Introduction to Algebraic Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) **[Algebraic Geometry](#page-143-0)** 1 July 2024 1/144

[Affine Varieties](#page-2-0)

- [Hilbert's Nullstellensatz](#page-2-0)
- [Polynomial Functions and Maps](#page-72-0)
- [Rational Functions and Maps](#page-110-0)

Subsection 1

[Hilbert's Nullstellensatz](#page-2-0)

The Map V

o Denote by

$$
A := k[x_1, \ldots, x_n]
$$

the polynomial ring in *n* variables over the field k .

• We defined the zero set of an ideal $J \subseteq A$,

$$
V(J) := \{ P \in \mathbb{A}_{k}^{n} : f(P) = 0, \text{ for all } f \in J \}.
$$

• We showed that this gives rise to a surjective map

$$
V: \{\text{ideals in } A\} \rightarrow \{\text{algebraic sets in } A^n_k\},
$$

$$
J \rightarrow V(J).
$$

In the reverse direction, consider a subset $X \subseteq \mathbb{A}^n_k$. Define an ideal

$$
I(X) := \{f \in A : f(P) = 0, \text{ for all } P \in X\}.
$$

• We now have a map

$$
I: \{\text{subsets of } \mathbb{A}_{k}^{n}\} \rightarrow \{\text{ideals in } A\},
$$

$$
X \rightarrow I(X).
$$

On the Injectivity and Surjectivity of V and I

 \circ The map V is not injective. Example: For all $k \geq 1$, we have

$$
V(x_1,\ldots,x_n)=V(x_1^k,\ldots,x_n^k).
$$

• The map *I* is neither injective nor surjective. Example: In the case of \mathbb{A}_k^1 , we have

$$
I(\mathbb{Z})=I(\mathbb{A}_k^1)=(0).
$$

For $n \geq 2$, the ideal (x^n) is not in the image of *I*.

As a corollary of Hilbert's Nullstellensatz, we will see that, when restricted to certain subclasses of ideals and algebraic sets, respectively, V and I become mutually inverse bijections.

Properties of the Map V

Lemma

The map V satisfies the following:

$$
(1) V(0) = \mathbb{A}^n_k, V(A) = \emptyset;
$$

$$
(2) I \subseteq J \Rightarrow V(J) \subseteq V(I);
$$

(3)
$$
V(J_1 \cap J_2) = V(J_1) \cup V(J_2);
$$

$$
(4) V(\sum_{\lambda \in \Lambda} J_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(J_{\lambda}).
$$

The only nontrivial statement is (3).

- ⊇: Let $P \in V(J_1) \cup V(J_2)$. We may assume that $P \in V(J_1)$. Then, for any $g \in J_1 \cap J_2$, we have $g(P) = 0$. It follows that $P \in V(J_1 \cap J_2)$.
- \subseteq : Take $P \not\in V(J_1) \cup V(J_2)$. Then there exist $f \in J_1$ and $g \in J_2$, with $f(P) \neq 0$ and $g(P) \neq 0$. This implies that $fg(P) \neq 0$. Since $fg \in J_1 \cap J_2$, $P \notin V(J_1 \cap J_2)$.

Lemma

The maps I and V have the following properties:

$$
(1) X \subseteq Y \Rightarrow I(X) \supseteq I(Y);
$$

(2) For every subset $X \subseteq \mathbb{A}^n_k$, we have $X \subseteq V(I(X))$. Equality holds if and only if X is algebraic.

(3) If
$$
J \subseteq A
$$
 is an ideal, then $J \subseteq I(V(J))$.

\n- Statements (1) and (3) are obvious.
\n- The relationship
$$
X \subseteq V(I(X))
$$
 is also clear.
\n- Suppose $X = V(I(X))$. Then X is algebraic by definition.
\n- Conversely, suppose X is closed. Then $X = V(J_0)$, for some ideal J_0 . In particular, $J_0 \subseteq I(X)$. So $V(I(X)) \subseteq V(J_0) = X$.
\n

Example

o In general

$$
J\subseteq I(V(J))
$$

is a strict inclusion.

o Consider

$$
J = \left(x_1^k, \ldots, x_n^k\right), \quad k \ge 2.
$$

o Then

$$
I(V(J))=(x_1,\ldots,x_n).
$$

Radical Ideals

Definition (Radical Ideal)

For an ideal J in a ring R, the **radical** of J is defined by

$$
\sqrt{J} := \{r : \text{there exists } k \ge 1, \text{ with } r^k \in J\}.
$$

We call an ideal J a <mark>radical ideal</mark> if $J = \sqrt{J}$.

- It follows from the binomial theorem that \sqrt{J} is an ideal.
- Clearly, we always have $J \subseteq \sqrt{J}$.
- Any ideal of the form $I(X)$ is automatically a radical ideal.
- So radical ideals play a significant role in the relationship between ideals and varieties.

Prime Ideals are Radical

 \circ Consider a prime ideal J in a ring R . This means that, for all $x, y \in R$,

$$
xy \in J \quad \text{implies} \quad x \in J \text{ or } y \in J.
$$

In particular, for all $x \in R$ and all $k \ge 1$,

$$
x^k \in J \quad \text{implies} \quad x \in J.
$$

Now, let $x \in \sqrt{J}$. Then $x^k \in J$, for some $k \ge 1$. Hence, $x \in J$. This shows that $\sqrt{J} \subseteq J$. Therefore, J is radical.

The Zariski Topology

- Algebraic sets are called Zariski closed because they satisfy the axioms for the closed sets of a topology.
- The associated topology on \mathbb{A}^n_k is called the Zariski topology.
- A subset of \mathbb{A}^n_k is called Zariski open if its complement is Zariski closed.
- The Zariski topology is very different from the topology studied in real or complex analysis.
- E.g., the Zariski topology is not Hausdorff.
- The Zariski topology on \mathbb{A}^n_k induces a topology on every subset of \mathbb{A}^n_k .

Example

- Consider the Zariski topology on \mathbb{A}_k^1 .
- The empty set and \mathbb{A}^1_k are simultaneously open and closed.
- **O** Since k is algebraically closed, every ideal $J \subseteq k[x]$ is a principal ideal. It can be written as

$$
J = ((x-a_1)\cdots(x-a_n)).
$$

- Thus, the Zariski closed subsets of \mathbb{A}^1_k , different from \emptyset and \mathbb{A}^1_k , are precisely the finite subsets.
- Hence, every nonempty Zariski open subset of \mathbb{A}^1_k is dense.

Irreducible Algebraic Sets

Definition (Irreducible Algebraic Set)

An algebraic subset X is called **irreducible** if there is no decomposition

$$
X = X_1 \cup X_2, \quad X_1, X_2 \subsetneq X
$$

into proper algebraic subsets X_1, X_2 . Otherwise X is called reducible.

Example: Consider the subset

$$
V(x_1x_2)\subseteq A_k^2.
$$

It is reducible, since

$$
V(x_1x_2)=V(x_1)\cup V(x_2).
$$

$$
V(x_1)
$$
\n
$$
V(x_2)
$$

Irreducible Algebraic Sets and Prime Ideals

Proposition

Let $X \neq \emptyset$ be an algebraic set, with corresponding ideal $I(X)$. Then X is irreducible if and only if $I(X)$ is a prime ideal.

 \circ Assume X is reducible.

Then, there is a decomposition

$$
X=X_1\cup X_2,
$$

for some algebraic subsets $X_1, X_2 \subsetneq X$. Since $X_1 \subseteq X$, there exists $f \in I(X_1) \setminus I(X)$. Since $X_2 \subsetneq X$, there exists $g \in I(X_2) \setminus I(X)$. Thus, fg vanishes on $X_1 \cup X_2 = X$. So fg ∈ $I(X)$. This shows that $I(X)$ is not prime.

Irreducible Algebraic Sets and Prime Ideals (Cont'd)

• Suppose that $I(X)$ is not prime.

Then, there exist $f, g \in A$, with $fg \in I(X)$, but $f, g \notin I(X)$. Let

 $J_1 := (I(X), f)$ and $J_2 := (I(X), g)$.

Then $X_1 = V(J_1)$ and $X_2 = V(J_2)$ are proper subsets of X. On the other hand, for $P \in X$ we have $fg(P) = 0$. So $f(P) = 0$ or $g(P) = 0$. This implies that $P \in X_1$ or $P \in X_2$. It follows that $X \subseteq X_1 \cup X_2$. Thus X is reducible.

Noetherian Rings

- \circ Let R be a ring.
- An ascending chain

$$
l_1 \subseteq l_2 \subseteq l_3 \subseteq \cdots \subseteq l_n \subseteq \cdots
$$

of ideals in R is stationary if, for some n_0 , we have

$$
I_{n_0+k} = I_{n_0}, \quad \text{for all } k \ge 0.
$$

 \bullet A ring R is Noetherian if and only if it satisfies the ascending chain condition (acc), namely, every ascending chain

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_n \subseteq \cdots$

of ideals becomes stationary.

• The ring $A = k[x_1,...,x_n]$ is a Noetherian ring.

Descending Chain of Algebraic Sets

Consider a descending chain of algebraic sets

$$
X_1 \supseteq X_2 \supseteq \cdots \supseteq X_n \supseteq \cdots.
$$

We have a corresponding ascending chain of ideals,

$$
I(X_1)\subseteq I(X_2)\subseteq \cdots \subseteq I(X_n)\subseteq \cdots.
$$

- Suppose $X_n \supsetneq X_{n+1}$ is a proper inclusion.
- Since X_n and X_{n+1} are algebraic sets,

$$
I(X_n)\subsetneq I(X_{n+1})
$$

is also a proper inclusion.

• But the ring $A = k[x_1,...,x_n]$ is Noetherian.

Thus, every descending sequence of closed sets becomes stationary.

Noetherian Topological Spaces

- A topological space in which every descending sequence of closed sets becomes stationary is called a Noetherian topological space.
- Thus, the Zariski topological space \mathbb{A}^n_k is a Noetherian topological space.
- It follows from the axiom of choice that every nontrivial system Σ of algebraic sets in \mathbb{A}_k^n has a minimal element (an element $X \in \Sigma$, such that, there is no $Y \in \Sigma$, with $Y \subsetneq X$.)

Irreducible Components

Proposition

Every algebraic set $X \subseteq \mathbb{A}^n_k$ has a decomposition

$$
X=X_1\cup\cdots\cup X_r,
$$

where:

 \bullet The X_i are irreducible algebraic sets;

$$
\bullet \ \ X_i \nsubseteq X_j, \text{ for } i \neq j.
$$

This decomposition is unique up to the order of the factors.

- \bullet The X_i are called the irreducible components of X.
- First we show the existence of such a decomposition.
	- Let Σ be the set of all algebraic sets not having such a representation.

Suppose, to the contrary, that $\Sigma \neq \emptyset$.

Irreducible Components (Cont'd)

 \circ Then, Σ has a minimal element X, which is reducible.

Thus, there exist $X_1, X_2 \subsetneq X$ with $X = X_1 \cup X_2$.

Since X is a minimal element of Σ, it follows that $X_1, X_2 \notin \Sigma$.

Thus, X_1 and X_2 can be decomposed into a union of irreducible components.

- This means that X also has such a decomposition.
- This contradicts $X \in \Sigma$.
- It remains to show that such a decomposition is unique.

Irreducible Components (Uniqueness)

Suppose there is another decomposition

 $X = Y_1 \cup \cdots \cup Y_\ell$.

with Y_i irreducible and $Y_i \nsubseteq Y_j$, for $i \neq j$. Then

$$
X_i = X_i \cap X = \bigcup_{m=1}^{\ell} (X_i \cap Y_m).
$$

Since X_i is irreducible, we have $X_i \cap Y_m = X_i$, for some m. In particular, $Y_m \supseteq X_i$.

By exchanging the roles of the two decompositions we can similarly show that for some j , we have $X_j \supseteq Y_m \supseteq X_i$.

Thus, $i = j$ and $X_i = Y_m$.

