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Randomized Computation Probabilistic Turing Machines

Randomized Algorithms

A randomized algorithm is an algorithm that may involve random
choices.

Example: We may initialize a variable with an integer chosen at
random from some range.

In practice randomized algorithms are implemented using a random
number generator.

It turns out that it suffices to have a random number generator that
generates random bits, i.e., produces the bit 0 with probability 1

2 and
the bit 1 with probability 1

2 .

We say such generators “toss fair coins”.

To model randomized algorithms we use probabilistic Turing machines
(PTMs).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 4 / 77



Randomized Computation Probabilistic Turing Machines

Probabilistic Turing Machines

Definition (Probabilistic Turing Machine)

A probabilistic Turing machine (PTM) is a Turing machine with two
transition functions δ0, δ1.

To execute a PTM M on an input x , we choose in each step:

With probability 1
2 to apply the transition function δ0;

With probability 1
2 to apply the transition function δ1.

This choice is made independently of all previous choices.

The machine only outputs 1 (“Accept”) or 0 (“Reject”).

We denote by M(x) the random variable corresponding to the value
M writes at the end of this process.

For a function T : N→ N, we say that M runs in T (n)-time if, for
any input x , M halts on x within T (|x |) steps, regardless of the
random choices it makes.
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Randomized Computation Probabilistic Turing Machines

Comparing PTMs with NDTMs

A nondeterministic TM is also a TM with two transition functions.

Hence, PTMs and NTMs are syntactically similar.

The difference is in how we interpret the working of the TM.

Consider PTMs:

In a PTM, each transition is taken with probability 1
2 .

A computation that runs for time t gives rise to 2t branches in the
graph of all computations, each of which is taken with probability 1

2t .
Pr[M(x) = 1] is simply the fraction of branches that end with M

outputting a 1.

An NDTM is said to accept the input if there exists a branch that
outputs 1, whereas in the case of a PTM we consider the fraction of
branches for which this happens.

PTMs and NDTMs are also different in terms of intention.

PTMs, like deterministic TMs and unlike NDTMs, are intended to
model realistic computation devices.
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Randomized Computation Probabilistic Turing Machines

The classes BPTIME and BPP

The class BPP aims to capture efficient probabilistic computation.

For a language L ⊆ {0, 1}∗ and x ∈ {0, 1}∗, we define

L(x) =

{

1, if x ∈ L,
0, otherwise.

Definition (The classes BPTIME and BPP)

For T : N→ N and L ⊆ {0, 1}∗, we say that a PTM M decides L in time
T (n) if, for every x ∈ {0, 1}∗:

M halts in T (|x |) steps regardless of its random choices;
Pr[M(x) = L(x)] ≥ 2

3
.

We let BPTIME(T (n)) be the class of languages decided by PTMs in
O (T (n)) time and define

BPP =
⋃

c

BPTIME(nc).
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Randomized Computation Probabilistic Turing Machines

Possible Modifications

The PTM in the previous definition satisfies a very strong “excluded
middle” property:

For every input, it either accepts it with probability at least 2
3 or rejects

it with probability at least 2
3 .

Several modifications are possible without affecting the classes
BPTIME(T (n)) and BPP.

The constant 2
3 can be replaced with any other constant greater than

half;
We may allow “unfair” coins;
We may allow the machine to run in expected polynomial-time.
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Randomized Computation Probabilistic Turing Machines

Worst-Case Character and Relation With P

The definition allows the PTM M, on input x , to output a value
different from L(x), i.e., the wrong answer, with positive probability.

However, this probability is only over the random choices that M
makes in the computation.

Thus, BPP, like P, is still a class capturing complexity on worst-case
inputs.

A deterministic TM is a special case of a PTM (where both transition
functions are equal).

So the class BPP contains P.
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Randomized Computation Probabilistic Turing Machines

Alternative Definition of BPP

We define BPP using deterministic TMs where the sequence of “coin
tosses” are provided to the TM as an additional input.

Definition (Alternative Definition of BPP)

A language L is in BPP if there exists a polynomial-time TM M and a
polynomial p : N→ N, such that, for every x ∈ {0, 1}∗,

Prr∈R{0,1}p(|x|)
[M(x , r) = L(x)] ≥ 2

3
.

Note that, in time 2poly(n), it is possible to enumerate all the possible
random choices of a polynomial-time PTM.

This makes it clear that BPP ⊆ EXP.
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Randomized Computation Probabilistic Turing Machines

BPP and P

Currently, we only know that

P ⊆ BPP ⊆ EXP.

On the other hand, we are even unable to show that BPP is a proper
subset of NEXP.

A central open question is whether or not BPP = P.

