Introduction to Algebraic Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Algebraic Geometry

Affine Varieties

- Hilbert's Nullstellensatz
- Polynomial Functions and Maps
- Rational Functions and Maps

Subsection 1

Hilbert's Nullstellensatz

The Map V

• Denote by

$$A:=k[x_1,\ldots,x_n]$$

the polynomial ring in n variables over the field k.

• We defined the **zero set** of an ideal $J \subseteq A$,

$$V(J) := \{P \in \mathbb{A}_k^n : f(P) = 0, \text{ for all } f \in J\}.$$

• We showed that this gives rise to a surjective map

$$\begin{array}{rcl} V: \{ \text{ideals in } A \} & \to & \{ \text{algebraic sets in } \mathbb{A}_k^n \}, \\ & J & \mapsto & V(J). \end{array}$$

The Map *I*

In the reverse direction, consider a subset X ⊆ Aⁿ_k.
Define an ideal

$$I(X) := \{ f \in A : f(P) = 0, \text{ for all } P \in X \}.$$

• We now have a map

$$\begin{array}{rcl} I: \{ \text{subsets of } \mathbb{A}_k^n \} & \to & \{ \text{ideals in } A \}, \\ X & \mapsto & I(X). \end{array}$$

On the Injectivity and Surjectivity of V and I

The map V is not injective.
 Example: For all k ≥ 1, we have

$$V(x_1,\ldots,x_n)=V(x_1^k,\ldots,x_n^k).$$

The map I is neither injective nor surjective.
 Example: In the case of A¹_k, we have

$$I(\mathbb{Z}) = I(\mathbb{A}^1_k) = (0).$$

For $n \ge 2$, the ideal (x^n) is not in the image of *I*.

• As a corollary of Hilbert's Nullstellensatz, we will see that, when restricted to certain subclasses of ideals and algebraic sets, respectively, V and I become mutually inverse bijections.

Properties of the Map V

Lemma

The map V satisfies the following:

- (1) $V(0) = \mathbb{A}_k^n$, $V(A) = \emptyset$;
- (2) $I \subseteq J \Rightarrow V(J) \subseteq V(I);$

(3)
$$V(J_1 \cap J_2) = V(J_1) \cup V(J_2);$$

4)
$$V(\sum_{\lambda \in \Lambda} J_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(J_{\lambda}).$$

• The only nontrivial statement is (3).

- ⊇: Let $P \in V(J_1) \cup V(J_2)$. We may assume that $P \in V(J_1)$. Then, for any $g \in J_1 \cap J_2$, we have g(P) = 0. It follows that $P \in V(J_1 \cap J_2)$.

Composing I and V

Lemma

The maps I and V have the following properties:

(1)
$$X \subseteq Y \Rightarrow I(X) \supseteq I(Y);$$

- (2) For every subset X ⊆ Aⁿ_k, we have X ⊆ V(I(X)).
 Equality holds if and only if X is algebraic.
- (3) If $J \subseteq A$ is an ideal, then $J \subseteq I(V(J))$.
 - Statements (1) and (3) are obvious. The relationship X ⊆ V(I(X)) is also clear. Suppose X = V(I(X)). Then X is algebraic by definition. Conversely, suppose X is closed. Then X = V(J₀), for some ideal J₀. In particular, J₀ ⊆ I(X). So V(I(X)) ⊆ V(J₀) = X.

Example

• In general

$$J \subseteq I(V(J))$$

is a strict inclusion.

• Consider

$$J = (x_1^k, \dots, x_n^k), \quad k \ge 2.$$

• Then

$$I(V(J)) = (x_1, \ldots, x_n).$$

Radical Ideals

Definition (Radical Ideal)

For an ideal J in a ring R, the radical of J is defined by

$$\sqrt{J} := \{r : \text{there exists } k \ge 1, \text{ with } r^k \in J\}.$$

We call an ideal J a radical ideal if $J = \sqrt{J}$.

- It follows from the binomial theorem that \sqrt{J} is an ideal.
- Clearly, we always have $J \subseteq \sqrt{J}$.
- Any ideal of the form I(X) is automatically a radical ideal.
- So radical ideals play a significant role in the relationship between ideals and varieties.

Prime Ideals are Radical

 Consider a prime ideal J in a ring R. This means that, for all x, y ∈ R,

$$xy \in J$$
 implies $x \in J$ or $y \in J$.

In particular, for all $x \in R$ and all $k \ge 1$,

$$x^k \in J$$
 implies $x \in J$.

Now, let $x \in \sqrt{J}$. Then $x^k \in J$, for some $k \ge 1$. Hence, $x \in J$. This shows that $\sqrt{J} \subseteq J$. Therefore, J is radical.

The Zariski Topology

- Algebraic sets are called **Zariski closed** because they satisfy the axioms for the closed sets of a topology.
- The associated topology on \mathbb{A}_{k}^{n} is called the **Zariski topology**.
- A subset of \mathbb{A}_k^n is called **Zariski open** if its complement is Zariski closed.
- The Zariski topology is very different from the topology studied in real or complex analysis.
- E.g., the Zariski topology is not Hausdorff.
- The Zariski topology on \mathbb{A}_{k}^{n} induces a topology on every subset of \mathbb{A}_{k}^{n} .

Example

- Consider the Zariski topology on \mathbb{A}^1_k .
- The empty set and \mathbb{A}^1_k are simultaneously open and closed.
- Since k is algebraically closed, every ideal J⊆k[x] is a principal ideal.
 It can be written as

$$J=((x-a_1)\cdots(x-a_n)).$$

- Thus, the Zariski closed subsets of \mathbb{A}^1_k , different from \emptyset and \mathbb{A}^1_k , are precisely the finite subsets.
- Hence, every nonempty Zariski open subset of \mathbb{A}^1_k is dense.

Irreducible Algebraic Sets

Definition (Irreducible Algebraic Set)

An algebraic subset X is called irreducible if there is no decomposition

$$X = X_1 \cup X_2, \quad X_1, X_2 \subsetneq X$$

into proper algebraic subsets X_1, X_2 . Otherwise X is called **reducible**.

Example: Consider the subset

$$V(x_1x_2) \subseteq \mathbb{A}_k^2.$$

It is reducible, since

$$V(x_1x_2) = V(x_1) \cup V(x_2).$$

$$V(x_1)$$

Irreducible Algebraic Sets and Prime Ideals

Proposition

Let $X \neq \emptyset$ be an algebraic set, with corresponding ideal I(X). Then X is irreducible if and only if I(X) is a prime ideal.

• Assume *X* is reducible.

Then, there is a decomposition

$$X = X_1 \cup X_2,$$

for some algebraic subsets $X_1, X_2 \subsetneq X$. Since $X_1 \subsetneq X$, there exists $f \in I(X_1) \setminus I(X)$. Since $X_2 \subsetneq X$, there exists $g \in I(X_2) \setminus I(X)$. Thus, fg vanishes on $X_1 \cup X_2 = X$. So $fg \in I(X)$. This shows that I(X) is not prime.

Irreducible Algebraic Sets and Prime Ideals (Cont'd)

• Suppose that I(X) is not prime.

Then, there exist $f, g \in A$, with $fg \in I(X)$, but $f, g \notin I(X)$. Let

 $J_1 := (I(X), f)$ and $J_2 := (I(X), g)$.

Then $X_1 = V(J_1)$ and $X_2 = V(J_2)$ are proper subsets of X. On the other hand, for $P \in X$ we have fg(P) = 0. So f(P) = 0 or g(P) = 0. This implies that $P \in X_1$ or $P \in X_2$. It follows that $X \subseteq X_1 \cup X_2$. Thus X is reducible.

Noetherian Rings

- Let R be a ring.
- An ascending chain

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_n \subseteq \cdots$$

of ideals in R is stationary if, for some n_0 , we have

$$I_{n_0+k} = I_{n_0}, \quad \text{for all } k \ge 0.$$

• A ring *R* is **Noetherian** if and only if it satisfies the **ascending chain condition** (acc), namely, every ascending chain

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_n \subseteq \cdots$$

of ideals becomes stationary.

• The ring $A = k[x_1, ..., x_n]$ is a Noetherian ring.

Descending Chain of Algebraic Sets

• Consider a descending chain of algebraic sets

$$X_1 \supseteq X_2 \supseteq \cdots \supseteq X_n \supseteq \cdots.$$

• We have a corresponding ascending chain of ideals,

 $I(X_1) \subseteq I(X_2) \subseteq \cdots \subseteq I(X_n) \subseteq \cdots$.

- Suppose $X_n \supseteq X_{n+1}$ is a proper inclusion.
- Since X_n and X_{n+1} are algebraic sets,

 $I(X_n) \subsetneq I(X_{n+1})$

is also a proper inclusion.

• But the ring $A = k[x_1, ..., x_n]$ is Noetherian.

Thus, every descending sequence of closed sets becomes stationary.

Noetherian Topological Spaces

- A topological space in which every descending sequence of closed sets becomes stationary is called a **Noetherian topological space**.
- Thus, the Zariski topological space Aⁿ_k is a Noetherian topological space.
- It follows from the axiom of choice that every nontrivial system Σ of algebraic sets in Aⁿ_k has a minimal element (an element X ∈ Σ, such that, there is no Y ∈ Σ, with Y ⊆ X.)

Irreducible Components

Proposition

Every algebraic set $X \subseteq \mathbb{A}_{k}^{n}$ has a decomposition

$$X = X_1 \cup \cdots \cup X_r,$$

where:

• The X_i are irreducible algebraic sets;

•
$$X_i \not\subseteq X_j$$
, for $i \neq j$.

This decomposition is unique up to the order of the factors.

- The X_i are called the **irreducible components** of X.
- First we show the existence of such a decomposition.
 Let Σ be the set of all algebraic sets not having such a representation.
 Suppose, to the contrary, that Σ ≠ Ø.

Irreducible Components (Cont'd)

 Then, Σ has a minimal element X, which is reducible. Thus, there exist X₁, X₂ ⊊ X with X = X₁ ∪ X₂. Since X is a minimal element of Σ, it follows that X₁, X₂ ∉ Σ. Thus, X₁ and X₂ can be decomposed into a union of irreduci

Thus, X_1 and X_2 can be decomposed into a union of irreducible components.

This means that X also has such a decomposition.

This contradicts $X \in \Sigma$.

It remains to show that such a decomposition is unique.

Irreducible Components (Uniqueness)

• Suppose there is another decomposition

 $X = Y_1 \cup \cdots \cup Y_\ell.$

with Y_i irreducible and $Y_i \nsubseteq Y_j$, for $i \neq j$. Then

$$X_i = X_i \cap X = \bigcup_{m=1}^{\ell} (X_i \cap Y_m).$$

Since X_i is irreducible, we have $X_i \cap Y_m = X_i$, for some m. In particular, $Y_m \supseteq X_i$.

By exchanging the roles of the two decompositions we can similarly show that for some j, we have $X_j \supseteq Y_m \supseteq X_i$.

Thus, i = j and $X_i = Y_m$.

• The proposition is true for any Noetherian topological space, since the proof only uses the fact that the Zariski topology is Noetherian.

