Advanced Computational Complexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU)

Advanced Computational Complexity

December 202

Boolean Circuits

- Boolean Circuits and P_{/POLY}
- Uniformly Generated Circuits
- Turing Machines that Take Advice
- $P_{/POLY}$ and NP
- Circuit Lower Bounds
- Nonuniform Hierarchy Theorem
- Finer Gradations Among Circuit Classes
- Circuits of Exponential Size

Subsection 1

Boolean Circuits and P/POLY

Introducing Boolean Circuits

 A Boolean circuit is a diagram showing how to derive an output from a binary input string by applying a sequence of basic Boolean operations OR (∨), AND (∧) and NOT (¬) on the input bits.
 Example: The figure shows a Boolean circuit computing the XOR function on two bits.

Boolean Circuits

Definition (Boolean Circuits)

For every $n \in \mathbb{N}$, an *n*-input, single-output Boolean circuit is a directed acyclic graph with:

- *n* **sources** (vertices with no incoming edges);
- One **sink** (vertex with no outgoing edges).

All non source vertices are called **gates** and are labeled with one of \lor , \land or \neg (i.e., the logical operations OR, AND and NOT).

- The vertices labeled with ∨ and ∧ have fan-in (i.e., number of incoming edges) equal to 2;
- The vertices labeled with \neg have fan-in 1.

The size of C, denoted by |C|, is the number of vertices in it.

Boolean Circuits (Cont'd)

Definition (Boolean Circuits Cont'd)

- Let C be a Boolean circuit.
- Let $x \in \{0,1\}^n$ be some input.

Then the **output of** C **on** x, denoted C(x), is defined in the natural way. For every vertex v of C, we give it a value val(v) as follows:

- If v is the *i*-th input vertex then $val(v) = x_i$;
- Otherwise, val(v) is defined recursively by applying v's logical operation on the values of the vertices connected to v.

The **output** C(x) is the value of the output vertex.

Remarks on Fan-in and Fan-out

- The definition restricts fan-in to 2.
- This, however, does not restrict generality.
- A ∨ or ∧ gate with fan-in f can be easily replaced with a subcircuit consisting of f − 1 gates of fan-in 2.
- Fan-in becomes important when we study circuits with restricted depth.
- The Boolean formulas we looked at earlier are circuits where the fan-out (i.e., number of outgoing edges) of each vertex is 1.
- The advantage of fan-out 2 over fan-out 1 is that it allows an intermediate value inside the circuit to be reused many times.
- This definition has the additional advantage that it models the silicon chips used in modern computers.
- Thus, if we show that a certain task can be solved by a small Boolean circuit, then it can be implemented efficiently on a silicon chip.

George Voutsadakis (LSSU)

Circuit Families and Language Recognition

Definition (Circuit Families and Language Recognition)

Let $T: \mathbb{N} \to \mathbb{N}$ be a function.

A T(n)-size circuit family is a sequence

 $\{C_n\}_{n\in\mathbb{N}}$

of Boolean circuits, where:

- C_n has n inputs and a single output;
- Its size $|C_n| \leq T(n)$, for every n.

A language L is in SIZE(T(n)) if there exists a T(n)-size circuit family $\{C_n\}_{n \in \mathbb{N}}$, such that, for every $x \in \{0, 1\}^n$,

$$x \in L$$
 iff $C_n(x) = 1$.

Examples

Consider the language

$$\{1^n:n\in\mathbb{N}\}.$$

It can be decided by a linear-sized circuit family.

The circuit is simply a tree of AND gates that computes the AND of all input bits.

Consider the language

$$\{\langle m, n, m+n \rangle : m, n \in \mathbb{N}\}.$$

It also has linear-sized circuits.

They implement the grade school algorithm for addition.

This algorithm adds two numbers bit by bit.

Addition of two bits is done by a circuit of O(1) size.

It produces a carry bit that is used as input for the addition of the bits in the next position.

The class $\mathsf{P}_{\mathsf{/poly}}$

- A CNF formula is a special type of a circuit.
- So every function f from {0,1}ⁿ to {0,1} can be computed by a Boolean circuit of size n2ⁿ.
- We can show that size $O\left(\frac{2^n}{n}\right)$ also suffices.
- Therefore, interesting complexity classes arise when we consider "small" circuits.

Definition (The class P_{/poly})

 $\mathsf{P}_{/\mathsf{poly}}$ is the class of languages that are decidable by polynomial-sized circuit families. That is,

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_c \mathsf{SIZE}(n^c).$$

• From the complexity theoretic point of view, the hope is to eventually show that languages such as SAT are not in P_{/poly}.