The proposition is true for any Noetherian topological space, since the proof only uses the fact that the Zariski topology is Noetherian.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 22 / 144

Characterization of Irreducible Subsets

Lemma

For a closed set $V \subseteq \mathbb{A}^n_{k}$, the following are equivalent:

- V is irreducible.
- For any two open sets $U_1, U_2 \neq \emptyset$ of V we have $U_1 \cap U_2 \neq \emptyset$.
- Every open set $\emptyset \neq U \subseteq V$ is dense in V.
- The equivalence of (1) and (2) follows from

$$
U_1 \cap U_2 = \emptyset \quad \text{iff} \quad (V - U_1) \cup (V - U_2) = V.
$$

On the other hand, by definition, a subset $U \subseteq V$ is dense if and only if it meets every nonempty open subset of V .

This gives the equivalence of (2) and (3).

Affine Varieties and Finite Generation

Definition (Affine Variety)

An affine variety (over k) is an affine algebraic set.

Definition (Finite Generation)

Let B be a subring of A .

- (1) A is finitely generated over B (or finitely generated as a B-algebra) if there are finitely many elements a_1, \ldots, a_n , such that $A = B[a_1, ..., a_n].$
- (2) A is a finite B-algebra if there are finitely many elements a_1, \ldots, a_n with $A = Ba_1 + \cdots + Ba_n$.

Example: The polynomial ring $k[x_1,...,x_n]$ is a finitely generated k -algebra, but not a finite k -algebra.

The Algebraic Foundation of the Nullstellensatz

Theorem

Let k be a field with infinitely many elements. Let $A = k[a_1,...,a_n]$ be a finitely generated k -algebra. If A is a field, then A is algebraic over k .

For now, we give a brief heuristic argument. Suppose that $t \in A$ is transcendental over k .

Then $k[t]$ is a polynomial ring over k.

Now k has infinitely many elements.

By Euclid's Theorem, $k[t]$ has infinitely many primes.

Suppose $k(t)$ was generated over k by finitely many elements $r_i = \frac{p_i}{q_i}$ $\frac{p_i}{q_i}$. This is impossible, since there is a finite set of primes (the prime divisors of the q_i) which contains all primes in the denominator of any element constructed as a polynomial in the r_i .

This argument can be made rigorous, but we will give a different proof.

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field. Let $A = k[x_1,...,x_n]$. Then the following hold:

Every maximal ideal $m \subseteq A$ is of the form

$$
m = (x_1 - a_1, ..., x_n - a_n) = I(P),
$$

for some point $P = (a_1, ..., a_n) \in \mathbb{A}_k^n$.

- (2) If $J \subseteq A$ is a proper ideal, then $V(J) \neq \emptyset$.
- (3) For every ideal $J \subseteq A$, we have $I(V(J)) = \sqrt{J}$.
	- The crucial point is (2), which says that every nontrivial ideal has at least one point in its zero locus.
	- This explains the name of the theorem, which can be translated as the "theorem about the existence of zeros".

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 26 / 144

Remark

- The result is clearly false for non algebraically closed fields.
- This is illustrated by the ideal

 $(x^2+1) \subsetneq \mathbb{R}[x]$.

Proof of Hilbert's Nullstellensatz (1)

(1) First note that any ideal of the form $(x_1 - a_1,...,x_n - a_n)$ is maximal. This follows from the fact that the evaluation map

$$
k[x_1,\ldots,x_n]\to k;\quad f\mapsto f(P)
$$

induces an isomorphism $k[x_1,...,x_n]/(x_1 - a_1,...,x_n - a_n) \cong k$. Note that, by a linear transformation, we may assume all a_i are zero. Then the map $f \mapsto f(0,...,0)$ simply maps f to its constant term. So its kernel is the set of functions with zero constant. These are precisely the functions divisible by x_i , for some i .

Proof of Hilbert's Nullstellensatz (1) (Cont'd)

• Now suppose that $m \subseteq k[x_1,...,x_n]$ is any maximal ideal in A. This implies that $K := k[x_1,...,x_n]/m$ is a field. Moreover K is also a finitely generated k -algebra (generated by the residue classes x_i mod m). By the theorem, K is algebraic over k . By hypothesis, k is algebraically closed. So the natural map

$$
\varphi : k \hookrightarrow k[x_1, \ldots, x_n] \xrightarrow{\pi} k[x_1, \ldots, x_n]/m = K
$$

is an isomorphism between k and K . Let $b_i := x_i \mod m \in K$ and let $a_i := \varphi^{-1}(b_i)$. Then, for each *i*, we have $x_i - a_i \in \text{ker } \pi = m$. So $(x_1 - a_1, ..., x_n - a_n)$ ⊆ m. But $(x_1 - a_1, \ldots, x_n - a_n)$ is a maximal ideal. So we have the equality $(x_1 - a_1, \ldots, x_n - a_n) = m$.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 29 / 144

Proof of Hilbert's Nullstellensatz (2)

\n- (2) Suppose
$$
J \subsetneq A = k[x_1, \ldots, x_n]
$$
.
\n- We know $k[x_1, \ldots, x_n]$ is a Noetherian ring.
\n- So there exists a maximal ideal *m* with $J \subseteq m$.
\n- From Part (1), we have $m = I(P)$, for some point $P \in \mathbb{A}_k^n$.
\n- So
\n

$$
\{P\}=V(I(P))\subseteq V(J).
$$

This shows that $V(J)$ is nonempty.

Proof of Hilbert's Nullstellensatz (3)

(3) This step is usually proved by Rabinowitsch's trick. Let $J \subseteq k[x_1,...,x_n]$ be an ideal and $f \in I(V(J))$. We want to show that $f^N \in J$, for some N. The trick is to introduce an additional variable t. We then define an ideal $J_f \supseteq J$ by

$$
J_f := (J, ft-1) \subseteq k[x_1,\ldots,x_n,t],
$$

We have

$$
V(J_f) = \{Q = (a_1, \ldots, a_n, b) = (P, b) \in \mathbb{A}_k^{n+1} : P \in V(J), bf(P) = 1\}.
$$

Projection onto the first *n* coordinates maps $V(J_f)$ to the subset of $V(J)$ of points P, with $f(P) \neq 0$. But f is an element of $I(V(J))$. So $V(J_f) = \emptyset$.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 31 / 144

Proof of Hilbert's Nullstellensatz (3)

\n- Thus, by Part (2),
$$
J_f = k[x_1, \ldots, x_n, t]
$$
. In particular, $1 \in J_f$.
\n- Thus, we can write
\n

$$
1 = \sum_{i=1}^r g_i f_i + g_0 (ft - 1) \in k[x_1, \ldots, x_n, t],
$$

for some $g_i \in k[x_1,...,x_n,t]$ and $f_i \in J$. Let t^N be the highest power of t appearing in g_i , for $0 \le i \le r$. Multiplying by t^N gives

$$
f^N = \sum_{i=1}^r G_i(x_1,\ldots,x_n,\text{ft}) f_i + G_0(x_1,\ldots,x_n,\text{ft}) (\text{ft}-1),
$$

where the $G_i = f^N g_i$ are polynomials in x_1, \ldots, x_n, ft . This equation holds in $k[x_1,...,x_n,t]$.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 32 / 144

Proof of Hilbert's Nullstellensatz ((3) Cont'd)

We have

$$
f^N = \sum_{i=1}^r G_i(x_1,\ldots,x_n,\text{ft}) f_i + G_0(x_1,\ldots,x_n,\text{ft})(\text{ft}-1),
$$

where the $G_i = f^N g_i$ are polynomials in x_1, \ldots, x_n, ft . Consider this equation modulo $(rt-1)$. That is, consider its reduction in the ring $k[x_1,...,x_n,t]/(ft-1)$. We obtain the relationship

$$
f^N \equiv \sum h_i(x_1,\ldots,x_n)f_i \mod (ft-1),
$$

where $h_i(x_1,...,x_n) := G_i(x_1,...,x_n,1)$. The natural map $k[x_1,...,x_n] \rightarrow k[x_1,...,x_n,t]/(ft-1)$ is injective. So we must already have $f^N = \sum h_i(x_1,...,x_n) f_i$ in $k[x_1,...,x_n]$. Thus, $f^N \in J$.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 33 / 144

Corollary

For
$$
A = k[x_1,...,x_n]
$$
, the maps V and I

$$
\{\text{ideals of } A\} \stackrel{V, I}{\leftrightarrow} \{\text{subsets of } \mathbb{A}_k^n\}
$$

induce the following bijections:

{radical ideals of A}
$$
\longleftrightarrow
$$
 {subvarieties of A_kⁿ}
\n{prime ideals of A} \longleftrightarrow {irreducible subvarieties of A_kⁿ}
\n
\n{maximal ideals of A} \longleftrightarrow {irreducible subvarieties of A_kⁿ}
\n{points of A_kⁿ}.

Bijections (Cont'd)

For every algebraic set $X \subseteq \mathbb{A}^n_k$, we have

 $V(I(X)) = X$.

Conversely, by Hilbert's Nullstellensatz, Part (3), for every ideal J, we have

$$
I(V(J))=\sqrt{J}.
$$

Thus we obtain the first bijection.

The second bijection follows from a preceding proposition.

The third follows from Hilbert's Nullstellensatz, Part (1).

Affine Hypersurfaces in \mathbb{A}_k^n

An <mark>affine hypersurface</mark> in \mathbb{A}^n_k is an algebraic subset given by a single equation:

$$
V(f) = \{P \in \mathbb{A}_k^n : f(P) = 0\}, \quad 0 \neq f \in k[x_1,\ldots,x_n].
$$

If the prime decomposition of f is given by $f = f_1^{r_1} \cdots f_m^{r_m}$, then

$$
\sqrt{(f)}=(f_1\cdots\cdots f_m).
$$

- The ideal (f) is prime if and only if f is irreducible, that is, if $m = 1$ and $r_1 = 1$.
- Thus, we have the following bijection:

$$
\left\{\n \begin{array}{c}\n \text{irreducible} \\
\text{hypersurfaces in } A_k^n\n \end{array}\n \right\}\n \xrightarrow{1:1}\n \{f \in k[x_1, \ldots, x_n]: f \text{ irreducible}\n \}/k^*.
$$
The Finite Algebra Lemma

Lemma

- Let $C \subseteq B \subseteq A$ be rings.
- If B is a finite C-algebra and A is a finite B-algebra, then A is also a finite C-algebra.
- (2) If A a finite B-algebra, then A is integral over B, i.e., every element $x \in A$ satisfies an equation of the form

$$
x^{n} + b_{n-1}x^{n-1} + \cdots + b_1x + b_0 = 0, \quad b_i \in B.
$$

Conversely, if $x \in A$ satisfies an equation of the above form, then $B[x]$ is a finite B-algebra.

The Finite Algebra Lemma (Cont'd)

(1) Suppose

$$
B = Cb_1 + \cdots + Cb_m.
$$

Suppose, also, that

$$
A=Ba_1+\cdots+Ba_n.
$$

Then

$$
A = Ca_1b_1 + \cdots + Ca_nb_m.
$$

(3) Suppose $x \in A$ satisfies an equation

$$
x^{n} + b_{n-1}x^{n-1} + \cdots + b_1x + b_0 = 0, \quad b_i \in B.
$$

Then

$$
x^n = -b_{n-1}x^{n-1} - \cdots - b_1x + b_0.
$$

So we have

$$
B[x] = B + Bx + \cdots + Bx^{n-1}.
$$

George Voutsadakis (LSSU) **[Algebraic Geometry](#page-0-0) 1999** July 2024 38 / 144

The Finite Algebra Lemma (Cont'd)

(2) We prove this using a "determinant trick". Suppose that

$$
A=Ba_1+\cdots+Ba_n.
$$

Then, for any $x \in A$, we have $xa_i \in A$, for $i = 1, ..., n$. Thus, there are elements $b_{ii} \in B$, such that

$$
xa_i=\sum_{j=1}^n b_{ij}a_j.
$$

We get a single polynomial equation for x from these n linear equations:

- We express this in matrix notation;
- We take the determinant of the matrix.

