
Advanced Computational Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 1 / 66

Outline

1 Space Complexity
Space-Bounded Computation
PSPACE-Completeness
NL-Completeness

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 2 / 66

Space Complexity Space-Bounded Computation

Subsection 1

Space-Bounded Computation

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 3 / 66

Space Complexity Space-Bounded Computation

Space-Bounded Computation

Definition (Space-Bounded Computation)

Let S : N→ N and L ∈ {0, 1}∗.

We say that L ∈ SPACE(S(n)) if there is a constant c and a TM M

deciding L, such that at most c · S(n) locations on M’s work tapes
(excluding the input tape) are ever visited by M’s head during its
computation on every input of length n.

We say that L ∈ NSPACE(S(n)) if there is an NDTM M deciding L

that never uses more than c · S(n) nonblank tape locations on length
n inputs, regardless of its nondeterministic choices.

The space bound applies only to the work tape.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 4 / 66

Space Complexity Space-Bounded Computation

Space Constructible Bounds

A function S : N→ N is space-constructible if there exists a TM
that, given input x computes

x 7→ S(|x |)

in O (S(|x |)) space.

We consider only space-constructible bounds S : N→ N.

S being space-constructible means the machine “knows” the space
bound.

All common functions are space-constructible.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 5 / 66

Space Complexity Space-Bounded Computation

Space Bounds vs. Time Bounds

Separating the TM’s work tapes from its input tape makes it possible
to consider space-bounded machines that use space less than the
input length, i.e., such that

S(n) < n.

In contrast, for time bounded computation DTIME(T (n)), T (n) < n

does not make much sense, since the TM does not have enough time
to read the entire input.

We will require that S(n) > log n, since the input tape has length n,
and we would like the machine to at least be able to “remember” the
index of the cell of the input tape that it is currently reading.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 6 / 66

Space Complexity Space-Bounded Computation

Space Bounds vs. Time Bounds (Cont’d)

By construction, a TM can access only one tape cell per step.

So we have
DTIME(S(n)) ⊆ SPACE(S(n)).

A SPACE(S(n)) machine can run for much longer than S(n) steps,
since space can be reused.

Indeed, a space S(n) machine can easily run for as much as 2Ω(S(n))

steps.

Example: Consider the machine that uses work tape of size S(n) to
maintain a counter that it increments from 1 to 2S(n)−1.

This machine:

Uses space S(n);
Runs for 2Ω(S(n)) steps.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 7 / 66

Space Complexity Space-Bounded Computation

Relations Between Time and Space Bounds

Any language in SPACE(S(n)) is in DTIME(2O(S(n))).

The same holds even for languages in NSPACE(S(n)).

Up to logarithmic terms, these are the only relationships known
between the power of space-bounded and time-bounded computation.

Theorem

For every space constructible S : N→ N,

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 8 / 66

Space Complexity Space-Bounded Computation

Space Bounds and the Halting Requirement

In defining nondeterministic space bounds, imposing the additional
restriction that the NDTM has to halt and produce an answer on
every input, regardless of the sequence of nondeterministic choices, is
redundant, provided we focus on NSPACE(S(n)), where S(n) is
space-constructible.

The NDTM can be easily modified to always halt.

This scan be achieved by keeping a counter and halting if the
computation runs for more than 2cS(n) steps, for some suitable
constant c .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 9 / 66

Space Complexity Space-Bounded Computation

Configuration Graphs

Let M be a (deterministic or nondeterministic) TM.

At a particular point during the execution of M, a configuration of
M consists of:

Its state;
The contents of all non blank entries of M ’s tapes;
The head positions.

For a space S(n) TM M and input x ∈ {0, 1}∗, the configuration

graph of M on input x , denoted GM,x , is a directed graph.

The nodes correspond to all possible configurations of M, where:

The input contains x ;
The work tapes have ≤ S(|x |) non blank cells.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 10 / 66

Space Complexity Space-Bounded Computation

Configuration Graphs (Cont’d)

The configuration graph GM,x has a directed edge from configuration
C to configuration C ′,

C −→ C ′,

if C ′ can be reached from C in one step according to M’s transition
function.

If M is deterministic, then the graph has out-degree one.
If M is nondeterministic, then the graph has out-degree at most two.

By modifying M to erase all its work tapes before halting, we can
assume that there is only a single configuration Caccept on which M

halts and outputs 1.

