George Voutsadakis 1

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) [Advanced Computational Complexity](#page-44-0) December 2024 1/45

- The Class Σ_2^P
- **[The Polynomial Hierarchy](#page-8-0)**
- **[Alternating Turing Machines](#page-20-0)**
- **[Time vs. Alternations: Time-Space Tradeoffs for](#page-30-0) SAT**
- [Defining the Hierarchy via Oracle Machines](#page-39-0)

- We introduce a new complexity class, called the polynomial hierarchy, denoted PH, which is a generalization of P, NP and coNP.
- It consists of an infinite number of subclasses, called levels, which are conjectured to be distinct, a stronger form of the conjecture $P \neq NP$.
- We provide three equivalent definitions of the polynomial hierarchy:
	- As the set of languages defined via polynomial-time predicates, combined with a constant number of alternating for all (\forall) and exists (∃) quantifiers, generalizing the definitions of NP and coNP.
	- Via the use of alternating Turing machines, that are a generalization of nondeterministic Turing machines.
	- Via the use of oracle Turing machines.
- A fourth characterization, using uniform families of circuits, will be postponed for later.
- These characterizations are used to show that SAT cannot be solved using simultaneously linear time and logarithmic space.

George Voutsadakis (LSSU) [Advanced Computational Complexity](#page-0-0) December 2024

Subsection 1

- We focus on some computational problems that seem to not be captured by NP-completeness.
- \bullet Recall the following NP problem INDSET, for which we do have a short certificate of membership,

 $\text{INDSET} = \{\langle G, k \rangle : \text{graph } G \text{ has an independent set of size } \geq k\}.$

Consider a slight modification consisting of determining the largest independent set in a graph (phrased as a decision problem),

EXACTINDSET = $\{(G, k) :$ the largest independent set in G has size exactly k .

- Now there seems to be no short certificate for membership.
- \circ $\langle G, k \rangle \in$ EXACTINDSET iff there exists an independent set of size k in G and every other independent set has size at most k .

George Voutsadakis (LSSU) [Advanced Computational Complexity](#page-0-0) December 2024

• Consider, also, the problem of determining the smallest Boolean formulas equivalent to a given formula,

MINEQDNF = $\{\langle \varphi, k \rangle : \exists$ DNF formula ψ of size $\leq k$ that is equivalent to the DNF formula $\varphi\},\$

where:

- A DNF formula is a Boolean formula that is an OR of ANDs:
- Two formulas are equivalent if they agree on all possible assignments.

• The complement of this language is

 $\overline{\text{MinkQDNF}}$ = $\{\langle \varphi, k \rangle : \forall \text{DNF formulas } \psi \text{ of size } \leq k\}$ \exists assignment u s.t. $\varphi(u) \neq \psi(u)$.

- Again, there is no obvious notion of a certificate of membership for MINEQDNF.
- To capture these languages, we seem to need to allow not only a single "exists" or "for all" quantifier, but a combination of both.

George Voutsadakis (LSSU) [Advanced Computational Complexity](#page-0-0) December 2024

Definition (The Class Σ_2^p)

The class Σ_2^{ρ} is the set of all languages L for which, there exists a polynomial-time TM M and a polynomial q, such that

$$
x \in L \quad \Leftrightarrow \quad \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} M(x, u, v) = 1,
$$

for every $x \in \{0,1\}^*$.

Note that Σ_2^p contains both the classes NP and coNP. \bullet

- The language $\textsc{ExactInDEF}$ is in Σ_2^p . A pair $\langle G, k \rangle$ is in EXACTINDSET iff:
	- \bullet There exists a size-k subset S of G's vertices, such that:
	- For every size- $(k + 1)$ subset S':

We have:

- \bullet S is an independent set in G ;
- S' is not an independent set in G .
- The language Mink QDNF is also in $\Sigma^\textit{p}_2$.

A pair $\langle \varphi, k \rangle$ is in MINEQDNF iff:

- There exists a DNF formula ψ of size $\leq k$, such that:
- \bullet For every assignment u :

We have $\varphi(u) = \psi(u)$.

The language MINEQDNF is known to be $\mathsf{\Sigma}^\textit{p}_2$ -complete.