George Voutsadakis (LSSU)

Characterization of Irreducible Subsets

Lemma

For a closed set $V \subseteq \mathbb{A}_{k}^{n}$, the following are equivalent:

- 1) V is irreducible.
- 2) For any two open sets $U_1, U_2 \neq \emptyset$ of V we have $U_1 \cap U_2 \neq \emptyset$.
- (3) Every open set $\emptyset \neq U \subseteq V$ is dense in V.
 - The equivalence of (1) and (2) follows from

$$U_1 \cap U_2 = \emptyset \quad \text{iff} \quad (V - U_1) \cup (V - U_2) = V.$$

On the other hand, by definition, a subset $U \subseteq V$ is dense if and only if it meets every nonempty open subset of V.

This gives the equivalence of (2) and (3).

Affine Varieties and Finite Generation

Definition (Affine Variety)

An affine variety (over k) is an affine algebraic set.

Definition (Finite Generation)

Let B be a subring of A.

- A is finitely generated over B (or finitely generated as a B-algebra) if there are finitely many elements a₁,..., a_n, such that A = B[a₁,...,a_n].
- (2) A is a finite B-algebra if there are finitely many elements $a_1, ..., a_n$ with $A = Ba_1 + \cdots + Ba_n$.

Example: The polynomial ring $k[x_1,...,x_n]$ is a finitely generated k-algebra, but not a finite k-algebra.

The Algebraic Foundation of the Nullstellensatz

Theorem

Let k be a field with infinitely many elements. Let $A = k[a_1, ..., a_n]$ be a finitely generated k-algebra. If A is a field, then A is algebraic over k.

For now, we give a brief heuristic argument.
 Suppose that t ∈ A is transcendental over k.

Then k[t] is a polynomial ring over k.

Now k has infinitely many elements.

By Euclid's Theorem, k[t] has infinitely many primes.

Suppose k(t) was generated over k by finitely many elements $r_i = \frac{p_i}{q_i}$. This is impossible, since there is a finite set of primes (the prime divisors of the q_i) which contains all primes in the denominator of any element constructed as a polynomial in the r_i .

• This argument can be made rigorous, but we will give a different proof.

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field. Let $A = k[x_1, ..., x_n]$. Then the following hold:

) Every maximal ideal $m \subseteq A$ is of the form

$$m=(x_1-a_1,\ldots,x_n-a_n)=I(P),$$

for some point $P = (a_1, \ldots, a_n) \in \mathbb{A}_k^n$.

- (2) If $J \subsetneq A$ is a proper ideal, then $V(J) \neq \emptyset$.
 - 3) For every ideal $J \subseteq A$, we have $I(V(J)) = \sqrt{J}$.
 - The crucial point is (2), which says that every nontrivial ideal has at least one point in its zero locus.
 - This explains the name of the theorem, which can be translated as the "theorem about the existence of zeros".

George Voutsadakis (LSSU)

Algebraic Geometry

Remark

- The result is clearly false for non algebraically closed fields.
- This is illustrated by the ideal

 $(x^2+1) \subsetneq \mathbb{R}[x].$

Proof of Hilbert's Nullstellensatz (1)

(1) First note that any ideal of the form $(x_1 - a_1, ..., x_n - a_n)$ is maximal. This follows from the fact that the evaluation map

$$k[x_1,\ldots,x_n] \to k; \quad f \mapsto f(P)$$

induces an isomorphism $k[x_1,...,x_n]/(x_1 - a_1,...,x_n - a_n) \cong k$. Note that, by a linear transformation, we may assume all a_i are zero. Then the map $f \mapsto f(0,...,0)$ simply maps f to its constant term. So its kernel is the set of functions with zero constant. These are precisely the functions divisible by x_i , for some i.

Proof of Hilbert's Nullstellensatz (1) (Cont'd)

Now suppose that m⊆k[x₁,...,x_n] is any maximal ideal in A. This implies that K := k[x₁,...,x_n]/m is a field. Moreover K is also a finitely generated k-algebra (generated by the residue classes x_i mod m). By the theorem, K is algebraic over k. By hypothesis, k is algebraically closed. So the natural map

$$\varphi: k \hookrightarrow k[x_1, \dots, x_n] \xrightarrow{\pi} k[x_1, \dots, x_n]/m = K$$

is an isomorphism between k and K. Let $b_i := x_i \mod m \in K$ and let $a_i := \varphi^{-1}(b_i)$. Then, for each *i*, we have $x_i - a_i \in \ker \pi = m$. So $(x_1 - a_1, \dots, x_n - a_n) \subseteq m$. But $(x_1 - a_1, \dots, x_n - a_n)$ is a maximal ideal. So we have the equality $(x_1 - a_1, \dots, x_n - a_n) = m$.

Proof of Hilbert's Nullstellensatz (2)

$$\{P\} = V(I(P)) \subseteq V(J).$$

This shows that V(J) is nonempty.

Proof of Hilbert's Nullstellensatz (3)

(3) This step is usually proved by Rabinowitsch's trick. Let J⊆ k[x₁,...,x_n] be an ideal and f ∈ I(V(J)). We want to show that f^N ∈ J, for some N. The trick is to introduce an additional variable t. We then define an ideal J_f ⊇ J by

$$J_f := (J, ft - 1) \subseteq k[x_1, \ldots, x_n, t],$$

We have

$$V(J_f) = \{Q = (a_1, ..., a_n, b) = (P, b) \in \mathbb{A}_k^{n+1} : P \in V(J), bf(P) = 1\}.$$

Projection onto the first *n* coordinates maps $V(J_f)$ to the subset of V(J) of points *P*, with $f(P) \neq 0$. But *f* is an element of I(V(J)). So $V(J_f) = \emptyset$.

Proof of Hilbert's Nullstellensatz (3)

Thus, by Part (2), J_f = k[x₁,...,x_n,t].
 In particular, 1 ∈ J_f.
 Thus, we can write

$$1 = \sum_{i=1}^{r} g_i f_i + g_0 (ft - 1) \in k[x_1, \dots, x_n, t],$$

for some $g_i \in k[x_1, ..., x_n, t]$ and $f_i \in J$. Let t^N be the highest power of t appearing in g_i , for $0 \le i \le r$. Multiplying by t^N gives

$$f^{N} = \sum_{i=1}^{r} G_{i}(x_{1}, \dots, x_{n}, ft) f_{i} + G_{0}(x_{1}, \dots, x_{n}, ft) (ft - 1),$$

where the $G_i = f^N g_i$ are polynomials in $x_1, ..., x_n, ft$. This equation holds in $k[x_1, ..., x_n, t]$.

George Voutsadakis (LSSU)

Proof of Hilbert's Nullstellensatz ((3) Cont'd)

We have

$$f^{N} = \sum_{i=1}^{r} G_{i}(x_{1}, \dots, x_{n}, ft) f_{i} + G_{0}(x_{1}, \dots, x_{n}, ft) (ft-1),$$

where the $G_i = f^N g_i$ are polynomials in $x_1, ..., x_n, ft$. Consider this equation modulo (ft - 1). That is, consider its reduction in the ring $k[x_1, ..., x_n, t]/(ft - 1)$. We obtain the relationship

$$f^N \equiv \sum h_i(x_1, \dots, x_n) f_i \mod (ft-1),$$

where $h_i(x_1,...,x_n) := G_i(x_1,...,x_n,1)$. The natural map $k[x_1,...,x_n] \rightarrow k[x_1,...,x_n,t]/(ft-1)$ is injective. So we must already have $f^N = \sum h_i(x_1,...,x_n)f_i$ in $k[x_1,...,x_n]$. Thus, $f^N \in J$.

George Voutsadakis (LSSU)

Bijections

Corollary

For
$$A = k[x_1, ..., x_n]$$
, the maps V and I

{ideals of A}
$$\stackrel{V,I}{\leftrightarrow}$$
 {subsets of \mathbb{A}_k^n

induce the following bijections:

Bijections (Cont'd)

• For every algebraic set $X \subseteq \mathbb{A}_k^n$, we have

V(I(X)) = X.

Conversely, by Hilbert's Nullstellensatz, Part (3), for every ideal J, we have

$$I(V(J)) = \sqrt{J}.$$

Thus we obtain the first bijection.

The second bijection follows from a preceding proposition.

The third follows from Hilbert's Nullstellensatz, Part (1).

Affine Hypersurfaces in \mathbb{A}_k^n

• An affine hypersurface in \mathbb{A}_k^n is an algebraic subset given by a single equation:

$$V(f) = \{P \in \mathbb{A}_{k}^{n} : f(P) = 0\}, \quad 0 \neq f \in k[x_{1}, \dots, x_{n}].$$

• If the prime decomposition of f is given by $f = f_1^{r_1} \cdots f_m^{r_m}$, then

$$\sqrt{(f)}=(f_1\cdots f_m).$$

- The ideal (f) is prime if and only if f is irreducible, that is, if m = 1 and $r_1 = 1$.
- Thus, we have the following bijection:

$$\left\{\begin{array}{c} \text{irreducible} \\ \text{hypersurfaces in } \mathbb{A}_k^n \end{array}\right\} \stackrel{1:1}{\longleftrightarrow} \{f \in k[x_1, \dots, x_n] : f \text{ irreducible}\}/k^*.$$

The Finite Algebra Lemma

Lemma

- Let $C \subseteq B \subseteq A$ be rings.
- (1) If *B* is a finite *C*-algebra and *A* is a finite *B*-algebra, then *A* is also a finite *C*-algebra.
- (2) If A a finite B-algebra, then A is integral over B, i.e., every element $x \in A$ satisfies an equation of the form

$$x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0} = 0, \quad b_{i} \in B.$$

(3) Conversely, if x ∈ A satisfies an equation of the above form, then B[x] is a finite B-algebra.

The Finite Algebra Lemma (Cont'd)

(1) Suppose

$$B=Cb_1+\cdots+Cb_m.$$

Suppose, also, that

$$A=Ba_1+\cdots+Ba_n.$$

Then

$$A = Ca_1b_1 + \dots + Ca_nb_m.$$

3) Suppose $x \in A$ satisfies an equation

$$x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0} = 0, \quad b_{i} \in B.$$

Then

$$x^n = -b_{n-1}x^{n-1} - \dots - b_1x + b_0.$$

So we have

$$B[x] = B + Bx + \dots + Bx^{n-1}$$

George Voutsadakis (LSSU)

The Finite Algebra Lemma (Cont'd)

(2) We prove this using a "determinant trick". Suppose that

$$A = Ba_1 + \dots + Ba_n.$$

Then, for any $x \in A$, we have $xa_i \in A$, for i = 1, ..., n. Thus, there are elements $b_{ij} \in B$, such that

$$xa_i = \sum_{j=1}^n b_{ij}a_j.$$

We get a single polynomial equation for x from these n linear equations:

- We express this in matrix notation;
- We take the determinant of the matrix.

The lat equation is equivalent to

$$\sum_{j=1}^n (x\delta_{ij}-b_{ij})a_j=0.$$

The Finite Algebra Lemma (Cont'd)

In matrix notation, it can be written as

$$Ma = 0,$$

where:

• *M* is the matrix given by $M := (x \delta_{ij} - b_{ij})_{i,j}$; • *a* is the column vector with transpose ${}^t a = (a_1, \dots, a_n)$. Let M^{adj} be the adjoint matrix of *M*. Then, since Ma = 0, det $Ma = M^{\text{adj}}Ma = 0$. Thus, det $Ma_i = 0$, for $i = 1, \dots, n$. But the a_i generate the *B*-algebra *A*. Hence det $M = \text{det}M \cdot 1 = 0$.

