# Advanced Computational Complexity

#### George Voutsadakis<sup>1</sup>

<sup>1</sup>Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU)

Advanced Computational Complexity

December 2024

1/45



#### The Polynomial Hierarchy and Alternations

- The Class  $\Sigma_2^P$
- The Polynomial Hierarchy
- Alternating Turing Machines
- Time vs. Alternations: Time-Space Tradeoffs for SAT
- Defining the Hierarchy via Oracle Machines

## Introducing the Polynomial Time Hierarchy

- We introduce a new complexity class, called the polynomial hierarchy, denoted PH, which is a generalization of P, NP and coNP.
- It consists of an infinite number of subclasses, called levels, which are conjectured to be distinct, a stronger form of the conjecture  $P \neq NP$ .
- We provide three equivalent definitions of the polynomial hierarchy:
  - As the set of languages defined via polynomial-time predicates, combined with a constant number of alternating for all (∀) and exists (∃) quantifiers, generalizing the definitions of NP and coNP.
  - 2. Via the use of alternating Turing machines, that are a generalization of nondeterministic Turing machines.
  - 3. Via the use of oracle Turing machines.
- A fourth characterization, using uniform families of circuits, will be postponed for later.
- These characterizations are used to show that SAT cannot be solved using simultaneously linear time and logarithmic space.

George Voutsadakis (LSSU)

Advanced Computational Complexity

### Subsection 1

## The Class $\Sigma_2^P$

## Independent Set and Exact Independent Set

- We focus on some computational problems that seem to not be captured by NP-completeness.
- Recall the following NP problem INDSET, for which we do have a short certificate of membership,

INDSET = { $\langle G, k \rangle$  : graph G has an independent set of size  $\geq k$  }.

• Consider a slight modification consisting of determining the largest independent set in a graph (phrased as a decision problem),

EXACTINDSET = { $\langle G, k \rangle$  : the largest independent set in G has size exactly k}.

- Now there seems to be no short certificate for membership.
- ⟨G, k⟩ ∈ EXACTINDSET iff there exists an independent set of size k in G and every other independent set has size at most k.

George Voutsadakis (LSSU)

Advanced Computational Complexity

## Smallest Equivalent DNF Formula

• Consider, also, the problem of determining the smallest Boolean formulas equivalent to a given formula,

 $MINEQDNF = \{ \langle \varphi, k \rangle : \exists DNF \text{ formula } \psi \text{ of size } \leq k \text{ that is} \\ equivalent \text{ to the DNF formula } \varphi \},$ 

where:

- A DNF formula is a Boolean formula that is an OR of ANDs;
- Two formulas are equivalent if they agree on all possible assignments.
- The complement of this language is

 $\overline{\text{MINEQDNF}} = \{ \langle \varphi, k \rangle : \forall \text{DNF formulas } \psi \text{ of size } \leq k \\ \exists \text{assignment } u \text{ s.t. } \varphi(u) \neq \psi(u) \}.$ 

- $\bullet\,$  Again, there is no obvious notion of a certificate of membership for  $M{\rm INEQDNF}.$
- To capture these languages, we seem to need to allow not only a single "exists" or "for all" quantifier, but a combination of both.

George Voutsadakis (LSSU)

Advanced Computational Complexity

# The Class $\Sigma_2^p$

#### Definition (The Class $\Sigma_2^p$ )

The class  $\Sigma_2^p$  is the set of all languages *L* for which, there exists a polynomial-time TM *M* and a polynomial *q*, such that

$$x \in L \quad \Leftrightarrow \quad \exists u \in \{0,1\}^{q(|x|)} \forall v \in \{0,1\}^{q(|x|)} M(x,u,v) = 1,$$
for every  $x \in \{0,1\}^*$ .

• Note that  $\Sigma_2^p$  contains both the classes NP and coNP.

# Examples (Cont'd)

- The language EXACTINDSET is in Σ<sup>p</sup><sub>2</sub>.
   A pair (G, k) is in EXACTINDSET iff:
  - There exists a size-k subset S of G's vertices, such that:
  - For every size-(k + 1) subset S':

We have:

- S is an independent set in G;
- S' is not an independent set in G.
- The language MINEQDNF is also in  $\Sigma_2^p$ .

