbitrary NP-language L.

Recall that the generic reduction from L to Sat is a Levin reduction.

I.e., it is a polynomial-time computable function f , such that:

x ∈ L iff f (x) ∈ Sat;
A satisfying assignment of f (x) is mapped into a certificate for x .

Therefore, we can:

Use the algorithm of the previous slide to come up with an assignment
for f (x);
Then, map it back into a certificate for x .
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Downward Reducibility

This proof shows that Sat is downward self-reducible.

This means that, given an algorithm that solves Sat on inputs of
length smaller than n, we can solve Sat on inputs of length n.

Using the Cook-Levin reduction, one can show that all NP-complete
problems have a similar property.
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Subsection 6

coNP, EXP and NEXP
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The Class coNP

Let L ∈ {0, 1}∗ be a language.

We denote by L the complement of L,

L = {0, 1}∗\L.

Definition (The Class coNP)

coNP = {L : L ∈ NP}.

coNP is not the complement of the class NP.

In fact, coNP and NP have a nonempty intersection, since every
language in P is in NP ∩ coNP.

Example: Sat = {ϕ : ϕ is not satisfiable} ∈ coNP.

This holds since, as we know, Sat itself is in NP.

The satisfying assignment is a polynomial length certificate.
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Alternative Definition of coNP and coNP-Completeness

Definition (Alternative Definition of coNP)

For every L ∈ {0, 1}∗, we say that L ∈ coNP if there exists a polynomial
p : N→ N and a polynomial-time TM M, such that, for every x ∈ {0, 1}∗,

x ∈ L iff ∀u ∈ {0, 1}p(|x |)(M(x , u) = 1).

A language is coNP-complete if:

It is in coNP;
Every coNP language is polynomial-time Karp reducible to it.
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Tautology

A Boolean formula is called a tautology if it is satisfied by every
assignment.

The following language is coNP-complete,

Tautology = {ϕ : ϕ is a tautology}.

Tautology is clearly in coNP.

We must also show that for every L ∈ coNP, L ≤p Tautology.

We just modify the Cook-Levin reduction from L to Sat.

For every input x ∈ {0, 1}∗, that reduction produces a formula ϕx ,
such that

ϕx is satisfiable iff x ∈ L.

Consider the formula ¬ϕx .

It is in Tautology iff x ∈ L.
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P vs. NP, NP vs. coNP and EXP vs. NEXP

If P = NP, then NP = coNP = P.

By contraposition, if NP 6= coNP, then P 6= NP.

Most researchers believe that NP 6= coNP.

A short certificate that a given formula is a Tautology, i.e., that
every assignment satisfies the formula, would be really surprising.

The class EXP was defined by EXP =
⋃

c≥1 DTIME(2n
c
).

This is the exponential-time analog of P.

The exponential-time analog of NP is the class NEXP, defined by

NEXP =
⋃

c≥1

NTIME(2n
c

).

Every problem in NP can be solved in exponential time by a brute
force search for the certificate.

So P ⊆ NP ⊆ EXP ⊆ NEXP.
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P vs. NP and EXP vs. NEXP

Theorem

If EXP 6= NEXP, then P 6= NP.

We prove the contrapositive, i.e., if P = NP, then EXP = NEXP.

Suppose L ∈ NTIME(2n
c
) and a NDTM M decides it.

Consider the language

Lpad = {〈x , 12
|x|c

〉 : x ∈ L}.

We claim that Lpad is in NP.

We present an NDTM N for Lpad
Suppose the input is y .

First check if there is a string z , such that y = 〈z , 12
|z|c

〉.
If not, output 0, i.e., halt without going to the state qaccept.
If y is of this form, then simulate M on z for 2|z|

c

steps.
Output the answer of M .
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P vs. NP and EXP vs. NEXP (Cont’d)

Clearly, the running time of N is polynomial in |y |.

Hence, Lpad ∈ NP.

It follows that, if P = NP, then Lpad is in P.

But if Lpad is in P, then L is in EXP.

To determine whether an input x is in L, we just:

Pad the input;
Decide whether it is in Lpad using the polynomial-time machine for Lpad.
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