Expanding the determinant, we also have, for some $b_i \in B$,

$$\det M = x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0}.$$

Thus, x satisfies a polynomial equation with coefficients in B. So B[x] is a finite B-algebra.

Nakayama's Lemma

Definition (Monic Polynomial)

A polynomial $f \in B[x]$ is called **monic** if the coefficient of the leading term is 1.

Lemma (Nakayama's Lemma)

Let $A \neq 0$ be a finite *B*-algebra. Then, for all proper ideals *m* of *B* we have $mA \neq A$.

• Suppose A is a finite B-algebra. We can write

$$A=Ba_1+\cdots+Ba_n,$$

for some $a_i \in A$.

Nakayama's Lemma (Cont'd)

Suppose that

$$mA = A$$
.

Then, there exist $b_{ij} \in m$, $1 \le i, j \le n$, such that

$$a_i = \sum_{j=1}^n b_{ij} a_j, \quad 1 \le i \le n.$$

From this we can conclude that

$$\det(\delta_{ij}-b_{ij})=0.$$

Expanding the determinant shows that $1 \in m$, a contradiction.

Subrings over which Fields are Finite Algebras

Lemma

Let A be a field and $B \subseteq A$ a subring, such that A is a finite B-algebra. Then B is also a field.

• Let $0 \neq b \in B$.

Since A is a field, there exists $b^{-1} \in A$. We must show that b^{-1} lies in B. By Part (2) of the Finite Algebra Lemma, there exist $b_i \in B$, such that

$$b^{-n} + b_{n-1}b^{-(n-1)} + \dots + b_1b^{-1} + b_0 = 0.$$

Multiplication by b^{n-1} gives

$$b^{-1} = -(b_{n-1}+b_{n-2}b+\cdots+b_0b^{n-1}) \in B.$$

The Degree

• The degree of a monomial

 $x_1^{v_1}\cdots x_n^{v_n}$

is defined to be the sum $\sum v_i$.

• The **degree** of a polynomial is the maximum of the degrees of all its monomials terms.

The Univariate Leading Term Lemma

Lemma

Suppose that f is a nonzero element of $k[x_1,...,x_n]$, with $d = \deg f$. Then there is a change of variables

$$x_i' = x_i - \alpha_i x_n, \quad 1 \le i \le n - 1,$$

where $\alpha_1, \ldots, \alpha_{n-1} \in k$, such that

$$f(x'_1 + \alpha_1 x_n, \dots, x'_{n-1} + \alpha_n x_n, x_n) \in k[x'_1, \dots, x'_{n-1}, x_n]$$

has a term of the form cx_n^d , for some nonzero $c \in k$.

In fact "almost any" choice of α_i will work (see, also, below).
 Let

$$x_i' = x_i - \alpha_i x_n$$

for some $\alpha_i \in k$, $1 \le i \le n-1$.

The Univariate Leading Term Lemma (Cont'd)

• Since $d = \deg f$, we can write

$$f = F_d + G,$$

where:

- *F_d* is a sum of monomials of degree *d* (i.e., *F_d* is **homogeneous** of degree *d*);
- deg $G \leq d-1$.

Then we have

$$f(x'_1 + \alpha_1 x_n, \dots, x'_{n-1} + \alpha_{n-1} x_n, x_n) = F_d(\alpha_1, \dots, \alpha_{n-1}, 1) x_n^d + \text{terms of lower order in } x_n.$$

Now $F_d(\alpha_1,...,\alpha_{n-1},1)$ is a nonzero polynomial in $\alpha_1,...,\alpha_{n-1}$. So its zero set is not \mathbb{A}_k^{n-1} (k has infinitely many elements). This means we can choose $\alpha_1,...,\alpha_{n-1} \in k$ with

$$F_d(\alpha_1,\ldots,\alpha_{n-1},1)\neq 0.$$

This completes the proof, since then $c = F_d(\alpha_1, ..., \alpha_{n-1}, 1) \neq 0$.

Noether Normalization

• *Noether normalization* relates the geometric idea of dimension to the algebraic structure of the coordinate ring of a variety.

Theorem (Noether Normalization)

Let k be an infinite field. Let $A = k[a_1,...,a_n]$ be a finitely generated k-algebra. Then there exist $y_1,...,y_m \in A$, with $m \le n$, such that:

- (1) y_1, \ldots, y_m are algebraically independent over k;
- (2) A is a finite $k[y_1,...,y_m]$ -algebra.
 - The fact that y₁,..., y_m are algebraically independent (i.e., they do not satisfy any polynomial equation with coefficients in k), is equivalent to the statement that the map from the polynomial ring k[t₁,...,t_m] in m variables over k to k[y₁,...,y_m], given by t_i → y_i, is an isomorphism.

Proof of Noether Normalization

• We use induction on *n*.

Let $k[x_1,...,x_n]$ be the polynomial ring over k in n variables. Let

$$I := \ker(k[x_1,\ldots,x_n] \to k[a_1,\ldots,a_n] = A)$$

be the kernel of the homomorphism given by $x_i \mapsto a_i$.

- Suppose I = 0.
 We can take m = n and y₁ = a₁,..., y_n = a_n.
 Then Statements (1) and (2) hold.
- Suppose $l \neq 0$.

Then there is some nonzero element $f \in I$.

- If n = 1, then we have f(a₁) = 0. The result follows from Part (3) of the Finite Algebra Lemma, with m = 0. That is, the set of y_i is empty.
- Suppose, next, that n > 1.
 Assume the result holds for n−1.

Proof of Noether Normalization

• By the preceding lemma, there exist $\alpha_1, \ldots, \alpha_{n-1} \in k$, such that, setting $a'_i = a_i - \alpha_i a_n$ and $A' := k[a'_1, \ldots, a'_{n-1}] \subseteq A$, we have that, for some nonzero constant $c \in k$,

$$F(x_n) := \frac{1}{c} f(a'_1 + \alpha_1 x_n, \dots, a'_{n-1} + \alpha_{n-1} x_n, x_n)$$

is a monic polynomial in $A'[x_n]$, and $F(a_n) = 0$.

By Part (3) of the Finite Algebra Lemma, a_n is integral over A'. By the inductive hypothesis, there are $y_1, \ldots, y_m \in A'$, such that:

- (1) y_1, \ldots, y_m are algebraically independent over k;
- (2) A' is a finite $k[y_1,...,y_m]$ -algebra.

By Part (3) of the Finite Algebra Lemma, $A = A'[a_n]$ is a finite A'-algebra. Then, by Part (1) of the Finite Algebra Lemma, A is a finite $k[y_1, \ldots, y_m]$ -algebra.

General Set of Linear Forms With Respect to a Property

- In the proof, the collection of *m*-tuples of linear forms in a_1, \ldots, a_n forms an affine space \mathbb{A}_k^{nm} .
- So the successive linear changes of variables given by the preceding lemma can all be taken to be "general".
- Consequently, y_1, \ldots, y_m can be taken to be any "general" choice of linear forms in a_1, \ldots, a_n .
- To say that a set of linear forms is general with respect to some property, or in general satisfies the property, means that, there is a Zariski open subset of A^{nm}_k, such that, for any point in this set, the corresponding set of linear forms satisfies the given property.
- That is, the property is true for a dense set of linear forms, or, colloquially, "in general".

Fields that are Finitely Generated Algebras

Theorem

Let k be a field with infinitely many elements. Let $A = k[a_1, ..., a_n]$ be a finitely generated k-algebra. If A is a field, then A is algebraic over k.

• Let $A = k[a_1, ..., a_n]$ be a finitely generated k-algebra. Suppose that A is a field.

By Noether Normalization, we get $y_1, \ldots, y_m \in A$, for some $m \le n$, such that, setting

$$B = k[y_1, \ldots, y_m] \subseteq A,$$

we have that A is a finite B-algebra. By a preceding lemma, B is a field. This can only be the case if m = 0. So A is a finite extension of k. Thus, A is algebraic over k.

Geometric Meaning of Noether Normalization

• Let $X \subseteq \mathbb{A}_k^n$ be a variety.

For simplicity we assume X to be irreducible.

I.e., we assume that the ideal $I = I(X) \subseteq k[x_1,...,x_n]$ is prime. We consider the ring

$$A = k[a_1,\ldots,a_n] = k[x_1,\ldots,x_n]/I,$$

where $a_i := x_i \mod I$.

Later A will be termed the **coordinate ring** of X.

By Noether Normalization, there exist algebraically independent linear forms y_1, \ldots, y_m in a_1, \ldots, a_n (which can be taken to be general), such that A is a finite $k[y_1, \ldots, y_m]$ -algebra.

Geometric Meaning of Noether Normalization (Cont'd)

• The linear forms obtained from Noether Normalization lift (nonuniquely) to linear forms $\overline{y}_1, \dots, \overline{y}_m$ in x_1, \dots, x_n , where

 $\overline{y}_i = y_i \mod I.$

The forms $\overline{y}_1, \dots, \overline{y}_m$ define a linear projection

$$\pi := (\overline{y}_1, \dots, \overline{y}_m) : \mathbb{A}_k^n \to \mathbb{A}_k^m.$$

By restricting $\overline{y}_1, \ldots, \overline{y}_m$ to X, we obtain a map

$$\phi := \pi \mid_X : X \to \mathbb{A}_k^m.$$

On X we have

$$y_i |_X = \overline{y}_i |_X$$
.

So ϕ is independent of the choice of lifts \overline{y}_i .

Finiteness of the Fibers of ϕ

Proposition

Suppose $k = \overline{k}$. Let ϕ be the mapping of the preceding slide. Then, for every point $P \in \mathbb{A}_{k}^{m}$, the fiber $\phi^{-1}(P)$ is finite and nonempty.

• We first show that $\phi^{-1}(P)$ is finite.

By Part (2) of the Finite Algebra Lemma, there exist an integer N and polynomials f_0^i, \ldots, f_{N-1}^i , for $1 \le i \le n$, such that for $i = 1, \ldots, n$, we have

$$a_i^N + f_{N-1}^i(y_1, \dots, y_m)a_i^{N-1} + \dots + f_0^i(y_1, \dots, y_m) = 0.$$

This means that, with I = I(X), we have, for some $g_i \in I$,

$$x_i^N + f_{N-1}^i(\overline{y}_1, \ldots, \overline{y}_m) x_i^{N-1} + \cdots + f_0^i(\overline{y}_1, \ldots, \overline{y}_m) = g_i(x_1, \ldots, x_n).$$

Finiteness of the Fibers of ϕ (Cont'd)

• For
$$I = I(X)$$
, we have, for some $g_i \in I$,

$$x_i^N + f_{N-1}^i(\overline{y}_1, \dots, \overline{y}_m) x_i^{N-1} + \dots + f_0^i(\overline{y}_1, \dots, \overline{y}_m) = g_i(x_1, \dots, x_n).$$

Suppose $(x_1,...,x_n) \in X$. Then $g_i(x_1,...,x_n) = 0$. So x_i is a solution of the equation $f^i(x) = 0$, where

$$f^{i}(x) := x^{N} + f^{i}_{N-1}(y_{1}, \dots, y_{m})x^{N-1} + \dots + f^{i}_{0}(y_{1}, \dots, y_{m}).$$

Since *I* is prime, $A = k[a_1, ..., a_n]$ is an integral domain. So it has a field of fractions $k(a_1, ..., a_n)$. We can thus consider $f^i(x) \in k(a_1, ..., a_n)[x]$. By the Fundamental Theorem of Algebra, there are only a finite number of solutions x_i^0 to $f^i(x) = 0$. Thus, for any point $\mathbf{y} = (y_1, ..., y_m) \in \mathbb{A}_k^m$, we have only finitely many points $\mathbf{x} = (x_1^0, ..., x_n^0) \in X$, with $\phi(\mathbf{x}) = \mathbf{y}$.