Many complexity theorists believe that BPP = P, that is, that there is
a way to transform every probabilistic algorithm to a deterministic
algorithm, while incurring only a polynomial slowdown.
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Randomized Computation Some Examples of PTMs

Subsection 2

Some Examples of PTMs
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Randomized Computation Some Examples of PTMs

Finding a Median

A median of a set of numbers

{a1, . . . , an}

is any number x , such that:

At least n
2 of the ai ’s are smaller than or equal to x ;

At least n
2 of them are larger that or equal to x .

One way to find a median of a given set of numbers is to:

Sort the numbers;
Output the n

2 smallest of them.

This takes O (n log n) time (assuming that we can perform basic
operations on each number at unit cost).
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Randomized Computation Some Examples of PTMs

A Probabilistic Algorithm Finding a Median

We show a simple probabilistic algorithm to find the median in O (n)
time.

There are also known linear time deterministic algorithms for this
problem.

However, the following probabilistic algorithm is still the simplest and
most practical known.

The probabilistic algorithm actually solves a more general problem.

It finds the k-th smallest number in the set, for every k .
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Randomized Computation Some Examples of PTMs

The Algorithm FindKthElement

FindKthElement(k , a1, . . . , an)

1. Pick a random i ∈ [n] and let x = ai .

2. Scan {a1, . . . , an} and count the number m of ai ’s, with ai ≤ x .

3. If m = k , then output x .

4. Otherwise, if m > k , then:

Copy to a new list L all elements, such that ai ≤ x ;
Run FindKthElement(k , L).

5. Otherwise (if m < k):

Copy to a new list H all elements, such that ai > x ;
Run FindKthElement(k −m,H).
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Randomized Computation Some Examples of PTMs

Correctness and Complexity

It is clear that FindKthElement(k , a1, . . . , an) outputs the k-th
smallest element.

In the worst case, where k = n
2 , we expect to get a new list with

roughly 3
4n elements.

So we expect that, in each recursive call, the number of elements will
shrink by at least n

10 .

Thus,

T (n) = O (n) + T

(

9

10
n

)

.

This implies
T (n) = O (n) .
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Randomized Computation Some Examples of PTMs

Time Complexity of FindKthElement

Claim (Time Complexity of FindKthElement)

For every input k , a1, . . . , an to FindKthElement, let T (k , a1, . . . , an)
be the expected number of steps the algorithm takes on this input.
Let T (n) be the maximum of T (k , a1, . . . , an) over all length n inputs.
Then

T (n) = O (n) .

All nonrecursive operations can be executed in a linear number of
steps cn, for some constant c .

We show, by induction,

T (n) ≤ 10cn.

Fix some input k , a1, . . . , an.
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Randomized Computation Some Examples of PTMs

Time Complexity of FindKthElement (Cont’d)

For every j ∈ [n], we choose x to be the j-th smallest element of
a1, . . . , an with probability 1

n
, and perform one of the following:

At most T (j) steps, if j > k ;
At most T (n − j) steps, if j < k .

As preparation, consider the function

f (x) =
n(n + 1)

2
+ nx − x2.

It attains its maximum value at x = n
2 .

That maximum value is

ymax =
3n2 + 2n

4

large n

≤
9n2

10
.
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Randomized Computation Some Examples of PTMs

Time Complexity of FindKthElement (Cont’d)

Putting everything together,

T (k , a1, . . . , an) ≤ cn + 1
n
(
∑

j>k T (j) +
∑

j<k T (n − j))

≤ cn + 10c
n
(
∑

j>k j +
∑

j<k(n − j))

≤ cn + 10c
n
(
∑

j>k j + kn −
∑

j<k j)

≤ cn + 10c
n

(

n(n+1)
2 − k(k+1)

2 + kn − k(k−1)
2

)

= cn + 10c
n

(

n(n+1)
2 + kn − k2

)

large n

≤ cn + 10c
n

9n2

10

= 10cn.
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Randomized Computation Some Examples of PTMs

Primality Testing

In primality testing, we are given an integer N and wish to
determine whether or not it is prime.

We want efficient algorithms that run in time polynomial in the size
of N’s representation, i.e., poly(logN) time.

In the 1970s efficient probabilistic algorithms for primality testing were
discovered.
In a very recent breakthrough, Agrawal, Kayal, and Saxena (2004) gave
a deterministic polynomial-time algorithm for primality testing.

Formally, primality testing consists of checking membership in

Primes = {xNy : N is a prime number}.

We sketch an algorithm showing that Primes is in BPP.
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Randomized Computation Some Examples of PTMs

Quadratic Residues

For every number N, and A ∈ [N − 1], define

QRN(A) =























0 if gcd(A,N) 6= 1

+1, if
A is a quadratic residue modulo N,
i.e., A = B2(mod N), for a B , such
that gcd(B ,N) = 1

−1, otherwise

We use some facts from elementary number theory.

