Introduction to Algebraic Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) **[Algebraic Geometry](#page-36-0)** 1/37

Subsection 1

Linear Algebra

• Linear algebra is concerned with finding the solutions of a system of linear equations, that is, a system of the form

$$
a_{11}x_1 + \dots + a_{1m}x_m = b_1
$$

$$
\vdots
$$

$$
a_{n1}x_1 + \dots + a_{nm}x_m = b_n
$$

where a_{ii} and b_i are elements of some field k .

Quadratic Hypersurfaces

Affine and projective quadratic hypersurfaces have the form

$$
\sum_{i,j=1}^n a_{ij}x_ix_j + \sum_{i=1}^n b_i x_i + c = 0,
$$

where a_{ij} are the coefficients of a symmetric matrix.

- So the classification of affine and projective quadratic hypersurfaces can also be reduced to a problem in linear algebra.
- \bullet The properties of the ground field k do not play an important role in the theory of linear equations.
- For the classification of quadrics this is no longer the case.

Polynomials and Sets of Solutions

In an elementary algebra course, we study the set of solutions of polynomials of arbitrary degree,

$$
f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0, \quad a_i \in k.
$$

- The existence of solutions $x \in k$, with $f(x) = 0$, depends on k.
- \circ For example, to guarantee the existence of a solution, k must be algebraically closed.

Algebraic Geometry: Algebraic Sets

- Algebraic geometry is concerned with the study of algebraic sets.
- These are sets of solutions of polynomial equations in several variables,

$$
f_1(x_1,...,x_n) = 0
$$

$$
\vdots
$$

$$
f_m(x_1,...,x_n) = 0
$$

where $f_i(x_1,...,x_n)$ are polynomials.

Algebraic Geometry: Affine Spaces

- \bullet We fix an arbitrary ground field k .
- Affine space of dimension n over k is defined by

$$
A^n := A_k^n := k^n = \{(a_1, \ldots, a_n) : a_i \in k\}.
$$

- k^n and \mathbb{A}^n are equal as sets.
- $kⁿ$ is equipped with the standard vector space structure.
- \mathbb{A}^n is affine space, i.e., it does not have an addition and there are no special points (e.g., the origin is not singled out).
- We will give \mathbb{A}^n the structure of a topological space, by defining the Zariski topology.

Zero Loci

 \bullet Every polynomial $f \in k[x_1,...,x_n]$ defines a map

$$
f: \mathbb{A}^n \rightarrow k; (a_1,...,a_n) \mapsto f(a_1,...,a_n).
$$

A point $P = (a_1, ..., a_n) \in \mathbb{A}^n$ is called a zero of f if

 $f(P) = 0.$

 \circ Note that unless k has infinitely many elements (e.g., when k is algebraically closed), several polynomials can define the same map.

 \bullet The zero locus of f is the set

$$
V(f) := \{ P \in \mathbb{A}^n : f(P) = 0 \}.
$$

• Let $T \subseteq k[x_1,...,x_n]$ be a subset of the polynomial ring.

Definition (Zero Locus)

The zero locus of T is the set

$$
V(T) := \{ P \in \mathbb{A}^n : f(P) = 0, \text{ for all } f \in T \}.
$$

Affine Algebraic Sets or Zariski Closed Sets

Algebraic Set or Zariski Closed Set

A subset $Y \subseteq \mathbb{A}^n$ is called an (affine) algebraic set (or a closed, or **Zariski closed set**) in \mathbb{A}^n if there is a subset $\mathcal{T} \subseteq k[x_1,...,x_n]$, such that

 $Y = V(T)$.

It is not necessary to consider arbitrary subsets T of $k[x_1,...,x_n]$. \bullet We will now show that we can replace T by the *ideal* generated by T, namely

$$
J:=(T)\subseteq k[x_1,\ldots,x_n].
$$

• Moreover, since $k[x_1,...,x_n]$ is a Noetherian ring, there are finitely many polynomials $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$, such that

$$
J=(f_1,\ldots,f_m).
$$

Algebraic Sets are Finitely Generated

Lemma

- For T and J as before, $V(T) = V(J) = V(f_1,...,f_m)$.
	- \circ Clearly $V(J) \subseteq V(T)$. Let $g \in J$. There exist $h_1, \ldots, h_\ell \in T$ and $q_1, \ldots, q_\ell \in k[x_1, \ldots, x_n]$, such that

$$
g=h_1q_1+\cdots+h_{\ell}q_{\ell}.
$$

- Suppose $P \in V(T)$. Then $h_1(P) = \cdots = h_\ell(P) = 0$. So $g(P) = 0$. Hence, $V(T) \subseteq V(J)$. A similar argument shows that $V(J) = V(f_1,...,f_m)$.
- The lemma shows that we can restrict attention to finite systems of polynomial equations.