Nonemptiness of the Fibers of ϕ

Finally, we show that φ⁻¹(P) is always nonempty.
 It is enough to show that for every point P = (b₁,..., b_m) ∈ A^m_k,

$$I_P := I + (y_1 - b_1, \dots, y_m - b_m) \neq k[x_1, \dots, x_n].$$

Then Hilbert's Nullstellensatz implies that $\phi^{-1}(P) = V(I_P) \neq \emptyset$. The displayed condition is equivalent to

$$(y_1-b_1,\ldots,y_m-b_m)\neq k[a_1,\ldots,a_n].$$

Now $(y_1 - b_1, \dots, y_m - b_m)$ is a maximal ideal in $k[y_1, \dots, y_m]$. In particular, it is a proper ideal.

So the condition follows from Nakayama's Lemma, with

$$B = k[y_1,\ldots,y_m], \quad A = k[a_1,\ldots,a_n], \quad m = (y_1 - b_1,\ldots,y_m - b_m).$$

Example

Let

$$f = x_1 x_2 + x_2 x_3 + x_3 x_1 \in k[x_1, x_2, x_3].$$

For the quadric hypersurface $S := V(f) \subseteq \mathbb{A}_k^2$, we have

$$A = k[x_1, x_2, x_3]/(f).$$

We use the notation

$$a_i := x_i \mod (f), \quad i = 1, 2, 3.$$

In the proof of Noether Normalization, since f does not contain any terms of the form x_i^m , we must make a change of variables.

Example (Cont'd)

• E.g., let

$$z = x_2 + x_1$$
.

Then we have

$$f = z(x_1 + x_3) - x_1^2.$$

Now A is algebraic over $k[a_1 + a_2, a_3]$. Moreover, the corresponding map ϕ is given by

$$\phi: S \to \mathbb{A}_k^2, (x_1, z, x_3) \mapsto (z, x_3)$$

The fiber

$$\phi^{-1}(a,b) = \{(x,a,b) : x^2 - ax - ab\}$$

consists of at most 2 points.

Example (Cont'd)

• *S* contains the coordinate axes.

So for any choice of $1 \le i < j \le 3$, the projection to the x_i, x_j plane,

$$\begin{array}{rccc} S & \to & \mathbb{A}_k^2, \\ (x_1, x_2, x_3) & \mapsto & (x_i, x_j), \end{array}$$

has an infinite fiber over (0,0). Similarly, suppose $(a, b, c) \in S$. Then S contains the line $L := \{(\lambda a, \lambda b, \lambda c) : \lambda \in k\}$. Thus, the projection

$$(x_1, x_2, x_3) \mapsto (bx_1 - ax_2, cx_1 - ax_3)$$

maps L to (0,0). However, there is a dense set of hyperplanes such that the corresponding projection has finite fibers.

George Voutsadakis (LSSU)

Algebraic Geometry

Fields of Positive Characteristic

• The characteristic of a field k, char(k), is the minimal prime p, such that

$$p \cdot 1 = \underbrace{1 + \dots + 1}_{p \text{ times}} = 0,$$

• The characteristic is 0 if there is no such prime.

Example: For any prime p, the field $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ and its algebraic closure both have positive characteristic p.

The field ${\mathbb C}$ and its subfields all have characteristic 0.

Separability

Definition

A nonconstant irreducible polynomial

$$f = a_n x^n + \dots + a_1 x + a_0 \in k[x]$$

is called separable if the formal derivative is nonzero, that is,

$$f' = na_n x^{n-1} + \dots + a_1 \neq 0.$$

Otherwise *f* is called **inseparable**.

An arbitrary polynomial is called **separable** if every factor is separable. An irreducible polynomial

$$f \in k[x_1, \dots, x_n]$$

is called **separable with respect to** x_i if the formal derivative with respect to this variable is nonzero.

George Voutsadakis (LSSU)

Remarks

- Clearly all polynomials over a field of characteristic 0 are separable.
- An irreducible polynomial f ∈ k[x] over a field of characteristic p is inseparable if and only if

$$f(x) = g(x^p)$$
, for some $g \in k[x]$.

- E.g., f(x) = x^p − t ∈ 𝔽_p(t)[x] is an irreducible inseparable polynomial in characteristic p.
- In characteristic p the Frobenius identity $a^p + b^p = (a+b)^p$ implies that if k is algebraically closed then we can write

$$f(x) = g(x^p) = h(x)^p,$$

where h(x) is obtained from g(x) by replacing all coefficients by their *p*-th roots.

Separable Elements and Separable Extensions

Definition (Separable Elements)

Suppose K/k is a field extension and $x \in K$ is algebraic over k. Then x is called **separable** over k, if the minimal polynomial of x is separable over k. Otherwise x is called **inseparable**.

Definition (Separable Extensions)

An algebraic extension K/k is called **separable** if all elements of K are separable over k.

Noether Normalization for Positive Characteristic

Proposition

Let k be an algebraically closed field. Let $A = k[a_1,...,a_n]$ be an integral domain with field of fractions K. Then there are $y_1,...,y_m \in A$, such that:

- (1) y_1, \ldots, y_m are algebraically independent over k;
- (2) A is a finite $k[y_1, \ldots, y_m]$ -algebra;
 - 3) K is a separable extension of $k(y_1, ..., y_m)$.
 - In characteristic 0 all algebraic extensions are separable.
 So assume that the characteristic p of k is positive.
 Let x_i be algebraically independent over k.
 Define a map π : k[x₁,...,x_n] → k[a₁,...,a_n] by setting π(x_i) = a_i.
 Since A is an integral domain, the ideal I := ker(π) is prime.
 In particular, we can choose an irreducible element f ∈ I.
 Suppose that f has degree d.

George Voutsadakis (LSSU)

Algebraic Geometry

Normalization for Positive Characteristic (Cont'd)

• By a preceding lemma, there is a change of variables of the form

$$\widetilde{x}_i = x_i + \alpha_i x_n,$$

such that $\tilde{f}(\tilde{x}_1, \tilde{x}_2, ...) = f(x_1, x_2, ..., x_n)$ has a term of the form $c(\tilde{x}_n)^d$. Note that if f has a term of the form cx_i^d , then \tilde{f} has a term of the form $c(\tilde{x}_i)^d$.

Exchanging the role of x_n with x_j , for j = 1, ..., n-1, we can make a sequence of changes of variables to obtain a polynomial in $\tilde{x}_1, ..., \tilde{x}_n$, where

$$\widetilde{x}_i = x_i + \sum_{\substack{j=1\\j\neq i}}^{\prime\prime} \beta_{ij} x_j,$$

for some constants β_{ij} , $1 \le i, j \le n$, $i \ne j$, such that, for each *i*, as a polynomial in \tilde{x}_i over $k[\{x_j : j \ne i\}]$, the leading term is of the form $c_i(\tilde{x}_i)^d$, for some nonzero $c_i \in k$.

Normalization for Positive Characteristic (Cont'd)

- Now *f* is irreducible.
 - So $k[x_1,...,x_n]/(f)$ is an integral domain. The change of variables induces an isomorphism

$$k[x_1,\ldots,x_n]/(f) \cong k[\widetilde{x}_1,\ldots,\widetilde{x}_n]/(\widetilde{f}).$$

Hence, $k[\tilde{x}_1,...,\tilde{x}_n]/(\tilde{f})$ is also an integral domain. Thus \tilde{f} is also irreducible.

But $k[\widetilde{x}_1,\ldots,\widetilde{x}_n] = k[x_1,\ldots,x_n].$

So we can replace x_i by \tilde{x}_i and f by \tilde{f} .

So we may assume that f is irreducible and has a leading term of the form $c_i(x_i)^d$, for $c_i \in k$, with respect to each variable.

Normalization for Positive Characteristic (Induction)

Claim: f is separable with respect to at least one variable x_i . Otherwise we would have $f \in k[x_1,...,x_i^p,...,x_n]$, for all i. So there would be polynomials g and h with

$$f = g(x_1^p, \ldots, x_n^p) = h(x_1, \ldots, x_n)^p.$$

This would contradict the irreducibility of f.

Thus, we may assume that f is separable with respect to x_n . We view the equation

$$f(a_1,\ldots,a_{n-1},a_n)=0$$

as a separable equation for a_n over the field of fractions of $A' = k[a_1, ..., a_{n-1}]$.

Now we apply an inductive argument.

We need to use the fact that the composition of two separable extensions is again a separable extension.

George Voutsadakis (LSSU)

Algebraic Geometry

Theorem of the Primitive Element

Theorem (Theorem of the Primitive Element)

Let *K* be a field with infinitely many elements. Let $L \supseteq K$ be a finite separable extension. Then there is an element $x \in L$, with L = K(x). Moreover, if *L* is generated over *K* by a finite set of elements z_1, \ldots, z_n , then *x* can be chosen to be an element of the form $x = \sum \alpha_i z_i$, with $\alpha_i \in K$.

• Let $K \subseteq M$ be the normal closure of L over K.

Then $K \subseteq M$ is a finite Galois extension.

By the Fundamental Theorem of Galois Theory, there are only finitely many fields between K and M.

The fields $\{K_i\}$ between K and L form finitely many K-subspaces of the vector space L.

If K has infinitely many elements, then there exists $x \in L$ which does not lie in the union of the K_i .

Then L = K(x).

Theorem of the Primitive Element (Cont'd)

Suppose z₁,..., z_n generate L.
 Then they cannot all be contained in any single K_i.
 So, there is some linear combination

$$x = \sum \alpha_i z_i$$

which is not contained in any K_i . Hence L = K(x).

Additional Result on Noether Normalization

Corollary

Let k be an algebraically closed field. Let $A = k[a_1,...,a_n]$ be an integral domain with field of fractions K. Then there exist $y_1,...,y_{m+1} \in A$, such that:

- (1) y_1, \ldots, y_m are algebraically independent over k;
- (2) A is a finite $k[y_1, \ldots, y_m]$ -algebra;
- (3) K is a separable extension of $k(y_1, \ldots, y_m)$;
- (4) The field of fractions K of A is generated over k by y_1, \ldots, y_{m+1} .
 - By the preceding proposition, we can assume K is a separable field extension of $k(y_1, ..., y_m)$.

Additional Result on Noether Normalization (Cont'd)

- By hypothesis $A = k[a_1, ..., a_n]$.
 - So the a_i generate K as a field extension of $k(y_1,...,y_m)$.

By the theorem, we can write y_{m+1} as a linear combination of the a_i with coefficients in $k(y_1, \ldots, y_m)$.

