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Cryptography Perfect Secrecy and its Limitations

Subsection 1

Perfect Secrecy and its Limitations
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Cryptography Perfect Secrecy and its Limitations

The Task of Secure Communication

The fundamental task of cryptography is encryption.

We focus on the issue of security of encryption.

Encrypting using a one time pad provides security, but also suffers
from serious limitations.

Alice wants to send a secret message x , known as the plaintext, to
Bob, but her adversary Eve is eavesdropping on the communication
channel between Alice and Bob.

Thus, Alice “scrambles” the plaintext x using an encryption

algorithm E .

In this way, she obtains a ciphertext y , which she sends to Bob.
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Cryptography Perfect Secrecy and its Limitations

The Task of Secure Communication (Cont’d)

Presumably it will be hard or even impossible for Eve to decode the
plaintext x from the ciphertext y .

But Bob will be able to do so using the decryption algorithm D.

Now Bob is seeing the same information that Eve is.

So, in order to do something that Eve cannot, Bob has to know
something that Eve does not.

In private key encryption, we assume that Alice and Bob share
some secret string k , known as the key, chosen at random.

Presumably, Alice and Bob met beforehand and agreed on the key k .
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Cryptography Perfect Secrecy and its Limitations

A First Attempt

In summary, the encryption scheme is composed of a pair of
algorithms (E ,D), such that:

Each takes a key and a message, where the key input is written as a
subscript;
For every key k and plaintext x , Dk(Ek(x)) = x .

This condition says nothing about the security of the scheme.

E.g., it may be satisfied by the trivial “encryption” that just outputs
the plaintext message.

A first attempt at imposing security might be to declare that a
scheme is secure if Eve cannot compute x from Ek(x).

This may not be sufficient because this does not rule out the
possibility of Eve computing some partial information on x .
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Cryptography Perfect Secrecy and its Limitations

Example

Suppose Eve knows that the plaintext is either the message “buy” or
“sell”.

Eve may not be ale to recover the message completely.

However it is enough for her to learn only the first character of the
message.
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Cryptography Perfect Secrecy and its Limitations

Shannon’s Definition

Shannon’s definition of secure private key encryption ensures Eve
does not learn anything about the plaintext from the ciphertext.

Un denotes the uniform distribution over {0, 1}n .

Definition (Perfect Secrecy)

Let (E ,D) be an encryption scheme for messages of length m and with a
key of length n satisfying, for every key k and plaintext x ,

Dk(Ek(x)) = x .

We say that (E ,D) is perfectly secret if, for every pair of messages
x , x ′ ∈ {0, 1}m , the distributions EUn

(x) and EUn
(x ′) are identical.
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Cryptography Perfect Secrecy and its Limitations

Comments

In a perfectly secret encryption, the ciphertext that Eve sees always
has the same distribution, regardless of the plaintext.

As a result, Eve gets absolutely no information on the plaintext.

This condition may seem so strong that it is impossible to satisfy.

In fact there is a very simple perfectly secret encryption scheme.
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Cryptography Perfect Secrecy and its Limitations

Perfectly Secret Encryption and One-Time Pad

The One-Time Pad Scheme

To encrypt a message x ∈ {0, 1}n , we choose a random key
k ∈R {0, 1}n and encrypt x by simply sending

x ⊕ k ,

where ⊕ denotes bitwise XOR or vector addition modulo 2.

The receiver can recover the message x from y = x ⊕ k by XORing y

once again with k .

It is not hard to see that the ciphertext is distributed uniformly
regardless of the plaintext message encrypted.

Hence, the one-time pad is perfectly secret.
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Cryptography Perfect Secrecy and its Limitations

Drawback of the One-Time Pad Scheme

A “one-time pad” must never be reused on another message.

Suppose two messages x , x ′ are encoded using the same pad k .

So Eve has both
k ⊕ x and k ⊕ x ′.

This allows her to compute

(k ⊕ x)⊕ (k ⊕ x ′) = x ⊕ x ′.

So Eve obtains some nontrivial information about the messages.

One can show that no perfectly secret encryption scheme can use a
key size shorter than the message size.
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Cryptography Security, One-Way Functions, Pseudorandomness

Subsection 2

Computational Security, One-Way Functions, Pseudorandomness
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Cryptography Security, One-Way Functions, Pseudorandomness

Perfect Secrecy in Practice

A one-time pad does provide perfect secrecy, but it fails utterly as a
practical solution:

It requires private keys that are as long as the messages;
It is unclear such huge keys can be securely exchanged among users.

Ideally we want to keep the shared secret key fairly small, say a few
hundred bits long.

To allow this, we design encryption schemes that are secure only
against eavesdroppers that are efficient (i.e., run in polynomial-time).

Even with this restriction on the eavesdropper, if P = NP, achieving
perfect secrecy is impossible with small key sizes.

In fact, assumptions stronger than P 6= NP will be needed.

More specifically, the assumption that a one-way function exists.

Weakening the assumption (ideally to just P 6= NP) under which
cryptographic schemes can be proven secure is a research problem.
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Cryptography Security, One-Way Functions, Pseudorandomness

Provable Lack of Security in Encryption

Lemma

Suppose that P = NP. Let (E ,D) be any polynomial-time computable
encryption scheme satisfying Dk(Ek(x)) = x , for every key k and plaintext
x , with key shorter than the message. Then, there is a polynomial-time
algorithm A, such that, for every input length m, there is a pair of
messages x0, x1 ∈ {0, 1}m satisfying:

Pr b∈R{0,1}
k∈R{0,1}n

[A(Ek(xb)) = b] ≥ 3

4
,

where n < m denotes the key length for messages of length m.

Such an algorithm breaks the security of the encryption scheme.

Recall that a minimal requirement from an encryption is that Eve
cannot tell which one of two random messages was encrypted with
probability much better than 1

2 .
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Cryptography Security, One-Way Functions, Pseudorandomness

Proof of the Lack of Security Lemma

Let (E ,D) be an encryption scheme for messages of length m and
with key length n < m.

Let S ⊆ {0, 1}∗ denote the support of EUn
(0m).

Note that y ∈ S if and only if y = Ek(0
m), for some k .

So, if P = NP, then membership in S can be efficiently verified.

Algorithm A is very simple.

It receives input y .
It outputs 0 if y ∈ S .
It outputs 1, otherwise.

Claim: Setting x0 = 0m, there exists some x1 ∈ {0, 1}m , such that

Pr b∈R{0,1}
k∈R{0,1}n

[A(Ek(xb)) = b] ≥ 3

4
.
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Cryptography Security, One-Way Functions, Pseudorandomness

Proof of the Lack of Security Lemma (Cont’d)

Let x be a message.

Let Dx denote the distribution EUn
(x).

By the definition of A and since x0 = 0m, Pr[A(Dx0) = 0] = 1.

Moreover, we have

Pr b∈R{0,1}
k∈R{0,1}n

[A(Ek(xb)) = b] = 1
2Pr[A(Dx0) = 0] + 1

2Pr[A(Dx1) = 1]

= 1
2 +

1
2Pr[A(Dx1) = 1].

So it suffices to show that there’s some x1 ∈ {0, 1}m, such that

Pr[A(Dx1) = 1] ≥ 1

2
.

