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Functions Projective Space

Projective Space

Let V be a finite dimensional vector space over k .

We consider the following equivalence relation on V \{0}:

u ∼ v iff there exists λ ∈ k∗, with u =λv .

Definition (Projective Space)

The projective space associated to V is defined by

P(V ) := (V \{0})/∼.

The dimension of P(V ) is defined by

dimP(V ) := dimV −1.
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Functions Projective Space

Remarks

Two vectors are equivalent if and only if they span the same line in V .

So geometrically, the projective space associated to V is the set of all
lines through the origin in V .

In particular, taking V = kn+1, we define

P
n :=P

n
k :=P(kn+1).
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Functions Projective Space

Examples

The space P1
R
=P(R2) is homeomorphic to S1.

The real projective plane has a decomposition

P
2
R
=P(R3)=R

2∪P
1(R).

Under this decomposition:

R2 corresponds to the set of lines that do not lie in the (x ,y)-plane;
P

1(R) corresponds to the set of lines in the (x ,y)-plane.
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Functions Projective Space

The Residue Class and the Homogeneous Coordinates

We will denote the residue class map

π :V \{0} →P(V ).

For the special case P(V )=Pn
k
, we use the notation

(x0 : . . . : xn) :=π((x0, . . . ,xn)).

We call (x0 : . . . : xn) the homogeneous coordinates of the point
P =π((x0, . . . ,xn)) ∈Pn

k
.

The homogeneous coordinates are well defined only up to
multiplication by a common scalar.

However, we can “compute” using them.
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Functions Projective Space

Decomposition into an Affine and a Projective Space

Any projective space can be decomposed into an affine subspace and a
projective subspace of smaller dimension.

For Pn
k
, such a decomposition is given by setting

Uℓ := {(x0 : . . . : xn) ∈Pn
k
: xℓ 6= 0},

Hℓ := {(x0 : . . . : xn) ∈Pn
k
: xℓ = 0}.

The space Hℓ can be identified with Pn−1
k

.

Uℓ can be identified with An
k
.
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Functions Projective Space

Decomposition into Affine and Projective Space (Cont’d)

The latter identification can be realized, e.g., by the mutually inverse
maps

iℓ : An
k

→ Uℓ,

(x1, . . . ,xn) 7→ (x1 : . . . : xℓ−1 : 1 : xℓ : . . . : xn)

jℓ : Uℓ → An
k
;

(x0 : . . . : xℓ−1 : xℓ : . . . : xn) 7→ (x0

xℓ
, . . . ,

xℓ−1

xℓ
,
xℓ+1

xℓ
, . . . ,

xn
xℓ
)

So we get a decomposition

P
n
k =Uℓ∪Hℓ =A

n
k ∪P

n−1
k .
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Functions Projective Space

Terminology of Decomposition

Consider again
P
n
k =Uℓ∪Hℓ =A

n
k ∪P

n−1
k .

We fix the value of ℓ (usually ℓ= 0 or n).

We refer to:

Uℓ as the affine part of Pn
k
;

Hℓ as the hyperplane at infinity.

Points in Hℓ are called “points at infinity”.

This particular decomposition into an affine and a projective piece is
conventional.

More generally, any projective hyperplane can be taken in Pn
k
, and the

complement will always be an affine space.
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Functions Projective Space

Projective Subspaces

Definition (Projective Subspace)

A projective subspace of P(V ) is a subset of the form π(W \{0}), where
W ⊆V is a linear subspace and π is the residue class map. We write
P(W )⊆P(V ).

A projective subspace is itself naturally a projective space.

If dimW = dimV −1, then we call P(W ) a hyperplane in P(V ).

A projective line is a projective space of dimension 1.

A projective plane is a projective space of dimension 2.
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Functions Projective Space

The Intersection Lemma

Lemma

Let P(W1) and P(W2) be projective subspaces of an n-dimensional
projective space P(V ). If dimP(W1)+dimP(W2)≥ n, then P(W1) and
P(W2) intersect, i.e., P(W1)∩P(W2) 6= ;.

We have dimW1+dimW2 ≥ n+2= dimV +1.

So W1 and W2 intersect at least in a line.

In projective space the distinction between the cases of parallel and
nonparallel lines no longer exists.

Two lines in the projective plane always intersect.
In contrast, in the affine plane, two lines may be parallel.
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Functions Projective Space

Covering by Affine Spaces

Any projective space has a covering by affine spaces

P
n
k =U0∪U1∪·· ·∪Un,

where
Ui := {(x0 : . . . : xn) ∈Pn

k : xi 6= 0}.

In the case of k =R or k =C this covering can be used to give Pn
R

or
Pn
C

the structure of a compact n-dimensional real or complex

manifold, respectively.

Example: The complex projective line has the structure of a compact
Riemann surface, namely the Riemann sphere,

P
1
C
=C∪ {∞} ≈ S2

.
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Functions Projective Varieties

Subsection 2

Projective Varieties
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Functions Projective Varieties

Homogeneous Polynomials

The homogeneous coordinates of a point P = (x0 : . . . : xn) ∈Pn
k

are
only determined up to multiplication by a common scalar.

So to consider the zero sets of polynomial equations defined on Pn
k
,

we must make a restriction to homogeneous polynomials.

A polynomial
f (x0, . . . ,xn)=

∑
aν0···νnx

ν0

0
· · ·xνnn

is called homogeneous of degree d if all the monomials have the
same degree d = ν0+·· ·+νn.

We also use the word form to refer to homogeneous polynomials.

So we refer, e.g., to linear forms, quadratic forms, cubic forms, etc.
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Functions Projective Varieties

Projective Varieties

If f is homogeneous of degree d , then we have

f (λx0, . . . ,λxn)=λd f (x0, . . . ,xn).

This shows the zero set of f ,

V (f ) := {(x0 : . . . : xn)∈Pn
k : f (x0, . . . ,xn)= 0} ⊆P

n
k

is well defined.

Definition (Projective Variety)

A projective variety is a subset V ⊆Pn
k
, such that, there exists a set of

homogeneous polynomials T ⊆ k[x0, . . . ,xn], with

V =
{
P ∈Pn

k : f (P)= 0, for all f ∈T
}

.

As in the affine case, we may assume that T has only finitely many
elements.
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Functions Projective Varieties

Examples

We have already seen the projective subvariety of Pn
k

given by the
hyperplane at infinity,

Hn =
{
(x0 : x1 : . . . : xn)∈Pn

k : xn = 0
}

.

We discussed the following curves:

C1 =
{
(x : y : z)∈P2

C
: y2z = 4x3−g2xz

2−g3z
3
}

and
C2 =

{
(x : y : z)∈P2

C
: y2z = x(x −z)(x −λz)

}
.

We described these curves by giving affine equations in two variables.