The lat equation is equivalent to

$$
\sum_{j=1}^n(x\delta_{ij}-b_{ij})a_j=0.
$$

George Voutsadakis (LSSU) [Algebraic Geometry](#page-0-0) July 2024 39 / 144

The Finite Algebra Lemma (Cont'd)

In matrix notation, it can be written as

$$
Ma=0,
$$

where:

M is the matrix given by $M = (x\delta_{ij} - b_{ij})_{i,j}$; *a* is the column vector with transpose $i = (a_1, ..., a_n)$. Let M^{adj} be the adjoint matrix of M. Then, since $Ma = 0$, det $Ma = M^{adj}Ma = 0$. Thus, $detMa_i = 0$, for $i = 1, \ldots, n$.

But the a_i generate the B-algebra A.

Hence $det M = det M \cdot 1 = 0$.

Expanding the determinant, we also have, for some $b_i \in B$,

$$
\det M = x^n + b_{n-1}x^{n-1} + \cdots + b_1x + b_0.
$$

Thus, x satisfies a polynomial equation with coefficients in B . So $B[x]$ is a finite B-algebra.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 40 / 144

Nakayama's Lemma

Definition (Monic Polynomial)

A polynomial $f \in B[x]$ is called monic if the coefficient of the leading term is 1.

Lemma (Nakayama's Lemma)

Let $A \neq 0$ be a finite B-algebra. Then, for all proper ideals m of B we have $mA \neq A$.

 \bullet Suppose A is a finite B-algebra. We can write

$$
A=Ba_1+\cdots+Ba_n,
$$

for some $a_i \in A$.

Suppose that

$$
mA=A.
$$

Then, there exist $b_{ii} \in m$, $1 \le i, j \le n$, such that

$$
a_i = \sum_{j=1}^n b_{ij} a_j, \quad 1 \le i \le n.
$$

From this we can conclude that

$$
\det(\delta_{ij}-b_{ij})=0.
$$

Expanding the determinant shows that $1 \in m$, a contradiction.

Subrings over which Fields are Finite Algebras

Lemma

Let A be a field and $B \subseteq A$ a subring, such that A is a finite B-algebra. Then B is also a field.

 \circ Let $0 \neq b \in B$.

Since A is a field, there exists $b^{-1} \in A$.

We must show that b^{-1} lies in B .

By Part (2) of the Finite Algebra Lemma, there exist $b_i \in B$, such that

$$
b^{-n} + b_{n-1}b^{-(n-1)} + \cdots + b_1b^{-1} + b_0 = 0.
$$

Multiplication by b^{n-1} gives

$$
b^{-1}=-(b_{n-1}+b_{n-2}b+\cdots+b_0b^{n-1})\in B.
$$

The Degree

• The degree of a monomial

$$
x_1^{\nu_1}\cdots x_n^{\nu_n}
$$

is defined to be the sum $\sum v_i$.

The degree of a polynomial is the maximum of the degrees of all its monomials terms.

The Univariate Leading Term Lemma

Lemma

Suppose that f is a nonzero element of $k[x_1,...,x_n]$, with $d = \text{deg} f$. Then there is a change of variables

$$
x'_i = x_i - \alpha_i x_n, \quad 1 \le i \le n-1,
$$

where $\alpha_1, \ldots, \alpha_{n-1} \in k$, such that

$$
f(x_1' + \alpha_1 x_n, \ldots, x_{n-1}' + \alpha_n x_n, x_n) \in k[x_1', \ldots, x_{n-1}', x_n]
$$

has a term of the form cx_n^d , for some nonzero $c \in k$.

 \circ In fact "almost any" choice of α_i will work (see, also, below). Let

$$
x_i' = x_i - \alpha_i x_n
$$

for some $\alpha_i \in k$, $1 \le i \le n-1$.

The Univariate Leading Term Lemma (Cont'd)

 \circ Since $d = \text{deg} f$, we can write

$$
f=F_d+G,
$$

where:

- \bullet F_d is a sum of monomials of degree d (i.e., F_d is **homogeneous** of degree d);
- $\log G \leq d-1$.

Then we have

$$
f(x'_1 + \alpha_1 x_n, \dots, x'_{n-1} + \alpha_{n-1} x_n, x_n)
$$

= $F_d(\alpha_1, \dots, \alpha_{n-1}, 1) x'_n$ + terms of lower order in x_n .

Now $F_d(\alpha_1,\ldots,\alpha_{n-1},1)$ is a nonzero polynomial in $\alpha_1,\ldots,\alpha_{n-1}$. So its zero set is not \mathbb{A}^{n-1}_k (*k* has infinitely many elements). This means we can choose $\alpha_1, \ldots, \alpha_{n-1} \in k$ with

$$
F_d(\alpha_1,\ldots,\alpha_{n-1},1)\neq 0.
$$

This completes the proof, since then $c = F_d(\alpha_1,...,\alpha_{n-1},1) \neq 0$.

Noether Normalization

• Noether normalization relates the geometric idea of dimension to the algebraic structure of the coordinate ring of a variety.

Theorem (Noether Normalization)

Let k be an infinite field. Let $A = k[a_1,...,a_n]$ be a finitely generated k-algebra. Then there exist $y_1, \ldots, y_m \in A$, with $m \le n$, such that:

- (1) $y_1,...,y_m$ are algebraically independent over k;
- (2) A is a finite $k[y_1,..., y_m]$ -algebra.
	- The fact that $y_1,...,y_m$ are algebraically independent (i.e., they do not satisfy any polynomial equation with coefficients in k), is equivalent to the statement that the map from the polynomial ring $k[t_1,...,t_m]$ in m variables over k to $k[y_1,...,y_m]$, given by $t_i \mapsto y_i$, is an isomorphism.

Proof of Noether Normalization

We use induction on n.

Let $k[x_1,...,x_n]$ be the polynomial ring over k in *n* variables. Let

$$
I := \ker(k[x_1,\ldots,x_n] \rightarrow k[a_1,\ldots,a_n] = A)
$$

be the kernel of the homomorphism given by $x_i \mapsto a_i$.

- Suppose $I = 0$. We can take $m = n$ and $y_1 = a_1, \ldots, y_n = a_n$. Then Statements (1) and (2) hold.
- Suppose $1 \neq 0$.

Then there is some nonzero element $f \in I$.

If $n = 1$, then we have $f(a_1) = 0$. The result follows from Part (3) of the Finite Algebra Lemma, with $m = 0$

That is, the set of y_i is empty.

• Suppose, next, that $n > 1$. Assume the result holds for $n - 1$.

Proof of Noether Normalization

By the preceding lemma, there exist *^α*1,... ,*α*n−¹ [∈] k, such that, setting $a'_{j} = a_{i} - \alpha_{i} a_{n}$ and $A' := k[a'_{1}, \ldots, a'_{n-1}] \subseteq A$, we have that, for some nonzero constant $c \in k$,

$$
F(x_n) := \frac{1}{c} f(a'_1 + \alpha_1 x_n, \dots, a'_{n-1} + \alpha_{n-1} x_n, x_n)
$$

is a monic polynomial in $A'[x_n]$, and $F(a_n) = 0$.

By Part (3) of the Finite Algebra Lemma, a_n is integral over $A^\prime.$ By the inductive hypothesis, there are $y_1,...,y_m \in A'$, such that:

- (1) $y_1,...,y_m$ are algebraically independent over k;
- (2) A' is a finite $k[y_1, \ldots, y_m]$ -algebra.

By Part (3) of the Finite Algebra Lemma, $A = A'[a_n]$ is a finite A ′ -algebra. Then, by Part (1) of the Finite Algebra Lemma, A is a finite $k[y_1,...,y_m]$ -algebra.

General Set of Linear Forms With Respect to a Property

- \circ In the proof, the collection of m-tuples of linear forms in a_1, \ldots, a_n forms an affine space \mathbb{A}_k^{nm} .
- So the successive linear changes of variables given by the preceding lemma can all be taken to be "general".
- Consequently, $y_1,...,y_m$ can be taken to be any "general" choice of linear forms in a_1, \ldots, a_n .
- To say that a set of linear forms is general with respect to some property, or in general satisfies the property, means that, there is a Zariski open subset of \mathbb{A}_k^{nm} , such that, for any point in this set, the corresponding set of linear forms satisfies the given property.
- That is, the property is true for a dense set of linear forms, or, colloquially, "in general".

Fields that are Finitely Generated Algebras

Theorem

Let k be a field with infinitely many elements. Let $A = k[a_1,...,a_n]$ be a finitely generated k -algebra. If A is a field, then A is algebraic over k .

• Let $A = k[a_1,...,a_n]$ be a finitely generated k-algebra. Suppose that A is a field.

By Noether Normalization, we get $y_1, \ldots, y_m \in A$, for some $m \le n$, such that, setting

$$
B=k[y_1,\ldots,y_m]\subseteq A,
$$

we have that A is a finite B -algebra.

By a preceding lemma, B is a field.

This can only be the case if $m = 0$.

So A is a finite extension of k.

Thus, A is algebraic over k.

Geometric Meaning of Noether Normalization

Let $X \subseteq \mathbb{A}^n_k$ be a variety.

For simplicity we assume X to be irreducible.

I.e., we assume that the ideal $I = I(X) \subseteq k[x_1,...,x_n]$ is prime. We consider the ring

$$
A = k[a_1,\ldots,a_n] = k[x_1,\ldots,x_n]/I,
$$

where $a_i := x_i \mod l$.

Later A will be termed the **coordinate ring** of X .

By Noether Normalization, there exist algebraically independent linear forms y_1, \ldots, y_m in a_1, \ldots, a_n (which can be taken to be general), such that A is a finite $k[y_1, \ldots, y_m]$ -algebra.

Geometric Meaning of Noether Normalization (Cont'd)

The linear forms obtained from Noether Normalization lift (nonuniquely) to linear forms $\overline{y}_1,...,\overline{y}_m$ in $x_1,...,x_n$, where

 $\overline{y_i} = y_i \mod l$.

The forms $\overline{\mathsf{y}}_1, \ldots, \overline{\mathsf{y}}_m$ define a linear projection

$$
\pi := (\overline{y}_1, \ldots, \overline{y}_m) : \mathbb{A}^n_k \to \mathbb{A}^m_k.
$$

By restricting $\overline{y}_1,...,\overline{y}_m$ to X , we obtain a map

$$
\phi := \pi \mid_X : X \to \mathbb{A}_k^m.
$$

On X we have

$$
y_i\mid_X=\overline{y}_i\mid_X.
$$

So ϕ is independent of the choice of lifts $\overline{\mathsf{y}}_i$.

Finiteness of the Fibers of *φ*

Proposition

Suppose $k = \overline{k}$. Let ϕ be the mapping of the preceding slide. Then, for every point $P \in \mathbb{A}^m_{k}$, the fiber $\phi^{-1}(P)$ is finite and nonempty.

We first show that $\phi^{-1}(P)$ is finite.

By Part (2) of the Finite Algebra Lemma, there exist an integer N and polynomials $f_0^i,...,f_N^i$ N_{N-1} , for $1 \le i \le n$, such that for $i = 1, ..., n$, we have

$$
a_i^N + f_{N-1}^i(y_1,\ldots,y_m)a_i^{N-1} + \cdots + f_0^i(y_1,\ldots,y_m) = 0.
$$

This means that, with $I = I(X)$, we have, for some $g_i \in I$,

$$
x_i^N + f'_{N-1}(\overline{y}_1,\ldots,\overline{y}_m)x_i^{N-1} + \cdots + f_0^i(\overline{y}_1,\ldots,\overline{y}_m) = g_i(x_1,\ldots,x_n).
$$

Finiteness of the Fibers of *φ* (Cont'd)

• For
$$
I = I(X)
$$
, we have, for some $g_i \in I$,

$$
x_i^N + f_{N-1}^i(\overline{y}_1,\ldots,\overline{y}_m)x_i^{N-1} + \cdots + f_0^i(\overline{y}_1,\ldots,\overline{y}_m) = g_i(x_1,\ldots,x_n).
$$

Suppose $(x_1,...,x_n) \in X$. Then $g_i(x_1,...,x_n) = 0$. So x_i is a solution of the equation $f'(x) = 0$, where

$$
f^{i}(x) := x^{N} + f_{N-1}^{i}(y_{1},...,y_{m})x^{N-1} + \cdots + f_{0}^{i}(y_{1},...,y_{m}).
$$

Since *I* is prime, $A = k[a_1,...,a_n]$ is an integral domain. So it has a field of fractions $k(a_1,...,a_n)$. We can thus consider $f^i(x) \in k(a_1,...,a_n)[x]$. By the Fundamental Theorem of Algebra, there are only a finite number of solutions x_i^0 to $f'(x) = 0$. Thus, for any point $\mathbf{y} = (y_1, \ldots, y_m) \in \mathbb{A}_{k}^{m}$, we have only finitely many points $\mathbf{x} = (x_1^0, \dots, x_n^0) \in X$, with $\phi(\mathbf{x}) = \mathbf{y}$.