Subsection 2

- **•** The definition of the polynomial hierarchy generalizes those of NP, coNP and Σ_2^p .
- o It consists of every language that can be defined via a combination of a polynomial time computable predicate and a constant number of ∀/∃ quantifiers.

Definition (Polynomial Hierarchy)

For $i\geq 1$, a language L is in Σ^{ρ}_i if there exists a polynomial-time TM M and a polynomial q, such that

$$
x \in L \quad \text{iff} \quad \exists u_1 \in \{0, 1\}^{q(|x|)} \forall u_2 \in \{0, 1\}^{q(|x|)} \cdots Q_i u_i \in \{0, 1\}^{q(|x|)} \\ M(x, u_1, \ldots, u_i) = 1,
$$

where Q_i denotes \exists , if *i* is odd, and \forall , if *i* is even.

Definition (Polynomial Hierarchy Cont'd)

The polynomial hierarchy is the set

$$
\mathsf{PH}=\bigcup_i \Sigma_i^p.
$$

- Note that $\Sigma_1^p = \text{NP}$. \bullet
- For every i, define \bullet

$$
\Pi_i^p = \mathrm{co}\Sigma_i^p = \{\overline{L}: L \in \Sigma_i^p\}.
$$

- Thus, $\Pi_1^p = \text{coNP}$.
- For every $i, \Sigma_i^p \subseteq \Pi_{i+1}^p \subseteq \Sigma_{i+2}^p$. \bullet

o Therefore.

$$
\mathsf{PH}=\bigcup_{i>0}\Pi_i^p.
$$

- We believe that $P \neq NP$ and $NP \neq coNP$.
- An appealing generalization of these conjectures is that, for every *i*,

$$
\Sigma_i^p \subsetneq \Sigma_{i+1}^p.
$$

- This conjecture is used often in complexity theory and is, sometimes, stated as "the polynomial hierarchy does not collapse".
- \bullet The polynomial hierarchy is said to **collapse** if there is some *i*, such that

$$
\Sigma_i^p = \Sigma_{i+1}^p.
$$

- As we will see, this would imply $\Sigma_i^p = \bigcup_{j \geq 1} \Sigma_j^p = \text{PH}.$
- In this case, we say that the polynomial hierarchy **collapses to the** i-th level.
- The smaller *i* is, the weaker, and, hence, more believable, it is to conjecture that PH does not collapse to the i-th level.

George Voutsadakis (LSSU) [Advanced Computational Complexity](#page-0-0) December 2024

Theorem

- 1. For every $i \geq 1$, if $\Sigma_i^p = \Pi_i^p$, then PH $= \Sigma_i^p$, i.e., the hierarchy collapses to the i-th level.
- If $P = NP$, then $PH = P$, i.e., the hierarchy collapses to P.
- We prove the second part. The first part follows by a similar reasoning. Suppose, first, that $P = NP$. We prove, by induction on *i*, that $\Sigma_i^p, \Pi_i^p \subseteq \mathsf{P}$. For $i = 1$, we have $\Sigma_1^p = \text{NP}$ and $\Pi_1^p = \text{coNP}$. So, by assumption, $\Sigma_1^p, \Pi_1^p \subseteq P$. Assume the inclusions are true for $i - 1$. We prove that $\Sigma_j^{\rho} \subseteq P$. Since Π_i^p consists of complements of languages in Σ_i^p and P is closed under complementation, it would follow that $\Pi_i^p \subseteq P$.

Let $L \in \Sigma_i^p$ i .

> By definition, there is a polynomial-time Turing machine M and a polynomial q, such that

$$
x \in L \quad \text{iff} \quad \exists u_1 \in \{0, 1\}^{q(|x|)} \forall u_2 \in \{0, 1\}^{q(|x|)} \cdots Q_i u_i \in \{0, 1\}^{q(|x|)} \\ M(x, u_1, \ldots, u_i) = 1,
$$

where Q_i is \exists/\forall according to the parity of $i.$ Define the language L' by stipulating that

$$
\langle x, u_1 \rangle \in L' \quad \text{iff} \quad \forall u_2 \in \{0, 1\}^{q(|x|)} \cdots Q_i u_i \in \{0, 1\}^{q(|x|)} \\ M(x, u_1, u_2, \ldots, u_i) = 1.
$$

Clearly, $L' \in \Pi_i^p$ p
i−1·

We have $L' \in \Pi_i^p$ p
i−1·

So, by our assumption, L' is in P.