George Voutsadakis (LSSU)

Advanced Computational Complexity

10 / 71

Straight-Line Programs

- Instead of modeling Boolean circuits as labeled graphs, we can also model them as **straight-line programs**.
- A program *P* is **straight-line** if it contains no branching or loop operations (such as if or goto).
- Hence, *P*'s running time is bounded by the number of instructions that it contains.
- The equivalence between Boolean circuits and straight-line programs is fairly general and holds (up to polynomial factors) for essentially any reasonable programming language.

Boolean Circuits and Boolean Straight-Line Programs

- The equivalence between Boolean circuits and straight-line programs is most obviously demonstrated using straight-line programs with Boolean operations.
- A Boolean straight-line program of length T, with input variables

$$x_1, x_2, \ldots, x_n \in \{0, 1\},\$$

is a sequence of T statements of the form

$$y_i = z_{i_1} \text{ OP } z_{i_2}, \quad i = 1, 2, \dots, T,$$

where:

- OP is either \lor or \land ;
- Each z_{i_1} , z_{i_2} is either an input variable, or the negation of an input variable, or y_j for j < i.

Boolean Straight-Line Computation

- For every setting of values to the input variables, the **straight-line computation** consists of executing these simple statements in order, thereby finding values for $y_1, y_2, ..., y_T$.
- The **output** of the computation is the value of y_T .
- It is can be shown that a function *f* on *n* bits can be computed by an *S*-line straight-line program of this form if and only if it can be computed by an *S*-sized Boolean circuit.

Example: A straight-line program in input variables x_1 , x_2 that is equivalent to the XOR function circuit is

$$y_1 = \neg x_1; y_2 = \neg x_2; y_3 = y_1 \land x_2; y_4 = x_1 \land y_2; y_5 = y_3 \lor y_4.$$

$\mathsf{P}_{\mathsf{/poly}}$ and P

Theorem

- $\mathsf{P}\subseteq\mathsf{P}_{/\mathsf{poly}}.$
 - The proof is very similar to the proof of the Cook-Levin Theorem. Recall that every TM M that runs in O(T(n)) time can be simulated by an oblivious TM \widetilde{M} (whose head movement is independent of its input) running in time $O(T(n)^2)$ (even $O(T(n) \log T(n))$ if we perform a more careful construction).

Thus, it suffices to show that, for every oblivious TM M that runs in time T(n), there exists a O(T(n))-sized circuit family $\{C_n\}_{n\in\mathbb{N}}$, such that

 $C_n(x) = M(x)$, for every $x \in \{0,1\}^n$.

P_{/poly} and P (Cont'd)

• Let *M* be such an oblivious TM.

Let $x \in \{0,1\}^*$ be some input for M.

Define the **transcript** of M's execution on x to be the sequence

 $z_1,\ldots,z_{T(n)}$

of **snapshots** (the machine's state and symbols read by all heads) of the execution at each step in time.

We can encode each z_i by a constant-sized binary string. Furthermore, we can compute the string z_i based on:

- The input *x*;
- The previous snapshot *z*_{*i*-1};
- The snapshots z_{i_1}, \ldots, z_{i_k} , where z_{i_j} denotes the last step that *M*'s *j*-th head was in the same position as it is in the *i*-th step.

P_{/poly} and P (Cont'd)

These are only a constant number of strings of constant length.
 This means that we can compute z_i from these previous snapshots using a constant-sized circuit.

The composition of all these constant-sized circuits gives rise to a circuit that computes, from the input x, the snapshot $z_{T(n)}$ of the last step of M's execution on x.

There is a constant-sized circuit that, given $z_{T(n)}$, outputs 1 if and only if $z_{T(n)}$ is an accepting snapshot (*M* outputs 1 and halts). Thus, there is an O(T(n))-sized circuit C_n , such that

$$C_n(x) = M(x)$$
, for all $x \in \{0,1\}^n$.

Remark

- The circuit produced in the proof of the theorem:
 - Is of polynomial size;
 - Can also be computed in polynomial time;
 - Can even be computed in logarithmic space.
- This is based on the observation that it is possible to simulate every TM M by an oblivious TM M, such that the function that maps n, i to the M's position on n-length inputs in the i-th tape can be computed in logarithmic space.

P is a Proper Subset of $P_{/poly}$

- The inclusion $P \subseteq P_{/poly}$ is proper.
- There are unary languages that are undecidable and, hence, not in P.
- In contrast, every unary language is in P_{/poly}.

Claim

If $L \in \{0,1\}^*$ is a unary language i.e., $L \in \{1^n: n \in \mathbb{N}\}$ then,

$$L \in \mathsf{P}_{/\mathsf{poly}}.$$

 We describe a circuit family of linear size. If 1ⁿ ∈ L, then the circuit for inputs of size n has already been given. Otherwise, it is the circuit that always outputs 0. A unary language that is undecidable is

UHALT = $\{1^n : n \text{'s binary expansion encodes a pair} \langle M, x \rangle$, such that M halts on input $x\}$.

