
Advanced Computational Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 1 / 43

Outline

1 Diagonalization
Time Hierarchy Theorem
Nondeterministic Time Hierarchy Theorem
Ladner’s Theorem: Existence of NP-Intermediate Problems
Oracle Machines and the Limits of Diagonalization

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 2 / 43

Diagonalization

Introducing Diagonalization

We would like to be able to prove that certain complexity classes
(e.g., P and NP) are not the same.

This requires exhibiting a machine in one class that differs from every
machine in the other class.

Being different means that their answers are different on at least one
input.

The only general technique known for constructing such a machine is
diagonalization.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 3 / 43

Diagonalization

Introducing Diagonalization (Cont’d)

The one common tool used in all diagonalization proofs is the
representation of TMs by strings.

It is effective, in the sense that there is a universal TM that, given
any string x , can simulate the machine represented by x with a small
- at most logarithmic - overhead.

Every string x ∈ {0, 1}∗ represents some TM, denoted Mx .

Every TM is represented by infinitely many strings.

We use the notation Mi , where i ∈ N, for the machine represented by
the string that is the binary expansion of the number i , without the
leading 1.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 4 / 43

Diagonalization Time Hierarchy Theorem

Subsection 1

Time Hierarchy Theorem

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 5 / 43

Diagonalization Time Hierarchy Theorem

The Time Hierarchy Theorem

The Time Hierarchy Theorem shows that allowing Turing machines
more computation time strictly increases the set of languages that
they can decide.

Recall that for a function f : N→ N, DTIME(f (n)) is the set of
languages decided by a TM running in time O (f (n)).

We only deal with time-constructible functions f , which means that
the mapping x 7→ f (|x |) can be computed in O (f (n)) time.

Theorem (Time Hierarchy Theorem)

If f , g are time-constructible functions, satisfying f (n) log f (n) = o (g(n)),
then

DTIME(f (n)) (DTIME(g(n)).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 6 / 43

Diagonalization Time Hierarchy Theorem

Proof of the Time Hierarchy Theorem

We prove the simpler statement DTIME(n) (DTIME(n1.5).

Consider the following Turing machine D.

Suppose it receives input x .
It uses the Universal TM U to simulate the execution of Mx on x for
|x |1.4 steps.
Suppose U outputs some bit b ∈ {0, 1} in this time.
Then D outputs the opposite answer, i.e., 1− b.
Otherwise, it outputs 0.

D halts within n1.4 steps.

So, the language L decided by D is in DTIME(n1.5).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 7 / 43

Diagonalization Time Hierarchy Theorem

Proof of the Time Hierarchy Theorem (Cont’d)

Claim: L 6∈ DTIME(n).

Assume there is some TM M and constant c , such that TM M, given
any input x ∈ {0, 1}∗, halts within c |x | steps and outputs D(x).

The time to simulate M by the universal Turing machine U on every
input x is at most

c ′c |x | log |x |,
where c ′ is a constant that:

Depends on the alphabet size and number of tapes and states of M ;
Is independent of |x |.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 8 / 43

Diagonalization Time Hierarchy Theorem

Proof of the Time Hierarchy Theorem (Cont’d)

There is some number n0, such that

n1.4 > c ′cn log n, for every n ≥ n0.

Let x be a string representing the machine M, with |x | ≥ n0.

Such a string exists since M is represented by infinitely many strings.

Then, D(x) will obtain the output b = M(x) within |x |1.4 steps.

However, by definition of D, we have

D(x) = 1− b 6= M(x).

This yields a contradiction.

The proof for general f , g is similar and uses the observation that the
slowdown in simulating a machine using U is at most logarithmic.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 9 / 43

Diagonalization Nondeterministic Time Hierarchy Theorem

Subsection 2

Nondeterministic Time Hierarchy Theorem

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 10 / 43

Diagonalization Nondeterministic Time Hierarchy Theorem

The Nondeterministic Time Hierarchy Theorem

Theorem (Nondeterministic Time Hierarchy Theorem)

If f , g are time constructible functions, satisfying f (n+1) = o (g(n)), then

NTIME(f (n)) (NTIME(g(n)).

We only prove NTIME(n) (NTIME(n1.5).