I.e., it suffices to show that, for some x1 ∈ {0, 1}m ,

Pr[Dx1 ∈ S ] ≤ 1

2
.
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Cryptography Security, One-Way Functions, Pseudorandomness

Proof of the Lack of Security Lemma (Cont’d)

Suppose, otherwise, that Pr[Dx ∈ S ] > 1
2 , for every x ∈ {0, 1}m.

Define

S(x , k) =

{

1, if Ek(x) ∈ S ,

0, otherwise.

Let
T = Ex∈R{0,1}m

k∈{0,1}n
[S(x , k)].

Under our assumption, T > 1
2 .

Note that, for every fixed key k , the map x 7→ Ek(x) is one-to-one.

Hence, it maps at most 2n ≤ 2m

2 of the x ’s to a set S of size ≤ 2n.

So, by reversing the order of expectations above,

T = Ek∈{0,1}n [Ex∈{0,1}m [S(x , k)]] ≤
1

2
.

This contradicts Pr[Dx ∈ S ] > 1
2 , for every x ∈ {0, 1}m.
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Cryptography Security, One-Way Functions, Pseudorandomness

Negligible Functions

To simplify notation we adopt

Definition (Negligible Function)

A function ǫ : N → [0, 1] is called negligible if

ǫ(n) = n−ω(1).

I.e., if, for every c and sufficiently large n, ǫ(n) < n−c .

Negligible functions tend to zero very fast as their input grows.

It follows that events that happen with negligible probability can be
safely ignored in most practical and theoretical settings.
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Cryptography Security, One-Way Functions, Pseudorandomness

One Way Functions

Complexity-theoretic conjectures are necessary to prove the security
of encryption schemes.

A one-way function is one that is easy to compute but hard to invert
for a polynomial-time algorithm.

Definition (One-Way Functions)

A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is a one-way

function if, for every probabilistic polynomial-time algorithm A, there is a
negligible function ǫ : N → [0, 1], such that, for every n,

Prx∈R{0,1}n
y=f (x)

[A(y) = x ′, such that f (x ′) = y ] < ǫ(n).
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Cryptography Security, One-Way Functions, Pseudorandomness

Existence of One Way Functions Conjectured

Conjecture

There exists a one-way function.

This conjecture implies that P 6= NP.

There are several examples for functions that no one has yet been
able to invert.

Based on this “evidence”, most researchers believe the conjecture is
true.
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Cryptography Security, One-Way Functions, Pseudorandomness

Multiplication

Simple multiplication turns out to be hard to invert.

The function that treats its input x ∈ {0, 1}n as describing two n
2 -bit

numbers A and B and outputs A · B is believed to be one way.

Inverting this function is known as the integer factorization problem.

Note that it is easy to factor a number N using at most N (or even
only

√
N) trial divisions.

However, N is represented by logN bits.

So this trivial algorithm is actually an exponential time algorithm.

At the moment, no polynomial (i.e., polylog(N)) time algorithm is
known for this problem.

The best known factoring algorithm runs in time 2O(log
1/3 N

√
log logN).
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Cryptography Security, One-Way Functions, Pseudorandomness

Multiplication (Cont’d)

A standard implementation of a one-way function based on factoring
goes as follows.

Receive input x ∈ {0, 1}n.
Treat the x as a random seed.
Use it to generate two random n1/3-bit primes P and Q.
This can be done by generating random numbers and testing their
primality.
Then output P ·Q.

No efficient factorization algorithm has been found, despite efforts
spanning at least two millennia, leading to the conjecture that no
such algorithm exists.

This conjecture is obviously much stronger than the conjecture that
P 6= NP or the conjecture that some one-way function exists.
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Cryptography Security, One-Way Functions, Pseudorandomness

The RSA Function

The RSA function is another very popular candidate for a one-way
function.

Assume that, for every input length n, there exist:

An n-bit composite integer N that was generated in some way;
Some number e that is coprime to ϕ(N) = |Z∗

N |, where Z
∗
N is the

multiplicative group of numbers coprime to N .

Typically, N would be generated as a product of two n
2 -long primes.

e is often set to be simply 3.

The function RSAN,e treats its input as a number X in Z
∗
N .

It outputs
X e (mod N).

Since e is coprime to ϕ(N), RSAN,e is one-to-one on Z
∗
N .
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Cryptography Security, One-Way Functions, Pseudorandomness

The Rabin Function

An element X ∈ Z
∗
N is a quadratic residue modulo N if

X = W 2 (mod N),

for some W ∈ Z
∗
N .

Let QRN denote the set of quadratic residues modulo N.

A candidate one-way function, related to RSAN,e , is the Rabin

function.

The input is a number N that is the product of two odd primes P ,Q,
such that

P ,Q ≡ 1 (mod 4).

It maps X ∈ QRN into
X 2 (mod N).

It can be shown that this function is one-to-one on QRN .
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Cryptography Security, One-Way Functions, Pseudorandomness

Common Features of RSA and Rabin Functions

The RSA and the Rabin functions are believed to be hard to invert.

Inverting them is actually easy if one knows the factorization of N.

Consider the case of the RSA function.

The factorization can be used to compute ϕ(N).

Then a number d , with d = e−1 (mod ϕ(N)), may be calculated.

It is not hard to verify that the function Y d (mod N) is the inverse of
the function X e (mod N).

Consider the case of the Rabin function.

Suppose we know the factorization.

Then we can use the Chinese Remainder Theorem to reduce the
problem of taking a square root modulo N to taking square roots
modulo the prime factors of N.

This can be done in polynomial time.
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Cryptography Security, One-Way Functions, Pseudorandomness

Trapdoor One-Way Functions

The RSA and the Rabin functions functions:

Are conjectured to be hard to invert;
Become easy to invert once we know certain information (i.e., N ’s
factorization).

For these reasons, they are known as trapdoor one-way functions.

They are crucial to obtaining public key cryptography.

It it known that inverting Rabin’s function is computationally
equivalent to factoring N.

On the other hand, no such equivalence is known for RSA.
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Cryptography Security, One-Way Functions, Pseudorandomness

Levin’s Universal One-way Function

There is a function fU that has a curious property:

If any one-way function exists, then fU is also a one-way function.

The function fU is called a universal one-way function.

The function fU is defined as follows:

Treat the input as a list x1, . . . , xlog n of n
log n bit long strings.

Let Mi denote the i-th Turing machine according to some canonical
representation.
Let M t(x) be:

The output of the Turing machine M on input x , if M uses at most t

computational steps on input x ;

The all-zeroes string 0|x|, if M uses more than t computational steps

on x .

Output

Mn2

1 (x1), . . . ,M
n2

log n(xn).
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Cryptography Security, One-Way Functions, Pseudorandomness

Encryption from One-Way Functions

We show that one-way functions can be used to design secure
encryption schemes with keys much shorter than the message length.

Theorem (Encryption from One-Way Function)

Suppose that one-way functions exist. Then for every c ∈ N, there exists a
computationally secure encryption scheme (E ,D) using n-length keys for
nc -length messages.

Of course, for the statement to make sense, we must formally define
the term “computationally secure”, applied to the encryption scheme
(E ,D).
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Cryptography Security, One-Way Functions, Pseudorandomness

Computationally Secure Encryption Schemes

We must define the term “computationally secure”.

We wish that no partial information about the plaintext to a
polynomial-time eavesdropper may be revealed.