Circuit Satisfiability

- We aim to provide an alternative proof of the Cook-Levin Theorem, based on circuits.
- To this end, we define the Circuit Satisfiability problem.

Definition (Circuit Satisfiability or CKTSAT)

The language CKTSAT consists of all (strings representing) circuits that produce a single bit of output and that have a satisfying assignment. That is, a string representing an *n*-input circuit *C* is in CKTSAT iff, there exists $u \in \{0, 1\}^n$, such that

$$C(u)=1.$$

Circuit Satisfiability and The Cook-Levin Theorem

- $CKTSAT \in NP$, since a satisfying assignment is a certificate.
- The Cook-Levin Theorem follows from the next two lemmas.

Lemma

 $\rm C {\it KT} S {\it AT}$ is NP-hard.

• Suppose $L \in NP$.

Then there is a polynomial-time TM M and a polynomial p, such that

$$x \in L$$
 iff $M(x, u) = 1$, for some $u \in \{0, 1\}^{p(|x|)}$.

The proof of the theorem yields a polynomial-time transformation from M, x to a circuit C, such that

$$M(x,u) = C(u),$$
 for every $u \in \{0,1\}^{\mathsf{poly}(|x|)}.$

Thus, x is in L iff $C \in CKTSAT$.

The Second Lemma

Lemma

CKTSAT $\leq_{p} 3$ SAT.

• Let C be a circuit.

We map it to a 3CNF formula φ as follows.

For every node v_i of C, we have a corresponding variable z_i in φ . Suppose the node v_i is an AND of the nodes v_j and v_k . Then we add to φ clauses that are equivalent to the condition

$$z_i = (z_j \wedge z_k)$$
.

That is, we add

$$(\overline{z}_i \lor (z_j \land z_k)) \land (z_i \lor \neg (z_j \land z_k)) \\ \equiv (\overline{z_i} \lor \overline{z_j} \lor z_k) \land (\overline{z_i} \lor z_j \lor \overline{z_k}) \land (\overline{z_i} \lor z_j \lor z_k) \land (z_i \lor \overline{z_j} \lor \overline{z_k}).$$

The Second Lemma (Cont'd)

Suppose v_i is an OR of v_j and v_k.
 Then we add clauses equivalent to

$$"z_i = (z_j \vee z_k)".$$

Suppose v_i is the NOT of v_j .

Then we add the clauses

 $(z_i \vee z_j) \wedge (\overline{z_i} \vee \overline{z_j}).$

Finally, suppose v_i is the output node of C.

Then we add the clause (z_i) to φ .

I.e., we add the clause that is true iff z_i is true.

Then formula φ is satisfiable if and only if the circuit C is.

Clearly, the reduction runs in time polynomial in the input size.

Subsection 2

Uniformly Generated Circuits

P-Uniform Circuit Families

- The class P_{/poly} fits rather awkwardly in the complexity world since it contains even undecidable languages such as UHALT.
- The root of the problem is that for a language *L* to be in P_{/poly}, it suffices that a circuit family for *L* exists, even if we have no way of actually constructing the circuits.
- This motivates trying to restrict attention to circuits that can actually be built using a fairly efficient Turing machine.

Definition (P-Uniform Circuit Families)

A circuit family $\{C_n\}$ is P-**uniform** if there is a polynomial-time TM that, on input 1^n , outputs the description of the circuit C_n .

• Restricting circuits to be P-uniform "collapses" P_{/polv} to the class P.

P-uniformity Collapses P_{/poly} to P

Theorem

A language L is computable by a P-uniform circuit family iff $L \in P$.

• Suppose *L* is computable by a circuit family {*C_n*} that is generated by a polynomial-time TM *M*.

Then we can come up with a polynomial-time TM M for L. Suppose \widetilde{M} receives input x. \widetilde{M} runs $M(1^{|x|})$ to obtain the circuit $C_{|x|}$. It then evaluates $C_{|x|}$ on the input x.

For the other direction, assume $L \in P$.

Follow closely the proof of the inclusion $P \subseteq P_{/poly}$.

Note that it actually yields a P-uniform circuit family for any $L \in P$.

Logspace-Uniform Families

- We now impose an even stricter notion of uniformity.
- We stipulate generation by logspace machines.
- A function $f: \{0,1\}^* \to \{0,1\}^*$ is implicitly logspace computable if the mapping

 $x, i \mapsto f(x)_i$

can be computed in logarithmic space.

Definition (Logspace-Uniform Circuit Families)

A circuit family $\{C_n\}$ is **logspace uniform** if there is an implicitly logspace computable function mapping 1^n to the description of the circuit C_n .