Nonemptiness of the Fibers of *φ*

Finally, we show that $\phi^{-1}(P)$ is always nonempty. It is enough to show that for every point $P = (b_1, ..., b_m) \in \mathbb{A}_k^m$,

$$
I_P := I + (y_1 - b_1, \dots, y_m - b_m) \neq k[x_1, \dots, x_n].
$$

Then Hilbert's Nullstellensatz implies that $\phi^{-1}(P) = V(I_P) \neq \emptyset$. The displayed condition is equivalent to

$$
(y_1-b_1,\ldots,y_m-b_m)\neq k[a_1,\ldots,a_n].
$$

Now $(y_1 - b_1, \ldots, y_m - b_m)$ is a maximal ideal in $k[y_1, \ldots, y_m]$. In particular, it is a proper ideal.

So the condition follows from Nakayama's Lemma, with

$$
B = k[y_1, ..., y_m], \quad A = k[a_1, ..., a_n], \quad m = (y_1 - b_1, ..., y_m - b_m).
$$

Example

Let

$$
f = x_1x_2 + x_2x_3 + x_3x_1 \in k[x_1, x_2, x_3].
$$

For the quadric hypersurface $S := V(f)$ \subseteq \mathbb{A}_k^2 , we have

$$
A=k[x_1,x_2,x_3]/(f).
$$

We use the notation

$$
a_i := x_i \mod(f), \quad i = 1, 2, 3.
$$

In the proof of Noether Normalization, since f does not contain any terms of the form x_i^m i^{m}_{i} , we must make a change of variables.

Example (Cont'd)

E.g., let

$$
z = x_2 + x_1.
$$

Then we have

$$
f=z(x_1+x_3)-x_1^2.
$$

Now A is algebraic over $k[a_1 + a_2, a_3]$. Moreover, the corresponding map *φ* is given by

$$
\begin{array}{rcl}\n\phi: & S & \rightarrow & \mathbb{A}^2_k, \\
(x_1, z, x_3) & \mapsto & (z, x_3).\n\end{array}
$$

The fiber

$$
\phi^{-1}(a,b) = \{(x,a,b) : x^2 - ax - ab\}
$$

consists of at most 2 points.

Example (Cont'd)

• S contains the coordinate axes.

So for any choice of $1 \leq i < j \leq 3$, the projection to the x_i, x_j plane,

$$
S \rightarrow \mathbb{A}^2_k,
$$

$$
(x_1, x_2, x_3) \rightarrow (x_i, x_j),
$$

has an infinite fiber over (0,0). Similarly, suppose $(a, b, c) \in S$. Then S contains the line $L := \{(\lambda a, \lambda b, \lambda c) : \lambda \in k\}.$ Thus, the projection

$$
(x_1, x_2, x_3) \rightarrow (bx_1 - ax_2, cx_1 - ax_3)
$$

maps L to $(0,0)$. However, there is a dense set of hyperplanes such that the corresponding projection has finite fibers.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 59 / 144

Fields of Positive Characteristic

• The characteristic of a field k , char (k) , is the minimal prime p, such that

$$
p \cdot 1 = \underbrace{1 + \cdots + 1}_{p \text{ times}} = 0,
$$

The characteristic is 0 if there is no such prime.

Example: For any prime p, the field $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ and its algebraic closure both have positive characteristic p.

The field C and its subfields all have characteristic 0.

Separability

Definition

A nonconstant irreducible polynomial

$$
f = a_n x^n + \dots + a_1 x + a_0 \in k[x]
$$

is called separable if the formal derivative is nonzero, that is,

$$
f'=na_nx^{n-1}+\cdots+a_1\neq 0.
$$

Otherwise f is called inseparable.

An arbitrary polynomial is called separable if every factor is separable. An irreducible polynomial

$$
f\in k[x_1,\ldots,x_n]
$$

is called <mark>separable with respect to</mark> x_i if the formal derivative with respect to this variable is nonzero.

George Voutsadakis (LSSU) [Algebraic Geometry](#page-0-0) July 2024 61 / 144

Remarks

- Clearly all polynomials over a field of characteristic 0 are separable.
- An irreducible polynomial $f \in k[x]$ over a field of characteristic p is inseparable if and only if

$$
f(x) = g(x^p), \quad \text{for some } g \in k[x].
$$

- E.g., $f(x) = x^p t \in \mathbb{F}_p(t)[x]$ is an irreducible inseparable polynomial in characteristic p.
- In characteristic p the Frobenius identity $a^p + b^p = (a + b)^p$ implies that if k is algebraically closed then we can write

$$
f(x) = g(x^p) = h(x)^p,
$$

where $h(x)$ is obtained from $g(x)$ by replacing all coefficients by their p-th roots.

Separable Elements and Separable Extensions

Definition (Separable Elements)

Suppose K/k is a field extension and $x \in K$ is algebraic over k. Then x is called separable over k, if the minimal polynomial of x is separable over k. Otherwise x is called inseparable.

Definition (Separable Extensions)

An algebraic extension K/k is called separable if all elements of K are separable over *k*.

Noether Normalization for Positive Characteristic

Proposition

Let k be an algebraically closed field. Let $A = k[a_1,...,a_n]$ be an integral domain with field of fractions K. Then there are $y_1, \ldots, y_m \in A$, such that:

- (1) $y_1,...,y_m$ are algebraically independent over k;
- (2) A is a finite $k[y_1,..., y_m]$ -algebra;
- (3) K is a separable extension of $k(y_1,..., y_m)$.
	- In characteristic 0 all algebraic extensions are separable. So assume that the characteristic p of k is positive. Let x_i be algebraically independent over k . Define a map $\pi : k[x_1,...,x_n] \rightarrow k[a_1,...,a_n]$ by setting $\pi(x_i) = a_i$. Since A is an integral domain, the ideal $I := \ker(\pi)$ is prime. In particular, we can choose an irreducible element $f \in I$. Suppose that f has degree d.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 64 / 144

Normalization for Positive Characteristic (Cont'd)

By a preceding lemma, there is a change of variables of the form

 $\widetilde{x}_i = x_i + \alpha_i x_n$

such that $\widetilde{f}(\widetilde{x}_1,\widetilde{x}_2,\ldots) = f(x_1,x_2,\ldots,x_n)$ has a term of the form $c(\widetilde{x}_n)^d$. Note that if f has a term of the form cx_j^d , then \widetilde{f} has a term of the form $c(\widetilde{x}_i)^d$.

Exchanging the role of x_n with x_j , for $j = 1, ..., n-1$, we can make a sequence of changes of variables to obtain a polynomial in $\tilde{x}_1, \ldots, \tilde{x}_n$, where

$$
\widetilde{x}_i = x_i + \sum_{\substack{j=1 \ j \neq i}}^n \beta_{ij} x_j,
$$

for some constants β_{ii} , $1 \le i, j \le n$, $i \ne j$, such that, for each i, as a polynomial in \widetilde{x}_i over $k[\{x_j : j \neq i\}]$, the leading term is of the form $c_i(\widetilde{x}_i)^d$, for some nonzero $c_i \in k$.

Normalization for Positive Characteristic (Cont'd)

- \bullet Now f is irreducible.
	- So $k[x_1,...,x_n]/(f)$ is an integral domain. The change of variables induces an isomorphism

$$
k[x_1,...,x_n]/(f) \cong k[\widetilde{x}_1,...,\widetilde{x}_n]/(\widetilde{f}).
$$

Hence, $k[\tilde{x}_1,\ldots,\tilde{x}_n]/(\tilde{f})$ is also an integral domain. Thus \tilde{f} is also irreducible.

But $k[\tilde{x}_1,...,\tilde{x}_n] = k[x_1,...,x_n]$.

So we can replace x_i by \widetilde{x}_i and f by \widetilde{f}_i .

So we may assume that f is irreducible and has a leading term of the form $c_i(x_i)^d$, for $c_i \in k$, with respect to each variable.

Normalization for Positive Characteristic (Induction)

Claim: f is separable with respect to at least one variable x_i . Otherwise we would have $f \in k[x_1,...,x_i^p]$ $\binom{p}{i}, \ldots, \binom{p}{n}$, for all *i*. So there would be polynomials g and h with

$$
f = g(x_1^p, \ldots, x_n^p) = h(x_1, \ldots, x_n)^p.
$$

This would contradict the irreducibility of f.

Thus, we may assume that f is separable with respect to x_n . We view the equation

$$
f(a_1,\ldots,a_{n-1},a_n)=0
$$

as a separable equation for a_n over the field of fractions of $A' = k[a_1, ..., a_{n-1}].$

Now we apply an inductive argument.

We need to use the fact that the composition of two separable extensions is again a separable extension.

George Voutsadakis (LSSU) **[Algebraic Geometry](#page-0-0) 1999** July 2024 67 / 144

Theorem of the Primitive Element

Theorem (Theorem of the Primitive Element)

Let K be a field with infinitely many elements. Let $L \supseteq K$ be a finite separable extension. Then there is an element $x \in L$, with $L = K(x)$. Moreover, if L is generated over K by a finite set of elements z_1, \ldots, z_n , then x can be chosen to be an element of the form $x = \sum \alpha_i z_i$, with $\alpha_i \in K$.

o Let $K \subseteq M$ be the normal closure of L over K.

Then $K \subseteq M$ is a finite Galois extension.

By the Fundamental Theorem of Galois Theory, there are only finitely many fields between K and M .

The fields {K_i} between K and L form finitely many K-subspaces of the vector space L.

If K has infinitely many elements, then there exists $x \in L$ which does not lie in the union of the K_i .

Then $L = K(x)$.

 \circ Suppose z_1, \ldots, z_n generate L. Then they cannot all be contained in any single $\mathcal{K}_i.$ So, there is some linear combination

$$
x = \sum \alpha_i z_i
$$

which is not contained in any \mathcal{K}_i . Hence $L = K(x)$.

Additional Result on Noether Normalization

Corollary

Let k be an algebraically closed field. Let $A = k[a_1,...,a_n]$ be an integral domain with field of fractions K. Then there exist $y_1, \ldots, y_{m+1} \in A$, such that:

- (1) y_1, \ldots, y_m are algebraically independent over k;
- (2) A is a finite $k[y_1,..., y_m]$ -algebra;
- (3) K is a separable extension of $k(y_1,..., y_m)$;
- (4) The field of fractions K of A is generated over k by y_1, \ldots, y_{m+1} .
	- \bullet By the preceding proposition, we can assume K is a separable field extension of $k(y_1,...,y_m)$.

Additional Result on Noether Normalization (Cont'd)

- By hypothesis $A = k[a_1, \ldots, a_n]$.
	- So the a_i generate K as a field extension of $k(y_1,...,y_m)$.
	- By the theorem, we can write y_{m+1} as a linear combination of the a_i with coefficients in $k(y_1,...,y_m)$.

Multiply this linear equation through by the common denominator. We then obtain an expression for y_{m+1} as a linear combination of the a_i with coefficients in $k[y_1,...,y_m]$.