The process of obtaining the projective equations given here is called
homogenization.
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Functions Projective Varieties

The Projective Rational Normal Curve of Degree 3

Consider the map

ϕ : P1
k

→ P3
k
;

ϕ(t0 : t1) = (t30 : t
2
0 t1 : t0t

2
1 : t

3
1 ).

The image C :=ϕ(P1
k
) is a projective variety, given by

C =
{
(x0 : x1 : x2 : x3) ∈P3

k : rank

(
x0 x1 x2

x1 x2 x3

)
≤ 1

}
.

This means that C is the intersection of three quadrics
C =Q1∩Q2∩Q3, where

Q1 := {(x0 : x1 : x2 : x3) ∈P3
k
: x0x2−x2

1 = 0},

Q2 := {(x0 : x1 : x2 : x3) ∈P3
k
: x2x3−x1x2 = 0},

Q3 := {(x0 : x1 : x2 : x3) ∈P3
k
: x1x3−x2

2 = 0}.
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Functions Projective Varieties

The Projective Rational Normal Curve of Degree 3 (Cont’d)

The curve
C :=ϕ(P1

k)

cannot be defined by only two quadratic equations.

On the other hand, we have

C =Q1∩F ,

where

F :=
{
(x0 : x1 : x2 : x3) ∈P3

k : x0x
2
3 −2x1x2x3+x3

2 = 0
}

.

That is, the quadric Q1 and the cubic F meet along the curve C .

C is called the (projective) rational normal curve of degree 3.
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Functions Projective Varieties

Example

The image of the map

ϕ : P1
k
×P1

k
→ P3

k
,

ϕ((x0 : x1),(y0 : y1)) = (x0y0 : x0y1 : x1y0 : x1y1),

is given by the quadric

Q := {(z0 : z1 : z2 : z3) ∈P3
k : z0z3−z1z2 = 0}.

There are two families of lines on Q (in each
case P runs through the points of P1

k
):

The family of lines ϕ(P1
k
× {P});

The family of lines ϕ({P}×P1
k
).

Each of these families of lines is called a ruling of Q.

Any two lines in the same ruling are disjoint.

Any two lines in different rulings intersect.
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Functions Projective Varieties

Graded Rings

Definition (Graded Ring)

A graded ring is a ring S together with a decomposition into abelian
groups

S =
⊕

d≥0

Sd ,

such that:

For d 6= e, we have Sd ∩Se = {0};

Multiplication satisfies Sd ·Se ⊆Sd+e .

The elements of Sd are called the homogeneous elements of degree d .

An important example is the polynomial ring

S = k[x0, . . . ,xn]=
⊕

d≥0

kd [x0, . . . ,xn],

where

kd [x0, . . . ,xn] := {f ∈ k[x0, . . . ,xn] : f is homogeneous of degree d}∪ {0}.
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Functions Projective Varieties

Homogeneous Ideals

Definition (Homogeneous Ideals)

A homogeneous ideal I in a graded ring S is an ideal which satisfies

I =
⊕

d≥0

(I ∩Sd).

An ideal I is homogeneous if and only if every element f ∈ I has a
unique decomposition

f = f0+·· ·+ fN ,

where fi ∈ I is a homogeneous element of degree di .
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Functions Projective Varieties

Properties of Homogeneous Ideals

Lemma

For an ideal I in a graded ring S we have:

(1) The ideal I is homogeneous if and only if it can be generated by
homogeneous elements.

(2) If I is homogeneous, then I is prime if and only if for any pair of
homogeneous elements f ,g ∈ S , we have: fg ∈ I iff f ∈ I or g ∈ I .

(3) The sum, product, intersection and radical of homogeneous ideals are
also homogeneous ideals.
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Functions Projective Varieties

Generators of I (T )

A projective variety was defined as the set of zeros of a system of
homogeneous polynomials.

Equivalently, a projective variety is the set of zeros of a homogeneous
ideal, or of finitely many homogeneous polynomials.

Let T be a set of homogeneous polynomials.

Let I (T ) be the homogeneous ideal generated by T .

Then we have
V (T )=V (I (T ))=V (f1, . . . , fk),

for homogeneous generators f1, . . . , fk of I (T ).

George Voutsadakis (LSSU) Algebraic Geometry July 2024 24 / 103



Functions Projective Varieties

The Zariski Topology on P
n
k

As for affine space, the zero sets define a topology on Pn
k
.

Lemma

Projective varieties satisfy the axioms of the closed sets of a topology on
Pn
k
. In other words, we have the following:

(1) The union of finitely many projective varieties is a projective variety.

(2) The intersection of any number of projective varieties is a projective variety.

(3) The empty set and Pn
k

are projective varieties.

This topology is called the Zariski topology on Pn
k
.

As in the affine case, we can decompose projective varieties into
irreducible components.

George Voutsadakis (LSSU) Algebraic Geometry July 2024 25 / 103



Functions Projective Varieties

Quasi-Projective Varieties

Definition (Quasi-Projective Variety)

A quasi-projective variety is an open subset of a projective variety.
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Functions Projective Varieties

Homogeneous Ideals and Projective Varieties

We describe the relationship between projective varieties and
homogeneous ideals.

In one direction we have

{
homogeneous ideals

I ⊆ k[x0, . . . ,xn]

}
→

{
projective varieties

V ⊆Pn
k

}

I 7→ V (I ),

where

V (I ) =
{
(x0 : . . . : xn) ∈Pn

k
:
f (x0, . . . ,xn)= 0
for f ∈ I , f homogeneous

}
.
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Functions Projective Varieties

Projective Varieties and Homogeneous Ideals

In the opposite direction

{
projective varieties

V ⊆Pn
k

}
→

{
homogeneous ideals

I ⊆ k[x0, . . . ,xn]

}

V 7→ I (V ),

where

I (V ) =
{

ideal generated by
homogeneous polynomials f , with f |V= 0

}
.
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Functions Projective Varieties

The Irrelevant Ideal

In the affine case, the corresponding maps I and V are mutually
inverse if we make a restriction to radical ideals.

As in the affine case, we have V ((1))=;.

On the other hand, there is another homogeneous ideal, namely

m= (x0, . . . ,xn)=
⊕

d≥1

kd [x0, . . . ,xn],

for which we also have V (m)=;.

Definition (Irrelevant Ideal)

The ideal m is called the irrelevant ideal.
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Functions Projective Varieties

The Affine Cone

If I is a homogeneous ideal, we can consider

The projective zero set V =V (I )⊆P
n
k
;

The affine zero set V a =V (I )⊆An+1
k

.

Geometrically, if I 6= k[x1, . . . ,xn], we have

V a =π−1(V )∪ {0},

where, as before, π is the residue class map π :An+1
k

\{0} →Pn
k
.