- Logspace computations run in polynomial time.
- Hence, logspace-uniform circuits are also P-uniform.

A Concrete String Representation

- The definition of logspace uniform circuits is robust to various representations as strings.
- A concrete way is to represent a circuit of size S by:
 - The $S \times S$ adjacency matrix of its underlying directed graph;
 - An array of size S that provides the labels (gate type) of each vertex.
- Identifying the vertices with numbers in [S], we let:
 - The first *n* vertices be the input vertices;
 - The last vertex be the output vertex.

Representation and Conditions for Logspace Uniformity

- Assume the concrete matrix representation of a family $\{C_n\}$.
- Then {*C_n*} is logspace-uniform if and only if the following functions are computable in O (log *n*) space:
 - SIZE(*n*) returns the size S (in binary representation) of the circuit C_n ;
 - TYPE(n, i), where i ∈ [m], returns the label of the i-th vertex of C_n.
 I.e., it returns one of {∨, ∧, ¬, NONE};
 - EDGE(*n*, *i*, *j*) returns 1 if there is a directed edge in *C_n* from the *i*-th vertex to the *j*-th vertex.
- Both the inputs and the outputs of these functions can be encoded using a logarithmic (in $|C_n|$) number of bits.

Logspace-Uniform Circuits of Polynomial Size

Theorem

A language has logspace-uniform circuits of polynomial size iff it is in P.

• The result follows by a careful analysis of the proof of $P \subseteq P_{/poly}$.

Subsection 3

Turing Machines that Take Advice

Turing Machines that Take Advice

- We characterize P_{/poly} using Turing machines that "take advice".
- Such a machine has, for each n, an advice string α_n, which it is allowed to use in its computation whenever the input has size n.

Definition (Turing Machines with Advice)

Let $T, a : \mathbb{N} \to \mathbb{N}$ be functions. The class of **languages decidable by** time-T(n) TMs with a(n) bits of advice, denoted DTIME(T(n))/a(n), contains every L, such that, there exists a sequence $\{\alpha_n\}_{n \in \mathbb{N}}$ of strings, with $\alpha_n \in \{0, 1\}^{a(n)}$, and a TM M, such that:

• For every $x \in \{0, 1\}^n$,

$$M(x, \alpha_n) = 1$$
 iff $x \in L$;

• On input (x, α_n) , the machine *M* runs for at most O(T(n)) steps.

Example

- Consider an arbitrary unary language.
- It can be be decided by a polynomial time Turing machine with 1 bit of advice.
- The advice string for inputs of length *n* is the bit indicating whether or not 1^{*n*} is in the language.
- In particular, this is true of the language UHALT.

Polynomial-Time TM's with Advice Decide P_{/poly}

Theorem (Polynomial-Time TM's with Advice Decide P_{/poly})

$$\mathsf{P}_{/\mathsf{poly}} = \bigcup_{c,d} \mathsf{DTIME}(n^c)/n^d.$$

• Suppose $L \in P_{\text{poly}}$.

Then *L* is computable by a polynomial-sized circuit family $\{C_n\}$. Use the description of C_n as an advice string on inputs of size *n*.

The TM, taking this advice, is the polynomial-time TM M that, on input a string x and a string representing an n-input circuit C, outputs C(x).

Conversely, suppose *L* is decidable by a polynomial-time Turing machine *M*, with access to advice $\{\alpha_n\}_{n \in \mathbb{N}}$ of polynomial size a(n). Then we use the idea in the $P \subseteq P_{/poly}$ -theorem.

Polynomial-Time TM's with Advice Decide P_{/poly} (Cont'd)

We construct, for every n, a polynomial-sized circuit D_n, such that on every x ∈ {0,1}ⁿ, α ∈ {0,1}^{a(n)},

$$D_n(x,\alpha) = M(x,\alpha).$$

We let the circuit C_n be the polynomial circuit that, given x computes the value $D_n(x, \alpha_n)$.

I.e., C_n is equal to the circuit D_n with the string α_n "hard-wired" as its second input.

"Hard-wiring" an input into a circuit means:

- Taking a circuit C, with two inputs $x \in \{0,1\}^n$, $y \in \{0,1\}^m$;
- Fixing the inputs corresponding to *y*.

This gives the circuit C_y that, for every x, returns C(x, y).

It is easy to do so while ensuring that the size of C_y is not greater than the size of C.

Subsection 4

 $\mathsf{P}_{\mathsf{/POLY}}$ and NP

The Karp-Lipton Theorem

- Whether or not ${\rm SAT}$ has small circuits is formalized as "Is ${\rm SAT} \in {\sf P}_{/{\sf poly}}$?" .
- The answer is "NO", if the polynomial hierarchy does not collapse.

Theorem (Karp-Lipton Theorem)

If NP \subseteq P_{/poly}, then PH = Σ_2^p .