The first instinct is to mimic the deterministic case, since there is a
universal TM for nondeterministic computation as well.

This is not sufficient because the definition of the new machine D

requires the ability to “flip the answer”.

That is, to efficiently compute, given the description of a NDTM M

and an input x , the value 1−M(x).

However, as we have seen, the complement of an NTIME(n) language
is not expected to be in NTIME(n1.5).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 11 / 43

Diagonalization Nondeterministic Time Hierarchy Theorem

Exploiting Exponential Time

On the other hand, the complement of every NTIME(n) language is
trivially decidable in exponential time.

This is achieved by examining all the possibilities for the machine’s
nondeterministic choices.

This trivial exponential simulation of a nondeterministic machine does
suffice to establish a hierarchy theorem.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 12 / 43

Diagonalization Nondeterministic Time Hierarchy Theorem

Lazy Diagonalization

The key idea is the so-called lazy diagonalization.

The machine D flips the answer of each linear time NDTM Mi in only
one string out of a sufficiently (exponentially) large set of strings.

Define the function f : N→ N by

f (1) = 2;

f (i + 1) = 2f (i)
1.2
.

Given n, we can find in O
(

n1.5
)

time the number i , such that n is
sandwiched between f (i) and f (i + 1).

The machine D will try to flip the answer of Mi on some input in the
set {1n : f (i) < n ≤ f (i + 1)}.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 13 / 43

Diagonalization Nondeterministic Time Hierarchy Theorem

Lazy Diagonalization (Cont’d)

The machine D operates as follows.

Suppose it receives input x .
If x 6∈ 1∗, reject.
If x = 1n, then compute i , such that f (i) < n ≤ f (i + 1).

1. If f (i) < n < f (i + 1), then simulate Mi on input 1n+1

non-deterministically in n1.1 time and output its answer.
If Mi has not halted in this time, then halt and accept.

2. If n = f (i + 1), accept 1n iff Mi rejects 1
f (i)+1 in (f (i) + 1)1.1 time.

Part 2 requires going through all possible 2(f (i)+1)1.1 branches of Mi

on input 1f (i)+1.

That is fine, since the input size f (i + 1) is 2f (i)
1.2
.

Hence, the NDTM D runs in O
(

n1.5
)

time.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 14 / 43

Diagonalization Nondeterministic Time Hierarchy Theorem

Correctness

Let L be the language decided by D.

Claim: L 6∈ NTIME(n).

Indeed, suppose that L is decided by an NDTM M running in cn

steps, for some constant c .

Since each NDTM is represented by infinitely many strings, we can
find i large enough, such that:

M = Mi ;
On inputs of length n ≥ f (i), Mi can be simulated in less than n1.1

steps.

This means that the two steps in the description of D ensure that:

If f (i) < n < f (i + 1), then D(1n) = Mi(1
n+1);

D(1f (i+1)) 6= Mi(1
f (i)+1).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 15 / 43

Diagonalization Nondeterministic Time Hierarchy Theorem

Finishing Correctness

We obtained the conditions

If f (i) < n < f (i + 1), then D(1n) = Mi(1
n+1);

D(1f (i+1)) 6= Mi(1
f (i)+1).

By our assumption, Mi and D agree on all inputs 1n for n in the
semi-open interval (f (i), f (i + 1)].

By the first statement above, D(1f (i+1)) = Mi (1
f (i)+1).

This contradicts the second statement.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 16 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Subsection 3

Ladner’s Theorem: Existence of NP-Intermediate Problems

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 17 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Introducing Ladner’s Theorem

Is every problem in NP either in P or NP-complete?

If P = NP, then the conjecture is trivially true.
We show that if P 6= NP, then this conjecture is false
I.e., there is a language L ∈ NP\P that is not NP-complete.

A feature of the proof is an interesting definition à la Gödel of a
language SatH which “encodes” the difficulty of solving itself.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 18 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Ladner’s Theorem

Ladner’s Theorem (“NP-Intermediate” Languages)

Suppose that P 6= NP. Then there exists a language

L ∈ NP\P

that is not NP-complete.

Consider a function H : N→ N.