In particular,

(x0, . . . ,xn) ∈V a iff (λx0, . . . ,λxn) ∈V a
, for λ∈ k∗.

Definition (Affine Cone)

The set V a is called the affine cone over the projective variety V (I )⊆Pn
k
.
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Functions Projective Varieties

Projective Nullstellensatz

Theorem (Projective Nullstellensatz)

Let k be an algebraically closed field. Then for a homogeneous ideal J, we
have the following:

(1) V (J)=; iff
p
J ⊇ (x0, . . . ,xn).

(2) If V (J) 6= ;, then I (V (J))=
p
J .

(1) We have
V (J)=; iff V a(J)⊆ {0}

iff
p
J ⊇ (x0, . . . ,xn).

(affine Nullstellensatz)
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Functions Projective Varieties

Projective Nullstellensatz (Cont’d)

(2) We make use of the following observation.

Suppose f =
∑
fi is a polynomial with homogeneous components fi .

Then, using the fact that the field k has infinitely many elements,

f (λx0, . . . ,λxn)= 0, for all λ, iff fi(x0, . . . ,xn)= 0, for all i .

Now, we get

f ∈ I (V (J)) iff f ∈ I (V a(J))

iff ∃ n≥ 1(f n ∈ J)
(affine Nullstellensatz)

iff f ∈
p
J .
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Functions Projective Varieties

Projective Varieties and Homogeneous Radical Ideals

Corollary

The maps J 7→V (J) and V 7→ I (V ) give bijections

{
homogeneous radical ideals

J á k[x0, . . . ,xn]

}
1:1←→

{
projective varieties

V ⊆Pn
k

}

{
homogeneous prime ideals

J á k[x0, . . . ,xn]

}
1:1←→

{
irreducible projective

varieties V ⊆Pn
k

}

Here the irrelevant ideal m corresponds to the empty set.

It remains only to show that

V is irreducible if and only if I (V ) is prime.

We stated that a homogeneous ideal I is prime if and only if, for any
pair of homogeneous elements f ,g ∈ S , fg ∈ I iff f ∈ I or g ∈ I .
So the proof becomes analogous to the proof in the affine case.
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Functions Projective Varieties

Covering of Pn
k

by Affine Sets

We now return to the covering of Pn
k

by affine sets

P
n
k =U0∪·· ·∪Un,

where
Ui := {(x0 : . . . : xn) ∈Pn

k : xi 6= 0}.

For every open set Ui , we have a bijection

ji : Ui → An
k

,

(x0 : . . . : xi : . . . : xn) 7→ (x0
xi

, . . . ,
xi−1
xi

,
xi+1

xi
, . . . ,

xn
xi
).

The Zariski topology on Pn
k

induces a topology on Ui .

An
k

is also equipped with the Zariski topology.
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Functions Projective Varieties

Homeomorphism ji :Ui →A
n
k

Proposition

The map ji :Ui →An
k

is a homeomorphism.

For simplicity we take i = 0.

We must show that j0 and j−1
0 are both continuous.

Equivalently, j−1
0 and j0 both map closed sets to closed sets.

The closed subsets of Ui and An
k

are defined by polynomials in the
rings:

Sh := {f ∈ k[x0, . . . ,xn] : f is homogeneous},

A := k[x1, . . . ,xn].
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Functions Projective Varieties

Homeomorphism ji :Ui →A
n
k

(Cont’d)

We have a map α :Sh →A, defined by

α(f )= f (1,x1, . . . ,xn).

We also have a map β :A→ Sh, defined by

β(g)= x
degg
0

g

(
x1

x0

, . . . ,
xn

x0

)
.

These maps satisfy
α◦β(g)= g .

Any closed subset of U0 has the form

X =X ∩U0,

where X ⊆Pn
k

is the closure of X in Pn
k
.
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Functions Projective Varieties

Homeomorphism ji :Ui →A
n
k

(Cont’d)

Now X is a projective variety.
So there is a (finite) subset T ⊆Sh, such that:

X =V (T );
j0(X )=V (α(T )).

Any closed subset of An
k

has the form

W =V (T ′),

for a (finite) subset T ′ ⊆A.

Moreover,
j−1
0 (W )=V (β(T ′))∩U0.

Thus j0 and j−1
0 map closed subsets to closed subsets as follows:

V (T )∩U0
j0−→ V (α(T )),

V (β(T ′))∩U0

j−1
0←− V (T ′).

Hence, j0 is a homeomorphism.
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Functions Projective Varieties

Standard Affine Covering

Any projective variety X ⊆Pn
k

has a covering

X =X0∪·· ·∪Xn,

where Xi :=X ∩Ui .

By means of ji we can identify Ui with An
k
.

So the Xi may be regarded as affine varieties.

This covering is called the standard affine covering of X .
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Functions Projective Varieties

Irreducible Projective and Affine Varieties

Corollary

The map X 7→X0 =X ∩U0 defines a bijection

{
irreducible projective varieties
X ⊆Pn

k
, with X * {x0 = 0}

}
1:1←→

{
irreducible affine
varieties X0 ⊆An

k

}

The inverse of this map is given by taking the Zariski closure.

The above corollary implies that we can consider both affine and
quasi-affine varieties as quasi-projective varieties.
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Functions Projective Varieties

The Cubic C0 Revisited

We return to the cubic curve C0, given by
{
(x1,x2) ∈A2

k : x
2
2 −x1(x1−1)(x1 −λ)= 0

}
⊆A

2
k
∼=U0 ⊆P

2
k .

Set
f (x1,x2) := x2

2 −x1(x1−1)(x1 −λ).

Note that deg(f )= 3.

So, with β the map defined in the proposition, we have

β(f ) = x3
0 f

(
x1
x0

,
x2
x0

)

= x3
0

[(
x2

x0

)2
− x1

x0

(
x1

x0
−1

)(
x1

x0
−λ

)]

= x3
0

[(
x2

x0

)2
− x1

x0

(
x1−x0

x0

)(
x1−λx0

x0

)]

= x0x
2
2 −x1(x1−x0)(x1−λx0).
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Functions Projective Varieties

The Cubic C0 Revisited (Cont’d)

Thus, the Zariski closure of C0 in P2
k

is given by

C 0 = {(x0 : x1 : x2)∈P2
k : x0x

2
2 −x1(x1−x0)(x1−λx0)= 0}.

Let
H0 :=V (x0)=P

n
k\U0.

We have
C 0∩H0 = {(0 : 0 : 1)}.

This shows that C 0 is obtained from C0 by adding a single point at
infinity.

In general, for a plane curve of degree d we must add d points at
infinity.
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Functions Rational Functions and Morphisms

Subsection 3

Rational Functions and Morphisms
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Functions Rational Functions and Morphisms

Rational Functions

Let f and g be both homogeneous polynomials of degree d on Pn
k
.