For odd prime N and A ∈ [N − 1],

QRN(A) = A
N−1
2 (mod N).
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Randomized Computation Some Examples of PTMs

Quadratic Residues (Cont’d)

For every odd N,A, such that

N =

k
∏

i=1

Pi ,

where P1, . . . ,Pk are all the (not necessarily distinct) prime factors of
N, define the Jacobi symbol

(

N

A

)

=

k
∏

i=1

QRPi
(A).

The Jacobi symbol is computable in time O (logA · logN).

For odd composite N, among all A ∈ [N − 1], such that
gcd(N,A) = 1, at most half of the A’s satisfy

(

N

A

)

= A
N−1
2 (mod N).
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Randomized Computation Some Examples of PTMs

Algorithm for Primality Testing

We assume, without loss of generality, that N is odd.

The facts above imply a simple algorithm for testing primality of N.
Choose a random 1 ≤ A < N .

If gcd(N,A) > 1 or
(

N
A

)

6= A
(N−1)/2 (mod N), then output

“composite”;
Otherwise, output “prime”.

Correctness:

This algorithm will always output “prime”, if N is prime.
If N is composite, it will output “composite” with probability ≥ 1

2 .
The probability can be amplified by repeating the test a constant
number of times.

The search problem corresponding to primality testing - finding the
factorization of a given composite number N - seems very different
and much more difficult.
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Randomized Computation Some Examples of PTMs

Algebraic Circuits

We assume given a polynomial in the form of an algebraic circuit.

This is analogous to the notion of a Boolean circuit, but instead of the
operators ∧,∨ and ¬, we have the operators +,− and ×.

Formally, an n-variable algebraic circuit is a directed acyclic graph
with:

The sources labeled by a variable name from the set x1, . . . , xn;
Each nonsource node having in-degree two is labeled by an operator
from the set {+,−,×};
A single sink, which we call the output node.

The algebraic circuit defines a polynomial from Z
n to Z by:

Placing the inputs on the sources;
Computing the value of each node using the appropriate operator.

The circuit computes a function f (x1, x2, . . . , xn) of the inputs that
can be described by a multivariate polynomial in x1, x2, . . . , xn.
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Randomized Computation Some Examples of PTMs

Polynomial Identity Testing

We consider the following problem.

Given a polynomial with integer coefficients in an algebraic circuit
form, decide whether this polynomial is in fact identically zero.

We define ZeroP to be the set of algebraic circuits that compute the
identically zero polynomial.

Note that we can reduce the problem of deciding whether two circuits
C ,C ′ compute the same polynomial to ZeroP by constructing the
circuit D such that

D(x1, . . . , xn) = C (x1, . . . , xn)− C ′(x1, . . . , xn).

So determining membership in ZeroP is also called polynomial

identity testing.
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Randomized Computation Some Examples of PTMs

Compactness of Represenation

The ZeroP problem is nontrivial.

The reason is that a very compact circuit can represent polynomials
with a large number of terms.

Example: Consider the polynomial

∏

i

(1 + xi).

It can be computed using a circuit of size 2n.

However, it has 2n terms if we open all parentheses.
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Randomized Computation Some Examples of PTMs

The Schwartz-Zippel Lemma

There is a simple and efficient probabilistic algorithm for testing
membership in ZeroP, using the Schwartz-Zippel Lemma.

Lemma (Schwartz-Zippel Lemma)

Let
p(x1, x2, . . . , xm)

be a nonzero polynomial of total degree at most d .
Let S be a finite set of integers.
Then, if a1, a2, . . . , am are randomly chosen with replacement from S ,

Pr[p(a1, a2, . . . , am) 6= 0] ≥ 1−
d

|S |
.
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Randomized Computation Some Examples of PTMs

A Probabilistic Algorithm for ZeroP

A size m circuit C contains at most m multiplications.

So, it defines a polynomial of degree at most 2m.

This suggests the simple probabilistic algorithm:

Choose n numbers x1, . . . , xn from 1 to 10 · 2m.
This requires O (n ·m) random bits.
Evaluate the circuit C on x1, . . . , xn to obtain an output y .
Accept if y = 0.
Reject, otherwise.

Clearly if C ∈ ZeroP, then we always accept.

By the lemma, if C 6∈ ZeroP, then we will reject with probability at
least 9

10 .
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Randomized Computation Some Examples of PTMs

Using Fingerprinting

There is a problem with the algorithm.

The degree of the polynomial represented by the circuit can be as high
as 2m.
So the output y and other intermediate values arising in the
computation may be as large as (10 · 2m)2

m

.
Such values require exponentially many bits just to write down!

We solve the problem using fingerprinting.

The idea is to perform the evaluation of C on x1, . . . , xn modulo a
number k that is chosen at random in [22m].

