### Introduction to Algebraic Geometry

### George Voutsadakis<sup>1</sup>

<sup>1</sup>Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Algebraic Geometry

July 2024

1 / 103



#### Functions

- Projective Space
- Projective Varieties
- Rational Functions and Morphisms

### Subsection 1

**Projective Space** 

### **Projective Space**

- Let V be a finite dimensional vector space over k.
- We consider the following equivalence relation on  $V \setminus \{0\}$ :

```
u \sim v iff there exists \lambda \in k^*, with u = \lambda v.
```

#### Definition (Projective Space)

The projective space associated to V is defined by

 $\mathbb{P}(V) := (V \setminus \{0\}) / \sim.$ 

The **dimension** of  $\mathbb{P}(V)$  is defined by

 $\dim \mathbb{P}(V) := \dim V - 1.$ 

### Remarks

- Two vectors are equivalent if and only if they span the same line in V.
- So geometrically, the projective space associated to V is the set of all lines through the origin in V.
- In particular, taking  $V = k^{n+1}$ , we define

$$\mathbb{P}^n := \mathbb{P}^n_k := \mathbb{P}(k^{n+1}).$$

### Examples

• The space  $\mathbb{P}^1_{\mathbb{R}} = \mathbb{P}(\mathbb{R}^2)$  is homeomorphic to  $S^1$ .



• The real projective plane has a decomposition

$$\mathbb{P}^2_{\mathbb{R}} = \mathbb{P}(\mathbb{R}^3) = \mathbb{R}^2 \cup \mathbb{P}^1(\mathbb{R}).$$

Under this decomposition:

- $\mathbb{R}^2$  corresponds to the set of lines that do not lie in the (x, y)-plane;
- $\mathbb{P}^1(\mathbb{R})$  corresponds to the set of lines in the (x, y)-plane.

# The Residue Class and the Homogeneous Coordinates

• We will denote the residue class map

 $\pi: V \setminus \{0\} \to \mathbb{P}(V).$ 

• For the special case  $\mathbb{P}(V) = \mathbb{P}_k^n$ , we use the notation

$$(x_0:\ldots:x_n):=\pi((x_0,\ldots,x_n)).$$

- We call  $(x_0 : ... : x_n)$  the homogeneous coordinates of the point  $P = \pi((x_0, ..., x_n)) \in \mathbb{P}_k^n$ .
- The homogeneous coordinates are well defined only up to multiplication by a common scalar.
- However, we can "compute" using them.

# Decomposition into an Affine and a Projective Space

- Any projective space can be decomposed into an affine subspace and a projective subspace of smaller dimension.
- For  $\mathbb{P}_k^n$ , such a decomposition is given by setting

$$U_{\ell} := \{ (x_0 : \ldots : x_n) \in \mathbb{P}_k^n : x_{\ell} \neq 0 \}, \\ H_{\ell} := \{ (x_0 : \ldots : x_n) \in \mathbb{P}_k^n : x_{\ell} = 0 \}.$$

- The space  $H_{\ell}$  can be identified with  $\mathbb{P}_{k}^{n-1}$ .
- $U_{\ell}$  can be identified with  $\mathbb{A}_{k}^{n}$ .

# Decomposition into Affine and Projective Space (Cont'd)

• The latter identification can be realized, e.g., by the mutually inverse maps

$$\begin{array}{cccc} i_{\ell} : & \mathbb{A}_{k}^{n} & \rightarrow & U_{\ell}, \\ & (x_{1}, \dots, x_{n}) & \mapsto & (x_{1}: \dots: x_{\ell-1}: 1: x_{\ell}: \dots: x_{n}) \end{array}$$

$$\begin{array}{cccc} j_{\ell}: & U_{\ell} \rightarrow \mathbb{A}_{k}^{n}; \\ (x_{0}:\ldots:x_{\ell-1}:x_{\ell}:\ldots:x_{n}) & \mapsto & (\frac{x_{0}}{x_{\ell}},\ldots,\frac{x_{\ell-1}}{x_{\ell}},\frac{x_{\ell+1}}{x_{\ell}},\ldots,\frac{x_{n}}{x_{\ell}}) \end{array}$$

• So we get a decomposition

$$\mathbb{P}_k^n = U_\ell \cup H_\ell = \mathbb{A}_k^n \cup \mathbb{P}_k^{n-1}.$$

# Terminology of Decomposition

Consider again

$$\mathbb{P}_k^n = U_\ell \cup H_\ell = \mathbb{A}_k^n \cup \mathbb{P}_k^{n-1}.$$

• We fix the value of  $\ell$  (usually  $\ell = 0$  or n).

• We refer to:

- $U_{\ell}$  as the **affine part** of  $\mathbb{P}_{k}^{n}$ ;
- $H_{\ell}$  as the hyperplane at infinity.
- Points in  $H_{\ell}$  are called "points at infinity".
- This particular decomposition into an affine and a projective piece is conventional.
- More generally, any projective hyperplane can be taken in  $\mathbb{P}_k^n$ , and the complement will always be an affine space.

# Projective Subspaces

#### Definition (Projective Subspace)

A **projective subspace** of  $\mathbb{P}(V)$  is a subset of the form  $\pi(W \setminus \{0\})$ , where  $W \subseteq V$  is a linear subspace and  $\pi$  is the residue class map. We write  $\mathbb{P}(W) \subseteq \mathbb{P}(V)$ .

- A projective subspace is itself naturally a projective space.
- If dim  $W = \dim V 1$ , then we call  $\mathbb{P}(W)$  a hyperplane in  $\mathbb{P}(V)$ .
- A projective line is a projective space of dimension 1.
- A projective plane is a projective space of dimension 2.

# The Intersection Lemma

#### Lemma

Let  $\mathbb{P}(W_1)$  and  $\mathbb{P}(W_2)$  be projective subspaces of an *n*-dimensional projective space  $\mathbb{P}(V)$ . If dim $\mathbb{P}(W_1)$  + dim $\mathbb{P}(W_2) \ge n$ , then  $\mathbb{P}(W_1)$  and  $\mathbb{P}(W_2)$  intersect, i.e.,  $\mathbb{P}(W_1) \cap \mathbb{P}(W_2) \neq \emptyset$ .

• We have dim  $W_1$  + dim  $W_2 \ge n + 2 = \dim V + 1$ .

So  $W_1$  and  $W_2$  intersect at least in a line.

- In projective space the distinction between the cases of parallel and nonparallel lines no longer exists.
  - Two lines in the projective plane always intersect.
  - In contrast, in the affine plane, two lines may be parallel.

# Covering by Affine Spaces

Any projective space has a covering by affine spaces

 $\mathbb{P}_k^n = U_0 \cup U_1 \cup \cdots \cup U_n,$ 

where

$$U_i := \{ (x_0 : \ldots : x_n) \in \mathbb{P}_k^n : x_i \neq 0 \}.$$

In the case of k = ℝ or k = ℂ this covering can be used to give P<sup>n</sup><sub>ℝ</sub> or P<sup>n</sup><sub>ℂ</sub> the structure of a compact *n*-dimensional real or complex manifold, respectively.

Example: The complex projective line has the structure of a compact Riemann surface, namely the Riemann sphere,

$$\mathbb{P}^1_{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \approx S^2.$$

### Subsection 2

**Projective Varieties** 

George Voutsadakis (LSSU)

# Homogeneous Polynomials

- The homogeneous coordinates of a point  $P = (x_0 : ... : x_n) \in \mathbb{P}_k^n$  are only determined up to multiplication by a common scalar.
- So to consider the zero sets of polynomial equations defined on  $\mathbb{P}_{k}^{n}$ , we must make a restriction to *homogeneous polynomials*.
- A polynomial

$$f(x_0,\ldots,x_n)=\sum a_{v_0\cdots v_n}x_0^{v_0}\cdots x_n^{v_n}$$

is called **homogeneous of degree** *d* if all the monomials have the same degree  $d = v_0 + \dots + v_n$ .

- We also use the word form to refer to homogeneous polynomials.
- So we refer, e.g., to linear forms, quadratic forms, cubic forms, etc.

### **Projective Varieties**

• If f is homogeneous of degree d, then we have

$$f(\lambda x_0,\ldots,\lambda x_n)=\lambda^d f(x_0,\ldots,x_n).$$

• This shows the zero set of f,

$$V(f) := \{ (x_0 : \ldots : x_n) \in \mathbb{P}_k^n : f(x_0, \ldots, x_n) = 0 \} \subseteq \mathbb{P}_k^n \}$$

is well defined.

#### Definition (Projective Variety)

A projective variety is a subset  $V \subseteq \mathbb{P}_k^n$ , such that, there exists a set of homogeneous polynomials  $T \subseteq k[x_0, \dots, x_n]$ , with

$$V = \left\{ P \in \mathbb{P}_k^n : f(P) = 0, \text{ for all } f \in T \right\}.$$

 $\bullet\,$  As in the affine case, we may assume that  ${\cal T}$  has only finitely many elements.