Define the language SatH to contain all length-n satisfiable formulae
that are padded with nH(n) 1’s:

SatH = {ψ01nH(n)
: ψ ∈ Sat and n = |ψ|}.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 19 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

The Function H

Based on SatH , define a function H : N→ N.

H(n) is the smallest number i < log log n, such that, for every
x ∈ {0, 1}∗, with |x | ≤ log n,

Mi outputs SatH(x) within i |x |i steps.

If no such number i exists, then H(n) = log log n.

H(n) determines membership in SatH of strings whose length is
greater than n.

Moreover, the definition of H(n) only relies upon checking the status
of strings of length at most log n.

So H is well defined.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 20 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Complexity of H

Claim

The function H is computable in time O
(

n3
)

.

To compute H(n) we must:

(1) Compute H(i) on every i ≤ log n;
(2) Simulate at most log log n machines on inputs of lengths at most log n

for less than log log n(log n)log log n = o (n) steps;
(3) Compute Sat on inputs of size at most log n.

H(n) can be computed in time T (n) ≤ log nT (log n) + O
(

n2
)

.

Therefore, T (n) = O
(

n3
)

.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 21 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Relations Between SatH and H

Claim

SatH ∈ P if and only if H(n) = O (1). If SatH 6∈ P, then

H(n)
n→∞−→ ∞.

We first show that, if SatH ∈ P, then H(n) = O (1).

Suppose there is a machine M solving SatH in at most cnc steps.

Recall that M is represented by infinitely many strings.

So there is a number i > c , such that M = Mi .

The definition of H(n) implies that, for n > 22
i

, H(n) ≤ i .

Thus, H(n) = O (1).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 22 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Relations Between SatH and H (Cont’d)

We now show that, if H(n) = O (1), then SatH ∈ P.

If H(n) = O (1), then H can take only one of finitely many values.

Hence, there exists an i , such that H(n) = i , for infinitely many n’s.

This implies that the TM Mi solves SatH in ini -time.

Otherwise, by definition, there is an input x on which Mi fails to
output the right answer within this bound.

Then, for all n > 2|x |, we have H(n) 6= i .

Note that the last statement holds even if we only assume that there
is some constant C , such that H(n) ≤ C , for infinitely many n’s.

This proves the second statement in the claim.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 23 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

NP-Completeness of SatH Implies Polynomiality of Sat

Claim

Suppose H : N→ N is a polynomially computable function, such that

lim
n→∞

H(n) = ∞.

If SatH is NP-complete, then SAT is in P.

Let f be a reduction from Sat to SatH that runs in time O
(

ni
)

.

Let N be such that H(n) > i , for n > N.

The following recursive algorithm A solves SAT in polynomial time.

Suppose A receives as input formula ϕ.
If |ϕ| ≤ N , then compute the output using brute force.
Otherwise compute x = f (ϕ).

If x is not of the form ψ01n
H(|ψ|)

, then output FALSE.
Otherwise, output A(ψ).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 24 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Proof of Ladner’s Theorem

Ladner’s Theorem (“NP-Intermediate” Languages)

If P 6= NP, there exists a language

L ∈ NP\P

that is not NP-complete.

Suppose that SatH ∈ P.

By the claim, H(n) ≤ C , for a constant C .

Thus, SatH is Sat padded with at most nC 1’s.

But then a polynomial-time algorithm for SatH can be used to solve
Sat in polynomial time.

Since Sat is NP-complete, P = NP.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 25 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Proof of Ladner’s Theorem (Cont’d)

Suppose that SatH is NP-complete.

Then, there is a reduction f from Sat to SatH that runs in time
O
(

ni
)

for some constant i .

Since SatH 6∈ P, by the claim, H(n) → ∞.

The reduction works in time O
(

ni
)

, for large n.

So it must map Sat instances of size n to SatH instances of size
smaller than nH(n).

Thus, for large enough ϕ, f must map ϕ to a string ψ01H(|ψ|), where
ψ is smaller by some fixed polynomial factor, say, smaller than 3

√
n.

The last claim yields a polynomial-time recursive algorithm A for Sat.

This contradicts P 6= NP.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 26 / 43

Diagonalization Ladner’s Theorem: Existence of NP-Intermediate Problems

Remarks on Ladner’s Theorem

The theorem shows the existence of some non-NP-complete language
in NP\P if NP 6= P.

