
Advanced Computational Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 1 / 45

Outline

1 The Polynomial Hierarchy and Alternations
The Class ΣP

2

The Polynomial Hierarchy
Alternating Turing Machines
Time vs. Alternations: Time-Space Tradeoffs for Sat
Defining the Hierarchy via Oracle Machines

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 2 / 45

The Polynomial Hierarchy and Alternations

Introducing the Polynomial Time Hierarchy

We introduce a new complexity class, called the polynomial hierarchy,
denoted PH, which is a generalization of P, NP and coNP.

It consists of an infinite number of subclasses, called levels, which are
conjectured to be distinct, a stronger form of the conjecture P 6= NP.

We provide three equivalent definitions of the polynomial hierarchy:

1. As the set of languages defined via polynomial-time predicates,
combined with a constant number of alternating for all (∀) and exists
(∃) quantifiers, generalizing the definitions of NP and coNP.

2. Via the use of alternating Turing machines, that are a generalization of
nondeterministic Turing machines.

3. Via the use of oracle Turing machines.

A fourth characterization, using uniform families of circuits, will be
postponed for later.

These characterizations are used to show that Sat cannot be solved
using simultaneously linear time and logarithmic space.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 3 / 45

The Polynomial Hierarchy and Alternations The Class ΣP
2

Subsection 1

The Class ΣP
2

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 4 / 45

The Polynomial Hierarchy and Alternations The Class ΣP
2

Independent Set and Exact Independent Set

We focus on some computational problems that seem to not be
captured by NP-completeness.

Recall the following NP problem IndSet, for which we do have a
short certificate of membership,

IndSet = {〈G , k〉 : graph G has an independent set of size ≥ k}.

Consider a slight modification consisting of determining the largest
independent set in a graph (phrased as a decision problem),

ExactIndSet = {〈G , k〉 : the largest independent set in G

has size exactly k}.

Now there seems to be no short certificate for membership.

〈G , k〉 ∈ ExactIndSet iff there exists an independent set of size k

in G and every other independent set has size at most k .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 5 / 45

The Polynomial Hierarchy and Alternations The Class ΣP
2

Smallest Equivalent DNF Formula

Consider, also, the problem of determining the smallest Boolean
formulas equivalent to a given formula,

MinEqDNF = {〈ϕ, k〉 : ∃DNF formula ψ of size ≤ k that is
equivalent to the DNF formula ϕ},

where:
A DNF formula is a Boolean formula that is an OR of ANDs;
Two formulas are equivalent if they agree on all possible assignments.

The complement of this language is

MinEqDNF = {〈ϕ, k〉 : ∀DNF formulas ψ of size ≤ k

∃assignment u s.t. ϕ(u) 6= ψ(u)}.

Again, there is no obvious notion of a certificate of membership for
MinEqDNF.

To capture these languages, we seem to need to allow not only a
single “exists” or “for all” quantifier, but a combination of both.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 6 / 45

The Polynomial Hierarchy and Alternations The Class ΣP
2

The Class Σp
2

Definition (The Class Σp
2)

The class Σp
2 is the set of all languages L for which, there exists a

polynomial-time TM M and a polynomial q, such that

x ∈ L ⇔ ∃u ∈ {0, 1}q(|x |)∀v ∈ {0, 1}q(|x |)M(x , u, v) = 1,

for every x ∈ {0, 1}∗.

Note that Σp
2 contains both the classes NP and coNP.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 7 / 45

The Polynomial Hierarchy and Alternations The Class ΣP
2

Examples (Cont’d)

The language ExactIndSet is in Σp
2 .

A pair 〈G , k〉 is in ExactIndSet iff:

There exists a size-k subset S of G ’s vertices, such that:
For every size-(k + 1) subset S ′:

We have:

S is an independent set in G ;
S ′ is not an independent set in G .

The language MinEqDNF is also in Σp
2.

A pair 〈ϕ, k〉 is in MinEqDNF iff:

There exists a DNF formula ψ of size ≤ k , such that:
For every assignment u:

We have ϕ(u) = ψ(u).