Instead of y = C (x1, . . . , xn), we compute the value y (mod k).

If y = 0, then y (mod k) is also equal to 0.
If y 6= 0, then we show that with probability at least δ = 1

4m , k does
not divide y .

This suffices because we can repeat this procedure O
(

1
δ

)

times and
accept only if the output is zero in all these repetitions.
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Randomized Computation Some Examples of PTMs

Proof of the Claim

Claim

If y 6= 0, then, with probability at least δ = 1
4m , k does not divide y .

Assume that y 6= 0.

Let B = {p1, . . . , pℓ} denote the set of distinct prime factors of y .

It is sufficient to show that, with probability at least δ, the number k
will be a prime number not in B.

By the Prime Number Theorem, for sufficiently large m, the number
of primes in [22m] is at least 22m

2m .

Now y can have at most log y ≤ 5m · 2m = o
(

22m

2m

)

prime factors.

So, for sufficiently large m, the number of k ’s in [22m], such that k is

prime and is not in B is at least 22m

4m .

Therefore, a random k has this property with probability ≥ 1
4m = δ.
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Randomized Computation Some Examples of PTMs

Perfect Matchings in Bipartite Graphs

Let G = (V ,E ) be a bipartite graph with two equal parts.

That is, V = V1 ∪ V2, where:

V1,V2 are disjoint and of equal size;
E ⊆ V1 × V2.

A perfect matching in G is a subset of edges E ′ ⊆ E , such that
every vertex appears exactly once in E ′.

Set n = |V1| = |V2|.

Identify both V1 and V2 with the set [n].

We may think of E ′ as a permutation σ : [n]→ [n] mapping every
i ∈ [n] to the unique j ∈ [n], such that ij ∈ E ′.

Several deterministic algorithms are known for detecting if a perfect
matching exists in a given graph.

We describe a simple randomized algorithm, due to Lovász, using the
Schwartz-Zippel Lemma.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 31 / 77



Randomized Computation Some Examples of PTMs

Matrix Associated with a Bipartite Graph

Let G = (V ,E ) be a 2n-vertex bipartite graph.

Let X be an n × n matrix of real variables whose (i , j)-th entry Xi ,j is
given by

Xi ,j =

{

xi ,j , if ij ∈ E ,
0, otherwise,

where xi ,j is a variable.

The determinant of a matrix A is defined by

det(A) =
∑

σ∈Sn

(−1)sgn(σ)
n
∏

i=1

Ai ,σ(i),

where:

Sn is the set of all permutations of [n];
sgn(σ) is the parity of the number of transposed pairs in σ.
That is, pairs 〈i , j〉, such that i < j , but σ(i) > σ(j).
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Randomized Computation Some Examples of PTMs

Matrix Associated with a Bipartite Graph (Cont’d)

det(X ) is a degree n polynomial in the variables {xi ,j}ij∈E .

Moreover, it has a monomial for every perfect matching that exists in
the graph.

Thus, G has a perfect matching if and only if det(X ) is not the
identically zero polynomial.

det(X ) may have exponentially many monomials.

However, for every setting of values to the xi ,j variables, det(X ) can
be efficiently evaluated using the well-known algorithm for computing
determinants.
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Randomized Computation Some Examples of PTMs

Testing for Perfect Matching in a Bipartite Graph

The preceding observations lead to Lovász’s randomized algorithm.

Pick random values for xi ,j ’s from [2n].
Substitute them in X , and compute the determinant.
If the determinant is nonzero, output “accept”.
Else output “reject”.
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Subsection 3

One-Sided and “Zero-Sided” Error: RP, coRP, ZPP

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 35 / 77



Randomized Computation One-Sided and “Zero-Sided” Error: RP, coRP, ZPP

Two-Sided versus One-Sided Error

The class BPP captures what we call probabilistic algorithms with
two-sided error.

This allows an algorithm for a language L to output (with some small
probability) both:

0, when x ∈ L;
1, when x 6∈ L.

Many probabilistic algorithms have the property of one-sided error.

For instance:

If x 6∈ L, they never output 1;
If x ∈ L, they may output 0.
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Randomized Computation One-Sided and “Zero-Sided” Error: RP, coRP, ZPP

The Class RP

Definition (The Class RP)

The class RTIME(T (n)) contains every language L for which there is a
probabilistic TM M running in T (n) time, such that

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2
3 ;

x 6∈ L ⇒ Pr[M(x) = 0] = 1.

We define
RP =

⋃

c>0

RTIME(nc).
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Randomized Computation One-Sided and “Zero-Sided” Error: RP, coRP, ZPP

RP, NP, BPP, coRP

We have
RP ⊆ NP.

In fact, every accepting branch is a “certificate” of membership.

Note that it is not known if

BPP ⊆ NP.