George Voutsadakis (LSSU)

# Examples

• We have already seen the projective subvariety of  $\mathbb{P}^n_k$  given by the hyperplane at infinity,

$$H_n = \{(x_0 : x_1 : \ldots : x_n) \in \mathbb{P}_k^n : x_n = 0\}.$$

• We discussed the following curves:

$$C_1 = \{(x: y: z) \in \mathbb{P}^2_{\mathbb{C}} : y^2 z = 4x^3 - g_2 x z^2 - g_3 z^3\}$$

and

$$C_2 = \{(x: y: z) \in \mathbb{P}^2_{\mathbb{C}} : y^2 z = x(x-z)(x-\lambda z)\}.$$

- We described these curves by giving affine equations in two variables.
- The process of obtaining the projective equations given here is called **homogenization**.

# The Projective Rational Normal Curve of Degree 3

#### Consider the map

$$\begin{aligned} \varphi &: \quad \mathbb{P}_k^1 \quad \rightarrow \quad \mathbb{P}_k^3; \\ \varphi(t_0:t_1) &= \quad (t_0^3:t_0^2t_1:t_0t_1^2:t_1^3). \end{aligned}$$

The image  $C := \varphi(\mathbb{P}^1_k)$  is a projective variety, given by

$$C = \left\{ (x_0 : x_1 : x_2 : x_3) \in \mathbb{P}_k^3 : \operatorname{rank} \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix} \le 1 \right\}.$$

This means that *C* is the intersection of three quadrics  $C = Q_1 \cap Q_2 \cap Q_3$ , where

$$\begin{array}{rcl} Q_1 & := & \{ (x_0 : x_1 : x_2 : x_3) \in \mathbb{P}^3_k : x_0 x_2 - x_1^2 = 0 \}, \\ Q_2 & := & \{ (x_0 : x_1 : x_2 : x_3) \in \mathbb{P}^3_k : x_2 x_3 - x_1 x_2 = 0 \}, \\ Q_3 & := & \{ (x_0 : x_1 : x_2 : x_3) \in \mathbb{P}^3_k : x_1 x_3 - x_2^2 = 0 \}. \end{array}$$

# The Projective Rational Normal Curve of Degree 3 (Cont'd)

The curve

$$C := \varphi(\mathbb{P}^1_k)$$

cannot be defined by only two quadratic equations. On the other hand, we have

$$C=Q_1\cap F,$$

where

$$F := \{ (x_0 : x_1 : x_2 : x_3) \in \mathbb{P}_k^3 : x_0 x_3^2 - 2x_1 x_2 x_3 + x_2^3 = 0 \}.$$

That is, the quadric  $Q_1$  and the cubic F meet along the curve C. C is called the (**projective**) rational normal curve of degree 3.

# Example

• The image of the map

$$\varphi: \qquad \mathbb{P}_k^1 \times \mathbb{P}_k^1 \quad \to \quad \mathbb{P}_k^3, \\ \varphi((x_0:x_1), (y_0:y_1)) \quad = \quad (x_0y_0:x_0y_1:x_1y_0:x_1y_1),$$

is given by the quadric

$$Q := \{ (z_0 : z_1 : z_2 : z_3) \in \mathbb{P}^3_k : z_0 z_3 - z_1 z_2 = 0 \}.$$

There are two families of lines on Q (in each case P runs through the points of  $\mathbb{P}^1_k$ ):

- The family of lines  $\varphi(\mathbb{P}^1_k \times \{P\});$
- The family of lines  $\varphi(\{P\} \times \mathbb{P}^1_k)$ .



Each of these families of lines is called a **ruling** of Q. Any two lines in the same ruling are disjoint. Any two lines in different rulings intersect.

George Voutsadakis (LSSU)

Algebraic Geometry

#### Definition (Graded Ring)

A graded ring is a ring S together with a decomposition into abelian groups  $S=\bigoplus_{d\geq 0}S_d,$ 

such that:

- For  $d \neq e$ , we have  $S_d \cap S_e = \{0\}$ ;
- Multiplication satisfies  $S_d \cdot S_e \subseteq S_{d+e}$ .

The elements of  $S_d$  are called the **homogeneous elements of degree** d.

An important example is the polynomial ring

$$S = k[x_0, \ldots, x_n] = \bigoplus_{d \ge 0} k^d [x_0, \ldots, x_n],$$

where

 $k^{d}[x_{0},...,x_{n}] := \{f \in k[x_{0},...,x_{n}] : f \text{ is homogeneous of degree } d\} \cup \{0\}.$ 

# Homogeneous Ideals

#### Definition (Homogeneous Ideals)

A homogeneous ideal I in a graded ring S is an ideal which satisfies

$$I=\bigoplus_{d\geq 0}(I\cap S_d).$$

An ideal *I* is homogeneous if and only if every element *f* ∈ *I* has a unique decomposition

$$f=f_0+\cdots+f_N,$$

where  $f_i \in I$  is a homogeneous element of degree  $d_i$ .

# Properties of Homogeneous Ideals

#### Lemma

For an ideal I in a graded ring S we have:

- (1) The ideal *I* is homogeneous if and only if it can be generated by homogeneous elements.
- (2) If I is homogeneous, then I is prime if and only if for any pair of homogeneous elements f, g ∈ S, we have: fg ∈ I iff f ∈ I or g ∈ I.
- (3) The sum, product, intersection and radical of homogeneous ideals are also homogeneous ideals.

# Generators of I(T)

- A projective variety was defined as the set of zeros of a system of homogeneous polynomials.
- Equivalently, a projective variety is the set of zeros of a homogeneous ideal, or of finitely many homogeneous polynomials.
- Let T be a set of homogeneous polynomials.
- Let I(T) be the homogeneous ideal generated by T.
- Then we have

$$V(T) = V(I(T)) = V(f_1, \ldots, f_k),$$

for homogeneous generators  $f_1, \ldots, f_k$  of I(T).

# The Zariski Topology on $\mathbb{P}^n_k$

• As for affine space, the zero sets define a topology on  $\mathbb{P}_k^n$ .

#### Lemma

Projective varieties satisfy the axioms of the closed sets of a topology on  $\mathbb{P}_{k}^{n}$ . In other words, we have the following:

- (1) The union of finitely many projective varieties is a projective variety.
- (2) The intersection of any number of projective varieties is a projective variety.
- (3) The empty set and  $\mathbb{P}_k^n$  are projective varieties.
  - This topology is called the **Zariski topology** on  $\mathbb{P}_{k}^{n}$ .
  - As in the affine case, we can decompose projective varieties into irreducible components.

### **Quasi-Projective Varieties**

Definition (Quasi-Projective Variety)

A quasi-projective variety is an open subset of a projective variety.

# Homogeneous Ideals and Projective Varieties

- We describe the relationship between projective varieties and homogeneous ideals.
- In one direction we have

$$\left\{ \begin{array}{l} \text{homogeneous ideals} \\ I \subseteq k[x_0, \dots, x_n] \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \text{projective varieties} \\ V \subseteq \mathbb{P}_k^n \end{array} \right\}$$
$$I \mapsto V(I),$$

where

$$V(I) = \left\{ (x_0 : \ldots : x_n) \in \mathbb{P}_k^n : \begin{array}{l} f(x_0, \ldots, x_n) = 0 \\ \text{for } f \in I, f \text{ homogeneous} \end{array} \right\}.$$

# Projective Varieties and Homogeneous Ideals

• In the opposite direction

$$\left\{ \begin{array}{c} \text{projective varieties} \\ V \subseteq \mathbb{P}_k^n \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{homogeneous ideals} \\ I \subseteq k[x_0, \dots, x_n] \end{array} \right\}$$
$$V \quad \mapsto \quad I(V),$$

where

$$I(V) = \begin{cases} \text{ ideal generated by} \\ \text{homogeneous polynomials } f, \text{ with } f|_{V} = 0 \end{cases}$$

# The Irrelevant Ideal

- In the affine case, the corresponding maps *I* and *V* are mutually inverse if we make a restriction to radical ideals.
- As in the affine case, we have  $V((1)) = \emptyset$ .
- On the other hand, there is another homogeneous ideal, namely

$$m = (x_0, \ldots, x_n) = \bigoplus_{d \ge 1} k^d [x_0, \ldots, x_n],$$

for which we also have  $V(m) = \emptyset$ .

#### Definition (Irrelevant Ideal)

The ideal *m* is called the **irrelevant ideal**.

# The Affine Cone

- If I is a homogeneous ideal, we can consider
  - The projective zero set  $V = V(I) \subseteq \mathbb{P}_k^n$ ;
  - The affine zero set  $V^a = V(I) \subseteq \mathbb{A}_k^{n+1}$ .
- Geometrically, if  $I \neq k[x_1, ..., x_n]$ , we have

$$V^{a} = \pi^{-1}(V) \cup \{0\},\$$

where, as before,  $\pi$  is the residue class map  $\pi : \mathbb{A}_{k}^{n+1} \setminus \{0\} \to \mathbb{P}_{k}^{n}$ . • In particular,

$$(x_0, \ldots, x_n) \in V^a$$
 iff  $(\lambda x_0, \ldots, \lambda x_n) \in V^a$ , for  $\lambda \in k^*$ 

#### Definition (Affine Cone)

The set  $V^a$  is called the **affine cone** over the projective variety  $V(I) \subseteq \mathbb{P}_k^n$ .

