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o Let V be a finite dimensional vector space over k.

o We consider the following equivalence relation on V\{0}:
u~v iff there exists 1 € k*, with u= Av.

Definition (Projective Space)

The projective space associated to V is defined by

P(V):=(V\0})/~.
The dimension of P(V) is defined by

dimP(V):=dimV -1.
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o Two vectors are equivalent if and only if they span the same line in V.

o So geometrically, the projective space associated to V is the set of all
lines through the origin in V.

o In particular, taking V = k™! we define

P":=P] :=P(k").
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o The space Py, = P(R?) is homeomorphic to S*.

Sl
]Pl

o The real projective plane has a decomposition
P% =P(R?) =R?UP'(R).

Under this decomposition:

o R? corresponds to the set of lines that do not lie in the (x,y)-plane;
o PY(R) corresponds to the set of lines in the (x,y)-plane.
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©

We will denote the residue class map

7 V\{0} - P(V).

©

For the special case P(V) =P}, we use the notation

(x0:---:xn) :=7((x0,---»Xn))-

©

We call (xg:...:xp) the homogeneous coordinates of the point
P =n((x0,...,xn)) € P}.

The homogeneous coordinates are well defined only up to
multiplication by a common scalar.

©

o LA -
o However, we can “compute” using them.
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o Any projective space can be decomposed into an affine subspace and a
projective subspace of smaller dimension.

o For P}, such a decomposition is given by setting

Ug:={(xo:...:xn)€]PZ i xp # 0},
He:={(x0:...: xn) € P : xp = 0}.

o The space H, can be identified with ]PZ‘l.
o Uy can be identified with A7.
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o The latter identification can be realized, e.g., by the mutually inverse

maps
ip: A}l — Uy,
(X1,-.,xn) — (xa:.oixe—1:lixpi..ixp)
Je: U — A}
(X0:-oiXp1:X0 i Xn) = (f(—g,...,xf(—zl,xf(—;l,...,i—;)

o So we get a decomposition

P =UsuH,=AJUP] ™.
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o Consider again
Pl =UsuH,=AJUP] ™.

o We fix the value of ¢ (usually £=0 or n).
o We refer to:

o Uy as the affine part of ]PZ;

o Hy as the hyperplane at infinity.
o Points in H, are called “points at infinity'.
o This particular decomposition into an affine and a projective piece is

conventional.

o More generally, any projective hyperplane can be taken in P?, and the
complement will always be an affine space.

George Voutsadakis (LSSU) Algebraic Geometry



Functions

Definition (Projective Subspace)

A projective subspace of P(V) is a subset of the form z(W\{0}), where
W < V is a linear subspace and 7 is the residue class map. We write
P(W)<cP(V).

o A projective subspace is itself naturally a projective space.
o If dimW =dimV -1, then we call P(W) a hyperplane in P(V).
o A projective line is a projective space of dimension 1.

o A projective plane is a projective space of dimension 2.
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Lemma

Let P(W;) and P(W,) be projective subspaces of an n-dimensional
projective space P(V). If dimP(W;)+dimP(W,) = n, then P(W;) and
P(W5,) intersect, i.e., P(W1)nP(W,) # @.

o We have dimWj +dimWsr =n+2=dimV +1.

So Wi and W5 intersect at least in a line.

o In projective space the distinction between the cases of parallel and
nonparallel lines no longer exists.

o Two lines in the projective plane always intersect.
o In contrast, in the affine plane, two lines may be parallel.
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o Any projective space has a covering by affine spaces
v=UouUiu---uUp,

where
Ui={(xo:...:xp) €P} : x; #0}.

o In the case of k=R or k = C this covering can be used to give P; or
P the structure of a compact n-dimensional real or complex
manifold, respectively.

: The complex projective line has the structure of a compact
Riemann surface, namely the Riemann sphere,

Pg =Cufoo} = S2.
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Subsection 2

Projective Varieties
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o The homogeneous coordinates of a point P=(xp:...:x,) € P] are
only determined up to multiplication by a common scalar.

o So to consider the zero sets of polynomial equations defined on P7,
we must make a restriction to homogeneous polynomials.

o A polynomial
F(X0-+»Xn) = ) AvgevnXg X"
is called homogeneous of degree d if all the monomials have the
same degree d =vg+---+v,.
o We also use the word form to refer to homogeneous polynomials.

o So we refer, e.g., to linear forms, quadratic forms, cubic forms, etc.
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o If f is homogeneous of degree d, then we have
f(Ax0,..., Axp) = /ldf(xo,...,x,,).
o This shows the zero set of f,
V(f):={(x0:...:xn) €P} : f(x0,..., Xn) =0} S P},

is well defined.