A Geometric Interpretation

o The corollary means the extension $k \subseteq K$ can be decomposed as

$$
k\subseteq K_0=k(y_1,\ldots,y_m)\subseteq K=K_0(y_{m+1}),
$$

where:

- The first extension is purely transcendental;
- The second is a *primitive* algebraic extension. That is, an algebraic extension generated by a single element.
- In other words, $K = k(y_1,...,y_{m+1})$, where there is only one algebraic relation between the y_i .
- **Geometrically:**
	- If y_i are the coordinates of \mathbb{A}^{n+1} , then this relation describes a hypersurface in \mathbb{A}^{n+1} .
	- Thus, the displayed decomposition means that every irreducible variety is "almost" isomorphic to a hypersurface.
Subsection 2

Polynomial Functions on Varieties

Let V denote an affine variety in \mathbb{A}_k^n .

Definition (Polynomial Function)

A polynomial function on V is a map $f:V\to k$, such that, there exists a polynomial $F \in k[x_1,...,x_n]$, with

$$
f(P) = F(P), \quad \text{for all } P \in V.
$$

- \circ The polynomial F is not uniquely determined by the values it takes on V_{\cdot}
- In particular, for F and $G \in k[x_1,...,x_n]$, we have

$$
F|_V = G|_V \quad \text{iff} \quad (F - G)|_V = 0
$$

iff
$$
F - G \in I(V).
$$

The Coordinate Ring of a Variety

Definition (Coordinate Ring)

The coordinate ring of V is defined by

$$
k[V] := k[x_1,\ldots,x_n]/I(V).
$$

From preceding remarks we can make the following identification:

 $k[V] = \{f : f : V \rightarrow k \text{ is a polynomial function}\}.$

We also have

V is irreducible iff $k[V]$ is an integral domain.

- The coordinate functions $x_1,...,x_n$ generate $k[V]$.
- This explains the terminology "coordinate ring".

Correspondence Between Sets and Ideals

- The ring $k[V]$ plays the same role for V that $k[x_1,...,x_n]$ plays for \mathbb{A}_k^n .
- In particular, there is a correspondence between:
	- \bullet The closed sets W contained in V:
	- The ideals of $k[V]$.
- **•** The projection π : $k[x_1,...,x_n] \rightarrow k[V] = k[x_1,...,x_n]/I(V)$ induces a bijection

$$
\{\text{ideals } J \subseteq k[x_1,\ldots,x_n] : J \supseteq I(V)\} \stackrel{1:1}{\longleftrightarrow} \{\text{ideals } J' \subseteq k[V]\}.
$$

 \bullet It is defined by

 $J \mapsto J/I(V)$.

• Its inverse map is

$$
J' \mapsto \pi^{-1}(J').
$$

Correspondence Between Sets and Ideals (Cont'd)

This mapping preserves radical ideals, prime ideals and maximal ideals,

{radical ideals
$$
J' \subseteq k[V]
$$
}
\n $\begin{array}{ccc}\n & \downarrow & \downarrow \\
 & \downarrow & \downarrow\n\end{array}$ {closed sets $W \subseteq V$ }
\n{prime ideals $J' \subseteq k[V]$ }
\n $\begin{array}{ccc}\n & \downarrow & \downarrow \\
 & \downarrow & \downarrow \\
 & \downarrow & \downarrow\n\end{array}$ {irreducible sets $W \subseteq V$ }
\n{maximal ideals $J' \subseteq k[V]$ }
\n $\begin{array}{ccc}\n & \downarrow & \downarrow \\
 & \downarrow & \downarrow \\
 & \downarrow & \downarrow\n\end{array}$ {points of V }.

 \circ Closed sets of V in the topology induced by the Zariski topology on \mathbb{A}^n_k are the same as those defined by taking the closed sets of V to be sets of the form $V(J)$, where J is a radical ideal in $k[V]$.

Properties of Coordinate Rings

Definition (Reduced Algebra)

An algebra A is reduced if A contains no nilpotent elements. That is, for $x \in A$,

 $x^n = 0$, for some $n \ge 1$, implies $x = 0$.

- The algebra $k[x_1,...,x_n]/I$ is reduced if and only if I is a radical ideal.
- Since $I(V)$ is a radical ideal, the coordinate ring is a reduced algebra. \bullet
- \bullet By construction, the coordinate ring $k[V]$ of an affine variety V is a finitely generated k-algebra.

Characterization of Coordinate Rings

- Being finitely generated and reduced characterize coordinate rings of varieties.
- \circ Let A be a finitely generated reduced k-algebra.
- We can construct a corresponding algebraic variety as follows.
- Choosing generators a_1, \ldots, a_n , we can write

$$
A = k[a_1, \ldots, a_n].
$$

We then have a surjective homomorphism

$$
\pi: k[x_1,...,x_n] \rightarrow A=k[a_1,...,a_n]
$$

$$
x_i \rightarrow a_i.
$$

- Let $I = \ker(\pi)$. Then $V = V(I)$ is a variety.
- \bullet It is irreducible if and only if A is an integral domain.
- \circ Since A is reduced, I is a radical ideal. So $I(V) = I$.
- By construction $A = k[V]$.

o Consider the usual parabola

$$
C_0 = \{ (x, y) \in \mathbb{A}^2_k : y - x^2 = 0 \}.
$$

We have

$$
k[C_0] = k[x, y]/(y - x^2) \cong k[x] \cong k[A_K^1].
$$

• Consider the semicubical parabola, given by

$$
C_1 = \{ (x, y) \in \mathbb{A}_k^2 : y^2 - x^3 = 0 \}.
$$

We have

$$
k[C_1] = k[x, y]/(y^2 - x^3).
$$

• Notice that $k[C_1]$ is not a UFD.

Example (Cont'd)

 \circ C_0 has a rational parametrization

$$
t\mapsto (t,t^2).
$$

 \circ C_1 has a rational parametrization,

$$
t\mapsto (t^2,t^3).
$$

So there are bijections between each of C_0 and C_1 and \mathbb{A}^1_k . However, as algebraic varieties C_0 and C_1 behave differently. \bullet We will see that C_0 is isomorphic to \mathbb{A}^1_k , but C_1 is not.

George Voutsadakis (LSSU) [Algebraic Geometry](#page-0-0) July 2024 81 / 144

Polynomial Maps

- Let $V \subseteq \mathbb{A}^n_k$ and $W \subseteq \mathbb{A}^m_k$ be closed sets.
- Denote by x_i , for $1 \le i \le n$, the coordinate functions on \mathbb{A}_k^n .
- Denote by y_j , for $1 \le j \le m$, the coordinate functions on \mathbb{A}_k^m .

Definition (Polynomial Map)

A map $f: V \rightarrow W$ is called a **polynomial map** if there are polynomials $F_1, \ldots, F_m \in k[x_1, \ldots, x_n]$, such that

$$
f(P)=(F_1(P),\ldots,F_m(P))\in W\subseteq{\mathbb A}^m_k,
$$

for all points $P \in V$.

A Characterization of Polynomial Maps

Lemma

Let y_1, \ldots, y_m be the coordinate functions on \mathbb{A}^m_k . A map $f: V \to W$ is a polynomial map if and only if $f_j := y_j \circ f \in k[V]$, for $j = 1, ..., m$.

• Composing f with y_i gives the projection onto the *j*-ih coordinate. Let $f_i = y_i \circ f$. Then if f is a polynomial map, we have $f_i(P) = F_i(P)$, for some $F_i \in k[x_1,...,x_n]$. Thus f_j is a polynomial map. So $f_j \in k[V]$.

Suppose, conversely, $f_i = y_i \circ f$ is a polynomial map, for every j. Then by definition, there are polynomials F_1, \ldots, F_m , such that $f(P) = (F_1(P),..., F_m(P))$, for all $P \in V$.

• Thus, any polynomial map $f:V\to W$ can be written in the form $f = (f_1, ..., f_m)$, with $f_1, ..., f_m \in k[V]$.

Continuity of Polynomial Maps

Lemma

A polynomial map $f: V \to W$ is continuous in the Zariski topology.

We must show that if $Z \subseteq W$ is closed, then $f^{-1}(Z)$ is also closed. Suppose

$$
Z=\{h_1=\cdots=h_r=0\}.
$$

Then

$$
f^{-1}(Z) = \{h_1 \circ f = \cdots = h_r \circ f = 0\}.
$$

So $f^{-1}(Z)$ is also closed.

 \bullet We revisit the curves C_0 and C_1 . Consider the maps:

$$
\begin{array}{l}\n\circ \ f : \mathbb{A}^1_k \to C_0; \ t \mapsto (t, t^2); \\
\circ \ g : \mathbb{A}^1_k \to C_1; \ t \mapsto (t^2, t^3).\n\end{array}
$$

They are both bijective polynomial maps.

• Let $y_1,...,y_m$ be linear forms in the variables $x_1,...,x_n$. The map

$$
f = (y_1, \ldots, y_m) : \mathbb{A}^n_k \to \mathbb{A}^m_k
$$

is a polynomial map.

We saw that, for every irreducible variety V, there is some integer m , such that, for a general choice of $y_1,...,y_m$, the map $\phi = f|_V$ is surjective with finite fibers.

Composition of Polynomial Maps

- Let $V \subseteq \mathbb{A}^n_k$, $W \subseteq \mathbb{A}^m_k$ and $X \subseteq \mathbb{A}^\ell_k$ be algebraic sets.
- Let $f:V\to W$ and $g:W\to X$ be polynomial maps.
- Then $g \circ f : V \to X$ is also a polynomial map.
- This follows immediately from the fact that the composition of a polynomial with a polynomial is again a polynomial.

From a Map Between Varieties to One Between Functions

- Let $f:V\to W$ be a polynomial map.
- For $g \in k[W]$, define

 $f^*(g) := g \circ f.$

- \circ g is a polynomial function.
- \circ So $g \circ f$ is also a polynomial function.
- Thus, we have a map

$$
f^*: k[W] \rightarrow k[V];
$$

$$
g \rightarrow f^*(g) = g \circ f.
$$

Contravariant Functoriality of Star

• Let $f:V\to W$ and $g:W\to X$ be polynomial maps. Then

> $(g \circ f)^* = f^* \circ g^* : k[X] \to k[V].$ V $\stackrel{f}{\longrightarrow} W$ $\frac{g}{\longrightarrow}$ X \overline{A} 1 k g ∗ (h) ❄✛ γ $\mathcal{L}_{\mathbb{R}}$ ∗ 6 ∗ (h)) ✲

• This follows immediately from the fact that, for $h \in k[X]$, we have

$$
(g \circ f)^*(h) = h \circ (g \circ f) = (h \circ g) \circ f = g^*(h) \circ f = f^*(g^*(h)).
$$

f^* is a k -Algebra Homomorphism

The map f^\ast is a ring homomorphism.

•
$$
f^*(g_1+g_2) = (g_1+g_2) \circ f = g_1 \circ f + g_2 \circ f = f^*(g_1) + f^*(g_2);
$$

\n• $f^*(g_1 \cdot g_2) = (g_1 \cdot g_2) \circ f = (g_1 \circ f) \cdot (g_2 \circ f) = f^*(g_1) \cdot f^*(g_2).$

• For any constant
$$
c \in k
$$
, we have $f^*(c) = c$.

- So f ∗ is also a k-algebra homomorphism.
- Thus, every polynomial map $f: V \rightarrow W$ gives rise to a k-algebra homomorphism

$$
f^*: k[W] \to k[V].
$$

Every Algebra Homomorphism is of Form f^*

Proposition

Let φ : k[W] \rightarrow k[V] be a k-algebra homomorphism. Then there exists a unique polynomial map $f: V \rightarrow W$, such that

$$
\varphi=f^*.
$$

\n- Suppose that
$$
W \subseteq \mathbb{A}_k^m
$$
. Let y_1, \ldots, y_m be the coordinate functions on \mathbb{A}_k^m . Letting $\overline{y}_i = y_i + l(W)$, we have $k[W] = k[y_1, \ldots, y_m] / l(W) = k[\overline{y}_1, \ldots, \overline{y}_m]$.
\n

Set

$$
f_i := \varphi(\overline{y}_i) \in k[V], \quad i = 1, \ldots, m.
$$

Then $f := (f_1, ..., f_m) : V \to \mathbb{A}^m_k$ is a polynomial map.