The language MinEqDNF is known to be Σp
2-complete.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 8 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Subsection 2

The Polynomial Hierarchy

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 9 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

The Polynomial Hierarchy

The definition of the polynomial hierarchy generalizes those of NP,
coNP and Σp

2 .

It consists of every language that can be defined via a combination of
a polynomial time computable predicate and a constant number of
∀/∃ quantifiers.

Definition (Polynomial Hierarchy)

For i ≥ 1, a language L is in Σp
i if there exists a polynomial-time TM M

and a polynomial q, such that

x ∈ L iff ∃u1 ∈ {0, 1}q(|x |)∀u2 ∈ {0, 1}q(|x |) · · ·Qiui ∈ {0, 1}q(|x |)

M(x , u1, . . . , ui) = 1,

where Qi denotes ∃, if i is odd, and ∀, if i is even.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 10 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

The Polynomial Hierarchy (Cont’d)

Definition (Polynomial Hierarchy Cont’d)

The polynomial hierarchy is the set

PH =
⋃

i

Σp
i .

Note that Σp
1 = NP.

For every i , define

Πp
i = coΣp

i = {L : L ∈ Σp
i }.

Thus, Πp
1 = coNP.

For every i , Σp
i ⊆ Πp

i+1 ⊆ Σp
i+2.

Therefore,
PH =

⋃

i>0

Πp
i .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 11 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Collapsing of the Polynomial Hierarchy

We believe that P 6= NP and NP 6= coNP.

An appealing generalization of these conjectures is that, for every i ,

Σp
i (Σp

i+1.

This conjecture is used often in complexity theory and is, sometimes,
stated as “the polynomial hierarchy does not collapse”.

The polynomial hierarchy is said to collapse if there is some i , such
that

Σp
i = Σp

i+1.

As we will see, this would imply Σp
i =

⋃

j≥1Σ
p
j = PH.

In this case, we say that the polynomial hierarchy collapses to the

i -th level.

The smaller i is, the weaker, and, hence, more believable, it is to
conjecture that PH does not collapse to the i -th level.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 12 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Properties of the Polynomial Hierarchy

Theorem

1. For every i ≥ 1, if Σp
i = Πp

i , then PH = Σp
i , i.e., the hierarchy

collapses to the i -th level.

2. If P = NP, then PH = P, i.e., the hierarchy collapses to P.

We prove the second part.

The first part follows by a similar reasoning.

Suppose, first, that P = NP.

We prove, by induction on i , that Σp
i ,Π

p
i ⊆ P.

For i = 1, we have Σp
1 = NP and Πp

1 = coNP.

So, by assumption, Σp
1 ,Π

p
1 ⊆ P.

Assume the inclusions are true for i − 1.

We prove that Σp
i ⊆ P.

Since Πp
i consists of complements of languages in Σp

i and P is closed
under complementation, it would follow that Πp

i ⊆ P.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 13 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Proof of the Induction Step

Let L ∈ Σp
i .

By definition, there is a polynomial-time Turing machine M and a
polynomial q, such that

x ∈ L iff ∃u1 ∈ {0, 1}q(|x |)∀u2 ∈ {0, 1}q(|x |) · · ·Qiui ∈ {0, 1}q(|x |)

M(x , u1, . . . , ui) = 1,

where Qi is ∃/∀ according to the parity of i .

Define the language L′ by stipulating that

〈x , u1〉 ∈ L′ iff ∀u2 ∈ {0, 1}q(|x |) · · ·Qiui ∈ {0, 1}q(|x |)

M(x , u1, u2, . . . , ui) = 1.

Clearly, L′ ∈ Πp
i−1.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 14 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Proof of the Induction Step (Cont’d)

We have L′ ∈ Πp
i−1.

So, by our assumption, L′ is in P.

This implies that there is a polynomial-time TM M ′ computing L′.

Plugging M ′ in the defining condition for L, we get

x ∈ L iff ∃u1 ∈ {0, 1}q(|x |)M ′(x , u1) = 1.

But this means L ∈ NP.