The language L seems somewhat artificial.

Moreover, the proof has not been strengthened to yield a more
natural language.

In fact, the status of most natural languages has been resolved thanks
to clever algorithms or reductions.

Two interesting exceptions are Factoring and Graph Isomorphism.

For these two languages:

No polynomial-time algorithm is currently known;
There is strong evidence that they are not NP-complete.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 27 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Subsection 4

Oracle Machines and the Limits of Diagonalization

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 28 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

The Essence of Diagonalization

We would like to qualify the limits of diagonalization.

Towards this goal, we call “diagonalization” any technique that relies
solely upon the following properties of Turing machines:

I The existence of an effective representation of Turing machines by
strings;

II The ability of one TM to simulate any other without much overhead in
running time or space.

Any argument that only uses these facts is treating machines as black
boxes, in the sense that the machine’s internal workings do not
matter.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 29 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Oracle Turing Machine and the P vs. NP

We use a technique involving variants of Turing machines that still
satisfy Properties I and II.

A general way to define such variants of Turing machines leads to
oracle Turing machines.

We do so in two different ways.

One way of defining the variant results in TMs for which P = NP;
Another way results in TMs for which P 6= NP.

This discrepancy shows that assuming only Properties I and II is not
sufficient in order to resolve P versus NP.

Some additional property must be used.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 30 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Oracle Turing Machines Informally

Oracle machines are TMs that are given access to a black box or
“oracle” that can magically solve the decision problem for some
language O ∈ {0, 1}∗.

The machine has a special oracle tape on which it can write a string
q ∈ {0, 1}∗.
In one step it gets an answer to a query of the form

“Is q in O?”

This can be repeated arbitrarily often with different queries.

If O is a difficult language, e.g., one that cannot be decided in
polynomial time or that is not even decidable, then the oracle gives an
added power to the TM.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 31 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Oracle Turing Machines

Definition (Oracle Turing Machines)

An oracle Turing machine is a TM M that has a special read-write tape,
called M’s oracle tape, and three special states qquery, qyes, qno.
To execute M, we specify, in addition to the input, a language O ∈ {0, 1}∗
that is used as the oracle for M.

Whenever, during the execution, M enters the state qquery, with q

being the contents of its oracle tape, the machine, then, moves into
the state qyes, if q ∈ O, and qno, if q 6∈ O.

Regardless of the choice of O, a membership query to O counts only
as a single computational step.

If M is an oracle machine, O ∈ {0, 1}∗ a language and x ∈ {0, 1}∗, then
we denote the output of M on input x and with oracle O by MO(x).
Nondeterministic oracle TMs are defined similarly.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 32 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

The Classes PO and NPO

Definition (The Classes PO and NPO)

Let O ∈ {0, 1}∗.
PO is the set containing every language that can be decided by a
polynomial-time deterministic TMs with oracle access to O.

NPO is the set of all languages that can be decided by a
polynomial-time nondeterministic TM with oracle access to O.

Example: Let Sat denote the language of unsatisfiable formulae.

Then Sat ∈ PSat.

Suppose, we are given oracle access to Sat.

To decide whether a formula ϕ is in Sat, a polynomial-time oracle
TM:

Asks its oracle if ϕ ∈ Sat;
Then outputs the opposite answer.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 33 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Example

Let O ∈ P. Then
PO = P.

Allowing an oracle can only help compute more languages.

So P ⊆ PO .

If O ∈ P, then it is redundant as an oracle.

Let MO be any polynomial-time oracle TM using O.

We can transform MO into a standard TM (no oracle) M by simply
replacing each oracle call with the computation of O.

Thus, PO ⊆ P.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 34 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Example

Let

ExpCom = {〈M, x , 1n〉 : M outputs 1 on x within 2n steps}.

Then PExpCom = NPExpCom = EXP.

Clearly, an oracle to ExpCom allows one to perform an
exponential-time computation at the cost of one call.

So EXP ⊆ PExpCom.

Conversely, let MO be a nondeterministic polynomial-time oracle TM.

We can simulate its execution with an ExpCom oracle in exp time.