Every Algebra Homomorphism is of Form f^* (Cont'd)

• First we show that $f(V) \subseteq W$. Suppose that $G = G(y_1,..., y_m) \in I(W)$. Then in $k[W]$, we have $G(\overline{y}_1,...,\overline{y}_m)=0$. Thus,

$$
G(f_1,\ldots,f_m)=G(\varphi(\overline{y}_1),\ldots,\varphi(\overline{y}_m))=\varphi(G(\overline{y}_1,\ldots,\overline{y}_m))=0.
$$

So $f(V) \subseteq W$. Next, we show that $\varphi = f^*$. The elements $\overline{\mathsf{y}}_1, ..., \overline{\mathsf{y}}_m$ generate the *k*-algebra $k[W].$ So it is enough to show that $\varphi(\overline{y}_i) = f^*(\overline{y}_i) = f_i$. This is precisely the definition of the f_i . This also shows that $f = (f_1, \ldots, f_m)$ is the unique polynomial map with $\varphi = f^*$.

Corollary

There is a bijection

$$
\left\{ f \mid f: V \to W
$$
\na polynomial map
$$
\left\{ \begin{array}{c} f: V \to W \\ \text{a polynomial map} \end{array} \right\} \xrightarrow{1:1} \left\{ \begin{array}{c} \varphi \mid \varphi: k[W] \to k[V] \\ \text{a } k\text{-algebra hom.} \end{array} \right\}
$$

Isomorphisms

Definition (Isomorphism)

A polynomial map $f: V \to W$ is an **isomorphism** if there is a polynomial map $g: W \rightarrow V$, such that

$$
f \circ g = id_W
$$
 and $g \circ f = id_V$.

Corollary

A polynomial map $f: V \to W$ is an isomorphism of varieties if and only if $f^*: k[W] \to k[V]$ is an isomorphism of k-algebras.

This follows from the fact that

$$
(f\circ g)^* = g^* \circ f^*.
$$

- Let $A = (\alpha_{ij})$ be an invertible $(n \times n)$ matrix.
- Consider the linear forms

$$
y_i = \sum_{j=1}^n \alpha_{ij} x_j.
$$

They define a bijective polynomial map

$$
f=(y_1,\ldots,y_n):{\mathbb A}^n_k\to{\mathbb A}^n_k.
$$

- Consider the parabola $C_0 = \{y x^2 = 0\}$ in \mathbb{A}^2_k .
- Consider, also, the parametrization

$$
f: \quad \mathbb{A}^1_k \rightarrow C_0; \\
 t \rightarrow (t, t^2).
$$

The projection $p: \mathbb{A}_k^2 \to \mathbb{A}_k^1$ to the first coordinate, restricted to C_0 , gives an inverse map

$$
\begin{array}{rcl} g: & C_0 & \rightarrow & \mathbb{A}^1_k; \\ & (x,y) & \mapsto & x. \end{array}
$$

- Thus, f is an isomorphism.
- We can also see this by considering the map $f^*: k[C_0] \to k[\mathbb{A}_k^1].$ Note that

$$
f^* : k[C_0] \cong k[x] \rightarrow k[\mathbb{A}^1_k] = k[t];
$$

$$
x \mapsto t,
$$

is an isomorphism.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 95 / 144

Now consider the semicubical parabola

$$
C_1 = \{ (x,y) : y^2 = x^3 \}.
$$

The map

$$
f: \quad \mathbb{A}^1_k \quad \to \quad C_0; \\
 t \quad \mapsto \quad (t^2, t^3),
$$

is a bijection.

- The image $f^*(k[C_1]) \subseteq k(\mathbb{A}_k^1) = k[t]$ is generated by $f^*(x) = t^2$ and $f^*(y) = t^3$.
- So $f^*(k[C_1]) \neq k[t]$, and, thus, f is not an isomorphism.
- Though f is a bijection, the inverse map $g: C_1 \to \mathbb{A}^1_k$, with

$$
g(x,y) = \begin{cases} \frac{y}{x}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}
$$

is not a polynomial map.

Categories

Definition (Category)

A category $\mathscr C$ consists of the following data:

- (1) A class of **objects** $Ob\mathscr{C}$;
- (2) For any two objects $A, B \in \mathrm{Ob} \mathscr{C}$, a set Mor $\mathscr{C}(A, B)$. The elements of these sets are called morphisms.
- (3) For any three objects $A, B, C \in Ob\mathscr{C}$, there is a map

$$
\circ: \text{Mor}_{\mathscr{C}}(A, B) \times \text{Mor}_{\mathscr{C}}(B, C) \rightarrow \text{Mor}_{\mathscr{C}}(A, C);
$$

(f, g) \rightarrow g of.

Categories (Cont'd)

Definition (Category Cont'd)

These data satisfy the following axioms.

 (a) \circ is associative, i.e.

$$
(g\circ f)\circ h=g\circ (f\circ h);
$$

(b) for all $A \in Ob\mathscr{C}$, there is a morphism

 $id_A \in \text{Mor}_{\mathscr{C}}(A, A),$

called the identity of A, such that, for all $B \in Ob\mathscr{C}$ and for all $f \in \text{Mor}_{\mathscr{C}}(A, B)$ and $g \in \text{Mor}_{\mathscr{C}}(B, A)$, we have

 $f \circ id_A = f$ and $id_A \circ g = g$.

Among the categories of interest to us are:

- The category of sets and maps;
- (2) The category of topological spaces and continuous maps;
- (3) The category of groups and group homomorphisms.

Functors

Definition (Functor)

For categories C and $\mathscr D$ a functor $F : \mathscr C \to \mathscr D$, which may be either covariant or contravariant, is given by:

(1) a map
$$
F: Ob\mathscr{C} \to Ob\mathscr{D}
$$
;

a collection of maps

 $\text{Mor}_{\mathscr{C}}(A,B) \to \text{Mor}_{\mathscr{D}}(F(A),F(B)),$ in the covariant case, $\text{Mor}_{\mathscr{C}}(A, B) \to \text{Mor}_{\mathscr{D}}(F(B), F(A)),$ in the contravariant case,

having the following properties:

\n- (1)
$$
F(\text{id}_A) = \text{id}_{F(A)}
$$
.
\n- (2) $F(f \circ g) = \begin{cases} F(f) \circ F(g), & \text{in the covariant case,} \\ F(g) \circ F(f), & \text{in the contravariant case.} \end{cases}$
\n

Examples of Functors

- \circ For every category $\mathscr C$, we have the functor id given by the identity.
- For many categories there is a "forgetful" functor, which simply "forgets" some of the structure of the objects in the domain of the functor.
- An example is given by the functor

 $F:$ {groups, homomorphisms} \rightarrow {sets, maps},

which maps a group to its underlying set.

Varieties and Ideals

The relationship between varieties and ideals can now be expressed by the following contravariant functor:

$$
F: \left\{ \begin{array}{ccc} \text{affine varieties;} \\ \text{polynomial maps} \end{array} \right\} \longrightarrow \left\{ \begin{array}{ccc} \text{finitely generated} \\ \text{reduced } k\text{-algebras;} \\ k\text{-algebra homomorphisms} \end{array} \right\}, \\ (f: V \rightarrow W) \rightarrow (f^*: k[W] \rightarrow k[V]).
$$

- The category on the left is the category of affine varieties.
- The category on the right is the category of finitely generated reduced k -algebras.
- Often we will refer to a category by referring only to its objects.
- The morphisms are then understood to be the usual morphisms between the objects in question.

George Voutsadakis (LSSU) [Algebraic Geometry](#page-0-0) July 2024 102 / 144

Functorial Morphisms or Natural Transformations

Definition (Functorial Morphism)

For two functors $F, G: \mathscr{C} \to \mathscr{D}$, which are both covariant or both contravariant, a functorial morphism, or natural transformation, φ : $F \to G$ is a family of morphisms

$$
\{\varphi(A): F(A) \to G(A): A \in \mathrm{Ob} \mathscr{C}\},\
$$

such that, for every morphism $f : A \rightarrow B$, with $A, B \in Ob\mathscr{C}$, we have a commutative diagram (covariant and contravariant case, respectively):

$$
F(A) \xrightarrow{\varphi(A)} G(A) \qquad F(B) \xrightarrow{\varphi(B)} G(B)
$$

$$
F(f) \Big|_{F(B) \xrightarrow{\varphi(B)} G(B)} F(f) \Big|_{F(A) \xrightarrow{\varphi(A)} G(A)}
$$

Functorial Isomorphisms and Equivalence of Categories

Definition (Functorial Isomorphism)

The functorial morphism

$$
\varphi: F \to G
$$

defines a **functorial isomorphism** φ : $F \cong G$, if there is a functorial morphism ψ : $G \rightarrow F$, such that

$$
\psi \circ \varphi = id_F \quad \text{and} \quad G \circ F = id_G.
$$

Definition (Equivalence of Categories)

A functor $F: \mathscr{C} \to \mathscr{D}$ defines an equivalence of categories if there is a functor $G: \mathcal{D} \rightarrow \mathcal{C}$, such that

$$
G \circ F \cong \mathrm{id}_{\mathscr{C}} \quad \text{and} \quad F \circ G \cong \mathrm{id}_{\mathscr{D}}.
$$

George Voutsadakis (LSSU) [Algebraic Geometry](#page-0-0) July 2024 104 / 144

A Contravariant Equivalence of Categories

Proposition

 $\sqrt{ }$

The functor defined by

$$
V \rightarrow k[V],
$$

($f: V \rightarrow W$) $\rightarrow (f^*: k[W] \rightarrow k[V]),$

induces the following contravariant equivalences of categories:

\n $\left\{\n \begin{array}{c}\n \text{category of} \\ \text{affine varieties}\n \end{array}\n \right\}\n \rightarrow\n \left\{\n \begin{array}{c}\n \text{category of finitely} \\ \text{generated reduced} \\ \text{k-algebras}\n \end{array}\n \right\}$ \n
\n $\left\{\n \begin{array}{c}\n \text{category of finitely} \\ \text{category of finitely} \\ \text{defined } \text{k-algebras} \\ \text{which are integral domains}\n \end{array}\n \right\}$ \n

 \mathbf{I} \mathbf{I} \mathbf{I}

Proof of the Equivalence (Sketch)

We construct an inverse functor G. Let A be a finitely generated reduced k -algebra. Choose generators a_1, \ldots, a_n of A and consider the homomorphism

$$
\pi: k[x_1,...,x_n] \rightarrow A=k[a_1,...,a_n];
$$

$$
x_i \rightarrow a_i.
$$

The ideal $I = \text{ker} \pi$ is then a radical ideal.

It defines a variety $V = V(I)$.

V is irreducible if and only if I is a prime ideal.

I.e., V is irreducible if and only if A is an integral domain. We set $G(A) = V$.

By the preceding proposition, every homomorphism φ : A \rightarrow B of finitely generated reduced k-algebras gives rise to a unique morphism $f: G(B) \to G(A)$, with $\varphi = F(f)$. So we set $G(\varphi) = f$. It is easy to check that F and G define an equivalence of categories.

The Product of Two Varieties

- Consider the category of affine varieties.
- \bullet Let V and W be affine varieties.
- An affine variety $V \times W$ is the categorical product of V and W if there exist polynomial maps $p_V: V \times W \rightarrow V$ and $p_W: V \times W \rightarrow W$ (the projection maps), such that, for any affine variety Z , mapping to both V and W via polynomial maps $f: Z \rightarrow V$, $g: Z \rightarrow W$, there is a unique polynomial map $h: Z \rightarrow V \times W$, such that the diagram commutes.

 \bullet For affine varieties V and W, the categorical product of V and W is given by the set-theoretic product $V \times W$.