The class
coRP = {L : L ∈ RP}

captures one-sided error algorithms that:

May output 1, when x 6∈ L;
Never output 0, if x ∈ L.
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Randomized Computation One-Sided and “Zero-Sided” Error: RP, coRP, ZPP

Expected Running Time

For a PTM M, and input x , we define the random variable TM,x to
be the running time of M on input x .

Then we have
Pr[TM,x = T ] = p,

if, with probability p over the random choices of M on input x , M
halts within T steps.

We say that M has expected running time T (n) if, for all
x ∈ {0, 1}∗, the expectation

E [TM,x ] ≤ T (|x |).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 39 / 77



Randomized Computation One-Sided and “Zero-Sided” Error: RP, coRP, ZPP

“Zero-Sided” Error

We now define PTMs that never err.

They are called “zero error” machines.

Definition (The class ZTIME(T (n)))

The class ZTIME(T (n)) contains all the languages L for which there is a
machine M that runs in an expected-time O (T (n)), such that, for every
input x , whenever M halts on x , its output M(x) is exactly L(x).
We define

ZPP =
⋃

c>0

ZTIME(nc).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 40 / 77



Randomized Computation One-Sided and “Zero-Sided” Error: RP, coRP, ZPP

Relations Between Probabilistic Classes

The question whether or not P = NP ∩ coNP is open.

But for probabilistic classes we have:

Theorem

ZPP = RP ∩ coRP.

We skip the proof.

The following relations hold between probabilistic complexity classes:

ZPP = RP ∩ coRP, RP ⊆ BPP, coRP ⊆ BPP.
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Subsection 4

The Robustness of Our Definitions
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Randomized Computation The Robustness of Our Definitions

Role of Precise Constants

In the definition of BPP, the choice of the constant 2
3 is arbitrary.

We show that we can replace 2
3 with any constant larger than 1

2 and,
in fact, even with 1

2 + n−c for a constant c > 0.

Lemma

For c > 0, let BPP 1
2
+n−c denote the class of languages L for which there is

a polynomial-time PTM M, satisfying

Pr[M(x) = L(x)] ≥
1

2
+ |x |−c ,

for every x ∈ {0, 1}∗. Then

BPP 1
2
+n−c = BPP.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 43 / 77



Randomized Computation The Robustness of Our Definitions

Strategy

Clearly, BPP ⊆ BPP1/2+n−c .

So to prove the lemma we need to show that we can transform a
machine with success probability 1

2 + n−c into a machine with success
probability 2

3 .

We do much better by transforming such a machine into a machine
with success probability exponentially close to one!
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Randomized Computation The Robustness of Our Definitions

Error Reduction for BPP

Theorem (Error Reduction for BPP)

Let L ∈ {0, 1}∗ be a language. Suppose there exists a polynomial-time
PTM M, such that, for every x ∈ {0, 1}∗,

Pr[M(x) = L(x)] ≥
1

2
+ |x |−c .

Then, for every constant d > 0, there exists a polynomial-time PTM M ′,
such that, for every x ∈ {0, 1}∗,

Pr[M ′(x) = L(x)] ≥ 1− 2−|x |d .
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Randomized Computation The Robustness of Our Definitions

Error Reduction for BPP (Cont’d)

The machine M ′ simply does the following:

For every input x ∈ {0, 1}∗, run M(x), for k = 8|x |2c+d times
obtaining k outputs y1, . . . , yk ∈ {0, 1}

∗.
If the majority of these outputs is 1, then output 1.
Otherwise, output 0.

For i ∈ [k], define the random variable

Xi =

{

1, if yi = L(x),
0, otherwise.

The random variables X1, . . . ,Xk are independent.

Moreover, for p = 1
2 + |x |

−c ,

E [Xi ] = Pr[Xi = 1] ≥ p.
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Error Reduction for BPP (Cont’d)

By the Chernoff bound, for sufficiently small δ,

Pr

[
∣

∣

∣

∣

∣

k
∑

i=1

Xi − pk

∣

∣

∣

∣

∣

> δpk

]

< e−
δ2

4
pk .

Let

p =
1

2
+ |x |−c and δ =

1

2
|x |−c .

For those p and δ, if

k
∑

i=1

Xi ≥ pk − δpk ,

then M ′ outputs the right answer.
So the probability M ′ outputs a wrong answer is

≤ e
− 1

16|x|2c
( 1
2
+|x |−c)8|x |2c+d

≤ e
− 1

4|x|2c
1
2
8|x |2c+d

≤ 2−|x |d .
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Remarks on Error Reduction

A similar result holds for the one-sided error classes RP and coRP.

In that case, we can even change 2
3 to values smaller than 1

2 .

Thus, we can take a probabilistic algorithm that succeeds with quite
modest probability and transform it into an algorithm that succeeds
with overwhelming probability.

