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Subsection 1

Boolean Circuits and P/POLY
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Introducing Boolean Circuits

A Boolean circuit is a diagram showing how to derive an output from
a binary input string by applying a sequence of basic Boolean
operations OR (∨), AND (∧) and NOT (¬) on the input bits.

Example: The figure shows a Boolean circuit computing the XOR
function on two bits.
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Boolean Circuits

Definition (Boolean Circuits)

For every n ∈ N, an n-input, single-output Boolean circuit is a directed
acyclic graph with:

n sources (vertices with no incoming edges);

One sink (vertex with no outgoing edges).

All non source vertices are called gates and are labeled with one of ∨, ∧
or ¬ (i.e., the logical operations OR, AND and NOT).

The vertices labeled with ∨ and ∧ have fan-in (i.e., number of
incoming edges) equal to 2;

The vertices labeled with ¬ have fan-in 1.

The size of C , denoted by |C |, is the number of vertices in it.
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Boolean Circuits (Cont’d)

Definition (Boolean Circuits Cont’d)

Let C be a Boolean circuit.
Let x ∈ {0, 1}n be some input.
Then the output of C on x , denoted C (x), is defined in the natural way.
For every vertex v of C , we give it a value val(v) as follows:

If v is the i -th input vertex then val(v) = xi ;

Otherwise, val(v) is defined recursively by applying v ’s logical
operation on the values of the vertices connected to v .

The output C (x) is the value of the output vertex.
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Remarks on Fan-in and Fan-out

The definition restricts fan-in to 2.

This, however, does not restrict generality.

A ∨ or ∧ gate with fan-in f can be easily replaced with a subcircuit
consisting of f − 1 gates of fan-in 2.

Fan-in becomes important when we study circuits with restricted
depth.

The Boolean formulas we looked at earlier are circuits where the
fan-out (i.e., number of outgoing edges) of each vertex is 1.

The advantage of fan-out 2 over fan-out 1 is that it allows an
intermediate value inside the circuit to be reused many times.

This definition has the additional advantage that it models the silicon
chips used in modern computers.

Thus, if we show that a certain task can be solved by a small Boolean
circuit, then it can be implemented efficiently on a silicon chip.
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Circuit Families and Language Recognition

Definition (Circuit Families and Language Recognition)

Let T : N→ N be a function.
A T (n)-size circuit family is a sequence

{Cn}n∈N

of Boolean circuits, where:

Cn has n inputs and a single output;

Its size |Cn| ≤ T (n), for every n.

A language L is in SIZE(T (n)) if there exists a T (n)-size circuit family
{Cn}n∈N, such that, for every x ∈ {0, 1}n ,

x ∈ L iff Cn(x) = 1.
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Examples

Consider the language
{1n : n ∈ N}.

It can be decided by a linear-sized circuit family.

The circuit is simply a tree of AND gates that computes the AND of
all input bits.

Consider the language

{〈m, n,m + n〉 : m, n ∈ N}.

It also has linear-sized circuits.

They implement the grade school algorithm for addition.

This algorithm adds two numbers bit by bit.

Addition of two bits is done by a circuit of O (1) size.

It produces a carry bit that is used as input for the addition of the
bits in the next position.
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The class P/poly

A CNF formula is a special type of a circuit.

So every function f from {0, 1}n to {0, 1} can be computed by a
Boolean circuit of size n2n.

We can show that size O
(
2n

n

)
also suffices.

Therefore, interesting complexity classes arise when we consider
“small” circuits.

Definition (The class P/poly)

P/poly is the class of languages that are decidable by polynomial-sized
circuit families. That is,

P/poly =
⋃

c

SIZE(nc).

From the complexity theoretic point of view, the hope is to eventually
show that languages such as Sat are not in P/poly.
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Straight-Line Programs

Instead of modeling Boolean circuits as labeled graphs, we can also
model them as straight-line programs.

A program P is straight-line if it contains no branching or loop
operations (such as if or goto).

Hence, P ’s running time is bounded by the number of instructions
that it contains.

The equivalence between Boolean circuits and straight-line programs
is fairly general and holds (up to polynomial factors) for essentially
any reasonable programming language.
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Boolean Circuits and Boolean Straight-Line Programs

The equivalence between Boolean circuits and straight-line programs
is most obviously demonstrated using straight-line programs with
Boolean operations.