Then
f (λx0, . . . ,λxn)

g(λx0, . . . ,λxn)
=

λd f (x0, . . . ,xn)

λdg(x0, . . . ,xn)

=
f (x0, . . . ,xn)

g(x0, . . . ,xn)
.

So the quotient is a well defined function on V .
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Functions Rational Functions and Morphisms

Function Fields

For an irreducible projective variety V , we define

k(V ) :=
{
f

g
:
f ,g ∈ k[x0, . . . ,xn] homogeneous

degf = degg , g 6∈ I (V )

}
/∼,

where
f

g
∼
f ′

g ′ iff fg ′−gf ′ ∈ I (V ).

It can be checked that, with the natural operations, k(V ) is a field.

Definition (Function Field of V )

k(V ) is called the function field of V . The elements of k(V ) are called
rational functions.
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Functions Rational Functions and Morphisms

Standard Affine Covering and Function Fields

Lemma

Let V be an irreducible projective variety, with standard affine covering

V =V0∪·· ·∪Vn.

If V *V (x0), then we have an isomorphism of projective and affine
function fields,

k(V )∼= k(V0).

The following maps are mutually inverse.

k(V ) → k(V0);
f (x0,...,xn)
g (x0,...,xn)

7→ f (1,x1,...,xn)
g (1,x1,...,xn)

,

k(V0) → k(V );

f (x1,...,xn)
g (x1,...,xn)

7→
f
(
x1
x0

,...,
xn
x0

)

g
(
x1
x0

,...,
xn
x0

) .
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Functions Rational Functions and Morphisms

The Homogeneous Coordinate Ring

The function field k(V ) can also be defined by localization of the
coordinate ring, defined as a graded ring.

Let V ⊆Pn
k

be an irreducible variety with affine cone V a ⊆An+1
k

.

Then the ring

S(V ) := k[V a] := k[x0, . . . ,xn]/I (V )

is equipped with the structure of a graded ring,

S(V )=
⊕

d≥0

Sd(V ),

where

Sd(V ) := {f ∈ S(V ) : f is homogeneous with degf = d }∪ {0}.
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The Homogeneous Coordinate Ring (Cont’d)

We must show that

Sd(V )∩Se(V )= {0}, for e 6= d .

Suppose f = g .

Then f −g ∈ I (V ).

So, if degf 6= degg , then, since I (V ) is homogeneous, f ,g ∈ I (V ).

Hence, f = g = 0.

Definition (Homogeneous Coordinate Ring)

S(V ) is the homogeneous coordinate ring of V .
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The Degree of a Quotient

Consider an arbitrary graded ring

S =
⊕

d≥0

Sd .

Let T ⊆ S be a multiplicatively closed system of homogeneous
elements.

We wish to give the local ring ST the structure of a graded ring.

For homogeneous elements f ∈ S and g ∈T , we define f
g to be

homogeneous of degree

deg
f

g
:= degf −degg .

This is well defined.

Suppose f
g = f ′

g ′ . Then, by definition, for some h ∈ S ,

h(fg ′−gf ′)= 0.

Therefore, hfg ′ = hf ′g .
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The Degree of a Quotient (Cont’d)

By taking the homogeneous components, we may assume h is
homogeneous.

Now deg is multiplicative.

Thus, we have

degh+degf +degg ′ = degh+degf ′+degg .

This shows that deg
(
f
g

)
is well defined.

Definition

For any multiplicatively closed system T ⊆ S of a graded ring S , we define

S(T ) :=
{
f

g
∈ ST :

f

g
is homogeneous of degree 0

}
.
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The Coordinate Ring as a Local Ring

Let p⊆S be a homogeneous prime ideal.

The set
Tp := {f ∈ S : f is homogeneous, f 6∈ p}

is a multiplicatively closed system.

We define
S(p) := S(Tp).

Let S be an integral domain.

Let f ∈ S be a nonzero homogeneous element.

The set
Tf := {f n : n≥ 0}

is multiplicatively closed.

We define
S(f ) := S(Tf ).
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The Coordinate Ring as a Local Ring (Cont’d)

Lemma

For a projective variety V ⊆Pn
k
, we have an isomorphism of graded rings

k(V )∼=S(V )((0)).

This follows immediately from the definition of k(V ).
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Regular Functions

Definition (Regular Function)

A rational function f ∈ k(V ) is called regular at a point P if there is a
representation

f =
g

h
, with h(P) 6= 0.

Definition (Domain of Definition)

The domain of definition dom(f ) of f ∈ k(V ) is the set of all points
where f is regular.

As in the affine case, dom(f ) is a nonempty open subset of V .
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Local Ring of a Variety

Definition (Local Ring of V )

The local ring of V at a point P ∈V is defined by

OV ,P := {f ∈ k(V ) : f is regular at P}.

Definition (The Maximal Ideal of V )

The maximal ideal of V at a point P ∈V is defined by

mV ,P := {f ∈OV ,P : f (P)= 0} ⊆OV ,P .

Note that every element g ∈OV ,P , with g(P) 6= 0, is a unit.

So mV ,P is the unique maximal ideal of OV ,P .

Thus, OV ,P is indeed a local ring.
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Isomorphism of Local Rings

Let V be an irreducible variety, with V *V (x0).

Consider a point P ∈V0 =V ∩U0.

Depending on whether we interpret P as a point in the projective
variety V or in the affine variety V0, we have defined two local rings,

OV0,P and OV ,P .

The isomorphism given in the lemma induces an isomorphism

OV ,P
∼=OV0,P .

For P ∈V , we can consider the maximal ideal

MP := {f ∈ S(V ) : f homogeneous, f (P)= 0} ⊆ S(V ).

Lemma

OV ,P
∼= S(V )(MP).

Immediately clear from the definitions.
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The Ring of Regular Functions

Definition (Ring of Regular Functions)

For a quasi-projective variety, given by an open subset U ⊆V , the ring of

regular functions on U is defined by

O(U) := {f ∈ k(V ) :U ⊆ dom(f )}.

Considering O(U) as a subset of k(V ), we have

O(U)=
⋂

P∈U
OV ,P .
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The Regular Function Theorem

Theorem

If V is an irreducible projective variety defined over an algebraically close
field k , then every regular function on V is constant, i.e.,

O(V )∼= k .

In the complex case, if V ⊆Pn
C

is a smooth projective variety, this
result follows from the fact that any holomorphic function on a
connected compact complex manifold is constant.

We would like to give an algebraic proof.
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R-Modules

Let R be a ring with 1.

Definition (R-Module)

A module over R (or an R-module) is an abelian group M, together with
a multiplication map

R ×M → M;
(r ,m) 7→ rm,

such that the following hold:

(1) r(m1+m2)= rm1+ rm2;

(2) (r1+ r2)m= r1m+ r2m;

(3) (r1r2)m= r1(r2m);

(4) 1m=m.