• We know that to show $PH = \Sigma_2^p$, it suffices to show $\Pi_2^p \subseteq \Sigma_2^p$. In particular, it suffices to show that Σ_2^p contains the Π_2^p -complete language $\Pi_2 SAT$ consisting of all true formulas of the form

$$\forall u \in \{0,1\}^n \exists v \in \{0,1\}^n \varphi(u,v) = 1,$$

where φ is an unquantified Boolean formula.

The Karp-Lipton Theorem (Cont'd)

• Suppose $NP \subseteq P_{/poly}$.

Then, there exists a polynomial p and a p(n)-sized circuit family $\{C_n\}_{n\in\mathbb{N}}$, such that, for every Boolean formula φ and $u \in \{0,1\}^n$,

 $C_n(\varphi, u) = 1$ iff there exists $v \in \{0, 1\}^n$, such that $\varphi(u, v) = 1$.

Thus, the circuit solves the decision problem for SAT.

However, we have an algorithm that converts any decision algorithm for SAT into an algorithm that actually outputs a satisfying assignment whenever one exists.

Think of this algorithm as a circuit.

We obtain from the family $\{C_n\}$ a q(n)-sized circuit family $\{C'_n\}_{n\in\mathbb{N}}$, where q is a polynomial, such that, for every such formula φ and $u \in \{0,1\}^n$, if there is a string $v \in \{0,1\}^n$, such that $\varphi(u,v) = 1$, then $C'_n(\varphi, u)$ outputs such a string v.

The Karp-Lipton Theorem (Cont'd)

 The assumption NP ⊆ P_{/poly} only implies the existence of C and C'. The main idea of the proof is that C' can be "guessed" using ∃ quantification.

Since the circuit outputs a satisfying assignment if one exists, this answer can be checked directly.

 C'_n can be described using $10q(n)^2$ bits.

So if $\forall u \in \{0,1\}^n \exists v \in \{0,1\}^n \varphi(u,v) = 1$ holds, then the following quantified formula is true:

$$\exists w \in \{0,1\}^{10q(n)^2} \forall u \in \{0,1\}^n \\ (w \text{ describes a circuit } C' \text{ and } \varphi(u,C'(\varphi,u)) = 1).$$

The Karp-Lipton Theorem (Cont'd)

• If $\forall u \in \{0,1\}^n \exists v \in \{0,1\}^n \varphi(u,v) = 1$ holds, then the following quantified formula is true:

 $\exists w \in \{0,1\}^{10q(n)^2} \forall u \in \{0,1\}^n \\ (w \text{ describes a circuit } C' \text{ and } \varphi(u,C'(\varphi,u)) = 1).$

If $\forall u \in \{0,1\}^n \exists v \in \{0,1\}^n \varphi(u,v) = 1$ is false, then, for some u, no v exists such that $\varphi(u,v) = 1$.

Hence the preceding formula is false as well.

Evaluating a circuit on an input can be done deterministically in polynomial time.

So the truth of the displayed formula can be verified in Σ_2^p .

Meyer's Theorem

• Similarly, $P_{/poly}$ is unlikely to contain EXP.

Theorem (Meyer's Theorem)

If EXP \subseteq P_{/poly}, then EXP = Σ_2^p .

• Let $L \in EXP$.

Then L is computable by a $2^{p(n)}$ -time oblivious TM M, where p is some polynomial.

Let $x \in \{0,1\}^n$ be some input string.

For every $i \in [2^{p(n)}]$, let z_i be the encoding of the *i*-th snapshot of M's execution on input x.

Meyer's Theorem (Cont'd)

• Suppose *M* has *k* tapes.

Then $x \in L$ if and only if, for every k + 1 indices i, i_1, \ldots, i_k , the snapshots $z_i, z_{i_1}, \ldots, z_{i_k}$ satisfy some easily checkable criteria:

- If z_i is the last snapshot, then it should encode M outputting 1;
- if i_1, \ldots, i_k are the last indices where *M*'s heads were in the same locations as in *i*, then the values read in z_i should be consistent with the input and the values written in z_{i_1}, \ldots, z_{i_k} .

These indices can be represented in polynomial time.

If EXP \subseteq P_{/poly}, then there is a q(n)-sized circuit C, for some polynomial q, that computes z_i from i.

Meyer's Theorem (Cont'd)

Now the main point is that the correctness of the transcript implicitly computed by this circuit can be expressed as a coNP predicate.
 The predicate checks that the transcript satisfies all local criteria.
 Hence, x ∈ L iff the following condition is true

$$\exists C \in \{0,1\}^{q(n)} orall i, i_1, \dots, i_k \in \{0,1\}^{p(n)} \ T(x,C(i),C(i_1),\dots,C(i_k)) = 1,$$

where T is some polynomial-time TM checking these conditions. This implies that $L \in \Sigma_2^p$.

