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Introduction Functions

Linear Algebra

Linear algebra is concerned with finding the solutions of a system of
linear equations, that is, a system of the form

a11x1+·· ·+a1mxm = b1

...
an1x1+·· ·+anmxm = bn

where aij and bi are elements of some field k .
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Introduction Functions

Quadratic Hypersurfaces

Affine and projective quadratic hypersurfaces have the form

n∑

i ,j=1

aijxixj +
n∑

i=1

bixi +c = 0,

where aij are the coefficients of a symmetric matrix.

So the classification of affine and projective quadratic hypersurfaces
can also be reduced to a problem in linear algebra.

The properties of the ground field k do not play an important role in
the theory of linear equations.

For the classification of quadrics this is no longer the case.
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Introduction Functions

Polynomials and Sets of Solutions

In an elementary algebra course, we study the set of solutions of
polynomials of arbitrary degree,

f (x)= anx
n
+an−1x

n−1
+·· ·+a1x +a0 = 0, ai ∈ k .

The existence of solutions x ∈ k , with f (x)= 0, depends on k .

For example, to guarantee the existence of a solution, k must be
algebraically closed.
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Introduction Functions

Algebraic Geometry: Algebraic Sets

Algebraic geometry is concerned with the study of algebraic sets.

These are sets of solutions of polynomial equations in several variables,

f1(x1, . . . ,xn) = 0
...

fm(x1, . . . ,xn) = 0

where fi(x1, . . . ,xn) are polynomials.
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Algebraic Geometry: Affine Spaces

We fix an arbitrary ground field k .

Affine space of dimension n over k is defined by

An :=An
k := kn =

{
(a1, . . . ,an) : ai ∈ k

}
.

kn and An are equal as sets.

kn is equipped with the standard vector space structure.

An is affine space, i.e., it does not have an addition and there are no
special points (e.g., the origin is not singled out).

We will give An the structure of a topological space, by defining the
Zariski topology.
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Zero Loci

Every polynomial f ∈ k[x1, . . . ,xn] defines a map

f : An → k ;
(a1, . . . ,an) 7→ f (a1, . . . ,an).

A point P = (a1, . . . ,an) ∈A
n is called a zero of f if

f (P)= 0.

Note that unless k has infinitely many elements (e.g.„ when k is
algebraically closed), several polynomials can define the same map.
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Zero Loci (Cont’d)

The zero locus of f is the set

V (f ) :=
{
P ∈An : f (P)= 0

}
.

Let T ⊆ k[x1, . . . ,xn] be a subset of the polynomial ring.

Definition (Zero Locus)

The zero locus of T is the set

V (T ) :=
{
P ∈An : f (P)= 0, for all f ∈T

}
.
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Affine Algebraic Sets or Zariski Closed Sets

Algebraic Set or Zariski Closed Set

A subset Y ⊆An is called an (affine) algebraic set (or a closed, or
Zariski closed set) in An if there is a subset T ⊆ k[x1, . . . ,xn], such that

Y =V (T ).

It is not necessary to consider arbitrary subsets T of k[x1, . . . ,xn].

We will now show that we can replace T by the ideal generated by T ,
namely

J := (T )⊆ k[x1, . . . ,xn].

Moreover, since k[x1, . . . ,xn] is a Noetherian ring, there are finitely
many polynomials f1, . . . , fm ∈ k[x1, . . . ,xn], such that

J = (f1, . . . , fm).
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Algebraic Sets are Finitely Generated

Lemma

For T and J as before, V (T )=V (J)=V (f1, . . . , fm).

Clearly V (J)⊆V (T ).

Let g ∈ J. There exist h1, . . . ,hℓ ∈T and q1, . . . ,qℓ ∈ k[x1, . . . ,xn], such
that

g = h1q1+·· ·+hℓqℓ.

Suppose P ∈V (T ). Then h1(P)= ·· · = hℓ(P)= 0.

So g(P)= 0. Hence, V (T )⊆V (J).

A similar argument shows that V (J)=V (f1, . . . , fm).

The lemma shows that we can restrict attention to finite systems of
polynomial equations.
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Examples of Degree 1 and 2

The simplest possible algebraic subset of An
k

is one given by a set of
linear equations. Such an algebraic set is called an affine subspace.
It is itself isomorphic to an affine space.