# Projective Nullstellensatz

#### Theorem (Projective Nullstellensatz)

Let k be an algebraically closed field. Then for a homogeneous ideal J, we have the following:

(1) 
$$V(J) = \emptyset$$
 iff  $\sqrt{J} \supseteq (x_0, \dots, x_n)$ .

(2) If 
$$V(J) \neq \emptyset$$
, then  $I(V(J)) = \sqrt{J}$ .

(1) We have

$$V(J) = \emptyset$$
 iff  $V^a(J) \subseteq \{0\}$   
iff  $\sqrt{J} \supseteq (x_0, \dots, x_n)$ .  
(affine Nullstellensatz)

# Projective Nullstellensatz (Cont'd)

(2) We make use of the following observation.

Suppose  $f = \sum f_i$  is a polynomial with homogeneous components  $f_i$ . Then, using the fact that the field k has infinitely many elements,

$$f(\lambda x_0, \dots, \lambda x_n) = 0$$
, for all  $\lambda$ , iff  $f_i(x_0, \dots, x_n) = 0$ , for all  $i$ .

Now, we get

$$f \in I(V(J)) \quad \text{iff} \quad f \in I(V^a(J))$$
  
iff 
$$\exists n \ge 1(f^n \in J)$$
  
(affine Nullstellensatz)  
iff 
$$f \in \sqrt{J}.$$

# Projective Varieties and Homogeneous Radical Ideals

#### Corollary

The maps 
$$J \mapsto V(J)$$
 and  $V \mapsto I(V)$  give bijections

| homogeneous radical ideals $J \subsetneq k[x_0, \dots, x_n]$                                   | $\left\{ \begin{array}{c} 1:1 \\ \longleftrightarrow \end{array} \right\}$         | $\left\{\begin{array}{c} \text{projective varieties} \\ V \subseteq \mathbb{P}_k^n \end{array}\right\}$     |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| $\begin{cases} \text{homogeneous prime ideals} \\ J \subsetneq k[x_0, \dots, x_n] \end{cases}$ | $\left\{ \begin{array}{c} \overset{1:1}{\longleftrightarrow} \end{array} \right\}$ | $\begin{cases} \text{ irreducible projective} \\ \text{ varieties } V \subseteq \mathbb{P}_k^n \end{cases}$ |  |

Here the irrelevant ideal m corresponds to the empty set.

• It remains only to show that

V is irreducible if and only if I(V) is prime.

We stated that a homogeneous ideal I is prime if and only if, for any pair of homogeneous elements  $f, g \in S$ ,  $fg \in I$  iff  $f \in I$  or  $g \in I$ . So the proof becomes analogous to the proof in the affine case.

# Covering of $\mathbb{P}^n_k$ by Affine Sets

• We now return to the covering of  $\mathbb{P}_k^n$  by affine sets

$$\mathbb{P}_k^n = U_0 \cup \cdots \cup U_n,$$

where

$$U_i := \{ (x_0 : \ldots : x_n) \in \mathbb{P}_k^n : x_i \neq 0 \}.$$

• For every open set  $U_i$ , we have a bijection

$$\begin{array}{cccc} j_i : & U_i \rightarrow \mathbb{A}_k^n, \\ (x_0 : \ldots : x_i : \ldots : x_n) & \mapsto & \left(\frac{x_0}{x_i}, \ldots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i}\right). \end{array}$$

- The Zariski topology on  $\mathbb{P}_k^n$  induces a topology on  $U_i$ .
- $\mathbb{A}_k^n$  is also equipped with the Zariski topology.

# Homeomorphism $j_i: U_i \to \mathbb{A}_k^n$

#### Proposition

The map  $j_i: U_i \to \mathbb{A}_k^n$  is a homeomorphism.

- For simplicity we take i = 0.
  - We must show that  $j_0$  and  $j_0^{-1}$  are both continuous.
  - Equivalently,  $j_0^{-1}$  and  $j_0$  both map closed sets to closed sets.
  - The closed subsets of  $U_i$  and  $\mathbb{A}_k^n$  are defined by polynomials in the rings:

$$S^h := \{f \in k[x_0, \dots, x_n] : f \text{ is homogeneous}\},\$$
  
$$A := k[x_1, \dots, x_n].$$

# Homeomorphism $j_i: U_i \to \mathbb{A}_k^n$ (Cont'd)

• We have a map  $\alpha: S^h \to A$ , defined by

$$\alpha(f) = f(1, x_1, \ldots, x_n).$$

We also have a map  $\beta: A \to S^h$ , defined by

$$\beta(g) = x_0^{\text{degg}} g\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right).$$

These maps satisfy

 $\alpha \circ \beta(g) = g.$ 

Any closed subset of  $U_0$  has the form

$$X=\overline{X}\cap U_0,$$

where 
$$\overline{X} \subseteq \mathbb{P}_{k}^{n}$$
 is the closure of X in  $\mathbb{P}_{k}^{n}$
#### Projective Varieties

# Homeomorphism $j_i: U_i \to \mathbb{A}_k^n$ (Cont'd)

Now X is a projective variety.
 So there is a (finite) subset T ⊆ S<sup>h</sup>, such that:

• 
$$X = V(T);$$
  
•  $j_0(X) = V(\alpha(T)).$ 

Any closed subset of  $\mathbb{A}_k^n$  has the form

$$W = V(T'),$$

for a (finite) subset  $T' \subseteq A$ . Moreover,

$$j_0^{-1}(W) = V(\beta(T')) \cap U_0.$$

Thus  $j_0$  and  $j_0^{-1}$  map closed subsets to closed subsets as follows:

$$V(T) \cap U_0 \xrightarrow{j_0} V(\alpha(T)),$$
  
$$V(\beta(T')) \cap U_0 \xleftarrow{j_0^{-1}} V(T').$$

Hence,  $j_0$  is a homeomorphism.

## Standard Affine Covering

• Any projective variety  $X \subseteq \mathbb{P}_k^n$  has a covering

$$X = X_0 \cup \cdots \cup X_n,$$

where  $X_i := X \cap U_i$ .

- By means of  $j_i$  we can identify  $U_i$  with  $\mathbb{A}_k^n$ .
- So the X<sub>i</sub> may be regarded as affine varieties.
- This covering is called the standard affine covering of X.

## rreducible Projective and Affine Varieties

### Corollary

### The map $X \mapsto X_0 = X \cap U_0$ defines a bijection

 $\begin{cases} \text{ irreducible projective varieties} \\ X \subseteq \mathbb{P}_k^n, \text{ with } X \nsubseteq \{x_0 = 0\} \end{cases} \xrightarrow{1:1} \begin{cases} \text{ irreducible affine} \\ \text{ varieties } X_0 \subseteq \mathbb{A}_k^n \end{cases}$ 

The inverse of this map is given by taking the Zariski closure.

• The above corollary implies that we can consider both affine and quasi-affine varieties as quasi-projective varieties.

## The Cubic $C_0$ Revisited

• We return to the cubic curve  $C_0$ , given by

$$\{(x_1, x_2) \in \mathbb{A}_k^2 : x_2^2 - x_1(x_1 - 1)(x_1 - \lambda) = 0\} \subseteq \mathbb{A}_k^2 \cong U_0 \subseteq \mathbb{P}_k^2.$$

Set

$$f(x_1, x_2) := x_2^2 - x_1(x_1 - 1)(x_1 - \lambda).$$

Note that deg(f) = 3.

So, with  $\beta$  the map defined in the proposition, we have

$$\begin{aligned} \theta(f) &= x_0^3 f\left(\frac{x_1}{x_0}, \frac{x_2}{x_0}\right) \\ &= x_0^3 \left[ \left(\frac{x_2}{x_0}\right)^2 - \frac{x_1}{x_0} \left(\frac{x_1}{x_0} - 1\right) \left(\frac{x_1}{x_0} - \lambda\right) \right] \\ &= x_0^3 \left[ \left(\frac{x_2}{x_0}\right)^2 - \frac{x_1}{x_0} \left(\frac{x_1 - x_0}{x_0}\right) \left(\frac{x_1 - \lambda x_0}{x_0}\right) \right] \\ &= x_0 x_2^2 - x_1 (x_1 - x_0) (x_1 - \lambda x_0). \end{aligned}$$

## The Cubic $C_0$ Revisited (Cont'd)

• Thus, the Zariski closure of  $C_0$  in  $\mathbb{P}^2_k$  is given by

$$\overline{C}_0 = \{ (x_0 : x_1 : x_2) \in \mathbb{P}_k^2 : x_0 x_2^2 - x_1 (x_1 - x_0) (x_1 - \lambda x_0) = 0 \}.$$

Let

$$H_0:=V(x_0)=\mathbb{P}_k^n\backslash U_0.$$

We have

$$\overline{C}_0 \cap H_0 = \{ (0:0:1) \}.$$

This shows that  $\overline{C}_0$  is obtained from  $C_0$  by adding a single point at infinity.