A Consequence

Corollary

- If P = NP, then $EXP \nsubseteq P_{/poly}$.
 - We know that, if P = NP, then P = Σ₂^p.
 Suppose EXP ⊆ P_{/poly}.
 By Meyer's Theorem, EXP = Σ₂^p.
 Then, we get P = EXP.
 This contradicts the Time Hierarchy Theorem.
 - Thus, upper bounds (e.g., NP \subseteq P) can potentially be used to prove circuit lower bounds.

Subsection 5

Circuit Lower Bounds

The Circuit Approach to P vs. NP

- Since $P \subseteq P_{/poly}$, if we ever prove $NP \nsubseteq P_{/poly}$, then we will have shown $P \neq NP$.
- The Karp-Lipton Theorem gives evidence that NP \nsubseteq P_{/poly}.
- There is reason to invest hope in resolving the P versus NP by proving NP ⊈ P_{/poly}.
 - By representing computation using circuits, we seem to actually peer into the guts of it rather than treating it as a black box.
 - Thus, the approach may allow bypassing the limitations of relativizing methods.
- In fact, it is easy to show that some functions do require very large circuits to compute.

Existence of Hard Functions

Theorem (Existence of Hard Functions)

For every n > 1, there exists a function $f : \{0, 1\}^n \to \{0, 1\}$ that cannot be computed by a circuit *C* of size $\frac{2^n}{10n}$.

• The proof uses a simple counting argument:

- The number of functions from $\{0,1\}^n$ to $\{0,1\}$ is 2^{2^n} .
- Every circuit of size at most S can be represented as a string of 9S log S bits, e.g., using the adjacency list representation. So the number of such circuits is at most 2^{95 log S}.

Let
$$S = \frac{2^n}{10n}$$
.

Then the number of circuits of size S is

$$\leq 2^{9S \log S} = 2^{9\frac{2^n}{10n} \log \frac{2^n}{10n}} \leq 2^{\frac{2^n 9n}{10n}} < 2^{2^n}.$$

Existence of Hard Functions (Cont'd)

• It follows that the number of functions computed by such circuits is smaller than 2^{2ⁿ}.

This implies that there exists a function that is not computed by circuits of that size.

• With a more careful calculation, one can obtain a bound of

$$(1-\epsilon)rac{2^n}{n},\quad ext{for every }\epsilon>0.$$

• We can even get a bound of

$$2^n\left(1+\frac{\log n}{n}-O\left(\frac{1}{n}\right)\right).$$

Another Proof Involving Probability

 Suppose that we pick a function f: {0,1}ⁿ → {0,1} at random. We do this by picking, for every one of the 2ⁿ possible inputs x ∈ {0,1}ⁿ, the value f(x) in {0,1} uniformly and independently. Then, for every fixed circuit C and input x, the probability that C(x) = f(x) is ¹/₂.

The choices made are independent.

So the probability that C computes f, i.e., that

$$C(x) = f(x)$$
, for every $x \in \{0,1\}^n$,

is $2^{-2^{n}}$.

There are at most $2^{0.9 \cdot 2^n}$ circuits of size at most $\frac{2^n}{10n}$.

Another Proof Involving Probability (Cont'd)

• There are at most $2^{0.9 \cdot 2^n}$ circuits of size at most $\frac{2^n}{10n}$.

By the probabilistic union bound, the probability that there exists such a circuit C computing f is at most

$$\frac{2^{0.9\cdot 2^n}}{2^{2^n}} = 2^{-0.1\cdot 2^n}.$$

This is a number that tends very fast to zero as n grows.

In particular, this number is smaller than one.

This implies that there exists a function f that is not computed by any circuit of size at most $\frac{2^n}{10n}$.

Discussion on P vs. NP

- The proof technique of showing an object with a particular property exists by showing a random object satisfies this property with nonzero probability, is called the **probabilistic method**.
- The probabilistic proof yields a stronger statement than that in the theorem.
- Not only does there exist a hard function, but in fact the vast majority of the functions from {0,1}ⁿ to {0,1} are hard.
- This gives hope that we should be able to find one such function that also happens to lie in NP, thus proving NP ⊈ P_{/poly}.
- Unfortunately, after two decades, the best circuit size lower bound for an NP language is only (5 o(1))n.
- On the positive side, we have had notable success in proving lower bounds for more restricted circuit models.

Subsection 6

Nonuniform Hierarchy Theorem

Nonuniform Hierarchy Theorem

• Like TMs and NDTM's, Boolean circuits have a hierarchy theorem.