To simplify, we only insist that no individual bit of the plaintext,
chosen at random, can be guessed with probability non-negligibly
higher than 1

2 .

We say that a scheme (E ,D) using length n keys for length m

messages is computationally secure if, for every probabilistic
polynomial-time A, there is a negligible function ǫ : N → [0, 1], such
that

Prk∈R{0,1}n
x∈R{0,1}m

[A(Ek(x)) = (i , b) such that xi = b] ≤ 1

2
+ ǫ(n).
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Cryptography Security, One-Way Functions, Pseudorandomness

Motivating Pseudorandomness

When is it appropriate to call a string random?

Kolmogorov provided the following definition:

A string of length n is random if no Turing machine whose description
length is < 0.99n outputs this string when started on an empty tape.

This definition is “right” in some philosophical and technical sense.

It is not very useful in the complexity setting because checking if a
string is random according to this definition is undecidable.

Statisticians have also attempted definitions that boil down to
checking if the string has the “right number” of patterns that one
would expect by the laws of statistics (e.g., the number of times
11100 appears as a substring).

Such definitions are too weak in the cryptographic setting:

One can find a distribution that passes these statistical tests but still
will be completely insecure if used to generate the pad for the one-time
pad encryption scheme.
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Cryptography Security, One-Way Functions, Pseudorandomness

Pseudorandom Distributions

In cryptography:

Instead of trying to describe what it means for a single string to be
“random-looking”, we focus on distributions on strings;
Instead of focusing on individual tester algorithms as the statisticians
did, we say that the distribution has to “look” like the uniformly
random distribution to every polynomial-time algorithm.

Such a distribution is called pseudorandom.

The distinguisher algorithm:

Is given a sample string that is drawn from either the uniform
distribution or the unknown distribution;
Outputs “1” or “0” depending upon whether or not this string looks
random to it.

The distribution is said to be pseudorandom if the probability that
the polynomial-time algorithm outputs 1 is essentially the same on
the two distributions, regardless of which algorithm is used.
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Cryptography Security, One-Way Functions, Pseudorandomness

Secure Pseudorandom Generators

Definition (Secure Pseudorandom Generator)

Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function.
Let ℓ : N → N be a polynomial-time computable function such that
ℓ(n) > n, for every n. We say that G is a secure pseudorandom

generator of stretch ℓ(n), if:

For every x ∈ {0, 1}∗,
|G (x)| = ℓ(|x |);

For every probabilistic polynomial-time A, there exists a negligible
function ǫ : N → [0, 1], such that, for every n ∈ N,

∣

∣Pr[A(G (Un)) = 1]− Pr[A(Uℓ(n)) = 1]
∣

∣ < ǫ(n).
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Cryptography Security, One-Way Functions, Pseudorandomness

Pseudorandom Generators from One-Way Functions

Theorem (Pseudorandom Generators from One-Way Functions)

If one-way functions exist, then for every c ∈ N, there exists a secure
pseudorandom generator with stretch ℓ(n) = nc .

The next section is dedicated to proving the theorem, under the
hypothesis that the one-way function is a permutation.

The definition of a secure pseudorandom generator states that it is
infeasible for polynomial-time adversaries to distinguish between a
completely random string of length ℓ(n) and a string that was
generated by applying the generator G to a much shorter random
string of length n.

Using this fact, it may be seen that the preceding theorem implies the
existence of computationally secure encryption schemes, subject to
the availability of one-way functions.
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Cryptography Security, One-Way Functions, Pseudorandomness

One-Way Functions to Secure Encryption Schemes

Suppose that one-way functions exist.

By the preceding theorem, there exists a secure pseudorandom
generator with stretch ℓ(n) = nc .

We want to communicate a message of length nc .

We start with a short key of length n.

We use a a secure pseudorandom generator with stretch nc .

We apply the one-time pad encryption with this nc -length key.

We claim that a polynomial-time eavesdropper would not be able to
tell the difference.

Assume that there is an adversary A that can predict a bit of the
plaintext with probability noticeably larger than 1

2 .

But such prediction is impossible when the key is truly random.

We conclude that A can be used to distinguish between a
pseudorandom and truly random key.

This contradicts the security of the generator.
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Cryptography Pseudorandom Generators from One-Way Permutations

Subsection 3

Pseudorandom Generators from One-Way Permutations
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Cryptography Pseudorandom Generators from One-Way Permutations

Pseudorandom Generators from One-Way Permutations

We will prove only the preceding theorem under the proviso that the
one-way function is a permutation.

Lemma

Suppose there exists a one-way function f : {0, 1}∗ → {0, 1}∗, such that:

f is one-to-one;

For every x ∈ {0, 1}∗, |f (x)| = |x |.

Then, for every c ∈ N, there exists a secure pseudorandom generator with
stretch nc .

The proof incorporates some ideas of independent interest that have
found several applications in other areas of computer science.

Among these are the hybrid argument and the Goldreich-Levin
Theorem.
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Cryptography Pseudorandom Generators from One-Way Permutations

Unpredictability Implies Pseudorandomness

We provide an alternative characterization of pseudorandom
generators.

It is a weaker notion and, hence, easier to achieve by explicit
constructions.
Yao’s proof that it is equivalent to the original was surprising.

Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function
with stretch ℓ(n), i.e., |G (x)| = ℓ(|x |), for every x ∈ {0, 1}∗.
We call G unpredictable if, for every probabilistic polynomial-time
B , there is a negligible function ǫ : N → [0, 1], such that

Prx∈R{0,1}n
y=G(x)
i∈R [ℓ(n)]

[B(1n, y1, . . . , yi−1) = yi ] ≤
1

2
+ ǫ(n).

Predicting the i -th bit given the first i − 1 bits, where i is a randomly
chosen index, is difficult for every polynomial-time algorithm.
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Cryptography Pseudorandom Generators from One-Way Permutations

Pseudorandomness Implies Unpredictability

Suppose G is a pseudorandom generator.

We can see that it is also unpredictable.

Suppose
y1, . . . , yℓ(n)

are uniformly chosen bits.

Then it would be impossible to predict yi given y1, . . . , yi−1.

Assume such a predictor exists, when y = G (x), for a random x .

Then the predictor can distinguish between Uℓ(n) and G (Un).
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Cryptography Pseudorandom Generators from One-Way Permutations

Yao’s Theorem

Theorem (Unpredictability Implies Pseudorandomness)

Let ℓ : N → N be some polynomial-time computable function.
Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function such
that

|G (x)| = ℓ(|x |), for every x ∈ {0, 1}∗.
If G is unpredictable, then it is a secure pseudorandom generator.
Moreover, for every probabilistic polynomial-time algorithm A, there exists
a probabilistic polynomial-time B , such that for every n ∈ N and ǫ > 0, if
Pr[A(G (Un)) = 1]− Pr [A(Uℓ(n)) = 1] ≥ ǫ, then

Prx∈R{0,1}n
y=G(x)
i∈R [ℓ(n)]

[B(1n, y1, . . . , yi−1) = yi ] ≥
1

2
+

ǫ

ℓ(n)
.
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Cryptography Pseudorandom Generators from One-Way Permutations

Proof of Yao’s Theorem (Observation)

We show, first, that the main result follows from the “moreover” part.