This means that M accepts the input x if and only if there exists a
directed path in GM,x from Cstart to Caccept.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 11 / 66

Space Complexity Space-Bounded Computation

Properties of Configuration Graphs

Claim

Let GM,x be the configuration graph of a space-S(n) machine M on some
input x of length n. Then:

1. Every vertex in GM,x can be described using cS(n) bits for some
constant c (depending on M’s alphabet size and number of tapes).

In particular, GM,x has at most 2cS(n) nodes.

2. There is a O (S(n))-size CNF formula ϕM,x such that, for every two
strings C ,C ′,

ϕM,x(C ,C
′) = 1 iff C and C ′ encode two neighboring

configurations in GM,x .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 12 / 66

Space Complexity Space-Bounded Computation

Properties of Configuration Graphs (Cont’d)

For Part 1, we note that a configuration is completely described by
giving:

The state the TM is in;
The contents of all work tapes;
The positions of the heads.

Encoding a configuration entails encoding:

The snapshot, i.e., state and current symbol read by all tapes;
In sequence, the non blank contents of all the work tapes, inserting
special “marker” symbols to denote the locations of the heads.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 13 / 66

Space Complexity Space-Bounded Computation

Properties of Configuration Graphs (Cont’d)

Part 2 is based on the proof of the Cook-Levin Theorem.

Deciding whether two configurations are neighboring can be expressed
as the AND of many checks.

Each check depends on only a constant number of bits.

Such checks can be expressed by constant-sized CNF formulas.

Moreover, the number of variables is proportional to the workspace.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 14 / 66

Space Complexity Space-Bounded Computation

Proof of the Time-Space Bounds Theorem

Theorem

For every space constructible S : N→ N,

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))).

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) are obvious.

So it suffices to show NSPACE(S(n)) ⊆ DTIME(2O(S(n))).

By enumerating over all possible configurations, we can construct the
graph GM,x in 2O(S(n))-time.
We then check whether Cstart is connected to Caccept in GM,x using a
standard linear time (in the size of the graph) breadth-first search
algorithm for connectivity.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 15 / 66

Space Complexity Space-Bounded Computation

Some Space Complexity Classes

Definition (Some Space Complexity Classes)

PSPACE =
⋃

c>0

SPACE(nc); L = SPACE(log n);

NPSPACE =
⋃

c>0

NSPACE(nc); NL = NSPACE(log n).

We can think of PSPACE and NPSPACE as the space analogs of the
time complexity classes P and NP, respectively.

Since time bounds shorter than the input length do not make sense,
there are no time analogs for L and NL.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 16 / 66

Space Complexity Space-Bounded Computation

Example

We show 3Sat ∈ PSPACE.

We describe a TM that decides 3Sat in linear space, i.e., O (n)
space, where n is the size of the 3Sat instance.

The machine just uses the linear space to cycle through all 2k

assignments in order, where k is the number of variables.

Once an assignment has been checked:

It can be erased from the work tape;
The work tape can then be reused to check the next assignment.

A similar idea of cycling through all potential certificates applies to
any NP language.

Therefore,
NP ⊆ PSPACE.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 17 / 66

Space Complexity Space-Bounded Computation

Example

Consider the languages

Even = {x : x has an even number of 1s};

Mult = {(xny, xmy, xnmy) : n ∈ N}.

We may use:

The grade school method for arithmetic;
The fact that a log space machine has enough space to keep a counter
up to n.

In that way, we can check that both Even and Mult are in L.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 18 / 66

Space Complexity Space-Bounded Computation

The Directed Path Problem

Consider the problem

Path = {〈G , s, t〉 : G is a directed graph in which
there is a path from s to t}.

We show that PATH ∈ NL.

If there is a path from s to t, then there is one of length at most n.

A nondeterministic machine can take a “nondeterministic walk”
starting at s.

It always maintains the index of the vertex it is at.

Moreover, it uses nondeterminism to select a neighbor of this vertex
to go to next.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 19 / 66

Space Complexity Space-Bounded Computation

The Directed Path Problem (Cont’d)

The machine accepts iff the walk ends at t in at most n steps, where
n is the number of nodes.

If the nondeterministic walk has run for n steps already and t has not
been encountered, the machine rejects.

The work tape only needs to hold O (log n) bits of information at any
step:

The number of steps that the walk has run for;
The identity of the current vertex.

It is open whether Path is also in L.

Path is NL-complete.

So the problem of whether Path is in L is equivalent to whether or
not L = NL.

The restriction of Path to undirected graphs is known to be in L.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 20 / 66

Space Complexity Space-Bounded Computation

Space Hierarchy Theorem

Analogously to time-bounded classes, there is also a hierarchy
theorem for space bounded computation.