Such time suffices both to:

Enumerate all of M ’s nondeterministic choices;
Answer the ExpCom oracle queries.

Thus, EXP ⊆ PExpCom ⊆ NPExpCom ⊆ EXP.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 35 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Relativizing Results

Regardless of what the oracle O is, the set of all TM’s with access to
O satisfy Properties I and II:

We can represent TMs with oracle O as strings;
We can use this representation to simulate such TMs using a universal
TM, which, itself also, has access to O.

It follows that any result about TMs or complexity classes that uses
only I and II also holds for the set of all TMs with oracle O.

Such results are called relativizing results.

The Baker, Gill, Solovay Theorem, which follows, implies that neither
P = NP nor P 6= NP can be a relativizing result.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 36 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

The Baker, Gill, Solovay Theorem

Theorem (Baker, Gill, Solovay)

There exist oracles A,B , such that PA = NPA and PB 6= NPB .

First, we take A to be the language ExpCom.

Then, by the preceding example,

PA = NPA = EXP.

We turn to the second construction.

For any language B , let UB be the unary language

UB = {1n : some string of length n is in B}.

For every oracle B , the language UB is in NPB .

A nondeterministic TM can make a nondeterministic guess for the
string x ∈ {0, 1}n , such that x ∈ B .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 37 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

The Baker, Gill, Solovay Theorem (Cont’d)

We showed that, for every oracle B , UB ∈ NPB .

We now construct an oracle B , such that UB 6∈ PB .

Combining, we get that PB 6= NPB .

For every i , we let Mi be the oracle TM represented by the binary
expansion of i .

We construct B in stages.

Stage i ensures that MB
i

does not decide UB in 2n

10 time.

Initially, we let B be empty and gradually add strings to it.

Each subsequent stage determines the status of a finite number of
strings (i.e., whether or not these strings will ultimately be in B).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 38 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Construction of the Oracle B

Stage i : So far, we have declared whether or not a finite number of
strings are in B .

Choose n large enough so that it exceeds the length of any such
string.

Run Mi on input 1n for 2n

10 steps.

Whenever Mi queries the oracle about strings whose status has been
determined, we answer consistently.
When Mi queries strings whose status is undetermined, we declare that
the string is not in B.

After letting Mi finish computing on 1n, we now wish to ensure that
the answer of Mi on 1n (whatever it was) is incorrect.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 39 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Construction of the Oracle B (Cont’d)

Note that, during this computation, we have only decided the fate of
at most 2n

10 strings in {0, 1}n .
All of them were decided to be not in B .

Suppose Mi accepts 1
n.

Then we declare that all remaining strings of length n are also not in B.
This ensures 1n 6∈ UB .
Suppose Mi rejects 1

n.
We pick any string x of length n that Mi has not queried.
Such string exists because Mi made at most 2n

10 queries.
We declare that x is in B.
This ensures that 1n ∈ UB .

In either case, the answer of Mi is incorrect.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 40 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

The Baker, Gill, Solovay Theorem (Conclusion)

Every polynomial p(n) is smaller than 2n

10 , for large enough n.

Every TM M is represented by infinitely many strings.

So the construction ensures that M does not decide UB .

Thus, UB 6∈ PB .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 41 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Remarks on Diagonalization

Is it possible that diagonalization or some other simulation method
might help resolve the P vs. NP?

If so, it has to use some fact about TMs that does not hold in the
presence of oracles (i.e., a nonrelativizing fact).

Even though many results in complexity relativize, there are some
notable exceptions, but we still do not know how to use these
nonrelativizing techniques to answer this fundamental question.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 42 / 43

Diagonalization Oracle Machines and the Limits of Diagonalization

Remarks on Oracles

In some settings in complexity an oracle provided to a TM is not
merely a language (i.e., Boolean function) but a general function
f : {0, 1}∗ → {0, 1}∗.
An oracle TM is a useful abstraction of an algorithm.

It uses another function as a black-box subroutine, without caring
about the specifics of its implementation.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 43 / 43

	Outline
	Diagonalization
	Time Hierarchy Theorem
	Nondeterministic Time Hierarchy Theorem
	Ladner's Theorem: Existence of NP-Intermediate Problems
	Oracle Machines and the Limits of Diagonalization