A Boolean straight-line program of length T , with input variables

x1, x2, . . . , xn ∈ {0, 1},

is a sequence of T statements of the form

yi = zi1 OP zi2, i = 1, 2, . . . ,T ,

where:

OP is either ∨ or ∧;
Each zi1 , zi2 is either an input variable, or the negation of an input
variable, or yj for j < i .
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Boolean Straight-Line Computation

For every setting of values to the input variables, the straight-line

computation consists of executing these simple statements in order,
thereby finding values for y1, y2, . . . , yT .

The output of the computation is the value of yT .

It is can be shown that a function f on n bits can be computed by an
S-line straight-line program of this form if and only if it can be
computed by an S-sized Boolean circuit.

Example: A straight-line program in input variables x1, x2 that is
equivalent to the XOR function circuit is

y1 = ¬x1;
y2 = ¬x2;
y3 = y1 ∧ x2;
y4 = x1 ∧ y2;
y5 = y3 ∨ y4.
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P/poly and P

Theorem

P ⊆ P/poly.

The proof is very similar to the proof of the Cook-Levin Theorem.

Recall that every TM M that runs in O (T (n)) time can be simulated
by an oblivious TM M̃ (whose head movement is independent of its
input) running in time O

(
T (n)2

)
(even O (T (n) logT (n)) if we

perform a more careful construction).

Thus, it suffices to show that, for every oblivious TM M that runs in
time T (n), there exists a O (T (n))-sized circuit family {Cn}n∈N, such
that

Cn(x) = M(x), for every x ∈ {0, 1}n .
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P/poly and P (Cont’d)

Let M be such an oblivious TM.

Let x ∈ {0, 1}∗ be some input for M.

Define the transcript of M’s execution on x to be the sequence

z1, . . . , zT (n)

of snapshots (the machine’s state and symbols read by all heads) of
the execution at each step in time.

We can encode each zi by a constant-sized binary string.

Furthermore, we can compute the string zi based on:

The input x ;
The previous snapshot zi−1;
The snapshots zi1 , . . . , zik , where zij denotes the last step that M ’s j-th
head was in the same position as it is in the i-th step.
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P/poly and P (Cont’d)

These are only a constant number of strings of constant length.

This means that we can compute zi from these previous snapshots
using a constant-sized circuit.

The composition of all these constant-sized circuits gives rise to a
circuit that computes, from the input x , the snapshot zT (n) of the
last step of M’s execution on x .

There is a constant-sized circuit that, given zT (n), outputs 1 if and
only if zT (n) is an accepting snapshot (M outputs 1 and halts).

Thus, there is an O (T (n))-sized circuit Cn, such that

Cn(x) = M(x), for all x ∈ {0, 1}n .
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Remark

The circuit produced in the proof of the theorem:

Is of polynomial size;
Can also be computed in polynomial time;
Can even be computed in logarithmic space.

This is based on the observation that it is possible to simulate every
TM M by an oblivious TM M̃, such that the function that maps n, i
to the M̃’s position on n-length inputs in the i -th tape can be
computed in logarithmic space.
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P is a Proper Subset of P/poly

The inclusion P ⊆ P/poly is proper.

There are unary languages that are undecidable and, hence, not in P.

In contrast, every unary language is in P/poly.

Claim

If L ∈ {0, 1}∗ is a unary language i.e., L ∈ {1n : n ∈ N} then,

L ∈ P/poly.

We describe a circuit family of linear size.

If 1n ∈ L, then the circuit for inputs of size n has already been given.

Otherwise, it is the circuit that always outputs 0.

A unary language that is undecidable is

UHalt = {1n : n’s binary expansion encodes a pair
〈M, x〉, such that M halts on input x}.
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Circuit Satisfiability

We aim to provide an alternative proof of the Cook-Levin Theorem,
based on circuits.

To this end, we define the Circuit Satisfiability problem.

Definition (Circuit Satisfiability or CktSat)

The language CktSat consists of all (strings representing) circuits that
produce a single bit of output and that have a satisfying assignment.
That is, a string representing an n-input circuit C is in CktSat iff, there
exists u ∈ {0, 1}n , such that

C (u) = 1.
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Circuit Satisfiability and The Cook-Levin Theorem

CktSat ∈ NP, since a satisfying assignment is a certificate.