Theorem (Space Hierarchy Theorem)

If f , g are space-constructible functions satisfying f (n) = o (g(n)), then

SPACE(f (n)) (SPACE(g(n)).

The proof is analogous to the proof of the Time Hierarchy Theorem.

One has a universal TM using only a constant factor of space
overhead (as opposed to the logarithmic factor in time overhead).

Thus, in the present context, the logarithmic term of the Time
Hierarchy Theorem is not needed.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 21 / 66

Space Complexity PSPACE-Completeness

Subsection 2

PSPACE-Completeness

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 22 / 66

Space Complexity PSPACE-Completeness

PSPACE-Hardness and PSPACE-Completeness

We do not know if P = PSPACE.

Since NP ⊆ PSPACE, equality would imply P = NP.

Recall L ≤p L′ means that L is polynomial-time reducible to L′.

We use reductions to present some complete problems for PSPACE.

Definition (PSPACE-Hard and PSPACE-Complete Language)

A language L′ is PSPACE-hard if for every L ∈ PSPACE, L ≤p L′.
If, in addition, L′ ∈ PSPACE then L′ is PSPACE-complete.

If any PSPACE-complete language is in P then so is every other
language in PSPACE.

Equivalently, if PSPACE 6= P, then a PSPACE-complete language is
not in P.

Intuitively speaking, a PSPACE-complete language is the “most
difficult” problem of PSPACE.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 23 / 66

Space Complexity PSPACE-Completeness

A First PSPACE-Complete Language

Define the language

SpaceTmSat = {〈M,w , 1n〉 : DTM M accepts w in space n}.

Theorem

SpaceTmSat is PSPACE-complete.

First, we reason that SpaceTmSat is in PSPACE.

There exists a universal Turing machine using only a constant factor
of space overhead.

We use this machine to simulate M on input w for n steps.

Note that a machine using only space n can run in time at most 2cn,
for some fixed constant c .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 24 / 66

Space Complexity PSPACE-Completeness

A First PSPACE-Complete Language (Cont’d)

We next show hardness.

Suppose that L ∈ PSPACE.

Thus, there exists a DTM M, running in nk space that decides L.

The polynomial time reduction

f : L → SpaceTmSat

maps an input x for L to an instance

f (x) = 〈M, x , 1|x |
k

〉

of SpaceTmSat.

Now xMy and k are constant.

So f (x) can be constructed in polynomial time, given x .

Finally, we have

x ∈ L iff M accepts x in space |x |k

iff 〈M, x , 1|x |
k
〉 ∈ SpaceTmSat.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 25 / 66

Space Complexity PSPACE-Completeness

Quantified Boolean Formulae

Definition (Quantified Boolean Formula)

A quantified Boolean formula (QBF) is a formula of the form

Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn),

where:

Each Qi is one of the two quantifiers ∀ or ∃;

x1, . . . , xn range over {0, 1};

ϕ is a plain (unquantified) Boolean formula.

The quantifiers ∀ and ∃ have their standard meaning of “for all” and
“exists”.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 26 / 66

Space Complexity PSPACE-Completeness

Prenex Normal Form

The definition restricts attention to quantified Boolean formulae in
prenex normal form (all quantifiers appear to the left).

A general quantified Boolean formulae (where the quantifiers can
appear elsewhere) may be transformed into an equivalent formula in
prenex form in polynomial time.

Unlike in the case of the Sat and 3Sat, we do not require that the
inner unquantified formula ϕ is in CNF or 3CNF form.

This choice is also not important, since we can in polynomial time
transform a general quantified Boolean formula to an equivalent
formula where the inner unquantified formula is in 3CNF form.

Finally, note that, since all the variables of a QBF are bound by some
quantifier, the QBF is always either true or false.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 27 / 66

Space Complexity PSPACE-Completeness

Example

Consider the formula

∀x∃y(x ∧ y) ∨ (x ∧ y).

The formula says

“for every x ∈ {0, 1}, there is a y ∈ {0, 1}, that is equal to x”.

Informally written,
∀x∃y(x = y).

This formula is true.

Switching the second quantifier to ∀ gives

∀x∀y(x ∧ y) ∨ (x ∧ y).

This formula is false.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 28 / 66

Space Complexity PSPACE-Completeness

Example

Sat asks to decide, given a Boolean formula ϕ, with n free variables
x1, . . . , xn, whether or not ϕ has a satisfying assignment.