Examples of Degree 1 and 2

- The simplest possible algebraic subset of \mathbb{A}^n_k is one given by a set of linear equations. Such an algebraic set is called an affine subspace. It is itself isomorphic to an affine space.
- The conic, given by an equation of the form

$$
f(x,y) = a_1x^2 + a_2y^2 + a_3xy + a_4x + a_5y + a_6 = 0, a_1,..., a_6 \in \mathbb{R},
$$

is a well known example of an algebraic set.

The circle, parabola and hyperbola are special cases.

In the degenerate case, that is, when f is reducible, we obtain pairs of lines.

The example where $V(x) = V(x^2)$, demonstrates that the equations defining a given algebraic set are not uniquely determined.

The Nodal Cubic Curve

• The nodal cubic curve is defined by

C:
$$
y^2 = x^3 + x^2
$$
, $x, y \in \mathbb{R}$.

It has a "double point" at the origin.

Moreover, it can be parameterized as

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}^2; \n t \rightarrow (t^2-1, t^3-t).
$$

We have $\varphi(\mathbb{R}) = C$. This map is injective, with the exception of $\varphi(1) = \varphi(-1) = (0,0)$.

The Semicubical Parabola

The semicubical parabola, also known as Neile's parabola, or as a cuspidal cubic, is given by the equation

$$
C: y^2 = x^3, x, y \in \mathbb{R}.
$$

This curve also admits a parametrization

$$
\varphi : \mathbb{R} \to \mathbb{R}^2; \n t \mapsto (t^2, t^3).
$$

ϕ gives a bijection between R and C. However the partial derivatives of *ϕ* vanish at the origin, which is called a "cusp" of C.

In these examples the double point and the cusp are "singular" points on the curves. All other points are "smooth" (or "regular").

George Voutsadakis (LSSU) **[Algebraic Geometry](#page-0-0)** 15/37 July 2024 15/37

We consider a family of plane cubics given by

$$
C_{\lambda}: y^2 = x(x-1)(x-\lambda) \quad \lambda \in \mathbb{R}.
$$

 \circ For λ = 0 and 1, we have a curve with a double point (at least over the complex numbers), and otherwise C_{λ} is smooth.

 \circ Over R, the curve C_1 has a rational parametrization.

 \circ Over C, both C_0 and C_1 have rational parametrizations.

- \circ On the other hand, we will show that, for $\lambda \neq 0,1$, the smooth curve C_{λ} does not have a rational parametrization over either $\mathbb R$ or $\mathbb C$.
- \circ Thus, the latter behave very differently from C_0 and C_1 .

George Voutsadakis (LSSU) ([Algebraic Geometry](#page-0-0) July 2024 16/37

A Technical Lemma

Lemma

Let $p, q \in \mathbb{C}[t]$ be coprime. If there are four distinct values of the ratio *λ µ* ∈ C∪{∞}, such that *λ*p +*µ*q is a square in C[t], then p,q ∈ C.

We will use Fermat's method of infinite descent. The hypotheses are unchanged by a linear transformation

$$
p' = \alpha p + \beta q
$$
, $q' = \gamma p + \delta q$, $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in Gl(2, \mathbb{C})$.

Suppose that the result is false.

Let $\{p,q\}$ be a counterexample with max $\{deg p, deg q\}$ minimal. By a linear transformation, we can assume that the 4 ratios in question are $0,1,\infty$ and λ , for some $\lambda \in \mathbb{C}$.

That is $p, q, p-q, p - \lambda q \in \mathbb{C}[t]$ are squares.

• So
$$
p = u^2
$$
 and $q = v^2$ for some coprime *u* and *v*.
Clearly

$$
\max\{deg\,u, deg\,v\} < \max\{deg\,,\,deg\,q\}.
$$

For $\mu^2 = \lambda$, we have

$$
p - q = u2 - v2 = (u - v)(u + v);
$$

\n
$$
p - \lambda q = u2 - \lambda v2 = (u - \mu v)(u + \mu v).
$$

So $u - v$, $u + v$, $u - \mu v$, $u + \mu v$ are all squares. But then $\{w, v\}$ is also a counterexample. This contradicts the minimality of $\{p,q\}$.