Theorem (Nonuniform Hierarchy Theorem)

For every functions $T, T' : \mathbb{N} \to \mathbb{N}$, with $\frac{2^n}{n} > T'(n) > 10T(n) > n$,

 $SIZE(T(n)) \subsetneq SIZE(T'(n)).$

- The diagonalization methods do not seem to apply in this setting.
- On the other hand, a counting argument works.

Here, we prove that SIZE(n) ⊊ SIZE(n²).
 We know that, for every ℓ, there is a function f : {0,1}^ℓ → {0,1} that is not computable by ^{2^ℓ}/_{10ℓ}-sized circuits.

Nonuniform Hierarchy Theorem (Cont'd)

• On the other hand, every function from $\{0,1\}^\ell$ to $\{0,1\}$ is computable by a $2^\ell 10\ell\text{-sized circuit.}$

Set $\ell = 1.1 \log n$.

Let

$$g: \{0,1\}^n \to \{0,1\}$$

be the function that applies f on the first ℓ bits of its input. Then

$$g \in \mathsf{SIZE}(2^{\ell} 10\ell) = \mathsf{SIZE}(11n^{1.1} \log n) \subseteq \mathsf{SIZE}(n^2);$$
$$g \notin \mathsf{SIZE}\left(\frac{2^{\ell}}{10\ell}\right) = \mathsf{SIZE}\left(\frac{n^{1.1}}{11 \log n}\right) \supseteq \mathsf{SIZE}(n).$$

Subsection 7

Finer Gradations Among Circuit Classes

Subclasses of P/poly

- Some subclasses of $P_{/poly}$, are interesting for two reasons.
- Separating NP from these subclasses may give insight into how to separate NP from P_{/poly}.
- These subclasses correspond to interesting computational models in their own right.

Parallel Computation

- An interesting connection is to **massively parallel computers**.
- Simple microprocessors are linked using an **interconnection network** that allows them to send messages to each other.
- Usual networks, e.g., the **hypercube**, allow linking *n* processors, such that interprocessor communication is possible, assuming some upper bounds on the total load, in O (log *n*) steps.
- The processors compute in lock-step, e.g., to the ticks of a global clock.
- Each processor is assumed to do a small amount of computation in each step, e.g., an operation on O (log *n*) bits.
- Each processor has enough memory to:
 - Remember its own address in the interconnection network;
 - Write down the address of any other processor, and thus send messages to it.

Efficient Parallel Computation

- We say that a computational problem has an **efficient parallel algorithm** if it can be solved for inputs of size *n* using a parallel computer:
 - With $n^{O(1)}$ processors;
 - In time $\log^{O(1)} n$.

Example

- Suppose the input consists of two *n* bit numbers *x*, *y*.
 We wish to compute *x* + *y* fast in parallel.
- The grade-school algorithm proceeds from the least significant bit and maintains a **carry bit**.

The most significant bit is computed only after *n* steps.

- A better algorithm, called **carry lookahead**, assigns each bit position to a separate processor.
 - It then uses interprocessor communication to propagate carry bits.
 - It takes O(n) processors and $O(\log n)$ time.

Parallel Computation and Specific Problems

- There are also efficient parallel algorithms for integer multiplication and division.
- Many matrix computations can be done efficiently in parallel.
 E.g. computing the product, rank, determinant and inverse.
- Some graph theoretic algorithms, such as shortest path and minimum spanning tree, also have fast parallel implementations.
- However well-known polynomial-time problems, such as maximum flows and linear programming are not known to have any good parallel implementations and are conjectured not to have any.

The class NC

- We relate parallel computation to circuits.
- The **depth** of a circuit is the length of the longest directed path from an input node to the output node.

Definition (The Class NC)

For every d, a language L is in NC^d if L can be decided by a family of circuits $\{C_n\}$, where C_n has:

- Size poly(n);
- Depth O $(\log^d n)$.

Finally, we define the class

$$\mathsf{NC} = \bigcup_{i \ge 1} \mathsf{NC}^i.$$

• Uniform NC could require the circuits to be logspace-uniform.

The class AC

Definition (The Class AC)

The class AC^i is defined similarly to NC^i except gates are allowed to have unbounded fan-in, i.e., the OR and AND gates can be applied to more than two bits. Finally, define the class

$$\mathsf{AC} = \bigcup_{i \ge 0} \mathsf{AC}^i.$$

 Note that unbounded, but poly(n) fan-in can be simulated using a tree of ORs/ANDs of depth O (log n).

So we get

$$NC^i \subseteq AC^i \subseteq NC^{i+1}.$$

- The inclusion is known to be strict for i = 0.
- NC⁰ is very limited since the circuit's output depends upon a constant number of input bits, but AC⁰ does not suffer from this limitation.

George Voutsadakis (LSSU)

Advanced Computational Complexity

Example

The language

PARITY = {x : x has an odd number of 1s}

is in NC¹.