A module in which the ring R is a field is a vector space.

A submodule is defined analogously to vector subspaces.

Similarly for homomorphisms of modules.
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Finitely Generated and Noetherian Modules

Definition (Finitely Generated Module)

An R-module M is called finitely generated if there are finitely many
elements m1, . . . ,mk with

M =Rm1+·· ·+Rmk .

Definition (Noetherian Module)

An R-module M is called Noetherian if all submodules U ⊆M are finitely
generated.
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Finitely Generated Modules over Noetherian Rings

Lemma

Let R is a Noetherian ring. If M is a finitely generated R-module, then M

is a Noetherian module.

Let M =Rm1+·· ·+Rmk .

Let ei ,1≤ i ≤ k , be a basis for Rk , with

ei = (0, . . . ,0,1,0, . . . ,0),

i.e., all components are 0 except a 1 in the i -th place.

For 1≤ i ≤ k , there is a surjective homomorphism

ϕ : Rk → M;
ei 7→ mi .

Suppose U is a submodule of M.

Then φ−1(U) is a submodule of Rk .

So it is enough to prove the result for Rk .
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Finitely Generated and Noetherian Modules (Cont’d)

We will prove the result by induction on k .

If k = 1, then a submodule of M ∼=R is isomorphic to an ideal of R .

The result follows from the assumption that R is a Noetherian ring.

Now take U ⊆Rk , with k ≥ 2.

The first components of the vectors in U generate an ideal I in R ,

I := (u1 : (u1, . . . ,uk) ∈U).

Since R is Noetherian, this ideal is finitely generated.

So there are elements u(i) ∈U , 1≤ i ≤ ℓ, with first component u
(i)
1

,
such that

I = (u
(1)
1

, . . . ,u
(ℓ)
1

).
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Finitely Generated and Noetherian Modules (Cont’d)

Thus, for u ∈U , there are elements r1, . . . ,rℓ ∈R , such that

u− r1u
(1)−·· ·− rℓu

(ℓ) = (0,u∗
2 , . . . ,u∗

k ).

Let Rk−1 ⊆Rk be the submodule of elements of Rk , with first
component 0.

Consider the submodule

U ′ :=U ∩Rk−1
.

By induction, U ′ is finitely generated, by some elements v1, . . . ,vm.

Thus,
u(1), . . . ,u(ℓ),v1, . . . ,vm

generate U .
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The Regular Function Theorem

Theorem

If V is an irreducible projective variety defined over an algebraically close
field k , then every regular function on V is constant, i.e.,

O(V )∼= k .

Let V be an irreducible projective variety in Pn
k
.

We assume that V is not contained in any hyperplane Hi :=V (xi).

Otherwise V ⊆Hi
∼=Pn−1

k
, and we can replace Pn

k
by Pn−1

k
.

Let f ∈O(V ).

Consider the affine covering V =V0∪·· ·∪Vn.

Since f is regular on V , the restriction f |Vi
is regular on Vi .

George Voutsadakis (LSSU) Algebraic Geometry July 2024 62 / 103



Functions Rational Functions and Morphisms

The Regular Function Theorem (Cont’d)

We make use of the explicit isomorphism k(V )∼= k(Vi).

Then f |Vi
is a polynomial in

xj
xi

, 1≤ j 6= i ≤ n.

Thus, for 1≤ i ≤ n, we can write

f |Vi
=

gi

x
Ni

i

,

where gi ∈ S(V ) is homogeneous of degree Ni .

Since V is irreducible, I (V ) is a prime ideal.

This implies that
S(V )= k[x0, . . . ,xn]/I (V )

is an integral domain.

So we can consider the field of fractions

L :=QuotS(V )= k(V a),

where V a is the affine cone over V .
George Voutsadakis (LSSU) Algebraic Geometry July 2024 63 / 103



Functions Rational Functions and Morphisms

The Regular Function Theorem (Cont’d)

The rings O(V ),k(V ) and S(V ) are all contained in L.

We have
x
Ni

i
f ∈ SNi

(V ),

where Sd(V ) is the homogeneous part of degree d of S(V ).

Now take an integer N >
∑
Ni .

Then SN(V ) is a finite dimensional k-vector space, spanned by the
monomials of degree N.

Every monomial m in SN(V ) is divisible by x
Ni

i
, for some i .

Since x
Ni

i
f ∈ SNi

(V ), we get mf ∈ SN(V ).

Hence, SN(V )f ⊆ SN(V ).

This shows that, for q ≥ 1, we have a sequence of inclusions,

SN(V )f q ⊆ SN(V )f q−1 ⊆ ·· · ⊆ SN(V )f ⊆SN(V ).

In particular, this implies that xN0 f q ∈ SN(V ), for all q ≥ 1.

Hence, S(V )[f ]⊆ x−N0 S(V )⊆ L.
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The Regular Function Theorem (Final Steps)

We have x−N0 S(V ) is a finitely generated S(V )-module.

Hence, x−N0 S(V ) is Noetherian.

So the submodule S(V )[f ] is also finitely generated over S(V ).

Now f is integral over S(V ).

It, thus, satisfies an equation of the form

f m+am−1f
m−1+·· ·+a1f +a0 = 0, ai ∈ S(V ).

Since f is homogeneous of degree 0, we can assume the same for the
ai , since we can take the degree 0 component of the ai .

Hence, ai ∈ S0(V )= k .

Thus, f is algebraic over k .

But, we are assuming that k = k .

It follows that f ∈ k .
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Affine Rational Maps

Definition (Affine Rational Map)

Let V be an irreducible projective variety.

(1) A rational map f :V 99KAm
k

is an m-tuple

f = (f1, . . . , fm)

of rational functions f1, . . . , fm ∈ k(V ).
The domain of definition of f is given by

dom(f ) :=
m⋂

i=1

dom(fi).

On this set, f is well defined, with f (P)= (f1(P), . . . , fm(P)).

(2) A rational map f :V 99KW ⊆Am
k

is given by a rational map
f :V 99KAm

k
with f (dom(f ))⊆W .
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Projective Rational Maps

Now let V be an irreducible projective or affine variety.

Definition (Projective Rational Map)

A rational map f :V 99KPm
k

on V is given by

f (P)= (f0(P) : . . . : fm(P))

for rational functions f0, . . . , fm ∈ k(V ).

If 0 6= g ∈ k(V ), then the tuples

(f0, . . . , fm) and (gf0, . . . ,gfm)

define the same rational map.
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Regular Maps

Definition (Regular Map)

A rational map f :V 99KPm
k

is regular at a point P if there is a
representation

f = (f0 : . . . : fm),

such that:

(1) For 1≤ i ≤m, the function fi is regular at P .