A pair  $\langle \varphi, k \rangle$  is in MINEQDNF iff:

- There exists a DNF formula  $\psi$  of size  $\leq k$ , such that:
- For every assignment *u*:

We have  $\varphi(u) = \psi(u)$ .

• The language  $\mathrm{MinEqDNF}$  is known to be  $\Sigma_2^{\textit{p}}\text{-complete}.$ 

#### Subsection 2

The Polynomial Hierarchy

# The Polynomial Hierarchy

- The definition of the polynomial hierarchy generalizes those of NP, coNP and  $\Sigma_2^p$ .
- It consists of every language that can be defined via a combination of a polynomial time computable predicate and a constant number of  $\forall/\exists$  quantifiers.

#### Definition (Polynomial Hierarchy)

For  $i \ge 1$ , a language L is in  $\Sigma_i^p$  if there exists a polynomial-time TM M and a polynomial q, such that

$$\begin{array}{ll} x \in L & \text{iff} \quad \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \cdots Q_i u_i \in \{0,1\}^{q(|x|)} \\ & M(x,u_1,\ldots,u_i) = 1, \end{array}$$

where  $Q_i$  denotes  $\exists$ , if *i* is odd, and  $\forall$ , if *i* is even.

# The Polynomial Hierarchy (Cont'd)

Definition (Polynomial Hierarchy Cont'd)

The polynomial hierarchy is the set

$$\mathsf{PH} = \bigcup_{i} \Sigma_{i}^{p}.$$

- Note that  $\Sigma_1^p = NP$ .
- For every *i*, define

$$\Pi_i^p = \operatorname{co}\Sigma_i^p = \{\overline{L} : L \in \Sigma_i^p\}.$$

- Thus,  $\Pi_1^p = \text{coNP}$ .
- For every *i*,  $\Sigma_i^p \subseteq \prod_{i+1}^p \subseteq \Sigma_{i+2}^p$ .

Therefore,

$$\mathsf{PH} = \bigcup_{i>0} \Pi_i^p.$$

# Collapsing of the Polynomial Hierarchy

- We believe that  $P \neq NP$  and  $NP \neq coNP$ .
- An appealing generalization of these conjectures is that, for every *i*,

$$\Sigma_i^p \subsetneq \Sigma_{i+1}^p$$
.

- This conjecture is used often in complexity theory and is, sometimes, stated as "the polynomial hierarchy does not collapse".
- The polynomial hierarchy is said to **collapse** if there is some *i*, such that

$$\Sigma_i^p = \Sigma_{i+1}^p.$$

- As we will see, this would imply  $\Sigma_i^p = \bigcup_{j \ge 1} \Sigma_j^p = PH$ .
- In this case, we say that the polynomial hierarchy collapses to the *i*-th level.
- The smaller *i* is, the weaker, and, hence, more believable, it is to conjecture that PH does not collapse to the *i*-th level.

George Voutsadakis (LSSU)

Advanced Computational Complexity

# Properties of the Polynomial Hierarchy

#### Theorem

- 1. For every  $i \ge 1$ , if  $\sum_{i=1}^{p} \prod_{i=1}^{p} \prod_{$
- 2. If P = NP, then PH = P, i.e., the hierarchy collapses to P.
- We prove the second part. The first part follows by a similar reasoning. Suppose, first, that P = NP. We prove, by induction on *i*, that  $\Sigma_i^p, \Pi_i^p \subseteq P$ . For i = 1, we have  $\Sigma_1^p = NP$  and  $\Pi_1^p = coNP$ . So, by assumption,  $\Sigma_1^p, \Pi_1^p \subseteq P$ . Assume the inclusions are true for i - 1. We prove that  $\Sigma_i^p \subseteq \mathsf{P}$ . Since  $\prod_{i=1}^{p}$  consists of complements of languages in  $\sum_{i=1}^{p}$  and P is closed under complementation, it would follow that  $\Pi_i^p \subseteq P$ .