Suppose that G is not a pseudorandom generator.

Hence, there is some algorithm A and constant c , such that

∣

∣Pr[A(G (Un)) = 1]− Pr[A(Uℓ(n)) = 1]
∣

∣ ≥ n−c ,

for infinitely many n’s.

Then, we can ensure (changing A to 1− A if necessary), that for
infinitely many n’s, this relationship holds without the absolute value.

For every such n, we get a predictor B that succeeds with probability

1

2
+

n−c

ℓ(n)
.

This contradicts the unpredictability property.
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Cryptography Pseudorandom Generators from One-Way Permutations

Proof of Yao’s Theorem

We prove the “moreover” part.

Let A be some probabilistic polynomial-time algorithm that is
supposedly more likely to output 1 on inputs from the distribution
G (Un) than on inputs from Uℓ(n).

Our predictor algorithm B is quite simple.

Let the input be 1n, i ∈ [ℓ(n)] and y1, . . . , yi−1.
Choose zi , . . . , zℓ(n) independently at random.
Compute

a = A(y1, . . . , yi−1, zi , . . . , zℓ(n)).

Suppose a = 1.

B surmises its guess for zi is correct and outputs zi .

Otherwise, it outputs 1− zi .
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Cryptography Pseudorandom Generators from One-Way Permutations

Correctness of the Algorithm B

Let n ∈ N and ℓ = ℓ(n).

Suppose that

Pr[A(G (Un)) = 1]− Pr[A(Uℓ(n)) = 1] ≥ ǫ.

We show that

Prx∈R{0,1}n
y=G(x)
i∈R [ℓ]

[B(1n, y1, . . . , yi−1) = yi ] ≥
1

2
+

ǫ

ℓ
.

To analyze B ’s performance, we use a technique called the hybrid

argument.

We define ℓ distributions D0, . . . ,Dℓ over {0, 1}ℓ.
For every i , the distribution Di is obtained by:

Choosing x ∈R {0, 1}n.
Letting y = G(x);
Outputting y1, . . . , yi , zi+1, . . . , zℓ, where zi+1, . . . , zℓ are chosen
independently at random in {0, 1}.
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Correctness of the Algorithm B (Cont’d)

Note that D0 = Uℓ, while Dℓ = G (Un).

For every i ∈ {0, . . . , ℓ}, define

pi = Pr[A(Di ) = 1].

Note that pℓ − p0 ≥ ǫ.

Write

pℓ − p0 = (pℓ − pℓ−1) + (pℓ−1 − pℓ−2) + · · ·+ (p1 − p0).

So we get that
ℓ

∑

i=1

(pi − pi−1) ≥ ǫ.

That is
Ei∈[ℓ][pi − pi−1] ≥

ǫ

ℓ
.
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Correctness of the Algorithm B (Cont’d)

We will prove Prx∈R{0,1}n
y=G(x)
i∈R [ℓ]

[B(1n, y1, . . . , yi−1) = yi ] ≥ 1
2 + ǫ

ℓ
by

showing that for every i ,

Prx∈R{0,1}n
y=G(x)

[B(1n, y1, . . . , yi−1) = yi ] ≥
1

2
+ (pi − pi−1).

Recall that B :
Makes a guess zi for yi ;
Invokes A to obtain a value a;
Outputs zi if a = 1 and 1− zi otherwise.

Thus, B predicts yi correctly if one of the following occurs:
a = 1 and yi = zi ;
a 6= 1 and yi = 1− zi .

The probability this event happens is

1

2
Pr[a = 1|zi = yi ] +

1

2
(1− Pr[a = 1|zi = 1− yi ]).
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Correctness of the Algorithm B (Cont’d)

One can verify that, conditioned on zi = yi , B invokes A with the
distribution Di .

So we have
Pr[a = 1|zi = yi ] = pi .

On the other hand, if we do not condition on zi , then the distribution
B invokes A with the distribution Di−1.

Hence,

pi−1 = Pr[a = 1]

= 1
2Pr[a = 1|zi = yi ] +

1
2Pr[a = 1|zi = 1− yi ]

= 1
2pi +

1
2Pr[a = 1|zi = 1− yi ].

Plugging this into the last equation of the previous slide, we get that
B predicts yi with probability

1

2
+ pi − pi−1.
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Introducing The Goldreich-Levin Theorem

Let f be some one-way permutation.

We need to use f to come up with a pseudorandom generator with
arbitrarily large polynomial stretch ℓ(n).

The crucial step is obtaining a pseudorandom generator that extends
its input by one bit, i.e., has stretch ℓ(n) = n + 1.
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The Goldreich-Levin Theorem

Theorem (Goldreich-Levin Theorem)

Suppose that f : {0, 1} → {0, 1} is a one-way function such that:

f is one-to-one;

|f (x)| = |x |, for every x ∈ {0, 1}∗.
Then, for every probabilistic polynomial-time algorithm A, there is a
negligible function ǫ : N → [0, 1], such that

Prx ,r∈R{0,1}n [A(f (x), r) = x ⊙ r ] ≤ 1

2
+ ǫ(n),

where x ⊙ r is defined to be

x ⊙ r =

n
∑

i=1

xi ri (mod 2).
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Immediate Consequence of the Goldreich-Levin Theorem

The theorem implies that the function

G (x , r) = f (x), r , x ⊙ r

is a secure pseudorandom generator that extends its input by one bit
(mapping 2n bits into 2n + 1 bits).

Otherwise, there would be a predictor B for this function.

But f is a permutation over {0, 1}n .
So the first 2n bits of G (U2n) are completely random and
independent.

Hence, they cannot be predicted from their predecessors with
probability better than 1

2 .

Thus, a predictor for this function would have to succeed at
predicting the (2n + 1)-st bit from the previous 2n bits with
probability noticeably larger than 1

2 .

This exactly amounts to violating the theorem.
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Plan of the Proof

Suppose, for the sake of contradiction, that there is some probabilistic
polynomial-time algorithm A that violates the theorem’s statement.

We will use A to show a probabilistic polynomial-time algorithm B

that inverts the permutation f .

This would contradict the assumption that f is one way.
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Plan of the Proof (Cont’d)

Specifically, we will show that if, for some n,

Prx ,r∈R{0,1}n [A(f (x), r) = x ⊙ r ] ≥ 1

2
+ ǫ,

then B will:

Run in O
(

n2

ǫ2

)

time;

Invert the one-way permutation f on inputs of length n, with
probability at least Ω(ǫ).

This means that if A’s success probability is more than 1
2 + n−c , for

some constant c and infinitely many n’s, then B :

Runs in polynomial time;
Inverts the one-way permutation with probability at least Ω(n−c), for
infinitely many n’s.
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Preparing the Proof

Let n be such that

Prx ,r∈R{0,1}n [A(f (x), r) = x ⊙ r ] ≥ 1

2
+ ǫ.

Then, by a simple averaging argument, for at least an ǫ
2 fraction of

the x ’s,

Prr∈R{0,1}n [A(f (x), r) = x ⊙ r ] ≥ 1

2
+

ǫ

2
.

We call such x ’s good.

We show an algorithm B that, with high probability, inverts f (x), for
every good x .

Restating, we are given a “black box” that computes an unknown
linear function x 7→ x ⊙ r for at least 1

2 + ǫ
2 fraction of r ’s.