Definition (Projective Variety)

A projective variety is a subset V <P}, such that, there exists a set of
homogeneous polynomials T < k[xq, ..., xp], with

V={PeP]:f(P)=0, forall feT}.

o As in the affine case, we may assume that T has only finitely many
elements.
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o We have already seen the projective subvariety of P} given by the
hyperplane at infinity,

Hn={(x0:x1:...:xp) € P} : x, = 0}.
o We discussed the following curves:
G ={(x:y:z)e ]Pé y2z=4x3 — goxz? —g3z3}

and
G={(x:y:2)eP} :y’z=x(x-2z)(x—12)}.
o We described these curves by giving affine equations in two variables.

o The process of obtaining the projective equations given here is called
homogenization.
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o Consider the map
: 1 3.
p: P - Py
p(to:ty) = (t3:t3t:totd:17).
The image C :=(p(IPi) is a projective variety, given by
_ gy 3. X0 X1 X2
C—{(xo.xl .x2.X3)€IPk.rank( % xs )Sl}.

This means that C is the intersection of three quadrics

C= Ql n Q2 N Q3, where

QL = {(Xo:XlZX2:X3)€IP:;’(ZX0X2—X12=O},
Q@ = {(x0:x1:x:x3)€ IP?( 1 Xox3 — x1%0 = 0},
QR = {(x0:x ZX2:X3)€IP:;’(ZX1X3—X22=O}.
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o The curve
C:=p(P})

cannot be defined by only two quadratic equations.

On the other hand, we have
C=QinF,
where
F:={(x0:x1:x2:x3) EIPi :xox32 —2X1X0X3 +X23 =0}.

That is, the quadric @ and the cubic F meet along the curve C.

C is called the (projective) rational normal curve of degree 3.
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o The image of the map
. 1, pl 3
¢ PxPp — Iy,
P((x0:x1),(yo:y1)) = (Xoyo:Xoy1:xiyo:xiy1),
is given by the quadric
Q:={(z0:21:20:23) € ]Pi : 2023 — 212> = O}.

There are two families of lines on Q (in each
case P runs through the points of IPi):

o The family of lines (p(IP,l( x {P});
o The family of lines ¢({P} x IPi)

Each of these families of lines is called a ruling of Q.
Any two lines in the same ruling are disjoint.
Any two lines in different rulings intersect.
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Definition (Graded Ring)

A graded ring is a ring S together with a decomposition into abelian

groups S—@®s.,
such that: d=0

o For d #e, we have SynSe ={0};

o Multiplication satisfies Sy - Se S Sy+e.
The elements of Sy are called the homogeneous elements of degree d.

o An important example is the polynomial ring

S=k[xp,..., xn| = €B kd[xo,...,x,,],
d=0
where

k9 X0, ..., %n] :={f € k[x0,...,xn] : f is homogeneous of degree d}u{0}.
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Definition (Homogeneous Ideals)

A homogeneous ideal / in a graded ring S is an ideal which satisfies

I = @(/ ﬁSd).

d=0

o An ideal / is homogeneous if and only if every element f €/ has a
unique decomposition
f=fo+--+1fy,

where f; € | is a homogeneous element of degree d;.
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Lemma

For an ideal / in a graded ring S we have:

The ideal I is homogeneous if and only if it can be generated by
homogeneous elements.

If I is homogeneous, then [ is prime if and only if for any pair of
homogeneous elements f,g € S, we have: fgel iff fel or gel.

The sum, product, intersection and radical of homogeneous ideals are
also homogeneous ideals.
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©

A projective variety was defined as the set of zeros of a system of
homogeneous polynomials.

©

Equivalently, a projective variety is the set of zeros of a homogeneous
ideal, or of finitely many homogeneous polynomials.

©

Let T be a set of homogeneous polynomials.

©

Let /(T) be the homogeneous ideal generated by T.

©

Then we have
V(T)=V((T))=V(A,...,f),

for homogeneous generators fi,...,f of I(T).

George Voutsadakis (LSSU) Algebraic Geometry



Functions

o As for affine space, the zero sets define a topology on IP}.

Lemma

Projective varieties satisfy the axioms of the closed sets of a topology on
IP{. In other words, we have the following:

The union of finitely many projective varieties is a projective variety.
The intersection of any number of projective varieties is a projective variety.

The empty set and IP} are projective varieties.

o This topology is called the Zariski topology on PP}.

o As in the affine case, we can decompose projective varieties into
irreducible components.
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Quasi-Projective Varieties

Definition (Quasi-Projective Variety)

A quasi-projective variety is an open subset of a projective variety.
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o We describe the relationship between projective varieties and
homogeneous ideals.

o In one direction we have

{ homogeneous ideals } { projective varieties }

I < k[xo,-.-,Xn] VcP]
— V()
where
f(x0,-.-,xn)=0
— . . n.
)= {(XO'""X”)E]Pk' for f e l,f homogeneous |[°
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o In the opposite direction

projective varieties homogeneous ideals
VcP] I < k[xo, ..., Xn]

Vo o— I(V),

where

Iy = { ideal generated by }

homogeneous polynomials f, with f|,=0
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o In the affine case, the corresponding maps / and V' are mutually
inverse if we make a restriction to radical ideals.

o As in the affine case, we have V((1)) = 9.

o On the other hand, there is another homogeneous ideal, namely

m=(xg,...,Xn) = @ kd[xo,...,x,,],
d=1

for which we also have V(m)=g.