• In general, for a plane curve of degree *d* we must add *d* points at infinity.

### Subsection 3

### Rational Functions and Morphisms

### **Rational Functions**

Let f and g be both homogeneous polynomials of degree d on P<sup>n</sup><sub>k</sub>.
Then

$$\frac{f(\lambda x_0, \dots, \lambda x_n)}{g(\lambda x_0, \dots, \lambda x_n)} = \frac{\lambda^d f(x_0, \dots, x_n)}{\lambda^d g(x_0, \dots, x_n)}$$
$$= \frac{f(x_0, \dots, x_n)}{g(x_0, \dots, x_n)}.$$

• So the quotient is a well defined function on V.

### Function Fields

• For an irreducible projective variety V, we define

$$k(V) := \left\{ \frac{f}{g} : \begin{array}{c} f, g \in k[x_0, \dots, x_n] \text{ homogeneous} \\ \deg f = \deg g, g \notin I(V) \end{array} \right\} / \sim,$$

where

$$\frac{f}{g}\sim \frac{f'}{g'} \quad \text{iff} \quad fg'-gf'\in I(V).$$

• It can be checked that, with the natural operations, k(V) is a field.

### Definition (Function Field of V)

k(V) is called the function field of V. The elements of k(V) are called rational functions.

George Voutsadakis (LSSU)

## Standard Affine Covering and Function Fields

#### Lemma

Let V be an irreducible projective variety, with standard affine covering

$$V = V_0 \cup \cdots \cup V_n.$$

If  $V \nsubseteq V(x_0)$ , then we have an isomorphism of projective and affine function fields,

$$k(V) \cong k(V_0).$$

• The following maps are mutually inverse.

$$\begin{array}{ccccc} k(V) & \to & k(V_0); & & k(V_0) & \to & k(V); \\ \frac{f(x_0,\dots,x_n)}{g(x_0,\dots,x_n)} & \mapsto & \frac{f(1,x_1,\dots,x_n)}{g(1,x_1,\dots,x_n)}, & & & \frac{f(x_1,\dots,x_n)}{g(x_1,\dots,x_n)} & \mapsto & \frac{f\left(\frac{x_1}{x_0},\dots,\frac{x_n}{x_0}\right)}{g\left(\frac{x_1}{x_0},\dots,\frac{x_n}{x_0}\right)}. \end{array}$$

### The Homogeneous Coordinate Ring

- The function field k(V) can also be defined by localization of the *coordinate ring*, defined as a graded ring.
- Let  $V \subseteq \mathbb{P}_k^n$  be an irreducible variety with affine cone  $V^a \subseteq \mathbb{A}_k^{n+1}$ .
- Then the ring

$$S(V) := k[V^a] := k[x_0, ..., x_n]/I(V)$$

is equipped with the structure of a graded ring,

$$S(V) = \bigoplus_{d \ge 0} S_d(V),$$

where

$$S_d(V) := \{\overline{f} \in S(V) : f \text{ is homogeneous with } \deg f = d\} \cup \{0\}.$$

## The Homogeneous Coordinate Ring (Cont'd)

• We must show that

$$S_d(V) \cap S_e(V) = \{0\}, \text{ for } e \neq d.$$

Suppose  $\overline{f} = \overline{g}$ . Then  $f - g \in I(V)$ . So, if deg  $f \neq$  deg g, then, since I(V) is homogeneous,  $f, g \in I(V)$ . Hence,  $\overline{f} = \overline{g} = 0$ .

### Definition (Homogeneous Coordinate Ring)

S(V) is the homogeneous coordinate ring of V.

### The Degree of a Quotient

• Consider an arbitrary graded ring

$$S=\bigoplus_{d\geq 0}S_d.$$

- Let  $T \subseteq S$  be a multiplicatively closed system of homogeneous elements.
- We wish to give the local ring  $S_T$  the structure of a graded ring.
- For homogeneous elements f ∈ S and g ∈ T, we define f/g to be homogeneous of degree

$$\deg \frac{f}{g} := \deg f - \deg g.$$

• This is well defined. Suppose  $\frac{f}{g} = \frac{f'}{g'}$ . Then, by definition, for some  $h \in S$ ,

$$h(fg'-gf')=0.$$

Therefore, hfg' = hf'g.

## The Degree of a Quotient (Cont'd)

- By taking the homogeneous components, we may assume *h* is homogeneous.
  - Now deg is multiplicative.

Thus, we have

$$\deg h + \deg f + \deg g' = \deg h + \deg f' + \deg g$$

This shows that  $deg\left(\frac{f}{g}\right)$  is well defined.

### Definition

For any multiplicatively closed system  $T \subseteq S$  of a graded ring S, we define

$$S_{(T)} := \left\{ \frac{f}{g} \in S_T : \frac{f}{g} \text{ is homogeneous of degree } 0 \right\}.$$

## The Coordinate Ring as a Local Ring

 Let p ⊆ S be a homogeneous prime ideal. The set

 $T_{\mathfrak{p}} := \{ f \in S : f \text{ is homogeneous, } f \notin \mathfrak{p} \}$ 

is a multiplicatively closed system. We define

$$S_{(\mathfrak{p})} := S_{(\mathcal{T}_{\mathfrak{p}})}.$$

Let S be an integral domain.
 Let f ∈ S be a nonzero homogeneous element.
 The set

$$T_f := \{f^n : n \ge 0\}$$

is multiplicatively closed. We define

$$S(f) := S_{(T_f)}.$$

## The Coordinate Ring as a Local Ring (Cont'd)

#### Lemma

For a projective variety  $V \subseteq \mathbb{P}_k^n$ , we have an isomorphism of graded rings  $k(V) \cong S(V)_{((0))}.$ 

### • This follows immediately from the definition of k(V).

## Regular Functions

### Definition (Regular Function)

A rational function  $f \in k(V)$  is called **regular at a point** P if there is a representation

$$f = \frac{g}{h}$$
, with  $h(P) \neq 0$ .

### Definition (Domain of Definition)

The **domain of definition** dom(f) of  $f \in k(V)$  is the set of all points where f is regular.

• As in the affine case, dom(f) is a nonempty open subset of V.

## Local Ring of a Variety

### Definition (Local Ring of V)

The local ring of V at a point  $P \in V$  is defined by

$$\mathcal{O}_{V,P} := \{ f \in k(V) : f \text{ is regular at } P \}.$$

### Definition (The Maximal Ideal of V)

The maximal ideal of V at a point  $P \in V$  is defined by

$$m_{V,P} := \{ f \in \mathcal{O}_{V,P} : f(P) = 0 \} \subseteq \mathcal{O}_{V,P}.$$

- Note that every element  $g \in \mathcal{O}_{V,P}$ , with  $g(P) \neq 0$ , is a unit.
- So  $m_{V,P}$  is the unique maximal ideal of  $\mathcal{O}_{V,P}$ .
- Thus,  $\mathcal{O}_{V,P}$  is indeed a local ring.

## Isomorphism of Local Rings

- Let V be an irreducible variety, with  $V \nsubseteq V(x_0)$ .
- Consider a point  $P \in V_0 = V \cap U_0$ .
- Depending on whether we interpret P as a point in the projective variety V or in the affine variety V<sub>0</sub>, we have defined two local rings,

$$\mathscr{O}_{V_0,P}$$
 and  $\mathscr{O}_{V,P}$ .

• The isomorphism given in the lemma induces an isomorphism

$$\mathcal{O}_{V,P} \cong \mathcal{O}_{V_0,P}.$$

• For  $P \in V$ , we can consider the maximal ideal

 $M_P := \{f \in S(V) : f \text{ homogeneous, } f(P) = 0\} \subseteq S(V).$ 

#### Lemma

 $\mathcal{O}_{V,P} \cong S(V)_{(M_P)}.$ 

• Immediately clear from the definitions.

George Voutsadakis (LSSU)

Algebraic Geometry

## The Ring of Regular Functions

### Definition (Ring of Regular Functions)

For a quasi-projective variety, given by an open subset  $U \subseteq V$ , the ring of regular functions on U is defined by

$$\mathcal{O}(U) := \{ f \in k(V) : U \subseteq \operatorname{dom}(f) \}.$$

• Considering  $\mathcal{O}(U)$  as a subset of k(V), we have

$$\mathscr{O}(U) = \bigcap_{P \in U} \mathscr{O}_{V,P}.$$

## The Regular Function Theorem

#### Theorem

If V is an irreducible projective variety defined over an algebraically close field k, then every regular function on V is constant, i.e.,

 $\mathcal{O}(V)\cong k.$ 

- In the complex case, if  $V \subseteq \mathbb{P}^n_{\mathbb{C}}$  is a smooth projective variety, this result follows from the fact that any holomorphic function on a connected compact complex manifold is constant.
- We would like to give an algebraic proof.

## *R*-Modules

• Let *R* be a ring with 1.