Therefore, under our assumption, P = NP, we get L ∈ P.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 15 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Complete problems for Levels of PH

We defined the notion of a language B reducing to a language C via
a polynomial-time Karp reduction, denoted B ≤p C , by the existence
of a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗, such
that, for every x ,

x ∈ B iff f (x) ∈ C .

We say that a language L is Σp
i -complete if:

L ∈ Σp
i ;

For every L′ ∈ Σp
i , L

′ ≤p L.

We define Πp
i -completeness and PH-completeness in the same way.

We set out to show the following.

The polynomial hierarchy is believed not to have a complete problem.
For every i ∈ N, both Σp

i and Πp
i have complete problems.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 16 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

PH is Believed to Lack Complete Problems

Claim

If there exists a language L that is PH-complete, then there exists an i ,
such that PH = Σp

i (and, hence, the hierarchy collapses to its i -th level).

We only provide a sketch of the proof.

Suppose that there exists a language L that is PH-complete.

By definition L ∈ PH =
⋃

i Σ
p
i .

Thus, there exists i , such that L ∈ Σp
i .

Since L is PH-complete, we can reduce every language of PH to L.

But every language that is polynomial-time reducible to a language in
Σp
i is itself in Σp

i .

Hence, PH ∈ Σp
i .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 17 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

PH and PSPACE

Just like NP and coNP, PH is also contained in PSPACE,

PH ⊆ PSPACE.

Thus, unless the polynomial hierarchy collapses, PH 6= PSPACE.

We use contraposition.

Assume that PH = PSPACE.

Then the PSPACE-complete problem TQBF is PH-complete.

By the claim, the polynomial hierarchy collapses.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 18 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Complete Problems for Different Levels

For every i ≥ 1, we consider the class Σp
i .

We also consider the following problem involving quantified Boolean
expressions of the following type, with a limited number of
alternations,

ΣiSat = ∃u1∀u2∃ · · ·Qiui (ϕ(u1, u2, . . . , ui) = 1),

where:

ϕ is a Boolean formula not necessarily in CNF form (though the form
does not make any difference);
Each ui is a vector of Boolean variables;
Qi is ∀ or ∃, depending on the parity of i .

It turns out that, for all i , ΣiSat is Σp
i -complete.

For every i , ΣiSat is a special case of the TQBF problem.

One can similarly define a problem ΠiSat, which is Πp
i -complete.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 19 / 45

The Polynomial Hierarchy and Alternations The Polynomial Hierarchy

Succinct Set Cover

Consider the problem SuccinctSetCover

The input consists of:

A collection
S = {ϕ1, ϕ2, . . . , ϕm}

of 3-DNF formulas on n variables;
An integer k .

We must determine whether there exists a subset S ′ ⊆ {1, 2, . . . ,m}
of size at most k for which

∨

i∈S ′

ϕi

is a tautology.

By its definition it is clear that SuccinctSetCover is in Σp
2 .

It has been shown that SuccinctSetCover is Σp
2-complete.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 20 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

Subsection 3

Alternating Turing Machines

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 21 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

From NDTMs to Alternating Turing Machines

Alternating Turing machines (ATMs) are generalizations of
nondeterministic Turing machines.

Even though NDTMs are not a realistic computational model, they
help us understand the processes of guessing and verifying answers.

ATMs play a similar role for certain languages for which there is no
obvious short certificate for membership.

The absence of such a certificate implies that such languages cannot
be characterized using nondeterminism alone.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 22 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

Features of Alternating Turing Machines

In an alternating Turing machine:

Two transition functions are available to choose from at each step;
Every internal state, except qaccept and qhalt, is labeled with either ∃ or
∀.

An ATM’s computation can evolve at every step in two ways.

A non-deterministic TM accepts its input if there exists some
sequence of choices that leads it to the state qaccept.