This implies that there is a polynomial-time TM M' computing L' . Plugging M' in the defining condition for L , we get

$$
x \in L \quad \text{iff} \quad \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1.
$$

But this means $I \in \mathsf{NP}$. Therefore, under our assumption, $P = NP$, we get $L \in P$.

 \bullet We defined the notion of a language B reducing to a language C via a polynomial-time Karp reduction, denoted $B \leq_{p} C$, by the existence of a polynomial-time computable function $f:\{0,1\}^* \rightarrow \{0,1\}^*$, such that, for every x ,

 $x \in B$ iff $f(x) \in C$.

We say that a language L is $\mathsf{\Sigma}^\mathsf{p}_i\text{-}\mathbf{complete}$ if:

$$
\mathsf{L} \in \Sigma_i^p;
$$

For every $L' \in \sum_i^p$, $L' \leq_p L$.

We define Π^p_i -completeness and PH-completeness in the same way.

- We set out to show the following.
	- The polynomial hierarchy is believed not to have a complete problem.
	- For every $i \in \mathbb{N}$, both $\sum_{i=1}^{p}$ and Π_{i}^{p} have complete problems.

Claim

If there exists a language L that is PH -complete, then there exists an i, such that PH $= \sum_{i}^{p}$ (and, hence, the hierarchy collapses to its *i*-th level).

• We only provide a sketch of the proof.

Suppose that there exists a language L that is PH-complete. By definition $L \in PH = \bigcup_i \sum_i^p$ p
i ·

Thus, there exists *i*, such that $L \in \Sigma_i^p$ i .

Since L is PH-complete, we can reduce every language of PH to L.

But every language that is polynomial-time reducible to a language in $Σ_i^p$ $\frac{p}{i}$ is itself in Σ_i^p .

Hence, $PH \in \sum_{i}^{p}$ p
i ·

Just like NP and coNP, PH is also contained in PSPACE,

PH ⊆ PSPACE.

• Thus, unless the polynomial hierarchy collapses, $PH \neq PSPACE$. We use contraposition.

Assume that $PH = PSPACE$.

- Then the PSPACE-complete problem TQBF is PH-complete.
- By the claim, the polynomial hierarchy collapses.

- For every $i \geq 1$, we consider the class \sum_{i}^{p} .
- We also consider the following problem involving quantified Boolean expressions of the following type, with a limited number of alternations,

$$
\Sigma_i\text{SAT}=\exists u_1\forall u_2\exists\cdots Q_iu_i(\varphi(u_1,u_2,\ldots,u_i)=1),
$$

where:

- $\bullet \varphi$ is a Boolean formula not necessarily in CNF form (though the form does not make any difference);
- Each u_i is a vector of Boolean variables;
- Q_i is \forall or \exists , depending on the parity of *i*.
- It turns out that, for all *i*, Σ_i SAT is Σ_i^p -complete.
- For every *i*, Σ_i SAT is a special case of the TQBF problem.
- One can similarly define a problem $\Pi_i\text{SAT}$, which is Π_i^p -complete.

- Consider the problem SUCCINCTSETCOVER
- The input consists of:
	- A collection

$$
S=\{\varphi_1,\varphi_2,\ldots,\varphi_m\}
$$

of 3-DNF formulas on *n* variables;

- \bullet An integer k .
- We must determine whether there exists a subset $\mathcal{S}' \subseteq \{1,2,\ldots,m\}$ of size at most k for which

$$
\bigvee_{i\in S'}\varphi_i
$$

is a tautology.

- By its definition it is clear that \textsc{Succ} $\textsc{int}\textsc{Ser}$ Cover is in $\Sigma^\textit{p}_2$.
- It has been shown that $\textsc{Succin} \textsc{c}s \textsc{c} \textsc{c} \textsc{v}$ is $\sum_2^p \text{-complete}$.

Subsection 3

- Alternating Turing machines (ATMs) are generalizations of nondeterministic Turing machines.
- Even though NDTMs are not a realistic computational model, they help us understand the processes of guessing and verifying answers.
- ATMs play a similar role for certain languages for which there is no obvious short certificate for membership.
- The absence of such a certificate implies that such languages cannot be characterized using nondeterminism alone.