### Definition (R-Module)

A module over R (or an R-module) is an abelian group M, together with a multiplication map

$$\begin{array}{rccc} R \times M & \to & M; \\ (r,m) & \mapsto & rm, \end{array}$$

such that the following hold:

- (1)  $r(m_1 + m_2) = rm_1 + rm_2;$  (3)  $(r_1r_2)m = r_1(r_2m);$
- (2)  $(r_1 + r_2)m = r_1m + r_2m;$  (4) 1m = m.
  - A module in which the ring R is a field is a vector space.
  - A submodule is defined analogously to vector subspaces.
  - Similarly for homomorphisms of modules.

## Finitely Generated and Noetherian Modules

### Definition (Finitely Generated Module)

An *R*-module *M* is called **finitely generated** if there are finitely many elements  $m_1, \ldots, m_k$  with

 $M = Rm_1 + \cdots + Rm_k.$ 

### Definition (Noetherian Module)

An *R*-module *M* is called **Noetherian** if all submodules  $U \subseteq M$  are finitely generated.

## Finitely Generated Modules over Noetherian Rings

#### Lemma

Let R is a Noetherian ring. If M is a finitely generated R-module, then M is a Noetherian module.

• Let 
$$M = Rm_1 + \dots + Rm_k$$
.  
Let  $e_i, 1 \le i \le k$ , be a basis for  $R^k$ , with

$$e_i = (0, \ldots, 0, 1, 0, \ldots, 0),$$

i.e., all components are 0 except a 1 in the *i*-th place. For  $1 \le i \le k$ , there is a surjective homomorphism

$$\varphi: \begin{array}{ccc} R^k & \to & M; \\ e_i & \mapsto & m_i. \end{array}$$

Suppose U is a submodule of M. Then  $\phi^{-1}(U)$  is a submodule of  $R^k$ . So it is enough to prove the result for  $R^k$ .

### Finitely Generated and Noetherian Modules (Cont'd)

- We will prove the result by induction on k.
  - If k = 1, then a submodule of  $M \cong R$  is isomorphic to an ideal of R. The result follows from the assumption that R is a Noetherian ring. Now take  $U \subseteq R^k$ , with  $k \ge 2$ .
  - The first components of the vectors in U generate an ideal I in R,

$$I:=(u_1:(u_1,\ldots,u_k)\in U).$$

Since R is Noetherian, this ideal is finitely generated.

So there are elements  $u^{(i)} \in U$ ,  $1 \le i \le \ell$ , with first component  $u_1^{(i)}$ , such that

$$I = (u_1^{(1)}, \dots, u_1^{(\ell)}).$$

### Finitely Generated and Noetherian Modules (Cont'd)

• Thus, for  $u \in U$ , there are elements  $r_1, \ldots, r_\ell \in R$ , such that

$$u - r_1 u^{(1)} - \dots - r_\ell u^{(\ell)} = (0, u_2^*, \dots, u_k^*).$$

Let  $R^{k-1} \subseteq R^k$  be the submodule of elements of  $R^k$ , with first component 0.

Consider the submodule

$$U':=U\cap R^{k-1}.$$

By induction, U' is finitely generated, by some elements  $v_1, \ldots, v_m$ . Thus,

$$u^{(1)}, \ldots, u^{(\ell)}, v_1, \ldots, v_m$$

generate U.

## The Regular Function Theorem

#### Theorem

If V is an irreducible projective variety defined over an algebraically close field k, then every regular function on V is constant, i.e.,

 $\mathcal{O}(V) \cong k.$ 

Let V be an irreducible projective variety in P<sup>n</sup><sub>k</sub>.
We assume that V is not contained in any hyperplane H<sub>i</sub> := V(x<sub>i</sub>).
Otherwise V ⊆ H<sub>i</sub> ≅ P<sup>n-1</sup><sub>k</sub>, and we can replace P<sup>n</sup><sub>k</sub> by P<sup>n-1</sup><sub>k</sub>.
Let f ∈ O(V).
Consider the affine covering V = V<sub>0</sub> ∪ · · · ∪ V<sub>n</sub>.
Since f is regular on V, the restriction f |<sub>Vi</sub> is regular on V<sub>i</sub>.

## The Regular Function Theorem (Cont'd)

 We make use of the explicit isomorphism k(V) ≅ k(V<sub>i</sub>). Then f |<sub>V<sub>i</sub></sub> is a polynomial in <sup>x<sub>j</sub></sup>/<sub>x<sub>i</sub></sub>, 1 ≤ j ≠ i ≤ n. Thus, for 1 ≤ i ≤ n, we can write

$$f\mid_{V_i}=\frac{g_i}{x_i^{N_i}},$$

where  $g_i \in S(V)$  is homogeneous of degree  $N_i$ . Since V is irreducible, I(V) is a prime ideal. This implies that

$$S(V) = k[x_0, \ldots, x_n]/I(V)$$

is an integral domain.

So we can consider the field of fractions

$$L := \operatorname{Quot} S(V) = k(V^a),$$

where  $V^a$  is the affine cone over V.

George Voutsadakis (LSSU)

## The Regular Function Theorem (Cont'd)

The rings 𝒪(V), k(V) and 𝒪(V) are all contained in L.
 We have

$$x_i^{N_i} f \in S_{N_i}(V),$$

where  $S_d(V)$  is the homogeneous part of degree d of S(V). Now take an integer  $N > \sum N_i$ .

Then  $S_N(V)$  is a finite dimensional *k*-vector space, spanned by the monomials of degree *N*.

Every monomial m in  $S_N(V)$  is divisible by  $x_i^{N_i}$ , for some i. Since  $x_i^{N_i} f \in S_{N_i}(V)$ , we get  $mf \in S_N(V)$ . Hence,  $S_N(V)f \subseteq S_N(V)$ .

This shows that, for  $q \ge 1$ , we have a sequence of inclusions,

$$S_N(V)f^q \subseteq S_N(V)f^{q-1} \subseteq \cdots \subseteq S_N(V)f \subseteq S_N(V).$$

In particular, this implies that  $x_0^N f^q \in S_N(V)$ , for all  $q \ge 1$ . Hence,  $S(V)[f] \subseteq x_0^{-N} S(V) \subseteq L$ .

### The Regular Function Theorem (Final Steps)

 We have x<sub>0</sub><sup>-N</sup>S(V) is a finitely generated S(V)-module. Hence, x<sub>0</sub><sup>-N</sup>S(V) is Noetherian.
 So the submodule S(V)[f] is also finitely generated over S(V). Now f is integral over S(V).
 It, thus, satisfies an equation of the form

$$f^m + a_{m-1}f^{m-1} + \dots + a_1f + a_0 = 0, \quad a_i \in S(V).$$

Since f is homogeneous of degree 0, we can assume the same for the  $a_i$ , since we can take the degree 0 component of the  $a_i$ .

Hence, 
$$a_i \in S_0(V) = k$$
.  
Thus, f is algebraic over k.

But, we are assuming that  $k = \overline{k}$ .

It follows that  $f \in k$ .

## Affine Rational Maps

### Definition (Affine Rational Map)

Let V be an irreducible projective variety.

1) A rational map  $f: V \rightarrow \mathbb{A}_k^m$  is an *m*-tuple

 $f=\left(f_1,\ldots,f_m\right)$ 

of rational functions  $f_1, \ldots, f_m \in k(V)$ . The **domain of definition** of f is given by

$$\operatorname{dom}(f) := \bigcap_{i=1}^{m} \operatorname{dom}(f_i).$$

On this set, f is well defined, with  $f(P) = (f_1(P), ..., f_m(P))$ . (2) A rational map  $f: V \to W \subseteq \mathbb{A}_k^m$  is given by a rational map  $f: V \to \mathbb{A}_k^m$  with  $f(\operatorname{dom}(f)) \subseteq W$ .

### Projective Rational Maps

• Now let V be an irreducible projective or affine variety.

Definition (Projective Rational Map)

A rational map  $f: V \rightarrow \mathbb{P}_k^m$  on V is given by

 $f(P) = (f_0(P) : \ldots : f_m(P))$ 

for rational functions  $f_0, \ldots, f_m \in k(V)$ .

• If  $0 \neq g \in k(V)$ , then the tuples

$$(f_0,\ldots,f_m)$$
 and  $(gf_0,\ldots,gf_m)$ 

define the same rational map.

## Regular Maps

### Definition (Regular Map)

A rational map  $f: V \dashrightarrow \mathbb{P}_k^m$  is regular at a point P if there is a representation

$$f=(f_0:\ldots:f_m),$$

such that:

1) For 
$$1 \le i \le m$$
, the function  $f_i$  is regular at  $P$ .

There is some *i*, such that  $f_i(P) \neq 0$ .

### Definition (Projective Rational Map)

A rational map 
$$f: V \dashrightarrow W \subseteq \mathbb{P}_k^m$$
 is a rational map  $f: V \dashrightarrow \mathbb{P}_k^m$ , with

 $f(\operatorname{dom}(f)) \subseteq W.$ 

## Morphisms of Quasi-Projective Varieties

### Definition (Morphism)

Let  $V_1$  and  $V_2$  be irreducible affine or projective varieties containing open subsets  $U_1$  and  $U_2$ , respectively.