We have to give an efficient algorithm that reconstructs x in time
polynomial in |x | and 1

ǫ
.

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 51 / 104



Cryptography Pseudorandom Generators from One-Way Permutations

Preparing the Proof (Warm-Up)

As a warm-up, suppose that, for all r ,

Prr [A(f (x), r) = x ⊙ r ] = 1.

Then it is easy to recover x from f (x).

Let e i be the string defined by

e ij =

{

1, if j = i ,

0, if j 6= i .

Run A(f (x), e1), . . . ,A(f (x), en).

Clearly, x ⊙ e i is the i -th bit of x .

Hence, by making these n calls to A we can recover x completely.

Of course, this idea breaks down if

Prr [A(f (x), r) = x ⊙ r ] < 1.
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Recovery for Success Probability 0.9

Suppose that for an Ω(ǫ) fraction of x ’s, we had

Prr [A(f (x), r) = x ⊙ r ] ≥ 0.9.

For such an x , we cannot trust that

A(f (x), e i ) = x ⊙ e i .

It may be that e1, . . . , en are among the 2n

10 strings r on which A

answers incorrectly.

Still, there is a simple way to bypass this problem.
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Recovery for Success Probability 0.9 (Cont’d)

Suppose we choose r ∈R {0, 1}n.
Then the string r ⊕ e i is also uniformly distributed.

Hence, by the union bound, the probability that the algorithm A

answers incorrectly on either string is

Prr [A(f (x), r) 6= x ⊙ r or A(f (x), r ⊕ e i ) 6= x ⊙ (r ⊕ e i )] ≤ 0.2.

But
x ⊙ (r ⊕ e i ) = (x ⊙ r)⊕ (x ⊙ e i ).

This means that, if we choose r at random, and compute

z = A(f (x), r) and z ′ = A(f (x), r ⊙ e i ),

then z ⊕ z ′ will be equal to the i -th bit of x with probability ≥ 0.8.

To obtain every bit of x , we amplify this probability to 1− 1
10n by

taking majorities.
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Algorithm B

Algorithm B

1. Choose r1, . . . , rm independently at random from {0, 1}n

(the number m to be specified shortly).

2. For every i ∈ [n]:

Compute the values

z1 = A(f (x), r1), z ′1 = A(f (x), r1 ⊙ e i),
...

...
zm = A(f (x), rm), z ′m = A(f (x), rm ⊙ e i);

Guess that xi is the majority value among {zj ⊕ z ′j }j∈[m].

Claim: If m = 200n, then, for every i ∈ [n], the majority value will be
correct with probability at least 1− 1

10n .

Hence, B will recover every bit of x with probability at least 0.9.
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Proof of the Claim

To prove the claim, we define the random variable

Zj =

{

1, if A(f (x), r j ) = x ⊙ r j and A(f (x), r j ⊕ e i ) = x ⊙ (r j ⊕ e i ),
0, otherwise.

Note that the variables Z1, . . . ,Zm are independent.

Moreover, by our previous discussion,

E [Zj ] ≥ 0.8, for every j .

It suffices to show that with probability 1− 1
10n , more than m

2 of the
Zj ’s are equal to 1.

To rephrase, let
Z = Z1 + · · ·+ Zm.

Then it suffices to show that

Pr
[

Z ≤ m

2

]

≤ 1

10n
.
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Proof of the Claim (Cont’d)

We know that E [Z ] =
∑

j E [Zj ] ≥ 0.8m.

So all we need to do is bound

Pr[|Z − E [Z ]| ≥ 0.3m].

By Chebychev’s Inequality,

Pr
[

|Z − E [Z ]| ≥ k
√

Var(Z )
]

≤ 1

k2
.

In our case, because the Zj ’s are independent 0/1 random variables,
Var(Z ) =

∑m
j=1 Var(Zj) and Var(Zj) ≤ 1, for every j .

So, for k = 0.3
√
m, we get that

Pr[|Z − E [Z ]| ≥ 0.3m] ≤ 1

(0.3
√
m)2

m = 200n

≤ 1

10n
.
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Recovery for Success Probability 1
2 +

ǫ
2 : Idea

The preceding analysis crucially used the unrealistic assumption that
for many x ’s, A(f (x), r) is correct with probability at least 0.9 over r .

Once this falls below 0.75, we no longer get any meaningful
information by applying the union bound on the events

A(f (x), r) = x ⊙ r and A(f (x), r ⊕ e i ) = x ⊙ (r ⊕ e i ).

In general, our only guarantee is that, if x is good, then this
probability is at least 1

2 +
ǫ
2 (which could be much smaller than 0.75).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 58 / 104



Cryptography Pseudorandom Generators from One-Way Permutations

Recovery for Success Probability 1
2 +

ǫ
2 (Cont’d)

The crucial insight needed to extend the proof is that all of the above
analysis would still carry over even if the strings r1, . . . , rm are only
chosen to be pairwise independent as opposed to fully independent.

The only place where we used independence is to argue that the
random variables Z1, . . . ,Zm satisfy

Var





∑

j

Zj



 =
∑

j

Var(Zj).

This condition holds also for pairwise independent random variables.

We show how to pick r1, . . . , rm in a pairwise indpendent fashion in
such a way that we “know” each x ⊙ r i already.

Despite x being unknown, we can do this thanks to some exhaustive
guessing.
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Recovery for Success Probability 1
2 +

ǫ
2 : Details

Set k such that m ≤ 2k − 1 and proceed as follows.

1. Choose k strings s1, . . . , sk independently at random from {0, 1}n .
2. For every j ∈ [m], we associate with j a unique nonempty set

Tj ⊆ [k],

in some canonical fashion.

We define
r j =

∑

t∈Tj

st (mod 2).

That is, r j is the bitwise XOR of all the strings among s1, . . . , sk that
belong to the j-th set.
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Recovery for Success Probability 1
2 +

ǫ
2 : Remarks

It can be shown that the strings r1, . . . , rm are pairwise independent.

Moreover, for every x ∈ {0, 1}n,

x ⊙ r j =
∑

t∈Tj

x ⊙ st .

This implies that, if we know the k values x ⊙ s1, . . . , x ⊙ sk , then we
can deduce the m values x ⊙ r1, . . . , x ⊙ rm.

This is where exhaustive guessing comes in.

By construction, 2k = O(m).

So we can enumerate over all possible guesses for

x ⊙ s1, . . . , x ⊙ sk

in polynomial time.
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Recovery for Success Probability 1
2 +

ǫ
2 : The Algorithm

Algorithm B ′

Input: y ∈ {0, 1}n , where y = f (x), for an unknown x .
We assume that x is “good” and, hence,

Prr [A(f (x), r) = x ⊙ r ] ≥ 1

2
+

ǫ

2
.

(We do not care how B ′ performs on x ’s that are not good.)
Operation: Let m = 200n

ǫ2
.

Let k be the smallest such that m ≤ 2k − 1.
Choose s1, . . . , sk independently at random in {0, 1}n .
Define r1, . . . , rm as previously.
For every string w ∈ {0, 1}k , do the following.
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Recovery for Success Probability 1
2 +

ǫ
2 (Cont’d)

Algorithm B ′ (Cont’d)

Run the algorithm B under the assumption that

x ⊙ st = wt , for every t ∈ [k].