• In an alternating Turing machine:

- Two transition functions are available to choose from at each step;
- Every internal state, except q_{accept} and q_{halt} , is labeled with either \exists or ∀.
- An ATM's computation can evolve at every step in two ways.
- A non-deterministic TM accepts its input if there exists some sequence of choices that leads it to the state q_{accept} .
- By analogy, in an ATM, the existential quantifier of an NDTM over each choice is replaced with the quantifier corresponding to the label at each state.

Definition (Alternating Acceptance)

We define an alternating Turing Machine M accepting an input x . Let $G_{M,x}$ denote the directed acyclic configuration graph of M on input x. In $G_{M,x}$, there is an edge from a configuration C to configuration C' iff C' can be obtained from C by one step of M 's transition function. We label some of the vertices in this graph by "ACCEPT" by repeatedly applying the following rules until they cannot be applied anymore:

• Configuration C_{accept} , with the machine in q_{accept} , is labeled "ACCEPT".

Definition (Alternating Acceptance Cont'd)

- **•** If a configuration C is in a state labeled \exists and there is an edge from C to a configuration C' labeled "ACCEPT", then we label C "ACCEPT".
- \bullet If a configuration C is in a state labeled \forall and both configurations C', C" reachable from it in one step are labeled "ACCEPT", then we label C "ACCEPT".

We say that M accepts x if, at the end of this process, the starting configuration C_{start} is labeled "ACCEPT".

Definition (Alternating Time)

• For $T : \mathbb{N} \to \mathbb{N}$, we say that an alternating TM M runs in $T(n)$ -time if, for every input $x \in \{0,1\}^*$ and for every possible sequence of transition function choices,

M halts in at most $T(|x|)$ steps.

• We say that a language L is in ATIME($T(n)$) if there is a constant c and a $c \cdot \mathcal{T}(n)$ -time ATM M, such that, for every $x \in \{0,1\}^*$,

M accepts x iff $x \in L$.

Definition (Σ_i TIME and Π_i TIME)

For $i \in \mathbb{N}$, we define Σ_i TIME($T(n)$) (resp. Π_i TIME($T(n)$)) to be the set of languages accepted by a $T(n)$ -time ATM M, such that:

- M's initial state is labeled "∃" (resp. "∀");
- On every input and on every path from the starting configuration in the configuration graph, M can alternate at most $i - 1$ times from states with one label to states with the other label.
- One can show that, for every $i \in \mathbb{N}$,

$$
\Sigma_i^p = \bigcup_c \Sigma_i \text{TIME}(n^c) \text{ and } \Pi_i^p = \bigcup_c \Pi_i \text{TIME}(n^c).
$$

- In defining Σ_i TIME($T(n)$) and Π_i TIME($T(n)$), we restricted attention to ATMs whose number of alternations is some fixed constant i independent of the input size.
- We now go back to considering polynomial-time alternating Turing machines with no a priori bound on the number of quantifiers.
- We define

$$
AP = \bigcup_{c} \text{ATIME}(n^c).
$$

Theorem

 $AP = PSPACE$.

• We provide a sketch of the proof.

TQBF is trivially in AP.

- We "guess" values for each:
	- Existentially quantified variable using an ∃ state;
	- Universally quantified variable using a ∀ state.

Then do a deterministic polynomial-time computation at the end.

Moreover, every PSPACE language reduces to TQBF.

Thus, PSPACE \subset AP.

To show that $AP \subseteq PSPACE$, we can use a recursive procedure similar to the one used to show that $TOBF \in PSPACE$.

- It is also possible to consider alternating Turing machines that run in \bullet polynomial space.
- The class of languages accepted by such machines is called APSPACE. \bullet
- It turns out that \bullet

$$
APSPACE = EXP.
$$

Similarly, the set of languages accepted by alternating logspace machines is equal to P.

Subsection 4

- If it is widely believed that, for its solution, SAT requires both:
	- Exponential (or at least superpolynomial) time;
	- Linear (or at least super-logarithmic) space.
- **However, we currently have no way to prove these conjectures.**
- It is in fact possible, as far as we know, that SAT may have both a linear time algorithm and a logarithmic space one.
- But we can rule out an algorithm that runs simultaneously in linear time and logarithmic space.