The Product Variety

Proposition

For varieties $V \subseteq \mathbb{A}^n_k$ and $W \subseteq \mathbb{A}^m_k$, we have:

(1) The set-theoretic product $V \times W \subseteq A_k^n \times A_k^m = A_k^{n+m}$ is a variety;

- (2) If V and W are irreducible, then $V \times W$ is also irreducible.
- (1) Consider varieties $V \subseteq \mathbb{A}^n_k$ and $W \subseteq \mathbb{A}^m_k$. Let $f_1, \ldots, f_\ell \in k[x_1, \ldots, x_n]$ and $g_1, \ldots, g_r \in k[y_1, \ldots, y_m]$ be polynomials, such that

$$
V = \{f_1 = \cdots = f_\ell = 0\}
$$
 and $W = \{g_1 = \cdots = g_r = 0\}.$

Then

$$
V \times W = \{f_1 = \cdots = f_\ell = g_1 = \cdots = g_r = 0\}.
$$

So $V \times W \subseteq \mathbb{A}_k^n \times \mathbb{A}_k^m = \mathbb{A}_k^{n+m}$ is a variety.
The Product Variety (Cont'd)

(2) First we remark that, for all $w \in W$, the projection onto the first factor defines an isomorphism between $V \times \{w\}$ and V. Similarly, $\{v\}\times W$ is isomorphic to W, for all $v \in V$. Suppose there is a decomposition $V \times W = Z_1 \cup Z_2$. This induces a decomposition

$$
V\times \{w\} = (V\times \{w\}\cap Z_1) \cup (V\times \{w\}\cap Z_2).
$$

 $V \times \{w\}$, being isomorphic to V, is irreducible. So either $V \times \{w\} \cap Z_1 = V \times \{w\}$ or $V \times \{w\} \cap Z_2 = V \times \{w\}$. I.e., $V \times \{w\} \subseteq Z_1$ or $V \times \{w\} \subseteq Z_2$.

The Product Variety (Cont'd)

 \circ $V \times \{w\} \subseteq Z_1$ or $V \times \{w\} \subseteq Z_2$. We now define

$$
W_i := \{w \in W : V \times \{w\} \subseteq Z_i\}, \quad i = 1, 2.
$$

Then $W_1 \cup W_2 = W$. If we show that the W_i are closed, then, by the irreducibility of W, $W_1 = W$ or $W_2 = W$. In the first case $V \times W = Z_1$ and in the second $V \times W = Z_2$.

For each point $v \in V$, let

$$
W_i^v:=\{w\in W:(v,w)\in Z_i\},\quad i=1,2.
$$

Then the sets W_i^v are closed, since $\{v\} \times W_i^v = (\{v\} \times W) \cap Z_i$. Since $W_i = \bigcap_{v \in V} W_i^v$, the sets W_i are also closed.

Note that the Zariski topology on $V \times W$ is not the product topology. \bullet

Subsection 3

The Function Field of a Variety

- \bullet Let V be an irreducible variety.
- Then the coordinate ring $k[V]$ is an integral domain.
- Hence $k[V]$ has a field of fractions.

Definition

The function field of V is the field of fractions of $k[V]$, denoted $k(V)$. Elements $f \in k(V)$ are called rational functions on V.

- Any rational function can be written as $f = \frac{g}{h}$ $\frac{g}{h}$, with $g, h \in k[V]$.
- In general $k[V]$ need not be a UFD.
- So the representation $f = \frac{g}{h}$ $\frac{8}{h}$, g, h ∈ k[V] is not necessarily unique.
- \bullet We can only give f a well defined value at a point P if there is a representation $f = \frac{g}{h}$ $\frac{g}{h}$, with $h(P) \neq 0$.

Representation of Rational Functions

Definition (Regular Function)

Let $f \in k(V)$ and $P \in V$. The rational function f is called regular at P if there is a representation $f = \frac{g}{h}$ $\frac{8}{h}$, with $h(P)\neq 0$. The domain of definition of f is defined to be the set

 $dom(f) = {P \in V : f \text{ is regular at } P}.$

Definition

For every polynomial function $h \in k[V]$, we define

 $V_h := \{ P \in V : h(P) \neq 0 \}.$

• Clearly V_h is an open subset of V.

Properties of Rational Functions

Theorem

For a rational function $f \in k(V)$, the following hold:

- (1) dom(f) is open and dense in V .
- (2) dom(f) = V iff $f \in k[V]$.
- (3) dom(f) $\supseteq V_h$ iff $f \in k[V][h^{-1}]$.

(1) For $f \in k(V)$, we define the ideal of denominators of f by $D_f := \{ h \in k[V] : fh \in k[V] \} \subseteq k[V].$

By definition we have

 $D_f = \{h \in k[V] : \text{there is a representation } f = \frac{g}{h}\}$ $\frac{g}{h}$ } ∪ {0}.

Moreover,

 $V \cdot \text{dom}(f) = \{ P \in V : h(P) = 0, \text{for all } h \in D_f \} = V(D_f).$

Hence, $V \dom(f)$ is closed. So dom(f) is open.

Properties of Rational Functions (Cont'd)

Since dom(f) is obviously nonempty, it is also dense in V.

- (2) We have dom(f) = V if and only if $V(D_f) = 0$. By Hilbert's Nullstellensatz, this is equivalent to $1 \in D_f$. This is, in turn, equivalent to $f \in k[V]$.
- (3) We have dom(f) $\supseteq V_h$ if and only if h vanishes on $V(D_f)$. By Hilbert's Nullstellensatz, this holds iff $h^n \in D_f$, for some $n \ge 1$. This implies that $f = \frac{g}{h'}$ $\frac{g}{h^n} \in k[V][h^{-1}].$
	- Part (2) of the theorem says that the polynomial functions are precisely the rational functions that are "everywhere regular".
	- We refer to polynomial functions as regular functions.

Local Ring of a Variety at a Point

- \bullet We will define the ring $\mathcal{O}(U)$ of functions regular on an open set $U \subset V$
- **•** This will lead to the concept of the *structure sheaf* of a variety.
- \bullet We first define the ring of functions on V regular at a point $P \in V$.

Definition (The Local Ring)

The local ring of V at a point $P \in V$ is the ring

 $\mathcal{O}_{V,P} := \{f \in k(V) : f \text{ is regular at } P\}.$

Locality of the Local Ring of a Variety at a Point

- Recall that a ring is local if it has a unique maximal ideal.
- The local ring $\mathcal{O}_{V,P} \subseteq k(V)$ is a subring of $k(V)$. \bullet
- Moreover, we have \bullet

$$
\mathcal{O}_{V,P}=k[V]\{h^{-1}:h(P)\neq 0\}.
$$

- The ring \mathscr{O}_V p is in fact a local ring.
- Its unique maximal ideal is \bullet

$$
m_P:=\left\{\frac{f}{g}\in k(V):f,g\in k[V],f(P)=0,g(P)\neq 0\right\}.
$$

Multiplicatively Closed Systems

Definition (Multiplicatively Closed System)

Let R be a ring. A multiplicatively closed system in R is a subset $S \subseteq R^* = R \setminus \{0\}$, with the following properties:

(1)
$$
a, b \in S
$$
 implies $ab \in S$.

 $1 \in S$.

Example: A ring R is an integral domain if and only if $R^* = R \setminus \{0\}$ is multiplicatively closed.

Example: An ideal $p \neq R$ is a prime ideal if and only if $R\$ is a multiplicatively closed system.

Localization of Rings

- \circ Let R be a ring.
- \circ Let $S \subseteq R \setminus \{0\}$ a multiplicatively closed system.
- \bullet Define the following equivalence relation on the product $R \times S$:

 $(r',s') \sim (r'',s'') \Leftrightarrow$ there exists $s \in S$, with $s(r's'' - r''s') = 0$.

The set of equivalence classes is denoted by

$$
R_S := R \times S / \sim.
$$

r s

We write

to denote the equivalence class of (r, s) .

Localization of Rings (Cont'd)

 \circ We can then define addition and multiplication in $R_{\rm S}$.

Addition is defined by

$$
\frac{r}{s}+\frac{r'}{s'}:=\frac{rs'+r's}{ss'};
$$

• Multiplication is defined by

$$
\frac{r}{s} \cdot \frac{r'}{s'} := \frac{rr'}{ss'}.
$$

- It is straightforward to check that these operations are well defined.
- The ring R_S is a commutative ring with identity element $1=\frac{1}{1}$ $\frac{1}{1}$.

Definition (Localization)

The ring R_S is called the localization of R with respect to the multiplicative system S.

George Voutsadakis (LSSU) [Algebraic Geometry](#page-0-0) July 2024 120 / 144

Natural Map

- \bullet Let R be a ring.
- Let S be a multiplicatively closed system in R. \bullet
- The natural map is a ring homomorphism,

$$
\begin{array}{rcl} R & \rightarrow & R_S; \\ r & \mapsto & \frac{r}{1}. \end{array}
$$

 \circ Let R be an integral domain.

Let

$$
S=R^*=R\setminus\{0\}.
$$

- \circ Then R_{ς} is the field of fractions of R.
- o In this case, the map

$$
R \rightarrow R_S
$$

is injective.

 \circ So R may be identified with its image in R_S .

- \bullet Let R be a ring.
- \circ Let $\mathfrak{p} \subsetneq R$ be a prime ideal.
- Let

$$
S_{\mathfrak{p}}=R\backslash \mathfrak{p}.
$$

• The ring

$$
R_{\mathfrak{p}}:=R_{\mathcal{S}_{\mathfrak{p}}}
$$

- is called the **localization of** R at \mathfrak{p} .
- In fact R_p is a local ring.
- o Its unique maximal ideal is

$$
m_{\mathfrak{p}} := \left\{ \frac{p}{s} : p \in \mathfrak{p}, s \in S \right\} \subsetneqq R_{\mathfrak{p}}.
$$

 \bullet To see this, consider an element of $R_{\rm p}$ not in $m_{\rm p}$. It is of the form $\frac{s'}{s}$, with $s' \in S$. So it has an inverse $\frac{s}{s'}$ and is, therefore, a unit.

- \circ Let R be an integral domain.
- \bullet Let $0 \neq f \in R$.
- Set

$$
S_f:=\{f^n:n\geq 0\}.
$$

We define

$$
R_f:=R_{S_f}.
$$

 \circ Since R is an integral domain, the map

$$
\begin{array}{ccc}\nR & \to & R_f; \\
r & \mapsto & \frac{r}{1}\n\end{array}
$$

is injective.

• Identifying R with its image in R_f and in the field of fractions, we have an equality

$$
R_f = R[f^{-1}] \subseteq \text{field of fractions of } R.
$$

- The local ring $\mathcal{O}_{V,P}$, was defined as a subring of the function field $k(V)$.
- \circ $\mathcal{O}_{V,P}$ may also be constructed by localization.
- \circ Consider a point $P \in V$.
- \bullet The ideal corresponding to P is

$$
\overline{M}_P = \{f \in k[V] : f(P) = 0\} = \overline{I(\{P\})} = I(\{P\}) + I(V) \subseteq k[V].
$$

- This ideal is maximal.
- We have an equality

$$
\mathcal{O}_{V,P} = k[V]_{\overline{M}_P}.
$$

• I.e., $\mathcal{O}_{V,P}$ arises through localization of the coordinate ring at M_P . • The maximal ideal of $\mathcal{O}_{V,P}$ is given by

$$
m_P = \{f \in \mathcal{O}_{V,P} : f(P) = 0\}.
$$

The Structure Sheaf of a Variety

• For every nonempty open set $U \subseteq V$, we define

 $\mathcal{O}(U) := \mathcal{O}_V(U) := \{f \in k(V) : f \text{ is regular on } U\}.$

Further, we set

 $\mathcal{O}_V(\emptyset) := \{0\}.$

- \circ Then $\mathcal{O}_V(U)$ is a ring.
- \circ In addition it is a *k*-algebra.
- The set of rings $\mathcal{O}_V(U)$, together with the natural restriction homomorphisms, forms the structure sheaf \mathscr{O}_V .
- The local ring $\mathcal{O}_{V,P}$ is called the stalk of the structure sheaf at the point P.
- The elements of $\mathcal{O}_{V,P}$ are called function germs.