# Proof of the Induction Step

• Let  $L \in \Sigma_i^p$ .

By definition, there is a polynomial-time Turing machine M and a polynomial q, such that

$$\begin{array}{ll} \mathsf{x} \in L & \text{iff} \quad \exists u_1 \in \{0,1\}^{q(|\mathsf{x}|)} \forall u_2 \in \{0,1\}^{q(|\mathsf{x}|)} \cdots Q_i u_i \in \{0,1\}^{q(|\mathsf{x}|)} \\ & M(\mathsf{x},u_1,\ldots,u_i) = 1, \end{array}$$

where  $Q_i$  is  $\exists/\forall$  according to the parity of *i*. Define the language L' by stipulating that

$$\langle x, u_1 \rangle \in L' \quad \text{iff} \quad \forall u_2 \in \{0, 1\}^{q(|x|)} \cdots Q_i u_i \in \{0, 1\}^{q(|x|)} \ M(x, u_1, u_2, \dots, u_i) = 1.$$

Clearly,  $L' \in \prod_{i=1}^{p}$ .

# Proof of the Induction Step (Cont'd)

• We have  $L' \in \prod_{i=1}^{p}$ .

So, by our assumption, L' is in P.

This implies that there is a polynomial-time TM M' computing L'. Plugging M' in the defining condition for L, we get

$$x \in L$$
 iff  $\exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1.$ 

But this means  $L \in NP$ .

Therefore, under our assumption, P = NP, we get  $L \in P$ .

### Complete problems for Levels of PH

 We defined the notion of a language B reducing to a language C via a polynomial-time Karp reduction, denoted B ≤<sub>p</sub> C, by the existence of a polynomial-time computable function f : {0,1}\* → {0,1}\*, such that, for every x,

 $x \in B$  iff  $f(x) \in C$ .

• We say that a language L is  $\Sigma_i^p$ -complete if:

• 
$$L \in \Sigma_i^p$$
;

• For every  $L' \in \Sigma_i^p$ ,  $L' \leq_p L$ .

• We define  $\prod_{i=1}^{p}$ -completeness and PH-completeness in the same way.

- We set out to show the following.
  - The polynomial hierarchy is believed not to have a complete problem.
  - For every  $i \in \mathbb{N}$ , both  $\Sigma_i^p$  and  $\Pi_i^p$  have complete problems.

# PH is Believed to Lack Complete Problems

#### Claim

If there exists a language L that is PH-complete, then there exists an *i*, such that  $PH = \sum_{i}^{p}$  (and, hence, the hierarchy collapses to its *i*-th level).

We only provide a sketch of the proof.
Suppose that there exists a language L that is PH-complete.
By definition L ∈ PH = ⋃<sub>i</sub> Σ<sup>p</sup><sub>i</sub>.
Thus, there exists i, such that L ∈ Σ<sup>p</sup><sub>i</sub>.
Since L is PH-complete, we can reduce every language of PH to L.
But every language that is polynomial-time reducible to a language in Σ<sup>p</sup><sub>i</sub> is itself in Σ<sup>p</sup><sub>i</sub>.
Hence, PH ∈ Σ<sup>p</sup><sub>i</sub>.

# PH and PSPACE

Just like NP and coNP, PH is also contained in PSPACE,

### $\mathsf{PH}\subseteq\mathsf{PSPACE}.$

• Thus, unless the polynomial hierarchy collapses,  $PH \neq PSPACE$ . We use contraposition.

Assume that PH = PSPACE.

- Then the PSPACE-complete problem  $\operatorname{TQBF}$  is PH-complete.
- By the claim, the polynomial hierarchy collapses.

### Complete Problems for Different Levels

- For every  $i \ge 1$ , we consider the class  $\sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{$
- We also consider the following problem involving quantified Boolean expressions of the following type, with a limited number of alternations,

$$\Sigma_i$$
SAT =  $\exists u_1 \forall u_2 \exists \cdots Q_i u_i (\varphi(u_1, u_2, \dots, u_i) = 1),$ 

where:

- $\varphi$  is a Boolean formula not necessarily in CNF form (though the form does not make any difference);
- Each *u<sub>i</sub>* is a vector of Boolean variables;
- $Q_i$  is  $\forall$  or  $\exists$ , depending on the parity of *i*.
- It turns out that, for all *i*,  $\sum_i SAT$  is  $\sum_i^p$ -complete.
- For every *i*,  $\Sigma_i$ SAT is a special case of the TQBF problem.
- One can similarly define a problem  $\Pi_i$ SAT, which is  $\Pi_i^p$ -complete.