Even for moderate values of n, an error probability that is of the order
of 2−n is so small that, for all practical purposes, probabilistic
algorithms are just as good as deterministic algorithms.

The proof uses O (k) independent repetitions to transform an
algorithm with success probability 2

3 into an algorithm with success
probability 1− 2−k .

Thus, if the original used m random coins, then the new algorithm
will use O (km) coins.

Surprisingly, there is a transformation that only uses O (m + k)
random coins to achieve the same error reduction.
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Expected Versus Worst-Case Running Time

When defining RTIME(T (n)) and BPTIME(T (n)), we required the
machine to halt in T (n) time regardless of its random choices.

We could have used expected running time instead, as in the
definition of ZPP.

It turns out this yields an equivalent definition.

We can transform a PTM M whose expected running time is T (n) to
a PTM M ′ that always halts after at most 100T (n) steps by:

Adding a counter;
Halting with an arbitrary output after too many steps have gone by.

By Markov’s inequality, the probability that M runs for more than
100T (n) steps is at most 1

100 .

So the transformation changes the acceptance probability by at most
1

100 .
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More General Random Choices Than a Fair Coin

One could conceive of real-life computers that have a “coin” that
comes up heads with probability ρ that is not 1

2 , called a ρ-coin.

It turns out, such a coin will not give probabilistic algorithms new
power, if ρ is efficiently computable.

Lemma

A coin with
Pr[Heads] = ρ

can be simulated by a PTM in expected time O (1), provided the i -th bit
of ρ is computable in poly(i) time.

Let the binary expansion of ρ be

ρ = 0.p1p2p3 . . . .
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More General Random Choices (Cont’d)

The simulating PTM:

Generates a sequence of random bits

b1, b2, . . . ,

one by one, where bi is generated at step i .
If bi < pi , then outputs “heads” and stops.
If bi > pi , then outputs “tails” and halts.
Otherwise, it goes to step i + 1.

The machine reaches step i + 1 iff bj = pj , for all j ≤ i .

This happens with probability 1
2i
.

Thus, the probability of “heads” is
∑

i pi
1
2i
.

This is exactly ρ.

Furthermore, the expected running time is
∑

i i
c · 1

2i
.

For every constant c , this sum is bounded by another constant.
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Simulating Fair via Available Biased Coins

Probabilistic algorithms that only have access to ρ-coins do not have
less power than standard probabilistic algorithms.

Lemma (von-Neumann)

A coin with Pr[Heads] = 1
2 can be simulated by a probabilistic TM with

access to a stream of ρ-biased coins in expected time O
(

1
ρ(1−ρ)

)

.

The following TM M, given the ability to toss ρ-coins, outputs a
1
2 -coin.

M tosses pairs of coins until the first time it gets a pair containing two
different results (i.e., “Heads-Tails” or “Tails-Heads”).
If the first of these two is “Heads”, then outputs “Heads”.
Otherwise, it outputs “Tails”.
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Simulating Fair via Available Biased Coins (Cont’d)

The probability of getting “Head-Tails” is ρ(1− ρ).

The probability of “Tails-Heads” is (1− ρ)ρ = ρ(1− ρ).

Hence, in each step, M halts with probability 2ρ(1− ρ).

Conditioned on M halting in a particular step, the outputs “Heads”
and “Tails” are equiprobable.

Equivalently, M’s output is a fair coin.

Knowing ρ is not needed to run this simulation.
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Subsection 5

Relationship Between BPP and Other Classes
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Summary of Results

BPP ⊆ P/poly.

It follows P ⊆ BPP ⊆ P/poly.

Furthermore, BPP ⊆ Σp
2 ∩ Πp

2 .

So, if NP = P, then BPP = P.

Since we do not believe P = NP, this still leaves open the possibility
that P 6= BPP.

We can show that, if certain plausible complexity-theoretic
conjectures are true, then BPP = P.

Thus, we suspect that BPP is the same as P .

Hence (by the Time Hierarchy Theorem) BPP is a proper subset of,
say, DTIME(nlog n).

Yet, currently, we are not even able to show that BPP is a proper
subset of NEXP.
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BPP ⊆ P/poly

We show that all BPP languages have polynomial sized circuits.

By the Karp-Lipton Theorem, unless the polynomial hierarchy
collapses, 3Sat cannot be solved in probabilistic polynomial time.

Theorem

BPP ⊆ P/poly.

Suppose L ∈ BPP.

By the alternative definition of BPP and the error reduction, there
exists a TM M that on inputs of size n uses m random bits, such
that, for x ∈ {0, 1}n ,

Prr [M(x , r) 6= L(x)] ≤ 2−n−1.
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BPP ⊆ P/poly (Cont’d)

Say that a string r ∈ {0, 1}m is bad for an input x ∈ {0, 1}n if

M(x , r) 6= L(x).