The circuit computing it has the form of a binary tree.

- The answer appears at the root;
- The left subtree computes the parity of the first $\frac{|x|}{2}$ bits;
- The right subtree computes the parity of the remaining bits.
- The gate at the top computes the parity of these two bits.

The recursion resulting from this description gives a circuit of depth $O(\log n)$.

The circuit is also logspace-uniform.

• It can be shown that PARITY is not in AC⁰.

NC and Parallel Algorithms

• NC characterizes the languages with efficient parallel algorithms.

Theorem (NC and Parallel Algorithms)

A language has efficient parallel algorithms iff it is in NC.

• Suppose a language $L \in NC$.

Then, it is decidable by a circuit family $\{C_n\}$ of:

• Depth
$$D = O\left(\log^d n\right)$$
.

Take a parallel computer with N nodes.

Configure it to decide *L* as follows:

- Compute a description of C_n .
- Allocate the role of each circuit node to a distinct processor.
- Each processor computes the output at its assigned node.
- It then sends the resulting bit to every other circuit node that needs it.

NC and Parallel Algorithms (Cont'd)

- Assuming the interconnection network delivers all messages in O (log N) time, the total running time is O (log^{d+1} N).
 Incidentally, note that:
 - If the circuit is nonuniform, then so is this parallel algorithm.
 - If the circuit is logspace-uniform, then so is the parallel algorithm.

Conversely, suppose L has an efficient parallel algorithm using, for inputs of size n, a parallel computer with:

•
$$N = n^{O(1)}$$
 processors;

• Time $D = \log^{O(1)} n$.

We construct a circuit with $N \cdot D$ nodes arranged in D layers.

The *i*-th node in the *t*-th layer performs the computation of processor i at time t.

The network is replaced by the circuit wires.

Efficient Parallelization of P

- A major open question is whether every polynomial-time algorithm has an efficient parallel implementation, i.e., whether P = NC.
- We believe that the answer is NO.
- However, currently we are unable to even separate PH from NC¹.
- The theory of P-completeness can be used to study which problems are likely to be efficiently parallelizable (are in NC) and which are not.

P-Completeness

Definition (P-Complete Language)

- A language is P-complete if:
 - It is in P;
 - Every language in P is logspace reducible to it.
 - Recall that L denotes the class of languages decidable in logarithmic space.

Theorem

If language L is P-complete, then:

- L. $L \in NC$ iff P = NC.
- 2. $L \in L$ iff P = L.

A P-Complete Language

Define the language

CIRCUITEVAL = { $\langle C, x \rangle$: C is an *n*-input single-output circuit and $x \in \{0, 1\}^n$ is such that C(x) = 1}.

Theorem

CIRCUITEVAL is P-complete.

• The language is clearly in P.

For completeness, one also needs to showcase a logspace-reduction from any other language in P to this language.

Such a reduction is implicit in the proof of the equivalence between having logspace uniform networks and being in P.

Subsection 8

Circuits of Exponential Size

On Uniform Circuit Families

- We saw that every language has circuits of size $O\left(\frac{2^n}{n}\right)$.
- Finding these circuits may be difficult or even undecidable.
- If we place a uniformity condition on the circuits, that is, require them to be efficiently computable, then the circuit complexity of some languages could potentially exceed 2ⁿ.

DC Uniform Circuit Families

Definition (DC Uniform Circuit Family)

Let $\{C_n\}_{n\geq 1}$ be a circuit family. We say that it is a **Direct Connect** uniform (DC uniform) family if, there is a polynomial time algorithm that, given $\langle n, i \rangle$, can compute the *i*-th bit of (the adjacency matrix representation of) the circuit C_n . More precisely, a family $\{C_n\}_{n\in\mathbb{N}}$ is DC uniform iff the functions SIZE, TYPE and EDGE are computable in polynomial time.

- Note that the circuits may have exponential size.
- However, they have a succinct representation in terms of a TM.
- The TM can systematically generate any required vertex of the circuit in polynomial time.

Characterization of PH in Terms of DC Uniform Circuits

• Now we give another characterization of the class PH in terms of computability by uniform circuit families of bounded depth.

Theorem (Characterization of PH)

 $L \in PH$ iff L can be computed by a DC uniform circuit family $\{C_n\}$, that satisfies the following conditions:

- It uses AND, OR, NOT gates.
- 2 It has size $2^{n^{O(1)}}$ and constant depth.
- 3 Its gates can have unbounded (exponential) fan-in.
- 4 Its NOT gates appear only at the input level (i.e., they are only applied directly to the input and not to the result of any other gate).
- We omit the proof.
- If we drop the restriction that the circuits have constant depth, then we obtain exactly EXP.

George Voutsadakis (LSSU)

Advanced Computational Complexity