The Cook-Levin Theorem follows from the next two lemmas.

Lemma

CktSat is NP-hard.

Suppose L ∈ NP.

Then there is a polynomial-time TM M and a polynomial p, such that

x ∈ L iff M(x , u) = 1, for some u ∈ {0, 1}p(|x |).

The proof of the theorem yields a polynomial-time transformation
from M, x to a circuit C , such that

M(x , u) = C (u), for every u ∈ {0, 1}poly(|x |).

Thus, x is in L iff C ∈ CktSat.
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The Second Lemma

Lemma

CktSat ≤p 3Sat.

Let C be a circuit.

We map it to a 3CNF formula ϕ as follows.

For every node vi of C , we have a corresponding variable zi in ϕ.

Suppose the node vi is an AND of the nodes vj and vk .

Then we add to ϕ clauses that are equivalent to the condition

“zi = (zj ∧ zk)”.

That is, we add

(z i ∨ (zj ∧ zk)) ∧ (zi ∨ ¬(zj ∧ zk))

≡ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk).
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The Second Lemma (Cont’d)

Suppose vi is an OR of vj and vk .

Then we add clauses equivalent to

“zi = (zj ∨ zk)”.

Suppose vi is the NOT of vj .

Then we add the clauses

(zi ∨ zj) ∧ (zi ∨ zj).

Finally, suppose vi is the output node of C .

Then we add the clause (zi ) to ϕ.

I.e., we add the clause that is true iff zi is true.

Then formula ϕ is satisfiable if and only if the circuit C is.

Clearly, the reduction runs in time polynomial in the input size.
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Subsection 2

Uniformly Generated Circuits
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P-Uniform Circuit Families

The class P/poly fits rather awkwardly in the complexity world since it
contains even undecidable languages such as UHalt.

The root of the problem is that for a language L to be in P/poly, it
suffices that a circuit family for L exists, even if we have no way of
actually constructing the circuits.

This motivates trying to restrict attention to circuits that can actually
be built using a fairly efficient Turing machine.

Definition (P-Uniform Circuit Families)

A circuit family {Cn} is P-uniform if there is a polynomial-time TM that,
on input 1n, outputs the description of the circuit Cn.

Restricting circuits to be P-uniform “collapses” P/poly to the class P.
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P-uniformity Collapses P/poly to P

Theorem

A language L is computable by a P-uniform circuit family iff L ∈ P.

Suppose L is computable by a circuit family {Cn} that is generated by
a polynomial-time TM M.

Then we can come up with a polynomial-time TM M̃ for L.

Suppose M̃ receives input x .
M̃ runs M(1|x|) to obtain the circuit C|x|.
It then evaluates C|x| on the input x .

For the other direction, assume L ∈ P.

Follow closely the proof of the inclusion P ⊆ P/poly.

Note that it actually yields a P-uniform circuit family for any L ∈ P.
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Logspace-Uniform Families

We now impose an even stricter notion of uniformity.

We stipulate generation by logspace machines.

A function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace computable

if the mapping
x , i 7→ f (x)i

can be computed in logarithmic space.

Definition (Logspace-Uniform Circuit Families)

A circuit family {Cn} is logspace uniform if there is an implicitly logspace
computable function mapping 1n to the description of the circuit Cn.

Logspace computations run in polynomial time.

Hence, logspace-uniform circuits are also P-uniform.
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A Concrete String Representation

The definition of logspace uniform circuits is robust to various
representations as strings.

A concrete way is to represent a circuit of size S by:

The S × S adjacency matrix of its underlying directed graph;
An array of size S that provides the labels (gate type) of each vertex.

Identifying the vertices with numbers in [S ], we let:

The first n vertices be the input vertices;
The last vertex be the output vertex.
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Representation and Conditions for Logspace Uniformity

Assume the concrete matrix representation of a family {Cn}.

Then {Cn} is logspace-uniform if and only if the following functions
are computable in O (log n) space:

SIZE(n) returns the size S (in binary representation) of the circuit Cn;
TYPE(n, i), where i ∈ [m], returns the label of the i-th vertex of Cn.
I.e., it returns one of {∨,∧,¬,NONE};
EDGE(n, i , j) returns 1 if there is a directed edge in Cn from the i-th
vertex to the j-th vertex.