I.e., whether there exist x1, . . . , xn ∈ {0, 1}, such that

ϕ(x1, . . . , xn)

is true.

Equivalently, Sat asks whether the quantified Boolean formula

ψ = ∃x1 · · · ∃xnϕ(x1, . . . , xn)

is true.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 29 / 66

Space Complexity PSPACE-Completeness

Negation of a Formula

Note that the negation of the formula

Q1x1 · · ·Qnxnϕ(x1, x2, . . . , xn)

is the same as
Q ′

1x1 · · ·Q
′
nxn¬ϕ(x1, x2, . . . , xn),

where:

Q ′

i is ∃ if Qi was ∀;
Q ′

i is ∀ if Qi was ∃.

The switch of ∃ to ∀ in the case of Sat gives instances of
Tautology.

We saw that Tautology is a coNP-complete language.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 30 / 66

Space Complexity PSPACE-Completeness

True Quantified Boolean Formulae

Definition (True Quantified Boolean Formulae)

TQBF = {ψ : ψ is a true quantified Boolean formula}.

Theorem

TQBF is PSPACE-complete.

We first show TQBF ∈ PSPACE.

Let
ψ = Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn)

be a quantified Boolean formula with n variables.

We denote the size of ϕ by m.

We design a recursive algorithm A that decides the truth of ψ in
O (n +m) space.

We solve the slightly more general case, where ϕ may include the
constants 0 (“false”) and 1 (“true”)

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 31 / 66

Space Complexity PSPACE-Completeness

TQBF in in PSPACE

Suppose, first, n = 0 (there are no variables).

Then the formula contains only constants and can be evaluated in
O (m) time and space.

Suppose, next, that n > 0.

For b ∈ {0, 1}, denote by
ψ↾x1=b

the modification of ψ where Q1 is dropped and all occurrences of x1
are replaced by b.

The algorithm A works as follows.

If Q1 = ∃, output 1 iff A(ψ↾x1=0) or A(ψ↾x1=1) outputs 1.
If Q1 = ∀, output 1 iff both A(ψ↾x1=0) and A(ψ↾x1=1) output 1.

It is clear that A returns the correct answer on any formula ψ.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 32 / 66

Space Complexity PSPACE-Completeness

Space Complexity of A

Let sn,m denote the space A uses on formulas with n variables and
description size m.

Space, unlike time, is a reusable resource.

The crucial point is that both recursive computations

A(ψ↾x1=0) and A(ψ↾x1=1)

can run in the same space.
After computing A(ψ↾x1=0), the algorithm A:

Needs to retain only the single bit of output from that computation;
Can reuse the rest of the space for the computation of A(ψ↾x1=1).

Suppose A uses O (m) space to write ψ↾x1=b for its recursive calls.

Then we get that
sn,m = sn−1,m +O(m) .

This recursive equation yields

sn,m = O(n ·m) .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 33 / 66

Space Complexity PSPACE-Completeness

PSPACE-Hardness of TQBF

We now show that, for every L ∈ PSPACE, L ≤p TQBF.

Let M be a machine that decides L in S(n) space and let x ∈ {0, 1}n.

We show how to construct a quantified Boolean formula χ of size
O
(

S(n)2
)

, such that

χ is true iff M accepts x .

Let m = O(S(n)) denote the number of bits needed to encode a
configuration of M on length n inputs.

We have shown that there is a Boolean formula ϕM,x , such that, for
every two strings C ,C ′ ∈ {0, 1}m ,

ϕM(C ,C ′) = 1 iff C and C ′ encode two adjacent configurations
in the configuration graph GM,x .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 34 / 66

Space Complexity PSPACE-Completeness

PSPACE-Hardness of TQBF (Cont’d)

We will use ϕM,x to come up with a polynomial-sized quantified
Boolean formula ψ that has:

Polynomially many variables bound by quantifiers;
Two unquantified variables,

such that, for every C ,C ′ ∈ {0, 1}m,

ψ(C ,C ′) is true iff C has a directed path to C ′ in GM,x .

By plugging in the values Cstart and Caccept to ψ we get a quantified
Boolean formula χ that is true iff M accepts x .

We define the formula ψ inductively.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 35 / 66

Space Complexity PSPACE-Completeness

Construction of the Quantified Boolean Formula

We let ψi (C ,C
′) be true if and only if there is a path of length at

most 2i from C to C ′ in GM,x .

Note that ψ = ψm and ψ0 = ϕM,x .