Definition (Irrelevant Ideal)

The ideal m is called the irrelevant ideal.
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o If I is a homogeneous ideal, we can consider
o The projective zero set V = V/(/) c P};
o The affine zero set V2= V/(/) QAZ”.

o Geometrically, if | # k[x,...,xn], we have
Vi=n"Y(V)uio},

where, as before, 7 is the residue class map 7 : AZ”\{O} — Py

o In particular,

(x0)---»xn) € V? iff  (Axp,...,Axp) € V@, for Le k*.

Definition (Affine Cone)

The set V7 is called the affine cone over the projective variety V(/) < P}.
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Theorem (Projective Nullstellensatz)

Let k be an algebraically closed field. Then for a homogeneous ideal J, we
have the following:

V(J) =8 iff VI2(x0,....%n)-
If V(J) # @, then I(V(J))=J.

We have
V(=9 iff Va(J)<{0}

iff VJ2 (X0s-+-»Xn)-

(affine Nullstellensatz)
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We make use of the following observation.
Suppose f =Y f; is a polynomial with homogeneous components f;.

Then, using the fact that the field k has infinitely many elements,
f(Axg,...,Axn) =0, for all A, iff fi(xo,...,xn) =0, for all i.
Now, we get

Fel(V(J)) iff fel(Va(J))

iff Inz=1(f"eJ)
(affine Nullstellensatz)

iff fevd.
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Corollary

The maps J— V/(J) and V — I(V) give bijections

homogeneous radical ideals 11 projective varieties
J < k[xo,--., Xn] VePb]
{ homogeneous prime ideals } 11 { irreducible projective }

J G k[xo,...,Xn] varieties V < P}

Here the irrelevant ideal m corresponds to the empty set.

o It remains only to show that
V is irreducible if and only if /(V) is prime.

We stated that a homogeneous ideal / is prime if and only if, for any
pair of homogeneous elements f,ge S, fgel iff fel or gel.
So the proof becomes analogous to the proof in the affine case.
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o We now return to the covering of P} by affine sets

ZIU()U'--UU,,,

where
Ui={(x0:...:xn) € P} : x; #0}.
o For every open set U;, we have a bijection
Jit u — AZ,
. . . . X Xi-1 Xi+ Xn
(o i X ) = (S e 5 )

© The Zariski topology on P} induces a topology on U;.
o A} is also equipped with the Zariski topology.
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The map ji: Ui — AJ is a homeomorphism.

o For simplicity we take i =0.
We must show that jp and jo‘1 are both continuous.
Equivalently, jo':l and jo both map closed sets to closed sets.

The closed subsets of U; and A are defined by polynomials in the
rings:
Sh
A

{f € k[x0,...,Xn] : f is homogeneous},

k[x1,...,Xn]-
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o We have a map a:S" — A, defined by
a(f)=1(1,x1,-.-,Xn)-

We also have a map B: A— S", defined by

_ degg X1 ﬁ)
B(g) =x, g(XO,...,XO.

These maps satisfy
aop(g)=g.
Any closed subset of Uy has the form
X= 70 Uo,
where YQIPZ is the closure of X in P}.
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o Now X is a projective variety.
So there is a (finite) subset T < S, such that:
o X=V(T);
° jo(X) = V(a(T)).
Any closed subset of A7 has the form
W=Vv(T"),

for a (finite) subset T' < A.

Moreover,
Jo ' (W)= V(B(T")n Uo.

Thus jy and jo‘1 map closed subsets to closed subsets as follows:

V(T)nUy 2 V(a(T)),

VB(T)nly 2= v(T).

Hence, jo is a homeomorphism.
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o Any projective variety X P} has a covering
X=XouU---UXp,

where X;:=XnU;.
o By means of j; we can identify U; with AJ.
o So the X; may be regarded as affine varieties.

o This covering is called the standard affine covering of X.
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Corollary

The map X — Xy =X n Uy defines a bijection

irreducible projective varieties 11 irreducible affine
XcP], with X Z {xo =0} varieties Xo < A7

The inverse of this map is given by taking the Zariski closure.

o The above corollary implies that we can consider both affine and
quasi-affine varieties as quasi-projective varieties.
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o We return to the cubic curve Cp, given by
{(x1,) €A% 1 x5 —x1(x1—1)(xa —A) =0} A2 = Uy < P3.
Set
f(x1,x2) 1= x5 —x1(x1 —1)(x1 = A).

Note that deg(f) =3.
So, with B the map defined in the proposition, we have

BN = 5f(533)
= 3| -5 (- (34
- | () -m ) ()
2
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o Thus, the Zariski closure of Cj in IPi is given by

Co= {(x0:x1:x2) € IPi : x0x§ —x1(x1 —x0)(x1 — Axp) = 0}.
Let
Ho := V(x0) =P\ Up.
We have _
ConHy={(0:0:1)}.
This shows that Cy is obtained from Cy by adding a single point at
infinity.
o In general, for a plane curve of degree d we must add d points at
infinity.
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Subsection 3

Rational Functions and Morphisms
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o Let f and g be both homogeneous polynomials of degree d on P}.
o Then

f(Ax0,...,AXn) A9 (x0, .. Xn)
g(Ax0,--, Axn)  Adg(xo,...,xn)
_ f(x0,-.-rXn)
— g(x0,xn)”

o So the quotient is a well defined function on V.
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o For an irreducible projective variety V, we define

f f,gek[xo,...,xn| homogeneous }
k(V):=<—: ~,
V) {g degf = degg, g#1(V) |/

where P
E"'E iff fgl—gflEI(V)

o It can be checked that, with the natural operations, k(V) is a field.