Both the inputs and the outputs of these functions can be encoded
using a logarithmic (in |Cn|) number of bits.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 28 / 71



Boolean Circuits Uniformly Generated Circuits

Logspace-Uniform Circuits of Polynomial Size

Theorem

A language has logspace-uniform circuits of polynomial size iff it is in P.

The result follows by a careful analysis of the proof of P ⊆ P/poly.
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Subsection 3

Turing Machines that Take Advice
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Turing Machines that Take Advice

We characterize P/poly using Turing machines that “take advice”.

Such a machine has, for each n, an advice string αn, which it is
allowed to use in its computation whenever the input has size n.

Definition (Turing Machines with Advice)

Let T , a : N→ N be functions. The class of languages decidable by
time-T (n) TMs with a(n) bits of advice, denoted DTIME(T (n))/a(n),
contains every L, such that, there exists a sequence {αn}n∈N of strings,
with αn ∈ {0, 1}a(n), and a TM M, such that:

For every x ∈ {0, 1}n,

M(x , αn) = 1 iff x ∈ L;

On input (x , αn), the machine M runs for at most O (T (n)) steps.
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Example

Consider an arbitrary unary language.

It can be be decided by a polynomial time Turing machine with 1 bit
of advice.

The advice string for inputs of length n is the bit indicating whether
or not 1n is in the language.

In particular, this is true of the language UHalt.
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Polynomial-Time TM’s with Advice Decide P/poly

Theorem (Polynomial-Time TM’s with Advice Decide P/poly)

P/poly =
⋃

c,d

DTIME(nc)/nd .

Suppose L ∈ P/poly.

Then L is computable by a polynomial-sized circuit family {Cn}.

Use the description of Cn as an advice string on inputs of size n.

The TM, taking this advice, is the polynomial-time TM M that, on
input a string x and a string representing an n-input circuit C ,
outputs C (x).

Conversely, suppose L is decidable by a polynomial-time Turing
machine M, with access to advice {αn}n∈N of polynomial size a(n).

Then we use the idea in the P ⊆ P/poly-theorem.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 33 / 71



Boolean Circuits Turing Machines that Take Advice

Polynomial-Time TM’s with Advice Decide P/poly (Cont’d)

We construct, for every n, a polynomial-sized circuit Dn, such that on
every x ∈ {0, 1}n , α ∈ {0, 1}a(n),

Dn(x , α) = M(x , α).

We let the circuit Cn be the polynomial circuit that, given x

computes the value Dn(x , αn).

I.e., Cn is equal to the circuit Dn with the string αn “hard-wired” as
its second input.

“Hard-wiring” an input into a circuit means:

Taking a circuit C , with two inputs x ∈ {0, 1}n, y ∈ {0, 1}m;
Fixing the inputs corresponding to y .

This gives the circuit Cy that, for every x , returns C (x , y).

It is easy to do so while ensuring that the size of Cy is not greater
than the size of C .
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Subsection 4

P/POLY and NP
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The Karp-Lipton Theorem

Whether or not Sat has small circuits is formalized as “Is
Sat ∈ P/poly?”.

The answer is “NO”, if the polynomial hierarchy does not collapse.

Theorem (Karp-Lipton Theorem)

If NP ⊆ P/poly, then PH = Σp
2 .

We know that to show PH = Σp
2 , it suffices to show Πp

2 ⊆ Σp
2 .

In particular, it suffices to show that Σp
2 contains the Πp

2-complete
language Π2Sat consisting of all true formulas of the form

∀u ∈ {0, 1}n∃v ∈ {0, 1}nϕ(u, v) = 1,

where ϕ is an unquantified Boolean formula.
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The Karp-Lipton Theorem (Cont’d)

Suppose NP ⊆ P/poly.

Then, there exists a polynomial p and a p(n)-sized circuit family
{Cn}n∈N, such that, for every Boolean formula ϕ and u ∈ {0, 1}n ,

Cn(ϕ, u) = 1 iff there exists v ∈ {0, 1}n , such that ϕ(u, v) = 1.

Thus, the circuit solves the decision problem for Sat.

However, we have an algorithm that converts any decision algorithm
for Sat into an algorithm that actually outputs a satisfying
assignment whenever one exists.

Think of this algorithm as a circuit.