(1) A morphism  $f: U_1 \rightarrow U_2$  is a rational map  $f: V_1 \dashrightarrow V_2$  with

 $U_1 \subseteq \operatorname{dom}(f)$  and  $f(U_1) \subseteq U_2$ .

(2) A morphism  $f: U_1 \rightarrow U_2$  is an **isomorphism** if there is a morphism  $g: U_2 \rightarrow U_1$ , with

$$g \circ f = \operatorname{id}_{U_1}$$
 and  $f \circ g = \operatorname{id}_{U_2}$ .

### • This definition allows us to speak of:

- Morphisms on quasi-projective varieties;
- Isomorphisms between quasi-projective varieties.

### Example

• Consider the **rational normal curve of degree** *n*, parametrized by the map

$$\varphi: \qquad \mathbb{P}_k^1 \rightarrow \mathbb{P}_k^n; \\ \varphi(t_0:t_1) = (t_0^n:t_0^{n-1}t_1:\ldots:t_1^n).$$

Notice that we can write

$$\begin{split} \varphi(t_0:t_1) &= (t_0^n:t_0^{n-1}t_1:\ldots:t_1^n) \\ &= \left( \left(\frac{t_0}{t_1}\right)^n:\left(\frac{t_0}{t_1}\right)^{n-1}:\ldots:1 \right) \\ &= \left( 1:\ldots:\left(\frac{t_1}{t_0}\right)^{n-1}:\left(\frac{t_1}{t_0}\right)^n \right). \end{split}$$

So the map  $\varphi$  is rational and everywhere regular.

## The Isomorphism $j_\ell$

- We return to the affine covering of  $\mathbb{P}_k^n$ .
- We have maps

$$i_{\ell}: \quad \mathbb{A}_{k}^{n} \quad \rightarrow \quad U_{\ell} = \{(x_{0}:\ldots:x_{n}): x_{\ell} \neq 0\} \subseteq \mathbb{P}_{k}^{n}; \\ (x_{1},\ldots,x_{n}) \quad \mapsto \quad (x_{1}:\ldots:x_{\ell-1}:1:x_{\ell}:\ldots:x_{n}), \\ j_{\ell}: \quad U_{\ell} \quad \rightarrow \quad \mathbb{A}_{k}^{n}; \\ (x_{0}:\ldots:x_{\ell-1}:x_{\ell}\ldots:x_{n}) \quad \mapsto \quad (\frac{x_{0}}{x_{\ell}},\ldots,\frac{x_{\ell-1}}{x_{\ell}},\frac{x_{\ell+1}}{x_{\ell}},\ldots,\frac{x_{n}}{x_{\ell}}).$$

We have already seen that  $j_{\ell}$  is a homeomorphism.

#### Proposition

 $j_{\ell}: U_{\ell} \to \mathbb{A}_{k}^{n}$  is an isomorphism.

• The maps  $i_{\ell}$  and  $j_{\ell}$  are inverse morphisms of each other.

## **Birational Equivalences**

• Let V and W be irreducible quasi-projective varieties.

### Definition (Birational Map)

A rational map  $f: V \rightarrow W$  is called **birational** (or a **birational** equivalence) if there is a rational map  $g: W \rightarrow V$ , with

$$f \circ g = \mathrm{id}_W$$
 and  $g \circ f = \mathrm{id}_V$ .

#### Definition (Birational Equivalence)

Two varieties V and W are said to be **birationally equivalent** if there is a birational equivalence  $f: V \rightarrow W$ .
### Characterization of Birational Maps

Recall that a rational map f: V → W is called *dominant* if f(dom(f)) is a Zariski dense subset of W.

#### Theorem

For a rational map  $f: V \rightarrow W$ , the following statements are equivalent:

- (1) f is birational;
- 2) f is dominant and  $f^*: k(W) \rightarrow k(V)$  is an isomorphism;
- (3) There are open sets  $V_0 \subseteq V$  and  $W_0 \subseteq W$ , such that the restriction  $f|_{V_0}: V_0 \to W_0$  is an isomorphism.

## Proof of the Equivalence Theorem $((3)\Rightarrow(1))$

The equivalence of (1) and (2) is proved as in the affine case.
We show that (3)⇒(1).
Under (3), f |<sub>V0</sub>: V<sub>0</sub> → W<sub>0</sub> has an inverse g : W<sub>0</sub> → V<sub>0</sub>.
Moreover, by definition, g : W --→ V is a rational map.
Then g ∘ f : V --→ V and f ∘ g : W --→ W are rational maps which are the identity maps on V<sub>0</sub> and W<sub>0</sub>, respectively.
But V<sub>0</sub> and W<sub>0</sub> are dense.
It follows that

$$g \circ f = \mathrm{id}_V$$
 and  $f \circ g = \mathrm{id}_W$ .

## Proof of the Equivalence Theorem $((1)\Rightarrow(3))$

It remains to show the implication (1)⇒(3).
 Let g: W --→ V be a rational map inverse to f.
 We set V' := dom(f) and W' = dom(g).

Then we have morphisms

$$\varphi := f \mid_{V'} : V' \to W \quad \text{and} \quad \psi := g \mid_{W'} : W' \to V.$$

We also have an equality of rational maps  $f \circ g = id_W$ . Thus, we obtain  $\varphi(\psi(P)) = P$ , for all  $P \in \psi^{-1}(V')$ .

George Voutsadakis (LSSU)

## Proof of the Equivalence Theorem $((1)\Rightarrow(3)$ Cont'd)



# Categorical Formulation

### Corollary

There is a contravariant equivalence between the category of irreducible quasi-projective varieties, with dominant rational maps as morphisms, and the category of finitely generated field extensions of k and k-homomorphisms, given by

$$V \mapsto k(V),$$
  
(f: V --- W)  $\mapsto$  (f\*: k(W)  $\rightarrow$  k(V)).

- In the classification problem of algebraic geometry, one tries to classify varieties either up to birational equivalence (coarse classification), or up to isomorphism (fine classification).
- It makes sense to restrict attention to the properties of a variety that are invariant under birational equivalence.

# Irreducible Varieties are "Almost" Hypersurfaces

#### Proposition

Every quasi-projective irreducible variety is birationally equivalent to an affine hypersurface.

Since every quasi-projective variety is birationally equivalent to an affine variety, we may restrict attention to this case.
 Let V ⊆ A<sup>n</sup><sub>k</sub> be an irreducible affine variety.
 By a previous corollary, there are

$$y_1,\ldots,y_{m+1}\in k[V],$$

such that:

- $y_1, \ldots, y_m$  algebraically independent over k;
- k(V) is an algebraic extension of  $k(y_1,...,y_m)$ , generated by  $y_{m+1}$ .

## Irreducible Varieties are "Almost" Hypersurfaces (Cont'd)

• Consider the minimal polynomial

$$y_{m+1}^N + a_1 y_{m+1}^{N-1} + \dots + a_n = 0, \quad a_i \in k(y_1, \dots, y_m),$$

of 
$$y_{m+1}$$
 over  $k(y_1, ..., y_m)$ .

Multiply by the highest common denominator of the  $a_i$ . We obtain an irreducible polynomial

$$b_0 y_{m+1}^N + b_1 y_{m+1}^{N-1} + \dots + b_N = 0, \quad b_i \in k[y_1, \dots, y_m].$$

This equation defines an irreducible hypersurface  $W \subseteq \mathbb{A}_{k}^{m+1}$ . Now the  $y_{i}$  are algebraically independent, for  $1 \leq i \leq m$ . So we have an isomorphism  $k(W) \cong k(V)$ . The result then follows from the preceding theorem.

## Rational Quasi-Projective Varieties

#### Definition (Rational Quasi-Projective Variety)

A quasi-projective variety V is called **rational** if V is birationally equivalent to  $\mathbb{A}_k^n$  (or equivalently, to  $\mathbb{P}_k^n$ ).

### Proposition

The following statements are equivalent:

(1) V is rational;

(2) 
$$k(V) \cong k(x_1,\ldots,x_n);$$

(3) There are isomorphic open sets  $V_0 \subseteq V$  and  $U_0 \subseteq \mathbb{A}_k^n$ .

### • This follows immediately from the theorem.

### Examples

### • We have already visited the curves

$$C_0: y^2 = x^3$$
 (semicubical parabola),  

$$C_1: y^2 = x^3 + x^2.$$

They are rational.

• We also visited the elliptic curve

$$C_{\lambda}$$
:  $y^2 = x(x-1)(x-\lambda), \quad \lambda \neq 0, 1.$ 

We showed that it is not rational.

### Example

### Consider the map

$$\begin{split} f: & \mathbb{A}^1_k & \rightarrow \quad C := \{(x,y) \in \mathbb{A}^2_k : y^2 - x^3 = 0\}; \\ & t & \mapsto \quad (t^2,t^3), \end{split}$$

It is a birational map.

However, f is not an isomorphism.