Otherwise, call r good for x .

For every x , at most 2m

2n+1 strings r are bad for x .

Adding over all x ∈ {0, 1}n , at most

2n ·
2m

2n+1
=

2m

2

strings r are bad for some x .

So, there exists r0 ∈ {0, 1}
m that is good for every x ∈ {0, 1}n .

We hardwire such a string r0.

We obtain a circuit C (of size at most quadratic in the running time
of M) that, on input x , outputs M(x , r0).

C satisfies
C (x) = L(x), for every x ∈ {0, 1}n .
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BPP is in PH

Theorem (Sipser-Gács Theorem)

BPP ⊆ Σp
2 ∩ Πp

2 .

Note BPP is closed under complementation, i.e., BPP = coBPP.

So it suffices to prove that BPP ⊆ Σp
2 .

Suppose L ∈ BPP.

By error reduction, there exists a polynomial-time deterministic TM
M for L that on inputs of length n uses m = poly(n) random bits,
such that:

x ∈ L implies Prr [M(x , r) accepts] ≥ 1− 2−n;
x 6∈ L implies Prr [M(x , r) accepts] ≤ 2−n.
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The Sipser-Gács Theorem (Cont’d)

For x ∈ {0, 1}n , let

Sx = {r : M accepts 〈x , r〉}.

Then:

|Sx | ≥ (1 − 2−n)2m, if x ∈ L;
|Sx | ≤ 2−n2m, if x 6∈ L.

We show how to check, using two quantifiers, which of these is true.

For a set S ⊆ {0, 1}m and string u ∈ {0, 1}m , we denote by S + u the
“shift” of the set S by u,

S + u = {x + u : x ∈ S},

where + denotes vector addition modulo 2, i.e., bitwise XOR.
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The Sipser-Gács Theorem (Claim 1)

Let
k =

⌈m

n

⌉

+ 1.

Claim: For every set S ⊆ {0, 1}m, with |S | ≤ 2m−n, and every k

vectors u1, . . . , uk ,
k
⋃

i=1

(S + ui ) 6= {0, 1}
m .

We have |S + ui | = |S |.

So, by the union bound, for sufficiently large n,

∣

∣

∣

∣

∣

k
⋃

i=1

(S + ui )

∣

∣

∣

∣

∣

≤ k |S | < 2m.
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The Sipser-Gács Theorem (Claim 2)

Claim: For every set S ⊆ {0, 1}m, with |S | ≥ (1− 2−n)2m, there exist
u1, . . . , uk , such that

k
⋃

i=1

(S + ui ) = {0, 1}
m .

Suppose u1, . . . , uk are chosen independently at random.

We show that, then,

Pr

[

k
⋃

i=1

(S + ui) = {0, 1}
m

]

> 0.

Indeed, for r ∈ {0, 1}m , let Br denote the “bad event” that

r 6∈

k
⋃

i=1

(S + ui).
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The Sipser-Gács Theorem (Claim 2 Cont’d)

It suffices to prove that

Pr[∃r ∈ {0, 1}mBr ] < 1.

This will follow by the union bound if we can show, for every r , that

Pr[Br ] < 2−m.

Consider the events

B i
r = {r 6∈ S + ui} = {r + ui 6∈ S}

(the second equality because mod 2, a + b = c iff a = c + b).
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The Sipser-Gács Theorem (Claim 2 Cont’d)

We have
Br =

⋂

i∈[k]

B i
r .

Now r + ui is a uniform element in {0, 1}m .

So it will be in S with probability at least 1− 2−n.

But the B i
r are independent for different i ’s.

So
Pr[Br ] = Pr[B i

r ]
k ≤ 2−nk < 2−m.
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The Sipser-Gács Theorem (Cont’d)

The claims show that x ∈ L if and only if the following statement is
true:

∃u1, . . . , uk ∈ {0, 1}
m∀r ∈ {0, 1}m r ∈

k
⋃

i=1

(Sx + ui ).

Equivalently,

∃u1, . . . , uk ∈ {0, 1}
m∀r ∈ {0, 1}m

k
∨

i=1

M(x , r ⊕ ui ) accepts.

This represents a Σp
2 computation since k is poly(n).

Hence, we have shown L ∈ Σ2.
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Complete Problems for BPP?

We know of no complete languages for BPP.

One reason is that the defining property of BPTIME machines is
semantic.

They accept every input string either with probability at least 2
3 or

with probability at most 1
3 .

Testing whether a given TM M has this property is undecidable.

By contrast, the defining property of an NDTM is syntactic.

Given a string, it is easy to determine if it is a valid encoding of an
NDTM.
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Complete Problems for BPP? (Cont’d)

Consider the following natural attempt at a BPP-complete language.