The crucial observation is that there is a path of length at most 2i

from C to C ′ if and only if there is a configuration C ′′ with:

A path of length at most 2i−1 from C to C ′′;
A path of length at most 2i−1 from C ′′ to C ′.

This suggest defining ψi by

ψi (C ,C
′) = ∃C ′′ψi−1(C ,C

′′) ∧ ψi−1(C
′′,C ′).

But this definition of ψi(C ,C
′) is not satisfactory.

ψi ’s size is at least twice the size of ψi−1.

By a simple induction, ψm has size about 2m, which is too large.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 36 / 66

Space Complexity PSPACE-Completeness

Construction of the Quantified Boolean Formula (Cont’d)

Instead, we use additional quantified variables to save on description
size:

ψi (C ,C
′) = ∃C ′′∀D1∀D2((D1 = C ∧ D2 = C ′′)

∨ (D1 = C ′′ ∧ D2 = C ′)) ⇒ ψi−1(D
1,D2).

Now
size(ψi) ≤ size(ψi−1) + O (m) .

Hence, size(ψm) ≤ O
(

m2
)

.

The two definitions of ψi are logically equivalent.

We can convert the final formula to prenex form in polynomial time.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 37 / 66

Space Complexity PSPACE-Completeness

PSPACE and NPSPACE

The proof of the theorem uses the notion of a configuration graph.

Moreover, it does not require this graph to have out-degree one.

Thus, it can be applied to show that TQBF is not just hard for
PSPACE but in fact even for NPSPACE!

But we know that TQBF ∈ PSPACE.

So this implies that PSPACE = NPSPACE.

This is quite surprising, since our intuition is that the corresponding
classes for time (P and NP) are different.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 38 / 66

Space Complexity PSPACE-Completeness

Savitch’s Theorem

Theorem (Savitch’s Theorem)

For any space-constructible S : N→ N, with S(n) ≥ log n,

NSPACE(S(n)) ⊆ SPACE(S(n)2).

Let L ∈ NSPACE(S(n)) be a language decided by a TM M, such that
for every x ∈ {0, 1}n :

The configuration graph G = GM,x has at most M = 2O(S(n)) vertices;
Determining whether x ∈ L is equivalent to determining whether
Caccept can be reached from Cstart in this graph.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 39 / 66

Space Complexity PSPACE-Completeness

Proof of Savitch’s Theorem

We describe a recursive procedure Reach?(u, v , i) that returns:

“YES”, if there is a path from u to v of length at most 2i ;
“NO”, otherwise.

Again, the main observation is that there is a path from u to v of
length at most 2i iff there is a vertex z such that:

There exists an at most 2i−1 long path from u to z ;
There exists an at most 2i−1 long path from z to v .

On inputs u, v , i , Reach? does the following:

It enumerates over all vertices z (at a cost of O (logM) space);
Output “YES” if it finds one z , such that:

Reach?(u, z , i − 1) =“YES”;
Reach?(z , v , i − 1) =‘YES”.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 40 / 66

Space Complexity PSPACE-Completeness

Proof of Savitch’s Theorem (Cont’d)

Although the algorithm makes n recursive invocations, it can reuse
the space in each of these invocations.

Let sM,i be the space complexity of Reach?(u, v , i) on an M vertex
graph.

Then
sM,i = sM,i−1 +O(logM) .

Hence,
sM,logM = O

(

log2M
)

= O
(

S(n)2
)

.

Finally, observe that Caccept is reachable from Cstart iff it can be
reached via a path of length at most M.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 41 / 66

Space Complexity PSPACE-Completeness

PSPACE-Completeness vs. NP-Completeness

Recall that the central feature of NP-complete problems is that a yes
answer has a short certificate.

The key concept for PSPACE-complete problems seems to be that of
a winning strategy for a two-player game with perfect information.

E.g., in chess two players alternately make moves, and the moves are
made on a board visible to both, hence the term perfect information.

More explicitly, Player 1 has a winning strategy iff:

There is a first move for Player 1, such that:
For every possible first move of Player 2:
There is a second move of Player 1, such that:
...

such that at the end Player 1 wins.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 42 / 66

Space Complexity PSPACE-Completeness

PSPACE-Completeness vs. NP-Completeness (Cont’d)

Deciding whether or not the first player has a winning strategy seems
to require searching the tree of all possible moves.

This is reminiscent of NP, for which we also seem to require
exponential search.

The crucial difference is the lack of a short “certificate” for the
statement “Player 1 has a winning strategy”.

The only certificate we can think of is the winning strategy itself.