(2) There is some i , such that fi(P) 6= 0.

Definition (Projective Rational Map)

A rational map f :V 99KW ⊆Pm
k

is a rational map f :V 99KPm
k

, with

f (dom(f ))⊆W .
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Morphisms of Quasi-Projective Varieties

Definition (Morphism)

Let V1 and V2 be irreducible affine or projective varieties containing open
subsets U1 and U2, respectively.

(1) A morphism f :U1 →U2 is a rational map f :V1 99KV2 with

U1 ⊆ dom(f ) and f (U1)⊆U2.

(2) A morphism f :U1 →U2 is an isomorphism if there is a morphism
g :U2 →U1, with

g ◦ f = idU1
and f ◦g = idU2

.

This definition allows us to speak of:

Morphisms on quasi-projective varieties;
Isomorphisms between quasi-projective varieties.
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Example

Consider the rational normal curve of degree n, parametrized by
the map

ϕ : P1
k

→ Pn
k
;

ϕ(t0 : t1) = (tn0 : tn−1
0 t1 : . . . : tn1 ).

Notice that we can write

ϕ(t0 : t1) = (tn0 : tn−1
0 t1 : . . . : tn1 )

=
((

t0
t1

)n
:
(
t0
t1

)n−1
: . . . : 1

)

=
(
1 : . . . :

(
t1
t0

)n−1
:
(
t1
t0

)n)
.

So the map ϕ is rational and everywhere regular.
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The Isomorphism jℓ

We return to the affine covering of Pn
k
.

We have maps

iℓ : An
k

→ Uℓ = {(x0 : . . . : xn) : xℓ 6= 0} ⊆Pn
k
;

(x1, . . . ,xn) 7→ (x1 : . . . : xℓ−1 : 1 : xℓ : . . . : xn),

jℓ : Uℓ → An
k
;

(x0 : . . . : xℓ−1 : xℓ . . . : xn) 7→ (x0

xℓ
, . . . ,

xℓ−1

xℓ
,
xℓ+1

xℓ
, . . . ,

xn
xℓ
).

We have already seen that jℓ is a homeomorphism.

Proposition

jℓ :Uℓ →An
k

is an isomorphism.

The maps iℓ and jℓ are inverse morphisms of each other.
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Birational Equivalences

Let V and W be irreducible quasi-projective varieties.

Definition (Birational Map)

A rational map f :V 99KW is called birational (or a birational

equivalence) if there is a rational map g :W 99KV , with

f ◦g = idW and g ◦ f = idV .

Definition (Birational Equivalence)

Two varieties V and W are said to be birationally equivalent if there is a
birational equivalence f :V 99KW .
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Characterization of Birational Maps

Recall that a rational map f :V 99KW is called dominant if
f (dom(f )) is a Zariski dense subset of W .

Theorem

For a rational map f :V 99KW , the following statements are equivalent:

(1) f is birational;

(2) f is dominant and f ∗ : k(W )→ k(V ) is an isomorphism;

(3) There are open sets V0 ⊆V and W0 ⊆W , such that the restriction
f |V0

:V0 →W0 is an isomorphism.
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Proof of the Equivalence Theorem ((3)⇒(1))

The equivalence of (1) and (2) is proved as in the affine case.

We show that (3)⇒(1).

Under (3), f |V0
:V0 →W0 has an inverse g :W0 →V0.

Moreover, by definition, g :W 99KV is a rational map.

Then g ◦ f :V 99KV and f ◦g :W 99KW are rational maps which are
the identity maps on V0 and W0, respectively.

But V0 and W0 are dense.

It follows that
g ◦ f = idV and f ◦g = idW .

George Voutsadakis (LSSU) Algebraic Geometry July 2024 74 / 103



Functions Rational Functions and Morphisms

Proof of the Equivalence Theorem ((1)⇒(3))

It remains to show the implication (1)⇒(3).
Let g :W 99KV be a rational map inverse to f .

We set V ′ := dom(f ) and W ′ = dom(g).

W
g✲ V

f✲ W

ψ−1(V ′)

∪

✻

ψ✲ V ′
∪

✻

ϕ✲ W

wwwww

W
❄

∩

idW

✲

Then we have morphisms

ϕ := f |V ′ :V ′→W and ψ := g |W ′ :W ′ →V .

We also have an equality of rational maps f ◦g = idW .
Thus, we obtain ϕ(ψ(P))=P , for all P ∈ψ−1(V ′).
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Proof of the Equivalence Theorem ((1)⇒(3) Cont’d)

Now let

V0 := ϕ−1(ψ−1(V ′)),

W0 := ψ−1(ϕ−1(W ′)).

Suppose Q ∈V0.

Then ϕ(Q) ∈ψ−1(V ′).

So ϕ(ψ(ϕ(Q)))=ϕ(Q).

W
g✲ V

f✲ W

ψ−1(V ′)

∪

✻

ψ✲ V ′
∪

✻

ϕ✲ W

wwwwww

W
❄

∩

idW

✲

Hence, ϕ(Q) ∈W ′ and ϕ(Q) ∈ψ−1(ϕ−1(W ′))=W0.

Thus, the map ϕ :V0 →W0 is a morphism.

Similarly, ψ :W0 →V0 is a morphism.

Obviously, ϕ and ψ are inverse to each other.
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Categorical Formulation

Corollary

There is a contravariant equivalence between the category of irreducible
quasi-projective varieties, with dominant rational maps as morphisms, and
the category of finitely generated field extensions of k and
k-homomorphisms, given by

V 7→ k(V ),

(f :V 99KW ) 7→ (f ∗ : k(W )→ k(V )).

In the classification problem of algebraic geometry, one tries to classify
varieties either up to birational equivalence (coarse classification), or
up to isomorphism (fine classification).

It makes sense to restrict attention to the properties of a variety that
are invariant under birational equivalence.
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Irreducible Varieties are “Almost” Hypersurfaces

Proposition

Every quasi-projective irreducible variety is birationally equivalent to an
affine hypersurface.

Since every quasi-projective variety is birationally equivalent to an
affine variety, we may restrict attention to this case.

Let V ⊆An
k

be an irreducible affine variety.

By a previous corollary, there are

y1, . . . ,ym+1 ∈ k[V ],

such that:

y1, . . . ,ym algebraically independent over k ;
k(V ) is an algebraic extension of k(y1, . . . ,ym), generated by ym+1.
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Irreducible Varieties are “Almost” Hypersurfaces (Cont’d)

Consider the minimal polynomial

yNm+1+a1y
N−1
m+1 +·· ·+an = 0, ai ∈ k(y1, . . . ,ym),

of ym+1 over k(y1, . . . ,ym).

Multiply by the highest common denominator of the ai .