By analogy, in an ATM, the existential quantifier of an NDTM over
each choice is replaced with the quantifier corresponding to the label
at each state.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 23 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

Alternating Acceptance

Definition (Alternating Acceptance)

We define an alternating Turing Machine M accepting an input x .
Let GM,x denote the directed acyclic configuration graph of M on input x .
In GM,x , there is an edge from a configuration C to configuration C ′ iff C ′

can be obtained from C by one step of M’s transition function.
We label some of the vertices in this graph by “ACCEPT” by repeatedly
applying the following rules until they cannot be applied anymore:

Configuration Caccept, with the machine in qaccept, is labeled
“ACCEPT”.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 24 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

Alternating Acceptance (Cont’d)

Definition (Alternating Acceptance Cont’d)

If a configuration C is in a state labeled ∃ and there is an edge from
C to a configuration C ′ labeled “ACCEPT”, then we label C
“ACCEPT”.

If a configuration C is in a state labeled ∀ and both configurations
C ′, C ′′ reachable from it in one step are labeled “ACCEPT”, then we
label C “ACCEPT”.

We say that M accepts x if, at the end of this process, the starting
configuration Cstart is labeled “ACCEPT”.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 25 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

Alternating time

Definition (Alternating Time)

For T : N→ N, we say that an alternating TM M runs in

T (n)-time if, for every input x ∈ {0, 1}∗ and for every possible
sequence of transition function choices,

M halts in at most T (|x |) steps.

We say that a language L is in ATIME(T (n)) if there is a constant c
and a c · T (n)-time ATM M, such that, for every x ∈ {0, 1}∗,

M accepts x iff x ∈ L.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 26 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

ΣiTIME and ΠiTIME

Definition (ΣiTIME and ΠiTIME)

For i ∈ N, we define ΣiTIME(T (n)) (resp. ΠiTIME(T (n))) to be the set
of languages accepted by a T (n)-time ATM M, such that:

M’s initial state is labeled “∃” (resp. “∀”);

On every input and on every path from the starting configuration in
the configuration graph, M can alternate at most i − 1 times from
states with one label to states with the other label.

One can show that, for every i ∈ N,

Σp
i =

⋃

c

ΣiTIME(nc) and Πp
i =

⋃

c

ΠiTIME(nc).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 27 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

The Class AP

In defining ΣiTIME(T (n)) and ΠiTIME(T (n)), we restricted
attention to ATMs whose number of alternations is some fixed
constant i independent of the input size.

We now go back to considering polynomial-time alternating Turing
machines with no a priori bound on the number of quantifiers.

We define
AP =

⋃

c

ATIME(nc).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 28 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

Characterization of AP

Theorem

AP = PSPACE.

We provide a sketch of the proof.

TQBF is trivially in AP.

We “guess” values for each:

Existentially quantified variable using an ∃ state;
Universally quantified variable using a ∀ state.

Then do a deterministic polynomial-time computation at the end.

Moreover, every PSPACE language reduces to TQBF.

Thus, PSPACE ⊆ AP.

To show that AP ⊆ PSPACE, we can use a recursive procedure
similar to the one used to show that TQBF ∈ PSPACE.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 29 / 45

The Polynomial Hierarchy and Alternations Alternating Turing Machines

Alternating Space

It is also possible to consider alternating Turing machines that run in
polynomial space.

The class of languages accepted by such machines is called APSPACE.

It turns out that
APSPACE = EXP.

Similarly, the set of languages accepted by alternating logspace
machines is equal to P.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 30 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

Subsection 4

Time vs. Alternations: Time-Space Tradeoffs for Sat

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 31 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

Time/Space Tradeoff for Sat

It is widely believed that, for its solution, Sat requires both:

Exponential (or at least superpolynomial) time;
Linear (or at least super-logarithmic) space.

However, we currently have no way to prove these conjectures.

It is in fact possible, as far as we know, that Sat may have both a
linear time algorithm and a logarithmic space one.

But we can rule out an algorithm that runs simultaneously in linear
time and logarithmic space.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 32 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

Time/Space Tradeoff for Sat

Theorem (Time/Space Tradeoff for Sat)

For every two functions S ,T : N→ N, define

TISP(T (n),S(n))

to be the set of languages decided by a TM M that, on every input x :

Takes at most O (T (|x |)) steps;

Uses at most O (S(|x |)) cells of its read-write tapes.

Then,
Sat 6∈ TISP(n1.1, n0.1).

TISP(T (n),S(n)) is often defined with respect to TMs with RAM
memory.