We obtain from the family {Cn} a q(n)-sized circuit family {C ′
n}n∈N,

where q is a polynomial, such that, for every such formula ϕ and
u ∈ {0, 1}n , if there is a string v ∈ {0, 1}n , such that ϕ(u, v) = 1,
then C ′

n(ϕ, u) outputs such a string v .
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The Karp-Lipton Theorem (Cont’d)

The assumption NP ⊆ P/poly only implies the existence of C and C ′.

The main idea of the proof is that C ′ can be “guessed” using ∃
quantification.

Since the circuit outputs a satisfying assignment if one exists, this
answer can be checked directly.

C ′
n can be described using 10q(n)2 bits.

So if ∀u ∈ {0, 1}n∃v ∈ {0, 1}nϕ(u, v) = 1 holds, then the following
quantified formula is true:

∃w ∈ {0, 1}10q(n)
2
∀u ∈ {0, 1}n

(w describes a circuit C ′ and ϕ(u,C ′(ϕ, u)) = 1).
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The Karp-Lipton Theorem (Cont’d)

If ∀u ∈ {0, 1}n∃v ∈ {0, 1}nϕ(u, v) = 1 holds, then the following
quantified formula is true:

∃w ∈ {0, 1}10q(n)
2
∀u ∈ {0, 1}n

(w describes a circuit C ′ and ϕ(u,C ′(ϕ, u)) = 1).

If ∀u ∈ {0, 1}n∃v ∈ {0, 1}nϕ(u, v) = 1 is false, then, for some u, no
v exists such that ϕ(u, v) = 1.

Hence the preceding formula is false as well.

Evaluating a circuit on an input can be done deterministically in
polynomial time.

So the truth of the displayed formula can be verified in Σp
2 .
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Meyer’s Theorem

Similarly, P/poly is unlikely to contain EXP.

Theorem (Meyer’s Theorem)

If EXP ⊆ P/poly, then EXP = Σp
2 .

Let L ∈ EXP.

Then L is computable by a 2p(n)-time oblivious TM M, where p is
some polynomial.

Let x ∈ {0, 1}n be some input string.

For every i ∈ [2p(n)], let zi be the encoding of the i -th snapshot of
M’s execution on input x .
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Meyer’s Theorem (Cont’d)

Suppose M has k tapes.

Then x ∈ L if and only if, for every k + 1 indices i , i1, . . . , ik , the
snapshots zi , zi1, . . . , zik satisfy some easily checkable criteria:

If zi is the last snapshot, then it should encode M outputting 1;
if i1, . . . , ik are the last indices where M ’s heads were in the same
locations as in i , then the values read in zi should be consistent with
the input and the values written in zi1 , . . . , zik .

These indices can be represented in polynomial time.

If EXP ⊆ P/poly, then there is a q(n)-sized circuit C , for some
polynomial q, that computes zi from i .
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Meyer’s Theorem (Cont’d)

Now the main point is that the correctness of the transcript implicitly
computed by this circuit can be expressed as a coNP predicate.

The predicate checks that the transcript satisfies all local criteria.

Hence, x ∈ L iff the following condition is true

∃C ∈ {0, 1}q(n)∀i , i1, . . . , ik ∈ {0, 1}p(n)

T (x ,C (i),C (i1), . . . ,C (ik)) = 1,

where T is some polynomial-time TM checking these conditions.

This implies that L ∈ Σp
2 .
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A Consequence

Corollary

If P = NP, then EXP * P/poly.

We know that, if P = NP, then P = Σp
2 .

Suppose EXP ⊆ P/poly.

By Meyer’s Theorem, EXP = Σp
2 .

Then, we get P = EXP.

This contradicts the Time Hierarchy Theorem.

Thus, upper bounds (e.g., NP ⊆ P) can potentially be used to prove
circuit lower bounds.
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Subsection 5

Circuit Lower Bounds
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The Circuit Approach to P vs. NP

Since P ⊆ P/poly, if we ever prove NP * P/poly, then we will have
shown P 6= NP.

The Karp-Lipton Theorem gives evidence that NP * P/poly.

There is reason to invest hope in resolving the P versus NP by
proving NP * P/poly.

By representing computation using circuits, we seem to actually peer
into the guts of it rather than treating it as a black box.
Thus, the approach may allow bypassing the limitations of relativizing
methods.