Proposition

Let $k \in \{R, C\}$, and let $f, g \in k(t)$ be rational functions such that

$$
g^2 = f(f-1)(f-\lambda), \quad \lambda \neq 0,1.
$$

Then f and g are constant, i.e., $f, g \in k$.

o Suppose

$$
f = \frac{p}{q}
$$
 and $g = \frac{r}{s}$,

where r, s and $p, q \in k[t]$ are pairs of coprime polynomials. After we multiply through by the denominators q and s , we get

$$
\frac{r^2}{s^2} = \frac{p}{q} \frac{p-q}{q} \frac{p-\lambda q}{q}
$$

$$
r^2 q^3 = s^2 p(p-q)(p-\lambda q).
$$

We got $r^2q^3 = s^2p(p-q)(p-\lambda q)$. Thus $s^2 | q^3$. Since p and q are coprime, we also have $q^3 | s^2$. So $s^2 = aq^3$, for some $a \in k$. Additionally, $aq = (\frac{s}{a})$ $\frac{s}{q}$)² \in k[t] is a square. Multiplying the preceding equation by a and dividing by s^2 gives

$$
r^2 = ap(p-q)(p-\lambda q).
$$

The right hand side is a square.

Moreover, p and q are coprime.

Hence, there must exist $b, c, d \in k$, such that $bp, c(p - q), d(p - \lambda q)$ are all squares in $k[t]$.

```
By the lemma, p, q \in k. It follows that f \in k.
```
We now get $g \in k$.

Corollary

For $\lambda \neq 0,1$, there is no nonconstant rational map

$$
(f,g): k \to C_{\lambda}, \quad f,g \in k(t).
$$

In particular, there is no rational parametrization of C_{λ} for $\lambda \neq 0,1$.

- \circ C_{λ} is "rational" if and only if $\lambda = 0$ or 1.
- \circ Over $\mathbb C$, there is an explicit parametrization in terms of meromorphic functions, which we develop next.

$\frac{C}{\lambda}$ and $\overline{C}_{\lambda}^{\mathbb{C}}$

Consider the complex curves

$$
C_{\lambda}^{\mathbb{C}} = \{ (x, y) \in \mathbb{C}^{2} : y^{2} = x(x - 1)(x - \lambda) \} \subseteq \mathbb{C}^{2};
$$

$$
\overline{C}_{\lambda}^{\mathbb{C}} = C_{\lambda}^{\mathbb{C}} \cup \{\infty\} \subseteq \mathbb{C}^{2} \cup \{\infty\} \subseteq \mathbb{P}_{\mathbb{C}}^{2},
$$

where $\mathbb{P}^2_\mathbb{C}$ is the projective plane.

The complex curve $\overline{\mathcal{C}}_{\lambda}^{\mathbb{C}}$ may also be considered as a Riemann surface homeomorphic to a torus,

$\tilde{\lambda}$ and the Torus I

Consider the projection

$$
\pi: \begin{array}{ccc} \overline{C}_{\lambda}^{\mathbb{C}} & \to & \mathbb{C} \cup \{\infty\} = S^2 \\ (x, y) & \mapsto & x \\ \infty & \mapsto & \infty. \end{array}
$$

This defines a 2:1 map, which corresponds to the projection of the graph of

$$
y = \pm \sqrt{x(x-1)(x-\lambda)}
$$

to the x-axis.

Every point $x \in \mathbb{C} \cup \{\infty\}$ **has two preimages, except for 0,1,** λ **and** ∞ **.**

$\overline{\mathcal{C}}_{\scriptscriptstyle{A}}^{\mathbb{C}}$ $\tilde{\lambda}$ and the Torus II

We cut the sphere \mathcal{S}^2 along two paths.

For every $x \in S^2 \setminus \{0, 1, \lambda, \infty\}, \pi^{-1}(x) \subseteq \overline{\mathcal{C}}_{\lambda}^{\mathbb{C}}$ *λ* consists of two points. Hence, the preimage under π^{-1} of S^2 minus the two paths connecting 0,1 and λ , ∞ decomposes into two disjoint components, each of which can be identified via π with S^2 minus the two given paths. Each of these components is homeomorphic to "half a torus".