Multiply this linear equation through by the common denominator. We then obtain an expression for y_{m+1} as a linear combination of the a_i with coefficients in $k[y_1, ..., y_m]$.

A Geometric Interpretation

• The corollary means the extension $k \subseteq K$ can be decomposed as

$$k \subseteq K_0 = k(y_1, \ldots, y_m) \subseteq K = K_0(y_{m+1}),$$

where:

- The first extension is purely transcendental;
- The second is a *primitive* algebraic extension.
 That is, an algebraic extension generated by a single element.
- In other words, $K = k(y_1, ..., y_{m+1})$, where there is only one algebraic relation between the y_i .
- Geometrically:
 - If y_i are the coordinates of \mathbb{A}^{n+1} , then this relation describes a hypersurface in \mathbb{A}^{n+1} .
 - Thus, the displayed decomposition means that every irreducible variety is "almost" isomorphic to a hypersurface.

Subsection 2

Polynomial Functions and Maps

Polynomial Functions on Varieties

• Let V denote an affine variety in \mathbb{A}_k^n .

Definition (Polynomial Function)

A polynomial function on V is a map $f: V \to k$, such that, there exists a polynomial $F \in k[x_1, ..., x_n]$, with

$$f(P) = F(P)$$
, for all $P \in V$.

- The polynomial *F* is not uniquely determined by the values it takes on *V*.
- In particular, for F and $G \in k[x_1, ..., x_n]$, we have

$$F|_{V} = G|_{V} \quad \text{iff} \quad (F - G)|_{V} = 0$$

iff
$$F - G \in I(V).$$

The Coordinate Ring of a Variety

Definition (Coordinate Ring)

The coordinate ring of V is defined by

$$k[V] := k[x_1, \ldots, x_n]/I(V).$$

• From preceding remarks we can make the following identification:

 $k[V] = \{f : f : V \rightarrow k \text{ is a polynomial function}\}.$

• We also have

V is irreducible iff k[V] is an integral domain.

- The coordinate functions $x_1, ..., x_n$ generate k[V].
- This explains the terminology "coordinate ring".

Correspondence Between Sets and Ideals

- The ring k[V] plays the same role for V that $k[x_1,...,x_n]$ plays for \mathbb{A}_k^n .
- In particular, there is a correspondence between:
 - The closed sets W contained in V;
 - The ideals of k[V].
- The projection π: k[x₁,...,x_n] → k[V] = k[x₁,...,x_n]/I(V) induces a bijection

$$\{\text{ideals } J \subseteq k[x_1, \dots, x_n] : J \supseteq I(V)\} \xleftarrow{1:1} \{\text{ideals } J' \subseteq k[V]\}.$$

It is defined by

 $J \mapsto J/I(V).$

Its inverse map is

$$J' \mapsto \pi^{-1}(J').$$

Correspondence Between Sets and Ideals (Cont'd)

• This mapping preserves radical ideals, prime ideals and maximal ideals,

• Closed sets of V in the topology induced by the Zariski topology on \mathbb{A}_{k}^{n} are the same as those defined by taking the closed sets of V to be sets of the form V(J), where J is a radical ideal in k[V].

Properties of Coordinate Rings

Definition (Reduced Algebra)

An algebra A is **reduced** if A contains no nilpotent elements. That is, for $x \in A$,

 $x^n = 0$, for some $n \ge 1$, implies x = 0.

- The algebra $k[x_1,...,x_n]/I$ is reduced if and only if I is a radical ideal.
- Since I(V) is a radical ideal, the coordinate ring is a reduced algebra.
- By construction, the coordinate ring k[V] of an affine variety V is a finitely generated k-algebra.

Characterization of Coordinate Rings

- Being finitely generated and reduced characterize coordinate rings of varieties.
- Let A be a finitely generated reduced k-algebra.
- We can construct a corresponding algebraic variety as follows.
- Choosing generators a_1, \ldots, a_n , we can write

$$A = k[a_1, \ldots, a_n].$$

• We then have a surjective homomorphism

$$\pi: \quad k[x_1, \dots, x_n] \quad \to \quad A = k[a_1, \dots, a_n]$$
$$x_i \quad \mapsto \quad a_i.$$

- Let $I = \ker(\pi)$. Then V = V(I) is a variety.
- It is irreducible if and only if A is an integral domain.
- Since A is reduced, I is a radical ideal. So I(V) = I.
- By construction A = k[V].

• Consider the usual parabola

$$C_0 = \{ (x, y) \in \mathbb{A}_k^2 : y - x^2 = 0 \}.$$

We have

$$k[C_0] = k[x,y]/(y-x^2) \cong k[x] \cong k[\mathbb{A}^1_K].$$

• Consider the semicubical parabola, given by

$$C_1 = \{ (x, y) \in \mathbb{A}_k^2 : y^2 - x^3 = 0 \}.$$

We have

$$k[C_1] = k[x, y]/(y^2 - x^3).$$

• Notice that $k[C_1]$ is not a UFD.

Example (Cont'd)

• C₀ has a rational parametrization

$$t\mapsto (t,t^2).$$

• C₁ has a rational parametrization,

$$t\mapsto (t^2,t^3).$$

- So there are bijections between each of C_0 and C_1 and \mathbb{A}^1_k .
- However, as algebraic varieties C_0 and C_1 behave differently.
- We will see that C_0 is isomorphic to \mathbb{A}^1_k , but C_1 is not.

Polynomial Maps

- Let $V \subseteq \mathbb{A}_k^n$ and $W \subseteq \mathbb{A}_k^m$ be closed sets.
- Denote by x_i , for $1 \le i \le n$, the coordinate functions on \mathbb{A}_k^n .
- Denote by y_j , for $1 \le j \le m$, the coordinate functions on \mathbb{A}_k^m .

Definition (Polynomial Map)

A map $f: V \to W$ is called a **polynomial map** if there are polynomials $F_1, \ldots, F_m \in k[x_1, \ldots, x_n]$, such that

$$f(P) = (F_1(P), \ldots, F_m(P)) \in W \subseteq \mathbb{A}_k^m,$$

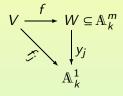
for all points $P \in V$.

A Characterization of Polynomial Maps

Lemma

Let y_1, \ldots, y_m be the coordinate functions on \mathbb{A}_k^m . A map $f: V \to W$ is a polynomial map if and only if $f_j := y_j \circ f \in k[V]$, for $j = 1, \ldots, m$.

• Composing f with y_j gives the projection onto the j-ih coordinate. Let $f_j = y_j \circ f$. Then if f is a polynomial map, we have $f_j(P) = F_j(P)$, for some $F_j \in k[x_1,...,x_n]$. Thus f_i is a polynomial map. So $f_i \in k[V]$.



Suppose, conversely, $f_j = y_j \circ f$ is a polynomial map, for every j. Then by definition, there are polynomials F_1, \ldots, F_m , such that $f(P) = (F_1(P), \ldots, F_m(P))$, for all $P \in V$.

• Thus, any polynomial map $f: V \to W$ can be written in the form $f = (f_1, ..., f_m)$, with $f_1, ..., f_m \in k[V]$.

Continuity of Polynomial Maps

Lemma

A polynomial map $f: V \rightarrow W$ is continuous in the Zariski topology.

We must show that if Z ⊆ W is closed, then f⁻¹(Z) is also closed.
 Suppose

$$Z=\{h_1=\cdots=h_r=0\}.$$

Then

$$f^{-1}(Z) = \{h_1 \circ f = \cdots = h_r \circ f = 0\}.$$

So $f^{-1}(Z)$ is also closed.

• We revisit the curves C₀ and C₁. Consider the maps:

•
$$f: \mathbb{A}_k^1 \to C_0; t \mapsto (t, t^2);$$

• $g: \mathbb{A}_k^1 \to C_1; t \mapsto (t^2, t^3).$

They are both bijective polynomial maps.

• Let y_1, \dots, y_m be linear forms in the variables x_1, \dots, x_n . The map

$$f = (y_1, \ldots, y_m) : \mathbb{A}_k^n \to \mathbb{A}_k^m$$

is a polynomial map.

We saw that, for every irreducible variety V, there is some integer m, such that, for a general choice of y_1, \ldots, y_m , the map $\phi = f |_V$ is surjective with finite fibers.

Composition of Polynomial Maps

- Let $V \subseteq \mathbb{A}_{k}^{n}$, $W \subseteq \mathbb{A}_{k}^{m}$ and $X \subseteq \mathbb{A}_{k}^{\ell}$ be algebraic sets.
- Let $f: V \to W$ and $g: W \to X$ be polynomial maps.
- Then $g \circ f : V \to X$ is also a polynomial map.
- This follows immediately from the fact that the composition of a polynomial with a polynomial is again a polynomial.

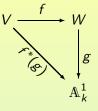
From a Map Between Varieties to One Between Functions

- Let $f: V \to W$ be a polynomial map.
- For $g \in k[W]$, define

 $f^*(g) := g \circ f.$

- g is a polynomial function.
- So $g \circ f$ is also a polynomial function.
- Thus, we have a map

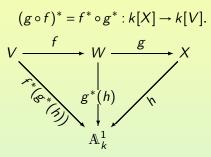
$$\begin{array}{rcl} f^*: & k[W] & \to & k[V]; \\ g & \mapsto & f^*(g) = g \circ f. \end{array}$$



Contravariant Functoriality of Star

• Let $f: V \to W$ and $g: W \to X$ be polynomial maps.

Then



• This follows immediately from the fact that, for $h \in k[X]$, we have

$$(g \circ f)^*(h) = h \circ (g \circ f) = (h \circ g) \circ f = g^*(h) \circ f = f^*(g^*(h)).$$

f* is a k-Algebra Homomorphism

• The map f^* is a ring homomorphism.

•
$$f^*(g_1 + g_2) = (g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f = f^*(g_1) + f^*(g_2);$$

• $f^*(g_1 \cdot g_2) = (g_1 \cdot g_2) \circ f = (g_1 \circ f) \cdot (g_2 \circ f) = f^*(g_1) \cdot f^*(g_2).$

• For any constant
$$c \in k$$
, we have $f^*(c) = c$.

- So f* is also a k-algebra homomorphism.
- Thus, every polynomial map $f: V \rightarrow W$ gives rise to a k-algebra homomorphism

$$f^*:k[W]\to k[V].$$

Every Algebra Homomorphism is of Form *f**

Proposition

Let $\varphi: k[W] \to k[V]$ be a k-algebra homomorphism. Then there exists a unique polynomial map $f: V \to W$, such that

$$\varphi = f^*$$
.

$$f_i := \varphi(\overline{y}_i) \in k[V], \quad i = 1, \dots, m.$$

Then $f := (f_1, \ldots, f_m) : V \to \mathbb{A}_k^m$ is a polynomial map.

Every Algebra Homomorphism is of Form f^* (Cont'd)

• First we show that $f(V) \subseteq W$. Suppose that $G = G(y_1, \dots, y_m) \in I(W)$. Then in k[W], we have $G(\overline{y}_1, \dots, \overline{y}_m) = 0$. Thus,

$$G(f_1,\ldots,f_m)=G(\varphi(\overline{y}_1),\ldots,\varphi(\overline{y}_m))=\varphi(G(\overline{y}_1,\ldots,\overline{y}_m))=0.$$

So $f(V) \subseteq W$. Next, we show that $\varphi = f^*$. The elements $\overline{y}_1, \dots, \overline{y}_m$ generate the *k*-algebra k[W]. So it is enough to show that $\varphi(\overline{y}_i) = f^*(\overline{y}_i) = f_i$. This is precisely the definition of the f_i . This also shows that $f = (f_1, \dots, f_m)$ is the unique polynomial map with $\varphi = f^*$.