That is, for every i ∈ [n], we compute our guess zj for x ⊙ r j by
setting

zj =
∑

t∈Tj

wt .

We compute the guess z ′j for x ⊙ (r j ⊕ e i ) as before by setting

z ′j = A(y , r j ⊕ e i ).
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Recovery for Success Probability 1
2 +

ǫ
2 (Cont’d)

Algorithm B ′ (Cont’d)

As before, for every i ∈ [n], our guess for xi is the majority value
among

{zj ⊕ z ′j}j∈[m].

We test whether our guess for x = x1, . . . , xn satisfies

f (x) = y .

If so, we halt and output x .
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Recovery for Success Probability 1
2 +

ǫ
2 : Analysis

The analysis is almost identical to the previous case.

In one of the 2k iterations, we will guess the correct values w1, . . . ,wk

for x ⊙ s1, . . . , x ⊙ sk .

We will show that, in this particular iteration, for every i ∈ [n],
Algorithm B ′ guesses xi correctly with probability at least 1− 1

10n .

Indeed, fix some i ∈ [n].

Define the random variables Z1, . . . ,Zm as before

Zj =

{

1, if zj = x ⊙ r j and z ′j = x ⊙ (r j ⊕ e i ),

0, otherwise.
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Recovery for Success Probability 1
2 +

ǫ
2 (Cont’d)

In the iteration where we chose the right values w1, . . . ,wk , it always
holds that

zj = x ⊙ r j .

Hence, Zj depends only on the second event.

This event happens with probability at least 1
2 +

ǫ
2 .

Thus, all that is needed is to show that, for m = 100n
ǫ2

, if Z1, . . . ,Zm

are pairwise independent 0/1 random variables, where E [Zj ] ≥ 1
2 +

ǫ
2 ,

for every j , then

Pr





∑

j

Zj ≤
m

2



 ≤ 1

10n
.

This follows immediately from Chebychev’s inequality.
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Getting Arbitrarily Large Stretch

The Goldreich-Levin Theorem provides a secure pseudorandom
generator of stretch ℓ(n) = n + 1.

We still need a generator with arbitrarily large polynomial stretch.

Theorem

Let f be a one-way permutation and c ∈ N.
Then the function G that maps x , r ∈ {0, 1}n to

r , f ℓ(x)⊙ r , f ℓ−1(x)⊙ r , . . . , f 1(x)⊙ r , ℓ = nc ,

is a secure pseudorandom generator of stretch ℓ(2n) = n + nc .
Here, f i denotes the function obtained by applying f repeatedly to the
input n times.

By Yao’s Theorem, it suffices to show that individual bits of f are
hard to predict.
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Getting Arbitrarily Large Stretch (Cont’d)

Assume, to the contrary, there is a PPT machine A, such that, when
x , r ∈ {0, 1}n and i ∈ {1, . . . ,N} are randomly chosen,

Pr[A predicts f i (x)⊙ r given

(r , f ℓ(x)⊙ r , f N−1(x)⊙ r , . . . , f i+1(x)⊙ r)] ≥ 1
2 + ǫ.

We will show a probabilistic polynomial-time algorithm B that, on
such n’s, will predict x ⊙ r from f (x), r with probability at least 1

2 + ǫ.

Thus, if A has nonnegligible success, then B violates the
Goldreich-Levin Theorem.
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Getting Arbitrarily Large Stretch (Cont’d)

Algorithm B :

Input consist of r and y , such that y = f (x), for some x .
Pick i ∈ {1, . . . ,N} randomly.
Compute the values

f ℓ−i(y), . . . , f (y).

Output
a = A(r , f ℓ−i−1(y)⊙ r , . . . , f (y) ⊙ r , y ⊙ r).

Because f is a permutation, this is exactly the same distribution
obtained where we choose x ′ ∈R {0, 1}n and set x = f i (x ′).

Hence, A will predict f i (x ′)⊙ r with probability 1
2 + ǫ.

Thus, B predicts x ⊙ r with the same probability.
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Subsection 4

Zero Knowledge
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The Idea Behind Zero Knowledge

A proof presents evidence that some statement is true.

Typically after carefully reading and verifying a proof for some
statement, one learns much more than the mere fact that the
statement is true.

Does it always have to be this way?

Example: Suppose we figured out how to schedule all of the flights of
some airline in a way that saves millions of dollars.

Can we prove to the airline that there exists such a schedule, without
actually revealing the schedule?
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Example

Suppose a company has a sensitive building, that only a select group
of employees is allowed to enter.

One way to enforce this is to:

Choose two random prime numbers P and Q;
Reveal these numbers to the selected employees;
Reveal N = P · Q to the guard outside the building.

The guard will be instructed to let inside only a person demonstrating
knowledge of N’s factorization.

Is it possible to demonstrate such knowledge without revealing the
factorization?
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Zero Knowledge Property

This is in fact possible using the notion of zero knowledge proof.

A zero knowledge proofs is a special type of an interactive
probabilistic proof systems.

We have, as usual:

The completeness property (prover can convince the verifier to accept
with high probability);
The soundness property (verifier will reject false statements with high
probability).

In addition, we require the zero knowledge property:

Roughly speaking, it requires that the verifier does not learn anything
from the interaction apart from the fact that the statement is true.
I.e., zero knowledge requires that whatever the verifier learns after
participating in a proof for a statement x , she could have computed by
herself, without participating in any interaction.
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Zero Knowledge Proofs

We give the formal definition for zero knowledge proofs of NP
languages.

The concept of zero knowledge can be defined also for languages
outside NP.

Definition (Zero Knowledge Proofs)

Let L be an NP-language, and let M be a poly time Turing machine, such
that

x ∈ L iff ∃u ∈ {0, 1}p(|x |) M(x , u) = 1,

where p is a polynomial.
A pair P ,V of interactive probabilistic polynomial-time algorithms is called
a zero knowledge proof for L, if the following three conditions hold.
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Zero Knowledge Proofs (Cont’d)

Definition (Zero Knowledge Proofs Cont’d)

Completeness: For every x ∈ L and u a certificate for this fact, i.e.,
M(x , u) = 1,

Pr[outV 〈P(x , u),V (x)〉] ≥ 2

3
,

where 〈P(x , u),V (x)〉 denotes the interaction of P and V in which:

P gets x , u as input;
V gets x as input;
outV I denotes the output of V at the end of the interaction I .

Soundness: If x 6∈ L, then, for every strategy P∗ and input u,

Pr[outV 〈P∗(x , u),V (x)〉] ≤ 1

3

Here P need not run in polynomial time.
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Zero Knowledge Proofs (Cont’d)

Definition (Zero Knowledge Proofs Cont’d)

Perfect Zero Knowledge: For every probabilistic polynomial-time
interactive strategy V ∗, there exists an expected probabilistic
polynomial-time (stand-alone) algorithm S∗, such that, for every
x ∈ L and u a certificate for this fact,

outV ∗〈P(x , u),V ∗(x)〉 ≡ S∗(x).

That is, these two random variables are identically distributed, even
though S does not have access to any certificate for x .

This algorithm S∗ is called the simulator for V ∗, as it simulates the
outcome of V ∗’s interaction with the prover.
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Comments

The zero knowledge condition means that the verifier cannot learn
anything new from the interaction, even if she does not follow the
protocol but rather uses some other strategy V ∗.