\overline{C}

If the slits are opened out to form the open ends of the "half tori", we obtain

The boundary of each piece is homeomorphic to two copies of \mathcal{S}^1 . Each copy is equal to the preimage of one of the given paths in S^2 . The simultaneous inclusion of the preimage of each path in both components corresponds to gluing together the boundary circles. The end result is a torus.

Another Definition of a Torus

• For any point $\tau \in \mathbb{C}$ **in the upper half plane,** i.e., with $Im \tau > 0$, there is a corresponding lattice,

$$
\Lambda_\tau:=\mathbb{Z}+\mathbb{Z}\tau=\{m+n\tau:m,n\in\mathbb{Z}\}.
$$

The quotient $E_{\tau} := \mathbb{C}/\Lambda_{\tau}$ is an abelian group.

It is also a topological space (with the quotient topology inherited from C), with the structure of a compact Riemann surface.

Topologically E*^τ* is a torus

George Voutsadakis (LSSU) [Algebraic Geometry](#page-0-0) July 2024 26/37

The Weierstaß *℘*-Function

To show that E*^τ* is isomorphic to the torus, we use the Weierstraß *℘*-function

$$
\varphi(z) := \frac{1}{z^2} + \sum_{(m,n)\neq(0,0)} \left(\frac{1}{(z-(m\tau+n))^2} - \frac{1}{(m\tau+n)^2} \right).
$$

- This is a meromorphic function on C which has poles of order 2 exactly at the lattice points in Λ*τ*.
- Moreover, *℘* is periodic with respect to Λ*τ*.
- That is, for all $z \in \mathbb{C}$, we have

$$
\wp(z+w)=\wp(z), \quad \text{for all } w \in \Lambda_{\tau}.
$$

The Weierstaß *℘*-Function and a Plane Cubic

It is well known that the Weierstraß *℘*-function satisfies the differential equation

$$
(\wp')^2 = 4\wp^3 - g_2\wp - g_3,
$$

where

$$
g_2 = 60 \sum_{(m,n)\neq(0,0)} \frac{1}{(m\tau+n)^4}
$$
 and $g_3 = 140 \sum_{(m,n)\neq(0,0)} \frac{1}{(m\tau+n)^6}$

are complex numbers.

We now consider the plane cubic and the projective curves

$$
C_{g_2,g_3}^{\mathbb{C}} = \{ (x,y) \in \mathbb{C}^2 : y^2 = 4x^3 - g_2x - g_3 \};
$$

\n
$$
\overline{C}_{g_2,g_3}^{\mathbb{C}} = \{ (x,y) \in \mathbb{C}^2 : y^2 = 4x^3 - g_2x - g_3 \} \cup \{ \infty \} \subseteq \mathbb{P}_{\mathbb{C}}^2.
$$

A Plane Cubic and a Projective Curve

The Weierstraß *℘* function and its derivative give rise to a map

$$
\varphi = (\varphi, \varphi') : \quad \mathbb{C} \setminus \Lambda_{\tau} \quad \to \quad C_{g_2, g_3}^{\mathbb{C}}; \n z \quad \mapsto \quad (\varphi(z), \varphi'(z)).
$$

 φ has a continuation to C, $\overline{\varphi}$ = (\wp, \wp') : C \rightarrow $\overline{\mathsf{C}}_{\mathsf{g}z}^\mathbb{C}$ $\mathrm{g}_{2,\mathrm{g}_3}$, given by setting

$$
\overline{\varphi}(x) = \infty, \quad \text{for all } x \in \Lambda_{\tau}.
$$

- The map \wp , and thus also \wp' , is periodic with respect to $\Lambda_\tau.$
- So we get a map $\widetilde{\varphi}: E_{\tau} \to \overline{C}_{g}^{\mathbb{C}}$ g
2,g3.
- One can show that this map is a bijection.
- A linear transformation of coordinates takes the curve $\overline{\mathsf{C}}_{\mathsf{g} \cdot \mathsf{c}}^{\mathbb{C}}$ $\frac{\epsilon}{\mathcal{G}_2,\mathcal{G}_3}$ to the curve $\overline{\mathcal{C}}_{\lambda}^{\mathbb{C}}$ λ for a suitable choice of λ .
- Every curve $\overline{\mathcal{C}}_{\lambda}^{\mathbb{C}}$ χ , with $\lambda \neq 0, 1$, can be obtained in this way.