The Tradeoff Theorem carries over to that model.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 33 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

Plan of the Proof

We show that NTIME(n) * TISP(n1.2, n0.2).

A careful analysis of the proof of the Cook-Levin Theorem yields a
reduction from the task of

deciding membership in an NTIME(T (n))-language

to the task of

deciding whether a O (T (n) logT (n))-sized formula is satisfiable.

Moreover, every output bit of this reduction can be computed in
polylogarithmic time and space.

This, combined with the result above, yields the proof of the tradeoff
theorem.

In fact, suppose Sat ∈ TISP(n1.1, n0.1).

Then NTIME(n) ⊆ TISP(n1.1polylog(n), n0.1polylog(n)).

We start by showing how to replace time with alternations.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 34 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

Time/Space and Alternating Time

Claim

TISP(n12, n2) ⊆ Σ2TIME(n8).

The proof is similar to the proofs of Savitch’s Theorem and the
PSPACE-completeness of TQBF.

Suppose L is decided by a machine M using n12 time and n2 space.

For every x ∈ {0, 1}∗, consider the configuration graph GM,x of M on
input x .

Each configuration in this graph can be described by a string of
length O

(

n2
)

.

Moreover, x is in L if and only if there is a path of length n12 in this
graph from the starting configuration Cstart to an accepting
configuration.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 35 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

Time/Space and Alternating Time

There is such a path if and only if there exist n6 configurations

C1, . . . ,Cn6

(requiring a total of O
(

n8
)

bits to specify), such that, if we let
C0 = Cstart, then:

Cn6 is accepting;
For every i ∈ [n6], the configuration Ci is computed from Ci−1 within
n6 steps.

The latter condition can be verified in, say, O
(

n7
)

time.

So we get a O
(

n8
)

-time Σ2-TM for deciding membership in L.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 36 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

From Alternating to Non-Deterministic Time

We next show that, if, contrary to hypothesis,

NTIME(n) ⊆ TISP(n1.2, n0.2) ⊆ DTIME(n1.2),

then we can replace alternations with time.

Claim

If NTIME(n) ⊆ DTIME(n1.2), then

Σ2TIME(n8) ⊆ NTIME(n9.6).

Using the equivalence between alternating time and the polynomial
hierarchy, L is in Σ2TIME(n8) if and only if there is a TM M, such
that

x ∈ L iff ∃u ∈ {0, 1}c|x |
8
∀v ∈ {0, 1}d|x |

8

M(x , u, v) = 1,

for some constants c , d , where M runs in time O
(

|x |8
)

.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 37 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

From Alternating to Non-Deterministic Time (Cont’d)

Suppose NTIME(n) ⊆ DTIME(n1.2).

Then, by a simple padding argument, we have a deterministic
algorithm D that, on inputs x , u, with |x | = n and |u| = cn8:

Runs in time O
(

(n8)1.2
)

= O
(

n9.6
)

-time;

Returns 1 if and only if, there exists some v ∈ {0, 1}dn
8

, such that

M(x , u, v) = 0.

Thus,
x ∈ L iff ∃u ∈ {0, 1}c|x |

8
D(x , u) = 0.

This implies that L ∈ NTIME(n9.6).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 38 / 45

The Polynomial Hierarchy and Alternations Time vs. Alternations: Time-Space Tradeoffs for Sat

Proof of the Time/Space Tradeoff for Sat

Putting together the two claims shows that

the assumption NTIME(n) ⊆ TISP(n1.2, n0.2) leads to contradiction.

The assumption plus a simple padding argument implies that

NTIME(n10) ⊆ TISP(n12, n2).

Now we have

NTIME(n10) ⊆ TISP(n12, n2)
⊆ Σ2TIME(n8) (by the First Claim)
⊆ NTIME(n9.6). (by the Second Claim)

This contradicts the nondeterministic Time Hierarchy Theorem.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 39 / 45

The Polynomial Hierarchy and Alternations Defining the Hierarchy via Oracle Machines

Subsection 5

Defining the Hierarchy via Oracle Machines

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 40 / 45

The Polynomial Hierarchy and Alternations Defining the Hierarchy via Oracle Machines

Oracle Characterization of the Polynomial Hierarchy

Recall that oracle machines are machines with access to a special
tape that they can use to make queries of the form “is q ∈ O?”, for
some language O.