The conic, given by an equation of the form

f (x ,y)= a1x
2
+a2y

2
+a3xy +a4x +a5y +a6 = 0, a1, . . . ,a6 ∈R,

is a well known example of an algebraic set.

The circle, parabola and hyperbola are special cases.

In the degenerate case, that is, when f is reducible, we obtain pairs of
lines.

The example where V (x)=V (x2), demonstrates that the equations
defining a given algebraic set are not uniquely determined.
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The Nodal Cubic Curve

The nodal cubic curve is defined by

C : y2
= x3

+x2
, x ,y ∈R.

It has a “double point” at the origin.

Moreover, it can be parameterized as

ϕ : R → R2;
t 7→ (t2−1,t3− t).

We have ϕ(R)=C .

This map is injective, with the exception of ϕ(1)=ϕ(−1)= (0,0).
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The Semicubical Parabola

The semicubical parabola, also known as Neile’s parabola, or as a
cuspidal cubic, is given by the equation

C : y2
= x3

, x ,y ∈R.

This curve also admits a parametrization

ϕ :R → R2;
t 7→ (t2,t3).

ϕ gives a bijection between R and C .

However the partial derivatives of ϕ vanish at
the origin, which is called a “cusp” of C .

In these examples the double point and the cusp are “singular” points
on the curves. All other points are “smooth” (or “regular”).
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A Family of Plane Cubics

We consider a family of plane cubics given by

Cλ : y2
= x(x −1)(x −λ) λ∈R.

For λ= 0 and 1, we have a curve with a double point (at least over
the complex numbers), and otherwise Cλ is smooth.

Over R, the curve C1 has a rational parametrization.

Over C, both C0 and C1 have rational parametrizations.

On the other hand, we will show that, for λ 6= 0,1, the smooth curve
Cλ does not have a rational parametrization over either R or C.

Thus, the latter behave very differently from C0 and C1.
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A Technical Lemma

Lemma

Let p,q ∈C[t] be coprime. If there are four distinct values of the ratio
λ
µ ∈C∪ {∞}, such that λp+µq is a square in C[t], then p,q ∈C.

We will use Fermat’s method of infinite descent.

The hypotheses are unchanged by a linear transformation

p′
=αp+βq, q′

= γp+δq,

(
α β

γ δ

)
∈Gl(2,C).

Suppose that the result is false.

Let {p,q} be a counterexample with max {degp,degq} minimal.

By a linear transformation, we can assume that the 4 ratios in
question are 0,1,∞ and λ, for some λ∈C.

That is p,q,p−q,p−λq ∈C[t] are squares.
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A Technical Lemma (Cont’d)

So p = u2 and q = v2 for some coprime u and v .

Clearly
max {degu,degv } <max {degp,degq}.

For µ2 =λ, we have

p−q = u2−v2 = (u−v)(u+v);

p−λq = u2−λv2 = (u−µv)(u+µv).

So u−v ,u+v ,u−µv ,u+µv are all squares.

But then {w ,v } is also a counterexample.

This contradicts the minimality of {p,q}.
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Non-Parametrizability of Cλ,λ 6= 0,1

Proposition

Let k ∈ {R,C}, and let f ,g ∈ k(t) be rational functions such that

g2
= f (f −1)(f −λ), λ 6= 0,1.

Then f and g are constant, i.e., f ,g ∈ k .

Suppose

f =
p

q
and g =

r

s
,

where r ,s and p,q ∈ k[t] are pairs of coprime polynomials.

After we multiply through by the denominators q and s, we get

r2

s2
=
p

q

p−q

q

p−λq

q

r2q3 = s2p(p−q)(p−λq).
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Non-Parametrizability of Cλ,λ 6= 0,1 (Cont’d)

We got r2q3 = s2p(p−q)(p−λq).

Thus s2 | q3. Since p and q are coprime, we also have q3 | s2.

So s2 = aq3, for some a ∈ k . Additionally, aq = ( s
q
)2 ∈ k[t] is a square.

Multiplying the preceding equation by a and dividing by s2 gives

r2
= ap(p−q)(p−λq).