As noticed, such a strategy requires exponentially many bits to even
describe.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 43 / 66

Space Complexity PSPACE-Completeness

The QBF game

The “board” for the QBF game is a Boolean formula ϕ whose free
variables are x1, x2, . . . , x2n.

The two players alternately make moves, which involve picking values
for x1, x2, . . ., in order.

Player 1 will pick values for the odd-numbered variables x1, x3, x5, . . .;
Player 2 will pick values for the even-numbered variables x2, x4, x6,

We say Player 1 wins iff at the end ϕ(x1, x2, . . . , x2n) is true.

In order for Player 1 to have a winning strategy, he must have a way
to win for all possible sequences of moves by Player 2.

Equivalently, Player 1 has a winning strategy iff

∃x1∀x2∃x3∀x4 · · · ∀x2nϕ(x1, x2, . . . , x2n),

which is just saying that this quantified Boolean formula is true.

Thus, deciding whether Player 1 has a winning strategy for a given
board in the QBF game is PSPACE-complete.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 44 / 66

Space Complexity NL-Completeness

Subsection 3

NL-Completeness

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 45 / 66

Space Complexity NL-Completeness

Introducing Logspace Reductions

We consider problems that are complete for NL.

To study whether or not NL = L, we cannot use polynomial-time
reductions, since L ⊆ NL ⊆ P.

The reduction should not be more powerful than the weaker class,
which is L.

We use instead logspace reductions, which, as the name implies, are
computed by a deterministic TM running in logarithmic space.

A subtle issue is that a logspace machine might not even have the
memory to write down its output.

As a solution, we require that the reduction should be able to
compute any desired bit of the output in logarithmic space.

I.e., the reduction f is implicitly computable in logarithmic space, in
the sense that there is an O (log |x |)-space machine that, on input
〈x , i〉, outputs f (x)i , provided that i ≤ |f (x)|.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 46 / 66

Space Complexity NL-Completeness

Logspace Reductions and NL-Completeness

Definition (Logspace Reduction and NL-Completeness)

A function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace computable
if:

f is polynomially bounded, i.e., there is some c , such that

|f (x)| ≤ |x |c , for every x ∈ {0, 1}∗;

The languages
Lf = {〈x , i〉 : f (x)i = 1},

L′f = {〈x , i〉 : i ≤ |f (x)|}

are in L.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 47 / 66

Space Complexity NL-Completeness

Logspace Reductions and NL-Completeness (Cont’d)

Definition (Logspace Reduction and NL-Completeness Cont’d)

A language B is logspace reducible to language C , denoted B ≤ℓ C ,
if there is a function f : {0, 1}∗ → {0, 1}∗, such that:

f is implicitly logspace computable;
For every x ∈ {0, 1}∗,

x ∈ B iff f (x) ∈ C .

We say that C is NL-complete if:

C is in NL;
For every B ∈ NL, B ≤ℓ C .

Another way to think of logspace reductions is to imagine that the
reduction is given a separate “write-once” output tape, on which it
can either write a bit or move to the right, but never move left or
read the bits it wrote down previously.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 48 / 66

Space Complexity NL-Completeness

Properties of Logspace Reductions

Lemma

1. If B ≤ℓ C and C ≤ℓ D, then B ≤ℓ D.

2. If B ≤ℓ C and C ∈ L, then B ∈ L.

We show that if f , g are two functions that are logspace implicitly
computable, then so is the function h where h(x) = g(f (x)).

Then the two parts are proved as follows.

For Part 1, let f be the reduction from B to C and g the reduction
from C to D.
For Part 2, let f be the reduction from B to C and g be the
characteristic function of C , i.e., g(y) = 1 iff y ∈ C .

Let Mf be the logspace machine that computes x , i 7→ f (x)i ;

Let Mg be the logspace machine that computes y , j 7→ g(y)j .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 49 / 66

Space Complexity NL-Completeness

The Machine Mh

We construct a machine Mh that, given input x , j , with j ≤ |g(f (x))|,
outputs g(f (x))j .

Machine Mh will pretend that:

It has an additional (fictitious) input tape on which f (x) is written;
It is merely simulating Mg on this input.

The true input tape has x , j written on it.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 50 / 66

Space Complexity NL-Completeness

The Machine Mh (Cont’d)

Mh always maintains on its work tape the index, say i , of the cell on
the fictitious tape that Mg is currently reading.

This requires only log |f (x)| space.

To compute for one step, Mg needs to know the contents of f (x)i .