The restriction

$$f_0 := f \mid_{\mathbb{A}^1_k \setminus \{0\}} : \mathbb{A}^1_k \setminus \{0\} \to C \setminus \{0\}$$

is an isomorphism of Zariski open sets.

### Projections

### • Consider the map

$$\pi := (x_1 : \ldots : x_n) : \qquad \mathbb{P}_k^n \to \mathbb{P}_k^{n-1}; \\ (x_0 : \ldots : x_n) \mapsto (x_1 : \ldots : x_n).$$

#### It is a rational map.

It is defined everywhere on  $\mathbb{P}_k^n$  except at the point  $P_0 = (1:0:\ldots:0)$ . The map  $\pi$  is called the **projection** from  $P_0$ .

Identify 
$$\mathbb{P}_{k}^{n-1}$$
 with  $V(x_{0})$  in  $\mathbb{P}_{k}^{n}$ .  
Consider a point  $P \neq P_{0}$ .  
The image  $\pi(P)$  is given by the  
intersection of the line  $\overline{P_{0}P}$  with the  
plane  $\mathbb{P}_{k}^{n-1}$ .



## Projections (Cont'd)

• Now set n = 3 and consider the quadric

$$Q := \{ (x_0 : x_1 : x_2 : x_3) \in \mathbb{P}_k^3 : x_0 x_3 - x_1 x_2 = 0 \}.$$

The point  $P_0 = (1:0:0:0)$  lies on Q.

The restriction of the projection  $\pi$  to Q is a rational map

$$p = \pi \mid_Q \colon Q \dashrightarrow \mathbb{P}_k^2.$$

This map is birational.

Its inverse  $q: \mathbb{P}^2_k \dashrightarrow Q$  is given by

$$q(x_1:x_2:x_3) = \left(\frac{x_1x_2}{x_3}:x_1:x_2:x_3\right) \\ = \left(x_1x_2:x_1x_3:x_2x_3:x_3^2\right).$$

q is defined everywhere except at the points (1:0:0) and (0:1:0).

## Cremona Transformations

- A birational map from  $\mathbb{P}_k^2$  to  $\mathbb{P}_k^2$  is called a **Cremona** transformation.
- An example is given by the map  $\varphi : \mathbb{P}_k^2 \dashrightarrow \mathbb{P}_k^2$ , defined by

$$\begin{aligned} \varphi(x_0:x_1:x_2) &= (x_1x_2:x_0x_2:x_0x_1) \\ &= \left(\frac{1}{x_0}:\frac{1}{x_1}:\frac{1}{x_2}\right). \end{aligned}$$

It is birational, with  $\varphi = \varphi^{-1}$ .

The map  $\varphi$  is not defined at the points (1:0:0), (0:1:0), (0:0:1). Moreover, it contracts the three lines  $V(x_i)$  to points.

## The Segre Map and the Segre Variety

Definition (The Segre Map and the Segre Variety)

We define the Segre map by

$$s_{n,m}: \qquad \mathbb{P}_k^n \times \mathbb{P}_k^m \to \mathbb{P}_k^N; \\ ((x_0:\ldots:x_n), (y_0:\ldots:y_m)) \mapsto (x_0y_0:\ldots:x_iy_j:\ldots:x_ny_m)$$

where N = (n+1)(m+1)-1 and  $0 \le i \le n$ ,  $0 \le j \le m$ . This map is well defined. The image

$$\Sigma_{n,m} := s_{n,m} (\mathbb{P}_k^n \times \mathbb{P}_k^m)$$

is called the Segre variety.

# The Segre Variety

#### Lemma

- The Segre map  $s_{n,m} : \mathbb{P}_k^n \times \mathbb{P}_k^m \to \Sigma_{n,m}$  is bijective. The image  $\Sigma_{n,m}$  is a projective variety in  $\mathbb{P}_k^N$ .
  - We denote the coordinates of P<sup>N</sup><sub>k</sub> by z<sub>ij</sub>, where 0 ≤ i ≤ n, 0 ≤ j ≤ m. These coordinates are ordered to be compatible with s<sub>n,m</sub>. Let π<sub>ijℓr</sub> is the projection

$$\pi_{ij\ell r}: \qquad \mathbb{P}_k^N \xrightarrow{-\to} \mathbb{P}_k^1, \\ (z_{00}:\ldots:z_{ij}:\ldots:z_{nm}) \xrightarrow{\mapsto} (z_{ij}:z_{\ell r}).$$

Then the composition  $\pi_{ij\ell r} \circ s_{n,m}$  is given by the rational map

$$\pi_{ij\ell r} \circ s_{n,m}((x_0:\ldots:x_n),(y_0:\ldots:y_m)) = (x_iy_j:x_\ell y_r).$$

## The Segre Map and the Segre Variety (Cont'd)

• So the points in  $\Sigma_{n,m}$  satisfy the homogeneous equations

$$z_{ir}z_{j\ell} - z_{i\ell}z_{jr} = 0, \quad i, j = 0, \dots, n; \ \ell, r = 0, \dots, m.$$

Let Z be the variety described by these equations.

Clearly  $\Sigma_{n,m} \subseteq Z$ .

Claim: For every point  $R \in Z$ , there exists a pair  $(P, Q) \in \mathbb{P}_k^n \times \mathbb{P}_k^m$ , such that

$$s_{n,m}(P,Q)=R.$$

The Claim implies that  $\sum_{n,m} = Z$ .

Thus,  $s_{n,m}$  maps  $\mathbb{P}_k^n \times \mathbb{P}_k^m$  bijectively to its image.

### Proof of the Claim

Claim: For every point  $R \in Z$ , there exists a pair  $(P, Q) \in \mathbb{P}_k^n \times \mathbb{P}_k^m$ , such that

$$s_{n,m}(P,Q)=R.$$

Let  $R = (z_{00}^0 : z_{01}^0 : ... : z_{nm}^0)$  be a point in Z. Without loss of generality, we may assume that  $z_{00}^0 \neq 0$ . So, by scaling, we can assume that  $z_{00}^0 = 1$ . The other cases can be handled analogously. Set

$$\begin{array}{rcl} Q & := & \left(1:z_{01}^0:\ldots:z_{0m}^0\right) \in \mathbb{P}_k^m, \\ P & := & \left(1:z_{10}^0:\ldots:z_{n0}^0\right) \in \mathbb{P}_k^n. \end{array}$$

We have

$$z_{i0}^0 z_{0j}^0 = z_{00}^0 z_{ij}^0 = z_{ij}^0.$$

Hence,  $s_{n,m}((P,Q)) = R$ . It is also clear that (P,Q) is the unique point in  $\mathbb{P}_k^n \times \mathbb{P}_k^m$  mapped to R by  $s_{n,m}$ .

# Irreducibility of the Segre Variety

#### Lemma

The Segre variety  $\Sigma_{n,m}$  is irreducible.

• The projections from  $\mathbb{P}_k^n \times \mathbb{P}_k^m$  to  $\mathbb{P}_k^n$  and to  $\mathbb{P}_k^m$  form a commutative diagram.



The proof of the lemma shows that  $q_1$  and  $q_2$  are morphisms.

## Irreducibility of the Segre Variety

• Let  $P \in \mathbb{P}_k^n$  and  $Q \in \mathbb{P}_k^m$  be any points.



We have the following restrictions of  $s_{n,m}$ ,

 $\begin{array}{rcl} s^Q_{n,m} \colon \mathbb{P}^n_k \times \{Q\} & \to & \Sigma_{n,m}, \\ s^P_{n,m} \colon \{P\} \times \mathbb{P}^m_k & \to & \Sigma_{n,m}. \end{array}$ 

These maps induce isomorphisms between  $\mathbb{P}_k^n$  and  $\mathbb{P}_k^m$  and projective subspaces of  $\mathbb{P}_k^N$ .

Thus, via  $s_{n,m}^P$  and  $s_{n,m}^Q$ , the fibers of  $q_1$  and  $q_2$  are projective varieties, isomorphic to  $\mathbb{P}_k^m$  and  $\mathbb{P}_k^n$ , respectively. In particular, the fibers of  $q_1$  and  $q_2$  are irreducible. The irreducibility of  $\Sigma_{n,m}$  can now be shown as in the affine case.

### Example

- We may identify  $\mathbb{P}_k^n \times \mathbb{P}_k^m$  with  $\Sigma_{n,m}$  by means of the Segre map.
- In this way,  $\mathbb{P}_k^n \times \mathbb{P}_k^m$  is viewed as an irreducible projective variety. Example: We have already seen the map

$$s_{1,1}: \qquad \mathbb{P}^1_k \times \mathbb{P}^1_k \rightarrow \mathbb{P}^3_k; \\ ((x_0:x_1), (y_0:y_1)) \mapsto (x_0y_0: x_0y_1: x_1y_0: x_1y_1).$$

In this case the Segre variety  $\Sigma_{1,1}$  is the quadric

$$\Sigma_{1,1} = Q = V(z_{00}z_{11} - z_{01}z_{10}).$$

## Product of Projective Varieties

### Proposition

- Let V and W be projective varieties. Then:
- (1) The product  $V \times W$  is also a projective variety.
- (2) If V, W are irreducible, then so is  $V \times W$ .
- (1) Let  $V \subseteq \mathbb{P}_k^n$ ,  $W \subseteq \mathbb{P}_k^m$  be given by homogeneous equations

$$V: f_i(x_0,...,x_n) = 0, \quad i = 1,...,r;$$
  
$$W: g_j(y_0,...,y_m) = 0, \quad j = 1,...,s.$$

Let  $d_i$  be the degree of  $f_i$ . Let  $e_j$  the degree of  $g_j$ .