A Bijection

Corollary

There is a bijection

$$\left\{ \begin{array}{c|c} f & f: V \to W \\ a \text{ polynomial map} \end{array} \right\} \xrightarrow{1:1} \left\{ \begin{array}{c|c} \varphi & \varphi: k[W] \to k[V] \\ a \text{ k-algebra hom.} \end{array} \right\}$$
$$f & \mapsto & f^*.$$

Isomorphisms

Definition (Isomorphism)

A polynomial map $f: V \to W$ is an **isomorphism** if there is a polynomial map $g: W \to V$, such that

$$f \circ g = \mathrm{id}_W$$
 and $g \circ f = \mathrm{id}_V$.

Corollary

A polynomial map $f: V \to W$ is an isomorphism of varieties if and only if $f^*: k[W] \to k[V]$ is an isomorphism of k-algebras.

• This follows from the fact that

$$(f \circ g)^* = g^* \circ f^*.$$

- Let $A = (\alpha_{ij})$ be an invertible $(n \times n)$ matrix.
- Consider the linear forms

$$y_i = \sum_{j=1}^n \alpha_{ij} x_j.$$

• They define a bijective polynomial map

$$f = (y_1, \ldots, y_n) : \mathbb{A}_k^n \to \mathbb{A}_k^n.$$

- Consider the parabola $C_0 = \{y x^2 = 0\}$ in \mathbb{A}_k^2 .
- Consider, also, the parametrization

$$\begin{array}{rcccc} f: & \mathbb{A}^1_k & \to & C_0; \\ & t & \mapsto & (t, t^2). \end{array}$$

• The projection $p: \mathbb{A}_k^2 \to \mathbb{A}_k^1$ to the first coordinate, restricted to C_0 , gives an inverse map

$$\begin{array}{rccc} g: & C_0 & \to & \mathbb{A}^1_k; \\ & (x,y) & \mapsto & x. \end{array}$$

- Thus, *f* is an isomorphism.
- We can also see this by considering the map $f^*: k[C_0] \to k[\mathbb{A}^1_k]$.
- Note that

$$\begin{aligned} f^*: \quad k[C_0] &\cong k[x] \quad \to \quad k[\mathbb{A}^1_k] = k[t]; \\ x \quad \mapsto \quad t, \end{aligned}$$

is an isomorphism.

George Voutsadakis (LSSU)

• Now consider the semicubical parabola

$$C_1 = \{(x, y) : y^2 = x^3\}.$$

The map

$$\begin{array}{rccc} F: & \mathbb{A}^1_k & \to & C_0; \\ & t & \mapsto & (t^2, t^3), \end{array}$$

is a bijection.

- The image $f^*(k[C_1]) \subseteq k(\mathbb{A}^1_k) = k[t]$ is generated by $f^*(x) = t^2$ and $f^*(y) = t^3$.
- So $f^*(k[C_1]) \neq k[t]$, and, thus, f is not an isomorphism.
- Though f is a bijection, the inverse map $g: C_1 \to \mathbb{A}^1_k$, with

$$g(x,y) = \begin{cases} \frac{y}{x}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

is not a polynomial map.

Categories

Definition (Category)

A category & consists of the following data:

- (1) A class of **objects** $Ob\mathscr{C}$;
- (2) For any two objects A, B ∈ ObC, a set MorC(A, B). The elements of these sets are called morphisms.
- (3) For any three objects $A, B, C \in Ob\mathcal{C}$, there is a map

$$\circ: \operatorname{Mor}_{\mathscr{C}}(A, B) \times \operatorname{Mor}_{\mathscr{C}}(B, C) \to \operatorname{Mor}_{\mathscr{C}}(A, C); (f,g) \mapsto g \circ f.$$

Categories (Cont'd)

Definition (Category Cont'd)

These data satisfy the following axioms.

(a) \circ is associative, i.e.

$$(g \circ f) \circ h = g \circ (f \circ h);$$

(b) for all $A \in Ob\mathscr{C}$, there is a morphism

 $\operatorname{id}_A \in \operatorname{Mor}_{\mathscr{C}}(A, A),$

called the **identity** of *A*, such that, for all $B \in Ob\mathscr{C}$ and for all $f \in Mor_{\mathscr{C}}(A, B)$ and $g \in Mor_{\mathscr{C}}(B, A)$, we have

 $f \circ \mathrm{id}_A = f$ and $\mathrm{id}_A \circ g = g$.

Among the categories of interest to us are:

- 1) The category of sets and maps;
- 2) The category of topological spaces and continuous maps;
- 3) The category of groups and group homomorphisms.

Functors

Definition (Functor)

For categories \mathscr{C} and \mathscr{D} a functor $F : \mathscr{C} \to \mathscr{D}$, which may be either covariant or contravariant, is given by:

1) a map
$$F : Ob\mathscr{C} \to Ob\mathscr{D};$$

a collection of maps

 $\operatorname{Mor}_{\mathscr{C}}(A,B) \to \operatorname{Mor}_{\mathscr{D}}(F(A),F(B)),$ in the covariant case, $\operatorname{Mor}_{\mathscr{C}}(A,B) \to \operatorname{Mor}_{\mathscr{D}}(F(B),F(A)),$ in the contravariant case,

having the following properties:

Examples of Functors

- $\bullet\,$ For every category ${\mathscr C}$, we have the functor $id_{\mathscr C}$ given by the identity.
- For many categories there is a "forgetful" functor, which simply "forgets" some of the structure of the objects in the domain of the functor.
- An example is given by the functor

F : {groups, homomorphisms} \rightarrow {sets, maps},

which maps a group to its underlying set.

Varieties and Ideals

• The relationship between varieties and ideals can now be expressed by the following contravariant functor:

$$F: \left\{ \begin{array}{c} \text{affine varieties;} \\ \text{polynomial maps} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{finitely generated} \\ \text{reduced } k\text{-algebras;} \\ k\text{-algebra homomorphisms} \end{array} \right\}, \\ V \mapsto k[V] \\ (f: V \to W) \mapsto (f^*: k[W] \to k[V]). \end{array} \right\}$$

- The category on the left is the category of affine varieties.
- The category on the right is the **category of finitely generated** reduced *k*-algebras.
- Often we will refer to a category by referring only to its objects.
- The morphisms are then understood to be the usual morphisms between the objects in question.

Functorial Morphisms or Natural Transformations

Definition (Functorial Morphism)

For two functors $F, G : \mathscr{C} \to \mathscr{D}$, which are both covariant or both contravariant, a **functorial morphism**, or **natural transformation**, $\varphi : F \to G$ is a family of morphisms

$$\{\varphi(A):F(A)\to G(A):A\in \mathsf{Ob}\mathscr{C}\},\$$

such that, for every morphism $f : A \rightarrow B$, with $A, B \in Ob \mathscr{C}$, we have a commutative diagram (covariant and contravariant case, respectively):

$$F(A) \xrightarrow{\phi(A)} G(A) \qquad F(B) \xrightarrow{\phi(B)} G(B)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f) \qquad F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{\phi(B)} G(B) \qquad F(A) \xrightarrow{\phi(A)} G(A)$$

Functorial Isomorphisms and Equivalence of Categories

Definition (Functorial Isomorphism)

The functorial morphism

$$\varphi: F \to G$$

defines a **functorial isomorphism** $\varphi : F \cong G$, if there is a functorial morphism $\psi : G \to F$, such that

$$\psi \circ \varphi = \mathrm{id}_F$$
 and $G \circ F = \mathrm{id}_G$.

Definition (Equivalence of Categories)

A functor $F: \mathscr{C} \to \mathscr{D}$ defines an **equivalence of categories** if there is a functor $G: \mathscr{D} \to \mathscr{C}$, such that

$$G \circ F \cong id_{\mathscr{C}}$$
 and $F \circ G \cong id_{\mathscr{D}}$.

George Voutsadakis (LSSU)

A Contravariant Equivalence of Categories

Proposition

The functor defined by

$$V \mapsto k[V],$$

(f: V \to W) \mapsto (f^*: k[W] \to k[V]),

induces the following contravariant equivalences of categories:

$$\left\{\begin{array}{c} category \text{ of} \\ affine \text{ varieties} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} category \text{ of finitely} \\ generated \text{ reduced} \\ k-algebras \end{array}\right\}$$

$$category \text{ of irreducible} \\ affine \text{ varieties} \end{array}\right\} \leftrightarrow \left\{\begin{array}{c} category \text{ of finitely} \\ generated \text{ k-algebras} \\ generated \text{ k-algebras} \\ which \text{ are integral domains} \end{array}\right\}$$

Proof of the Equivalence (Sketch)

We construct an inverse functor G.
 Let A be a finitely generated reduced k-algebra.
 Choose generators a₁,..., a_n of A and consider the homomorphism

$$\pi: k[x_1, \dots, x_n] \rightarrow A = k[a_1, \dots, a_n];$$

$$x_i \mapsto a_i.$$

The ideal $I = \ker \pi$ is then a radical ideal.

It defines a variety V = V(I).

V is irreducible if and only if I is a prime ideal.

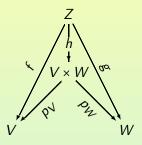
I.e., V is irreducible if and only if A is an integral domain. We set G(A) = V.

By the preceding proposition, every homomorphism $\varphi : A \to B$ of finitely generated reduced *k*-algebras gives rise to a unique morphism $f : G(B) \to G(A)$, with $\varphi = F(f)$. So we set $G(\varphi) = f$.

It is easy to check that F and G define an equivalence of categories.

The Product of Two Varieties

- Consider the category of affine varieties.
- Let V and W be affine varieties.
- An affine variety V × W is the categorical product of V and W if there exist polynomial maps p_V: V × W → V and p_W: V × W → W (the projection maps), such that, for any affine variety Z, mapping to both V and W via polynomial maps f: Z → V, g: Z → W, there is a unique polynomial map h: Z → V × W, such that the diagram commutes.



• For affine varieties V and W, the categorical product of V and W is given by the set-theoretic product $V \times W$.

The Product Variety

Proposition

For varieties $V \subseteq \mathbb{A}_k^n$ and $W \subseteq \mathbb{A}_k^m$, we have:

- 1) The set-theoretic product $V \times W \subseteq \mathbb{A}_k^n \times \mathbb{A}_k^m = \mathbb{A}_k^{n+m}$ is a variety;
- 2) If V and W are irreducible, then $V \times W$ is also irreducible.
- (1) Consider varieties $V \subseteq \mathbb{A}_{k}^{n}$ and $W \subseteq \mathbb{A}_{k}^{m}$. Let $f_{1}, \ldots, f_{\ell} \in k[x_{1}, \ldots, x_{n}]$ and $g_{1}, \ldots, g_{r} \in k[y_{1}, \ldots, y_{m}]$ be polynomials, such that

$$V = \{f_1 = \dots = f_\ell = 0\}$$
 and $W = \{g_1 = \dots = g_r = 0\}.$

Then

$$V \times W = \{f_1 = \dots = f_\ell = g_1 = \dots = g_r = 0\}.$$

So $V \times W \subseteq \mathbb{A}_k^n \times \mathbb{A}_k^m = \mathbb{A}_k^{n+m}$ is a variety.