In fact, it is easy to show that some functions do require very large
circuits to compute.
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Boolean Circuits Circuit Lower Bounds

Existence of Hard Functions

Theorem (Existence of Hard Functions)

For every n > 1, there exists a function f : {0, 1}n → {0, 1} that cannot
be computed by a circuit C of size 2n

10n .

The proof uses a simple counting argument:

The number of functions from {0, 1}n to {0, 1} is 22
n

.
Every circuit of size at most S can be represented as a string of
9S log S bits, e.g., using the adjacency list representation.
So the number of such circuits is at most 29S log S .

Let S = 2n

10n .

Then the number of circuits of size S is

≤ 29S log S = 29
2n

10n
log 2n

10n ≤ 2
2n9n
10n < 22

n

.
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Boolean Circuits Circuit Lower Bounds

Existence of Hard Functions (Cont’d)

It follows that the number of functions computed by such circuits is
smaller than 22

n
.

This implies that there exists a function that is not computed by
circuits of that size.

With a more careful calculation, one can obtain a bound of

(1− ǫ)
2n

n
, for every ǫ > 0.

We can even get a bound of

2n
(
1 +

log n

n
− O

(
1

n

))
.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 47 / 71



Boolean Circuits Circuit Lower Bounds

Another Proof Involving Probability

Suppose that we pick a function f : {0, 1}n → {0, 1} at random.

We do this by picking, for every one of the 2n possible inputs
x ∈ {0, 1}n , the value f (x) in {0, 1} uniformly and independently.

Then, for every fixed circuit C and input x , the probability that
C (x) = f (x) is 1

2 .

The choices made are independent.

So the probability that C computes f , i.e., that

C (x) = f (x), for every x ∈ {0, 1}n ,

is 2−2n .

There are at most 20.9·2
n
circuits of size at most 2n

10n .
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Boolean Circuits Circuit Lower Bounds

Another Proof Involving Probability (Cont’d)

There are at most 20.9·2
n
circuits of size at most 2n

10n .

By the probabilistic union bound, the probability that there exists
such a circuit C computing f is at most

20.9·2
n

22
n = 2−0.1·2n .

This is a number that tends very fast to zero as n grows.

In particular, this number is smaller than one.

This implies that there exists a function f that is not computed by
any circuit of size at most 2n

10n .
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Boolean Circuits Circuit Lower Bounds

Discussion on P vs. NP

The proof technique of showing an object with a particular property
exists by showing a random object satisfies this property with nonzero
probability, is called the probabilistic method.

The probabilistic proof yields a stronger statement than that in the
theorem.

Not only does there exist a hard function, but in fact the vast
majority of the functions from {0, 1}n to {0, 1} are hard.

This gives hope that we should be able to find one such function that
also happens to lie in NP, thus proving NP * P/poly.

Unfortunately, after two decades, the best circuit size lower bound for
an NP language is only (5− o (1))n.

On the positive side, we have had notable success in proving lower
bounds for more restricted circuit models.
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Boolean Circuits Nonuniform Hierarchy Theorem

Subsection 6

Nonuniform Hierarchy Theorem
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Boolean Circuits Nonuniform Hierarchy Theorem

Nonuniform Hierarchy Theorem

Like TMs and NDTM’s, Boolean circuits have a hierarchy theorem.

Theorem (Nonuniform Hierarchy Theorem)

For every functions T ,T ′ : N→ N, with 2n

n
> T ′(n) > 10T (n) > n,

SIZE(T (n)) ( SIZE(T ′(n)).

The diagonalization methods do not seem to apply in this setting.

On the other hand, a counting argument works.

Here, we prove that SIZE(n) ( SIZE(n2).

We know that, for every ℓ, there is a function f : {0, 1}ℓ → {0, 1}

that is not computable by 2ℓ

10ℓ -sized circuits.
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Boolean Circuits Nonuniform Hierarchy Theorem

Nonuniform Hierarchy Theorem (Cont’d)

On the other hand, every function from {0, 1}ℓ to {0, 1} is
computable by a 2ℓ10ℓ-sized circuit.

Set ℓ = 1.1 log n.

Let
g : {0, 1}n → {0, 1}

be the function that applies f on the first ℓ bits of its input.