We obtain an irreducible polynomial

b0y
N
m+1+b1y

N−1
m+1 +·· ·+bN = 0, bi ∈ k[y1, . . . ,ym].

This equation defines an irreducible hypersurface W ⊆Am+1
k

.

Now the yi are algebraically independent, for 1≤ i ≤m.

So we have an isomorphism k(W )∼= k(V ).

The result then follows from the preceding theorem.
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Rational Quasi-Projective Varieties

Definition (Rational Quasi-Projective Variety)

A quasi-projective variety V is called rational if V is birationally equivalent
to An

k
(or equivalently, to Pn

k
).

Proposition

The following statements are equivalent:

(1) V is rational;

(2) k(V )∼= k(x1, . . . ,xn);

(3) There are isomorphic open sets V0 ⊆V and U0 ⊆An
k
.

This follows immediately from the theorem.
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Examples

We have already visited the curves

C0 : y2 = x3 (semicubical parabola),

C1 : y2 = x3+x2.

They are rational.

We also visited the elliptic curve

Cλ : y2 = x(x −1)(x −λ), λ 6= 0,1.

We showed that it is not rational.
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Example

Consider the map

f : A1
k

→ C := {(x ,y) ∈A2
k
: y2−x3 = 0};

t 7→ (t2,t3),

It is a birational map.

However, f is not an isomorphism.

The restriction
f0 := f |A1

k
\{0}:A

1
k\{0} →C\{0}

is an isomorphism of Zariski open sets.
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Projections

Consider the map

π := (x1 : . . . : xn) : Pn
k

→ Pn−1
k

;
(x0 : . . . : xn) 7→ (x1 : . . . : xn).

It is a rational map.

It is defined everywhere on Pn
k

except at the point P0 = (1 : 0 : . . . : 0).

The map π is called the projection from P0.

Identify Pn−1
k

with V (x0) in Pn
k
.

Consider a point P 6=P0.

The image π(P) is given by the
intersection of the line P0P with the
plane Pn−1

k
.
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Projections (Cont’d)

Now set n= 3 and consider the quadric

Q := {(x0 : x1 : x2 : x3) ∈P3
k : x0x3−x1x2 = 0}.

The point P0 = (1 : 0 : 0 : 0) lies on Q.

The restriction of the projection π to Q is a rational map

p =π |Q :Q 99KP
2
k .

This map is birational.

Its inverse q :P2
k
99KQ is given by

q(x1 : x2 : x3) = (x1x2
x3

: x1 : x2 : x3)

= (x1x2 : x1x3 : x2x3 : x
2
3 ).

q is defined everywhere except at the points (1 : 0 : 0) and (0 : 1 : 0).
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Cremona Transformations

A birational map from P2
k

to P2
k

is called a Cremona

transformation.

An example is given by the map ϕ :P2
k
99KP2

k
, defined by

ϕ(x0 : x1 : x2) = (x1x2 : x0x2 : x0x1)

=
(

1
x0

: 1
x1

: 1
x2

)
.

It is birational, with ϕ=ϕ−1.

The map ϕ is not defined at the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1).

Moreover, it contracts the three lines V (xi) to points.
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The Segre Map and the Segre Variety

Definition (The Segre Map and the Segre Variety)

We define the Segre map by

sn,m : Pn
k
×Pm

k
→ PN

k
;

((x0 : . . . : xn),(y0 : . . . : ym)) 7→ (x0y0 : . . . : xiyj : . . . : xnym)

where N = (n+1)(m+1)−1 and 0≤ i ≤ n, 0≤ j ≤m.
This map is well defined.
The image

Σn,m := sn,m(P
n
k ×P

m
k )

is called the Segre variety.
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The Segre Variety

Lemma

The Segre map sn,m :Pn
k
×Pm

k
→Σn,m is bijective.

The image Σn,m is a projective variety in PN
k

.

We denote the coordinates of PN
k

by zij , where 0≤ i ≤ n, 0≤ j ≤m.

These coordinates are ordered to be compatible with sn,m.

Let πijℓr is the projection

πijℓr : PN
k

99K P1
k

,

(z00 : . . . : zij : . . . : znm) 7→ (zij : zℓr ).

Then the composition πijℓr ◦ sn,m is given by the rational map

πijℓr ◦ sn,m((x0 : . . . : xn),(y0 : . . . : ym))= (xiyj : xℓyr ).
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The Segre Map and the Segre Variety (Cont’d)

So the points in Σn,m satisfy the homogeneous equations

zir zjℓ−ziℓzjr = 0, i , j = 0, . . . ,n; ℓ,r = 0, . . . ,m.

Let Z be the variety described by these equations.

Clearly Σn,m ⊆Z .

Claim: For every point R ∈Z , there exists a pair (P ,Q) ∈Pn
k
×Pm

k
,

such that
sn,m(P ,Q)=R .

The Claim implies that
∑

n,m =Z .

Thus, sn,m maps Pn
k
×Pm

k
bijectively to its image.
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Proof of the Claim

Claim: For every point R ∈Z , there exists a pair (P ,Q) ∈Pn
k
×Pm

k
,

such that
sn,m(P ,Q)=R .

Let R = (z0
00 : z

0
01 : . . . : z0

nm) be a point in Z .

Without loss of generality, we may assume that z0
00 6= 0.

So, by scaling, we can assume that z0
00 = 1.

The other cases can be handled analogously.

Set
Q := (1 : z0

01 : . . . : z0
0m) ∈P

m
k

,

P := (1 : z0
10 : . . . : z0

n0) ∈P
n
k

.

We have
z0
i0z

0
0j = z0

00z
0
ij = z0

ij .

Hence, sn,m((P ,Q))=R . It is also clear that (P ,Q) is the unique
point in Pn

k
×Pm

k
mapped to R by sn,m.
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Irreducibility of the Segre Variety

Lemma

The Segre variety Σn,m is irreducible.

The projections from Pn
k
×Pm

k
to Pn

k
and to Pm

k
form a commutative

diagram.

P
n
k

P
n
k ×P

m
k

sn,m✲

p1
✲

Σn,m

q1
✻

P
m
k

q2
❄

p
2 ✲

The proof of the lemma shows that q1 and q2 are morphisms.
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Irreducibility of the Segre Variety

Let P ∈Pn
k

and Q ∈Pm
k

be any points.

P
n
k

P
n
k ×P

m
k

sn,m✲

p1
✲

Σn,m

q1
✻

P
m
k

q2
❄

p
2 ✲

We have the following restrictions of sn,m,

sQn,m :Pn
k
× {Q} → Σn,m,

sPn,m : {P}×Pm
k

→ Σn,m.

These maps induce isomorphisms between Pn
k

and Pm
k

and projective subspaces of PN
k

.