The Product Variety (Cont'd)

(2) First we remark that, for all w ∈ W, the projection onto the first factor defines an isomorphism between V × {w} and V.
Similarly, {v} × W is isomorphic to W, for all v ∈ V.
Suppose there is a decomposition V × W = Z₁ ∪ Z₂.
This induces a decomposition

$$V \times \{w\} = (V \times \{w\} \cap Z_1) \cup (V \times \{w\} \cap Z_2).$$

 $V \times \{w\}$, being isomorphic to V, is irreducible. So either $V \times \{w\} \cap Z_1 = V \times \{w\}$ or $V \times \{w\} \cap Z_2 = V \times \{w\}$. I.e., $V \times \{w\} \subseteq Z_1$ or $V \times \{w\} \subseteq Z_2$.

The Product Variety (Cont'd)

V × {w} ⊆ Z₁ or V × {w} ⊆ Z₂.
 We now define

$$W_i := \{ w \in W : V \times \{ w \} \subseteq Z_i \}, \quad i = 1, 2.$$

Then $W_1 \cup W_2 = W$. If we show that the W_i are closed, then, by the irreducibility of W, $W_1 = W$ or $W_2 = W$. In the first case $V \times W = Z_1$ and in the second $V \times W = Z_2$.

For each point $v \in V$, let

$$W_i^{v} := \{ w \in W : (v, w) \in Z_i \}, \quad i = 1, 2.$$

Then the sets W_i^v are closed, since $\{v\} \times W_i^v = (\{v\} \times W) \cap Z_i$. Since $W_i = \bigcap_{v \in V} W_i^v$, the sets W_i are also closed.

• Note that the Zariski topology on $V \times W$ is not the product topology.

Subsection 3

Rational Functions and Maps

The Function Field of a Variety

- Let V be an irreducible variety.
- Then the coordinate ring k[V] is an integral domain.
- Hence k[V] has a field of fractions.

Definition

The **function field** of V is the field of fractions of k[V], denoted k(V). Elements $f \in k(V)$ are called **rational functions** on V.

- Any rational function can be written as $f = \frac{g}{h}$, with $g, h \in k[V]$.
- In general k[V] need not be a UFD.
- So the representation $f = \frac{g}{h}$, $g, h \in k[V]$ is not necessarily unique.
- We can only give f a well defined value at a point P if there is a representation $f = \frac{g}{h}$, with $h(P) \neq 0$.

Representation of Rational Functions

Definition (Regular Function)

Let $f \in k(V)$ and $P \in V$. The rational function f is called **regular** at P if there is a representation $f = \frac{g}{h}$, with $h(P) \neq 0$. The **domain of definition** of f is defined to be the set

dom $(f) := \{P \in V : f \text{ is regular at } P\}.$

Definition

For every polynomial function $h \in k[V]$, we define

 $V_h := \{P \in V : h(P) \neq 0\}.$

• Clearly V_h is an open subset of V.

Properties of Rational Functions

Theorem

For a rational function $f \in k(V)$, the following hold:

- (1) dom(f) is open and dense in V.
- (2) dom(f) = V iff $f \in k[V]$.
- (3) dom $(f) \supseteq V_h$ iff $f \in k[V][h^{-1}]$.

(1) For $f \in k(V)$, we define the ideal of denominators of f by $D_f := \{h \in k[V] : fh \in k[V]\} \subseteq k[V].$

By definition we have

 $D_f = \{h \in k[V] : \text{there is a representation } f = \frac{g}{h} \} \cup \{0\}.$

Moreover,

 $V \setminus dom(f) = \{P \in V : h(P) = 0, \text{ for all } h \in D_f\} = V(D_f).$

Hence, $V \setminus dom(f)$ is closed. So dom(f) is open.

Properties of Rational Functions (Cont'd)

Since dom(f) is obviously nonempty, it is also dense in V.

- We have dom(f) = V if and only if V(D_f) = 0.
 By Hilbert's Nullstellensatz, this is equivalent to 1 ∈ D_f.
 This is, in turn, equivalent to f ∈ k[V].
- (3) We have dom(f) ⊇ V_h if and only if h vanishes on V(D_f).
 By Hilbert's Nullstellensatz, this holds iff hⁿ ∈ D_f, for some n ≥ 1.
 This implies that f = ^g/_{hⁿ} ∈ k[V][h⁻¹].
 - Part (2) of the theorem says that the polynomial functions are precisely the rational functions that are "everywhere regular".
 - We refer to polynomial functions as regular functions.

Local Ring of a Variety at a Point

- We will define the ring $\mathcal{O}(U)$ of functions regular on an open set $U \subseteq V$.
- This will lead to the concept of the structure sheaf of a variety.
- We first define the ring of functions on V regular at a point $P \in V$.

Definition (The Local Ring)

The local ring of V at a point $P \in V$ is the ring

 $\mathcal{O}_{V,P} := \{ f \in k(V) : f \text{ is regular at } P \}.$

Locality of the Local Ring of a Variety at a Point

- Recall that a ring is local if it has a unique maximal ideal.
- The local ring $\mathcal{O}_{V,P} \subseteq k(V)$ is a subring of k(V).
- Moreover, we have

$$\mathscr{O}_{V,P} = k[V]\{h^{-1} : h(P) \neq 0\}.$$

- The ring $\mathcal{O}_{V,P}$ is in fact a local ring.
- Its unique maximal ideal is

$$m_P := \left\{ \frac{f}{g} \in k(V) : f, g \in k[V], f(P) = 0, g(P) \neq 0 \right\}.$$

Multiplicatively Closed Systems

Definition (Multiplicatively Closed System)

Let *R* be a ring. A **multiplicatively closed system** in *R* is a subset $S \subseteq R^* = R \setminus \{0\}$, with the following properties:

(1)
$$a, b \in S$$
 implies $ab \in S$.

(2) $1 \in S$.

Example: A ring R is an integral domain if and only if $R^* = R \setminus \{0\}$ is multiplicatively closed.

Example: An ideal $p \neq R$ is a prime ideal if and only if $R \setminus p$ is a multiplicatively closed system.

Localization of Rings

- Let R be a ring.
- Let $S \subseteq R \setminus \{0\}$ a multiplicatively closed system.
- Define the following equivalence relation on the product $R \times S$:

 $(r', s') \sim (r'', s'') \Leftrightarrow$ there exists $s \in S$, with s(r's'' - r''s') = 0.

• The set of equivalence classes is denoted by

$$R_S := R \times S / \sim.$$

r s

We write

to denote the equivalence class of (r, s).

_ocalization of Rings (Cont'd)

- We can then define addition and multiplication in R_S .
 - Addition is defined by

$$\frac{r}{s} + \frac{r'}{s'} := \frac{rs' + r's}{ss'};$$

• Multiplication is defined by

$$\frac{r}{s} \cdot \frac{r'}{s'} := \frac{rr'}{ss'}.$$

- It is straightforward to check that these operations are well defined.
- The ring R_S is a commutative ring with identity element $1 = \frac{1}{1}$.

Definition (Localization)

The ring R_S is called the localization of R with respect to the multiplicative system S.

George Voutsadakis (LSSU)

Algebraic Geometry

July 2024

Natural Map

- Let R be a ring.
- Let S be a multiplicatively closed system in R.
- The natural map is a ring homomorphism,

$$\begin{array}{rcc} R & \to & R_S; \\ r & \mapsto & \frac{r}{1}. \end{array}$$

• Let R be an integral domain.

Let

$$S = R^* = R \setminus \{0\}.$$

- Then R_S is the field of fractions of R.
- In this case, the map

$$R \rightarrow R_S$$

is injective.

• So R may be identified with its image in R_S .

- Let R be a ring.
- Let $\mathfrak{p} \subsetneq R$ be a prime ideal.
- Let

$$S_{\mathfrak{p}}=R\setminus\mathfrak{p}.$$

The ring

$$R_{\mathfrak{p}} := R_{S_{\mathfrak{p}}}$$

- is called the localization of R at p.
- In fact R_p is a local ring.
- Its unique maximal ideal is

$$m_{\mathfrak{p}} := \left\{ \frac{p}{s} : p \in \mathfrak{p}, s \in S \right\} \subsetneqq R_{\mathfrak{p}}.$$

 To see this, consider an element of R_p not in m_p. It is of the form s'/s, with s' ∈ S. So it has an inverse s/s' and is, therefore, a unit.

- Let *R* be an integral domain.
- Let $0 \neq f \in R$.
- Set

$$S_f := \{f^n : n \ge 0\}.$$

We define

$$R_f := R_{S_f}$$
.

• Since R is an integral domain, the map

$$\begin{array}{rcc} R & \to & R_f; \\ r & \mapsto & \frac{r}{1} \end{array}$$

is injective.

• Identifying R with its image in R_f and in the field of fractions, we have an equality

$$R_f = R[f^{-1}] \subseteq \text{field of fractions of } R.$$

Construction of the Local Ring by Localization

- The local ring $\mathcal{O}_{V,P}$, was defined as a subring of the function field k(V).
- $\mathcal{O}_{V,P}$ may also be constructed by localization.
- Consider a point $P \in V$.
- The ideal corresponding to P is

$$\overline{M}_P = \{f \in k[V] : f(P) = 0\} = \overline{I(\{P\})} = I(\{P\}) + I(V) \subseteq k[V].$$

- This ideal is maximal.
- We have an equality

$$\mathcal{O}_{V,P} = k[V]_{\overline{M}_P}.$$

I.e., \$\mathcal{O}_{V,P}\$ arises through localization of the coordinate ring at \$\overline{M}_P\$.
The maximal ideal of \$\mathcal{O}_{V,P}\$ is given by

$$m_P = \{f \in \mathcal{O}_{V,P} : f(P) = 0\}.$$

The Structure Sheaf of a Variety

• For every nonempty open set $U \subseteq V$, we define

 $\mathcal{O}(U) := \mathcal{O}_V(U) := \{ f \in k(V) : f \text{ is regular on } U \}.$

• Further, we set

 $\mathcal{O}_V(\emptyset) := \{0\}.$

- Then $\mathcal{O}_V(U)$ is a ring.
- In addition it is a *k*-algebra.
- The set of rings $\mathcal{O}_V(U)$, together with the natural restriction homomorphisms, forms the structure sheaf \mathcal{O}_V .
- The local ring $\mathcal{O}_{V,P}$ is called the **stalk** of the structure sheaf at the point *P*.
- The elements of $\mathcal{O}_{V,P}$ are called function germs.

Reformulation of the Theorem

- The preceding theorem can be formulated as follows.
 - Part 2:

 $\mathcal{O}(V)=k[V];$

• Part 3:

$$\mathscr{O}(V_h) = k[V][h^{-1}] = k[V]_h,$$

where the ring $k[V]_h$ is the localization of the coordinate ring k[V] with respect to the multiplicative system $\{h^n : n \ge 0\}$.

Rational Maps

• We consider maps on V which are not everywhere defined.