Then

g ∈ SIZE(2ℓ10ℓ) = SIZE(11n1.1 log n) ⊆ SIZE(n2);

g 6∈ SIZE
(

2ℓ

10ℓ

)
= SIZE

(
n1.1

11 log n

)
⊇ SIZE(n).
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Boolean Circuits Finer Gradations Among Circuit Classes

Subsection 7

Finer Gradations Among Circuit Classes
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Boolean Circuits Finer Gradations Among Circuit Classes

Subclasses of P/poly

Some subclasses of P/poly, are interesting for two reasons.

Separating NP from these subclasses may give insight into how to
separate NP from P/poly.

These subclasses correspond to interesting computational models in
their own right.
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Boolean Circuits Finer Gradations Among Circuit Classes

Parallel Computation

An interesting connection is to massively parallel computers.

Simple microprocessors are linked using an interconnection network

that allows them to send messages to each other.

Usual networks, e.g., the hypercube, allow linking n processors, such
that interprocessor communication is possible, assuming some upper
bounds on the total load, in O (log n) steps.

The processors compute in lock-step, e.g., to the ticks of a global
clock.

Each processor is assumed to do a small amount of computation in
each step, e.g., an operation on O (log n) bits.

Each processor has enough memory to:

Remember its own address in the interconnection network;
Write down the address of any other processor, and thus send messages
to it.
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Boolean Circuits Finer Gradations Among Circuit Classes

Efficient Parallel Computation

We say that a computational problem has an efficient parallel
algorithm if it can be solved for inputs of size n using a parallel
computer:

With nO(1) processors;
In time logO(1) n.
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Boolean Circuits Finer Gradations Among Circuit Classes

Example

Suppose the input consists of two n bit numbers x , y .

We wish to compute x + y fast in parallel.

The grade-school algorithm proceeds from the least significant bit and
maintains a carry bit.

The most significant bit is computed only after n steps.

A better algorithm, called carry lookahead, assigns each bit position
to a separate processor.

It then uses interprocessor communication to propagate carry bits.

It takes O (n) processors and O (log n) time.
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Boolean Circuits Finer Gradations Among Circuit Classes

Parallel Computation and Specific Problems

There are also efficient parallel algorithms for integer multiplication
and division.

Many matrix computations can be done efficiently in parallel.

E.g. computing the product, rank, determinant and inverse.

Some graph theoretic algorithms, such as shortest path and minimum
spanning tree, also have fast parallel implementations.

However well-known polynomial-time problems, such as maximum
flows and linear programming are not known to have any good
parallel implementations and are conjectured not to have any.
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Boolean Circuits Finer Gradations Among Circuit Classes

The class NC

We relate parallel computation to circuits.

The depth of a circuit is the length of the longest directed path from
an input node to the output node.

Definition (The Class NC)

For every d , a language L is in NCd if L can be decided by a family of
circuits {Cn}, where Cn has:

Size poly(n);

Depth O
(
logd n

)
.

Finally, we define the class

NC =
⋃

i≥1

NCi .

Uniform NC could require the circuits to be logspace-uniform.
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Boolean Circuits Finer Gradations Among Circuit Classes

The class AC

Definition (The Class AC)

The class ACi is defined similarly to NCi except gates are allowed to have
unbounded fan-in, i.e., the OR and AND gates can be applied to more
than two bits. Finally, define the class

AC =
⋃

i≥0

ACi .

Note that unbounded, but poly(n) fan-in can be simulated using a
tree of ORs/ANDs of depth O (log n).

So we get
NCi ⊆ ACi ⊆ NCi+1.

The inclusion is known to be strict for i = 0.

NC0 is very limited since the circuit’s output depends upon a constant
number of input bits, but AC0 does not suffer from this limitation.
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Boolean Circuits Finer Gradations Among Circuit Classes

Example

The language

Parity = {x : x has an odd number of 1s}

is in NC1.

The circuit computing it has the form of a binary tree.

The answer appears at the root;

The left subtree computes the parity of the first |x|
2 bits;

The right subtree computes the parity of the remaining bits.
The gate at the top computes the parity of these two bits.

The recursion resulting from this description gives a circuit of depth
O (log n).

The circuit is also logspace-uniform.

It can be shown that Parity is not in AC0.
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Boolean Circuits Finer Gradations Among Circuit Classes

NC and Parallel Algorithms

NC characterizes the languages with efficient parallel algorithms.