Quadratic Hypersurfaces

Other higher dimensional examples are given by the quadratic hypersurfaces in \mathbb{R}^3 shown below:

A Determinantal Variety

Consider the map

$$
\varphi: \mathbb{A}^1 \rightarrow \mathbb{A}^3,
$$

$$
t \mapsto (t, t^2, t^3).
$$

The image $\mathcal{C} = \varphi(\mathrm{A}^1)$ is an algebraic set, since C can be given as the intersection of two quadrics $C = Q_1 \cap Q_2$, where

$$
Q_1: \t x_1^2 - x_2 = 0.
$$

$$
Q_2: \t x_1x_2 - x_3 = 0.
$$

 \bullet We can also write C as a determinantal variety

$$
C = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : \mathsf{rank} \left(\begin{array}{cc} 1 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{array} \right) < 2 \right\}.
$$

The General Linear Group

Another example of an algebraic set is the general linear group

$$
Gl(n,k):=\{A\in Mat(n\times n,k): \det A\neq 0\}.
$$

- To see that Gl (n,k) is an algebraic set, we consider affine space \mathbb{A}^{n^2+1} with coordinates $(x_{ii})_{1\le i,j\le n}$ and t.
- The set

$$
V := \{ (x_{ij}, t) \in \mathbb{A}^{n^2+1} : \det(x_{ij})t - 1 = 0 \}
$$

is clearly an algebraic set.

The map

$$
\varphi: \quad \mathsf{GI}(n,k) \rightarrow V; \n A = (a_{ij}) \rightarrow ((a_{ij}), \frac{1}{\det A})
$$

defines a bijection from $GI(n, k)$ to V.

• This proves that $GI(n, k)$ is algebraic.

The General Linear Group

Consider the multiplication map

$$
\mu: \quad \mathsf{GI}(n,k) \times \mathsf{GI}(n,k) \rightarrow \mathsf{GI}(n,k);
$$

$$
(A,B) \rightarrow AB.
$$

Consider, also, the inverse map

$$
\iota: \quad \mathsf{Gl}(n,k) \rightarrow \quad \mathsf{Gl}(n,k);
$$
\n
$$
A \rightarrow A^{-1}.
$$

- They are given in terms of the matrix entries by polynomial and rational maps respectively.
- Thus, $GI(n, k)$ is an algebraic group.

The General Linear Group is an Algebraic Group

- An algebraic group is an algebraic set which is also a group, and such that the group multiplication and inversion are given by rational functions.
- Further examples include:
	- The special linear group $SI(n, k)$;
	- The orthogonal group $O(n, k)$;
	- The symplectic group $Sp(2n,k)$;
	- The torus E*τ*.

The Fermat Curve

• The Fermat curve, given, for a positive integer n, by

$$
F_n^{\mathbb{Q}} := \{ (x, y, z) \in \mathbb{Q}^3 : x^n + y^n = z^n \}
$$

- is a famous example of an algebraic set.
- A few points on this curve can be given immediately, e.g.:
	- $(1,0,1)$ and $(0,1,1)$, for all *n*;
	- $(1,-1,0)$, if *n* is odd;
	- $(1,0,-1)$ and $(0,1,-1)$, if *n* is even.
- Any rational multiple of any of these points is also a point on $\mathit{F_{n}^{Q}}$.
- Fermat's Last Theorem states that these are the only points on $\mathcal{F}^\mathbb{Q}_n$, for $n > 3$.

Theorem (Wiles, 1995)

There is no solution $(x, y, z) \in F_n^{\mathbb{Q}}$, with $xyz \neq 0$, for $n \geq 3$.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) July 2024 35/37

Diophantine Problems

- Fermat's Problem is a typical example of a Diophantine problem.
- If $n = 2$, then there are infinitely many nontrivial integral triples $(x,y,z)\in\mathbb{Z}^3$, with

$$
x^2 + y^2 = z^2,
$$

known as Pythagorean triples.

The distinction between $n = 2$ and $n \ge 3$ lies in the fact that F_2^{C} can be rationally parametrized, which is not the case for $F_n^{\mathbb{C}}$, when $n \ge 3$.

The Ground Field

The problem of determining the solutions of a system of polynomial equations depends to a considerable extent on the ground field. Example: Consider the equation

$$
x^2 + y^2 + 1 = 0.
$$

It has no solution over R.

But over C, or over any algebraically closed field, every nonconstant polynomial defines a nonempty algebraic set.

General Assumption

The ground field k is algebraically closed, i.e., $k = \overline{k}$.