For every O ⊆ {0, 1}∗, oracle TM M and input x , we denote by
MO(x) the output of M on x with access to O as an oracle.

Theorem (Characterization of the Polynomial Hierarchy)

For every i ≥ 2,
Σp
i = NPΣi−1Sat,

where NPΣi−1Sat is the set of languages decided by polynomial-time
NDTMs with access to the oracle Σi−1Sat.

We showcase the proof idea by showing that Σp
2 = NPSat.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 41 / 45

The Polynomial Hierarchy and Alternations Defining the Hierarchy via Oracle Machines

The Second Level is in NPSat

Suppose that L ∈ Σp
2 .

Then, there is a polynomial-time TM M and a polynomial q, such
that x ∈ L iff

∃u1 ∈ {0, 1}q(|x |)∀u2 ∈ {0, 1}q(|x |)M(x , u1, u2) = 1.

For every fixed u1 and x , the statement

“for every u2, M(x , u1, u2) = 1”

is the negation of an NP-statement.

Hence, its truth can be determined using an oracle for Sat.

So a simple NDTM N, given oracle access for Sat, can decide L.

On input x , nondeterministically guess u1;
Use the oracle to decide if ∀u2M(x , u1, u2) = 1.

We see that x ∈ L iff there exists a choice u1 that makes N accept.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 42 / 45

The Polynomial Hierarchy and Alternations Defining the Hierarchy via Oracle Machines

NPSat is in the Second Level: Idea

Conversely, suppose that L is decidable by a polynomial-time NDTM
N with oracle access to Sat.

N could make polynomially many queries to the Sat oracle.
Moreover, every query could depend upon all preceding queries.

At first sight this seems to give N more power than a Σp
2 machine,

which has the capability to nondeterministically make a single query
to a coNP language.

We wish to replace N by an equivalent Σp
2 machine.

The main idea is to:

Nondeterministically guess all future queries as well as the Sat oracle’s
answers;
Then to make a single coNP query whose answer verifies that all this
guessing was correct.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 43 / 45

The Polynomial Hierarchy and Alternations Defining the Hierarchy via Oracle Machines

NPSat is in the Second Level: Details

x is in L if and only if there exists a sequence of nondeterministic
choices and correct oracle answers that makes N accept x .

That is, there are:

A sequence of choices c1, . . . , cm ∈ {0, 1};
Answers to oracle queries a1, . . . , ak ∈ {0, 1};

such that, on input x , if the machine N uses choices c1, . . . , cm and
receives ai as the answer to its i -th query:

(1) M reaches the accepting state qaccept;
(2) All the answers are correct.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 44 / 45

The Polynomial Hierarchy and Alternations Defining the Hierarchy via Oracle Machines

NPSat is in the Second Level: Details (Cont’d)

Let ϕi denote the i -th query that M makes to its oracle when
executing on x , while:

Using choices c1, . . . , cm;
Receiving answers a1, . . . , ak .

Then, Condition (2) can be phrased as follows:

If ai = 1, then there exists an assignment ui , such that ϕi (ui) = 1;
If ai = 0, then, for every assignment vi , ϕi (vi) = 0.

Thus,

x ∈ L iff ∃c1, . . . , cm, a1, . . . , ak , u1, . . . , uk∀v1, . . . , vk
[N accepts x using choices c1, . . . , cm
and answers a1, . . . , ak
AND ∀i ∈ [k] if ai = 1, then ϕi (ui) = 1
AND ∀i ∈ [k], if ai = 0, then ϕi (vi) = 0].

This shows that L ∈ Σp
2 .

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 45 / 45

	Outline
	The Polynomial Hierarchy and Alternations
	The Class 2P
	The Polynomial Hierarchy
	Alternating Turing Machines
	Time vs. Alternations: Time-Space Tradeoffs for Sat
	Defining the Hierarchy via Oracle Machines