At this point:

Mh temporarily suspends its simulation of Mg (copying the contents of
Mg ’s work tape to a safe place on its own work tape);
Invokes Mf on inputs x , i to get f (x)i .

Then it resumes its simulation of Mg using this bit.

The total space Mh uses is

O
(

log |g(f (x))| + s(|x |) + s ′(|f (x)|)
)

.

Since |f (x)| ≤ poly(x), this expression is O (log |x |).

By the lemma, an NL-complete language is in L iff NL = L.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 51 / 66

Space Complexity NL-Completeness

NL-Completeness of Directed Paths

Recall the language

Path = {〈G , s, t〉 : vertex t can be reached
from s in the directed graph G}.

Theorem

Path is NL-complete.

We have seen that PATH is in NL.

Let L be any language in NL.

Let M be a machine that decides L in space O (log n).

We describe a logspace implicitly computable function f that reduces
L to Path.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 52 / 66

Space Complexity NL-Completeness

NL-Completeness of Path (Cont’d)

Let X be an input of size n.

f (x) will be the configuration graph GM,x .

Its nodes are all possible 2O(log n) configurations of the machine on
input x , along with the start configuration Cstart and the accepting
configuration Caccept.

In this graph there is a path from Cstart to Caccept iff M accepts x .

We have
f (x) = 〈GM,x ,Cstart,Caccept〉.

The graph GM,x is represented as usual by an adjacency matrix.

It contains 1 in the 〈C ,C ′〉th position iff there is an edge from C to
C ′ in GM,x .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 53 / 66

Space Complexity NL-Completeness

NL-Completeness of Path (Cont’d)

We show that this matrix can be computed by a logspace reduction.

To this end, we describe a logspace machine that can compute any
desired bit in it.

Suppose the input is 〈C ,C ′〉.

A deterministic machine can examine C ,C ′ and check whether C ′ is
one of the at most two configurations that can follow C according to
the transition function of M.

The space requirement is

O
(

|C |+ |C ′|
)

= O(log |x |) .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 54 / 66

Space Complexity NL-Completeness

Read-Once Certificates

We provide an alternative definition of the class NL using certificates

instead of nondeterministic TMs.

A subtle issue is that, since a certificate may be polynomially long, a
logspace machine may not have the space to store it.

Thus, the certificate-based definition of NL assumes that the
certificate is provided to the logspace machine on a separate tape
that is “read once”.

This means that the machine’s head on the tape can only sweep the
tape from left to right once, and, thus, never read the same bit of the
certificate twice.

At each step, the machine’s head on that tape can either stay in place
or move to the right.

Read-once access to bits in a certificate is just an alternative way to
view nondeterministic choices.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 55 / 66

Space Complexity NL-Completeness

Certificate Definition of NL

Definition (Alternative Definition of NL)

A language L is in NL if there exists a deterministic TM M (called the
verifier), with an additional special read-once input tape, and a
polynomial p : N→ N, such that:

For every x ∈ {0, 1}∗,

x ∈ L iff (∃u ∈ {0, 1}p(|x |))(M(x , u) = 1),

where M(x , u) denotes the output of M, where x is placed on its
input tape and u is placed on its special read-once tape;

M uses at most O (log |x |) space on its read-write tapes, for every
input x .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 56 / 66

Space Complexity NL-Completeness

Certificate Definition of NL (Illustration)

Below we give the certificate view of NL.

Suppose, in the above scenario, we remove the read-once restriction
and allow the TM’s head to move back and forth on the certificate,
and read each bit multiple times.

Then the class changes from NL to NP.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 57 / 66

Space Complexity NL-Completeness

The Complement of PATH and coNL

We define coNL as the set of languages that are complements of NL
languages.

A simple example of a coNL language is Path, the complement of
the Path language.

A decision procedure for Path must accept the tuple 〈G , s, t〉 when
there is no path from s to t in the graph.

It is easy see that Path is not only in coNL, but is in fact
coNL-complete.

That is, every coNL language is logspace reducible to Path.

Unlike in the case of Path, there is no natural certificate for the
nonexistence of a path from s to t.

Thus, researchers believed that Path 6∈ NL.

The Immerman-Szelepcsényi Theorem showed the opposite holds.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 58 / 66

Space Complexity NL-Completeness

The Immerman-Szelepcsényi Theorem

Theorem (Immerman-Szelepcsényi Theorem)

Path ∈ NL.