Definition (Function Field of V)

k(V) is called the function field of V. The elements of k(V') are called
rational functions.
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Lemma

Let V be an irreducible projective variety, with standard affine covering

V=Wu---uV,.
If V¢ V(xo), then we have an isomorphism of projective and affine

function fields,

o The following maps are mutually inverse.

k(Vy) — k(V);

KV) — K(Vo) (Vo) —~ KV}
(X0 Xn) . f(1,x1,..,%Xn) f(X1,0-Xn) . f(% """ %]
g(x0,--rXn) g(1,x1,00Xn)’ g(X1,0Xn) g(%v---:i—g)'
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o The function field k(V) can also be defined by localization of the
coordinate ring, defined as a graded ring.

o Let VcIP} be an irreducible variety with affine cone VQQAZ”.
o Then the ring

S(V):=k[V?:=k[x0,...,xn] /1 (V)
is equipped with the structure of a graded ring,

S(V)=@P Sa(V),

d=0

where

Sq(V):={f e S(V): f is homogeneous with degf = d} U {0}.
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o We must show that
S4(V)NSe(V)=1{0}, for e#d.

Suppose f =Z.

Then f—gel(V).

So, if degf # degg, then, since /(') is homogeneous, f,ge (V).
Hence, ?:E: 0.

Definition (Homogeneous Coordinate Ring)

S(V) is the homogeneous coordinate ring of V.
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o Consider an arbitrary graded ring

S=p Sa.

d=0

o Let T<S be a multiplicatively closed system of homogeneous
elements.
We wish to give the local ring St the structure of a graded ring.
For homogeneous elements f €S and g€ T, we define g to be
homogeneous of degree

©

©

degg :=degf —degg.

This is well defined.
Suppose éz ng’,. Then, by definition, for some he S,

h(fg' —gf') =0.

©

Therefore, hfg' = hf'g.
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o By taking the homogeneous components, we may assume h is
homogeneous.

Now deg is multiplicative.

Thus, we have
degh+degf +degg’ = degh+degf’ +degg.

This shows that deg(é) is well defined.

For any multiplicatively closed system T =S of a graded ring S, we define

f f
S(ry:= {E €EST: z is homogeneous of degree 0}.
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o Let p<S be a homogeneous prime ideal.
The set
Ty :=1{f €S :f is homogeneous, f ¢p}
is a multiplicatively closed system.
We define
S(p) 7= 3(Ty)-
o Let S be an integral domain.
Let f €S be a nonzero homogeneous element.

The set
Te:={f":n=0}
is multiplicatively closed.
We define
S(f) = S(Tf)'

George Voutsadakis (LSSU) Algebraic Geometry



Functions

Lemma

For a projective variety V < P7, we have an isomorphism of graded rings

k( V) = S( V)((o)).

o This follows immediately from the definition of k(V).
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Definition (Regular Function)

A rational function f € k(V) is called regular at a point P if there is a

representation

f= %, with h(P) #0.

Definition (Domain of Definition)

The domain of definition dom(f) of f € k(V) is the set of all points
where f is regular.

o As in the affine case, dom(f) is a nonempty open subset of V.
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Definition (Local Ring of V)

The local ring of V at a point P € V is defined by

Oy p:={f€k(V):f is regular at P}.

Definition (The Maximal Ideal of V)

The maximal ideal of V at a point Pe V is defined by

my p:={feOyp:f(P)=0tcOyp.

o Note that every element g€ Gy p, with g(P) #0, is a unit.
o So my,p is the unique maximal ideal of @y p.
o Thus, Gy p is indeed a local ring.
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o Let V be an irreducible variety, with V ¢ V(xp).

Consider a point Pe Vo=V n .

Depending on whether we interpret P as a point in the projective
variety V or in the affine variety V, we have defined two local rings,

e ©

Ov,p and Oy p.
o The isomorphism given in the lemma induces an isomorphism
Ov,p =0v,p.
o For Pe V, we can consider the maximal ideal
Mp :={f € S(V): f homogeneous, f(P)=0}c S(V).
Ov,p = S(V)(Mp)-

o Immediately clear from the definitions.
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Definition (Ring of Regular Functions)

For a quasi-projective variety, given by an open subset U< V/, the ring of
regular functions on U is defined by

O(U):={f ek(V):Ucdom(f)}.
o Considering O(U) as a subset of k(V), we have

o(U)= (] Ov,p.
PeU
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If V is an irreducible projective variety defined over an algebraically close
field k, then every regular function on V is constant, i.e.,

O(V)=k.

o In the complex case, if V cP¢ is a smooth projective variety, this
result follows from the fact that any holomorphic function on a
connected compact complex manifold is constant.

o We would like to give an algebraic proof.
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o Let R be a ring with 1.