## Succinct Set Cover

- $\bullet$  Consider the problem  $\operatorname{SuccinctSetCover}$
- The input consists of:
  - A collection

$$S = \{\varphi_1, \varphi_2, \ldots, \varphi_m\}$$

of 3-DNF formulas on n variables;

- An integer k.
- We must determine whether there exists a subset S' ⊆ {1, 2, ..., m} of size at most k for which

$$\bigvee_{i\in S'}\varphi$$

is a tautology.

- By its definition it is clear that SUCCINCTSETCOVER is in  $\Sigma_2^p$ .
- It has been shown that SUCCINCTSETCOVER is  $\Sigma_2^p$ -complete.

### Subsection 3

#### Alternating Turing Machines

## From NDTMs to Alternating Turing Machines

- Alternating Turing machines (ATMs) are generalizations of nondeterministic Turing machines.
- Even though NDTMs are not a realistic computational model, they help us understand the processes of guessing and verifying answers.
- ATMs play a similar role for certain languages for which there is no obvious short certificate for membership.
- The absence of such a certificate implies that such languages cannot be characterized using nondeterminism alone.

## Features of Alternating Turing Machines

#### • In an alternating Turing machine:

- Two transition functions are available to choose from at each step;
- Every internal state, except  $q_{\text{accept}}$  and  $q_{\text{halt}}$ , is labeled with either  $\exists$  or  $\forall$ .
- An ATM's computation can evolve at every step in two ways.
- A non-deterministic TM accepts its input if there exists some sequence of choices that leads it to the state q<sub>accept</sub>.
- By analogy, in an ATM, the existential quantifier of an NDTM over each choice is replaced with the quantifier corresponding to the label at each state.

# Alternating Acceptance

#### Definition (Alternating Acceptance)

We define an alternating Turing Machine M accepting an input x. Let  $G_{M,x}$  denote the directed acyclic configuration graph of M on input x. In  $G_{M,x}$ , there is an edge from a configuration C to configuration C' iff C' can be obtained from C by one step of M's transition function. We label some of the vertices in this graph by "ACCEPT" by repeatedly applying the following rules until they cannot be applied anymore:

• Configuration C<sub>accept</sub>, with the machine in q<sub>accept</sub>, is labeled "ACCEPT".

# Alternating Acceptance (Cont'd)

#### Definition (Alternating Acceptance Cont'd)

- If a configuration C is in a state labeled ∃ and there is an edge from C to a configuration C' labeled "ACCEPT", then we label C "ACCEPT".
- If a configuration C is in a state labeled ∀ and both configurations C', C" reachable from it in one step are labeled "ACCEPT", then we label C "ACCEPT".

We say that M accepts x if, at the end of this process, the starting configuration  $C_{\text{start}}$  is labeled "ACCEPT".

## Alternating time

#### Definition (Alternating Time)

For T : N → N, we say that an alternating TM M runs in T(n)-time if, for every input x ∈ {0,1}\* and for every possible sequence of transition function choices,

*M* halts in at most T(|x|) steps.

 We say that a language L is in ATIME(T(n)) if there is a constant c and a c · T(n)-time ATM M, such that, for every x ∈ {0,1}\*,

M accepts x iff  $x \in L$ .