The right hand side is a square.

Moreover, p and q are coprime.

Hence, there must exist b,c ,d ∈ k , such that bp,c(p−q),d(p−λq) are
all squares in k[t].

By the lemma, p,q ∈ k . It follows that f ∈ k .

We now get g ∈ k .
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Parametrizability of Cλ,λ 6= 0,1

Corollary

For λ 6= 0,1, there is no nonconstant rational map

(f ,g) : k →Cλ, f ,g ∈ k(t).

In particular, there is no rational parametrization of Cλ for λ 6= 0,1.

Cλ is “rational” if and only if λ= 0 or 1.

Over C, there is an explicit parametrization in terms of meromorphic
functions, which we develop next.
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The Complex Curves CC
λ

and C
C

λ

Consider the complex curves

CC
λ

= {(x ,y) ∈C2 : y2 = x(x −1)(x −λ)} ⊆C2;

C
C

λ = CC
λ
∪ {∞} ⊆C2∪ {∞} ⊆P2

C
,

where P2
C

is the projective plane.

The complex curve C
C

λ may also be considered as a Riemann surface
homeomorphic to a torus,
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Homeomorphism of C
C

λ and the Torus I

Consider the projection

π : C
C

λ → C∪ {∞} = S2

(x ,y) 7→ x

∞ 7→ ∞.

This defines a 2:1 map, which corresponds to the projection of the
graph of

y =±

√
x(x −1)(x −λ)

to the x-axis.

Every point x ∈C∪ {∞} has two preimages, except for 0,1,λ and ∞.
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C
C

λ and the Torus II

We cut the sphere S2 along two paths.

For every x ∈ S2\{0,1,λ,∞}, π−1(x)⊆C
C

λ consists of two points.

Hence, the preimage under π−1 of S2 minus the two paths connecting
0,1 and λ,∞ decomposes into two disjoint components, each of which
can be identified via π with S2 minus the two given paths.

Each of these components is homeomorphic to “half a torus”.
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C
C

λ and the Torus III

If the slits are opened out to form the open ends of the “half tori”, we
obtain

The boundary of each piece is homeomorphic to two copies of S1.

Each copy is equal to the preimage of one of the given paths in S2.

The simultaneous inclusion of the preimage of each path in both
components corresponds to gluing together the boundary circles.

The end result is a torus.
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Another Definition of a Torus

For any point τ∈C in the upper half plane,
i.e., with Imτ> 0, there is a corresponding
lattice,

Λτ :=Z+Zτ= {m+nτ :m,n ∈Z}.

The quotient Eτ :=C/Λτ is an abelian group.

It is also a topological space (with the quotient topology inherited
from C), with the structure of a compact Riemann surface.

Topologically Eτ is a torus
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The Weierstaß ℘-Function

To show that Eτ is isomorphic to the torus, we use the Weierstraß
℘-function

℘(z) :=
1

z2
+

∑

(m,n)6=(0,0)

(
1

(z − (mτ+n))2
−

1

(mτ+n)2

)
.

This is a meromorphic function on C which has poles of order 2
exactly at the lattice points in Λτ.

Moreover, ℘ is periodic with respect to Λτ.

That is, for all z ∈C, we have

℘(z +w)=℘(z), for all w ∈Λτ.
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The Weierstaß ℘-Function and a Plane Cubic

It is well known that the Weierstraß ℘-function satisfies the differential
equation

(℘′)2 = 4℘3
−g2℘−g3,

where

g2 = 60
∑

(m,n)6=(0,0)

1

(mτ+n)4
and g3 = 140

∑

(m,n)6=(0,0)

1

(mτ+n)6

are complex numbers.

We now consider the plane cubic and the projective curves

CC
g2,g3

= {(x ,y) ∈C2 : y2 = 4x3−g2x −g3};

C
C

g2,g3
= {(x ,y) ∈C2 : y2 = 4x3−g2x −g3}∪ {∞} ⊆P2

C
.
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A Plane Cubic and a Projective Curve

The Weierstraß ℘ function and its derivative give rise to a map

ϕ= (℘,℘′) : C\Λτ → CC
g2,g3

;

z 7→ (℘(z),℘′(z)).