Definition (R-Module)
A module over R (or an R-module) is an abelian group M, together with
a multiplication map

RxM — M;
(r,m) — rm,

such that the following hold:
r(my+ mp) = rmy + rmo; (rnr)m=r(rom);
(rn+n)m=rm+rnm, 1m=m.
o A module in which the ring R is a field is a vector space.

o A submodule is defined analogously to vector subspaces.

o Similarly for homomorphisms of modules.
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Definition (Finitely Generated Module)

An R-module M is called finitely generated if there are finitely many
elements my,..., my, with

M=Rmy+---+ Rmy.

Definition (Noetherian Module)

An R-module M is called Noetherian if all submodules U< M are finitely
generated.
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Lemma

Let R is a Noetherian ring. If M is a finitely generated R-module, then M
is a Noetherian module.

o Let M=Rmy+---+ Rmy.
Let e;,1<i <k, be a basis for R, with

e =(0,...,0,1,0,...,0),

i.e., all components are 0 except a 1 in the j-th place.
For 1</ <k, there is a surjective homomorphism
p: Rk — M;
e +— mj.
Suppose U is a submodule of M.

Then ¢~(U) is a submodule of R.
So it is enough to prove the result for R¥.
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o We will prove the result by induction on k.
If k=1, then a submodule of M = R is isomorphic to an ideal of R.
The result follows from the assumption that R is a Noetherian ring.
Now take U< R, with k =2.

The first components of the vectors in U generate an ideal / in R,

I:=(uy:(u1,...,ux) € ).

Since R is Noetherian, this ideal is finitely generated.

So there are elements u() e U, 1<i< ¢, with first component ugi),
such that
(1) ([))_

=(up 7y
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o Thus, for ue U, there are elements ry,...,r, € R, such that
u—rlu(l)—---—rgu([) =(0,u3,...,uy).

Let RX~! < R be the submodule of elements of R¥, with first
component 0.

Consider the submodule
U':=UnRkK1

By induction, U’ is finitely generated, by some elements vy, ..., vy,.

Thus,

1 4
u®, D v Vim

generate U.
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If V is an irreducible projective variety defined over an algebraically close
field k, then every regular function on V is constant, i.e.,

o Let V be an irreducible projective variety in P}.
We assume that V is not contained in any hyperplane H;:= V/(x;).
Otherwise V c H; E]PZ'I, and we can replace P} by ]PZ'I.
Let feo(V).
Consider the affine covering V = Vou---uV,,.
Since f is regular on V/, the restriction f |y, is regular on V;.
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o We make use of the explicit isomorphism k(V) = k(V;).

Then f |y, is a polynomial in % l<j#i<n.

Thus, for 1 </ <n, we can write

&i
N;’

X.
1

fly=

where gj € S(V) is homogeneous of degree N;.
Since V is irreducible, /(V) is a prime ideal.
This implies that

S(V)=k[xo,-.-, xn]/1(V)
is an integral domain.
So we can consider the field of fractions

L:=QuotS(V)=k(V?),

where V2 is the affine cone over V.
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o The rings @(V),k(V) and S(V) are all contained in L.
We have

xVif € S, (V),
where S4(V) is the homogeneous part of degree d of S(V).
Now take an integer N> N;.

Then Sy(V) is a finite dimensional k-vector space, spanned by the
monomials of degree N.

Every monomial m in Sy(V) is divisible by xI.N", for some i.

Since xl.N"fe Sn;(V), we get mf € Sy(V).

Hence, Sy(V)f < Sy(V).

This shows that, for g =1, we have a sequence of inclusions,
Sn(V)FIc Sy(V)FItc...c Sy(V)Ff < Sy(V).

In particular, this implies that xéqu e Sn(V), for all g=1.

Hence, S(V)[flcx;VS(V)< L.
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o We have XO_NS(V) is a finitely generated S(V')-module.
Hence, XO_NS( V) is Noetherian.
So the submodule S(V)[f] is also finitely generated over S(V).
Now f is integral over S(V).

It, thus, satisfies an equation of the form
fMtam 1 f™ 14 taif+ag=0, a;eS(V).

Since f is homogeneous of degree 0, we can assume the same for the
aj, since we can take the degree 0 component of the a;.

Hence, aj € So(V) = k.

Thus, f is algebraic over k.

But, we are assuming that k = k.
It follows that f € k.
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Definition (Affine Rational Map)

Let V be an irreducible projective variety.

A rational map f:V --» Aj" is an m-tuple
f=(f-..fm)
of rational functions fi,...,7m € k(V).
The domain of definition of f is given by
m
dom(f) := () dom(f;).
i=1

On this set, f is well defined, with f(P) = (fi(P),...,fm(P)).

A rational map f:V --» W c AT is given by a rational map
f:V-—» A7 with f(dom(f))c W.
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o Now let V be an irreducible projective or affine variety.

Definition (Projective Rational Map)

A rational map f:V --»P]" on V is given by

f(P)=(fo(P):...: fm(P))
for rational functions fy,...,fn € k(V).

o If 0#gek(V), then the tuples

(fo,-.-,fm) and (gfo,...,&Mm)

define the same rational map.
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Definition (Regular Map)

A rational map f: V --» P is regular at a point P if there is a
representation

such that:
For 1 <i<m, the function f; is regular at P.
There is some i, such that f;(P) #0.