Theorem (NC and Parallel Algorithms)

A language has efficient parallel algorithms iff it is in NC.

Suppose a language L ∈ NC.

Then, it is decidable by a circuit family {Cn} of:

Size N = O(nc);

Depth D = O
(
logd n

)
.

Take a parallel computer with N nodes.

Configure it to decide L as follows:

Compute a description of Cn.
Allocate the role of each circuit node to a distinct processor.
Each processor computes the output at its assigned node.
It then sends the resulting bit to every other circuit node that needs it.
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Boolean Circuits Finer Gradations Among Circuit Classes

NC and Parallel Algorithms (Cont’d)

Assuming the interconnection network delivers all messages in
O (logN) time, the total running time is O

(
logd+1 N

)
.

Incidentally, note that:

If the circuit is nonuniform, then so is this parallel algorithm.
If the circuit is logspace-uniform, then so is the parallel algorithm.

Conversely, suppose L has an efficient parallel algorithm using, for
inputs of size n, a parallel computer with:

N = nO(1) processors;
Time D = logO(1) n.

We construct a circuit with N · D nodes arranged in D layers.

The i -th node in the t-th layer performs the computation of processor
i at time t.

The network is replaced by the circuit wires.
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Boolean Circuits Finer Gradations Among Circuit Classes

Efficient Parallelization of P

A major open question is whether every polynomial-time algorithm
has an efficient parallel implementation, i.e., whether P = NC.

We believe that the answer is NO.

However, currently we are unable to even separate PH from NC1.

The theory of P-completeness can be used to study which problems
are likely to be efficiently parallelizable (are in NC) and which are not.
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Boolean Circuits Finer Gradations Among Circuit Classes

P-Completeness

Definition (P-Complete Language)

A language is P-complete if:

It is in P;

Every language in P is logspace reducible to it.

Recall that L denotes the class of languages decidable in logarithmic
space.

Theorem

If language L is P-complete, then:

1. L ∈ NC iff P = NC.

2. L ∈ L iff P = L.
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Boolean Circuits Finer Gradations Among Circuit Classes

A P-Complete Language

Define the language

CircuitEval = {〈C , x〉 : C is an n-input single-output circuit
and x ∈ {0, 1}n is such that C (x) = 1}.

Theorem

CircuitEval is P-complete.

The language is clearly in P.

For completeness, one also needs to showcase a logspace-reduction
from any other language in P to this language.

Such a reduction is implicit in the proof of the equivalence between
having logspace uniform networks and being in P.
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Boolean Circuits Circuits of Exponential Size

Subsection 8

Circuits of Exponential Size
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Boolean Circuits Circuits of Exponential Size

On Uniform Circuit Families

We saw that every language has circuits of size O
(
2n

n

)
.

Finding these circuits may be difficult or even undecidable.

If we place a uniformity condition on the circuits, that is, require
them to be efficiently computable, then the circuit complexity of
some languages could potentially exceed 2n.
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Boolean Circuits Circuits of Exponential Size

DC Uniform Circuit Families

Definition (DC Uniform Circuit Family)

Let {Cn}n≥1 be a circuit family. We say that it is a Direct Connect

uniform (DC uniform) family if, there is a polynomial time algorithm
that, given 〈n, i〉, can compute the i -th bit of (the adjacency matrix
representation of) the circuit Cn.
More precisely, a family {Cn}n∈N is DC uniform iff the functions SIZE,
TYPE and EDGE are computable in polynomial time.

Note that the circuits may have exponential size.

However, they have a succinct representation in terms of a TM.

The TM can systematically generate any required vertex of the circuit
in polynomial time.
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Boolean Circuits Circuits of Exponential Size

Characterization of PH in Terms of DC Uniform Circuits

Now we give another characterization of the class PH in terms of
computability by uniform circuit families of bounded depth.

Theorem (Characterization of PH)

L ∈ PH iff L can be computed by a DC uniform circuit family {Cn}, that
satisfies the following conditions:

1 It uses AND, OR, NOT gates.

2 It has size 2n
O(1)

and constant depth.

3 Its gates can have unbounded (exponential) fan-in.

4 Its NOT gates appear only at the input level (i.e., they are only applied
directly to the input and not to the result of any other gate).

We omit the proof.

If we drop the restriction that the circuits have constant depth, then
we obtain exactly EXP.
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