# $\Sigma_i$ TIME and $\Pi_i$ TIME

#### Definition ( $\Sigma_i$ TIME and $\Pi_i$ TIME)

For  $i \in \mathbb{N}$ , we define  $\Sigma_i \text{TIME}(T(n))$  (resp.  $\Pi_i \text{TIME}(T(n))$ ) to be the set of languages accepted by a T(n)-time ATM M, such that:

- *M*'s initial state is labeled "∃" (resp. "∀");
- On every input and on every path from the starting configuration in the configuration graph, M can alternate at most i 1 times from states with one label to states with the other label.
- One can show that, for every  $i \in \mathbb{N}$ ,

$$\Sigma_i^p = \bigcup_c \Sigma_i \mathsf{TIME}(n^c) \text{ and } \Pi_i^p = \bigcup_c \Pi_i \mathsf{TIME}(n^c).$$

# The Class AP

- In defining Σ<sub>i</sub>TIME(T(n)) and Π<sub>i</sub>TIME(T(n)), we restricted attention to ATMs whose number of alternations is some fixed constant *i* independent of the input size.
- We now go back to considering polynomial-time alternating Turing machines with no a priori bound on the number of quantifiers.
- We define

$$\mathsf{AP} = \bigcup_c \mathsf{ATIME}(n^c).$$

# Characterization of AP

#### Theorem

AP = PSPACE.

• We provide a sketch of the proof.

TQBF is trivially in AP.

- We "guess" values for each:
  - Existentially quantified variable using an  $\exists$  state;
  - Universally quantified variable using a  $\forall$  state.

Then do a deterministic polynomial-time computation at the end.

Moreover, every PSPACE language reduces to TQBF.

Thus, PSPACE  $\subseteq$  AP.

To show that AP  $\subseteq$  PSPACE, we can use a recursive procedure similar to the one used to show that  $TQBF \in$  PSPACE.

## Alternating Space

- It is also possible to consider alternating Turing machines that run in polynomial space.
- The class of languages accepted by such machines is called APSPACE.
- It turns out that

$$\mathsf{APSPACE} = \mathsf{EXP}.$$

• Similarly, the set of languages accepted by alternating logspace machines is equal to P.

#### Subsection 4

#### Time vs. Alternations: Time-Space Tradeoffs for SAT

# Time/Space Tradeoff for $\operatorname{SAT}$

- It is widely believed that, for its solution, SAT requires both:
  - Exponential (or at least superpolynomial) time;
  - Linear (or at least super-logarithmic) space.
- However, we currently have no way to prove these conjectures.
- It is in fact possible, as far as we know, that SAT may have both a linear time algorithm and a logarithmic space one.
- But we can rule out an algorithm that runs simultaneously in linear time and logarithmic space.

# Time/Space Tradeoff for $_{ m SAT}$

Theorem (Time/Space Tradeoff for SAT)

For every two functions  $S, \mathcal{T}: \mathbb{N} \to \mathbb{N}$ , define

TISP(T(n), S(n))

to be the set of languages decided by a TM M that, on every input x:

• Takes at most O (T(|x|)) steps;

• Uses at most O(S(|x|)) cells of its read-write tapes.

Then,

SAT 
$$\notin$$
 TISP $(n^{1.1}, n^{0.1})$ .

- TISP(*T*(*n*), *S*(*n*)) is often defined with respect to TMs with RAM memory.
- The Tradeoff Theorem carries over to that model.

George Voutsadakis (LSSU)

Advanced Computational Complexity

## Plan of the Proof

We show that NTIME(n) ⊈ TISP(n<sup>1.2</sup>, n<sup>0.2</sup>).
 A careful analysis of the proof of the Cook-Levin Theorem yields a reduction from the task of

deciding membership in an NTIME(T(n))-language

to the task of

deciding whether a  $O(T(n) \log T(n))$ -sized formula is satisfiable.

- Moreover, every output bit of this reduction can be computed in polylogarithmic time and space.
- This, combined with the result above, yields the proof of the tradeoff theorem.

In fact, suppose SAT  $\in$  TISP $(n^{1.1}, n^{0.1})$ .

Then NTIME(n)  $\subseteq$  TISP( $n^{1.1}$ polylog(n),  $n^{0.1}$ polylog(n)).

• We start by showing how to replace time with alternations.