Definition (Projective Rational Map)
A rational map f:V --» W c P[] is a rational map f: V --» P, with

f(dom(f)) < W.
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Definition (Morphism)

Let V4 and V5 be irreducible affine or projective varieties containing open
subsets U; and Uy, respectively.

A morphism f: U; — U, is a rational map f: Vj --» V5, with
Ui cdom(f) and f(U;)< Us.

A morphism f: Uy — U, is an isomorphism if there is a morphism
g : Uy — Uy, with

gof=idy, and fog=idy,.

o This definition allows us to speak of:

o Morphisms on quasi-projective varieties;
o Isomorphisms between quasi-projective varieties.
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o Consider the rational normal curve of degree n, parametrized by
the map

} 1 }
(7 ]Pk - ]PZ' 1
p(to:t1) = (tf:tf "t t]).
Notice that we can write
p(to:tr) = (th:tf .. t])

o\ (¢ n—1' .
((t—g) (&) 1)
So the map ¢ is rational and everywhere regular.
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o We return to the affine covering of P}.

o We have maps

ic: Al — Up={(x0:...:xn) : x¢ 20} < P;

(X1,.-0oxn) — (xa:.cixe—1:lixpioixp),
je: Up — AL
(X0 e Xp—1:Xp o1 Xp) — (i—‘;,...,x)’(—;l,x)’(—;l,...,i—;).

We have already seen that j, is a homeomorphism.

Proposition
Je:Up— Al is an isomorphism.

o The maps iy and j; are inverse morphisms of each other.
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o Let V and W be irreducible quasi-projective varieties.

Definition (Birational Map)

A rational map f: V --» W is called birational (or a birational
equivalence) if there is a rational map g: W --» V, with

fog=idy and gof=idy.

Definition (Birational Equivalence)

Two varieties V and W are said to be birationally equivalent if there is a
birational equivalence f:V --» W.
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o Recall that a rational map f: V --» W is called dominant if
f(dom(f)) is a Zariski dense subset of W.

For a rational map f: V --» W, the following statements are equivalent:

f is birational;
f is dominant and * : k(W) — k(V) is an isomorphism;

There are open sets Vo< V and Wy < W, such that the restriction
flvy: Vo — W is an isomorphism.
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o The equivalence of (1) and (2) is proved as in the affine case.
We show that (3)=(1).
Under (3), f ly,: Vo = Wo has an inverse g: Wy — V.
Moreover, by definition, g: W --» V is a rational map.

Then gof:V -->V and fog: W --» W are rational maps which are
the identity maps on Vg and Wy, respectively.

But Vg and W, are dense.

It follows that
gof=idy and fog=idy.
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o It remains to show the implication (1)=(3).
Let g: W --» V be a rational map inverse to f.
We set V' :=dom(f) and W' =dom(g).

Then we have morphisms
p:=fly:V =W and y:=glp: W -V.
We also have an equality of rational maps fog =idy.

Thus, we obtain ¢(y(P)) =P, for all Pey=1(V').
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o Now let g
wo---&- SV oS W
Vo = o7y (V) I
WO = w_l((p_l(W,))' J 8]
4 @

Suppose Q € V.

Then @(Q) ey (V).
So ¢(y(9(Q))) = (Q). W
Hence, ¢(Q)e W' and ¢(Q) ey 1(p~1(W")) = Wp.
Thus, the map ¢: Vo — Wy is a morphism.

Similarly, v : Wy — Vg is a morphism.

Obviously, ¢ and v are inverse to each other.
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Corollary

There is a contravariant equivalence between the category of irreducible
quasi-projective varieties, with dominant rational maps as morphisms, and
the category of finitely generated field extensions of k and
k-homomorphisms, given by

= k(V),
— (f* k(W) — k(V)).

o In the classification problem of algebraic geometry, one tries to classify
varieties either up to birational equivalence (coarse classification), or
up to isomorphism (fine classification).

o It makes sense to restrict attention to the properties of a variety that
are invariant under birational equivalence.
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Every quasi-projective irreducible variety is birationally equivalent to an
affine hypersurface.

o Since every quasi-projective variety is birationally equivalent to an
affine variety, we may restrict attention to this case.

Let V< A7 be an irreducible affine variety.

By a previous corollary, there are

Yi,--Ym+1 € k[V],

such that:

® ¥1,...,¥m algebraically independent over k;
o k(V) is an algebraic extension of k(y1,...,ym), generated by ym.1.
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o Consider the minimal polynomial
N N-1
Yos1ta1Yme1 +-+an=0, ajek(yi,....,ym)

of ym+1 over k(y1,...,¥Ym).
Multiply by the highest common denominator of the a;.

We obtain an irreducible polynomial
boyN  +biyN Tl v by =0, bieklys,...,yml-

This equation defines an irreducible hypersurface W‘;AZ’”.
Now the y; are algebraically independent, for 1<i<m.
So we have an isomorphism k(W)= k(V).