It suffices to exhibit a O (log n)-space verification algorithm A, such
that, for every n-vertex graph G and vertices s and t, there exists a
polynomial certificate u, such that

A(〈G , s, t〉, u) = 1 iff t is not reachable from s in G ,

where A has only read-once access to u.

For simplicity, we identify G ’s vertices with {1, . . . , n}.

Let Ci be the set of vertices that are reachable from s in G within at
most i steps.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 59 / 66

Space Complexity NL-Completeness

The Immerman-Szelepcsényi Theorem (Cont’d)

Membership in Ci is easily certified.

For every i ∈ [n] and vertex v , the sequence of vertices v0, v1, . . . , vk
along the path from s to v , where k ≤ i , is a certificate.

Its size is at most polynomial in n.

The algorithm can check the certificate using read-once access by
verifying that:

(1) v0 = s;
(2) For j > 0, there is an edge from vj−1 to vj ;
(3) vk = v ;
(4) Using simple counting, the path ends within at most i steps.

Next, we use Ci -membership certifiability to design two more types of
certificates.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 60 / 66

Space Complexity NL-Completeness

Process of Certifying that t 6∈ Cn

We design the following certificates:

1. A certificate that a vertex v is not in Ci , assuming the verifier has
already been told (i.e., convinced about) the size of Ci .

2. A certificate that |Ci | = c , for some number c , assuming the algorithm
has already been convinced about the size of Ci−1.

Note that C0 = {s} (and the verifier knows this).

So we can provide the second kind of certificate to the verifier
iteratively to convince it of the sizes of the sets C1, . . . ,Cn.

Now Cn is just the set of all vertices reachable from s.

The verifier has been convinced of |Cn|.

So we can use the first kind of certificate to convince the verifier
t 6∈ Cn.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 61 / 66

Space Complexity NL-Completeness

Certifying that v is not in Ci , given |Ci |

1. Certifying that v is not in Ci , given |Ci |:

The certificate is simply the list of certificates to the effect that u is
in Ci , for every u ∈ Ci , sorted in ascending order of vertices.

The verifier checks that:

(1) Each certificate is valid;
(2) The vertex u for which a certificate is given is indeed larger than the

previous vertex;
(3) No certificate is provided for v ;
(4) The total number of certificates provided is exactly |Ci |.

If v 6∈ Ci , then the verifier will accept the above certificate;

If v ∈ Ci there will not exist |Ci | certificates that vertices
u1 < u2 < · · · < u|Ci | are in Ci , where uj 6= v , for every j .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 62 / 66

Space Complexity NL-Completeness

Certifying that v is not in Ci , given |Ci−1|

Certifying that v is no in Ci , given |Ci−1|:

The certificate is the list of |Ci−1| certificates to the effect that
u ∈ Ci−1, for every u ∈ Ci−1, in ascending order.

The algorithm checks everything as before except that in Step (3) it
verifies that no certificate is given for v or for a neighbor of v .

Now v ∈ Ci if and only if, there exists u ∈ Ci−1, such that one of the
following holds:

u = v ;
u is a neighbor of v in G .

So the procedure will not accept a false certificate by the same
reasons as above.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 63 / 66

Space Complexity NL-Completeness

Certifying that |Ci | = c , given |Ci−1|

2. Certifying that |Ci | = c , given |Ci−1|:

We have described how to give, for any vertex v , certificates to the
effect that v ∈ Ci or v 6∈ Ci (whichever is true).

The certificate that |Ci | = c will consist of n certificates for each of
the vertices 1 to n in ascending order.

For every vertex u, there will be an appropriate certificate depending
on whether u ∈ Ci or not.

The verifier will verify all the certificates and count the vertices that
have been certified to be in Ci .

If this count is equal to c , the verifier accepts.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 64 / 66

Space Complexity NL-Completeness

NPSPACE and coNPSPACE

Using the notion of the configuration graph, the proof of the
Immerman-Szelepcsényi Theorem may be modified to show

Corollary

For every space constructible S(n) ≥ log n,

NSPACE(S(n)) = coNSPACE(S(n)).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 65 / 66

Space Complexity NL-Completeness

Space-Bounded and Time-Bounded Complexity Classes

Based on our understanding of the relations between the various
space-bounded and time-bounded complexity classes, we get

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

The hierarchy theorems imply that

L (PSPACE and P (EXP.

So we know that at least some of these inclusions are strict.

However, we do not know which ones.

Most researchers believe that all of these inclusions are strict.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 66 / 66

	Outline
	Space Complexity
	Space-Bounded Computation
	PSPACE-Completeness
	NL-Completeness