# Time/Space and Alternating Time

#### Claim

### $\mathsf{TISP}(n^{12}, n^2) \subseteq \Sigma_2 \mathsf{TIME}(n^8).$

- The proof is similar to the proofs of Savitch's Theorem and the PSPACE-completeness of  ${\rm TQBF}.$ 
  - Suppose L is decided by a machine M using  $n^{12}$  time and  $n^2$  space.
  - For every  $x \in \{0,1\}^*$ , consider the configuration graph  $G_{M,x}$  of M on input x.
  - Each configuration in this graph can be described by a string of length O  $(n^2)$ .
  - Moreover, x is in L if and only if there is a path of length  $n^{12}$  in this graph from the starting configuration  $C_{\text{start}}$  to an accepting configuration.

# Time/Space and Alternating Time

• There is such a path if and only if there exist  $n^6$  configurations

$$C_1,\ldots,C_{n^6}$$

(requiring a total of O  $(n^8)$  bits to specify), such that, if we let  $C_0 = C_{\text{start}}$ , then:

- C<sub>n<sup>6</sup></sub> is accepting;
- For every  $i \in [n^6]$ , the configuration  $C_i$  is computed from  $C_{i-1}$  within  $n^6$  steps.

The latter condition can be verified in, say,  $O(n^7)$  time.

So we get a O  $(n^8)$ -time  $\Sigma_2$ -TM for deciding membership in L.

# From Alternating to Non-Deterministic Time

• We next show that, if, contrary to hypothesis,

 $\mathsf{NTIME}(n) \subseteq \mathsf{TISP}(n^{1.2}, n^{0.2}) \subseteq \mathsf{DTIME}(n^{1.2}),$ 

then we can replace alternations with time.

Claim

If NTIME(n)  $\subseteq$  DTIME( $n^{1.2}$ ), then

$$\Sigma_2 \mathsf{TIME}(n^8) \subseteq \mathsf{NTIME}(n^{9.6}).$$

• Using the equivalence between alternating time and the polynomial hierarchy, L is in  $\Sigma_2 \text{TIME}(n^8)$  if and only if there is a TM M, such that

$$egin{aligned} x\in L & ext{iff} \quad \exists u\in\{0,1\}^{c| imes|^8}orall v\in\{0,1\}^{d| imes|^8}\ M(x,u,v)=1, \end{aligned}$$

for some constants c, d, where M runs in time  $O(|x|^8)$ .

# From Alternating to Non-Deterministic Time (Cont'd)

• Suppose NTIME(n)  $\subseteq$  DTIME( $n^{1.2}$ ).

Then, by a simple padding argument, we have a deterministic algorithm *D* that, on inputs *x*, *u*, with |x| = n and  $|u| = cn^8$ :

- Runs in time  $O\left((n^8)^{1.2}\right) = O\left(n^{9.6}\right)$ -time;
- Returns 1 if and only if, there exists some  $v \in \{0,1\}^{dn^8}$ , such that

$$M(x, u, v) = 0.$$

Thus,

$$x\in L$$
 iff  $\exists u\in\{0,1\}^{c|x|^o}D(x,u)=0.$   
This implies that  $L\in\mathsf{NTIME}(n^{9.6}).$ 

### Proof of the Time/Space Tradeoff for SAT

• Putting together the two claims shows that

the assumption NTIME(n)  $\subseteq$  TISP( $n^{1.2}, n^{0.2}$ ) leads to contradiction.

The assumption plus a simple padding argument implies that

$$\mathsf{NTIME}(n^{10}) \subseteq \mathsf{TISP}(n^{12}, n^2).$$

Now we have

$$\begin{array}{rcl} \mathsf{NTIME}(n^{10}) & \subseteq & \mathsf{TISP}(n^{12}, n^2) \\ & \subseteq & \Sigma_2 \mathsf{TIME}(n^8) & (\text{by the First Claim}) \\ & \subseteq & \mathsf{NTIME}(n^{9.6}). & (\text{by the Second Claim}) \end{array}$$

This contradicts the nondeterministic Time Hierarchy Theorem.

### Subsection 5

#### Defining the Hierarchy via Oracle Machines

### Oracle Characterization of the Polynomial Hierarchy

- Recall that oracle machines are machines with access to a special tape that they can use to make queries of the form "is *q* ∈ *O*?", for some language *O*.
- For every O ⊆ {0,1}\*, oracle TM M and input x, we denote by M<sup>O</sup>(x) the output of M on x with access to O as an oracle.