The result then follows from the preceding theorem.
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Definition (Rational Quasi-Projective Variety)
A quasi-projective variety V is called rational if V is birationally equivalent
to A} (or equivalently, to P7).

Proposition
The following statements are equivalent:
V is rational;
k(V)=k(x1,...,xn);
There are isomorphic open sets Vo<V and Up < AJ.

o This follows immediately from the theorem.
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o We have already visited the curves

Go: y> = X3 (semicubical parabola),

C: y? x3 +x2.

They are rational.

o We also visited the elliptic curve
Cr: y*=x(x-1)(x=1), A#0,1.

We showed that it is not rational.
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o Consider the map

It is a birational map.
However, f is not an isomorphism.

The restriction
fo:=f a1 A0} — C\(0}

is an isomorphism of Zariski open sets.
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o Consider the map

=X 0 xp) P7 — Py

(x0:.o:%xn) — (x1:...:Xpn).

It is a rational map.
It is defined everywhere on IP} except at the point Pp=(1:0:...:0).

The map 7 is called the projection from Pg.

Po=(1:0:---:0)
Identify P71 with V(xo) in P7.
Consider a point P # Pg.
The image 7(P) is given by the .
intersection of the line PyP with the ) 1 \
plane ]PZ'l. / ! By = V)

George Voutsadakis (LSSU) Algebraic Geometry



Functions

o Now set n=3 and consider the quadric
Q:={(x0:x1:x2:x3) EIP?( : Xox3 — x1x0 = 0}
The point Pp=(1:0:0:0) lies on Q.
The restriction of the projection 7 to @ is a rational map
p=mlg: Q--» ]P%(.
This map is birational.
Its inverse q: IPi --» Q is given by
q(x1:x2:x3) = (X}(—:z X11X21X3)

= (x1x2:Xx1X3: X2X3 :X32).

q is defined everywhere except at the points (1:0:0) and (0:1:0).
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o A birational map from IPi to IP%( is called a Cremona
transformation.

o An example is given by the map ¢: IPi --3 IPi, defined by

(x1x2 : x0x2 : X0X1)

dbo Al dl
X0 X1 Xx2)°

P(x0:x1:x2)

It is birational, with ¢ = ¢~
The map ¢ is not defined at the points (1:0:0), (0:1:0), (0:0:1).
Moreover, it contracts the three lines V/(x;) to points.
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Definition (The Segre Map and the Segre Variety)
We define the Segre map by

S PIxPm — PV
((x0:eooixn)y(Yoieiiym)) — (XoY0:ieo i Xi¥jieoiiXnYm)

where N=(n+1)(m+1)-1and 0<i<n,0<j<m.
This map is well defined.
The image

Znm:=sn,m(Py xPY)

is called the Segre variety.
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Lemma

The Segre map spm: Py <P —Zpmis bijective.
The image X, is a projective variety in ]PQ’.

o We denote the coordinates of ]PQ’ by zjj, where 0<i<n, 0<j<m.
These coordinates are ordered to be compatible with s, .
Let mjj¢, is the projection

Tjjer - ]Plly -——> ]Pi,
(z00:..-:zj oo iz2om) = (Zij 1 Zpr).

Then the composition 7jj¢, 0 sy, m is given by the rational map

Tijer©Snm((x0 - Xn), (Yo -2 Ym)) = (Xiyj : Xeyr).
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o So the points in X, ;, satisfy the homogeneous equations
ZirZje = ZjeZjr =0, 1,j=0,...,n; £,r=0,...,m.

Let Z be the variety described by these equations.
Clearly 2, ms Z.

: For every point R€ Z, there exists a pair (P,Q) e P] x P77,
such that
Snm(P,Q)=R.

The Claim implies that ¥, ,, = Z.

Thus, spm maps P} x P] bijectively to its image.
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: For every point Re Z, there exists a pair (P,Q) € P} xP7,
such that
snm(P,Q)=R.
Let R=(zy: 20 :-..:2,) be a point in Z.
Without loss of generality, we may assume that 280 #0.
So, by scaling, we can assume that 280 =1.
The other cases can be handled analogously.

Set 0 0
Q = (1:2%1:...:z%m)€]PT,
P (L:zpp:...izp) €PL.

We have
0.0 0_0__0

Hence, s, m((P,Q))=R. It is also clear that (P, Q) is the unique
point in P7 x PJ" mapped to R by sp,m.
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Lemma

The Segre variety X, , is irreducible.

o The projections from P} x PJ" to P} and to P} form a commutative
diagram.

The proof of the lemma shows that g; and g» are morphisms.
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o Let PeP}] and Q€ P be any points.

n
Py We have the following restrictions of sp, m,

&y [
- spm PR AQL — Zom,
n,m
IPn ]P’”—»an nym-{P}XIPm - z:n,m-
NQl These maps induce isomorphisms between P}

P and P77 and projective subspaces of ]PLV.

Thus, via s,"f’m and s,?m, the fibers of g1 and g, are projective
varieties, isomorphic to P} and PP}, respectively.
In particular, the fibers of g; and ¢ are irreducible.