Theorem (Time/Space Tradeoff for SAT)

For every two functions $S, T : \mathbb{N} \to \mathbb{N}$, define

 $TISP(T(n), S(n))$

to be the set of languages decided by a TM M that, on every input x :

• Takes at most $O(T(|x|))$ steps;

• Uses at most $O(S(|x|))$ cells of its read-write tapes.

Then,

```
SAT \notin TISP(n^{1.1}, n^{0.1}).
```
- TISP($T(n)$, $S(n)$) is often defined with respect to TMs with RAM memory.
- **The Tradeoff Theorem carries over to that model.**

George Voutsadakis (LSSU) and [Advanced Computational Complexity](#page-0-0) December 2024 33/45

We show that $\mathsf{NTIME}(n) \nsubseteq \mathsf{TISP}(n^{1.2}, n^{0.2}).$ A careful analysis of the proof of the Cook-Levin Theorem yields a reduction from the task of

deciding membership in an NTIME($T(n)$)-language

to the task of

deciding whether a $O(T(n)$ log $T(n)$ -sized formula is satisfiable.

- Moreover, every output bit of this reduction can be computed in polylogarithmic time and space.
- This, combined with the result above, yields the proof of the tradeoff theorem.

In fact, suppose $\text{SAT} \in \text{TISP}(n^{1.1}, n^{0.1}).$

Then $\text{NTIME}(n) \subseteq \text{TISP}(n^{1.1}\text{polylog}(n), n^{0.1}\text{polylog}(n)).$

We start by showing how to replace time with alternations.

Claim

TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

The proof is similar to the proofs of Savitch's Theorem and the PSPACE-completeness of TQBF.

Suppose L is decided by a machine M using n^{12} time and n^2 space.

For every $x \in \{0,1\}^*$, consider the configuration graph $G_{M,x}$ of M on input x .

Each configuration in this graph can be described by a string of length $O(n^2)$.

Moreover, x is in L if and only if there is a path of length n^{12} in this graph from the starting configuration C_{start} to an accepting configuration.

There is such a path if and only if there $\mathsf{exist}\; n^6$ configurations

$$
\mathcal{C}_1,\ldots,\mathcal{C}_{n^6}
$$

(requiring a total of $O(n^8)$ bits to specify), such that, if we let $C_0 = C_{start}$, then:

- C_{n^6} is accepting;
- For every $i \in [n^6]$, the configuration C_i is computed from C_{i-1} within n^6 steps.

The latter condition can be verified in, say, O (n^7) time.

So we get a O (n^8) -time Σ_2 -TM for deciding membership in L .

• We next show that, if, contrary to hypothesis,

 $\mathsf{NTIME}(n) \subseteq \mathsf{TISP}(n^{1.2}, n^{0.2}) \subseteq \mathsf{DTIME}(n^{1.2}),$

then we can replace alternations with time.

Claim

If NTIME $(n) \subseteq$ DTIME $(n^{1.2})$, then

$$
\Sigma_2 \text{TIME}(n^8) \subseteq \text{NTIME}(n^{9.6}).
$$

Using the equivalence between alternating time and the polynomial hierarchy, L is in $\Sigma_2\mathsf{TIME}(n^8)$ if and only if there is a TM M , such that

$$
x \in L \quad \text{iff} \quad \exists u \in \{0,1\}^{c|x|^8} \forall v \in \{0,1\}^{d|x|^8}
$$

$$
M(x, u, v) = 1,
$$

for some constants c,d , where M runs in time O $(|x|^8)$.

Suppose NTIME $(n) \subseteq$ DTIME $(n^{1.2})$.

Then, by a simple padding argument, we have a deterministic algorithm D that, on inputs x, u, with $|x| = n$ and $|u| = cn^8$:

- Runs in time $O((n^8)^{1.2}) = O(n^{9.6})$ -time;
- Returns 1 if and only if, there exists some $v \in \{0,1\}^{dn^8}$, such that

$$
M(x, u, v) = 0.
$$

Thus,

$$
x \in L \quad \text{iff} \quad \exists u \in \{0, 1\}^{c|x|^8} D(x, u) = 0.
$$
\nThis implies that $L \in \text{NTIME}(n^{9.6})$.

Putting together the two claims shows that

the assumption $\mathsf{NTIME}(n) \subseteq \mathsf{TISP}(n^{1.2}, n^{0.2})$ leads to contradiction.