Thus, via sPn,m and sQn,m, the fibers of q1 and q2 are projective
varieties, isomorphic to Pm

k
and Pn

k
, respectively.

In particular, the fibers of q1 and q2 are irreducible.

The irreducibility of Σn,m can now be shown as in the affine case.
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Example

We may identify Pn
k
×Pm

k
with Σn,m by means of the Segre map.

In this way, Pn
k
×Pm

k
is viewed as an irreducible projective variety.

Example: We have already seen the map

s1,1 : P1
k
×P1

k
→ P3

k
;

((x0 : x1),(y0 : y1)) 7→ (x0y0 : x0y1 : x1y0 : x1y1).

In this case the Segre variety Σ1,1 is the quadric

Σ1,1 =Q =V (z00z11−z01z10).
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Product of Projective Varieties

Proposition

Let V and W be projective varieties. Then:

(1) The product V ×W is also a projective variety.

(2) If V ,W are irreducible, then so is V ×W .

(1) Let V ⊆Pn
k
, W ⊆Pm

k
be given by homogeneous equations

V : fi(x0, . . . ,xn) = 0, i = 1, . . . ,r ;

W : gj(y0, . . . ,ym) = 0, j = 1, . . . ,s .

Let di be the degree of fi .

Let ej the degree of gj .
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Product of Projective Varieties (Cont’d)

The elements of the set V ×W ⊆Pn
k
×Pm

k
are given by the zeros of

the polynomials

Fik := fiy
di
k

, i = 1, . . . ,r , k = 0, . . . ,m,

Gjℓ := gjx
ej
ℓ

, j = 1, . . . ,s , ℓ= 0, . . . ,n.

These may be considered as homogeneous polynomials

Fik = Fik(zµk) and Gjℓ =Gjℓ(zℓν).

Append the equations

zµνzρσ−zµσzρν = 0.

We obtain a system of homogeneous equations for the set

V ×W ⊆P
N
k .

(2) Irreducibility can be shown as in the lemma.
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Remarks

In fact V ×W is a product in the category of projective varieties.

Note that V ×W does not have the product topology.

The product of quasi-projective varieties is obtained analogously.
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The Exceptional Line

Consider the quasi-projective variety

Ã
2
k := {((x ,y),(t0 : t1)) ∈A2

k ×P
1
k : xt1−yt0 = 0}.

Projection onto the factor A2
k

induces a surjective morphism

π : Ã2
k →A

2
k .

We have

π−1(x ,y)=
{

{(0,0)}×P1
k

, if (x ,y)= (0,0),

((x ,y),(x : y)), otherwise.

The fiber E :=π−1((0,0)) is a projective line, which is called the
exceptional line.
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The Blow Up

For (x ,y) 6= (0,0), the inverse image is the point ((x ,y),(x : y)).

So π is birational with inverse

π−1 : A2
k

99K Ã2
k
;

π−1(x ,y) = ((x ,y),(x : y)).

This map is not regular at the origin.

Away from the origin, π gives an
isomorphism between the quasi-projective
varieties

A
2
k\{0} and Ã

2
k\E .

The surface Ã2
k

is called the blow-up of
A2

k
at the origin.
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Points of E and Lines through Origin in A
2
k

The points of E correspond to the lines through the origin in A2
k
.

Let Lλ,µ be the line through the origin in A2
k
, given by

Lλ,µ := {(x ,y) ∈A2
k :λx −µy = 0}.

The inverse image of {(0,0)} ∈ Lλ,µ is the exceptional line E .

Any other point of Lλ,µ is of the form (µt ,λt), for t ∈ k\{0}.

We have
π−1(µt ,λt)= ((µt ,λt),(µ :λ)).

So the inverse image of Lλ,µ\{0} is given by

π−1(Lλ,µ\{0})= {((µt ,λt),(µ :λ)) : t ∈ k\{0}}.
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Points of E and Lines in A
2
k

(Cont’d)

Let the line L′
λ,µ

⊆A2
k
×P1

k
be the closure of

π−1(Lλ,µ\{0})= {((µt ,λt),(µ :λ)) : t ∈ k\{0}}.

The projection π induces an isomorphism between L′
λ,µ

and Lλ,µ.

We have
L′λ,µ =π−1(Lλ,µ\{0})∪ {((0,0),(µ,λ))} ∈E .

So
π−1(Lλ,µ)=E ∪L′λ,µ.

Identify E with P1
k

via ((0,0),(x : y)) 7→ (x : y) ∈P1
k
.

We obtain L′
λ,µ

∩E = (µ :λ) ∈P1
k
.

Thus, every point (µ :λ) ∈E ∼=P1
k

corresponds to a unique line
through the origin in A2

k
.
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Affine Covering of Ã2
k

Recall the affine covering P1
k
=U0∪U1, with Ui = {ti 6= 0}.

It induces a covering

Ã
2
k =V0∪V1, Vi ⊆A

2
k ×A

1
k ,

where

V0 :=
{
((x ,y),(t0 : t1)) ∈A2

k
×P1

k
: t0 6= 0 and x t1

t0
−y = 0

}
,

V1 :=
{
((x ,y),(t0 : t1)) ∈A2

k
×P1

k
: t1 6= 0 and x −y t0

t1
= 0

}
.

Now we use coordinates:

x ,u := t1
t0

for V0;

y ,v := t0
t1

for V1.

We see that V0 and V1 are both isomorphic to A2
k
.
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Example

Consider the curve
C : y2 = x3+x2

.

It has a double point at the origin.

We have

π−1(C )= {((x ,y),(t0 : t1)) : y
2 = x3+x2

,t0y = t1x}.

In terms of the preceding affine covering, we have

π−1(C\{(0,0)})∩V0 = {(x ,u) ∈V0
∼=A2

k
: x2(x +1−u2)= 0},

π−1(C\{(0,0)})∩V1 = {(y ,v) ∈V1
∼=A2

k
: y2(yv3+v2−1)= 0}.
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Example (Cont’d)

Let C̃ denote the closure of this curve in A2
k
×P1

k

Note C̃ ⊆V0.

Identifying E with P1
k
, we get

C̃\π−1(C\{(0,0)}) = C̃ ∩E = {(1 : 1),(1 :−1)} ⊆E ∼=P
1
k .

These points correspond to the two tangents to C at the origin, given
by L1,1 and L1,−1 in the notation of the previous example.
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Example (Strict Transform of C )

The preimage π−1(C ) also contains
the exceptional line (with multiplicity
two).

Moreover, we have

π−1(C )=E ∪ C̃ .

The curve C̃ is “smooth”.

We call C̃ the strict transform of C .

C̃ is birationally equivalent, but not isomorphic, to C .

The figure shows C and its preimage, together with the tangent lines
to C at (0,0) and their preimages.
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