The irreducibility of 2, ,, can now be shown as in the affine case.
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o We may identify P} x P7” with X, ,, by means of the Segre map.
o In this way, P} x P/ is viewed as an irreducible projective variety.

: We have already seen the map

S1,1: ]P}(X]P/l( — IP:;’(;
((x0:x1),(vo:y1)) = (Xo¥0:Xoy1:X1yo:X1y1)-

In this case the Segre variety X;; is the quadric

21,1 = Q = V(200211 — 201210)-
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Let V and W be projective varieties. Then:

The product V x W is also a projective variety.
If V, W are irreducible, then sois V x W.

Let V< Py, W< P be given by homogeneous equations

V: f;'(XO!---!Xn) = Oy i=1,...,r;
W: g(yo-..,ym) 0, j=L..,5s.

Let d; be the degree of f;.
Let ¢ the degree of g;.
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o The elements of the set V x W P/ x P" are given by the zeros of
the polynomials

Fi = f,-yfj’, i=1,...,r, k=0,...,m,

Gjp = gyx;j, j=1,...,s, £=0,...,n.
These may be considered as homogeneous polynomials

Fix = Fix(zux) and  Gjo = Gje(zey).
Append the equations
ZuvZpa — Zuo Zpv = 0.
We obtain a system of homogeneous equations for the set
Vx WPy,

Irreducibility can be shown as in the lemma.
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o Infact V x W is a product in the category of projective varieties.
o Note that V x W does not have the product topology.

o The product of quasi-projective varieties is obtained analogously.
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o Consider the quasi-projective variety
&i ={((x,y),(to:t1)) € A\i X ]Pi s xt; — yto =0}
o Projection onto the factor A\i induces a surjective morphism
7 A2 A2,
o We have

e { (0,0 <P, if (xy)=(0,0),
’ ((x,y),(x:y)), otherwise.

o The fiber E:=271((0,0)) is a projective line, which is called the
exceptional line.
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o For (x,y) #(0,0), the inverse image is the point ((x,y),(x:y)).
o So 7 is birational with inverse

a7l Ai N &i;
7 xy) = ((oy)(x:y).
o This map is not regular at the origin. E
AL
o Away from the origin, 7 gives an o —
isomorphism between the quasi-projective /é/f_,/
varieties S ——
NS
A2\{0} and A2\E. TN

o The surface K\i is called the blow-up of
Af( at the origin.
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©

The points of E correspond to the lines through the origin in Ai.

©

Let Ly, be the line through the origin in A2, given by
Lau:=1(xy) EAf{ cAx—uy =0}

o The inverse image of {(0,0)} € Ly is the exceptional line E.
Any other point of L, , is of the form (ut, At), for t € k\{0}.
o We have

©

7 (ut, At) = ((ut, At), (2 ).

So the inverse image of Ly ,\{0} is given by

A (L, MOY) = {((ut, At), (s 1)) s t € k\{O}.

©
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©

Let the line Liw ‘;Ai X IPi be the closure of

7 (L MOY) = {((pt, At), (s 1)) s t € k\{O}.

©

The projection 7 induces an isomorphism between Lilu and Ly .
We have

©

Ly u =7 (Lo MO U((0,0), (1, A))} € E.

o So
a (L) =Eul) .

©

Identify E with P} via ((0,0),(x:y))— (x:y) € P;.
We obtain L’Mln E=(u:A)eP;.

©

©

Thus, every point (u:A)€ EEIPi corresponds to a unique line
through the origin in Af(.
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o Recall the affine covering IPi = Upu Uy, with U; = {t; #0}.

o It induces a covering

AZ=VouVy, VicAZxAj,

where
Vo = {((xy)(to: 1) € A2 xPL:to#0 and x2 -y =0},
Vl = {((X,Y),(fo : tl)) EA%{ x IPl t1 # 0 and x— yto = 0}

o Now we use coordinates:
o X,U:= :—; for Vp;
° y,v::i—‘l) for Vj.

o We see that Vg and V4 are both isomorphic to Ai.
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o Consider the curve

C: y?=x3+x%

o It has a double point at the origin.
o We have

7 HO) = (%), (to: t1)) 1 y? = x3+x%, toy = t1x}.
In terms of the preceding affine covering, we have

7 HC\(0,0)N Vo = {(x,u)eVOEA\i:X2(X+1—u2)=0},
aH(CMO0,0)NnVi = {(y,v)e Vi= AT y2 (3 +v2-1) =0
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o Let C denote the closure of this curve in Af{ x IPi
Note C V.
|dentifying E with P, we get

©

©

C\r Y (C\M(0,0))=CnE={(1:1),(1:-1)} cE=P;}.

o These points correspond to the two tangents to C at the origin, given
by L11 and Ly 1 in the notation of the previous example.
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©

The preimage 771(C) also contains
the exceptional line (with multiplicity
two).

Moreover, we have

©

nY(C)=EuC.

The curve C is "smooth’.

©

We call C the strict transform of C. a2

©

C is birationally equivalent, but not isomorphic, to C.

©

©

The figure shows C and its preimage, together with the tangent lines
to C at (0,0) and their preimages.
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