The reason is that she could have learned the same thing by just
running the stand-alone algorithm S∗ on the publicly known input x .
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Statistical and Computational Zero Knowledge

The perfect zero knowledge condition can be relaxed by requiring that
the distributions

outV ∗〈P(x , u),V ∗(x)〉 and S∗(x)

have instead one of the following:
Small statistical distance;
Computational indistinguishability.

The resulting notions are called, respectively:
Statistical zero knowledge;
Computational zero knowledge.

They are central to cryptography and complexity theory.

The class of languages with statistical zero knowledge proofs, known
as SZK, is believed to lie strictly between P and NP.

In contrast, it is known that, if one-way functions exist, then every
NP language has a computational zero knowledge proof.
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Revisiting Graph Isomorphism

We show a perfect zero knowledge proof for the language GI of
graph isomorphism.

GI is in NP and has a trivial proof satisfying completeness and
soundness consisting of sending the isomorphism to the verifier.

Currently, we do not know of a polynomial-time algorithm that can
find the isomorphism between two given isomorphic graphs.

So the proof is not known to be zero knowledge.
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Zero-Knowledge Proof for Graph Isomorphism

Zero-Knowledge Proof for Graph Isomorphism

Public input: A pair of graphs G0,G1 on n vertices (represented by their
adjacency matrices).
Prover’s private input: A permutation π : [n] → [n], such that

G1 = π(G0),

where π(G ) denotes the graph obtained by transforming the vertex i into
π(i) (applying the permutation π to the rows and columns of G ’s
adjacency matrix).

George Voutsadakis (LSSU) Advanced Computational Complexity December 2024 80 / 104



Cryptography Zero Knowledge

Zero-Knowledge Proof for Graph Isomorphism (Cont’d)

Zero-Knowledge Proof for Graph Isomorphism (Cont’d)

Prover’s first message: Prover chooses a random permutation

π1 : [n] → [n].

She sends to the verifier the adjacency matrix of π1(G1).
Verifier’s message: Verifier chooses b ∈R {0, 1}.
He sends b to the prover.
Prover’s last message: If b = 1, the prover sends π1 to the verifier.
If b = 0, the prover sends π1 ◦ π to the verifier.
Verifier’s check: Let:

H denote the graph received in the first message;

π denote the permutation received in the last message.

The verifier accepts if and only if H = π(Gb).
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Completeness and Soundness of the Protocol

Completeness: If both the prover and verifier follow the protocol, then
the verifier will accept with probability one.

Soundness: If G0 and G1 are not isomorphic, then the verifier will
reject with probability at least 1

2 .

Regardless of the prover’s strategy, the graph H that she sends in her
first message cannot be isomorphic to both G0 and G1.

There has to exist b ∈ {0, 1}, such that H is not isomorphic to Gb.

But the verifier will choose this value b with probability 1
2 .

Then, the prover cannot find a permutation π, such that H = π(Gb).

Thus, the verifier rejects.
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Zero-Knowledge Property of the Protocol

Zero-Knowledge: Let V ∗ be some verifier strategy.

The simulator S∗:
Receives input a pair of graphs G0,G1.
Chooses b′ ∈R {0, 1}, a random permutation π on [n].
Computes H = π(Gb′ ).
It then feeds H to the verifier V ∗ to obtain its message b ∈ {0, 1}∗.

Suppose b = b
′.

Then S
∗ sends π to V

∗.

It outputs whatever V ∗ outputs.

Suppose b 6= b
′.

Then the simulator S∗ restarts from the beginning.

S∗’s first message is distributed exactly as the prover’s first message,
a random graph that is isomorphic to G0 and G1.

So H reveals nothing about the choice of b′.
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Zero-Knowledge Property of the Protocol (Cont’d)

Hence, the probability that b′ = b is 1
2 .

If this happens, then the messages H and π that V ∗ sees are
distributed identically to the distribution of messages that it gets in a
real interaction with the prover.

Now S∗ succeeds in getting b′ = b with probability 1
2 .

So the probability that it needs k iterations is 2−k .

Hence, its expected running time is

T (n)
∞
∑

k=1

2−k = O(T (n)) ,

where T (n) denotes the running time of V ∗.

Thus, S∗ runs in expected probabilistic polynomial-time.
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Subsection 5

Some Applications
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Introducing Pseudorandom Functions

Pseudo-random functions are a natural generalization of
pseudorandom generators.

The difference is that the object is a function, whose truth table has
exponential size.

The “blind test” distinguishing algorithm, which runs in polynomial
time, only has the ability to ask for the value of the function at any
inputs of its choosing.
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Pseudorandom Functions

Definition (Pseudorandom Family of Functions)

Let {fk}k∈{0,1}∗ be a family of functions, such that:

fk : {0, 1}|k| → {0, 1}|k|, for every k ∈ {0, 1}∗;
There is a polynomial-time algorithm that computes fk(x), given
k ∈ {0, 1}∗ and x ∈ {0, 1}|k|.

We say that the family is pseudorandom if, for every probabilistic
polynomial-time oracle Turing machine A, there is a negligible function
ǫ : N → [0, 1], such that, for every n,

∣

∣

∣Prk∈R{0,1}n
[

Afk(·)(1n) = 1
]

− Prg∈RFn [A(g(1
n)) = 1]

∣

∣

∣ < ǫ(n),

where Fn denotes the set of all functions from {0, 1}n to {0, 1}n .
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Pseudorandom Functions and Pseudorandom Generators

Let {fk} be a pseudorandom function family.

Then, for every polynomial ℓ(n), the function G that maps
k ∈ {0, 1}n to

fk(1), . . . , fk(ℓ(n)),

where we use some canonical encoding of the numbers 1, . . . , ℓ(n) as
strings in {0, 1}n , is a secure pseudorandom generator.

We also have the following

Theorem

Suppose that there exists a secure pseudorandom generator G with stretch
ℓ(n) = 2n. Then, there exists a pseudorandom function family.

We prove this next.
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The Setup

Let G be a secure pseudorandom generator, as in the theorem’s
statement, mapping length-n strings to length-2n strings.

For every x ∈ {0, 1}n , we denote by:

G0(x) the first n bits of G(x);
G1(x) the last n bits of G(x).

For every k ∈ {0, 1}n , we define the function fk(•) by setting, for all
x ∈ {0, 1}n ,

fk(x) = Gkn(Gkn−1
(· · · (Gk1(x)) · · · )).

Note that fk(x) can be computed by making n invocations of G .

Hence, it clearly runs in polynomial time.
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Graphical Interpretation

Another way to view fk is to think of a full depth n binary tree whose
root is labeled by k .

We label the two children of
a vertex labeled by y with
the values G0(y) and G1(y).

Then fk(x) denotes the label
of the x-th leaf of this tree.

Writing the tree down would take exponential time and space.

However, the label of each leaf can be computed in polynomial time
by following the path of length n from the root to the leaf.
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Description of the Oracle

We aim to show that {fk(x)} is pseudorandom.

We start with a T -time algorithm A that distinguishes between fUn

and a random function with bias ǫ.

We transform A into a poly(n)T -time algorithm B that distinguishes
between U2n and G (Un) with bias ǫ

nT
.

Assume, without loss of generality, that A makes exactly T queries to
its oracle.