The assumption plus a simple padding argument implies that

$$
NTIME(n^{10}) \subseteq TISP(n^{12}, n^2).
$$

Now we have

$$
NTIME(n^{10}) \subseteq TISP(n^{12}, n^2)
$$

\n
$$
\subseteq \Sigma_2TIME(n^8)
$$
 (by the First Claim)
\n
$$
\subseteq NTIME(n^{9.6})
$$
 (by the Second Claim)

This contradicts the nondeterministic Time Hierarchy Theorem.

Subsection 5

- Recall that **oracle machines** are machines with access to a special tape that they can use to make queries of the form "is $q \in O$?", for some language O.
- For every $O \subseteq \{0,1\}^*$, oracle TM M and input x , we denote by $M^{O}(x)$ the output of M on x with access to O as an oracle.

Theorem (Characterization of the Polynomial Hierarchy)

For every $i > 2$,

$$
\Sigma_i^p = NP^{\Sigma_{i-1} \text{SAT}},
$$

where $NP^{\Sigma_{i-1}SAT}$ is the set of languages decided by polynomial-time NDTMs with access to the oracle Σ_{i-1} SAT.

We showcase the proof idea by showing that $\Sigma^\textit{p}_2 = \textsf{NP}^\textsf{SAT}.$

Suppose that $L \in \Sigma_2^p$ $\frac{\mu}{2}$.

Then, there is a polynomial-time TM M and a polynomial q , such that $x \in L$ iff

$$
\exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} M(x, u_1, u_2) = 1.
$$

For every fixed u_1 and x, the statement

"for every
$$
u_2
$$
, $M(x, u_1, u_2) = 1$ "

is the negation of an NP-statement.

Hence, its truth can be determined using an oracle for SAT.

So a simple NDTM N, given oracle access for SAT, can decide L. On input x, nondeterministically guess u_1 ;

Use the oracle to decide if $\forall u_2 M(x, u_1, u_2) = 1$.

We see that $x \in L$ iff there exists a choice u_1 that makes N accept.

 \bullet Conversely, suppose that L is decidable by a polynomial-time NDTM N with oracle access to SAT.

- \bullet N could make polynomially many queries to the SAT oracle.
- Moreover, every query could depend upon all preceding queries.

At first sight this seems to give N more power than a Σ^{ρ}_{2} machine, which has the capability to nondeterministically make a single query to a coNP language.

We wish to replace N by an equivalent Σ^{ρ}_{2} machine.

The main idea is to:

- Nondeterministically guess all future queries as well as the SAT oracle's answers;
- Then to make a single coNP query whose answer verifies that all this guessing was correct.

 \bullet x is in L if and only if there exists a sequence of nondeterministic choices and correct oracle answers that makes N accept x .

That is, there are:

- A sequence of choices $c_1, \ldots, c_m \in \{0, 1\}$;
- Answers to oracle queries $a_1, \ldots, a_k \in \{0, 1\}$;

such that, on input x, if the machine N uses choices c_1, \ldots, c_m and receives a_i as the answer to its *i*-th query:

- M reaches the accepting state q_{accept} ;
- All the answers are correct.

- Let φ_i denote the *i*-th query that M makes to its oracle when \bullet executing on x , while:
	- Using choices c_1, \ldots, c_m ;
	- Receiving answers a_1, \ldots, a_k .

Then, Condition (2) can be phrased as follows:

If $a_i = 1$, then there exists an assignment u_i , such that $\varphi_i(u_i) = 1$; O

If
$$
a_i = 0
$$
, then, for every assignment v_i , $\varphi_i(v_i) = 0$.

Thus,

$$
x \in L \quad \text{iff} \quad \exists c_1, \ldots, c_m, a_1, \ldots, a_k, u_1, \ldots, u_k \forall v_1, \ldots, v_k
$$
\n[*N* accepts *x* using choices c_1, \ldots, c_m
\nand answers a_1, \ldots, a_k
\nAND $\forall i \in [k]$ if $a_i = 1$, then $\varphi_i(u_i) = 1$
\nAND $\forall i \in [k]$, if $a_i = 0$, then $\varphi_i(v_i) = 0$].

This shows that $L \in \sum_{2}^{p}$ $\frac{p}{2}$.