Theorem (Characterization of the Polynomial Hierarchy)

For every  $i \ge 2$ ,

$$\Sigma_i^p = \mathsf{NP}^{\Sigma_{i-1}SAT},$$

where NP<sup> $\Sigma_{i-1}$ SAT</sup> is the set of languages decided by polynomial-time NDTMs with access to the oracle  $\Sigma_{i-1}$ SAT.

• We showcase the proof idea by showing that  $\Sigma_2^p = NP^{SAT}$ .

# The Second Level is in $\mathsf{NP}^{\mathrm{Sat}}$

• Suppose that  $L \in \Sigma_2^p$ .

Then, there is a polynomial-time TM M and a polynomial q, such that  $x \in L$  iff

$$\exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} M(x,u_1,u_2) = 1.$$

For every fixed  $u_1$  and x, the statement

"for every 
$$u_2$$
,  $M(x, u_1, u_2) = 1$ "

is the negation of an NP-statement.

Hence, its truth can be determined using an oracle for SAT.

So a simple NDTM *N*, given oracle access for SAT, can decide *L*. On input *x*, nondeterministically guess  $u_1$ ;

Use the oracle to decide if  $\forall u_2 M(x, u_1, u_2) = 1$ .

We see that  $x \in L$  iff there exists a choice  $u_1$  that makes N accept.

# NP<sup>SAT</sup> is in the Second Level: Idea

• Conversely, suppose that *L* is decidable by a polynomial-time NDTM *N* with oracle access to SAT.

- *N* could make polynomially many queries to the SAT oracle.
- Moreover, every query could depend upon all preceding queries.

At first sight this seems to give N more power than a  $\Sigma_2^p$  machine, which has the capability to nondeterministically make a single query to a coNP language.

We wish to replace N by an equivalent  $\Sigma_2^p$  machine.

The main idea is to:

- $\bullet\,$  Nondeterministically guess all future queries as well as the  ${\rm SAT}$  oracle's answers;
- Then to make a single coNP query whose answer verifies that all this guessing was correct.

# NP<sup>SAT</sup> is in the Second Level: Details

- x is in L if and only if there exists a sequence of nondeterministic choices and correct oracle answers that makes N accept x. That is, there are:
  - A sequence of choices  $c_1, \ldots, c_m \in \{0, 1\}$ ;
  - Answers to oracle queries  $a_1, \ldots, a_k \in \{0, 1\}$ ;

such that, on input x, if the machine N uses choices  $c_1, \ldots, c_m$  and receives  $a_i$  as the answer to its *i*-th query:

- (1) M reaches the accepting state  $q_{\text{accept}}$ ;
- 2) All the answers are correct.

# NP<sup>SAT</sup> is in the Second Level: Details (Cont'd)

- Let φ<sub>i</sub> denote the *i*-th query that M makes to its oracle when executing on x, while:
  - Using choices  $c_1, \ldots, c_m$ ;
  - Receiving answers  $a_1, \ldots, a_k$ .

Then, Condition (2) can be phrased as follows:

• If  $a_i = 1$ , then there exists an assignment  $u_i$ , such that  $\varphi_i(u_i) = 1$ ;

If 
$$a_i = 0$$
, then, for every assignment  $v_i$ ,  $\varphi_i(v_i) = 0$ .

Thus,

$$x \in L$$
 iff  $\exists c_1, \ldots, c_m, a_1, \ldots, a_k, u_1, \ldots, u_k \forall v_1, \ldots, v_k$   
[*N* accepts *x* using choices  $c_1, \ldots, c_m$   
and answers  $a_1, \ldots, a_k$   
AND  $\forall i \in [k]$  if  $a_i = 1$ , then  $\varphi_i(u_i) = 1$   
AND  $\forall i \in [k]$ , if  $a_i = 0$ , then  $\varphi_i(v_i) = 0$ ].

This shows that  $L \in \Sigma_2^p$ .