ϕ has a continuation to C, ϕ= (℘,℘′) :C→C
C

g2,g3
, given by setting

ϕ(x)=∞, for all x ∈Λτ.

The map ℘, and thus also ℘′, is periodic with respect to Λτ.

So we get a map ϕ̃ :Eτ →C
C

g2,g3
.

One can show that this map is a bijection.

A linear transformation of coordinates takes the curve C
C

g2,g3
to the

curve C
C

λ for a suitable choice of λ.

Every curve C
C

λ , with λ 6= 0,1, can be obtained in this way.
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Quadratic Hypersurfaces

Other higher dimensional examples are given by the quadratic
hypersurfaces in R3 shown below:
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A Determinantal Variety

Consider the map
ϕ :A1 → A3,

t 7→ (t ,t2,t3).

The image C =ϕ(A1) is an algebraic set, since C can be given as the
intersection of two quadrics C =Q1∩Q2, where

Q1 : x2
1 −x2 = 0.

Q2 : x1x2−x3 = 0.

We can also write C as a determinantal variety

C =

{
(x1,x2,x3) ∈R

3 : rank

(
1 x1 x2

x1 x2 x3

)
< 2

}
.
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The General Linear Group

Another example of an algebraic set is the general linear group

Gl(n,k) := {A ∈Mat(n×n,k) : detA 6= 0}.

To see that Gl(n,k) is an algebraic set, we consider affine space An2+1

with coordinates (xij )1≤i ,j≤n and t.

The set
V := {(xij ,t)∈A

n2+1 : det(xij )t−1= 0}

is clearly an algebraic set.

The map
ϕ : Gl(n,k) → V ;

A= (aij) 7→ ((aij ),
1

detA
)

defines a bijection from Gl(n,k) to V .

This proves that Gl(n,k) is algebraic.
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The General Linear Group

Consider the multiplication map

µ : Gl(n,k)×Gl(n,k) → Gl(n,k);
(A,B) 7→ AB .

Consider, also, the inverse map

ι : Gl(n,k) → Gl(n,k);
A 7→ A−1.

They are given in terms of the matrix entries by polynomial and
rational maps respectively.

Thus, Gl(n,k) is an algebraic group.
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The General Linear Group is an Algebraic Group

An algebraic group is an algebraic set which is also a group, and
such that the group multiplication and inversion are given by rational
functions.

Further examples include:

The special linear group Sl(n,k);
The orthogonal group O(n,k);
The symplectic group Sp(2n,k);
The torus Eτ.
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The Fermat Curve

The Fermat curve, given, for a positive integer n, by

F
Q
n := {(x ,y ,z) ∈Q3 : xn+yn = zn}

is a famous example of an algebraic set.

A few points on this curve can be given immediately, e.g.:

(1,0,1) and (0,1,1), for all n;

(1,−1,0), if n is odd;

(1,0,−1) and (0,1,−1), if n is even.

Any rational multiple of any of these points is also a point on F
Q
n .

Fermat’s Last Theorem states that these are the only points on F
Q
n ,

for n≥ 3.

Theorem (Wiles, 1995)

There is no solution (x ,y ,z) ∈FQ
n , with xyz 6= 0, for n ≥ 3.
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Diophantine Problems

Fermat’s Problem is a typical example of a Diophantine problem.

If n= 2, then there are infinitely many nontrivial integral triples
(x ,y ,z) ∈Z3, with

x2
+y2

= z2
,

known as Pythagorean triples.

The distinction between n = 2 and n ≥ 3 lies in the fact that FC
2 can be

rationally parametrized, which is not the case for FC
n , when n≥ 3.
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The Ground Field

The problem of determining the solutions of a system of polynomial
equations depends to a considerable extent on the ground field.

Example: Consider the equation

x2
+y2

+1= 0.

It has no solution over R.

But over C, or over any algebraically closed field, every nonconstant
polynomial defines a nonempty algebraic set.

General Assumption

The ground field k is algebraically closed, i.e., k = k .

George Voutsadakis (LSSU) Algebraic Geometry July 2024 37 / 37


	Outline
	Introduction
	Functions