We implement an oracle O to fUn
.

Oracle O labels vertices of the full binary tree of depth n, as needed.
Initially, only the root is labeled by a random string k .
Suppose a query of A requires the oracle to label the children u0, u1 of
a vertex v labeled by y .
The oracle invokes G on y to obtain y0 = G0(y) and y1 = G1(y).
It then labels u0, u1 with y0, y1, and deletes the label y of u.
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Comments on the Oracle

Once u0 and u1 are labeled, we have no further need for the label of u.

Following the definition of fk , the oracle O answers a query x with
the label of the x-th vertex.

Note that O invokes the generator G at most Tn times.

By adding superfluous invocations, we can assume O invokes the
generator exactly Tn times.
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Oracles Oi

For every i ∈ {0, . . . ,Tn}, define the oracle Oi as follows:

The oracle Oi follows the operation of O, but for the first i invocations
of G , instead of the labels y0, y1 of the children of a node labeled y by
setting y0 = G0(y) and y1 = G1(y), the oracle Oi chooses both y0 and
y1 independently at random from {0, 1}n.

Note that O0 is the same as the oracle O to fUn
.

On the other hand, OnT is an oracle to a completely random function.

Let
pi = Pr

[

AOi (1n) = 1
]

.

We may assume pTn − p0 ≥ ǫ.

We deduce, as in the proof of Yao’s Theorem, that

Ei∈R [Tn][pi − pi−1] ≥
ǫ

Tn
.
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Algorithm B

Algorithm B , distinguishing U2n from G (Un), operates as follows.

Suppose it receives input y ∈ {0, 1}2n.
Choose i ∈R [Tn] and execute A with access to the oracle Oi−1, using
random values for the first i − 1 invocations of G .
Then, in the i-th invocation use the value y instead of the result of
invoking G .
In all the rest of the invocations B runs G as usual.
At the end, it outputs what A outputs.

One can verify that, for every choice of i :

If the input y is distributed as U2n, then B’s output is distributed as
AOi (1n);
If the input y is distributed as G(Un), B’s output is distributed as
AOi−1(1n).
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Encryption Using Pseudorandom Function Families

A pseudorandom function family is a way to turn a random string
k ∈ {0, 1}n into an implicit description of an exponentially larger
“random looking” string.

This exponentially lager string consists of the table of all values of the
function fk .

In practice, for secure communication, one often wants to encrypt
many messages with the same key.

Pseudorandom functions allow Alice and Bob to share an
“exponentially large one-time pad”.
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Encryption Using Pseudorandom Functions (Cont’d)

Alice and Bob can share a key k ∈ {0, 1}n of a pseudorandom
function.

Suppose Alice wants to encrypt a message x ∈ {0, 1}n for Bob.

Then Alice chooses r ∈R {0, 1}n .
She then sends (r , fk(r)⊕ x).

Bob knows the key k .

So Bob can find x .

On the other hand, to an adversary who does not know the key it
looks as if Alice sent two random strings.

This happens under the proviso that Alice does not choose the same
string r to encrypt two different messages.

However, under the protocol, this can only happen with exponentially
small probability.
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Authentication Using Pseudorandom Function Families

Pseudorandom functions are also used for message authentication
codes.

Suppose Alice and Bob share a key k of a pseudorandom function.
Then, when Alice sends a message x to Bob, she can append the value
fk(x) to this message.
Bob can verify that the pair (x , y) he receives satisfies y = fk (x).
An adversary Eve that controls the communication line between Alice
and Bob cannot change the message x to x ′ without being detected.
The probability that Eve can predict the value of fk(x

′) is negligible
(after all, a random function is unpredictable).

Furthermore, pseudorandom function generators have also figured in a
very interesting explanation of why current lower bound techniques
ave been unable to separate P from NP.
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Derandomization

The existence of pseudorandom generators implies subexponential
deterministic algorithms for BPP, often referred to as
derandomization of BPP.

If L ∈ BPP, then for every ǫ > 0, there is a 2n
ǫ
-time deterministic

algorithm A, such that for every sampleable distribution of inputs
{Xn}, where Xn ∈ {0, 1}n ,

Pr[A(Xn) = L(Xn)] > 0.99.

The randomness is only over the choice of the inputs, whereas the
algorithm A is deterministic.

The algorithm A works by:

Reducing the randomness requirement of the probabilistic algorithm for
L to nǫ using a pseudorandom generator;
Enumerating over all the possible inputs for the pseudorandom
generator.
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Tossing Coins Over the Phone

Suppose two parties A and B want to toss a fair random coin over
the phone.

If only one of them actually tosses a coin, there is nothing to prevent
him from lying about the result.

The following “fix” suggests itself.

Both players toss a coin and they take the XOR as the shared coin.
Even if B does not trust A to use a fair coin, he knows that as long as
his bit is random, the XOR is also random.

Unfortunately, this idea also does not work because the player who
reveals his bit first is at a disadvantage.

The other player could just “adjust” his answer to get the desired
final coin toss.
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The Bit Commitment Solution

The following scheme assumes that A and B are polynomial-time
Turing machines that cannot invert one-way permutations.

A chooses two strings xA and rA of length n.
She sends a message

(fn(xA), rA),

where fn is a one-way permutation.
B selects a random bit b and sends it to A.
A reveals xA.
They agree to use the XOR of b and (xA ⊙ rA) as their coin toss.
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Correctness of the Bit Commitment Solution

We can see that no party can cheat.

B can verify that xA is the same as in the first message by applying fn.

Therefore, A cannot change her mind after learning B ’s bit.

A’s first message is called a cryptographic commitment to the bit
xA ⊙ rA.

By the Goldreich-Levin Theorem, B cannot predict xA ⊙ rA from A’s
first message.

Thus, she cannot bias her bit according to the choice of xA ⊙ rA.
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Multiparty Computations

There are k parties.

Known to all of them is a polynomial-time computable function

f : {0, 1}nk → {0, 1}.

The i -th party holds a string xi ∈ {0, 1}n .
They wish to compute

f (x1, x2, . . . , xk).

The parties can just exchange their inputs (suitably encrypted if need
be so that unauthorized eavesdroppers learn nothing).

Then each of them can compute f on his or her own.

This leads to all of them knowing each other’s input, which may not
be desirable.
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Secure Multiparty Computations

A multiparty protocol for computing f is secure if, at the end, no
party learns anything new apart from the value

f (x1, x2, . . . , xk).

The formal definition (inspired by zero knowledge) says that whatever
a party or a coalition of parties learn during the protocol can be
simulated in an ideal setting where they only get to send their inputs
to some trusted authority that computes f on these inputs and
broadcasts the result.

Amazingly, there are protocols to achieve this task securely for every
number of parties and for every polynomial-time computable f .
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Machine Learning

In machine learning the goal is to learn a succinct function

f : {0, 1}n → {0, 1}

from a sequence (x1, f (x1)), (x2, f (x2)), . . ., where the xi ’s are
randomly chosen inputs.

This is impossible, in general, since a random function has no
succinct description.

Suppose f has a succinct description (e.g., as a small circuit).

The existence of pseudorandom functions implies that, even though a
function may be polynomial-time computable, there is no way to learn
it from examples in polynomial time.

It is possible to extend this impossibility result to more restricted
function families such as NC1.
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