## Product of Projective Varieties (Cont'd)

• The elements of the set  $V \times W \subseteq \mathbb{P}_k^n \times \mathbb{P}_k^m$  are given by the zeros of the polynomials

$$\begin{array}{lll} F_{ik} & := & f_i y_k^{d_i}, & i = 1, \dots, r, \ k = 0, \dots, m, \\ G_{j\ell} & := & g_j x_\ell^{e_j}, & j = 1, \dots, s, \ \ell = 0, \dots, n. \end{array}$$

These may be considered as homogeneous polynomials

$$F_{ik} = F_{ik}(z_{\mu k})$$
 and  $G_{j\ell} = G_{j\ell}(z_{\ell \nu}).$ 

Append the equations

$$z_{\mu\nu}z_{\rho\sigma}-z_{\mu\sigma}z_{\rho\nu}=0.$$

We obtain a system of homogeneous equations for the set

$$V \times W \subseteq \mathbb{P}_k^N.$$

) Irreducibility can be shown as in the lemma.

George Voutsadakis (LSSU)

### Remarks

- In fact  $V \times W$  is a product in the category of projective varieties.
- Note that  $V \times W$  does not have the product topology.
- The product of quasi-projective varieties is obtained analogously.

## The Exceptional Line

Consider the quasi-projective variety

$$\widetilde{\mathbb{A}}_{k}^{2} := \{ ((x, y), (t_{0} : t_{1})) \in \mathbb{A}_{k}^{2} \times \mathbb{P}_{k}^{1} : xt_{1} - yt_{0} = 0 \}.$$

• Projection onto the factor  $\mathbb{A}_k^2$  induces a surjective morphism

$$\pi: \widetilde{\mathbb{A}}_k^2 \to \mathbb{A}_k^2.$$

We have

$$\pi^{-1}(x,y) = \begin{cases} \{(0,0)\} \times \mathbb{P}^1_k, & \text{if } (x,y) = (0,0), \\ ((x,y), (x:y)), & \text{otherwise.} \end{cases}$$

The fiber E := π<sup>-1</sup>((0,0)) is a projective line, which is called the exceptional line.

## The Blow Up

For (x, y) ≠ (0,0), the inverse image is the point ((x, y), (x : y)).
So π is birational with inverse

$$\begin{aligned} \pi^{-1}: & \mathbb{A}_k^2 & \dashrightarrow & \widetilde{\mathbb{A}}_k^2; \\ & \pi^{-1}(x,y) & = & ((x,y), (x:y)). \end{aligned}$$

- This map is not regular at the origin.
- Away from the origin, π gives an isomorphism between the quasi-projective varieties

$$\mathbb{A}^2_k \setminus \{0\}$$
 and  $\widetilde{\mathbb{A}}^2_k \setminus E$ .

• The surface  $\widetilde{\mathbb{A}}_k^2$  is called the **blow-up** of  $\mathbb{A}_k^2$  at the origin.



# Points of E and Lines through Origin in ${ m A}^2_k$

The points of E correspond to the lines through the origin in A<sup>2</sup><sub>k</sub>.
Let L<sub>λ,μ</sub> be the line through the origin in A<sup>2</sup><sub>k</sub>, given by

$$L_{\lambda,\mu} := \{ (x, y) \in \mathbb{A}_k^2 : \lambda x - \mu y = 0 \}.$$

The inverse image of {(0,0)} ∈ L<sub>λ,μ</sub> is the exceptional line E.
Any other point of L<sub>λ,μ</sub> is of the form (μt, λt), for t ∈ k \{0}.

• We have

$$\pi^{-1}(\mu t, \lambda t) = ((\mu t, \lambda t), (\mu : \lambda)).$$

• So the inverse image of  $L_{\lambda,\mu} \setminus \{0\}$  is given by

$$\pi^{-1}(L_{\lambda,\mu}\setminus\{0\}) = \{((\mu t, \lambda t), (\mu : \lambda)) : t \in k \setminus \{0\}\}.$$

# Points of *E* and Lines in $\mathbb{A}_k^2$ (Cont'd)

• Let the line  $L'_{\lambda,\mu} \subseteq \mathbb{A}^2_k \times \mathbb{P}^1_k$  be the closure of

$$\pi^{-1}(L_{\lambda,\mu}\setminus\{0\}) = \{((\mu t, \lambda t), (\mu : \lambda)) : t \in k \setminus \{0\}\}.$$

The projection π induces an isomorphism between L'<sub>λ,μ</sub> and L<sub>λ,μ</sub>.
We have

$$L'_{\lambda,\mu} = \pi^{-1}(L_{\lambda,\mu} \setminus \{0\}) \cup \{((0,0), (\mu, \lambda))\} \in E.$$

So

$$\pi^{-1}(L_{\lambda,\mu})=E\cup L'_{\lambda,\mu}.$$

- Identify E with  $\mathbb{P}^1_k$  via  $((0,0), (x:y)) \mapsto (x:y) \in \mathbb{P}^1_k$ .
- We obtain  $L'_{\lambda,\mu} \cap E = (\mu : \lambda) \in \mathbb{P}^1_k$ .
- Thus, every point  $(\mu : \lambda) \in E \cong \mathbb{P}^1_k$  corresponds to a unique line through the origin in  $\mathbb{A}^2_k$ .

# Affine Covering of $\widetilde{\mathbb{A}}_k^2$

- Recall the affine covering  $\mathbb{P}_k^1 = U_0 \cup U_1$ , with  $U_i = \{t_i \neq 0\}$ .
- It induces a covering

$$\widetilde{\mathbb{A}}_k^2 = V_0 \cup V_1, \quad V_i \subseteq \mathbb{A}_k^2 \times \mathbb{A}_k^1,$$

where

$$\begin{split} V_0 &:= & \left\{ ((x,y), (t_0:t_1)) \in \mathbb{A}_k^2 \times \mathbb{P}_k^1 : t_0 \neq 0 \text{ and } x \frac{t_1}{t_0} - y = 0 \right\}, \\ V_1 &:= & \left\{ ((x,y), (t_0:t_1)) \in \mathbb{A}_k^2 \times \mathbb{P}_k^1 : t_1 \neq 0 \text{ and } x - y \frac{t_0}{t_1} = 0 \right\}. \end{split}$$

Now we use coordinates:

• 
$$x, u := \frac{t_1}{t_0}$$
 for  $V_0$ ;  
•  $y, v := \frac{t_0}{t_1}$  for  $V_1$ .

• We see that  $V_0$  and  $V_1$  are both isomorphic to  $\mathbb{A}_k^2$ .

### Example

Consider the curve

$$C: \quad y^2 = x^3 + x^2.$$

• It has a double point at the origin.

We have

$$\pi^{-1}(C) = \{ ((x, y), (t_0 : t_1)) : y^2 = x^3 + x^2, t_0 y = t_1 x \}.$$

In terms of the preceding affine covering, we have

$$\pi^{-1}(C \setminus \{(0,0)\}) \cap V_0 = \{(x,u) \in V_0 \cong \mathbb{A}_k^2 : x^2(x+1-u^2) = 0\}, \pi^{-1}(C \setminus \{(0,0)\}) \cap V_1 = \{(y,v) \in V_1 \cong \mathbb{A}_k^2 : y^2(yv^3+v^2-1) = 0\}.$$

# Example (Cont'd)

- Let  $\widetilde{C}$  denote the closure of this curve in  $\mathbb{A}^2_k\times\mathbb{P}^1_k$
- Note  $\tilde{C} \subseteq V_0$ .
- Identifying E with  $\mathbb{P}^1_k$ , we get

$$\widetilde{C} \setminus \pi^{-1}(C \setminus \{(0,0)\}) = \widetilde{C} \cap E = \{(1:1), (1:-1)\} \subseteq E \cong \mathbb{P}^1_k$$

• These points correspond to the two tangents to *C* at the origin, given by *L*<sub>1,1</sub> and *L*<sub>1,-1</sub> in the notation of the previous example.

# Example (Strict Transform of *C*)

- The preimage  $\pi^{-1}(C)$  also contains the exceptional line (with multiplicity two).
- Moreover, we have

$$\pi^{-1}(C)=E\cup\widetilde{C}.$$

- The curve  $\widetilde{C}$  is "smooth".
- We call  $\widetilde{C}$  the strict transform of C.



- $\tilde{C}$  is birationally equivalent, but not isomorphic, to C.
- The figure shows C and its preimage, together with the tangent lines to C at (0,0) and their preimages.