Define L to contain all tuples 〈M, x , 1t〉, such that, on input x , M
outputs 1 within t steps with probability at least 2

3 ,

L = {〈M, x , 1t〉 : on input x , M outputs 1 within t steps,
with probability at least 2

3}.

The language L is indeed BPP-hard.

However, it is not known to be in BPP.

For 〈M, x , 1t〉 ∈ L we could have Pr[M(x) = 1] = 1
2 , say, which is

greater than 1
3 .

We note that this language is #P-complete.

Hence, it is unlikely to be in any level of the polynomial hierarchy
unless the hierarchy collapses.

But, if BPP = P, then BPP has a complete problem (since P does).
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Does BPTIME Have a Hierarchy Theorem?

Is every problem in BPTIME(n2) also in BPTIME(n)?

One would imagine not.

This seems like the kind of result we should be able to prove using the
diagonalization techniques.

However, currently we are even unable to show that, say,

BPTIME(n) 6= BPTIME(n(log n)
10
).

The standard diagonalization techniques fail, again apparently
because the defining property of BPTIME machines is semantic.
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Subsection 6

Randomized Reductions
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Randomized Polynomial Time Reduction

For randomized algorithms, it makes sense to define a notion of
randomized reduction between two languages.

Definition (Randomized Polynomial Time Reduction)

Language B reduces to language C under a randomized polynomial

time reduction, denoted B ≤r C , if there is a probabilistic TM M, such
that, for every x ∈ {0, 1}∗,

Pr[B(x) = C (M(x))] ≥
2

3
.

This notion of reduction is not transitive.

Nevertheless, it is useful because

C ∈ BPP and B ≤r C imply B ∈ BPP.
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The Class BP · NP

Arguably BPP is as good as P as a formalization of the notion of
efficient computation.

So one could conceivably define NP-completeness using randomized
reductions instead of deterministic reductions.

The Cook-Levin Theorem shows that NP may be defined as the set

NP = {L : L ≤p 3Sat}.

If we replace “deterministic polynomial-time reduction” with
“randomized reduction”, then we obtain a somewhat different class.

Definition (The Class BP · NP)

We define the class

BP · NP = {L : L ≤r 3Sat}.
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A Property of BP · NP

One interesting application is given by a randomized reduction
(encountered later) from 3Sat to solving a special case of 3Sat,
where we are guaranteed that the formula is either unsatisfiable or has
a single unique satisfying assignment.

As far as class containments, we have the following

Proposition

If 3Sat ∈ BP · NP, then PH collapses to Σp
3 .

The Proposition provides evidence that 3Sat ≤r 3Sat is unlikely.
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Subsection 7

Randomized Space-Bounded Computation
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The classes BPL and RL

A PTM uses space S(n) if, in any branch of its computation on a
length n input, the number of work-tape cells that are ever nonblank
is at most O (S(n)).

The classes BPL and RL are the two-sided error and one-sided error
probabilistic analogs of the class L.

Definition (The classes BPL and RL)

A language L is in BPL if there is a O (log n)-space probabilistic TM M ,
such that

Pr[M(x) = L(x)] ≥
2

3
.

A language L is in RL if there is a O (log n)-space probabilistic TM M , such
that:

If x ∈ L, then Pr[M(x) = 1] ≥ 2
3
;

If x 6∈ L, then Pr[M(x) = 1] = 0.
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Some Containments

The error reduction procedure can be implemented with only
logarithmic space overhead.

Therefore, the choice of the precise constant in the preceding
definitions is not significant.

We note that RL ⊆ NL, whence

RL ⊆ P.

We also have
BPL ⊆ P.
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The Undirected Path Problem

One famous RL-algorithm is the algorithm for solving UPath.

This is the restriction of the NL-complete Path problem to
undirected graphs.

Given an n-vertex undirected graph G and two vertices s and t,
determine whether s is connected to t in G .

Theorem

UPath ∈ RL.

Take a random walk of length ℓ = 100n4 starting from s.

Initialize the variable v to the vertex s.
In each step choose a random neighbor u of v , and set v ← u.
Accept iff the walk reaches t within ℓ steps.
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Space Complexity and Correctness

Space Complexity: This is a logspace algorithm.

It only needs to store:

A counter;
The index of the current vertex;
Some scratch space to compute the next neighbor in the walk.

Correctness: We have the following cases.

If s is not connected to t, then the algorithm will never accept.

It can be shown that if s is connected to t, then the expected number
of steps it takes for a walk from s to hit t is at most 10n4.

Hence, our algorithm will accept with probability at least 3
4 .
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Comments

There exists a recent deterministic logspace algorithm for UPath.

It is known that

RL ⊆ BPL ⊆ SPACE(log3/2 n).
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