Definition (Rational Map)

A rational map $f: V \rightarrow A_k^n$ is an *n*-tuple

 $f=\left(f_1,\ldots,f_n\right)$

of rational functions $f_1, \ldots, f_n \in k(V)$.

The map f is called **regular at the point** P if all f_i are regular at P. The **domain of definition** dom(f) is the set of all regular points of f, i.e.

$$\operatorname{dom}(f) = \bigcap_{i=1}^{n} \operatorname{dom}(f_i).$$

(2) For an affine variety $W \subseteq \mathbb{A}_{k}^{n}$, a **rational map** $f: V \dashrightarrow W$ is a rational map $f: V \dashrightarrow \mathbb{A}_{k}^{n}$, such that $f(P) \in W$, for all regular points $P \in \text{dom}(f)$.

• By the theorem, dom(f) is a nonempty open subset of V.

Definability of Composition

In contrast to the situation for polynomial maps, for rational maps
 f: V → W and g: W → X, the composition

$$g \circ f : V \xrightarrow{f} W \xrightarrow{g} X$$

cannot always be defined in a meaningful way. Example: Consider two rational maps.

• f is defined by

$$\begin{array}{rccc} f: & \mathbb{A}^1_k & \to & \mathbb{A}^2_k; \\ & x & \mapsto & (x,0) \end{array}$$

• g is defined by

$$\begin{array}{cccc} g: \ \mathbb{A}_k^2 & \dashrightarrow & \mathbb{A}_k^1; \\ (x,y) & \mapsto & \frac{x}{y}. \end{array}$$

Note that

$$f(\mathbb{A}^1_k) \cap \mathsf{dom}(g) = \emptyset.$$

So the composition is nowhere defined.

George Voutsadakis (LSSU)

Star for Rational Maps

- Consider a rational map $f: V \dashrightarrow W$.
- We want to define a map $f^*: k(W) \rightarrow k(V)$ with

$$f^*(g) = g \circ f.$$

- We have constructed a homomorphism $f^*: k[W] \rightarrow k[V]$.
- So we know that, for g ∈ k[W], the function f*(g) ∈ k(V) is well defined.
- It is possible that $f^*(h) = 0$, for some $h \in k[W]$, with $h \neq 0$.
- In that case, we cannot define $f^*(\frac{g}{h})$ to be $\frac{f^*(g)}{f^*(h)}$.

Dominant Rational Maps and Inverse Images

Definition (Dominant Rational Map)

A rational map $f: V \rightarrow W$ is called **dominant** if f(dom(f)) is a Zariski dense subset of W.

Definition (Inverse Image)

For a rational map $f: V \dashrightarrow W$ and a subset $U \subseteq W$, we define the **inverse image** of U under f by

$$f^{-1}(U) := \{P \in dom(f) : f(P) \in U\}.$$

Dominant Rational Maps and Definability

- Suppose $f: V \dashrightarrow W$ is dominant.
- Let $g: W \dashrightarrow \mathbb{A}^1_k$ be a rational map.
- By a preceding theorem, dom(g) is a nonempty open subset of W.
- By a preceding lemma, $f^{-1}(\operatorname{dom}(g))$ is a dense open subset of $\operatorname{dom}(f)$.
- Thus, the composition $g \circ f : V \dashrightarrow \mathbb{A}^1_k$ is defined on the dense open subset

 $f^{-1}(\operatorname{dom}(g)) \subseteq V.$

Algebraic Reformulation

- Let $f: V \dashrightarrow W$ be a rational map.
- Consider the corresponding homomorphism $f^*: k[W] \rightarrow k(V)$.
- For all $g \in k[W]$, we have

$$f^*(g) = 0 \iff f(\operatorname{dom}(f)) \subseteq V(g).$$

Thus,

 $f^*: k[W] \rightarrow k(V)$ is injective $\Leftrightarrow f$ is dominant.

• Hence, if f is dominant, then we can extend f^* to a homomorphism $f^*: k(W) \rightarrow k(V)$ by setting

$$f^*\left(\frac{g}{h}\right) := \frac{f^*(g)}{f^*(h)}.$$

• If $f: V \dashrightarrow W$ and $g: W \dashrightarrow X$ are dominant, then $g \circ f: V \dashrightarrow X$ is also dominant.

The Map f^*

Theorem

Let V and W be irreducible affine varieties.

- (1) Every dominant rational map $f: V \to W$ defines a k-linear homomorphism $f^*: k(W) \to k(V)$.
- (2) Conversely, if $f: k(W) \rightarrow k(V)$ is a k-linear homomorphism, then there exists a unique dominant rational map $\varphi: V \dashrightarrow W$, with

$$\varphi = f^*$$

(3) If $f: V \dashrightarrow W$ and $g: W \dashrightarrow X$ are dominant, then $g \circ f: V \dashrightarrow X$ is also dominant and

$$(g \circ f)^* = f^* \circ g^*.$$

The Map *f*^{*} (Cont'd)

 Parts (1) and (3) have already been discussed.
 (2) Suppose that W ⊆ A^m_k. The coordinate functions y₁,..., y_m generate the field k(W). We set f_i := φ(y_i) ∈ k(V) and

$$f:=(f_1,\ldots,f_m):V\dashrightarrow W.$$

This map has image in W. By construction $f^* = \varphi$. It remains to show that f is dominant. Since $f^* = \varphi$, we have $f^* |_{k[w]} = \varphi |_{k[w]}$.

Since φ is a field homomorphism, φ is injective. So $f^* |_{k[w]} : k[W] \to k(V)$ is also injective. Hence, f is dominant.

Quasi-Affine Varieties

• Open subsets of affine varieties behave similarly to affine varieties.

Definition (Quasi-Affine Variety)

A quasi-affine variety is an open subset of an affine variety.

Morphisms of Quasi-Affine Varieties

Definition

Let U_1 and U_2 be irreducible quasi-affine varieties, contained in the affine varieties V and W, respectively.

- (1) A morphism $f: U_1 \to W$ is a rational map $f: V \dashrightarrow W$, with $U_1 \subseteq \text{dom}(f)$, i.e., f is regular at every point $P \in U_1$.
- (2) A morphism $f: U_1 \to U_2$ is a morphism $f: U_1 \to W$, with $f(U_1) \subseteq U_2$.
- (3) An **isomorphism** of quasi-affine varieties is a morphism $f: U_1 \rightarrow U_2$, such that, there is a morphism $g: U_2 \rightarrow U_1$, with

$$g \circ f = \operatorname{id}_{U_1}$$
 and $f \circ g = \operatorname{id}_{U_2}$.

• For two irreducible affine varieties V and W,

 $\{f: f: V \rightarrow W \text{ a morphism}\} = \{f: f: V \rightarrow W \text{ a polynomial map}\}.$

• Consider again the semicubical parabola

$$C_1 = \{(x, y) \in \mathbb{A}_k^2 : y^2 - x^3 = 0\}.$$

Recall that it has a parametrization

$$\begin{array}{rccc} f: & \mathbb{A}_k^1 & \to & C_1; \\ & t & \mapsto & (t^2, t^3) \end{array}$$

This parametrization is not an isomorphism. So $k[\mathbb{A}_k^1]$ and $k[C_1]$ are not isomorphic. However, the restriction

$$f: \mathbb{A}_k^1 \setminus \{0\} \to C_1 \setminus \{(0,0)\}$$

is an isomorphism of quasi-affine varieties. Its inverse is

$$g(x,y)=\frac{y}{x}.$$

• In terminology to come, \mathbb{A}_k^1 and C_1 are birationally equivalent.

Example (Cont'd)

We saw A¹_k and C₁ are birationally equivalent.
 The theorem gives us a map

$$f^*: k(C_1) \rightarrow k(\mathbb{A}^1_k),$$

with

$$f^*\left(\frac{x}{y}\right) = t.$$

Thus f^* is surjective.

Moreover, f^* is a nonzero field homomorphism.

So f^* is also injective.

So the function fields $k(\mathbb{A}^1_k) = k(t)$ and $k(C_1)$ are isomorphic.

We will see that the function fields of any birationally equivalent varieties are isomorphic, and vice versa.

The Quasi-Affine Variety V_f

- Let V be an affine variety.
- Let $f \in k[V]$.
- We defined the quasi-affine variety

$$V_f = V \setminus V(f) = \{P \in V : f(P) \neq 0\}.$$

Proposition

The quasi-affine variety V_f is isomorphic to an affine variety with coordinate ring

$$k[V_f] = k[V][f^{-1}] = k[V]_f.$$

• In the proof we use again Rabinowitsch's trick.

The Quasi-Affine Variety V_f (Cont'd)

Let

$$J:=I(V)\subseteq k[x_1,\ldots,x_n]$$

be the ideal of the variety $V \subseteq \mathbb{A}_{k}^{n}$. Let $F \in k[x_{1},...,x_{n}]$ be a polynomial, with $F|_{V} = f$. We set

$$J_f:= \big(J,tF-1\big)\subseteq k[x_1,\ldots,x_n,t].$$

Claim: V_f is isomorphic to the affine variety $W = V(J_F) \subseteq \mathbb{A}_k^{n+1}$. Consider the maps:

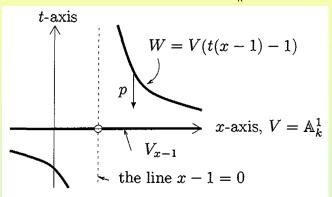
•
$$p: W \to V_f$$
, with $(x_1, \dots, x_n, y) \mapsto (x_1, \dots, x_n);$
• $q: V_f \to W$, with $(x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, \frac{1}{F(x_1, \dots, x_n)}).$

These are mutually inverse morphisms.

The conclusion now follows.

Ilustration of the Proposition

• The figure illustrates the proposition for $V = \mathbb{A}_k^1$ and f = x - 1.



• The quasi-affine variety $\mathbb{A}_{k}^{1} \setminus \{1\} = (\mathbb{A}_{k}^{1})_{(x-1)} \subseteq \mathbb{A}_{k}^{1}$ is isomorphic to the affine variety $W \subseteq \mathbb{A}_{k}^{2}$, given by t(x-1) = 1.

• In this case the map p is the projection to the x-axis.

Affine Basis of the Zariski Topology

- Every open set in V is a union of sets of the form V_f .
- Hence, the sets V_f form a basis of the Zariski topology of V.

Corollary

The Zariski topology on V has a basis of affine sets.

- By the corollary, we may, without loss of generality, restrict attention to affine varieties.
- There are quasi-affine varieties which are not affine.
 Example: A²_k\{(0,0)} is a quasi-affine variety that is not affine.

Abstract Affine Varieties

- We give a possible definition of an *abstract affine variety*.
- It allows considering affine varieties without reference to a surrounding affine space.

Definition (Abstract Affine Variety)

An abstract affine variety over a field k is a pair (V, k[V]) consisting of:

- A set V;
- A k-algebra k[V] of functions on V, such that:
 - k[V] is generated by finitely many elements $x_1, ..., x_n$ over k;
 - The map

$$\begin{array}{rcl} V & \to & \mathbb{A}_k^n; \\ P & \mapsto & (x_1(P), \dots, x_n(P)), \end{array}$$

defines a bijection between V and a Zariski closed subset of \mathbb{A}_{k}^{n} .