Reformulation of the Theorem

- The preceding theorem can be formulated as follows.
	- Part 2:

 $\mathcal{O}(V) = k[V];$

Part 3:

$$
\mathcal{O}(V_h) = k[V][h^{-1}] = k[V]_h,
$$

where the ring $k[V]_h$ is the localization of the coordinate ring $k[V]$ with respect to the multiplicative system $\{h^n : n \ge 0\}$.

Rational Maps

We consider maps on V which are not everywhere defined.

Definition (Rational Map)

(1) A rational map $f: V \dashrightarrow \mathbb{A}^n_k$ is an *n*-tuple

 $f = (f_1, ..., f_n)$

of rational functions $f_1, \ldots, f_n \in k(V)$.

The map f is called regular at the point P if all f_i are regular at P. The **domain of definition** dom(f) is the set of all regular points of f , i.e.

$$
\mathsf{dom}(f) = \bigcap_{i=1}^n \mathsf{dom}(f_i).
$$

(2) For an affine variety $W \subseteq \mathbb{A}^n_k$, a rational map $f: V \dashrightarrow W$ is a rational map $f: V \dashrightarrow \mathbb{A}^n_k$, such that $f(P) \in W$, for all regular points $P \in \text{dom}(f)$.

By the theorem, dom(f) is a nonempty open subset of V. \bullet

Definability of Composition

o In contrast to the situation for polynomial maps, for rational maps $f: V \dashrightarrow W$ and $g: W \dashrightarrow X$, the composition

$$
g\circ f: V \xrightarrow{f} W \xrightarrow{-g} X
$$

cannot always be defined in a meaningful way. Example: Consider two rational maps.

 \circ f is defined by

$$
f: \quad \mathbb{A}^1_k \rightarrow \quad \mathbb{A}^2_k; \\
 x \rightarrow (x,0).
$$

 \circ g is defined by

$$
g: \mathbb{A}_{k}^{2} \longrightarrow \mathbb{A}_{k}^{1};
$$

$$
(x,y) \longrightarrow \frac{x}{y}.
$$

Note that

$$
f(\mathbb{A}_{k}^{1})\cap \text{dom}(g)=\emptyset.
$$

So the composition is nowhere defined.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and Hully 2024 129 / 144

Star for Rational Maps

- Consider a rational map $f: V \dashrightarrow W$.
- We want to define a map $f^*: k(W) \rightarrow k(V)$ with

$$
f^*(g)=g\circ f.
$$

- We have constructed a homomorphism $f^*: k[W] \to k[V]$.
- So we know that, for $g \in k[W]$, the function $f^*(g) \in k(V)$ is well defined.
- It is possible that $f^*(h) = 0$, for some $h \in k[W]$, with $h \neq 0$.
- In that case, we cannot define $f^*(\frac{g}{h})$ $\frac{g}{h})$ to be $\frac{f^*(g)}{f^*(h)}$ $\frac{f^*(b)}{f^*(h)}$.

Dominant Rational Maps and Inverse Images

Definition (Dominant Rational Map)

A rational map $f: V \dashrightarrow W$ is called **dominant** if f (dom(f)) is a Zariski dense subset of W .

Definition (Inverse Image)

For a rational map f : V $-\rightarrow$ W and a subset $U \subseteq W$, we define the inverse **image** of U under f by

$$
f^{-1}(U) := \{P \in \text{dom}(f) : f(P) \in U\}.
$$

Dominant Rational Maps and Definability

- Suppose $f: V \dashrightarrow W$ is dominant.
- Let $g: W \dashrightarrow \mathbb{A}^1_k$ be a rational map.
- By a preceding theorem, dom(g) is a nonempty open subset of W. \bullet
- By a preceding lemma, $f^{-1}(\mathsf{dom}(g))$ is a dense open subset of $\mathsf{dom}(f)$.
- Thus, the composition $g \circ f : V \dashrightarrow \mathbb{A}^1_k$ is defined on the dense open subset

 $f^{-1}(\text{dom}(g)) \subseteq V$.

Algebraic Reformulation

- Let $f:V\dashrightarrow W$ be a rational map.
- Consider the corresponding homomorphism $f^*: k[W] \to k(V)$.
- \circ For all $g \in k[W]$, we have

$$
f^*(g) = 0 \Longleftrightarrow f(\text{dom}(f)) \subseteq V(g).
$$

o Thus.

 $f^*: k[W] \to k(V)$ is injective $\Leftrightarrow f$ is dominant.

Hence, if f is dominant, then we can extend f^\ast to a homomorphism $f^*: k(W) \to k(V)$ by setting

$$
f^*\left(\frac{g}{h}\right):=\frac{f^*(g)}{f^*(h)}.
$$

 \bullet If f : V --→ W and g : W --→ X are dominant, then g \circ f : V --→ X is also dominant.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and Hully 2024 133 / 144

Theorem

Let V and W be irreducible affine varieties.

- Every dominant rational map $f : V \rightarrow W$ defines a k-linear homomorphism $f^*: k(W) \to k(V)$.
- (2) Conversely, if $f : k(W) \rightarrow k(V)$ is a k-linear homomorphism, then there exists a unique dominant rational map $\varphi: V \dashrightarrow W$, with

$$
\varphi=f^*.
$$

(3) If $f: V \dashrightarrow W$ and $g: W \dashrightarrow X$ are dominant, then $g \circ f: V \dashrightarrow X$ is also dominant and

$$
(g\circ f)^* = f^* \circ g^*.
$$

Parts (1) and (3) have already been discussed. (2) Suppose that $W \subseteq \mathbb{A}_{k}^{m}$. The coordinate functions $y_1,...,y_m$ generate the field $k(W)$. We set $f_i := \varphi(y_i) \in k(V)$ and

$$
f:=(f_1,\ldots,f_m):V\dashrightarrow W.
$$

This map has image in W . By construction $f^* = \varphi$. It remains to show that f is dominant. Since $f^* = \varphi$, we have $f^*|_{k[w]} = \varphi|_{k[w]}$. Since *ϕ* is a field homomorphism, *ϕ* is injective.

So $f^*|_{k[w]}: k[W] \to k(V)$ is also injective.

Hence, f is dominant.

George Voutsadakis (LSSU) and [Algebraic Geometry](#page-0-0) and July 2024 135 / 144

Quasi-Affine Varieties

Open subsets of affine varieties behave similarly to affine varieties.

Definition (Quasi-Affine Variety)

A quasi-affine variety is an open subset of an affine variety.

Morphisms of Quasi-Affine Varieties

Definition

Let U_1 and U_2 be irreducible quasi-affine varieties, contained in the affine varieties V and W , respectively.

- (1) A morphism $f: U_1 \to W$ is a rational map $f: V \to W$, with $U_1 \subseteq \text{dom}(f)$, i.e., f is regular at every point $P \in U_1$.
- (2) A morphism $f: U_1 \rightarrow U_2$ is a morphism $f: U_1 \rightarrow W$, with $f(U_1) \subseteq U_2$.
- (3) An **isomorphism** of quasi-affine varieties is a morphism $f: U_1 \rightarrow U_2$, such that, there is a morphism $g: U_2 \rightarrow U_1$, with

$$
g \circ f = id_{U_1}
$$
 and $f \circ g = id_{U_2}$.

 \bullet For two irreducible affine varieties V and W,

 ${f : f : V \to W \text{ a morphism} = {f : f : V \to W \text{ a polynomial map}}.$

Consider again the semicubical parabola

$$
C_1 = \{ (x,y) \in \mathbb{A}_k^2 : y^2 - x^3 = 0 \}.
$$

Recall that it has a parametrization

$$
f: \quad \mathbb{A}^1_k \rightarrow C_1; \\
 t \rightarrow (t^2, t^3).
$$

This parametrization is not an isomorphism. So $k[\mathbb{A}^1_k]$ and $k[C_1]$ are not isomorphic. However, the restriction

$$
f: \mathbb{A}^1_k \setminus \{0\} \to C_1 \setminus \{(0,0)\}
$$

is an isomorphism of quasi-affine varieties. Its inverse is

$$
g(x,y)=\frac{y}{x}.
$$

In terminology to come, \mathbb{A}^1_k and \mathcal{C}_1 are **birationally equivalent**.

Example (Cont'd)

We saw \mathbb{A}^1_k and \mathcal{C}_1 are birationally equivalent. The theorem gives us a map

$$
f^*: k(C_1) \to k(\mathbb{A}_k^1),
$$

with

$$
f^*\left(\frac{x}{y}\right) = t.
$$

Thus f^* is surjective.

Moreover, f ∗ is a nonzero field homomorphism.

So f^* is also injective.

So the function fields $k(\mathbb{A}_k^1) = k(t)$ and $k(C_1)$ are isomorphic.

We will see that the function fields of any birationally equivalent varieties are isomorphic, and vice versa.

- \circ Let V be an affine variety.
- \bullet Let $f \in k[V]$.
- We defined the quasi-affine variety

$$
V_f = V \setminus V(f) = \{P \in V : f(P) \neq 0\}.
$$

Proposition

The quasi-affine variety $\mathit{V_f}$ is isomorphic to an affine variety with coordinate ring

$$
k[V_f] = k[V][f^{-1}] = k[V]_f.
$$

In the proof we use again Rabinowitsch's trick. \bullet

The Quasi-Affine Variety V_f (Cont'd)

Let

$$
J:=I(V)\subseteq k[x_1,\ldots,x_n]
$$

be the ideal of the variety $V \subseteq \mathbb{A}^n_k$. Let $F \in k[x_1,...,x_n]$ be a polynomial, with $F|_V = f$. We set

$$
J_f:=(J,tF-1)\subseteq k[x_1,\ldots,x_n,t].
$$

Claim: V_f is isomorphic to the affine variety $W = V(J_F) \subseteq \mathbb{A}_k^{n+1}$. Consider the maps:

•
$$
p: W \to V_f
$$
, with $(x_1,...,x_n, y) \mapsto (x_1,...,x_n)$;
\n• $q: V_f \to W$, with $(x_1,...,x_n) \mapsto (x_1,...,x_n, \frac{1}{F(x_1,...,x_n)})$.

These are mutually inverse morphisms.

The conclusion now follows.

Illustration of the Proposition

The figure illustrates the proposition for $V = \mathbb{A}^1_k$ and $f = x - 1$.

The quasi-affine variety $\mathbb{A}_{k}^{1} \setminus \{1\} = (\mathbb{A}_{k}^{1})_{(x-1)} \subseteq \mathbb{A}_{k}^{1}$ is isomorphic to the affine variety $W \subseteq \mathbb{A}_{k}^{2}$, given by $t(x-1) = 1$.

 \bullet In this case the map p is the projection to the x-axis.

Affine Basis of the Zariski Topology

- Every open set in V is a union of sets of the form V_f .
- Hence, the sets V_f form a basis of the Zariski topology of V.

Corollary

The Zariski topology on V has a basis of affine sets.

- By the corollary, we may, without loss of generality, restrict attention to affine varieties.
- There are quasi-affine varieties which are not affine. Example: $\mathbb{A}_k^2 \setminus \{ (0,0) \}$ is a quasi-affine variety that is not affine.

Abstract Affine Varieties

- We give a possible definition of an abstract affine variety.
- It allows considering affine varieties without reference to a surrounding affine space.

Definition (Abstract Affine Variety)

An abstract affine variety over a field k is a pair $(V, k[V])$ consisting of:

- A set V;
- A k-algebra $k[V]$ of functions on V, such that:
	- $k[V]$ is generated by finitely many elements $x_1,...,x_n$ over k;
	- The map

$$
\begin{array}{ccc} V & \rightarrow & \mathbb{A}_{k}^{n}; \\ P & \mapsto & (x_{1}(P), \ldots, x_{n}(P)), \end{array}
$$

defines a bijection between V and a Zariski closed subset of \mathbb{A}_k^n .